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ABSTRACT 

 

CHEMICAL AND TOXICOLOGICAL CHARACTERIZATION OF DISSOLVED 

ORGANICS FROM OIL SANDS WATERS 

 

The surface mining of oil sands from the Athabasca deposit north of Fort McMurray, 

Alberta produces considerable tailings waste which is stored in large tailings ponds on industry 

lease sites. With the advent of oil sands end-pit lakes and decommissioned tailings ponds, viable 

strategies for the detoxification of oil sands process affected water (OSPW) are under 

investigation. One such strategy relies on the biodegradation of toxic organic compounds by 

indigenous microbes, resulting in aged tailings waters with potentially reduced toxicity. 

Determining drivers of toxicity within OSPW poses a great challenge because differences in ore 

quality and bitumen extraction methods influence organic and inorganic chemistry, and 

therefore, toxicity. 

In order to assess the toxic potential of the suite of dissolved organics in OSPW, a 

method for extraction and fractionation was developed. This was achieved with a liquid 

chromatography approach using reversed-phase solid phase extraction coupled with soxhlet 

extraction. The method successfully separated organic compounds from 180 L of an aged OSPW 

source into three fractions (F1-F3) with increasing polarities. Chemical characterization of the 

generated fractions included electrospray ionization high-resolution mass spectrometry, liquid 

chromatography quadrupole time-of-flight mass spectrometry, gas chromatography triple 

quadrupole time-of-flight mass spectrometry, and synchronous fluorescence spectroscopy. 

Method validation included fractionations with surrogate reference standards and labelled 
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standards, which also confirmed separation according to polarity and verified high recovery of 

dissolved organics. This method was designed to generate bulk quantities of extract which 

provide enough material for a suite of toxicity bioassays.  

Using this novel method, aged OSPW and four bitumen-influenced groundwater sites (2 

influenced by natural bitumen; 2 influenced by a mixture of natural bitumen and OSPW sources) 

were fractionated. The whole water and isolated fractions were then exposed to seven different 

aquatic species; Pimephales promelas (embryo), Oryzias latipes (embryo), Vibrio fischeri, 

Daphnia magna (neonates), Lampsilis cardium (glochidia), Lampsilis siliquiodea (glochidia) and 

Hyalella azteca (juveniles). Chemically, bitumen-influenced groundwater sites were 

predominantly composed of O2 and O4 species while aged OSPW was dominated by O4 species. 

Analysis also revealed a high variability in composition and abundance of organic and inorganic 

constituents across groundwater sites. Of the organic fractions assessed, F1 (least polar) and F3 

(most polar) appeared most toxic overall while F2 displayed little toxicity to all species 

evaluated. Organisms were identified as differentially more sensitive to whole waters, likely as a 

result of inorganics (D. magna and L. siliquiodea), or dissolved organics (P. promelas and H. 

azteca).The present study indicates that although an aged tailings source (≥18 years) displayed 

low toxicity overall, inorganic and polyoxygenated organic components may pose a persistent 

concern to aquatic organisms. A general comparison of groundwater sites containing OSPW-

derived constituents vs. natural bitumen-derived constituents revealed that whole water toxicities 

were quite similar. It is therefore likely that toxicity associated with tailings seepage into 

groundwater is mitigated by chemical changes as a result of soil composition and groundwater 

mixing. 
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Finally, an ecotoxicological risk assessment of OS acid-extractable organics (AEO) 

produced a joint probability curve which predicted that the probability of producing an effect in 

10% of fish and invertebrates species was 100% and 97.7%, respectively. In general, at AEO 

exposures in the range of 17 – 104 mg/L, an acute species sensitivity distribution revealed 

vertebrates (embryonic) to be more sensitive than invertebrate organisms. The risk assessment 

recommends a monitoring program that accounts for current anthropogenic dissolved organic 

input from tailings seepage, and its effect on particularly sensitive fish species. Additionally, 

future efforts regarding the wet landscape strategy should account for changes in dissolved 

organic concentrations and reduction in toxicity over time.  

In summation, for those organisms that display sensitivity to dissolved organics in oil 

sands waters, aging by natural biodegradation appears to be a viable strategy. Moreover, 

industrially-influenced groundwaters do not appear to pose a greater risk to aquatic organisms 

than groundwaters influenced by naturally-derived bitumen. Nonetheless, due to possible 

invertebrate sensitivities to inorganic components within whole waters, a strategy to deal with 

these bio-persistent compounds warrants investigation. In order to identify and characterize 

OSPW-derived dissolved organics that pose the greatest environmental risk, the bioactive 

fractions (F1 and F3) will be further fractionated and assessed toxicologically. Finally, it is 

recommended that organisms identified as being most acutely sensitive to OSPW-derived 

organic and inorganic constituents be the focus of future effects-directed analysis of OSPW 

toxicity, as well as impact assessment monitoring and future remediation/reclamation of 

industrial lease sites. 
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1.1. Introduction 

The oil sands deposits in northern Alberta encompasse 142,000 km2 and contain the third 

largest reserve of oil worldwide next to Venezuela and Saudi Arabia (Alberta Energy Regulator, 

2014; Canadian Association of Petroleum Producers, 2016). The vast deposits are comprised of 

three regions, the largest being the Athabasca deposit, followed by the Cold Lake and Peace 

River deposits. Oil sands are heavy crude oil deposits composed of 68% sand, 23% bitumen and 

9% water (Fair, 2010). Bitumen, the sought after resource, is a viscous hydrocarbon mixture. The 

extraction of bitumen can be achieved in two ways; in-situ methods for deposits deeper than 75 

metres and surface mining methods for deposits closer to the surface (Alberta Energy and 

Utilities Board, 2009-2010). In-situ methods, including steam assisted gravity drainage, require 

high pressure steam to be injected into oil sand deposits which allows the bitumen to flow to a 

lower well where it is then pumped to the surface (Royal Society of Canada Expert Panel, 2010). 

Bitumen deposits that are close to the surface are trapped in the underlying sand, and therefore, 

are surface mined and then separated from the sand. It is then transported to an extraction facility 

where a process known as Clark hot water extraction liberates bitumen from sand in the oil sand 

material (Alberta Energy, 2009; The Royal Society of Canada, 2010). The Clark hot water 

extraction is a separation method in which the oil sand is mixed with hot water, sodium 

hydroxide and steam, thus separating it into three distinct layers: sand, water and bitumen. This 

surface-mined bitumen represents 20 percent of Alberta’s recoverable oil sands (Alberta Energy, 

2008b). The bitumen is removed and then upgraded to a synthetic crude oil to be sold and used 

in the production of other petroleum products (Allen, 2008; Royal Society of Canada Expert 

Panel, 2010).  
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With increasing bitumen production by surface mining methods, there is a concurrent 

increase in mine tailings. Oil sands tailings are largely a product of waste material produced 

during the separation of bitumen and is composed of 70-80% process-affected and/or fresh 

water, 20-30% solids, and 1-3% unrecovered bitumen (Allen, 2008). These large amounts of 

fluid tailings, termed oil sands process-affected water (OSPW), contain contaminants of 

environmental concern. To mitigate this, the Alberta government has established a zero 

discharge policy which restricts the release of wastes associated with the oil sands industry and 

requires that oil sands lease sites be returned to their original state or better (Government of 

Alberta, 2017, FTFC, 1995a). The oil sands industry has responded to the policy by developing 

aquatic reclamation approaches, one of which involves filling mined pits with fluid tailings and 

capping them with water to create end-pit lakes. To be successful, there is a need to determine 

the magnitude of oil sands constituents that an ecosystem can safely assimilate for the 

establishment of a viable habitat. 

 

1.2. Oil Sands Process-affected Water Toxicants 

1.2.1. Inorganic components 

Within the OSPW fraction of mine tailings are a plethora of contaminants including trace 

metals, major ions and dissolved organic compounds (Allen, 2008). Where whole tailings 

include the water soluble and insoluble waste components (sands, clays, etc.), process-affected 

waters represent the wastewater fraction containing only water soluble components. Some of the 

major inorganic contaminants within oil sands tailings water are trace metals. The source of trace 

metals in oil sands tailings is largely due to the concentration of naturally occurring metals in 

bitumen. For example, some metals dissolved in tailings pond water and process affected water 
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which exceed Canadian Water Quality Guidelines are As, Cr, Mo, Fe, Pb, Ni, Zn and Cu (Allen, 

2008; Mahdavi et al., 2013). Because the types and amount of metals present in tailings is 

dependent on industrial processes, exceedances differ between tailings ponds. Metals such as Cd, 

Ba, Mn, Sr, Al, Fe, B, Si, As, Dc, Co Cr, Ni, Pb, Se, V, and Zn, have been shown to leach into 

porewater/groundwater from tailings reservoirs (Oiffer, 2006; Holden et al., 2013). Tailings 

leachate represents a potential hazard to natural surface waters, as well as groundwaters that act 

as a transport medium. One study showed Athabasca River sediments downstream of tailings 

ponds contained a 3-fold increase in Al, Sb, As, Cu, Pb, Sr, U, and Zn compared to upstream, 

suggesting direct input from the tailings pond (Timoney and Lee, 2009). It is important to note 

that the source of downstream metals in this study was a result of industry and major bitumen 

deposits, and it is unknown what proportion of the observed increase was solely due to industrial 

inputs. Although metals are concentrated in tailings, they can precipitate out of solution in the 

tailings environment reducing their overall bioavailability to aquatic organisms.  

Of potentially greater concern is the high salinity associated with inorganic ions present in 

tailings. Salinity in OSPW is largely a result of the caustic hot water solutions employed for the 

separation of bitumen which can become concentrated due to water recycling (FTFC, 1995a). 

The transport of inorganic ions into the environment through groundwater poses a possible threat 

to freshwater organisms which typically exhibit low tolerance to high salinity. However, 

groundwater in the oil sands region displays a wide range in salinity with Cl- concentrations in 

some shallow groundwater discharges of up to 50 mg/L (Jasechko et al., 2012), suggesting some 

level of tolerance in the system. The persistence, transport, and bioavailability of metal ions in 

groundwater is largely determined by groundwater flows. Specifically, the persistence of Na+ 

and Cl- in OSPW has been proposed to be dependent upon the underlying substrate, and where 
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Na+ persists, the precipitation of existing ions (SO4
2-, Ca2+, Mg2+) will likely occur (Holden et al., 

2011). Due to evidence that high Cl- concentrations can preferentially precipitate certain organic 

contaminant classes within OSPW (Headley et al., 2012), the toxicological focus on salinity is 

typically in regard to its interaction with other contaminants (Nero et al., 2006; Celsie et al., 

2016). 

 

1.2.2. Organic components 

Organic contaminants within tailings OSPW have been largely separated into neutral organic 

and polar organic components. Neutral components consist mainly of polycyclic aromatic 

compounds (PAC), while polar components were referred to as naphthenic acids (NAs) and more 

recently acid-extractable organics (AEO).  

The relatively neutral PACs can result from natural and anthropogenic sources and are of 

great concern due to their mutagenic and carcinogenic potential (WHO, 2010). They are 

produced as a result of incomplete combustion of carbon containing fuels, where pyrogenic 

PACs are typically produced as a result of forest fires and petrogenic PACs are 

anthropogenically derived (ATSDR, 1996). PACs are lipophilic and, therefore, more commonly 

encountered in sediment than water, but due to the highly turbid nature of tailings and length of 

time it takes for fluid fine tailings to settle out (decades estimated; Royal Society of Canada 

Expert Panel, 2010), their persistence in tailings water is likely quite profound. The major source 

of PACs in oil sands tailings ponds is unrecovered bitumen remaining after the extraction 

process. They are concentrated in tailings as a result of the extensive re-use of water in bitumen 

extraction and upgrading processes. Alkylated PAC congeners are more common in reclaimed 

tailings ponds due to their relatively high resistance to degradation than their parent compounds 
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(Headley and Akre, 2001) and can be used to identify anthropogenic impact and transport in 

environmental samples (Akre et al., 2004; Hall et al., 2012).  

A group of polar organic compounds within the acid-extractible fraction of OSPW, widely 

referred to as naphthenic acids (NAs), was considered to be the compounds of greatest concern 

in OSPW due in part to their high concentrations within tailings and their water solubility 

(Clemente and Fedorak, 2005; Allen, 2008). The “classical” definition of NAs included alkyl-

substituted acyclic, monocyclic and polycyclic carboxylic acids classified using the general 

formula CnH2n+zO2, where n is the carbon number and z refers to the hydrogen deficiency due to 

a ring formation (Clemente and Fedorak, 2005). Typically, research was conducted on samples 

acquired through acid-extraction methods (Frank et al., 2006), which allowed for chemical 

evaluation of precipitated acid compounds. More recent characterization of these components 

has revealed structures much more complex than the “classical” NA definition, and is more 

inclusive of compounds present in the acid-extractable fraction of OSPW. This more broadly 

defined group of organics, which include NAs, will be henceforth referred to as acid-extractable 

organics (AEO).  

Recent research using advanced chromatographic separation techniques, such as 2-

dimensional gas chromatography, and advanced spectrometry techniques, such as high resolution 

mass spectrometry, are beginning to uncover new AEO compound structures. Unlike classical oil 

sands NAs, AEO are known to be heteroatomic, containing oxygen, sulphur, and nitrogen ions 

within their molecular structure (Stanford et al., 2007; Bauer et al., 2015). There is also evidence 

that oil sands AEO contain di-carboxyl, hydroxyl, ethanoic, methyl, di-methyl, benzenoid, and 

ketonic moieties (Rowland et al., 2011a; Rowland et al., 2011b). Recently, AEO ring structures 

have been revealed to have adamantane, and diamantane configurations (Rowland et al., 2011a). 
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Identification of this diverse suite of AEO coupled with the lack of commercial analytical 

standards for oil sands AEO has presented challenges with quantitation, qualitative analysis, and 

toxicological interpretation.  

 

1.2.3. Aquatic Toxicity of Bitumen-Derived Toxicants 

Toxicity of OSPW is a result of both inorganic and organic constituents present in bitumen 

which are concentrated in a tailings environment. As described above, inorganic components 

typically associated with particulates tend to precipitate out of suspension in tailings, reducing 

their bioavailability to many aquatic species. As a result, research regarding tailings toxicity is 

generally concerned with dissolved organics, specifically AEO. The concern with AEO is their 

high concentration in tailings and persistence in aquatic environments (Brown and Ulrich, 2015). 

Many studies have demonstrated the AEO of OSPW to display acute and sub-acute toxicity to a 

variety of aquatic organisms including phytoplankton (Leung et al., 2003), benthic invertebrates 

(Bartlett et al., 2017), and fish (Siwik et al., 2000; Farrell et al., 2004; Nero et al., 2006; Peters et 

al., 2007; Lister et al., 2008; Kavanagh et al., 2011; Bauer et al., 2017; Marentette et al., 2015a). 

Specifically, AEO have been shown to reduce phytoplankton community diversity (Leung et al., 

2003), as well as reduce plasma sex steroids (Lister et al., 2008), reduce spawning (Kavanagh et 

al., 2011), promote gill degeneration (Farrell et al., 2004; Nero et al., 2006), alter leukocyte 

levels (Farrell et al., 2004), reduce hatch success (Peters et al., 2007; Bauer et al., 2017), reduce 

growth parameters (Siwik et al., 2000; Peters et al., 2007; Bauer et al., 2017), and increase 

embryo-larval mortalities in fish (Peters et al., 2007; Bauer et al., 2017).  

To date, studies have proposed a number of different physico-chemical properties related to 

AEO acute toxicity. These properties include AEO molecular weight (Frank et al., 2008; 
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Clemente et al., 2004), solubility (Stanford et al., 2007; Jones et al., 2011), carboxylic acid 

content (Frank et al., 2009), aromaticity (Jones et al., 2012), and carbon number (Lai et al., 1996; 

Clemente et al., 2004; Jones et al., 2011). Due to the surfactant nature of AEO, narcosis (non-

specific membrane disruption) has been regarded as the likely mode of toxic action (MOA) 

(Clemente and Fedorak, 2005). Thus, an increase in a compound’s lipophilicity enables greater 

penetration into cell membranes and greater potential for membrane disruption, resulting in 

greater toxic potency. More recent research has focussed on linking compound functional groups 

to acute toxicity, and no clear evidence suggests non-specific narcosis as the sole driver of 

toxicity. For example, studies investigating the degradation of OSPW by microbes suggest that 

AEO composition shifts to larger, more recalcitrant compounds as they are degraded over time 

(Lai et al., 1996). Because this compositional shift corresponds with a reduction in toxicity, the 

concept that larger AEO are less toxic was widely accepted (Holowenko et al., 2002; Lo et al., 

2006; Frank et al., 2009). A definitive assessment revealed that the lower toxicity of higher 

molecular weight compounds was likely due to an increase in hydrophilic carboxylic acid groups 

with resulting reduction in lipophilicity (Frank et al., 2009). However, more recent research has 

shown that there is no definitive trend between AEO molecular weight and toxicity when 

sensitivities of different fish species was compared (Bauer et al., 2017). This has led to 

observations that AEO may exhibit additional MOA such as oxidative stress (He et al., 2012; 

Wiseman et al., 2013). Additionally, structural similarities between AEO and compounds like 

Ibuprofen and estrogen have suggested MOA resulting from competitive binding (Tollefson et 

al., 2012). AEO contains >1000 chemical constituents with a broad diversity in structural and 

chemical characteristics, therefore, specific compounds responsible for toxicity are still largely 

unknown (Frank et al., 2008). Furthermore, recent observations that various taxa display a range 
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in sensitivities to AEO (Marentette et al., 2015b; Bartlett et al., 2017) has further challenged 

identification of toxic drivers.  

 

1.3. Challenges Associated with AEO Research 

1.3.1. AEO quantitation 

The study of the chemistry and toxicology associated with AEO is hampered by technical 

challenges. These challenges are rooted in the difficulty in obtaining representative oil sands 

AEO extracts and the fact that there are no AEO chemical standards commercially available. 

This poses difficulties with AEO chemical analysis because instrument calibration relies on 

commercial NA mixtures which aren’t wholly inclusive of AEO classes and are not 

representative of bitumen-derived AEO.  

The most common extraction method involves the acidic extraction of AEO and their 

reconstitution in an alkaline solution or polar solvent (Frank et al., 2006), and has been used by 

the majority of toxicological assessments currently in literature (Farwell et al., 2006; Nero et al., 

2006; Kavanagh et al., 2012; Woodworth et al., 2012; Leclair et al., 2013; Scarlett et al., 2013; 

Marentette et al., 2015a; Marentette et al., 2015b; Bartlett et al., 2017; Bauer et al., 2017). 

Unfortunately, the volume of acids, bases and solvents required in the extraction procedure make 

it a major undertaking. Because the AEO extraction process is very labour intensive, many 

studies have used whole OSPW, commercial NA mixtures, and/or AEO surrogates for testing. 

Although whole OSPW contains bitumen-derived NAs, it also contains a plethora of other 

contaminants including metals, humic acids, and polycyclic aromatic compounds. This makes 

interpretation of toxicity from whole OSPW exposure difficult and not specifically attributable to 

AEO. Unfortunately, commercial NAs are not very representative of oil sands AEO and 
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consequently present challenges resulting in misrepresentation in chemical and toxicological 

characterizations. Five commercial preparations are typically used as analytical standards; Acros, 

Merichem, Aldrich, Kodak, and Fluka. Studies have shown that these commercial mixtures are 

of dissimilar composition to each other (Hindle et al., 2013; Lu et al., 2013). Furthermore 

commercial mixtures are chemically and toxicologically different from OSPW AEO (Grewer et 

al., 2010; Marentette et al., 2015a). For example, when compared to a Kodak or Merichem 

commercial NA mixture, oil sands-derived AEO display a greater distribution of acids in the 

mid-mass range (150-350 amu) and a higher percentage of acids with >22 carbons (Clemente et 

al., 2003). Commercial NAs and surrogates are representative of “classical” NA structures and 

lack non-classical structures such a dicarboxylic acids, and heteroatoms. Due to drastic 

differences between AEO and commercial NAs, surrogates, and whole OSPW, obtaining and 

studying OSPW-derived AEO presents great value to the interpretation of oil sands-related 

research. 

Other challenges inherent in the analysis of AEO are due to the diversity of analytical 

instrumentation used for derivation of AEO concentration. These instruments include 

electrospray ionization mass spectrometry (ESI-MS), electrospray ionization high-resolution 

mass spectrometry (ESI-HRMS), gas chromatography (GC/MS), gas chromatography tandem 

mass spectrometry (GC-MS/MS), liquid chromatography quadrupole time-of-flight mass 

spectrometry (LC/MS-QToF), and fourier transform infrared spectroscopy (FTIR), which require 

different sample preparation methods and produce varying results. In general, high resolution 

analytical methods generate lower, more accurate AEO concentrations compared to low 

resolution methods (Brown and Ulrich, 2015). For example, FTIR and GC low res-MS have 

been shown to produce false high concentrations of AEO compared to other high resolution 
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analyses (Yen et al., 2004; Martin et al., 2008; Han et al., 2009; Headley et al., 2009b). Detection 

of AEO classes also differs depending on whether an ESI-MS instrument is operated in negative- 

or positive-ion mode (Headley et al., 2013b). For example, positive-ion mode has been shown to 

better detect species containing sulfur-containing AEO heteroatoms (Barrow et al., 2010). 

Therefore, AEO ion composition derived from analysis is largely dependent on standards used, 

which inevitably produce unique distributions due to their inherent variability. 

 

1.3.2. Elucidating AEO toxicity 

Similar to challenges associated with AEO quantitation, the lack of representative 

commercial standards has presented challenges with interpretation of AEO toxicity. A major 

detractor is the fact that commercial NAs display greater toxicities than oil sands AEO 

(Marentette et al., 2015a; Bartlett et al., 2017). More comprehensive analyses of AEO-associated 

toxicity have therefore utilized oils sands extracted AEO, which presents its own challenges. 

Specifically, the diversity of physico-chemical components results in differing toxicities, 

dependent upon source material, test organism,and assessed toxicological endpoint. 

In order to elucidate some of the toxicity associated with AEO physico-chemical properties, 

chemical fractionations have been useful. For example, a fractionation method employed 

argentation solid phase extraction with polar solvents, and was able to separate organics based on 

aromaticity (Jones et al., 2012). Another fractionation method involving cyano column 

chromatography was able to separate AEO into four fractions based on polarity using different 

solvent mixtures (Borgund et al., 2007). Both of these methods are useful for characterization of 

organics analytically but neither is suitable for the preparative bulk isolations required for 

toxicity testing. Previous attempts to fractionate OSPW based on solubility have generated 
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fractions with a substantial degree of overlap with regard to AEO species present (Lo et al., 

2006; Grbovic et al., 2012; Huang et al., 2015). Unfortunately, fractionations based on solubility 

have not led to the assignment of structure-toxicity relationships for specific compound classes. 

Therefore, the challenge remains to develop methods to isolate distinct physico-chemical 

fractions of this complex mixture of oil sands AEO in quantities sufficient to conduct toxicity 

tests. 

 

1.3.3. Tailings contaminant fate 

Industry operators have invested substantial effort to prevent tailings from leaching into 

underlying groundwaters and contaminating surface waters. As such, tailings pond construction 

methods include perimeter dykes, low-permeability clay-till dyke material, internal dyke 

drainage, and tailings interceptor ditches (Ferguson et al., 2009; Yasuda et al., 2010; Holden et 

al., 2011). Despite these efforts, recent evidence suggests OSPW infiltration into underlying 

groundwaters is occurring (Ferguson et al., 2009; Oiffer et al., 2009; Yasuda et al., 2010; Ross et 

al., 2012; Frank et al., 2014; Roy et al., 2016). Although seepage has been identified, 

determining the degree to which it affects the natural environment remains difficult. Studies have 

identified that OSPW can change chemically due to interaction with underlying substrate. For 

example, total polar organic concentrations decrease in seepage plume samples further from the 

source (Ahad et al., 2013), likely due to sorption by soils (Janfada et al., 2006). Overall, tailings 

pond seepage components appear to become less distinguishable from constituents present in 

surface waters the further they are sampled from the plume source, due to transport through 

substrate and mixing with natural groundwaters (Janfada et al., 2006; Holden et al., 2011; 

Headley et al., 2012; Ahad et al., 2013). In addressing this concern, recent research has focussed 
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on chemically profiling OSPW sources and developing methods to differentiate OSPW from 

natural surface and groundwaters. Chemical fingerprinting of anthropogenically-derived 

constituents has been achieved using parameters such as molecular charge/weight ratio (Barrow 

et al., 2015; Holowenko et al., 2002), AEO fluorescence spectra (Frank et al., 2014; Kavanagh et 

al., 2009), heteroatom proportions (Barrow et al., 2015; Frank et al., 2014; Headley et al., 

2011b), and double-bond equivalents (Barrow et al., 2015; Headley et al., 2011b). Regardless, 

quantifying the toxicological risk present is a challenge due to the difficulty in determining the 

level of environmental contamination that is directly a result of industrial activity.  

Research in the area of oil sands toxicology is inundated with analytical and toxicological 

challenges. These challenges include a lack of chemical standards, the variability in analytical 

methods, variability in AEO composition spatially and temporally, and the presence of natural 

background contamination. The development of representative oil sands standards could greatly 

improve the current knowledge gaps inherent in oil sands research. Additionally, a 

comprehensive analysis of AEO constituents from naturally and industrially-derived bitumen in 

conjunction with toxicological comparisons is necessary for the advancement of this field of 

research. 

 

1.4. Research Objectives and Experiments 

The overall scope of this study involved contributing to the understanding of chemical 

composition and toxicity of the oil sands dissolved organic components. Broadly, the present 

study intended to identify components driving toxicity of bitumen-influenced waters. 

Specifically, the focus was to compare AEO composition and toxicity between industrially-

derived and naturally-derived sources. Furthermore, a toxicological approach proposed to 
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evaluate and compare multiple taxa for identification of relatively sensitive species. To 

accomplish this, three objectives were identified. These were a comparison between: isolated 

AEO fractions, natural and industry-influenced AEO, and relative sensitivities of aquatic 

organisms. The following four experiments were designed to meet the objectives. 

 

1.4.1. Experiment 1  

Because of difficulties in extracting oil-sands dissolved organics, related literature is lacking 

chemical and toxicological experimentation utilizing AEO derived from industry and natural 

sources. A novel bulk extraction method would serve to increase AEO yield and allow for the 

greater cross-laboratory comparability. Subsequent fractionation at a preparative scale would 

allow more comprehensive toxicological analyses to a variety of taxa. 

Objective: To develop a method for bulk extraction and fractionation of AEO. The method 

was developed using an aged OSPW source, followed by chemical characterization of generated 

fractions. 

Hypothesis: Utilizing adsorbent resins in the extraction of AEO will improve comprehensive 

yield and be applicable to the fractionation of AEO from a variety of water sources in the oil 

sands region.  The isolated fractions will display distinct AEO compound distributions and 

toxicities. 

Methodology: The extraction and fractionation relies on the range in individual compound 

chemical properties present in the suite of dissolved organics. The method involves the use of 

synthetic adsorbent resins which selectively trap polar organic compounds. A preliminary pH 

adjustment of OSPW facilitates the precipitation of select dissolved organics rendering them 

amenable to extraction on a resin. This is followed by a reversed-phase solid phase extraction 
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(SPE) technique to trap precipitated organics. A soxhlet extraction of the resin using solvents 

varying in polarity enables the isolation of fractions containing organics with differing polarities. 

Chemical characterization of isolated fractions was conducted using a suite of analytical 

techniques including; ESI-HRMS, GC-MS/MS, LC-QToF, and SFS. 

 

1.4.2. Experiment 2  

Assessing the chemical characteristics of dissolved organics in aged tailings has been 

studied extensively with regard to compound cyclicity, molecular weight, and carbon number 

and their relation to biodegradation and bioavailability. Information regarding the relative 

polarity of dissolved organics and their relation to toxicity has not been fully explored. 

Furthermore, research regarding the toxicity of aged tailings OSPW has typically evaluated the 

marine bacterium Vibrio fischeri (Microtox® assay) while relative sensitivities of more relevant 

taxa is largely lacking. An understanding of dissolved organic fraction toxicities from aged 

industrial sources to multiple organisms could aid in the development of a reclamation strategy 

of decommissioned tailings ponds.  

Objective: To toxicologically characterize previously isolated aged OSPW fractions using a 

suite of bioassays including representative aquatic species indigenous to the oil sands region. 

Hypothesis: The range in polarities of the three fractions will display a concurrent range in 

associated toxicities to all bioassays, but display similar internal trends within each assay.  

Methodology: Short-term acute and sub-lethal data were generated for V. fischeri, H. azteca, 

D. magna, L. cardium, P. promelas, and O. latipes. All organisms were exposed to whole water, 

three isolated dissolved organic fractions, and a Recombined treatment representing all three 

fractions recombined and absent of inorganics.  
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1.4.3. Experiment 3 

The natural background level of bitumen contamination in aquatic systems in the oil sands 

region makes determining the degree of anthropogenic contamination difficult. Therefore, there 

is a need for a comprehensive chemical analysis of naturally-derived AEO. Tailings pond OSPW 

has recently been documented to leach into groundwater, which acts as a transportation vector 

for surface water contamination. Identifying compositional differences between naturally-

influenced and OSPW-influenced groundwaters is important for understanding contaminant fate, 

transport, and potential environmental impact of dissolved organics in the oil sands region. 

Fractionation-based investigations allow for the isolation of chemically distinct properties. 

Subsequent comparison of fractions within and between sites enables identification of relative 

AEO composition variability.  

Objective: To chemically characterize dissolved organics in natural bitumen-influenced and 

OSPW-influenced groundwaters.  

Hypothesis: Naturally-derived AEO will display chemically distinct AEO composition 

compared to industrially-derived AEO.  

Methodology: Four bulk samples (~200L) of bitumen-influenced groundwaters were 

collected for extraction and fractionation using the previously developed method (Experiment 1). 

Natural groundwater sites included two natural bitumen-influenced groundwater sites which 

were within the Athabasca oil sands deposit but outside of industrial operations. Two industry-

influenced sites were selected by their close proximity to oil sands operations and their 

previously documented contamination by tailings seepage. The three generated fractions for each 

site were chemically analyzed using ESI-HRMS, GC-MS/MS, LC-QToF, and SFS. 
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1.4.4. Experiment 4 

There is a natural background level of bitumen contamination in aquatic systems in the oil 

sands region. There is a need for a comprehensive toxicological analysis of naturally-derived vs 

anthropogenically-derived AEO. Also, little is known about the relative sensitivities of aquatic 

organisms exposed to bitumen-influenced groundwater AEO. Monitoring would benefit from a 

comprehensive chemical and toxicological comparison between naturally-derived and industry-

derived AEO.  

Objective: To compare overall toxicity between industry-derived and naturally derived 

bitumen-influenced groundwater sources. To compare drivers of toxicity across groundwater 

sites and identify species sensitivities relating to toxic components therein. 

Hypothesis: There will be an observable difference between the toxic potencies of natural 

and bitumen- + natural-influenced groundwaters. Species sensitivities will correlate to identified 

drivers of toxicity and remain consistent across sites. 

Methodology:  Previously generated groundwater fractions (Experiment 3) were prepared 

for toxicity evaluation. Toxicological assessments involved the comparison of V. fischeri, H. 

azteca, D. magna, L. cardium, P. promelas, and O. latipes. All organisms were exposed to whole 

water, three isolated dissolved organic fractions, and a Recombined treatment representing the 

re-assemblage of all three fractions.  
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Chapter 2. A Preparative Method for the Isolation and Fractionation of 

Dissolved Organics from Bitumen-Influenced Waters 
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2.1. Overview 

 The surface mining of oil sands from the Athabasca deposit north of Fort McMurray, 

Alberta produces considerable tailings waste which is stored in large tailings ponds on industrial 

lease sites. With the advent of oil sands end-pit lakes and decommissioned tailings ponds, viable 

strategies for the detoxification of oil sands process affected water (OSPW) are under 

investigation. One of the greatest challenges in this regard is determining drivers of toxicity 

within OSPW, recognizing that differences in ore quality, and bitumen extraction and separation 

methods influence chemistry and toxicity. Dissolved organic compounds concentrated in tailings 

are recognized as having a significant influence on toxicity, while high levels of inorganic 

contaminants are also of concern. In order to assess the toxic potential of the suite of dissolved 

organics in OSPW, a method for their extraction and fractionation was developed. The objectives 

of the method required high dissolved organic recovery, adequate separation of fractions, and 

ability to process a variety of water sources at a preparative scale. This was achieved with a solid 

phase extraction approach. The method successfully separated organic compounds from 180 L of 

an aged OSPW source into three fractions (F1-F3) with increasing polarities. Chemical 

characterization of the generated fractions including electrospray ionization high-resolution mass 

spectrometry (ESI-HRMS), liquid chromatography quadrupole time-of-flight mass spectrometry, 

gas chromatography triple quadrupole time-of-flight mass spectrometry, and synchronous 

fluorescence spectroscopy (SFS), verified fractionation based on polarity. Additionally, ESI-

HRMS class distribution data and SFS identified increased degree of oxygenation and degree of 

aromaticity, respectively, as associated with increased polarity. Method validation, which 

included method and matrix spikes with surrogate and labelled standards, confirmed separation 

according to polarity and verified high recoveries (75 - 96.3%). Because this novel method is 



 20 

 

capable of extracting large volumes of source water types it is amenable to thorough chemical 

characterization and toxicological assessments with a suite of bioassays. As such, this protocol 

will facilitate the identification of toxic components within bitumen influenced waters from a 

variety of sources. 

 

2.2. Introduction 

 The Canadian oil sands region, located in northern Alberta, contains one of the largest 

petroleum deposits worldwide, and extraction of the mineable bitumen has increased nearly 

1000% in the last 4 decades (Royal Society of Canada Expert Panel, 2010). Bitumen is a viscous 

hydrocarbon mixture which is extracted via in-situ or surface mining methods and is ultimately 

upgraded to a synthetic crude oil. Extraction of bitumen results in the generation of oil sands 

process-affected water (OSPW) and tailings waste. According to the Alberta Government, in 

2013 the surface area of associated oil sands tailings in containments reached 77 square 

kilometers (Alberta Energy, 2013). In accordance with the Alberta Environment Protection and 

Enhancement Act, the release of substances that may cause adverse effects to the environment is 

prohibited and Crown-leased land must be reclaimed (Government of Alberta, 2017, FTFC, 

1995a). To address the growing reserve of OSPW on industrial leases, the development and 

testing of large-scale landscape reclamation strategies has begun.  

 Much of the difficulty associated with oil sands research is due to the complexity of 

OSPW. There are a plethora of inorganic and organic constituents present as a complex mixture, 

many of which are not fully characterized and remain undiscovered. Among the most toxic 

constituents of OSPW is the polar organic fraction (Allen, 2008; Royal Society of Canada Expert 

Panel, 2010), which includes a subclass of O2 compounds which is referred to as naphthenic 
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acids (NA) (Headley and McMartin, 2004; Clemente and Fedorak, 2005). Industrially-derived 

NA have been shown to be acutely toxic to a wide variety of aquatic organisms (Headley and 

McMartin, 2004; Allen, 2008; Royal Society of Canada Expert Panel, 2010) and also to elicit 

reproductive impairment in fish (Kavanagh et al., 2012). As a result, research during the past 

decade has focussed on NA characterization and toxicity. However, recent research has 

identified that oil sands polar organics contain a plethora of diverse constituents, collectively 

termed acid-extractable organics (AEO) (Brown and Ulrich, 2015). Specifically, while AEO 

include the classical NAs, they have also been shown to contain heteroatoms and acids that 

contain dicarboxyl, hydroxyl, dihydroxy, and aromatic moieties (Bataineh et al., 2006; Barrow et 

al., 2009; Grewer et al., 2010; Headley et al., 2011b; Rowland et al., 2011b; Bauer et al., 2015). 

Recent toxicological assessments have begun to identify the toxic chemical classes, and O2-

containing substances (which includes NA) have emerged as the principal toxicants within 

OSPW (Morandi et al., 2015; Hughes et al., 2017). Accordingly, the Alberta government has 

recently advocated for Canadian Council of Ministers of the Environment (CCME) water quality 

guidelines for NA (Energy Resources Conservation Board and Canadian Environmental 

Assessment Agency, 2011; Minister of Environment, 2013). To create these guidelines, a more 

comprehensive understanding of the chemical composition and toxicity of not only AEO but 

other dissolved organics is required. This is critical in developing methods to reduce tailings 

toxicity and demonstrate end pit lakes as a viable reclamation strategy.  

 Effects-directed analysis (EDA) approaches are well suited to investigate the classes of 

compounds associated with toxicity to aquatic species which are present in complex mixtures 

(Brack et al., 2016). However, when applied to the oil sands, these investigations have been 

hampered by obstacles of scale with regard to sample volumes required for bioassays. A typical 
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7-day, static-renewal embryo-larval fish bioassay with a 5-concentration dilution series and three 

replicates can require up to 1 litre of sample volume. Bioassays involving flow-through systems, 

juvenile/adult fish, chronic test durations, etc., often require even greater sample volumes 

(USEPA, 2002). As a result, varying degrees of success in characterizing bioactive substances 

have been achieved, and it is worth noting that the advances that have been made were often with 

single bioassays (Armstrong et al, 2009; Frank et al., 2006; Johnston et al., 2017; Kavanagh et al, 

2012; Lo et al., 2006; Nero et al., 2006; Scarlett et al., 2013), often in an in vitro scale that 

requires extrapolation to effects at the individual or population levels.  

 Previous attempts to fractionate OSPW based on solubility have generated fractions with 

a substantial degree of overlap with regard to NA species present (Lo et al., 2006; Grbovic et al., 

2012; Huang et al., 2015). One solubility-based study incorporated anion-exchange 

chromatography, eluting with buffers encompassing a range of pH values (Lo et al., 2006). 

While this study was still limited in its capacity to generate distinct fractions, it was able to 

observe a pKa-dependent trend where higher pKa NAs exhibited lower potencies using Microtox 

assays (Lo et al., 2006). Unfortunately, fractionation attempts based on solubility have not led to 

the assignment of structure-toxicity relationships for specific compound classes. Argentation 

solid phase extraction (SPE) achieved separation of dissolved acids based on aromaticity through 

the use of different mobile phases (Jones et al., 2012). This study was able to generate two main 

fractions, one containing alicyclic acids and the other containing aromatic carboxylic acids. A 

separate study by Borgund et al. (2007) used cyano HPLC column chromatography to separate 

NAs into four fractions based on polarity using different solvent mixtures (hexane, 

dichloromethane, and methanol): non-polar compounds, carboxylic acids, phenols, and 

polyfunctional compounds. Both of these methods were suitable for the analytical 
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characterization of acids, however neither generated sufficient quantities required for toxicity 

testing using ecologically relevant species. Lack of sufficient fraction volume in these studies is 

likely due to the absence of commercially available high-volume chromatography columns, and 

methodology for high-volume throughput of samples. Finally, a study utilizing preparative 

fractional distillation was able to produce 5 fractions of AEOs isolated from fresh OSPW based 

on boiling point (Frank et al., 2008). Chemical characterization revealed that the distillation 

method was able to isolate fractions with increases in boiling point associated with increasing 

mean molecular weight, aromaticity, and heteroatom content (Frank et al., 2008; Bauer et al., 

2015). Although this method produced sufficient material to conduct toxicity assays with several 

test organisms, the extraction method was biased toward O2 species and each fraction contained 

a high degree of overlap in molecular weight.  

