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Abstract

We discuss classifications of UV complete supersymmetric theories in six dimensions, and (spin-
)topological field theories admitting a finite global symmetry and possibly time-reversal symme-
try in three dimensions. We also discuss a generalization of finite global symmetries and their
gauging in two dimensions.

First, we start with LSTs which are UV complete non-local 6D theories decoupled from grav-
ity in which there is an intrinsic string scale. We present a systematic approach to the construction
of supersymmetric LSTs via the geometric phases of F-theory. Our central result is that all LSTs
with more than one tensor multiplet are obtained by a mild extension of 6D superconformal field
theories (SCFTs) in which the theory is supplemented by an additional, non-dynamical tensor
multiplet, analogous to adding an affine node to an ADE quiver, resulting in a negative semidef-
inite Dirac pairing. We also show that all 6D SCFTs naturally embed in an LST. Motivated by
physical considerations, we show that in geometries where we can verify the presence of two
elliptic fibrations, exchanging the roles of these fibrations amounts to T-duality in the 6D theory
compactified on a circle.

Second, we study the interpretation of O7+-planes in F-theory, mainly in the context of the
six dimensional models. In particular, we study how to assign gauge algebras and matter con-
tents to seven-branes and their intersections, and the implication of anomaly cancellation in our
construction, generalizing earlier analyses without any O7+-planes. By including O7+-planes
we can realize 6d superconformal field theories hitherto unobtainable in F-theory, such as those
with hypermultiplets in the symmetric representation of special unitary gauge algebra. We also
examine a couple of compact models. These reproduce some famous perturbative models, and
in some cases enhance their gauge symmetries non-perturbatively.

Third, we argue that it is possible to describe fermionic phases of matter and spin-topological
field theories in 2+1d in terms of bosonic ”shadow” theories, which are obtained from the orig-
inal theory by ”gauging fermionic parity”. The fermionic/spin theories are recovered from their
shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated
by quasi-particles with fermionic statistics. We apply the formalism to theories which admit
gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of
fermionic phases of matter. We describe the group structure of fermionic SPT phases protected
by the product of fermion parity and internal symmetry G. The quaternion group makes a surprise
appearance.

Fourth, we generalize two facts about oriented 3d TFTs to the unoriented case. On one hand,
it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum
construction known as the Turaev-Viro construction. This is related to the string-net construction
of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to
unoriented 3d TFTs. On the other hand, it is known that the ”fermionic” versions of oriented
TFTs, known as Spin-TFTs, can be constructed in terms of ”shadow” TFTs which are ordinary
oriented TFTs with an anomalous Z2 1-form symmetry. We generalize this correspondence to
Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with
anomalous Z2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The
corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and
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hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits
a topological boundary condition, one can combine the above two statements to obtain a Turaev-
Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class
of Pin+-SPT phases.

Finally, we recall that it is well-known that if we gauge a Zn symmetry in two dimensions,
a dual Zn symmetry appears, such that re-gauging this dual Zn symmetry leads back to the
original theory. We describe how this can be generalized to non-Abelian groups, by enlarging the
concept of symmetries from those defined by groups to those defined by unitary fusion categories.
We will see that this generalization is also useful when studying what happens when a non-
anomalous subgroup of an anomalous finite group is gauged: for example, the gauged theory can
have non-Abelian group symmetry even when the original symmetry is an Abelian group. We
then discuss the axiomatization of two-dimensional topological quantum field theories whose
symmetry is given by a category. We see explicitly that the gauged version is a topological
quantum field theory with a new symmetry given by a dual category.
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Chapter 1

Introduction

In this thesis, our operational definition of a quantum field theory is any relativistic quantum
mechanical theory in the absence of dynamical gravity. Thus, it is a matter of extreme importance
to understand quantum field theories. Even before trying to understand QFTs, one might ask:
What is the space of QFTs? It turns out that even this zeroth order question is an extremely
challenging one to answer.

Recently, a lot of progress was made on this question on two fronts. In the rest of this intro-
ductory chapter, we will provide an overview of these two developments which should be acces-
sible to non-experts. The other chapters of the thesis will record the technical work performed
by the author as a part of these developments. Each subsequent chapter will be accompanied by
its own introductory section addressed to the experts.

1.1 6d supersymmetric QFTs

On one front, people made progress by restricting their attention to six-dimensional supersym-
metric UV complete QFTs. UV completeness of a QFT means that the QFT describes physical
processes at all energy scales. It is typically assumed because it is extremely restrictive. The cri-
terion of UV completeness drastically cuts down the space of QFTs one needs to explore. This
was a lesson learned from the famous renormalization program of the last century. Supersymme-
try is assumed in order to provide a strong computational control on the quantum fluctuations in
the theories under consideration because supersymmetry forces quantum fluctuations of bosonic
degrees of freedom to cancel against the quantum fluctuations of fermionic degrees of freedom.

To simplify the problem further, we could imagine considering only those theories in which
physical phenomena happening at different energy scales are the same. In other words, we would
like to consider theories in which the physics is not a function of the energy scale at which we
probe the system. Such QFTs are called conformal field theories (CFTs). Such theories occupy
a very small subspace of the space of QFTs. Flipping this statement around, we can now think
of QFTs as deformations of CFTs. Thus the problem of understand QFTs essentially boils down
to first understanding the space of CFTs and then understanding the space of deformations of
CFTs.
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Now, it is a general expectation that the space of QFTs gets smaller as one increases spacetime
dimension. The reasoning is that starting from a higher dimensional QFT, one can in principle
obtain myriad of lower dimensional QFTs by compactifying some of the space directions on a
compact manifold of very small size. However, it is known that the maximal spacetime dimen-
sion in which a SCFT can exist is six. So one obtains the most amount of restrictions when one
looks for six-dimensional SCFTs.

One very successful strategy for constructing 6d SCFTs is via compactifications of F-theory.
F-theory is a name used to describe a certain class of non-perturbative vacua of type IIB string
theory in which the axion and dilaton obtain space dependent vevs. The vacua can be described
by means of an elliptic fibration over physical space, thus making the effective spacetime dimen-
sion twelve.

To construct 6d SCFTs, one compactifies F-theory on a non-compact elliptically fibered
Calabi-Yau threefold with the intersection pairing of 2-cycles in the base being positive defi-
nite. Thus the classification of 6d SCFTs boils down to classification of such Calabi-Yaus. This
classification was performed in [9, 10] by assuming additional input from anomaly cancellation
in the resulting 6d QFT. The authors hoped that the actual list of such Calabi-Yaus would exactly
match the list obtained using anomaly cancellation without any mismatch.

Now it turns out that there exists a class of supersymmetric UV complete QFTs in six di-
mension whose low-energy physics is described by 6d SCFTs. Unlike 6d SCFTs, these theories
are non-local because they do not distinguish between a circular dimension of radius R and a
circular dimension of radius 1/R. In particular, if one tries to compactify these theories on a
small circle, one obtains again a six dimensional theory rather than a five dimensional theory.
Since this property is shared by string theory as well, these theories are called supersymmetric
little string theories (or LSTs).

One can construct 6d LSTs by compactifying F-theory on a non-compact elliptically fibered
Calabi-Yau threefold with the intersection pairing of 2-cycles in the base being positive semi-
definite (but not positive definite). This classification was performed in [1] and is described in
Chapter 2 below.

A twist in the above story came when it was realized that upon comparing the list of theories
obtained via F-theory with the list of theories obtained via other methods of classification [11],
there were some theories missing in the F-theoretic classification. The situation was particularly
disturbing because the missing theories could be constructed via type IIA string theory which is
supposed to be dual to F-theory. Thus if F-theory could not reproduce these theories, it would be
a big conundrum.

It was soon realized that the above F-theoretic classifications assumed that one is dealing
with F-theory compactifications which do not involve frozen singularities, or O7+ planes in
type IIB language. Incorporating frozen singularities into the machinery of F-theory turns out
not be straightforward and many of the nice properties enjoyed by F-theory compactifications
without frozen singularities is not shared by compactifications with frozen singularities. The
incorporation of frozen singularities is the subject of Chapter 3 where it is also shown how to
reproduce the missing theories via such compactifications.
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1.2 3d topological field theories

On the other front, people restricted their attention to topological field theories (or TFTs) in two
and three dimensions. TFTs are structurally even simpler than CFTs because they enjoy much
more spacetime symmetry. The data of CFTs is insensitive to the size of the spacetime manifold
but the data of TFTs is insensitive to any topological deformation of the spacetime manifold.

This seems to imply that TFTs should be trivial because there could be no spacetime de-
pendence in the expectation values of local observables. However, most of the interesting data
of TFTs is captured in the expectation values of non-local observables which are defined over
a non-zero dimensional locus in spacetime. These observables are also referred to as defects.
Defects in TFTs capture properties of spacetime manifold as they can wrap around non-trivial
cycles in spacetime. Even more refined data is captured by junctions between defects which can
be thought of as defects living inside defects. Of course, one can obtain even finer information
by considering defects living inside defects living inside defects, and so on. Given this nested
structure of non-local observables, it pays to restrict to low-enough dimensions where the nesting
structure could be handled more easily.

The properties of line defects in TFTs are captured by the data of a fusion category possibly
enriched by other structures on the category. In this language, the line defects are recognized as
objects of teh category and local operators living at the junction of two line defects are recognized
as morphisms between the corresponding objects in the category. Two line defects can be brought
together and converted into a single line defect via topological deformations. This makes the
category into a fusion category.

The extra structure needed to describe line defects in a 3d TFT is that of braiding which
captures properties of lines as they wind around each other in three dimensional spacetime. The
correct mathematical structure turns out to be that of a modular tensor category. However, Turaev
and Viro [12] presented a construction of 3d TFTs based on the data of a spherical fusion category
which does not admit a braiding structure.

This puzzle was resolved in [3] where it was argued that the fusion category of Turaev and
Viro is actually describing lines on a topological boundary of the 3d TFT. Since the boundary
is two dimensional, the lines living on it do not require a braiding structure and hence it makes
sense. The Turaev-Viro prescription for obtaining partition function of the 3d TFT was also
obtained using abstract principles of TFTs. Thus, one converts the problem of classififying 3d
TFTs to the problem of classifying spherical fusion categories. One can restrict to those 3d TFTs
which admit an inverse TFT in the sense that taking a direct product of the two TFTs gives rise
to a trivial TFT. In this case, it is easy to classify the corresponding spherical fusion categories.
In [3], a prescription was also given to obtain the data of a 3d spin-TFT from the data of a 3d
TFT with an anomalous Z2 symmetry and vice-versa. A spin-TFT is a TFT which requires a
choice of spin structure on the spacetime manifold to be well defined. Thus spin-TFTs can be
thought of as TFTs with fermionic degrees of freedom. Using all of the above, one can classify
invertible 3d spin-TFTs via spherical fusion categories. All of this is the content of Chapter 4.

The story of last paragraph holds for 3d TFTs which are defined only on oriented spacetime
manifolds. This story can be enriched by generalizing to 3d TFTs which can be defined even
of unoriented spacetime manifolds. Such unoriented TFTs are important because these TFTs
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admit time-reversal symmetry. This symmetry can be thought to be the consequence of the exis-
tence of an orientation reversing codimension one defect in the TFT. The lines on a topological
boundary in the presence of an orientation reversing defect were studied in [4] and the resulting
mathematical structure was identified as that of a “twisted” spherical fusion category. The gener-
alization of Turaev-Viro prescription in terms of data of a twisted spherical fusion category was
also given. On an unoriented spacetime, there can be two types of TFTs with fermionic degrees
of freedom. They are called Pin+-TFTs and Pin−-TFTs and they are well-defined after choosing
a Pin+-structure or a Pin−-structure on the spacetime respectively. In [4], a correspondence was
established between 3d Pin+-TFTs and 3d unoriented TFTs with an anomalous Z2 symmetry and
was used to provide a partial classification of invertible 3d Pin+-TFTs. All of this is the subject
of Chapter 5.

1.3 Finite symmetries in two dimensions

In Chapter 6, we go slightly outside the main theme of this thesis. Instead of talking about
classification of QFTs, we will talk about correspondence between QFTs. It was shown a long
time ago [13] that if one gauges a finite, abelian internal global symmetry group G of a two-
dimensional QFT, the resulting 2d QFT has a finite, abelian internal global symmetry group Ĝ
which is the Pontryagin dual of G. Furthermore, if one gauge Ĝ in the resulting 2d QFT, one
obtains the original 2d QFT that one started with.

Chapter 6 asks what happens if G is a finite, non-abelian group. Gauging G produces Wilson
line defects labeled by representations ofG which form a fusion category known as the represen-
tation category of G. If G is abelian, the data of representation category is equivalent to the data
of Ĝ. However, ifG is non-abelian, there is no such notion of Ĝ. Is there a notion of “gauging the
representation category of the gauged 2d QFT” to obtain the original 2d QFT with non-abelian
global symmetry G?

This question was answered in affirmative in [5]. In fact, a much more general statement was
argued. In general one can consider the fusion category C formed by topological line defects
in a 2d QFT T. A notion of gauging C is provided by the choice of a special object known as
Frobenius algebra object A in C. This object satisfies some nice properties. Once gauges T by
inserting a fine-enough network of A lines in the 2d spacetime. In the gauged theory T̂, the
network of A lines becomes invisible and the fusion category Ĉ formed by topological lines is
the category of A-bimodules in C. It can be shown that Ĉ admits a Frobenius algebra object Â
which is dual to A in the sense that the category of Â-bimodules in Ĉ can be identified with C.
Lifting this up, it can be shown that gauging T̂ by Â gives back the theory T with associated
fusion category C.

4



Chapter 2

F-theory and the Classification of Little
Strings

2.1 Introduction

One of the concrete outcomes from the post-duality era of string theory is the wealth of insights
it provides into strongly coupled quantum systems. In the context of string compactification,
this has been used to argue, for example, for the existence of novel interacting conformal field
theories in spacetime dimensions D > 4. In a suitable gravity-decoupling limit, the non-local
ingredients of a theory of extended objects such as strings are instead captured by a quantum
field theory with a local stress energy tensor.

String theory also predicts the existence of novel non-local theories. Our focus in this work
will be on 6D theories known as little string theories (LSTs).1 For a partial list of LST con-
structions, see e.g. [14, 6, 15–19]. In these systems, 6D gravity is decoupled, but an intrinsic
string scale Mstring remains. At energies far below Mstring, we have an effective theory which is
well-approximated by the standard rules of quantum field theory with a high scale cutoff. How-
ever, this local characterization breaks down as we reach the scale Mstring. The UV completion,
however, is not a quantum field theory.2

The mere existence of little string theories leads to a tractable setting for studying many
of the essential features of string theory –such as the presence of extended objects– but with
fewer complications (such as coupling to quantum gravity). It also raises important conceptual
questions connected with the UV completion of low energy quantum field theory. For example,
in known constructions these theories exhibit T-duality upon toroidal compactification [16,17,21]
and a Hagedorn density of states [22], properties which are typical of closed string theories with
tension set by M2

string.

Several families of LSTs have been engineered in the context of superstring theory by using
various combinations of branes probing geometric singularities. The main idea in many of these
constructions is to take a gravity-decoupling limit where the 6D Planck scale Mpl → ∞ and

1We leave open the question of whether non-supersymmetric little string theories exist.
2In fact, all known properties of LSTs are compatible with the axioms for quasilocal quantum field theories [20].
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the string coupling gs → 0, but with an effective string scale Mstring held fixed. Even so, an
overarching picture of how to construct (and study) LSTs has remained somewhat elusive.

Our aim in this chapter will be to demystify various aspects of LSTs, and in particular to
give a systematic approach to realizing LSTs arising in F-theory3. To do this, we will use both a
bottom up characterization of little string theories on the tensor branch (i.e. where all effective
strings have picked up a tension), as well as a formulation in terms of compactifications of F-
theory. To demonstrate UV completeness of the resulting models we will indeed need to use the
F-theory characterization.

Recall that in F-theory, we have a non-compact base B of complex dimension two, which
is supplemented by an elliptic fibration to reach a non-compact Calabi-Yau threefold. In the
resolved phase, the intersection pairing of the base coincides with the Dirac pairing for two-form
potentials of the theory on its tensor branch. For an SCFT, we demand that the Dirac pairing is
negative definite. For an LST, we instead require that this pairing is negative semidefinite, i.e.,
we allow for a non-trivial null space.

F-theory also imposes the condition that we can supplement this base by an appropriate el-
liptic fibration to reach a non-compact Calabi-Yau threefold. In field theory terms, this is usually
enforced by the condition that all gauge theoretic anomalies are cancelled on the tensor branch
of the theory. For 6D gauge theories which complete to LSTs, this condition was discussed in
detail in reference [26]. Even when no gauge theory interpretation is available, this means that in
the theory on the tensor branch, some linear combination of tensor multiplets is non-dynamical,
and instead defines a dimensionful parameter (effectively a UV cutoff) for the 6D effective field
theory.

In F-theory terms, classifying LSTs thus amounts to determining all possible elliptic Calabi-
Yau threefolds which support a base B with negative semidefinite intersection pairing. One of
our results is that all LSTs are given by a small extension of 6D SCFTs, i.e. they can always be
obtained by adding just one more curve to the base of an SCFT so that the resulting base has an
intersection pairing with a null direction. Hence, much as in the case of Lie algebras, all LSTs
arise from an affine extension of SCFTs. See figure 2.1.1 for a depiction of this process.

In fact, the related classification of 6D SCFTs has already been successfully carried out. See
e.g. the partial list of references [9, 27–30, 10, 11]. What this means is that we can freely borrow
this structure to establish a classification of LSTs. Much as in reference [10], we establish a
similar “atomic classification” of how LSTs are built up from smaller constitutent elements. We
find that the base of an F-theory geometry is organized according to a single spine of “nodes”
which are decorated by possible radicals, i.e. links which attach to these nodes. As opposed to
the case of SCFTs, however, the topology of an LST can be either a tree or a loop.

Using this characterization of LSTs, we also show that all 6D SCFTs can be embedded in
some LST by including additional curves and seven-branes:

6D SCFTs→ 6D LSTs. (2.1.1)
3More precisely, we focus on the case of geometric phases of F-theory, ignoring the (small) list of possible

models with “frozen” singularities (see e.g. [23–25]). We return to this point later in section 2.10 when we discuss
the mismatches between field theory motivated LST constructions and their possible lifts to string constructions

6



Figure 2.1.1: Depiction of how to construct the base of an F-theory model for an LST. All
LST bases are obtained by adding one additional curve to the base for a 6D SCFT. This
additional curve can intersect either one or two curves of the SCFT base. Much as in the
study of Lie algebras, LSTs should be viewed as an “affine extension” of SCFTs.

Deformations in both Kähler and complex structure moduli for the LST then take us back to
the original SCFT. It is curious to note that although many 6D SCFTs cannot be coupled to 6D
supergravity, they can always be embedded in another theory with an intrinsic length scale.

A hallmark of all known LSTs is T-duality, that is, by compactifying on a small circle,4

we reach another 6D LST compactified on a circle of large radius. This motivates a physical
conjecture that all LSTs exhibit such a T-duality. In geometries where we can verify the presence
of two elliptic fibrations, we find that exchanging the roles of these fibrations amounts to T-
duality in the 6D theory compactified on a circle. In some cases, we find that T-duality takes us
to the same LST. For a recent application of this double elliptic fibration structure in the study
of the correspondence between instantons and monopoles via compactifications of little string
theory, see reference [31].

The rest of this chapter is organized as follows. In section 2.2 we state necessary bottom
up conditions to realize a LST. This includes the core condition that the Dirac pairing for an
LST is a negative semidefinite matrix. After establishing some of the conditions this enforces,
we then turn in section 2.3 to the rules for constructing LSTs in F-theory. We also explain the
(small) differences between the rules for constructing LSTs versus SCFTs. Section 2.4 gives
some examples of known constructions of LSTs, and their embedding in F-theory. In section
2.5 we show how decoupling a tensor multiplet to reach an SCFT leads to strong constraints
on possible F-theory models. In section 2.6 we present an atomic classification of bases, and in
section 2.7 we turn to the classification of possible elliptic fibrations over a given base. In section
2.8 we demonstrate that every 6D SCFT constructed in F-theory can be embedded into at least
one 6D LST constructed in F-theory. In section 2.9 we show how T-duality of the LST shows
up as the existence of a double elliptic fibration structure, and the exchange in the roles of the
elliptic fibers. As a consequence, we show that LSTs can acquire discrete gauge symmetries for

4That is, small when compared with the effective string scale.
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particular values of their moduli. In section 2.10 we discuss the small mismatch with possible
LST constructions suggested by field theory, and their potential embedding in a non-geometric
phase of an F-theory model. Section 2.11 contains our conclusions, and some additional technical
material is deferred to a set of Appendices.

2.2 LSTs from the Bottom Up

In this section we state some of the conditions necessary to realize a supersymmetric little string
theory.

We consider 6D supersymmetric theories which admit a tensor branch (which can be zero
dimensional, as will be the case for many LSTs), that is, we will have a theory with some dy-
namical tensor multiplets, and vacua parameterized (at low energies) by vevs of scalars in these
tensor multiplets. We will tune the vevs of the dynamical scalars to zero to reach a point of
strong coupling. Our aim will be to seek out theories in which this region of strong coupling is
not described by an SCFT, but rather, by an LST. In addition to dynamical tensor multiplets, we
will allow the possibility of non-dynamical tensor multiplets which set mass scales for the 6D
supersymmetric theory.

Recall that in a theory with T tensor multiplets, we have scalars SI and their bosonic su-
perpartners B−,Iµν , with anti-self-dual field strengths. The vevs of the SI govern, for example,
the tension of the effective strings which couple to these two-form potentials. In a theory with
gravity, one must also include an additional two-form potential B+

µν coming from the graviton
multiplet. Given this collection of two-form potentials, we get a lattice of string charges Λstring,
and a Dirac pairing:5

Λstring × Λstring → Z, (2.2.1)

in which we allow for the possibility that there may be a mull space for this pairing. It is conve-
nient to describe the pairing in terms of a matrix A in which all signs have been reversed. Thus,
we can write the signature of A as (p, q, r) for q self-dual field strengths, p anti-self-dual field
strengths, and r the dimension of the null space.

Now, in a 6D theory with q self-dual field strengths and p anti-self-dual field strengths, the
signature of A is (p, q, 0). For a 6D supergravity theory with T tensor multiplets, the signature is
(T, 1, 0). In fact, even more is true in a 6D theory of gravity: diffeomorphism invariance enforces
the condition found in [32] that detA = −1.

Now, since we are interested in supersymmetric theories decoupled from gravity we arrive
at the necessary condition that the signature of A is (p, 0, r). In this special case, each of our
two-form potentials has a real scalar superpartner, which we denote as SI . The kinetic term for
these scalars is:

Leff ⊃ AIJ∂S
I∂SJ . (2.2.2)

Observe that if A has a zero eigenvector, some linear combinations of the scalars will have a
trivial kinetic term. When this occurs, these tensor multiplets define parameters of the effective
theory on the tensor branch (i.e. they are non-dynamical fields).

5Here we ignore possible torsional contributions to the pairing.
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This leaves us with two general possibilities. Either A is positive definite (i.e. A > 0), or
it is positive semidefinite (i.e. A ≥ 0). Recall, however, that to reach a 6D SCFT, a necessary
condition is that we must also demand that A > 0. We summarize the various possibilities for
self-consistent 6D theories:

6D SUGRA 6D LST 6D SCFT
signature (T, 1, 0) (p, 0, r) (T, 0, 0)
detA : detA = −1 detA = 0 detA > 0

(2.2.3)

For now, we have simply indicated an LST as any theory where detA = 0.

As already mentioned, when detA = 0, some linear combinations of the scalar fields for
tensor multiplets will have trivial kinetic term. This means that they are better viewed as defining
dimensionful parameters. For example, in the case of a 6D theory with a single gauge group
factor and no dynamical tensor multiplets, this parameter is just the overall value Snull = 1/g2

YM ,
with gYM the Yang-Mills coupling of a gauge theory. Indeed, this Yang-Mills theory contains
solitonic solutions which we can identify with strings:

F = − ∗4 F, (2.2.4)

that is, we dualize in the four directions transverse to an effective string. More generally, we
can expect A to contain some general null space, and with each null direction, a non-dynamical
tensor multiplet of parameters:

−→v null ≡ N1
−→v 1 + ...+NT

−→v T such that A · −→v null = 0. (2.2.5)

for the two-form potential, and:

Snull = N1S
1 + ...+NTS

T (2.2.6)

for the corresponding linear combination of scalars. Since they specify dimensionful parameters,
we get an associated mass scale, which we refer to as Mstring:

Snull = M2
string. (2.2.7)

Returning to our example from 6D gauge theory, the tension of the solitonic string in equation
(2.2.4) is just 1/g2

YM = M2
string. At energies aboveMstring, our effective field theory is no longer

valid, and we must provide a UV completion.

On general grounds, A ≥ 0 could have many null directions. However, in the case where
where we have a single interacting theory, i.e. when A is simple, there are further strong re-
strictions. As explained in reference [33], when A ≥ 0 is simple, all of its minors are positive
definite: Aminor > 0. Consequently, there is precisely one zero eigenvalue, and the eigenvector
is a positive linear combination of basis vectors. Consequently, there is only one dimensionful
parameter Mstring. This also means that if we delete any tensor multiplet, we reach a positive
definite intersection pairing, and consequently, a 6D SCFT. What we have just learned is that if
we work in the subspace orthogonal to the ray swept out by Snull, then the remaining scalars can
all be collapsed to the origin of moduli space. When we do this, we reach the LST limit.
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We shall refer to this property of the matrix A as the “tensor-decoupling criterion” for an
LST. As we show in subsequent sections, the fact that decoupling any tensor multiplet takes us
to an SCFT imposes sharp restrictions.

Even so, our discussion has up to now focussed on some necessary conditions to reach a
UV complete theory different from a 6D SCFT. In references [26, 11] the specific case of 6D
supersymmetric gauge theories was considered, and closely related consistency conditions for
UV completing to an LST were presented. Here, we see the same consistency condition A ≥ 0
appearing for any effective theory with (possibly non-dynamical) tensor multiplets.

Indeed, simply specifying the tensor multiplet content provides an incomplete characteriza-
tion of the tensor branch. In addition to this, we will also have vector multiplets and hypermul-
tiplets. For theories with only eight real supercharges, anomaly cancellation often imposes tight
consistency conditions.

There is, however, an important difference in the way anomaly cancellation operates in a 6D
SCFT compared with a 6D LST. The crucial point is that becauseA has a zero eigenvalue, there is
a non-dynamical tensor multiplet which does not participate in the Green-Schwarz mechanism.
In other words, on the tensor branch of an LST with T tensor multiplets, at most only T − 1
participate. This is not particularly worrisome since as explained in reference [32] and further
explored in reference [34], there is in general a difference between the tensor multiplets which
participate in anomaly cancellation and those which appear in the tensor branch of a general 6D
theory.

Though we have given a number of necessary conditions that any putative LST must satisfy,
to truly demonstrate their existence we must pass beyond effective field theory, embedding these
theories in a UV complete framework such as string theory. We therefore now turn to the F-
theory realization of little string theories.

2.3 LSTs from F-theory

In this section we spell out the geometric conditions necessary to realize LSTs in F-theory. Recall
that in a little string theory, we are dealing with a 6D theory which contains strings with finite
tension. As such, they are an intermediate case between the case of a 6D superconformal field
theory (which only contains tensionless strings), and the full string theory (i.e., one in which
gravity is dynamical).

Any supersymmetric F-theory compactification to six dimensions is defined by an elliptically
fibered Calabi-Yau threefold X → B. Here, X is the total space and B is the base. The elliptic
fibration can be described by a local Weierstrass model

y2 = x3 + fx+ g, (2.3.1)

where f and g are local functions on B, that globally are sections respectively of OB(−4KB)
andOB(−6KB), KB being the canonical class of B. The discriminant of the elliptic fibration is:

∆ ≡ 4f 3 + 27g2 (2.3.2)
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which globally is a section of OB(−12KB). The discriminant locus ∆ = 0 is a divisor, and its
irreducible components tell us the locations of degenerations of elliptic fibers. Such singularities
determine monodromies for the complex structure parameter τ of the elliptic fiber, which is in-
terpreted in type IIB string theory as the axio-dilaton field. In type IIB language, the discriminant
locus signals the location of seven-branes in the F-theory model.

In F-theory, decoupling gravity means we will always be dealing with a non-compact base
B. When all curves of B are of finite non-zero size, we get a 6D effective theory with a lattice
of string charges:

Λstring = Hcpct
2 (B,Z). (2.3.3)

The intersection form defines a canonical pairing:

Aintersect : Λstring × Λstring → Z, (2.3.4)

which we identify with the Dirac pairing:

ADirac = Aintersect. (2.3.5)

We also introduce the “adjacency matrix”

Aadjacency = −ADirac. (2.3.6)

To streamline the notation, we shall simply denote the adjacency matrix as A. The two-form
potentials of the 6D theory arise from reduction of the four-form potential of type IIB string
theory. Additionally, the volumes of the various compact two-cycles translate to the real scalars
of tensor multiplets:

SI ∝ Vol(ΣI). (2.3.7)

In the F-theory model, the appearance of a null vector for Aintersect means that some of these
moduli are not dynamical in the 6D effective field theory. Rather, they define dimensionful
parameters / mass scales.

To define an F-theory model, we need to ensure that there is an elliptic Calabi-Yau X in
which B is the base. A necessary condition for realizing the existence of an elliptic model is that
the collection of curves entering in a base B are obtained by gluing together the “non-Higgsable
clusters” (NHCs) of reference [35] via P1’s of self-intersection −1.

Recall that the non-Higgsable clusters are given by collections of up to three P1’s in which
the minimal singular fiber type is dictated by the self-intersection number of the P1. The self-
intersection number, and associated gauge symmetry and matter content are as follows:

Self-intersection −3 −4 −5 −6 −7 −8
Gauge Theory su3 so8 f4 e6 e7⊕ 1

2
56 e7

(2.3.8)

Self-intersection −9 −10 −11 −12
Gauge Theory e8⊕ 3 inst e8⊕ 2 inst e8⊕ 1 inst e8

(2.3.9)

Self-intersection −3,−2 −2,−3,−2 −3,−2,−2

Gauge Theory g2×su2

⊕ 1
2

(7+1,2)
su2×so7×su2

⊕ 1
2

(2,8,1)⊕ 1
2

(1,8,2)

g2×sp1

⊕ 1
2

(7,2)⊕ 1
2

(1,2)

(2.3.10)
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in addition, we can also consider a single −1 curve, and configurations of −2 curves arranged
either in an ADE Dynkin diagram, or its affine extension (in the case of little string theories).
The local rules for building up an F-theory base compatible with these NHCs amount to a local
gauging condition on the flavor symmetries of a −1 curve: We scan over product subalgebras
of the e8 flavor symmetry which are also represented by the minimal fiber types of the NHCs.
When they exist, we get to “glue” these NHCs together via a −1 curve.

For a general elliptic Calabi-Yau threefold, the curves appearing in a given gluing configura-
tion can lead to rather intricate intersection patterns. For example, two curves may intersect more
than once, and may therefore form either a closed loop, or an intersection with some tangency.
Additionally, we may have three curves all meeting at the same point, as in the case of the type
IV Kodaira fiber. Finally, a single −1 curve may in general intersect more then just two curves.
The possible ways to locally glue together such NHCs has also been worked out explicitly in
reference [35] (see also [36]). The main idea, however, is that since the −1 curve theory defines
a 6D SCFT with E8 flavor symmetry, we must perform a gluing compatible with gauging some
product subalgebra of the Lie algebra e8.

What this means in general is that the adjacency matrix provides only a partial characteriza-
tion of intersecting curves in the base of a geometry. To handle these different possibilities, we
therefore introduce the following notation:

Normal Intersection: a, b or ab (2.3.11)
Tangent Intersection: a||b (2.3.12)

Triple Intersection: a
b

5 c (2.3.13)
Looplike configuration: //a1...ak//. (2.3.14)

Now, decoupling gravity to reach an SCFT or an LST leads to significant restrictions on the
possible ways to glue together NHCs. In the case of a 6D SCFT, contractibility of all curves
in the base means first, that all of the compact curves are P1’s, and further, that a −1 curve
can intersect at most two other curves. Additionally, all off-diagonal entries of the intersection
pairing are either zero or one. In the case of LSTs, however, the curves of the base could include
a T 2, and a −1 curve can potentially intersect more than two curves. Additionally, there is also
the possibility that the off-diagonal entries of the adjacency matrix may be different than just
zero or one.

Again, we stress that the intersection pairing provides only partial information. For example,
a curve of self-intersection zero could refer either to a P1, or to a T 2. In the case of a T 2 of
self-intersection zero, the normal bundle need not be trivial, but could be a torsion line bundle
instead. Additionally, an off-diagonal entry in the adjacency matrix which is two may either refer
to a pair of curves which intersect twice, or to a single intersection of higher tangency. The case
of tangent intersections violates the condition of normal crossing (which is known to hold for
SCFTs [9] but fails for LSTs). An additional type of normal crossing violation appears when we
blow down a −1 curve meeting more than two curves. In Appendix A.2 we determine the types
of matter localized when there are violations of normal crossing.
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2.3.1 Geometry of the Gravity-Decoupling Limit

We now discuss how to obtain limits of F-theory compactifications in which gravity is decoupled,
following a program initiated in [37], worked out in detail in [38] (see also [39]), and extended
to the case of 6D SCFTs in [40]. For this purpose, we consider F-theory from the perspective of
the type IIB string, with the volume of the base B of the F-theory compactification providing a
Planck scale for the compactified theory. We will see that the quest for decoupled gravity leads
to the same condition on semidefiniteness of the intersection matrix of the compact curves, and
moreover we will see how to ensure that the F-theory base B in such cases has a metric of the
appropriate kind.

The Case of Compact Base

We begin with the case in which the F-theory base B is a compact surface, and suppose we have
a sequence of metrics (specified by their Kähler forms ωi) which decouple gravity in the limit
i→∞. In particular, the volume must go to infinity: limi→∞ vol(ωi) =∞.

To investigate the geometry of this family of metrics, we temporarily rescale them and con-
sider the Kähler forms

ω̃i :=
ωi√

vol(ωi)
. (2.3.15)

The rescaled metrics all have volume 1, and since the closure of the set of volume 1 Kähler
classes on B is compact, there must be a convergenct subsequence of Kähler classes [ω̃ij ] whose
limit

[ω̃∞] = lim
j→∞

[ω̃ij ] (2.3.16)

lies in the closure of the Kähler cone. If the original sequence was chosen generically, the limit
of the rescaled sequence will be an interior point of the Kähler cone, and in this case all areas
and volumes grow uniformly as we take the limit of the original sequence ωi. Gravity decouples,
but all other physical quantities measured by areas and volumes approach either zero or infinity,
leaving us with a trivial theory.

However, if the rescaled limit (2.3.16) lies on the boundary of the Kähler cone, more in-
teresting things can happen. In favorable circumstances, such as those present in Mori’s cone
theorem [41] and its generalizations [42], we can form another complex space B out of B by
identifying pairs of points p and q whenever they are both contained in a curve C whose area
vanishes in the limit. There is a holomorphic map π : B → B for which all such curves of zero
limiting area are contained in fibers π−1(t), t ∈ B.

As already pointed out in [38], there are two qualitatively different cases: B might be a
surface or it might be a curve. (It is not possible for B to be a point since there are some curves
C ⊂ B whose area does not vanish in the limit.) If B is a surface, then the map π : B → B
contracts some curves to points, and may create singularities in B. It is widely believed, and has
been mathematically proven under certain hypotheses [43, 44], that the limiting metric ω̃∞ can
be interpreted as a metric ωB on the smooth part of B.
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On the other hand, if B is a curve, so that π has curves Σt, t ∈ B as fibers, then we again
expect the limiting metric ω̃∞ to be induced by a metric on B, although there are fewer mathe-
matical theorems covering this case. (See [45] for one known theorem of this kind.)

In general, we do not expect the curves contracted by π to necessarily have zero area in the
gravity-decoupling limit. This can be achieved by starting with a reference Kähler form ω0 on B
as well as a (possibly degenerate) Kähler form ωB on B, and constructing a limit of the form

lim
t→∞

(ω0 + tπ∗(ωB)) . (2.3.17)

In the case of an SCFT, we wish all curves contracted by π to be at zero area in the limit, so in
that case we should omit ω0 and simply scale up π∗(ωB)).

The Case of Non-Compact Base

Our discussion of the compact bases makes it clear that the decoupling limit only depends on
the metric in a (finite volume) neighborhood of a collection of curves on the original F-theory
base B, together with a rescaling which takes that neighborhood to infinite volume and smooths
out its features in the process. This analysis can be applied to an arbitrary base, compact or
non-compact.

If the collection of curves is disconnected, the corresponding points on B to which the col-
lection is mapped will be moved infinitely far apart during the rescaling process, thus leading
to several decoupled quantum theories. So to study a single theory, it suffices to consider a
connected configuration. To reiterate the two cases we have found:

1. We may have a connected collection of curves Σj which can be simultaneously contracted
to a singular point on a space B. (The contractibility implies that the intersection matrix
is negative definite.) When the metric on B is rescaled, gravity is decoupled giving a 6D
SCFT (in which every curve in the collection remains at zero area).

Alternatively, we can combine this rescaled metric with another reference metric which
provides finite area to each Σj . This produces a quantum field theory in the Coulomb
branch of the SCFT.

2. Or we may have a connected collection of curves Σj which are all contained in a single
fiber of a map π : B → B, and include all components of that fiber. (This implies that the
intersection matrix is negative semidefinite, with a one-dimensional zero eigenspace.) We
combine a reference metric on B that sets the areas of the individual Σj’s with a metric
on B which is rescaled to decouple gravity, yielding a little string theory (with the string
provided by a D3-brane wrapping the entire fiber). The overall area of the fibers of π sets
the string scale, and the possible areas of the Σj’s map out the moduli space of the theory.
Gravity is decoupled, and we find an LST.

Note that in the second case, there are two distinct possibilities for the fibers of the map π: the
general fiber can be a curve of genus 0 or a curve of genus 1. In the case of genus 1, it is possible
for the central fiber to have a nontrivial multiplicity, that is, the fiber can take the form mΣ for
some m > 1.

14



2.4 Examples of LSTs

In the previous section we gave the general rules for constructing LSTs. Our plan in this section
will be to show how the F-theory realization allows us to recover well-known examples of LSTs
previously encountered in the literature.

To this end, we begin by first showing how LSTs with sixteen supercharges arise in F-theory
constructions. After this, we turn to known constructions of LSTs with eight supercharges (i.e.
minimal supersymmetry). This will also serve to illustrate how F-theory provides a single coher-
ent framework for realizing LSTs.

2.4.1 Theories with Sixteen Supercharges

To set the stage, we begin with little string theories with sixteen supercharges. In this case, we
have two possibilities given by N = (2, 0) supersymmetry or N = (1, 1) supersymmetry. Note
that only the former is possible in the context of 6D SCFTs.

One way to generate examples of N = (2, 0) LSTs is to take k M5-branes filling R5,1 and
probing the geometry S1

⊥ × C2 with S1
⊥ a transverse circle of radius R. To reach the gravity-

decoupling limit for an LST we simultaneously send the radius R → 0 and Mpl → ∞ whilst
holding fixed the effective string scale. In this case, it is the effective tension of an M2-brane
wrapped over the circle which we need to keep fixed. Performing a reduction along this circle, we
indeed reach type IIA string theory with k NS5-branes. By a similar token, we can also consider
IIB string theory with k NS5-branes. This realizes LSTs with N = (1, 1) supersymmetry.

T-dualizing the k NS5-branes of type IIA, we obtain type IIB string theory on the local
geometry given by a configuration of −2 curves arranged in the affine Âk−1 Dynkin diagram.
Similarly, we also get an LST by taking type IIA string theory on the same geometry.

Consider next the F-theory realization of these little string theories. First of all, we reach
the aforementioned theories by working with F-theory models whose associated Calabi–Yau
threefold takes the form T 2 × S, in which S → C is an elliptically fibered (non-compact)
Calabi-Yau surface. If we treat the T 2 factor as the elliptic fiber of F-theory, we get IIB on S, and
if we treat the elliptic fiber of S as the elliptic fiber of F-theory, we get (after shrinking the T 2

factor to small size) F-theory with base T 2×C, which is dual to IIA on S. To refer to both cases,
it will be helpful to label the auxiliary elliptic curve T 2 as T 2

F (for fiber) and the other elliptic
curve as T 2

S (since it lies in the surface S).

Now, by allowing S to develop a singular elliptic fiber, we can realize the same local ge-
ometries obtained perturbatively. For example, the C2/Zk lifts to a Kodaira fiber of type Ik.
Resolving this local singularity, we find k compact cycles ΣI ' P1’s which intersect according
to the affine Âk−1 Dynkin diagram. In this case the null divisor class is:

[Σnull] = [Σ1] + ...+ [Σk] (2.4.1)

that is, it is the ordinary minimal imaginary root of Âk−1. By shrinking T 2
F to small size, this

engineers in F-theory the N = (2, 0) LST of k M5-branes, or of k NS5-branes in type IIA.
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Figure 2.4.1: Depiction of the tensor branch of theN = (2, 0) Â3 LST. In the top figure, we
engineer this example using spacetime filling M5-branes probing the geometry S1

⊥ × C2. In
the dual F-theory realization, we have four −2 curves in the base, which are arranged as the
affine Â3 Dynkin diagram. The Kähler class of each −2 curve in the F-theory realization
corresponds in the M-theory realization to the relative separation between the M5-branes.

(See figure 2.4.1 for a depiction of the A-type N = (2, 0) LSTs.) In the other case, one obtains
F-theory on T 2×C whose fibers have an Ik singularity along T 2×{0}. Then [Σnull] is precisely
the class of the F-theory fiber T 2

S , and supersymmetry enhances to N = (1, 1).

More generally, we can consider any of the degenerations of the elliptic fibration classified
by Kodaira, i.e. the type In, II, III, IV, I∗n, II

∗, III∗, IV ∗ fibers and produce a N = (2, 0)
model with that degeneration occuring as a curve configuration on the F-theory base, as well as
aN = (1, 1) model with that same degeneration occurring as the F-theory fiber over some T 2 in
the base.

As a brief aside, a convenient way to realize examples of both theN = (1, 1) andN = (2, 0)
theories is to consider F-theory on the Schoen Calabi-Yau threefold dP9 ×P1 dP9 [46]. Then, we
can keep the elliptic fiber on one dP9 factor generic, and allow the other to degenerate. Switching
the roles of the two fibers then moves us from the IIA to IIB case. Note that although this strictly
speaking only yields eight real supercharges (as we are on a Calabi-Yau threefold), in the rigid
limit used to reach the little string theory, we expect a further enhancement to either N = (2, 0)
or N = (1, 1) supersymmetry. The specific chirality of the supersymmetries depends on which
elliptic curve we take to be in the base, and which to be in the fiber of the corresponding F-theory
compactification.

Let us also address whether each of the different Kodaira fiber types leads us to a different
little string theory. Indeed, some pairs of Kodaira fiber types lead to identical gauge symmetries
in the effective field theory. To illustrate, consider the type IV Kodaira fiber, and compare it with
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the type I3 fiber. There is a complex structure deformation which moves the triple intersection
appearing in the type IV case out to the more generic type I3 case. This modulus, however, is
decoupled from the 6D little string theory. The reason is that if we consider a further compact-
ification on a circle, we reach a 5D gauge theory which is the same for both fiber types. The
additional complex structure modulus from deforming IV to I3 does not couple to any of the
modes of the 5D theory. So, there does not appear to be any difference between these theories.
In other words, we should classify all of the N = (2, 0) little string theories in terms of affine
ADE Dynkin diagrams rather than in terms of Kodaira fiber types.

For the N = (1, 1) little string theories, the absence of a chiral structure actually leads to
more possibilities. For example, if we consider M-theory on an ADE singularity compactified
on a further circle, we have the option of twisting by an outer automorphism of the simply laced
ADE Lie algebra [47]. In other words, for the N = (1, 1) theories we have an ABCDEFG
classification according to all of the simple Lie algebras.

To realize these LSTs in F-theory, we make an orbifold of the previous construction. Suppose
that S → C is an elliptically fibered (non-compact) Calabi–Yau surface which has compatible
actions of Zm on the base and on the total space, such that the action on the total space preserves
the holomorphic 2-form. Then Zm acts on T 2

F × S with the action on T 2 being translation by a
point of order m. The quotient X := (T 2

F × S)/Zm is then an elliptically fibered Calabi–Yau
threefold (with two genus one fibrations as before).

The elliptic fibration X → (T 2
F × C)/Zm leads to an F-theory model with N = (1, 1)

supersymmetry. Note that the base (T 2
F × C)/Zm of the F-theory fibration contains a curve Σ

of genus 1 and self-intersection 0 such that mΣ can be deformed into a one-parameter family
although no smaller multiple can be deformed. Note also that if the action of Zm on S preserves
the section of the fibration S → C, then X → (T 2

F × C)/Zm also has a section and, as we
will explain in section 2.7.1, m ∈ {2, 3, 4, 6} since every elliptic fibration with section has a
Weierstrass model [48].

There is a second fibration X → (S/Zm) which is a genus one fibration without a section
and leads to theories with N = (2, 0) supersymmetry. We discuss additional details about this
second fibration, as well as T-duality for these theories, in section 2.9.

It is instructive to study the structure of the moduli space of the LSTs with maximal super-
symmetry. Recall that the tensor branch for a N = (2, 0) SCFT of ADE type g is given by:

M(2,0)[g] = RT
≥0/Wg, (2.4.2)

where in the above, T is the number of tensor multiplets andWg is the Weyl group of the ADE
Lie algebra g. That is, the moduli space is given by a Weyl chamber of the ADE Lie algebra and
is therefore non-compact. In the present case of LSTs, we see that the condition that we have a
string scale leads to one further constraint on this moduli space, effectively “compactifying” it to
the compact Coxeter box for an affine root lattice [17].

Finally, one of the prominent features of these examples is the manifest appearance of two
elliptic fibrations in the geometry. Indeed, in passing from the N = (2, 0) theories to the N =
(1, 1) theories, we observe that we have simply switched the role of the two fibrations. In section
2.9, we return to this general phenomenon for how T-duality of LSTs is realized in F-theory.
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2.4.2 Theories with Eight Supercharges

Several examples of LSTs with minimal, i.e. (1, 0) supersymmetry are realized by mild general-
izations of the examples reviewed above.

To begin, let us consider again the case of k coincident M5-branes filling R5,1 and probing
the geometry S1

⊥ × C2. We arrive at a (1, 0) LST by instead taking a quotient of the C2 factor
by a non-trivial discrete subgroup ΓG ⊂ SU(2) so that the geometry probed by the M5-brane is
C2/ΓG. The discrete subgroups admit an ADE classification, and the corresponding simple Lie
group GADE specifies the gauge group factors on the tensor branch. We reach a 6D SCFT by
decompactifying the S1

⊥. In this limit, we have an emergent GL × GR flavor symmetry. From
this perspective, the little string theory arises from gauging a diagonal G subgroup of the flavor
symmetry. In the IIB realization of NS5-branes probing the affine geometry, applying S-duality
takes us to a stack of D5-branes probing an ADE singularity. On its tensor branch, this leads to
an affine quiver gauge theory [49].

The F-theory realization of these LSTs is simply an affine A-type Dynkin diagram of k
curves of self-intersection −2 decorated with In, I∗n, IV

∗, III∗, II∗ fibers, respectively for G =
An−1, Dn+4, E6,7,8. We reach a 6D SCFT by decompactifying any of the −2 curves in the loop,
and we recover a 6D SCFT with an emergent GL ×GR flavor symmetry. From this perspective,
the little string theory arises from gauging a diagonal G subgroup of the flavor symmetry. Note
that for G 6= An, all these systems involve conformal matter in the sense of reference [28].

Another class of LSTs is given by taking k M5-branes in heterotic M-theory, i.e. M-theory
on S1/Z2 × C2. In this case, we have two E8 flavor symmetry factors; one for each endpoint
of the interval S1/Z2. In this case, the gravity-decoupling limit requires us to collapse the size
of the interval to zero size (i.e. to reach perturbative heterotic strings), whilst still holding the
effective string scale finite. (The ratios of the lengths of subintervals between the endpoints
and the various M5-branes to the length of the total interval will remain finite in the gravity-
decoupling limit and provide parameters for the tensor branch.) In perturbative heterotic string
theory, we have k NS5-branes probing C2. A related example is provided by instead working
with the Spin(32)/Z2 heterotic string in the presence of k NS5-branes. Indeed, once suitable
Wilson line data has been specified, these two examples are T-dual to one another.

The F-theory realization of the theory of k M5-branes is given by a non-compact base with a
configuration of curves:

[E8]1, 2, ..., 2, 1︸ ︷︷ ︸
k

[E8] (2.4.3)

where we have indicated the flavor symmetry factors in square brackets. In this configuration,
we reach the LST limit by holding fixed the volume of the null divisor (given by a sum over each
divisor with multiplicity one), and collapse all other Kähler moduli to zero size. The construction
of the T-dual characterization is somewhat more involved, and so we defer a full discussion to
section 2.9 and Appendix A.6. See figure 2.4.2 for a depiction of the M-theory and F-theory
realizations of this LST.

We can also combine the effects of different orbifold group actions. For example, we can
consider k M5-branes filling R5,1 and probing the geometry S1/Z2×C2/ΓG. In F-theory terms,
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Figure 2.4.2: TOP: Depiction of the LST realized by k M5-branes in between the two
Horava-Witten nine-brane walls of heterotic M-theory (k = 3 above). This leads to an
LST with an E8 × E8 flavor symmetry BOTTOM: The Corresponding F-theory base given
by the configuration of curves [E8], 1, 2, ..., 2, 1, [E8] for k total compact curves. In this real-
ization, the E8 flavor symmetry is localized on two non-compact 7-branes, one intersecting
each −1 curve.

this is given by the geometry:

[E8]
g

1,
g

2, ...,
g

2,
g

1︸ ︷︷ ︸
k

[E8] (2.4.4)

i.e. we decorate by a g-type ADE gauge symmetry over each curve of self-intersection−1 or−2.
This geometry was studied in detail in reference [15]. Further blowups in the base are needed for
all fibers to remain in Kodaira-Tate form. This leads to conformal matter between each simply
laced gauge group factor [28].

Summarizing, we have seen in the above that the various LSTs which have been constructed
via perturbative string theory and M-theory all have a natural embedding in the context of specific
F-theory constructions. With this in mind, we now turn to a systematic construction of all 6D
LSTs in F-theory.

2.5 Constraints from Tensor-Decoupling

As a first step towards the classification of LSTs, we now show how to classify possible bases
using the “tensor-decoupling criterion,” that is, the requirement that decoupling any tensor mul-
tiplet from an LST must take us to an SCFT. In geometric terms, deleting any curve of the base
(with possible fiber enhancements along this curve) must take us back to an SCFT base (with
possibly disconnected components). Since all SCFTs have the structure of a tree-like graph of
intersecting curves [10], our task reduces to scanning over the list of connected SCFTs, and ask-
ing whether adding an additional curve (with possible fiber enhancements on this curve) will
produce an LST. This inductive approach to classification will allow us to effectively constrain
the overall structure of bases for LSTs.
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In this section we show how the tensor-decoupling criterion constrains many candidate bases
for LSTs. We first use this criterion to limit the possible graph topologies of curves in the base.
Next, we give a general inductive rule for how to take an SCFT and verify whether it enhances
to an LST. We shall refer to this as an inductive classification, since it implicitly accounts for all
possible structures for LSTs. In section 2.6 we use these constraints to present a more explicit
construction of possible bases for LSTs.

2.5.1 Graph Topologies for LSTs

For any compact curve Σ in the base which remains in the gravity-decoupling limit, the self-
intersection Σ2 must be −n for 0 ≤ n ≤ 12. Moreover, since having an F-theory model requires
that −4K, −6K, and −12K be effective divisors, if K · Σ + Σ2 > 0 (so that K · Σ > 0), then
−4K would have multiplicity at least 4 along Σ,−6K would have multiplicity at least 6 along Σ,
and −12K would have multiplicity at least 12 along Σ. Since this is not allowed in the Kodaira
classification, we conclude that 2g − 2 = K · Σ + Σ2 ≤ 0, in other words, that Σ is either P1

or T 2. We now use the tensor-decoupling criterion to argue that the possible topologies of LST
bases are limited to tree-like structures and appropriate degenerations of an elliptic curve.

Let us first show that a curve Σ of self-intersection zero (of topology P1 or T 2) can only
appear in isolation, i.e. it cannot intersect any other curve. If it met another curve and we
decoupled everything that this curve touches, we would be left with an SCFT base containing a
curve of self-intersection zero, a contradiction. If Σ has genus 0, then the base takes the form
C × Σ, while if Σ has genus 1, then the base takes the form (C × Σ)/Zm, with Zm acting on Σ
by a translation and on C by multiplication by a root of unity. Note that if either g = 0 or m = 1,
the base is just a product. Hence, to get a six-dimensional theory we must wrap seven-branes
over Σ, i.e. we must include a non-trivial fiber enhancement over this curve, unless g = 1 and
m > 1. (We will see examples of this latter case in section 2.9.)

Consider next adjacency matrices in which the off-diagonal entries are different from zero
or one. For example, this can occur when a −4 and −1 curve form a closed loop (i.e. intersect
twice), or when the same curves intersect along a higher order tangency. Again, this possibility is
severely limited because if this were to a occur in a configuration with three or more curves, we
would contradict the tensor-decoupling criterion. By the same token, the value of all off-diagonal
entries are bounded below by two:

− 2 ≤ AIJ ≤ 0 for I 6= J, (2.5.1)

and in the case where −2 appears, we are limited to just two curves. The only possibilities for a
rank one LST base (i.e. with two curves) are therefore:

1, 1 or //2, 2// or //4, 1// or 2||2 or 4||1. (2.5.2)

In Appendix A.2 we analyze the possible fiber enhancements which can occur when the two
curves meet along a tangency (i.e. do not respect normal crossing), as is the case in the last two
configurations.
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For all other LST bases, we see that all curves must be constructed from P1’s of self-
intersection −x for 1 ≤ x ≤ 12, which all intersect with normal crossings, i.e. all off-diagonal
entries of the adjacency matrix are either zero or one.

To further constrain the structure, we next observe that the base of any 6D SCFT is always
tree-like [9]. This means that the graph associated to an LST adjacency matrix can admit at most
one loop, and when it contains a loop, there can be no additional curves branching off. This is
because the tensor-decoupling criterion would be violated by joining a loop of curves to anything
else. We are therefore left with two general types of configurations:

• Tree-like LSTs

• Loop-like LSTs.

Note that some of the tree-like structures we shall encounter can also be viewed as loops, that
is, as degenerations of an elliptic curve.

2.5.2 Inductive Classification

To proceed further, we now present an inductive strategy for constructing the base of any LST
with three or more curves. The main idea is that we simply need to sweep over the list of SCFT
bases and ask whether we can append an additional curve of self-intersection −x to such a base.
By the remarks on decoupling already noted, we see that this additional curve can intersect either
one curve or two curves of an SCFT base. In the latter case, we obtain a loop-like configuration
of curves in the base. The latter possibility can only occur for an SCFT base which consists of
a single line of curves (i.e. no branches emanating off of the primary spine of the base). The
main condition we need to check is that after adding this curve, we obtain a positive semidefinite
adjacency matrix. In particular, the determinant must vanish. Implicit in this construction is that
we only append an additional curve compatible with the gluing rules for bases.

Consider first the case of an LST with adjacency matrix ALST which describes a tree-like
base given by adding a single curve of self-intersection−x to some SCFT with adjacency matrix
ASCFT :

AtreeLST =




y −1 0 0 ... 0 0 0
−1
0 ASCFT
...

...
0




(2.5.3)

Let ASCFT ′ be the principal submatrix for the set of nodes {3, 4, ..., N}. Evaluating the determi-
nant of AtreeLST , we obtain the condition:

0 = det(AtreeLST ) = y det(ASCFT )− det(ASCFT ′). (2.5.4)

or:
y = det(ASCFT ′)/det(ASCFT ). (2.5.5)
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SCFT 12 13 14 15 16 17 18 19 1(10) 1(11) 1(12) 22 23

det(A) 1 2 3 4 5 6 7 8 9 10 11 3 5

y 5 3 7/3 2 9/5 5/3 11/7 3/2 13/9 7/5 15/11 2 7/5

Table 2.5.1: Candidate loop-like rank two LSTs from adding an additional curve to a rank two
SCFT.

Consider now the case of a loop-like LST. In this case, the only SCFTs we need consider are
those constructed from a single line of curves (i.e. no trivalent vertices at all), and we can only
add the additional curve to the leftmost and rightmost ends of a candidate SCFT. The adjacency
matrix is then of the form:

AloopLST =




y −1 0 0 ... 0 0 −1
−1
0
... ASCFT

...
0
−1




(2.5.6)

To have an LST we must have

0 = y det(ASCFT )− (ASCFT )(1,1) − (ASCFT )(N−1,N−1) + 2(−1)N+1(ASCFT )(1,N−1) (2.5.7)

where we have denoted the (i, j)th minor of ASCFT by an appropriate subscript. Solving for y,
we obtain:

y =
(ASCFT )(1,1) + (ASCFT )(N−1,N−1) − 2(−1)N+1(ASCFT )(1,N−1)

det(ASCFT )
. (2.5.8)

The above algorithm allows us to systematically classify LSTs: From this structure, we see
that the locations of where we can add an additional curve to an existing SCFT are quite con-
strained. Indeed, in order to not produce another SCFT, but instead an LST, we will typically
only be able to add our extra curve at the end of a configuration of curves, or at the second to last
curve. Otherwise, we could not reach an SCFT upon decoupling other curves in the base.

2.5.3 Low Rank Examples

To illustrate how the algorithm works in practice, we now give some low rank examples. In
table 2.5.1 we list all of the rank two SCFT bases which we attempt to enhance to loop-like LST.
Of the cases where y is an integer, some are further eliminated since the resulting base requires
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further blowups.6 The full list of rank two LST bases is then:

Three curve LST bases:

2
2

5 2 and 121 and 212 and //222//
(2.5.9)

where the first entry denotes a triple intersection of −2 curves (that is, a type IV Kodaira degen-
eration), and //x1x2...xn+1// denotes a loop in which the two sides are identified.

2.6 Atomic Classification of Bases

In principle, the remarks of the previous section provide an implicit way to characterize all LSTs.
Indeed, we simply need to sweep over the list of bases for SCFTs obtained in reference [10] and
then determine whether there is any place to add one additional curve to reach an LST. The
self-intersection of this new curve is constrained by the condition that the determinant of the
adjacency matrix vanishes, and the location of where we add this curve is likewise constrained
by the tensor-decoupling criterion.

In this section we use the atomic classification of 6D SCFTs presented in [10] to perform a
corresponding atomic classification of bases for LSTs. We now use the explicit structure of 6D
SCFTs found in [10] to further cut down the possibilities. It is helpful to view the bases as built
out of smaller “atoms” and “radicals”. In particular, we introduce the convention of a “node”
referring to a single curve in which the minimal fiber type leads to a D or E-type gauge algebra.
We refer to a “link” as any collection of curves which does not contain any D or E-type gauge
algebras for the minimal fiber type. The results of [10] amount to a classification of all possible
links, as well as all possible ways of attaching links to the nodes. Quite remarkably, the general
structure of the resulting bases is quite constrained. For all 6D SCFTs, we can filter the theories
according to the number of nodes in the graph. These nodes are always arranged along a single
line joined by links:

S0,1
S1
g1L12

I⊕s

g2L2,3g3...gk−2Lk−2,k−1
I⊕t

gk−1Lk−1,k
I⊕u

gk Sk,k+1, (2.6.1)

here, the gi’s denote the nodes, the Li,i+1’s denote interior links (since they join to two nodes)
and the S’s are side links as they can only join to one node. The notation I⊕m refers to decorating
by m small instantons, these are further classified according to partitions of m (i.e. how many
of the small instantons are coincident with one another). One of the key points is that for k ≥ 6,
there is no decoration on any of the interior nodes, i.e. for 3 ≤ i ≤ k − 2. This holds both for
the types of links which can attach to these nodes (which are always the minimal ones forced
by the resolution algorithm of reference [9]), as well as the possible fiber enhancements (there
are none). When k = 5, it is possible to decorate the middle node g3 by a single −1 curve. In
reference [10], the explicit form of all such sequences of g’s, as well as the possible side links
and minimal links was classified. An additional important property is that all of the interior links
blow down to a trivial endpoint, the blowdown of a single −1 curve.

6For example, configurations such as //512// and //313// require a further blowup. Doing this, we instead
reach a four curve LST base, respectively given by //6131// and //4141//.
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Turning now to LSTs, we can ask whether we can add one more curve to the base quiver,
resulting in yet another tree-like graph, or in a loop-like graph. By inspection, we can either add
this additional curve to a side link, an interior link, or a base node.

Restrictions on Loop-like Graphs: In fact, a general loop-like graph which is an LST
is tightly constrained by the tensor-decoupling criterion. The reason is that if we consider the
resulting sequence of nodes, we must have a pattern of the form:

//g1L12g2L2,3g3...gk−2Lk−2,k−1gk−1Lk−1,kgkLk,1// (2.6.2)

where the notation “//” indicates that the left and the right of the base quiver are joined together
to form a loop. Now, another important constraint from reference [10] is that the minimal fiber
type on the nodes obeys a nested sequence of containment relations. But in a loop, no such
ordering is possible. We therefore conclude that all of the nodes for a loop-like LST must be
identical, and moreover, that the interior links must all be minimal. We therefore can specify all
such loops simply by the type of node (i.e. a −4 curve, a −6 curve, a −8 curve or a −12 curve),
and the number of such nodes.

For this reason, we now confine our attention to tree-like graphs, i.e. where we add an ad-
ditional curve which intersects only one other curve in the base. The main restriction we now
derive is that the resulting configuration of curves is basically the same as that of line (2.6.1). In-
deed, we will simply need to impose further restrictions on the possible side links and sequences
of nodes which can appear in an LST base.

Restrictions on Adding to Interior Links: Our first claim is that we can only possibly
add an extra curve to an interior link in a base with two or fewer nodes. Indeed, suppose to the
contrary. Then, we will encounter a configuration such as:

...gi
y

Li,i+1gi+1... (2.6.3)

where y denotes our additional curve attached in some way to the link. The notation “...” denotes
the fact that there is at least one more curve in the base. Now, since the interior link blows down
to a single −1 curve, we will get a violation of normal crossing. This is problematic if we have
one additional curve (as denoted by the “...”), since deleting that curve would produce a putative
SCFT with a violation of normal crossing, a contradiction. By the same token, in a two node
base, if any side links are attached to this node, then we cannot add anything to the interior link.
This leaves us with the case of just:

g1

y

L1,2g2. (2.6.4)

In this case, it is helpful to simply enumerate once again all of the possible interior links, and ask
whether we can attach an additional curve. This we do in Appendix A.4, finding that the options
are severely limited. Summarizing, then, we find that we can attach an extra curve to an interior
link only in the case where there are two nodes, and then only if these two nodes do not attach to
any side links.
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Restrictions on Adding to Nodes: Let us next turn to restrictions on adding an extra curve
to a node in a base. If we add a curve to a node, we observe that this extra curve must have
self-intersection −1. Note that the endpoint of the SCFT must therefore be trivial in these cases.
We now ask which of the nodes of the base can support an additional −1 curve. Since we must
be able to delete a single curve and reach a collection of SCFTs, we cannot place this −1 curve
too far into the interior of the configuration. More precisely, we see that for k ≥ 7 nodes, we are
limited to adding a −1 curve to the first three, or last three nodes. In the specific case where we
attach a−1 curve to the third interior node, we see that there cannot be any side links whatsoever.
Otherwise, we would find a subconfiguration of curves which is not a 6D SCFT.

Restrictions on Adding to Side Links: Consider next restrictions on adding an extra curve
to a side link. In the case of a small instanton link such as 1, 2..., 2, we can append an additional
−1 curve to the rightmost −2 curve, but then it can no longer function as a side link (via the
tensor-decoupling criterion). In Appendices D and E we determine the full list of LSTs com-
prised of just adding one more curve to a side link. If we instead attempt to take an existing SCFT
and add an additional curve to a side link to reach an LST, then we either produce a new side
link (i.e. if the curve has self-intersection −1,−2,−3 or −5), or we produce a base quiver with
one additional node (i.e. if the curve has self-intersection −4,−6,−7,−8,−9,−10,−11,−12).
Phrased in this way, we see that the rules for which side links can join to an SCFT are slightly
different, but cannot alter the overall topology of a base quiver from the case of an SCFT.

Summarizing, we see that unless we have precisely two nodes, and no side links, we cannot
decorate any interior link. Moreover, we can only decorate the three leftmost and rightmost node
in special circumstances. So in other words, the general structure of a tree-like LST base is
essentially the same as that of a certain class of SCFTs. All that remains is for us to determine
the possible sequences of nodes (with no decorations) which can generate an LST, and to also
determine which of our side links can be attached to an SCFT such that the resulting configuration
is an LST.

Overview of Appendices: This final point is addressed in a set of Appendices. In the
appendices we collect a full list of the building blocks for constructing LSTs. The tensor-
decoupling criterion prevents a direct gluing of smaller LSTs to reach another LST. Rather, we
are always supplementing an SCFT to reach an LST. Along these lines, in Appendix A.3 we
collect the list of bases which are comprised of a single spine of nodes with no further decoration
from side links. In Appendix A.4 we collect the full list of bases in which no nodes appear.
Borrowing from the terminology used for 6D SCFTs, these links are “noble” in the sense that
they cannot attach to anything else in the base. Finally, in Appendix A.5 we give a list of LSTs
given by attaching a single side link to a single node. Much as in the classification of 6D SCFTs,
the further task of sweeping over all possible ways to decorate a base quiver by side links is left
implicit (as dictated by the number of blowdowns induced by a given side link). All of these
rules follow directly from reference [10].