 In order to determine principal toxic components of OSPW and other bitumen sources, 

EDA studies need to utilize large volumes of source waters for use in bioassays of relevant 

vertebrate and invertebrate species. Therefore, the challenge remains to develop a method 

capable of isolating all soluble organics and producing chemically distinct fractions in the large 

quantities required. Worthy of note, one successful fractionation approach involved OSPW 

collected from the oil sands industry’s first end pit lake and incorporated an initial extraction at 

two different pH’s, followed by preparative HPLC chromatography fractionation (Morandi et al., 

2015). Using an in vivo bioassay to an ecologically relevant test species (96 h fathead minnow 

embryos), the authors determined that the toxicity of OSPW was largely attributable to the O2 

NA species, but non-acid species also contributed to the overall toxicity. While these findings 

highlighted the contributions of non-acid species to the toxicity of OSPW, there remains a 
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paucity of information regarding the identity of bioactive substances in surface and groundwaters 

influenced by natural bitumen-derived dissolved organics. 

 To add further complexity, the majority of fractionation and toxicity analyses on OSPW 

have used fresh tailings as a source material. Unfortunately, this has led to major knowledge 

gaps regarding constituents present in aged tailings and the relative toxicities of components 

therein. There is ample research identifying both chemical and toxicological differences between 

fresh and aged tailings (Siwik et al., 2000; Bataineh et al., 2006; Han et al., 2009; Marentette et 

al., 2015a; Bartlett et al., 2017), specifically with regard to natural degradation of dissolved 

organics by algae and bacteria (MacKinnon and Boerger, 1986; Herman et al., 1993; Lai et al., 

1996; Clemente et al., 2004). With the advent of decommissioned tailings ponds and end-pit 

lakes, risk assessments of aged mixtures and comparisons to natural mixtures are needed. 

Previous attempts by the present authors to recover dissolved organics from aged OSPW using a 

method developed for fresh tailings (Frank et al. 2006) yielded low recoveries (<10%). This 

exemplified the differences in chemistry and consequential difficulty in working with aged 

mixtures and underscored the need for a revised method that could be used for all bitumen-

influenced waters.  

 The objective of the present study was to develop a robust preparative-scale extraction 

and fractionation method that could be applied to the range of relevant bitumen-influenced water 

sources. Moreover, this objective required that the method be capable of producing large 

quantities of each fraction to enable chemical characterization and toxicity evaluations using a 

suite of ecologically relevant test organisms and endpoints. 
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2.3. Methods and Materials 

2.3.1. Chemicals and Reagents 

 Chemicals used for the preparative scale fractionation and chemical analysis (methanol 

(MeOH), ethyl acetate (EtOAc), toluene, and hydrochloric acid (HCl)) were purchased from 

Fisher Scientific (Mississauga, ON). Sodium hydroxide (NaOH) was purchased from Sigma-

Aldrich® (Oakville, ON). Chemicals used for method development (hexane, ethanol, acetonitrile 

(ACN), and dichloromethane (DCM)) were purchased from Fisher Scientific (Mississauga, ON). 

Chromatography resin Isolute® ENV+ was purchased from Biotage® (Charlotte, NC), Diaion® 

HP20 and Sepabeads® SP825 were supplied by Itochu Chemicals America (Farmington Hills, 

MI), Oasis® HLB, and Oasis® MAX resins were supplied by Waters Ltd (Mississauga, ON).   

 

2.3.2. OSPW Sample Source 

An aged OSPW sample was chosen for method development to provide an example of 

conditions relevant to end pit lakes as well as a proxy for surface water bitumen-derived organic 

sources influenced by natural degradation processes. Approximately 2000L were pumped from a 

test pond (Pond 9) on Syncrude Canada Ltd.’s lease in 2011, into two 1000-L polypropylene 

totes. This test pond was originally filled in 1993 with OSPW from an active tailings pond 

(Mildred Lake Settling Basin), with no subsequent amendment other than natural precipitation 

and evaporative processes (Siwik et al, 2000). Following method development experiments and 

scale-up, the preparative scale fractionation was conducted on 180 L. 
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2.3.3. Bench Scale: Extraction Method Development 

 Three bench scale extraction techniques were evaluated. Throughout, “bench scale” is 

defined as small-scale experiments and involved sample volumes in the range of 30 - 3000 mL. 

The main objective of the bench-scale experiments was to determine which method and resin 

type provided the greatest AEO yield. The results of these evaluations are presented in Figure 

2.1, where the y-axes indicate recovery of dissolved organics (mg/L). The three evaluated 

methods included a previously defined acid precipitation method (Frank et al., 2006), a resin 

settling/flocculent approach, and an SPE approach (Figure 2.1B). The settling/flocculent 

approach involved mixing methanol pre-conditioned SPE resins (described below) with water 

samples and allowing them to settle or floc for 24 h or 48 h. The method followed SPE theory 

(International Sorbent Technologies, 2001; Argonaught Technologies, 2002) such that acidic 

compounds present in solution were expected to adsorb to the resin where they were extracted 

via acid precipitation methods (Frank et al., 2006). The SPE approach followed standard SPE 

protocols (International Sorbent Technologies, 2001; Argonaught Technologies, 2002) adapted 

for the concentration and clean-up of AEO as described previously (Frank et al., 2008; Gagné et 

al., 2011). Briefly, the current SPE method involved the use of an organic solvent to pre-

condition a porous resin (stationary phase) that was packed in a column, in order to adsorb 

organic compounds. Resins with different chemical and structural properties (hydrophobic, ionic, 

surface area, etc.) can be selected with the intention of best capturing an analyte of interest. In 

this case, the sample water was acidified to precipitate AEO in order that they preferably 

adsorbed to the resin. Following loading and passage of the water sample through the column, 

sorbed AEO were then removed and isolated by elution with an organic solvent (mobile phase) 

through the same column. The latter two methods (settling/flocculent and SPE) were themselves 
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evaluated with five different solid phase resin types: hydroxylated polystyrene divinylbenzene 

(ENV+, Biotage®, NC USA), unsubstituted polystyrene divinylbenzene copolymers (HP20 and 

SP825, Diaion®, MI USA), divinylbenzene copolymer and divinylbenzene copolymer modified 

with dimethylbutylamine (HLB and MAX, respectively, Oasis®, ON Canada), representing a 

range of adsorptive properties. Although the settling/flocculent approach generally provided 

better results than the acid precipitation method (Figure 2.1A), the SPE method provided the best 

recovery overall regardless of resin type (Figure 2.1B). Based on these results, the SPE method 

was selected for further experimentation to determine the best resin. Throughout the SPE 

extraction tests, the ENV+ stationary phase outperformed all other resins tested, displaying the 

most consistently high AEO recovery (Figure 2.1C) and diminishing loss associated with 

breakthrough (Figure 2.1D), measured using high-resolution electrospray ionization mass 

spectrometry methods described in Appendix A (A1). In applying an SPE approach, separation 

of inorganics from organics was initially achieved. The result was an extraction method which 

utilized ENV+ resin as a stationary phase to recover AEO from acidified aged OSPW, which 

were then eluted with methanol. 
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Figure 2.1. Bench-scale method development to select best application of a stationary phase 

resin. AEO concentrations represent equivalently concentrated sample volumes. Extraction of 

AEO from 30mL OSPW with different resin types was assessed using a settling/flocculent 

method at 24 h and 48 h settling times (A). The SPE method was assessed and compared to the 

settling/flocculent method using 30 mL of OSPW and 60 mg of different resins (B). SPE method 

AEO yield (C), and breakthrough (D) using 60 mg resin with increasing OSPW volumes were 

compared across resin types. 
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2.3.4. Scale-up to Preparative Extraction 

Scale-up experiments of 10x and 100x relative to the previous 30 mL OSPW loading 

volume (300 mL and 3 L OSPW, respectively) were conducted using custom packed ENV+ 

columns for which recovery of AEO was optimized (Figure 2.2). The procedure was run in 

duplicate with the addition of a method blank, which involved conducting the extraction using 

de-ionized water as the source material. Importantly, in order to maintain high yields with 

increasing cartridge diameter, resin bed heights (resin mass) and loading/elution flow rates were 

altered according to equations, outlined previously (Rathore and Velayudhan, 2002), accordingly 

at each step (Figure 2.2). Experimentation to evaluate resin capacity was conducted using 60 mg 

of ENV+ resin with increasing OSPW volume (Figure 2.2A). Subsequently, flow rates were 

assessed at each OSPW loading volume scale (1x, 10x, 100x) in order to optimize method 

efficiency (Figure 2.2B, C, D).  

Following optimization of an extraction method, established parameters were employed 

for development of a fractionation procedure. During fractionation method development, the 

separation of the least polar from the most polar compounds was ultimately achieved by 

conducting the extraction in two stages, initially at pH 11, and then at pH 2. For each stage, the 

previously optimized SPE conditions (flow rates, resin ratio) were applied and elutions with 

various solvents of different polarities were evaluated to achieve maximal solubilities of 

recovered organics. 
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Figure 2.2. Scale up of ENV+ SPE method showing AEO yield (using 60 mg resin) with 

increasing OSPW volume (A). Scale up experiments were conducted at 1x (B), 10x (C), and 

100x (D) the original 30-mL OSPW volume and 20 mg resin mass. Scale up experiments (A - D) 

were normalized to 1-L for comparison of AEO concentration (y-axes). 
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2.3.5. Preparative Fractionation  

Previous bench-scale and scale-up experimentation ultimately led to the development of a 

preparative fractionation method with the ability to process 200 L of OSPW. The preparative 

fractionation procedure was conducted in two stages; addition of base to the OSPW (Stage 1; pH 

11) and the subsequent acidification stage (Stage 2; pH 2) (Figure 2.3). The preparative 

fractionation apparatus consisted of a glass column with plunger (10 cm ID x 30 cm height, 

Spectrum Chromatography, Houston, TX), two 200-L HDPE barrels, and a controller and motor 

(Cole-Palmer) with a rotary vane pump head (Procon Pumps). The column was operated as an 

SPE cartridge where feedstock flow was directed onto the resin bed using an adjustable plunger. 

In place of a vacuum pump typical of SPE, a water pump was used to pull the initial sample from 

the sample barrel through the resin in the first column (SPE-1, Figure 2.3) with negative pressure 

and transfer of the filtrate to a second barrel. 
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Figure 2.3. Fractionation method schematic displaying Stage 1 and Stage 2 SPE loading 

followed by soxhlet extraction using solvents indicated. The fractionation resulted in the 

generation of fractions containing dissolved organic constituents of relative lower polarity (F1), 

intermediate polarity (F2), and higher polarity (F3). 
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2.3.6. Stage 1: Preparative Neutral Extraction 

 Using a water pump, a loading volume of 180 L of OSPW was transferred from 1000-L 

containers to 200-L barrels and the pH was raised to 11.0 ± 0.5 with 10 M NaOH. The OSPW 

was then mixed for approximately 1 hour with a hand drill fitted with a teflon mixing rod and 

allowed to stand for 12 hours. Following the equilibration period, the pH was adjusted, re-mixed, 

and left to stand for at least another 6 hours until the pH was stable. The ENV+ resin bed was 

added to the column as a slurry (120 g in 600 mL EtOAc) and was first conditioned with 1.5 L of 

EtOAc, a second solvent wash of 1.5 L of MeOH, and a final step with 6 L of pH 11 de-ionized 

(DI) water.  

 The column (SPE-1) was then plumbed to two barrels (one containing OSPW, one 

empty) in order for the OSPW to be extracted through the conditioned column and the filtrate to 

flow into an empty barrel. Throughout all conditioning, equilibration, and OSPW-loading steps 

described herein, the solvent/water in the column was maintained at a height of 10 cm above the 

resin bed and the plunger at a height of 1 cm above the solvent/water to avoid disturbance of the 

resin. Likewise, all conditioning, equilibration, and loading herein were pumped through the 

column at a rate of 100 ± 10 mL/min. Following filtration of 180 L of OSPW, the column was 

disassembled and the resin carefully transferred into a 4-L glass beaker. The beaker containing 

the resin was covered with a large Kimwipe® left in a fume hood for 12-24 hrs to dry.  

 Analytes were extracted from SPE-1 using a large soxhlet apparatus. The dried resin was 

split between two glass thimbles, sandwiched in each between 500 g sodium sulphate (NaSO4). 

Analytes were extracted with 1.5 L of EtOAc in each soxhlet apparatus (3 L total) for 12 h. The 

soxhlet extraction method differs from standard SPE methods that involve solvent elution 

directly through the SPE cartridge, but still incorporates the dissolution of analytes into the 
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solvent (discussed below). The EtOAc was pooled and filtered 4 times through 400 g NaSO4 and 

8 µm pore filter paper (Whatman grade 40 ashless, Sigma-Aldrich®, Oakville, ON) to remove 

any water, hereafter referred to as Fraction 1 (F1). The resin was then removed from the 

thimbles, allowed to dry, and placed in new thimbles with fresh NaSO4. A second soxhlet 

extraction was performed as described above using 3 L of MeOH, hereafter referred to as 

Fraction 2 (F2). 

 

2.3.7. Stage 2: Preparative Polar Extraction 

 For extraction of more polar analytes from OSPW, the Stage 1 filtrate was acidified to pH 

2 using HCl (12 M) in the second barrel, in a manner similar to the initial pH adjustment in Stage 

1. For preparation of the SPE-2 stationary phase, 120 g fresh ENV+ resin was placed into the 

cleaned column, conditioned, and equilibrated as described previously for Stage 1, with the 

exceptions that only MeOH was used and the final conditioning was with pH 2 DI water. 

Following SPE-2 conditioning, the acidified stage 1 filtrate was pumped from the second barrel, 

through the conditioned column, and back into barrel 1. The soxhlet extraction of SPE-2 was the 

same as Stage 1, but only required MeOH, hereafter referred to as Fraction 3 (F3). The extraction 

of 180 L of OSPW with 3 L of solvent for each fraction represented a 60-fold concentration of 

dissolved organics. These large volume, highly concentrated batches of each fraction were stored 

at 4°C until further use. 

 

2.3.8. Chemical Characterization 

 In addition to the 3 fractions, samples of OSPW were collected for chemical analysis at 

several points throughout the extraction/fractionation procedure. Samples were collected as 
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follows: pre-Stage 1 pH 11 OSPW, Stage 1 pH 11 filtrate (after ~10 L, ~100 L, ~160 L), pre-

Stage 2 pH 2 filtrate, Stage 2 pH 2 filtrate (after ~10 L, ~100 L, ~160 L). It is important to note 

that unlike water samples, fraction aliquots did not represent equivalent concentrations of 

organics, only equivalent fraction volumes. Moreover, although F1-F3 were aliquots from 

equivalent volumes of solvent and represented concentrated samples, all other samples were not 

concentrated and only comparable to F1-F3 qualitatively. The chemical characterization 

conducted on each sample employed the use of several analytical techniques including: negative-

ion electrospray ionization high-resolution mass spectrometry with Orbitrap (ESI-HRMS), liquid 

chromatography quadrupole time-of-flight mass spectrometry (LC-QToF), gas chromatography 

triple quadrupole mass spectrometry (GC-MS/MS), synchronous fluorescence spectroscopy 

(SFS), and analysis of total dissolved metals and major ions, all of which are described in 

Appendix A (A1). All chemical analyses were run in duplicate with respective solvent blanks 

and internal standards. 

 For quantitative analyses, including derivation of soluble organic concentrations, double-

bond equivalents (DBE) of O2, and ion class distributions, ESI-HRMS with Orbitrap was 

conducted at Environment and Climate Change Canada’s (ECCC) National Hydrology Research 

Centre in Saskatoon, SK according to methods outlined in Bauer et al. (2015) and briefly 

described therein. Qualitative analyses of soluble organics fractions for comparison of relative 

polarity and abundance from chromatograms were conducted at ECCC’s Canadian Centre for 

Inland Waters in Burlington, ON using LC-QToF and GC-MS/MS. Additional qualitative 

analyses of soluble organic aromaticity using SFS was conducted at ECCC’s National Water 

Research Institute in Burlington, ON as outlined previously (Peuravuori et al., 2002), with minor 

modifications which are provided in greater detail in Appendix A (A1). 
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2.3.9. Surrogate and Matrix Spike Validations 

 In order to validate the method and investigate what type of organic compounds may be 

eluting in each fraction, two different stock solutions containing commercial standards as 

surrogates were fractionated at a bench scale according to the described method. In the first stock 

solution, surrogate organic compounds with a range in structural and chemical properties (Table 

2.1) were spiked into deionized water (referred to as “surrogate standards”). The second 

fractionated stock solution contained isotopically labelled compounds (Table 2.1) spiked into 

aged OSPW (“matrix standards”). Treatments were prepared by adding 1 mL of each spiking 

solution into 99 mL of deionized water or aged OSPW (100 mL total loading volume), then 

mixing for 10 min at 30°C. Fractionation parameters such as resin conditioning, elution solvents 

and solvent orders were conducted as described previously for the preparative fractionation 

above. Specifically, SPE cartridges were packed with 67 mg of ENV+ resin. All resin was 

conditioned and standards eluted with 10 mL of appropriate solvents at a rate of 1 mL/min. For 

further quality assurance, a method blank was included and all treatments were run in triplicate. 

For chemical analysis each 10 mL fraction generated was evaporated under N2 in a 30°C water 

bath to dryness and reconstituted in 1 mL of MeOH. Samples were then analyzed using a LC-

QToF according to parameters described in Appendix A (A1). Recoveries were determined by 

comparison of sample results against the original spiking solutions. 

 

2.4. Results and Discussion 

2.4.1. Extraction Method Development and Scale-up 

 The objective of this study was to develop a robust extraction method suitable for the 

range of bitumen influenced sources in the Athabasca oil sands region that would generate 
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sufficient quantities of isolated organics for toxicological evaluations using a suite of aquatic test 

organisms. Bench-scale experimentation evaluated an acid/base precipitation method, solid 

phase settling/flocculent method, and a SPE method, and identified SPE using ENV+ resin as the 

method which provided optimal AEO yield. This method was then subjected to scale-up 

experimentation in order to proceed from a bench-scale to a preparative scale extraction, using 

loading volumes of 30 mL and 180 L of OSPW, respectively. Reverse-phase SPE was explored 

for the isolation of soluble organics within bitumen-influenced waters. This method allowed for 

simple isolation of organics from the initial water matrix and also provided the opportunity for 

fractionation. In so doing, it also avoided large solvent volumes associated with liquid/liquid 

extractions on a preparative scale, was amenable to scale-up, and a small-scale variation of this 

approach was already routinely used for sample clean-up prior, and directly during, NA analysis 

of OSPW samples (Verbeek et al., 1993; de Campos et al., 2006; Gagné et al., 2011; Headley et 

al., 2013a). Furthermore, a study that compared different solvents and SPE systems for the 

extraction of AEO from OSPW reported that the ENV+ resin provided the highest recovery and 

was able to capture the greatest range in different oxygenated AEO species (Headley et al., 

2013a).  

 Experimental data from AEO extraction methods are presented in Figure 2.1 which are 

presented with dilution factors incorporated for within-graph comparison. Initial applications of 

the original acid precipitation method to aged OSPW produced very low AEO recoveries (20 

mg/L) as determined by a mass balance approach and hi-res electrospray analysis (Figure 2.1A, 

B). As the original method (Frank et al., 2006) was developed for AEOs, namely O2s, for fresh 

OSPW, we hypothesize that the lower recovery for the aged source was due to compositional 

differences that occurred during aging. The first set of bench-scale experiments determined that 
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the use of a resin dispersed in aged OSPW achieved  more than 10-fold greater recovery (208 

mg/L vs 19.8 mg/L) than the original method (Figure 2.1A). Utilizing the adsorbent resins as a 

stationary phase for SPE achieved up to 16-fold greater recovery (519 mg/L) than the acid 

precipitation method (32 mg/L) (Figure 2.1B). In order to determine which stationary phase resin 

possessed the highest capacity, 60 mg of the four resins were subjected to increasing OSPW 

volumes. The results for the ENV+ phase were superior, as it maintained the highest recoveries 

with increasing OSPW volume, exhibited low breakthrough and with little variability (Figure 

2.1C, D).  

 Experimental data assessing ENV+ capacity with increasing OSPW loading volume and 

flow rates are presented in Figure 2.2 and are standardized to whole OSPW volumes to enable 

comparisons. In order to determine the resin capacity of ENV+ for dissolved organics, 60 mg 

was used to extract AEO from increasing loading volumes of OSPW (90 mL, 120 mL, 150 mL, 

180 mL) (Figure 2.2A). From 120 mL to 150 mL, and 90 mL to 120 mL OSPW loading, AEO 

recoveries dropped 2.6 mg/L and 3.2 mg/L, respectively (Figure 2.2A). The 90 mL loading 

volume displayed the highest AEO recovery overall (36 mg/L). Therefore, a conservative ratio of 

OSPW (mL) to resin (mg) of 3:2 was adopted. Finally, loading and elution flow rates were 

optimized. These were conducted as part of the scale-up work, and were initiated using the 3:2 

OSPW:resin ratio. As scale-up increased to 10x and 100x, the optimal flow rate chosen was 10 

mL/min and 20 mL/min, respectively (Figure 2.2B,C,D). Optimal flow rates did not increase 

linearly with OSPW volume and resin weight, likely due to changes in resin bed dimensions 

changing OSPW linear velocity, which required slower relative flow rates to prevent 

breakthrough (International Sorbent Technologies, 2001). These assessments determined that at 
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the bench scale a conservative flow rate of 1mL for every 30mL of OSPW could be sufficiently 

processed every minute, provided the previously established resin mass ratio was used. 

 

2.4.2. Fractionation Method Development 

 Although we are aware that dissolved organics other than organic acids may be present in 

the OSPW mixture, instrumentation required the use of organic acid standards. Therefore, the 

method was developed based on predicted properties of organic acids and described as such 

herein. Our fractionation method was designed to separate organic compounds by utilising two 

properties; ionization states, and polarity. Stage 1 involved deprotonating (ionizing) a higher 

percentage of organic acids by raising the pH to 11 prior to SPE-1 (Figure 2.3). This allowed for 

only the non-acidic organic compounds in the aged OSPW to be un-ionized, allowing them to be 

adsorbed to the resin. These compounds could then be extracted from the resin by elution or 

soxhlet extraction with an organic solvent. The remaining more acidic (ionized) compounds, still 

in an ionized state, would remain in solution to be later extracted in the second stage. Stage 2 

involved protonating the remaining more acidic compounds by lowering the pH of the solution to 

pH 2 (Figure 2.3). This allowed acidic compounds to precipitate out of solution and prevented 

loss/breakthrough of those highly polar compounds bound to sample water. In effect, mechanical 

filtration and molecular adsorption ensured greater capture of polar organic compounds. These 

compounds were then differentially extracted from the resin using organic solvents with different 

polarities in the same manner as Stage 1.  

 The following briefly explains the experimentation leading to the final fractionation 

method which is described in detail in the Methods and Materials section above. With the 

development of an extraction procedure complete, subsequent experiments were conducted to 
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develop a preparative scale fractionation method using SPE. Fractionation parameters such as 

conditioning/extraction solvents, extraction solvent order, flow rates, and number of stages 

(columns) were modified. Specifically, extraction solvents hexane, EtOAc, and MeOH, 

representing a range in polarities, were assessed for their ability to recover dissolved organics 

and generate fractions with distinct polarities. These were applied to a Stage 1 (pH 11) and Stage 

2 (pH 2) OSPW treatment (Figure 2.3) in order of increasing polarity (Hexane < EtOAc < 

MeOH). Samples from each solvent application were analysed using GC-MS/MS and LC-QToF 

to determine overlap in fraction chemical composition, while ESI-HRMS determined areas of 

potential loss in yield. This experimentation identified hexane as a poor extraction solvent with 

low recovery, resulting in its exclusion. Stage 1 extraction with EtOAc and MeOH generated 

distinct fractions containing an appreciable amount of organics. Conversely, extraction with 

EtOAc followed by MeOH in Stage 2 resulted in low dissolved organic recovery in both 

elutions. This experimentation identified that MeOH alone was able to capture the remaining 

dissolved organics in Stage 2.  

 Extraction of organic compounds from the solid phase resin was performed using a 

soxhlet apparatus. The soxhlet extraction allowed for continual extraction of organics from the 

resin over a longer duration (12 h) compared to elution, as described in the final method above 

(Figure 2.3). Quantitative analysis of resulting fractions confirmed scale up experiments (Figure 

2.2) that identified a 3:2 ratio of OSPW volume : resin weight capable of  optimal recovery. At 

very conservative resin weights (60 mg resin for 30 mL OSPW), previous experimentation 

determined that re-use of resin up to three times resulted in loss of recovered organics and 

increased variability in yield (Appendix A, A2). Due to the modification to a soxhlet extraction 

step, Stage 1 and Stage 2 were therefore conducted using two separate batches of ENV+ resin. 
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This ensured that the resin capacity was maintained throughout the procedure by reducing 

potential loss of organics associated with re-use of resin.  

 In order for organic compounds to be adsorbed, the resin required a conditioning step. 

Conditioning of the resin was performed using 1.5 L of the same solvents in the same order as 

applied for elution as described by solid phase resin manufacturers (International Sorbent 

Technologies, 2001; Argonaught Technologies, 2002). The conditioning solvent volume was 

determined by adherence to International Sorbent Technologies (IST) guidelines of 1-2 mL for 

every 100 mg of resin. Thus, the use of 120 g of resin in the final method allowed for 1.2 – 2.4 L 

of conditioning solvent. As further described by the IST guidelines (2001), during elution the 

resin should be saturated by the solvent for at least 1-4 minutes regardless of flow rate. This 

recommendation, in addition to flow rates established in the scale-up, guided conditioning and 

sample loading flow rates for the preparative-scale fractionation. Thus, for conditioning the 

resin, a flow rate for 1.5 L of solvent to saturate the resin for 4 minutes during conditioning 

allowed a flow rate of 375 – 1500 mL/min. Consequently, a conservative flow rate of 100 

mL/min was adopted for solvent conditioning of resin and within apparatus allowances. Resin 

manufacturer sample loading rates are typically provided for much lower sample volumes and 

resin weights, and are most dependent on resin bed height and width, which determine sample 

linear velocities. For this reason, IST (2001) and Argonaught (2002) guidelines suggest 

increasing flow rates until breakthrough of analytes is observed. Although previous scale-up 

experiments identified that loading of 300 L of OSPW could be processed at a flow rate of 10 

L/min, this was not feasible with the apparatus set-up. Instead, IST (2001) guidelines which 

suggested 10-120 mL/min flow rates for a 6 mL sample were incorporated. For a conservative 

approach to the methodology and to maintain consistency with conditioning rates, a loading rate 
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of 100 mL/min was applied. This new flow rate demonstrated the ability to capture organics at 

concentrations exceeding those observed in scale-up experiments as confirmed by ESI-HRMS.  

 The resulting pH adjustments, solvents used, and solvent order were incorporated into the 

final method, as described in Methods and Materials (Figure 2.3). Briefly, in Stage 1, ENV+ 

resin was conditioned using 1.5 L EtOAc and MeOH at a flow rate of 100 mL/min, followed by 

a pH 11 water wash. OSPW at pH 11 was then loaded onto the column and pumped through at a 

flow rate of 100 mL/min. In Stage 2, a fresh batch of ENV+ resin was conditioned using MeOH, 

followed by a pH 2 water wash at parameters identical to Stage 1. Stage 1 filtrate was then 

acidified (pH 2) and passed through the preconditioned ENV+. The ENV+ resin from Stage 1 

and Stage 2 were soxhlet extracted for 12 hours for each solvent, using 3 L of EtOAc/MeOH 

(separately) and MeOH, respectively. These extractions generated three fractions described 

herein as F1, F2, and F3. Methodology for separation of the dissolved organic analytes resulted 

in F1, F2, and F3 containing organics ranging from least polar, intermediate polarity, and most 

polar constituents, respectively (Figure 2.4). 

 

2.4.3. Method Validation  

 For quality assurance at the preparative scale, a complete fractionation method blank was 

run which substituted 180 L of deionized water for OSPW. Analysis of samples from the method 

blank using LC-QToF and GC-MS/MS displayed no appreciable peaks of organic analytes above 

those of representative solvent blanks (Appendix A, A3). For further quality assurance and 

assessment of repeatability, the preparative scale OSPW fractionation was run in duplicate. 

There were no considerable differences between the first and second fractionation of Pond 9 

OSPW as observed by LC-QToF (Appendix A, A4), GC-MS/MS, and ESI-HRMS. Although 
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presented singly herein, all chemical analyses were run in duplicate which were not different in 

all cases. 

 

Table 2.1. Method recoveries of surrogate standards spiked into deionized water and isotopically 

labelled standards spiked into an aged OSPW matrix. Mean recoveries ± standard error were 

derived from LC-QToF analysis against the spiking solutions for each fraction which were then 

summed for a total method recovery.  

a Predicted values from online resources: https://pubchem.ncbi.nlm.nih.gov and http://www.chemspider.com/  
b Fraction percentage recoveries are means of three replicates 

 

To validate the method and investigate the type of organic compounds recovered in each 

fraction, authentic standards of various organic acids were fractionated at a bench scale (100 mL 

sample volume). In two separate experiments, a method spike containing 13 standards was added 

F1 F2 F3 Total

Surrogate Standards

3,4-dihydroxybenzoic acid 154.12 0.86 - 1.16 3.05 - - 26.8 ± 0.5 26.8

adipic acid 146.14 0.08 - 0.23 4.26 - - 44.4 ± 5.4 44.4

3-thiopheneacetic acid 142.17 1.18 - 1.25 7.15 - - 80.1 ± 5.8 80.1

1,4-cyclohexanedicarboxylic acid 172.18 0.5 - 0.95 7.62 - - 82.7 ± 1.4 82.7

3-Methyl-2-thiophenecarboxylic acid 142.17 2.03 - 2.24 9.74 - - 114.2 ± 7.9 114.2

cyclohexane carboxylic acid 128.17 1.77 - 2.36 11.15 - - 16.4 ± 0.5 16.4

diphenic acid 242.22 2.02 - 2.83 11.43 0.3 ± 0.0 1.2 ± 0.0 109.7 ± 1.2 111.2

2-naphthylacetic acid 186.21 2.74 - 2.81 12.82 1.7 ± 0.2 7.2 ± 0.2 66.1 ± 2.0 75.0

5-(2-thienyl) pentanoic acid 184.26 2.38 - 3.09 13.03 3.4 ± 0.3 3.7 ± 0.2 64.2 ± 3.4 71.3

3-cyclopentylpropionic acid 142.20 2.27 - 2.85 13.29 - - 36.0 ± 3.3 36.0

decanoic acid 172.26 3.96 - 4.09 16.91 74.1 ± 2.2 17.9 ± 1.3 9.1 ± 0.8 101.1

cyclohexanepentanoic acid 184.28 3.90 - 4.32 16.93 75.5 ± 3.6 15.4 ± 2.2 8.5 ± 1.0 99.4

dehydroabietic acid 300.44 6.35 - 6.52 19.07 95.1 ± 1.9 21.1 ± 0.8 2.7 ± 1.1 118.9

Labelled Standards

Benzoic-d5 acid 122.12 1.87 - 1.89 8.72 - - 93.6 ± 2.4 93.6

9-anthracene-d9-carboxylic acid 222.24 4.36 13.76 6.8 ± 2.7 30.0 ± 2.2 75.3 ± 0.9 112.1

Decanoic-d19 acid 172.27 3.96 - 4.1 16.81 21.3 ± 3.0 8.0 ± 1.4 2.4 ± 1.0 31.7

Compound
Molecular 

Mass (g/mol)

Retention 

Time (min)

Recoveries (%)
b

Solubility 

(LogKow)
a

https://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/
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to deionized water while a matrix spike containing 3 deuterated standards in MeOH was added to 

the aged OSPW. Table 2.1 displays the relative mean recoveries in each fraction as well as the 

total recoveries across fractions. Surrogates are listed in ascending order of LC-QToF retention 

time, where longer retention on the instrument reverse phase column indicates lower polarities. 

The decrease in relative compound polarities coincides with relative abundance in each fraction, 

as more polar compounds are more abundant in F3, while F1 contains lower polarity compounds. 

This observation verifies the fractionation methodology in which subsequent fractions were 

designed to capture dissolved organics with increasing polarity. The majority of the compounds 

in the standard spike experiment displayed >70% recovery with the exception of 3,4-

dihydroxybenzoic acid (26.8%), adipic acid (44.4%), cyclohexane carboxylic acid (16.4%), and 

3-cyclopentylpropionic acid (36%). According to the water solubilities of these compounds, they 

are among the least soluble compounds tested (Table 2.1) and may not have completely 

dissolved during the spiking preparation. Overall, recoveries were very good (average 76%) and 

separation by compound polarity was demonstrated. In the matrix spiking experiment, two of the 

3 labelled compounds displayed recoveries >90% (Benzoic-d5 acid and 9-anthracene-d9-

carboxylic acid), while only 31% of the Decanoic-d19 acid standard was recovered. This low 

recovery for Decanoic-d19 acid may be due to its low water solubility and potential adsorption 

onto matrix components as the method recovery for native decanoic acid was optimal. Overall, 

both standards fractionation experiments validated that the method does show separation of 

organic compounds based on polarity with adequate recoveries.  

 Interestingly, results from the method validation experiments indicated that in addition to 

F3, acidic compounds were captured in F1 and F2, which incorporated a pH 11 pre-loading 

adjustment to sample water. With this adjustment, it would be expected that only neutral-basic 
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compounds would be un-ionized, allowing adsorption to the resin. However, although Stage 1 

involved a basic extraction, the resin was pre-conditioned to adsorb organic compounds, which 

was observed herein. For example, class distribution data revealed that the majority of O2 

compounds (including NA) were present in the high pH fraction F1. A similar fractionation 

study which utlilized pH adjustments and SPE extractions, also observed an abundance of 

dissolved organics consistent with NA isolated in a high pH fraction (Morandi et al., 2015). This 

suggests that factors influencing the polarity of OSPW-derived dissolved organics are not solely 

driven by protonation and deprotonation of carboxylic acids. It is more likely that polarity is 

governed by factors such as molecular size, functional groups, water solubility, and molecular 

structure. Therefore, although separation of dissolved organics was not governed by compound 

ionization, in combination with differential solvent extractions, pH adjustments contributed to 

successful isolations based on polarity. 

 The analysis of major ions and metals was performed on water samples taken directly 

from pre- and post- Stage 1 and 2 steps in the procedure, providing a means to track inorganics 

in the method (Appendix A, A5). The fractionation design provided for the removal of soluble 

organics, with the final filtrate theoretically containing all inorganic species. The relatively 

constant concentration of all major ions and metals from unaltered OSPW to final Stage 2 filtrate 

after Stage 2 (Appendix A, A5), supports this assertion. The exceptions to this were sodium and 

chloride. Sodium increased slightly in the pre-Stage 1 sample and chloride increased 

substantially in the pre-Stage 2 sample, because NaOH was used to raise the pH prior to Stage 1 

and and HCl was used to acidify prior to Stage 2. The fact that all other ion/metal concentrations 

were relatively unaltered, and those that were could be accounted for in the final filtrate 

following SPE Stage 2, indicate the method was specific in its recovery of dissolved organics. 
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Table 2.2. Concentration of dissolved organics in fractions and filtrate of aged OSPW 

determined by ESI-HRMS. Values represent concentrations based on original 180 L water 

sample. 

  

Concentration 

(mg/L) 

Contribution 

(%) 

Fraction 1 5.4 15.6 

Fraction 2 0.4 1.1 

Fraction 3 27.7 79.5 

Post-Stage 2 filtrate 1.3 3.8 

Total 34.8a 100.0 
a represents a derived theoretical recovery based on all other measured values 

 

 

2.4.4. Fraction Characterization 

 Chemical characterization of aged OSPW fractions consisted of a suite of instrumental 

applications including ESI-HRMS which provided mass-charge distribution, ion class 

distribution, and double-bond equivalents (of O2 ions), such as classical naphthenic acids. 

Additionally, GC-MS/MS and LC-QToF profiling was conducted along with SFS, which 

provided an analysis of aromaticity. 

Dissolved organic concentrations for each fraction and the final filtrate were measured by 

ESI-HRMS analysis (Table 2.2). Data indicate that the fractionation procedure was able to 

capture 96.2 % of dissolved organics detectable by ESI-HRMS with 3.8 % loss via breakthrough. 

Breakthrough represents a loss in recovery due to constituents which did not adsorb to the resin 

and, therefore, passed through at both stages. This breakthrough/loss was confirmed and 

quantified by a separate extraction of Stage 2 filtrate using SPE and extraction with MeOH. The 

distribution of dissolved organics could not be assigned with acceptable error using ESI-HRMS 
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analysis and is, therefore, not presented herein. In the present study, breakthrough was likely due 

to a combination of the resin reaching capacity in the area of the resin bed with highest linear 

velocity or the presence of very polar compounds. The bulk of dissolved organic compounds 

were captured in F3 (most polar) which comprised 79.5 % of all organics observed, while only 

1.1 % were captured in F2 (intermediate polarity).  

For determination of ion class distribution and DBE, ESI-HRMS analysis was performed 

on the three generated fractions. This high-resolution analysis has been successfully used for 

analysis of AEO in previous research (Scarlett et al., 2013; Marentette et al., 2015a; Morandi et 

al., 2015; Bauer et al., 2017). Generally, high-resolution analysis has been identified as 

producing lower, more accurate concentration determinations compared to low-resolution 

analyses such as FTIR and GC-MS (Brown and Ulrich, 2015). For this reason, and for 

comparison with some of our previous work (Marentette et al., 2015a; Bartlett et al., 2017; Bauer 

et al., 2017), ESI-HRMS was conducted. Infusion experiments with ESI-HRMS showed 

qualitative differences between fraction spectra (Appendix A, A6). A comparison of sample 

mass spectra revealed very similar distributions between fractions with the majority of the 

compounds ranging from 200 – 400 m/z, analogous to observations made in previous work 

(Bauer et al., 2015). The notable exception was a minor “hump” appearing between 0 – 200 m/z 

in F3. The relative electronegativity of oxygen means that, in similar compounds, those 

containing more oxygen atoms are relatively more polar. For class distribution data, F1 was 

comprised of predominantly O3 and O4 ions, F2 was dominated by O4, O5, and O5S, and F3 

displayed a major contribution from O4, O5, and O6 ions (Figure 2.4A). All fractions displayed 

minor contributions (<10% each) from O2 (classical NA), and sulfur-containing ions (O3S, O4S, 

and O5S). Degree of oxygenated ions increased with fraction number with F1, F2 and F3 
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displaying no oxygen class ions greater than O6, O7, and O9, respectively (Figure 2.4A). The 

relative increase in degree of oxygenation with fraction number validates the methods ability to 

separate dissolved organics based on polarity. 

Recent research (Ajaero et al., 2017) has suggested that WAX (weak anion-exchange) 

resin may provide a slightly improved recovery of O2 classes relative to ENV+, however these 

differences appear to be minimal. Taken collectively and considering the margin of error, ENV+ 

was essentially shown to be equivalent to WAX in recovering the broad range of species within 

the AEO mixture that was measured and may represent an alternate solid phase for extractions. 

In addition, our previous work identified a predominance of O2 classes in fresh tailings using an 

ENV+ SPE cleanup (Bauer et al., 2015), therefore, the low relative contribution of O2 ions 

observed for the aged source is likely due to compositional changes that occur through aging. 

DBE analysis represents the double-bond formed in a compound due to the absence of a 

hydrogen atom, but can also signify a ring formation and degree of aromaticity. In the present 

analyses, only the O2 class DBE were examined and the DBE are a percentage abundance 

relative to the total abundance of O2 species (the total percent DBE equals the percent O2 for 

class distribution) (Figure 2.4B). DBE data for F1-F3 ranged from 1-9 for F1 and F2, and 1-7 for 

F3 (Figure 2.4B). Given that F1 contained a greater abundance of O2 species compared to F2 and 

F3, it is no surprise that F1 contains a greater overall abundance of O2 DBE. All three fractions 

display the greatest percent abundance at DBE 4 and second highest at DBE 5. 
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Figure 2.4. Fraction characterization of F1-3 isolated from aged OSPW. Chemical properties 

analysed for F1-3 include double-bond equivalents of O2 ions (A), ion class distribution for those 

species with >2% contribution (B), LC-QToF total ion chromatograms (C), and SFS 

fluorescence spectra indicating degree of aromaticity (D). 

  

 

 LC-QToF, GC-MS/MS, and ESI-HRMS analyses verified the method’s ability to isolate 

fractions with varying polarities. Negative ion electrospray LC-QToF profiles of fractions F1-3 

are shown above in Figure 2.4C. For the reverse phase LC conditions employed, the total ion 

chromatograms reveal the polarity differences exhibited by the fractions. All fractions present as 
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individual complex mixtures that are chromatographically unresolved. The maxima of each 

fraction nevertheless are indicative of the differences in polarities of the components, with F3 

maxima eluting first (most polar), F2 maxima intermediate (intermediate polarity) and F1 

maxima eluting last (least polar). While it is possible for individual compounds to be present in 

one or more of the fractions, the differences apparent in these profiles suggest some degree of 

separation was achieved. Thus, we interpret the data as showing that from F1-F3, compound 

polarity increased. The LC-QToF results are supported by those obtained by GC-MS/MS 

(Appendix A, A7). Fraction F1 exhibited the greatest signal intensities of the three fractions, 

consistent with its content of neutral dissolved organics obtained from pH 11 Stage 1 extraction 

and solubility in EtOAc (Appendix A, A7a). Although not present in the final procedure, a fourth 

EtOAc soxhlet extraction (final filtrate) step in the first Pond 9 fractionation was included 

(shown as orange peaks in Appendix A, A7b). This extract clearly displayed several peaks 

between 6.6 – 7.5 minutes which were identified as phthalates and likely resulted from handling. 

The presence of phthalates in the final Stage 2 EtOAc extraction verified that they were likely 

not present in other fractions and resulted in the exclusion of that extraction step. Figure 2.4D 

inset displays the SFS profiles of the three fractions. The excitation wavelength of F1 exhibits a 

narrow peak at ~265 nm, F2 displays a slightly bimodal plateau ranging from 260 – 400+ nm, 

and F3 displays a broad peak at ~360 nm. The SFS data suggests that from F1 – F3 there is an 

increase in the degree of aromaticity, and a reduction in abundance of aromatic compounds. 

According to previous SFS analyses on parent PAHs and other bitumen-influenced waters 

(Kavanagh et al., 2009; Rowland et al., 2011b), F1 fluorescence appears to be composed 

primarily of monoaromatic compounds similar to toluene, while F2 and F3 contain mono- and 

polyaromatic compounds similar to naphthalene, fluorine, and anthracene. Finally, increases in 
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fraction polarity were substantiated by ESI-HRMS class distribution data (Figure 2.4A) which 

displayed increases in degree of oxygenation, described in detail above. Because both aromatic 

content and oxygen content increases the polarity of a compound, both class distribution (ESI-

HRMS) and SFS data appeared to verify observations from LC-QToF and GC-MS/MS.  

 As high AEO recovery was of primary objective for this method development, the 

reduction in yield due to breakthrough was assessed. ESI-HRMS analysis of bench scale 

extraction alluded to possible breakthrough (Figure 2.1D). It is, therefore, likely that the final 

filtrate (Stage 2) at the preparative scale contained some degree of breakthrough as well.  We 

accounted for this possibility by characterizing samples from Stage 2 filtrate. GC-MS/MS 

(Appendix A, A7b) and LC-QToF (Appendix A, A8) analyses of post-Stage 2 samples indicate 

very low levels of organic content compared to method blanks. The quantitative (ESI-HRMS) 

analysis showed that the organics detected in the Stage 2 filtrate comprised <4% of the total 

organic compounds accounted for (Table 2.2). This low level of breakthrough is consistent with 

ENV+ scale-up data (average 6.6 ± 7.2%). 

 

2.5. Conclusion 

 According to theoretical design and analysis of data following fractionation, the 

procedure successfully separated organic compounds based on pH and polarity. The procedure 

performed well upon scale up, and was able to process 180 L of aged OSPW in 10 days. The LC-

QToF data identified the three fractions as having a range in polarity from the least polar F1 

fraction to the most polar F3 (Figure 2.4C). Correspondingly, the GC-MS/MS data show that F1 

contains considerably more neutral organic compounds than F2 and F3 (Appendix A, A7). The 

relative polarity of the fractions is also illustrated by ESI-HRMS analysis, with respect to degree 
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of oxygenated compounds, which increases from F1 – F3 (Figure 2.4A). The success of polarity 

based fractionation is further substantiated by SFS data (Figure 2.4D) which indicate that the 

greatest abundance of aromatic compounds appear in the least polar F1, as aromatics are 

generally nonpolar compounds.  

 The success of the developed fractionation method allows for future work related to oil 

sands OSPW characterization. To further demonstrate the utility of this procedure, our future 

research will include processing large quantities of bitumen-influenced waters from a variety of 

sources for the creation of reference materials for all stakeholders. With this method in place, we 

can now begin to identify the potential compounds responsible for toxicity and if these are 

consistent between industrial and natural sources. To that end, our current research includes 

determining the relative toxicities of each fraction to a variety of aquatic species. An advantage 

of this method lies in the potential for each primary fraction to be sub-fractionated further using 

methods that require large volumes in an effects-directed analysis approach. 
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Chapter 3. Toxicity of Aged Oil Sands Process-Affected Water Fractions to 

Aquatic Species 
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3.1. Overview 

 The process of surface mining and extracting bitumen from oil sand produces large 

quantities of tailings and oil sands process-affected water (OSPW). Industry is currently storing 

OSPW on-site while investigating strategies for their detoxification. One such strategy relies on 

the biodegradation of organic compounds by indigenous microbes, resulting in aged tailings 

waters with reduced toxicity. This study evaluated the viability of this strategy by assessing the 

toxicity of OSPW collected from a test pond that had aged statically for approximately 18 years. 

Dissolved organics in aged OSPW were fractionated using a preparative solid-phase extraction 

method which generated three organic fractions (F1-F3) of increasing polarity. To assess 

toxicity, six aquatic species; Pimephales promelas, Oryzias latipes, Vibrio fischeri, Daphnia 

magna, Lampsilis cardium, and Hyalella azteca were exposed to whole OSPW and the derived 

OSPW organic fractions. Broad comparisons revealed that P. promelas and H. azteca were most 

sensitive to dissolved organics within aged OSPW, while whole aged OSPW was most toxic to 

L. cardium and H. azteca. Three cases of possible contaminant interactions within whole OSPW 

treatments suggested additive toxicity by organic fractions (H. azteca), toxicity resulting from 

inorganic contaminants (L. cardium), and amelioration of organic toxicity by whole OSPW (P. 

promelas). As such, drivers of toxicity appeared to be dependent on the species exposed. Of the 

organic fractions assessed, F3 (most polar) appeared most toxic overall while F2 (intermediate 

polarity) displayed little toxicity to all species evaluated. This presents strong evidence that 

classical O2 naphthenic acids, mostly present in F1 (least polar), are not primarily responsible for 

the toxicity observed in an aged tailings source. The current study indicates that although the 

aged tailings source (≥18 years) did not display acute toxicity to the majority of organisms 
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assessed, inorganic components and polyoxygenated organics may pose a persistent concern to 

some aquatic organisms. 

 

3.2. Introduction 

 The oil sands region in northern Alberta is the third largest reserve of crude oil 

worldwide (Canadian Association of Petroleum Producers, 2016). Although more than 80% of 

remaining crude oil reserves in the region can be extracted using in situ methods (Canadian 

Association of Petroleum Producers, 2016), surface mining has historically accounted for a 

considerable portion of the operations. Surface mined bitumen extraction methods produce large 

quantities of oil sands process-affected water (OSPW) and tailings waste material, which are 

very saline and contain inorganic and organic compounds that are acutely toxic to a variety of 

aquatic biota (Clemente and Fedorak, 2005; Brown and Ulrich, 2015). Therefore, as a 

precautionary measure, the release of OSPW into the natural environment is not permitted 

(FTFC, 1995a). With the requirement that disturbed land be reclaimed to an environmentally 

productive status (FTFC, 1995a), the long-term strategy by industry involves detoxifying stored 

OSPW. One approach to accomplishing this is to convert tailings storage ponds into viable 

wetland areas called end-pit lakes as part of a larger wet landscape reclamation strategy. To 

evaluate the viability of a wet landscape reclamation program, Syncrude Canada Ltd. constructed 

a number of large scale test ponds between 1989 and 1993. These ponds were established to 

assess different detoxification techniques including varying combinations of mature fine tailings, 

coarse tailings, tailings pond surface water, and tailings capped with fresh water (Siwik et al., 

2000). 
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The most toxic component within OSPW has been attributed to the water-soluble acid-

extractable organic component (Brown and Ulrich, 2015), which contains a well-studied O2 

subgroup commonly referred to as naphthenic acids (NAs). The wet landscape reclamation 

strategy is, therefore, currently focussed on the natural reduction of the organic acid component 

within OSPW. This wet landscape strategy initially showed promise with research revealing a 

relative reduction in toxicity associated with biodegradation of organic components within aged 

tailings (MacKinnon and Boerger, 1986; Herman et al., 1993; Lai et al., 1996). Research has 

shown that biodegradation of commercially-available NA mixtures and oil sands-derived NAs 

with microbes indigenous to oil sands tailings ponds resulted in preferential degradation of 

compounds with low carbon number and cyclicity (Clemente et al., 2004; Scott et al., 2005). 

Further characterization of biodegraded NAs revealed that a higher degree of alkyl branching 

and oxygenation contributed to their bio-persistence (Bataineh et al., 2006; Smith et al., 2008; 

Han et al., 2009). To confound matters, more recent research has revealed that NAs represent 

only a portion of the bioavailable organics present in OSPW. The broader group of water soluble 

organic substances include additional classes which contain heteroatomic moieties, di-carboxyl 

and dihydroxy groups, and aromatic rings (Headley et al., 2011b; Headley et al., 2013b; Bauer et 

al., 2015), and are hereafter referred to as acid-extractable organics (AEOs). It is widely 

recognized that overall detoxification of tailings requires the combined reduction of total acids 

and specific organics responsible for toxicity. Nevertheless, the long period of time required 

(>10 yrs) to reduce a significant amount of AEOs in tailings ponds and the persistence of 

particularly recalcitrant AEOs, has called into question the viability of the natural degradation of 

OSPW proposed in the wet landscape strategy (Quagraine et al., 2005). 
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Presently, there is a lack of information regarding the overall toxicity of aged OSPW and the 

specific components that are responsible for the toxicity. Some of the variability associated with 

AEO toxicity can be attributed to interspecies sensitivity differences in test organisms. Effects in 

a variety of aquatic species exposed to OSPW have been observed at between 8 to 65 mg/L for 

various endpoints (Kinley et al., 2016). However, comparisons between different studies are 

challenged by the variability in chemical profiles between OSPW sources (Frank et al., 2014; 

Frank et al., 2016). These challenges have led to research involving fractionation of whole 

OSPW in order to elucidate whether the toxicity can be associated with broad chemical 

parameters such as molecular weight, aromaticity, and solubility (Lo et al., 2006; Frank et al., 

2008; Grbovic et al., 2012; Jones et al., 2012; Bauer et al., 2015; Huang et al., 2015; Bauer et al., 

2017). Previous attempts to isolate toxic organics in OSPW were restricted by scale such that 

final fraction quantities were insufficient to allow for full chemical characterizations and toxicity 

testing. In an effort to permit a complete chemical and toxicological characterization of 

bioavailable organic components in OSPW contributing to toxicity, a method was developed 

(Chapter 2) for the fractionation of OSPW which was capable of isolating soluble organic 

compounds present. This protocol utilized differences in polarity to produce three fractions and 

recovered 96% of AEOs. Characterization of these fractions revealed that the increasing solvent 

polarities used in fraction generation corresponded to increases in the abundance of oxygenated 

groups as well as increased aromaticity of the constituents within fractions (Chapter 2).  

As part of a broad effects-directed analysis of aged OSPW, the objectives of the present 

study were two-fold. The first was to assess the toxicity of the fractions of bioavailable organics 

isolated from aged OSPW in the aforementioned companion study (Chapter 2), and evaluate 

whether differences in chemical profiles for each fraction could be related to toxicological 
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differences. The second objective was to assess the toxicity of the aged OSPW and the isolated 

fractions to a suite of aquatic organisms and compare species sensitivities. Previous 

investigations have shown that species sensitivity can vary depending on AEO source material; 

therefore, a complement of organisms from different taxa should be considered (Marentette et 

al., 2015b; Bartlett et al., 2017). The species tested included the marine bacterium Vibrio fischeri 

(Microtox® assay), three freshwater invertebrates (Hyalella azteca (amphipod crustacean), 

Daphnia magna (water flea), Lampsilis cardium (freshwater mussel)), and two freshwater fishes 

(Pimephales promelas (fathead minnow), and Oryzias latipes (Japanese medaka)). The intention 

of this study was to identify the most toxic organic constituents within aged OSPW and to gain a 

better understanding of which organisms and endpoints are most sensitive; information that is 

critical for evaluating the viability of the wet landscape reclamation strategy. 

 

3.3. Methods and Materials 

3.3.1. Aged OSPW Sampling 

An aged OSPW sample was acquired from Test Pond 9 located on the Syncrude Canada 

Ltd. lease site in the Athabasca region, north of Fort McMurray, Alberta. Test Pond 9 was 

constructed in 1993 and filled with 50,000 m3 of tailings pond surface water from Mildred Lake 

Settling Basin, an active tailings discharge retention pond (Siwik et al., 2000). In 2011, 

approximately 2000 L of OSPW was pumped directly from Pond 9, transferred to two 1000-L 

polyethylene containers and shipped to Environment and Climate Change Canada (ECCC), 

Burlington, Ontario.  
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3.3.2. Aged OSPW Fractionation 

The fractionation method was developed to isolate organic compounds using solid-phase 

extraction and was completed in two stages; one at pH 11 and the second at pH 2 (Chapter 2). 

The method successfully produced three fractions with increasing polarity as verified by 

chemical characterization described in the following section. The aged OSPW fractions were 

produced using methods described previously (Chapter 2). In brief, 180 L of unaltered aged 

OSPW was adjusted to pH 11 ± 0.5 using sodium hydroxide (NaOH; Sigma Aldrich®, Oakville, 

ON) with thorough mixing. Following a 12-hour settling period, the pH-adjusted OSPW was 

pumped through a conditioned preparative solid phase extraction column (Isolute® ENV+ resin; 

Biotage®, Charlotte, NC) at a rate of 110 ± 10 mL/min. The resin was then removed from the 

column, dried and soxhlet extracted for 12 hours sequentially using ethyl acetate (Fisher 

Scientific, Mississauga, ON) to produce Fraction 1 (F1) and methanol (MeOH; Fisher Scientific, 

Mississauga, ON) to produce Fraction 2 (F2). The column filtrate was then adjusted to pH 2 ± 

0.5 using hydrochloric acid. The aged OSPW at pH 2 was then pumped through a second column 

filled with freshly conditioned ENV+ resin. The resin from the second column was then soxhlet 

extracted using MeOH to produce Fraction (F3). All fractions were filtered through a bed of 

anhydrous sodium sulfate to remove residual water and stored in amber glass bottles at 4°C until 

chemical characterization and preparation for bioassays. 

 

3.3.3. Chemical Characterization 

The chemical composition of each fraction was characterized using a variety of analytical 

techniques (Chapter 2). The relative polarities of each fraction were verified using both liquid 

chromatography – quadrupole time-of-flight mass spectrometry (LC-QToF) and gas 
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chromatography – tandem mass spectrometry (GC-MS/MS). All chemical analyses were run in 

duplicate with respective solvent blanks and internal standards. A suite of chemical analyses and 

validation experiments identified that F1-F3 displayed an increase in relative polarity (Chapter 

2). Associated with an increase in polarity, class distribution data and synchronous fluorescence 

spectroscopy (SFS) identified increased degree of oxygenation and degree of aromaticity, 

respectively (Chapter 2). Although F3 contained the bulk of AEO (79.5%), the majority of 

naphthenic acids (O2 ions) were contained in F1.  

The relative aromaticity of each fraction was determined using SFS, as outlined previously 

(Kavanagh et al., 2009). Fluorescence spectra were collected in the 200-400 nm excitation 

wavelength range using a Perkin–Elmer Luminescence Spectrometer LS50B and data were 

collected using FL WinLab 3 software (Perkin–Elmer, Norwalk, CT). Excitation and emission 

monochromator slit widths were set at 5 nm, scan speed at 50 nm min-1 and resolution at 0.5 nm. 

The spectra were blank-corrected with 0.05 M NaHCO3 and then smoothed with a 5-point 

averaging adjacent method using Origin software ver. 7.5 (OriginLab Corp., Northampton, MA). 

Additional chemical properties were analysed using electrospray ionization high-

resolution mass spectrometry (ESI-HRMS) including concentrations, O2 double-bond 

equivalents (DBE), ion class distribution, and mass-to-charge ratio (m/z). The ESI-HRMS 

analysis was conducted using an LTQ Orbitrap Elite (Thermo Fisher Scientific); methods are 

described in detail (Chapter 2). 

Major ions were analyzed by chemical suppression ion chromatography, and dissolved 

metals (Ca, Mg, Na, K, Si) were analysed by inductively coupled argon plasma system (ICP-

OES) by ECCC’s National Laboratory for Environmental Testing (NLET) in Burlington, ON  
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(NLET, 2003). All other 35 dissolved metals were analyzed by NLET using ion chromatography 

plasma optical emissions spectrometry (ICP-MS) (NLET, 2003). 

 

3.3.4. Bioassays 

3.3.4.1. Treatment Preparation 

Bioassays were exposed to an unaltered aliquot of aged OSPW (referred to as whole 

water) as well as the isolated organic fractions described previously. All fraction aliquots were 

diluted in order to bring concentrated fractions to whole water equivalents (v/v) of the original 

aged OSPW. Additionally, because the fractions generated were dissolved in organic solvents 

(Chapter 2), aqueous test solutions were prepared with solvent proportions diluted to 0.1% of 

bioassay exposure solutions to avoid solvent-associated toxicity. This was achieved by preparing 

10-L whole water equivalent stocks for each fraction, concentrated to 100 mL. Each 10-L 

equivalent (170-mL aliquot from 3-L fraction) was transferred to a 500-mL round-bottom flask 

and solvent was removed using a rotary evaporation unit at 60°C with vacuum set to ~340 mbar. 

The remaining residue was then re-dissolved in 10 mL of MeOH. To aid in dissolution of 

organic compounds, 90 mL of 0.01 M NaOH was prepared by dissolving 36 mg of NaOH pellets 

into 90 mL of deionized water. The NaOH solution was then added to the 10-mL equivalent 

fraction to a total of 100 mL, vortexed and then sonicated for 5 minutes. These stocks solutions 

were then stored at 4°C until further use.  

For bioassays, the fractions were brought back to environmentally relevant concentrations 

(e.g. 100% whole water equivalent of original aged OSPW) by pipetting 10 mL of a stock into 

990 mL of deionized water, with a final MeOH concentration of 0.1% solvent by volume. The 

“Recombined” treatment represented a solution containing a combination of all three fractions. 
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As a result, 10 mL of each of the 3 fraction stocks was dissolved in 970 mL of control water, 

with a final MeOH concentration of 0.3% solvent by volume. The solvent controls were prepared 

identical to the fraction treatment stocks (1 mL MeOH, 9 mL 0.01M NaOH) and “Recombined” 

treatment (3 mL MeOH, 7 mL 0.01M NaOH) stock without dissolved organic compounds, and 

diluted to achieve a final MeOH concentration of 0.1 % and 0.3% solvent by volume, 

respectively. The solvent controls were prepared to account for solvent effects in fractions and 

the Recombined treatment will be referred to hereafter as Solvent 100 and Solvent 300, 

respectively. 

 

3.3.4.2. Bioassays Methods 

A total of six acute toxicity bioassays were conducted: P. promelas (5 days post-

fertilization), O. latipes (10 days post-fertilization), V. fischeri (15-min), D. magna (48-hour), L. 

cardium (24-hour), and H. azteca (7-day). All bioassays included exposure to aged OSPW whole 

water, three organic fractions (F1, F2, and F3), and a Recombined treatment (Chapter 2). All 

tests also included water controls, and two solvent controls (Solvent 100 and Solvent 300) 

described previously. Bioassays were conducted with approval from respective animal care 

committees at ECCC (Burlington, ON) or University of Waterloo (Waterloo, ON; O. latipes). 

All bioassay parameters and procedures are described in detail in Appendix B (B1) 

 

3.3.5. Statistical Analysis 

Data were analyzed using R version 3.3.3 (R Core Team, 2017) and RStudio version 

1.0.136 (RStudio Team, 2016). Except for the V. fischeri data set, an initial analysis used one-

way analysis of variance (ANOVA) to compare each endpoint across the relevant control groups 
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(Control, Salt Control, Solvent 100, and Solvent 300). Bioassay method procedures for V. 

fischeri utilize control water as a reference level and it is not considered an actual treatment. 

Therefore, only the Solvent control treatments were used as a control group. Model assumptions 

were assessed via residual plots, Shapiro-Wilk’s Test, and Levene’s Test. Comparisons where 

the model assumptions appeared to have been violated were re-assessed using the non-parametric 

Kruskal-Wallis test. For species in which no evidence of a difference in the mean endpoint 

across control and solvent control groups was found, data from all relevant control groups were 

pooled into a single group for comparison with the remaining five treatment groups. All 

statistical comparisons described in the results are comparisons across treatments, where the 

control represents a pooled control group (control water, Solvent 100, and Solvent 300), unless 

otherwise stated. 

All endpoints were again compared with one-way ANOVA across six treatment groups 

(pooled control (where applicable), whole water, Recombined treatment, and fractions F1, F2, 

and F3), followed by Tukey’s method for pairwise comparisons when significant evidence (p ≤ 

0.05) of a difference among treatment means was identified. Assumptions of normality and 

constant variance were assessed as before, and comparisons in which these assumptions were not 

satisfied were re-assessed with the Kruskal-Wallis test, followed by Wilcoxon-Mann-Whitney 

tests with a Bonferroni adjustment for pairwise comparisons. 

Results from the hatch success and developmental abnormalities endpoints for P. promelas 

showed evidence of a difference among controls such that the Solvent 300 control displayed a 

significant reduction in hatch success and increase in abnormalities (p ≤ 0.05) compared to the 

water Control and Solvent 100. The Recombined treatment could not be assessed with 

confidence as results were likely confounded by solvent effects. Control and Solvent 100 
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treatments were not significantly different and, therefore, pooled and compared to the whole 

water treatment and three fractionated treatments (F1, F2, and F3) (Figure 3.1a). An arcsine 

square-root transformation was applied to the percent hatched in order to satisfy assumptions of a 

one-way ANOVA. A one-way ANOVA was performed on data for both endpoints and Tukey’s 

method was used for post-hoc comparisons.   

 The D. magna bioassay only contained two control groups (control water and Solv300). 

As such, the Welch Approximate t Procedure was used to compare the control groups (controls 

and solvent controls), and no evidence of a significant difference between the mean percent 

survival between these two groups was found (p > 0.05). While this procedure does not require 

an assumption of constant variance, due to the low variability (i.e. high survival rates) of 

observations in both groups, it is difficult to verify the assumption of normality. However, as 

survival in both control groups was at (or near) 100%, it is reasonable to assume that there was in 

fact no effect of the solvent control group, and observations from Control and Solvent 300 were 

pooled.    

 

3.4. Results 

3.4.1. Bioassays 

3.4.1.1. Pimephales promelas 

The acute toxicity of Pimephales promelas was assessed with a hatch success endpoint. 

This analysis identified that F3 displayed a significant reduction in hatch success (p < 0.05; hatch 

success 63%) compared to pooled controls (96%), whole water (100%), and all other organic 

treatments (95-100%). 
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Four sub-lethal endpoints were assessed: time to hatch, embryonic heart rate, hatch length, 

and developmental abnormalities at hatch. Larval abnormalities at hatch were significantly 

higher (p ≤ 0.004 – 0.01) in F3 (28%) compared to the pooled control group (9%), F1 (2%), and 

F2 (3%) (Appendix B, B2). No other evidence of significant differences was found. The hatch 

length endpoint appeared to be confounded by solvent effects from both Solvent 100 and Solvent 

300 when compared to control water (Appendix B, B3) negating our ability to derive results at 

this endpoint. Nonetheless, because the range in average hatch lengths across all treatments was 

only 0.3 mm, regardless of the capacity to identify statistical significance, our observations likely 

have little environmental relevance. There were no significant differences among any of the 

control and treatment groups for the time to hatch endpoint (5.2 - 5.5 days, Appendix B, B4), 

while for the embryonic heart rate, there was a significant difference (p = 0.034) in the mean 

response between the whole water treatment (139 beats/min) and F2 (160 beats/min) (Appendix 

B, B5). 

3.4.1.2. Oryzias latipes 

The acute endpoint, percent hatched, displayed no significant difference among any of the 

control and treatment groups (92-100% hatched, Figure 3.1b).   

Three sub-lethal endpoints were assessed for O. latipes: time-to-hatch, hatch length, and 

abnormalities at hatch. The mean hatch length endpoint differed significantly between the pooled 

controls (4.8 mm) and F1 (4.6 mm, p = 0.037), F3 (4.6 mm, p = 0.024), and the Recombined 

treatment (4.6 mm, p = 0.021) (Appendix B, B6). For abnormalities at hatch, incidences of 

abnormalities in all treatments were so low, all abnormalities from each replicate were pooled for 

each treatment. All treatments were >95% normal (no abnormalities) and of the 450 individual 

larvae assessed only 3.6% displayed any form of abnormality (Appendix B, B7). There were 
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significant differences in time-to-hatch between controls (7 days) and F1 (6.4 days, p = 0.004) 

and F3 (6.2 days, p < 0.001), as well as between the Recombined treatment (7.1 days) and F1 

and F3 (p = 0.017 and 0.0004, respectively; Appendix B, B8). Compared to controls, F1 and F3 

delayed average hatch time by 0.6 and 0.8 days, respectively. Time-to hatch was also 

significantly different (p = 0.002) between the whole water treatment (7 days) and F3 (6.2 days).   

3.4.1.3. Vibrio fischeri 

Vibrio fischeri displayed no acute effects to any treatments at 100% whole-water 

equivalents. However, significant toxicity was observed when the treatments were concentrated 

to 3x whole water equivalents. In the concentrated (3x) exposures, bioluminescence was 

significantly different between F3 (68%) and the Recombined fraction (51%, p = 0.018), while 

both were significantly different (p < 0.02) from all other treatment groups (95-110%, Figure 

3.1c). Fraction F1 (95%) was also significantly different (p < 0.027) from controls (110%). 

3.4.1.4. Daphnia magna 

Mean survival of D. magna was > 98% for all controls and treatments, and there were no 

significant differences (p > 0.05) among any of the treatment groups (98-100%, Figure 3.1d). 

3.4.1.5. Lampsilis cardium 

Mean percent viability for the whole water-exposed larval mussels was significantly lower 

(p < 0.001, 51%) than all other treatment groups (91-93%) and the pooled controls (92%) (p < 

0.001, Figure 3.1e).  

3.4.1.6. Hyalella azteca 

Survival was significantly lower (p < 0.05) in both the whole water (44%, p = 0.001) and 

the Recombined treatment (70%, p = 0.004) compared to controls (98%, Figure 3.1f). 
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Figure 3.1. Percentage survival/viability of organisms (mean ± standard deviation) exposed to 

pooled controls (Ctrls), whole aged OSPW (Whole), fractions (F1-F3), and a Recombined 

treatment (Recomb, fractions F1-F3 combined). Test species included fish (P. promelas (a) and 

O. latipes (b)), marine bacteria (V. fischeri (c)), and invertebrates (D. magna (d), L. cardium (e), 

and H. azteca (f)). Letters (a, b, c) indicate a significant difference (p ≤ 0.05). Hashed bars for P. 

promelas indicate treatment groups that were compared statistically, due to solvent effects. Dpf = 

days post fertilization. 
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3.4.1.7. Fraction Toxicity 

Fraction F3 (most polar) displayed the greatest toxic potency overall in cases where any 

significant toxicity was attributable to the organic fractions. This occurred in O. latipes time-to-

hatch, V. fischeri assay (3x equivalent), P. promelas survival, hatch length, and abnormalities. It 

is important to note that although F3 significantly decreased hatch length and increased 

embryonic abnormalities in P. promelas (Appendix B; B2, B3), these endpoints may have been 

affected by the solvent. H. azteca also showed decreased survival after exposure to F3, although 

this was not significantly different from the controls. 

 

3.4.2. Chemical Characterization 

Chemical characterization of the three fractions (F1-F3) was performed with analysis 

using ESI-HRMS, LC-QToF, GC-MS/MS, and SFS, as described previously (Chapter 2). 

Additionally, metals and major ions were analysed using ICP-MS and ICP-OES methods 

described herein. The chemistry results displayed an increase in oxygenation of ions, and 

increase in degree of aromaticity concurrent with increased polarity of the fractions. As the 

fractionation method excluded inorganics (metals and major ions), their concentrations were only 

determined for the whole aged OSPW sample (Table 3.1). Concentrations of dissolved organic 

compounds were determined using ESI-HRMS for F1-F3 and the final filtrate (Table 2.2). The 

majority of AEO was captured in F3 (79.5%), while F1 contained the bulk of the remainder 

(15.6%).  
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Table 3.1. Water chemistry for unaltered aged OSPW presented as total dissolved metals and 

major ions (43) determined by ICP-MS. Those elements measured but below detection limit: Al, 

Be, Bi, Cd, Ce, Cs, Co, Ga, Fe, La, Mn, Nb, Pt, Se, Ag, Sn, Ti, and Zn. 

  Aged OSPW 

pH 8.55 

Conductivity (µS/cm) 2387 

Hardness      (mg/L 

CaCO3
a) 

71.1 

Metals / Major Ions µg/L 

Antimony 0.186 

Arsenic 4.39 

Barium 28.3 

Boron 2220 

Chromium 1.3 

Copper 8.79* 

Lead 0.29 

Lithium 85.2 

Molybdenum 2.86 

Nickel 5.96 

Rubidium 1.29 

Strontium 158 

Thallium 0.1 

Tungsten 0.148 

Uranium 2.06 

Vanadium 1.57 

  
mg/L 

Calcium 10.6 

Chloride 294 

Fluoride 3.2 

Magnesium 10.8 

Potassium 8.25 

Silica 1.44 

Sodium 689 

Sulfate 86.8 
a Calculated based on concentrations of Ca, Mg, Fe, Sr, and Mn. 

* indicates exceedance of CCME and USEPA water quality guidelines 
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Table 2.2. Concentration of dissolved organics in fractions and filtrate of aged OSPW 

determined by ESI-HRMS. Values represent concentrations based on original 180 L water 

sample.  

 

a represents a derived theoretical recovery based on all other measured values 

 

 

3.5. Discussion 

The present study assessed the toxicity of whole water and organic fractions from a test 

pond containing a tailings source that was left to undergo biodegradation and aging for 

approximately 18 years. Generally, toxicity varied depending on the test species. For example, 

vertebrates were more sensitive to the organic fractions, while invertebrates displayed greater 

sensitivities to the whole water, which contained inorganics and organics within the tailings. Of 

the organic fractions assessed, F3 appeared most toxic overall, with significant effects noted for 

P. promelas (hatch success, abnormalities, and hatch length) and O. latipes (hatch length, time-

to-hatch), while F2 displayed no toxicity across all bioassays. F1 caused significant effects in O. 

latipes (hatch length, time-to-hatch); however, these effects were small and of questionable 

ecological importance, and no effects were observed in any other test species. This presents 

strong evidence that NAs, mostly present in F1, are not responsible for the acute toxicity 

observed in an aged tailings source. The present study identified significant acute toxicity of 

Concentration 

(mg/L)

Contribution 

(%)

Fraction 1 5.4 15.6

Fraction 2 0.4 1.1

Fraction 3 27.7 79.5

Post-Stage 2 filtrate 1.3 3.8

Total 34.8 100.0

Dissolved Organics
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aged OSPW (≥18 years) whole water to two of the six test species (L. cardium and H. azteca), 

where L. cardium was not sensitive to organic fraction exposures. This suggests that in an aged 

tailings source, inorganic components may pose a persistent concern to some invertebrate 

species. 

 

3.5.1. Bioassay Comparison 

A benefit to the development this preparative fractionation procedure (Chapter 2) is that it 

generated large fraction volumes, and thus afforded the ability to test a suite of organisms to 

identical sample treatments from an identical source. We assessed six different bioassays 

representing aquatic organisms at different trophic levels in order to compare their relative 

responses. 

Overall, comparison of bioassays revealed that P. promelas is more sensitive than O. latipes, 

which was expected as similar results have been observed previously (Bauer et al., 2017). 

Additionally, compared to the other test species in the current study, P. promelas and H. azteca 

were most sensitive overall. These findings are in agreement with two previous studies which 

assessed the toxicity of fresh OSPW NA extracts from the same two sources to H. azteca, V. 

fischeri, L. cardium, and P. promelas (Marentette et al., 2015a; Bartlett et al., 2017). In these 

evaluations P. promelas embryo and H. azteca displayed a much greater sensitivity than both V. 

fischeri and L. cardium, with P. promelas displaying the greatest sensitivity and L. cardium 

displaying the least sensitivity overall. Interestingly, in the same two studies, when exposed to an 

aged OSPW NA extract, P. promelas and H. azteca were still more sensitive than V. fischeri, but 

L. cardium was most sensitive overall (Marentette et al., 2015a; Bartlett et al., 2017). This is 

contrary to observations in the present study, which show L. cardium being insensitive to organic 
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fractions (containing NA), but sensitive to the whole aged OSPW. Because OSPW has been 

shown to display variability in both chemistry and toxicity across sample sites and collection 

times (Marentette et al., 2015a; Bartlett et al., 2017; Frank et al., 2016), the observed differences 

may be due to a combination of the difference in OSPW source material, OSPW age, NA 

extraction method, as well as the presence of soluble organic compounds in addition to NA. 

The commonly used V. fischeri bioassay was assessed herein, but displayed low sensitivity 

to aged OSPW components. When organic treatments were concentrated to 3x whole water 

equivalent, organic fractions F1 and F3 displayed the greatest reductions in viability and no 

toxicity was associated with the whole water. Because of comparable results to P. promelas 

acute toxicity endpoints and minimal material and labour requirements, the authors recognize the 

utility of the V. fischeri (Microtox®) assay as a screening tool to identify and prioritize toxic 

components that warrant more in depth investigation. Nonetheless, we recommend using caution 

when applying the Microtox® bioassay as a screening tool for whole waters as it has been shown 

to be relatively insensitive to aged OSPW (LC50: 83.9 mg/L) compared to P. promelas (LC50: 

12.4 mg/L) , and H. azteca (LC50: 18.4 mg/L) (Bartlett et al., 2017). 

 

3.5.2. Organic Fraction Toxicity 

Previous chemical characterization of fractions showed an increase in degree of aromaticity 

and oxygenation which contributed to an overall increase in polarity from F1 to F3 (Chapter 2). 

This suite of bioassays was conducted, in part, to determine whether the difference in chemical 

composition of the fractions contributed to differences in toxicity.  

The higher toxicity associated with F3 in some species and endpoints may be due to the 

relatively high abundance of oxygenated groups and degree of aromaticity present, which 
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contributed to greater polarity in F3. Greater oxygen content and aromaticity within AEO 

fractions has been previously associated with greater toxicity to fish (Scarlett et al., 2013; Bauer 

et al., 2015; Bauer et al., 2017), which has been linked to narcosis, electrophilic reactivity, and 

oxidative stress (Bauer et al., 2017). It is also quite likely that the toxicity of F3 is simply due to 

the high concentration of AEO in this fraction (27.7 mg/L) and that the concentration present in 

F1 and F2 (5.4 mg/L and 0.4 mg/L, respectively) were below a toxicity threshold (Table 2.2). 

For comparison, studies which have assessed toxicities associated with fresh OSPW from 

various sources to H. azteca, V. fischeri, L. cardium, S. vitreous, and P. promelas, have observed 

LC50s greater than 5 mg/L and the majority of cases greater than 10 mg/L (Marentette et al., 

2015a; Marentette et al., 2015b; Bartlett et al., 2017). 

In all cases, the most neutral isolation F1 was statistically similar in relative toxicity to 

Controls and F2, except P. promelas heart rate where F1 was similar to the most toxic F3. In a 

similar comparative study assessing the toxicity of OSPW fractions to P. promelas, a greater 

toxicity was observed for a more polar fraction compared to a polar-neutral fraction (Morandi et 

al., 2015), in agreement with observations herein. However, in a recent study (Morandi et al., 

2015), O2
 species (naphthenic acids) caused the majority of toxicity observed compared to other 

fractions. In the present study the bulk of O2
 species (naphthenic acids) were present in F1 which 

displayed low toxicity overall. The main difference between these studies is that the aged OSPW 

source utilized herein displayed a lower contribution and concentration of O2 species than other 

polyoxygenated compounds (Chapter 2). Therefore, this discrepancy may be simply associated 

with the concentrations of organics. These observations are noteworthy because NAs are 

generally considered the main drivers of toxicity (Morandi et al., 2015; Hughes et al., 2017). The 
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present study has identified that in the absence of potentially more potent O2 organics, 

polyoxygenated species may be driving toxicity. 

Interestingly, in the P. promelas assay where F3 was significantly most toxic, no toxicity 

was present in the Recombined treatment (Figure 3.1a). It is unclear why the toxicity of the 

Recombined treatment was lower, but it is possible that interactions between fraction 

components may have affected bioavailability of toxic compounds. Conversely, the H. azteca 

bioassay presented a case where no significant toxicity was observed in individual fractions 

compared to controls, but significant toxicity was observed in the Recombined treatment (Figure 

3.1f). The Recombined treatment displayed no significant difference from any of the fractions, 

suggesting that compounds that were distributed between these fractions surpassed a toxicity 

threshold when recombined. 

It should be noted that previous quantitative analysis of the three fractions reported that 

treatments F1, F2, and F3 contained approximately 15.6%, 1.1%, and 80% of total AEO, 

respectively (Table 2.2; Chapter 2). This has the potential to significantly contribute to the 

observations that F3 was most toxic while F2 was least toxic overall. The authors do caution 

however, that because no analytical chemical standards exist for the quantitation of organics 

present in OSPW, the chemical results cannot be stated with certainty. Therefore, it is difficult to 

ascertain to what degree toxicity is driven by polarity rather than simply concentration.  

 

3.5.3. Whole Water Toxicity 

The whole water treatments for aged OSPW represented unaltered and unfractionated 

samples. These treatments therefore, contained all contaminant classes including dissolved 

organic and inorganic components such as metals and salts. By comparing the whole water 
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toxicity to that of the toxicity from dissolved organic treatments, inferences could be made 

regarding possible contaminant interactions. 

One case revealed possible contaminant interactions resulting in a reduction in dissolved 

organic toxicity in whole water. Specifically, P. promelas survival was significantly reduced (p < 

0.05) by organic fraction F3, but no sensitivity to the whole water treatment was observed 

(Figure 3.1a). Also, the toxicity of F3 was significantly different from controls to some sub-

lethal endpoints for P. promelas and O. latipes (Appendix B; B2, B6, B8), while whole water 

treatments displayed no significant toxicity. A possible explanation is that inorganic species 

present in the whole water had a buffering effect on the toxicity of organics present in F3 to 

some fish endpoints. Studies have found that the presence of high quantities of salt in water have 

the ability to precipitate naphthenic acids from the water column, reducing their bioavailability 

(Headley et al., 2011a; Celsie et al., 2016). However, both of these studies found salting out to 

occur at much higher salinities (e.g. >3000 mg/L NaCl) than in the present study (Table 3.1). 