This completes the classification of bases for LSTs. We now turn to the classification of
elliptic fibrations over a given base.
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2.7 Classifying Fibers

Holding fixed the choice of base, we now ask whether we can enhance the singularities over
curves of the base whilst keeping all fibers in Kodaira-Tate form. As this is a purely local question
(i.e. compatible with the matter enhancements over the neighboring curves), most of the rules
for adding extra gauge groups / matter are fully specified by the rules spelled out in reference
[10]. Rather than repeat this discussion, we refer the interested reader to these cases for further
discussion of the “standard” fiber enhancement rules for curves which intersect with normal
crossings.

There are, however, a few cases which cannot be understood using just the SCFT consider-
ations of reference [10]. Indeed, we have already seen that a curve of self-intersection zero, an
elliptic curve, tangent intersections and triple intersections of curves can all occur in the base of
an LST. We have also seen, however, that all of these cases are comparatively “rare” in the sense
that they do not attach to larger structures. Our plan in this section will therefore be to deal with
all of these low rank examples. In Appendix A.1 we give general constraints from anomaly can-
cellation in F-theory models and in Appendix A.2 we present some additional technical material
on the localization of matter in the case of tangent intersections such as the 4||1 and 2||2 config-
urations. Finally, compared with the case of 6D SCFTs, the available fiber enhancements over a
given base are also comparatively rare. To illustrate this point, we give some examples in which
the base is an affine Dynkin diagram of −2 curves. In these cases, the presence of the additional
imaginary root (and the constraints from anomaly cancellation) typically dictate a small class of
possible fiber enhancements.

2.7.1 Low Rank LSTs

In this subsection we give a complete characterization of fiber enhancements for low rank LSTs.
To begin, we consider the case of the rank zero LSTs, i.e. those where the F-theory base con-
sists of a single compact curve. In these cases, we only get a 6D theory once we wrap some
7-branes over the curve unless the normal bundle of the curve is a torsion line bundle. An in-
teresting feature of this and related examples is that because the corresponding tensor multiplet
is non-dynamical it cannot participate in the Green-Schwarz mechanism and we must cancel the
anomaly using just the content of the gauge theory sector. We then turn to the other low rank
examples where other violations of normal crossing appear. In all of these cases, the F-theory
geometry provides a systematic tool for determining which of these structures can embed in a
UV complete LST.

Rank Zero LSTs

In a rank zero LST, we have a single compact curve, which must necessarily have self-intersection
zero. There are only a few inequivalent configurations consisting of a single curve with self-
intersection zero:

Σnull = P, I0, I1, II,mI0,mI1. (2.7.1)
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Here I0 (resp. P ) is shorthand for a base B consisting of a smooth torus (resp. two sphere)
with trivial normal bundle T 2 × C (respectively P1 × C), while I1 (resp. II) is a curve with
a node (resp. a cusp) singularity and trivial normal bundle. These configurations can give rise
to LSTs only if 7-branes wrap Σnull. Otherwise, we do not have a genuine 6D model. The
variants mI0 and mI1 describe curves whose normal bundle is torsion of order m > 1; these can
also support 6D theories for m ∈ {2, 3, 4, 6} as discussed below. Observe also that if we apply
the tensor-decoupling criterion in these cases, we find that the resulting 6D SCFT is empty, i.e.
trivial.

As curves of self-intersection zero do not show up in 6D SCFTs, it is important to explicitly
list the possible singular fiber types which can arise on each curve of line (2.7.1).7

We begin with the “multiple fiber phenomenon” – a genus one curve Σ whose normal bundle
is torsion of order m > 1. The F-theory base B is a (rescaled) small neighborhood of Σ, and
its canonical bundle OB(KB) must also be torsion of the same order by the adjunction formula.
Now to construct a Weierstrass model, we need sections f and g ofOB(−4KB) andOB(−6KB),
respectively, but nontrivial torsion bundles do not have nonzero sections. Thus, in order to have
a nonzero f , the order m of the torsion must divide 4, while to have a nonzero g, the order m
must divide 6. There are thus three cases:

1. If m = 2, then both f and g may be nonzero.

2. If m = 3 or 6, then f must be zero but g may be nonzero.

3. If m = 4, then g must be zero but f may be nonzero.

For any other value ofm > 1, Weierstrass models do not exist (since f and g are not both allowed
to vanish identically).

Note that the fact that some quantities obtained from coefficients in a Weierstrass model are
sections of torsion bundles also provides the possibility that those sections do not exist (if they
are known to be nonzero). As described in Table 4 of [51], the criterion for deciding whether a
given Kodaira type leads to a gauge algebra whose Dynkin diagram is simply laced or not simply
laced reduces in almost every case to a question of whether a certain quantity has a square root.8

If the desired square root is in fact a section of a 2-torsion bundle, then it cannot exist.

We can give explicit examples of this phenomenon which do not involve enhanced gauge
symmetry, using the framework outlined in section 2.4.1. We start with S = T 2

S × C, where
T 2
S admits an automorphism of order m which acts faithfully on the holomorphic 1-form. If

we extend the action to include multiplication by an appropriate root of unity on C, then the
7In what follows we focus on those cases where the fiber enhancement leads to a non-abelian gauge symmetry,

i.e. a gauge theory description. In the cases where we have a type I1 or type II fiber enhancement, the resulting
6D theory will consist of some number of weakly coupled free hypermultiplets, where the precise number depends
on whether the base curve has non-trivial arithmetic and / or geometric genus. Much as in the case of 6D SCFTs,
these cases can be covered through a mild extension of the analysis presented in reference [10]. See also [50] for
additional information about these theories.

8In the remaining case, one must consider a more complicated cubic equation, but in the situation being described
here, the question in that case boils down to the existence or non-existence of a cube root. If the bundle of which the
desired cube root is a section is a 3-torsion bundle, the cube root cannot exist.
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Base Curve Matter Content

I0 Any simple Lie algebra, nAdj = 1

I1,II su(N), nsym = 1, nΛ2 = 1

su(6), nf = 1, nsym = 1, nΛ3 = 1
2

P su(N), N ≥ 2, nf = 16, nΛ2 = 2

su(6), nf = 17, nΛ2 = 1, nΛ3 = 1
2

su(6), nf = 18, nΛ3 = 1

sp(N), N ≥ 1, nf = 16, nΛ2 = 1

sp(3), nf = 171
2
, nΛ3 = 1

2

so(N), N = 6, ..., 14, nf = N − 4, ns = 64
ds

g2, nf = 10

f4, nf = 5

e6, nf = 6

e7, nf = 4

e8, ninst = 12

Table 2.7.1: Rank zero LSTs. In the above, Adj refers to the adjoint representation, sym refers
to a two-index symmetric representation, and Λn refers to an n-index anti-symmetric represen-
tation.

holomorphic 2-form on S is preserved. As is well-known, such automorphisms exist exactly for
m ∈ {2, 3, 4, 6}. As explained in section 2.4.1, the quotient (T 2

F×S)/Zm has an elliptic fibration
(T 2

F × S)/Zm → (T 2
F × C)/Zm whose fibers over T 2

F × {0} are all nonsingular elliptic curves,
but with Zm acting upon them as loops are traversed on T 2

F . This same geometry has a second
fibration (T 2

F × S)/Zm → S/Zm with no section and some multiple fibers in codimension two,
which will be further discussed in section 2.9.

Turning now to enhancements of fibers, from the relation between anomaly cancellation and
enhanced singular fibers [52, 53, 51, 54] we find all possible gauge theories compatible with a
given choice of base curve. This is summarized in table 2.7.1. We find that in general, such
theories can support hypermultiplets in the adjoint representation (denoted Adj), the two-index
symmetric representation (denoted sym) and the n-index anti-symmetric representation (denoted
Λn).

The greatest novelty here relative to the case of 6D SCFTs are the theories with nAdj = 1 or
su(N) gauge algebra, nsym = 1, nΛ2 = 1 or, in the special case of su(6), nf = 1, nsym = 1,

28



nΛ3 = 1/2. The first of these cases, with nAdj = 1, corresponds simply to a smooth curve of
genus 1 in the base. The cases with symmetric representations of su(N), on the other hand,
arise when the base curve is of Kodaira type I1 (i.e. has a nodal singularity). As reviewed
in Appendix A.2, the notion of genus is ambiguous for singular curves. A type I1 curve has
topological genus 0 but arithmetic genus 1, and as a result it must support a hypermultiplet in the
two-index symmetric representation, rather than one in the adjoint representation.

For LSTs, these are the only examples in which a curve of (arithmetic) genus 1 shows up, and
a curve of genus g ≥ 2 is never allowed. Note also that a curve of genus 0 and self-intersection
0 cannot itself support an e8 gauge algebra: it must be blown up at 12 points, resulting in an e8

theory with 12 small instantons:

(12), 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (2.7.2)

Rank One LSTs

Consider next the case of rank one LSTs, i.e. those in which there are two compact curves in the
base. As we have already remarked, in this and all higher rank LSTs, all the curves of the base
will be P1’s, and moreover, they will have self-intersection −x for 1 ≤ x ≤ 12. Now, in the case
of two curves, we can have various violations of normal crossing. For example, we can have
curves which intersect along a tangency. This occurs in both the 4||1 and 2||2 configurations,
the latter describing a type III Kodaira fiber. Observe that in both cases, there is a smoothing
deformation which takes us from an order two tangency to a loop, i.e. we can deform to //4, 1//
and //2, 2//. In addition to these rank one LSTs, there is just one more configuration given
by 1, 1, which in some sense is the most “conventional” possibility (as all intersections respect
normal crossing).

To this end, let us first discuss fiber enhancements for the 1, 1 configuration. We shall then
turn to the cases where there is either a violation of normal crossing or a loop configuration.
Whenever curves with gauge algebras intersect, matter charged under each gauge algebra will
pair up into a mixed representation of the gauge algebras. The mixed anomaly condition places
strong constraints on which representations are allowed to pair up. The allowed set of mixed
representations for two curves intersecting at a single point is given in section 6.2 of reference
[10]. Consider for example, the 1, 1 base. We have:

gL
1

gR
1 (2.7.3)

with the following list of allowed gauge algebras:

• gL = so(M), gR = sp(N), M = 7, ..., 12, M − 5 ≥ N , 4N + 16 ≥M .

• gL = so(M), gR = sp(N), M = 7, N ≤ 6.

• gL = g2, gR = sp(N), N ≤ 7.

• gL = sp(M), gR = sp(N), 2M + 8 ≥ 2N , 2N + 8 ≥ 2M .
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• gL = sp(M), gR = su(N), 2M + 8 ≥ N , N + 8 + δN,3 + δN,6 ≥ 2M .

• gL = su(M), gR = su(N), M + 8 + δM,3 + δM,6 ≥ N , N + 8 + δN,3 + δN,6 ≥M .

• gL = f4, e6, e7 or e8, gR = ∅.

Here, it is understood that sp(0) is the same as an empty −1 curve, and e8 on a −1 curve implies
that 11 points on the −1 curve have been blown up.

Consider next the configuration //2, 2//, i.e. a loop of two −2 curves. In this case the only
gauge algebra enhancement is given by

//
su(N)

2
su(N)

2 // (2.7.4)

with a bifundamental localized at each intersection point.

When the −2 curves intersect tangentially, i.e. in the 2||2 configuration, more options are
available, as suggested by the effective field theory on the tensor branch. We find the following
general possibilities for enhancements of the gauge algebra and matter:

• ga = su(Na), gb = so(Nb), Ra = Na, Rb = Nb. The only allowed possibilities are
Na = 6, Nb = 12 and Na = 7, Nb = 13.

• ga = su(4), gb = so(7), so(8), Ra = 4, Rb = 8.

• ga = su(4), gb = g2, Ra = 4, Rb = 7.

Just as it was necessary to deform the singular Kodaira I1 curve to get hypermultiplets in the
symmetric representation of su(N), so it is necessary to deform the I2 base to the tangentially
intersecting Kodaira type III curve configuration to get these matter pairings. In conclusion, for
the Kodaira type III configuration 2||2, we may enhance the gauge algebras as:

so(7)

2
[Sp(1)]

||
su(4)

2

so(8)

2
[Sp(2)]

||
su(4)

2

g2

2 ||
su(4)

2

so(12)

2
[Ns=1]

||
su(6)

2

so(13)

2
[Ns=1/2]

||
su(7)

2

Here, there is a mixed representation in the bifundamental of the two gauge algebras in the last
three cases. These representations can only show up when the curves are tangent to each other.
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Finally, we turn to the case of the bases //4, 1// and 4||1. In both cases, the only enhance-
ment possible is an SO-type algebra over the −4 curve and an Sp-type or SU-type algebra over
the −1 curve. The matter content of the theory, however, depends on the type of intersection.
Consider first the case of

//
so(2N+8)

4
sp(N)

1 // (2.7.5)

with a half hypermultiplet localized at each intersection point. Indeed, we can reach this theory
by starting from the 6D SCFT:

[so(2N + 8)]
sp(N)

1 [so(2N + 8)] (2.7.6)

and gauging the diagonal subalgebra of the flavor symmetry.

In the case of the tangential intersection 4||1, we again find novel configurations of matter
which are missing from the case of normal crossing. The gauge algebras are the same as those
of (2.7.5):

so(2N+8)

4 ||
sp(N)

1 (2.7.7)

However, there is now a single full hypermultiplet in the bifundamental of the two gauge algebras
rather than two half hypermultiplets.

There is another configuration possible in the case of 4||1:

su(N)

1 ||
so(N+8)

4 (2.7.8)

with a hypermultiplet in the bifundamental of the two gauge algebras, as well as a hypermultiplet
in the two index anti-symmetric representation of the su(n) factor, all of which are located at the
collision point between the two branes.

Rank Two LSTs

We now turn to the case of rank two LSTs, i.e. those with three curves. Here, we can have no
tangential intersections. In this case, the adjacency matrix again provides only partial information
about the geometry of intersecting curves. In the case where we have normal crossings for all
pairwise intersections, the rules of enhancing fiber enhancements follow from reference [10] and
are also reviewed in Appendix A.1. There is, however, also the possibility of a Kodaira type

IV configuration of −2 curves, i.e. 2
2

5 2. We shall therefore confine our attention to fiber
decorations with this base.

To illustrate, suppose the gauge algebra localized on each of the three−2 curves is su(2)i, i =
1, 2, 3. Anomaly cancellation dictates that in such a case there must be a single half-trifundamental
1
2
(2, 2, 2) plus two fundamentals charged under each su(2). We note in passing that the loop-

like configuration //222// also admits a similar enhancement in the gauge algebras, i.e. with
su(2)i, i = 1, 2, 3 gauge groups, but that the corresponding matter content is given by three
bifundamentals (2, 2, 1), (2, 1, 2), (1, 2, 2). These two configurations have the same anomaly
polynomials.
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But in contrast to the //222// configuration, for 2
2

52, no other gauge algebra enhancements
are possible. To see this, suppose we su(N) factors on each −2 curve. We would then need N2

fundamentals of each su(N) to get a (N,N,N) representation. However, anomaly cancellation
considerations constrain us to 2N such fundamentals. In other words, we are limited to N ≤ 2.

2.7.2 Higher Rank LSTs

Turning next to the case of LSTs with at least four curves in the base, all of these local violations
of normal crossing do not appear. Nevertheless, we encounter such violations when we attempt
to blow down −1 curves which touch more than two curves. Even so, the local rules for fiber
enhancements follow the same algorithm already spelled out in detail in reference [10]. In some
cases, however, there can be additional restrictions compared with the fiber enhancements which
are possible for 6D SCFTs. To illustrate, we primarily focus on some simple examples, i.e.
the affine ADE bases, fiber decorations for the base 1, 2, ..., 2, 1, and fiber decorations for the
loop-like bases.

Affine ADE Bases

Let us next consider the case of fiber enhancements in which the base is given by an affine
Dynkin diagram of −2 curves. If we assume that no further blowups are introduced in the base,
we will be limited to just su(N) gauge algebras over each curve. In the case of 6D SCFTs, it is
typically possible to obtain a rich class of possible sequences of gauge group factors, because 6D
anomaly cancellation can be satisfied by introducing an appropriate number of additional flavor
symmetry factors. This in turn leads to a notion of a “ramp” in the increase in the ranks [28] (see
also [18]). For an affine quiver, this is much more delicate, since all of these cases can be viewed
as a degeneration of an elliptic curve. For example, in the case of an affine Âk base (i.e. the Ik
Kodaira type), anomaly cancellation tells us that all of the gauge algebra factors are the same
su(N). By a similar token, 6D anomaly cancellation tells us that the gauge algebra of any of
these cases is su(Ndi), where di is the Dynkin label of the node in the affine graph, and N ≥ 1
is an overall integer.9 In F-theory language, we have fiber enhancements INdi over each node.
Indeed, at a formal level we can think of anomaly cancellation being satisfied by introducing
su(1) gauge algebras.

The 1, 2, ..., 2, 1 Base

Compared with the case of affine ADE bases, there are comparatively more options available
for fiber enhancements of the base 1, 2, ..., 2, 1. In some sense, this is because these bases do
not directly arise from the degeneration of a compact elliptic curve, but are better viewed as the
degeneration of a cylinder.

9This same observation has already been made in the context of 4D superconformal N = 2 quiver gauge
theories [55]. Indeed, in this special case the condition of vanishing beta functions is identical to the condition that
6D anomalies cancel.

32



With this in mind, we now explain how fiber enhancements work for this choice of base. For
a large number of−2 curves, the allowed enhancements take a rather simple form, whereas there
are outlier LSTs for smaller numbers of −2 curves. In particular, when there are more than five
−2 curves, the −2 curves necessarily hold su(Ni) gauge algebras:

gL
1

su(N1)

2
su(N2)

2 ...
su(Nk−1)

2
su(Nk)

2
gR
1

The Ni are subject to the convexity conditions 2Ni ≥ Ni−1 + Ni+1, with the understanding that
Ni = 1 for a curve without a gauge algebra.

The −1 curves in this configuration may hold either sp(M) or su(M) gauge algebra. If
the leftmost −1 curve holds sp(M), anomaly cancellation imposes the additional conditions
2N1 ≥ 2M + N2, 2M + 8 ≥ N1. If the leftmost −1 curve holds su(M), anomaly cancellation
imposes 2N1 ≥ M + N2, M + 8 + δM,3 + δM,6 ≥ N1. Finally, the −1 curve may be empty
provided N1 ≤ 9. The story is mirrored for the rightmost −1 curve at the other end of the chain.

When there are exactly five −2 curves, we have two additional configurations:

1 2
su(2)

2
so(7)

2
su(2)

2 2 1

and

1 2
su(2)

2
g2

2
su(2)

2 2 1

When there are four −2 curves, we similarly have

1
su(2)

2
so(7)

2
su(2)

2 2 1

and

1
su(2)

2
g2

2
su(2)

2 2 1

When there are three −2 curves, we have several new configurations:

1
su(2)

2
so(7)

2
su(2)

2 1

1
su(2)

2
g2

2
su(2)

2 1

gL
1

so(7)

2
su(2)

2 2 1

and
gL
1

g2

2
su(2)

2 2 1

with gL = sp(M),M ≤ 3 in each of the last two cases.

When there are two −2 curves, we have:

gL
1

so(7)

2
su(2)

2 1
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and
gL
1

g2

2
su(2)

2 1

with gL = sp(M),M ≤ 3 in each of the last two cases.

When there is only a single −2 curve, there are even more possibilities:

gL
1

so(8)

2
gR
1

with gL = sp(ML),ML ≤ 2, gR = sp(MR),MR ≤ 2.

gL
1

so(7)

2
gR
1

with gL = sp(ML), gR = sp(MR), ML +MR ≤ 4 or ML = 4, MR = 1.

gL
1

g2

2
gR
1

with gL = sp(ML), gR = sp(MR), ML +MR ≤ 4.

gL
1

su(2)

2 1

with gL = g2 or so(7).

2.7.3 Loop-like Bases

Finally, let us turn to the case of fiber enhancements for the loop-like bases. We have already
discussed the case of an affine Âk base of−2 curves in which we the allowed fiber enhancements
are just a uniform IN fiber. Otherwise, we induce some blowups. Now, if we allow for blowups,
we can reach more general loop-like configurations. However, as we have already discussed near
line (2.6.2), all of these cases consist of a single type of base node suspended between minimal
links. This is a consequence of the fact that in a general 6D SCFT, there are nested containment
relations on the minimal fiber types [10]:

gmin1 ⊆ ... ⊆ gminm ⊇ ... ⊇ gmink . (2.7.9)

However, in a 6D LST, we must also demand periodicity of the full configuration. This forces a
uniform fiber enhancement on each such node.

As a consequence, we can summarize all of these cases by keeping implicit the blowups
associated with conformal matter. We have:

//
g

2, ...,
g

2// (2.7.10)

where we allow for a general fiber enhancement to an ADE type simple Lie algebra g over
each of the −2 curves. For all cases other than the su(N) gauge algebras, this in turn requires
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further blowups in the base, i.e. we have a configuration with conformal matter in the sense of
references [28, 29]. So in other words, all of these loop-like configurations are summarized by
stating the number of −2 curves, and the choice of fiber type over any of the −2 curves.

2.8 Embeddings and Endpoints

In the previous sections we presented a general classification of LSTs in F-theory. One of the
crucial ingredients we have used is that decompactifying any curve must return us to a collection
of (possibly disconnected) SCFTs. Turning the question around, it is natural to ask whether all
SCFTs embed in LSTs.

In this section we show that this is indeed the case. Moreover, there can often be more than
one way to complete an SCFT to an LST. To demonstrate such an embedding, we will need to
show that there exists a deformation of a given LST F-theory background which takes us to the
requisite SCFT. This can involve both Kähler deformations, i.e. motion onto a partial tensor
branch, and may also include complex structure deformations, i.e. a Higgsing operation.

With this in mind, we first demonstrate that all of the bases for 6D SCFTs embed in an LST
base. A suitable tensor branch flow then takes us from the LST base back to the 6D SCFT base.
Then, we proceed to show that the available fiber decorations for LSTs can be Higgsed down
to the fiber decorations for an SCFT. The latter issue is somewhat non-trivial since the fiber
decorations of an ADE-type base is comparatively less constrained when compared with their
affine counterparts.

2.8.1 Embedding the Bases

We now show that all bases for 6D SCFTs embed in LST bases. To demonstrate that such
an embedding is possible, it is convenient to use the terminology of “endpoints” for SCFTs
introduced in reference [9], which we can also extend to the case of LSTs. Given a collection of
curves for an SCFT base, we can consider blowdowns of all of the−1 curves of the configuration.
Doing so, we shift the self-intersection of all curves touching this −1 curve according to the rule
x → (x − 1) for a curve of self-intersection −x. In the case where a −1 curve is interposed in
between two curves, we have x, 1, y → (x− 1), (y − 1). After this first stage of blowdowns, we
can then sometimes generate new −1 curves. Iteratively blowing down all such −1 curves, we
eventually reach a configuration of curves which we shall refer to as an “endpoint.” The set of all
endpoints has been classified in reference [9], and they split up according to four general types:

Trivial Endpoint: 1→ C2 (2.8.1)
A-type Endpoint: x1...xk (2.8.2)

D-type Endpoint: 2
2
x1...xk (2.8.3)

E-type Endpoint: 22
2

222, 22
2

2222, 22
2

22222 (2.8.4)
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In fact, starting from such an endpoint we can generate all possible bases of 6D SCFTs by further
blowups. Sometimes such blowups are required to define an elliptic Calabi-Yau, while some can
be added even when an elliptic fibration already exists. By a similar token, we can also take a
fixed base, and then decorate by appropriate fibers.

Now, a central feature of this procedure is that the resulting adjacency matrix retains the
important property that it is positive definite. Similarly, if we instead have a positive semidef-
inite adjacency matrix, the resulting matrix will retain this property under further blowups (or
blowdowns) of the base.

To demonstrate that we can always embed an SCFT in an LST, it will therefore suffice to
show that there is some way to add additional curves to an SCFT endpoint such that the resulting
LST defines a base. To illustrate the idea, suppose we have a 6D SCFT with a trivial endpoint.
Then, before the very last stage of blowdowns, we have a single −1 curve, which we shall call
Σ. If we return to the original SCFT, this curve will also be present, but its self-intersection will
be different. Hence, to get an LST we can simply attach one more −1 curve to Σ. For example,
the configuration 1, 1 defines the base of an LST. Supplementing the fibers can always be done
to realize the case of fiber decorations.

Consider next the case of A-type endpoints. Here, we can always attach a suitable number of
“tails” of the form 1, 2..., 2 to each curve such that blowing down these instanton links leads us
to k curves of self-intersection −2, i.e. 2, ..., 2. Attaching an additional −1 curve to the left and
to the right, we get a base of the form 1, 2, ..., 2, 1. We therefore conclude that adding such tails
again allows an embedding in an LST.

By a similar token, we can append such tails to a D-type endpoint until we reach the Dynkin
diagram with just −2 curves. Adding one more −1 curve to this configuration:

D-type Endpoint = 2
2

2...2, 1 (2.8.5)

leads to a blowdown eventually to the configuration 2, 1, 2, which in turn blows down to 1, 1. So
again, we conclude that the adjacency matrix is positive semidefinite and we have arrived at an
LST.

This leaves us with the E-type endpoints. In these cases, we just have a configuration of −2
curves, and the possible blowups are severely limited [9]. For example, there are no blowups of
the E8 Dynkin diagram. It therefore suffices to add one additional −2 curve to this configuration
to reach its affine extension. Similar considerations also apply for the E6 and E7 configurations
when no additional blowups are present, i.e. we simply proceed from the Dynkin diagram to its
affine extension.

To round out the analysis, we need to demonstrate that if we perform any blowups of anE6 or
E7 endpoint, we can again attach a −2 curve at the same location, without inducing any further
blowups.10 That this is indeed the case is conveniently summarized by simply writing down the
possible blowups. For E6, there are two other consistent bases, and for E7 there is one. In both

10Note that attaching a −1 curve will not work since we would then blowdown to a configuration where the
adjacency matrix is not positive semidefinite – a contradiction.
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cases, we can indeed still add our −2 curve without inducing extraneous blowups:

2321

2
3
2
1

81232→ 231

2
3
1

5132→ 22

2
2

222 (2.8.6)

2231

3
1

51322→ 222
2

2222. (2.8.7)

Summarizing, we have just demonstrated that all bases for 6D SCFTs embed in an LST base.

LST Endpoints As a brief aside, one of the interesting features of this argument is that we
have implicitly relied on the notion of an LST endpoint. Given that we have already classified
all such bases, we can also ask about the possible endpoints for LSTs. Compared with the case
of 6D SCFTs, the number of distinct endpoints are comparatively small. Roughly speaking, this
is because of the positive semidefinite condition for our adjacency matrix, which in turn means
that many configurations will blow down to a single curve of self-intersection zero (as in the
1, 2, ..., 2, 1 configurations).

Combining the tensor-decoupling criterion with the demand that we have a positive semidef-
inite adjacency matrix means that the total number of endpoints are given by the Kodaira type
intersections of −2 curves, an elliptic curve, as well as a single P1 of self-intersection zero,
which we denote by P . In the latter two cases, we note that we only obtain a 6D LST by having
a non-trivial elliptic fibration. Thus, we find the following list of LST endpoints:11

LST Endpoints: P, In, II, III, IV, I∗n, II
∗, III∗, IV ∗ (2.8.8)

for n ≥ 0.

2.8.2 Embedding the Fibers

Suppose next that we have supplemented a base by an additional curve. When we do this,
additional non-trivial fibers are sometimes inevitable, and can in turn force additional structure
on the elliptic fibers. To give a concrete example, consider the case of a 6D SCFT with base
given by the E6 Dynkin diagram of −2 curves. Fiber decorations for this model were studied
in reference [10] where it was found that typically, additional flavors can be added so that an
appropriate convexity condition on the ranks is obeyed. To extend this to an LST base, we
cannot add a −1 curve (as the blowdown is inconsistent). Rather, we must add an additional −2
curve to reach the affine Ê6 Dynkin diagram of−2 curves. When we do this, we must remember
that the elliptic fibration of the resulting F-theory model also becomes rigid. So in other words,
the available elliptic fibrations are further constrained. It is at this stage that we must include the
effects of Higgsing as well as tensor branch deformations to reach the original 6D SCFT. That
this is always possible follows from the fact that all representations of the Lie algebra e6 embed

11Here we neglect the possibility of torsion in the normal direction to the compact curves of the base.
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in representations of its affine extension ê6. Similar considerations apply for the fiber decorations
of all of the E-type bases.

In the case of the A- and D-type bases, the analysis is comparatively simpler. The reason is
that we can just add additional tails of the form 1, 2, ..., 2 with trivial fibers and leave the fibers
above the curves in the SCFT base as they were. One might worry here about the fact that curves
of self-intersection −1 and −2 are not always allowed to have trivial fibers. For instance, the
−1 curve in the sequence 2, 2, 3, 1, 5 necessarily has a type II fiber. However, such subtleties do
not arise in this case: one can always add small instanton links of the form 1, 2, ..., 2 with trivial
fibers to an A- or D-type base to get an LST.

Putting together our analysis of tensor branch flows and Higgs branch flows, we conclude
that all 6D SCFTs embed in some LST. Indeed, it is also clear that there can sometimes be more
than one such embedding.

2.9 T-duality

In the previous sections we used the geometry of F-theory compactifications to tightly constrain
the structure of LSTs. In this section we turn the analysis around and show how the physics of
little string theories suggests non-trivial geometric structures for elliptic Calabi-Yau threefolds
in which the non-compact base has a negative semidefinite intersection form.

In physical terms, one of the key features of LSTs is that the description as a local quantum
field theory must break down near the string scale. A sharp way to probe this structure is by
compactifying on a circle. Recall that in T-duality, the theory compactified on a small S1 of
radius R is dual to another string theory compactified on an S1 of radius R̃ ∼ α′eff/R. Based on
this, it is natural to expect that all LSTs have a similar T-duality.

This expectation suggests a non-trivial constraint on the geometry of an F-theory realization
of an LST. Recall that F-theory compactified on an elliptically fibered Calabi-Yau threefoldX →
B leads, upon further compactification on an S1, to M-theory compactified on the same Calabi-
Yau threefold. In the M-theory description, the Kähler class becomes a dynamical modulus
(which is taken to zero size to reach the F-theory limit). On the other hand, T-duality tells us
that if we take this circle to be very small, we should expect to obtain another LST, this time
compactified on a large radius circle. For this to be so, we must have available to us more than
one way to reach an F-theory background from a given compactification of M-theory on X . In
other words, physical considerations suggest the existence of another elliptic fibration for our
Calabi-Yau threefold X → B̃, and the lift from M-theory to F-theory involves collapsing the
Kähler class of this other elliptic fiber to zero size.

Our plan in this section will be to give further evidence that T-duality is realized in F-theory
constructions of LSTs through the presence of a double elliptic fibration. We shall, however,
mainly focus on particular examples of how T-duality is realized geometrically. After this, we
give a sketch for how we expect this correspondence to work in general, leaving a complete proof
to future work.
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2.9.1 Examples

As a first example consider the T-duality between the LST of k ≥ 2 NS5-branes in IIA (the
N = (2, 0) A-type LSTs), and that of k NS5-branes in IIB string theory (the N = (1, 1) A-type
LSTs). The IIA realization just follows from a base with −2 curves arranged in a loop, i.e. as
the type Ik−1 degeneration of an elliptic curve. The F-theory elliptic curve is then a smooth T 2,
i.e. an I0 fiber. Switching the roles of these two curves, we get the type IIB N = (1, 1) LST, i.e.
we have (k − 1) D7-branes wrapped over a T 2. There is a clear extension of this case to all of
the ADE N = (2, 0) LSTs in terms of the corresponding ADE 7-branes wrapped over a T 2.

Another class of examples we have already encountered several times involves the LSTs
realized by M5-branes filling R5,1 and probing the geometry S1

⊥×C2/Γ for Γ an ADE subgroup
of SU(2). Compactifying on a further circle, we can shrink the S1

⊥ factor to reach IIA string
theory. T-duality is then inherited from that of the physical superstring theory.

In the F-theory realization of these systems, we have a base quiver with conformal matter
suspended in between the nodes:

//g ⊕ g ⊕ ...⊕ g ⊕ g︸ ︷︷ ︸
k

//. (2.9.1)

As we have already remarked in the classification of such structures, all fiber types and conformal
matter are necessarily minimal; no deviations from this rigid structure are possible. This actually
means that we can readily identify the other elliptic fiber of this model: It is given by a suitable
multiple of an Ikdi fiber, where the di denote the Dynkin labels of the affine extension of the
g-type Lie algebra. Another consequence of this analysis is that sometimes, the absence of other
fiber decorations for say the E-type affine bases means we cannot arbitrarily combine these two
structures. Rather, since the only fiber enhancements over the E-type bases are Ik-type fibers (i.e.
without inducing further blowups), there is again a clear exchange between the roles of the two
(singular) elliptic curves.

Quite strikingly, this also entails the existence of several infinite classes of models which are
self-T-dual upon toroidal reduction. These are models which have a double elliptic structure con-
sisting of two copies of the same Kodaira fiber. For example, models which have an IN Kodaira
base, with gauge groups su(N) on each −2 curve and bifundamentals at the intersections. As

a more exotic example consider the blown up type IV degeneration: 3
3

13. On each −3 curve
in this configuration there is an su(3) gauge sector which arises precisely from a type IV fiber.
Clearly, contracting the -1 curve, switching fiber and base, and then blowing up we obtain back
the same model.12

As a final class of examples, consider the F-theory models with base:

[E8]1, 2, ..., 2, 1︸ ︷︷ ︸
k

[E8]. (2.9.2)

This is realized in heterotic M-theory by a collection of k M5-branes in between the two het-
erotic walls. compactifying on a further circle and activating appropriate Wilson lines for the

12See [50] for a further analysis of this case.
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background E8 × E8 flavor symmetry, we reach –via T-duality of the physical superstring– the
case of k NS5-branes of the Spin(32)/Z2 heterotic string theory. This system can be analyzed
in perturbative string theory, and the T-dual LST is therefore realized by an sp(k) gauge theory
with 32 half hypermultiplets in the fundamental representation, and a single hypermultiplet in
the two-index anti-symmetric representation.

Demonstrating the presence of the extra elliptic fibration for the F-theory model is somewhat
more subtle in this case, but we can see it as descending from a Z2 quotient of the I2k-type
Kodaira configuration of −2 curves:

//2, 2, ..., 2, 2︸ ︷︷ ︸
2k

//
Z2→ 1, 2, ..., 2, 1︸ ︷︷ ︸

k

. (2.9.3)

In Appendix A.6 we present an explicit analysis of this case of the base 1, 1, and also explain its
extension to the configuration 1, 2, ..., 2, 1. The corresponding F-theory model is realized by a
base given by P , a single P1 with self-intersection zero, with a fiber enhancement Ins2k , i.e. we get
an sp(k) 7-brane wrapped over P . We have already classified the matter enhancements for this
case in section 2.7, and indeed, we find agreement with the purely heterotic analysis. Note that
the sp-type algebra originates from the Z2 quotient of anA2k algebra via its outer automorphism.

In fact, a similar observation allows us to extend this to some of the models in which we have
a P1 of self-intersection zero. For example, under a further Z2 quotient, we can reach some of
the gauge theories already encountered via more direct methods:

[su8]
suN
1 ,

suN
1 [su8]

Z2→ [su16]
suN
0 [su2], (2.9.4)

where the su16 flavor symmetry acts on the sixteen hypermultiplets in the fundamental represen-
tation, and the su2 flavor symmetry acts on the hypermultiplets in the two index anti-symmetric
representation. From this perspective, we can still recognize the quotient of an additional elliptic
fiber. Schematically, we have:

//2, 2//
Z2→ 1, 1

Z2→ 0. (2.9.5)

2.9.2 Examples Involving Curves with Torsion Normal Bundle

Recall that in section 2.4 we found that the N = (1, 1) LSTs admitted an ABCDEFG classifi-
cation according to their corresponding affine Lie algebras. In the F-theory realization of these
models, we also saw that the base contained a genus 1 curve with a torsion normal bundle. We
encountered torsion normal bundles again in section 2.7.1 in our discussion of rank zero LSTs.
We will now explain these examples in more detail.

By construction, examples in this class admit two genus one fibrations: (T 2
F × S)/Zm →

(T 2
F × C)/Zm, and (T 2

F × S)/Zm → S/Zm. The first fibration has a section with monodromy
over the central fiber of π : (T 2

F × C)/Zm → C. The second fibration does not have a section
(i.e., it is not an elliptic fibration, in the terminology of [56]), and we discuss its structure here.

Recall that for a genus one fibration X → B without a section, there is an associated “Jaco-
bian fibration” J(X/B) → B which has a section, and which has precisely the same τ function
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describing the fibers.13 As explained in [24, 56, 57], the set of X’s which share a common Ja-
cobian fibration (and are equipped with an action by the Jacobian fibration, as stressed in [58])
forms a group14 which should be identified with the group of connected components of the gauge
group in F-theory. That is, compactifying the F-theory model on a circle, there is a discrete choice
of one of these X’s to serve as the compactification space for M-theory, which is the hallmark of
a discrete gauge choice.

In our examples, the action of Zm on S has fixed points, leading to Am−1 singularities on
the quotient S/Zm. (More generally, there can be A`−1 singularities for any ` dividing m, due
to fixed points of subgroups.) Over an A`−1 point, we have taken the quotient of the fiber by a
translation of order `, so that fiber has multiplicity `. Notice that even though the fiber is multiple,
the total space is smooth.

This is precisely the situation analyzed by Mark Gross in [60], who showed that the Jacobian
fibration is fibered over the same base, still with A`−1 singularities. But once the Jacobian fibra-
tion has been taken, it is possible to resolve those singularities of the base (which corresponds
physically to giving an expectation value to scalars in the corresponding tensor multiplets). We
thus find that these theories are part of a larger family of LSTs, but at special values of the tensor
moduli in the larger family, a finite gauge group appears, leading to additional 5D vacua (i.e., the
fibrations without a section) corresponding to distinct sectors of Wilson line expectation values.

Let us illustrate this with two concrete examples drawn from Appendix A.7, where we work
out theN = (1, 1) theories of BCFG type in detail. As a first example, consider a partially blown
down graph of type Ê8, illustrated here (and in Figure A.7.1):

d d d
t

t d t t

where we blow down each solid circle to an A1 singularity. As shown in Appendix A.7, there is
a genus 1 fibration X over this base B with a fiber of multiplicity 2 at each A1 singularity. The
fiber never degenerates over this locus.

The Jacobian fibration J(X/B) is simply a Weierstrass fibration over B whose fibers do not
degenerate. There is no obstruction to resolving the singularities of B, moving out into the rest
of the moduli space. In fact, this is part of the moduli space of theN = (2, 0) theory of type E8,
and we claim that when the tensors are tuned to blow down precisely the curves corresponding
to solid nodes, a Z2 gauge symmetry appears in the theory. That gauge symmetry is necessary to

13A more common notation is J(X), but since we are studying Calabi–Yau threefolds with more than one genus
one fibration, we indicate the fibration for emphasis.

14This group has been incorrectly called the Tate–Shafarevich group in the literature [56, 57], for which the
fourth author apologizes. The group contains the Tate–Shafarevich group [59], but it can also contain fibrations
with isolated multiple fibers [60], a fact which arose in the proof of the finiteness theorem for elliptic Calabi–Yau
threefolds [61,62]. The examples presented here have such isolated multiple fibers, and so do not belong to the Tate–
Shafarevich group but rather to the larger group of Calabi–Yau threefolds sharing a common Jacobian fibration.
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explain the additional 5D models which appear when the A1’s are blown down and a twist of the
Jacobian fibration is possible. Presumably, moving away from this locus amounts to Higgsing
the Z2 gauge symmetry. Incidentally, this example is the T-dual of the N = (1, 1) model with
group F4.

As a second example (which is the T-dual of the N = (1, 1) model with group G2), consider
another partially blown down graph of type Ê8, illustrated here (and in Figure A.7.2):

t t d
d

t t t t

where this time, we blow down each lined pair of solid circles to an A2 singularity. There is a
fibration with multiple fibers of multiplicity 3 over each of those points. The Jacobian fibration
is again part of theN = (2, 0) theory, with a different tuning of the moduli. With this tuning, we
find a Z3 gauge symmetry.

A related example was given in section 2.7.1 using the action of Z6 on a nonsingular elliptic
curve with j = 0. The quotient S/Z6 has central fiber which is a rational curve passing through
surface singularities of types A1, A2, and A5 with fibers of multiplicity 2, 3, and 6 over those
points. Resolving the singularities leads to another affine Ê8 diagram:

t t
t

t t t t t

where again the solid circles represent the curves being blown down. Tuning the moduli of the
N = (2, 0) E8 theory to blow down those curves leads to a locus in moduli with a Z6 gauge
symmetry. Notice that this is the intersection of the previous two loci with Z2 and Z3 gauge
symmetry.

2.9.3 Towards T-Duality in the More General Case

In the examples from the previous two subsections, we saw that the expected appearance of T-
duality for an LST motivates the search for a double elliptic fibration structure in such F-theory
models. When the base has a fibration by curves of genus 1, the origin of this second fibration
is clear. When the fibration on the base is by curves of genus 0, however, the T-duality is not as
readily manifest.

Example (2.9.2) does have manifest T-duality, as further analyzed in Appendix A.6. In this
case, the Weierstrass model y2−F (x, ψ, [s, t]) can be regarded as a double cover of a P1-bundle
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over the base B, where x denotes the coordinate on the P1. Since the double cover is branched at
4 points along each fiber P1

F of this fibration, the total space gets a fibration by curves of genus
1.

Now the base B of that F-theory model has a fibration π : B → C of its own whose general
fiber is another P1 which we shall call P1

B. In Appendix A.6, after making a birational modifica-
tion of the base (i.e., blowing it up and down), we find that the double cover is branched along
4 points of each fiber P1

B as well, and this implies that there is a second genus 1 fibration on
the total space. Note that this echoes the discovery made in [15] that heterotic T-duality, when
viewed from the perspective of F-theory, exchanges the roles of base and fiber in the heterotic
weak coupling limit.

It is therefore natural to seek out a more general geometric exchange symmetry in LSTs with
T-duality. We leave a more complete investigation of this possibility to future work.

2.10 Outliers and Non-Geometric Phases

Much as in the case of the classification of SCFTs achieved in reference [10], we view the F-
theory realization of LSTs as providing a systematic approach to the construction of such models.
In some cases, however, we indeed find a few small gaps between what is expected based on field
theory considerations, and what can be obtained in geometric phases of F-theory.

Our plan in this short section will be to proceed mainly by effective field theory considera-
tions to give a list of such outlying behavior, both for 6D SCFTs and LSTs. In this sense, we
will present a complete classification of UV complete 6D phenomena decoupled from gravity,
though we hasten to add that some of these putative theories may end up being inconsistent due
to the lack of an embedding in an F-theory (or other string) construction.15 In some cases, how-
ever, this also points to a few additional novel possibly non-geometric structures. Though we
shall comment on possible ways to realize these models in F-theory, we leave a more complete
analysis to future work.

2.10.1 Candidate LSTs and SCFTs

From a bottom up perspective, the primary constraints on the construction of consistent LSTs
are the existence of a lattice of string charges with a negative semidefinite Dirac pairing, and
possible gauge groups “decorating” the associated tensor multiplets.

In some cases, there is a clear indication from F-theory that certain bottom up considerations
are too weak; For example, the phenomenon of a −n curve for n ≥ 3 always implies the ex-
istence of a non-trivial gauge group factor, a condition which is not obvious from any anomaly
cancellation condition.

There are, however, two intermediate cases suggested by field theory which also have a po-
tential realization in string theory. The first case deals with the gauge-gravitational anomaly

15For a recent example of a seemingly consistent 6D SCFT which is actually inconsistent, see e.g. Appendix A
of reference [63].
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cancellation condition (see (A.1.7)) imposed in all geometrically realized 6D SCFTs and LSTs.
This condition has no field theoretic analog in flat space as there are no a priori restrictions
on one-loop contribution to mixed gauge-gravitational anomaly. Non-vanishing of total mixed
gauge-gravitational anomaly implies that the theory is inconsistent when put on a fixed curved
spacetime background. It would clearly be troublesome if 6D SCFTs were anomalous in this way.
Fortunately, it is always possible to cancel the one-loop contribution to this anomaly against a
Green-Schwarz contribution, as was demonstrated in [64]. This argument does not apply to 6D
LSTs, and indeed it can be checked explicitly in many examples of 6D LSTs that there is no way
to cancel the one-loop mixed gauge-gravitational anomaly using the Green-Schwarz mechanism.
This means that 6D LSTs cannot always be put on a fixed curved spacetime.

One class of such models would arise on:

12...21 (2.10.1)

where we decorate all the tensors with su-type gauge groups along with anti-symmetric matter
for the last su gauge group and symmetric matter for the first su gauge group. With the presence
of this symmetric representation, (A.1.7) is violated. Nonetheless, this model can be constructed
by putting type IIA on an interval S1/Z2 with an O8− orientifold plane on each fixed point, D6s
stretched along the interval, NS5s embedded in the D6s at various points along the interval, and
two of the NS5s stuck respectively at the two fixed points.

More generally, to construct new examples of 6D SCFTs and LSTs which violate the 1-loop
mixed gauge-gravitational anomaly condition (A.1.7) we can do the following: take any F-theory
model having a −1 curve or P base curve associated with su-type gauge group and at least
one anti-symmetric hyper and 16 fundamental hypers not transforming under any other gauge
group. Then, replace this set of hypermultiplets with a single hypermultiplet in the symmetric
representation. The resulting theory will satisfy gauge anomaly cancellation, but it will have a
non-vanishing 1-loop gauge-gravitational anomaly.

The second case has to do with the condition of “normal crossing” which is present in all
geometrically realized 6D SCFTs, and is only mildly violated in LSTs. For example, we have
seen that an intersection with an order two tangency 4||1 leads to a consistent LST base. In the
bottom up perspective, we have a Dirac pairing which has 2 on the off-diagonal entries, and −4
and −1 on the diagonals. Generalizing, we can consider constructions such as:

4||2...2 (2.10.2)
4||2...21 (2.10.3)
4||2...2||4 (2.10.4)

all of which have a negative definite Dirac pairing. Though we have not encountered these
possibilities in our discussion of geometric phases of F-theory, the first two have been realized
in IIA string theory via appropriate suspended brane configurations (see e.g. [18]), at least when
there are non-trivial gauge group factors over the associated tensor multiplets. For example, we
can have su-type on the −2 charge tensors, and so-type gauge groups on the −4 tensors, with
sp-type gauge groups on the −1 tensors. The crucial ingredient appearing in these suspended
brane models is an O8+-orientifold, rather than an O8−-orientifold. The T-dual description in
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IIB string theory involves O7+-orientifold planes, a case which leads to some non-geometric
behavior, a point we shall return to later. The last example 4||2...2||4 resists an embedding in IIA
string theory, since it would appear to involve two O8+-orientifold planes. Indeed, if we attempt
to decorate these tensor multiplets by so-type algebras on the −4 tensors, and su-type algebras
on the −2 tensors, we cannot cancel gauge theoretic anomalies.

Assuming that configurations such as 4||2 can indeed occur in the construction of LSTs, it is
natural to ask how many additional models can be obtained, at least from a bottom up perspective.
Pairing each tensor multiplet with a simple gauge algebra, these are as follows:

so(M)

4 ||
su(N1)

2
su(N2)

2 ...
su(Nk)

2
sp(NR)

1 (2.10.5)

sp(N1)

1

sp(NT )
1

so(M1)

4 ...
sp(Nk)

1
so(Mk)

4 ||
su(NR)

2 (2.10.6)
su(N ′)

2
sp(N1)

1
so(M1)

4 ...
so(Mk)

4 ||
su(NR)

2 (2.10.7)

It should be noted that gauge and mixed anomalies strongly constrain the allowed gauge algebras

in the above list. In particular, the configuration
so(M)

4 ||
su(N)

2 is constrained by mixed anomalies to
have a bifundamental (M,N), requiring N ≤M − 8, 2N ≥M . These conditions lead to strong
constraints on the rest of the gauge algebras in the aforementioned theories, as discussed in [11].

If one also relaxes the condition that there is a gauge group paired with each tensor, even
more constructions are possible. In most of these cases, no known embedding in a string con-
struction is available, so we suspect that at least some of these theories are actually inconsistent.
Nevertheless, for the sake of completeness, we list them here:

2 || 4 || 2 (2.10.8)
4 1 4 || 2 2 (2.10.9)

4 || 2 2 ... 2 || 4 (2.10.10)
4 || 2 2 ... 2 1 (2.10.11)

4 || 2 2 ...
2

2 2 (2.10.12)

1
1

4 1 ... 4 1 4 || 2 (2.10.13)
1 3 1 ... 4 1 4 || 2 (2.10.14)

1 2 3 1 4 ... 4 1 4 || 2 (2.10.15)
1 2 2 3 1 4 ... 4 1 4 || 2 (2.10.16)

2 1 4 ... 4 1 4 || 2. (2.10.17)

It is worth mentioning that a violation of normal crossing and a violation of gauge-gravitational
anomaly cancellation do not appear simultaneously in any of these examples. The lists of LSTs
and putative LSTs arising from these violations are small and tightly constrained.

This perspective on LSTs also points to the existence of some additional novel structures for
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6D SCFTs. Indeed, starting from an LST, we can consider a combination of tensor-decoupling
and Higgsing to reach some additional candidate SCFTs.

The theories of this type, which are consistent with anomaly cancellation and with no un-
paired tensors, take the form:

so(M)

4 ||
su(N1)

2
su(N2)

2 ...
su(Nk)

2 (2.10.18)
sp(N ′)

1
so(M)

4 ||
su(N1)

2
su(N2)

2 (2.10.19)
so(M1)

4
sp(N1)

1 ...
so(Mk)

4 ||
su(NR)

2 (2.10.20)
sp(N1)

1
so(M1)

4 ...
so(Mk)

4 ||
su(NR)

2 (2.10.21)

Notice that (2.10.19) does not admit a known type IIA construction, whereas the other three do.
Another curious thing to notice is that this model does not admit an embedding in a putative LST.
The obvious examples of attaching an so group to the left or attaching an su group to the right
are pathological because they necessarily have non-vanishing quartic part of gauge anomaly.
Although we have only proved that every 6D SCFT can be embedded in a 6D LST for models
arising geometrically within F-theory, we expect this statement to be true in general. Hence, we
suspect that the putative SCFT (2.10.19) is inconsistent. Finally, concentrating only on positive-
definiteness, we have the 4||2 configurations:

1 4 || 2 2 (2.10.22)
4 || 2 2 ... 2 (2.10.23)

1 4 1 ... 4 1 4 || 2 (2.10.24)
4 1 4 ... 4 1 4 || 2 (2.10.25)
3 1 ... 4 1 4 || 2 (2.10.26)

2 3 1 4 ... 4 1 4 || 2 (2.10.27)
2 2 3 1 4 ... 4 1 4 || 2 (2.10.28)

2.10.2 Towards an Embedding in F-theory

In the above, we encountered some additional candidate SCFTs and LSTs which appear to be
consistent with effective field theory considerations. Additionally, some of these models admit
an embedding in type IIA suspended brane constructions.

It is therefore important to ask to what extent we should expect F-theory to cover this and
related examples. Though we leave a complete characterization to future work, there are some
general ingredients we can already identify which point the way to incorporating these additional
non-geometric structures.

As we have already mentioned, one crucial ingredient in the IIA realization of the 4||2
configuration is the appearance of an O8+-plane, which T-dualizes to a pair of O7+-planes in
type IIB string theory. Such orientifolds lead to the phenomena of “frozen singularities” in F-
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theory [23–25]. These are models in which the monodromy of the axio-dilaton around the brane
is consistent with that of an appropriate I∗n singularity, but in which the corresponding gauge
algebra is not so(2n+ 8).

Another not entirely unrelated phenomenon we have encountered in the construction of the
N = (1, 1) LSTs, as well as in some of the low rank LSTs are models in which the normal
bundle of a curve on the base is torsion of finite order. To produce a Weierstrass model, we have
found it necessary to impose specific restrictions on the order of these torsion bundles, though
the M-theory realization of these A-type N = (1, 1) theories suggests a whole family of models
parameterized by rational theta angles [47].

In fact, it is relatively straightforward to engineer all of the A-type N = (1, 1) LSTs in type
IIB, and to lift this back to F-theory. For example, in type IIB language, we have a stack of N
D7-branes wrapped on a T 2. Switching on a background value for a flat RR and NS two-form
potential, we get additional theories parameterized by the ratio of these two periods. In F-theory
language, we see this by a choice of how we resolve the affine node of the ÂN+1 Dynkin diagram.
In physical terms, this resolution comes from compactifying an 8D model on an additional S1.
Going down on a T 2, we have Wilson lines for this affine node along the A- and B-cycles of the
T 2.

The presence of such background B-fields also suggests that similar effects from discrete
group actions may also make an appearance in the construction of the 4||2 type configurations.
For example, at the level of the effective field theory, we can consider a base:

2
2

22...2 (2.10.29)

with IN -type fiber decorations on each −2 curve. Now, this field theory admits a Z2 automor-
phism in which we combine the outer automorphism of the D-type base with an outer auto-
morphism on the suN factors on the leftmost −2 curve and the top −2 curve. At the level of
gauge theory, the outer automorphisms of suN can take us to either an so or sp-type algebra.
Combining these two operations, we see that we get an effective field theory where there is one
less tensor multiplet, and in which the BPS charge has doubled, and in which the Dirac pairing
between this Z2 invariant combination and its neighbor is 2, leaving us with a configuration of
tensor multiplets 4||2...2. Taking into account the algebra assignment (i.e. the would-be fibers),
we can in principle have either so or sp -type algebras, of which only the former is compati-
ble with anomaly cancellation.16 Similar considerations also apply for the LST tensor multiplet
configurations such as 4||2...21.

Let us stress that effective field theory considerations do not directly inform us of the actual
non-geometric realization of these models in F-theory. Indeed, what is particularly remarkable
is that even if we allow these additional structures, the total number of additional candidate
SCFTs and LSTs is quite small, with the vast majority being covered by geometric phases of

16Let us recall that in F-theory, conjugation by an outer automorphism apparently leads to a geometrically am-
biguous assignment for the quotient algebra. This ambiguity has been resolved by appealing to anomaly cancellation
considerations, in which the opposite conclusion is reached, i.e. a non-split IN fiber realizes an sp-type algebra [65].
However, effective field theory considerations suggest that when combined with a quotient on the tensor multiplets,
there may be a generalization of this construction available in which we instead reach an so-type algebra. Incorpo-
ration of an O7+ plane or of discrete B-fields might provide a route to such a generalization.
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F-theory. This suggests that whatever the mild deformation of known F-theory backgrounds are
that produce these models, the structures encountered in this chapter and in earlier work remain
quite robust.

2.11 Conclusions

In this chapter we have given a systematic approach to realizing supersymmetric little string the-
ories via compactifications of F-theory. Much as in the case of 6D SCFTs, these theories arise
from working with F-theory on a non-compact base, in which some collection of curves are si-
multaneously collapsed to small size. The key difference with a 6D SCFT is that the intersection
pairing for these curves defines a positive semidefinite quadratic form on the lattice of string
charges. So, in contrast to the case of SCFTs the associated theories contain a dimensionful
parameter which is naturally promoted to a non-dynamical tensor multiplet. After spelling out
all necessary conditions to geometrically realize LSTs in F-theory, we have given a classification
of all such theories. On the one hand, these theories can all be viewed as arising from extending
6D SCFTs by one or more additional curves. As such, they also admit an atomic classification,
much as in reference [10]. We have also seen that the general expectation that all 6D SCFTs
embed in an LST is indeed realized via the explicit embedding in an F-theory compactification.
Finally, we have seen that T-duality of an LST is realized via a double elliptic fibration in the
corresponding F-theory model. In the remainder of this section we discuss some avenues for
future investigation.

Perhaps the most important issue left open by our analysis is the small gap between theo-
ries realized by geometric phases of F-theory, and the list of effective field theories which can
potentially complete to an LST (or SCFT). It would be interesting to establish to what extent non-
geometric deformations can enter in such F-theory models, and conversely, how many of these
putatively consistent LSTs (and SCFTs) are actually excluded by further non-trivial consistency
conditions.

One of the key simplifications in our analysis of LSTs is that decoupling any curve in the
base takes us back to a collection of (possibly decoupled) 6D SCFTs and scale invariant theories
(i.e. when we have free vector multiplets). This strongly suggests that the common notions of
renormalization group flows for local quantum field theories extend to non-local LSTs. Develop-
ing the details of such a structure would provide a rather striking vantage point on what it means
to “UV complete” a quantum field theory in the first place.

As a preliminary step in this direction, it is also natural to ask whether there is a notion of
monotonic loss in the degrees of freedom in such conjectural flows from LSTs to SCFTs. For
example, in many of the cases studied in this chapter, we can weakly gauge both diffeomorphisms
as well as an SU(2) field strength, which in the context of a 6D SCFT would be identified with
the R-symmetry of the theory. It is tempting to conjecture that there is a formal extension of
conformal anomalies to these cases as well. It would be interesting to study whether an extension
of the methods presented in references [66, 67] (see also [68]) would provide insight into such
generalizations of renormalization group flows.

48



Finally, one of the hallmarks of the systems we have encountered is the appearance of an
effective T-duality upon compactification on a further circle. Given that there are now concrete
methods for extracting the partition functions for some 6D SCFTs (see e.g. [69]), it would be
quite natural to study this and related structures for LSTs.
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Chapter 3

The Frozen Phase of F-theory

3.1 Introduction

F-theory [70–72] is a geometrical way to describe non-perturbative backgrounds of type IIB
string theory, whose transition functions include S-duality in addition to the more usual symme-
tries. Supersymmetric backgrounds of F-theory describe a spacetime which includes the base
of an elliptic Calabi–Yau variety, with a variable axio-dilaton field whose value is specified by
the elliptic fibration. The degeneration loci of the fibration, called the irreducible components
of the discriminant locus, are interpreted as seven-branes on which various gauge algebras are
realized. Among these, one finds as particular examples the ordinary D7-branes and O7-planes
of perturbative IIB theory.

The perturbative definition of O-planes, however, allows for several different variants. As was
pointed out in the early days of F-theory [23], the one reproduced in conventional F-theory is the
O7−-plane, whose charge equals−4, in units where a (full) D7-brane has charge 1. Another type,
called the O7+-plane, has charge +4. At a fixed total charge, such an object allows for fewer
deformations; for example, an O7− with 8 D7s on top, with total charge 4, can be deformed in
various ways by pulling the D7s away, while a single O7+ with the same charge does not allow
for such a possibility. The F-theory description of the latter should hence involve a divisor which
for some reason cannot be deformed, and was thus called frozen in [23], where this was also
discussed in several dual frames. This phenomenon was then further investigated in [24].

Thus it was known for a long time that F-theory includes O7+-planes but they were basi-
cally ignored in the vast existing literature on the compactifications of F-theory. One motivation
for revisiting this issue at present rests in the classifications of six-dimensional superconformal
theories (SCFTs). In a series of works initiated in [9], and in particular in [10], it was shown
that almost all known 6d SCFTs at that time and a lot more were realizable using 6d compacti-
fications of F-theory. However, if one compares this classification against the known examples
constructed using massive IIA brane constructions [73, 19, 18, 74] and the purely-field theoret-
ical analyses [75, 11], one recognizes that there are indeed cases not realized by conventional
F-theory constructions.

A typical feature of these cases is that their massive IIA brane construction involves O8+s.
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By a T-duality, this is mapped to a IIB brane construction involving O7+s. This motivated us to
look at F-theory compactifications to six-dimensions in the presence of O7+s.

At this point, it is natural to worry if there could be frozen singularities other than O7+-
planes which have not been studied in conventional F-theory. This question was settled, at least
for supersymmetric seven-branes, in a recent re-analysis of 7-branes in F-theory [25] which
concluded that the O7+ is in fact the only type of frozen singularity in F-theory.1 Therefore,
the only ingredient missing in conventional F-theory compactifications to six-dimensions is the
inclusion of O7+-planes, and indeed including them we find F-theory realizations of ‘missing’
6d SCFTs, as we will see later in the chapter.

Once we are convinced that O7+-planes can be included in the F-theory construction, we
realize that we need to revisit every part of the standard F-theory machinery, such as the assign-
ment of the gauge algebras and of the matter content to the components of the discriminant and to
their intersections, and the way the 6d anomalies cancel via the Green–Schwarz-West-Sagnotti
effect [79, 80], derived geometrically for F-theory by Sadov in [52]. This chapter is the first
attempt to provide such generalizations.

One unexpected consequence of the introduction of O7+-planes is the following. To appreci-
ate it, let us first recall the situation without O7+-planes. In a conventional F-theory compactifi-
cation without O7+-plane, once one is given the geometry of the elliptically-fibered Calabi–Yau,
there is a standard method to assign a unique set of gauge algebras and matter content to the
geometry. In particular, under this standard assignment, each simple factor in the gauge algebra
is associated to a single component of the discriminant divisor, and each component has at most
one simple factor of gauge algebras associated to it. This choice corresponds to having zero
holonomies of the gauge fields on these divisors themselves. We have the option of turning on
the non-trivial gauge configurations, including the effects often called the T-branes [81], but we
also have the standard option of not turning them on at all.

With O7+-planes, however, we will often be forced to have at least some nontrivial gauge
configurations on some of the components. More precisely, we even lose the concept of a unique,
standard assignment of gauge algebras and matter content, since we do not even have a natural
origin in the space of the all possible holonomies. Because of this, we often have multiple
simple factors of gauge algebras on a single component of the discriminant locus, and also a
single simple factor of gauge algebra shared across multiple components, as we will see later.

Unfortunately, at present, we do not have any algorithmic method to find consistent assign-
ments given an elliptic Calabi–Yau and a specification of where the O7+-planes are; we do not
even have a method to tell if there are any consistent assignments at all. Therefore we are forced
to rely on consistency checks via anomaly cancellation and dualities to backgrounds that are
better understood.

The rest of the chapter is organized as follows. In Sec. 3.2, we study the properties of O7+-
planes in the context of F-theory, using string theory and M-theory dualities. This will let us
figure out how to assign gauge algebras and matter content. In Sec. 3.3, we study the anomaly

1There are various other less-studied types of higher-codimension singularities one can incorporate in F-theory,
such as the ones used by Garcı́a-Etxebarria and Regalado [76] to construct 4d N=3 SCFTs. Frozen versions of
singularities also occur in M-theory [23,24], where they play an important role in M5-brane fractionation [24,77,78].
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cancellation of F-theory models with O7+-planes. We will see that the analysis of Sadov [52]
can be naturally generalized by introducing a divisor which represents where O7+-planes lie.
Then in Sec. 3.4, we discuss some 6d SCFTs which can be realized only with O7+-planes in
F-theory construction, and in Sec. 3.5, we study the massless spectrum of a couple of compact
six-dimensional models with O7+-planes.

In Appendix B.1, we review the 8d compactifications with O7+-planes, which is simpler
than the 6d examples discussed in the main text. Finally in Appendix B.2, we give an alternative
derivation, using intersecting brane models, of the spectrum of some compact models discussed
in Sec. 3.5.

3.2 Frozen seven-branes and their properties

In this section, we use perturbative string techniques to obtain some properties of frozen singu-
larities.

We start in section 3.2.1 with a lightning review of O-planes. We then discuss the basics
of O7+-planes in F-theory in Sec. 3.2.2, and in Sec. 3.2.3 we study the physics at individual
intersection points of O7+-planes and other seven-branes. To prepare ourselves for the analysis
of an O7+-plane which intersects with more than one seven-brane, we then need to have short
digressions, on the T-duals of NS5- and D6-branes in Sec. 3.2.4 and on the phenomenon of shared
gauge algebras in Sec. 3.2.5. We then come back to the case with O7+-planes in Sec. 3.2.6. In
the final subsection 3.2.7, we see that with O7+-planes a shrunken divisor does not necessarily
signify any singularity in the low energy physics.

3.2.1 Basics of orientifold planes

Let us start by a quick review of the basics of the orientifolds.2

Action on the closed strings: An orientifold is usually defined as a Z2 symmetry Π that in-
cludes world-sheet parity Ω. It can also include a spacetime involution σ. It is often necessary to
also include an extra factor (−)FL (where FL is the left-moving spacetime fermion number) so
that Π2 acts as the identity. If locally σ is the reflection of 9−p coordinates, so that the orientifold
plane Op (the fixed locus of σ)3 has (spatial) dimension p, one needs to include (−)FL if p = 2, 3

2A good review of the basics can also be found in [82]. More detailed and rigorous analysis of perturbative
orientifolds were done e.g. in [83, 84], but we stick to the traditional, ad hoc approach in this chapter. The name
orientifold itself was introduced in [85] by Dai, Leigh and Polchinski. The concept of the orientifold goes back
further in history, see e.g. [86, 87] and references therein.

3We will also consider actions that include translations and thus have no fixed locus as in (3.2.5); the conclusions
in (3.2.1) below also apply.
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mod 4.4 To summarize, locally the orientifold action is

O9 O8 O7 O6 O5 · · ·
Ω ΩR9 ΩR8R9(−1)FL ΩR7R8R9(−1)FL ΩR6R7R8R9 · · · , (3.2.1)

where Rp denotes a reflection of the p-th coordinate. This specifies the orientifold’s action on
closed strings. In this chapter, we will be interested in particular in O7s, with O6s and O8s
making occasional appearances.