Because the unaltered aged OSPW sample contained up to 689 mg/L of Na+ and 294 mg/L of Cl- 

(Table 3.1), the reduction in organics-associated toxicity observed is possibly also the result of 

additional mixture interactions and binding to larger humic or fulvic acids. 

Although the toxicity of inorganic components was not tested in the present study, it is 

possible that inorganics were partially responsible for some of the toxicity observed in the whole 

water treatments. No metals or major ion concentrations for aged OSPW were above available 

Canadian Council of Ministers of the Environment (CCME) or United States Environmental 

Protection Agency (USEPA) water quality guidelines for protection of aquatic freshwater species 

(USEPA, 2004; CCME, 2017), except for Cu (Table 3.1). Only H. azteca and L. cardium 

displayed sensitivities to aged OSPW whole water (44% and 51% viability, respectively), but 
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unlike H. azteca, L. cardium was not sensitive to any organic components. Heightened 

sensitivity to salts and metals have been observed for mussel glochidia (Gillis et al., 2008; Gillis 

et al., 2011), but due to the complexity of the OSPW whole water mixture, it is difficult to 

determine specific elements responsible for toxicity. In a number of studies that have assessed 

metals toxicity to various species of freshwater unionid mussels (family Unionidae), EC50 values 

derived for B, Cd, Cr, Cu, Ni, Pb, and Zn (Hansten et al., 1996; Milam et al., 2005; Wang et al., 

2010, 2017; Liu et al., 2016, Soucek et al., 2011) were all greater than water concentrations 

observed in the present study. Similarly, the concentrations of Cl-, K+, SO4
2-, assessed in our 

study were lower than EC50s observed in another study that evaluated toxicity to five different 

mussel species (Wang et al., 2017). However, notable exceptions for Cu and Cl- toxicity to 

mussels implicate their possible role as inorganics contributing to the toxicity of the whole water 

to L. cardium observed herein. Two different studies, which assessed acute toxicity to mussel 

glochidia for up to 9 different species exposed to Cu, observed mean EC50s in the range of 6.9 – 

48 µg/L (Gillis et al., 2008; Wang et al., 2017). These values bracket the Cu concentrations 

measured for aged OSPW in our study (8.79 µg/L). Similarly, another study (Gillis et al., 2011) 

identified EC50s from four different mussel species exposed to Cl- in the range of 113 – 1430 

mg/L, of which four out of six displayed EC50s that were lower than the Cl- concentration in the 

aged OSPW (294 mg/L) assessed herein. Although the study identified a significant reduction in 

toxicity associated with increased water hardness, the observations were made using 

reconstituted water (100 mg CaCO3/L) (Gillis et al., 2011) which is similar to the water hardness 

of aged OSPW in our study (71.1 mg CaCO3/L). Collectively, these data suggest that some 

whole water toxicity observed for L. cardium may be attributable to Cu and Cl- at the 

concentrations present in this study. 
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3.5.4. Aged Tailings Toxicity  

One of the major objectives of the toxicological assessments within this study was to 

determine the overall toxicity of an aged tailings source and the efficacy of aging tailings as part 

of the wet landscape reclamation strategy. The toxicity of the aged OSPW whole water treatment 

was not significantly different (p ≤ 0.05) from controls, except in the L. cardium and H. azteca 

assays. In both cases, the whole water was more toxic than the organic fractions, which seems to 

indicate that the inorganic component of the whole water contributed some of the observed 

toxicity. The test pond assessed herein was aged 18 years at the time of collection and represents 

a tailings source that has changed from its depositional state, both in organic and inorganic 

composition.  

With regard to organic compounds, when comparing aged OSPW (Chapter 2) to fresh 

tailings sources studied previously (Bauer et al., 2015; Marentette et al., 2015a), the most notable 

difference is the reduction of O2 ions and relative increase of Ox ions (where x is 3 – 8). The 

estimated total AEO concentration for aged OSPW was ~35 mg/L and NA concentrations herein 

account for less than 2% of the AEO (Chapter 2). Because different analytical methods and 

standards were used to derive the NA values in this study than those in earlier studies, data are 

not directly comparable. However, it is interesting that much lower NA concentrations are 

reported here for OSPW aged 18 years (<1 mg/L) than was reported in the same pond after 6 

years of aging (45.6 mg/L) (Siwik et al., 2000). In the P. promelas larval bioassays conducted 

with the same aged OSPW used herein, but aged for only 6 years, no survival endpoints were 

significantly different from controls (Siwik et al., 2000). The acute embryo-larval P. promelas 

bioassays conducted herein, which have been shown to be more sensitive than larval P. promelas 

bioassays (Kavanagh et al., 2012), also provide no evidence of significant toxicity for the same 
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aged OSPW whole water, aged for 18 years. As stated earlier, it is difficult to attribute the low 

toxicity to a shift to a greater proportion of oxygenated compounds or an overall reduction in the 

concentration of total organics. In general, there does not appear to be any considerable toxicity 

associated with aged OSPW to fishes assessed in this study. 

There is, however, still reason for concern with regard to invertebrate toxicity as the (whole) 

aged OSPW, containing both organics and inorganics, reduced survival/viability to 44% and 

51% in H. azteca and L. cardium, respectively (Figure 3.1e, f). However, no significant toxicity 

to organic fractions was observed for either of these two species suggesting contributions by 

inorganic components to observed toxicity. A comparison of aged OSPW water chemistry data 

herein (Table 3.1) with that conducted by Siwik et al. (2000) on the same OSPW source, aged 

only 6 years, reveals some differences in water chemistry from analysis performed 12 years later. 

Although some inorganic chemicals (Ca, SO4
2-, Al, Ba, B, and Cr) appeared to decrease in 

concentration, increases occurred in concentrations of Na+ (~15x), K+ (~1.6x), Mg2+ (~1.1x), Cl- 

(~1.3x), As (~1.5x), and Cu (~2.9x). Additionally, overall conductivity also increased (2387 

µS/cm) from that measured in the study by Siwik et al. (2000) (1977 µS/cm). As discussed 

earlier, an increase in chemicals such as Cu and Cl-, as well as conductivity, can be detrimental 

to the survival of some species such as L. cardium tested in our study. 

It is important to note that the present study assessed wetland viability based on water tests 

alone which do not account for biotic processes that would be present in a natural site. For 

example, an increase in photosynthetic rate of cattail and invertebrate community biomass and 

diversity in effluent-impacted wetland sites has been observed when compared to reference sites 

(Bendell-Young et al., 2000). These results suggested that scenarios where plants uptake and 

sequester inorganics (Hozhina et al., 2001; Kamal et al., 2004; Mahdavi et al., 2013) potentially 
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increase the survivability of invertebrate communities that are sensitive to these anthropogenic 

contaminants. Therefore, it appears that after 18 years of aging this particular OSPW source 

poses an acute toxicity risk to lower trophic levels relevant to the Athabasca watershed and that 

represent a common prey base in an aquatic food web. In order to mitigate the effects on the 

whole system, it is likely that further reduction in inorganics is necessary. 

Further investigation into the toxic drivers associated with OSPW currently involves 

assessing additional water sources. Current research in this regard comprises the fractionation of 

groundwaters known to be influenced by tailings pond seepage using methods outlined herein. 

As in the present study, the bulk isolation of organic fractions would allow generation of 

sufficient material to conduct a toxicological evaluation using a suite of aquatic bioassays. 

Beyond groundwater, there is merit in evaluating toxicities associated with fractions from fresh 

OSPW, and OSPW from different industry operators. Following an effects-directed analysis 

approach, the identification of toxic fractions will likely warrant further sub-fractionations based 

on other chemical parameters.  

 

3.6. Conclusions 

The objective of the current study was to toxicologically assess the organic components 

present in OSPW from an aged tailings source, which was achieved by exposing a suite of 

organisms to previously generated organic fractions (Chapter 2). General comparisons between 

species identified P. promelas and H. azteca as the most sensitive to dissolved organics within 

aged OSPW, while whole aged OSPW was most toxic to L. cardium and H. azteca. Three cases 

were observed for possible contaminant interactions within whole water treatments. Possible 

additive toxicity was observed for H. azteca in which a significant (p ≤ 0.05) reduction in 
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survival was observed for both the Recombined and whole water treatments. Based on the 

sensitivity of freshwater mussels to inorganics, the reduced survival of L. cardium (p ≤ 0.05) in 

whole water treatments and lack of sensitivity to dissolved organic components indicates that 

toxicity was likely due to elevated metals or salts in the OSPW. Amelioration of dissolved 

organic toxicity by whole water was observed for P. promelas which was only sensitive to F3 

and not whole water treatments. Dissolved organics in F3 displayed the greatest overall potency 

compared to F1 and F2. Overall, organic components within the aged OSPW displayed very low 

toxicity. Drivers of toxicity appeared to be dependent on the species assayed and associated with 

dissolved organic and inorganic concentrations. Although, naphthenic compounds (O2) have 

been recently identified as drivers of toxicity to P. promelas and Oncorhynchus mykiss in OSPW 

(Morandi et al., 2015; Hughes et al., 2017), O2 concentrations which predominated in F1 were 

relatively low. The results of this investigation suggest that in the absence of sufficient O2 

concentrations, polyoxygenated species can elicit considerable toxicity. Thus, in an aged OSPW 

source, polyoxygenated organic species at sufficiently high concentrations may pose the greatest 

threat to aquatic species sensitive to dissolved organics. Moreover, the persistence of inorganic 

components within aged OSPW may pose a considerable risk to organisms sensitive to metals 

and salts. 
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Chapter 4. Preparative Isolation and Fractionation of the Soluble Organic 

Mixtures of Bitumen-Influenced Groundwater from the Athabasca River 

Watershed. 
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4.1. Overview 

Recent developments in advanced separation and high resolution mass spectrometry have 

allowed for the differentiation of groundwaters exposed to natural bitumen-containing 

formations (oil sands) and those influenced by oil sands process-affected water (OSPW) from 

tailings ponds. Using these technological advances, seepage of OSPW-influenced groundwater to 

the Athabasca River has been reported; however, the environmental and toxicological 

significance of this seepage is currently unknown and needs to be assessed. To address these data 

gaps, an effects-directed analysis was initiated using groundwater sources previously identified 

as having a significant bitumen influence from the natural bitumen landscape alone (Drive-point 

(DP)-1 & DP-2) and two sites beside a tailings pond with evidence of OSPW influence (DP-4 & 

DP-5). The soluble organic compounds were then isolated and fractionated using a method 

recently developed to isolate the soluble organics from a large volume of aged OSPW. Analyses 

by ESI-HRMS, LC-QToF/MS, GC-MS/MS, and SFS indicated that DP-1 did not contain a 

significant presence of bitumen-derived organic compounds and, therefore, could not be used for 

further comparison. Analyses of DP-2, DP-4, and DP-5 indicated that the methodology was 

successful in isolating dissolved organics from industrial and natural sources into chemically 

distinct fractions, which allowed for subsequent toxicological assessments. The similarity in 

chemical compositions between sources reinforces the need for advanced targeted analyses for 

use in source discrimination. Comparison between fractions demonstrated that F3 contained 

compounds with greater polarity than F2, which in turn was more polar than F1. However, the 

abundance of soluble organics were captured in F1, including the majority of O2 species, which 

include naphthenic acids. This result is consistent with those of aged OSPW and other extraction 

methods and suggests that additional factors other than molecular weight and the presence of 
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acid moieties must play a prominent role in defining compound polarities within complex 

bitumen-derived organic mixtures. 

 

4.2. Introduction  

Surface mining in Canada’s oil sands region of northern Alberta employs an adaptation of 

the Clark extraction process for the isolation of bitumen, which utilizes a mixture of hot water 

and NaOH (FTFC, 1995; FTFC, 1995). Water is recycled throughout the extraction process, 

which results in oil sands process-affected water (OSPW) accumulating inorganic and organic 

constituents from the oil sand material. The OSPW is then stored in large settling basins 

(Mahaffey and Dube, 2017), often termed tailings ponds. Rapid advancement in the chemical 

characterization of OSPW and its associated extracts has greatly improved our understanding of 

these complex bitumen-derived organic mixtures. A wide range of constituents has been 

revealed, including various diamondoid mono-aromatic acids (Rowland et al., 2011; Rowland et 

al., 2011; Rowland et al., 2011; Rowland et al., 2012), bicyclic acids (Wilde and Rowland, 

2015), and varying abundances of different chemical species (Headley et al., 2013; Pereira et al., 

2013; Sun et al., 2017). Each of these compound classes is under further investigation for their 

diagnostic potential when attempting to differentiate bitumen-influenced waters from natural and 

industrial sources. Laboratory bioassays have demonstrated that OSPW and extracts of the 

chemicals within are toxic to several different classes of aquatic organism (Marentette et al., 

2015; Bartlett et al., 2017; Mahaffey and Dube, 2017). While the relative toxicities of each of the 

different chemical classes may not be presently known, extracts of the soluble organic 

constituents, namely the acid extractable organics (AEOs) which include naphthenic acids, have 
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long been considered to be among the principal toxic components of OSPW (MacKinnon and 

Boerger, 1986; Brown and Ulrich, 2015; Mahaffey and Dube, 2017). 

Natural groundwater in the oil sands region can have a strong bitumen influence as well 

(Ross et al., 2012; Frank et al., 2014; Sun et al., 2017), with a chemical composition very similar 

to OSPW (Frank et al., 2014; Sun et al., 2017). Recent investigation (Frank et al., 2014) of 

natural bitumen-influenced groundwater identified concentrations of AEOs quite comparable to 

groundwater that had influence from OSPW seepage in combination with natural bitumen input. 

This previous work was successful at identifying the presence of OSPW seepage in nearby 

groundwater samples outside of containment systems, however, it did not address the potential 

toxicity of this seepage relative to the natural input of bitumen-derived organics in the region. In 

addition to similarities in chemical profiles, recent work (Frank et al., 2018) has shown 

similarities in toxicity between groundwater samples influenced by OSPW and natural sources. 

The current study applied isolation and fractionation techniques (Chapter 2) to reduce the 

overall mixture into less complex mixtures and allow for more detailed chemical and 

toxicological characterization of the bitumen-derived organic mixtures in groundwater 

influenced by natural and OSPW sources. Two sets of groundwaters from previously 

investigated sites were compared: one set having natural bitumen-influence alone (DP-1 and DP-

2) and another set from beside a tailings pond with an identified OSPW influence (Frank et al., 

2014; Hewitt et al., 2018) and possibly a natural bitumen-influence as well (DP-4 and DP-5). 

The objectives of this study included 1) determining if the method developed for aged OSPW 

could be applied to fractionate, in large volume, other bitumen-influenced water sources; 2) 

determining if the chemical composition differed substantially between the isolated fractions 

within a single groundwater sample source; 3) determining if the chemical composition differed 
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substantially between the same isolated fractions from different sample sources; and 4) 

determining if there were source-related differences between the chemical compositions. The 

generated fractions would then be investigated in an effects-directed analysis approach using a 

complement of bioassays and chemical characterization techniques (Chapter 3).  

 

4.3. Methods and Materials 

4.3.1. Sample Collection 

Shallow riparian groundwater was collected in September 2013 from sites previously 

determined to be influenced by OSPW and/or natural bitumen sources. Drive-point (DP)-1 and 

DP-2 sites were identified as having input from the natural bitumen landscape only, while DP-5 

and DP-6 sites were identified as being influenced by OSPW from a nearby tailings pond (Frank 

et al., 2014; Hewitt et al., 2018). Due to the low water level of the Athabasca River during the 

2013 sampling period, the locations for DP-5 and DP-6 were up to 15 m closer to the middle of 

the river than the previous sample locations (Frank et al., 2014). Groundwater was extracted at 

depths of 50-90 cm below the riverbed with a stainless steel drive-point system (Roy and 

Bickerton, 2010). To accommodate the large volume collection, groundwater was pumped 

slowly over several hours (4-24 hr) from a series of drive-points (3 - 5, spaced over < 3 m along 

the bank) into multiple 18-L stainless steel vessels fitted with Viton seals. Sample collections 

from each drive point commenced following the equilibration of field-measured parameters 

(electrical conductivity, pH, dissolved oxygen). Once collected, the groundwater samples were 

maintained at 4°C during transport to the Canada Centre for Inland Waters in Burlington, ON 

and until sub-sampling and extraction was completed, within 7 days of arrival. 
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Figure 4.1. Map depicting sampling locations of groundwater sites, OSPW-influenced and 

natural bitumen-influenced locations and their proximity to anthropogenic OSPW sources. 
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4.3.2. Centrifugation of Groundwater Samples Prior to Extraction 

 Through the drive-point collection process, sediments could be introduced to the 

collected groundwater. As these particulates would not naturally flow with the groundwater, and 

could also slow filtration through the extraction column, they were removed. A continuous  flow 

centrifuge (Westfalia Model KA 2-06-075) at a rotational speed of 9470 rpm was used to remove 

>90% of the suspended sediments, which were collected in a stainless steel bowl (Droppo et al., 

2009). 

 

4.3.3. Isolation and Fractionation of Soluble Organics 

Soluble organics from the groundwater samples were isolated into three fractions, using 

differences in polarity, via a preparative scale solid phase extraction protocol that demonstrated 

excellent recovery from aged OSPW (Chapter 2). The preparative fractionation apparatus 

consisted of a glass column with plunger (10 cm ID x 30 cm height, Spectrum Chromatography, 

Houston, TX), two 200-L HDPE barrels, and a controller and motor (Cole-Palmer) with a rotary 

vane pump head (Procon Pumps). The column was operated as a solid phase extraction (SPE) 

cartridge where feedstock flow was directed onto the resin bed using an adjustable plunger. A 

water pump was used to pull the initial filtered sample from the sample barrel through the resin 

in the first column (SPE-1, Figure 4.2) with negative pressure and transfer of the filtrate to a 

second barrel.  

In brief, ~180 L of centrifuged groundwater were filtered through two consecutive 120 g 

columns of ENV+ (hydroxylated polystyrene divinylbenzene; Biotage®, NC, USA), followed by 

a total of 3 stages of solvent extraction. Prior to filtering through SPE-1, the centrifuged 

groundwater sample was adjusted to pH 11.0 ± 0.5 with 10 M sodium hydroxide (NaOH), mixed 
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for approximately 1 hour with a hand drill fitted with a PTFE mixing rod, and allowed to 

equilibrate for 12 h. The pH was then re-tested, adjusted accordingly, and allowed to equilibrate 

for 6 h or until the pH was stable at 11.0 ± 0.5. The ENV+ resin was then preconditioned with 

ethyl acetate (EtOAc), then methanol (MeOH), and then pH 11 de-ionized (DI) water. A barrel 

containing the 180 L of centrifuged groundwater was then plumbed upstream into the pre-

conditioned ENV+ column and a second empty barrel downstream of the column was also 

plumbed in. Here and throughout all conditioning and filtering steps, the solvent/water in the 

column was maintained at a height of 10 cm above the resin bed and the plunger at a height of 1 

cm above the solvent/water to avoid disturbance of the resin, and the filtration rate was 

maintained at 100 ± 10 mL/min. Following filtration of 180 L of groundwater, the column was 

disassembled, the resin carefully transferred into a 4-L glass beaker covered with a large 

Kimwipe®, and allowed to dry in a fume hood for 12-24 hrs. Once dry, the analytes from SPE-1 

were soxhlet extracted for 12 h using two soxhlet assemblies, each with 60 g ENV+ resin packed 

between 500 g measurements of sodium sulfate (NaSO4) and 1.5 L of EtOAc. Following the 12 h 

extraction, the 3 L of EtOAc was pooled and filtered 4 times through 400 g NaSO4 and 8 µm 

pore-size filter paper (Whatman grade 40 ashless, Sigma-Aldrich®, Oakville, ON) to remove any 

water. The final extract in EtOAc is hereafter referred to as Fraction 1 (F1), and is expected to 

contain the least polar soluble organics based on previous OSPW extraction using this approach 

(Chapter 2). The resin was then removed from the thimbles, allowed to dry, re-placed in new 

thimbles with fresh NaSO4, and the extraction process was repeated using a total of 3 L of 

MeOH. Following filtration through NaSO4, the final extract in MeOH is hereafter referred to as 

Fraction 2 (F2) and is expected to contain soluble organics with intermediate polarity relative to 

the other fractions. 
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The groundwater filtrate that was collected following passage through SPE-1 was 

acidified to pH 2 using 12 M HCl in the second barrel, in a manner similar to the initial 

adjustment to pH 11. For preparation of the SPE-2 stationary phase, 120 g fresh ENV+ resin was 

placed into the cleaned column, conditioned, and equilibrated as described previously for SPE-1, 

with the exceptions that only MeOH was used and the final conditioning was with pH 2 DI 

water. Following SPE-2 conditioning, the acidified SPE-1 filtrate was pumped from the second 

barrel, through the conditioned column, and back into barrel 1, ensuring that the solvent/water in 

the column was maintained at a height of 10 cm above the resin bed and the plunger at a height 

of 1 cm above the solvent/water to avoid disturbance of the resin, and the filtration rate was 

maintained at 100 ± 10 mL/min. Following filtration of the 180 L of groundwater through SPE-

2, the resin was collected and dried as for SPE-1, with subsequent soxhlet extraction using a total 

of 3 L MeOH split between two soxhlet assemblies. Following filtration through NaSO4, the 

final extract in MeOH is hereafter referred to as Fraction 3 (F3) and is expected to contain the 

most polar soluble organics relative to the other fractions. 
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Figure 4.2. Fractionation method schematic displaying Stage 1 and Stage 2 SPE loading 

followed by soxhlet extraction using solvents indicated. The fractionation resulted in the 

generation of fractions containing dissolved organic constituents of relative lower polarity (F1), 

intermediate polarity (F2), and higher polarity (F3). 
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4.3.4. Synchronous Fluorescence Spectroscopy (SFS) 

Synchronous fluorescence spectra were recorded with a Perkin–Elmer Luminescence 

Spectrometer LS50B, as previously described (Kavanagh et al., 2009; Frank et al., 2016). 

Samples were filtered through washed disk filters (PES, 25 mm GD/X, O.2 mm pore size; GE 

Healthcare UK Ltd., Buckinghamshire, UK) before fluorescent analysis to remove particulates 

and were then scanned in a 1 cm quartz cuvette with PTFE stopper (Hellman, Concord, ON, 

Canada) at 20±2 °C. All data were collected using FL WinLab 3 software (Perkin–Elmer, 

Norwalk, CT). The wavelength difference between the excitation and emission monochromators 

(Dk) was optimized by measuring the spectra of dilute AEO at various offset values (10–60 nm), 

with a Dk of 18 nm selected, and synchronous fluorescence spectra were collected in the 250–

400 nm excitation wavelength range. Excitation and emission monochromator slit widths were 

set at 5 nm, scan speed at 50 nm min-1 and resolution at 0.5 nm. The spectra were blank corrected 

with Milli-Q water and then smoothed with a 5-point averaging adjacent method using Origin 

software ver. 7.5 (OriginLab Corp., Northampton, MA). Detected maxima at 272, 307, and 323 

were depictive of bitumen influence (Frank et al., 2016). 

 

4.3.5. Electrospray Ionization High-Resolution Mass Spectrometry (ESI-HRMS) 

An LTQ Orbitrap Elite (Thermo Fisher Scientific) instrument was used for ESI-HRMS 

analysis with a pre-defined 5-point regression of OSPW-derived organic acids at known 

concentrations used to determine resulting dissolved organic concentrations. Operating in full 

scan negative-ion mode, the mass spectrometer ran at a m/z scan range of 100-600. Achieved 

resolution at m/z 120 = 240000, m/z 210 = 185000, m/z 300 = 150000, and m/z 400 = 130000, 

and all of the ions were in the m/z 100 to 300 range in which the resolution ranged from 240000 
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to 150000. The mass accuracy was <2 ppm error for all mass assignments. Operating parameters 

were as follows; sheath gas flow rate 25 (arbitrary units), spray voltage 2.90 kV, auxiliary gas 

flow rate 5 (arbitrary units), S lens RF level 67%, heater temperature 50°C, and capillary 

temperature 275°C. Infusion solvent used was 50:50 acetonitrile:water containing 0.1% 

ammonium hydroxide at a flow rate of 200 µL/min. Software used for molecular analysis was 

Xcalibur v 2.1 (Thermo Fisher Scientific) and Composer v 1.0.2 (Sierra Analytics, Inc.). 

 

4.3.6. Liquid Chromatography Quadrupole Time-of-Flight Sass Spectrometry (LC-

QToF/MS) for AEO Quantification 

Detailed description of this analysis has been previously published (Brunswick et al., 

2015; Brunswick et al., 2016; Brunswick et al., 2016), however a brief summary is provided 

here. Groundwater samples were adjusted to ~pH 10-11 with ammonium hydroxide to ensure 

dissolution of the AEOs. The pH-adjusted samples were aliquoted and spiked with the internal 

standard, decanoic-d3 acid. Reverse phase liquid chromatography was then used to separate the 

AEOs in the sample, together with detection by an Agilent 6550 iFunnel quadrupole time-of-

flight mass spectrometer (LC/QToF). The AEOs were ionized in electrospray negative mode and 

data were acquired by total ion scan (TIC). The QToF uses accurate mass detection, thus 

reducing interferences. The instrument qualitative software was able to screen the total ion scan 

for accurate peak matching using the formula of O2:O3:O4 AEO species. It is noted that, due to 

the presence of isomers, there may be different AEO peaks in the reference material compared to 

the samples. Where individual isomer peaks attained acceptable mass accuracy (preferably 

<5ppm), reached quantitation limits, and were free of interferences, the results were transferred 

to the quantitative software program for integration. Final analysis employed a weighted 1/x 
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regression standard curve of pooled AEO responses in ratio to the internal standard. The 

calibration range was dependent upon the reference standard employed, with in-house validated 

methods using either Merichem Technical mix or a validated extract of OSPW AEOs. System 

suitability standards, blanks, and calibration standards were analyzed at the beginning and end of 

each analytical sequence with Quality Control samples included within each analytical batch. 

 

4.3.7. LC-QToF/MS for Qualitative Assessment 

All LC-QToF/MS analyses utilized a methanol mobile phase and required that all 

samples were dissolved in methanol. Therefore, all water samples and EtOAc fraction (F1) 

aliquots were rotary evaporated and subsequently brought to just-dryness with a N2 bath. 

Samples were then brought back up to appropriate volumes in MeOH. The analysis was carried 

out in full scan negative ion mode (mass range 100-980) using an LC-QToF 6520 (Agilent 

Technologies, Santa Clara, California, USA) under these conditions: Gas temp 350°C, drying 

gas 10 L/min, nebulizer 35 psi, VCap 3000 V, Fragmentor 130 V, Skimmer 65 V, reference mass 

recalibration enabled.  The LC conditions were as follows: Column Poroshell 120 EC-C18, 3.0 

x 50 mm 2.7 µm, Solvent A Water (0.1 % formic acid), Solvent B Methanol (0.1% formic acid), 

initial conditions 95% A for 2 minutes, to 100 % B at 20 minutes, hold until 30 minutes.  

Samples were injected with 1 µL of labelled internal standard (9-anthracene-d9-carboxylic acid, 

84.4 pg/µL and Decanoic-d19 acid, 390 pg/µL). 

 

4.3.8. Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS) 

All GC-MS/MS analyses were conducted with samples that were methylated using 

diazomethane and then dissolved in toluene. Therefore, all fraction extracts were solvent-
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exchanged in toluene. The analysis was carried out in EI full scan mode (mass range 50-500) 

using a GC 7000 MSMS (Agilent Technologies, Santa Clara, California, USA).  A 1 µL 

injection was made into a multimode inlet at 270°C into a 30 m DB5 column (Agilent).  Oven 

temperatures were programmed at 90°C for 0.5 minutes, ramped to 300°C at 40°C/minutes with 

a 5 minute hold.   

 

4.3.9. Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-MS) for Metals and 

Major Ions 

Total and dissolved metals were analyzed at Environment and Climate Change Canada’s 

National Laboratory for Environmental Testing (NLET) (Burlington, ON) using Inductively 

Coupled Plasma-Sector Field Mass Spectrometry. (SOP 2003 - Standard Operating Procedure for 

the Analysis of Dissolved, Extractable and Total Trace Metals in Water by “Direct Aspiration” 

or “In Bottle Digestion” Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-

SFMS; NLET 2008). The analysis of anions was performed by ion exchange chromatography 

with conductivity detection (NLET Method 01-1080). The analysis of cations was performed by 

direct aspiration using atomic absorption (NLET Method 01-1061). 

 

4.4. Results and Discussion 

4.4.1. Isolation and Chemical Fractionation of Soluble Organics  

For each of the 4 groundwater samples, 3 fractions of soluble organic compounds were 

collected, with expected increasing polarity from F1 to F2 to F3. Following extraction, the 

fractions were stored in their respective solvents (F1 in ethyl acetate; F2 and F3 in methanol). 

Samples were solvent-exchanged, if necessary, prior to each chemical analysis.  
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4.4.2. Aromaticity of Fractions (SFS) 

 The aromaticity of the water samples collected throughout the extraction process, as well 

as the final fractions, was assessed using SFS (Figure 4.3). For DP-4, the initial groundwater did 

not exhibit an SFS spectra representative of the characteristic maxima at 272, 307, and 323 nm 

for bitumen-influenced waters (Frank et al., 2016), where increased excitation wavelength is 

representative of increased aromaticity (Kavanagh et al., 2009; Rowland et al., 2011). Likewise, 

none of the collected fractions from DP-4 exhibited spectra consistent with bitumen-derived 

organics. SFS analysis of water collected throughout the extraction methodology (Figure 4.2) for 

the other 3 samples revealed a consistent pattern of the original whole water and pH 11 adjusted 

groundwater sample having the characteristic triple maxima for bitumen-derived organics, 

reduced aromaticity in the intermediate stages (Stage 1 filtrate, Stage 2 input), and no aromaticity 

in the final Stage 2 filtrate (Figure 4.3a). These results indicate that the bulk of aromatic 

constituents, previously demonstrated to consist of acidic compounds (Rowland et al., 2011), are 

removed during the first extraction stage at pH 11. Analysis of the collected fractions indicated 

that Fraction 2 had much lower relative signal intensity. In Fractions 1 and 3 for DP 1, DP-2, and 

DP-5, there was a range of aromatic compounds detected. 
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Figure 4.3. Synchronous fluorescence spectroscopy displaying aromaticity of groundwater sites. 

Presented are aromaticity profiles of fractionation method water sample inputs and output 

filtrates at each stage (a) and aromaticity of individual fractions (b). Maxima at 272, 307, and 

323 nm are characteristic of bitumen-influenced waters (Frank et al., 2016). 

 

Figure 4.4. Class distribution of whole water and dissolved organic fractions for groundwater 

collected at sites DP-1, DP-2, DP-4, and DP-5 as determined by ESI-HRMS. Graphs present ion 

classes (x-axis) versus percent relative abundance of ions (y-axis). 
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4.4.3. Organic Ion Class Distributions (ESI-HRMS) 

 The class distributions of organic ions were evaluated for each fraction at all sites. 

Although nitrogen, sulfur, and oxygen-containing heteroatomic species were detected in each 

site, only species present above 5% in at least one site were presented for comparison (Figure 

4.4a-d). 

The composition of oxygen-containing ions in the original whole water varied between 

sites (Figure 4.4). Site DP-4 contained similar composition of O2, O4, O5, O6, and O7-containing 

species relative to DP-5 and DP-2, with 10.1%, 13.3%, 14.8%, 18.6%, and 12.2%, respectively, 

however the cumulative range of oxygenated species (O2 – O9) comprises an overall greater 

abundance of more oxygenated species in DP-4, relative to the other sites. For DP-5, whole 

water predominantly contained O2 species (57.4%) with lesser contributions from >O3-

containing ions (41.1%). The components present in site DP-2 contained similar composition of 

O2 and O4-containing ions, 35.1% and 40.5% respectively, with minor contribution from other 

species (6.3%). Finally, DP-1 displayed an increase in oxygenated species to a maximum at O4 

(39%) with a concurrent decrease in O5-O8.  

At all sites, when comparing between fractions within a site, there was a shift to a relative 

increase in oxygenated compounds from F1 – F3 (Figure 4.4b-d). For example, in DP-5, F1 is 

composed of predominantly O2-containing ions (75.2%) with lesser contributions from >O2-

containing ions (24.4%). Conversely, the distribution of ions in F3 is dominated by O4 (43.3%) 

with contributions from O3 and ≥O5 (8.6% and 39.8%, respectively), while O2 ions comprised 

only 3.7% (Figure 4.4d). Similarly, when comparing oxygenation of components in DP-2 for F1, 

F2, and F3, contributions by O2-containing ions were 27%, 5.5%, and 2.4%, respectively (Figure 
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4.4b-d#). This trend is reversed when comparing >O2-containing ion contributions for F1, F2, 

and F3 with 69.1%, 85.3%, and 89.1%, respectively (Figure 4.4b-d).  

 Analysis of double bond equivalent (DBE) data, also provided by ESI-HRMS, indicates 

varying degrees of unsaturation due to hydrogen deficiency which can be in the form of carbon-

carbon double-bonds, and rings, whether they are alicyclic or aromatic. Typically, the DBE of O2 

organic acid species are representative of cyclicity, where DBE-1 indicates the number of rings 

present (DBE=1 is present as the carboxyl group). For example, DBE = 2 indicates a compound 

with a carboxyl group and one saturated ring (DBE = 3 contains 2 rings, etc.) It is quite likely 

that hydrogen deficiencies herein result from some degree of aromaticity. As such, a simple 

benzene carboxylic acid (1-ring with 3 double-bonds, 1 carboxyl group) presents a DBE of 5. As 

the degree of aromaticity observed using SFS (Figure 4.3) is qualitative data, any correlations to 

DBE must be cautiously applied. For simplicity, DBE data will mainly be interpreted as degree 

of cyclicity. In the present analyses, only the DBE of O2 dissolved organic species were 

examined and are presented as percent abundance relative to the total abundance of O2 species 

(the total percent DBE equals the percent O2 for class distribution) (Figure 4).  

Groundwater sites DP-2 and DP-5 contained the greatest abundance of O2 species (Figure 

4.4). The highest value at DBE=3 in the whole water and F1 for these two sites is speculated to 

be due to substances with functionalities other than aromaticity that translate to hydrogen 

deficiencies (i.e., hydroxyl, double bond, etc.), while the second highest value at DBE=4 is 

speculated to be due to mono-aromatic acids, a result supported by the SFS maxima at 272 nm 

(Figure 4.3). These results are consistent with previous DBE and SFS analyses of acid-

extractable organics isolated from fresh OSPW (Bauer et al., 2015) and are also consistent with 

compound distributions between fractions observed from spiking experiments (Chapter 2). When 
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analyzing the isolated fractions, the majority of O2 species in groundwater sites were present in 

F1, which was supported by class distribution data (Figure 4.4). The DBE in F1 displayed a 

bimodal distribution, albeit very minor at sites DP-1 and DP-4. These F1 data indicate a 

predominance of 2- and 3-ring organic acids, with lesser contributions from 4- to 8-ring acids. 

As noted above, DBE > 5 may also indicate the presence of low cyclicity of which one ring may 

be aromatic. Fraction 2 displayed a low overall abundance of O2 species at all sites (Figure 4.4), 

with DP-5 being the only sample exhibiting any contribution above 5%, in which 6.3% of 

compounds are alicyclic. Similar to F2, F3 exhibited very low relative abundance of O2 ions, 

with no contributions greater that 2% at any site. Nonetheless, sites DP-1, DP-2, and DP-5 

exhibited a distribution maximum at DBE = 3 and 4, indicating predominance of 2- and 3-ring 

organic acids.  
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Figure 4.5. Double-bond equivalents for whole water and dissolved organic fractions of the O2 

ion class (classical naphthenic acids) in sites DP-1, DP-2, DP-4, and DP-5 as determined by ESI-

HRMS. Graphs present double-bond equivalents as a function of hydrogen deficiencies (x-axis) 

versus percent relative abundance of the total O2 ion class (y-axis).   

 

4.4.4. Total Acid-Extractable Organics Concentrations (LC-QToF/MS) 

Quantitative analysis of the total concentration of acid-extractable organics (AEOs), a 

subset within the mixture of soluble organic compounds, revealed that F1 consistently had the 

greatest abundance relative to the other fractions, and F3 was the fraction with the next greatest 

abundance (Table 4.1). It is worth noting the higher proportion of organics detected in F3 of DP-

2, indicating the abundance of polar compounds at this naturally influenced site, relative to the 

other sites. While F1 and F3 also had greater abundances of AEOs in DP-4 relative to F2, it is 

worthy to note that very little AEO composition was detected for any of the DP-4 fractions, as 

well as the original whole water groundwater sample (Table 4.1). The final Stage 2 exhibited 
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AEO concentrations below detection limit for all groundwater samples (Table 4.1), indicating the 

efficiency of the extraction and fractionation method to capture the AEOs. 

 

Table 4.1. Concentration of acid-extractable organics in fractions and filtrate of groundwater 

sites determined by LC-QToF/MS. Values represent concentrations present in original volumes 

of respective water samples. 

  Dissolved Organics (mg/L) 

  DP-1 DP-2 DP-4 DP-5 

Whole 1.6 5.9 <DLa 9.5 

F1 10.5 17.1 0.1 34.0 

F2 0.5 1.1 <DL 0.1 

F3 1.7 6.2 <DL 1.1 

Filtrate <DL <DL <DL <DL 
a <DL = less than detection limit (0.05 mg/L) 

 

4.4.5. Fraction Profiles by GC-MS/MS 

Each fraction was profiled for all sites using GC-MS/MS. The relative abundances for 

each fraction are only comparable between sites, as the fractionation method did not generate 

equivalent fraction concentrations. Comparison of profiles for each fraction across sites showed 

greater abundances of unresolved organics in F1 and F3, except at site DP-4, which displayed a 

relatively low abundance of organics in all fractions (Figure 4.6). Sites DP-1, DP-2, and DP-5 

exhibited a similar broad distribution of organics with only slightly different abundances, as 

displayed by the peak maxima. For the most polar fraction (F3), DP-1 exhibited the highest peak 

maxima, while DP-2 and DP-5 showed lower maxima indicating lower relative abundance of 

organics (Figure 4.6). The more polar organics in F3 displayed a broad distribution in DP-1, 

while DP-2 and DP-5 had reduced distributions in comparison.   
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Figure 4.6. GC-MS/MS ion chromatograms of relative percent abundance vs. retention time for 

F1 (blue), F2 (green), and F3 (red) for each groundwater site DP-1, DP-2, DP-4, and DP-5. 

 

4.4.6. Fraction Profiles by LC-QToF/MS 

In order to elucidate relative abundance of polar organic components present in each 

fraction, LC-QToF/MS was utilized. As with GC-MS/MS, the relative abundance of each 

fraction is only comparable between sites and not between fractions, as the fractionation method 

did not generate equivalent fraction concentrations. The retention time for LC-QToF/MS can be 

interpreted such that components which are identified earlier indicate a greater compound 

polarity than those retained longer (Figure 4.7). 

 For all sites, F3 contained the most abundant organics profiled using this method (ESI-), 

which is expected based on the polarities of the fractions and the ionization method used (Figure 

4.7). The differences in the F3 profiles between sites are indicative of the source differences and 

consistent with differences noted above for ion class distributions (Figure 4.4) and DBE (Figure 

4.5). In general, when observing the maxima for each fraction, there is a shift to earlier retention 
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times from the least polar (F1) to the most polar (F3) fractions. The peaks at 14 min and 17 min 

are internal labelled standards (9-anthracene carboxylic acid and decanoic acid). For the least 

polar fraction, F1, sites DP-1 and DP-5 displayed the broadest distribution of organics compared 

to DP-2 and DP-4 (Figure 4.7). Site DP-2 displayed a reduced distribution of organics with a 

similar peak retention time as DP-5. Fraction 2 showed low abundance of organics at all sites 

except DP-1, which displayed a broad distribution of compound polarities. Similarly in F3, DP-1 

and DP-5 exhibited broad distributions of compound polarity, while DP-2 and DP-4 displayed a 

relatively reduced range in polarity. Worthy of note, DP-2 displayed a unique, bimodal 

distribution for F3.  