Action on the open strings: In presence of open strings, one also needs to decide its action on
the Chan–Paton matrix λ, which appears in a superposition

∑
i,j λij|ij〉 of the states |ij〉, that in

turn can be interpreted as going from the i-th to the j-th brane in a stack (omitting other quantum
numbers). Since the world-sheet parity Ω reverses orientation, it acts by transposing Λ, but it
may also mix the states with a change of basis M : namely, λ → MλtM−1. Imposing that this
action is an involution leads to the condition that

M−1M t = ∓1 . (3.2.2)

This sign choice leads to two different types of O-plane, which we call Op±.5

The RR-charge: The RR charge can be computed through a one-loop computation, which
contains − trM−1M t in its Möbius strip contribution (see for example the reviews [82, 88]). In
the end one concludes that the charge is ±2p−5 that of a full Dp-brane: explicitly,

p 9 8 7 6 5 4 3 · · ·
±2p−5 ±16 ±8 ±4 ±2 ±1 ±1

2
±1

4
· · · (3.2.3)

Thus, the Op− has negative charge and the Op+ has positive charge, as the name implies.

The gauge group: The gauge group is also influenced by the sign (3.2.2). If a stack of N Dp-
branes is parallel to the Op-plane but not on top of it, the action will relate the strings ending on
them to strings ending on an image stack in a different locus; the gauge group will be the usual
U(N). On the other hand, if the stack is on top of the Op-plane, the action will relate the open
string states to themselves, projecting out some of them. To read off the gauge group, we can
consider the gauge field states λijα

µ
−1/2|0; ij〉. Since Ωα−1/2Ω = −α−1/2, the surviving states

will be those with Chan–Paton factors λ such that λ = −MλtM−1. If the sign in (3.2.2) is −1,
M is antisymmetric; by a change of basis (λ → C−1λC, M → CMCt) it can be chosen to be

4To check this, one first uses the fact that a reflection RI of the I-th spatial coordinate acts by ΓI on the 10d
Majorana spinor, which satisfies (ΓI)

2 = +1. Therefore, R2
I1···Ip = 1 or (−1)FL+FR depending on whether

p = 0, 1 or 2, 3 mod 4, respectively. Then one compensates this (−1)FL+FR by the fact that Ω(−1)FLΩ = (−1)FR

and therefore (Ω(−1)FL)2 = (−1)FL+FR .
5In [23] and other older papers, Op±-planes are called planes of type O∓, with the opposite sign. We stick to

the more modern conventions which are now standard.
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of the form J ≡ ( 0 1N
−1N 0 ), and thus λ will be in the spN algebra.6 If on the other hand the sign

in (3.2.2) is +1, then M can be chosen to be 12N , and λ ∈ so2N .

Summarizing, the choice (3.2.2) leads to two different orientifolds:

• Op−, with so2N gauge algebra and charge −2p−5, and

• Op+, with spN gauge algebra and charge +2p−5.

Dq-branes intersecting Op-planes: More generally, if we also have a stack of Dq-branes
which intersect our Op, there are subtle signs [8] coming from the fact that the strings from
the Op- to the Dq-branes needed to be expanded to both integer and half-integer modes. In flat
space (and vanishing B field), the number #ND of Neumann–Dirichlet directions (the number
of directions transverse to the Dp and parallel to the Dq, or vice versa) has to be a multiple of
4, for unbroken supersymmetry. The result for the gauge algebra on the Dq-branes is then as
follows:7

Op+ Op−
#ND = 0, 8 symplectic orthogonal
#ND = 4 orthogonal symplectic

. (3.2.4)

T-duality: Let us next discuss the T-duality of orientifolds, since we often need to perform
T-duality of the setup on S1/Z2 where two fixed points support Op-planes, possibly of different
types. Two most straightforward cases are when both fixed points have Op− or both fixed points
have Op+. The T-dual is then simply O(p+ 1)− or O(p+ 1)+ wrapped around S1.

When one fixed point has Op− and the other fixed point has Op+, the T-dual is known to be
a shift-orientifold, namely an orientifold whose spacetime action σ not only flips the coordinates
transverse to the orientifold, but also translates a circle by half its radius

σ : (xp+1, xp+2, · · · , x9) ∼
(
xp+1 +

R

2
,−xp+2, · · · ,−x9

)
. (3.2.5)

See Fig. 3.2.1 for a pictorial representation. Note that this action fixes no point.

The derivation of this fact can be found e.g. in [23, p. 41] or [89]. A rough argument goes as
follows. We start from the shift-orientifold background (3.2.5), and T-dualize the xp+1 direction.
Its T-dual should be a compactification on S1/Z2. Therefore this should result in a combination
of two Op-planes at two fixed points. The original shift-orientifold background did not have any
D(p + 1)-charge. Therefore, in the T-dual, we should have zero Dp-plane charge. This is only
possible if one fixed point is Op− and the other is Op+.

6We follow the standard convention that sp1 = su2.
7The fields on the Dq stack get mapped to fields on another point of the stack, unless the Dq stack is completely

embedded in the Op-plane. A priori this only restricts the behavior as a function of the coordinates of the gauge
field, which would then locally remain of u(2m) type. However, in situations where the divisor wrapped by the
stack is compact, in most applications we want to keep only the zero-modes of the gauge field under its equation of
motion, and this restricts the gauge group as in (3.2.4).
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Op+ Op�

shift-O(p + 1)

Figure 3.2.1: A model with two Op-planes with opposite sign is turned by T-duality.

Another intuitive argument is as follows. The shift operator s : xp → xp+1 can be thought
of as ei

R
2
p̂, where p̂ is the momentum operator. Its T-dual is s̃ = ei

1
2R
ŵ, where ŵ is the “winding

operator”, which measures the length of the string. s̃ gives 1 on strings of total length zero, such
as those that begin and end on the same Op, but it gives −1 on the strings that begin and end on
different Op’s, signaling the fact that the two have different signs.

Other types of orientifolds: It is also known that there are Õp±-planes when p ≤ 6, distin-
guished from the more ordinary Op±-planes by the RR-torsion flux. As we will not use them
heavily, we will not discuss them further.

3.2.2 Frozen divisors in F-theory

Our main interest lies in seven-branes in Type IIB theory and F-theory. An ordinary O7− without
any D7-branes on top is known to lift to two I1 divisors, due to quantum effects [90]. Similarly,
with n < 4 D7-branes on top, the F-theory realization is given by (n + 2) I1 divisors. With
at least 4 D7-branes, it is interpreted in F-theory as an I∗n−4 divisor (where n is the number of
D7-branes). Since string theory also has O7+-planes, it is natural to ask how these are described
in F-theory.

First of all, from (3.2.3) we see that O7± have charge equal to that of ±4 full D7-branes. So
an O7+ has the same charge and tension as an O7− with 8 full D7-branes on top. In F-theory,
they will give rise to the same monodromy [23, 91]; we expect both to be described by an I∗4
divisor. However, the O7− with 8 D7 gives rise to an so16 gauge algebra, while the O7+ gives
rise to none. A related difference is that the O7− with 8 D7 can be deformed by pulling the
D7s away (which corresponds in F-theory to a complex structure deformation), while the O7+

cannot. Thus an O7+ is described by a I∗4 singularity which for some reason cannot be deformed;
we will call this a frozen singularity, and denote it by Î∗4 .

More generally, an O7− with n D7s has the same charge and tension as an O7+ with (n− 8)
D7s; both are described by an I∗n−4 singularity, but in the latter case the gauge algebra is spn−4

rather than so2n, and the deformations are correspondingly reduced. In this case too we say that
the singularity is frozen, and we denote by Î∗n−4.
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To be more expicit, an F-theory vacuum is typically described by the “Weierstrass coef-
ficients” f and g which are sections of the line bundles OB(−4KB) and OB(−6KB) on the
F-theory base B, and which lead to the equation

y2 = x3 + fx+ g (3.2.6)

for the total space of the elliptic fibration. Along a divisor D with a Î∗n−4 singularity, f vanishes
to order 2, g vanishes to order 3, and the equation 4f 3 + 27g2 of the discriminant locus vanishes
to order (n− 8) + 10, for a configuration with n− 8 D7-branes on top of an O7+. Although the
“freezing” mechanism is not understood, it must prevent any deformation with lowers the order
of vanishing of either f or g at all, or which lowers the order of vanishing of 4f 3 + 27g2 below
10.

Note that the Weierstrass coefficients are accompanied by periods of type IIB two-forms
over appropriate two-cycles in B; for compactifications to 6d, the complex moduli provided by
Weierstrass coefficients are paired with these periods of two-cycles to provide the two complex
scalars in a hypermultiplet. In particular, by activating a vev represented by one of these two-form
periods we may disturb the gauge group assigned to a divisor without changing the geometry of
the divisor (which would have required a change of complex modulus). Such deformations are
often described in the language of T-branes [81], for which a number of geometric tools have
been developed [92–94].

As an exercise in using the rule (3.2.4), let us consider D3-branes embedded in the world-
volume of O7±. Since #ND = 4, the gauge group on the embedded D3-branes is so for O7+

and sp for O7−. In particular, the smallest gauge algebra allowed is so1 and sp1, with one and
two Chan-Paton indices, respectively. A bulk D3-brane has two Chan-Paton indices. Therefore,
a bulk D3-brane can fractionate into two separate objects on O7+ but not on O7−. These D3-
branes can be considered as point-like instantons of the gauge fields on O7±, and therefore the
D3-charges of the minimal-charge instanton on O7± differ by a factor of 2. This fact becomes
important in the anomaly analysis in Sec. 3.3.1.

3.2.3 Intersections

As mentioned in the introduction, O7+s are the only frozen F-theory singularities [25]. As our
main interest lies in the compactification to 6d, we now want to understand their behavior when
they intersect other singularities: namely, how they modify the gauge algebras of neighboring
divisors, and the matter representations at intersections with them. We will do so by using
perturbative string techniques, and dualities.

Some readers might want to study the simpler situation in 8d summarized in Appendix B.1,
before considering the more interesting but complicated examples of 6d compactifications dis-
cussed here.
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Î∗–I intersection

Let us now start working out what happens when the frozen divisors intersect ordinary divisors.
We will begin with the intersections of frozen Î∗n with Im divisors.

Let us first recall what this intersection gives in the unfrozen case, i.e. an I∗–I intersection.
The intersection with the I∗ induces on the I a so-called “Tate” monodromy, a nontrivial auto-
morphism of the gauge algebra that reduces it [95].8 This is expressed by saying that the divisor
is non-split, and denoted by a superscript ns. Its effect on the gauge algebra is that it reduces from
u2m to spm. We summarize this situation by writing

so2n+8 spm
I∗n Ins

2m .
(3.2.7)

As a warm-up, let us also see how it is reproduced by orientifolds. Consider an intersection of an
O7−+ (n+ 4) D7 along directions 01256789 with m full D7s along directions 03456789. From
(3.2.4) we see again that the gauge algebra on the m D7s is reduced to spm; see also footnote
7. We thus recover (3.2.7). Notice that the spacetime action of the orientifold projection can be
interpreted as the Tate monodromy we mentioned above.

We can similarly work out what happens if the I∗ divisor is replaced by its frozen Î∗ coun-
terpart: the configuration now involves an O7+ + (n − 4) D7s, and 2m transverse D7s (see
Fig. 3.2.2, where only directions 6789 are depicted). Looking again at (3.2.4), we see that the
gauge algebra on the m D7s is reduced this time to so2m. We conclude

spn−4 so2m

Î∗n Ins
2m .

(3.2.8)

Thus, an Ins divisor intersecting a frozen divisor has an so gauge algebra, rather than a sp gauge
algebra. In both cases (3.2.7) and (3.2.8) there is a bifundamental at the intersection, due to the
strings from one set of branes to the other.

I∗–I∗, I∗–Î∗, Î∗–Î∗ intersections

We will now consider intersections between two I∗ divisors, both frozen and unfrozen. We
will see that using perturbative O7s we will have only partial success in understanding the full
possibilities. This will lead us in later section to consider T-dualities with O6s and O8s.

I∗–I∗ intersection: Let us again start by recalling what F-theory gives in the ordinary, unfrozen
case. The intersection of two I∗ divisors actually falls outside Kodaira’s classification. To cure
this, one can blow-up the base; this reveals a new divisor that touches both I∗’s, and that behaves

8This is not to be confused with the “Kodaira” monodromy, describing how the geometry changes when one
goes around a singular divisor
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Figure 3.2.2: An O7–D7 intersection, interpreted in F-theory as an intersection between an
Î∗n+4 and an Ins

2m.

like in (3.2.7):

so2k+8 so2`+8

I∗k • I∗`
← so2k+8 sp(k+`)/2 so2`+8

I∗k Ins
k+` I∗`

(3.2.9)

where we assumed k + ` to be even, and the • denotes the bad singularity that we blew up.
Physically, it signals a six-dimensional superconformal sector which is sometimes called Dk+4–
D`+4 conformal matter;9 the blow-up represents moving along its tensor branch, namely the part
of its moduli space where all six-dimensional tensor multiplets are abelian.

Let us now try to engineer an I∗–I∗ intersection using O7s. The most natural generalization
of Fig. 3.2.2 consists of two O7s that intersect transversally. This can be achieved by an orien-
tifold projection in flat space that has more than one generator of the type we recalled in (3.2.1).
For an intersection of two O7s, locally one takes the two generators

ΩR6R7(−1)FL , ΩR8R9(−1)FL . (3.2.10)

We can see that in this situation there is an O7 on the locus x6 = x7 = 0, and one on the locus
x8 = x9 = 0. (Notice that one is then also quotienting by their product R6R7R8R9, so that at the
intersection between the O7s there is in fact also a Z2 orbifold singularity.) Choosing the ± type
of these two orientifold planes affects their charge and their action on Chan–Paton indices in the
way we reviewed earlier; we will see shortly what their combined effect amounts to.

Another ingredient is that the projection on the closed Z2-twisted sector is reversed if two
orientifolds of different type intersect [96]. This comes about by considering the exchange of
closed strings between two crosscaps, one from one O7 and another from another O7. The

9In fact this superconformal theory depends only on k + ` and has so(2k + 2` + 16) flavor symmetry. Thus
we will simply call it Dk+`+8 conformal matter in what follows. We use the blackboard letter D since the notation
Di denotes an i-th divisor in this chapter. One can also define D2n as the 6d superconformal theory which has a
one-dimensional tensor branch on which it becomes an spn−4 theory with 4n fundamentals with at least so4n flavor
symmetry. For example, then, the D8 theory is the E-string theory.
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sign of this diagram is reversed when two orientifolds are of different type, and the modular
transformation of this diagram determines the orientifolding projection on the closed string Z2

twisted sector. In the end, one finds that an O7−–O7+ intersection has a six-dimensional tensor
multiplet, while O7−–O7− or O7+–O7+ intersection has a hypermultiplet:

O7− O7+

O7− hyper tensor
O7+ tensor hyper

. (3.2.11)

As we mentioned, if D-branes are present, they will now feel the effect of both projections.
Consider for example choosing both planes to be O7−, with k + 4 and ` + 4 D7s present on the
x6 = x7 = 0 and x8 = x9 = 0 loci respectively. The first set of D7s, say, would be projected
to so2k+8 by the O7− parallel to it; but, recalling (3.2.4), it would also be projected to spk+4 by
the O7− transverse to it. This means that it actually gets projected to the intersection of the two,
uk+4. In the language of F-theory branes, this gives

uk+4 u`+4

I∗k · I∗`
, (3.2.12)

where the · now represents the hypermultiplet found in (3.2.11).10 This hypermultiplet is un-
charged under uk+4 ⊕ u`+4. The presence of this neutral hypermultiplet signals that the con-
figuration (3.2.12) is obtained by moving along a particular direction in the Higgs branch of
Dk+4–D`+4 conformal matter whose tensor branch was depicted in (3.2.9). This particular di-
rection in the Higgs branch is parametrized by vevs of the neutral hypermultiplet in (3.2.12).
Another well-known direction in the Higgs branch, distinct from the one represented by (3.2.12),
is provided by brane recombination, where the two I∗ divisors merge.

Î∗–Î∗ intersection: For an O7+–O7+ projection, for the same reason we get

uk−4 u`−4

Î∗k · Î∗`
. (3.2.13)

In analogy with our discussion below (3.2.12), it is natural to think that this is the Higgsing of a
“frozen conformal matter”

spk−4 sp`−4

Î∗k • Î∗`
, (3.2.14)

and that upon blowing up (moving along the tensor branch) an Ins
k+` with so(k+ `) gauge algebra

would be created, which would behave as in (3.2.8). We will see later that this expectation is
borne out.

10A warning is in order. The orientifold projection leaves the gauge algebra u on I∗, but the u1 part usually gets
Higgsed and becomes massive by the Green-Schwarz mechanism, each u1 eating a neutral hypermultiplet. This
point was carefully analyzed in [97, Sec. 2]. When we compare this with explicit F-theory models, we can only
expect to see sun+4 and sum+4 symmetry.
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Î∗–I∗ intersection: For an O7+–O7− intersection, on each set of D7s the two projections
will be of the same type. For example, on the D7s on the O7−, we have λ = −M1λ

tM−1
1 =

−M2λM
−1
2 , with both Mi symmetric. We can make M1 = 1 as in section 3.2.1; with the

residual freedom in change of basis we can diagonalizeM2, but a priori it could have any number
of positive and negative eigenvalues. If we also impose that the D7s can move off the O7−, we
obtain thatM2 =

(
1`+4 0

0 −1`+4

)
, and the gauge symmetry is so`+4⊕so`+4. Similar considerations

apply to the O7+ + (k − 4)D7s; hence we get

spk/2−2 ⊕ spk/2−2 so`+4 ⊕ so`+4

Î∗k ◦ I∗`
(3.2.15)

where we assumed k to be even. Notice that in this case there is no neutral hypermultiplet at the
origin, according to (3.2.11); we have included the symbol ◦ to mark this. So in this case we do
not expect this configuration to be a Higgsing of a conformal one. This might look surprising,
but it will become clearer in section 3.2.7 below, where we will see an alternative realization of
the same setup (in the case k = ` is even).

3.2.4 NS5- and D6-branes

To go beyond the results in section 3.2.3, we will need to consider configurations which are dual
to IIA in presence of NS5-branes. To set the stage, in this subsection we will discuss a situation
without orientifolds.

We consider IIA on R9×S1; let us say the S1 corresponds to direction 4, and has periodicity
R. Let us have a single NS5 whose worldvolume is in directions 056789, localized at xα = x4 =
0, α = 1, 2, 3. T-dualizing it along direction 4 turns it into an Euclidean Taub–NUT geometry.
The space transverse to the NS5 is R3 × S1; T-duality turns the H flux of the NS5 into a Chern
class that signals the S1 is now Hopf-fibred over the S2s at xαxα = r2. The inverse images of
these S2s are thus copies of S3. These shrink smoothly at xα = 0, so that locally around this
point the fibration is S1 ↪→ R3 → R4. One way to realize this fibration in coordinates is

H ∼= C2 → R3 (3.2.16)

q =

(
z

w

)
7→ xα = q†σαq (3.2.17)

where σα are the Pauli matrices. So

x1 + ix2 = zw , x3 = |z|2 − |w|2 . (3.2.18)

If we have several NS5s localized at several positions in the 3 direction (x3 = x3
i , x

1 = x2 =
x4 = 0), T-duality turns the geometry into a multi-Taub–NUT geometry where the S1 shrinks at
the x3 = x3

i . The inverse image under the S1 fibration of a path between two of these points is
an S2. We represent this in Fig. 3.2.3.

Let us now suppose some D6s are also stretched along the 0356789 directions. First let us
imagine there are n D6 stretched along the entire 3 axis. Under T-duality along direction 4, they
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Figure 3.2.3: NS5-branes, D6-branes, and T-duality. The compact and noncompact directions of the
cylinder are called respectively directions 4 and 3 in the text.

will turn into n D7s. More precisely, as Fig. 3.2.3 suggests, they will turn into a sequence of D7s
wrapping the various S2 on the Taub–NUT with multiplicity n. What the picture does not show
is that these S2s are holomorphic cycles. Locally around an NS5 at xα = 0, for example, we see
from (3.2.18) that the locus x3 = 0 is turned into zw = 0, which is the union of the curve z = 0
and of w = 0. In F-theory terms, this is a chain of intersecting In curves.

In the presence of a Romans mass, parameterized conventionally by an integer 2πF0 ≡ n0 6=
0, one can also have situations where D6s are ending on NS5s. Focusing on an NS5 on which
a D6 ends from the right, we see again from (3.2.18) that T-duality turns it into the single curve
z = 0. This would be one of the S2s in Fig. 3.2.3. The number of D6s ending on an NS5 from
the left minus the number of D6s from the right is proportional to F0. We then have a chain of
intersecting curves supporting In, In+n0 , In+2n0 , . . . .

Another possible generalization is to move the D6s in the x4 direction, so that there is now a
stack of nj D6s at x4 = x4

j . On the IIB side, this corresponds to Wilson lines for the gauge field
on the D7s.

3.2.5 Shared gauge algebras

From the setup of Fig. 3.2.3, we can also wonder what happens if we move only some of the
D6s away from the NS5s in direction 4; say from an initial stack of n D6s we move m to the
position x4 = x4

0. These D6s recombine: they no longer end on the NS5s. In field theory, this
corresponds to a partial Higgsing

sun ⊕ sun → sun−m ⊕ sum ⊕ sun−m (3.2.19)

where the sum at the middle is the diagonal subalgebra of two copies of sum ⊂ sun.

Since the displacement has happened along the 4 direction, it is not immediately apparent on
the IIB side: the T-dual still consists of two stacks of m + n D7-branes meeting at a point, as in
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section 3.2.4. The only consequence of the displacement is the presence of a Wilson line: there
is a worldvolume gauge field with non-zero holonomy, a =

x4
0

l2s
diag(0, . . . , 0, 1, . . . , 1)dx̃4. Since

direction 4̃ shrinks at the intersection point, on both D7s there is a worldvolume da = f field
strength proportional to a δ-function supported on the intersection point.

By comparing with the IIA picture, we conclude that a Wilson line can partially break the
gauge algebra on two intersecting D7s, as in (3.2.19): part of the gauge algebra can recombine.
The sum algebra is now shared between the two intersecting divisors; this is summarized in
Fig. 3.2.4. In what follows, we fill find other examples of such shared gauge algebras.

165 165 n '6

In InIn

165

m '6V

sun sun sun

In InIn In InIn

m D6 m D6

sum sum

sum
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n � m D6s n � m D6s

n � m D6s

sun�m sun�m
sun�m sun�m

sun�m sun�m

sum sum

Figure 3.2.4: On the IIA side, we can move m of the D6s off the NS5s and make them recombine.
On the IIB side, this corresponds to a gauge algebra sum that is shared between two curves meeting
at a point. We denote this with a double-sided arrow.

If we move all the D6s off the NS5 (i.e. if n = m), only the shared gauge algebra is present. In
this case, one might be puzzled by the fact that on the IIB side the Wilson line is now proportional
to the identity. This would not seem to cause a Higgsing, while from the IIA picture it is clear
that it does, since the D6s are away from the NS5.

To clarify this point, we need to identify the T-dual of the NS5 position in IIB. Since the NS5
position in IIA is shifted by a diffeomorphism in the x4 position, its T-dual should be shifted in
IIB by a gauge transformation for the NS=NS two-form field, namely B → B + dΛ, for Λ a
one-form. In fact this one-form was identified in [98, Sec. 2.2] explicitly. Thus more generally
we conclude that, in the intersection between two curves C1, C2, there is a shared gauge algebra
if on either curve there is an eigenvalue ai of the Wilson line α on the curves that does not match
with the pullback of Λ at large distance from the intersection:

ai 6= Λ|C1 . (3.2.20)

In F-theory language, we could consider a deformation of the Weierstrass coefficients which
“recombined” two branes, i.e., smoothed the two divisors out into a single divisor. If instead
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of this deformation, the corresponding periods of two-forms are activated, the gauge theory will
recombine without any change in the geometry.

3.2.6 NS5-branes and O-planes

Having made a detour in the last two subsections, we now reintroduce O-planes in our story.

First we need to review the behavior of NS5s in presence of orientifolds. Like any other
brane, any NS5 must come with a mirror image under the orientifold action. Each copy is
usually called a half-brane to emphasize that it can become full if the two copies are brought to
the O-plane. It turns out [99] that when this is done the two half-NS5s can be separated again:
this time along the O-plane worldvolume, while staying on it. When this happens, the orientifold
type changes between the two half-NS5s.

The situation relevant for our purposes consists in having an O6 defined by a reflection in-
verting directions 124, and for example two half-NS5s at two values of x3. (Thus the O6-plane
and the half-NS5s are stretched along the same directions as the D6 and NS5 in the previous
subsection.) If the O6 is taken to be an O6− outside the two half-NS5s, its type will change to
O6+ inside. This leads to a sequence of gauge algebras

so2n+8 , spn , so2n+8 . (3.2.21)

Actually, since direction 4 is compact, a reflection involving 124 will have a fixed point both
at x4 = 0 and at x4 = R/2, the opposite locus on the circle. The O6-plane on that locus can
be of both O6− and O6+ type. We show both those cases in Fig. 3.2.5. In both cases the gauge
algebras are still as in (3.2.21), since the difference with the case of Fig. 3.2.5(a) happens in a
region where no D6s are present.
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Figure 3.2.5: Two configurations with O7±-planes, and their T-duals. The dots now represent half-
NS5s

63



Upon T-duality, we again find a chain of curves. To see what type of curves we have, we need
to use the rules reviewed in section 3.2.1; see in particular Fig. 3.2.1. We learn from there that
an orientifold with O6±-planes on both sides of a circle gets T-dualized to an orientifold with an
O7±-plane, while a circle which has an O6+ on one side and an O6− on the other gets T-dualized
to a shift-orientifold. This is another realization of Tate monodromy, which we discussed at the
beginning of section 3.2.3.

Thus, in the case of Fig. 3.2.5(a), after T-duality we end up with a curve Ins
2n between two

ordinary I∗n curves. This is familiar from (3.2.9) with m = n, and is in agreement with the
sequence of gauge algebras (3.2.21) we found in IIA.

In the case of Fig. 3.2.5(b), we have a frozen Î∗n+4 curve touching two Ins
2n+8 ones. The

presence of the frozen singularity alters the usual F-theory rules: from the IIA picture, we see
that as expected an Î∗n+4 curve supports an spn gauge algebra; moreover, we also see that an Ins

2m

touching a frozen curve supports an so2m. This can be generalized to

spk−4 sok+` sp`−4

Î∗k Ins
k+` Î∗`

(3.2.22)

(with k = n+4). This is the theory on the tensor branch of (3.2.14), thus realizing the expectation
discussed there.

If we put the half-NS5s back on top of each other, we recover a full NS5. We can now split it
again by moving the two halves along the periodic 4 direction, together with some of the D6s, or
by moving them in another direction, so that the degeneration induced by T-dualizing the NS5s
no longer happens on the O6–D6 system. These two new configurations represent respectively
the Higgsing in (3.2.12), and the one mentioned below it involving brane recombination. These
two possibilities are depicted in Fig. 3.2.6.

I�
n

so2n+8

I�
n I�

n

26�

26�

(n + 4) '6V

26�

26�

(n + 4) '6V

un+4 un+4

Figure 3.2.6: Two different ways of Higgsing Dm+4–Dn+4 conformal matter. The first reproduces
(3.2.12); the second corresponds to brane recombination.

The setup of this section can also be decorated by adding m D6-branes at the bottom ori-
entifold plane; this would add a gauge algebra so2m to Fig. 3.2.5(a), and spm to Fig. 3.2.5(b).

64



On the F-theory side, this would correspond to the presence of a Wilson line, and to a gauge
algebra that is shared among the three curves, in the language of section 3.2.5. Again, this can
be realized through the T-brane-like phenomena of activating the two-form-period partner of a
geometric deformation.

3.2.7 Smooth transitions

In the chains of curves considered so far, shrinking one or more of the curves leads to some
strongly coupled physics. This is clear from the IIA picture, where it corresponds to making two
or more NS5-branes coincide. In an effective field theory description, this often manifests itself
in a gauge coupling becoming infinite. The positions of the NS5s parameterize a so-called tensor
branch of a six-dimensional effective theory; these situations correspond to non-generic loci of
the tensor branch.

For example, in the situations depicted in figures 3.2.3 and 3.2.5, there is a one-dimensional
tensor branch, parameterized by a 6d tensor multiplet whose scalar φ corresponds to the distance
between the two NS5s, and which in the 6d theory also plays the role of an inverse squared gauge
coupling. At the origin {φ = 0}, the gauge coupling diverges. At this strong coupling point it is
expected that a CFT arises, describing two coincident NS5s on top of a D6 stack.

However, on the IIA side we can also consider placing the NS5s at different values of x9 (the
compact direction). In this case, bringing the NS5s at the same value of x9 does not actually put
them on top of each other; thus now we do not expect strong coupling physics at the origin of the
tensor branch.
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Figure 3.2.7: A smooth transition, in IIA and in F-theory.

A first example not involving orientifolds is shown in Fig. 3.2.7. In this case without frozen
seven-branes as above, we can of course put all NS5-branes on the same stack of D6-branes so
that this smooth transition does not happen.

When we start involving orientifolds, we can engineer more interesting situations. The ex-
ample in Fig. 3.2.8 has a non-split Ins

2n touching both a frozen and a non-frozen I∗. In this case
we do not have any way to put all NS5-branes on the same side of the O6-planes. Note also that
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in both sides of the figure the overall gauge algebra remains the same, but the roles of localized
and shared simple subalgebras are exchanged.
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Figure 3.2.8: A configuration that produces a curve touching both an I∗ and and an Î∗. The gauge
algebras spn and so2m+8 are shared between the first two and the second two curves respectively.

When the two NS5s are aligned, for m = n we are in fact in the situation of (3.2.15), with
k = ` = 2n+4. This is in agreement with our observation made there (motivated by the absence
of a hypermultiplet) that there is no conformal point at that intersection; in this case the transition
is completely smooth, and there is no special point on the tensor branch.

In F-theory we are accustomed to getting conformal theories at the origin of the tensor branch;
one reason for this is that one can engineer string states from D3-branes, and these strings become
tensionless when we shrink a curve. In the situations of Fig. 3.2.7 and 3.2.8, in fact we cannot
wrap a D3-brane on the middle curve: this is made clear by T-dualizing back to IIA, where it
would become a D2-brane, which can terminate on either one or the other half-NS5, but not on
both.

The situation in Fig. 3.2.8 is a simple illustration of the fact mentioned in the introduction
that in the presence of O7+ we lose the notion of a canonical assignment of gauge algebras and
matter content. In this situation, this happens for two reasons. First, we can only take m D6-
branes from bottom to top of the cylinder. After doing that, we are still left with 4 D6-branes
ending on half-NS5-brane. This implies that there is no canonical ‘zero’ for the Wilson lines.
Second, the half-NS5s are stuck at fixed values of x4. This implies that there are fixed non-zero
periods of NS-NS 2-form potential on the curves.

3.2.8 Tangential intersections and O8-planes

The discussion of I∗–I and Î∗–I intersections in section 3.2.3 has an interesting exception, that
occurs when the intersection is tangential. We discuss it now because T-duality helps in the
analysis, as we will now see.

We start by considering O7s and D7s that again share the directions 056789, but which are
extended in the remaining directions in a more complicated fashion than in section 3.2.3. Define
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z = x1 + ix2, w = x3 + ix4, and let the orientifold act on the spacetime by σ : z ↔ w. The O7∓
will then be on the locus z = w; place again n± 4 D7s on top of it. Now also place m half-D7s
on the locus z = 0; their m images will be on the locus w = 0. In this case, the gauge fields on
the D7s on z = 0 will have a U(m) gauge field, which the O7 maps to a gauge field on the D7s on
w = 0. To see why this is related to a tangential intersection, consider the invariant coordinates
v = z + w, u = zw. The configuration we are considering is then mapped to an O7∓ + (n± 4)
D7s on the locus v2 = 4u, and m D7s on u = 0. These two loci intersect tangentially. We can
summarize this as follows:

so2n+8 sum
I∗n || Im ;

spn−4 sum
Î∗n || Im ,

(3.2.23)

where we have used || to denote tangency as in [1]. This coordinate change is illustrated in the
top part of Fig. 3.2.9, in the O7+ case.
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Figure 3.2.9: Various equivalent ways of seeing a tangential Î∗–I intersection. As in recent figures,
the dot on the bottom-right frame is a half-NS5.

An additional subtlety concerns the matter content in (3.2.23). One can in principle work
this out directly in the original setup on the left of Fig. 3.2.9, but it is instructive to do it instead
in a dual frame. First of all we change coordinates, using again (3.2.18); only this time we
take z = x1 + ix2, w = x3 + ix4 introduced earlier, and define new coordinates x̃1 + ix̃2 = zw,
x̃3 = |z|2−|w|2, with a fourth periodic coordinate eix̃4

= zw
zw

. We are once again rewriting R4 as a
fibration S1 ↪→ R4 → R3. The orientifold is now defined by the involution σ : x̃3 → −x̃3, x̃4 →
−x̃4; the O7-plane then sit at x̃3 = x̃4 = 0, while the D7s are on the locus x̃1 = x̃2 = 0. (Notice
that the x̃4 circle shrinks at x̃3 = 0.) If we now T-dualize along direction 4, we end up with an
O8 at x̃3 = 0 with a half-NS5 stuck on it, and with D6s crossing it. All this is depicted on the
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lower part of Fig. 3.2.9, again for the O8+ case. At this point we can read off the matter content
from a perturbative string computation similar to the one leading to (3.2.4), as already done
in [19, 18]; the result is that in the tangential intersection (3.2.23) the um has a hypermultiplet in
the antisymmetric in the unfrozen case, and in the symmetric in the frozen case.

3.3 Anomaly analysis

In this section we discuss the cancellation of one-loop anomalies and the Green–Schwarz contri-
butions in 6d compactifications with frozen seven-branes.

3.3.1 Anomaly cancellation with frozen singularities

A compactification of F-theory on an elliptically fibered Calabi–Yau threefold gives rise to an
effective 6d gauge theory with N = (1, 0) supersymmetry at low energies. When there are no
frozen singularities present, it is possible to turn off the holonomies of gauge fields on stacks of
seven-branes, and the periods of 2-form NS-NS and R-R potentials. Then, each simple summand
gi of the 6d gauge algebra is associated to a single irreducible component Di of the discriminant
locus of the elliptic fibration, and can be determined from the knowledge of the type of singular
fiber over Di along with the data of the monodromy of the elliptic fiber around Di [72, 95,
65]. The matter content [100, 51] and the coupling of tensor multiplets [52] is encoded in the
intersection numbers of various divisors in the base of the elliptic fibration. These data allow
us to compute both the 1-loop contribution I8

1-loop to the anomaly polynomial, as well as the
Green–Schwarz contribution I8

GS to the anomaly polynomial. Combining these two, one finds
that I8 = I8

1-loop + I8
GS vanishes for any smooth elliptically fibered Calabi–Yau threefold [53,51].

Now let us include frozen singularities in the geometry. In this situation, it is not always
possible to tune the above mentioned holonomies to zero. We do not have any canonical nonzero
choice either. Because of the nonzero holonomies, one is forced to consider situations in which
simple summands of the 6d gauge algebra are realized on divisors which are positive linear com-
binations of irreducible components of discriminant locus. We will call the divisors associated
to simple summands of gauge algebra as gauge divisors.

We will not be able to list down all the possible 6d spectra that could result from a geometry,
as that will require a systematic understanding of holonomies and fluxes in F-theory compacti-
fications, which we do not have at present. Therefore, we suppose that an assignment of gauge
algebras on the components of the discriminant is given, and study the Green–Schwarz contribu-
tion to the anomaly. We follow the work of Sadov [52] but we include the effects from the frozen
singularities.

The 6d tensor multiplets descend from Kaluza-Klein reduction of the chiral 4-form C(4) of
type IIB string theory. To determine the coupling of 6d tensor multiplets, we need to look at two
couplings of C(4) in ten-dimensional type IIB string theory. One of them is a coupling to gravity
and the other is a coupling to the gauge theory living on seven-branes.
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Gauge Green–Schwarz terms: We start with the coupling of the gauge fields to the RR 4-form
field C(4). When there are no O7+-planes, the stack of seven-branes onDa has a ten-dimensional
coupling given by

∫
C(4)ν(Fa)Da (3.3.1)

where Fa is the field strength valued in the “Kodaira” 8d gauge algebra ka on theDa component of
the discriminant, and ν(Fa) is the instanton number density, normalized so that it integrates to one
on the standard BPST instanton embedded into ka with embedding index 1. This normalization
reflects the familiar fact that an instanton in the worldvolume of a seven-brane has D3-charge 1.

When the component Da carries a Î∗n+4 singularity, i.e. when it corresponds to an O7+-
plane with n D7-branes on top, the local 8d gauge algebra is ka = spn, and the ten-dimensional
coupling is ∫

C(4)

(
1

2
ν(Fa)

)
Da. (3.3.2)

Note a factor-of-two difference in the coefficient between (3.3.1) and (3.3.2). This is due to the
fact that a bulk D3-brane can fractionate into two on O7+, as reviewed in Sec. 3.2.2, and the
gauge instanton in the standard normalization corresponds to the D3-brane of minimal possible
charge.

Let us now write the 6d gauge algebra in the form ⊕igi where gi is simple. Each gi is shared
on some of the Da; we let µi,a = 1 or 0 depending on whether gi is on Da or not. An embedding
ρi,a : gi ↪→ ka must exist whenever µi,a = 1, and otherwise we let ρi,a be the zero map. These
embeddings have the properties

1.
⊕

i ρi,a(gi) ⊂ ka, and

2. gi is the diagonal in
⊕

a ρi,a(gi).

The Green–Schwarz coupling for the gauge fields is given in terms of the field strenghs Fi valued
in gi by ∫

C(4)
∑

i

ν(Fi)Σi :=
∑

i,a

∫
C(4)

(∑

i

µi,aoi,aν(Fi)

)
Da (3.3.3)

where we defined the i-th gauge divisor to be

Σi =
∑

a

µi,aoi,aDa, (3.3.4)

and oi,a is the embedding index of gi ⊂ ka, multiplied by 1/2 when ka = spn is supported on a
frozen singularity.

Note that even when there is no “sharing” (so the gauge divisors are Σa = Da) and no O7+-
planes, ga could still be different from ka, due to the “Tate monodromy” phenomenon [95].

Before proceeding, we point out here that the inverse square of the gauge coupling of gi is
given by

∑
a µi,aoi,aAa where Aa is the area of Da. This follows from the fact that the scalar
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Aa and the 2-form
∫
Da
C(4) are the bosonic components of a single supermultiplet, and therefore

Green-Schwarz coupling
∫
C(4)

∑
a µi,aoi,aν(Fi)Da comes with the coupling

∫ ∑
aAaµi,aoi,a trFi∧

∗Fi. This means in particular that when the gauge algebra gi is shared on multiple components,
the gauge theory does not become singular when a single component Da involved in the gauge
divisor shrinks to zero size.

Gravitational Green–Schwarz terms: We turn our attention to the gravitational coupling.
When there are no O7+s, the stack of seven-branes on Da has a ten-dimensional coupling to
gravity given by

∫
C(4)

(
Na

12

p1(T )

4

)
Da (3.3.5)

where Na is the order of vanishing of discriminant ∆ on Da, p1(T ) is the Pontryagin class
of the tangent bundle of the worldvolume. We also slightly abuse notation and use Da within
the integral to represent the two-form determined by the divisor.11 In particular, a D7-brane
contributes Na = 1 and an O7−-plane contributes Na = 2.

Now, the contribution of O7+ to this gravitational coupling is opposite to that of O7−; the
“effective Na” is −2. Since an Î∗n singularity corresponds to O7+ + (n − 4)D7-branes, its “ef-
fective Na” is −2 + (n− 4) = n− 6. In comparison, Na of I∗n is n + 6. Hence, in the presence
of O7+ we need a correction term to the coupling, and it can be written as

∫
C(4)

((
Na

12
− sa

)
p1(T )

4

)
Da (3.3.6)

where sa = 1 when the curve Da carries an O7+ and sa = 0 when it does not.

The cancellation: Combining (3.3.3) and (3.3.6), the full six-dimensional coupling relevant
for the Green–Schwarz mechanism is

∫

B

C(4)

(
−(K + F )

p1(T )

4
+
∑

i

Σiν(Fi)

)
, (3.3.7)

where the integral is performed only over the base B, C(4) has two legs on the base B, we
have used the condition for unbroken supersymmetry (the Calabi–Yau condition) to substitute
the canonical divisor K in place of − 1

12
NaDa, and

F =
∑

a

saDa (3.3.8)

is the frozen divisor, signifying the divisor along which we find the frozen singularities.

11The couplings (3.3.1) and (3.3.5) follow in the case of Na D7-branes by starting from the coupling
(
∑
p C

(p))Â(T )1/2 tr eF determined in [101] and extracting the necessary parts, using Â(T )|4 = −p1(T )/24 and
tr eF |4 = −ν(F ).
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The contribution to anomaly polynomial is then a square of the coefficient of C(4), with a
factor of 1/2 in front, to take into account that the RR 4-form field is self-dual:

I8
GS = −1

2

(
−(K + F )

p1(T )

4
+
∑

i

Σiν(Fi)

)2

. (3.3.9)

It is a standard result (see e.g. [102–104, 97, 52]) that the one-loop anomaly of the 6d system is
given by

I8
1-loop =

9− nT
32

p1(T )2 − Ni

4
ν(Fi)p1(T ) +

Mij

2
ν(Fi)ν(Fj) (3.3.10)

where nT is the number of tensor multiplets, and Ni, Mij are some numerical coefficients, as-
suming that the coefficient of trR4 vanishes, i.e.

nV − nH − 29nT + 273 = 0 . (3.3.11)

At the end of this subsection, we comment on how to obtain the numerical values Ni and Mij .

We see that cancellation of gauge and gauge-gravity anomalies requires the following:

Ni = (K + F ) · Σi, Mij = Σi · Σj. (3.3.12)

Here, K · Σi = K ·∑µi,aoi,aDa can be computed from the adjunction formula 2(ga − 1) =
(K +Da) ·Da, where ga is the genus of the curve Da.

If the 6d theory contains dynamical gravity and satisfies (3.3.11), then we obtain the follow-
ing condition as well, from the vanishing of the coefficient of (trR2)2:

9− nT = (K + F )2 (3.3.13)

This condition (3.3.13) follows just from geometry, as we now demonstrate. If Da carries
a frozen singularity, then the singular fiber over Da has Kodaira type I∗n≥4. For these Kodaira
fibers, it is known that Da · (−2K −Da) = 0 [51]. Moreover, any two distinct components Da

and Db of F must not intersect each other because two I∗n≥4 singularities cannot intersect each
other(in the absence of conformal matter). From these two facts, it follows that

(K + F )2 = K2 +
∑

a

saDa · (2K +Da) = K2, (3.3.14)

and the equality K2 = 9− nT .12

By now, the cancellation of the Green-Schwarz anomaly and of the one-loop anomaly in the
conventional F-theory compactification without O7− is well-established. This allows us to read
off Ni and Mij for almost all the cases. First, for i 6= j, we have Mij = 1 for a bifundamental
of su-su or a half-bifundamental of so-sp. To read off Ni and Mii (without suming over i),

12Compactification of C(4) on a base B produces h1,1(B) anti-symmetric 2-form potentials. One of them goes
into the supergravity multiplet and the remaining h1,1(B) − 1 go into tensor multiplets; hence nT = h1,1(B) − 1.
Since B is the base of Calabi–Yau, h1,0(B) = h2,0(B) = 0 and it follows from Noether’s formula that K2 =
10− h1,1(B) = 9− nT .
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let us say that the given algebra is gi and the total set of hypermultiplets for gi is ρ. One then
looks up the pair of (gi, ρ) e.g. in Eqs. (2.10)–(2.14) of [105], to find a conventional F-theory
realization of the 6d gauge theory on a sphere of self-intersection −n. Then Mii = −n and
Ni = n − 2. Essentially the only case not covered by this procedure is when gi = su(n), with
one sym and n − 8 fundamentals. For this, one first Higgses the hypers in sym, to give so(n)
with n− 8 fundamentals. This has a well-known anomaly polynomial, which can be determined
in the method just described above. Then one can convert it back the anomaly polynomial of the
original su(n) theory by using ν(so(n)) = 2ν(su(n)).

3.3.2 Matter content with frozen singularities

Transversal intersections: In the situation when there are no frozen singularities and each
simple factor of gauge algebra ga is associated to a single irreducible component of discriminant
locus Da, Grassi and Morrison [51] wrote down the matter content charged under ga in terms
of intersection numbers of combinations of Da and K, assuming that every intersection among
Da and Db are transversal. The geometry underlyng the derivation of those formulas, analyzed
in the M-theory dual (and therefore on the Coulomb/tensor branch of the theories), consists of
finding the curves in the total space upon which M2-branes can be wrapped, and finding the
intersection numbers of those curves with the divisors which represent the Cartan subgroup of
the original nonabelian gauge group, since those intersection numbers specify gauge charges.
This was carried out in a number of works [95, 100, 106, 65, 54] which [51] relied upon.

Now we would like to understand the matter content in the presence of the frozen singu-
larities. We do not have a geometric derivation for our proposed answer, since the M-theory
geometry of frozen singularities is not well understood. However, as we have seen in detail,
the effect of the frozen singularity in the anomaly contribution from the Green–Schwarz effect
is summarized by the replacement of individual components Da by the gauge divisor Σi, and
of the canonical class K by K ′ = K + F . The one-loop contribution should then be able to
exactly cancel this contribution. We thus propose that the corect answer for the matter content is
to perform the same replacement in the results of [51].

We tabulate the results of this replacement, i.e., of our precise proposal for matter content, in
Table 3.3.1. Two comments on the table are in order:

• The number associated to adjoint representation in the table is nadj
H − 1 where nadj

H is the
number of hypermultiplets charged in the adjoint representation. The −1 incorporates the
contribution to the anomaly of a vector multiplet, which indeed comes with the opposite
sign with respect to an adjoint hypermultiplet.

• The entry for so7 in our table contains a refinement over [51], in which only the spinor
representation was considered. But the coefficient of the spinor representation is negative
whenever (−2K ′ − Σi) · Σi < 0. In this case, a different representation with the same
contribution to the anomaly needs to be used. One finds sym2

irr does the job.13

13We claim that similar modifications are unnecessary for son≥8. Even though the representation containing
sym2

irr satisfies anomaly cancellation for any son≥7, the representation only makes sense for so7, as we now demon-
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ga ρ Number of hypers in ρ
su2 adj 1

2
(K ′ + Σi) · Σi

fund (−8K ′ − 2Σi) · Σi

su3 adj 1
2
(K ′ + Σi) · Σi

fund (−9K ′ − 3Σi) · Σi

sun, adj 1
2
(K ′ + Σi) · Σi

n ≥ 4 fund (−8K ′ − nΣi) · Σi

asym2 −K ′ · Σi

spn, adj 1
2
(K ′ + Σi) · Σi

n ≥ 2 fund (−8K ′ − nΣi) · Σi

asym2
irr

1
2
(−K ′ + Σi) · Σi

so7, adj 1
2
(K ′ + Σi) · Σi

(−2K ′ − Σi) · Σi ≥ 0, vect 1
2
(−3K ′ − Σi) · Σi

spin (−4K ′ − 2Σi) · Σi

so7, adj 1
8
(−2K − 2F + Σi) · Σi

(−2K ′ − Σi) · Σi ≤ 0, vect 1
4
(−16K ′ − 7Σi) · Σi

sym2
irr

1
8
(2K ′ + Σi) · Σi

son, adj 1
2
(K ′ + Σi) · Σi

8 ≤ n ≤ 14, vect 1
2
((4− n)K ′ + (6− n)Σi) · Σi

spin∗
1

dim(spin∗)
(−32K ′ − 16Σi) · Σi

son, adj 1
2
(K ′ + Σi) · Σi

n ≥ 15 vect (−4K ′ − n
4
Σi) · Σi

e6 adj 1
2
(K ′ + Σi) · Σi

27 (−3K ′ − 2Σi) · Σi

e7 adj 1
2
(K ′ + Σi) · Σi

56 1
2
(−4K ′ − 3Σi) · Σi

e8 adj 1
2
(K ′ + Σi) · Σi

f4 adj 1
2
(K ′ + Σi) · Σi

26 1
2
(−5K ′ − 3Σi) · Σi

g2 adj 1
2
(K ′ + Σi) · Σi

7 (−5K ′ − 2Σi) · Σi

Table 3.3.1: Number of hypermultiplets for each relevant representation of each simple gauge
algebra when frozen singularities are present. This includes the contribution of vector multiplet
as a −1 hypermultiplet in adjoint. K ′ = K + F . The two different proposals for so7 coincide
when (−2K ′ −Σi) ·Σi = 0. For son≥15 we have a further constraint that Σi · (−2K ′ −Σi) = 0,
and for e8 we have a further constraint that (6K ′ + 5Σi) · Σi = 0.
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For ga = son≥15, we have the additional constraint Σi ·(−2K ′−Σi) = 0. The physical mean-
ing of this constraint is that the intersection points of Σi and −2K ′−Σi carry spinor representa-
tions, but it is impossible to satisfy anomaly cancellation for son≥15 if we have hypermultiplets
transforming as spinors. There is a similar constraint for e8 which states that (6K ′+5Σi)·Σi = 0.

Tangential intersections: We know that this simple replacement cannot be the full story. We
saw at the end of Sec. 3.2.8 that if a curve carrying frozen singularities intersects a curve carrying
In singularity tangentially, then it traps a hypermultiplet in the two-index symmetric representa-
tion of sun. In light of this, for gi = sun we define ta to be the number of tangential intersections
of F with Da. Let ti =

∑
a µi,ata, in terms of which we write our modified proposal for sun as

ρ =

[
1

2
(K + F + Σi) · Σi − ti

]
adj + (−8K − 8F − nΣi) · Σi fund

+ [(−K − F ) · Σi + ti] asym
2 + ti sym

2 . (3.3.18)

This still satisfies anomaly cancellation because σ = −adj+ asym2 + sym2 has the property that
trσF 2 and trσF 4 are both zero. This proposal gives correct predictions for models which have a
perturbative dual in which case the spectrum can be determined by other methods.

3.4 Noncompact models

Now let us analyze how the anomaly cancellation works out in a few examples. We are particu-
larly interested in 6d SCFTs which supplement the lists given in [9, 10]. As in [9, 10], we expect
to model the tensor branch of a 6d SCFT by means of a contractible collection of curves in the
F-theory base, with the difference that we will now allow frozen branes as well.

3.4.1 so-sp chains

We first come back to the setup discussed in Sec. 3.2.6. In the type IIA frame, we consider the
following chain:

O6− O6+ O6− O6+

(n+ 4) D6s n D6s (n+ 4) D6s n D6s (3.4.1)

strate. Suppose (2K ′ + Σi) · Σi ≥ 8, so that we have at least one sym2
irr. Combining this inequality with the

inequalities that the number of vectors are non-negative and the number of adjoints are ≥ −1, we obtain:

(−2K ′ + Σi) · Σi ≥ −8 (3.3.15)
(
−4K ′ − n

4
Σi

)
· Σi ≥ 0 (3.3.16)

(2K ′ + Σi) · Σi ≥ 8 (3.3.17)

Combining the first and third inequalities, we find that Σ2
i ≥ 0. Combining the second and third inequalities, we

find that (8− n)Σ2
i ≥ 32. These two together imply that n < 8.
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separated by half-NS5-branes. The leftmost and the rightmost stacks are semi-infinite. This
realizes the 6d quiver theory with the structure

[so2n+8] spn so2n+8 [spn] (3.4.2)

where the bracketed algebras are flavor symmetries.

We perform a T-duality to bring this setup into F-theory. The result depends on whether we
have O6− or O6+ on the other fixed locus, see Fig. 3.2.5. The first case is a familiar setup without
frozen singularities:

[so2n+8] spn so2n+8 [spn]
1 4

I∗n Ins
2n I∗n Ins

2n

(3.4.3)

where the first, the second, the third row shows the gauge algebra, the negative of the self-
intersection number, and the singularity type, respectively. Denoting the two CP1’s in the middle
by D1 and D2, the Green–Schwarz contribution to the anomaly is

− 1

2

(
−p1(T )

4
·K + (ν(Fsp)D1 + ν(Fso)D2)

)2

. (3.4.4)

In the second case we obtain a setup with frozen singularities:

[so2n+8] spn so2n+8 [spn]
4 1

Ins
2n+8 Î∗n+4 Ins

2n+8 Î∗n+4.

(3.4.5)

Note that the gauge group, matter content, and flavor symmetry group of (3.4.5) are identical to
those of (3.4.3): only the F-theory realization is different.

Denoting the two middle CP1’s by D̃1 and D̃2 this time, and the canonical class by K̃ to
distinguish it from the case above, the Green–Schwarz contribution is now

− 1

2

(
−p1(T )

4
· (K̃ + F̃ ) + (ν(Fsp) ·

1

2
D̃1 + ν(Fso) · 2D̃2)

)2

. (3.4.6)

where the factor 1/2 in front of D̃1 is due to the fractionation of D3-branes on O7+, and the
factor 2 in front of D̃2 is due to the embedding index 2 of so2n+8 ⊂ su2n+8. The frozen divisor
F̃ is D̃1 + D̃3, where D̃3 is the noncompact divisor on the far right.

The terms with trF 2
sp and trF 2

so in the two expressions (3.4.4) and (3.4.6) should agree, since
they cancel the same 1-loop anomalies. Indeed, we can easily check that



K
D1

D2


 · (D1, D2) =



K̃ + F̃

1

2
D̃1

2D̃2


 ·

(
1

2
D̃1, 2D̃2

)
=



−1 2
−1 1
1 −4


 . (3.4.7)

In addition, as observed earlier, K2 = (K̃ + F̃ )2.

75



3.4.2 su-su chains

Let us next consider the IIA configurations shown in Fig. 3.4.1. The top row and the bottom
row are distinguished by the type of the O8-plane; we add 16 D8-branes for the top row to
have the same Romans mass for the both rows. The configurations on the left column contain
an intersection of the type discussed in section 3.2.8. The configurations on the right column
are obtained by moving the half-NS5-brane at the intersection of the 6-branes and the 8-branes
away from the intersection. Gauge theoretically, this operation corresponds to giving a vev to
hypermultiplets.

Using the discussion in section 3.2.8 and following [19,18], we find that these configurations
realize 6d quivers whose structures are summarized in Fig. 3.4.2. (We did not explicitly write
in that figure the standard bifundamental matter hypermultiplets between two consecutive gauge
factors.) The type of the O8-plane is correlated to the type of the two-index tensor representation
of the sun gauge algebra. Higgsing is done by giving a vev to the hypermultiplet in the antisym-
metric or symmetric two-index tensor representations of sun, breaking it to spn/2 or son. Here
for simplicity n is assumed to be even in the former case; if n is odd, the gauge algebra is spbn/2c
and one needs to add a flavor to sun−8.

We can discuss the F-theory duals by T-dualizing the original IIA configurations along the
lines of section 3.2.8; the results are shown in Fig. 3.4.3. The top row and the bottom row are
distinguished by whether we have the ordinary I∗4 singularity or the frozen Î∗4 singularity. For the
left column, this noncompact divisor of I∗4 or Î∗4 is tangent to the divisor with In singularity. To
go to the right column, we deform the divisors so that the tangent point is split to two transversal
intersection points. This operation in turn changes the singularity type from In to Ins

n . The
two models on the bottom row realizes 6d quiver gauge theories (the tensor branches of 6d
SCFTs) which were not previously possible in an ordinary F-theory compactification without
frozen singularities.

Let us name the four divisors in each model as C1, D1, D2, C2 from the left to the right; C1,2

are non-compact and D1,2 are compact. The Green–Schwarz contribution to the anomaly can be
written down as follows.

For the top row with the non-frozen I∗4 singularity, we have

− 1

2

(
−Kp1(T )

4
+D1ν(F1) +D2ν(F2)

)2

(3.4.8)

both before and after the Higgsing. For the bottom row with the frozen I∗4 singularity, we have

− 1

2

(
−(K + C1)

p1(T )

4
+D1ν(F1) +D2ν(F2)

)2

(3.4.9)

where we used the fact that the frozen divisor is C1. After the Higgsing, the Green–Schwarz
contribution is

− 1

2

(
−(K + C1)

p1(T )

4
+ 2D1ν(F1) +D2ν(F2)

)2

(3.4.10)
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before after

O−
n D6s

NS5½NS5
O8−+ 16 D8s

n − 8 D6s

NS5

n − 16 D6s n D6s

NS5½NS5
O8−+ 16 D8s

n − 8 D6s

NS5

n − 16 D6s

O+

n D6s

NS5½NS5
O8+

n − 8 D6s

NS5

n − 16 D6s n D6s

NS5½NS5
O8+

n − 8 D6s

NS5

n − 16 D6s

Figure 3.4.1: Four type IIA configurations.

before after
O− [su16], sun + asym, sun−8, [sun−16] [su16], spn/2, sun−8, [sun−16]
O+ sun + sym, sun−8, [sun−16] son, sun−8, [sun−16]

Figure 3.4.2: Quivers. On the upper right corner, we assumed that n is even.
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Figure 3.4.3: F-theory duals.
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where the factor in front of D1 is due to the embedding index of son ⊂ sun.14. It is a straight-
forward exercise to show that these Green–Schwarz contributions correctly cancel the gauge
squared and the gauge-gravity part of the one-loop anomalies.

The construction discussed here gives a first indication of how the classification results of
[9, 10] need to be modified in order to include frozen branes. We leave a thorough consideration
of the effect of frozen branes on this classification to future work.

3.5 Compact models

In this section we discuss some compact models with O7+-planes in F-theory language. The
compact models we discuss are, if every O7 is of type O7−, the very classic F-theory models
which are dual to the T 4/Z2 compactifications of the so32 heterotic string with various standard
choices of gauge bundles, originally found in [108, 6, 15]. Their perturbative realizations were
first considered by Bianchi and Sagnotti [7] before the second superstring revolution, during
which these models were revisited by many others, including by Gimon and Polchinski [8].

3.5.1 The F−4 model and its flip

Without frozen 7-brane: Aspinwall and Gross considered the following model [6]: the F-
theory base is the Hirzebruch surface F−4, which is a CP1 bundle over CP1 such that the base
is a −4 curve. We have the I∗12 singularity along the −4 curve C and and a fiber Φ hosts an Ins

48

singularity; see Fig. 3.5.1(a).

so32

�4

I�
12

0

Ins
48

C
�4 0

Ins
48

C

�I�
12

usp24

�4 0

Ins
48
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�I�
12

su24

� � �

sp24 sp8 sp8

(a)

so32

�4

I�
12

0

Ins
48
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48

C

�I�
12

usp24

�4 0
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48
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�I�
12

su24

� � �
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Figure 3.5.1: In 3.5.1(a), the compact model of [6] on the Hirzebruch surface F−4. In
3.5.1(b), a frozen version.

This model has the following massless matter content:

• so32 on C and sp24 on Φ,

• a half-hypermultiplet in 32⊗ 48,
14In particular it explains the superficially funny-looking ηO8+ in [107, (3.23)]
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• a hypermultiplet in ∧248, together with

• one supergravity multiplet, one tensor multiplet and 20 neutral hypermultiplets.

Let us remind ourselves how this spectrum can be understood in a dual frame. We start
from the heterotic or type I so32 on a K3, realized as an elliptic fibration over CP1. The Green–
Schwarz mechanism requires that the instanton number of the gauge bundle over K3 is 24. To
keep the whole so32 gauge algebra unbroken, we use 24 point-like instantons. We then collapse
the whole 24 instantons to a point. This is known to generate sp24 on the heterotic side [109].
The spectrum as written above can be found perturbatively on the type I side.

Assuming that the elliptic fiber has small area, we perform fibre-wise the duality between het-
erotic on T 2 and F-theory on an elliptically-fibered K3. This converts the whole to an elliptically-
fibered K3 fibered over CP1. The so32 gauge algebra is now realized on the base C as the I∗12

singularity, and the point-like instanton is on the fiber Φ as the Ins
48 singularity.

With a frozen 7-brane: Now, let us flip I∗12 to Î∗12. The anomaly cancellation suggests the
following matter content:

• sp8 on 1
2
C and su24 on 2Φ,

• a hypermultiplet in 16⊗ 24,

• two hypermultiplets in ∧224, together with

• one supergravity multiplet, one tensor multiplet and 20 neutral hypermultiplets.

This model is also shown in Fig. 3.5.1(b). It can be Higgsed to

• sp8 on 1
2
C and sp12 on 2Φ,

• a hypermultiplet in 16⊗ 24,

• a hypermultiplet in ∧224, together with

• one supergravity multiplet, one tensor multiplet and 21 neutral hypermultiplets.

Here and below, we mean by the sentence “a gauge algebra g on D” that the gauge divisor
associated to g is D, in the language of Sec. 3.3.

Let us give a derivation of these spectra, using the same duality as in the unfrozen case
shown above. We again start from the heterotic or type I so32 on a K3, realized as an elliptic
fibration over CP1, but with the generalized Stiefel–Whitney class of Spin(32)/Z2 being nonzero
along the fiber, destroying the vector structure [23]. The maximal possible gauge algebra is now
sp8. We now need a gauge configuration of instanton number 12 on the K3 surface, since the
embedding index of sp8 ⊂ so32 is two. We choose to put all 12 point-like instantons at the same
place.

79



The spectrum can be determined perturbatively using the type I description.15 We find that
when the point-like instanton is on a generic point, the spectrum is as in the Higgsed case above,
while when it is on a singularity of the form C2/Z2, the spectrum is the one before the Higgsing.

To go to the F-theory frame, we perform the fiber-wise duality as before. This time we use
the frozen version reviewed in Appendix B.1, which relates heterotic or type I so32 on T 2 without
vector structure to F-theory on K3 with one frozen singularity. We now have the Î∗12 singularity
on C and the Ins

48 singularity on Φ. The Higgsing distinguishing the two versions is related to
how the residual part of the discriminant with the I1 type singularity intersects with the fiber Φ.

3.5.2 The CP1 × CP1 model and its flips

The next compact model has the following perturbative realizations: We first consider in type
IIB theory the T 2/Z2 × T 2/Z2 compactification with O7− at each Z2 singularity, together with
16 mobile D7-branes along the first T 2/Z2 and another 16 mobile D7-branes along the second
T 2/Z2. We can then replace some of the O7−-planes with the O7+-planes. In Appendix B.2, we
give the derivation of the spectrum of the models described below from the point of view of the
intersecting brane models. The aim here is to understand the spectrum from the F-theory point
of view.

Without frozen seven-branes: The perturbative type IIB setup can be promoted to an F-theory
setup as follows. Since T 2/Z2 ' CP1, we take the F-theory base to be CP1 × CP1. We pick
divisors C and D wrapping each of the CP1 above. We let each divisor host an I∗12 singularity.

At the intersection we expect to have the conformal matter theory (see footnote 9) D32, where
so32 × so32 ⊂ so64 is gauged.

This is not the end of the story, since the rest of the discriminant locus has singularities at
three points onC and three points onD respectively. At each point, a blow-up reveals a−1 curve
of Ins

8 singularities; see the discussion around (3.5.1) below. After the blow-down each gives rise
to the conformal matter D16. For a summary see Fig. 3.5.2.

The matter content is then

• so32 on C and so′32 on D,

• the conformal matter D32 gauged by so32 × so′32 ⊂ so64

• three copies of D16 gauged by so32,

• three copies of D16 gauged by so′32,

• one supergravity multiplet, one tensor multiplet and 13 neutral hypermultiplets.

15An analysis after a T-dual along one direction in the T 2 without vector structure is given around equation (B.2.3)
of Appendix B.2.2.
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Figure 3.5.2: An F-theory description of the tensor branch of the perturbative model with
two O7− [7, 8]. Upon shrinking E as well as C1, C2, C3, D1, D2, D3 and then Higgsing the
resulting conformal matter theory, we recover the original perturbative model.

Upon Higgsing of the conformal matter theories, this results in the standard perturbative
massless spectrum of the model:16

• u16 on C and u′16 on D,

• a hypermultiplet in 16⊗ 16′,

• two hypermultiplets in ∧216,

• two hypermultiplets in ∧216′,

• one supergravity multiplet, one tensor multiplet and 20 neutral hypermultiplets,

as can be found in the original papers [7, 8, 97], and reviewed in App. B.2.1. The F-theory
interpretation of this Higgsed spectrum was given in [90, 110]; this study eventually led to a
refined understanding of the relation between F-theory and O7− [111].

We note that the T-duality between Type IIB on T 2/Z2 × T 2/Z2, which we used here, and
Type I on T 4/Z2, as originally considered, was first discussed in [112]. We also mention that
when each O7− has four D7s on top of it, then the perturbative orientifold construction can be
subtly modified so that the system is slightly on the tensor branch side, rather than on the Higgs
branch side, of the conformal point, as noticed early in the study of orientifolds [113, 114]

16The u1 part of both u16 are known to get Higgsed by the Green-Schwarz mechanism, eating one neutral hyper-
multiplet each, and becoming massive [97, Sec. 2]. Here we follow the older perturbative string terminology.
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Detailed discussion of the geometry: Before discussing the case with frozen 7-branes, we
pause here to record the details of the geometry. Let us choose coordinates ([s, t], [u, v]) on
CP1 × CP1. We put I∗12 along t = 0 and v = 0. The equation defining the elliptic fibration was
derived in [108] but we follow the notation of [15, Eq. (42)]:

y2 = x3 + tvp3,3(s, t, u, v)x2 + t8v8x, (3.5.1)

where p3,3 is bihomogeneous of degree (3, 3). This equation is not in Weierstrass form. By
completing the cube, we find

f = t2v2

(
t6v6 − 1

3
p2

3,3

)
, (3.5.2)

g = t3v3p3,3

(
−1

3
t6v6 +

2

27
p2

3,3

)
, (3.5.3)

∆ = t18v18(2t3v3 + p3,3)(2t3v3 − p3,3). (3.5.4)

We indeed see I∗12 along t = 0 and v = 0. Therefore we have the D32 conformal matter at
t = v = 0.