As with GC-MS/MS analysis, DP-1 and DP-5 exhibited a distribution of organics in F1 

and F3 which encompassed a broad range in retention times. The LC-QToF/MS analysis 

revealed that DP-2 contained organics which exhibited a more polar distribution of organics at 

all three fractions. DP-4 displayed a relatively low abundance of organic components in all 

fractions, with a minor peak in F3.  
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Figure 4.7. LC-QToF/MS ion chromatograms of relative percent abundance vs. retention time 

for F1 (blue), F2 (green), F3 (red) for each groundwater site DP-1, DP-2, DP-4, and DP-5. 

  

4.4.7. Metals and Major Ion Analysis 

 The fractionation method employed in this study (Chapter 2) isolated only water soluble 

organic compounds in F1-F3. While all inorganic components remained in the water fraction 

following fractionation, necessary pH adjustments using HCl and NaOH modified the inorganic 

profile relative to the initial groundwater source. Therefore, an unaltered sample of whole 

groundwater from each site was analyzed, and Table 4.2 displays the unaltered pH, total 

hardness (mg/L CaCO3), and metal ions for each site. The total water hardness was calculated 

based on concentrations of calcium, magnesium, iron, strontium, and manganese. Of the 45 

metal ions investigated, only those present at concentrations greater than 10 µg/L, in at least one 

site, are presented.  
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Table 4.2. Water quality parameters for unaltered groundwaters. Presented as total dissolved 

metals and major ions determined by ICP-MS. Elements measured but not present were below 

detection limit at all sites: Be, Bi, Ce, Ga, La, Nb, Pt, Se, Ti, and Y. 

  
DP-1 DP-2 DP-4 DP-5 

Hardness      

(mg/L CaCO3
a) 499.4 129 541.7 173.2 

Metals / 

Major Ions 
µg/L 

Aluminum 1.4 BDL 4.7 43.8 

Antimony 0.074 0.142 0.171 0.07 

Arsenic 0.23 1 0.82 1.13 

Barium 26.1 1120 78.3 33.6 

Boron 1520 7030 133 1370 

Cadmium 0.007 BDL 0.018 0.312 

Cesium 0.028 0.122 0.102 0.038 

Chromium 0.66 1.82 0.91 0.71 

Cobalt 0.332 0.502 2.17 1.07 

Copper 4.16* 17.1* 27.2* 4.41* 

Iron 3 27.1 16.9 8.6 

Lead 0.144 0.434 0.319 0.911 

Lithium 252 665 36.7 119 

Manganese 22.9 2.65 89.7 9.65 

Molybdenum 1.19 0.481 2.7 4.94 

Nickel 2.9 2.53 16.1 3.31 

Rubidium 3.07 9.59 3.04 3.24 

Silver 0.034 0.172 0.352 0.048 

Strontium 1020 1680 1040 395 

Thallium 0.001 0.161 0.005 0.001 

Tin 0.119 BDL 0.273 0.182 

Tungsten 0.013 0.101 0.022 0.022 

Uranium 0.356 0.159 11.3 0.56 

Vanadium 0.2 1.86 0.23 0.14 

Zinc 0.7 BDL 1.9 0.6 

  mg/L 

Calcium 120 9.03 64.5 17.1 

Chloride 93.8 999.0* 4.51 15.2 

Fluoride 0.23 0.64 0.06 1.59 

Magnesium 48.3 25.4 92.2 31.6 

Potassium 8.24 16 5.68 9.8 

Silica 18.7 13.2 26.3 25 

Sodium 185 2290 26.4 222 

Sulfate 303 3.39 85.1 18.8 
a Calculated based on concentrations of Ca, Mg, Fe, Sr, and Mn. 

* indicates exceedance of CCME and USEPA water quality guidelines 

BDL = Below detection limit 
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Concentrations of most inorganic constituents were not in exceedance of Canadian 

Council of Ministers of the Environment (CCME) or United States Environmental Protection 

Agency (USEPA) freshwater quality thresholds at any of the sites assessed (USEPA, 2004; 

CCME, 2017), with the exception of copper (Cu) which was in exceedance at all of the sites 

(Table 4.2). Comparison between groundwater samples indicated that DP-5 had the highest 

concentration of zinc, and a high concentration of iron. DP-4 displayed the greatest water 

hardness (CaCO3) compared to other sites due to a relatively high concentration of calcium. This 

site also displayed the lowest overall concentrations of sodium, potassium, boron, and iron. Site 

DP-1 was most similar to DP-5 in that it displayed the highest concentration of iron while all 

other ions displayed similar concentrations. DP-2 displayed the highest concentrations of 

sodium, potassium, aluminum, barium, boron, and strontium, while having the lowest 

concentrations for calcium, magnesium, manganese, zinc, and overall water hardness.  

 

4.5. Conclusions  

This investigation applied a recently developed extraction method (Chapter 2) to isolate 

and fractionate the soluble organic compounds within groundwater samples previously identified 

as having significant bitumen influence (Frank et al., 2014; Hewitt et al., 2018). Two samples 

(DP-1 and DP-2) were selected due to previous determination of their bitumen influence being 

solely natural, and two samples (DP-4 and DP-5) were selected due to previous determination of 

being influenced by OSPW (and possibly natural bitumen also).  

The first objective of this investigation was to determine if the method developed for aged 

OSPW could be applied to fractionate, in large volume, other bitumen-influenced water sources. 

The method created 3 distinct fractions with little observed loss in the final Stage 2 filtrate 
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(Figure 4.3, Table 4.1), thus indicating its success at isolating the soluble organic compounds 

from all investigated bitumen-influenced groundwater samples. It was not possible to add 

surrogate spikes to each groundwater sample to quantify total recovery as all generated fractions 

were to be subjected to toxicological assays (Chapter 3). It should be noted that DP-4, which had 

previously been identified as having influence from OSPW seepage (Frank et al., 2014; Hewitt et 

al., 2018), had little to no signal detected with several of the methodologies previously 

demonstrated as being diagnostic of bitumen influence (Figures 4.3, 4.6, and 4.7; Table 4.1). We 

conclude that the water collected from DP-4 did not contain appreciable amounts of bitumen, 

and it was therefore not possible to make comparisons to the other sites.  

The second objective of this study was to determine if the chemical composition differed 

substantially between the isolated fractions within a single groundwater sample source. Analyses 

by GC and LC for the isolated fractions from DP-1, DP-2, and DP-5 indicated that F1 contained 

the greatest abundance of organic compounds, and F2 had the least. This result is different from 

analyses of fractions isolated from aged OSPW in which F3 had the greatest abundance of 

organic compounds, followed by F1 (Chapter 2). Assessment of chemical speciation revealed 

increased oxygenation through F1 to F2 to F3, consistent with increases in polarity that were 

expected given the extraction protocol. Previous analyses of fractions isolated from an aged 

OSPW source revealed that compounds captured in F3 are earlier eluting by reverse phase LC, 

indicating that F3 retains the most polar compounds (Chapter 2). However, analyses of F1 in this 

previous OSPW fractionation, as well as in the current groundwater investigation, revealed that 

the majority of O2 species, which include organic acids such as naphthenic acids, are collected in 

F1. Therefore, the polarity of bitumen-derived soluble organic compounds appears to be a 

function of factors other than just protonation and deprotonation of carboxylic acid moieties, 
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including functional groups, water solubility, molecular size, and molecular structure. Spiking 

experiments with the fractionation method utilized here also suggest that additional factors other 

than molecular weight and the presence of acid moieties must play a prominent role in 

differentiating polarity of the compounds present within complex bitumen-derived organic 

mixtures (Chapter 2). This observation is also consistent with the results of another investigation 

that used liquid-liquid extractions of fresh OSPW (Morandi et al., 2015). While these studies 

employed two different methods (SPE, liquid-liquid) and used different sources of bitumen-

influenced waters (fresh OSPW, groundwater, aged OSPW), they both resulted in the abundance 

of dissolved organics being isolated in the first high pH extraction, and not in the fraction 

expected to contain the most polar components. Furthermore, this result of larger, more complex, 

compounds being more polar than smaller, simpler acids is also consistent with HRMS analyses 

of a previous fractionation of fresh OSPW by distillation (Frank et al., 2008; Frank et al., 2009; 

Bauer et al., 2015). These same functionalities that are affecting compound polarity may very 

well play a role in their relative bioavailability and toxicological properties. 

The final objectives of this study were to determine if the chemical composition differed 

substantially between the same isolated fractions from different sample sources and also to 

determine if there were source-related differences between the chemical compositions. Using 

advanced separation and high resolution analytical methodologies, previous investigations had 

identified an OSPW influence at DP-5, and solely natural bitumen influence at the sites of DP-1 

and DP-2 (Frank et al., 2014; Hewitt et al., 2018). In many ways, the analytical profiles for DP-2 

and DP-5 closely resemble each other, including SFS maxima, DBE plots of O2 species, LC-

QToF profiles, and speciation plots; an interesting result given previous determination of solely 

natural bitumen influence in DP-2 and OSPW influence in DP-5. The lack of noticeable 
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differences in organic and inorganic compound abundance, chemical speciation, aromaticity, and 

double bond equivalents demonstrate the chemical similarity of bitumen-influenced 

groundwaters regardless of the natural or OSPW origin of the bitumen source, and reinforces the 

need for more advanced targeted analyses in source differentiation (Frank et al., 2014; Hewitt et 

al., 2018; Milestone et al., 2018). 

Further characterization of the generated fractions from these groundwater sources using 

advanced separation and high resolution analytical methodologies may allow for the 

identification of compounds unique to OSPW and/or natural sources. In addition, toxicological 

assessment of the isolated fractions may help to identify principal drivers of toxicity in bitumen-

influenced groundwaters and may also help to identify sensitive species and endpoints; 

information that is vital for monitoring and remediation research initiatives. 
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Chapter 5. Toxicity of Bitumen-Influenced Groundwater Fractions to a Suite 

of Aquatic Organisms 
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5.1. Overview 

The extraction of surface mined bitumen from oil sands deposits in northern Alberta, Canada 

produces large quantities of waste tailings, termed oil sands process-affected water (OSPW). Due 

to the toxic nature of some OSPW constituents, industry operators in the region must store 

OSPW on site in large mined-out pits called tailings ponds. Unfortunately, recent evidence that 

seepage from tailings reservoirs is entering into surrounding groundwaters poses a concern for 

potential surface water contamination. The present study investigated dissolved organic toxicity 

from two OSPW-influenced groundwater sites (DP-4, DP-5) and compared their toxicity to two 

natural bitumen-influenced groundwater sites (DP-1, DP-2). This comprehensive analysis 

involved exposing previously fractionated bitumen-influenced groundwater samples to a suite of 

bioassays: P. promelas, O. latipes, V. fischeri, H. azteca, D. magna, and L. siliquoidea. The 

fractionation method isolated three fractions from each groundwater site (F1-F3) using 

differences in polarity. By exposing the suite of organisms to original whole groundwater, F1, 

F2, F3, and a Recombined treatment (all fractions) from all sites, comparison of fraction 

constituents, naturally- and OSPW-influenced sites, and relative species sensitivities was 

achieved. In general, P. promelas and H. azteca were the most sensitive to organic components, 

while V. fischeri and L. siliquoidea appeared least sensitive. Invertebrate species D. magna and 

L. siliquoidea bioassays suggested sensitivity to inorganic components within bitumen-

influenced groundwater. The overall absence of toxicity observed for F2 was possibly due to the 

low concentration of detectable organics present in F2. Comparison of bitumen-influenced 

groundwater sites indicated that those containing appreciable amounts of dissolved organics 

(DP-1, DP-2, DP-5) presented similar toxicities to sensitive species regardless of the source. It is 

likely that the transport of tailings seepage through substrate and mixing with groundwaters 
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affects toxicity associated with tailings contaminants. These findings should be taken into 

account with respect to tailings pond construction material, design, location, seepage 

reclamation, and tailings pond decommissioning.  

 

5.2. Introduction 

Oil sands mining in northern Alberta, Canada produces an estimated 2.37 million barrels of 

crude oil per day (Canadian Association of Petroleum Producers, 2016). The oil sands deposits 

contain roughly 165 billion barrels of remaining bitumen reserves (Canadian Association of 

Petroleum Producers, 2016). The extraction and separation of bitumen from oil sand produces 

large quantities of waste tailings and oil sands process-affected water (OSPW). To mitigate 

industry-related waste contaminants entering the natural environment, oil sands operators 

currently store tailings in pits remaining from surface mining, termed tailings ponds. Tailings 

ponds contain a variety of concentrated metals (i.e. Al, Fe, Cu, Pb, Zn etc.), major ions (i.e. Na+, 

Cl-, SO4
2-, CO3

2-, etc.), neutral organics (i.e. polycyclic aromatic hydrocarbons: PAHs), and polar 

organic compounds (acid-extractable organics: AEO) (Allen, 2008). Of these, a subgroup of 

AEO called naphthenic acids (NA) have been identified as the primary toxic components (Allen, 

2008; Brown and Ulrich, 2015). More recent findings have noted toxicity can be attributed to the 

suite of AEO present in OSPW, which contain not only classical NA (O2-containing compounds) 

but also polyoxygenated compounds (>O2) (Bauer et al., 2017). Moreover, both the inorganic 

and organic constituents of OSPW display some degree of acute toxicity to aquatic organisms 

(Allen, 2008; Royal Society of Canada Expert Panel, 2010). Although much of the tailings 

contaminants are present in the natural bitumen ore, those present in tailings ponds are much 

more concentrated. For example, polar organic NAs make up roughly 2% of bitumen by weight, 
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but comprise up to 50% of AEO within tailings (Brown and Ulrich, 2015). Additionally, tailings 

pond sediments have been found to contain several hundred times the hydrocarbon abundance as 

local riverbed sediments (Wang et al., 2014). Finally, the high salinity present in tailings is 

largely a result of the caustic hot water solutions (NaOH) employed for the separation of bitumen 

(FTFC, 1995a), which becomes concentrated as a result of water recycling.  

Due to the toxic nature of oil sands tailings, industry operators have invested considerable 

effort to prevent tailings from leaching into underlying soils and contaminating groundwaters. 

Tailings pond construction methods include perimeter dykes, low-permeability clay-till dyke 

material, internal dyke drainage, and tailings interceptor ditches (Ferguson et al., 2009; Yasuda 

et al., 2010; Holden et al., 2011). Additionally, as tailings begin to settle and dewater, the 

consistency changes to a more dense material which migrates to the bottom of the ponds during 

construction and filling (Ferguson et al., 2009). Over decades this material, termed mature fine 

tailings, effectively creates a less permeable barrier at the bottom of the tailings ponds (Ferguson 

et al., 2009). Nonetheless, despite efforts to moderate pond seepage, recent evidence suggests 

OSPW infiltration into underlying groundwaters is occurring (Ferguson et al., 2009; Oiffer et al., 

2009; Yasuda et al., 2010; Ross et al., 2012; Frank et al., 2014; Roy et al., 2016, Sun et al., 

2017). A particular study estimated seepage from a pond bottom into underlying substrate at a 

rate of 2.0 L/s (Ferguson et al., 2009).  

A major concern with tailings pond seepage is the potential for groundwaters to transport 

contaminants into nearby rivers, posing a risk to aquatic organisms. In addressing this concern 

recent research has focussed on chemically profiling OSPW sources and developing methods to 

differentiate OSPW from natural surface and groundwaters. Specifically, chemical fingerprinting 

has been achieved using parameters such as molecular charge/weight ratio (Barrow et al., 2015; 
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Holowenko et al., 2002; Ross et al., 2012), AEO fluorescence spectra (Frank et al., 2014; 

Kavanagh et al., 2009), heteroatom proportions (Barrow et al., 2015; Frank et al., 2014; Headley 

et al., 2011b; Sun et al., 2017), and double-bond equivalents (Barrow et al., 2015; Headley et al., 

2011b). Using chemical diagnostics fingerprinting, studies have identified that OSPW can 

change chemically due to interaction with underlying substrate. For example, total polar organic 

concentrations (including NAs) decrease in seepage plume samples further away from the source 

(Ahad et al., 2013), likely due to sorption by soils containing some degree of organic matter 

(Janfada et al., 2006). Groundwater in the oil sands region displays a wide range in salinity with 

Cl- concentrations in some shallow groundwater discharges of up to 50 mg/L (Jasechko et al., 

2012). This is noteworthy because salinity also has the potential to alter the chemistry of seepage 

plumes. With regard to major ions, the persistence of Na+ and Cl- in OSPW has been proposed to 

be dependent upon the underlying substrate, and where Na+ persists the precipitation of existing 

ions (SO4
2-, Ca2+, Mg2+) will likely occur (Holden et al., 2011). Additionally, there is evidence to 

suggest that high Cl- concentrations can preferentially precipitate certain AEO classes, changing 

the composition of organics within OSPW (Headley et al., 2012). Overall, tailings pond seepage 

becomes less distinguishable from groundwaters the further they are sampled from the plume 

source due to transport through substrate and mixing with natural groundwaters.  

There is ample research which has evaluated the toxicity of OSPW and the organic 

components therein, but few studies have addressed the toxic effects of groundwater contaminant 

mixtures. There is a significant lack of knowledge with regard to seepage toxicity as a source of 

surface water contamination. A recent investigation assessed the acute toxicity of freshwater 

mussel, H. azteca, and fathead minnow to several bitumen-influenced groundwaters, using sites 

previously identified as having OSPW influence or having influence from natural bitumen 
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deposits only (Frank et al., 2018). The results of this previous study indicated that toxicity was 

associated with all of the bitumen-influenced groundwaters, regardless of source, and suggested 

that additional research was needed to identify the compounds that were the primary cause of the 

observed responses. 

The current study was designed as an extension of this previous work, using several of the 

same sample locations, however collected in much larger volume to allow for fractionation 

followed by a suite of chemical and toxicological assessments. The primary objective of this 

study was to evaluate the toxicity of anthropogenically-derived groundwater contamination and 

compare it to natural bitumen-influenced groundwaters. Shallow riparian groundwater sites were 

selected from two sites which were identified previously as having input from a mixture of 

natural bitumen and OSPW sources (DP-4, DP-5) (Frank et al., 2014; Frank et al., 2018; Hewitt 

et al., 2018). For comparison to a reference, two groundwater sites which were identified 

previously as having input from natural bitumen only (DP-1, DP-2) were selected (Frank et al., 

2014; Frank et al., 2018; Hewitt et al., 2018). A secondary objective involved assessing drivers 

of toxicity and the influence of organic and inorganic groundwater components. This was 

achieved by utilizing a fractionation method developed for the separation and isolation of 

contaminants within an aged tailings pond water (Chapter 2), which was applied to the four 

bitumen-influenced groundwater sites (Chapter 4). The produced fractions were then exposed to 

a suite of bioassays which evaluated toxicity to aquatic organisms at multiple trophic levels.  
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5.3. Materials and Methods 

5.3.1. Sample Acquisition 

Methods for acquisition of bitumen-influenced groundwater samples have been described in 

detail (Chapter 4). Briefly, water samples from shallow riparian groundwaters were collected in 

September 2013 from four sites (Figure 4.1). Two sites were previously identified as having 

input from natural bitumen alone (bitumen-influenced; DP-1, DP-2), while the other two sites 

were identified as having input from OSPW (OSPW-influenced; DP-4, DP-5) (Frank et al., 2014; 

Frank et al., 2018; Hewitt et al., 2018). The groundwater was extracted at depths of 50-90 cm 

over several hours (4-24 hr) using a stainless steel drive-point system (Roy and Bickerton, 2010). 

Samples were collected in 18-L stainless steel collection vessels and stored at 4°C.  

 

5.3.2. Groundwater Fractionation 

Prior to fractionation, all groundwater samples were centrifuged, removing potentially 

introduced suspended sediments (>90%) from the groundwater samples with a continuous flow 

centrifuge (Westfalia Model KA 2-06-075) at a rotational speed of 9470 rpm, with the suspended 

sediments collected in a stainless steel bowl (Droppo et al., 2009). Fractionation of whole, 

centrifuged groundwaters has been previously described in detail (Chapter 4), utilizing an 

adapted method for the isolation of soluble organics from OSPW (Chapter 2). In brief, a 

preparative scale solid phase extraction method was employed to fractionate soluble organic 

mixtures from collected samples into three fractions, using differences in polarity. By design, the 

fractionation method isolated fractions using differences in polarity. Fractionation involved using 

a water pump (controller and motor: Cole-Palmer, rotary vane pump head: Procon Pumps) to 

direct ~180 L of feedstock flow into a glass column (10 cm ID x 30 cm height, Spectrum 
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Chromatography, Houston, TX) containing 120 g columns of ENV+ resin (hydroxylated 

polystyrene divinylbenzene; Biotage®, NC, USA). Fractionation involved two subsequent stages, 

where the resulting filtrate was stored in a 200-L HDPE barrel after each filtration. In order to 

achieve separation of organics by polarity, whole water in Stage 1 was pH-adjusted to pH 11 and 

filtered at a rate of 100 ± 10 mL/min through the preconditioned ENV+ resin contained in the 

fractionation apparatus. In Stage 2, the resulting filtrate was then acidified to pH 2 and filtered 

through a fresh batch of newly conditioned ENV+. The ENV+ resin containing trapped organics 

was removed from the column at each stage, and dried in a fume hood for 12-24 hrs. Resin from 

Stage 1 was soxhlet extracted with 3 L of ethyl acetate (fraction 1: F1) followed by a separate 

extraction with 3 L of methanol (MeOH, fraction 2: F2), while resin from Stage 2 was soxhlet 

extracted with 3 L of MeOH (fraction 3: F3). Soxhlet extractions were performed over a 12 h 

period, and solvent from each of the three isolations was filtered through sodium sulfate 4 times 

to remove any water. The result was three fractions (F1-F3) contained in 3 L each of respective 

solvent. 

 

5.3.3. Chemical Characterization 

Chemical analysis of organic fractions and whole water was performed using a suite of 

analytical instruments including liquid chromatograpy quadrupole time-of-flight mass 

spectrometry (LC-QToF) in negative-ion mode, gas chromatography tandem mass spectrometry 

(GC-MS/MS), electrospray ionization high-resolution mass spectrometry (ESI-HRMS) in 

negative-ion mode, and synchronous fluorescence spectroscopy (SFS). All instrument methods 

and parameters have been described in detail (Chapter 2; Chapter 4). Major ions were analyzed 

by chemical suppression ion chromatography, and dissolved metals (Ca, Mg, Na, K, Si) were 
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analysed by an inductively coupled argon plasma system (ICP-OES) by ECCC’s National 

Laboratory for Environmental Testing (NLET) in Burlington, ON (NLET, 2003). All other 35 

dissolved metals were analyzed by NLET using ion chromatography plasma optical emissions 

spectrometry (ICP-MS) (NLET, 2003).  

 

5.3.4. Bioassay Treatment Preparation 

Bioassays were exposed to unaltered whole groundwater (hereafter referred to as whole 

water), the three generated fractions, and a “Recombined” treatment which represented all three 

organic fractions combined. All treatments (except whole water) were subject to preparation 

prior to bioassay exposure. Because fractions represented a concentrated sample in solvent, 

dilutions were necessary to bring fractions to whole water equivalents and reduce the amount of 

solvent used in exposures to 0.1% solvent by volume. The Recombined treatment was reduced to 

0.3% solvent by volume. Treatment preparation has been previously described in detail (Chapter 

3). Briefly, an aliquot from each 3-L fraction, equivalent to 10-L of original whole water sample 

volume, had solvent removed using a rotary evaporation unit at 60°C with vacuum set to ~340 

mbar. The remaining residue was then re-dissolved into 100 mL of 10% MeOH and 90% 0.01 M 

NaOH. The 100-mL stock solution (representing 100x concentrated whole water equivalent) was 

vortexed, sonicated for 5 minutes, and stored at 4°C until further use. For bioassay fraction 

treatments, 10 mL of each stock solution were dissolved into 990 mL of control water while the 

Recombined treatment involved adding 10 mL of each fraction stock to 970 mL of control water. 

Two different solvent controls were prepared such that they contained 0.1% (Solv100) and 0.3% 

(Solv300) MeOH by volume dissolved in control water, to account for potential solvent effects 

present in fractions and the Recombined treatment, respectively.  
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5.3.5. Bioassays 

Bioassays were exposed to eight treatments: whole water, three fractions, a Recombined 

treatment, a water control, and two solvent controls. The only modification to whole 

groundwater was that it was centrifuged prior to fractionation in order to remove particulates as 

it was a concern that some may have been introduced during collection of samples. The 

“Recombined” treatment represented all three organic fractions combined. Control water varied 

slightly depending on bioassay requirements. Two separate solvent controls consisted of MeOH 

dissolved into control water at identical concentrations to that present in the isolated fractions 

(0.1% MeOH) and the Recombined treatment (0.3% MeOH). All bioassays are described in 

detail previously (Chapter 3) and herein in Appendix B (B1).  

 

5.3.6. Statistical Analysis 

Data were analyzed using R version 3.3.3 (R Core Team, 2017) and RStudio version 

1.0.136 (RStudio Team, 2016). For each site, an initial analysis comparing each endpoint across 

the relevant control groups (Control, Solvent 100, and Solvent 300) using one-way analysis of 

variance (ANOVA) tests was conducted to determine possible solvent effects present in the 

bioassay. Model assumptions were assessed via residual plots, Shapiro-Wilk’s Test, and 

Levene’s Test. Comparisons where the model assumptions appeared to have been violated were 

re-assessed after a transformation of the data. In cases where a transformation of the data still 

resulted in an apparent violation of the model assumptions, data on the original scale were re-

assessed using the non-parametric Kruskal-Wallis test. For species in which no evidence of a 

difference in the mean endpoint across control groups was found, data from all relevant control 

groups was pooled into a single group for comparison with the remaining five treatment groups.  
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All endpoints within sites were again compared with one-way ANOVA across six 

treatment groups (pooled control (where applicable), whole water, fractions F1, F2, and F3, and 

Recombined treatment), followed by Tukey’s method for pairwise comparisons when significant 

evidence (p ≤ 0.05) of a difference among treatment means was identified. Assumptions of 

normality and constant variance were assessed as before, and comparisons in which these 

assumptions were not satisfied were re-assessed either after a transformation of the data, or with 

the Kruskal-Wallis test followed by Wilcoxon-Mann-Whitney tests with a Bonferroni adjustment 

for pairwise comparisons. Additionally, each treatment was analyzed for evidence of a difference 

across the four sampled locations (DP-1, DP-2, DP-4, and DP-5) within each bioassay using the 

same approach described for analysis within sites.  

Some of the statistical analyses presented herein using parametric methods were subject to 

mild violations of the assumptions required for ANOVA tests. Specifically, H. azteca, O. latipes, 

and P. promelas at sites DP-4 and DP-5, and P. promelas at sites DP-1 and DP-2. In all cases, 

even after a transformation of the data, the assumption of normality was not satisfied according 

to Shapiro-Wilks test. However an assessment of a normal quantile-quantile plot of the model 

residuals in each analysis suggested that the violation of normality was mild. According to 

Levene’s Test, there was no evidence of a violation of the constant variance assumption in any of 

these cases. However, at each site for H. azteca, O. latipes, and DP-1 and DP-2 for P. promelas 

one treatment had no variability (all replications had the same percent hatched, either 0% or 

100%). Since ANOVA is relatively robust to mild violations of normality assumption, and 

violations of constant variance where sample sizes are identical, as was the case herein, 

parametric methods were used. Nonetheless, although we are confident in the statistical 

interpretations, the results of these analyses should be interpreted with caution. 



 121 

 

5.4. Results 

5.4.1. Pimephales promelas 

A comparison of all bioassays showed that fathead minnow (P. promelas) was among the 

most sensitive species tested (Figure 2a). The P. promelas bioassay presented a case where the 

Solv300 solvent control was significantly different from control water. Because solvent effects 

were assumed to have an effect on toxicity, only Solv100 was pooled with control water and the 

Recombined treatment was assessed separately. Because the Recombined treatments were 

significantly more toxic than the Solv300 control, the data were still presented graphically and 

discussed. 

The natural bitumen-influence site DP-1 displayed significant (p < 0.001) acute toxicity 

compared to pooled controls (control water and Solv100, hatch success 96%) for the whole water 

(hatch success 8%) and F1 treatments (3%). These two treatments displayed hatch success below 

10% and were also significantly more toxic than all other treatments (p < 0.001), but were 

statistically similar (p = 0.93) to each other. Sample DP-2 was also very toxic, displaying 100% 

mortality in the whole water treatment. Similar to DP-1, at DP-2 the whole water (hatch success 

0%), and F1 (27%) treatments were significantly (p < 0.001) more toxic than pooled controls. In 

this case, whole water and F1 were significantly different from each other (p < 0.001). At the 

OSPW-influenced site DP-4, whole water and F3 were significantly different from pooled 

controls and F1 (p < 0.001). The other OSPW-influenced site DP-5, displayed a significant 

reduction (p < 0.004) in hatch success for F1 (hatch success 32%) compared to controls and all 

other treatments. Whole water was also significantly more toxic than pooled controls, F2, and F3 

(p < 0.04), but less toxic than F1.  
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Figure 5.1. Percentage survival/viability of organisms (mean ± standard deviation) exposed to 

control water, solvent control, whole OSPW (Whole), fractions (F1-F3), and a Recombined 

treatment (Recomb, fractions F1-F3 combined). Vertebrate organisms are represented by P. 

promelas (a) and O. latipes (b). Invertebrate organisms are represented by the D. magna (c), H. 

azteca (d), and L. siliquoidea (e). The Microtox assay (f) represents a prokaryotic marine 

bacterium, V. fischeri. For the V. fischeri assay, exposure to F1-3 and the Recombined fraction 
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test solutions was 3x whole water concentration of the OSPW source. Exposure OSPW was from 

groundwater sites, DP-1 (green), DP-2 (blue), DP-4 (purple), and DP-5 (red). 

 

5.4.2. Oryzias latipes 

The Japanese medaka (O. latipes) bioassay displayed relatively low sensitivity compared to 

other bioassays (Figure 5.1b). DP-1 displayed significant (p = 0.048) acute toxicity in only the 

Recombined treatment (hatch success 73%), which differed from pooled controls (95%). At site 

DP-2, no survival was observed for F3 and the Recombined treatment, which were observed to 

be significantly different from pooled controls (p = 0.027). Only the whole water treatment 

(hatch success 77%) displayed a significant toxic effect for DP-4, and was significantly different 

from all other treatments (p ≤ 0.05). Finally, at DP-5, hatch success for the Recombined 

treatment was significantly different (80%; p ≤ 0.05) from the pooled controls as well as F1 

(100%) and F2 (100%). 

 

5.4.3. Daphnia magna 

Results for the Daphnia magna bioassay indicate that they were not very sensitive to the 

organic fractions within each site (Figure 5.1c). DP-1 whole water displayed a slightly greater 

toxicity than other treatments (survival 83%), but was not significantly different (p > 0.05) from 

the water control (98%). The whole water treatments for DP-2 (survival 23%) and DP-4 

(survival 5%) significantly reduced survival (p = 0.015 and 0.00084, respectively) compared to 

pooled controls. DP-5 displayed no toxic effects at any of the treatments. 
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5.4.4. Hyalella azteca 

The Hyalella azteca bioassay was one of the most sensitive to OSPW-influenced 

groundwaters for the organisms assessed herein (Figure 5.1d). At DP-1, data showed that whole 

water (survival 10%), F1 (0%), and Recombined (0%) treatments were not found to be 

statistically different (p > 0.05) from each other but were significantly more toxic (p = 0.003 in 

all cases) than pooled controls. Similar to DP-1, site DP-2 displayed significant acute toxicity (p 

= 0.0024 in all cases) for whole water (survival 0%), F1 (5%), Recombined (0%), and F3 (0%), 

compared to pooled controls (97%). Groundwater site DP-4 displayed acute toxicity such that the 

pooled controls and whole water were significantly different (p ≤ 0.01) from F2 (survival 77%) 

and the Recombined treatment (63%). Additionally, F3 was significantly less toxic (survival 

93%) than the Recombined treatment (p < 0.004). For DP-5, treatments F1 (survival 11%), F3 

(5%), and the Recombined treatment (0%) were significantly more toxic (p < 0.001) than whole 

water (93%), F2 (93%), and controls, but were not different from each other.  

 

5.4.5. Lampsilis siliquoidea 

Mussel (L. siliquoidea) glochidia was relatively insensitive to the organic components from 

all exposure sites (Figure 5.1e). Whole water treatments for DP-1 (viability 44%) and DP-2 (0%) 

sites were significantly more toxic than all other treatments (p < 0.001) and displayed a 

substantial reduction in L. siliquoidea glochidia viability compared to pooled controls. Whole 

water for DP-2 displayed 100% mortality, was significantly more toxic than DP-1 (p = 0.006), 

and was the most toxic treatment overall. Site DP-4 displayed no significant toxicity (p > 0.05) 

resulting from exposure to any treatments. At site DP-5 treatments F1 and Recombined were 

significantly more toxic that pooled controls (p = 0.02 and 0.01, respectively). 
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5.4.6. Vibrio fischeri (Microtox® assay) 

Bioassay method procedures for V. fischeri utilize control water as a reference level and it is 

not considered an actual treatment. Therefore, only the solvent control treatments were used as a 

control group. At 100% whole water equivalents, the Microtox® bioassay displayed no toxicity at 

any treatments across all sites (data not shown). Therefore, exposures were concentrated to 300% 

whole water equivalents in order to assess potential toxicity trends.  

At concentrated exposures V. fischeri displayed sensitivity to mainly organic components 

within sites (Figure 5.1f). DP-1 treatment exposures showed that the Recombined treatment 

(31%) was most significantly toxic overall (p < 0.001), while F1 (viability 43%) and F3 (51%) 

were significantly more toxic (p < 0.001) than all of the remaining fractions. Similarly, DP-2 

exposures showed that F1 (viability 56%), F3 (27%) and Recombined (15%) were significantly 

more toxic (p < 0.001) than all other treatments. However, F3 and the Recombined treatment 

were significantly more toxic (p < 0.001) than F1, while the Recombined treatment was 

significantly more toxic than F3 (p < 0.001), and most toxic overall. At the DP-4 site, the 

Recombined treatment (viability 75%) was significantly different (p < 0.012) from all but F3 

(90%), while F3 was more toxic than only solvent control (110%, p = 0.049) and whole water 

(120%, p = 0.01). For DP-5, whole water (viability 80%), F1 (30%), F3 (48%), and Recombined 

(12%) treatments were significantly more toxic (p < 0.001) compared to solvent controls. The 

whole water treatment was significantly less toxic (p < 0.001) than F1 and F3, which were 

significantly less toxic (p < 0.001) than the Recombined treatment. Similar to all other sites, the 

Recombined treatment was most toxic overall (p < 0.001). 
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5.4.7. Whole Water Site Comparisons 

 In order to compare the relative toxicities of each site, whole water toxicity was evaluated 

within each bioassay. In three of the six bioassays, both natural bitumen influenced sites were 

found to be significantly more toxic (p < 0.05) than at least one of the OSPW-influenced sites. 

The other three bioassays found no significant differences between groundwater sources or 

similar toxicities (p > 0.05). For the P. promelas and L. siliquiodea bioassays, natural bitumen-

influenced sites (DP-1 and DP-2) were significantly more toxic (p < 0.004) than OSPW-

influenced sites (DP-4 and DP-5. The H. azteca bioassay displayed a reduction in survival at 

both natural bitumen-influenced sites DP-1 and DP-2 that was significantly different from 

OSPW-influenced site DP-5 (p = 0.04-0.045). The D. magna bioassay displayed similar 

toxicities between natural- and OSPW-influenced sites DP-2 and DP-4, which were both 

significantly more toxic that sites DP-1 and DP-5 (p < 0.001). Finally, O. latipes displayed no 

significant differences in whole water toxicity across all sites. 

 

5.5. Discussion 

In general, fraction toxicity, and therefore site toxicity, was related to sensitivity of the 

organism assayed. P. promelas and H. azteca were the most sensitive species overall, while V. 

fischeri and L. siliquoidea appeared least sensitive. Invertebrate species D. magna and L. 

siliquoidea displayed significantly reduced survival/viability (p ≤ 0.05) to only whole waters at 

some sites indicating sensitivity to inorganic components within bitumen-influenced 

groundwater or some level of contaminant interaction. Where species displayed significant 

sensitivity (p < 0.05) to organic fractions, it was always as a result of exposure to F1 and/or F3. 

The only exceptions was for H. azteca at site DP-4, where F2 was statistically different (p < 
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0.02) from pooled controls and whole water, but similar (p > 0.3) to F1, F3, and the Recombined 

treatment. Comparison of bitumen-influenced groundwater sites indicated that those containing 

appreciable amounts of dissolved organics (DP-1, DP-2, DP-5, Table 4.1) presented similar 

toxicities to sensitive species regardless of whether the source was solely naturally-influenced or 

additionally had OSPW influence. 

 

5.5.1. Bioassay Comparison 

When toxicity data across bioassays are qualitatively compared, P. promelas and H. azteca 

were most sensitive overall (Figure 5.1). Both bioassays were particularly sensitive to the 

organic components within bitumen-influenced groundwaters. This is noteworthy because other 

bioassays such as L. siliquoidea and D. magna were relatively insensitive to the organic 

fractions, but showed some significant sensitivity to the whole water treatments. Previous studies 

which exposed multiple organisms to OSPW or commercial NAs validated our observations that 

P. promelas was the most sensitive species when compared to aquatic invertebrates (including D. 

magna) (Swigert et al., 2015; Kinley et al., 2016; Bartlett et al., 2017; McQueen et al., 2017). In 

fact, much of the relative species sensitivities remain consistent across these studies when 

compared to results herein. Similar to our observations, H. azteca were observed to display 

sensitivity to OSPW that was similar to P. promelas (Kinley et al., 2016), while H. azteca were 

also found to be more sensitive to AEO than Lampsilis cardium (freshwater mussel) and V. 

fischeri (Bartlett et al., 2017). With respect to relative species sensitivities, it was found that 

sensitivity ranked: fish ≥ aquatic invertebrates > macrophytes, when exposed to OSPW (Kinley 

et al., 2016; McQueen et al., 2017). More specifically with exposure to commercial NA, 

sensitivity ranked: P. promelas > Ceriodaphnia dubia > H. azteca > Chironomus dilutus > Typha 
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latifolia (Kinley et al., 2016). In the present study it is difficult to assign general species 

sensitivities as the study design emphasized toxicity due to organic components, and therefore 

whole water toxicity was assessed as a single concentration (100%) parameter. Although no 

median lethal concentrations (LC50) were derived, an average response to whole water treatment 

across all bitumen-influenced groundwater sites provides simple insight into relative species 

responses. With respect to unaltered groundwater samples across all sites species sensitivities 

were such that P. promelas, H. azteca, D. magna, and L. siliquiodea displayed the greatest 

sensitivies to whole waters (Figure 5.2). With respect to only the organic components across 

sites, represented by the Recombined treatement, general species sensitivities were observed 

such that P. promelas, O. latipes, and H. azteca displayed the greatest sensitivities (Figure 5.2). 

Although this represents a simplistic analysis and there is a high degree of variability, P. 

promelas and H. azteca remain similar and considerably more sensitive than V. fischeri. It is 

interesting to note that the overall sensitivities changed when only organics were being 

compared. This disparity is likely due to the diversity of sensitivities that individual species 

possess to organic versus inorganic compound classes, a point that is discussed later.  