In addition, we see two components

2t3v3 = ±p3,3 (3.5.5)

of the residual discriminant. They intersect with t = 0 at the three points t = p3,3 = 0, and
similarly with v = 0 at the three points v = p3,3 = 0.

Let us study the intersection points with t = 0 in more detail. We locate one of the intersec-
tion points at t = u = 0. In other words, assume we can write p3,3 = up̂3,2 + tp̃2,3. Multiplicities
of f , g, and ∆ at t = u = 0 are easily seen to be 4, 6, and 20 so we have a conformal fixed
point and we need to blow up. To perform the blowup, we work in the affine coordinate chart
v = s = 1. In one coordinate chart of the blowup, we have t1 = t, u1 = u/t, and the Weierstrass
coefficients and discriminant become

f1 = t41 −
1

3
(u1p̂+ p̃)2, (3.5.6)

g1 = (u1p̂+ p̃)

(
−1

3
t41 +

2

27
(u1p̂+ p̃)2

)
, (3.5.7)

∆1 = t81(2t21 + u1p̂+ p̃)(2t21 − u1p̂− p̃). (3.5.8)

The exceptional divisor t1 = 0 supports an I8 fiber, since the orders of vanishing are (0, 0, 8),
and there is monodromy: the usual branch divisor (g1/f1)|t1 = 0 vanishes at u1 = t1 = 0 in this
chart and has a single order of vanishing. Thus, this is Ins

8 and the gauge algebra is sp4. No matter
is visible in this chart. Note that this branch point is the point at which the residual discriminant
meets the exceptional divisor. The multiplicities at this point are 2, 3, 10 which is consistent with
the enhancement from A7 to D8 which is expected at such a point. In the other coordinate chart
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of the blowup, we have t2 = t/u, u2 = u. The Weierstrass coefficients and discriminant become

f2 = t22(u4
2 −

1

3
(p̂+ t2p̃)

2), (3.5.9)

g2 = t32(p̂+ t2p̃)

(
−1

3
u4

2 +
2

27
(p̂+ t2p̃)

2

)
, (3.5.10)

∆2 = t18
2 u

8
2(2u2

2 + p̂+ t2p̃)(2u
2
2 − p̂− t2p̃) (3.5.11)

and we indeed see the exceptional divisor u2 = 0 meeting the original I∗12 at t2 = 0. This
intersection point also provides the second branch point defining the monodromy.
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Figure 3.5.3: In 3.5.3(a), a compact model, obtained from the CP1×CP1 model of Fig. 3.5.2
by freezing one of the I∗12 curves and shrinking some Ins

8 . This model reproduces the spec-
trum of the perturbative model described in appendix B.2.2. In the sense of section 3.3,
the gauge divisor for su8 is 2(C + E), while the one for the sp4s are E + 1

2
D + D1 and

1
2
D + D2 + D3. In 3.5.3(b), an enhanced version of the same model, where a second u8

gauge algebra appears. The gauge divisors are E+ 1
2
D+D1, 1

2
D+D2 +D3, C +C1 + 2E,

C + C2.

With one frozen 7-brane: Now let us flip the I∗12 on C2 to Î∗12. We then have the following
setup, see Fig. 3.5.3(a):17

• u8 on 2(C + E),

• sp′4 on E + 1
2
D +D1 and sp′′4 on 1

2
D +D2 +D3,

• hypermultiplets in 8⊗ 8′, and 8′ ⊗ 8′′, 8′′ ⊗ 8,

• two hypermultiplets in ∧28,

17As in the previous footnote, we expect the u1 part to become massive via the Green-Schwarz mechanism, eating
a neutral hypermultiplet.
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• one supergravity multiplet, 5 tensor multiplets and 16 neutral hypermultiplets.

This realizes the spectrum of the perturbative model described in appendix B.2.2. Notice that we
have blown down some of the −1-curves of the unfrozen model in Fig. 3.5.2.

An enhanced variant of this model can be obtained by blowing up the−1-curves; see Fig. 3.5.3(b).
It has18

• sp4 on E + 1
2
D +D1 and sp′4 on 1

2
D +D2 +D3,

• u′′8 on C + C1 + 2E and u′′′8 on C + C2,

• hypermultiplets in 8⊗ 8′, 8′ ⊗ 8′′, 8′′ ⊗ 8′′′, 8′′′ ⊗ 8

• one supergravity multiplet, 7 tensor multiplets and 14 neutral hypermultiplets.

This enhanced model is related to the previous one by a combination of a Higgsing and of two
‘small instanton’ transitions, where two tensors are traded for two antisymmetric and two neutral
hypermultiplets (for a total of 2 × (28 + 1)); indeed in such a transition a tensor is traded for
29 hypermultiplets. Other intermediate models are also possible, where only some of these
transitions have taken place.
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Figure 3.5.4: A compact model realizing the spectrum of the perturbative model with two
O7+, discussed in app. B.2.3. The gauge divisors areC+C1+C2, C+C2+C3,D+D1+D2,
D +D2 +D3.

With two frozen seven-branes: We can further flip the I∗12 on C1 to Î∗12. We then have the
following setup, see Fig. 3.5.4:

18As in the previous two footnotes, we expect the u1 parts to become massive via the Green-Schwarz mechanism,
eating neutral hypermultiplets.
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• (sp2)1,2,3,4, supported onC+C1+C2, C+C2+C3,D+D1+D2,D+D2+D3 respectively,

• hypermultiplets in 4i ⊗ 4j for i < j,

• one supergravity multiplet, 7 tensor multiplets, and 14 neutral hypermultiplets.
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Chapter 4

State sum constructions of spin-TFTs and
string net constructions of fermionic
phases of matter

4.1 Introduction

The general purpose of this chapter is to explore the properties of spin-topological quantum
field theories in 2 + 1 dimensions [115] and their relation to fermionic gapped phases of matter
[116, 117]. A concrete objective of this chapter is to leverage the relation between these two
notions in order to produce explicit lattice Hamiltonians for new fermionic phases of matter.

Spin-topological quantum field theories are topological quantum field theories which are
defined only on manifolds equipped with a spin structure. Fermionic phases of matter are phases
defined by a microscopic local Hamiltonian which contains fermionic degrees of freedom. The
relation between these two notions is most obvious for relativistic theories, thanks to the spin-
statistics theorem. It is far from obvious for non-relativistic theories or discrete lattice systems
[118].

Standard (unitary) TFTs in 2+1 dimensions are rather well-understood in terms of properties
of their line defects, which form a modular tensor category [119,120]. A similar characterization
for spin-TFTs is not as well developed. The expected relation to fermionic phases of matter
suggests the existence of a formulation involving some kind of modular super-tensor category,
involving vector spaces with non-trivial fermion number grading. We do not know how to give
such a description or how to reconstruct a spin-TFT from this type of data.

Instead, we follow a different strategy: we encode a spin-TFT Ts into the data of a “shadow”
TFT Tf , a standard TFT equipped with an extra piece of data, a fermionic quasi-particle Π which
fuses with itself to the identity. 1

In the language of [118], the spin-TFT is obtained from its shadow by a procedure of “fermionic
anyon condensation”. Conversely, if we pick a spin manifoldM and add up the Ts partition func-
tion over all possible choices of spin structure η we recover the Tf partition function.

1See appendix C.1 for a simple justification of this statement for TFTs which are associated to 2d RCFTs.
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The relation between spin-TFTs and standard TFTs equipped with appropriate fermionic
quasi-particles was also discovered in the mathematical literature [121]. This reference pro-
poses a Reshetikhin-Turaev-like construction of a spin TFT partition function from the data of a
modular tensor category equipped with invertible fermionic lines. The partition function of the
spin TFT summed over the possible choices of spin structure reproduces the Reshetikhin-Turaev
partition function of the underlying modular tensor category.

Similarly, the relation between fermionic phases of matter and bosonic phases equipped with
a special fermionic quasi-particle was proposed in [122–124] as a form of “gauging fermionic
parity”.

It is natural to wonder if all spin TFTs should admit a shadow. We believe that should be
the case. Given a spin TFT and a spin manifold, we can add up the partition function over
all possible spin structures in order to define tentatively the partition function of its shadow.
This procedure essentially corresponds to “gauging fermionic parity” and assigns to every spin
manifold a partition function which does not depend on a choice of spin structure. The key
question is if one can extend this definition to general manifolds which may not admit a spin
structure. In 2 + 1 dimensions TFTs can be reconstructed from the properties of their quasi-
particles, which should be computable from the data of spin manifold partition functions.

The fermionic anyon condensation procedure computes the partition function of Ts on a
spin manifold M from partition functions of Tf on M decorated by collections of fermionic
quasi-particles. The calculation involves some crucial signs involving the Gu-Wen Grassmann
integral [125] and a choice of spin structure on M .

A slightly more physical perspective on the construction can be given as follows. Consider
some microscopic bosonic physical system S which engineers Tf at low energy. Combine S
with a system of free massive fermions. The Π quasi-particles in S can combine with the free
fermions ψ to produce a a bosonic composite particle ψΠ. Condensation of ψΠ produces a new,
fermionic phase of matter which we identify as a physical realization of Ts.

We will focus in most of the chapter on theories which admit a state-sum construction. Con-
cretely, that means that the shadow TFT Tf is fully captured by the data of a spherical fusion
category Cf , which can be fed into the Turaev-Viro construction [12] of the partition function or
the Levin-Wen construction [126] of a bosonic commuting projector Hamiltonian. We will learn
how to modify these standard constructions to compute the partition function of Ts on a spin
manifold and a fermionic commuting projector Hamiltonian for Ts. This is an extension of the
proposal of [127].

As an application of these ideas, we propose an explicit construction for all the fermionic
SPT phases which are predicted by the spin-cobordism groups [128]. In particular, this includes
phases which lie outside of the Gu-Wen super-cohomology construction. The classification of
such phases has been previously proposed in [123], and our results agree with theirs. The novelty
here is that we construct explicit state sums and Hamiltonians for all the phases and make explicit
their dependence on spin structure. Furthermore, we give a cohomological description of the
classification and determine explicitly the group structure of fermionic SPT phases under the
stacking operation.
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Figure 4.2.1: A graphical depiction of the map from TZ2 to Tb. On the right we have the par-
tition function of TZ2 on a three-dimensional manifold, equipped with a Z2 flat connection.
We represent the connection as a collection of domain walls implementing Z2 symmetry
transformations g, g′, etc. On the left we have the partition function of Tb, obtained by
summing the TZ2 partition function over all possible choices of Z2 flat connection.

4.2 Overview

4.2.1 One-form symmetries and their anomalies

In order to understand the relation between Ts and Tf , it is useful to look at an analogous relation
between standard “bosonic” TFTs. Consider TFTs TZ2 endowed with a (non-anomalous) Z2

global symmetry, i.e. TFTs which are defined on manifolds equipped with a flat connection.
The dimension of space-time is arbitrary at this stage. For a mathematical definition TFTs with
symmetries in 2 + 1d, see e.g. [129–131] and references therein.

Given such a TFT, we can build a new TFT Tb by coupling the Z2 global symmetry to a
dynamical gauge field. The partition function for Tb on a manifold M is computed by summing
up the TZ2 partition functions over all possible inequivalent Z2 flat connections (with the same
weight):

Z[M ;Tb] =
1

|H0(M,Z2)|
∑

[α1]∈H1(M,Z2)

Z[M ;TZ2 ; [α1]] (4.2.1)

The theory Tb is always equipped with a bosonic quasi-particle B, the Wilson line defect,
which fuses with itself to the identity in a canonical way. We can recover TZ2 from Tb by con-
densing B. Intuitively, the insertion of A = 1⊕ B along a cycle in M forces the flat connection
to be trivial along that cycle (i.e. the partition function vanishes unless the holonomy of the
connection is trivial). Adding a sufficient number of A’s toM will set the flat connection to zero.

In 2+1 dimensions, it is useful to think about this process as gauging a (non-anomalous) Z2

1-form symmetry generated by B. By definition, a global Z2 1-form symmetry is parameterized
by an element of H1(M,Z2) [132]. Gauging this symmetry amounts to coupling the theory to
a flat Z2-valued 2-form gauge field 2 [β2] ∈ H2(M,Z2). Thus Tb has more structure than an

2We will try be be careful and distinguish a 2-cocycle β2 from its cohomology class [β2].
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Figure 4.2.2: Wilson lines in Z2 gauge theory have trivial statistics and can be freely recom-
bined. We use a double-line notation for quasi-particles and line defects to indicate a choice
of framing, but the Wilson loops have no framing dependence, i.e. represent bosonic quasi-
particles. In general, these abstract properties characterize the quasi-particle generators B of
non-anomalous Z2 1-form symmetries.

Figure 4.2.3: A graphical depiction of the map from Tb to TZ2 . On the right we have the
partition function of Tb on a three-dimensional manifold, possibly decorated with Wilson
line operators B along non-trivial cycles, dual to the domain walls of the previous picture.
Abstractly, the choice of Wilson lines equips the manifold with a flat connection [β2] for
a dual Z2 1-form symmetry of Tb. Summing over all choices gives back the TZ2 partition
function.

ordinary TFT: it can associate a partition function to a manifold equipped with a 2-form gauge
field [β2].

Concretely, we can triangulate the manifoldM and represent β2 as a 2-cocycle, an assignment
of elements of Z2 to faces of the triangulation such that the sum over faces of each tetrahedron
vanishes. 3 We can define the partition function Z[M ;Tb; β2] of Tb coupled to β2 by decorating
M with B lines which pass an (even) odd number of times through each face labelled by the

3An arbitrary Z2-valued function on faces is called a 2-cochain with values in Z2, and the condition that the
sum over faces of each tetrahedron vanishes is written as δβ2 = 0, i.e. the 2-cochain is closed. A 1-form gauge
transformation is parameterized by a 1-cochain λ1, i.e. a Z2-valued function on the links, and transforms β2 to
β2 + δλ1.
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(trivial) nontrivial element of Z2. 4

Z[M ;Tb; β2] =
1

|H0(M,Z2)|
∑

[α1]∈H1(M,Z2)

(−1)
∫
M α1∪β2Z[M ;TZ2 ; [α1]] (4.2.2)

An even number of B lines enter each tetrahedron and can be connected to each other in any
way we wish without changing the answer, thanks to the statistics and fusion properties of B. It
is relatively straightforward to verify that the partition function does not change if we replace β2

with a gauge-equivalent cocycle β2 + δλ1 or if we change the triangulation of M . In either case,
the collection of B lines is deformed or re-organized. Thus

Z[M ;Tb; β2 + δλ1] = Z[M ;Tb; β2] ≡ Z[M ;Tb; [β2]] (4.2.3)

Summing up this decorated partition function over all possible β2 will insert enough A’s to
project us back to the partition function of TZ2:

Z[M ;TZ2 ] =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

Z[M ;Tb; [β2]] (4.2.4)

We can introduce extra signs to select a specific Z2 flat connection α1:

Z[M ;TZ2 ;α1] =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

(−1)
∫
M α1∪β2Z[M ;Tb; [β2]] (4.2.5)

Vice versa, we can consider a theory Tb equipped with a non-anomalous Z2 1-form symmetry
generated by some quasi-particle B. Gauging the Z2 1-form symmetry with the same formulae
4.2.4 and 4.2.5 results into a new theory TZ2 which is always equipped with a Z2 global symmetry
generated by Wilson surfaces.

Now we can go back to Tf . By definition, this theory contains a particle which is a fermion.
That is, a particle Π which is (1) an abelian anyon (2) generates a Z2 subgroup in the group of
abelian anyons and (3) has topological spin −1. The first two conditions mean that Tf has a
1-form Z2 symmetry, while the third one implies that this symmetry is anomalous, i.e. there is an
obstruction to coupling the theory to a 2-form gauge field in 2+1 dimensions in a gauge-invariant
manner.

Concretely, in order to couple Tf to the 2-cocycle β2, we again pick a triangulation ofM . Up
to some choices of conventions for how to frame the quasi-particle worldlines, we can populate
M with Π lines which pass an (even) odd number of times through each face labelled by the
(trivial) non-trivial element of Z2, joined together inside each tetrahedron. This produces some
tentative partition function Z[M ;Tf ; β2]. The anomalous nature of the Z2 1-form symmetry
implies that the partition function changes by some signs when the 2-cocycle β2 is replaced by
a cohomologous one, i.e. when the Π lines are deformed and recombined. Signs may also arise

4We write concrete elements of Z2 additively. That is, the trivial element will be denoted 0, while the nontrivial
one will be 1. In particular, when we discuss cochains with values in Z2, we will write the group operation additively.
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Figure 4.2.4: The Π lines have fermionic statistics and thus extra signs may occur as the
worldlines are recombined.

when one re-triangulates M and, obviously, if we change our conventions of how to connect or
frame the collection of Π lines representing β2.

It is quite clear that the anomaly we encounter here does not depend on the specific choice
of theory. If we are given two such TFTs T1 and T2, then their product T1 × T2 has a standard,
non-anomalous 1-form symmetry with generator Π1Π2. That means that we can define unam-
biguously the partition function for the product theory coupled to a background Z2 two-form
connection, implemented by decorating M by a collection of Π1Π2 defects.

As we are considering a product theory and products of lines in the two factors, we can factor
the partition function as

Z[M ;T1 × T2; β2] = Z[M ;T1; β2]Z[M ;T2; β2] (4.2.6)

Thus the individual partition functions can only change sign simultaneously under gauge trans-
formations of changes of triangulation.

We would like to argue that we can pick our conventions of how to connect and frame Π
lines in such a way that the gauge and re-triangulation anomalies coincide with the ones which
emerged in the study of Gu-Wen fermionic SPT phases [125] and their relation to spin-TFTs
[118]. The Gu-Wen Grassmann integral combined with a spin-structure-dependent sign gives a
Z2-valued function zΠ(M ; β2) of a triangulated manifold endowed with a cocycle β2 and a spin
structure. This function changes in a specific manner as one changes the cocycle by a gauge
transformation β2 → β2 + δλ1 or the triangulation. We claim these are the same transformation
rules as for Z[M ;T; β2].

In particular, the combination zΠ(β2)Z[M ;Tf ; β2] is well-defined and gives us a spin-TFT
with a bosonic Z2 one-form symmetry. Gauging that symmetry gives us the spin-TFT Ts, with a
partition function

Z[M ;Ts] =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

zΠ(β2)Z[M ;Tf ; β2] (4.2.7)

This is our basic prescription to recover Ts from its shadow Tf .

An alternative way to express the expected anomalous transformation laws of Z[M ;Tf ; β2]
is to say that the 1-form Z2 symmetry generated by the Π lines can only be gauged if we regard
the (2+1)-dimensional theory Tf as living on a boundary of a (3+1)-dimensional TFT containing
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a 2-form gauge field β2. Concretely, the action of this (3+1)-dimensional TFT is [118]

S4 = iπ

∫

M4

β2 ∪ β2. (4.2.8)

This action is invariant under β2→β2 + δλ1 if M4 is closed, but on a general compact manifold
it varies by a boundary term

S4→S4 + iπ

∫

∂M4

A(β2, λ1), (4.2.9)

where the Z2-valued 3-cochain A is given by

A(β2, λ1) = λ1 ∪ β2 + β2 ∪ λ1 + λ1 ∪ δλ1. (4.2.10)

Note that one cannot discard the first two terms in parentheses because the cup product is not
supercommutative on the cochain level.

The anomalous nature of the 1-form Z2 symmetry means that when Tf on M = ∂M4 is
coupled to a 2-form gauge field β2, its partition function, with an appropriate choice of conven-
tions for drawing and framing the Π lines encoding β2, transforms under 1-form gauge symmetry
precisely as in (4.2.9).

Z[M ;Tf ; β2 + δλ1] = (−1)
∫
M A(β2,λ1)Z[M ;Tf ; β2] (4.2.11)

More generally, both gauge transformations and changes of triangulations can be interpreted
as triangulated bordisms M × [0, 1] with β2 defined over the whole 4-manifold, interpolating
between β2|0 and β2|1 at the two ends. Then Z[M ;Tf ; β2] changes under such manipulations as

Z[M ;Tf ; β2|1] = eiπ
∫
M×[0,1] β2∪β2Z[M ;Tf ; β2|0]. (4.2.12)

4.2.2 Shadow of a product theory

The fermionic sign zΠ(β2) is almost multiplicative [118]:

zΠ(β2)zΠ(β′2) = (−1)
∫
M β2∪1β′2zΠ(β2 + β′2) (4.2.13)

This observation allows us to re-write the product of two spin-TFT partition functions in a
suggestive way

Z[M ;Ts]Z[M ;T′s] =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

zΠ(β2)Z[M ;Tf ×f T′f ; β2] (4.2.14)
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with

Z[M ;Tf×fT′f ; β2] ≡ |H
0(M,Z2)|

|H1(M,Z2)|
∑

[β′2]∈H2(M,Z2)

(−1)
∫
M (β2+β′2)∪1β′2Z[M ;Tf ; β2+β′2]Z[M ;T′f ; β

′
2]

(4.2.15)
This expression defines an operation×f which maps the shadows of two spin-TFTs to the shadow
of their product.

The physical interpretation of this formula is straightforward. The product of shadow theories
Tf and T′f is endowed with a bosonic Z2 1-form symmetry generated by the product Π ⊗ Π′ of
the fermionic lines of the two theories. Gauging that symmetry leaves us with a new theory with
fermionic 1-form symmetry generated by Π1, which we interpret as the shadow of the product
Ts × T′s of the corresponding spin TFTs. This agrees with the stacking construction proposed
in [124].

A simple check of this proposal is that the multiplication is associative: the product of three
shadow theories has a Z2 × Z2 bosonic 1-form symmetry with non-trivial generators Π ⊗ Π′,
Π′ ⊗ Π′′, Π⊗ Π′′.

We will use this construction systematically in order to explore the group structure of fermionic
SPT phases.

4.2.3 Gu-Wen and beyond

The starting point of the Gu-Wen construction of femionic SPT phases [125] is a group super-
cohomology element (ν3, n2), i.e. a pair of cochains on BG with values in R/Z and Z2, respec-
tively, satisfying

δn2 = 0, δν3 =
1

2
n2 ∪ n2. (4.2.16)

Given a flat G-connection on M , one can pull back the cochains ν3 and n2 on BG to cochains on
M which we can still denote as ν3 and n2. Then the Gu-Wen Grassmann integral zΠ(n2) can be
combined with the product of ν3 over all tetrahedra in M in order to give the partition function
of an invertible spin-TFT with a symmetry G.

Our strategy to prove that zΠ(β2) captures the anomaly of fermionic 1-form symmetries will
be to re-cast the Gu-Wen construction in this form, by defining an appropriate bosonic theory
Tf [ν3, n2] such that the associated partition function reproduces the product of ν3 over all tetra-
hedra in M .

The construction proceeds as follows. A 2-cocycle n2 gives rise to a central extension

0→ Z2 → Ĝ→ G→ 0 (4.2.17)

Consider a bosonic SPT phase for Ĝ, labelled by a Ĝ-cocycle ν̂3 with values in R/Z [115, 133].
We can gauge the Z2 subgroup and get a bosonic TFT with symmetry G. The resulting theory is
essentially an enriched version of the toric code, where the G symmetry acts on quasi-particles
in a way determined by n2 and ν̂3. If this theory has a bulk line defect Π which is a fermion and
is acted upon trivially by the G symmetry, it is a candidate for a shadow of a Gu-Wen phase.
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We will determine the condition for the bulk fermion Π to exist. The existence of Π will
restrict ν̂3 to be a specific combination of n2 and a group cochain ν3 which satisfies (4.2.16). We
will denote this bosonic TFT Gν3,n2 . The result is a one-to-one map between Gu-Wen fermionic
SPT phases and bosonic SET phases of the form Gν3,n2 .

We will compute explicitly Z[M ;Gν3,n2 ; β2] to find that it is only non-vanishing if β2 equals
the pull-back of n2 to M , in which case the partition function is essentially equal to the product
of ν3 over all tetrahedra in M . This will verify that Z[M ;Ts] for these theories coincide with the
Gu-Wen partition sum and zΠ(β2) is the correct kernel for fermionic anyon condensation.

Cobordism theory [128,123] predicts the existence of a more general class of fermionic SPT
phases protected by fermion number symmetry together with a global symmetry G, labelled by
a triple (ν3, n2, π1), where π1 is a Z2-valued 1-cocycle on G, n2 is a Z2-valued 2-cochain on
G, and ν3 is an R/Z-valued 3-cochain on G. We will show that n2 is in fact a cocycle, and ν3

and n2 must again satisfy the Gu-Wen equations (4.2.16). Thus the set of fermionic SPT phases
with symmetry G can be identified with the product of the set of Gu-Wen phases and the set
H1(G,Z2) parameterized by π1.

The meaning of π1 is a group homomorphism from G to Z2, which is used to pull-back a
certain “root” Z2 fermionic SPT phase along π1. The “root” Z2 phase is expected to be the phase
whose shadow is the toric code, enriched by the Z2 symmetry which exchanges the e and m
quasi-particles. Such a Z2 symmetry is not manifest in the standard formulation of the toric code
and only emerges at low energy. With a bit of effort, though, one can produce a microscopic
description of the toric code with explicit Z2 symmetry [134], starting from an Ising fusion
category.

We will verify that the Z2-equivariant toric code I is indeed the shadow of root fermionic
SPT phase with Z2 global symmetry, by explicitly computing I ×f I and matching it with a
Gu-Wen phase.

The Ising pull-back phases Iπ1 can be combined with a standard Gu-Wen phase Gν3,n2 to give
a candidate Gν3,n2×f Iπ for the shadow of the most general fermionic SPT phase. We will verify
this combination is indeed the most general symmetry-enriched version of the toric code which
admits a suitable fermion Π.

Finally, we will compute the twisted products of general fermionic SPT phases with the help
of a relation of the schematic form

Iπ1 ×f Iπ′1 = Gν3,n2 ×f Iπ1+π′1
(4.2.18)

where the Gu-Wen phase Gν3,n2 is determined canonically from π1 and π′1.

This result explicitly realizes the group of fermionic SPT phases as an extension ofH1(G,Z2)
by the super-cohomology group of Gu-Wen phases (which itself is an extension of H2(G,Z2) by
H3(G,Z2)). This extension is nontrivial. That is, while the set of fermionic SPT phases is the
product of the group H1(G,Z2) and the group of Gu-Wen phases with symmetry G, the abelian
group structure on this set is not the product structure.
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4.2.4 A Hamiltonian perspective

We would like to describe the relation between a gapped bosonic Hamiltonian which engineers
the shadow bosonic TFT Tf and a gapped fermionic Hamiltonian which can engineer the related
spin TFT Ts. Again, it is useful to first look at a pair of bosonic Hamiltonians for Tb and TZ2 ,
related by gauging standard or 1-form non-anomalous Z2 symmetries.

The procedure for gauging a standard on-site Z2 global symmetry of some lattice realization
of TZ2 is well understood. One extends the Hilbert space by adding Z2-valued edge variables
playing the role of a flat Z2 connection α1. Flatness is imposed locally by extra placquette terms
in the Hamiltonian enforcing δα1 = 0. The Hamiltonian for TZ2 deformed by the coupling to the
flat connection can be denoted as HZ2 [α1] and the Hamiltonian on the enlarged Hilbert space is
schematically

H ′Z2
= HZ2

[
1 + σ̂z

2

]
. (4.2.19)

Here σ̂x,y,ze are Pauli matrices acting on the Z2 variables at the e-th edge. More explicitly, suppose
HZ2 [α] is given as a sum of local terms:

HZ2 [α] =
∑

v

Hv
Z2

[α] (4.2.20)

where Hv
Z2

acts nontrivially only on the degrees of freedom in a neighborhood of the vertex v.
We can take Hv

Z2
[α] to vanish if the connection is not flat in a neighbourhood of v.

Let Pf be a projector which enforces the flatness of Z2-valued edge variables at a face f .
Concretely, denoting edges and faces as pairs and triples of vertices,

P012 =
1

2
(1 + σ̂z01σ̂

z
12σ̂

z
20). (4.2.21)

Then the Hamiltonian in the enlarged Hilbert space is also a sum of local terms

H ′Z2
=
∑

v

Hv
Z2

+
∑

f

(1− Pf ) (4.2.22)

The resulting enlarged Hilbert space is then projected to gauge-invariant states by a collection
of projectors UZ2

v which act by a local Z2 transformation on the degrees of freedom at the lattice
site v and shift the connection on the nearby edges. Concretely, we can write

UZ2
v = ûv

∏

v′

σ̂xvv′ (4.2.23)

Here ûv acts on the local degrees of freedom of the original theory at v as a local Z2 symmetry
transformations.

More generally, one can define operators UZ2
λ0

which implement gauge transformations α1 →
α1 + δλ0 with a parameter λ0 which is a Z2-valued 0-cochain. Absence of anomalies means that

UZ2
λ0
UZ2

λ′0
= UZ2

λ0+λ′0
(4.2.24)
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Hence the final Hilbert spaceH[Tb] is obtained by the projection

UZ2
λ0
|Ψb〉 = |Ψb〉 (4.2.25)

Thus we can define a Hamiltonian for Tb as

HZ2→b = H ′Z2
+
∑

v

1

2
(1− UZ2

v ) (4.2.26)

Wilson line quasi-particles can be added at the vertices of the lattice by flipping the sign of
the Coulomb branch constraints there. For convenience, we will choose a branching structure on
the lattice, taken to be triangular, and define the Hilbert spaceH[Tb; β2] as

UZ2
λ0
|Ψb; β2〉 = (−1)

∫
λ0∪β2|Ψb; β2〉 (4.2.27)

i.e.
HZ2→b[β2] = H ′Z2

+
∑

v

1

2

(
1− (−1)

∫
λv0∪β2UZ2

v

)
(4.2.28)

where λv0 is a delta function at the vertex v. Concretely, each face twith β2(t) = 1 will contribute
a Wilson loop at its first vertex. This makes the Z2 1-form symmetry of Tb manifest “on-site”.

The construction can be readily generalized to non-anomalous symmetry realizations which
do not act on-site. We can introduce a triangular lattice in the system, with a lattice scale which
is much larger than the scale set by the gap in TZ2 , and add the Z2 connection to the edges of
that lattice. Operators UZ2

λ0
with the correct properties will still be defined, up to exponentially

suppressed effects.

Conversely, starting from a generic theory Tb with non-anomalous 1-form symmetry, the
Hilbert space of TZ2 is obtained by first summing the Hilbert spaces of Tb with one or none
insertions of the B quasi-particle and then projecting to the sub-space which is fixed by the
action of closed B string operators, i.e. closed B lines wrapping non-trivial cycles on the space
manifold Σ.

We can obtain a more local description by enlarging further the original Hilbert space and
the subsequent projector. If the theory Tb is given in a form which allows a direct coupling to a
2-form connection on the lattice by a local Hamiltonian Hb[β2] we just make β2 into a collection
of dynamical Z2 variables attached to the faces of the lattice.

If not, we introduce a new triangular lattice in the system, with a lattice scale which is much
larger than the scale set by the gap in Tb. We can attach a Z2 variable β2(t) to each face t of the
lattice and denote as H[β2] the space of ground states of Tb with a B quasi-particle inserted in
the middle of each face with β2(t) = 1. In particular, H[0] is the usual space of ground states of
Tb.

In either case, we define the enlarged Hilbert space as the direct sumH′ = ⊕β2H[β2] over all
2-cocycles β2. Concretely, the Hilbert space H[β2] is realized as the space of zero energy states
of a local Hamiltonian Hb[β2] acting on the microscopic Hilbert space. We can realize H′ as the
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space of zero energy states of a local Hamiltonian

H ′ = Hb

[
1 + σ̂z

2

]
. (4.2.29)

Here σ̂x,y,zt are Pauli matrices acting on the Z2 variables at the t-th face.5

Due to the properties of the B quasi-particles, we must have unitary transformations

Uλ1 : H[β2]→ H[β2 + δλ1] (4.2.30)

which move B quasi-particles from one site to another or create or annihilate pairs of B quasi-
particles. For example, if λ1 is concentrated on one edge e, the corresponding unitary operator
Ue will move, create or annihilate B particles in the two faces adjacent to that edge. In particular,
it will anti-commute with the σ̂z variables for these two faces, commute with all others.

We expect the Ue operator to be an operator which only acts in the neighborhood of the edge
e, i.e. local at the scale of our lattice. There is a certain degree of freedom in defining the Uλ1 . As
the B quasi-particles are bosons, it should be possible to use that freedom to ensure that different
ways to transport the B particles are all equivalent, i.e.

Uλ1Uλ′1 = Uλ1+λ′1
(4.2.31)

In other words, Uλ1 implement the 1-form gauge symmetry of the theory Tb, which should not
be anomalous. In particular, for every edge e we have U2

e = 1, and [Ue, U
′
e] = 0 for all e, e′. We

must also ensure Uδµ0 = 1 for all 0-cochains µ0. This requirement means that 1-form symmetry
transformations with parameters λ1 and λ1 + δµ0 are physically indistinguishable.

We want to define the Hilbert space for TZ2 as the subspace of the enlarged Hilbert space fixed
by the action of these unitary transformations. We can define a commuting projector Hamiltonian
acting on the enlarged Hilbert spaceH′ as

∑

e

1

2
(1− Ue). (4.2.32)

It engineers the space of ground states of TZ2 .This construction makes the Z2 global symmetry
of TZ2 manifest: it acts on the face variables as

∏
t σ̂

z
t and commutes with the Hamiltonian.

Note that the Uλ1 operators for closed 1-cochains, which satisfy δλ1 = 0, can be identified
with the closed B string operators we discussed originally, while the general Uλ1 operators are
open B string operators. We can denote the closed string operators as U cl

λ1
. They map each

summand in the Hilbert space back to itself.

Thus we define a microscopic Hamiltonian for TZ2 as

Hb→Z2 = Hb

[
1 + σ̂z

2

]
+
∑

e

1

2
(1− Ue) (4.2.33)

5Since in two dimensions any 2-cochain is closed, there is no need for projectors in H ′.
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acting on the tensor product of the microscopic Hilbert space of Tb and of the Z2 face degrees of
freedom

Now consider the case of a fermionic Z2 1-form symmetry, i.e. a Z2 1-form symmetry with
an anomaly (4.2.9). As a warm-up, we can focus on how to define consistently the action of
closed Π string operators on the original Hilbert space of ground states for Tf . If we triangulate
the space manifold and pick a 1-cocycle λ1, i.e. a Z2-valued function on edges λ1 satisfying
δλ1 = 0, we can draw a collection of non-intersecting Π lines which cross each edge e λ1(e)
times modulo 2. We can relate different such collections for the same λ1 without ever braiding
the Π lines, and thus we should be able to define a corresponding composite string operator V cl

λ1

acting on the space of ground states of Tf .

If we compose two such closed string operators V cl
λ1

and V cl
λ′1

, we get a collection of string
which may have intersections. Resolving each intersection will cost us a −1 sign. The total
number of intersections modulo 2 should coincide with

∫
λ1 ∪ λ′1. Thus we expect to be able to

consistently define the closed string operators in such a way that

V cl
λ1
V cl
λ′1

= (−1)
∫
Σ λ1∪λ′1V cl

λ1+λ′1
(4.2.34)

In particular, there is no consistent way for a ground state to be fixed by all V cl.

There is a natural way to correct the closed string operators in such a way that a consistent
projection becomes possible: we can dress them by some extra sign σ2(λ1) which also satisfies

σ2(λ1)σ2(λ′1) = (−1)
∫
Σ λ1∪λ′1σ2(λ1 + λ′1) (4.2.35)

If the space manifold is endowed with a spin structure, we can use the spin structure to define
such a sign. Moreover, the Gu-Wen grassmann integral in two dimensions combined with a spin
structure provides a local definition of precisely the same sign σ2(λ1) provided we enlarge the
Hilbert space with fermionic degrees of freedom living on faces [118]. In other words, σ2(λ1) can
be written as a product of local fermionic operators situated on the edges e for which λ1(e) 6= 0.

In order to get a fully explicit and local definition of the space of Ts ground states, we need
to extend this logic to open Π string operators, or equivalently to Vλ1 for not necessarily closed
1-cochains λ1.

We can proceed as before and consider the sum of Hilbert spaces H[β2] over all 2-cocycles
β2, whereH[β2] is the space of ground states of Tf with a Π quasi-particle inserted in the middle
of each face with β2(t) = 1. We can define as before unitary operators Vλ1 which re-arrange the
location of the Π quasi-particles, but the fermionic nature of the quasi-particles, or the anomaly
of the corresponding 1-form symmetry, indicates that the algebra of Vλ1 will only close up to
signs:

Vλ1Vλ′1 = Vλ1+λ′1
(−1)ωΣ(β2,λ1,λ′1). (4.2.36)

Similar considerations as for the partition function show that the anomaly ωΣ must be uni-
versal for all theories with a fermionic Z2 1-form symmetry. We can get a concrete expression
for as follows. Consider the 3+1d TFT (4.2.8) on M4 = Σ × D2, coupled to the 2+1d TFT on
∂M4 = Σ×S1. The operator Vλ1 in the 2+1d theory which implements the Z2 1-form symmetry

98



transformations also shifts the 2-form gauge field β2 by δλ1. By continuing λ1 into the bulk, we
may regard Vλ1 as a boundary of a codimension-1 defect in the 3+1d TFT. By considering three
such defects with parameters λ1, λ

′
1 and−(λ1 +λ′1) meeting at the origin of D2, one can see that

Vλ1Vλ′1V−λ1−λ′1 =

∫

Σ

ω(β2, λ1, λ
′
1). (4.2.37)

The 2-cochain ω is defined as a solution of the equation

δω(β2, λ1, λ
′
1) = A(β2, λ1) +A(β2 + δλ1, λ

′
1)−A(β2, λ1 + λ′1). (4.2.38)

Using (4.2.9), we find
ω(β2, λ1, λ

′
1) = λ1 ∪ λ′1 + δλ ∪1 λ

′
1, (4.2.39)

where ∪1 is the Steenrod higher product [135] (see also Appendix B.1. of [136] for a brief
summary). In particular, we see that ωΣ =

∫
Σ
ω does not depend on β2 in this case.

Another manifestation of the anomaly is that the operators Vλ1 are not invariant under λ1 7→
λ1 + δµ0, where µ0 is an arbitrary Z2-valued 0-cochain. Namely, by considering two defects
implementing 1-form gauge transformations with parameters λ1 and λ1 + δµ0, we find

Vλ1+δµ0V−λ1 = (−1)
∫
Σ(µ0∪δλ1+β2∪µ0+µ0∪β2). (4.2.40)

One way to deal with this anomaly would be to couple the system to the Hamiltonian version
of Gu-Wen Grassmann integral. The Gu-Wen Grassmann integral on a bordism geometry Σ ×
[0, 1] with β2 and β2 + δλ1 at the two ends will provide dressing operators U zΠ

λ1
which should

correct the Vλ1 to a set of commuting projectors. This is somewhat cumbersome, though, and we
will propose a more direct alternative lattice construction.

We will promote the face variables β2(f) to occupation numbers nf for fermionic degrees of
freedom. Thus at each face we have a pair of fermionic creation and annihilation operators, or
equivalently a pair of Majorana fermions γf , γ′f . We combine the individual edge operators Ve
with Majorana fermions on the two faces fL and fR sharing e and define new edge operators

U f
e = ±VeγfLγ′fR (4.2.41)

in such a way as to make the following fermionic Hamiltonian well-defined

Hf→s = Hf [nf ] +
∑

e

1

2
(1− U f

e ) (4.2.42)

The sign in the definition of U f
e is determined by a certain 1-chain E with values in Z2. This

chain encodes a choice of spin structure on Σ.

If Tf admits a Levin-Wen construction, we will show how to incorporate directly the effect
of the Π particles to get a string net construction for Ts.
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4.2.5 Open questions and future directions

Classification of fermionic SPT phases can be generalized in several directions. Most obviously,
one would like to classify SPT phases protected by Ĝ which is a central extension of G by Zf2 . A
natural guess is that the corresponding shadow theory must have both ordinary symmetry G and
a fermionic one-form symmetry Z2, but with a mixed anomaly between the two.

The mixed anomaly is determined by the extension class of the short exact sequence 0→Z2→Ĝ→G→0.
Concretely, this means that the shadow theory is described by aG-graded fusion category, but the
crossing conditions for the fermion are modified by the 2-cocycle ψ2 representing the extension
class. Physically, intersections of domain walls implementing G symmetry transformations will
carry non-trivial fermion number.

Following the approach of Appendix B, we get a generalization of the Gu-Wen equations:

δν3 =
1

2
n2 ∪ n2 +

1

2
ψ2 ∪ n2, δn2 = 0. (4.2.43)

It would be interesting to study the group structure on the space of such fermionic SPT phases.

Another possible generalization is to extend the discussion to unorientable theories. This is
important for classifying fermionic SPT and SET phases with anti-unitary symmetries.

It would be very interesting to extend the shadow theory approach to fermionic phases in
higher dimensions. For example, it has been proposed in [118] that 3+1d fermionic phases are
related to bosonic phases with an anomalous 2-form Z2 symmetry, where the 5d anomaly action
is ∫

M5

Sq2C3, (4.2.44)

with C being the background 3-form Z2 gauge field and Sq2 denoting a Steenrod square. Gu-
Wen equations in 3+1d can be interpreted as describing shadow theories of this sort, and it should
be possible to use the methods of this chapter to produce more general SPT phases.

Optimistically, one might hope that every fermionic theory in every dimension has a bosonic
shadow. Recent results of Brundan and Ellis [137] indicate that this is true in 2+1d. In partic-
ular, it would be very interesting to understand shadows of general spin-TFTs in 2+1d which
have framing anomalies. This would require developing the theory of ”super modular tensor
categories.”

Finally, we hope that the study of shadows of fermionic theories could shed light on the
fermion doubling problem in lattice field theory.

4.3 Spherical fusion categories and fermions

The bosonic theory Tf [ν3, n2] we will associate to the Gu-Wen fermionic SPT phases belongs
to the special class of TFTs which admit a Turaev-Viro state sum construction of the partition
function [12] and a Levin-Wen string net construction of a microscopic lattice Hamiltonian [126].
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Figure 4.3.1: A topological field theory with a gapped boundary condition. Boundary lines
are labelled by objects Li in a spherical fusion category C which controls their topological
fusion and junctions. Bulk lines are labelled by objects Ya in a modular tensor category
which can be recovered as the Drinfeld center Z[C] of the boundary lines. Junctions of lines
are labelled by choices of local operators, i.e. elements in certain morphism spaces. We use
a double-line notation to indicate the dependence of bulk lines on a choice of framing. The
partition function can be computed by a Turaev-Viro state sum.

The Turaev-Viro construction allows one to define a large class of three-dimensional topo-
logical field theories. The mathematical input for the construction is a spherical fusion category
C. The output is the partition function of a topological field theory, whose quasi-particles are
described by the modular tensor category Z[C], the Drinfeld center of C.

The physical meaning of the mathematical input becomes manifest through the following ob-
servation: the Turaev-Viro construction produces topological field theories which admit a canon-
ical topological boundary condition, which in turns supports topological line defects labelled by
the objects in C [138].

This suggests the following physical statement: any (irreducible, unitary) three-dimensional
topological field theory T equipped with a topological boundary condition B will admit a Turaev-
Viro construction based on the category of topological line defects supported on B.

At first sight, it may appear surprising that the whole bulk topological field theory could be
reconstructed from the properties of a single boundary condition. This is related to the cobordism

101



hypothesis [139]. There is a simple “swiss cheese” argument which demonstrates this fact in
2 + 1d and motivates the structure of the Turaev-Viro state sum model, which we review in a
later section 4.4.

The same argument justifies the observation that several properties and enrichments of the
bulk theory can be encoded in terms of the spherical fusion category C. For example, if T has
a non-anomalous (0-form) symmetry group G then C will admit an extension to a G-graded
category CG, which can be used to extend the Turaev-Viro construction to manifolds endowed
with a G-valued flat connection [130].

With this motivation in mind, we can review some useful facts about spherical fusion cate-
gories and their physical interpretation.

4.3.1 Categories of boundary line defects

In the following we use the term topological field theory to denote the low energy/large distance
effective field theory description of a gapped unitary quantum field theory. Similarly, a topolog-
ical boundary condition is simply the low energy description of a gapped boundary condition.

The mathematical description of topological field theories involves a variety of operations
which have an intuitive interpretation as a “fusion” of local operators or defects. The precise
physical interpretation is that the local operators or defects to be fused are brought to relative
distances which are still much larger than the gap, but smaller than the scale of the low energy
effective field theory. This allows one to replace them by a single effective local operator or
defect.

A gapped system may have multiple vacua, either due to spontaneous breaking of a symmetry
or to accidental degeneracy. In the bulk theory, the presence of multiple vacua manifests itself
in the existence of non-trivial local operators, whose expectation value labels different vacua.
Mathematically, the local operators which survive at very low energy form a ring under the
fusion operation described above (because of cluster decomposition). The identity operator can
be decomposed into a sum of idempotents which project the system to a specific vacuum:

1 =
∑

v

1v 1v1v′ = δv,v′1v (4.3.1)

The same idea applies to defects of lower co-dimension. As an example consider line defects,
which could be the effective description of a quasi-particle or of a microscopic line defect. Line
defects can be fused with each other and may support non-trivial local operators, including local
operators which interpolate between two or more lines. Again, the existence of a local multi-
plicity of vacua for a line defect manifests itself in the existence of non-trivial idempotent local
operators.

Mathematically, line defects can be organized into a fusion category. The objects in the
category are the line defects themselves, and the morphisms are the local operators interpolat-
ing between two line defects. The physical fusion operation is encoded into a tensor product
operation and accidental degeneracies into a sum operation. Line defects with no accidental
degeneracy map to “simple” objects in the category.
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L

(a)

m

L1

L2

(b)

m

L1

L2

(c)

π1

L1 ⊕ L2

L1

(d)

Figure 4.3.2: Data of a category C: (a) A line defect (shown here with its orientation) is an
object in C. (b) A local operator between two lines is a morphism in C. (c) Another rep-
resentation of the previous figure (common in mathematics literature) in which morphisms
are denoted by boxes. (d) The direct sum L1 ⊕ L2 of two line defects can be projected to an
individual summand by a local operator

m

n

L1

L2

L3

= n ◦m

L1

L3

(a)

L

=

L∗

(b)

Figure 4.3.3: Various operations: (a) Fusion of local operators gives rise to composition of
morphisms. (b) Changing the orientation of a line defect gives rise to the operation of taking
dual of an object.
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A B

=

A⊗B

(a)

C

A B

=

C

A⊗B

(b)

m

L1

L3

n

L2

L4

= m⊗ n

L1 ⊗ L2

L3 ⊗ L4

(c)

Figure 4.3.4: Fusion: (a) Fusion of line defects gives rise to the tensor product of objects. (b)
Three line defects coming together with a local operator placed at the point of intersection
can be interpreted as a morphism from one line defect to the tensor product of other two line
defects. (c) Local operators between lines can also be fused to give rise to tensor product of
morphisms.

A B C

=

(A⊗B)⊗ C

A⊗ (B ⊗ C)

(a)

L

= eL

L⊗ L∗

1

(b)

L

= iL

L⊗ L∗

1

(c)

Figure 4.3.5: Canonical maps: (a) Placing the lines as shown and fusing them gives rise to a
canonical associator map. (b) Folding a line as shown and fusing it with itself gives rise to a
canonical evaluation map. (c) Folding a line as shown and fusing it with itself gives rise to
a canonical co-evaluation map.
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m4

m3

B

C

E
D

F

A

(b)

Figure 4.3.6: (a) A graph Γ of boundary line defects drawn on a sphere. (b) The same graph
drawn on a plane obtained after removing a point from the sphere.

Depending on the dimension of space-time, the category of line defects will have further
structures and constraints. Here we are interested in line defects which live on a gapped boundary
condition. See Figures 4.3.2, 4.3.3, 4.3.4, 4.3.5 for examples.

If the boundary condition itself has a single vacuum, the boundary line defects are expected to
form a spherical fusion category C. The term spherical denotes a set of properties with a simple
physical interpretation. Any graph Γ of line defects drawn on a two-sphere, with a specific choice
of local operators at the vertices, will produce a state in the two-sphere Hilbert space of the bulk
theory. As the latter space is one-dimensional, the graph will effectively evaluate to a number
ZΓ, which can be interpreted as the partition function of the theory for a three-ball decorated by
Γ, normalized by the partition function of the bare three-ball. See Figure 4.3.6.

Mathematically, the graph is drawn on the plane as the evolution of a collection of lines,
created, fused or annihilated at special points. The corresponding number is computed by Pen-
rose calculus, as the composition of a sequence of maps associated to these individual processes,
which form the data of the spherical fusion category. See Figure 4.3.7. The axioms of the spher-
ical fusion category guarantee that the answer is independent of how we draw the graph. This
evaluation map for graphs on the two-sphere is the basic ingredient in state sum constructions.

If we are given two topological field theories T and T′, with gapped boundary conditions B
and B′ associated to spherical fusion categories C and C ′, the product of the two theories with
the product boundary condition is associated to the product C × C ′ of the fusion categories.
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m2

m1

m4

m3

B

C

E
D

F

A
=

A⊗A∗

(B ⊗ C)⊗A∗

((D ⊗ E)⊗ C)⊗A∗

(D ⊗ (E ⊗ C))⊗A∗

(D ⊗ F )⊗A∗

A⊗A∗

iA

m1

m2

a

m3

m4

eA

Figure 4.3.7: The computation of a graph on the plane involves the listed morphisms. Here
a denotes the associator tensored with identity morphism for A∗. The final result is the
partition function ZΓ of the theory on a three-ball decorated by the graph Γ.
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O X

OX

=

O X

OX

βX

(a)

O X

OY

=

O X

OY

(b)

Figure 4.3.8: Bulk lines and Drinfeld Center: (a) Bringing a bulk line O to the boundary
such that its image crosses a boundary line X gives rise to a canonical half-braiding given
by morphism βX . (b) Bringing O to the boundary in two different ways as shown in the
figure is equivalent and hence β commutes with other morphisms.

Bulk line defects can be fused with the boundary. If the boundary image crosses some pre-
existing boundary line, the fusion produces some canonical local operator at the crossing. This
physical process is encoded in the mathematical definition of Drinfeld center Z[C]. An element
of the center is a pair (O, β) of an object O in C together with a collection of crossing maps
βX : O ⊗X → X ⊗O for every other object X , satisfying certain axioms. See Figure 4.3.8.

These axioms have a simple interpretation. Consider a network of line defects in the three-
ball, including boundary lines and bulk lines. If we project the network to a graph Γ on the
boundary and evaluate ZΓ, the answer will not depend on the choice of projection. See Figure
4.3.9. Every bulk line will thus map to an element of the center Z[C]. Conversely, the Turaev-
Viro construction gives an explicit definition of a bulk line defect for every element of the center
Z[C]. 6

In particular, we can recognize the generators of bulk 1-form symmetries as special elements
of the center. For example, a spherical fusion category Cb represents a bulk theory equipped with
a bosonic Z2 one-form symmetry if we can find a generator B = (b, β), an element of the center
Z[C] such that βb = 1b⊗b and such that there is an isomorphism ξb : b⊗ b→ I with ξ⊗1 = 1⊗ ξ
in Hom(b ⊗ b ⊗ b, b). Essentially, this means that B lines fuse to the identity and can be freely
re-connected in pairs. See Figure 4.3.10.

Similarly, a spherical fusion category Cf represents a bulk theory equipped with a fermionic
Z2 one-form symmetry if we can find a generator Π = (f, β), an element of the center Z[C] such
that βf = −1f⊗f and such that there is an isomorphism ξf : f ⊗ f → I with ξ ⊗ 1 = 1 ⊗ ξ
in Hom(f ⊗ f ⊗ f, f). Essentially, this means that f lines fuse to the identity and can be freely
re-connected in pairs, at the price of a −1 sign for each crossing. See again Figure 4.3.10.

6From the point of view of the bulk theory, a gapped boundary condition can be characterized in terms the set of
bulk lines which “condense” at the boundary, i.e. project to the trivial line on the boundary. They are a collection of
mutually local bosons which is closed under fusion.
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(a) (b)

Figure 4.3.9: (a) A three-ball partition function decorated by a graph Γ of bulk and boundary
lines. (b) The graph is projected onto the sphere for evaluation. The different projections
evaluate to the same result, thanks to the Drinfeld center axioms
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L L L

=

L L L

(a)

L L

=

L L

±

(L)

Figure 4.3.10: Z2 1-form symmetries: (a) There exists a bulk line Lwith properties shown in
the figure. (b) Half-braiding L lines across each other gives a factor of±1 when compared to
L lines without braiding. The factor of +1 arises for a bosonic 1-form symmetry generator
L ≡ B and −1 arises for a fermionic 1-form symmetry generator L ≡ Π. This minus sign
implies that the symmetry is anomalous.

More generally, a monoidal category equipped with such a Π is called a “monoidal Π-category”
in [137].

A couple variants to this setup may be useful. If the boundary condition has some accidental
degeneracy, we should consider a spherical multi-fusion category. Local operators on the bound-
ary are morphisms from the trivial line defect to itself, which is thus not simple. The category C
splits into multiple sub-categories Ca,b representing line defects which interpolate between vacua
a and b. The objects in these categories fuse accordingly:

Ca,b ⊗ Cc,d ∈ δb,cCa,d (4.3.2)

If the bulk theory and boundary condition have a non-anomalous discrete global symmetry
G (possibly broken at the boundary), we will have a G-graded spherical fusion category (see
e.g. [140]), with sub-categories Cg which fuse according to the group law:

Cg ⊗ Cg′ ∈ Cgg′ (4.3.3)

The sector Ce labelled by the group identity e consists of standard boundary line defects while
the other Cg contain the boundary version of g-twist line defects.

Note that we can define aG-graded product ofG-graded spherical fusion categories by letting
(C × C ′)g ≡ Cg × C ′g. Physically, this corresponds to taking the direct product of two theories T
and T′ and of their corresponding boundary conditions B and B′.

If we gauge the symmetry G (with Dirichlet boundary conditions for the gauge connection),
all objects in C become true boundary line defects. Bulk line defects are now associated to the
center of the whole C. The center of C includes Wilson loops, of the form (I⊕n, βXg = Tg), Xg is
an arbitrary simple object of Cg and the matrices Tg define an n-dimensional representation of G.
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Lg

Ug

Figure 4.3.11: Lines Lg living at the intersection of a 0-form symmetry generator Ug and the
boundary form the sub-category Cg.

7 If G is abelian, the Wilson loops are labelled by characters in the dual group G∗ and generate
a non-anomalous G∗ 1-form symmetry.

We can also gauge a subgroup H of G. The resulting H gauge theory should have a residual
global symmetry given by the quotient GH = NG(H)/H of the normalizer of H by H . The
corresponding GH-graded category consists of

C[g] =
⋃

h∈H

Chg (4.3.4)

Later in the chapter, we will find it useful to build some interesting G-graded categories
starting from SPT phases for a central extension Ĝ of G by an Abelian group and gauging the
Abelian group as described above.

Although a 1-form symmetry generatorB (or Π) for aG-graded theory is defined as a special
element in Z[Ce], we will often be interested in 1-form symmetries which are compatible with
turning on G-flat connections or even gauging G. We will see that this is the case if B (or Π)
admits a lift to Z[C]. The lift may not be unique and different lifts can be thought of as different
ways to equip the theory with both G symmetry and 1-form Z2 symmetry.

4.3.2 Example: toric code

The simplest example of a category of boundary line defects occurs in the toric code, also known
as topological Z2 gauge theory in 2+1d. Recall that the toric code has four quasi-particles,
corresponding in the gauge theory to a trivial defect 1, a Wilson loop e, a flux line m and the
fusion ε of the latter two. This topological field theory can be endowed with a Z2 global symmetry
exchanging the e and m lines, which will be very important later on but which we ignore now.

The e and m lines are bosons, while ε is a fermion. Indeed, e generates a non-anomalous Ze2
one-form symmetry and in the language of the introduction the toric code is the partner Tb of a

7We are identifying here HomC(I⊕n ⊗Xg, Xg ⊗ I⊕n) with n× n matrices.
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trivial TZ2 . Symmetrically, m also generates a non-anomalous Zm2 one-form symmetry (with a
mixed anomaly with the Ze2 symmetry).

On the other hand, ε generates precisely the sort of anomalous one-form Zε2 symmetry we
need for the shadow of a spin TFT. This will be an important example for us, especially after we
make manifest the Z2 global symmetry exchanging e and m.

A Z2 gauge theory has two natural gapped boundary conditions: we can fix the flat connection
at the boundary or let it free to fluctuate. The corresponding boundary conditions in the toric
code, Be and Bm, condense either the e or the m particle. 8

In either case, the category of boundary line defects consists of two simple objects, I and P ,
which fuse as

I ⊗ I = I I ⊗ P = P P ⊗ I = P P ⊗ P = I (4.3.5)

All the associators and other data can be taken to be trivial.

The four elements in the center, say for Be, can be described as

1 = (I; βI = 1, βP = 1)

e = (I; βI = 1, βP = −1)

m = (P ; βI = 1, βP = 1)

ε = (P ; βI = 1, βP = −1) (4.3.6)

We recognize the required properties for generators of bosonic or fermionic 1-form symmetries.

The toric code also offers a very simple example of gauging a Z2 symmetry at the level of
spherical fusion categories: the trivial Z2 SPT phase is associated to a Z2-graded spherical fusion
category, with C0 consisting of the identity object I and C1 consisting of P . Dropping the grading
gives us the Z2 gauge theory/toric code.

4.3.3 Example: bosonic SPT phases and group cohomology

The group cohomology construction of bosonic SPT phases has precisely the form of aG-graded
Turaev-Viro partition sum, based on a G-graded category C with a single (equivalence class of)
simple object Vg in each Cg subcategory.

The associator is a map from Vgg′g′′ to itself, which can be written as

e2πiα3(1,g,gg′,gg′g′′)1Vgg′g′′

where α3 is a 3-cocycle on BG with values in U(1). The cocycle condition is equivalent to the
pentagon axiom for the associator. Re-definitions of the isomorphisms Vg ⊗ Vg′ ' Vgg′ used in
the definition will shift α3 by an exact cochain.

8In appendix C.3 we describe a fermionic boundary condition Bε at which ε condenses.
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Figure 4.3.12: Given a tetrahedron with a labeling of vertices by i ∈ {0, 1, 2, 3}, we orient
the edges such that vertex with label i has i incoming edges. This defines a local order on
the tetrahedron. Orientation is defined by using right-hand rule going from 0 to 1 to 2. If the
thumb points inward, we say that the tetrahedron is positively oriented as shown in (a). If
the thumb points outward, we say that the tetrahedron is negatively oriented as shown in (b).

We refer the reader to Figure 4.3.13 for a graphical explanation of the relation between as-
sociators and cocycle elements. An illustrative example is the non-trivial group cocycle for
G = Z2:

α3(0, ε, ε+ ε′, ε+ ε′ + ε′′) =
1

2
εε′ε′′ (4.3.7)

In terms of the cocycle ε1 defined by the group element on edges of the tetrahedron, αZ2
3 =

1
2
ε1 ∪ ε1 ∪ ε1. 9

We can describe the corresponding G gauge theory simply by ignoring the G grading on C.
For future reference, it is useful to describe objects in the Drinfeld center of C. The bulk defect
lines (i.e. simple objects of the Drinfeld center) turn out to be labelled by a pair (g, χ), where
g is an element of G and χ an irreducible projective representation of the stabilizer Gg of g in
G [141].

The pair (g, χ) gives a center line of the form (V ⊕ng , βg′ = χ(g′)). Notice that β only needs
to be specified if g and g′ commute, in which case it is a matrix multiple of the basis element of
HomC(Vg ⊗ Vg′ , Vg′ ⊗ Vg) ' C. The definition of the Drinfeld center requires

χ(g′g′′) = e2πiα3(1,g,gg′,gg′g′′)−2πiα3(1,g′,g′g,g′gg′′)+2πiα3(1,g′,g′g′′,g′g′′g)χ(g′)χ(g′′) (4.3.8)

and fixes the group 2-cocycle associated to the projective representation in terms of α3 and g.
Physically, this is a g-twist line dressed by a Wilson line.

9An alternative expression for the cocycle can be given via the Bockstein homomorphism: ε1 ∪ ε1 is equivalent
modulo 2 to 1

2δε̃1, where ε̃1 is an integral lift of ε1. Thus we can write αZ2
3 = 1

4 ε̃1 ∪ δε̃1.
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1

g

gg′

gg′g′′

Vg
Vgg′

Vgg′g′′

Vg′

Vg′g′′

Vg′′

(a)

Vgg′

Vg′′

Vg′
Vg

Vg′g′′

Vgg′g′′

(b)

Figure 4.3.13: Bosonic SPT phases: (a) A positively oriented tetrahedron with generic sim-
ple elements on edges. We label the vertices such that an edge going from g to h is assigned
the element Vg−1h. (b) The planar graph dual to the tetrahedron with all the morphisms as
canonical identity morphisms. The graph evaluates to the associator α3(1, g, gg′, gg′g′′). No-
tice that the faces of the dual graph correspond to vertices of the tetrahedron and are ordered
correspondingly. Edges are oriented so that the face to the left is comes before the face to
the right. For example, the outer face in the dual graph is the first.
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4.3.4 Example: G-equivariant Z2 gauge theory from a central extension

Consider a central extension
0→ Z2 → Ĝ→ G→ 0 (4.3.9)

We can take a Ĝ SPT phase and gauge the Z2 subgroup.

The result is a G-graded category with Cg consisting of two objects. If we denote the pre-
images of g in Ĝ as (g, 0) and (g, 1), then Cg consists of Vg,0 and Vg,1. The fusion rule is given
by

Vg,ε ⊗ Vg′,ε′ ' Vgg′,ε+ε′+n2(g,g′), (4.3.10)

where n2 is the Z2-valued group 2-cocycle corresponding to the central extension.

We can now ask if the Z2 gauge theory has Z2 1-form symmetry generators which are com-
patible with the G global symmetry, i.e. map each Cg to itself. That means we should look for
objects of the center Z[C] which project to either Ve,0 or Ve,1. The former case corresponds to the
bare Wilson loop, which generates a bosonic Z2 1-form symmetry.

The latter case is more interesting, as the 2-cocycle for (e, 1)-twist lines may be non-trivial.
A (1, 1)-twist line will be a bosonic (fermionic) Z2 generator if we can find a 1-dimensional
projective representation of Ĝ with appropriate cocycle and χ((e, 1)) = ±1.

This is a somewhat intricate constraint on the Ĝ 3-cocycle α̂3 defining the initial SPT phase.
Up to a gauge transformation, this constraint has a neat solution: α̂3 must be given in terms of a
group super-cohomology element (ν3, n2) as follows:

α̂3 = ν3 +
1

2
n2 ∪ ε1. (4.3.11)

Here ν3 is an R/Z-valued 3-cochain on BG satisfying the Gu-Wen equation (4.2.16), and where
ε1 is the Z2-valued 1-cochain which sends (g, ε) to ε. It is easy to see that δε1 = n2, and thus the
cocycle condition δα̂3 = 0 follows from the Gu-Wen equations. The fermion Π corresponds to
the projective representation χ((g, ε)) = (−1)ε.

Of course, the form given here for α̂3 can be modified by gauge transformations. For exam-
ple, a transformation with parameter 1

2
ε1 ∪1 n2 would give another representative:

α̂′3 = ν ′3 +
1

2
ε1 ∪ n2. (4.3.12)

with ν ′3 = ν3 + 1
2
n2 ∪1 n2.

There are two complementary ways to arrive at this solution. In Appendix C.2 we give a
derivation based on the analysis of anomalies in the Z2 gauge theory coupled to a G gauge field.
In Figures 4.3.14 and 4.3.15 we give a graphical/physical proof of 4.3.12 using the spherical fu-
sion category associated to Ĝ. Essentially, the existence of a Drinfeld center element of the form
(Ve,1; β) allows certain topological manipulations of planar graphs, relating two graph which
encode the left and right side of equation 4.3.11.

In particular, we can define ν3 in terms of the spherical fusion category data as a tetrahedron
graph of (g, 0) lines, with n2 extra fermion lines at each vertex, exiting from the earliest face
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Vĝĝ′

Vĝ Vĝ′

→

ε+ ε′ + n2(g, g′)

ε ε′

V(gg′,0)

V(g,0) V(g′,0)

Figure 4.3.14: Gauge-fixing: A graphical representation of the partial gauge-fixing proce-
dure used in computing the Ĝ group cocycle. Left: A choice of gauge is the same as a choice
of basis vector in the space of junctions between line defects in the full Ĝ category. Right:
we identify V(g,ε) ' V(1,ε) ⊗ Vg,0 and identify V(1,ε) with the corresponding elements I or Π
of the center. We then express a general junction canonically in terms of a choice of junction
between line defects labelled by G elements. The double lines denote the center elements.
The empty circle represents any choice of how to connect the center lines in a planar way.

around the vertex and coming together to a common point where they are connected in a planar
manner, as in Figure 4.3.15 (b).

In conclusion, we have a bijection between Gu-Wen fermionic SPT phases and potential
shadows of G-symmetric spin-TFTs based on a Z2 theory.

Notice that the pair (ν3, n2) labels both the spherical fusion category and the choice of
fermionic line, i.e. it labels the Π-category. The same spherical fusion category may admit
multiple candidate fermionic lines. For example, if we are given a group homomorphism λ1

from G to Z2, we can dress Π by a Wilson line for the corresponding representation, i.e. add a
(−1)λ1 to β. Then the same choice of α̂3 will give a ν3 which differs from the original by λ1∪n2.

As an example of the construction, consider Ĝ = Z4 as a Z2 central extension of G = Z2.
Recall that H3(Z4,R/Z) = Z4. We claim that the generator of this group corresponds to a
shadow of a Gu-Wen fermionic SPT. Indeed, if [η1] is the generator of H1(G,Z2) = Z2, then the
extension class corresponding to Ĝ can be written as n2 = [1

2
δη̃1], where η̃1 is an integral lift of

η1. Concretely, η1 is the Z2 cocycle defined by the G elements on the edges of the triangulation
and [1

2
δη̃1] measures the failure of the group law for a Ĝ lift of the G elements.

Therefore a possible solution of the equation (4.2.16) is

ν3 =
1

8
η̃1 ∪ δη̃1. (4.3.13)
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Vĝĝ′
Vĝ′′

Vĝ′
Vĝ

Vĝ′ĝ′′

Vĝĝ′ĝ′′

(a)

= (−1)n2(g,g′)ε′′

Vgg′
Vg′′

Vg′
Vg

Vg′g′′

Vgg′g′′

(b)

Figure 4.3.15: Gu-Wen fermionic SPT phases: (a) The planar graph dual to the tetrahedron
which computes α̂ in a gauge determined by the choice of morphism at the junctions. We
partial gauge-fix as in the previous Figure. The resulting web of center lines can be simplified
by bringing together all planar junctions and collapsing planar loops, up to resolving a single
crossing (See next Figure 5.4.2). Up to the corresponding sign, we obtain: (b) a graph which
depends on G elements only and defines ν3.
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(a)

=

(b)

Figure 4.3.16: Intermediate computational steps relating α̂3 and ν3. The planar intersections
(white circles) of center lines can be collapsed together safely, but the non-planar intersection
has to be resolved first, at the price of a sign (−1)n2(g,g′)ε′′ .
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The corresponding 3-cocycle on Ĝ is

α̂3 =
1

8
η̃1 ∪ δη̃1 +

1

4
δη̃1 ∪ ε1. (4.3.14)

Twice this cocycle is 1
4
η̃1 ∪ δη̃1 ∼ 1

2
ε31, which is a pull-back of a 3-cocycle on G = Z2 generating

H3(Z2,Z2) ' Z2. Therefore this cocycle represents the generator of H4(Ĝ,R/Z). 10 This is the
shadow of a Gu-Wen phase with symmetry Z2. It is an abelian phase, in the sense that the fusion
rules of the shadow TFT are abelian (based on an abelian group Z4).

Another solution of the Gu-Wen equations with the same n2 is

ν3 = −1

8
η̃ ∪ δη̃. (4.3.16)

It differs from (4.3.13) by a closed 3-cochain 1
4
η̃∪δη̃ whose class is the generator ofH3(G,R/Z) =

Z2. In physical terms, these two Gu-Wen phases (and their shadows) differ by tensoring with a
bosonic SPT phase. Two more shadows of Gu-Wen phases are obtained by taking Ĝ = Z2×Z2.
In this case α̂3 is a pull-back of a 3-cocycle on G = Z2, which is otherwise unconstrained. Over-
all, we get four Gu-Wen phases with symmetry G = Z2. They are all abelian phases and are
naturally labeled by elements of Z4.

4.3.5 Example: Z2-equivariant toric code vs Ising

The toric code has a Z2 symmetry which exchanges e and m, which is not manifest as an on-site
symmetry in the standard microscopic formulation of the theory.

The symmetry can be made manifest by extending the category of boundary line defects to
a Z2-graded category which includes boundary twist lines for the Z2 symmetry and using the
extended category as an input for a state sum or a string-net model.

As the Z2 symmetry exchanges the Be and Bm boundary conditions, the boundary twist lines
interpolate between Be and Bm.

Concretely the Z2-graded category can be identified with the Ising fusion category (see [142]
or appendix B of [143] for a detailed discussion). There are three objects I, S, P fusing as
P ⊗ S = S ⊗ P = S and S ⊗ S = I ⊕ P . The object S belongs to C1, I and P to C0. The
nontrivial associators are

a(P, S, P ) : (P ⊗ S)⊗ P→P ⊗ (S ⊗ P ), (4.3.17)
a(S, P, S) : (S ⊗ P )⊗ S→S ⊗ (P ⊗ S), (4.3.18)
a(S, S, S) : (S ⊗ S)⊗ S→S ⊗ (S ⊗ S). (4.3.19)

10Alternatively, we can re-write it directly in terms of the Z4 cocycle εZ4
1 ≡ η̃1 + 2ε1. It is easy to verify that α̂3

is co-homologous to

1

4
εZ4
1 ∪ εZ4

1 ∪ εZ4
1 =

1

4
η̃1 ∪ η̃1 ∪ η̃1 +

1

2
η̃1 ∪ η̃1 ∪ ε1 +

1

2
(ε1 ∪ η̃1 + η̃1 ∪ ε1) ∪ η̃1, (4.3.15)

modulo 1.
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The first one, regarded as an endomorphism of S, is −1. The second one, regarded as an en-
domorphism of I ⊕ P , is a vector (1,−1). The last associator is determined by the pentagon
equation only up to an overall sign: the associator morphism regarded as an endomorphism of
S ⊕ S is a matrix

λ−1

(
1 1
1 −1

)
, (4.3.20)

where λ = ±
√

2.

The fusion rules can be explained as follows. The fusion rules for C1 are the usual fusion
rules for the boundary lines on the Be boundary. Since S is the termination of a Z2 domain wall
which implements the particle-vortex symmetry transformation, we must have S ⊗ S ⊃ I .: this
means that a domain wall shaped as a hemisphere ending on a Be boundary can be shrunk away.
Finally, shrinking away the same hemispherical domain wall in the presence of a Wilson line P
shows that S ⊗ S ⊃ P . The associators are fixed by the pentagon equation, up to an ambiguity
in the sign of λ [142].

This identification of the Ising category with the Z2 equivariant version of the toric code
is consistent with the observation that gauging the Z2 symmetry of the toric code produces the
quantum double of the 3d Ising TFT, i.e. a TFT whose category of bulk like defects is the product
of the Ising modular tensor category and its conjugate.

The Ising modular tensor category has three simple objects 1, σ, ψ which fuse just as I, S, P
above. The quantum double (i.e. the Drinfeld center of the Ising fusion category) has bulk quasi-
particles which are the product of 1, σ, ψ and 1, σ, ψ. The ψψ particle is a boson to be identified
with the Wilson loop. The ψ and ψ fermions are two versions of the original ε particle. Thus,
for a fixed λ, there is a two-fold ambiguity in the choice of the fermion Π for the Ising fusion
category. More precisely, crossing either ψ or ψ with P gived −1, while crossing a fermion with
S gives a phase ξ2 satisfying [143]

ξ + ξ−1 = λ. (4.3.21)

The two solutions of this equation correspond to taking Π = ψ or Π = ψ. It is easy to see that
ξ4 = −1, so taking into account both the freedom in choosing λ and the freedom in choosing
Π we get four Z2-equivariant versions of the toric code with a fermionic Z2 1-form symmetry.
They can be labeled by ξ, which is a fourth root of −1. The four versions of the theory are on
equal footing, since none of the four roots is preferred.

Recall that fermionic SPT phases with a unitary Z2 symmetry have a Z8 classification [?, ?,
144]. Four of them correspond to Gu-Wen supercohomology phases. We will argue below that
the shadows of the other four phases are given by the four versions of the Ising fusion category
equipped with Π. The latter phases are non-abelian, in the sense that the fusion rules of the
shadow TFT are not group-like.

4.3.6 Example: Ising pull-backs

If we are given a group G with a group homomorphism π1 : G→ Z2, we can define a G-graded
Ising-like category as follows.
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If π1(g) = 0, we take Cg to consist of two simple elements, Ig and Pg. If π1(g) = 1, we take
Cg to consist of a simple element Sg. We take the fusion rules to mimic the Ising category:

Vg,ε ⊗ Vg,ε′ = Vgg′,ε+ε′ , (4.3.22)
Vg,ε ⊗ Sg′ = Sgg′ (4.3.23)
Sg ⊗ Vg′,ε′ = Sgg′ , (4.3.24)

SgSg′ = Vgg′,0 + Vgg′,1, (4.3.25)

where we denoted Ig = Vg,0 and Pg = Vg,1. The associators can be taken from the Ising category.

The center particle with boundary image P1 and β taken from the fermion in the Ising cat-
egory example equips this category with a fermionic 1-form symmetry. We will call the corre-
sponding G-equivariant TFT an Ising pull-back and denote it Iξπ1

. It depends on a parameter ξ
satisfying ξ4 = −1 as well as π1 : G→Z2. We will see below that it is a shadow of a fermionic
SPT phase with symmetry G× Zf2 .

A richer possibility is to consider a long exact sequence of groups

0→ Z2 → Ĝ0 → G→ Z2 → 0, (4.3.26)

where we denote the homomorphism from G to Z2 by π1. The kernel of π1 will be denoted G0,
then Ĝ0 is a central extension of G0 by Z2. Let n2 be a 2-cocycle on G0 corresponding to this
central extension.

If π1(g) = 0, we take Cg to have two simple objects, Vg,ε, ε ∈ Z2. If π1(g) = 1, we take Cg to
have a single simple object Sg. We again take the fusion rules to still mimic the Ising category:
SgSg′ = Vgg′,0 + Vgg′,1, etc., but now require the Vĝ ≡ Vg,ε fusion to follow the Ĝ0 multiplication
rules.

It follows from the results of [145] that for any such long exact sequence there exists a fusion
category with these fusion rules, provided a certain obstruction [O4] ∈ H4(G,R/Z) constructed
from n2 and π1 vanishes. Possible associators depend are parameterized by a 3-cochain ν3 ∈
C3(G,R/Z) such that δν3 = O4. As argued in appendix C.2, such a category has a fermion
if and only if [n2] is a restriction of a class [β2] in H2(G,Z2), in which case ν3 must satisfy
the Gu-Wen equation (4.2.16). This TFT is a candidate for a shadow of a fermionic SPT phase
with symmetry G × Zf2 . One can view this theory as a G-equivariant version of the toric code,
where some elements of G act by particle-vortex symmetry, and the fusion of G domain walls
is associative only up to e and m lines. This failure of strict associativity is controlled by the
extension class n2 ∈ H2(G0,Z2).

Thus we obtain categories labelled by a triple (ν3, n2, π1) (and a choice of a fermion) which
are shadows of fermionic TFTs with symmetry G. We will see below that all these TFTs are
fermionic SPT phases, i.e. they are “invertible”. On the other hand, one may argue that shadows
of fermionic SPT phases with symmetry G must be G-equivariant versions of the toric code.
Indeed, the component C1 of such a category must contain the identity object, the fermion Π, and
no other simple objects, since condensing the fermion must give an invertible fermionic TFT.
The fusion rules for C1 must have the same form as in the toric code, because Π generates a
Z2 1-form symmetry, and the associator for C1 must be trivial for Π to be a fermion. Thus C1
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b b b

=

b b b

(a)

b b

=

b b

±

(b)

Figure 4.3.17: Z2 1-form symmetries: (a) There exists a bulk line b with properties shown in
the figure. (b) Half-braiding b lines across each other gives a factor of ±1 when compared
to b lines without braiding. The factor of +1 arises for a bosonic 1-form symmetry and
−1 arises for a fermionic 1-form symmetry. This minus sign implies that the symmetry is
anomalous.

describes the toric code, and C =
∑

g Cg is a G-equivariant extension of the toric code.

4.3.7 Gauging one-form symmetries in the presence of gapped boundary
conditions

Given a gapped boundary condition for Tb, we can derive in a simple manner a gapped boundary
condition for TZ2 . Here we describe the process at the level of boundary line defects. In later
sections we will test it at the level of partition sums and commuting projector Hamiltonians. 11

We start from a spherical fusion category Cb equipped with a bosonic Z2 one-form symme-
try generator B = (b, β), an element of the center Z[C] such that βb = 1b⊗b and there is an
isomorphism ξb : b⊗ b→ I such that ξ ⊗ 1 = 1⊗ ξ in Hom(b⊗ b⊗ b, b).

In the condensed matter language, our objective is to condense the anyon B. The general
mathematical formalism for anyon condensation is described in [146]. It should be applied to
the commutative separable algebra A = I + B. We will use a somewhat simplified procedure
for concrete calculations.

We then define a new category CZ2
0 with the “same” objects and enlarged spaces of mor-

phisms:
HomCZ2

0
(U0, V0) ≡ HomCb(U, V )⊕ HomCb(U, b⊗ V ) (4.3.27)

The new morphisms should be thought of as B-twisted sectors. The morphisms are composed
with the help of the b ⊗ b → 1 map and the tensor product is defined with the help of β, as in
Figure 5.3.7.

11Although we specialize here to a Z2 one-form symmetry, the same procedure works for a general Abelian group
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U

V b

U

V

(a)

U

V

(b)

U1

V1

U2

V2

(c)

Figure 4.3.18: Construction of CZ2
0 : (a) A morphism can involve a b line or not. Notice

that the direction of b line is irrelevant as it is equal to its dual. (b) Composition of two
morphisms involving a b line is obtained by using the canonical map from b ⊗ b to identity
to join the b lines. (c) Tensor product of two morphisms involving a b line is twisted by a
half-braiding of b across V1.

The image of simple objects under this map may not be simple: if X is simple, b⊗X is also
simple and may or not coincide withX . In the former case, HomCZ2

0
(X0, X0) is two-dimensional

and X0 will split into two simples X±0 .

We then add to CZ2
0 the simple summands of the objects inherited from Cb. Concretely, X±0

can be described as X0 with the insertion of a projector π±X along the line. The projectors will be
linear combinations of the generator 1X of HomCb(X,X) and the generator ξX of HomCb(X, b⊗
X). We can compute ξ2

X = ηX1X and define projectors

π±X =
1

2
(1X ± (ηX)−1/2ξX) (4.3.28)

Notice that if b is the identity line in Cb, the identity in CZ2
0 will itself split.

The final result will be a spherical (multi-)fusion category CZ2
0 . We can extend CZ2

0 further
to a Z2-graded category in the following manner. We extend the original category Cb to a new
graded category Cb × Z2, a direct sum of 2 copies of Cb. We extend the Z2 1-form symmetry to
Cb ×Z2 by the center element (b, β × (−1)ε), where B it taken to lie in Cb × {0} and we twisted
the original β by a sign when crossing a line in C × {1}.

Finally, we proceed as before using the extended center element. Objects in Cb × {ε} map to
objects in CZ2

ε . Concretely, the only difference between objects in CZ2
0 and CZ2

1 is an extra sign in
the tensor product of morphisms which appear when the b line crosses a CZ2

1 object.
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4.3.8 Example: 1-form symmetries in the toric code

Consider again the spherical fusion category C modelled on Z2, with two objects 1 and P fusing
as P ⊗ P ' 1 and trivial associators.

The Wilson loop in this Z2 gauge theory is the object e = (1, βP = −1) in the center of
the category. It is a boson generating an “electric” Ze2 1-form symmetry. If we gauge this 1-
form symmetry, we obtain a category Ce with elements I0, P0 with a two-dimensional space of
morphisms. We can denote the generators of these morphisms as 11, ξ1, 1P , ξP . We have ξ2

1 = 11

and ξ2
P = 1P .

We can decompose I0 = I++ + I−− and P0 = P+− + P−+. Working out the fusion rules,
we find a multi-fusion category, with P+− and P−+ being domain walls between the two vacua.
Each vacuum has a trivial category of line defects.

Adding twisted sectors gives us two new objects, I1 = I+− + I−+ and P1 = P++ + P−−.
Hence our final graded multi-fusion category has has four sectors, C±±, each consisting of an
element of grading 0 and an element of grading 1. Physically, this is a boundary condition with
two trivial vacua, each described by the trivial Z2-graded fusion category.

This makes sense. We obtained the toric code by gauging the Z2 global symmetry of a trivial
theory. In the absence of boundary conditions, gauging the dual 1-form symmetry effectively
ungauges the Z2 gauge theory. In the presence of boundary conditions, gauging the standard Z2

symmetry with Dirichlet b.c. leaves us with a bulk Z2 gauge theory with a residual Z2 global
symmetry at the boundary. This can be thought of as a Z2 gauge theory coupled to a boundary Z2-
valued sigma model. After we gauge the 1-form symmetry, the boundary sigma model remains
and the extra Z2 global symmetry is spontaneously broken.

On the other hand, gauging the 1-form symmetry generated by m leads to a category Cm with
two isomorphic simple elements I0, P0. This is again a trivial category of line defects. Adding
twisted sectors, we find two more isomorphic objects, I1 and P1. We have obtained again the
trivial Z2-graded fusion category.

4.3.9 The Π-product of shadows

The product of two theories Tf and T′f is equipped with a bosonic line ΠΠ′ which generates a
standard bosonic Z2 1-form symmetry. If we gauge ΠΠ′, we obtain a new theory which we can
denote as Tf ×f T′f . This new theory still has a fermionic 1-form symmetry, generated by Π,
or equivalently Π′ (the two coincide in the new theory). It is our candidate for the shadow of
Ts × T′s.

The shadow product Tf×fT′f should be associative, as it corresponds to the product operation
of the corresponding spin-TFTs. This is quite clear from the definition as well: the product of
three shadows contain bosonic generators ΠΠ′, Π′Π′′ and ΠΠ′′ generating a Z2 × Z2 1-form
symmetry. Gauging the two Z2 in any order should be equivalent to gauging both. In the language
of anyon condensation, we are condensing the algebra A = I + ΠΠ′ + Π′Π′′ + ΠΠ′′.
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We would like to explore the group structure of the candidate fermionic SPT phases we
have encountered until now. Recall that we have introduced two basic classes of fermionic SPT
phases: Ising pull-backs Iξπ1

[G] and Gu-Wen phases Gν3,n2 [G].

Gu-Wen SPT phases

As a simple example, consider two Gu-Wen phases Gν3,n2 [G] and Gν̃3,ñ2 [G]. We can take the G-
graded product of the corresponding categories. The result is a G-graded category with objects
Vg,ε,ε̃ which fuse according to a Z2×Z2 extension G′ of G, with cocycle (n2, ñ2) and associators
α̂3

˜̂α3.

The bosonic symmetry generator is Ve,1,1, equipped with crossing (−1)ε+ε̃. As we gauge the
symmetry, we will extend the morphisms so that V 0

g,ε,ε̃ and V 0
g,ε+1,ε̃+1 become isomorphic. Keep-

ing this identification into account, the resulting objects will fuse according to the Z2 extension
Ĝ of G associated to the cocycle n2 + ñ2.

Computing the associator of the new category takes a bit of effort. For concreteness, we can
pick representative objects V 0

g,ε,0. When we multiply them, we obtain, say, V 0
gg′,ε+ε′+n2(1,g,gg′),ñ2(1,g,gg′)

which has to be mapped back to V 0
gg′,ε+ε′+n2(1,g,gg′)+ñ2(1,g,gg′),0 by inserting ñ2(1, g, gg′) extra in-

tersections with ΠΠ̃ lines.

We can gauge fix and then compute the associator via the tetrahedron graph. We obtain
ν3ν̃3(−1)ε1∪ñ2+n2∪ε1 where ε1 encodes the first Z2 grading of the elements placed on the edges.
This differs from ν3ν̃3(−1)(n2+ñ2)∪ε1 by a sign

(−1)ε1∪ñ2+ñ2∪ε1 = (−1)δ(ε1∪1ñ2)+ε1∪1δñ2+δε1∪1ñ2 (4.3.29)

The second term above is zero and the first term can be absorbed into a gauge redefinition of the
associator. Hence, we obtain a new Gu-Wen super-cohomology phase (ν ′3, n2 + ñ2) with

ν ′3 = ν3ν̃3(−1)n2∪1ñ2 (4.3.30)

This is indeed the expected group law for Gu-Wen fermionic SPT phases.

The squared equivariant toric code

Another interesting example is the product of two equivariant toric codes. The resulting Z2-
graded category has objects II , PI , IP , PP in C0 and SS in C1. The bosonic generator is then
ψψ.

We choose the two fourth roots ξ1 and ξ2 of−1 which identify specific Ising Π-categories Iξ1
and Iξ2 . Recall that only ξ2 affects the crossing phases. A flip ξ → −ξ changes the associator
SSS and thus effectively twists the category by a Z2 group cocycle, i.e. multiplies the theory by
a bosonic Z2 SPT phase.

Gauging the 1-form symmetry leads one to identify the pairs II0 ' PP 0 and PI0 ' IP 0,
while SS0 will split into some S0

+ and S0
−.
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Fusion of SS0 with PI0 from the left involves crossing ψψ across PI and hence flips the
sign of the non-trivial morphism of SS0 to itself. On the other hand, fusion with PI0 from the
right flips the sign of the non-trivial morphism because of non-trivial PSP associators for Ising
category. We thus learn that PI0 ⊗ S0

+ = S0
+ ⊗ PI0 = S0

− and PI0 ⊗ S0
− = S0

− ⊗ PI0 = S0
+.

These fusion rules do not depend on ξ1 or ξ2.

The fusion rules involving S0
+ and S0

−, on the other hand, are affected by the βS crossing
phases. We find that if ξ1 = ξ2, or more generally ξ2

1ξ
2
2 = −1, we have S0

+⊗S0
+ ' S0

−⊗S0
− ' PI0

and S0
+ ⊗ S0

− ' S0
− ⊗ S0

+ ' II0: the objects in the new category fuse according to a Ĝ = Z4

group law, generated, say, by S0
+. We demonstrate an example of computation of fusion rules for

this case in fig. 4.3.19.

The Ĝ = Z4 can be regarded as a Z2 central extension of G = Z2 with V0,0 = II0, V0,1 =
PI0, V1,0 = S0

+ and V1,1 = S0
−. It can be easily checked that PI0 equipped with crossing (−1)ε

is a fermionic bulk line. The result is the shadow of Gu-Wen phase for a Z2 global symmetry,
with Z4 being the central extension.

On the other hand, if ξ2
1ξ

2
2 = 1, we have S0

+ ⊗ S0
+ ' S0

− ⊗ S0
− ' II0 and S0

+ ⊗ S0
− '

S0
− ⊗ S0

+ ' PI0: the objects in the new category fuse according to a Ĝ = Z2 × Z2 group law.
We can set, say, V0,0 = II0, V0,1 = PI0, V1,0 = S0

+ and V1,1 = S0
−. The result is the shadow of a

Gu-Wen phase for a Z2 global symmetry, with trivial central extension, i.e. a bosonic SPT phase.

We still need to compute the associator α̂3(ξ1, ξ2). We can compute the associativity phases
for S0

± from the associator for SS ⊗ SS ⊗ SS or by evaluating some tetrahedron planar graphs.
The general calculation is somewhat tedious and we will omit it. It should be obvious that if
ξ1ξ2 = 1 all crossing or associator phases will cancel out among the two theories. Thus we
expect to obtain a trivial associator as well as the trivial group extension. Thus we claim

Iξ ×f Iξ
−1 ' I (4.3.31)

where I denotes the trivial Z2 SPT phase. In particular, this proves the claim that the Ising
Π-category is the shadow of an SPT phase!

On the other hand, Iξ×f Iξ will be a root Gu-Wen Z2 SPT phase, which one of the two being
determined by the value of ξ2, as the sign of ξ can be changed by adding a bosonic SPT phase.
We can compute ν3 for that phase by looking at graphs involving S0

+ and identity lines, with Π
lines emerging from junctions with two incoming S+ lines. The only source of interesting phases
is the crossing phase of the fermion and S+. We find that if ξ2 = ±i, then ν3 = ±1

4
η1 ∪ η1 ∪ η1.

Ising pull-back and Gu-Wen

We can combine the Ising pull-back category with homomorphism π1 with a Gu-Wen phase.
The G-graded product has objects Ig,ε, Pg,ε or Sg,ε depending on the value of π1(g). Gauging the
bosonic 1-form symmetry identifies P 0

g,ε with I0
g,ε+1 and Sg,ε with Sg,ε+1.

We can restrict ourselves to objects I0
g,ε, or S0

g,0. Effectively, the n2 cocycle has been restricted
to a cocycle n0

2 on G0 = ker π1. The fusion rules of this category mimic our example based on a
long exact sequence

0→ Z2 → Ĝ0 → G→ Z2 → 0 (4.3.32)
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Figure 4.3.19: A sample computation of fusion rules in shadow product of two equivariant
toric codes with ξ1 = ξ2: S0

+ ⊗ S0
+ is by definition a sum of four terms which involve

associators and crossings. II inside SS ⊗ SS is mapped to zero object as second term
cancels against the third and the first term cancels against the fourth. PI is mapped to PI by
the first and fourth terms and to IP by the second and third terms. Hence, S0

+ ⊗ S0
+ ' PI0.

One might wonder what happens to the rest of the data of the n2 cocycle which is not captured by
n0

2. This data goes into the associators for the new category. In particular, it is possible to extract
the values of n2(g, g′) from (relative) signs of certain associators. This is of course true in the
Gu-Wen case as well, where n2(g, g′) is also encoded, for example, by the sign in the associator
(Vg,0 ⊗ Vg′,0)⊗ V1,1 → Vg,0 ⊗ (Vg′,0 ⊗ V1,1).

The associators can be determined from tetrahedron graph by inserting the bosonic line P1,1

at appropriate junctions. All of them can be written (modulo factors of square root of 2) as ν3

times a sign which depends on n2, the choice of morphism S ⊗ S → (I, P ) and ε grading of
lines. We show two sample associators and their results in Figure 4.3.20.

Choosing ε = 1, ε′ = 0 and g to be identity in Figure 4.3.20(a) tells us that the associator
equals (−1)n2(g′,g′′). This means that sign of this associator determines n2(g′, g′′) for such that
π1(g′) = 0 and π1(g′′) = 1. Similarly, we could compute the associator of Ig,ε, Sg′,0 and Ig′′,ε′′
and choosing g as identity, ε = 1 and ε′′ = 0 would determine n2(g′, g′′) such that π1(g′) = 1 and
π1(g′′) = 0. Determining n2(g′, g′′) such that π1(g′) = 1 and π1(g′′) = 1 is a bit more non-trivial.
It is determined by the associator in Figure 4.3.20(b) when we choose ε = 1, m = n2(g′, g′′) and
the particular n for which the graph evaluates to a non-zero number. Notice that there is only one
such n.

We will verify now that every long sequence example can be obtained in this manner.

Ising pull-back and long exact sequence with the same π1

The product category has objects Vg0,ε, PVg0,ε and SSg1 . The bosonic generator is associated to
Pe,1. Condensation will identify Vg0,ε and PVg0,ε+1 and split SSg1 to Sg1,ε.
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ε+ ε′ + n2 + n2

ε+ n2

ε′ + n2

Sg′′,0

Ig′,ε′
Ig,ε

ε+ n2

n

m

Sg′′,0

Sg′,0
Ig,ε

(a) (b)

Figure 4.3.20: Two sample computations of associators for a phase corresponding to long
exact sequence. The values at the starting of double lines encode the number of P1,1 lines.
We leave the argument of n2 self-evident as it can be read from the diagram. m and n are
numbers (defined modulo 2) associated to the choice of morphisms at the junctions where
two S lines converge and diverge respectively. m is 1 if it corresponds to the morphism
S ⊗ S → P and 0 if it corresponds to S ⊗ S → I . n is defined similarly. The graph in (b)
evaluates to a non-zero number only if n2(g′, g′′)+n2(g, g′g′′)+n2(gg′, g′′)+ ε+m+n = 0
which is the same as n2(g, g′) + ε + m + n = 0. As a result of this, the double lines
always come in pairs. The graphs in (a) and (b) imply that the associators respectively are
(−1)ε(ε

′+n2(g′,g′′))ν3 and λ(m+1)(n+1)(−1)εmν3 where λ is a square root of 2.
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It turns out that the consistency of fusion rules completely constrains them. First of all, we
don’t physically expect any of Sg,ε⊗Sg′,ε′ to be the zero object. This implies that they must fuse
to a single object since the fusion of sums (Sg,0 ⊕ Sg,1)⊗ (Sg′,0 ⊕ Sg′,1) is equal to sum of four
objects Vgg′,0 ⊕ Vgg′,0 ⊕ Vgg′,1 ⊕ Vgg′,1. Using similar arguments, we find that the fusion of two
simple objects must be a single simple obejct. Second, Vg,0 and Vg,1 must map Sg′,ε to different
objects. If, on the contrary Vg,0 ⊗ Sg′,ε ' Vg,1 ⊗ Sg′,ε ' Sgg′,ε′ , then we could fuse by Sg′′,ε′′
from the right to find that the elements in subcategory associated to G0 do not fuse according to
a cocycle, leading to a contradiction. Third, the fusion of S elements with themselves must be
captured by a cochain. This can be shown using a similar argument as above. This cochain can
be combined with the cocycle for G0 to give rise to a cochain for G governing the fusion rules
for the full category. Associativity of fusion then implies that this cochain must be a cocycle n2.

Thus, we see that this is a Gu-Wen extension example, with objects Vg0,ε and Vg1,ε = Sg1,ε.
As Iξπ1

and Iξ−1

π1
are inverse to each other, we can express any long exact sequence example as

the Π-product of Iξπ1
and a Gu-Wen phase.

Product of long exact sequence examples

In a similar manner, we can verify that the ×f product of two long exact sequence examples is
a new long exact sequence example. The product has a bosonic line Ve,1Ṽe,1. Let π1 and π̃1 be
respectively the two homomorphisms.

• In the π1(g) = π̃1(g) = 0 sector, gauging the bosonic 1-form symmetry identifies Vg,εṼg,ε′
with Vg,ε+1Ṽg,ε′+1 and we can choose representative objects as V ′g,ε = Vg,εṼg,0.

• In the π1(g) = 0, π̃1(g) = 1 sector,Vg,εS̃g is identified with Vg,ε+1S̃g and we choose repre-
sentative object S ′g = Vg,0S̃g.

• In the π1(g) = 1, π̃1(g) = 0 sector, SgṼg,ε′ is identified with SgṼg,ε′+1 and we choose
representative object S ′g = SgṼg,0.

• In the π1(g) = π̃1(g) = 1 sector, SgS̃g splits into two objects (as in the product of two
equivariant toric codes above) which we denote as V ′g,0 and V ′g,1.

The fusion rules of representative objects can be obtained analogously to the examples above.

This can be identified with a long exact sequence

0→ Z2 → G′ → G→ Z2 → 0 (4.3.33)

with G → Z2 homomorphism π′1 = π1 + π̃1. It is somewhat trickier to determine the G′ central
extension: while the restriction to π1(g1) = π′1(g1) = π1(g2) = π′1(g2) = 0 coincides with
n2(g1, g2) + ñ2(g1, g2), the rest of it depends on the details of the associators of the two initial
categories.

We can attack the problem by specializing first to Ising pull-backs.
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4.3.10 Triple products and quaternions

In consideration of our analysis, we expect some relation of the form

Iξπ1
[G]×f Iξπ′1 [G] = Gν3(π1,π′1,ξ),n2(π1,π′1,ξ)

[G]×f Iξ
−1

π1+π′1
[G] (4.3.34)

We switched the ξ phase for the Ising pull-back on the right hand side for future convenience.

In order to extract the Gu-Wen phase which appears in this expression, we consider the triple
product

Gν3(π1,π′1),n2(π1,π′1)[G] = Iξπ1
[G]×f Iξπ1+π′1

[G]×f Iξπ′1 [G] (4.3.35)

The details of the calculation only depend on the image of G group elements under π1 and
π′1. Without loss of generality, we can do our computation for G = Z2×Z′2 with π1 and π′1 being
the projections into the first and second factor respectively. The general answer will be obtained
by pulling back the Z2 × Z′2 answer by π1 × π′1.

This is a rather non-trivial calculation, but it is somewhat simplified by the permutation sym-
metry acting on the triple π1, π′1, π1 +π′1, although gauge-fixing choices may break the symmetry
at intermediate stages of the calculation. The [n2] cocycle is actually independent from ξ2: a shift
of ξ2 will be implemented by multiplying by the root Gu-Wen phase pulled back along π1, π′1
and π1 + π′1, which shifts the cocycle by

π1 ∪ π1 + π′1 ∪ π′1 + (π1 + π′1) ∪ (π′1 + π′1) = π1 ∪ π′1 + π′1 ∪ π1 (4.3.36)

which is exact.

It turns out to be possible to pick a gauge-fixing in which n2 is at least cyclically symmetric.
We take triple product of elements of various Ising categories in the order mentioned in (4.3.35).
For instance, π1 = 0, π′1 = 1 sector contains elements of the form ISS and PSS. The lines
IPP , PIP and PPI give rise to a Z2 ×Z2 bosonic 1-form symmetry. There are two choices of
junctions between these three lines. They correspond to canonical junctions between IPP , PIP
and PPI lines taken in clockwise and counter-clockwise order respectively. Their product is
clearly equal to 1 and their square is−1 as it involves a crossing. Hence, when we bring together
these centre lines in calculations, we multiply the canonical junctions by i and −i respectively.
12

When we condense, the three lines generate three non-trivial morphisms such that the product
of two of these gives rise to the third. We choose PPI to identify ISS with PSS, IPP to
identify SIS with SPS, and PIP to identify SSI with SSP in a cyclic fashion. Similarly,
we choose IPP to split ISS into ISS+ and ISS− etc. in a cyclic manner. We summarize our
choice of objects in the condensed category:

• In π1 = π′1 = 0 sector, the objects are III and IPI . IPI equipped with an appropriate
crossing is the generator of fermionic 1-form symmetry. We rename III and IPI as V1

and V−1 respectively.
12In the language of anyon condensation, this is the chocie of maps A ⊗ A → A and A → A ⊗ A with good

properties.
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• In π1 = 0, π′1 = 1 sector, the objects are ISS+ and ISS−. We rename them as V±i.

• In π1 = 1, π′1 = 0 sector, the objects are SSI+ and SSI−. We rename them as V±j .

• In π1 = π′1 = 1 sector, the objects are SIS+ and SPS−. We rename them as V±k.

Some of the computations of fusion rules are completely analogous to the case of squared
equivariant toric code. These are (±q)⊗(−1) ' (−1)⊗(±q) ' ∓q, q⊗q ' −1 and q⊗(−q) ' 1
where q denotes either one of i, j and k.

The other computations are analogous but we have to be careful about choosing correct sign
for the junctions of three bosonic lines. We show how these junctions arise in a sample compu-
tation in 4.3.21. The final result is captured by the quaternion group:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j (4.3.37)

This corresponds to the cocycle

n2(π1, π
′
1) = π1 ∪ π1 + π′1 ∪ π′1 + π1 ∪ π′1 (4.3.38)

This describes the quaternion group as a Z2 central extension of Z2 × Z′2!

The extension indeed enjoys S3 permutation symmetry, up to a gauge transformation i→ −i,
j → −j, k → −k for odd permutations.

Computing ν3(π, π′, ξ) is of course rather more cumbersome. We leave it as an exercise for
the enthusiastic reader.

4.3.11 The group structure of fermionic SPT phases

The dependence of Iξ[Z2] on ξ is very mild: we can change ξ to another fourth root of −1 by
multiplying it by one of the four Z2 Gu-Wen phases. Correspondingly, we can change ξ in Iξπ1

[G]
by multiplying it by the pull-back along π1 of one of the four Z2 Gu-Wen phases. Consequently,
we can just stick to a specific choice of ξ in the following.

We expect all fermionic SPT phases to take the form Gν3,n2 [G]⊗Iξπ1
[G]. We could label such

a phase by a triple (ν3, n2, π1). It is natural to ask what is the group law for such phases.

We know that the product of two Gu-Wen phases is another Gu-Wen phase, with addition law

Gν3,n2 × Gν′3,n′2 = Gν3+ν′3+ 1
2
n2∪1n′2,n2+n′2

(4.3.39)

This can be expressed as the statement that the group G[G] of Gu-Wen phases is a central exten-
sion

0→ H3[BG,U(1)]→ G[G]→ H2[BG,Z2]→ 0 (4.3.40)
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Figure 4.3.21: The figure depicts various terms in the computation of ISS+ ⊗ SSI+. We
need to convert SPS into SIS using the chosen isomorphisms. This results in junctions of
the three bosonic lines with appropriate signs. After taking into account various factors from
associators, crossings and junctions, we obtain ISS+ ⊗ SSI+ ' SIS+.

with cocycle 1
2
n2 ∪1 n

′
2 valued in H3[BG,U(1)].

Similarly, when we add Ising pull-back phases the π1 cocycles add up. Hence the group of
fermionic SPT phases F [G] of the form (ν3, n2, π1) will be a central extension

0→ G[G]→ F [G]→ H1[BG,Z2]→ 0 (4.3.41)

The G[G]-valued cocycle G2 for this extension can be computed by the relation

Iξπ1
[G]×f Iξπ′1 [G] = G2(π1, π

′
1, ξ)×f Iξπ1+π′1

[G] (4.3.42)

Comparing with our previous computation, the change ξ−1 → ξ on the right hand side shifts n2

by (π1 + π′1) ∪ (π1 + π′1). Thus G2(π1, π
′
1, ξ) has cocycle

n2(π1, π
′
1) = π′1 ∪ π1 (4.3.43)

This corresponds to the dihedral group extension of Z2 × Z′2.

A standard presentation of the dihedral group is given by elements a and b such that a4 =
b2 = 1 and aba = b. In our case, we can choose Va = SIS+ and Vb = SSI+.
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Figure 4.4.1: The first step of a swiss cheese construction: the manifold is triangulated, and
spherical holes are opened up at the vertices of the triangulation.

4.3.12 Π-categories and Π-supercategories

There is a known relationship between Π-categories and super-categories which is analogous the
the relation between Cb and CZ2 in the bosonic case [137].

Given a Π-category Cf , we can build a super-category Cs whose even morphisms are HomCf (X, Y )
and odd morphisms are HomCf (X,Π ⊗ Y ). This is a “Π-supercategory”, i.e. a super-category
equipped with an object Π with is odd-isomorphic to I . Vice versa, we can go from a Π-
supercategory to a Π-category by dropping the odd morphisms.

In a previous work [118] , we sketched a state-sum construction based on spherical super-
fusion categories. For simplicity, we assumed the spherical super-fusion category had no Majo-
rana objects, i.e. irreducible objects with an even and an odd endomorphisms. If we take the “Π-
envelope” of such a super-category we will get a Π-supercategory with an even and an odd copy
of each irreducible object. Dropping odd morphisms we get a Π-category. The state-sum con-
struction given in [118] builds up the spin TFT whose shadow is associated to this Π-category.
In the next section, we will formulate the state-sum construction for general Π-categories. It
should be possible to re-formulate it in terms of the associated super-categories, with or without
Majorana objects.

4.4 Spherical fusion categories and state sum constructions

It is instructive to review the physical derivation of the Turaev-Viro construction for a 3d TFT
with a single vacuum and a gapped boundary condition.

We begin with the observation that such a topological field theory T associates a one-dimensional
Hilbert space to a two-sphere. Thus a boundary B with the topology of a two-sphere must create
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Figure 4.4.2: The second step of a swiss cheese construction: we connect the holes by tubes
running along the edges of the triangulation. A special line is added around the tubes to
make them trivial.

Figure 4.4.3: The third step of a swiss cheese construction. The complement of the holes is a
collection of solid cylinders running through faces of the triangulation, fused at tetra-valent
vertices inside the tetrahedra. The cross-section of the solid cylinders is a disk with three
boundary punctures. We insert a complete basis of states along each cylinder.
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a state in that Hilbert space which is proportional to the state created by a three-ball, with some
specific proportionality constantCB which depends on the theory and on the boundary condition.

Consider a three-manifold M , say with no boundaries, for which we want to compute the
partition function. Equip M with some triangulation. Up to a factor of CB for each vertex, the
partition function of M will be the same as the partition function of a manifold M ′ obtained
from M by removing a small ball around each vertex of the triangulation and replacing it with a
spherical boundary of type B. See Figure 4.4.1.

We can enlarge the holes in M ′ until the spherical boundaries collide with each other, so
that each hole almost fills the corresponding 3-cell in the cell-decomposition of M dual to the
triangulation. The manifold M ′ looks like a foam of empty bubbles.

Next, we can “pop” the walls between bubbles. Concretely, this requires us to carve out
parts of M ′ with the topology of a cylinder with B boundaries at each end, i.e. [0, 1]B,B ×
D2. The manifold is cut along the annulus [0, 1]B,B × ∂D2. The path integral on the cylinder
produces some state in the Hilbert space associated by the theory to the annulus with B boundary
conditions on the edge. We can replace the cylinder by some other geometry bounded by the
same annulus, as long as they produce the same vector in the annulus Hilbert space.

An example of such geometry is half a solid torus, bounded by that annulus and by an an-
nulus with B boundary condition, decorated by some boundary line defect Li running along the
annulus. It is natural to expect such geometries to produce a basis in the Hilbert space as the
choice of Li is varied over all simple objects. 13 Thus the cylinder path integral should produce a
state which can be decomposed as a linear combination of these elements, with some coefficients
ci. The correct choice of ci is known to coincide with the quantum dimensions di.

We use the replacement of the cylinder geometry with the decorated half-solid torus to open
holes in all the walls between bubbles, once for each 2-cell in the cell-decomposition of M dual
to the triangulation. The result is a sum over manifolds M ′′

` labelled by the choice ` of lines for
each 2-cell. See Figure 4.4.2.

We can enlarge the holes in the walls until they almost fill the corresponding 2-cells in the
cell-decomposition of M dual to the triangulation. The manifold M ′′

` looks like the 1-skeleton
of the cell decomposition. Each 1-cell between 2-cells associated to lines Li, Lj , Lk corresponds
to a component of the manifold with the cross-section of a disk with three punctures where the
three lines Li, Li and Lk lie. See Figure 4.4.3.

Finally, we can cut the 1-cells by using the Hilbert space associated to the disk with three
boundary punctures. We can identify this Hilbert space with the space Vijk of local operators
available at a junction between defects Li, Lj , Lk by the state-operator map. Inserting a complete
basis of states across each 1-cell we decompose the three-manifold to a collection of three-balls,
with a tetrahedral graph of line defects drawn on the boundary. See again Figure 4.4.3. The
partition function for each decorated three-ball can be evaluated using the data of C.

These three steps express the original partition function as a state sum involving ingredients
which can be computed fully in terms of the category C of boundary line defects. If we take the

13This should be analogous to the statement that solid tori with a bulk line defect give a basis of the Hilbert space
associated to a torus.
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basis of boundary line defects Li to consist of the simple objects in C we obtain the Turaev-Viro
state sum.

The physical construction suggests that more general choices of collections of objects in C
should also reproduce the same partition sum, as long as one picks the correct ci coefficients to
reproduce the correct sum of simples

∑
i diLi.

The construction can be extended to more general three manifolds, including a variety of
extra topological defects. It is very simple to add boundaries with B boundary conditions and
arbitrary graphs of boundary line defects drawn on the boundary. This leads to the same state
sum over a cell complex with boundary. 14

Another important example are bulk topological line defects, which turn out to be labelled
by elements of the Drinfeld center Z[C] of the spherical fusion category. Concretely, an element
of the Drinfeld center is an object in C equipped with choice of canonical junction as it crosses
any other element. The data encodes the image of the bulk line when brought to the boundary.

The bulk lines Yα “run” along the 1-skeleton of the construction, resulting into a modification
of the vector spaces which appear along the 1-cells to the spaces Vα;ijk of local operators available
at a junction between defects Yα,Li, Lj , Lk.

4.4.1 Symmetries

The Turaev-Viro construction can be refined to deal with three manifolds equipped with a non-
trivial flat connection for a discrete group G [130]. The starting point of such a construction
is a G-graded spherical fusion category C, which consists of a collection of sub-categories Cg
labelled by elements of G. Essentially, the flat connection is represented on the triangulation by
group elements on the edges of the triangulation and the state sum decorates edges labelled by g
with objects in Cg.

The output of the construction is a topological field theory with a non-anomalous G global
symmetry. The theory is equipped with a topological boundary condition where the G symmetry
may be broken.

As before, we expect the converse to be true as well. A topological theory endowed with
a non-anomalous G global symmetry and a topological boundary condition admits topological
domain walls Ug labelled by G elements, which fuse according to the group law and admit
canonical topological junctions. The boundary condition will be support categories Cg of line
defects at which a Ug domain wall ends. Together, the Cg form a G-graded spherical fusion
category which can be used to reconstruct the topological theory.

In the absence of a flat connection, we can decorate all edges with the identity element e and
the state sum reduces to the Turaev-Viro construction for Ce. On the other hand, if we gauge theG
symmetry (with Dirichlet boundary conditions) the resulting theory is given by the Turaev-Viro
construction for the whole C, forgetting about the grading.

14It is also possible to include other topological boundary conditions B′ (or interfaces) to the construction, but
this requires extra data to be provided, in the form of the C-module ((C, C)-bimodule) category of domain lines
between B and B′.
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A topological field theory T may also have a non-anomalous 1-form global symmetry. Con-
cretely, that means that there is a set of bulk line defects Ba which bosons, fuse according to a
group law and braid trivially with each other. 15

A non-anomalous 1-form global symmetry allows one to couple the theory to a background 2-
form flat connection. We will show how to include this coupling in the Turaev-Viro construction,
by modifying the vector spaces attached to faces of the triangulation according to the value of
the background 2-form. 16

We will demonstrate that the anomaly of a fermionic Z2 1-form symmetry can be eliminated
in a canonical way if the three-manifold is endowed with a spin structure.

4.4.2 Review of the Turaev-Viro construction

We refer to [138, 147, 148] for a very clear discussion of the Turaev-Viro construction and of its
relation to 3d topological field theories T equipped with a topological boundary condition B.

We denote the spherical fusion category as C, with a finite set I of (equivalence classes of)
simple objects Vi. Remember that the space of local operators at a junction with outgoing line
defects V1, · · ·Vn is HomC (1, V1 ⊗ · · · ⊗ Vn).

The building blocks of the Turaev-Viro construction are the spherical fusion category evalua-
tion maps which assigns a complex number Z(Γ) to a planar graph Γ on a two sphere with edges
labelled by objects and vertices labelled by morphism in C. More precisely, if we label the two
ends of a segment e by dual objects Ve and V ∗e , a vertex v joining edges e1, · · · en is labelled by
a morphism

ϕv ∈ HomC (1, V1 ⊗ · · · ⊗ Vn) (4.4.1)

where Vi are the objects associated to v and ei.

The 3d partition function depends on a choice of manifold M , possibly decorated by bulk
line defects Tα labelled by objects Yα in the Drinfeld center Z(C). The manifold may admit a
boundary ∂M , possibly decorated by boundary line defects Vi.

The first step in the calculation is to give a combinatorial description M of M , which is
essentially a decomposition of M into convex polytopes, say tetrahedra. The partition function
is computed as a sum over different ways to decorate the edges ofM by simple objects l in C
(reversing the orientation of an edge conjugates the objects):

Z[M, {Yα}] =
∑

l

∏
i d

edges(M,i)
i

D2vertices(M)
Z[M, {Yα}, l] (4.4.2)

where we count bulk vertices with weight 1 and boundary vertices with weight 1/2 in vertices(M),

15Gauging a 1-form symmetry in 2+1 dimensions should be a special case of the operation of anyon condensation,
which can be done to a theory which includes a topological line A with sufficiently nice properties, generalizing the
properties of A = ⊕aBa.

16Standard and 1-form global symmetries can be combined into the notion of 2-group. It would be interesting to
integrate this possibility in our story.
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Figure 4.4.4: Left: The basic ingredient of the state sum is a tetrahedron decorated with
lines. Right: The dual planar graph in the spherical fusion category. For clarity we denoted
with circled numbers the tetrahedron vertices dual to each face.

and bulk edges with label i with weight 1 and boundary edges with label i with weight 1/2 in
edges(M, i). The di and D are quantum dimensions and total dimension.

The partial partition functions Z[M, {Yα}, l] are computed by gluing together contributions
of the individual polytopes ofM. Each face C of the triangulation with counterclockwise edges
e1, · · · , en is associated to a vector space

H(C, l) = HomC (1, l(e1)⊗ · · · ⊗ l(en)) (4.4.3)

and the partial partition function is valued inH(∂M, l) =
∏

C∈∂MH(C, l). Pieces of a manifold
are glued along faces C and C by contracting the elements of dual vector spaces H(C, l) and
H(C, l).

The contribution of an individual polytope is the output of the spherical fusion category
evaluation map ZΓ for a spherical graph Γ dual to the polytope. For example, a tetrahedron
contribution is evaluated by the evaluation of a dual tetrahedral graph Γ, with vertices decorated
by basis elements in H(C, l)∗. See Figure 4.4.4.

An important ingredient of the construction is a neat identity which holds for the evaluation
maps. Consider a spherical graph Γ and cut it along the equator of the sphere. We can obtain
two simpler graphs Γ1 and Γ2 by taking either half of Γ and bringing together the cut lines to a
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Γ` Γr = Γ` Γr

Figure 4.4.5: A crucial identity for spherical fusion category evaluation maps: a graph Γ
(Left) can be split into two simpler graphs Γ1 and Γ2 (Right) with a sum over a complete set
of dual local operators at the new junctions (dashed line).
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Figure 4.4.6: A triangular bi-pyramid (Right) can be obtained by gluing two tetrahedra.
Correspondingly, the dual planar graph (Middle) can be obtained by fusing tetrahedral dual
planar graphs along a pair of junctions (Right). For clarity, the faces dual to the original
vertices are indicated by circled numbers.

common junction. The two new junctions support dual spaces of local operators V and V ∗. Then

ZΓ = ZΓ1 · ZΓ2 (4.4.4)

where the inner product denotes a sum over dual bases of local operators in V and V ∗. See Figure
4.4.5.

This has a straightforward geometric interpretation: the polytope dual to Γ can be decom-
posed into the polytopes dual to Γ1 and Γ2, glued along the faces dual to the new junctions. The
partition functions are glued by contracting the dual vector spaces associated to these faces. See
Figure 4.4.6.

The bulk line defects affect the partition sum by modifying the vector spaces associated to
the faces crossed by the lines. Essentially, they replace faces C with decorated faces Dα and
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Figure 4.4.7: a) A tetrahedron with an extra quasi-particle transversing two faces. We indi-
cated the choice of framing at each face. b) The dual planar graph in the spherical fusion
category. We drew the center line along the simplest choice of path. Alternative paths which
self-intersect or wind around the endpoints (c) would give answers which differ by framing
phases

H(C, l) with
H(Dα, l) = HomC (1, Yα ⊗ l(e1)⊗ · · · ⊗ l(en)) (4.4.5)

The computation of the contribution of a polyhedron with such modified faces involves adding
an extra Yα line attached to the appropriate vertices of Γ. If Yα crosses some other line in Γ we
can insert βα there. The precise framed path followed by Yα is immaterial because Yα lies in the
center. Changes of framing, though, change the answer appropriately. See Figure 4.4.7.

4.4.3 Adding a flat connection

Next, consider a G-graded spherical fusion category, a direct sum of sub-categories Cg with the
property that Cg⊗Cg′ ∈ Cgg′ . We will denote the identity inG as 1. The Turaev-Viro construction
applied to C1 gives a 3d TFT T with boundary condition B, bulk lines in Z[C1] and boundary
lines in C1.

We can extend this theory to manifolds equipped with a G connection, simply representing
the flat connection by edge elements ge and by prescribing that an edge e of the triangulation is
labelled by an object in Cge and building the partition sum as before. This endows T with a global
symmetry G.
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Elements in Cg can be interpreted as lines lying at the intersection of the boundary B with
a Ug topological domain wall implementing the g symmetry. In general, there will not be any
canonical choice of objects in Cg with trivial associators, meaning that the G global symmetry is
broken at the boundary. 17

Notice that bulk lines in the center Z[C1] are not equipped with a canonical crossing through
lines in Cg. Physically, this corresponds to the fact that there is no canonical way for a bulk line
to cross a Ug domain wall. 18

The group cohomology construction of bosonic SPT phases is the simplest example of a G-
graded Turaev-Viro partition sum, based on a G-graded category with a single (equivalence class
of) simple object Vg in each Cg subcategory.

The evaluation of a tetrahedron of positive (negative) orientation produces directly the asso-
ciator α±3 and the partition sum immediately reproduces the SPT partition function.

4.4.4 Gauging standard global symmetries

Gauging the G global symmetry of T should produce another topological field theory TG. The
partition function of TG should be obtained by summing the partition functions of T over all
possible choices of flat G connections. We expect this to coincide with Turaev-Viro applied to
the whole C, disregarding the G grading. This gives a sum over all flat connections rather than
equivalence classes of flat connections, but the total quantum dimension should also change in
such a way to compensate for that over-counting.

Notice that in the presence of a B boundary the Turaev-Viro construction applied to the
whole C will not sum over different choices of boundary lines. Correspondingly, the G gauge
theory has Dirichlet b.c.: the flat connection is fixed at the boundary.

Gauging a theory with a standard Abelian global symmetry G should give a theory with a
1-form symmetry valued in the dual Abelian group G∗, generated by Wilson lines Ba. Using the
definition of Wilson lines as center elements, we find that the insertion of a network of Wilson
lines changes the sum over G flat connections α1 by inserting a factor e2πi

∫
α1∪β2 , where we are

contracting the group elements in the flat connection α1 with the characters in the background
G∗ 2-form flat connection β2.

In order to see that in a fully explicit manner, it is useful to put a local order on the vertices
of the triangulation and pick the first vertex in every face as a framing for the Ba lines. Then the
decorated two-sphere graph associate to a tetrahedron has three Ba lines coming out of vertices
into the first face, and one coming out of the 234 vertex towards the second face. In order to
bring the Ba lines together and define a consistent graph, we need to have the Ba line from

17Depending on the Cg lines being dynamical or not in a UV completion of the theory, we can interpret the
breaking as being spontaneous or explicit.

18It is possible to define a G action on the center Z[C1], corresponding to surrounding a bulk line with an Ug
domain wall, so that a canonical crossing morphism exists mapping Y ⊗ Vg to Vg ⊗ (g ◦ Y ). In the mathematical
literature there is also the notion ofG-center, corresponding to objects in C with a canonical crossing through objects
in C1. These should correspond physically to bulk twist lines, at which Ug defects may end.
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the 234 vertex cross the line between the first and second faces. The twisting factor contributes
e2πi(α̂1)12(β̂2)234 . This is precisely the contribution of a single tetrahedron to e2πi

∫
α̂1∪β̂2 . 19

4.4.5 Adding a 2-form flat connection

A theory endowed with a 1-form global symmetry Z can be coupled to a 2-form flat connection,
say described by a 2-cocycle β2 valued in Z. Concretely, β2 should tell us which symmetry
generators Ba = (ba, βa) run through each face of the triangulation. Without loss of generality,
we can take the lines entering each tetrahedron to join together at some interior point, thanks to
δβ2 = 0. Gauge transformations on β2 simply move around the lines or re-connect them.

Thus we have a Turaev-Viro construction of the partition function Z[β2]: we simply replace
the vector spaces HomC (1, l(e1)⊗ · · · ⊗ l(en)) with HomC (1, bal(e1)⊗ · · · ⊗ l(en)) and project
the Ba lines for each tetrahedron to the surface, evaluating the corresponding graph as usual.

On general grounds, gauging a theory with a 1-form symmetry H should give a theory with
a standard global symmetry valued in the dual Abelian group H∗. We have already described the
process at the level of spherical fusion categories Cb and CZ2 .

The evaluation of tetrahedra in the CZ2
0 category over objects inherited from Cb will precisely

match the evaluation of tetrahedra in Cb coupled to a general β2. Adding a Z2 flat connection α1

simply adds the usual factor of eπi
∫
α1∪β2 .

The only non-trivial step in identifying the Turaev-Viro partition sum of CZ2 as the result of
gauging the 1-form symmetry of the Turaev-Viro partition sum of Cb is to observe that the sum
over simple object of Cb of the images in CZ2

0

∑

i

dCbi (Xi)0 (4.4.6)

reproduces the correct sum of simple objects in CZ2
0 .

4.4.6 Example: toric code

We can see now explicitly the equivalence between the toric code and Z2 gauge theory: the
decoration I or P of the edges of the triangulation encodes a Z2 cochain and all tetrahedra
contributions equal to 1. The total quantum dimension is 2, and the partition function is

1

2v

∑

ε1|δε1=0

1 =
1

2
|H1(M,Z2)|, (4.4.7)

where v is the number of vertices. Remember that center of the category consists of objects
I = (I, β = 1), e = (I, βP = −1), m = (P, β = 1), ε = (P, βP = −1). The pre-factor 2−v can
be interpreted as the order of the Z2 gauge group .

19In general, one can interpret the Fourier transform kernel e2πi
∫
α̂1∪β̂2 as a very simple topological field theory

with both a 1-form symmetry G∗ and a standard symmetry G, generated by a spherical fusion category modelled on
G and G∗-valued lines (1, e2πiχ·h).
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We see explicitly that adding an m line produces a vortex: the extra P line passing through
a face breaks the flatness condition there. If we couple the system to the corresponding flat
connection βm2 , the partition sum becomes

1

2v

∑

ε1|δε1=βm2

1. (4.4.8)

That is, it is equal to (4.4.7) if βm2 is exact and equal to zero otherwise. This is somewhat boring,
but consistent.

If we couple the system to a flat connection βe2, associated to the quasi-particle e, the partition
sum becomes instead

1

2v

∑

ε1|δε1=0

(−1)
∫
ε1∪βe2 (4.4.9)

The cup product emerges as before from the evaluation of the tetrahedron: with a canonical
choice of framing, a single e line crosses a single edge as in Figure 4.4.8. If βe2 is not exact,
we can always find a dual 1-cocycle by which to shift ε1 in order to switch the sign of the cup
product and thus cancel all terms in pairs. (This is equivalent to the statement that the mod-2
intersection pairing on cohomology is non-degenerate.) Thus the sum is not-vanishing only if βe2
is exact, in which case the integrand is a co-boundary and the sign drops out. This is consistent
with the symmetry exchanging e and m.

Next, we can try to couple the system to a flat connection βε2, associated to the fermion ε. The
result should be anomalous, but yet instructive. The partition sum becomes

1

2v

∑

ε1|δε1=βε2

(−1)
∫
ε1∪βε2 (4.4.10)

It is still true that if βε2 is not exact, we can always find a dual 1-cocycle by which to shift ε1
in order to switch the sign of the cup product and cancel all terms in pairs. Thus the sum is
not-vanishing only if βε2 is exact. If we write βε2 = δλ1, we can absorb λ into a shift of ε1 to get

1

2v

∑

ε1|δε1=0

(−1)
∫
ε1∪δλ1+λ1∪δλ1 = (−1)λ1∪δλ1

1

2v

∑

ε1|δε1=0

1 =
1

2
|H1(M,Z2)||(−1)λ1∪δλ1 (4.4.11)

This is the toric code partition function (4.4.7) times zΠ(δλ1). In other words, the anomaly found
in the toric code is precisely what we expected, at least for exact βε2 connections.

4.4.7 Gu-Wen Π-category

The Z2 gauge theory based on the Ĝ SPT phase has a simple partition sum: lines are decorated
by a fixed G flat connection which is lifted to a Ĝ connection by some 1-cochain ε1. The fusion
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0

1

2

3

Figure 4.4.8: A canonical choice of framing for the dual tetrahedron graph dressed by 1-form
symmetry generators.
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Vĝĝ′

Vĝ Vĝ′

→

ε+ ε′ + n2(g, g′)

ε ε′

V(gg′,0)

V(g,0) V(g′,0)

Figure 4.4.9: Gauge-fixing: A graphical representation of the partial gauge-fixing procedure
used in computing the tetrahedron contribution of the ĜGu-Wen phase decorated by an extra
2-form flat connection β2. Left: A choice of gauge is the same as a choice of basis vector
in the space of junctions between line defects in the full Ĝ category, possibly with an extra
center line. Right: we identify V(g,ε) ' V(1,ε)⊗Vg,0 and identify V(1,ε) with the corresponding
elements I or Π of the center. We then express a general junction canonically in terms of a
choice of junction between line defects labelled by G elements. The double lines denote the
center elements. The empty circle represents any choice of how to connect the center lines
in a planar way.

rules imply that δε1 equals the value of n2 on faces. The partition sum is

1

2v

∑

ε1|δε1=n2

∏
α̂3. (4.4.12)

We can pull out the ν3 contribution and get

1

2v

∏
ν3

∑

ε1|δε1=n2

(−1)
∫
n2∪ε1 . (4.4.13)

From the fact that the mod-2 intersection pairing on cohomology is non-degenerate, one again
deduces that the partition sum is non-zero only for G flat connections for which the pull-back of
n2 is exact, i.e. n2 = δλ1. Then we have

1

2v
(−1)

∫
δλ1∪λ1

∏
ν3

∑

ε1|δε1=0

1 = zΠ(δλ1) (4.4.14)

Things become more interesting if we turn on the Z2 2-form flat connection β2 coupled to
the fermionic 1-form symmetry generator. With appropriate gauge fixing, as in Figures 4.4.9 and
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Vĝĝ′
Vĝ′′

Vĝ′
Vĝ

Vĝ′ĝ′′

Vĝĝ′ĝ′′

(a)

=

(b)

Figure 4.4.10: The computation of the tetrahedron contribution for the Ĝ Gu-Wen phase
decorated by an extra 2-form flat connection β2.
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4.4.10, the partition sum becomes

1

2v

∏
ν3

∑

ε1|δε1=n2+β2

(−1)
∫
n2∪ε1+ε1∪β2 (4.4.15)

Now the partition sum is non-zero if the pull-back of n2 is co-homologous to β2. We can write
β2 = n2 + δλ1, shift ε1 and obtain

1

2v
(−1)

∫
n2∪λ1+λ1∪n2+λ1∪δλ1

∏
ν3

∑

ε1|δε1=0

(−1)
∫
n2∪ε1+ε1∪n2 (4.4.16)

The sign in the sum is actually a boundary and drops out. We get

Zf [β2] =
1

2v
(−1)

∫
n2∪λ1+λ1∪n2+λ1∪δλ1

∏
ν3

∑

ε1|δε1=0

1 (4.4.17)

Crucially, the answer transforms under gauge transformations precisely as zΠ(β2). Further-
more, the product Zf [β2]zΠ(β2) simply coincides with the (spin-structure corrected) Gu-Wen
SPT phase partition function: the

∏
ν3 combines with the Gu-Wen grassmann integral in zΠ(β2).

We accomplished our main objective.

4.4.8 State sums and spin-TFTs

We are ready to give our prescription for the Turaev-Viro partition sum of a spin TFT Ts con-
structed from the spherical fusion category Cf for its shadow Tf .

Pick a spherical fusion Π-category Cf . Define the decorated Turaev-Viro partition sum Zf [β2]

by adding fermionic Π lines through all faces where β̂2 = 1. The lines will be framed as in the
Gu-Wen Π-category calculation, going out of each dual vertex in the direction of the earliest face
in the order. See Figure 4.4.8.

The amplitude for each tetrahedron is computed using the same projection on the two-sphere.
The spin-TFT partition sum will be

Z[M ;Ts] =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

zΠ(β2)Z[M ;Tf ; β2] (4.4.18)

The spin-structure dependence is hidden in zΠ(β2).

Notice that the calculation of zΠ(β2) can be integrated into the Turaev-Viro calculation. The
Gu-Wen Grassmann integral can be given a super-vector space interpretation:

• We can assign fermion number 0 to the Vijk spaces and fermion number 1 to the VΠ;ijk

spaces. This mimics the assignment of Grassmann variables θf , θf to the faces of the
triangulation.
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• We can pick a specific order in the tensor product of face vector spaces which defined the
Hilbert space associated to the boundary of a tetrahedron. The order mimics the choice of
order for the Grassmann variables in the Gu-Wen integrand.

• When contracting pairs of dual vector spaces associated to each face, we keep track of
the Koszul signs required to reorder the tensor product and bring the pair of spaces to be
adjacent to each other. This mimics the choice of order for the Grassmann variables in the
Gu-Wen integration measure

As the combinatorics of super-vector space tensor products reconstruct the Gu-Wen Grass-
mann integral, all which is left is the linear coupling of β2 to the chain E of faces encoding the
spin structure. We can write

Z[M ;Ts] =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

(−1)
∫
E β2Zsuper[M ;Tf ; β2] (4.4.19)

This has the form of a calculation in the spherical super-fusion category associated to the
Π-category Cf . It would be interesting to pursue this point further.

4.5 String net models

The same data which goes into the Turaev-Viro construction can also be used to give a local
lattice Hamiltonian construction of the theory.

It is straightforward to give a physical motivation is analogous to the one we reviewed for
the partition function. The basic step is to relate the Hilbert space HΣ of the theory T on some
space manifold Σ and the Hilbert space HΣ′ on a manifold Σ′ with an extra circular hole with
boundary condition B.

In general, HΣ′ is larger than HΣ, but there will be maps i, π embedding HΣ into HΣ′ and
projecting HΣ′ to HΣ, which can be described in terms of three-manifolds with the topology of
Σ × [0, 1] minus a half-sphere. It is easy to see that π ◦ i is a multiple of the identity map, as it
corresponds to a three-manifolds with the topology of Σ× [0, 1] minus a contractible sphere with
boundary condition B.

Thus we can describeHΣ as the image inHΣ′ of the projector i◦π, corresponding to a three-
manifolds with the topology of Σ × [0, 1] minus two half-spheres. Furthermore, the projector
i ◦ π can be given a simple description in terms of the combination

∑
i diLi we encountered in

explaining the Turaev-Viro construction, where the Li are interpreted as closed line defects going
around the circumference of the hole, acting on the Hilbert space.

More generally, we can triangulate Σ and carve out a circular hole at each vertex of the
triangulation. Each hole will be associated to a separate projector Pv = iv ◦ πv and all projectors
will commute. Thus HΣ is obtained from HΣ′ as the ground state of a commuting projector
Hamiltonian. See Figure 4.5.1.