Although at 1x environmentally equivalent concentrations V. fischeri displayed no acute 

toxicity, the Microtox® bioassay may still be useful as a screening tool to assess organic 

fractions. When treatments were exposed at 3x environmental concentrations, considerable 

toxicity was observed, and for those bioassays that displayed sensitivity to organic components 

(P. promelas and H. azteca), V. fischeri displayed comparable relative sensitivities. This is 

exemplified by the relative insensitivity to F2, and the relative significantly high toxicities for F1 

and F3 exposures at sites DP-2, DP-4, and DP-5. Ideally, the Microtox® assay could be used as a 

screening tool for OSPW-influenced waters known to contain organic contaminants, but for 
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which quantitative analysis has not been performed. Because it is a cost-effective, rapid 

assessment with minor sample material requirements, the Microtox assay can be utilized as a 

tool to direct further toxicological analyses. Nonetheless, caution is necessary when interpreting 

results from the Microtox® bioassay, even when used as a screening tool, as the results are upon 

concentration of sample material, and its utility for whole OSPW is unproven.  

  

 

 

Figure 5.2. Mean (± standard deviation) survival/viability of organisms exposed to whole water 

(blue) and Recombined treatments (orange) from all sample sites combined.  

 

 

5.5.2. Toxicity of Organics 

A comparison of toxicity from all bioassays across sites revealed that P. promelas and H. 

azteca were particularly sensitive to organic components within groundwaters. Both organisms 

displayed significant (p < 0.001) acute toxicity to F1 exposures at sites DP-1, DP-2, and DP-5 
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(Figure 5.1a, d) compared to controls. H. azteca additionally displayed toxicity to F3 at DP-2 and 

DP-5 and F2 at DP-4, while P. promelas displayed toxicity to F3 at DP-4, compared to controls. 

At each site where fraction toxicity was observed, the Recombined treatment also displayed 

toxicity. Although P. promelas appeared to have solvent affects associated with Solv300, the 

Recombined treatment was consistently more toxic than Solv300 (p < 0.03). Like the 

Recombined treatment, at each site where fraction toxicity was observed, whole water toxicity 

was also observed. Therefore, it appears that the main drivers of whole water toxicity were 

present in F1 and F3, for those organisms sensitive to the organic components. 

The relative toxicity of the organic fractions can be explained primarily by the 

concentrations of dissolved organics. Unsurprisingly, the most consistently toxic fraction F1 

always contained the highest dissolved organics concentration (>10 mg/L) at sites where toxicity 

was observed (Table 4.1). Conversely, the dissolved organics concentration for F2 was < 2 mg/L 

across all sites and showed significant (p ≤ 0.05) toxicity to only H. azteca at DP-4. With respect 

to F3, at site DP-2 where the dissolved organic concentration was 6.2 mg/L (highest across sites), 

significant toxicity to O. latipes and H. azteca was observed.  

There were some notable exceptions to this association between dissolved organic 

concentration, such that toxicity was observed in organic fractions which displayed relatively 

low concentrations. It is possible that aquatic species are differentially sensitive to certain 

organic ion classes relative to others. With respect to F3, toxicity was observed at DP-2 for H. 

azteca and O. latipes, and DP-5 for H. azteca and (Figure 5.1b, d). At both DP-2 and DP-5, the 

concentrations of dissolved organics for F3 were 6.2 mg/L and 1.1 mg/L, respectively, but 

contributed > 95% mortality (Table 4.1). Additionally, although dissolved organic concentration 

at DP-4 was below instrumental detection limits, exposure to P. promelas resulted in 30% 
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mortality for F3 (Figure 5.1a). In comparison, at the same sites F1 had higher dissolved organics 

concentrations of >17 mg/L and contributed lower mortality (95 – 13%) to both organisms. The 

analysis of ion class distribution generated previously for F3 (Chapter 4, SI #2) indicated a 

predominance of O4 ions (65.1%) at site DP-2, and predominance of O4 and ≥O5 ions (38.4% and 

33.6%, respectively) at site DP-5. These data suggest that H. azteca and O. latipes may be more 

sensitive to polyoxygenated organic constituents present in F3.  

With respect to P. promelas, at three of the four sites tested (DP-1, DP-2, and DP-5), F1 

displayed significant toxicity, and lower sensitivity to polyoxygenated ions present in F2 and F3. 

According to ESI-HRMS class distribution data, F1 for sites DP-2 and DP-5 contained 

predominantly O2 ions (64.6% and 63.8%, respectively) (SI #2). As has been previously outlined 

(Chapter 2, Chapter 4), classical NAs (O2 ions) are predominantly present in F1, and F3 is 

predominantly polyoxygenated compounds. This is particularly noteworthy as research has 

implicated O2 class organics (containing NA) as principal drivers of toxicity in OSPW (Allen, 

2008; Brown and Ulrich, 2015). The relative sensitivity by P. promelas to O2 organic 

compounds (including classical NA), and insensitivity to polyoxygenated compounds, is 

paralleled by a previous study which assessed dissolved organic fractions to P. promelas, but 

used a slightly different fractionation method (Morandi et al., 2015). In general, the toxicity of 

F1 to P. promelas may be a result of the relatively higher concentration of organics in this 

fraction, as discussed earlier, as well as a greater sensitivity to the O2 ion class present. 

The breadth of these data suggest, first, that in order to confer measureable toxicity, 

dissolved organics concentrations likely must be greater than some threshold level. In most cases 

the organic acid concentrations above 8 mg/L resulted in significant toxicity to P. promelas and 

H. azteca. Second, the data suggest that this threshold may be governed by organic acid ion 
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classes present in OSPW. Specifically, waters containing a greater proportion of polyoxygenated 

compounds may have a lower threshold concentration, depending on the species assayed. In 

other words, although classical NAs (O2 ions) may be driving toxicity, due to their greater 

abundance in some bitumen-influenced groundwaters, polyoxygenated ions (>O2) appear to 

present considerable potencies to other species or at different sites. 

 

 

 

Table 4.1. Concentration of acid-extractable organics in fractions and filtrate of groundwater 

sites determined by LC-QToF/MS. Values represent concentrations present in original volumes 

of respective water samples. 

  Dissolved Organics (mg/L) 

  DP-1 DP-2 DP-4 DP-5 

Whole 1.6 5.9 BDL 9.5 

F1 10.5 17.1 0.1 34.0 

F2 0.5 1.1 BDL 0.1 

F3 1.7 6.2 BDL 1.1 

Filtrate BDL BDL BDL BDL 

BDL = below detection limit (0.05 mg/L) 
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Table 4.2. Water quality parameters for unaltered groundwaters. Presented as total dissolved 

metals and major ions determined by ICP-MS. Elements measured but not present were below 

detection limit at all sites: Be, Bi, Ce, Ga, La, Nb, Pt, Se, Ti, and Y. 

  DP-1 DP-2 DP-4 DP-5 

Hardness      

(mg/L CaCO3
a) 

499.4 129 541.7 173.2 

Metals / 

Major Ions 
µg/L 

Aluminum 1.4 BDL 4.7 43.8 

Antimony 0.074 0.142 0.171 0.07 

Arsenic 0.23 1 0.82 1.13 

Barium 26.1 1120 78.3 33.6 

Boron 1520 7030 133 1370 

Cadmium 0.007 BDL 0.018 0.312 

Cesium 0.028 0.122 0.102 0.038 

Chromium 0.66 1.82 0.91 0.71 

Cobalt 0.332 0.502 2.17 1.07 

Copper 4.16* 17.1* 27.2* 4.41* 

Iron 3 27.1 16.9 8.6 

Lead 0.144 0.434 0.319 0.911 

Lithium 252 665 36.7 119 

Manganese 22.9 2.65 89.7 9.65 

Molybdenum 1.19 0.481 2.7 4.94 

Nickel 2.9 2.53 16.1 3.31 

Rubidium 3.07 9.59 3.04 3.24 

Silver 0.034 0.172 0.352 0.048 

Strontium 1020 1680 1040 395 

Thallium 0.001 0.161 0.005 0.001 

Tin 0.119 BDL 0.273 0.182 

Tungsten 0.013 0.101 0.022 0.022 

Uranium 0.356 0.159 11.3 0.56 

Vanadium 0.2 1.86 0.23 0.14 

Zinc 0.7 BDL 1.9 0.6 

  mg/L 

Calcium 120 9.03 64.5 17.1 

Chloride 93.8 999.0* 4.51 15.2 

Fluoride 0.23 0.64 0.06 1.59 

Magnesium 48.3 25.4 92.2 31.6 

Potassium 8.24 16 5.68 9.8 

Silica 18.7 13.2 26.3 25 

Sodium 185 2290 26.4 222 

Sulfate 303 3.39 85.1 18.8 
a Calculated based on concentrations of Ca, Mg, Fe, Sr, and Mn. 

* indicates exceedance of CCME and USEPA water quality guidelines 

BDL = Below detection limit 
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5.5.3. Toxicity of Whole Water 

Although inorganic toxicity was not specifically evaluated, it is reasonable to attribute the 

whole water toxicity to the contaminant mixture and possibly inorganics in some cases. 

Specifically, the invertebrates D. magna and L. siliquoidea exhibited >50% mortality to whole 

water treatments, where <10% survival was observed in all organic treatments (DP-2 / DP-4 and 

DP-1 / DP-2, respectively) (Figure 5.1c, e). Research has identified that D. magna possesses a 

greater sensitivity to cationic metals than fish (McQueen et al., 2017), while freshwater mussels 

have displayed heightened sensitivity to inorganic contaminants (Gillis et al., 2008; Gillis et al., 

2011). The only inorganics that exceeded Canadian Council of Ministers of the Environment 

(CCME) or United States Environmental Protection Agency (USEPA) freshwater quality 

thresholds (CCME, 2017; USEPA, 2004) were copper (Cu) at all of the groundwater sites and Cl 

at site DP-2 (Tables 4.2). Therefore, understating that toxicity is likely a result of the whole 

mixture, contributions by individual inorganics warrant further discussion with respect to L. 

siliquiodea and D. magna. 

In a number of studies that have assessed metals toxicity to various species of freshwater 

unionid mussels (family Unionidae), EC50s derived for B, Cd, Cr, Ni, Pb, and Zn (Hansten et al., 

1996; Milam et al., 2005; Wang et al., 2010, 2017; Soucek et al., 2011; Liu et al., 2016) were all 

greater than water concentrations observed in the present study. Specifically, for L. siliquiodea, 

EC50s were 137 mg B/L, >227 µg Cd/L, 266 µg Cr/L, 506 µg Ni/L, >299 µg Pb/L, 576 and 2,685 

µg Zn/L (Milam et al., 2005; Wang et al., 2010, 2017; Soucek et al., 2011). Additionally, 

although Cu exceeded CCME freshwater thresholds (2 - 4 µg Cu/L at 50-600 mg/L CaCO3 water 

hardness; CCME, 2017) at all sites, we did not expect it to contribute greatly to whole water 

toxicity to L. siliquiodea. Studies which have assessed the toxicity of Cu to L. siliquoidea 
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observed EC50s in the range of 36.1 – 130 µg/L (Milam et al., 2005; Gillis et al., 2008; Wang et 

al., 2017), while the highest Cu concentration in our study was 27.2 µg/L in site DP-4, which did 

not display whole water toxicity. Based on CCME and USEPA water quality thresholds as well 

as observations from the previous studies, contribution from individual metals to whole water 

toxicity to L. siliquiodea was likely minor. This suggests that the toxicity observed in sites DP-1 

and DP-2 may be a result of contributions from other contaminants such as major ions. In 

particular, Na+ and Cl- concentrations were highest in site DP-2, while DP-1 contained the 

second highest Cl- concentrations compared to the other groundwater sites. Moreover, at site DP-

2 (999 mg Cl/L), Cl- exceeded CCME and USEPA water quality thresholds (640 and 860 mg/L, 

respectively; CCME, 2017; USEPA, 2004). However, research assessing Cl- exposure to L. 

siliquiodea has observed EC50s in the range of 1430 – 1962 mg/L, which is higher than 

concentrations observed at both DP-1 and DP-2. Collectively, these data suggest that inorganic 

contaminants such as Cu and Cl- may not be present in sufficient concentrations to individually 

affect L. siliquiodea viability, but that toxicity is likely a result of the combined inorganic 

mixture present in whole water. 

The invertebrate D. magna displayed significant mortalities (p = 0.015 and 0.00084, 

respectively) for only whole water at sites DP-2 and DP-4 (Figure 5.1). Literature has identified 

LC50 concentrations for D. magna exposed to various inorganic elements including Al, As, Ba, 

Co, Cd, Fe, K, Mg, Mn, Ni, Pb, Sn, SO4, Sr, and Zn (Biesinger and Christensen, 1972; 

Gostomski, 1990; Yim et al., 2006; Davies and Hall, 2007; Traudt et al., 2017), which were 

higher than concentrations present in the whole waters herein. However, previous investigations 

exposed D. magna neonates to Cu and recorded LC50s of 9.8 µg/L (45 mg/L CaCO3 hardness) 

(Biesinger and Christensen, 1972) and 12 µg/L (150 mg/L CaCO3 hardness) (Yim et al., 2006), 
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which are very similar to CCME water quality thresholds (2 - 4 µg Cu/L at 50-600 mg/L CaCO3 

water hardness; CCME, 2017). Moreover, in whole water treatments for sites DP-2 and DP-4, 

where Cu concentrations were highest (17.1 µg /L and 27.2 µg/L, respectively) compared to 

other sites, D. magna exhibited 23% and 5% survival, suggesting a substantial influence to 

whole water toxicity by Cu. It is unclear whether the relatively high ion concentrations in DP-2 

(2290 mg Na/L, 999 mg Cl/L) contributed to D. magna mortality at that site, as mortality was 

much greater in DP-4 which displayed the lowest Cl, F, K, and Na concentrations compared to 

other sites. If we use NaCl as an example for salt content, the sites DP-2 and DP-4 would contain 

1637.7 mg/L and 7.4 mg/L, respectively (assuming NaCl composition: ~39% Na and ~61% Cl, 

and complete binding of Na and Cl). In comparison to literature which observed D. magna LC50 

for NaCl in the range of 2182.4 - 6034 mg/L (Cowgill and Milazzo, 1991; Lilius et al., 1995), it 

is unlikely that these ions contributed substantially to whole water toxicity. Therefore, 

considering the likelihood of Cu toxicity, and that both sites where whole water toxicity was 

observed typically contained the highest concentrations of metals, it possible that D. magna 

toxicity was a result of the combined metals mixture.  

It is important to note that the observed toxicity of whole waters was undoubtedly a result of 

contaminant mixtures and cannot be solely attributed to a specific chemical or chemical class. As 

such, sensitivities of L. siliquiodea and D. magna to inorganic components in OSPW warrants 

further investigation.  

 

5.5.4. Groundwater Sites 

One of the main objectives of the present study was to compare the toxicity of OSPW-

influenced groundwaters to natural bitumen-influenced groundwaters (Figure 4.1). Sites DP-4 
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and DP-5 represent the OSPW-influenced groundwaters and were chosen because they were 

previously documented to have received inflow indicative of oil sands tailings seepage (Frank et 

al., 2014; Frank et al., 2018). Conversely, DP-1 and DP-2 represent natural bitumen-influenced 

groundwaters and were chosen as sites within the natural Athabasca bitumen deposit but situated 

far outside of operation lease sites and having no industrial influence (Frank et al., 2014; Frank et 

al., 2018). However, more recent data revealed that at the time of collection site DP-4 was not in 

the path of the tailings pond seepage plume. As was discussed earlier, site toxicity differed 

between species and was dependent on contaminant type and concentration.  

Comparison of sites showed some variability, but natural-bitumen influenced sites generally 

displayed greater whole water toxicities compared to OSPW-influenced sites. It is important to 

re-iterate that more recent chemistry data revealed that site DP-4 did not appear to contain any 

bitumen influence from any source (Chapter 4) and, therefore, toxicity at this site should be 

interpreted with caution. When comparing only whole water toxicities across sites, within 

bioassays, three out of six bioassays (P. promelas, H. azteca, L. siliquiodea) found both natural 

bitumen-influenced sites (DP-1 and DP-2) to be significantly more toxic (p < 0.05) than either 

both OSPW-influenced sites DP-4 and DP-5 or only DP-5 (no sites significantly different from 

only DP-4). The other three bioassays (O. latipes, D. magna, V. fischeri) found no significant 

differences between groundwater sources or similar toxicities (p > 0.05) between sources. The 

only exception was the Microtox® assay, in which a significant difference was found between 

sites previously identified as having OSPW-influence. More broadly, when all treatments were 

observed, natural bitumen-influence site DP-2 appeared to be most consistently toxic as it 

displayed toxicity in at least one treatment to all bioassays. The organic constituents of F1 and 

F3 appeared to be at concentrations (17.1 mg/L and 6.2 mg/L, respectively) sufficient to cause 
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significant toxicity to P. promelas, O. latipes, and H. azteca at DP-2. Likewise, DP-2 whole 

water appeared to possess inorganics at quantities capable of causing significant toxicities to L. 

siliquoidea and D. magna. In all but O. latipes, DP-2 whole water toxicity was significantly (p < 

0.05) greater than control water regardless of which chemical class may have been driving 

toxicity.  

Some tests suggested that constituents present in whole water may elicit protective effects to 

those organisms sensitive to dissolved organics, due to contaminant interactions. OSPW-

influenced site DP-5 presented toxicities to those organisms sensitive to organic contaminants 

(P. promelas, O. latipes, and H. azteca), but in all cases whole water toxicity was less than that 

caused by organic fractions. This suggests that DP-5 whole water constituents buffered the toxic 

effects of organic components to some organisms. This was also observed for O. latipes at site 

DP-2, where high survival rates in whole water (77%) were observed while organic treatments 

(F1 and Recombined) elicited 100% mortality (Figure 5.1b). Literature assessing the interaction 

of salts with AEO have reported a general reduction in bioavailability with increasing salt 

content (Headley et al., 2011a). Specifically, high salt concentrations have been shown to alter 

the proportions of AEO species through salting-out effects, resulting in a general enhancement of 

2-ring species proportions and a loss in 4 – 7-ring species (Headley et al., 2011a) and relative 

reduction in O3 species (Headley et al., 2012). This AEO proportional shift and salting-out of 

organics may be responsible for the reduction in toxicity of DP-2 and DP-5 whole water as they 

contained the highest Na+ content across sites.  

Site DP-4 displayed low toxicity overall, which was not surprising given that it contained 

very low concentrations of dissolved organics (Table 4.1). Moreover, according to chemical 

analyses performed previously, ESI-HRMS, LC-QToF/MS, GC-MS/MS, and SFS indicated little 
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to no evidence of OSPW or natural bitumen influence due to dissolved organics at this site 

(Chapter 4). In fact, more recent data revealed that at the time of collection site DP-4 was not in 

the path of the tailings pond seepage plume. Although some bioassays indicated toxicity in the 

whole water treatment at DP-4, only P. promelas (F3), H. azteca (F2) displayed toxicity due to 

organic treatments at whole water equivalents (Figure 5.1). Thus, the toxicity data observed 

herein is largely in agreement with the chemistry data observed previously (Chapter 4). 

In summary, these data propose that both OSPW-influenced and natural bitumen-influenced 

groundwaters are highly toxic if they possess high concentrations of dissolved organics, metals 

and salts, individually or in combination. Furthermore, in some cases natural bitumen-influenced 

groundwaters were more toxic than those groundwaters influenced by oil sands tailings pond 

seepage. In another case, the low toxicity observed for DP-4 may indicate that when OSPW-

influenced groundwaters are no longer influenced by tailings seepage, it may result in a 

reduction in toxicity. It is important to remember that groundwaters represent contaminant 

mixtures which can possess varied compound interactions. As was the case herein, toxicity as a 

result of dissolved organics may be reduced in whole water exposures due to interactions with 

inorganic components. Bitumen-influenced groundwater chemistry appears to be affected by 

contaminant interactions, and therefore, toxicity is contingent on location, regardless of parent 

source. 

It is important to note that results derived herein were based on assessments of only 4 

samples total, of which two were known to be influenced by only natural bitumen (DP-1 and DP-

2), one was influenced by both natural bitumen and OSPW (DP-5), and one appeared to contain 

neither natural bitumen nor OSPW (DP-4). The low dissolved organic nature of DP-4 chemically 

(Chapter 4) was also observed toxicologically in the present chapter. It is, therefore, 
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recommended that more work is necessary to compare natural and OSPW influenced 

groundwater toxicity. 

 

5.6. Conclusions 

This study utilized dissolved organic fractions (Chapter 4), generated according to a 

previously developed fractionation procedure (Chapter 2), to assess the potential drivers of 

toxicity in oil sands bitumen-influenced groundwaters. Groundwater sites were chosen to 

evaluate the potential influence of OSPW-derived constituents and to compare toxic outcomes to 

those observed from natural bitumen-derived constituents. Whole water and organic fractions 

were exposed to a suite of bioassays to compare relative species sensitivities.  

Results from these exposures indicate that species sensitivities are quite varied, and as such, 

so are likely the drivers of toxicity. Some species were more sensitive to organics while others 

appeared more sensitive to inorganics, even within contaminant types drivers of toxicity varied. 

While P. promelas appeared most consistently sensitive to O2 class organic compounds and O. 

latipes was sensitive to polyoxygenated (>O2) organic compounds, H. azteca displayed 

sensitivity to all ion classes. For those organisms sensitive to whole water treatments, D. magna 

and L. siliquoidea appeared to be particularly sensitive to inorganic elements. It was evident that 

toxicity was dependent on contaminant concentration, but thresholds were difficult to determine 

for whole waters which contained chemical mixtures that were quite variable. Nonetheless, there 

is evidence to suggest that inorganic constituents present in whole bitumen-influenced 

groundwaters (ie. DP-2 and DP-5) have the ability to ameliorate toxicity associated with organic 

constituents. A general comparison of groundwater sites, containing OSPW-derived constituents 

vs. natural bitumen-derived constituents, revealed that whole water toxicities were quite variable. 



 141 

 

Overall, natural bitumen-influenced sites were more consistently toxic than DP-5, which was 

observed to have been influence by both OSPW and natural bitumen sources. Therefore, it is 

possible that toxicity associated with tailings seepage into groundwater is mitigated by chemical 

changes as a result of soil composition. Through processes such as salting-out of organics, metal 

ion exchange, and contaminant sorption to organics and clays, tailings seepage can more closely 

resemble natural groundwaters flowing through the McMurray Formation of oil sand the further 

it migrates from the source. These findings should be taken into account with respect to tailings 

pond construction material, design, location, seepage reclamation, and tailings pond 

decommissioning. The variability in species sensitivities should be further investigated as it will 

aid in developing thresholds for the protection of aquatic life in the oil sands region.  
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Chapter 6. Environmental Risk Assessment of Oil Sands Acid-Extractable 

Organics in Tailings Waters to Aquatic Organisms 
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6.1. Overview 

The Canadian oil sands region in northern Alberta contains one of the largest petroleum 

deposits worldwide. Oil sands industry operators in this region have generated vast amounts of 

tailings waste, termed oil sands process-affected water (OSPW), from surface mining of 

bitumen. The toxicity within OSPW tailings waters has been primarily attributed to water-

soluble acid-extractable organics (AEO). A comprehensive review of oil sands toxicity literature 

was conducted to identify comparable articles relating to the acute toxicity of acid-extractable 

organics (AEO) exposure to aquatic organisms. Selection criteria aimed to incorporate only 

articles in which AEO were extracted from fresh tailings ponds and exposed by comparable 

means. The evaluated articles contained individual assessments of 11 different organisms 

including; V. fischeri, H. azteca, D. magna, L. stagnalis, L. cardium, P. promelas, D. rario, O. 

latipes, S. vitreus, P. flavascens, and O. mykiss. From the data obtained, a species sensitivity 

distribution was generated which revealed that, with the exception of O. latipes, fish species 

were generally more sensitive to AEO than invertebrates. The most sensitive species overall was 

P. flavascens while the least sensitive was L. cardium. It was found that a high hazard quotient of 

61.2 (where >1 suggests possible risk) was associated with toxicity to aquatic organisms exposed 

to AEO at measured tailings pond concentrations. However this hazard only exists in a scenario 

where tailings containments were immediately connected to surface waters or a tailings dyke 

breach. A probabilistic approach revealed that the 90th centile for AEO exposure was 87.1 mg/L, 

which is a predicted concentration present in 10 percent of tailings environments. Predicted 

concentrations protective of 90 percent (10th centile) of fish and invertebrates were 19.6 mg/L 

and 5.5 mg/L, respectively. Furthermore, a joint probability curve predicted that the probability 

of exceeding the 10th centile for fish and invertebrates was 100% and 97.7%, respectively. In the 
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case of fish species, the Area Under the Curve was 43.7, while 73.2 for invertebrates. Aggregate 

data all strongly suggest low survivability for aquatic organisms exposed to AEO from fresh 

tailings. The presence of low levels of natural bituminous input into surface waters in the region 

has likely resulted in some tolerance to AEO by organisms indigenous to the oil sands region. 

Therefore, sensitivities observed for lab-reared organisms potentially overestimate the level of 

risk posed to native taxa. Nonetheless, the high predicted risk stresses the need for monitoring in 

this region. Monitoring should account for current anthropogenic AEO input from tailings 

seepage, and its effect on particularly sensitive fish species. For future efforts regarding tailings 

reclamation strategies, monitoring should account for changes in AEO concentration over time. 

In particular, reclamation efforts need to account for the time-dependent reduction of risk 

associated with biodegradation of anthropogenic AEO, and interaction with naturally-derived 

AEO. 

 

6.2. Introduction 

The Canadian oil sands region in northern Alberta contains one of the largest petroleum 

deposits worldwide. Oil sands industry operators in this region produce an estimated 2.37 million 

barrels of crude oil per day (Canadian Association of Petroleum Producers, 2016). In order for 

oil sand to be upgraded to a marketable product it is first extracted from underlying substrate and 

in surface mining procedures bitumen is separated from sand using the Clark hot water extraction 

method. This process produces large quantities of waste tailings and oil sands process-affected 

water (OSPW). The extraction of the mineable bitumen has increased significantly in the last 4 

decades (Royal Society of Canada Expert Panel, 2010) and as a result, the volume of associated 

OSPW in containments has also increased. OSPW has displayed considerable acute toxicity to a 
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variety of aquatic biota (Clemente and Fedorak, 2005; Brown and Ulrich, 2015). The Alberta 

government’s Environment Protection and Enhancement Act, prohibits the release of substances 

that may cause adverse effects to the environment and requires that Crown-leased land must be 

reclaimed (Government of Alberta, 2017, FTFC, 1995a). Industry has complied with this 

requirement by using the bitumen-depleted open pits from surface mining as storage reservoirs 

for OSPW termed tailings ponds.  

Tailings pond OSPW can be defined as any water that has been subject to industrial 

processes including extraction, separation, upgrading, etc. OSPW contains a variety of toxic 

organic and inorganic components. Specifically, these are concentrated metals, major ions (i.e. 

Na, Cl, SO4, CO3), neutral organics (i.e. polycyclic aromatic hydrocarbons: PAHs), and polar 

organic acids (Allen, 2008). High salinities present in tailings are largely a result of the caustic 

hot water solutions (sodium hydroxide) employed during extraction and separation of bitumen 

(FTFC, 1995a), which can be exacerbated with industrial water recycling. Much of the tailings 

contaminants is present in the natural bitumen ore, but those present in tailings ponds are 

enriched from what is present naturally. For example, polar organic NAs make up roughly 2% of 

bitumen by weight, but comprise up to 50% of acid extractable organics (AEO) within tailings 

(Brown and Ulrich, 2015). The most toxic component within OSPW tailings waters has been 

attributed to be the water-soluble acid-extractable organics (AEO) (Brown and Ulrich, 2015). A 

well-studied subgroup of AEO called naphthenic acids (NA) have been historically identified as 

the primary drivers of toxicity (Allen, 2008; Brown and Ulrich, 2015). Toxic effects in a variety 

of aquatic species exposed to OSPW have been observed at between 8 mg/L to 65 mg/L NA 

concentration for various endpoints (Kinley et al., 2016). However, more recent findings have 

noted toxicity can be attributed to the suite of AEO present in OSPW and not simply classical 
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NA (O2-containing compounds) but also polyoxygenated compounds (O2+) (Grewer et al., 2010; 

Bauer et al., 2017; Li et al., 2017). Moreover, AEO have been shown to possess additional 

heteroatomic species, including sulfur and nitrogen, as well as aromatic rings (Grewer et al., 

2010; Rowland et al., 2011b; Bauer et al., 2015), further expanding their chemistry beyond 

classical NA-like structures.  

Investigations involving characterization of polar organics have described these organics 

using terms including naphthenic acids (NA), naphthenic acid fraction components (NAFC), 

naphthenic acid extracts (NAE), the OSPW organic fraction (OSPW-OF), the acid extractable 

fraction (AEF), and acid extractable organics (AEO), among others. The abundance of terms is 

primarily due to the lack of knowledge regarding the compositions of the organics present. Many 

of these terms are derived from the fact that analytical methods can only confidently identify 

classical NA in solution (NAFC, NAE). These analyses, therefore, only regard organics in 

narrow terms and in relation to NA. Others define organics with regard to extraction method 

(AEF, AEO), recognising that current extraction methodologies capture a broad suite of 

dissolved organics irrespective of analytical capabilities. Considering that most oil sands organic 

extraction methods incorporate an acid-precipitation step, it is reasonable to group all of these 

terms under “AEO”. Therefore, all reference to dissolved organics which have been extracted 

from oil sands waters will be referred to herein as AEO. 

 

6.2.1. Objectives 

There is currently no meta-evaluation, or risk assessment, of toxicity associated with oil 

sands dissolved organics. There are a number of factors why this is the case. These include the 

inconsistent definition of the chemical mixtures that comprise OSPW, a lack of methodological 
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standardization for extraction and analysis of AEO, a poor understanding of AEO compositions, 

and the absence of chemical standards for instrument calibration. The result is a high degree of 

variability in reported AEO compositions and toxicological responses between studies using 

dissimilar methodologies (Grewer et al., 2010).Comparisons between studies are further 

compounded by the variability in the chemical profiles themselves between OSPW sources and 

the inherent sensitivities of the organisms assayed (Frank et al., 2014; Marentette et al., 2015a; 

Frank et al., 2016; Bartlett et al., 2017; Chapter 5). 

To address this gap, the focus of the present risk assessment is to evaluate current literature 

regarding the acute toxicity of industrially derived oil sands AEO. In particular, the aim is to 

provide a prediction of risk associated with exposure and effects concentrations derived from 

studies reported in the literature. This will be achieved by comparison of exposure and effects 

cumulative distributions. 

 

6.3. Methods 

6.3.1. Exposure Assessment 

A literature search was conducted in order to obtain environmental exposure data for oil 

sands tailings ponds constituents. Specifically, AEO and NA concentrations from fresh tailings 

were compiled from a broad search using University of Waterloo Library (Primo) and Web of 

Science online databases. This was accomplished using keyword combinations including “oil 

sands”, “OSPW”, “naphthenic acid”, and “acid extractable organics”. Publications were screened 

such that those reporting concentrations from active tailings ponds (at the time of collection) 

were accepted. As such, AEO concentrations from groundwaters, seepage dykes/ponds, 

experimental ponds, and natural waters were excluded. These criteria were necessary in order to 
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compare environmental exposures to the observed effects from only AEO extracts from fresh 

OSPW (in a separate literature review) described below. It is important to note that extraction 

and quantitation of AEO incorporated a variety of methods, of which their disparities are 

contrasted in greater detail below. Nonetheless, in order to provide a comprehensive dataset, all 

data reporting concentrations of dissolved organics which were derived through acid extraction 

(“NA”, “AEO”, “AEF”, etc.) were included.  

  

6.3.2. Effects Assessment 

6.3.2.1. Literature Review 

In order to compile the breadth of literature regarding oil sands dissolved organics the 

University of Waterloo Library (Primo) and Web of Science online databases were used. 

Searches were conducted using keyword combinations including “oil sands”, “OSPW”, 

“naphthenic acid”, “acid extractable organics”, “naphthenic acid fraction components”, 

“naphthenic acid extract”, “acid extractable fraction”, “organic acid”, “dissolved organics”, or 

“toxicity”. Of the articles returned, those selected were studies which involved aquatic toxicity 

assessments where dissolved organic measurements were made. It was important to recognize 

that tailings treatment studies (biodegradation, UV/Gamma irradiation, activated carbon 

adsorption, chemical oxidation, etc.) and chemical characterization studies occasionally 

incorporate toxicity assays. As a result, a pool of 123 articles were selected for a Tier 1 

assessment. 
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Figure 6.1. Article screening tiers and their exclusion parameters 

 

 

6.3.2.2. Tier 1 Selection Criteria 

The goal of this first tier screening was to arrive at a list of studies that assessed 

anthropogenic AEO exposure to aquatic organisms in the lab. The pool of 123 articles were 

further screened based on parameters including:  

1) exposure location: lab 

2) source material: AEO 

3) extraction/fractionation methods: acid extraction 
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First, exposure type was assessed, and all studies carried out in the field were omitted. The 

justification for this screening parameter was twofold: i) no concentration-response design can be 

incorporated (therefore, no EC50 derived), and ii) the potential for confounding abiotic factors 

relating to toxicity exist. The source of original oil sands material was important for assessing 

anthropogenic impact, and data assessing oil sands organic extracts generated from natural 

waters were excluded. Additionally, many other studies used commercial NA mixtures 

(Merichem, Acros, Fluka, Kodak) as surrogates for oil sands bitumen-derived acids, likely due to 

the difficulty in acquiring an OSPW sample and then generating an extract. Ample research has 

identified the drawbacks of using commercial NAs that are chemically and toxicologically 

distinct from oil sands-derived NAs. Not only do commercial mixtures approximate only a 

subset of dissolved organics within tailings, but they also exhibit less complexity (Bataineh et al., 

2006; Smith et al., 2008; Grewer et al., 2010; Rowland et al., 2011b; Brown and Ulrich, 2015) 

and greater toxicities (Lai et al., 1996; Marentette et al., 2015a; Bartlett et al., 2017). As a result, 

all data from studies using commercial NA mixtures were excluded. Finally, there are 

extraction/fractionation methods for isolation of organics from OSPW including; liquid-liquid 

extraction, centrifugation, solid-phase extraction, and liquid chromatography, with combinations 

and variations among these. The sample source, sample preparation, extraction methodology, 

and procedural order all contribute to the composition of the final extract. Although extraction 

method comparison would likely yield AEO proportional differences, no standard method has 

been adopted by researchers. Data were, therefore, selected based simply on whether the exposed 

treatment involved an acidification step (pH~2) prior to extraction/fractionation. This selection 

criteria resulted in retaining only toxicological literature that exposed oil sands industry-derived 

AEO to aquatic organisms in lab. 
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6.3.2.3. Tier 2 Selection Criteria 

The first level of screening, outlined above, identified 49 articles as candidates for the second 

tier of screening which focussed on comparability between studies. The secondary screening was 

more stringent than the first and assessed the following parameters:  

1) source water age: fresh 

2) treatment type: unfractionated AEO 

3) exposure method: whole organism, aqueous 

4) measured endpoints: acute/lethal  

5) statistical derivation:  median lethal concentration (LC50) 

 

Specific justification for the Tier 2 selection criteria are outlined as follows. Source material 

for AEO extraction is typically performed on fresh or aged tailings, and subsequently an active 

tailing pond or a test pond. Aged tailings have been shown to be chemically and toxicologically 

distinct from fresh tailings, where a reduction in recalcitrant AEO by biodegradation and 

photodegradation is associated with lower toxicity (MacKinnon and Boerger, 1986; Herman et 

al., 1993; Lai et al., 1996; Marentette et al., 2015a; Bartlett et al., 2017). For aged tailings 

experiments, fresh tailings are either artificially “aged” in lab by subjection to microbial 

processes, aeration, or UV irradiation, or naturally aged samples were collected from test ponds. 

Finally, aged experiments were not internally comparable due to differences in ages between 

sample sources. Therefore, in order to account for toxicity from all organics initially present and 

reduce variability associated with aging, studies assessing fresh tailings were selected. 

Frequently, AEO extractions were a result of a fractionation, or subject to a subsequent 

fractionation. In the former case, only data presented for fractions resulting from an acid 
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extraction were used. In the latter case, only data presented for a whole, pre-fractionated extract 

were used. This criteria prevented the misrepresentation of AEO toxicity due to presence of more 

neutral compounds, and underrepresentation of AEO toxicity from exposure to only a fraction of 

the original suite of dissolved organics. AEO route of exposure to organisms can be administered 

as aqueous, subcutaneous injection, dietary, in vitro, etc. Because some exposure methods 

bypass an organism’s natural metabolic (and potential detoxification) pathways, to ensure 

comparability between studies, selection based on similar exposure method was necessary. To 

that end, only exposures involving whole organism, aqueous exposures were selected. Exposure 

endpoints were also examined, as some studies assessed sub-lethal toxicity effects such as 

growth parameters or longer term chronic toxicity. Only studies which presented data regarding 

acute toxicity were retained. The previous two requirements for acute toxicity via aqueous 

exposure are related to the statistical endpoint screening parameter which required the 

presentation of an LC50. Many of the Tier 2 studies statistically derived No-observed effect 

concentration (NOEC), lowest-observed effect concentration (LOEC), effect concentration 

(ECx), or lethal concentration (LCx; where x = 1-100 and denotes a percentage response at a 

given concentration). Because ECx generally denotes an effects response other than mortality 

(LCx), only LCx data was considered. The exception is the ECx endpoint derived from the 

Microtox® bioassay which uses luminescence intensity from bioluminescent bacteria as an 

indicator of survival/viability. As with EC/LCx, derivation of NOEC and LOEC values involves 

exposure using a dilution series, but is typically presented where a partial response (some value 

between 0% and 100% mortality) is lacking or 100% mortality is not observed. Conversely, 

EC/LCx values are typically derived only where more than one partial response is observed. 

Although the binomial method can be used to derive an LC50 where one partial response and 
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100% response is observed, this method is not commonly used. For best comparability, only data 

presenting derivation of lethal concentrations where 50% mortality occurs (LC50) were screened 

in. It is common in toxicology to derive LC5, LC10, and LC25 values especially when presenting 

some ecological limit for the protection of a species. Nonetheless, derivation of an LC50 is 

preferred for better understanding of an organism’s response to a toxicant. This is because it is 

the point along a statistical regression where the variability is lowest, resulting in contracted 95% 

confidence intervals (Motulsky and Christopoulos, 2004). This allows for better statistical 

comparison against other LC50s and greater likelihood of determining a statistically significant 

difference (Motulsky and Christopoulos, 2004).  

The exposure pH and life-stage of the exposed organism were criteria which were considered 

but did not result in the removal of any assessments. Exposure pH was considered because it can 

greatly affect the solubility, and therefore, bioavailability of the dissolved organics. Because low 

pH can cause organic acids to precipitate out of solution, only environmentally relevant exposure 

pH between 7- 9 were considered. Although none of the studies reported exposures of pH 9, 

exposures up to 8.6 were used and within the pH range of tailings ponds receiving fresh tailings 

(Allen, 2008). For exposure life-stage, where multiple studies exposed AEO to the same 

organism at either embryo, embryo-larval, or larval life-stages, a separation in the data was 

required. The studies were evaluated on a case-by-case basis and data were grouped with the life-

stage for which exposure duration was longest.  

As a result of two tiers of screening, 16 studies were identified as comparable candidates to 

assess acute toxicity of industrially derived AEO to aquatic organisms. In order to account for 

the limited number of studies available for review following the screening, variability in certain 

parameters was accepted including: chemical characterization methods, measured vs. nominal 
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concentrations, variability of inorganics composition, and exposure duration. In some cases 

endpoint measurements were reported as millimolar concentration (mM), % whole water (v/v) or 

a concentration factor “x” (where x = some multiple of the whole water concentration). For these 

studies if whole water concentration of dissolved organics was provided (in mg/L units), the 

appropriate derivations were made in order to convert LC50s to a comparable unit (mg/L). 