147



=

Figure 4.5.1: The Hilbert space associated to a surface Σ without holes (left) can be em-
bedded in the Hilbert space associated to a surface Σ′ with holes (right), as the image of
projectors defined by the action of closed boundary lines

∑
i diLi.

We can readily give a local description of HΣ′ , by enlarging the holes until they almost fill
the 2-cells dual to the vertices of the triangulation. We can continue out decomposition as we did
for the partition function. At the next step we cut at 1-cells and replace Σ′ with a collection Σ′′

of disks associated to faces of the triangulation, with B boundary conditions and three boundary
lines for each disk. Each edge of the triangulation is associated with a pair of dual boundary lines
in the disks corresponding to adjacent faces.

As long as the possible choices of lines run over all simples, or whatever other convenient
basis of lines we employed in the state sum model, we can find maps ie, πe embedding HΣ′ in
HΣ′′ . See Figure 4.5.2.

If the lines we selected are simple objects, the embeddings are actual isomorphisms, as both
ie ◦ πe and πe ◦ ie turn out to be multiples of the identity as long as the pairs of simple lines
corresponding to an edge of a triangulation are dual to each other. The Hilbert space HΣ′′ is the
tensor product of the corresponding morphism spaces Vijk for each disk. 20 See again Figure
4.5.2.

The Hilbert spaceHΣ′′ is the microscopic Hilbert space for the string net model. The decora-
tion of edges by line defectsLi and the vector spaces Vijk decorating the faces are the microscopic
degrees of freedom. This is also the Hilbert space associated in the state sum construction to a
boundary with topology Σ, triangulated and decorated by all possible simple simple lines.

The projectors Pv can be computed as the state sum partition function for a geometry Mv,
consisting of a bi-pyramid made of tetrahedra to be glued on top of the triangles adjacent to v.
Of course, the bi-pyramid contribution can be computed directly by the evaluation of the dual
graph in the spherical fusion category. See Figure 4.5.3.

If we want to add a bulk quasi-particle Y as some point in Σ, say inside a face f of the
triangulation, we simply replace Vijk with the Hilbert space for a disk Vijk;Y with the extra bulk
particle Y in the middle, as in the state-sum model. The projectors for the vertices around f are
corrected by adding the quasi-particle to the state-sum calculation, going in and out the old and
new f face. See Figure 4.5.4.

20If the lines Li are not simple, the Vijk are modules for the Hom(Li, Li) morphisms. Then πe ◦ ie is still
a multiple of the identity but ie ◦ πe projects the naive tensor product of Vijk spaces to the tensor product over
Hom(Li, Li).
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Figure 4.5.2: The Hilbert space associated to a surface Σ′ with a regular arrangement of
holes (left) can be identified with a direct sum of tensor product of Hilbert spaces associated
to a collection of three-punctured disks. For clarity, we denote the boundary line defects Lia
and L∗ia simply as “ia” and “i∗a”. Disks are in correspondence to faces of the triangulation.
Pairs of dual defects are in correspondences to the edges of the triangulation.

v

Figure 4.5.3: Left: The projector Pv can be computed as a state-sum model evaluation of a bi-
pyramid. The bi-pyramid partition function is interpreted as a map from the dual of the vector
space associated to the bottom faces to the vector space associated to the top faces. The
action of the projector on the microscopic Hilbert space of the string-net model corresponds
to gluing the bi-pyramid on top of the vertex v. Right: The bi-pyramid is computed in the
spherical fusion category by an appropriate planar graph dual to the bipyramid surface. The
oval faces are dual to the top and bottom vertices of the bi-pyramid.
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v
f

Figure 4.5.4: Left: The projector Pv in the presence of a quasi-particle at f can be computed
as a state-sum model evaluation of a bi-pyramid with an extra bulk line. Right: The decorated
bi-pyramid is computed in the spherical fusion category by an appropriate planar graph
including the appropriate center line corresponding to the quasi-particle. The quasi-particle
joins the junctions dual to the bi-pyramid faces above f . We selected a specific framing for
the quasi-particle (which direction it exits and enters the junctions) it and kept it constant
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v

f

f’

Figure 4.5.5: Left: A very economical description of the operatorUY
f,f ′ [`] for adjacent faces f

and f ′. The pillow-case geometry is the minimal way to interpolate between triangulations
with quasi-particle insertions at f and f ′. Right: The decorated pillowcase is computed
in the spherical fusion category by an appropriate planar graph including the appropriate
center line corresponding to the quasi-particle. The quasi-particle joins the junctions dual
to the bottom bi-pyramid face above f and the top bi-pyramid face above f ′. We selected a
specific framing for the quasi-particle, pointing towards the vertex v.

We can also consider operators UY
f,f ′ [`] corresponding to state-sum geometries which inter-

polate between the original triangulation and a triangulation where the quasi-particle Y has been
moved to another face f ′ along some framed path ` in Σ × [0, 1]. See Figure 4.5.5 for a crucial
example. Crucially, these operators will commute with the projectors in the Hamiltonian. Their
algebra will mimic the topological properties of the corresponding quasi-particles.

4.5.1 Example: toric code

The string net model for the toric code, based on the category with objects I and P , is quite
obviously a Z2 gauge theory: the configuration of edge decorations on the triangular lattice can
be interpreted as a 1-cochain α1 with values in Z2. The fusion constraint requires α1 to satisfy
δα1 = 0. Since all vector spaces Vijk are one-dimensional or zero-dimensional, each allowed
edge decoration corresponds to a basis vector inHΣ′s which will be denoted |α1〉. The projector
Pv simply acts as

|α1〉 →
1

2
|α1〉+

1

2
|α1 + δλv0〉 (4.5.1)

where λv0(v′) = δv,v′ is the 0-cochain supported on v. The product
∏

v Pv projects to the subspace
of gauge-invariant states.
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It is interesting to decorate this picture with quasi-particles. The m quasi-particle at some
face f simply deforms the fusion constraint at f . More generally, a configuration βm2 of m
quasi-particles imposes the constraint δα1 = βm2 . The projectors are unchanged:

Pλ0 [βm2 ]|α1〉 =
1

2
|α1〉+

1

2
|α1 + δλ0〉 (4.5.2)

Similarly, the operators Um
λ1

which change the locations of m particles as βm2 → βm2 + δλ1

can be defined by combining individual Um
e which act on the two faces adjacent to an edge e,

built from a pillowcase geometry. The map only changes α1 at the edge itself, and thus we have
simply

Um
λ1
|α1〉 = |α1 + λ1〉. (4.5.3)

Clearly we have
Um
λ1
Um
λ′1

= Um
λ1+λ′1

. (4.5.4)

Note that if λ1 is exact, λ1 = δµ0, we have

Um
δµ0
Pµ0 = Pµ0 . (4.5.5)

Therefore on the image of
∏

v Pv the operator Um
λ1

is invariant under λ1 7→ λ1 + δµ0. The ability
to define operators Um

λ1
satisfying (4.5.4) and (4.5.5) indicates that the Z2 1-form symmetry

generated by the m particle is non-anomalous.

On the other hand, an e quasi-particle at a face f will not change the fusion constraint, but
will change the form of the projectors for the vertices of f by adding some signs. Inspection
of the dual bi-pyramid graph shows that the e center line only needs to cross other lines if it is
framed towards v. In that case, we pick a sign −1 for each P line it crosses. See Figure 4.5.6.

For definiteness, we should pick a canonical framing for quasi-particles. For example, we can
add a branching structure (local order of vertices) on the triangulation and frame quasi-particles
towards the earliest vertex in each face. Then Pv has a sign only if v is the earliest vertex of f ,
appearing in front of the |α1 + δλv0〉 term.

The projectors for a general configuration of e particles βe2 become

Pλ0 [βe2]|α1〉 =
1

2
|α1〉+

1

2
(−1)

∫
λ0∪βe2 |α1 + δλ0〉 (4.5.6)

Here we used the branching structure to define cup products. In a gauge theory language, the
second term in the deformed projector inserts a Wilson line at the earliest vertex of the face f .
The space of states in the presence of e particles is the image of the projector

∏
v Pv[β

e
2]. Here

α1 is closed because there are no m quasi-particles present.

The operators U e
λ1

which change the locations of e particles as βe2 → βe2 + δλ1 can be defined
by combining individual U e

e which act on the two faces adjacent to an edge e, built from a
pillowcase geometry. See again Figure 4.5.6. The operator is diagonal in the |α1〉 basis:

U e
λ1
|α1〉 = (−1)

∫
α1∪λ1 |α1〉 (4.5.7)
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Figure 4.5.6: Left: The only bi-pyramid contributing non-trivial signs to Pv in the presence
of an e particle. The quasi-particle is framed towards v and the decoration of the edges near
v must flip from 1 to P or viceversa. Right: An example of a pillowcase contributing a non-
trivial sign to U e

e . There is a potential sign whenever the quasi-particle is framed towards
an oval face, i.e. the earliest vertex of a face (“0”) is opposite to the edge e. Then the sign
measures the presence of P along the 01 edge of that face. This can be expressed as a cup
product α1 ∪ λe1.

Again we have
U e
λ1
U e
λ′1

= U e
λ1+λ′1

, U e
δλ0
P e
λ0

[βe2] = P e
λ0

[βe2], (4.5.8)

indicating that the Z2 1-form symmetry generated by the e particle is non-anomalous.

Notice that the Um and U e operators do not commute, as expected from the braiding phase
of e and m:

Um
λ1
U e
λ′1

= (−1)
∫
λ1∪λ′1U e

λ′1
Um
λ1

(4.5.9)

Neither is U e
λ1

invariant under λ1 7→ λ1 + δµ0 when δα1 = βm2 is non-vanishing. This indicates
a mixed anomaly for the two Z2 1-form symmetries.

Finally, we can insert ε particles. We both impose the constraint δα1 = β2 and use the
projectors

Pλ0 [β2]|α1〉 =
1

2
|α1〉+

1

2
(−1)

∫
λ0∪β2|α1 + δλ0〉 (4.5.10)

These correspond to a specific choice of framing of the ε line in the pillowcase geometry: it
joins the two junctions along the most direct path compatible with the framing of the junctions,
crossing a minimum number of other edges in the planar graph.

The operators which change the location of the ε particles around a single edge take the form

U ε
e |α1〉 ≡ U ε

λe1
|α1〉 = (−1)

∫
α1∪λe1|α1 + λe1〉. (4.5.11)
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We can tentatively define a general operator rearranging ε particles:

U ε
λ1
|α1〉 = (−1)

∫
α1∪λ1|α1 + λ1〉 (4.5.12)

but the anomaly pops out as expected:

U ε
λ1
U ε
λ′1

= (−1)
∫
λ′1∪λ1U ε

λ1+λ′1
(4.5.13)

We can compute also

U ε
λ1
Pλ0 [β2]|α1〉 =

1

2
(−1)

∫
α1∪λ1|α1 +λ1〉+

1

2
(−1)

∫
λ0∪β2(−1)

∫
δλ0∪λ1(−1)

∫
α1∪λ1 |α1 +δλ0 +λ1〉

(4.5.14)
and check that it coincides with Pλ0 [β2 + δλ1]U ε

λ1
|α1〉, as expected.

Note that the pairing

ωΣ(λ1, λ
′
1) =

∫

Σ

λ′1 ∪ λ1 (4.5.15)

is symmetric modulo 2 for closed cochains λ1, λ
′
1 but not in general. Rather, one has

ωΣ(λ1, λ
′
1)− ωΣ(λ′1, λ1) =

∫

Σ

(δλ ∪1 λ
′
1 + λ1 ∪1 δλ

′
1). (4.5.16)

Thus some U ε
λ1

and U ε
λ′1

anti-commute rather than commute. Concretely, it is easy to check that
U ε
e and U ε

e′ anti-commute if the e and e′ are adjacent to the same face and have the same orien-
tation (induced by the branching structure) with respect to the face. They commute otherwise.
Thus we cannot impose the constraint U ε

e = 1 on the states for all e.21

4.5.2 A fermionic dressing operator

To fix the sign problem in the algebra of the operators U ε
λ1

, let us place at each face f of the
triangulation a pair of Majorana fermions γf and γ′f . They are generators of a Clifford algebra
Cl(2).

For any edge e, define
Se = iγfL[e]γ

′
fR[e] (4.5.17)

where fL,R are the faces to the left and to the right of the edge (with respect to the branching
structure orientation). We have the commutation relation

SeSe′ = (−1)
∫
Σ δ1(e)∪δ1(e′)Se′Se, (4.5.18)

where δ1(e) is a 1-cochain supported on the edge e. In words: Se operators commute unless the
two edges share a face and have the same orientation with respect to the face, in which case they

21While it is true that the naive U εe squares to 1 for all e, it is not true that the naive U ελ1
squares to 1 for all λ1.

But this problem can be fixed by redefining U ελ1
by suitable factors of i. The lack of commutativity for U εe and U εe′

is a more serious problem.
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anti-commute. We also have S2
e = 1 for all e. The crucial point is that the combined operators

SeU
ε
e commute with each other for all e.

Next we would like to define Sλ1 for a general 1-cochain λ1, so that

Sλ1Sλ′1 = (−1)
∫
Σ λ
′
1∪λ1Sλ1+λ′1

. (4.5.19)

We let
Sλ1 = (−1)

∑
e<e′∈Λ

∫
Σ δ1(e)∪δ1(e′)

∏

e∈Λ

Se. (4.5.20)

Here Λ is the set of edges where λ1(e) = 1, ordered in some way, and the product is ordered
from right to left. The sign factor in (4.5.20) can also be described as follows: we include −1
for every pair of edges in Λ which share a face, have the same orientation (with respect to the
branching structure), and whose order along the face agrees with the ordering of Λ. It is easy
to check that Sλ1 does not depend on the choice or ordering of Λ and that (4.5.19) is satisfied.
Thus, if we provisionally define Vλ1 = Sλ1U

ε
λ1

on the tensor product of HΣ′ and the fermionic
Fock space, we will have the relations

Vλ1Vλ′1 = Vλ1+λ′1
. (4.5.21)

A further issue which needs to be addressed is the behavior of Vλ1 under transformations
λ1 7→ λ1 + δµ0, where µ0 is a Z2-valued 0-cochain. A satisfactory generator of a Z2 1-form
symmetry must be invariant under such “symmetries of symmetries”. Instead, in agreement with
a general formula (4.2.40), we find

U ε
δµ0
Pµ0 [β2]|α1〉 = (−1)

∫
Σ(β2∪µ0+µ0∪β2)Pµ0 [β2]|α1〉. (4.5.22)

Thus the operator U ε
δµ0

is nontrivial even after projection to the physical Hilbert spaceHΣ.

Similarly, we can compute Sδµ0 . To write down the answer, note that basis elements in the
fermionic Fock space are naturally labeled by Z2-valued 2-cochains ν2: for a given face f , the
state |ν2〉 is an eigenstate of iγfγ′f with eigenvalue (−1)ν2(f). Then we get

Sδµ0|ν2〉 = (−1)
∫
Σ(ν2∪µ0+µ0∪ν2+C2∪µ0)+

∫
w̃2

µ0|ν2〉. (4.5.23)

Here w̃2 is a particular Z2-valued 0-chain representing the 2nd Stiefel-Whitney class of Σ, and
C2 is a Z2-valued 2-cochain which takes value 1 on every face.

We can cancel all ν2-dependent signs in Sδµ0 against β2-dependent signs in U ε
δµ0

if we project
to the subspace where ν2 = β2. To eliminate state-independent signs, we choose a 1-chain E
such that ∂E = w̃2. As discussed in [118], such a E determines a spin structure on Σ. Then we
define improved E-dependent Fock-space operators

SEλ1
= (−1)

∫
Σ C1∪λ1+

∫
E λ1Sλ1 .

Here C1 is a Z2-valued 1-cochain taking value 1 on every edge. It satisfies δC1 = C2. We also
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define improved E-dependent dressed generators:

V E
λ1

= U ε
λ1
SEλ1

.

On the projected Hilbert space, they satisfy

V E
λ1
V E
λ′1

= V E
λ1+λ′1

, V E
λ1+δµ0

= V E
λ1

for all 1-cochains λ1 and all 0-cochains µ0.

We can now define a commuting projector Hamiltonian for the phase Ts on the projected
Hilbert space as

HE =
∑

e

1

2
(1− V E

e ).

4.5.3 Fermionic dressing for general Π-categories

If the Drinfeld center of the fusion category C contains a fermion Π, we can define U f
e operators

in a manner completely analogous to the toric code example. The operator is evaluated by the
pillowcase graphs framed as described above.

Because of the universality of factors associated to changes of framing and recombination of
Π lines, we expect the same law as in the toric code.

U f
e U

f
e′ = (−1)

∫
δ1(e′)1∪δ1(e)U f

e+e′ (4.5.24)

More directly, we can compare the geometries associated associated to U f
e U

f
e′ and U f

e′U
f
e . The

corresponding pairs of pillowcase geometries can be glued together to give the same geometry,
but the framing of the center lines in the new geometry may or not agree. A careful analysis of all
cases reproduces the expected multiplication law. See Figure 4.5.7. Therefore the same dressing
by Majorana fermions will give commuting operators U s

e ≡ SeU
f
e .

From the toric code example, we also expect

U f
δµ0

= (−1)
∫
Σ(β2∪µ0+µ0∪β2). (4.5.25)

This can be reproduced, with some effort, by counting the number of self-intersections of the
Π lines obtained by merging the chain of pillowcase graphs for the sequence of edges around a
single vertex.

Therefore the fermionic dressing ensures that V E
λ1

= U f
λ1
SEλ1

is trivial when λ1 is exact.

It follows that we can gauge the 1-form symmetry generated by Π by imposing the constraints
β2(f) = ν2(f) for all faces f and V E

e = 1 for all edges e in the tensor product of the Hilbert
space of Tf and the fermionic Fock space.

This is our final prescription for a microscopic Hamiltonian for Ts, built from the data of Cf .
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1
1
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1

1

0
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2
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2

Figure 4.5.7: A comparison of U f
e U

f
e′ and U f

e′U
f
e for edges e, e′ adjacent to the same face

f . Left and Right: The corresponding pairs of pillowcase geometries. Middle: The fused
geometry. If the edges e and e′ are the 01 and 12 edges of f , the center lines emanating
from the fused junctions at f reconnect as shown in the middle. The two center lines can be
identifies only up to a change of one unit of framing. Similar pictures with the outer face
labelled by 0 or 2 match with no change of framing. Hence associativity fails only if e and
e′ are the 01 and 12 edges or vice-versa.

4.5.4 Including global symmetries

It is easy to extend the string-net construction to models with global non-anomalous symmetry
G. Such a model is associated to a G-graded spherical fusion category C = ⊕gCg. In the
Hamiltonian approach, G acts on-site and commutes with the Hamiltonian.

For example, we can model the lattice system on a discrete G-valued sigma model. That is,
we put group variables gv at vertices. Edges between vertices labeled by group elements g and g′

are labeled by simple objects in Cg′g−1 . We have commuting projectors P g,g′
v which change the

group element at v from g to g′, built from a state-sum bi-pyramid with central edge decorated
by g′g−1 [133].

Essentially by construction, adding G gauge fields on the edges and gauge-fixing the vertex
group elements reproduces the string net model for the theory where G is gauged.

Bosonic SPT phases provide an obvious, well understood example of this construction. In
this case Cg has a single simple object for all g, so the vertex variables gv are the only variables.
For an explicit expression for the projectors P g,g′

v see [133].

4.5.5 Example: the shadow of Gu-Wen phases

Our next example is the Z2 gauge theory associated to a Z2 central extension Ĝ of a symmetry
group G. In this case Cg has two simple objects which we denote Vg,ε, ε ∈ Z2, as before. They
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fuse according to (4.3.10).

We decorate the vertices of the triangulation with group elements in G and the edges with Z2

variables ε1 so that the edge objects are Vg−1g′,ε1(e). The fusion rules imply that δε1 = n2, where
n2 is evaluated on the G group elements around each face.

The projectors P g,g′
v involve two terms, each computed as a product of α̂3. The two terms

map a state with given Z2 decoration to two states with Z2 decorations which differ by a gauge
transformation at v. This is expected, as we are defining an equivariant version of Z2 gauge
theory.

With a bit of patience, one can disentangle the contribution of Z2 and G variables to the bi-
pyramid graph of P g,g′

v . For example, we can gauge-fix as in figure 4.4.9 every junction of the
bi-pyramid graph. As we collapse the center line junctions to a single planar junction, we will
get a factor of −1 from non-planar intersections. We can write these signs as (−1)(n2,ε1), where
the parenthesis indicates a certain bilinear pairing which is somewhat tedious to compute. This
factor multiplies some expression P̃ g,g′

v which depends on the G variables only.

We can populate the lattice with Π particles along some cocycle β2. Now δε1 = n2 + β2. We
get deformed projectors P g,g′

v [β2]. Again, we can gauge-fix the junctions in a canonical way. The
manipulation of Π lines will give some new signs (−1)(n2,ε1)+(β2,ε1)′ , multiplying the same P̃ g,g′

v

expression as before.

We can similarly compute the U f
e operators which change β2 in the two faces adjacent to e.

The calculation involves the same pillowcase graphs as before. The G group elements do not
change in the process, we only shift ε1 by λe1.

The contribution from Π lines crossing other lines is again (−1)
∫
ε1∪λe1 , as in the toric code.

Thus the fermionic dressing proceeds as before.
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Chapter 5

Unoriented 3d TFTs

5.1 Introduction

It is an age-old problem to provide a complete definition of quantum field theories. A part of
the problem is to understand on what kinds of manifolds can we put a quantum field theory. For
instance, we can ask the following question: Given a theory that can be defined on orientable
manifolds, what sort of extra data do we need in order to extend the definition of the theory to
non-orientable manifolds? First of all, such an extension may not be possible. For instance, if the
theory has a framing anomaly, then it will not be well-defined on non-orientable manifolds. This
was recently explained in a footnote of [149]. Second, if such an extension is possible, then it
need not be unique. That is, there can be different unoriented theories which reduce to the same
oriented theory on orientable manifolds. We will see plenty of examples like this in this chapter.

On a non-orientable manifold, we can choose a consistent orientation everywhere if we re-
move a locus homologous to the Poincare dual of first Stiefel-Whitney class w1. The induced
local orientation flips as we cross this locus. In order to be able to define an unoriented the-
ory in terms of the data of the oriented theory, we need the existence of orientation reversing
codimension one defects which we place along this locus. These orientation reversing defects
implement orientation reversing symmetries akin to the orientation preserving codimension one
defects which implement a global symmetry transformation [150]. These defects can be placed
on top of each other forming the structure of a group G with a homomorphism ρ : G → Z2

whose kernel G0 is the global symmetry group of the theory. The set G1 = G−G0 parametrizes
the orientation reversing symmetries.

In this chapter, we explore the consequences of the existence of such orientation reversing
defects in the context of 3d TFTs which admit a topological boundary condition. We restrict
ourselves to the case in which the structure group of the TFT can be decomposed asO(3)×G for
a finite global symmetry group G. In such cases, the properties of orientation reversing defects
allow us to propose a generalization of Turaev-Viro state-sum construction of 3d TFTs [151,138]
to the unoriented case.1 We check that this proposal indeed defines a 3d unoriented TFT. From
now on, whenever we say “unoriented TFT”, we mean this particular structure group.

1Historically, the original construction due to Turaev and Viro was based on a modular tensor category treated as
a spherical fusion category. This construction produced theories which could be defined on an unoriented manifold.
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For an oriented 3d TFT T with global symmetry G, the input data for the construction is a
G-graded spherical fusion category C. We will find that an unoriented 3d TFT T̃ extending T is
constructed in terms of a G-graded “twisted” spherical fusion category C̃ where C is embedded
as a subcategory of C̃. In terms of the data of C̃, we give a prescription to construct the partition
function of T̃ on any (possibly non-orientable) 3-manifold.

We also apply these ideas to 3d Pin+-TFTs (i.e. TFTs with structure group Pin+(3) × G)
which are a generalization of 3d Spin-TFTs. Spin-TFTs are “fermionic” analogs of ordinary
oriented TFTs as they are sensitive to the spin structure of the underlying orientable manifold.
To define fermions on an unorientable manifold, we need to choose either a Pin+-structure or
a Pin−-structure on the manifold. Correspondingly, the natural unoriented generalizations of
Spin-TFTs are Pin+-TFTs and Pin−-TFTs.

In [3], a recipe was given to construct a 3d Spin-TFT from an ordinary 3d TFT with an anoma-
lous Z2 1-form symmetry. This ordinary TFT Tf was called the shadow of the corresponding
Spin-TFT Ts. The idea was to use a kernel TFT Tk to connect the shadow theories with their
spin counterparts. Tk is a Spin-TFT with an anomalous Z2 1-form symmetry. The diagonal Z2

1-form symmetry in the product theory Tf × Tk is non-anomalous. This non-anomalous 1-form
symmetry is then gauged to obtain the spin TFT Ts.

We extend their recipe by constructing shadows for Pin+-TFTs. The Pin+-shadows corre-
spond to theories with anomalous Z2 1-form symmetry and a certain time-reversal anomaly in
the presence of a background 2-connection for the Z2 1-form symmetry. The Pin+-kernel TFT
T+
k has a corresponding time-reversal anomaly which cancels the anomaly of the shadow. Hence,

the resulting Pin+-TFTs are time-reversal invariant and can be put on non-orientable manifolds
without any ambiguity [152].

As an application, we construct a large class of Pin+-SPT phases with global symmetry
G. SPT phases are TFTs which are invertible under the product operation on TFTs. In the
condensed matter literature, these are referred to as fermionic SPT phases protected by G × ZT2
with T 2 = (−1)F . In the case when G is trivial, cobordism hypothesis predicts two Pin+-SPT
phases forming a Z2 group structure [128]. Our construction reproduces both of these SPT phases
along with the Z2 structure.

This chapter is organized as follows. In section 6.5.31, we propose a Turaev-Viro construc-
tion for unoriented 3d TFTs. In section 6.5.32, we provide a construction of Pin+-TFTs in terms
of ordinary unoriented TFTs with a Z2 1-form symmetry which is anomalous and has a mixed
anomaly with time-reversal symmetry. In section 6.5.33, we construct a large class of Pin+-SPT
phases with global symmetry G and reproduce the Z2 group of Pin+-SPT phases in the case of
trivial G. In section 5.5, we present our conclusions and comment on future directions which
include a strategy to classify all Pin+-SPT phases with global symmetry G.

This construction was generalized to arbitrary spherical fusion categories but such theories could only be defined
on oriented manifolds. It is this latter construction that we call “oriented Turaev-Viro construction” in this chapter.
This chapter presents a further generalization of this setup which we call “unoriented Turaev-Viro construction”.
Our construction can be used to construct any unoriented 3d TFT with a topological boundary condition.
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L

(a)

L∗

=

L

(b)

Figure 5.2.1: (a) A boundary line L. (b) The dual line L∗ is defined by reversing the orien-
tation of L.

5.2 Turaev-Viro construction

For an exhaustive review and physical understanding of the Turaev-Viro state-sum construction
of oriented 3d TFTs, the reader is referred to [3]. In this section, we first review relevant aspects
of this construction. Then, we propose a generalization of the construction to the unoriented
case. We also provide a physical understanding of our proposal in terms of orientation reversing
defects. We close the section by discussing invertible unoriented TFTs with global symmetry G,
or in other words bosonic SPT phases protected by G× ZT2 .

A reader only interested in the Turaev-Viro construction of unoriented 3d TFTs is referred to
subsections 5.2.3 and 5.2.4.

5.2.1 Boundary line defects and spherical fusion category

In general, a boundary condition B allows one to define a TFT T on a manifoldM with boundary
B by placing B on the boundary. The boundary condition is called topological if topological
deformations of M (including topological deformations of B) leave the partition function of T
on M invariant.

Turaev-Viro procedure constructs an oriented 3d (unitary) TFT T from the knowledge of a
topological boundary condition B of T [153]. T can be recovered from any one of its topological
boundary conditions. For simplicity, we will assume that T has a one-dimensional Hilbert space
on S2. The Turaev-Viro construction for such a TFT T is phrased in terms of a (unitary) spherical
fusion category C.

The objects of C are line defects living on B. Such line defects are specified by a label L
and an orientation along the line corresponding to L. If a line defect with a certain orientation is
denoted as an object L in C, the same line defect with opposite choice of orientation is denoted
as the dual object L∗. See Figure 5.2.1.
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A3

A1 A2

m

(a)

A1 A2

A3

m

(b)

Figure 5.2.2: A morphism m between outgoing lines A1, A2 and A3 corresponds to a state
m in the Hilbert space on a disk with boundary punctures A1, A2 and A3. Consider on a
hemisphere geometry with a boundary on the spherical part and the disk shown in (b) being
the cross-section. The state shown in (b) is produced on the cross-section if the boundary
has the graph shown on (a) inserted on it such that Ai end on their respective punctures.

The morphisms mAB from A to B in C are local operators living between two boundary
lines. Thus, mAB form a vector space. This vector space can also be identified with the Hilbert
space of states on the disk with boundary punctures corresponding to A∗ and B. Similarly, the
local operators living at the junction of multiple outgoing lines Ai is the space of states on disk
with boundary punctures corresponding to Ai. The space of states can be generated by placing
a hemispherical cap on which the lines Ai emanate from a point on the boundary of the cap and
go to their respective punctures. See Figure 5.2.2.

The composition of morphisms corresponds to fusion of local operators along the line. There
is a tensor product corresponding to fusion of lines as they are brought together. There are also
canonical associator, evaluation and coevaluation maps which physically correspond to placing
the lines in a certain fashion and fusing them. See Figures 5.2.3 and 6.3.4. Using these canonical
morphisms, we can assign a morphism m from ⊗iAi to ⊗jBj to any planar graph Γ of bound-
ary line defects (with local operators at their junctions) such that Γ has incoming lines Ai and
outgoing lines Bj . The canonical morphisms satisfy certain identities which guarantee that a
topologically equivalent graph Γ′ evaluates to the same morphism m.

Consider vacua i of B which can be characterized by the expectation value of a line Li. Such
lines are called simple lines. Morphism space from Li to Lj is empty for i 6= j and is one-
dimensional for i = j. The space of local operators living on Li can be identified as C because
there is a canonical identity operator living on Li. Every line L can be written as a sum of simple
lines L = ⊕niLi where ni denotes the multiplicity of the simple line Li in the sum. The identity
line 1 can be treated as a special simple line which can be inserted anywhere without changing
any answers. The duals of simple lines are simple as well.

Turaev-Viro construction uses C as an input and produces the partition of T on any oriented
manifold M as the output. We will describe the construction in a very hands-on fashion in the
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m

n

L1

L2

L3

= n ◦m

L1

L3

(a)

C

A B

=

C

A⊗B

(b)

m

L1

L3

n

L2

L4

= m⊗ n

L1 ⊗ L2

L3 ⊗ L4

(c)

Figure 5.2.3: (a) Composition of morphisms. The box is our alternative notation for a mor-
phism. (b,c) Tensor product of objects and morphisms.

A B C

=

(A⊗B)⊗ C

A⊗ (B ⊗ C)

a(A,B,C)

(a)

L

= eL

L⊗ L∗

1

(b)

L

= iL

L⊗ L∗

1

(c)

Figure 5.2.4: Canonical maps: (a) Associator a(A,B,C), (b) Evaluation eL, and (c) Co-
evaluation iL.
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k

i j

α

(a)

k

i j

α

(b)

Figure 5.2.5: (a) Graphical representation of the chosen basis. (b) Graphical representation
of the dual basis.

next subsection. We will see that the basic object in the construction is a graph Γ in C drawn on
the sphere. Γ can be projected down to a closed graph Γp drawn on the plane. Γp constructs a
morphism from identity line to itself which evaluates to a definite number. This number is the
partition function ZΓ of T on a 3-ball along with a network of boundary lines (and local operators
at their junctions) Γ inserted at the boundary 2-sphere. The word “spherical” in spherical fusion
category corresponds to certain axioms which guarantee that different projections to the plane
evaluate to the same number.

This construction can be easily generalized to TFTs with a global symmetry group G. The
symmetry manifests itself in the existence of codimension one topological defects Ug labeled by
g ∈ G. Going across the locus of Ug implements a symmetry transformation on the system by g.
These defects fuse according to the group law and can end on B giving rise to new lines at the
junction. Thus the category of boundary lines living on B becomes graded by G, i.e. C = ⊕g Cg.

5.2.2 Oriented Turaev-Viro

Let’s look at the decomposition of the tensor product of two simple lines Li ⊗ Lj = ⊕nkijLk.
This means that there is a nkij dimensional space of morphisms from Lk to Li ⊗ Lj . We pick a
basis of this space labeled by α. Similarly we pick a dual basis for the space of morphisms from
Li ⊗ Lj to Lk which we also label by α. See Figure 5.2.5. The completeness of the basis can be
written graphically as in Figure 5.2.6(b). 2 We can transform to a basis labeled by α′. We denote
the unitary matrix corresponding to the transformation as (U ij

k )α′α. See Figure 5.2.7.

The associator induces an isomorphism between the morphism space from Ll to (Li⊗Lj)⊗
Lk and the morphism space from Ll to Li ⊗ (Lj ⊗ Lk). In terms of our chosen basis, this iso-
morphism can be captured in terms of F -symbols (F ijk

l )(p,α,β)(q,γ,δ) which are defined in Figure

2We are assuming that the quantum dimensions of all Li is 1 for simplicity. For generic quantum dimensions, we
have to normalize these morphisms appropriately so that any graph of line defects and its topological deformations
define the same morphism.
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k
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= δαβ
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α

β

k

∑
(kαβ) =

i j

i j

(b)

Figure 5.2.6: (a) Graphical representation of the fact that the two basis are dual to each
other. (b) Completeness of the basis. Here, sum over (kαβ) represents a sum over all such
consistent triples.

k

i j

α′ =
∑

α (U ij
k )α′α

k

i j

α

Figure 5.2.7: A change of basis via a unitary matrix.

i j k

l

α

β

p −→ ∑
(qγδ)(F

ijk
l )(p,α,β)(q,γ,δ)

i j k

l

γ

δ

q

Figure 5.2.8: Definition of F -symbols.
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Figure 5.2.9: Labeling of faces.
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p

q

l
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Figure 5.2.10: A tetrahedron can have two chiralities - (a) positive and (b) negative. There
is a label attached to every face but we don’t show it in the figure for brevity.

6.3.8. Under a change of basis, F -symbols transform as

(F ijk
l )(p,α,β)(q,γ,δ) → (F ijk

l )(p,α,β)(q,γ,δ)(U
jk
q )∗γ′γ(U

iq
l )∗δ′δ(U

ij
p )α′α(Upk

l )β′β (5.2.1)

We are now ready to describe Turaev-Viro prescription for the partition function of T on
a manifold M . Pick a branched triangulation T of M . A branched triangulation requires an
ordering > of the vertices of the triangulation. To an edge e between vertices a and b, a branched
triangulation assigns a direction a→ b if a > b. The G-connection α1 on M assigns an element
ge of the group G to each directed edge e. We now label each directed edge e by a simple
element living in Cge . Pick a face f of T . Rotating it and flipping it, f looks like as shown in
Figure 5.2.9(a). Then, we label f by some α corresponding to a morphism as shown in the Figure
5.2.9(b). Thus we have a labeling of edges and faces of a branched triangulation. Call one such
labeling as l̃.
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Figure 5.2.11: Graph attached to a tetrahedron: (a) positive chirality and (b) negative chiral-
ity.
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Pick a tetrahedron t in l̃. To each t we assign a planar graph Γt in C and we call such a graph
as a tetrahedron graph. Notice that t can have two chiralities - positive and negative as shown in
Figure 5.2.10. Γt for a positive chirality t and a negative chirality t are shown in Figure 5.2.11.
The first one evaluates to (F ijk

l )(p,α,β)(q,γ,δ) and the second one evaluates to (F ijk
l )∗(p,α,β)(q,γ,δ).

Let’s call this number as nt(l̃) and define N(l) =
∏

t nt(l̃). To each edge e of T , we can
associate a number de(l̃) which is the quantum dimension of the simple line assigned to e in l̃.
Define d(l̃) =

∏
e de(l̃). The partition function Z(M) is then given by

Z(M) = D−2v
∑

l̃

N(l̃)d(l̃) (5.2.2)

where D =
√∑

i d
2
i is the total quantum dimension of C (where di is the quantum dimension of

simple line Li) and v is the number of vertices in T .

The invariance of Z(M) under Pachner moves is guaranteed by the pentagon equation satis-
fied by the associators in C. The pentagon equation says that the following morphism made by
composing associators

((A⊗B)⊗C)⊗D → (A⊗(B⊗C))⊗D → A⊗((B⊗C)⊗D)→ A⊗(B⊗(C⊗D)) (5.2.3)

and the following morphism made by composing associators

((A⊗B)⊗ C)⊗D → (A⊗B)⊗ (C ⊗D)→ A⊗ (B ⊗ (C ⊗D)) (5.2.4)

are equal. In terms of F -symbols, this means that
∑

r,δ,ε,µ

(F ijk
q )(p,α,β)(q,γ,δ)(F

irl
m )(q,ε,γ)(s,µ,ν)(F

jkl
s )(r,δ,µ)(t,ρ,σ) =

∑

τ

(F pkl
m )(q,β,γ)(t,ρ,τ)(F

ijt
m )(p,α,τ)(s,σ,ν)

(5.2.5)
One can check that (5.2.5) is invariant under an arbitrary gauge transformation (5.2.1).

5.2.3 Twisted spherical fusion category and orientation reversing defects

Consider an oriented theory defined by C. We propose that an unoriented parent theory can be
constructed in terms of a larger “twisted” spherical fusion category C̃. This larger category is
assembled from four pieces C̃ = C̃0,0⊕ C̃0,1⊕ C̃1,0⊕ C̃1,1 such that each of the subcategories C̃ε,ε′
is G-graded. C̃0,1 is a bimodule on which C̃0,0 acts from left and C̃1,1 acts from right. Similarly,
C̃1,0 is a (non-empty) bimodule with C̃1,1 acting from the left and C̃0,0 acting from the right. An
object in C̃0,1 fuses with an object in C̃1,0 to give an object in C̃0,0. Similarly, an object in C̃1,0

fuses with an object in C̃0,1 to give an object in C̃1,1. C̃ can also be thought of as a 2-category
made out of two objects ‘0’ and ‘1’.

C̃0,0 is the same as the spherical fusion category C. C̃1,1 has same objects as that of C. Simi-
larly, C̃1,0 is a copy of C̃0,1 at the level of objects. Graphically, we describe simple objects of C̃ε,ε′
as lines with the left plaquette labeled by ε and right plaquette labeled by ε′. In general, we draw
graphs Γ in C̃ in which we label the each plaquette by some ε. See Figure 5.2.12.
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ε ε′

(a)

k

i j

αε ε′′

ε′

(b)

Figure 5.2.12: (a) A line in C̃ε,ε′ . (b) A sample graph in C̃ showing a morphism α in the
morphism space (V ij

k )ε.

In our notation, the labels i, j, k etc. tell us that we have a line of C̃ε,ε′ with a specific value of
ε+ ε′ but do not determine the individual ε, ε′. The data of individual ε is captured in the labeling
of plaquettes by ε, ε′, ε′′ etc. Thus the labeling of plaquettes is slightly redundant. We need only
specify the label of a single plaquette and the labels for the other plaquettes can be determined
from the labels i, j, k etc. In what follows, we will often just specify the label of the left-most
plaquette.

C̃ comes equipped with the data of an anti-linear isomorphism I between various morphism
spaces. This map is easy to describe in terms of simple objects. It takes the morphism space
(V ij

k )ε from Lk to Li ⊗ Lj with some labeling of plaquettes (such that the left-most plaquette is
ε) to the morphism space (V ij

k )ε+1 from Lk to Li⊗Lj but with the labeling on plaquettes flipped.
Thus, we just have to pick a basis α of morphism spaces (V ij

k )0. The basis (V ij
k )1 is determined

by the action of I and we label the resulting basis by the same labels α. See Figure 5.2.13. Thus,
under a change of basis (U ij

k )α′α of (V ij
k )0, the basis of (V ij

k )1 transforms by (U ij
k )∗α′α.

The associators are compatible with I . Let’s denote F -symbol associated to a graph having
the left-most plaquette 0 as (F ijk

l )(p,α,β)(q,γ,δ) as shown in Figure 5.2.14. Then, compatibility of
associator and I implies that the F -symbol associated to the same graph but with the labels of all
plaquettes flipped is (F ijk

l )∗(p,α,β)(q,γ,δ). Thus, the pentagon equation for the associator becomes

∑

r,δ,ε,µ

(F ijk
q )(p,α,β)(q,γ,δ)(F

irl
m )(q,ε,γ)(s,µ,ν)(F

jkl
s )

s(i)
(r,δ,µ)(t,ρ,σ) =

∑

τ

(F pkl
m )(q,β,γ)(t,ρ,τ)(F

ijt
m )(p,α,τ)(s,σ,ν)

(5.2.6)
where s(i) = ∗ if i labels a simple object of C̃0,1 or C̃1,0 and s(i) = 1 otherwise. As the equation
in terms of F -symbols looks different from (5.2.5), we refer to this equation as the twisted
pentagon equation even though it still descends from the pentagon equation on the associators.
This equation also appeared in [154].
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Figure 5.2.13: The action of anti-linear isomorphism I .

i j k

l

α

β

p0

ε

ε′

ε′′ −→ ∑
(qγδ)(F

ijk
l )(p,α,β)(q,γ,δ)

i j k

l

γ

δ

q0

ε′

ε

ε′′

Figure 5.2.14: Definition of F -symbols for C̃.
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k

i j

α0 0

0

(a)

−→UR

k∗

i∗ j∗

1 1

1

(b)

−→Mirror

k∗

j∗ i∗

α1 1

1

(c)

Figure 5.2.15: The action of UR sends a graph (a) on B to a graph (b) on B′ but in the
“wrong” orientation. This means that the tensor product in graph (b) is taken from right to
left. In order to get back to our convention of tensor product from left to right, we take a
mirror of graph (b) and obtain graph (c). The resulting graph (c) is read in C ′.

Notice that the gauge transformations on F -symbols now take the following form

(F ijk
l )(p,α,β)(q,γ,δ) → (F ijk

l )(p,α,β)(q,γ,δ)(U
jk
q )
∗s(i)
γ′γ (U iq

l )∗δ′δ(U
ij
p )α′α(Upk

l )β′β (5.2.7)

and one can check that (5.2.6) is invariant under this gauge transformation.

The identity line of C = C̃0,0 can be inserted anywhere in plaquettes labeled by 0 without
changing any answers. Similarly, the identity line of C̃1,1 can be inserted anywhere in plaquettes
labeled by 1 without changing any answers. For each object in C̃0,1, we define a dual object in
C̃1,0 and vice-versa. These duals are slightly different from the usual duals in a spherical fusion
category C. That is, given a line L in C̃0,1, the evaluation maps take L ⊗ L∗ to identity in C̃0,0

and take L∗ ⊗ L to identity in C̃1,1. Similar statements hold true if we flip 0 and 1 or replace
evaluation with co-evaluation.

Given a graph Γ in C̃ drawn on the sphere, different projections to planar graphs Γp must be
equivalent. In other words, we demand that there are conditions on C̃ similar to that of a spherical
structure on a spherical fusion category C.

We now turn our attention to the physical interpretation of the structure we have just de-
scribed. An unoriented 3d TFT T̃ has an orientation reversing defect UR implementing a reflec-
tion transformation. This defect can fuse with other orientation preserving defects Ug to form
more orientation reversing defects URg. The fusion of these defects froms a group G̃ = G× Z2

and there is a canonical homomorphism ρ1 from G̃ to Z2 whose kernel is G.

UR can be fused with the boundary B to give a new boundary B′. Under such a fusion, the
orientation of the boundary flips as well. There is a spherical fusion category C ′ associated to B′

which is identified as C̃1,1. If there is a line L on B, then fusion of B with UR flips its orientation
and we obtain the line L∗ on B′. Consider a morphism from Lk to Li ⊗ Lj on B. Slapping UR
on top of it, we send each line to its dual and B to B′. However, since this process flips the
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Figure 5.2.16: The symmetry of the theory under a reflection guarantees that the above two
graphs evaluate to the same number.

orientation of the boundary, we have to take a mirror of the resulting configuration of lines to
read it in terms of C ′. See Figure 5.2.15. Thus, fusion with UR provides a linear isomorphism
from V ij

k in C to V j∗i∗

k∗ in C ′. This is the origin of the anti-linear isomorphism I in C̃ described
above.

URg can end on the boundary giving an interface between B and B′ and an interface between
B′ and B. The lines living on these interfaces give rise to C̃0,1 and C̃1,0 respectively. Together
they form a “twisted” spherical fusion category C̃ described above.

The label 0 and 1 of plaquettes in a graph in C̃ corresponds respectively to the boundary B
and B′ in the physical setting. A graph Γ in C̃ drawn on a sphere computes the partition function
of T̃ on a 3-ball with a network of boundary lines specified by Γ. The bulk of the 3-ball contains
orientation reversing defects which end on the boundary at the location of lines living in C̃0,1 or
C̃1,0.

Given such a 3-ball with Γ on the boundary, we can bubble a UR in the bulk of the 3-ball and
bring it to the boundary. This sends Γ to Γ′ (after taking the mirror) and both of these graphs
must evaluate to the same number. This is the origin of the compatibility between associators
and I . See Figure 5.2.16.
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5.2.4 Unoriented Turaev-Viro

In this subsection, we generalize the Turaev-Viro prescription to compute the partition function
of an unoriented theory T̃ on an unoriented 3-manifold M . We will assume that the reader has
read subsection 5.2.2 before reading this subsection and so we will sometimes cut corners in
what follows.

Fix an orientation O on R3. An unoriented 3-manifold M can be constructed as follows. We
pick open sets of R3 and glue them along codimension one loci using piecewise-linear maps.
This gives us a locus L in M which is defined by the property that the transition functions are
orientation reversing. The Poincare dual of this locus is a representative of first Stiefel-Whitney
class and we call it w1. We assign a local orientation Ot to any small tetrahedron t in M − L
by first using the local chart to map it to a tetrahedron in R3 where we have already picked an
orientation O. Ot remains invariant under deformations of t inside M − L.

Pick a branched triangulation T of M . w1 assigns a number pe valued in {0, 1} to every edge
e. And the G-connection α1 on M assigns an element ge of the group G to each directed edge e.

Let’s extract a set of labels S0,0 such that each label in the set corresponds to a simple object
of C̃0,0. Similarly, extract a set of labels S0,1 such that each label in the set corresponds to a
simple object of C̃0,1. Define an involution ∗ on S0,0 induced by taking the dual of simple objects.
Similarly, define an involution ∗ on S0,1 under which i is sent to j if the ∗ operation of C̃ sends
the object Li in C̃0,1 to the object Lj in C̃1,0. There is also a G-grading on both of these sets
descending from the G-grading of simple objects.

We now label each directed edge e by a label in (S0,pe)ge . Pick a face f of T . We can label
f by some label α just as in the oriented case. Thus we obtain a labeling of edges and faces of a
branched triangulation. Call one such labeling as l̃.

Now pick a tetrahedron t in M − L in the labeling l̃. To each such t we will assign a planar
graph Γt in C̃. If the chirality of t matches the local orientation Ot, we assign the graph shown
in Figure 5.2.17(a) with ε = ε′ = ε′′ = ε′′′ = 0 and if the chirality doesn’t match the local
orientation we assign the graph shown in Figure 5.2.17(b) with ε = ε′ = ε′′ = ε′′′ = 0. To define
Γt for a t intersecting L, we choose a small neighborhood Ut of t such that L looks like a wall
cutting Ut into two parts. On one side of the wall, we assign 0 to every vertex and on the other
side we assign 1. We assign a global orientation OUt to Ut given by local orientation Ot′ of any
tetrahedron t′ lying completely on one side of the wall where vertices are labeled by 0. We now
assign the graph shown in Figure 5.2.17(a) with ε = 0 and arbitrary ε′, ε′′, ε′′′ if chirality of t
matchesOUt and the graph shown in Figure 5.2.17(b) with ε = 0 and arbitrary ε′, ε′′, ε′′′ if it does
not.

Notice that if we flip the choice of 0 and 1 that we assigned to the sides of the wall and apply
the above presciption, then Γt is flipped to the “reflected” graph Γ′t which is the graph obtained
by acting UR on Γt. See Figure 5.2.16. Γt and Γ′t evaluate to the same number.

Also notice that if we take a tetrahedron t′′ in Ut whose vertices are all labeled by 1 and assign
to it a new graph Γ′t′′ by matching its chirality with OUt instead, then Γ′t′′ will be the “reflected”
version of the old graph Γt′′ that we assigned in the starting of last paragraph by matching its
chirality with the local orientation, and hence Γ′t′′ will evaluate to the same number as Γt′′ . Thus,
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Figure 5.2.17: The possible graphs that we attach to a tetrahedron.

we see that we could have also given the prescription to compute the partition function in various
patches Ui by using the local orientations and assigning {0, 1} to the two sides produced by an
intersection of Ui with the w1 wall. The tetrahedra lying the intersection of Ui and Uj would give
the same contribution in each patch. Thus, we would just have to make sure that we “glue” the
tetrahedra in various intersections properly.

Returning back to our original prescription, we just repeat what we already said for the ori-
ented case. Let’s call the evaluation of Γt as nt(l̃) and define N(l) =

∏
t nt(l̃). To each edge e of

T , we can associate a number de(l̃) which is the quantum dimension of the simple line assigned
to e in l̃. Define d(l̃) =

∏
e de(l̃). The partition function Z(M) is then given by

Z(M) = D−2v
∑

l̃

N(l̃)d(l̃) (5.2.8)

where D =
√∑

i d
2
i is what we dub as the total quantum dimension of C̃ (where di is the

quantum dimension of simple line Li) and v is the number of vertices in T . We would like to
emphasize that we are picking labels i only in “half” of C̃ i.e. C̃0,0 and C̃0,1. Hence, the total
quantum dimension only involves square of quantum dimensions of half of the simple lines.

The invariance of Z(M) under Pachner moves and under change of representative of w1 is
guaranteed by the twisted pentagon equation (5.2.6) satisfied by the F -symbols in C̃. In the rest
of the chapter, by “twisted spherical fusion category” we will mean the data of C̃0,0 ⊕ C̃0,1 and
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we will often repackage this data as C ′ = ⊕g̃C ′g̃ = ⊕gC ′g ⊕g C ′Rg where g̃ ∈ G̃ = G × Z2 and R
is the generator of Z2 in G̃. C ′g = (C̃0,0)g and C ′Rg = (C̃0,1)g. We also define a homomorphism ρ

(also called ρ1) from G̃ to Z2 which sends G× {e} to 0 and G× {R} to 1.

5.2.5 Example: Bosonic SPT phases

Bosonic SPT phases protected by G = G0 × ZT2 are invertible unoriented TFTs with global
symmetry G0. Such a phase is constructed by a twisted spherical fusion category C having a
single simple object Lg in each subcategory Cg. The fusion rules are Lg ⊗ Lg′ ' Lgg′ .

F-matrices define aU(1) valued function of three group elements α3(g, g′, g′′) = Fg,g′,g′′;gg′g′′ .
The twisted pentagon equation (5.2.6) translates to

α
s(g)
3 (g′, g′′, g′′′)α3(g, g′g′′, g′′′)α3(g, g′, g′′)

α3(gg′, g′′, g′′′)α3(g, g′, g′′g′′′)
= 1 (5.2.9)

where s(g) = (−1)ρ(g). This means that α3 is a ρ-twisted group cocycle. On the other hand,
gauge transformations (5.2.7) become

α3(g, g′, g′′)→ α3(g, g′, g′′)
β
s(g)
2 (g′, g′′)β2(g, g′g′′)

β2(g, g′)β2(gg′, g′′)
(5.2.10)

which corresponds to adding an exact ρ-twisted cocycle δβ2 to α3.

This means that the bosonic SPT phases are classified by the ρ-twisted group cohomology
H3(BG,U(1)ρ) [155]. A background connection α1 for G0 on M combines with w1 to give
a background connection for G which is represented as a map from M to BG. An element of
H3(BG,U(1)ρ) is then pulled back to a density onM which can be integerated onM to produce
the partition function Z(M,α1).

5.3 Pin+-TFTs

We start this section by reviewing the construction of Spin-TFTs from their shadows [3]. We will
argue that the Pin+-shadows must have an additional kind of anomaly which was not present in
the case of Spin-shadows. Incorporating this addtional anomaly will allow us to generalize the
shadow construction to Pin+-TFTs. We finish the section by showing how to take a product of
Pin+-TFTs at the level of shadows.

5.3.1 Review of Spin case

[3] provided a recipe to construct a 3d Spin-TFT Ts from its shadow Tf . The shadow is an
ordinary TFT with an anomalous Z2 1-form symmetry. This manifests itself in the existence of
a bulk line Π which fuses with itself to the identity and has certain properties. See Figure 5.3.1.
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Π Π Π
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Π Π Π
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Π Π
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(b)

Figure 5.3.1: (a) A property of bulk line Π generating an anomalous Z2 1-form symmetry.
(b) Half-braiding Π lines across each other gives a factor of −1 when compared to Π lines
without braiding.

We want to couple Tf to a background 2-connection β2 for the 1-form symmetry. We can
do so by inserting Π lines inside a triangulated manifold such that an even number of Π lines
cross a face having β2 = 0 and an odd number of Π lines cross a face having β2 = 1. Since
Π has a non-trivial crossing with itself, topologically different ways of gluing Π lines inside
the tetrahedron will differ by signs. Hence, we need to pick a convention of how we will glue
the Π lines crossing these faces inside each tetrahedron when we say that Tf is coupled to a
background 2-connection β2. Once we have picked this convention, the partition function will
not be invariant under gauge transformations of β2.

After fixing the convention, the change in the partition function under gauge transformations
is independent of the theory, however. To see this, consider the product T = T1 × T2 of two
shadow theories T1 and T2, and couple it to a background 2-connection for the diagonal Z2

1-form symmetry. The partition function would then be the product

Z(M,β2) = Z1(M,β2)Z2(M,β2) (5.3.1)

and a gauge transformation would leave Z invariant. This is because resolving a crossing of the
product line Π1Π2 gives no minus sign as the signs from crossing of Π1 and crossing of Π2 cancel
each other.

The strategy of [3] was to compute this anomaly for a simple shadow theory, namely the
shadow of Gu-Wen fermionic SPT phases. The anomaly under β2 → β2 + δλ1 turns out to be

Zf (M,β2)→ (−1)
∫
M λ1∪β2+β2∪λ1+λ1∪δλ1Zf (M,β2) (5.3.2)

This transformation is the same as the transformation of a spin-structure η1 dependent sign
z(M, η1, β2). This sign can be written as [156]

z(M, η1, β2) = (−1)
∫
M η1∪β2+

∫
N β2∪β2+w2∪β2 (5.3.3)
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Figure 5.3.2: Properties of boundary image of bulk lines. These properties imply that the
bulk lines are elements of the Drinfeld center of the spherical fusion category formed by
boundary lines.

where N is a 4-manifold whose boundary is M and w2 is a representative of second Stiefel-
Whitney class. For oriented manifolds, this sign is independent of N because β2 ∪ β2 +w2 ∪ β2

is exact if β2 is a cocycle. It is easy to see from this expression that

z(M, η1, β2 + δλ1) = (−1)
∫
M λ1∪β2+β2∪λ1+λ1∪δλ1z(M, η1, β2) (5.3.4)

Here we have used a representation of spin structure as an equivalence class of 1-cochains η1

satisfying δη1 = w2 under the equivalence relation given by addition of exact 1-cochains to
η1 [156].

Thus combining the shadow theory with this sign gives a theory with a non-anomalous Z2

1-form symmetry. The spin theory Ts is obtained from this by gauging this 1-form symmetry

Zs(M, η1) =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

z(M, η1, β2)Zf (M,β2) (5.3.5)

So, we have a one-to-one correspondence [Ts] ↔ (Tf ,Π) where [Ts] denotes the equivalence
class of Spin-TFTs under permutations of spin structures η1 → η1 +α1 where [α1] ∈ H1(M,Z2).

We would like to have a Turaev-Viro construction for Zf (M,β2). To this end, we should
understand how to encode the Π line in terms of the spherical fusion category C. Notice that Π
is mapped to a boundary line P by bringing it to the boundary. If we bring Π to the boundary
such that it crosses a boundary line X , we obtain a canonical isomorphism βX : X ⊗ P →
P⊗X . Bringing Π to the boundary in topologically equivalent ways should lead to same answers.
Hence, (P, β) can be moved across other morphisms. See Figure 5.3.2.

Mathematically, this means that Π is an element (P, β) of Drinfeld center of C. This ele-
ment fuses with itself to identity and βP = −1. The Turaev-Viro construction for Zf (M,β2) is
achieved by inserting a Π line emanating from every vertex whose dual face has β2 = 1. See
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Figure 5.3.3: The basic tetrahedron graph in the Turaev-Viro construction of the partition
function Zf (M,β2) of the shadow theory in the presence of a background 2-connection β2.
A Π line (shown as double line in the figure) leaves the vertex if the dual face has β2 = 1.
We let such lines meet without crossing each other in the region denoted by a disk in the
graph. Different ways of joining the lines in the disk are equivalent because of the property
of Π lines shown in Figure 5.3.1(a).
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Figure 5.3.3.

5.3.2 Fermion in Pin+-theories

Pin+-TFTs are a generalization of Spin-TFTs to the unoriented case. Spinors can be defined on
an n-dimensional non-orientable manifold by using transition functions valued in Pin+(n) group
or Pin−(n) group, both of which are double covers of O(n). They are distinguished by the value
of R2 acting on spinors where R is a spatial reflection. R2 = +1 for Pin+-group and R2 = −1
for Pin−-group. In terms of time reversal symmetry T , the action on spinors is T 2 = −1 for the
Pin+ case and T 2 = +1 for the Pin− case. A Pin+-structure exists only if the second Stiefel-
Whitney class [w2] vanishes. On the other hand, a Pin−-structure exists only if [w2 +w2

1] vanishes
where [w1] is the first Stiefel-Whitney class. Two Pin+ or Pin−-structures differ by an element
of H1(M,Z2).

In the Pin+ case, there is a choice in defining the action of reflection in i-th spatial direction
on spinors. We can either multiply the spinor by the gamma matrix γi or by −γi. This suggests
that in a Pin+-shadow there are two canonical choices mR and nR = −mR of local operators at
the junction of a Π line and R-defect. These operators square to 1. The orientation preserving
defects always have a single canonical local operator at the junction.

Now we will argue that, in general, there must be a locus L embedded inside the locusM
of orientation reversing defects which implements the transformation m ↔ n. Moreover, the
homology class of L must be the Poincare dual of [w2

1]. Choose a locus L′ embedded inside
M whose homology class is the dual of [w2

1]. Now bubble a fermion line near M and move
it such that it intersects M in two junctions. See Figure 5.3.4(a). The local opeartors at the
two junctions must be inverses of each other. Take one of these junctions around a cycle C in
M. If the cycle intersects L′, then fusing the fermion line with itself at the end of this process
gives a crossing of fermion line which provides a factor of −1. See Figure 5.3.4(b). Topological
invariance demands that C must intersect L as well so that the fusion of the local operators at the
end of the process provides a factor of −1 which cancels the sign from the crossing. Similarly, if
C doesn’t intersect L, it doesn’t intersect L′ either. Hence, L and L′ are in the same homology
class. Thus, we can choose to identify L with the representative w2

1.

We will see in the next section that this flip m ↔ n as Π crosses L′ is responsible for the
presence of mixed anomaly between time reversal symmetry and Z2 1-form symmetry in Pin+-
shadows.

5.3.3 Shadows of Pin+-TFTs

Just as in the spin case, to define what we mean by a Pin+-shadow Tf coupled to a background
β2, we need to pick a convention for configuring Π lines. In addition to this, we also need to
choose whether we will put m or n on the junctions when Π crosses R-defect. The Pin+-TFT
T+ is obtained as

Z+(M, η1) =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

z+(M, η1, β2)Zf (M,β2) (5.3.6)
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(a) (b) (c)

Figure 5.3.4: (a) The big circle is a cartoon representing the locusM dual to w1. A Π line
is bubbled nearby and dipped into this locus. The operators at the two marked junctions
are inverses of each other. (b) Taking the left half of Π line around a loop C inM which
intersects once the locus L′ dual to w2

1, brings us to the configuration shown in the figure.
We omitM in this figure for brevity. The region denoted by a black disk is shown in (c).
That is, the Π lines are glued inside this black region in such a way that there is a non-trivial
half-braiding (i.e. crossing) of the Π lines. The reason for the appearance of this crossing is
that the normal direction toM is reflected across L′ and hence the top and bottom parts of
the (left half of) Π loop are exchanged as C crosses L′.
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where the sign which cancels the anomaly for Z2 1-form symmetry of Tf can be defined as

z+(M, η1, β2) = (−1)
∫
M η1∪β2+

∫
N β2∪β2+(w2

1+w2)∪β2 (5.3.7)

where ∂N = M and η1 parametrizes Pin+-structures. The expression is independent of N as
β2 ∪ β2 + (w2

1 +w2)∪ β2 is exact if β2 is a cocycle. Fliping the choice of local operator changes
the partition function as Zf (M,β2) → (−1)

∫
M w1∪β2Zf (M,β2). This can be absorbed into a

permutation of Pin+-structures η1 → η1 + w1. Thus, as in the spin case, we have a one-to-one
correspondence [T+] ↔ (Tf ,Π) where [T+] denotes the equivalence class of Pin+-TFTs under
permutations of Pin+-structures.

Now, notice that Pin+-shadows have a time reversal anomaly in the presence of a background
2-connection β2. As we add δv0 to w1, we add δu1 to w2

1 where u1 = w1∪v0 +v0∪w1 +v0∪δv0.
This corresponds to movingM and L′. But during such movements, L′ will cross some Π lines
encoding β2 and the partition function will change as

Zf (M,β2)→ (−1)
∫
M u1∪β2Zf (M,β2) (5.3.8)

Under this transformation, the sign also transforms in the same way

z+(M, η1, β2)→ (−1)
∫
M u1∪β2z+(M, η1, β2) (5.3.9)

and the corresponding Pin+-TFTs have no time-reversal anomaly.

The signs z+ written above implies the following anomaly under β2 → β2 + δλ1

Zf (M,β2)→ (−1)
∫
M λ1∪β2+β2∪λ1+λ1∪δλ1+w2

1∪λ1Zf (M,β2) (5.3.10)

where w1 is a representative of first Stiefel-Whitney class. As the anomaly is universal, we will
verify that this is the correct anomaly by computing the anomaly directly for shadows of Pin+

generalization of Gu-Wen fermionic SPT phases in the next section.

To obtain the Turaev-Viro construction for Zf (M,β2), we need to know how to encode the
Π line in terms of the data of C. As in the spin case, Π is mapped to some boundary line P
with canonical isomorphisms βX : X ⊗ P → P ⊗ X . However, unlike the spin case, Π is not
an element of Drinfeld center of C. Rather, we need to insert extra signs whenever we move Π
across L′. This descends to the statement that (P, β) is an element of a twisted Drinfeld center
which is defined in Figure 5.3.5.

5.3.4 Product of Pin+-TFTs

In this subsection, we want to figure out the shadow of the product of two Pin+-TFTs. This will
lead to the definition of a product on the shadow theories which we will call the shadow product.

First, notice that 3

z+(M, η1, β2)z+(M, η1, β
′
2) = z+(M, η1, β2 + β′2)(−1)

∫
M β2∪1β′2 (5.3.11)

3See Appendix B of [156] for an introduction to higher cup products like ∪1 used in the following equation.

181



k

P

iP j

ε ε′′

ε′

= (−1)(ε+ε′)(ε′+ε′′)

k P

iP j

ε
ε′′

ε′

Figure 5.3.5: The equations defining twisted Drinfeld center.

Now consider two Pin+-TFTs T+ and T′+ with their corresponding shadows Tf and T′f . Using
the above, we can write the partition function of the product theory as

Z+(M)Z ′+(M) =
|H0(M,Z2)|2
|H1(M,Z2)|2

∑

[β2],[β′2]

z+(M,β2 + β′2)Zf (M,β2)Z ′f (M,β′2)(−1)
∫
M β2∪1β′2

(5.3.12)
which can be massaged as

Z+(M, η1)Z ′+(M, η1) =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β2]∈H2(M,Z2)

z+(M, η1, β2)Z̃f (M,β2) (5.3.13)

with

Z̃f (M,β2) =
|H0(M,Z2)|
|H1(M,Z2)|

∑

[β′2]∈H2(M,Z2)

(−1)
∫
M (β2+β′2)∪1β′2Zf (M,β2 + β′2)Z ′f (M,β′2) (5.3.14)

being the partition function of the shadow corresponding to the product theory. We denote this
shadow theory as the shadow product Tf ×f T′f .

Physically, we are constructing the shadow of the product by gauging the diagonal Z2 1-
form symmetry in the product of the shadow theories. Notice that this 1-form symmetry is
non-anomalous and hence gauging it makes sense.

To implement the shadow product in the Turaev-Viro description, we first take a graded
product of C ×G C ′ of C and C ′. This means that (C ×G C ′)g = Cg × C ′g. Now we need a notion
of gauging the line b = ΠΠ′ in the Drinfeld center of C ×G C ′. In general, we can consider the
following problem. Take a theory Tb specified by a twisted spherical fusion category Cb having a
non-anomalous Z2 1-form symmetry. This means that there exists a line b in the Drinfeld center
of Cb which fuses with itself to identity and has the properties shown in Figure 5.3.6. We want
to construct the twisted spherical fusion category for the theory TZ2 obtained after gauging the
1-form symmetry generated by b.
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b b b

=

b b b

(a)

b b

=

b b

(b)

Figure 5.3.6: The properties of a bulk line b generating a non-anomalous Z2 1-form symme-
try are very similar to that of Π. The only difference is that crossing b lines doesn’t lead to a
sign.

b is invisble in the gauge theory. This means that a morphism from A to b ⊗ B in Cb has
to be regarded as a morphism from A to B in CZ2 . And the morphisms from A to B in Cb are
also morphisms from A to B in CZ2 . The composition and tensor product of new morphisms are
defined as shown in the Figure 5.3.7.

Let’s try to understand what happens to the simple objects under this operation. If L is a
simple object in Cb, M = b ⊗ L is simple as well. If M is not isomorphic to L, then the
morphism from L to b⊗M in Cb provides an isomorphism from L to M in CZ2 combining them
into a single simple object in CZ2 . If M is isomorphic to L, then the morphism from L to b⊗M
in Cb provides an additional endomorphism ξL of L in CZ2 . Since there are two independent
morphisms from L to itself in CZ2 , it must split into two simple objects L+ and L− which can be
constructed by inserting a projector

π±L =
1

2
(1± ξL) (5.3.15)

on L.

5.4 Fermionic SPT phases

In this section, we discuss Pin+-SPT phases. We also explicitly compute the partition function on
an arbitrary manifold M of a certain Pin+-shadow which gives rise to the Pin+ Gu-Wen phases.
We can read the anomaly of Pin+-shadows from the expression for the partition function. The
anomaly matches the expectation of the previous section. We finish the section by reproducing
Z2 group of Pin+-SPT phases without any global symmetry.
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A

B b

A

B

(a)

A

B

(b)

A1

B1

A2

B2

(c)

A1

B1

A2

B2

(d)

Figure 5.3.7: Construction of CZ2: (a) Two types of morphisms from A to B. (b) Compo-
sition of two morphisms of the second type. (c) Tensor product of two morphisms of the
second type. (d) Tensor product of a morphism of first type on the left and of second type
on the right will similarly involve a crossing of b line. And the tensor product of second type
on left and first type on right doesn’t involve any crossing.

5.4.1 Gu-Wen phases

In this subsection, we will discuss Pin+ Gu-Wen SPT (f-SPT) phases with global symmetry G.
Gu-Wen fermionic SPT phases were first described in [157] and explored further in [156].

The twisted spherical fusion category for these phases is such that Cg has two simple objects
Lg,0 and Lg,1 for any g in G× ZR2 . The fusion rule is

Lg,ε ⊗ Lg′,ε′ ' Lgg′,ε+ε′+n2(g,g′) (5.4.1)

where n2 is a Z2-valued group cocycle, i.e. it is an element of H2(B(G× ZR2 ),Z2). H2(B(G×
ZR2 ),Z2) is also the group of central extensions of the form

0→ Z2 → Ĝ→ G× ZR2 → 0 (5.4.2)

Thus, we can view C as descending from Ĉ which is a Ĝ-graded category with a single simple ob-
ject in each grade. One obtains C by forgetting the sub-grading corresponding to the Z2 subgroup
appearing in the above central extension. More physically, Ĉ can be viewed as generalizing the
notion of unoriented bosonic SPT phases to bosonic SPT phases with more complicated struc-
ture group. Forgetting the Z2 grading corresponds to gauging the Z2 symmetry. The associator
of elements in C can be read from the associator in Ĉ which we denote as α̂3. It is an element of
H3(BĜ, U(1)ρ). As a note, we will denote an arbitrary element of G×ZR2 by g in what follows.

We demand the existence a fermionic line Π in the twisted Drinfeld center of C which fuses
with itself to the identity. For the 1-form symmetry generated by this line to be compatible
with G, the line must be of the form (Le,0, β) or (Le,1, β). The former case cannot lead to
a fermionic line. Hence, Π must be of the form (Le,1, β). The existence of such a line will
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ĝĝ′

ĝ ĝ′

→

ε+ ε′ + n2(g, g′)

ε ε′

(gg′, 0)

(g, 0) (g′, 0)

Figure 5.4.1: We choose our basis for morphism space Lgg,ε+ε′+n2(g,g′) → Lg,ε ⊗ Lg′,ε′ such
that the basis for different (ε, ε′) are related by crossing of a Π line as shown in the figure.
Here a label ε adjacent to double line denotes that the double line is Π if ε = 1 and the double
line is the identity line if ε = 0.

(a)

= (−1)ρ
2
1∪ε1

(b)

Figure 5.4.2: Intermediate computational steps relating α̂3 and ν3. The sign arises from
dragging a Π line over a vertex. We can further resolve the crossing on the right hand side
to make contact with ν3 which is defined in Figure 5.4.3.
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gg′
g′′

g′
g

g′g′′

gg′g′′

Figure 5.4.3: The definition of ν3(g, g′, g′′).

put some constraints on the form of C which we now explore. First, we choose our basis of
morphisms as shown in the Figure 5.4.1. Consider the basic graph dual to the tetrahedron. Using
our basis, it can be written as in Figure 5.4.2(a). This, in turn, can be manipulated to the final
graph shown in Figure 5.4.3 which we define to be ν3(g, g′, g′′). During this manipulation we
obtain a sign from resolving a crossing and another sign from moving a Π line across a vertex.
See Figure 5.4.2(b). Thus, we see that

α̂3 = ν3(−1)(n2+ρ2
1)∪ε1 (5.4.3)

where ε1 is a Z2-valued co-chain which sends (g, ε) to ε.

We find that a Pin+ Gu-Wen phase is specified by a double (ν3, n2) where ν3 satisfies

δν3 = (−1)n2∪n2+ρ2
1∪n2 (5.4.4)

However, there is a redundancy in such a description. We will see in subsection 5.4.3 that the
phase defined by ν3 = 1 and n2 = ρ2

1 is the same as the trivial phase specified by ν3 = 1 and
n2 = 0.

To completely specify the Pin+ Gu-Wen phase, we also need to pick a specific Π line. The
twisted Drinfeld center equations (see Figure 5.3.5 with i = (g, ε) and j = (g′, ε′)) for such a
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line tell us that

α̂3(g, ε; g′, ε′; e, 1)β(g′, ε′)α̂−1
3 (g, ε; e, 1; g′, ε′)β(g, ε)α̂3(e, 1; g, ε; g′, ε′) (5.4.5)

= (−1)ρ1(g)ρ1(g′)β(gg′, ε+ ε′ + n2(g, g′))

Using (5.4.3), we see that it reduces to

β(gg′, ε+ ε′ + n2(g, g′)) = (−1)n2(g,g′)β(g, ε)β(g′, ε′) (5.4.6)

Using the fact that Π is fermion tells us that

β(g, ε+ 1) = −β(g, ε) (5.4.7)

Feeding it back, we obtain that

β(gg′, 0) = β(g, 0)β(g′, 0) (5.4.8)

The only solution to this equation that works uniformly for any group G is

β(g, ε) = (±1)ρ1(g)(−1)ε (5.4.9)

Since flipping the sign of all the β in the orientation reversing sector doesn’t change the resulting
Pin+-TFT, we can choose Le,1 equipped with

β(g, ε) = (−1)ε (5.4.10)

as the fermion.

For the rest of this subsection, we note that we can write H2(B(G × ZR2 ),Z2) in terms of
group cohomology ofG. Let’s denote an arbitrary element ofG×ZR2 as g1, g2 etc. We also denote
an arbitrary element of G as g and R as the generator of ZR2 . We have the gauge transofrmations

n2(g1, g2)→ n2(g1, g2) + n1(g1) + n1(g1g2) + n1(g2) (5.4.11)

Pick n1 such that n1(g) = 0 for all g and n1(R) + n1(gR) = n2(g,R). Thus we have fixed a
gauge such that n2(g,R) = 0 for all g. Then using the cocycle condition

n2(g2, g3) + n2(g1g2, g3) + n2(g1, g2g3) + n2(g1, g2) = 0 (5.4.12)

we find that we can express n2 as

n2 = m̃2 + ρ1 ∪ m̃1 + ρ1 ∪ ρ1 (5.4.13)

where m2 parametrizes an element of H2(BG,Z2), m1 parametrizes an element of H1(BG,Z2)
and m̃1,2 denotes the pullback of m1,2 from G to G× ZR2 . This analysis establishes that

H2(B(G× ZR2 ),Z2) = H2(BG,Z2)×H1(BG,Z2)× Z2 (5.4.14)
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ĝĝ′

ĝ ĝ′

→

ε+ ε′ + n2(g, g′)

ε ε′

(gg′, 0)

(g, 0) (g′, 0)

Figure 5.4.4: Gauge fixing: We choose basis for various morphisms related in the way shown
in the figure.

5.4.2 Anomaly for Pin+-shadows

In this subsection we will compute the partition function Zf (M,β2) for a Pin+ Gu-Wen phase.
The explicit expression will allow us to compute the anomaly under a gauge transformation β2 →
β2 + δλ1. As the anomaly is universal, this will justify our prescription (5.3.6) for constructing
Pin+-TFTs in terms of their shadows.

In the presence of a background β2, the basic tetrahedron graph is as shown in Figure 5.4.5(a).
This can be gauge fixed as shown in Figure 5.4.4. After the gauge fixing, we can move the Π
lines to the position shown in Figure 5.4.5(b). This implies that the partition function can be
written as

1

2v

∏
ν3

∑

ε1|δε1=n2+β2

(−1)
∫
M n2∪ε1+w2

1∪ε1+ε1∪β2 (5.4.15)

This expression is non-zero only when the G-connection is such that n2 = β2 + δα1. By shifting
ε1 → ε1 + α1, the above expression can be re-written as

1

2v
(−1)

∫
M n2∪α1+α1∪n2+α1∪δα1+w2

1∪α1

∏
ν3

∑

ε1|δε1=0

(−1)
∫
M n2∪ε1+ε1∪n2+w2

1∪ε1 (5.4.16)

The sign inside the sum is exact and hence we obtain

Zf (M,β2) =
1

2v
(−1)

∫
M n2∪α1+α1∪n2+α1∪δα1+w2

1∪α1

∏
ν3

∑

ε1|δε1=0

1 (5.4.17)

Shifting β2 → β2 + δλ1 is the same as shifting α1 → α1 + λ1 under which the partition
function changes as

Zf (M,β2 + δλ1) = (−1)
∫
M λ1∪β2+β2∪λ1+λ1∪δλ1+w2

1∪λ1Zf (M,β2) (5.4.18)
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ĝĝ′
ĝ′′

ĝ′
ĝ

ĝ′ĝ′′

ĝĝ′ĝ′′

(a)

=

(b)

Figure 5.4.5: The graph on the right can be obtained from graph on the left after gauge fixing
and deforming the Π lines.
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which matches the expectation in (5.3.10) exactly.

5.4.3 Group structure of Gu-Wen phases

Now we would like to compute the product of two Gu-Wen phases labeled by (ν3, n2) and
(ν ′3, n

′
2). The G-graded product of corresponding categories has 4 simple objects in each grade

Lg,ε,ε′ which fuse according to the cocycle (n2, n
′
2) and have associators α̂3α̂

′
3. The non-anomalous

Z2 1-form symmetry is generated by Le,1,1 which has crossing (−1)ε+ε
′ .

Gauging the symmetry identifies Lg,ε,ε′ with Lg,ε+1,ε′+1. We pick representative objects Lg,ε,0
in each grade and compute the associator of Lg,ε,0, Lg′,ε′,0 and Lg′′,ε′′,0 via the tetrahedron graph.
Multiplying two representative objects Lg,ε,0 and Lg′,ε′,0, we obtain Lgg′,ε+ε′+n2(g,g′),n′2(g,g′) which
can be mapped back to the representative object Lgg′,ε+ε′+n2(g,g′)+n′2(g,g′),0 by inserting n′2(g, g′)
number of ΠΠ′ lines emanating from the corresponding vertex. The representative objects thus
fuse according to the cocycle n2 + n′2. Now, we gauge fix as in the previous subsection. Then,
doing same manipulations as in the previous subsection, we find that the tetrahedron graph eval-
uates to

ν3ν
′
3(−1)n2∪ε1+w2

1∪ε1+ε1∪n′2 (5.4.19)

Upto a gauge redefintion, it can be written as

(ν3ν
′
3(−1)n2∪1n′2)(−1)(n2+n′2+w2

1)∪ε1 (5.4.20)

Thus the product is a Gu-Wen phase with ν̃3 = ν3ν
′
3(−1)n2∪1n′2 and ñ2 = n2 + n′2.

However, notice that substituting ν3 = 1, n2 = 0 in (5.4.17) and writing w2
1 = δσ1 gives

Zf (M,β2) =
1

2v
(−1)

∫
M α1∪δα1+δσ1∪α1

∑

ε1|δε1=0

1 (5.4.21)

and substituting ν3 = 1, n2 = ρ2
1 gives

Zf (M,β2) =
1

2v
(−1)

∫
M (α1+σ1)∪δα1

∑

ε1|δε1=0

1 (5.4.22)

which are the same expressions! Thus, the Gu-Wen phase labeled by (ν3 = 1, n2 = ρ2
1) is the

trivial phase. The reader might complain that (5.4.21) does not seem to describe a trivial phase.
We would like to stress that this is the partition function of the shadow theory describing the
trivial Pin+-TFT. The trivial Pin+-TFT is obtained by combining a non-trivial shadow with a
non-trivial sign.

Thus, the group GW(G) of Pin+ Gu-Wen phases with global symmetryG can be described as
follows. Consider the set parametrized by (ν3, n2) with ν3 parametrizing elements of H3(B(G×
ZR2 ), U(1)ρ) and n2 parametrizing elements of H2(B(G×ZR2 ),Z2). Provide it a group structure
given by

(ν3, n2)(ν ′3, n
′
2) = (ν3ν

′
3(−1)n2∪1n′2 , n2 + n′2) (5.4.23)

Finally, quotient it by the Z2 subgroup generated by (ν3, n2) = (1, ρ2
1).
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An alternative description can be given by first defining a group H(G) = H3(B(G ×
ZR2 ), U(1)ρ)/Z2 where the Z2 is generated by the cocycle (−1)ρ

2
1∪1ρ2

1 . Then, GW(G) is a central
extension

0→ H(G)→ GW(G)→ H2(BG,Z2)×H1(BG,Z2)→ 0 (5.4.24)

with cocycle valued in H(G) being (−1)n2∪1n′2 ∈ H3(B(G × ZR2 ), U(1)ρ) where n2 and n′2 are
valued in H2(BG,Z2)×H1(BG,Z2) as in (5.4.13) but without the ρ2

1 summand.

5.4.4 ZR2 version of Ising

As an application of our formalism, we would like to construct all Pin+-SPT phases wth global
symmetry group G being the trivial group {id}. There is only one Gu-Wen phase in this class,
which is the trivial phase. There is a non-trivial phase in this class which is given by the ZR2
analogue of a Z2 graded spherical fusion category I which is known as the Ising fusion category.
Below we recall the construction of I and its ZR2 cousin. It turns out that the analysis for both
the cases is similar and we treat both of them together.

We are looking for a Z2 graded (twisted) spherical fusion category such that C0 = {I, P} and
C1 = {S} are the simple objects. The fusion rules are

P ⊗ P ' I (5.4.25)
S ⊗ P ' S (5.4.26)
P ⊗ S ' S (5.4.27)
S ⊗ S ' I ⊕ P (5.4.28)

The F -symbols can be bootstrapped from these fusion rules by using (twisted) pentagon equation
and taking advantage of the gauge freedom.

When the Z2 grading corresponds to a Z2 global symmetry, the non-trivial F -symbols are
determined to be

(F PSP
S )(S)(S) = −1 (5.4.29)

(F SPS
P )(S)(S) = −1 (5.4.30)

(F SSS
S )(I)(I) = (F SSS

S )(P )(I) = (F SSS
S )(I)(P ) = ± 1√

2
(5.4.31)

(F SSS
S )(P )(P ) = ∓ 1√

2
(5.4.32)

When the Z2 grading corresponds to ZR2 orientation reversing symmetry, the non-trivial F -
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symbols are determined to be

(F PSP
S )(S)(S) = −1 (5.4.33)

(F SPS
P )(S)(S) = −1 (5.4.34)

(F SSS
S )(I)(I) = (F SSS

S )(P )(I) = (F SSS
S )(I)(P ) =

1√
2

(5.4.35)

(F SSS
S )(P )(P ) = − 1√

2
(5.4.36)

That is, the choice of sign becomes a gauge freedom in the ZR2 case.

The fermion line is given by an element of (twisted) Drinfeld center of the form (P, β).
Solving the Drinfeld center equations for the Z2 case, we obtain

βP = −1 (5.4.37)
βS = ±i (5.4.38)

Thus, there are two choices for the fermion line Π. Given the choice in picking the associator
and the choice in Π, we can construct four Spin-TFTs with global symmetry Z2.

On the other hand, solving the twisted Drinfeld center equations for the ZR2 case, we obtain

βP = −1 (5.4.39)
βS = ±1 (5.4.40)

However, as we know from before, flipping the sign of all the β in the orientation reversing sector
doesn’t change the resulting Pin+-TFT and we can fix βS = +1. Hence, in the ZR2 case, there
are no choices and we obtain only one Pin+-TFT which we call I+.

5.4.5 Pin+-SPT phases with no global symmetry

Cobordism hypothesis predicts a Z2 group of Pin+-SPT phases [128]. We have already found
the trivial phase as a Gu-Wen phase. We claim that the non-trivial phase corresponds to the
Pin+-TFT I+ that we encountered in last subsection. To justify this, we will show that the square
of I+ is the trivial Gu-Wen phase. This will prove that I+ is indeed an SPT phase and provide
an explicit construction of Pin+-SPT phases without global symmetry. The existence of this
non-trivial phase was also discussed in [158].

The graded product of I+ with itself has simple objects II , PI , IP , PP in the trivial grade
and a simple object SS in the non-trivial grade. Gauging the 1-form symmetry generated by
ΠΠ, we obtain a category C with C0 having simple objects II , PI and C1 having simple objects
SS+, SS−. SS+ and SS− are constructed by using projectors obtained by using the non-trivial
endomorphism of SS. See Figure 5.4.6.

SS+ ⊗ PI involves the F -symbol F PSP which flips the sign of ξS and hence SS+ ⊗ PI '
SS−. On the other hand, PI⊗SS+ involves βP and hence PI⊗SS+ ' SS−. The computation
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Figure 5.4.6: Definition of SS±.
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Figure 5.4.7: Computation of SS+⊗SS+ is by definition a sum of four terms which involve
associators and crossings. II inside SS⊗SS is mapped to II by first and fourth terms and to
PP (which is isomorphic to II in the new category) by the second and third terms. Similarly,
PI is mapped to the zero object as the four terms cancel in pairs. Hence, SS+⊗SS+ ' II .

of SS+ ⊗ SS+ can be done in a similar but more involved manner which we explain in Figure
5.4.7. We find that SS+⊗SS+ ' II . All the statements above hold true if we replace SS+ with
SS−. Thus, C has the fusion rules of the Gu-Wen phase which is trivial.

For a general G, we can consider the pullback of I+ along ρ1 which we denote as I+(G).
I+(G)g has two simple elements Ig, Pg if ρ1(g) = 0 and has a single simple object Sg if ρ1(g) =
1. The fusion rules and associators are just pulled back from I+. Clearly, I+(G) will also square
to 0 as our argument above is independent of G-grading.

This allows us to construct GW(G) × Z2 worth of Pin+-SPT phases with global symme-
try G. We suspect that this is not the full classification and comment on how to complete the
classification in the next section.
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5.5 Conclusion and future directions

In this chapter we discussed the generalization of Turaev-Viro construction of oriented 3d TFTs
to unoriented 3d TFTs. We proposed that the input data of this construction in the unoriented
case should be a “twisted” spherical fusion category in which the pentagon equation for the
F -symbols is modified.

As a generalization of the construction of [3], we also proposed a construction for Pin+-
TFTs in terms of their shadows. The shadows are ordinary unoriented TFTs with a Z2 1-form
symmetry which is anomalous and has a mixed anomaly with time-reversal symmetry.

Combining the above two ingredients, we were able to give explicit constructions of a large
class of invertible Pin+-TFTs with global symmetry G. Such theories are known as Pin+-SPT
phases. We also reproduced the Z2 group of Pin+-SPT phases without any global symmetry.

There are plenty of interesting directions in which this work can be extended in the future and
we make some very speculative comments about them in what follows. Perhaps the most imme-
diate future direction is to use the machinery developed in this chapter to provide a classification
of Pin+-SPT phases for an arbitrary group G which admit a topological boundary condition. The
author suggests to look at a spherical fusion category graded by Z2 × ZR2 with simple elements
I, P in the (0, 0) grade, I1, P1 in the (0, 1) grade, S in the (1, 0) grade and S1 in the (1, 1) grade.
The fusion rules mimic the Ising category. Is it possible to find a consistent set of F -symbols?
If yes, then the class of Pin+-SPT phases we presented in this chapter is not the full answer. It
should then be possible to finish the classification, in a spirit similar to the one in [3], by pulling
back this Z2 × ZR2 phase and combining it with the class of phases presented in this chapter.

It would be very interesting to provide a construction (Turaev-Viro-like or some other con-
struction) for TFTs with more general struture groups. For instance, one could mix O(n) and G
or mix Pin+(n) and G in the fermionic case. It seems that a proper treatment of these generaliza-
tions should involve a rich interplay of symmetry defects along with higher codimension defects
living in the worldvolume of symmetry defects.

Let us comment about the Pin−(n)×G case. It seems natural that the kernel for Pin−-TFTs
would be the sign

z−(M, η1, β2) = (−1)
∫
M η1∪β2+

∫
N β2∪β2+(w2

1+w2)∪β2 (5.5.1)

which seems to be the same expression as (5.3.7) but this time we take η1 to parametrize Pin−-
structures. This would suggest that the corresponding shadow theory has no mixed anomaly
between time reversal and Z2 1-form symmetry. Also, the anomaly for the 1-form symmetry
should now be

Zf (M,β2)→ (−1)
∫
M λ1∪β2+β2∪λ1+λ1∪δλ1Zf (M,β2) (5.5.2)

However, for Pin+ case, we saw in Figure 5.3.4 that moving the fermion Π across the locus dual
to w2

1 should change the operator at the junction of Π line and the orientation reversing defects.
The argument given there was that this sign was needed to cancel the sign coming from the
crossing of Π lines. This lead to different anomalies than the ones we want for the Pin− case. So,
in the Pin− case, we do not want such a change in the sign of the corresponding local operator.
The author suspects that in this case the sign coming from crossing of Π lines will be canceled by
factors coming from patching of Π with RΠ where RΠ is Π line with a reflected framing. This
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would make sure that Π is an element of Drinfeld center rather than a twisted Drinfeld center,
which would in turn imply the anomalies given above. It would be interesting to work out the
details and provide a Turaev-Viro construction for Pin− shadows.

Of course, this means that one will have to first understand how to compute (in terms of the
twisted spherical fusion category) the extra data attached to a bulk line which corresponds to
patching the line with itself but with reflected framing. In other words, this corresponds to a
generalization of Moore-Seiberg data [159, 160] to the unoriented case. A step towards this was
recently taken in [161].

A puzzle here is that there should be no non-trivial Pin−-SPT phase according to [128]. So,
somehow the Pin−-TFTs produced by the potential Pin−-shadows having ZR2 version of Ising as
their twisted spherical fusion category should be trivial.

Another interesting direction to pursue would be to see if it is possible to find a generalization
of Turaev-Viro construction which could construct anomalous 3d TFTs. Such TFTs live at the
boundary of a 4d SPT phase. Hence, such TFTs should not admit topological boundaries of
their own but they can admit interfaces to other 3d TFTs with the same anomaly. Perhaps it is
possible to choose a simple TFT in each anomaly class and build a Turaev-Viro construction
using a topological interface between the TFT we want to construct and the simple TFT. See
[152, 149, 162, 163] for recent interesting work on anomalous unoriented 3d TFTs.

Finally, it would be interesting to concretely construct a time-reversal invariant commuting
projector Hamiltonian using the data of twisted spherical fusion category. This Hamiltonian goes
into the string-net construction of fermionic phases of matter. See [126], [3] for more details.
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Chapter 6

On finite symmetries and their gauging in
two dimensions

6.1 Introduction

Let us start by considering a two-dimensional theory T with Zn symmetry. We can gauge it to
get the gauged theory T/Zn. This gauged theory is known to have a new Zn symmetry, and
re-gauging it gives us back the original theory: T/Zn/Zn = T [13]. It is also well-known that
this phenomenon generalizes to any arbitrary finite Abelian groupG. That is, gauging a theory T
with G symmetry results in a theory T/G with a new finite Abelian group symmetry Ĝ such that
gauging the new theory by the new symmetry takes us back to the original theory: T/G/Ĝ = T .
One natural question arises: can it be generalized to higher dimensions? Yes, according to [150],
where the generalized concept of p-form symmetries was introduced. Our investigation starts
from a related but different question: can it be generalized to non-Abelian finite groups?

The answer is again yes [164], and it again requires a generalization of the concept of sym-
metries, but in a direction different from that of [150]. To explain this, let us pose what we have
said above in a different way. Traditionally, we say that T has symmetry G if we can find unitary
operators Ug labeled by elements g ∈ G whose action on the Hilbert space commutes with the
Hamiltonian. When G is Abelian, the information about G is captured in T/G via unitary oper-
ators Uĝ labeled by elements ĝ ∈ Ĝ which commute with the Hamiltonian of T/G. When G is
non-Abelian, we will argue that the information of G in T/G is captured by operators Ui which
still commute with the Hamiltonian but these operators are now in general non-unitary. These
operators can be constructed by wrapping a Wilson line for G along the spatial circle. Hence,
Wilson lines should be thought of as generalized symmetries for the theory T/G. In fact, we will
also argue that there is a natural notion of gauging this symmetry formed by Wilson lines such
that gauging T/G results back in the original theory T .

This raises the following question: How do we specify a generalized symmetry that a theory
can admit? In this chapter, we give an answer to this question: a general finite symmetry of
a two-dimensional theory is specified by a structure which is known to mathematicians in the
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name of unitary fusion categories. We prefer to call it symmetry categories.1 For the gauged
theory T/G for possibly non-Abelian group G, the Wilson line operators form Rep(G), which is
a symmetry category formed by the representations ofG. Similarly, a general symmetry category
C physically corresponds to more general line operators of T .

We also discuss how a symmetry category C can be gauged. It turns out that there is no
canonical way of gauging a generic symmetry category. Pick one wayM of gauging the sym-
metry C of a theory T . Denote the gauged theory by T/M and its symmetry category by C ′. It
then turns out that there exists a dual wayM′ of gauging C ′ such that T/M/M′ is equivalent to
T . This generalizes the fact that regauging the gauged theory with symmetry Rep(G) gives back
the original theory with symmetry G.

This generalization of the concept of symmetry allows us not only to perform the re-gauging
of non-Abelian gauge theories, but also to answer various other questions. First of all, we will
see that symmetry categories C capture symmetries together with their anomalies. Then, the
machinery we spell out allows us to compute what is the symmetry of the gauge theory T/H
when we gauge a subgroup H of a possibly anomalous flavor symmetry G. For example, if we
gauge a non-anomalous Z2 subgroup of Z2 × Z2 × Z2 with a suitable choice of the anomaly, we
can get non-anomalous non-Abelian symmetryD8 andQ8, the dihedral group and the quaternion
group of order 8.2 In general, the symmetry C of the gauged theory is neither a group nor Rep(G)
for a finite group, and we need the concept of symmetry categories to describe it.

There are also vast number of symmetry categories not related to finite groups, formed by
topological line operators of two-dimensional rational conformal field theories (RCFTs). In par-
ticular, any unitary modular tensor category, or equivalently any Moore-Seiberg data, can be
thought of as a symmetry category, by forgetting the braiding.

We should emphasize here that this generalization of the concept of symmetry from that
defined by groups to that defined by categories was already done long ago by other authors,
belonging to three somewhat independent lines of studies, namely in the study of the subfactors
and operator algebraic quantum field theories, in the study of representation theory, and in the
study of RCFTs. Each of the communities produced vast number of papers, and not all of them
can be cited here. We recommend to the readers textbooks by Bischoff, Longo, Kawahigashi and

1We do not claim that this is the ultimate concept for the 0-form finite symmetry in two dimensions; there still
might be a generalization in the future. For example, in other spacetime dimensions, a proposed generalization was
to use the concept of p-groups, see e.g. [165], and one might want to unify the two approaches. We also note that
this extension of the concept of the symmetry in two dimensions from groups to categories was already proposed by
many other authors in the past, and we are merely shedding a light to it from a slightly different direction. We will
come back to this point later in the Introduction.

2Recently in [166], Gaiotto, Kapustin, Komargodski and Seiberg performed an impressive study of the phase
structure of thermal 4d su(2) Yang-Mills theory. One important step in the analysis is the symmetry structure of
the thermal system, which is essentially three-dimensional. As a dimensional reduction from 4d, the system has
a Z2 × Z2 0-form symmetry and a Z2 1-form symmetry, with a mixed anomaly. Then the authors gauged the Z2

1-form symmetry, and found that the total 0-form symmetry is now D8. This D8 was then used very effectively to
study the phase diagram, but that part of their paper does not directly concern us here. Their analysis of turning an
anomalous Abelian symmetry by gauging a non-anomalous subgroup into a non-Abelian symmetry is a 3d analogue
of what we explain in 2d. See their Sec. 4.2, Appendix B and Appendix C. Clearly an important direction to pursue is
to generalize their and our constructions to arbitrary combinations of possibly-higher-form symmetries in arbitrary
spacetime dimensions, but that is outside of the scope of this chapter.
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Rehren [167] and Etingof, Gelaki, Nikshych and Ostrik [168] from the first two communities
and the articles by Carqueville and Runkel [169] and by Brunner, Carqueville and Plencner [170]
from the third community as the starting points.

Our first aim in this chapter is then to summarize the content of these past works in a way
hopefully more accessible to other researchers of quantum field theory, emphasizing the point of
view related to the modern study of symmetry protected topological phases. What we explain in
this first part of the chapter is not new, except possibly the way of the presentation, and can all
be found in the literature in a scattered form.

Our second aim is to axiomatize two-dimensional topological quantum field theories (TFTs)
whose symmetry is given by a symmetry category C. This is a generalization of the work by
Moore and Segal [171], where two-dimensional TFTs with finite group symmetry were axiom-
atized. We write down basic sets of linear maps between (tensor products of) Hilbert spaces
on S1 and basic consistency relations among them which guarantee that a unique linear map is
associated to any surface with m incoming circles and n outgoing circles together with arbitrary
network of line operators from C.

The rest of the chapter is organized as follows. First in Sec. 6.2, as a preliminary, we recall
how gauging of a finite Abelian symmetry G can be undone by gauging the new finite Abelian
symmetry Ĝ, and then briefly discuss how this can be generalized to non-Abelian symmetries
G, by regarding Rep(G) as a symmetry. This effort of generalizing the story to a non-Abelian
group makes the possibility and the necessity of a further generalization to symmetry categories
manifest. We exploit this possibility and describe the generalization in detail in subsequent
sections.

Second, we have two sections that form the core of the chapter. In Sec. 6.3, we introduce the
notion of symmetry categories, and discuss how we can regard as symmetry categories both a
finite group G with an anomaly α and the collection Rep(G) of representations of G. We then
explain in Sec. 6.4 that physically distinct gaugings of a given symmetry category C correspond
to indecomposable module categoriesM of C, and we describe how to obtain the new symmetry
C ′ of the theory T/M for a given theory T with a symmetry C.

Third, in Sec. 6.5, we give various examples illustrating the notions introduced up to this
point. Examples include the form of new symmetry categories C ′ when we gauge a non-anomalous
subgroup H of an anomalous finite group G, and the symmetry categories of RCFTs.

Fourth, in Sec. 6.6, we move on to the discussion of the axioms of two-dimensional TFTs
whose symmetry is given by a symmetry category C. We also construct the gauged TFTs T/M
given an original TFT T with a symmetry category C and a gauging specified by its module
categoryM. Sections 6.5 and 6.6 can be read independently.

Finally, we conclude with a brief discussion of what remains to be done in Sec. 6.7. We have
an appendix D.1 where we review basic notions of group cohomology used in the chapter.

Before proceeding, we note that we assume that the space-time is oriented throughout the
chapter. We also emphasize that all the arguments we give, except in Sec. 6.6, apply to non-
topological non-conformal 2d theories.
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6.2 Re-gauging of finite group gauge theories

6.2.1 Abelian case

Let us start by reminding ourselves the following well-known fact [13]:

Let T be a 2d theory with flavor symmetry given by an Abelian group G. Let us assume that
G is non-anomalous and can be gauged, and denote the resulting theory by T/G. Then this
theory has the flavor symmetry Ĝ, which is the Pontrjagin dual of G, such that T/G/Ĝ = T .

Recall the definition of the Pontrjagin dual Ĝ of an Abelian group G. As a set, it is given by

Ĝ = {χ : G→ U(1) | χ is an irreducible representation }. (6.2.1)

Note that χ is automatically one-dimensional. Therefore the product of two irreducible repre-
sentations is again an irreducible representation, which makes Ĝ into a group. G and Ĝ are
isomorphic as a group but it is useful to keep the distinction because there is no canonical iso-
morphism between them.

In the literature on 2d theories, gauging of a finite group G theory is more commonly called
as orbifolding by G, and the fact above is often stated as follows: a G-orbifold has a dual Ĝ
symmetry assigning charges to twisted sectors, and orbifolding again by this dual Ĝ symmetry
we get the original theory back. This dual Ĝ symmetry is also known as the quantum symmetry
in the literature.

This fact can be easily shown as follows. Let ZT [M,A] denote the partition function of
T on M with the external background G gauge field A. Here A can be thought of as taking
values in H1(M,G). Then the partition function of the gauged theory T/G on M is given by
ZT/G[M ] ∝ ∑

A ZT [M,A]. Here and in the following we would be cavalier on the overall
normalization of the partition functions. More generally, with the background gauge field B for
the dual Ĝ symmetry, the partition function is given by

ZT/G[M,B] ∝
∑

A

ei(B,A)ZT [M,A] (6.2.2)

where B ∈ H1(M, Ĝ) and ei(B,A) is obtained by the intersection pairing

ei(−,−) : H1(M, Ĝ)×H1(M,G)→ H2(M,U(1)) ' U(1). (6.2.3)

The equation (6.2.2) says that the partition function of T/G is essentially the discrete Fourier
transform of that of T , and therefore we dually have T = T/G/Ĝ:

ZT [M,A] ∝
∑

B

ei(A,B)ZT/G[M,B]. (6.2.4)

This statement was generalized to higher dimensions in e.g. [150]:
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Let T be a d-dimensional theory with p-form flavor symmetry given by an Abelian group
G. Let us assume that G is non-anomalous and can be gauged, and denote the resulting
theory by T/G. Then this theory has the dual (d−2−p)-form flavor symmetry Ĝ, such that
T/G/Ĝ = T .

The derivation is entirely analogous to the 2d case, except that now A ∈ Hp+1(M,G) and
B ∈ Hd−1−p(M, Ĝ).

6.2.2 Non-Abelian case

The facts reviewed above means that the finite Abelian gauge theory T/G still has the full infor-
mation of the original theory T , which can be extracted by gauging the dual symmetry Ĝ. It is
natural to ask if this is also possible when we have a non-Abelian symmetryG, which we assume
to be an ordinary 0-form symmetry.

This is indeed possible3 by suitably restating the derivation above, but we will see that we
need to extend the concept of what we mean by symmetry. To show this, we first massage (6.2.4)
in a suitable form which admits a straightforward generalization. Let us consider the case of
ZT [M,A = 0] for illustration. By Poincare duality, B can also be represented as an element of
H1(M, Ĝ). Then, (6.2.4) can be rewritten as

ZT [M ] ∝
∑

ĝ1,··· ,ĝn

ZT/G[M, ĝ1, · · · , ĝn] (6.2.5)

where i ∈ {1, · · · , n} labels generators of H1(M) and ĝi is an element of Ĝ associated to the
cycle labeled by i. Each summand on the right hand side, ZT/G[M, ĝ1, · · · , ĝn], is then the
expectation value of Wilson loops in representations labeled by ĝi placed along the cycle i.

Now, we can sum the Ĝ elements for each i separately to obtain

ZT [M ] ∝ ZT/G[M,W reg
1 , · · · ,W reg

n ] (6.2.6)

where W reg
i denotes the insertion of a Wilson line in the regular representation along the cycle

i. This is because, for an abelian G, the regular representation is just the sum of representations
corresponding to elements ĝ of Ĝ.

The relation (6.2.6) says that by inserting all possible Wilson lines on all possible cycles, we
are putting the delta function for the original gauge field A. We now note that the relation (6.2.6)
holds for a non-Abelian G as well, if we insert W reg

i not only for the generators of H1(M) but
for the generators of π1(M). This can be seen by the fact that tr g in the regular representation is
nonzero if and only if g is the identity.

3That this is possible was already shown for two-dimensional theories in [164], as an example of a much more
general story, which we will also review in the forthcoming sections. Here we describe the construction in an
elementary language.
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The identity (6.2.6) means that the ungauged theory T can be recovered from the gauged
theory T/G by inserting line operators W reg

i in an appropriate manner. This is analogous to
the construction of the gauged theory T from the ungauged theory T by inserting line operators
representing the G symmetry in an appropriate manner. Given the importance of Wilson lines
in recovering the information of the ungauged theory, we assign the status of dual symmetry to
Wilson lines.

Let us phrase it another way. When G is Abelian, the dual (d − 2)-form Ĝ symmetries can
be represented by 1-cycles labeled by elements of Ĝ, forming a group. When G is non-Abelian,
the dual symmetry can still be represented by 1-cycles labeled by representations Rep(G) of G.
We can still multiply lines, corresponding to the tensor product of the representations, and this
operation reduces to group multiplication of Ĝ in the abelian case. But Rep(G) is not a group if
G is non-Abelian. Therefore this is not a flavor symmetry group, it is rather a flavor symmetry
something. We summarize this observation as follows:

Let T be a d-dimensional theory with 0-form flavor symmetry given by a possibly non-
Abelian group G. Let us assume that G is non-anomalous and can be gauged, and denote
the resulting theory by T/G. Then this theory has Rep(G) as the dual (d − 2)-form flavor
symmetry ‘something’, such that T/G/Rep(G) = T .

6.3 Symmetries as categories in two dimensions

Any finite group, possibly non-Abelian, can be the 0-form symmetry group of a theory. In
addition to this, we saw in the last section that Rep(G), the representations of G, can also be
the (d − 2)-form symmetry something of a d-dimensional theory. We do not yet have a general
understanding of what should be this something in general d dimensions for general combinations
of various p-form symmetries. However, at least for d=2 and p=0, we already have a clear
concept for this something in the literature, which includes both groups G and representations of
groups Rep(G) and much more. In this section we explain what it is.

6.3.1 Basic notions of symmetry categories

In two dimensions, a 0-form finite symmetry element can be represented by a line operator with
a label a. Inserting this line operator on a space-like slice S corresponds to acting on the Hilbert
space associated to S by a possibly non-unitary operator Ua corresponding to the symmetry
element. Moreover, Ua commutes with the Hamiltonian H associated to any foliation of the
two-dimensional manifold. In addition, Ua cannot change under a continuous deformation of its
path. Therefore the line operator under consideration is automatically topological.

Topological line operators, in general, form a structure which mathematicians call a tensor
category. We want to restrict our attention to topological line operators describing a finite sym-
metry. Such topological line operators form a structure which mathematicians call a unitary
fusion category. We call it instead as a symmetry category, to emphasize its role as the finite
symmetry of unitary two-dimensional quantum field theory. We start by stating the slogan, and
then fill in the details:
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Finite flavor symmetries of 2d theories are characterized by symmetry categories.

Objects

The objects in a symmetry category C correspond to topological line operators generating the
symmetry. More precisely, a theory T admitting the symmetry C will admit topological line
operators labeled by the objects of C. Henceforth, we will drop the adjective topological in front
of line operators.

For any line operator labeled by an object a, we have a partition function of T with the line
inserted along an oriented path C, which we can denote as

〈· · · a(C) · · · 〉 (6.3.1)

where the dots stand for additional operators inserted away from C.

Morphisms

The morphisms in a symmetry category C correspond to topological local point operators which
can be inserted between two lines. More precisely, consider two labels a and b, and a path C
such that up to a point p ∈ C we have the label a and from the point p we have the label b. Then,
we can insert a possibly-line-changing topological operator labeled by m at p. We call such m a
morphism from a to b, and denote this statement interchangeably as either

m : a→ b or m ∈ Hom(a, b). (6.3.2)

The set Hom(a, b) is taken to be a complex vector space and it labels (a subspace of) topo-
logical local operators between line operators corresponding to a and b in T . From now on, we
would drop the adjective topological in front of local operators.

Existence of a trivial line

C contains an object 1, which labels the trivial line of T . We have

〈· · · 1(C) · · · 〉 = 〈· · · · · · 〉. (6.3.3)

Additive structure

Given two objects a and b, there is a new object a⊕ b in C. In terms of lines in T , we have

〈· · · (a⊕ b)(C) · · · 〉 = 〈· · · a(C) · · · 〉+ 〈· · · b(C) · · · 〉. (6.3.4)

We abbreviate a⊕ a by 2a, a⊕ a⊕ a by 3a, etc. The linear operator Ua⊕b acting on the Hilbert
space obtained by wrapping a⊕ b on a circle is then given by Ua + Ub.
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a b
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a b

a⊗b

Figure 6.3.1: Two lines with the labels a and b can be fused to form a line with the label
a⊗ b.

Tensor structure

Given two objects a and b, we have an object a ⊗ b in C. This corresponds to considering two
parallel-running line operators a and b as one line operator. The linear operator Ua⊗b acting on
the Hilbert space obtained by wrapping a⊗ b on a circle is then given by UaUb.

The trivial object 1 acts as an identity for this tensor operation. That is, there exist canonical
isomorphisms a ⊗ 1 ' a and 1 ⊗ a ' a for each object a. We can always find an equivalent
category in which these isomorphisms are trivial, that is a ⊗ 1 = 1 ⊗ a = a. Hence, we can
assume that these isomorphisms have been made trivial in C. Henceforth, the unit object will
also be referred to as the identity object.

Consider three lines C1,2,3 meeting at a point p, with C1,2 incoming and C3 outgoing. We
can put the label a, b, c on C1,2,3, respectively. We demand that the operators we can put at the
junction point p is given by m ∈ Hom(a⊗ b, c). This label a⊗ b corresponds to a composite line
as can be seen by the following topological deformation shown in Fig. 6.3.1.

The definition of a ⊗ b here includes a choice of the implicit junction operator where the
lines labeled by a, b and a⊗ b meet. In this chapter, whenever we draw figures with such implicit
junction operators, we always choose the operator to be the one labeled by the identity morphism
id : a⊗ b→ a⊗ b.

Simplicity of the identity, semisimplicity, and finiteness

The simple objects a ∈ C are objects for which Hom(a, a) is one-dimensional. In general,
for any object x, there is always a canonical identity morphism from x to x which labels the
identity operator on the line labeled by x. For a simple object a, the existence of the identity
morphism implies that there is a natural isomorphism Hom(a, a) ' C as an algebra. We assume
for simplicity that the identity object 1 is simple.

We also assume that every object x has a decomposition as a finite sum

x =
⊕

a

Naa (6.3.5)

where Na is a nonnegative integer and a is simple. In other words, every object x is semisimple.

Finally, we assume finiteness, that is the number of isomorphism classes of simple objects
is finite. Below, we will be somewhat cavalier on the distinction between simple objects and
isomorphism classes of simple objects.
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α

a⊗ b

c

b

a

b⊗ c

a⊗ (b⊗ c)

(a⊗ b)⊗ c

Figure 6.3.2: Left: The associator relates two different orders to tensor three lines. Right:
Equivalently, the local operator labeled by the associator morphism is obtained by squeezing
the region between (a⊗ b)⊗ c and a⊗ (b⊗ c) shown above to a point.

Associativity structure

The data in a symmetry category C includes certain isomorphisms implementing associativity of
objects

αa,b,c ∈ Hom((a⊗ b)⊗ c, a⊗ (b⊗ c)) (6.3.6)

which we call associators.4 Fusion matrices F for the Moore-Seiberg data, and the (quantum) 6j
symbols for the (quantum) groups are used in the literature to capture the data of associators.

The associator αa,b,c corresponds to a local operator which implements the process of ex-
changing line b from the vicinity of a to the vicinity of c. See Figure 6.3.2. They satisfy the
pentagon identity which states the equality of following two morphisms

((a⊗ b)⊗ c)⊗ d→ (a⊗ (b⊗ c))⊗ d→ a⊗ ((b⊗ c)⊗ d)→ a⊗ (b⊗ (c⊗ d))

= ((a⊗ b)⊗ c)⊗ d→ (a⊗ b)⊗ (c⊗ d)→ a⊗ (b⊗ (c⊗ d)) (6.3.7)

where each side of the equation stands for the composition of the corresponding associators. The
pentagon identity ensures that exchanging two middle lines b, c between two outer lines a, d in
two different ways is the same, see Fig. 6.3.3.

4Since we can and do choose the identity morphisms 1⊗a→ a and a⊗1→ a to be trivial, the associator αa,b,c
is also trivial when any of a, b, c is trivial.

204



Figure 6.3.3: The pentagon identity guarantees that two distinct ways to rearrange the order
of the tensoring of four lines lead to the same result.

a

= εRa

a⊗ a∗

1

a

= εLa

a∗ ⊗ a

1 a

= ◦εRa

a∗ ⊗ a

1

a

= ◦εLa

a⊗ a∗

1

Figure 6.3.4: Folding a line and squeezing it gives rise to local operators labeled by evalua-
tion and co-evaluation morphisms.

Dual structure

For every object a, C contains a dual object a∗. The line labeled by the dual object has the
property that

〈· · · a(C) · · · 〉 = 〈· · · a∗(C̃) · · · 〉. (6.3.8)

Here, C̃ denotes the same path C but with a reverse orientation, and the morphisms attached
at the junctions on C̃ need to be changed appropriately as we explain below at the end of this
subsubsection.

We require that the dual of the dual is naturally isomorphic to the original object: (a∗)∗ ' a.
The dual operation also changes the order of the tensoring:

(a⊗ b)∗ = b∗ ⊗ a∗. (6.3.9)

We demand that there are evaluation morphisms

εRa : a⊗ a∗ → 1, εLa : a∗ ⊗ a→ 1 (6.3.10)
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a

=

a

Figure 6.3.5: Consistency condition on evaluation and co-evaluation morphisms resulting
from a topological deformation.

and co-evaluation morphisms5

◦εRa : 1→ a∗ ⊗ a, ◦εLa : 1→ a⊗ a∗. (6.3.11)

These label local operators corresponding to the process of folding a line operator a. See Figure
6.3.4.

We note that εRa and εLa∗ are not necessarily equal. However, we require as part of definition
of dual structure that they are related as follows

εRa = εLa∗ ◦ (pa ⊗ 1) = εLa∗ ◦ (1⊗ p−1
a∗ ) (6.3.12)

where pa is an isomorphism from a to a and pa∗ is an isomorphism from a∗ to a∗. Similarly, we
require

◦εRa = (1⊗ p−1
a ) ◦ ◦εLa∗ = (pa∗ ⊗ 1) ◦ ◦εLa∗ (6.3.13)

The data of pa and pa∗ is referred to in the literature as a pivotal structure on the fusion category
C.

The evaluation and co-evaluation morphisms have to satisfy the following consistency con-
dition with the associator

(εRa ⊗ 1) ◦ αa,a∗,a−1 ◦ (1⊗ ◦εRa ) = 1 (6.3.14)

as morphisms from a to a. This ensures that a line with two opposite folds in the right direction
can be unfolded as shown in Figure 6.3.5. A similar identity is satisfied by εLa and ◦εLa which
ensures that two opposite folds in the left direction can be unfolded.

Using evaluation and co-evaluation morphisms of different parity we can construct loops of

5We use the convention that when something is denoted by x, co-something is denoted by ◦x. This usage is
unconventional, in particular for the case of coproduct for which ∆ is definitely the standard notation, but it reduces
the amount of notations that one has to remember.
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a

Figure 6.3.6: A loop of line a constructed by composing evaluation and co-evalutaion mor-
phisms. The loop, if it contains no other operators in it, can then be shrunk and the partition
function with the loop is equal to dimCC a = dim a times the partition function without the
loop, with all other insertions unchanged.

lines

(dimCC a)id : 1
◦εRa−→ a∗ ⊗ a εLa−→ 1, (6.3.15)

(dimC a)id : 1
◦εLa−→ a⊗ a∗ εRa−→ 1. (6.3.16)

These are morphisms from 1 to 1 and hence they are proportional to the identity morphism. The
proportionality factors define two numbers: the counter-clockwise dimension dimCC a of a and
the clockwise dimension dimC a of a. See Figure 6.3.6.

Since we can replace the label a by a∗ at the cost of flipping the orientation of line, we must
have

dimCC a = dimC a
∗, (6.3.17)

dimCC a
∗ = dimC a. (6.3.18)

Indeed, this follows from (6.3.12) and (6.3.13).

In fact, it turns out that we can further argue that

dimCC a = dimC a ≡ dim a. (6.3.19)

To see this, place a small counter-clockwise loop of line a around the “north pole” on the sphere.
Let there be no other insertions anywhere on the sphere. This evaluates to dimCC a× ZS2 where
ZS2 is the partition function on sphere. Now we can move the line such that it looks like a small
clockwise loop around the “south pole” on the sphere. This evaluates to dimC a×ZS2 . Equating
the two expressions we find (6.3.19) 6. This is a further constraint on C. If the fusion category C
satisfies (6.3.19), then C is called a spherical fusion category in the literature.

Since εRa and εLa∗ are not necessarily equal, we have to specify whether a folding of line a to
the right should be read as the morphism εRa or the morphism εLa∗ . Similarly there is a specification

6The authors thank Shu-Heng Shao for discussion related to this point.
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of ◦εRa vs. ◦εLa∗ . This issue can be dealt with in two ways, which are technically equivalent but
have a rather different flavor.

One method: One perspective is to regard that a line is always labeled by the pair (the local
orientation, an object in C). Then, a pair (↑, a) and (↓, a∗) are isomorphic but not actually the
same. We note that this distinction needs to be made even when a ' a∗. Then we make the rule
that when a vertical line is labeled by (↑, a) up to some point and then labeled by (↓, a∗) from
that point, we insert the pivotal structure pa ∈ Hom(a, a) at that point. This approach would
be preferred by those who have no trouble with adding local orientations as a new datum to a
topological line operator.

Another method: Another perspective is to think that the change between εRa and εLa∗ and
between ◦εRa vs. ◦εLa∗ is canceled by changing the nearby morphisms. This method might be
preferred by those who do not want to add local orientation as a new datum to a topological line
operator.

We emphasize that, in this approach, the operation of exchanging a by a∗ with a reversed
orientation does not change the local operators at the junctions. Instead it changes the way the
local operators at the junctions are read as morphisms in the associated symmetry category C.

The following moves are sufficient to specify what happens in any situation:

1. Consider a morphism εRa ◦ α−1
a,a∗,c ◦ (1 ⊗m) : a ⊗ b → c where m : b → a∗ ⊗ c. This is

equal to εLa∗ ◦ α−1
a,a∗,c ◦ (1⊗ n) : a⊗ b→ c where n = (p−1

a∗ ⊗ 1) ◦m : b→ a∗ ⊗ c.

2. Consider a morphism εRa∗ ◦ αc,a∗,a ◦ (m ⊗ 1) : b ⊗ a → c where m : b → c ⊗ a∗. This is
equal to εRa ◦ αc,a∗,a ◦ (n⊗ 1) : b⊗ a→ c where n = (pa∗ ⊗ 1) ◦m : b→ c⊗ a∗.

3. Consider a morphism (1 ⊗m) ◦ αa∗,a,b ◦ ◦εRa : b → a∗ ⊗ c where m : a ⊗ b → c. This is
equal to (1⊗ n) ◦ αa∗,a,b ◦ ◦εLa∗ : b→ a∗ ⊗ c where n = m ◦ (p−1

a ⊗ 1) : a⊗ b→ c.

4. Consider a morphism (m⊗ 1) ◦ α−1
b,a,a∗ ◦ ◦εRa∗ : b → c⊗ a∗ where m : b⊗ a → c. This is

equal to (n⊗ 1) ◦ α−1
b,a,a∗ ◦ ◦εLa : b→ c⊗ a∗ where n = m ◦ (1⊗ pa) : b⊗ a→ c.

These moves follow from (6.3.12) and (6.3.13). We draw a picture of the first move in Figure
6.3.7. The other three moves are also described by similar pictures.

Unitary structure

The unitary structure requires an existence of a conjugate-linear involution sendingm ∈ Hom(a, b)
to m† ∈ Hom(b, a), generalizing the Hermitian conjugate in the standard linear algebra.

We require that the evaluation and the coevaluation morphisms are related by this conjugate
operation:

◦εRa∗ = (εLa )†, ◦εLa∗ = (εRa )†. (6.3.20)
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a b

c

m =

a∗ b

c

(p−1
a∗ ⊗ 1) ◦m

Figure 6.3.7: The fold in the diagram on left hand side is specified as εRa and the fold on the
right is specified as εLa∗ . This changes the morphism from m on the left side to (p−1

a∗ ⊗ 1) ◦m
on the right side. These two diagrams provide two different categorical representations of
the same physical configuration.

We further require m† ◦m ∈ Hom(a, a) to be positive semi-definite in the following sense:
Since we assumed the semisimplicity and the finiteness of the number of simple objects, Hom(a, a)
can naturally be identified with a direct sum of a matrix algebra. Then we require m† ◦m to have
non-negative eigenvalues.

The above positivity condition requires dim a > 0 for all a. As we will see in Sec. 6.3.3
below, the unitarity implies sphericity.

6.3.2 Comments

We have several comments:

• Note that category theorists do not like unitary structures, since it is specific to the base field
C while they would like to keep everything usable for arbitrary base field. For this reason
they often distinguish various concepts of ∗ operations and various structures satisfied
by them, such as rigid structure, pivotal structure, spherical structure and pseudo-unitary
structure.7 If we consider unitary 2d quantum field theories (or more precisely its Wick-
rotated versions which are reflection-positive), the unitary structure is the most natural
one.

Operator algebraic quantum field theorists in fact work in this setting, since for them the
existence of the positive-definite inner product on the Hilbert space is paramount. Unfortu-
nately their papers often phrase purely categorical results in the operator algebra theoretic

7The rigid structure posits the existence of the left dual a∗ and the right dual ∗a, satisfying various conditions. It
can be shown that ∗∗a ' a∗∗, and a∗∗∗∗ ' a. The pivotal structure is a collection of isomorphisms a∗∗ ' a. In our
description, the pivotal structure relates εLa and εRa∗ . A pivotal structure is called spherical if dim a = dim a∗ for all
a. A spherical structure is called pseudo-unitary if |dim a| is the largest eigenvalue of (Na)cb for all simple a. For
the definition of N c

ab, see Sec. 6.3.3.
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language, which makes them somewhat harder for outsiders to digest. From this point of
view their review article [167] is very helpful, where a concise translation between termi-
nologies of two different schools is given.

• Every property given above, except the simplicity of identity, semisimplicity and finite-
ness, is a straightforward expression of how topological lines and the junction operators
associated to symmetries should behave. We impose the simplicity of identity, semisim-
plicity and finiteness to make the situation tractable. When the semisimplicity is dropped,
the category is called a finite tensor category; when the simplicity of identity is dropped,
the category is called a finite multi-fusion category; when both are dropped, it is called
a finite multi-tensor category. When finiteness is dropped, we simply drop the adjective
“finite”.

Indeed, if we consider all topological lines in a given 2d theory and all topological opera-
tors on topological lines, they might not in general form a unitary fusion category. Rather,
our point of view is that we take a subset of topological lines and subspaces of topological
operators on the lines so that they form a unitary fusion category, and then it can be thought
of as a symmetry of the 2d theory.

• A very similar categorical structure was introduced by Moore and Seiberg [172] in the
analysis of 2d RCFTs and 3d TFTs. In the category theory they are now called unitary
modular tensor categories. In fact, the unitary modular tensor categories are also unitary
fusion categories, where the latter description is obtained by forgetting the braiding.

6.3.3 More notions of symmetry categories

Before discussing examples, it is useful to set up a few more notions:

‘Homomorphisms’ between symmetry categories

In the case of two groups G1 and G2, we have the concept of homomorphisms ϕ : G1 → G2,
preserving the group multiplication. Similarly, we can talk about symmetry functors ϕ : C1 → C2

between two symmetry categories, together with the data specifying how the structures listed
above are mapped. Among them are isomorphisms

εa,b ∈ Hom(ϕ(a)⊗ ϕ(b), ϕ(a⊗ b)) (6.3.21)

which tell us how the tensor structure of C1 is mapped into the tensor structure of C2. For example,
the morphisms εa,b map the associator of C1 to the associator of C2.

Two symmetry functors ϕ, ϕ′ : C1 → C2 are considered equivalent when there is a set of
isomorphisms

ηa ∈ Hom(ϕ(a), ϕ′(a)) (6.3.22)

such that
ηa⊗bεa,b = ε′a,b(ηa ⊗ ηb). (6.3.23)
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When a symmetry functor has an inverse, it is called an equivalence between symmetry cate-
gories.

Products of symmetry categories

In the case of two groups G1 and G2, their product G1 × G2 is also a group. Similarly, given
two symmetry categories C1 and C2, we denote their product as C1 � C2, whose simple objects
are given by a1 � a2 where a1,2 are simple objects of C1,2, respectively. This product is called
Deligne’s tensor product of categories.

Fusion rule of unitary fusion categories

A symmetry category comes with a lot of structures. Sometimes it is useful to forget about most
of them as follows. For each isomorphism class of simple objects a, introduce a symbol [a],
and define their multiplication by [a][b] :=

∑
cN

c
ab[c] when a ⊗ b =

⊕
cN

c
abc. This makes

non-negative integral linear combinations of [a]’s into an algebra over Z+ with a specific given
basis. We call this algebra R(C) the fusion ring of the symmetry category C. In the case of
modular tensor categories, this algebra is also called the Verlinde algebra. We would often call
this algebra as just the fusion rule of C.

Let n be the number of isomorphism classes of simple objects. Then we can regard (Na)
c
b as

n× n matrices and [a] 7→ Na is the adjoint representation of the fusion ring.

Determination of dimensions of objects

The dimensions are fixed by N c
ab. To see this, consider the n-dimensional vector v := (dim a)a

where a runs over the isomorphism classes of simple objects. Its entries are positive real numbers
thanks to the unitarity. Furthermore, v is the simultaneous eigenvector of all Na’s with eigenval-
ues dim a. Then by the Perron-Frobenius theorem, dim a is the largest eigenvalue of the matrix
Na, which is guaranteed to be positive. The argument above applies both to dimC and dimCC, and
therefore the sphericity is implied by the unitarity. Unitarity also guarantees dim a = dim a∗.

We define the total dimension of the symmetry category C by the following formula:

dim C =
∑

a

(dim a)2. (6.3.24)

Here the sum runs over the isomorphism classes of simple objects.
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g g′ g′′

gg′g′′

gg′ −→

g g′ g′′

gg′g′′

g′g′′

Figure 6.3.8: The same background connection represented in two different ways as net-
works of topological line operators. If the symmetry is anomalous, they lead to different
partition functions.

6.3.4 Groups and representations of groups as symmetry categories

Symmetry categories C(G,α)

As an example, let us recast an ordinary group G as a symmetry category. We first regard each
element g ∈ G as a simple object denoted by the same letter in the category. We define

g ⊗ g′ := gg′, g∗ := g−1. (6.3.25)

Taking αg1,g2,g3 to be the identity maps, they clearly form a unitary fusion category, which we
denote by C(G).

More generally, the pentagon identity among αg1,g2,g3 says that α is a 3-cocycle on G valued
in U(1).8 Denote the resulting fusion category by C(G,α). In the literature it is often denoted
VecαG. We clearly have dim g = 1. Thus the total dimension of this symmetry category is the
order of the group.

When α1 and α2 differ by a coboundary of a 2-cochain ε, we can construct an equivalence
of categories between C(G,α1) and C(G,α2) using the functor specified using the same ε in
(6.3.21). This means that in the definition of C(G,α), one can regard α ∈ H3(G,U(1)).

It is also clear that any unitary fusion category whose simple objects are all invertible can be
made to be of this form. Summarizing,

A symmetry category C whose simple lines are all invertible is equivalent to C(G,α) where
G is a finite group and α is an element in H3(G,U(1)).

8As already noted in footnote 4, in our convention αg1,g2,g3 is trivial whenever any of g1,2,3 is the identity. Such
a cocycle is called normalized. It is a well-known fact in group theory that group cohomology can be computed by
restricting every cochains involved to be normalized.
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C(G,α) and the anomaly

As is by now familiar, this cohomology class α ∈ H3(G,U(1)) specifies the anomaly ofG flavor
symmetry in two dimensions [173, 155]. One way to see it is as follows [150]: Insert a network
of lines with trivalent junctions between them on the spacetime manifold Σ. Let the lines be
labeled by simple objects of C(G,α), that is by group elements. And let every junction of the
form g⊗ g′ → gg′ be labeled by the identity morphism gg′ → gg′. Such a configuration can also
be thought of as reproducing the effects of a background connection on Σ which has holonomies
given by g on crossing transversely a line labeled by g. Now, consider a local region looking
like the left hand side of Figure 6.3.8. Move the lines such that now it looks like the right hand
side of Figure 6.3.8. This changes the partition function by α(g, g′, g′′). The new background
connection is just a gauge transform of the original background connection. Hence, we see that
α precisely captures the anomaly in the flavor symmetry. Morally, this means the following:

A symmetry category C includes the specification of its anomaly.

Fixing a group G, the set of its anomalies forms an Abelian group. Notice that, in our
language, C(G,α) for different α have the same fusion ring R = Z+G. Thus, we can ask the
following more general question: does the set of symmetry categories C with the same fusion
ring R form an Abelian group? The answer is that we need a coproduct on R. To see this, let
us recall why the anomaly of a flavor symmetry forms an Abelian group from the perspective of
quantum field theory.

In general, given two theories T1,2, we can consider the product theory T1 × T2 which is just
two decoupled theories considered as one. When Ti has flavor symmetry group Gi, the product
T1 × T2 has flavor symmetry group G1 × G2. When G1 = G2 = G, we can take the diagonal
G subgroup of G × G and regard T1 × T2 to have flavor symmetry G. Now, when Ti has the
anomaly αi, we define the anomaly of T1× T2 to be the sum α1 +α2. This abstractly defines the
addition operation on the anomaly.

The crucial step that does not directly generalize to symmetry categories is the existence of
the diagonal subgroup G ⊂ G×G. In order to define the addition operation on the set of fusion
categories sharing the same fusion rule R, similarly we need a coproduct R→ R⊗R.

C(G,α) and the G-SPT phases

Next, fixing a 3-cocycle α, let us ask what is the autoequivalence of C(G,α), that is, the self
equivalence that preserves the structure as a symmetry category.

Pick an autoequivalence ϕ : g → ϕ(g) with the associated εg,h ∈ Hom(ϕ(g)ϕ(h), ϕ(gh)).
Clearly ϕ is an automorphism of G. Fixing ϕ to be the identity, ε needs to be a 2-cocycle so that
it does not change α. Furthermore, two such ε’s are considered equivalent when they differ by a
2-coboundary, due to (6.3.23). Therefore ε can be thought of as taking values in H2(G,U(1)).
Summarizing,
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Figure 6.3.9: The lines representing a commuting holonomy (g, h) on a torus.

Autoequivalence of C(G, 0) is the semidirect product Aut(G) nH2(G,U(1)).

The Aut(G) part is clear: it just amounts to renaming the topological lines associated to the
group operation. How should we think of H2(G,U(1))? It is telling us that instead of choosing
the identity operator as the implicit junction operator for g ⊗ g′ → gg′ as done in Fig. 6.3.1,
we can choose εg,g′ times the identity. This will not change the associator but will change the
partition function associated to a background connection on Σ. This corresponds to coupling
a two-dimensional theory with C(G,α) symmetry with a two-dimensional bosonic symmetry
protected topological (SPT) phase, which is specified by the 2-cocycle ε protected by the flavor
symmetry G. The 2-cocycle ε is also known as a discrete torsion of G.

As an example, consider a torus with holonomies g, h around two 1-cycles. They can be
represented using the topological lines as in Fig. 6.3.9. There, we resolved the intersection to
two trivalent junctions.

We now change the operators at the two junctions to εg,h and εg−1,h−1 given by the values of
the 2-cocycle. In total the phase of the partition function changes by

cg,h = εg,h/εh,g (6.3.26)

which is the standard relation between the discrete torsion phase c on the torus and the 2-cocycle
ε [174]. We can thus generalize as follows:

Autoequivalences of a symmetry category C generalize the notion of renaming and multiply-
ing by SPT-phases for a group symmetry.

We need to keep in mind however that the phases introduced by ε in the general case do not have
an interpretation of multiplying a SPT phase protected by C, since the product of two theories
with symmetry C has symmetry C � C but is not guaranteed to have symmetry C, as already
discussed above.

Rep(G) as symmetry category

Next, let us discuss Rep(G) for a finite group G. Its structure as a symmetry category is straight-
forward: the objects are representations of G, the morphism space Hom(R, S) between two
representations consists of intertwiners, as the tensor product ⊗ and the associator αR,S,T we
use the ordinary operations, the dual is the complex conjugate, etc. The simple objects are the
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irreducible representations. The dimension of a representation R as defined above equals the or-
dinary definition. Then, the total dimension of Rep(G) is the sum of the square of the dimensions
of the irreducible representations, therefore

dim Rep(G) = |G|. (6.3.27)

Clearly, when G is an Abelian group, we have a natural equivalence C(Ĝ) = Rep(G). This
means in particular that the symmetry categories Rep(G) for distinct Abelian G are distinct. In
fact the fusion rings R(Rep(G)) are already distinct.