 

6.3.3. Hazard Quotient  

The Hq is derived from the following equation; Hazard = [Exposure]/[Effect], where 

exposure concentration (highest reported concentration) /effect concentration (level at which no 

species are affected; NOEC) (USEPA, 1989; Solomon, 1996). An Hq is interpreted such that 

values > 1 represent a scenario where adverse effects are possible. It is understood that a hazard 

quotient indicating adverse effects may not necessarily parallel observations in the field due to 

abiotic factors, temporal/spatial variability, exposure type (pulsed or episodic), etc. 

 

6.3.4. Probabilistic Risk Assessment 

The probabilistic risk assessment allows for the prediction of risk, where risk is the joint 

probability of exposure and effects concentrations (Solomon, 1996). This assessment requires the 

generation of probability distributions of exposure and effects data. A compilation of relevant 

concentrations from literature was conducted; measured values for exposure and LC50 for effects. 

Exposure and effects probability distribution data were treated and plotted as follows. The Log10 

of exposure values and mean LC50 for each species was calculated and ranked by concentration 

value. Ranks were then transformed to Probit and a regression of Log10 mean vs Probit was 



 155 

 

plotted. The Weibull equation P = 100*i/(n+1) was used for generation of an empirical 

cumulative probability.  

In the present study, the 10th centile of sensitivity was determined as an indicator of effects 

concentration. The 10th centile concentration can be interpreted as the concentration at which 10 

percent of species are effected or the concentration at which 90 percent of species are protected. 

As an indicator of exposure concentration, the 90th centile was determined and can be interpreted 

as the AEO concentration present in 10 percent of tailings environments. Comparing probability 

distributions for exposure and toxicological effect of AEO allows for prediction of percent 

probability of n percent species (exceeding the nth centile of the effects distribution) affected at a 

predicted exposure concentration (Solomon, 1996). This ultimately enables the establishment of 

a level of protection for the receiving ecosystem. Additionally, the Area Under the Curve (AUC) 

was calculated in order to rank the risk to fish and invertebrates. The AUC can be described as 

the mathematical equivalent to the mean risk (Aldenberg et al., 2002), where 100 is the 

maximum value indicating greatest risk. All calculations and transformations were performed 

using Microsoft Excel and data was then plotted using Sigma Plot v.11. 

 

6.4. Results and Discussion 

6.4.1. Exposure Characterization 

Organic toxicants in tailings ponds are present due to their separation from bitumen, and are, 

therefore, also present in natural bitumen deposits in the oil sands region. The relatively shallow 

depth of these deposits results in bitumen seepage along river banks and in riparian groundwater 

due to natural hydraulic erosion. As a result, toxicants contained in bitumen deposits can be 

dissolved into surface waters, representing a natural input into the environment. Monitoring of 
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water chemistry from natural bitumen-influenced surface waters and groundwaters reveals that 

they can contain up to 2 mg/L of NAs (Sun et al., 2017). Aquatic life in the Athabasca region has 

adapted to low-level natural inputs, but are likely intolerant to the elevated levels of NA present 

in tailings ponds (up to 70 mg/L; Allen, 2008). Although spatial and temporal variabilities of 

AEO compositions and concentrations have been observed (Frank et al., 2016), the present 

literature assessment of fresh OSPW represents an initial “unmodified” AEO composition 

considered not affected by microbial and environmental degradation pathways that would be 

expected to occur within tailings containments. 

Much of the physicochemical properties of AEO are based on the well-studied subgroup of 

NAs. NA sodium salts are soluble in water with pKa of 5-6 (Headley and McMartin, 2004; 

Brown and Ulrich, 2015). As a result, this group of weak acids are soluble at pH >7 and are 

present in both OSPW and natural waters in the region (Allen, 2008). In their soluble, protonated 

form (sodium naphthenates), NA remain in the water phase and are, therefore, bioavailable to 

aquatic organisms (Clemente and Fedorak, 2005). Due to their surfactant nature, AEO 

encompass a broad suite of compounds which are thought to function in a narcotic pathway 

(Brown and Ulrich, 2015). Nonetheless, studies have revealed other modes of toxic action 

including those consistent with oxidative stress (Wiseman et al., 2013), endocrine disruption 

(Kavanagh et al., 2012) and effects on cardiac development (Mohseni et al., 2015). 
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Table 6.1. Measured fresh tailings AEO concentrations from literature grouped by site and 

ordered chronologically by collection year. The value “n/a” refers to values that were not 

presented in the study. 

 

Site AEO (mg/L) Collection Year Reference

67

69

69

77 2006 Han et al., 2009

20.7 2009 Lu et al., 2013

23.6 2009 Pourrezaei et al., 2011

25.5 2009 Lu et al., 2013

71.7 2009 Anderson et al., 2012

41.7 2010 Reichert et al., 2017

45.3 2010 Islam et al., 2014

70.2 2010 Anderson et al., 2012

61 2012 Pourrezaei et al., 2014b

36 n/a Grewer et al., 2010

52 n/a McKenzie et al., 2014

60 n/a Grewer et al., 2010

60.3 n/a Pourrezaei et al., 2014a

75 n/a El Din et al., 2011

41

42

84

85

50 2006 Han et al., 2009

28

44

49 n/a Holowenko et al., 2002

71

84.7

SEP (Syncrude) 77

AURTP (Syncrude) 60

Suncor South (Suncor) 56.5 n/a Sohrabi et al., 2013

Shell 39.8 2014 Leshuk et al., 2016

98

104

54

60

17.4

24.4

25.5

32.2

35.3

37.6

41.2

41.8

43.3

51.5

67.5 2011 Islam et al., 2015

WIP (Syncrude)

MLSB (Syncrude)

n/a

Muskeg R. tailings (Shell)

Penner and Foght, 2010

2004

2004

n/a

n/a Peters et al., 2007

Grewer et al., 2010

2006

n/a

2011

2009

Penner and Foght, 2010

Frank et al., 2014

Frank et al., 2016

McQueen et al., 2017

Han et al., 2009
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Figure 6.2. Percent rank distribution for environmental exposure concentrations of oil sands 

AEO. Dashed lines indicate the 90th centile of exposure concentrations, which predicts AEO 

concentrations present in 10 percent of a tailings environment.  

 

 

A literature review of tailings AEO concentrations from >114 articles resulted in suitable 

data from 23 articles (Table 6.1). Compiled literature covered OSPW AEO concentrations in a 

10-year period from 2004 to 2014, and was comprised of 46 individual data points. Collected 

data incorporated spatial and temporal ranges from at least 3 major industry operators, Suncor, 

Syncrude, and Shell. Tailings OSPW concentrations encompass a range between 17.4 – 104 

mg/L (Table 6.1). Many early studies reported NA concentrations which contrast recent studies 

which report the whole acid-extractable fraction (AEF or AEO). This discrepancy can largely be 

attributed to the state of knowledge at the time which placed emphasis on only O2 acid species, 

believing AEO to consist of “classical” NA compounds. However, some data undoubtedly 
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included other non-O2 species of AEO in their assessment of NAs. For the purposes of this 

assessment, reported concentrations in which and acid extraction was performed were included. 

The exposure distribution plot (Figure 6.2) presents the 90th centile for AEO concentration 

from fresh OSPW and predicts an exposure of 87.1 mg/L. The prediction indicates the level 

present in 10 percent of fresh tailings environments. In comparison to < 2 mg/L concentrations 

present in the natural environment (Allen, 2008), a tailings breach may be beyond the current 

assimilative capacity of the receiving environment.  

With respect to environmental relevance, AEO exposure is not likely to occur at 

concentrations present in tailings ponds. Current industry-derived AEO exposure is expected to 

be from tailings pond seepage. The amount and composition of AEO that seep into groundwater 

(Frank et al., 2014) is largely unknown and would be modified by underlying substrate (Janfada 

et al., 2006; Ahad et al., 2013). A particular study modelled seepage from the bottom of a single 

tailing pond into underlying substrate at a rate of 2.0 L/s (Ferguson et al., 2009). The resulting 

bioavailability of AEO in groundwater has been shown to be highly variable and likely a result 

of groundwater chemistry and target species sensitivity (Chapter 4; Chapter 5). In addition to the 

potential for berm breaching leading to unintentional OSPW release, groundwater transport of 

AEO into surface waters has the potential to increase local concentrations to a level beyond the 

current tolerable capacity of system. This largely unexplored area of groundwater contamination 

by OSPW-derived AEO warrants further investigation, and will provide information required for 

planned releases of OSPW in the next 5 years.  

Future AEO exposure must also be considered with regard to the wet landscape reclamation 

strategy and assessments herein are more applicable to this scenario. To address the growing 

containments of OSPW on industrial leases, operators have begun development and testing of 
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large-scale landscape reclamation strategies. The long-term objective of this strategy involves the 

detoxification of OSPW, which will be accomplished by converting tailings storage ponds into 

viable wetland areas called end-pit lakes. The strategy relies on the reduction in toxicity 

associated with biodegradation of organic components within aged tailings (MacKinnon and 

Boerger, 1986; Herman et al., 1993; Lai et al., 1996). However, the long period of time required 

(>10 yrs) to reduce AEO contents in tailings ponds to non-toxic levels has challenged the 

viability of this strategy (Quagraine et al., 2005). Nonetheless, the low cost associated with 

natural biodegradation supports oil sands industry operators’ interest in this approach. Future 

AEO exposure will likely occur as part of the wet landscape reclamation strategy, particularly 

when end-pit lakes are connected to natural waterways. 

 

6.4.2. Evaluation of Effects Literature  

6.4.2.1. Current State of the Literature 

The 49 Tier 2 articles were published between 1994 and mid-2017. In 23 years, 61% of 

those were published in the last 5 years. Of the articles that passed Tier 2 screening, 47% were 

published in the last 5 years. This indicates a more recent interest on the subject of toxicity 

associated with acid extractable organics. It also identifies a general trend toward better reporting 

and more in-depth toxicological analysis. However, the most common reasons articles were 

excluded during Tier 1 and Tier 2 evaluation were because commercial acids were used for 

exposure or no acute toxicity was generated. Commercial NA and AEO have been shown to be 

both chemically and toxicologically dissimilar (Marentette et al., 2015a; Bartlett et al., 2017), 

and therefore, not relevant to this evaluation. As such, the data also reflect a greater, more recent, 

use of AEO in toxicological assessments. Assessments were also excluded if chronic, sub-lethal, 
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in vitro, or in silico exposures were conducted with no associated acute data, and if only LOECs 

were generated. Although these types of assessments are useful, they do not provide adequate 

data to evaluate acute risk to taxa.  

Literature for acute toxicity of dissolved oil sands organics have assessed 11 different 

aquatic species. Of the 11 assessments, 6 were conducted using the Microtox® assay (Vibrio 

fischeri), 4 utilized a P. promelas bioassay, while other species were only represented by 1 

assessment each (Figure 6.3). This indicates the need for more stringent assessment of AEO 

using a wider variety of species in toxicological analysis. Single-celled organisms of the 

kingdom Bacteria are represented by V. fischeri. Invertebrates were represented by H. azteca, D. 

magna, L. stagnalis, and L. cardium, and vertebrates represented by P. promelas, D. rario, O. 

latipes, S. vitreus, P. flavascens, and O. mykiss. Specific evaluation of results from each group 

are expanded upon in the following sections.  

The final selection of literature consisted of 16 articles of which 10 are primarily 

toxicological in nature. Of the remaining 6, 3 are fractionation or extraction methods studies and 

3 were remediation or degradation studies. These 6 studies utilized toxicological analyses to 

provide validation for method development. The Microtox® assay (V. fischeri) was used in all 

but 1 of these method development studies. These findings indicate a predominance toward use 

of V. fischeri as a species for method development.  
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Figure 6.3. Number of assessments grouped by organism from 16 studies. 

 

 

6.4.2.2. Extraction Methods 

The plethora of terms used for dissolved organics in OSPW indicates the variety of extraction 

methods used in this area of research. Commonalities between all extractions are that they 

involve pH adjustment of OSPW followed by solvent extraction. The most common extraction 

method involves acidification of OSPW (pH 2), followed by centrifugation to consolidate 

precipitated solids (Frank et al., 2006). The majority of toxicological assessments have isolated 

AEO using this method (Farwell et al., 2006; Nero et al., 2006; Kavanagh et al., 2012; 

Woodworth et al., 2012; Leclair et al., 2013; Scarlett et al., 2013; Bauer et al., 2015; Marentette 

et al., 2015a; Marentette et al., 2015b; Bartlett et al., 2017; Bauer et al., 2017) or slight variation 

thereof (Lo et al., 2006; Quesnel et al., 2011; Klamerth et al., 2015; Quesnel et al., 2015; 

Johnston et al., 2017). The resulting supernatant is removed and the precipitated solids are 

6

41
1

1

1

1

1

1
1

1

V. fischeri P. promelas H. azteca D. magna L. stagnalis L. cardium

D. rario O. latipes S. vitreus P. flavescens O. mykiss
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reconstituted in an alkaline solution (pH 12). Humic acids are removed via cellulose filtration, 

and neutral organics are removed with a DCM liquid-liquid extraction. The resulting alkaline 

filtrate containing AEO is then concentrated by acidification with collection of precipitate on a 

filter, after which the precipitate is reconstituted in the desired solvent. An alternate method 

employs a liquid-liquid wash in DCM, following sequential neutral, alkaline, or acidic 

adjustments of OSPW in an order that isolates the fraction of interest (Madill et al., 2001; 

Holowenko et al., 2002; Rogers et al., 2002; Janfada et al., 2006; Armstrong et al., 2008; 

Armstrong et al., 2009; Mishra et al., 2010; Sohrabi et al., 2013; Morandi et al., 2015; Wang et 

al., 2015). This results in base-neutral fractions and acid-organic fractions without previous 

centrifugation to isolate the precipitate.  

As part of a concentration or clean-up step, typically for chemical analysis, the water 

containing dissolved organics is subject to solid-phase extraction through a C18 (octadecyl carbon 

chain) or PSDVB (polystyrene divinylbenzene) resin packed in a column (Frank et al., 2008; 

Gagné et al., 2011). This adaptation utilized pH adjustment, solid-phase extraction, and then 

soxhlet extraction with an organic solvent (MeOH) for isolation of AEO.  

Slight variations in methods employed for extraction of AEO have the potential to change the 

constituents within the sample. Across extraction methods, some minor differences between 

studies include OSPW acidification limits (pH 1-3), alkalinisation limits (pH 10-12), extraction 

solvent (DCM, acetonitrile, MeOH), and number of solvent washes (3-4x). The solvent used for 

liquid-liquid extraction, solid-phase extraction, and even storage or concentration of sample has 

been shown to affect the composition of dissolved organics (Barrow et al., 2010; Headley et al., 

2013a).  
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6.4.2.3. Sample Preparation and Analytical Methods 

A variety of methods have been used for the analysis of AEO profiles and concentration in 

water samples. There is no current analytical standard for quantification of oil sands dissolved 

organics. From only the final 16 studies assessed herein, each utilized at least one of the 

following methods: ESI-MS (Frank et al., 2006; Frank et al., 2008; Armstrong et al., 2009; 

Mishra et al., 2010; Kavanagh et al., 2012), ESI-HRMS (Scarlett et al., 2013; Marentette et al., 

2015a; Morandi et al., 2015; Bartlett et al., 2017; Bauer et al., 2017), GC/MS (Nero et al., 2006; 

Scarlett et al., 2013), GC-MS/MS (Scarlett et al., 2013), LC/MS-QToF (Sohrabi et al., 2013; 

Marentette et al., 2015a; Marentette et al., 2015b; Bartlett et al., 2017), and FTIR (Nero et al., 

2006; Kavanagh et al., 2012; Sohrabi et al., 2013).  

There are several inconsistencies between analytical methods with regard to determination 

of AEO concentration, as has been reviewed (Brown and Ulrich, 2015). For example, FTIR and 

GC low res-MS have been shown to produce false high concentrations of AEO compared to 

other high resolution analyses (Yen et al., 2004; Martin et al., 2008; Han et al., 2009; Headley et 

al., 2009a). Generally, higher resolution methods produce lower, more accurate concentrations 

(Brown and Ulrich, 2015). Detection of AEO classes also differs depending on whether an 

instrument operated in negative- or positive-ion mode (Headley et al., 2013b). Although 

negative-ion mode is better suited for analysis of NAs with a greater detection of oxygenated 

species, positive-ion mode has been shown to better detect species containing sulfur heteroatoms 

(Barrow et al., 2010; Barrow et al., 2015). This likely makes positive-ion in complement to 

negative-ion mode useful in identifying the suite of compounds present in AEO extracts. A final 

area for potential discrepancy during analysis of AEO is with regard to the standards used for 

calibration of instruments. For analysis of NAs in OSPW samples, commercial preparations 
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under five trade names are typically used as standards; Acros, Merichem, Aldrich, Kodak, and 

Fluka. Studies have shown that these commercial mixtures are of dissimilar composition to each 

other (Hindle et al., 2013; Lu et al., 2013). Therefore, AEO ion composition derived from 

analysis is largely dependent on standards used, which inevitably produce unique distributions 

due to their inherent variability. 

Chemical analysis of dissolved organics involved a variety of methods. As a result, reported 

AEO concentrations may differ, and may not be fully characterized in studies that used 

commercial NA standards for instrument calibration. These analyses must therefore be 

considered semi-quantitative (Martin et al., 2008). Because there are currently no oil sands 

reference standards available, LC50 concentrations were regarded as “comparable” regardless of 

the analytical methods employed. This approach was taken in order to retain a more 

comprehensive assemblage of organisms to assess in this review.  

 

6.4.2.4. Bioassay Exposure Water 

Following AEO extraction, many studies required sample preparation prior to exposure. The 

extracted sample was typically dissolved in an organic solvent or at alkaline pH in water, 

depending on extraction method employed. If dissolved in an organic solvent that is immiscible 

with water, AEO required reconstitution in water or a water-miscible solvent. Solvents such as 

dimethyl sulphoxide (DMSO), ethanol, or methanol are water miscible, and AEO samples were 

therefore concentrated in these solvents as a carrier and transferred to exposure water (Scarlett et 

al., 2013; Morandi et al., 2015; Wang et al., 2015; Johnston et al., 2017). Although acetonitrile is 

also a water-miscible organic solvent often used for AEO extraction, it is not used as a delivery 

solvent because in vertebrates exposure can generate toxic metabolites such as hydrogen 
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cyanide, formaldehyde, and formic acid (Pozzani et al., 1959). Alternatively, in other studies 

solvents were evaporated and organics re-dissolved into an alkaline pH for delivery into 

exposure water (Madill et al., 2001; Lo et al., 2006; Sohrabi et al., 2013). Most studies simply 

dissolved organics into alkaline water for storage (Frank et al., 2006; Nero et al., 2006; 

Armstrong et al., 2009; Kavanagh et al., 2012; Woodworth et al., 2012; Marentette et al., 2015a; 

Marentette et al., 2015b; Bartlett et al., 2017; Bauer et al., 2017), and was the most common 

method used. The advantage to extracting and storing AEO in alkaline water is that no 

evaporation and reconstitution in a solvent is necessary, reducing possible loss of organic 

material. Regardless of the method employed, the pH of the exposure water required adjustment. 

In general, exposure water was brought to a pH slightly higher than neutral, which was in the 

range pH 7.9-8.6 for the studies assessed. This pH range is similar to that found in tailings ponds 

OSPW and natural lakes and rivers in the region (pH 7-8.6; (Allen, 2008)) and, therefore, is 

environmentally relevant. 

 

6.4.3. Effects Characterization 

6.4.3.1. Bacteria 

Studies have overwhelmingly utilized the Microtox® assay likely due to low sample volume 

requirements, relative ease of use, and rapid results (Clemente and Fedorak, 2005). In fact, many 

of the Tier 1 selection studies utilised the Microtox® assay to assess OSPW remediation, 

fractionation, or analytical methods, where dissolved organics toxicity was not the primary 

objective. The 6 Microtox® studies represent 32% of total assessments and indicate the utility of 

the assay. Researchers should be cautious when using V. fischeri, as recent investigation has  

identified their low sensitivity to AEO relative to other aquatic organisms (Chapter 5). However, 
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the authors also indicate its utility as a rapid and predictive screening tool for further 

toxicological assessment, provided samples are concentrated (Chapter 5). Regardless of its 

sensitivity, its use as an indicator species will likely foster its continued use for assessments of 

oil sands toxicity.  

Of the 6 studies which used the Microtox® assay (Table 6.2), there were 10 individual 

assessments with a mean acute toxicity ranging from LC50 of 30.5-78.9 mg/L. While these values 

encompass a wide range, it is likely a reflection of variability between OSPW-derived AEO 

sources. OSPW variability studies have previously identified that AEO composition can vary 

both temporally and spatially within a tailings pond (Frank et al., 2016), and also be quite 

variable across tailings ponds resulting in observed differences in toxicity (Marentette et al., 

2015a; Bartlett et al., 2017). Within these studies, at least 2 different OSPW sources from at least 

2 different industry operators were sampled, accounting for inherent variability. 

 

6.4.3.2. Invertebrates 

From the 3 studies that utilized invertebrate bioassays (Armstrong et al., 2009; Bartlett et al., 

2017; Johnston et al., 2017), there were 8 individual assessments representing 4 different species 

(Table 6.2). These included H. azteca (amphipod crustacean), D. magna (water flea), L. stagnalis 

(pond snail), and L. cardium (freshwater mussel). Invertebrate LC50s encompassed a range from 

16.7-123 mg/L, and with the exception of L. cardium (LC50 34.8-123.0 mg/L), across-species 

variability for acute toxicity was relatively low (LC50 16.7-37.5 mg/L). The freshwater mussel 

(L. cardium) displayed the greatest within-species variability, and was generally less sensitive to 

AEO than H. azteca, D. magna, and L. stagnalis. Observations from the study by Bartlett et al. 

(2017) showed that L. cardium displayed the lowest sensitivity compared to the 3 other species 
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assessed therein (P. promelas, H. azteca, and V. fischeri) (Bartlett et al., 2017). This is possibly 

due to greater sensitivity to inorganic components, which has been observed for a similar species 

in a comparative study of AEO toxicity (Chapter 5). Despite the diversity of the invertebrates 

evaluated, representing various Phyla, life-histories, and behaviours, the range in LC50s are 

within an order of magnitude.  

 

6.4.3.3. Fish 

Evaluations for freshwater fish included Japanese medaka (O. latipes), fathead minnow (P. 

promelas), walleye (S. vitreus), rainbow trout (O. mykiss), zebrafish (D. rerio), and yellow perch 

(P. flavascens). Fish acute embryo bioassay mean LC50 ranged from 4.4-51.8 mg/L (Table 6.2), 

encompassing 1 order of magnitude. P. promelas was the most studied fish with 18 individual 

assessments from 4 studies (Kavanagh et al., 2012; Marentette et al., 2015a; Marentette et al., 

2015b; Bauer et al., 2017). Although P. promelas was one of the least sensitive fish species 

assessed, it is a well-studied organism, common bioassay and environmentally relevant. 

Furthermore, it is a small-bodied fish with lower toxicant exposure volume requirements which 

make it well suited for assessing oil sands extracts. Important factors in the utility of the P. 

promelas bioassay are the ease of husbandry and embryo acquisition and the fact that they are 

indigenous to much of North America including the Athabasca region. These reasons likely 

contributed to the high representation of this species in the present literature. The sensitivity of 

the P. promelas bioassay is dependent on the life-stage assessed as the embryonic stage was 

~2.4x more sensitive than the larval stage (Table 6.2; (Kavanagh et al., 2012)). This observation 

is likely similar for other fish species and exemplifies the importance of exposures that target the 

most sensitive life-stage of an organism. S. vitreus, O. mykiss, D. rerio, and P. flavascens 
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embryo displayed similar sensitivities to AEO with LC50s in the range of 4.4-11.0 mg/L (Table 

6.2). Conversely, O. latipes embryo were much less sensitive compared to all other fish species 

(LC50 37.6 mg/L) and was most similar to P. promelas larval exposures (LC50 46.8-51.8 mg/L) 

(Table 6.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 170 

 

Table 6.2. Individual toxicological assessments grouped by organism and ordered 

chronologically by publication date.  

 

OSPW Source Test Organism Life-stage Duration Exposures
LC/EC50 

(mg/L)
Reference

Syncrude, WIP P. promelas embryo 9-d NAE (350mg salts) 32.8 Kavanagh et al., 2012

NAE+Cl  30.3

NAE+SO4 32.4

Syncrude, WIP P. promelas embryo 9-d NAE (700mg/L salts) 32.6 Kavanagh et al., 2012

NAE+Cl  27

NAE+SO4 29.5

Syncrude, WIP P. promelas larval 96-hr NAE (700 mg/L salts) 51.8 Kavanagh et al., 2012

NAE+Cl  47.4

NAE+SO4 46.8

Indusrty A fresh1 P. promelas embryo 96-hr AEO 13.2 Marentette et al., 2015a

Industry A fresh2 AEO 7.5

Industry B fresh AEO 13.8

Indusrty A fresh1 P. promelas embryo to hatch AEO 10.6 Marentette et al., 2015a

Industry A fresh2 AEO 5

Industry B fresh AEO 9.3

Industry A fresh P. promelas embryo-larval to hatch AEO 21.8 Marentette et al., 2015b

Industry B fresh AEO 24.5

Syncrude, WIP P. promelas embryo-larval 6-d AEO 18.9 Bauer et al., 2017

Syncrude WIP D. rerio larval AEO 8.4 Scarlett et al., 2013

NR D. rerio embryo-larval ? AEO 7.4 Wang et al., 2015

Syncrude, WIP O. latipes embryo-larval 9-d AEO 37.6 Bauer et al., 2017

Industry A fresh S. vitreous embryo-larval to hatch AEO 11 Marentette et al., 2015b

Industry B fresh AEO 9.5

Sy ncrude, WIP P. flavascens YOY 96-h AEO 4.4 Nero et al., 2006

Syncrude, MLSB O. mykiss YOY 96-h AEO 10 Verbeek et al., 1994

Syncrude, WIP V. fischeri 15 min pre-DEAE filtration 31.4 Frank et al., 2006

post-DEAE 30.5

ND V. fischeri 15 min particulate NA 37 Lo et al., 2006

aqueous NA 35

Syncrude, WIP V. fischeri 15 min AEO 52.7 Frank et al., 2008

ND V. fischeri 15 min AEO 22.9 Mishra et al., 2010

Suncor, South TP V. fischeri 10 min AEO 44 Sohrabi et al.,  2013

Indusrty A fresh1 V. fischeri 15 min AEO 71.9 Bartlett et al., 2017

Industry A fresh2 AEO 78.9

Industry B fresh AEO 71.8

Indusrty A fresh1 H. azteca neonates 7-d AEO 16.7 Bartlett et al., 2017

Industry A fresh2 AEO 25

Industry B fresh AEO 27.4

ND D. magna neonates 48 h AEO 37.5 Armstrong et al., 2009

ND L. stagnalis embryo 28-d AEO 32 Johnston et al., 2017

Industry A fresh1 L. cardium glochidia 48-h AEO 97.4 Bartlett et al., 2017

Industry A fresh2 AEO 123

Industry B fresh AEO 34.8

Invertebrates

Fish



 171 

 

 

Figure 6.4. Percent rank distribution for toxicological effects concentrations of oil sands AEO. 

Dashed lines indicate the 10th centile of effect concentrations, which predicts AEO 

concentrations required to produce an effect in 10 percent of organisms. Fish and Invertebrate 

effect concentrations are 5.5 mg/L and 19.6 mg/L, respectively. 

 

6.4.3.4. Relative Species Sensitivities 

Effects concentration data from selected literature were grouped by species and a mean LC50 

was derived (Table 6.3). The range in lethal responses for all organisms was 4.4 – 74.7 mg/L. 

These data indicate that embryonic fish display a greater sensitivity to AEO than invertebrate 

organisms. Relative toxicities expressed by different organisms are likely dependent on a number 

of factors, including the species’ metabolic capacity and mode of action driving toxicity.  

The generated probability distribution for invertebrate and fish species exposed to AEO 

predicted 10 percent of species would be affected at 19.6 mg/L and 5.5 mg/L, respectively 

(Figure 6.4). The distribution displays a distinction in sensitivities such that invertebrates are less 
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sensitive to AEO than fish species. The exception to this observation is larval P.promelas. Larval 

P.promelas appeared to be much less sensitive than their embryological cohorts, likely due to 

developmental stage and improved ability to detoxify organic compounds. The greater sensitivity 

of fish species compared to invertebrates when exposed to AEO, OSPW, or commercial NAs has 

been observed previously (Kinley et al., 2016; Bartlett et al., 2017; McQueen et al., 2017; 

Chapter 5). A study that exposed a suite of organisms to isolated components of OSPW 

identified that invertebrates are more sensitive to inorganic components (metals and salts) and 

less sensitive to dissolved organics (Chapter 5). Nonetheless, it has been proposed that although 

invertebrates were more sensitive to inorganics than fish, these components were within a 

tolerable range in OSPW exposures and toxicity was likely driven by AEO (McQueen et al., 

2017).   

 

Table 6.3. Evaluated species grouped into fish and invertebrates and ranked by mean AEO LC50 

concentrations. 

 

 

Species
Mean LC50 

(mg/L)

Fish

P. flavascens 4.4

D. rerio 7.9

O. mykiss 10.0

S. vitreus 10.2

P. promelas 17.8

O. latipes 37.6

P. promelas larval 48.6

Invertebrates

H. azteca 22.5

L. stagnalis 32.0

D. magna 37.5

V. fischeri 43.9

L. cardium 74.7
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6.4.4. Risk Characterization 

6.4.4.1. Hazard Approach 

Given that industrial tailings ponds displayed AEO concentrations between 17.4 - 104 mg/L 

(Table 6.1) and natural lakes and rivers in the region can contain concentrations of 1-2 mg/L 

(Allen, 2008), one expects some level of hazard associated with industrially-derived AEO. This 

assertion is made clear when generating a hazard quotient (Hq) for anthropogenic AEO 

exposure. We derive an Hq from the highest measured exposure concentration and the effects 

concentration at which no species are affected (NOEC from most sensitive species; P. 

flavascens) where Hazard = [Exposure]/[Effect] (Solomon, 1996). According to data presented 

herein, exposure is constant at 104 mg/L and the effect concentration is 1.7 mg/L. Thus, the Hq = 

61.2 which strongly suggests low survivability for aquatic organisms exposed to raw fresh 

tailings.  

  

6.4.4.2. Probabilistic Approach 

A probabilistic risk assessment was conducted in order to assess the risk of tailings AEO 

exposure to aquatic organisms. This assessment was based on tailings concentrations from a 

range of samples that differed spatially and temporally reported in the literature that passed 

screening criteria. Effects data were also acquired from suite of aquatic species, including fish 

and invertebrates, for which AEO acute toxicity concentrations were screened from reported 

values in literature. Effects data were plotted separately as fish species and invertebrate species 

and compared to the probability distribution for exposure (Figure 6.5). By plotting the exposure 

and effects distributions for AEO together, risk can be predicted as a joint probability which 

allows for the determination of the percent probability of affecting n percent of the species 
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(exceeding the nth centile of the effects distribution). The 10th centiles for fish and invertebrates 

were 19.6 mg/L and 5.5 mg/L (Figure 6.4, Table 6.4), respectively, while the 90th centile for 

AEO exposure was 87.1 mg/L (Figure 6.2, Table 6.4). The probability of exceeding the 10th 

centile for fish and invertebrates was 100% and 97.7%, respectively (Table 6.4). These data 

indicate a very high risk for both evaluated organism groups exposed to undiluted tailings AEO. 

In order to quantify the level of risk present, exceedance profiles were plotted (Figure 6.6) and 

the AUC was calculated for both fish and invertebrates. The AUC can be described as the 

mathematical equivalent to the mean risk (Aldenberg et al., 2002). In the case of fish species the 

AUC was 43.7, while the invertebrates displayed an AUC of 73.2 (Table 6.4). 

 

 

Figure 6.5. Percent rank distribution for exposure and effects concentrations of oil sands AEO. 

Dotted lines indicate the 90th centile of exposure concentrations, which predicts AEO 

concentrations present in 10 percent of a tailings environment. Dashed lines indicate the 10th 

centile of effect concentrations, which predicts AEO concentrations required to produce an effect 

in 10 percent of organisms.  



 175 

 

 

Figure 6.6. Exceedance profile of fish and invertebrate organisms for exposures of tailings AEO. 

  

 

 

Table 6.4. Linear regression equations and derived centile intercepts, 10th centile exceedance, 

and area under the curve from probability distributions of exposure and effects.  
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Because risk assessments incorporate a level of exposure relating to frequency, spatial and 

temporal distribution of exposure, one must consider these with respect to the degree of hazard 

present. Specifically, because most AEO extracts are derived from active tailings ponds, the 

AEO concentration and composition within these ponds must be considered. Spatially within a 

tailings pond, and across industrial sites, AEO composition can be quite different (Frank et al., 

2016). This spatial variability was captured in the SSD as studies therein assessed multiple 

sources of AEO. The exposure distribution that wasn’t captured herein was temporality. Studies 

have shown that as tailings age (without constant input) the composition of AEO shifts toward a 

greater proportion of higher molecular weight compounds (Herman et al., 1993; Lai et al., 1996). 

Concurrent with this shift is a reduction in overall toxicity in OSPW (Marentette et al., 2015a; 

Bartlett et al., 2017) which inherently alters the hazard and risk associated with AEO. One of the 

oil sands industry’s main reclamation strategies involves aging tailings through natural biological 

processes. Therefore, it is likely that the level of risk present will decrease over time. 

According to the above risk characterization, industrial sources of AEO present a risk to 

aquatic organisms. Although this may be the case, it is important to note that those taxa currently 

present in the natural system have likely developed tolerance to low levels of AEO. Adaptation 

to natural bitumen input by indigenous organisms may have decreased overall sensitivity 

compared to lab-reared organisms used in most studies. Unlike point-source or episodic 

contamination, AEO input in the natural environment represents a semi-constant low-level 

exposure, providing greater likelihood for natural selection of more tolerant communities. The 

caveat being AEO dilution by snow and ice melt during the spring freshet, and possible increased 

input from river banks during warmer months due to reduction in bitumen viscosity. Regardless, 

it is unlikely that indigenous organisms could tolerate AEO present at tailings concentrations. 
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6.4.4.3. Uncertainty Analysis 

There is some degree of uncertainty associated with the effects assessment herein. First, in 

the generated SSD, L. stagnalis, D. magna, O. latipes, O. mykiss, P. flavascens were only 

represented by one assessment from one AEO source. All other species incorporated multiple 

AEO sources with >1 assessment. Thus, there is a greater degree of confidence for those species 

represented by multiple assessments. Additionally, because effects data were collected from the 

literature, it is difficult to determine whether the most sensitive species or a keystone species (a 

species that plays a crucial role in ecosystem function) in the natural ecosystem was represented 

in the literature. It may be that the assessment underestimates the level of risk because of the 

absence of data from a more sensitive indigenous organism. Uncertainty associated with risk 

may also arise from the fact that all effects data were derived from controlled laboratory 

bioassays. This experimentation does not account for potentially confounding abiotic or indirect 

effects present in the natural environment. It is possible that AEO compounds interact with 

abiotic factors in the natural environment, modifying toxicity to affected organisms, and also, the 

potential that toxicity to a keystone species has some greater indirect effect on the larger system. 

Uncertainty is also present as a result of exposure data. As discussed earlier, derivation of 

anthropogenic AEO concentrations may have utilized analytical techniques and standards which 

did not account for the whole suite of dissolved organics in sample waters. Alternatively, some 

analysis may provide overrepresentation or misclassification of some AEO ion classes. Until a 

standard method for analysis of AEO is developed to a high degree of accuracy, there is no 

guarantee that analyses are either comparable or represent true concentrations. Therefore, 

derived values herein are not wholly representative, but serve to present a general trend.  
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6.5. Conclusions 

Review of oil sands toxicity literature (123 articles) identified 16 comparable articles relating 

to acute toxicity of AEO exposure to aquatic organisms. The relatively few useable articles 

indicates a general lack of comprehensive experimental design, leading to the exclusion of 

potentially useful data and derivation of an LC50. In all, 11 organisms were subject to individual 

assessments. Evaluation of 16 selected articles revealed that V. fischeri was the most commonly 

used bioassay followed by P. promelas. Although most of the evaluations using V. fischeri were 

for the purposes of validating novel methodologies, the use of this organism is not 

environmentally relevant nor particularly sensitive. Rather, use of a more sensitive, indigenous 

organism like P. promelas is encouraged. Additionally, exposures using a greater variety of taxa 

would provide a more comprehensive overview on the potential risk to the ecosystem.  

The most sensitive species overall in response to AEO exposure was P. flavascens while the 

least sensitive was L. cardium. In general, fish embryo were more sensitive than invertebrate 

taxa with the exception of O. latipes. Using a hazard approach an Hq of 61.2 was derived. A 

probabilistic approach revealed that concentrations protective of 90 percent (10th centile) of fish 

and invertebrates were 5.5 mg/L and 19.6 mg/L, respectively. The 90th centile for AEO exposure 

was 87.1 mg/L, which is a predicted concentration present in 10 percent of tailings 

environments. Furthermore, the probability of exceeding the 10th centile for fish and 

invertebrates was 100% and 97.7%, respectively. In the case of fish species the AUC was 43.7, 

while the invertebrates displayed an AUC of 73.2. The aggregate data all strongly suggest low 

survivability for aquatic organisms exposed to AEO from fresh tailings. 

The presence of low levels of natural bituminous input into surface waters in the region has 

likely resulted in some tolerance by indigenous organisms to AEO. Therefore, sensitivities 
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observed for lab-reared organisms potentially overestimate the level of risk posed to native taxa. 

Nonetheless, due to the high exposure level associated with tailings AEO, indigenous organisms 

would likely still be at a very high risk. 

The high probability of AEO predicted to present a detrimental effect to aquatic life, stresses 

the need for monitoring in this region. Monitoring should account for current anthropogenic 

AEO input from tailings seepage, and its effect on sensitive fish species. The challenge in this 

regard is that fish development beyond an embryonic life-stage appears to become much less 

sensitive to dissolved organics. Therefore, monitoring needs to incorporate representative species 

which include more sensitive invertebrates such as H. azteca. For future efforts regarding the wet 

landscape strategy, monitoring should account for changes in AEO concentration over time. In 

particular, connection of end-pit lakes to natural systems during reclamation efforts need to 

account for the time-dependent reduction of risk associated with biodegradation of AEO. 
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Chapter 7. General Conclusions 
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7.1. Fractionation and Chemical Characterization 

In order to investigate principal toxic components of OSPW and other bitumen sources, a 

novel extraction and fractionation method was developed (Chapter 2). The developed method 

utilized solid-phase extraction (SPE) and soxhlet extraction techniques. Small-scale SPE has 

been used in previous research for the isolation of organic compounds from OSPW (Verbeek et 

al., 1993; de Campos et al., 2006; Gagné et al., 2011; Headley et al., 2013a). The objective of our 

research was the adaptation of this method to preparative-scale applications. Through scale-up 

experimentation, successful isolation of organic compounds based on pH and polarity from 180 

L of an aged OSPW source was demonstrated. Three organic fractions were generated (F1, F2, 

F3) at a preparative scale, resulting in 3 L of concentrated organics in each fraction (60-fold 

concentration). The isolation of organics was verified by analysis of inorganics (metals and 

major ions) at each step in the fractionation process. This analysis revealed that only the final 

filtrate contained inorganic components. In order to chemically characterize the organics present 

in the fraction, each was subject to a suite of chemical analyses. Liquid chromatography 

quadrupole time-of-flight mass spectrometry (LC-QToF), gas chromatography triple quadrupole 

time-of-flight mass spectrometry (GC-MS/MS), and synchronous fluorescence spectroscopy 

(SFS) analyses displayed an increase in relative polarity with subsequent fractions (F1 – F3). 

Synchronous fluorescence spectroscopy (SFS) additionally displayed an increase in the degree of 

aromaticity from F1 to F3. Results from electrospray ionization high-resolution mass 

spectrometry (ESI-HRMS) analysis indicated that degree of oxygenation increased from F1 to 

F3, and likely contributed to the relative increase in polarity.  

Following the fractionation method development, which was evaluated using an aged OSPW 

source (Chapter 2), subsequent fractionation of bitumen-influenced groundwater sources was 
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conducted (Chapter 4). This was done, in part, to evaluate the method’s utility for use with a 

variety of water sources. However, the main objective was to investigate possible differences in 

the chemical composition between natural bitumen-influenced groundwaters compared to 

OSPW-influenced groundwaters. Accordingly, groundwaters from two natural bitumen-

influenced sources (DP-1, DP-2) and two groundwaters from a mixture of OSPW- and naturally-

influenced sources (DP-5, DP-4) were fractionated on a preparative scale using the previously 

developed method. For each of the four sites, three fractions were generated; each comprised of 

3 L of concentrated dissolved organics. The same chemical characterization performed for the 

aged OSPW was completed for fractions generated from each groundwater site sampled. 

Comparable to the aged OSPW, with each subsequent fraction (F1 to F2 to F3), LC-QToF and 

GC-MS/MS analyses displayed an increase in relative polarity. Likewise, ESI-HRMS revealed a 

relative increase in oxygenation of compounds from F1 to F3 for all sites.  

Chemical characterization of aged OSPW and collected groundwater fractions revealed the 

polar compounds such as naphthenic acids (O2 class) were isolated in the first high pH fraction 

(F1). This is consistent with a similar fractionation study (SPE, liquid-liquid) in which an 

abundance of dissolved organics were isolated in a high pH fraction (Morandi et al., 2015). 

Therefore, polarity of bitumen-derived soluble organic compounds appears to be a function of 

several factors including functional groups, water solubility, molecular size, and molecular 

structure, and is not necessarily predominately controlled by protonation and deprotonation of 

carboxylic acid moieties. This is supported by spiking experiments with the fractionation method 

developed herein, which suggested that factors other than the presence of acid moieties and 

molecular weight contribute to the polarity of bitumen-derived organics (Chapter 2). It is very 
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likely that factors contributing to the observed compound polarity also affect bioavailability and 

toxicity of dissolved organic compounds isolated in our investigation. 

Identical fractionation and chemical characterization methods between aged OSPW and 

bitumen-influenced groundwaters allowed for direct comparison of chemical composition 

(Chapters 2 and 4). It is important to note that the fractionation method resulted in the majority 

of O2 ions (including NA) being isolated in F1 for all samples assessed. With respect to class 

distribution of ions (ESI-HRMS), direct comparison of F1 between bitumen-influenced 

groundwater sites and aged OSPW indicated a greater proportion of O2 ions in groundwaters 

collected. Conversely, F1 for Aged OSPW contains a considerably higher proportion of O3 ions 

compared to bitumen-influenced groundwaters. In general, aged OSPW contains a greater 

proportion of polyoxygenated compounds in F3 than collected groundwaters assessed herein. 

These observations were not surprising, as the reduction of less recalcitrant organics in OSPW 

by biodegradation has been shown to produce a similar reduction in naphthenic compounds (O2) 

and a predominance of more oxygenated and alkyl-branched compounds (Bataineh et al., 2006; 

Smith et al., 2008; Han et al., 2009). The contaminants collected from bitumen-influenced 

groundwaters represented seepage flow through anaerobic conditions and were likely not 

exposed to the complement of indigenous aerobic bacteria responsible for biodegradation of 

AEO observed in the previous studies. When comparisons of O2 double-bond equivalents (DBE) 

were made, aged OSPW and bitumen-influenced groundwaters displayed similar DBE profiles 

with bimodal distributions. The major difference was that aged OSPW was predominantly 

composed of compounds with DBE 4, 5, 7, and 8 while groundwaters were dominated by 

compounds with DBE 3, 4, 6, and 7. Because DBE can indicate the number of rings per 

molecule as well as aromaticity, this observation suggests that aged OSPW contains a greater 
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proportion of more complex O2 ions. This is again, likely a result of biodegradation by 

indigenous aerobic bacteria present in tailings environments. 

Comparison of bitumen-influenced sites (DP-1 and DP-2) to OSPW-influenced sites (DP-4 

and DP-5) did not display any common chemical characteristics that allowed for differentiation 

between the two groups (Chapter 4). In fact, sites DP-5 and DP-2 displayed the most similar 

class distribution of ions and O2 double-bond equivalents when compared across sites with ESI-

HRMS analysis. Characterization with LC-QToF and GC-MS/MS displayed varied chemical 

characteristics across sites with no major commonality between sites. Similarly, analysis of 

metals within collected groundwaters was quite variable across sites. The lack of trends in 

chemical signatures across sites suggests that the organic composition within groundwaters is 

likely modified by not only bitumen source but substrate and groundwater mixing. It is important 

to note that the four bitumen-influenced groundwater sites evaluated herein may not be wholly 

representative of all groundwaters in the region. 

 

7.2. Toxicological Assessment 

The generation of large quantities of fractionated material from the aged OSPW and 

bitumen-influenced groundwater sources allowed for toxicity evaluation of each fraction with a 

suite of bioassays. This is important because previous work has identified that sensitivity to 

bitumen-derived organics and inorganics varies between organisms and endpoints (Marentette et 

al., 2015b; Bartlett et al., 2017). Therefore, a complement of organisms should be used when 

assessing toxicity associated with whole OSPW, which was explored in this study. Because 

samples were fractionated and prepared using the same method, direct comparison of relative 

toxicities across bioassays was possible. Toxicological assessments were conducted by 
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exposures to two fish species: P. promelas and O. latipes, four invertebrate species: H. azteca, D. 

magna, L. cardium (aged OSPW), and L. siliquiodea (groundwaters), and a commonly used 

bacterial assay: V. fischeri (Chapters 3 and 5). The variety of species used allowed for 

comparison of species sensitivities at multiple trophic levels.  

Bioassay exposures consisted of controls (water control, solvent controls), whole water, 

organic fractions (F1-F3), and a Recombined treatment representing all three fractions combined. 

Because each fraction was prepared with 0.1% methanol by volume, the Recombined treatment 

contained 0.3% methanol by volume, therefore, solvent controls were prepared identically to 

reflect possible toxicity due to solvent effects. Whole water was exposed as unaltered OSPW or 

bitumen-influenced groundwater which had not undergone any prior manipulations. These 

exposures, therefore, contained both organic and inorganic constituents present in the initial 

sample. The organic fractions and Recombined treatment only contained dissolved organics and 

were prepared (by volume) to reflect concentrations present in whole water. As a result, the 

presence of inorganic compounds in addition to the organic constituents in the whole water 

samples is the main difference from the Recombined samples. 

Broad comparison of species sensitivities for the tested organisms across all sources 

revealed that some species tested herein were generally more sensitive to organic components 

while some invertebrates appeared sensitive to inorganic components. The two most sensitive 

species to dissolved organics overall were P. promelas and H. azteca. Similar toxicological 

analysis has also observed comparable sensitivities of P. promelas and H. azteca exposed to 

AEO when compared to other species (Kinley et al., 2016). The V. fischeri assay displayed a 

general insensitivity to dissolved organics, but when exposed to 3x concentrated treatments, the 

observed toxicities were similar to P. promelas and H. azteca. This suggests that the utility of the 



 186 

 

V. fischeri (Microtox®) assay is requisite on the concentration of exposure treatments, but can be 

predictive in identifying relative toxicities between fractions in an EDA approach. General 

species sensitivities for whole bitumen-influenced groundwater exposures were such that P. 

promelas and H. azteca were most sensitive overall . Research which has assessed oil sands 

organics toxicity to a suite of organisms generally showed similar trends to what we observed for 

relative sensitivites herein (Swigert et al., 2015; Kinley et al., 2016). These findings suggest that 

investigators of OSPW toxicity take into account the relative sensitivity of organisms chosen for 

exposure studies, and that care be taken in interpreting results from single species studies. 

Comparison between organic fractions suggested that relative toxicities were partially 

dependent on organism sensitivity. For example, in bitumen-influenced groundwaters where P. 

promelas and H. azteca were sensitive to organics present in F1 (major contribution from the O2 

class), H. azteca and O. latipes were sensitive to polyoxygenated (>O2) organic compounds 

present in F3. Toxicities resulting from whole water exposures revealed that D. magna and L. 

siliquoidea appeared to be sensitive to inorganic elements. Similarly, a study which assessed 

toxicity of OSPW to D. magna found that they possessed lower sensitivity to organic 

components in OSPW compared to fish (McQueen et al., 2017). It is, therefore, important to 

recognize that different bioassays may be useful in assessing toxicity to a narrow range of 

contaminant classes, and that ecosystem health is likely dependent on the action of multiple 

stressors.  

The relative toxicities of organic fractions appeared to be partially due to organic ion classes 

as well as concentration. Studies have identified that O2 species (naphthenic compounds) are 

responsible for the majority of toxicity observed in OSPW (Morandi et al., 2015; Hughes et al., 

2017). Following this line of evidence, we expected F1 to be most toxic fraction, as chemical 
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characterization revealed that the majority of O2 compounds were isolated therein. In bitumen-

influenced groundwater sources where concentrations of O2 compounds present in F1 were 

higher compared to aged OSPW, significant (p ≤ 0.05) toxicity was observed to multiples 

species. However, in the aged OSPW, only F3 (polyoxygenated compounds) appeared to elicit 

significant toxicity, while F1 displayed little to no toxicity overall. The low abundance of 

naphthenic compounds (O2 class) in F1 of aged OSPW may have contributed to low toxicity 

observed in that fraction. These observations strengthen the argument that O2 organic 

compounds are potent toxic drivers. However, in both aged OSPW and sampled groundwaters, 

significant toxicity was also observed for species exposed to F3, suggesting polyoxygenated 

compounds may also be potent drivers of whole water toxicity. It is important to note that 

regardless of toxic potency, contaminant concentration is a critical factor in the relative toxicity 

of ion classes. For example, the absence of toxicity observed in F2 for all bitumen-influenced 

waters tested was likely due to the low concentration of bitumen-derived dissolved organics 

present (<1.5 mg/L). In fractions where significant toxicity was observed, it is difficult to 

ascertain whether ion class or concentration was the greater contributor to toxicity, but we 

suggest that both are important predictors.  

Notable observations were made with regard to possible contaminant interactions in 

OSPW and bitumen-influenced groundwaters. Specifically, in some cases constituents present in 

whole water conferred a reduction in toxicity compared to organic fractions from the same site. 

Whole water treatments were un-fractionated and contained the suite of organic and inorganic 

contaminants present in the water samples, while Recombined treatments contained the 

complement of only isolated organics from each fraction. In general, where significant acute 

toxicity was observed in organic fractions and Recombined treatments, significant toxicity was 
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also observed in whole water. However, there were enough notable exceptions to this 

observation that whole water contaminant interactions warrant further investigation. For 

example, toxicity was observed for P. promelas (DP-5), O. latipes (DP-2), H. azteca (DP-4 and 

DP-5), and V. fischeri (3x concentration: DP-1, 2, 5) exposed to dissolved organic treatments, 

but little to no toxicity was observed in the whole water treatments (Chapters 5). Exposure of 

aged OSPW to P. promelas was the only case where significant toxicity in an organic fraction 

was not also observed in the Recombined fraction (Chapter 3). Therefore, although inorganic 

toxicity was not specifically assessed, it appeared that the inorganics present may be responsible 

for some of the reduction in toxicity observed in whole water treatments. It is possible that the 

presence of salts in the whole waters resulted in precipitation of some of the dissolved organics, 

reducing their overall bioavailability, as has been observed previously for NAs (Headley et al., 

2011a; Celsie et al., 2016). It is also possible that contaminant interactions such as binding to 

larger humic/fulvic acids reduced overall bioavailability of bioactive components, resulting in a 

reduction in whole water toxicity. 

 

7.3. Evaluation of Oil Sands Contaminant Source 

A major concern for the oil the sands industry is the unintentional release of OSPW 

contaminants into the environment. This contaminant pathway and fate occurs in different forms. 

Unintended release can occur through seepage of OSPW from tailings impoundments. This 

contaminant pathway was the scenario under investigation when evaluating groundwater 

chemical and toxicological characteristics (Chapters 4 and 5). The results of this investigation 

suggest that the chemical nature of OSPW can be modified by existing hydrogeology and is 

highly dependent on the natural conditions in close proximity to tailings the seep. Moreover, the 
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OSPW- and natural-influenced sites displayed similar toxicities to those influenced only by 

naturally occurring bitumen deposits (Chapter 5). Also, underlying groundwater hydrology 

affected one of the sample sites (DP-4) which in previous collection years displayed evidence of 

OSPW (Frank et al., 2014; Hewitt et al., 2018). In the collection year for the present study, the 

sampling appeared to miss the tailings plume as no evidence of OSPW, or any bitumen organic 

signature, was detected. This site displayed the lowest observed toxicity to all bioassays 

compared to other groundwaters sites assessed (Chapter 5). Consequently, the toxicity associated 

with the groundwaters sampled herein appears to be a result of bitumen influence, but is not 

wholly dependent on bitumen source. 

As part of the provincial government’s mandated reclamation of oil sands lease sites 

(Government of Alberta, 2017), industry operators’ wet landscape reclamation strategy involves 

decommissioning of active tailings ponds (Alberta Environment, 2007). One approach is the 

connection of sufficiently aged tailings ponds to natural surface water systems in the region 

(Allen, 2008; Dixon, 2015). This scenario represents an intended contaminant release into the 

ecosystem for which temporality affects the chemical and toxicological nature of OSPW. This 

contaminant pathway was the purpose for investigation of an aged OSPW source described 

herein (Chapters 2 and 3). The results of the investigation suggest that OSPW aging may be a 

viable strategy for the reduction of toxicity associated with some dissolved organic compounds. 

Various studies have identified that biodegradation of lower molecular weight, less recalcitrant 

organics results in a predominance of compounds with higher carbon number, cyclicity, degrees 

of oxygenation, and greater degree of branching (Clemente et al., 2004; Scott et al., 2005; 

Bataineh et al., 2006; Smith et al., 2008; Han et al., 2009). These findings are consistent with our 

observation that the aged OSPW source contained organics with a higher degree of oxygenation 
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(Chapter 2) compared to fresh tailings sources (Bartlett et al., 2017). Furthermore, we compared 

chemistry data from the aged OSPW source assessed herein (aged 18 years at collection) to a 

study which had previously characterized the same aged OSPW source (aged 12 years at 

collection) (Siwik et al., 2000). This comparison revealed that with an additional 6 years of 

aging, the chemical composition displayed a shift to more oxygenated AEO ions and a reduction 

in organic compound concentrations, consistent with biodegradation of OSPW (Bataineh et al., 

2006; Han et al., 2009). Nonetheless, although toxicological evaluation displayed very low 

toxicity to all organisms in F1 and F2, toxicity was observed in F3 (P. promelas) which 

contained more oxygenated organics (Chapter 3). Additionally, two invertebrate organisms (H. 

azteca and L. cardium) displayed sensitivity to only whole aged OSPW, suggesting toxicity was 

associated with inorganic components. Therefore, the success of the wet landscape reclamation 

strategy is likely dependent on a reduction of some ployoxygenated organic classes as well as a 

reduction in inorganic components.  

 

7.4. Risk Assessment of Tailings AEO 

In order to evaluate the potential risk associated with acid-extractable organics (AEO) to the 

aquatic environment, an ecotoxicological risk assessment was conducted. The determination of 

risk requires the characterization of exposure and effects. This was accomplished by an extensive 

literature review and screening of relevant data (Chapter 6). Review of AEO exposure resulted in 

the compilation of 46 individual measurements, over a 10-year period (2004-2014) from at least 

7 different fresh OSPW sources. AEO concentration encompassed a range from 17.4 – 104 

mg/L. A generated exposure distribution plot predicted that an AEO concentration of 87.1 mg/L 

would be present in 10 percent of tailings environments. Screening of toxicological data relating 
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to AEO effects compiled median lethal concentration (LC50) data from 11 different species. In 

general, fish embryo bioassays were more sensitive than invertebrate organisms, resulting in 

separate assessments for each. After separating fish and invertebrate data, generated effects 

distribution plots predicted AEO concentrations of 5.5 mg/L and 19.6 mg/L respectively, to be 

protective of 90 percent of species. When a combined probability distribution of exposure and 

effects was evaluated, the probability of effecting 10 percent fish and invertebrates was 100% 

and 97.7%, respectively.  

According to the ecotoxicological risk assessment, AEO in fresh tailings presents a very 

high risk to the natural environment at the concentrations described. It is important to understand 

that the level of risk may only apply to scenarios where a failure in a tailings dyke occurs, a 

tailings pond is connected to natural surface waters without prior aging, or organisms are 

introduced into a tailings environment. Moreover, the predicted risk does not account for dilution 

of AEO from surface or groundwaters. Another important consideration is the possibility that 

species indigenous to the Athabasca oil sands region may have developed tolerance to 

bituminous compounds. Constant exposure to low levels of natural bitumen input into the 

environment may have selected for organisms more tolerant than lab-reared organisms to 

bitumen-derived AEO over time. In general, although AEO present a high risk to aquatic biota, 

predictions derived herein may overestimate the risk as it pertains to current tailings reclamation 

strategies, which likely include aging and dilution of tailings OSPW. 

 

7.5. Future Research 

Beyond groundwater and aged OSPW, there is merit in evaluating toxicities associated with 

fractions from fresh OSPW, OSPW from different industry operators, and OSPW-influenced 
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surface waters. A more comprehensive assessment of the heterogeneity between OSPW sources 

as well as OSPW influence in surface waters would aid in the development of overall 

contaminant transport and fate models.  

Determining drivers of toxicity in OSPW is a primary concern for the oil sands industry 

operators and regulators. Results from chemical characterization presented here have identified 

the most bioactive components in aged OSPW and bitumen-influenced groundwaters to be 

present in F1 and F3. Although O2 and O4 dissolved organic species predominated in F1 and F3, 

respectively, the fractions were composed of an abundance of other species making it difficult to 

determine the degree to which toxicity was a result of additive interactions. Therefore, suggested 

future research should involve sub-fractionation of F1 and F3 to further isolate organic species 

therein. This could remove confounding interactions and allow for more accurate determination 

of toxic drivers. 

The work presented in this thesis suggests that primary drivers are highly dependent on the 

species to which OSPW is exposed. The present thesis has identified P. promelas and H. azteca 

as species that are particularly sensitive to bitumen-derived dissolved organics, while D. magna 

and L. siliquoidea appeared to display sensitivity to inorganic components. Therefore, future 

research should consider further assessment of sentinel species for prediction of OSPW-

associated toxicity in aquatic environments. These may include organisms particularly sensitive 

to organic or inorganic components, but ultimately provide for greater ecosystem protection.  

In summation, for those organisms that display sensitivity to dissolved organics in OS 

waters, aging by natural biodegradation appears to be a viable strategy. Moreover, industrially-

influenced groundwaters do not appear to pose a greater risk to aquatic organisms than 

groundwaters influenced by naturally-derived bitumen. Nonetheless, due to invertebrate 
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sensitivities to inorganic components of OSPW and toxicity observed by some organisms to 

polyoxygenated organics, a strategy to deal with these bio-persistent compounds warrants 

investigation. Furthermore, observed whole water toxicities indicate that toxicity appears to be 

mitigated by contaminant interactions in some cases. Therefore, investigations into bitumen-

derived contaminant interactions could better predict environmental risk. 
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Appendices 

 

Appendix A 

 

A1: Description of Analytical Chemistry Instrument Parameters 

ESI-HR/MS parameters 

 An LTQ Orbitrap Elite (Thermo Fisher Scientific) instrument was used for ESI-HRMS 

analysis with a pre-defined 5-point regression of OSPW-derived organic acids at known 

concentrations used to determine resulting AEO concentrations. Operating in full scan negative-

ion mode, the mass spectrometer ran at an m/z scan range of 100-600. Achieved resolution at 

m/z 120 = 240000, m/z 210 = 185000, m/z 300 = 150000, and m/z 400 = 130000, and all of the 

ions were in the m/z 100 to 300 range in which the resolution ranged from 240000 to 150000. 

The mass accuracy was <2 ppm error for all mass assignments. Operating parameters were as 

follows; sheath gas flow rate 25 (arbitrary units), spray voltage 2.90 kV, auxiliary gas flow rate 5 

(arbitrary units), S lens RF level 67%, heater temperature 50°C, and capillary temperature 

275°C. Infusion solvent used was 50:50 acetonitrile:water containing 0.1% ammonium 

hydroxide at a flow rate of 200 µL/min. Software used for molecular analysis was Xcalibur v 2.1 

(Thermo Fisher Scientific) and Composer v 1.0.2 (Sierra Analytics, Inc.). 

 

LC-QToF parameters 

 All LC-QToF/MS analyses utilized a methanol mobile phase and required that all 

samples were dissolved in methanol. Therefore, all water samples and EtOAc fraction (F1) 

aliquots were rotary evaporated and subsequently brought to just-dryness with a N2 bath. 
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Samples were then brought back up to appropriate volumes in MeOH. The analysis was carried 

out in full scan negative ion mode (mass range 100-980) using an LCQToF 6520 (Agilent 

Technologies, Santa Clara, California, USA) under these conditions:  Gas temp 350°C, drying 

gas 10 L/min, nebulizer 35 psi, VCap 3000 V, Fragmentor 130 V, Skimmer 65 V, reference mass 

recalibration enabled.  The LC conditions were as follows:  Column Poroshell 120 EC-C18, 3.0 

x 50 mm 2.7 µm, Solvent A Water (0.1 % formic acid), Solvent B Methanol (0.1% formic acid), 

initial conditions 95% A for 2 minutes, to 100 % B at 20 minutes, hold until 30 

minutes.  Samples were injected with 1 µL of labelled internal standard (9-anthracene-d9-

carboxylic acid, 84.4 pg/µL and Decanoic-d19 acid, 390 pg/µL) . 

 

GC-MS/MS parameters 

 All GC-MS/MS analyses required that samples were dissolved in toluene because the 

procedure utilized a toluene mobile phase. Therefore, all water samples were brought to just-

dryness with a rotary evaporator and N2. Samples were then brought back up to appropriate 

volumes in toluene. The analysis was carried out in electron impact (EI) full scan mode (mass 

range m/z 50-500) using a GC 7000 QQQ system (Agilent Technologies, Santa Clara, California, 

USA).  A 1 µL injection was made into a multimode inlet at 270°C into a 30 m DB5 column 

(Agilent).  Oven was at 90°C for 0.5 minutes, ramped to 300°C at 40°C/minutes with a 5 minute 

hold. 

 

SFS parameters 

 Synchronous fluorescence spectra were recorded with a Perkin–Elmer Luminescence 

Spectrometer LS50B. Samples were filtered through a washed 0.2 µ filter (Millipore) before 
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fluorescence analysis to remove particulates and were scanned in a 1 cm quartz cuvette with 

PTFE stopper (Hellman, Concord, ON, Canada) at 20°C. All data were collected using FL 

WinLab 3 software (Perkin–Elmer, Norwalk, CT). The wavelength difference between the 

excitation and emission monochromators (Dk) was optimized by measuring the spectra of dilute 

NAE at various offset values (10–60 nm). The recommended Dk of 18 nm (Miano et al., 1988; 

Peuravuori et al., 2002) was chosen and synchronous fluorescence spectra were collected in the 

250–400 nm excitation wavelength range. Excitation and emission monochromator slit widths 

were set at 5 nm, scan speed at 50 nm min-1 and resolution at 0.5 nm. The spectra were blank 

corrected with Milli-Q water and then smoothed with a 5-point averaging adjacent method using 

Origin software ver. 7.5 (OriginLab Corp., Northampton, MA). 

 

Metals and salts parameters 

 Total and dissolved metals were analyzed at Environment and Climate Change Canada’s 

National Laboratory for Environmental Testing (NLET) (Burlington, ON) using Inductively 

Coupled Plasma-Sector Field Mass Spectrometry. (SOP 2003 - Standard Operating Procedure for 

the Analysis of Dissolved, Extractable and Total Trace Metals in Water by “Direct Aspiration” 

or “In Bottle Digestion” Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-

SFMS; NLET 2008). The analysis of anions was performed by ion exchange chromatography 

with conductivity detection (NLET Method 01-1080). The analysis of cations was performed by 

direct aspiration using atomic absorption (NLET Method 01-1061). 
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A2: AEO recovery with re-use of five different adsorbent resins from 30 mL of OSPW and 60 

mg resin. 

 

 

A3: LC-QToF spectra displaying full procedural method blank wherein OSPW was substituted 

with DI water. Fractions F1 (light blue), F2 (orange), and F3 (dark blue) show no appreciable 

counts about the solvent blanks (red). 
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A4: Aged OSPW repeatability test displaying LC-QToF chromatograms of fractions F1 (blue), 

F2 (green), and F3 (red). 

 

 

A5: Metals and major ions analysis of pre- and post- fraction water samples. 

  Sample 

Metals unaltered Pre-Stage 1 Stage 1 filtrate Pre-Stage 2 Stage 2 filtrate 

Calcium  2.06 1.6 1.61 1.62 1.61 

Magnesium  0.62 0.6 0.59 0.6 0.59 

Sodium 12.2 18 17.6 17.6 17.4 

Potassium  0.34 0.38 0.38 0.38 0.38 

Silica 0.17 0.21 0.19 0.17 0.18 

        

Major 

Ions       

Fluoride 0.1 0.1 0.09 0.1 0.1 

Chloride 7.88 7.72 7.65 29.7 29.5 

Phosphate <0.07 <0.07 <0.07 <0.07 <0.07 

Sulfate 2 2.41 2.01 1.97 1.94 

Bromide <0.07 <0.07 <0.07 <0.07 <0.07 

Nitrate 0.09 0.09 0.1 0.09 0.1 

Nitrite <.006 <.006 <.006 <.006 <.006 
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A6: ESI-HRMS mass/charge spectra of F1-3 for aged OSPW. 
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A7: GC-MS/MS ion chromatograms of counts vs. acquisition time for F1 (blue), F2 (green), F3 

(red), Pre-Stage 1 (purple), Post-Stage 1filtrate (dark red), Pre-Stage 2 (brown), Post-Stage 2 

filtrate (dark blue), final filtrate (orange) and method blanks (black). Figure (b) is a magnified 

version of Figure (a). 



 221 

 

 

 

A8: LC-QToF spectra of post-Stage 2 filtrate (dark blue) show only a slight increase in organic 

content compared to the method blank (black). 
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Appendix B 

B1: Bioassay Procedures 

Pimephales promelas embryo tests  

Bioassays of P. promelas (fathead minnow) embryos were conducted at Environment and 

Climate Change Canada’s (ECCC) Aquatic Life Research Facility (Burlington, ON) under 

Animal Use Protocol # 1510, approved by the Animal Care Committee (operated under the 

approval of the Canadian Council of Animal Care). The embryo tests were performed in 

environmental chambers to control temperature, light, and humidity (25 °C, 16 h light: 8 h dark, 

60 % humidity). Embryos were exposed using daily static renewal methods in 24-well cell 

culture plates (Falcon, Becton, Dickenson and Co., New Jersey, USA), following the method of 

Marentette et al. (2015a).  

Test solutions of OSPW or OSPW fractions were prepared 18-24 h prior to experiments 

starting. Fractions were prepared from stock solutions described previously and test solutions 

were renewed daily. Controls included water controls, as well as solvent controls for 1x fractions 

(1x whole water equivalents), and the Recombined treatment. Lab dilution water for the extracts 

was dechlorinated charcoal filtered, UV sterilized, Lake Ontario water.  

Newly fertilized P. promelas embryos were purchased from Aquatox Laboratories (Guelph, 

ON). The eggs used in testing had been fertilized < 18 h before the start of the exposure. Eggs 

from ≥ 4 breeding groups were used to begin each replicate, with three replicate plates per 

treatment, 6 replicate plates for solvent controls, and at least nine replicate plates for water 

controls.  Plates contained 24 embryos, one per 2-mL well. All embryo examinations and 

solution changes were performed in the 25 °C environmental chamber to ensure consistent 

temperatures throughout the daily manipulations.  Embryos were assessed and moved to new 
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plates containing fresh test solutions daily. Any dead embryos were removed from plates. At 2 

days post fertilization, 5 embryos per plate were removed and videotaped to count heart rates, 

after which they were returned to their test well. Embryos began to hatch at 4-5 days post-

fertilization embryos, and time of hatch was noted for each. Hatched embryos were euthanized 

and abnormalities, hatch success, and length (measured on a dissecting microscope) were 

assessed. Abnormalities assessed at hatch included edemas and circulatory problems (necrosis, 

cardiac edema, yolk edema, bubbles under skin, hemorrhages, and others such as tube heart), 

craniofacial abnormalities (small face, eye edema, or other jaw deformities), and spinal 

abnormalities (lordosis or “belly out”, kyphosis or “belly in”, scoliosis or “bent to the side”, bent 

tail fin, or others). 

 

Oryzias latipes tests 

A breeding culture of O. latipes (Japanese medaka) were established to provide the embryo 

necessary for toxicity testing following conditions outlined in USEPA (United States 

Environmental Protection Agency) protocols (USEPA, 1991). Sexed O. latipes adults were 

purchased from Aquatic Research Organisms in Hampton, New Hampshire, and held in the 

wetlab facility on the University of Waterloo campus.  All culturing procedures were approved 

by the institutional animal review board and Animal Care Committee at the University of 

Waterloo (UW-ACC) under Animal Use Protocol #14-08.  

Embryos were collected from females the morning of test initiation by gently removing 

them from the oviduct with blunt forceps. Embryos were then examined under a dissecting 

microscope and unfertilized embryos were removed. Medaka embryos at the late blastula stage 

were exposed to a water control, solvent control, positive control, whole Aged OSPW water, 
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three Aged OSPW fractions (F1 – F3), and the Recombined treatment. Culture water was used 

for control and to prepare solvent control, positive control and fractions. Fractions, Recombined 

treatment, and solvent control were prepared from stock solutions as described previously. The 

positive control consisted of 4 mg/L 3,4-dichloroaniline dissolved in control water. All treatment 

stocks were adjusted to pH 8.0 ± 0.1 and stored in amber glass bottles in the dark. Each treatment 

consisted of 3 replicates with 10 individuals per replicate. Embryo were placed in Falcon™ 6-

well tissue culture plates and filled with 10 mL of respective treatment, which was renewed 

daily. Water quality parameters including dissolved oxygen, conductivity, and temperature were 

checked daily, and pH was adjusted if necessary. Tissue culture plates were placed on a shaker 

set to 100 rpm in order to synchronize and shorten hatch time (Farwell et al., 2006). The shaker 

was kept in a growth chamber (Conviron®, Winnipeg, MB) with temperature held at 27 ± 1°C 

and the photoperiod was held at 16 light: 8 dark. Assessments of hatch success, time-to-hatch, 

hatch length, and abnormality endpoints were made twice daily and tests were terminated upon 

hatch (≤10 days post-fertilization). Following inspections any dead embryo were removed. Hatch 

length and abnormality measurements were performed using a light microscope. Abnormalities 

assessed included pericardial and yolk sac edema, cranio-facial abnormalities, tube heart, 

hemorrhages, fin erosion, and spinal curvature. 

 

Vibrio fischeri (Microtox®) 

The Microtox® assay assesses the effect of toxicants on the bioluminescence (as an 

indicator of survival/viability) of the marine bacterium Vibrio fischeri, which was adapted from 

Environment Canada protocols (Environment Canada, 1992). The deviation from the standard 

protocol, which analyzes a serial dilution of the test mixture and results in a generated IC50: the 
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inhibitory concentration at which 50% in luminescence of bacteria is reduced (Azur 

Environmental, 1995), can be utilized to allow for time- and cost-effective screening of large 

sample sets (Anderson et al., 2015). In brief, V. fischeri bioluminescence was measured using a 

Microbics M500 Analyzer, before and after exposure to the aged OSPW and the isolated 

fractions. V. fischeri bioluminescence was measured in triplicate at 81% original concentration 

for the aged OSPW (required addition of osmotic adjusting solution to attain 2% salinity) and at 

3x whole water equivalent for F1-3 as well as the Recombined treatment (fraction salinity at 

2%). V. fischeri bioluminescence following 15 min of exposure to each test solution was 

compared to the control and is presented as the mean percent of control. 

 

Daphnia magna tests 

Daphnia magna culturing and test parameters were adapted from Environment Canada and 

Ontario Ministry of the Environment (MOE) protocols (Environment Canada, 1996; MOE, 

2014). 48h acute lethality assays were conducted with seven treatments per site: a water control, 

solvent control, unaltered Aged OSPW, F1-3, and a Recombined fraction treatment. Fractions, 

Recombined treatments, and solvent controls were prepared as described previously for bioassay 

treatment preparation.  

Each test was conducted twice with 3 replicates for controls and 2 replicates for the whole 

water, F1-3, and Recombined fraction test solutions (e.g. a total of 6 replicates for controls and 4 

replicates for whole water and fractions). For each test vessel, 10 D. magna neonates, <24 h old, 

were placed into each 250-mL beaker containing 150 mL of control or treatment solution. After 

48 h, the number of living Daphnia, defined as visibly mobile, and water quality parameters 

were recorded.  Temperature was maintained at 20° ± 2° C, pH was maintained at 8.0 ±0.2, and 
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light intensity was maintained at 400-800 lux with a photoperiod of 16 h light: 8 h dark. 

Control/dilution water consisted of aerated, dechlorinated municipal water which was left to 

settle for >24 hours. Dissolved oxygen content of control water prior to test initiation was 8.3 

mg/L.  

 

Lampsilis siliquoidea and Lampsilis cardium (glochidia) tests  

Gravid freshwater mussels (Lampsilis siliquoidea, fatmucket clam; Lampsilis cardium, plain 

pocketbook) were collected from a reference site (43.71775, -81.12662) and held at ECCC’s 

Aquatic Life Research Facility (Burlington, ON) in a flow-through system with dechlorinated 

Lake Ontario water at 12 ± 2oC (to prevent the glochidia release).  Glochidia for toxicity tests 

were collected by flushing the marsupia (i.e., brooding chambers) with a water-filled syringe.  

Acute toxicity tests with glochidia were modeled after the American Society of Testing 

Materials (ASTM) method for conducting toxicity tests with early life stages of freshwater 

mussels (ASTM, 2006) and have been described in detail (Gillis, 2011).  In order to parasitize a 

fish, glochidia must be able to close their valves and clamp down on a fish’s gill and encyst.  

Glochidia viability (i.e., the ability to close valves) was assessed after 24 h in a sub-sample 

(~100) of the exposed glochidia (500-1000) through the addition of a saturated salt solution 

(NaCl 240 g/L).  Viability was calculated using the following equation:  

Percent Viability = 100 x (Number of closed glochidia after addition of NaCl – Number 

of closed glochidia before addition of NaCl) / (Number of closed glochidia after addition of 

NaCl + Number of open glochidia after addition of NaCl).  

Results are expressed as effective median concentrations (EC50) rather than median lethal 

concentrations (LC50), but as they are obligatory parasites, for practical purposes non-viable 
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glochidia should be considered ‘dead’ because they would be unable to attach to a host and 

complete their life cycle.  As per the ASTM method, glochidia were pooled from three or four 

gravid females that exhibited >90% glochidia viability.   

Because glochidia have a heightened sensitivity to some contaminants, in addition to a 

moderately-hard reconstituted water control (Gillis et al., 2008; Gillis, 2011), solvent controls at 

0.1 and 0.3% methanol were included in each test to represent the concentration of solvent in a 

single fraction exposure and a Recombined (all three fractions) treatment, respectively. Five 

control replicates and four replicates for remaining treatments were conducted. Tests were 

conducted in 250-mL glass beakers, under a 16 h light: 8 h dark cycle at 21 ± 2oC. Dissolved 

oxygen, pH, and conductivity were measured at the beginning and end of each test. Dissolved 

organic carbon (DOC), water hardness, and major ions concentrations (Na, K, Ca, Cl, SO4) were 

assessed at the end of each test (t=48 h) in one composite sample per treatment. Water analysis 

(major ions, DOC, hardness) was conducted by the Canadian Association for Environmental 

Analytical Laboratories accredited NLET (Burlington, ON, Canada) following ECCC standard 

operating procedures.   

 

Hyalella azteca tests 

Culturing methods for Hyalella azteca (freshwater amphipod crustacean) have been 

described in detail (Borgmann et al., 1989). Both cultures and tests were maintained at 25 °C ±1 

with a photoperiod of 16 h light: 8 h dark, and amphipods were fed finely ground Tetra-Min fish 

food flakes (Tetra GMBH, Melle, Germany). Juvenile H. azteca were removed from breeding 

containers weekly, and were 2-9 d old at initiation of tests. 



 228 

 

One-week, static, water-only tests were conducted with aged OSPW, F1-3, and Recombined 

treatments. An initial set of tests was conducted with six OSPW dilutions ranging from 2.5-

100%. Based on these results, additional tests were conducted with fractions of the OSPW at 1x 

whole water-equivalent concentrations, both as individual and Recombined fractions. Standard 

artificial media, a five-salt solution routinely used to culture amphipods (Borgmann, 1996), was 

used in all exposures as negative controls and to prepare solvent controls and test solutions. 

Fifteen juvenile H. azteca were added to 250-mL glass beakers containing 200 mL of test 

solution, 2.5 mg Tetra-Min, and one piece of cotton gauze (2.5 cm2). Each test consisted of 

negative controls (3 replicates), solvent controls (for fraction exposures only, 3 replicates), and 

OSPW solutions (whole water and fractions, 2 replicates each). Each exposure was conducted 

twice (i.e., a total of 6 replicates for controls and 4 replicates for whole water and fractions). 

Water quality (dissolved oxygen, pH, conductivity, chloride, and total ammonia (NH3/NH4
+)) 

was measured at the beginning and end of each test. H. azteca individuals were removed from 

each beaker at the end of the 7-d test, and the number of surviving animals was recorded. Mean 

survival of controls in all tests was 93-100%, exceeding the recommended performance criteria 

of 90% for 96-h water-only tests (Environment Canada, 2013). 
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Fathead minnow sub-lethal endpoints 

 

 
B1: Effects of aged OSPW whole water and fractions on fathead minnow percent abnormalities 

endpoint. Bars represent mean effect ± standard error.  Asterisk (*) denotes treatments that are 

significantly different from pooled controls. 

 

 

 

 
B2: Effects of aged OSPW whole water and fractions on fathead minnow length at hatch 

endpoint. Error bars represent standard error. Asterisk (*) denotes treatments that are 

significantly different from pooled controls. 
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B3: Effects of aged OSPW whole water and fractions on fathead minnow time-to-hatch 

endpoint. Bars represent mean effect ± standard error.  

 

 

 

 
B4: Effects of aged OSPW whole water and fractions on fathead minnow embryonic heartrate 

endpoint at two days post-fertilization. Bars represent mean effect ± standard error. Asterisk (*) 

denotes treatments that are significantly different from pooled controls. 
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Japanese medaka sub-lethal endpoints 

 

 
B5: Effects of aged OSPW whole water and fractions on Japanese medaka length at hatch 

endpoint. Bars represent mean effect ± standard error. Asterisk (*) denotes treatments that are 

significantly different from pooled controls. 

 

 

 

 
B6: Effects of aged OSPW whole water and fractions on pooled percentage normal Japanese 

medaka at hatch.   
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B7: Effects of aged OSPW whole water and fractions on Japanese medaka time-to-hatch 

endpoint. Bars represent mean effect ± standard error. Asterisk (*) denotes treatments that are 

significantly different from pooled controls.  
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Appendix C 

C1: Class distribution of whole water and dissolved organic fractions in sites DP-1, DP-2, DP-4, 

and DP-5 as determined by ESI-HRMS. Graphs present ion classes (x-axis) versus percent 

relative abundance of ions (y-axis). 

Duplicate figure from Chapter 4 (Figure 4.4) 

 