For non-Abelian G, the situation is more delicate. For example, take the dihedral group D8

with eight elements (i.e. the symmetry of a square in three-dimensional space) and the quaternion
groupQ8 (i.e. the group formed by eight quaternions±1,±i,±j,±k). Their character tables are
the same. In particular, they both have four one-dimensional irreducible representations 1, a, b
and ab and a unique two-dimensional irreducible representationm, withm⊗m ' 1⊕a⊕b⊕ab.
Therefore, their fusion rings are the same. In this case, however, the symmetry categories are
different, since they are known to have distinct associator αm,m,m, see e.g. [175]. In this sense,
the relation between Rep(D8) and Rep(Q8) is analogous to the relation between the symmetry
categories C(G,α) associated to the same group but with a different anomaly.

It is also known that there are cases where two distinct groups lead to the same symme-
try category [176, 177]. Let F2 be the finite field with two elements. The symplectic group
Sp(2d,F2) acts on (F2)2d. The extension of (F2)2d by Sp(2d,F2) with this natural action is
classified by the cohomology H2(Sp(2d,F2), (F2)2d), see Appendix A, in particular (D.1.11).
It is known that when d ≥ 3, there is a suitable nonzero ν ∈ H2(Sp(2d,F2), (F2)2d) such that
Gd = Sp(2d,F2) n (F2)2d. and G′d = Sp(2d,F2) nν (F2)2d we have Rep(Gd) = Rep(G′d) as a
symmetry category. The smallest example is when d = 3, where |G3| = |G′3| = (26 − 1)(24 −
1)(22 − 1)232 · 23·2 = 92897280.

As already roughly discussed in Sec. 6.2.2, a theory T/Gwhere T has flavor symmetryG has
a symmetry Rep(G), and re-gauging Rep(G) we get back the original theory T . Equivalently, if
a theory T ′ has a symmetry Rep(G), gauging Rep(G) of T ′ has the symmetry G. In the example
above, we said Rep(Gd) = Rep(G′d) for different Gd and G′d. This means that there are (at least)
two distinct ways of gauging C = Rep(Gd) = Rep(G′d), producing two different theories with
different symmetries Gd and G′d. Let us next study what is going on in detail.

6.4 Gaugings and symmetry categories

Given a theory T with non-anomalous G symmetry, we can form the gauged theory T ′ = T/G,
and T ′ has Rep(G) as the symmetry category. We would like to precisely state the process of
gauging Rep(G) of T ′ and getting back T .

To do this, it is helpful first to state two procedures, one of obtaining Rep(G) from G and
another of obtaining G from Rep(G), in a manner that treats G and Rep(G) on an equal footing.
This is done using the concept of module categories and bimodule categories.

215



Once we understand this process, it is straightforward to study how to gauge a more general
symmetry category C. We will also be able to answer how the symmetry category C changes
under gauging in the general setting.

6.4.1 Module and bimodule categories

Readers would be familiar with the action of a group or an algebra on a vector space. Then the
vector space is called a representation or equivalently a module. When there are two commuting
actions, one from the left and another from the right, it is often called a bimodule. Module
categories and bimodule categories are categorified versions of this construction. Our expositions
will be brief; for more details, please consult Chapter 7 of the textbook [168].

The categorified version of a linear space is an additive category. An additive categoryM
is a category with the additive structure whose morphism spaces are vector spaces. Here and in
the following, we assume objects ofM to be of the form

⊕
mNmm where m runs over simple

objects and Nm are non-negative integers. We also assume that the number of isomorphism
classes of simple objects is finite.

The simplest additive category is Vec, the category of finite dimensional vector spaces. There
is only one simple object C, and every other object is isomorphic to nC = Cn.

Take C to be a symmetry category. A left-module category over C is an additive category
M such that for a ∈ C and m ∈ M the product a ⊗ m ∈ M is defined, together with the
associativity morphisms

αa,b,m ∈ Hom((a⊗ b)⊗m, a⊗ (b⊗m)) (6.4.1)

satisfying the pentagon identity. Direct sums of module categories can be easily defined. When
C is a symmetry category it is known that every module category can be decomposed into a direct
sum of indecomposable module categories.

Physically, a module category specifies a topological boundary condition. Each object m in
the module category specifies the boundary condition and the “type of flux” it carries. A line a
can end on m at the cost of transforming m to a ⊗ m which changes the flux at the boundary
by a. If a ⊗ m ' m for all a ∈ C then m, along with its direct sums with itself, describes
an indecomposable module category by itself which corresponds to a boundary condition that
absorbs all the flux and hence we can refer to it as the “Dirichlet boundary condition”. In general,
an indecomposable module category is a generalization of mixed Dirichlet-Neumann boundary
conditions familiar from gauge theory. In the literature, the structure on Vec of a module category
for C is often called a fiber functor of C, but we try not to use this terminology.

We can similarly define a right-module category over C. A (C1, C2) bimodule category is an
additive categoryM which has a left action of C1 and a right action of C2, together with further
compatibility morphisms

αc1,m,c2 ∈ Hom((c1 ⊗m)⊗ c2, c1 ⊗ (m⊗ c2)). (6.4.2)
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A bimodule category has the physical interpretation that it describes a topological interface where
lines in the symmetry categories C1,2 can end from the left and from the right, respectively.

Recall that a representation of an algebra A on a vector space V can be thought of as a
homomorphism from A to the algebra of matrices Hom(V, V ). Similarly, given an additive
category M we can form the symmetry category Func(M,M) of additive self functors, and
then giving the structure of a module category onM is the same as giving a homomorphism of
symmetry categories from C to Func(M,M).

The commutant of C within Func(M,M) is denoted by C∗M and called the dual of C with
respect to M. When M is indecomposable, it is known that (C∗M)∗M ' C. M is naturally a
(C, C ′) bimodule category where C ′ is C∗M with the order of the tensor product reversed. Since
we will only use C ′ and not C∗M in the following, we will call C ′ the dual of C with respect to
M. Two symmetry categories C and C ′ such that C ′ is the dual of C acting on M are called
categorically Morita equivalent. We will come back to this notion in Sec. 6.4.7.

6.4.2 Duality of C(G) and Rep(G)

Let us discuss examples of module categories. We can give Vec a structure of a module category
over C(G): for g ∈ C(G) and C ∈ Vec, we just define g⊗C = C, and let the associator be trivial.
Note that this construction does not work for C(G,α) with nonzero anomaly α ∈ H3(G,U(1)),
since the pentagon will not be satisfied.

We can also give Vec a structure of a module category over Rep(G): for R ∈ Rep(G) and
C ∈ Vec, we just define R ⊗ C = R ∈ Vec, and let the associator be the natural one induced
from the tensor product structure of G. We note that for C = Rep(Gd) = Rep(G′d) at the end of
Sec. 6.3.4, the module category structures on Vec as Rep(Gd) and Rep(G′d) are different, since
the associators (6.4.1) as morphisms in Vec turn out to be distinct.

Furthermore, we note that Vec is a (C(G),Rep(G)) bimodule category. The only additional
ingredient is the associator

αg,C,R ∈ Hom((g ⊗ C)⊗R, g ⊗ (C⊗R)) = Hom(R,R). (6.4.3)

The compatibility condition just says that αg,C,R are representation matrices of g on R, chosen
compatible with the tensor product. Physically, we can regard Vec as the boundary between a
system with G symmetry on the left and a gauged system with Rep(G) symmetry on the right.

In fact, Rep(G) is characterized as the maximal set of right actions compatible with the left
action of C(G), and C(G) as the maximal set of left actions compatible with the right action of
Rep(G). As we will explicitly confirm in Sec. 6.4.5, C(G) and Rep(G) are dual to each other
with respect to Vec:

The symmetry category C(G) and Rep(G) are dual with respect to the module category Vec.
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Figure 6.4.1: Associativity axiom for an algebra object A ∈ C
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Figure 6.4.2: Unit axiom for an algebra object A ∈ C.
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Figure 6.4.3: Separability axiom for an algebra object A ∈ C.
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Figure 6.4.4: Frobenius axiom for an algebra object A ∈ C.

6.4.3 Gauging by an algebra object

How is this duality of C(G) and Rep(G) related to gauging? To understand this, we need a
digression. Take A =

⊕
g g in C(G). The group multiplication gives a multiplication morphism

µ : A⊗ A→ A, and and the map 1 7→⊕
g δ1gg defines a unit morphism u : 1→ A. These two

operations satisfy the properties in Figures 6.4.1 and 6.4.2. In general, if we have an object A
in a general symmetry category C along with morphisms µ and u which satisfy these properties,
then A is called an algebra in C.

We also have corresponding co-morphisms. The map g 7→ 1
|G|
⊕

h(h ⊗ h−1g) defines a
co-multiplication ◦µ : A → A ⊗ A and the projection g 7→ δ1g1 defines a co-unit morphism
◦u : A→ 1. ◦µ satisfies a co-associativity axiom which is given by turning the graphs in Figure
6.4.1 upside down and changing the directions of all the arrows. Similarly, ◦µ and ◦u together
satisfy a co-unit axiom which is given by turning the graphs in Figure 6.4.2 upside down and
changing the directions of all the arrows. In general, if we have an object A ∈ C with morphisms
◦µ and ◦u satisfying these axioms, we say that A is a co-algebra in C.

Moreover, in the group case we can explicitly check that A satisfies additional properties
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◦u

A

◦εRA

µ

A

Figure 6.4.5: Symmetricity axiom for an algebra object A ∈ C. Here ◦εa denotes the co-
evaluation map for line a.

which relate the algebra and co-algebra structure on A. These are shown in Figures 6.4.3, 6.4.4
and 6.4.5. An objectA ∈ C satisfying these properties is called as a symmetric Frobenius algebra
object in C.

Now, given a two-dimensional theory T with flavor symmetry G, the partition function of the
gauged theory T/G can be described using this object A. Namely, ZT/G(M) on a manifold M
is defined by the partition function of T on M with a fine-enough trivalent mesh of topological
lines all labeled by A. By fine-enough, we mean a mesh which can be obtained as the dual graph
of a triangulation of the 2d manifold M . The relations above guarantee that the result does not
depend on the choice of the mesh as long as it is fine enough. Dually, these relations guarantee
invariance under changes of triangulations by Pachner moves. Furthermore, by decomposing
A =

⊕
g g, one can see that this trivalent mesh is a superposition of various G bundles over M ,

giving us back the standard definition of the gauged theory.

The crucial idea of [178, 169] is to take this as the definition of gauging in the generalized
sense. Namely, given a theory T with a symmetry category C, pick a symmetric Frobenius alge-
bra object A ∈ C. Then, the gauged theory T/A is defined exactly as in the previous paragraph.

Note that there can be multiple possible choices of A for a given C. For example, when
C = C(G), we can pick any subgroup H ⊂ G and take AH :=

⊕
h∈H h. When C = C(G,α), we

can check that AH is an algebra only when the anomaly α ∈ H3(G,U(1)) when restricted to H
is trivial. We can also twist the multiplication morphism m : A⊗ A→ A by using

εg,h ∈ Hom(g ⊗ h, gh) (6.4.4)

where εg,h ∈ H2(G,U(1)). The choice of A then can be thought of as the choice of a gauge-able
subsymmetry together with the choice of the discrete torsion [164]. We summarize:

Gauging a gauge-able subpart of C is done by inserting a fine-enough mesh of an algebra
object A in C. The choice of A in C generalizes the notion of choosing a non-anomalous
subgroup and the discrete torsion in the case of group symmetry.
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Figure 6.4.6: Associativity axiom for a left A-module (p, xL).

We have some comments:

• There is in general no canonical maximal A in C. For example, given C(G,α) for a non-
trivial anomaly, there is not necessarily a unique maximal non-anomalous subgroup.

• In the case of C(G,α), finding possible algebras A is equivalent to finding a symmetry
subcategory of the form C(H, 0). This is however not the general situation. Algebras A
specifying possible gaugings do not necessarily correspond to symmetry subcategories.

• Note also that two distinct A and A′ might give rise to the same gauged theory. We will
come back to this question in Sec. 6.4.6.

6.4.4 Symmetries of the gauged theory from bimodules for the algebra ob-
ject

What is the symmetry category of the gauged theory T/A? Since T/A is just the original theory
T with a fine mesh of A, we can still consider topological lines p ∈ C of the original theory. But
for p to be topological in the presence of an arbitrary mesh of A, the lines of A need to be able
to end on p both on the left and the right consistently.

First of all, there must be a morphism xL : A ⊗ p → p such that conditions in Figures 6.4.6
and 6.4.7 are satisfied. These properties make p into a left A-module in C. Similarly, there must
be a morphism xR : p ⊗ A → p which satisfies similar conditions and makes p into a right
A-module as well. Moreover, there must be morphisms ◦xL : p → A⊗ p and ◦xR : p → p⊗ A
which satisfy co-conditions obtained by reflecting the graphs in Figures 6.4.6 and 6.4.7 upside
down and reversing all the arrows. This would make p into a left and right A-comodule. It
turns out that for a symmetry category, we can always get the co-module structure by combining
the module structure with the co-evaluation map for A or A∗. Hence, from now on we restrict
our attention only to the module structure. On top of all these conditions, p must also satisfy
conditions which allow us to commute the left and right actions of A on p. This is the condition
shown in Figure 6.4.8 and it makes p into an (A,A)-bimodule in C.
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Figure 6.4.7: Unit axiom for a left A-module (p, xL).

A Ap

p

xR

xL

p
=

A Ap

p

xL

xR

p

Figure 6.4.8: Definition of (A,A)-bimodule (p, xL, xR).
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p
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π

q

Figure 6.4.9: The compatibility condition defining balanced tensor product of two A-
bimodules p and q via π.

The topological operators between two lines p and q, both of which are bimodules, need to be
compatible with the action of A from both sides. That is, the insertion of the bimodule changing
operator and the action ofAmust commute. They give rise to the category BimodC(A) of (A,A)
bimodules of A within C. Note that the concept of the category of (A,A) bimodules is different
from the concept of bimodule categories over C that we encountered above.

The tensor product in the category BimodC(A) is written as ⊗A and it ensures that any inser-
tions of A between p and q in p⊗A q can be removed. The product p⊗A q is given as a subobject
of p⊗ q defined by the most general projection π

π : p⊗ q → p⊗A q (6.4.5)

which satisfies the equation

(p⊗ A)⊗ q xR→ p⊗ q π→ p⊗A q = (p⊗ A)⊗ q α→ p⊗ (A⊗ q) xL→ p⊗ q π→ p⊗A q (6.4.6)

where each side of the equation stands for the composition of the morphisms shown, which are
the associators α, the projection π and the morphisms xL and xR defining the action of A on p
and q. See Figure 6.4.9. The equation tells us that the right action of A on p is balanced against
the left action of A on q.

The left action of A on p⊗A q is defined by the compatibility condition

A⊗ (p⊗q) π→ A⊗ (p⊗A q) xL→ p⊗A q = A⊗ (p⊗q) α→ (A⊗p)⊗q xL→ p⊗q π→ p⊗A q (6.4.7)

where each side of the equation means the composition of the appropriate morphisms, namely
the associators, the projection, and the left action of A on p. The reader can draw a figure for
(6.4.7) in a similar fashion as to Figure 6.4.9 for (6.4.6). Similarly, we define the right action of
A on p⊗A q. These actions manifestly commute and convert p⊗A q into an A-bimodule.

The dual of π is ◦π : p⊗A q → p⊗ q and we have π ◦ ◦π = 1. The associator in BimodC(A)
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q ⊗A r

p⊗A (q ⊗A r)

(p⊗A q)⊗A r

Figure 6.4.10: The associator in BimodC(A).

is then defined as

α̃p,q,r = πp,q⊗Ar ◦ (1⊗ πq,r) ◦ αp,q,r ◦ (◦πp,q ⊗ 1) ◦ (◦πp⊗Aq,r), (6.4.8)

see Figure 6.4.10. This ensures that any insertions of A can be removed in the diagram defining
the associator.

Similarly, the evaluation and co-evaluation maps in BimodC(A) are defined as ε̃L,Rp = u ◦
εL,Rp ◦ ◦π and ◦̃ε

L,R

p = π ◦ ◦εL,Rp ◦ ◦u where u and ◦u are unit and co-unit morphisms defining A.
The argument above suggests that we should take BimodC(A) to be the symmetry category of
the gauged theory T/A.

Now, consider two half-spaces, and put the mesh only on the right half. We now have a
domain wall between the original theory T on the left and the gauged theory T/A on the right.
On this domain wall, the lines of the theory T , in particular those from C, should be able to end
on the left and the lines of the theory T/A, namely those from BimodC(A), should be able to
end on the right. This suggests that the domain wall is described by the category ModC(A), the
category of right A-modules. Note that ModC(A) has a natural left action of C and a natural
right action of BimodC(A), making it naturally a (C,BimodC(A)) bimodule category. Almost
by definition, BimodC(A) is the dual of C with respect to the module category ModC(A).

6.4.5 Gauging of C(G) to get Rep(G) and vice versa

As an exercise, let us describe the process explicitly when C = C(G) and Rep(G).

224



From C(G) to Rep(G): We have already defined an algebra A in C(G) in Sec. 6.4.3. Let us
determine ModC(G)(A), the category of right modules of A.

Consider an object M =
⊕

Ngg where Ng are non-negative integers. We constrain M by
demanding that it forms a right-module forA. First of all, we need a morphism x : M⊗A→M ,
which is characterized by morphisms xg,g′ : Ngg ⊗ g′ → Ngg′gg

′, each of which can be though
of as an Ngg′ × Ng matrix. These matrices have to satisfy two equations. The first one involves
the product axiom of A and it tells us that

xgg′,g′′xg,g′ = xg,g′g′′ . (6.4.9)

The second one involves the unit axiom of A and it tells us that

xg,e = 1. (6.4.10)

Combining these two, we find that
xg,g′xgg′,g′−1 = 1 (6.4.11)

which implies that Ng = N for all g and

xg,g′ = xe,gg′(xe,g)
−1. (6.4.12)

So, we find that the right modules are M = N
⊕

g g = NA with arbitrary invertible N × N
matrices xe,g.

Now, we find the morphisms in ModC(G)(A). The first observation is that all (NA, xe,g) are
isomorphic to (NA, 1). A morphism from right to left is provided by sending Ng inside (NA, 1)
to Ng inside (NA, xe,g) by the matrix xe,g. The condition that this morphism commutes with the
action of A turns out to be (6.4.12) and hence this morphism is indeed a module morphism. The
morphism from left to right via the inverse matrix is the inverse of this module morphism. So,
we can restrict our attention to objects NA ≡ (NA, 1).

Let us then find module morphisms from NA to N ′A. Such a morphism ϕ is specified by
an N × N ′ matrix ϕg sending Ng inside NA to N ′g inside N ′A. The condition that ϕ be a
module morphism implies that ϕ is a constant N×n′ matrix independent of g. Thus, we identify
ModC(G)(A) as the category Vec.

Next, let us determine BimodC(G)(A). By a similar analysis as above, we can write such a
bimodule as (NA, (xL)g,e, (xR)e,g) where (xR)e,g and (xL)g,e encode the morphisms M ⊗ A →
M and A ⊗M → M . As before we can restrict our attention to (NA, (xL)g,e, 1). Demanding
that the left and right actions of A are compatible, we find that

(xL)g,e(xL)g′,e = (xL)gg′,e (6.4.13)

which means that the objects of BimodC(G)(A) are identified as representations of G. One can
check that the morphisms of BimodC(G)(A) are precisely the intertwiners between the represen-
tations. Thus BimodC(G)(A) is equivalent to Rep(G). We can also work out ⊗A and it agrees
with the tensor product on Rep(G).

225



From Rep(G) to C(G): Now the algebra objectA ∈ Rep(G) is the regular representation. The
regular representation is spanned by basis vectors ĝ in one-to-one correspondence with the group
elements g. If we denote the action of g by ρ(g) then ρ(g)ĥ = ĝh. The algebra multiplication
takes ĝ ⊗ ĥ to δghĝ which is an intertwiner. The unit morphism 1→ A corresponds to choosing∑

g ĝ in A.

First, we look for right modules of A. Choose some representation R of G. We denote the
action of g on ~q ∈ R as g~q. Note that g~q 6= 0 for any g and any non-zero ~q because otherwise
this would imply that ~q = g|G|~q = 0. The right-action of A on R must satisfy g(~p ĥ) = (g~p )ĥ.
We must also have that (~p ĥ) k̂ = δhk~p ĥ and ~p(

∑
g ĝ) = ~p. Now, start with some arbitrary vector

~q 6= 0 such that ~q ĝ 6= 0 for some g. Then, it must be true that ~p := (g−1~q) 1̂ 6= 0. Then, ~p 1̂ = ~p
and ~p ĝ = 0 for all g 6= 1. This implies that for every g we obtain a vector ~pg = g~p which
has the following properties: ~pg ĥ = δgh~pg. Also, all ~pg must be linearly independent because∑
αg~pg = 0 can be hit by ĥ from the right to yield αh = 0. Thus the set formed by ~pg for

all g is the regular representation A of G and R breaks up as a sum of regular representations.
Thus, the objects of ModRep(G)(A) are all isomorphic to NA for some non-negative integer N .
One can easily work out the module morphisms as well and then one finds that ModRep(G)(A) is
equivalent to Vec.

Next, we look for bi-modules of A. Pick A as a particular right module for A. It can be
converted into a bimodule Vg by simply stating that ĥ ~p1 = δgh~p1. The G-equivariance then
determines that ĥ ~pk = δkg,h~pk. Thus objects of BimodRep(G)(A) are labeled by non-negative
integers ng for each g. One can similarly figure out bimodule morphisms leading to the result
that BimodRep(G)(A) is equivalent to C(G). Again, the tensor product⊗A can be worked out and
it equals the group multiplication.

6.4.6 Gaugings and module categories

Let us come back to the general question. We said that given a theory T with a symmetry C and a
symmetric Frobenius algebra object A ∈ C, we can put a fine mesh of A on the two-dimensional
manifold to define the gauged theory T/A. We now ask the question: when do two algebra
objects A and A′ give rise to the same gauged theory T/A ' T/A′? For this, the symmetries
of the gauged theories should be the same, BimodC(A) ' BimodC(A

′) and the properties of the
domain walls should also be the same, ModC(A) ' ModC(A

′).

Let us see that conversely, if ModC(A) ' ModC(A
′), the gauged theories are the same T/A '

T/A′. Indeed, the equivalence is captured by an (A,A′) bimodule m in C which sends an object
M ′ of ModC(A

′) to an object M of ModC(A) via M = m ⊗A′ M ′ where ⊗A′ denotes a tensor
product in the category BimodC(A

′). There is an inverse (A′, A) bimodule n providing the
inverse map. Physically, m corresponds to a topological interface between T/A and T/A′ which
can be fused with boundary conditions of T/A′ to yield boundary conditions of T/A. n is
the inverse interface. Algebras A and A′ such that ModC(A) ' ModC(A

′) are called Morita
equivalent.

We claim that the existence of such an invertible interface guarantees that T/A and T/A′ are
isomorphic theories. For instance, consider the Hilbert space V of T/A on S1. It can be mapped
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to the Hilbert space V ′ of T/A′ on S1 by considering a cylinder geometry of infinitesimal time
with the insertion of a wrapped domain wall n in between. Similarly, we have an inverse map
from V ′ to V constructed similarly from m. Now, we can compose these maps by putting one
cylinder on top of the other. As the interfaces are topological, they can be moved towards each
other and ultimately fused away as they are inverses of each other. Thus, we are left with a unitary
evolution on an infinitesimal length cylinder geometry. We can now take the infinitesimal to zero
in all the steps above to obtain an isomorphism between V and V ′. Similar arguments can be
used to show that any kind of data of T/A is isomorphic to the same kind of data of T/A′.

We would like to stress that this equivalence of T/A and T/A′ is different from our claim that
T and T/A contain the same amount of information. For example, in the latter case, the Hilbert
spaces would be different, as we will detail in Sec. 6.4.8.

All of this means that what really characterizes different gaugings are not the algebra objects
used in the gaugings themselves but the associated module categories ModC(A) over C. We can
then ask the question: does every module categoryM over C come from a symmetric Frobenius
algebra object A in C, so thatM arises as the domain wall between the original theory T and the
gauged theory T/A? The answer is yes [168, 179].

The construction goes roughy as follows. Given a module categoryM over C, consider the
morphism spaces Hom(c⊗m,n) for c ∈ C and m,n ∈M. There is an object called the internal
hom and denoted by Hom(m,n) in C which satisfies

HomM(c⊗m,n) ' HomC(c,Hom(m,n)). (6.4.14)

At the level of objects, this is given by

Hom(m,n) =
⊕

c

(dim HomM(c⊗m,n))c (6.4.15)

where c runs over the isomorphism classes of simple objects in C as can be simply verified by
computing HomC(c,Hom(m,n)) from this equation.

Now, the internal homs can be concatenated naturally, in the sense that there is a natural
morphism

µ : Hom(m,n)⊗ Hom(n, o)→ Hom(m, o) (6.4.16)

and in particular Hom(m,m) has the multiplication. It can be shown [168] thatA = Hom(m,m)
for a simple object m ∈ M is an algebra object such that ModA(C) ' M. Furthermore, A is
automatically symmetric Frobenius if C is a symmetry category [179]. Summarizing, we have

Distinct choices of gaugings of a theory with symmetry category C are in one to one corre-
spondence with choices of indecomposable module categoriesM over C characterizing the
domain wall between the original theory and the gauged theory. The gauged theory has the
symmetry C ′ which is the dual of C with respect toM.

We denote the gauged theory corresponding to a module categoryM by T/M. We would like to
note that a decomposable module category corresponds to a direct sum of algebras A = A1⊕A2

where the algebra structure of A comes from algebra structure of A1 and the algebra structure

227



of A2. Gauging a theory T using A produces T/A = T/A1 ⊕ T/A2 because a mesh of A is the
same as a mesh of A1 plus a mesh of A2.

6.4.7 (Re-)gauging and its effect on the symmetry category

Now we can give a unified description of the (re-)gauging process. Consider a theory T with
a symmetry C. Pick an indecomposable module category M of C. There is an algebra object
A ∈ C such thatM ' ModC(A), and then the gauged theory T/M := T/A has the symmetry
C ′ = BimodC(A) such thatM is a natural (C, C ′) bimodule category.

Now, pick an indecomposable module categoryM′ of C ′ and repeat the same process. We
get the gauged theory T/M/M′ which has the symmetry C ′′ such thatM′ is a (C ′, C ′′) bimodule
category. We now see that the ‘set’ of all symmetry categories can be subdivided into ‘subsets’
consisting of symmetry categories that can be converted into each other by a sequence of gauging.

Note that this double gauging can be done in one step, since from two bimodule categories
M and M′ we can form the tensor product M �C′M′ which is a (C, C ′′) bimodule category.
Notationally it is convenient to write a (C, C ′) bimodule categoryM as a morphismM : C → C ′.
Then we can regardM �C′M′ asM′ ◦M. Then T/M/M′ ' T/(M′ ◦M). Any multiple
gauging can be done in one step.

In particular, Mop given by reversing the order of the tensor product is naturally a (C ′, C)
bimodule category, and Mop ◦ M is the identity. Therefore we have T/M/Mop = T . The
example we started this chapter with, T/G/Ĝ = T for an Abelian group G, is a special instance
of this construction.

It is instructive to phrase the re-gauging process in terms of the algebra A as well, whose de-
tail can be found in [169] with plenty of helpful drawings. The category of bimodules BimodC(A)
have an algebra object B = A∗⊗A. B is also trivially an algebra in C and its algebra multiplica-
tion is given by the evaluation map. Moreover, we can embed A into B as A→ A∗ ⊗ A⊗ A→
A∗ ⊗ A = B where the first map is the co-evaluation map and the second map is the multi-
plication for A. We are looking for B-bimodules in BimodC(A) which can be identified with
B-bimodules in C because A embeds inside B and hence a B-bimodule structure carries an A-
bimodule structure. Now, B-bimodules in C are trivially obtained from any object a ∈ C by the
mappingA∗⊗a⊗A. This mapping gives us an equivalence of C and the category ofB-bimodules
in BimodC(A).

Physically, this means that the lines of T/M/Mop come as lines of T dressed by A∗ on one
side and byA on the other. The local operators in T/M/Mop also correspond to a local operator
of T which appears at the junction of “middle” lines and the A-lines on the side are just joined
smoothly. Let’s insert a network of lines of T/M/Mop on a surface Σ and compute the partition
function. The network will look like a network of lines of T with additional A loops, one for
each “plaquette”. These A loops can be shrunk away leaving the partition function of a network
of lines of T . Thus we see explicitly how we obtain the same theory on regauging. Later on,
we will discuss 2d TFTs with C symmetry and we will give a prescription for constructing the
gauged TFT which uses heavily the algebra A rather thanM. From this argument, it is clear that
regauging the gauged TFT will give back the original TFT.

228



Summarizing, we have the following:

Denote byM : C → C ′ when the symmetry category C has a gaugingM under which the
dual symmetry is C ′. Two consecutive gaugings M : C → C ′ and M′ : C ′ → C ′′ can be
composed toM′◦M : C → C ′′, and any gaugingM : C → C ′ has an inverseM−1 : C ′ → C
such thatM−1 ◦M is the identity.

Now, let us ask when are two symmetry categories C and C ′ dual with respect to some in-
decomposable module categoryM. It is known [145] that this happens if and only if Z(C) '
Z(C ′), where Z(C) is the Drinfeld center of C. This has the following physical interpretation.

Recall first that any symmetry category where every simple object is invertible is of the form
C = C(G,α). From the same data of G and α ∈ H3(G,U(1)), we can construct a 3d TFT called
the Dijkgraaf-Witten theory [173]. On the boundary of the Dijkgraaf-Witten theory, we can put
a 2d theory with symmetry G with an anomaly α.

There is a generalization of this construction that gives a 3d TFT starting from any symmetry
category C, sometimes called the generalized Turaev-Viro construction. We will just call them
the Dijkgraaf-Witten theory associated to C. The Drinfeld center Z(C) is the braided tensor
category which captures the properties of the line operators of this 3d TFT, and this 3d TFT can
have a boundary where a 2d theory with symmetry C lives. For a recent exposition, see e.g. [3].

Since T/A is obtained by just adding a mesh of A on T , T/A and T can be put on boundaries
of the same 3d TFT. Therefore their Drinfeld centers should be the same. Conversely, specifying
an isomorphism Z(C) ' Z(C ′) corresponds to specifying a 1d domain wall on a 2d boundary
of a single 3d TFT, such that we have lines from C on the left and lines from C ′ on the right of
the domain wall. This corresponds to specifying a (C, C ′) bimodule implementing the gauging.
Summarizing,

Two symmetry categories C and C ′ can be transformed to each other by an appropriate
gauging if and only if the 3d TFTs associated to them are equivalent, i.e. Z(C) ' Z(C ′).

The fact Z(C) ' Z(C ′) also implies that the total dimension of C and C ′ are the same,

dim C = dim C ′. (6.4.17)

This is because it is known that dimZ(C) = | dim C|2.

Another related point is the following. This mathematical process of choosing a module
category or an algebra object corresponding to it for a symmetry category and taking the dual
category can be performed for a modular tensor category. A modular tensor category describes
topological line operators in a three-dimensional theory and therefore this operation should be
thought of as creating a new three-dimensional theory from an old one. This operation is in fact
known under the name of anyon condensation [180].

6.4.8 The effect of the gauging on Hilbert space on S1

Let us now discuss the Hilbert space on S1 of a theory with symmetry C, and how it is modified
by the gauging.
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a bc

Figure 6.4.11: An example of a circle with transverse line operators. The point marked
with an X labels the choice of the base point. In the diagrams here and below, the time flows
upwards, and the lines also carry arrows in the upward direction unless otherwise mentioned.

Backgrounds for C symmetry

Consider a cylinder of the form S1 × Rt, with lines ai in C transverse to the constant time slice
t = 0. Let us assume that other data about the circle like its size, spin-structure etc. have been
fixed so that we can associate a Hilbert space of states to this circle. See Figure 6.4.11 for an
example. In the figures here and below, the time flows from the bottom to the top.

We would like to identify this configuration of lines with an object a of C and say that the
circle carries the background a for the symmetry C. When C = C(G), the backgrounds are
labeled by group elements and correspond to holonomy of the G-connection around the circle.
As the lines are topological, we can try to define such an a by fusing them together. Clearly, there
are choices in the precise way one performs this procedure: there is a choice of the base-point
from which we start taking the tensor product, and there is also a choice in the relative order of
fusion of the lines, which is related to the associators in C. To spell this out more fully, we need
some notations and operations.

Let us denote the Hilbert space for a cylinder with just one line operator a ∈ C by Va. We
require Va⊕b = Va ⊕ Vb. A morphism m : a → b defines an operator Z(m) : Va → Vb. This is
given by the geometry shown in Fig. 6.4.12. Note that in a non-topological theory, the vertical
height of the cylinder containing the topological line and/or the topological operator needs to be
taken to zero. The same comment applies to all the figures discussed below in this section. Now,
two choices of fusing a, b and c in Fig. 6.4.11 can be taken care of by using the associator α and
Z:

Z(αa,b,c) : V(a⊗b)⊗c → Va⊗(b⊗c). (6.4.18)

To track the change of the base point, we need to introduce the map Xa,b : Va⊗b → Vb⊗a
defined by Fig. 6.4.13, together with its inverse. They are associated to the intersection of the
topological line and the auxiliary line, which is the trajectory of the base point.

The operations Xa,b and Z(α) satisfy many consistency relations, which we spell out in full
in Sec. 6.6.2. With them, we can keep track of the change of the base point and the change of the
order of fusing the lines in a consistent manner. This allows us to associate a Hilbert space to a
circle with multiple transverse line operators a1, . . . , ak.
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a

b

m

Figure 6.4.12: A morphism m : a→ b defines an operator Z(m) : Va → Vb.

Xa,b X−1
a,b

a b ba

Figure 6.4.13: Xa,b and its inverse tracks the change of the base points.

The operators X and Z can also be used to express how a line operator wrapped around S1

acts on the Hilbert space. Indeed, given two morphismsm : a→ c⊗d and n : d⊗c→ b, we can
define the operator Uc,d(m,n) using the network drawn in Fig. 6.4.14. Explicitly, this is given by

Uc,d(m,n) = Z(n)Xc,dZ(m). (6.4.19)

The action Ua of a line operator labeled by a wrapped around on S1 on the Hilbert space V1 on
S1 without any transverse line, referred to in Sec. 6.3.1, is a special example of this construction:
Ua = Ua∗,a(

◦εa, εa) where ◦εa, εa are the co-evaluation map and the evaluation map introduced
in (6.3.10), (6.3.11).

The Hilbert space of the gauged theory

So far we discussed the Hilbert spaces Va of the original theory T with the symmetry C, where
a ∈ C is the label of the line operator transverse to the constant time slice S1. Let us now discuss
how Hilbert spaces Wp of the gauged theory T/A can be found, where p ∈ C ′.

A line in the gauged theory is given by an (A,A) bimodule in C. Each such bimodule p can
be viewed as an object in C and hence has a Hilbert space Vp associated to it by the ungauged
theory T . We construct the Hilbert space Wp associated to p by the gauged theory T/A as a
subspace of Vp in the following manner.

In the case of C(G), one is traditionally instructed to project this space to the subspace left
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dc

m

n

Figure 6.4.14: The action Uc,d(m,n) of a line operator wrapped around S1.

p

p

Ap

Figure 6.4.15: The projector defining the Hilbert space of the gauged theory is a specific
instance of an action of a wrapped line operator. The morphisms used at the trivalent vertices
are those specifying the bimodule structure of p.

invariant by the action of the group G. For a general symmetry category C and its gauging A, we
need a projector P : Vp → Wp. Such a projector is naturally given by P := Up,A(◦xR, xL) where
◦xR : p → p ⊗ A and xL : A ⊗ p → p are the morphisms defining the module and comodule
structures on p, see Fig. 6.4.15. This projector was written down in [181].

Let us now show that this projector to Wp agrees with the traditional definition in the case of
C(G), when p is the identity object in the category of bimodules. This means that p = A =

⊕
g g

as an object in C(G). Therefore we are going to project VA =
⊕

g Vg. The operator P restricted
to V0 is given by |G|−1

∑
g g, and this is indeed a projector to the G-invariant subspace. The

action of P on the whole VA can be found similarly, and we find that

W1 = PVA '
⊕

C

(Gc-invariant subspace of Vc) (6.4.20)

where C runs over conjugacy classes of G, c ∈ C is a representative element, and Gc is the
commutant of c in G. This is as it should be.

Summarizing, we have the following statement:
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The Hilbert space of the gauged theory T/A is obtained by taking the invariant part of the
ungauged theory T under the projector naturally defined by wrapping A around S1.

6.5 More examples of symmetry categories and their gauging

In the previous sections we reviewed the general theories of symmetry categories and their gaug-
ing. So far, however, we only saw basic examples where symmetry categories are either of the
form C(G,α) where G is a finite group and α its anomaly, or of the form Rep(G) where G is a
group. In this section we discuss many other examples and their gauging.

6.5.1 Symmetry category with two simple lines

The simplest symmetry category consists of just one simple object 1 and its multiples. This can
be thought of as a symmetry of any 2d theory, but it is not very interesting.

Let us then consider the simplest nontrivial symmetry category, consisting of simple objects
1 and x. The dual of x can only be x, and then x⊗ x can only contain one copy of 1. Therefore
the tensor product can only be of the form x⊗ x = nx⊕ 1, where n is a non-negative integer.

When n = 0, then the simple objects 1 and x form the group Z2. As we already discussed,
there are two possible symmetry categories C(Z2, α) where α ∈ H3(Z2,U(1)) = Z2 determines
the anomaly.

When n = 1, the dimension of x is easily determined to be (1 +
√

5)/2. The only nontrivial
condition is the pentagon identity of the associator ax,x,x, and can be solved uniquely [182]. This
symmetry category in fact has a braiding which turns it into a modular tensor category describing
an anyon system. Recently this is known under the name of Fibonacci anyons because fusing n
copies of x generates the Fn−11 ⊕ Fnx where Fn is the nth Fibonacci number. For this reason
we denote this category Fib.

It is known that we cannot have n > 1, as shown by Ostrik [183]. Therefore, possible
symmetry categories with two simple lines are just three, C(Z2, 0), C(Z2, 1) and Fib. Ostrik also
classified all possible symmetry categories with three simple objects [184].

6.5.2 Symmetry category of SU(2) WZW models and other RCFTs

Next, we review the symmetry category of RCFTs, following the construction of [185]. Let
us take a rational chiral algebra A in two dimensions and consider a conformal field theory
T which corresponds to the diagonal modular invariant of this algebra A. As is well-known,
from a chiral vertex operator a corresponding to an irreducible representation of A, we can
construct a topological line operator a of this theory T . Because the theory T corresponds to
the diagonal modular invariant, chiral and antichiral vertex operators generate the same line
operators. Therefore the theory has topological lines generated by irreducible representations of
a single copy ofA. They of course are specified by the Moore-Seiberg data, or equivalently they
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form a unitary modular tensor category C. We can forget the braiding of C and regard it as the
symmetry category of this theory T .

The essential observation of [185] is that the choice of gauge-able subpart of C, or equiva-
lently the choice of the module category M over C, is in one to one correspondence with the
choice of modular invariants of the chiral algebraA. In particular, all modular invariants, includ-
ing the exceptional ones, arise as the result of a generalized gauging.

Let us describe them in more detail in the case of SU(2) WZW models, following [186]. The
chiral algebra is ŜU(2)k, which has k + 1 irreducible representations

Vj, j = 0, 1/2, · · · , k/2 (6.5.1)

with the fusion rule
Vj ⊗ Vj′ = V|j−j′| ⊕ V|j−j′|+1 ⊕ · · · ⊕ Vm (6.5.2)

where m = min(j + j′, k − (j + j′)). We have

dimVj =
qj+1/2 − q−j−1/2

q1/2 − q−1/2
where q = e2πi/(k+2). (6.5.3)

They form a symmetry category we denote by Rep(ŜU(2)k). The object V0 is the identity. It
is clear that the objects Vj with integral j form a symmetry subcategory, and can be denoted
by Rep(ŜO(3)k). In particular, when k = 3, this is equivalent to the symmetry category Fib
discussed above.

Since Vk/2⊗Vk/2 = V0, the simple lines V0 and Vk/2 form a sub-symmetry category. From our
general discussion above, this is equivalent to C(Z2, α) where α ∈ H3(Z2,U(1)) = Z2. This α is
determined in terms of the associator, or equivalently the fusion matrix or the quantum 6j symbol
involving four Vk/2, and is known to be α = k ∈ Z2. In particular Rep(ŜU(2)1) = C(Z2, 1). This
also means that the subsymmetry formed by V0 and Vk/2 is gauge-able when k is even. Gauging
it we obtain the modular invariant of type Dk/2+2.

The E6,7,8 modular invariants correspond to algebra objects

A =





V0 ⊕ V3, k = 10 (E6),

V0 ⊕ V4 ⊕ V8, k = 16 (E7),

V0 ⊕ V5 ⊕ V9 ⊕ V14, k = 28 (E8).

(6.5.4)

The type Xn of the modular invariants, or equivalently of the possible gauging, specifies the
corresponding module category structure as follows: the isomorphism classes of simple objects
in the module category are labeled by the nodes of the Dynkin diagram of Xn, and the edges
describe how V1/2 acts on the simple objects.
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6.5.3 Gauging a subgroup of a possibly-anomalous group

Generalities

We now turn our attention to a more traditional setup of gauging a subgroup H of a bigger group
G. We will soon see that already in this traditional-looking setup we encounter various surprises.

We start by specifying the anomaly of the bigger group; we start from a symmetry category
C(G,α) where α ∈ H3(G,U(1)). Possible gaugings are classified by their module categories, as
already discussed. They turn out to be in one-to-one correspondence with a pair (H,ψ) where H
is a subgroup such that the restriction of α to H is trivial, and ψ is an element of H2(H,U(1)).9

This result agrees with the more traditional viewpoint: we choose a non-anomalous subgroup H
and then choose the discrete torsion ψ.

From the general machinery described above, the gauged theory has a symmetry category
which is the dual of C(G,α) with respect to (H,ψ). Let us denote the resulting symmetry
category by C ′ := C(G,α;H,ψ). When α = 0, H = G, ψ = 0, we already know that C ′ =

Rep(G). Furthermore, when G is abelian, C ′ = C(Ĝ, 0). The explicit structure of C ′ in the
general case can be determined by realizing it as a category of bimodules BimodC(A) for the
algebra object A corresponding to (H,ψ).

Let us see what we can say generally. Firstly, there are two general facts:

• the dimensions of lines in C ′ are all integral; such symmetry categories are called as integral
symmetry categories.

• the total dimension dim C ′ := ∑a(dim a)2 is the same as the original one: dim C ′ = |G|.

Secondly, there are cases where the dual symmetry C(G,α;H,ψ) itself is of the form C(G′, α′)
for some group G′ and the anomaly α′. There is a theorem by Naidu, Nikshych [187, 188] and
Uribe [189] determining exactly when this happens, and if so, explicitly the form of G′ and α′.
The general formula is too complicated to reproduce in full here. A necessary condition is thatH
is an Abelian normal subgroup. When α is trivial this in fact suffices. In the next subsubsection
we describe its explicit structure.

Gauging a normal Abelian subgroup of a non-anomalous group

Statement: Let us choose a group G and its normal Abelian subgroup H . We then gauge H .
The gauged theory then has a symmetry group G′ with an anomaly α′ ∈ H3(G′,U(1)), given as
follows.

The fact that H is a normal Abelian subgroup means that G is an extension

0→ H → G→ K = G/H → 0 (6.5.5)

9More precisely, when α is nontrivial, ψ is an element of a torsor over H2(H,U(1)).
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and as such it is determined by an an action of K on H by inner automorphisms in G, and
an element κ ∈ H2(K,H) defined using the group action. The group G is a crossed product,
G = H oκK. Let us identity G = H ×K as a set. Then the group structure is given as follows:

(h, k)(h′, k′) = (h(k . h′)κ(k, k′), kk′) (6.5.6)

where k . h′ is the action of k on h′ and κ(k, k′) is an H-valued 2-cocycle of K.

Denote by Ĥ the dual group of H . There is a natural action of K on Ĥ given by k . ρ(h) =

ρ(k−1 . h) for arbitrary elements k ∈ K, h ∈ H and ρ ∈ Ĥ . Under this action,

G′ = Ĥ oK (6.5.7)

with the trivial two-cocycle in H2(K, Ĥ), and α′ is given by

α′ = ακ where ακ((ρ, k), (ρ′, k′), (ρ′′, k′′)) = ρ′′(kk′ . κ(k, k′)) (6.5.8)

Note that the nontriviality κ of the crossed product in the original G side is traded for the non-
triviality of the anomaly ακ on the G′ side. Summarizing, we have

Let us gauge a normal Abelian subgroup H of a symmetry group G. G is then necessarily of
the form G = H oκ K, where κ ∈ H2(K,H). When G has no anomaly, the gauged theory
has the symmetry group G′ = Ĥ oK, and the resulting anomaly α′ is given in terms of κ as
in (6.5.8).

Derivation: Let us now derive the description of G′ given in the last paragraph. Our starting
category is C(G) and we want to gauge it by the algebra object A =

⊕
h where h ∈ H . The

simple objects of gauged category BimodC(G)(A) are bimodules which can be seen to form the
set Ĥ×K using arguments very similar to those in Sec. 6.4.5. An object (ρ, k) in BimodC(G)(A)
is built from the object

⊕
h(h, k) in C(G). Our choice of the bimodule structure on (ρ, k) is

that the right action by A is trivial and the left action by A is given in terms of morphisms
(xL)h,h′ : (h, e)⊗ (h′, k)→ (hh′, k) satisfying the familiar condition

(xL)h,h′ = (xL)hh′,e((xL)h′,e)
−1 (6.5.9)

with
(xL)h,e = ρ(h). (6.5.10)

The balanced tensor product of (ρ, k) and (ρ′, k′) in BimodC(G)(A) is given in terms of pro-
jectors πh,h′ : (h, k)⊗ (h′, k′)→ (hκ(k, k′)(k . h′), kk′). The equation (6.4.6) tells us that

πh(k·h′),e = πh,h′ρ
′(h′) (6.5.11)

Demanding the right action on (ρ, k)⊗A (ρ′, k′) to be trivial leads us to the condition that

πh,h′ = πh,e (6.5.12)
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which can be substituted into (6.5.11) to simplify it to

πh(k.h′),e = πh,eρ
′(h′). (6.5.13)

Via (6.4.7), the left action ρ′′ on (ρ, k)⊗A (ρ′, k′) satisfies

ρ′′(h)πe,e = πh,eρ(h) (6.5.14)

which can be combined with (6.5.13) to yield

ρ′′(h) = ρ(h)ρ′(k−1 . h). (6.5.15)

In particular we have
πh,e = ρ′(k−1 . h). (6.5.16)

The equation (6.5.15) means that BimodC(G)(A) is equivalent to C(G′, α′) whereG′ = ĤoK
for some yet to be determined α′.

The associator can be computed from the graph in Figure 6.4.10. Let the objects p, q, r be
(k, ρ), (k′, ρ′), (k′′, ρ′′). It suffices to restrict each object to the sub-object (k, e) in C(G). Without
loss of generality, we can assume πe,e = 1 because factors of πe,e are canceled by factors of ◦πe,e.
Then the only contribution comes from what is denoted as ◦πp⊗Aq,r in Figure 6.4.10 and we find
the anomaly α′ given in (6.5.8).

Examples: As an example, consider G = Z2n generated by x with x2n = 1, and gauge the
Z2 subgroup generated by xn. When n is odd, G = Z2 × Zn, and the dual symmetry is clearly
just G′ = Ẑ2 × Zn without any anomaly, since the part Zn does not matter. When n is even,
G is a nontrivial extension 0 → Z2 → G = Z2n → Zn → 0, corresponding to a nonzero
κ ∈ H2(Zn,Z2). This means that the dual is G′ = Ẑ2 × Zn, with a nontrivial anomaly ακ as
given above.

As another example, consider G = D2n, the dihedral group of 2n elements, generated by
two elements r, s such that rn = s2 = 1, srs−1 = r−1. In particular, let n = 2m. Then
x := rm generates the center Z2 = 〈x〉 of D2n. Let us then gauge the center. Since the extension
0→ Z2 → D2n → Dn → 0 is nontrivial, the dual group G′ = Ẑ2×Dn has a nontrivial anomaly
ακD , given in terms of a nonzero κD ∈ H2(Dn,Z2) describing the extension. In particular, for
D2n = D8, the dual group G′ = Ẑ2×Z2×Z2 is Abelian. Dually, this means that by gauging Ẑ2

of the Abelian group G′ with an anomaly ακD turns the symmetry into a non-Abelian group D8.

As a final example in this subsection, consider G = Q8, the quaternion group of eight ele-
ments, formed by eight quaternions±1,±i,±j,±k. This is naturally a subgroup of SU(2) since
quaternions of absolute value 1 form the group SU(2), and as such the lift to SO(3) of a finite
subgroup of SO(3), this case D4 = Z2 × Z2. This means that we have a nontrivial extension

0→ Z2 → Q8 → D4 → 0. (6.5.17)

This extension is again nontrivial, whose class κQ ∈ H2(Z2×Z2,Z2) is different from κD in the
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case of D8. The dual group is then G′ = Ẑ2 × Z2 × Z2 but with a different anomaly ακQ .

Dually, we can say as follows. The same Abelian group, Ẑ2 × Z2 × Z2 with two different
anomalies κD and κQ dualizes, under gauging of Ẑ2, into two different non-Abelian groups D8

and Q8.

6.5.4 Integral symmetry categories of total dimension 6

Let us study the symmetry categories of total dimension 6 in detail. We already know a few such
symmetry categories, C(Z2 × Z3, α), C(S3, α) and Rep(S3), where S3 is the symmetric group
acing on three objects. Let us study what the gauging of their subgroups leads to. We will see
that there are in fact two more integral symmetry categories of total dimension 6.

From C(Z2 ×Z3, α): Here the anomaly is determined by α ∈ H3(Z2 ×Z3,U(1)) = Z2 ×Z3.

• Z1 is always gaugeable,

• Z2 is gaugeable only when α is from Z3 and then the dual is itself,

• Z3 is gaugeable only when α is from Z2 and then the dual is itself,

• Z6 is gaugeable only when α is trivial.

So there is nothing particularly interesting going on here.

From Rep(S3): Any possible gauging of Rep(S3) can always be done by first gauging Rep(S3)
back to C(S3) and then gauge one of its subgroup. Therefore we do not have to study it separately.

From C(S3, α): Here the anomaly is determined by α ∈ H3(S3,U(1)) = Z2 × Z3. Let us
denote by a and b the generators of Z2 and of Z3, respectively.

• Z1 is always gaugeable and the dual is itself.

• The subgroup Z2 is gaugeable only when α = bi with i = 0, 1, 2. The dual is not of the
form C(G′, α′) because this subgroup is not normal. When α = 0 the dual turns out to
be Rep(S3). When i = 1, 2, the duals cannot be Rep(S3), since if so, a further gauging
will produce C(S3, b

0) from C(S3, b
1,2). But this is impossible, since these two symmetry

categories have different number of possible gaugings.

• The normal subgroup Z3 is gaugeable only when α = a0,1. Gauging it leads back to itself,
with the same anomaly.

• S3 is gaugeable only when α is trivial. The dual is Rep(S3).
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From the analysis above, we find that symmetry categories C(S3, b
1,2;Z2, 0) obtained by

gauging the Z2 subgroup of S3 with a nontrivial anomaly α = b1,2 is neither of the form C(G,α)
nor of the form Rep(S3). It turns out that they have the same fusion rule as Rep(S3), namely
there are simple objects 1, x of dimension 1 and a of dimension 2, such that x2 = 1, ax = a,
a2 = 1 + x + a. These are the smallest integral symmetry categories which is neither C(G,α)
nor Rep(G).

It is known that the symmetry categories we listed so far exhaust all possible integral sym-
metry categories of dimension 6. This was shown in [190].

6.5.5 Integral symmetry categories of total dimension 8

Let us next have a look at symmetry categories of dimension 8. There are five finite groups G of
order 8, namely the three Abelian ones Z8, Z2×Z4, (Z2)3 and two non-Abelian ones D8 and Q8.
Correspondingly, we already see that there are symmetry categories C(G,α) constructed from
these group, where the possible anomalies are given as follows:

G Z8 Z2 × Z4 Z3
2 D8 Q8

H3(G,U(1)) Z8 Z2
2 × Z4 Z7

2 Z2
2 × Z4 Z8

. (6.5.18)

We also know two other symmetry categories of total dimension 8, namely the representation
categories Rep(D8) and Rep(Q8).

These two representation categories have the same fusion rules: there are four dimension-1
simple objects 1, a, b, ab forming an Abelian group A = Z2 × Z2, and one dimension-2 simple
object m, such that the fusion rule is commutative, a⊗m = b⊗m = m, and

m⊗m = 1⊕ a⊕ b⊕ ab. (6.5.19)

There are in fact two more symmetry categories, known as KP and TY with this fusion rule
[175]. For all these four cases, it is known that we can gauge the subsymmetry Z2 = {1, a} and
obtain C(D8, α) where α ∈ H3(D8,U(1)) is chosen depending on the four cases.

The four symmetry categories with the above fusion rule have a nice uniform description due
to Tambara and Yamagami, which is applicable to a more general case based on any Abelian
group A. The gauging of Z2 = {1, a} leading to C(D8, α) also has an explanation in the larger
context of Tambara-Yamagami categories. We will study them in more detail in the next subec-
tion.

The only remaining choice of the fusion rule of an integral symmetry category of total dimen-
sion 8 has the following form [191]: there are four dimension-1 simple objects 1, c, c2, c3 forming
an Abelian groupA = Z4, and one dimension-2 simple object m, such that c⊗m = m⊗ c = m
and

m⊗m = 1⊕ c⊕ c2 ⊕ c3. (6.5.20)

The result of Tambara and Yamagami [175] implies that there are four symmetry categories with
this fusion rule, distinguished by two sign choices. These categories do not have a common
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name; let us temporarily call it S±±. This completes the list of the integral symmetry category of
total dimension 8.

Before moving on, we have two comments. First, every integral symmetry categories we
saw so far, i.e. those symmetry categories for which dimensions of objects are integers, can be
obtained by gauging a non-anomalous subgroup of a possibly anomalous group. This property
fails when the total dimension is larger. Indeed, some of the Tambara-Yamagami categories
we discuss next are integral but cannot be obtained by gauging a non-anomalous subgroup of a
possibly anomalous group.

Second, the symmetry category KP is of a historical interest, since it is the category of rep-
resentations of the first non-commutative non-cocommutative Hopf algebra that appeared in the
literature, constructed by Kac and Paljutkin in 1966 [192]. One way to construct a symme-
try category is to pick a Hopf algebra H and take the category of its representations. When
H is commutative, the symmetry category is of the form C(G), and when H is cocommuta-
tive, the symmetry category is of the form Rep(G). When we take the dual of a Hopf algebra,
this naturally interchanges C(G) and Rep(G). Therefore considering Hopf algebras is a unified
framework in which C(G) and Rep(G) can be treated symmetrically. That said, to treat the sym-
metries of two dimensional theories and their gauging, we need to deal with symmetry categories
in general and we cannot stop at the level of the Hopf algebras. The symmetry categories which
are categories of representations of Hopf algebras can be characterized as symmetry categories
which has Vec as a module category. But even the familiar C(G,α) with a nontrivial α does not
have Vec as a module category!

6.5.6 Tambara-Yamagami categories

To construct a Tambara-Yamagami category, we start from an Abelian group A. The simple ob-
jects of the category are elements a ∈ A of dimension 1 together with an object m of dimension
|A|, with the commutative fusion rule

a⊗m = m, m⊗m =
⊕

a∈A

a. (6.5.21)

Tambara and Yamagami showed in [175] that any symmetry category with this fusion ring is
given by the choice of a symmetric nondegenerate bicharacter χ : A×A → U(1) and the choice
of the sign of τ = ±1/

√
|A|. The nontrivial associators are given in terms of χ and τ :

aa,m,b = χ(a, b), (6.5.22)

am,a,m =
⊕

b

χ(a, b)idb, (6.5.23)

am,m,m = τ(χ(a, b)−1)a,b ∈ Hom(
⊕

a

m,
⊕

b

m). (6.5.24)

Let us denote the resulting symmetry category by TY(A, χ, τ).

In our case where A = Z2 × Z2 generated by a and b, we just have two possible symmetric
nondegenerate bicharacters χ up to the action of SL(2,Z2). Explicitly, two such choices are
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specified by
χ(a, a) = 1, χ(b, b) = −χ(a, b) = ±1. (6.5.25)

We denote the choices by χ±. The choice of τ is τ = ±1/2. Then we have the following
correspondence:

χ τ
Rep(D8) χ+ +1/2
Rep(Q8) χ+ −1/2

KP χ− +1/2
TY χ− −1/2

. (6.5.26)

Here we are slightly abusing the notation such that TY alone stands for a specific symmetry
category with total dimension 8, while TY(A, χ, τ) refers to a general construction.

Another Tambara-Yamagami category of total dimension 8 is based onA = Z4 = {1, c, c2, c3}.
Any non-degenerate symmetric bicharacter is of the form

χ±(ck, cl) = (±i)kl. (6.5.27)

Together with the choice of the sign of τ , we have four Tambara-Yamagami categories S±± based
on Z4. We note that the bicharacter χ+ is trivial on the subgroup Z2 = {1, a = c2}.

It is known that for all eight Tambara-Yamagami categories described above, we can gauge
the subsymmetry Z2 = {1, a} and obtain C(D8, α) where α ∈ H3(D8,U(1)) is chosen depend-
ing on the four cases. This fact is a specific instance of a general theorem determining when a
Tambara-Yamagami category is obtained by gauging a subgroup of a possibly non-anomalous
group [193]. They showed that this occurs if and only if A has a Lagrangian subgroup H for χ,
i.e. there is a subgroup H ⊂ A such that i) the restriction of χ on H is trivial and ii) A/H ' Ĥ
via the pairing induced by χ. In the four cases above, H is given by Z2 = {1, a}.

Let us explicitly describe below that gauging the subgroup H of the Tambara-Yamagami
symmetry category C = TY(A, χ, τ) produces a symmetry category of the form C(G,α). The
algebra object we use to gauge the system is A =

⊕
h∈H h.

We note that A fits in the extension 0 → H → A → Ĥ → 0. We fix a specific section
s : Ĥ → A and denote by κ the two-cocycle in C2(Ĥ,H) characterizing this extension. Then
the symmetric nondegenerate bicharacter χ on A defines a symmetric map

χ : Ĥ × Ĥ → U(1) (6.5.28)

satisfying the condition

χ(ρ+ ρ′, σ) = χ(ρ, σ) + χ(ρ′, σ) + σ(κ(ρ, ρ′)). (6.5.29)

Simple (A,A) bimodules turn out to be isomorphic to either of the following two types:

• Xρ,σ for ρ, σ ∈ Ĥ . As an object in C, it is
⊕

h∈H hσ. The right action of A is trivial, and
the left action of A is given by ρ(a)id : a⊗ hσ → ahσ.
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• Yρ,σ for ρ, σ ∈ Ĥ . As an object in C, it is just m. The left action and the right action of A
is given by ρ(a)id : a⊗m→ m and σ(a)id : m⊗ a→ m.

The tensor product ⊗A in the category of bimodules, together with the projections π (6.4.5) in
the definition of ⊗A is then given as follows:

Xρ,σ ⊗A Xρ′,σ′ = Xρρ′,σσ′ (6.5.30)

where the projections π are trivial,

Xρ,σ ⊗A Yρ′,σ′ = Yρρ′,σσ′ (6.5.31)

where the projections π are given by ρ′(a)id : aσ ⊗m→ m,

Yρ,σ ⊗A Xρ′,σ′ = Yρ(σ′)−1,σ(ρ′)−1 (6.5.32)

where the projections π are given by σ(a)ρ′(a)−1id : m⊗ aσ′ → m, and

Yρ,σ ⊗A Yρ′,σ′ = Xρ(σ′)−1,σ(ρ′)−1 (6.5.33)

where the projections π are given by

π =
⊕

a∈H

σ′(a)−1idaσ(ρ′)−1 : m⊗m→
⊕

x∈A

x. (6.5.34)

The equations (6.5.30),(6.5.31),(6.5.32),(6.5.33) show that the simple objects Xρ,σ and Yρ,σ
form the group

G = (Ĥ × Ĥ) o Z2 (6.5.35)

where the Z2 acts by
(ρ, σ) 7→ (−σ,−ρ). (6.5.36)

The anomaly α can be computed using the projections given above and the associators (6.5.22),
(6.5.23) and (6.5.24) of the original category. We find

α(Xρ,σ, Xρ′,σ′ , Xρ′′,σ′′) = ρ′′(κ(σ, σ′)), (6.5.37)
α(Xρ,σ, Xρ′,σ′ , Yρ′′,σ′′) = ρ′′(κ(σ, σ′)), (6.5.38)
α(Xρ,σ, Yρ′,σ′ , Xρ′′,σ′′) = χ(σ, σ′′), (6.5.39)
α(Yρ,σ, Xρ′,σ′ , Xρ′′,σ′′) = (ρ′ρ′′σ−1)(κ(σ′, σ′′)), (6.5.40)
α(Xρ,σ, Yρ′,σ′ , Yρ′′,σ′′) = σ′′(κ(σ, (σ′)−1ρ′′)), (6.5.41)
α(Yρ,σ, Xρ′,σ′ , Yρ′′,σ′′) = χ(σ′, σ(ρ′)−1(ρ′′)−1), (6.5.42)
α(Yρ,σ, Yρ′,σ′ , Xρ′′,σ′′) = (σ′(ρ′′)−1)(κ(σ(ρ′)−1, σ′′)), (6.5.43)
α(Yρ,σ, Yρ′,σ′ , Yρ′′,σ′′) = sgn(τ)χ(σ(ρ′)−1, σ′(ρ′′)−1). (6.5.44)

As a check of the computation, we can directly confirm that these define a 3-cocycle on G.

In the eight cases Rep(D8), Rep(Q8), KP, TY and S±± we discussed above, we always have
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◦I : V → C I : C→ V M : V ⊗ V → V ◦M : V → V ⊗ V

Figure 6.6.1: The basic building blocks of a 2d TFT.

H = Z2 and the resulting group G = (Z2 × Z2) o Z2 is D8. To see this, regard Z2 × Z2 as the
group of flipping the coordinates x and y of R2 generated by

(x, y) 7→ (−x, y), (x, y) 7→ (x,−y) (6.5.45)

respectively, and Z2 acting on Z2 × Z2 to be the exchange of x and y given by

(x, y) 7→ (y, x). (6.5.46)

Dually, with a suitably chosen α on D8 and gauging the Z2 subgroup flipping the x coordinate,
we get the four symmetry categories given above.

6.6 2d TFT with C symmetry and their gauging

6.6.1 2d TFTs without symmetry

As a warm-up, let us recall the structure of 2d TFTs without any symmetry. We follow the
exposition in [171] closely, see in particular their Appendix A.

We start with a vector space V of states on S1 and one wants to define a consistent transition
amplitude

ZΣ : V ⊗m → V ⊗n (6.6.1)

corresponding to a given topological surface Σ with m incoming circles and n outgoing circles.
We need four basic maps ◦I , I ,M , ◦M corresponding to four basic geometries given in Fig. 6.6.1.

First, we construct maps ◦IM : V ⊗ V → C and ◦MI : C → V ⊗ V as in Fig. 6.6.2. This
inner product must be non-degenerate because it just corresponds to a cylinder geometry which
pairs a state on one circle with a dual state on the other circle. Using it, we can identify V and V ∗.
Then, ◦I is an adjoint of I and ◦M is an adjoint of M . Therefore, to every property involving M ,
we can write down a corresponding property involving ◦M , and similarly for statements about I
and ◦I . This allows us to reduce the number of independent statements we need to write down
roughly by half; we do not repeat these adjoint statements below.

We consider M as giving a product on V . There is no order on the two incoming circles of
a pair of pants and hence the product is commutative, see Fig. 6.6.3. We can also see that M
is associative from Fig. 6.6.4 and that I is a unit of the multiplication M from Fig. 6.6.5. Also,
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◦IM : V ⊗ V → C ◦MI : C→ V ⊗ V

Figure 6.6.2: The pairing of V with itself.

=

Figure 6.6.3: The product M is commutative.

by composing these inner products with the product, we see that the product is invariant under
permuting three legs, see Fig. 6.6.6

After these preparations, let us associate a map ZΣ : V ⊗m → V ⊗n to a surface Σ with m
incoming circles and n outgoing circles. We pick a time coordinate t : Σ → [0, 1] such that at
t = 0 we start with m initial circles and at t = 1 we finish with n final circles. As time goes
from 0 to 1, the number of circles generically stay constant but can either increase or decrease
by one unit at specific times 0 = t0 < t1 < t2 < · · · < tp = 1. Cut Σ once in each interval
(ti, ti+1). This divides Σ into p pieces. The geometry of each piece contains some cylinders,
which correspond to trivial transition amplitude, and exactly one non-trivial geometry out of the
four non-trivial cases shown in Fig. 6.6.1. This gives us an expression for ZΣ in terms of the four
maps ◦I, I,M, ◦M .

However, one could choose a different time t′ which starts with same m initial circles and
ends with same n final circles. In general, this would lead to a different cutting of Σ and a
different compositions of four maps ◦I, I,M, ◦M . We need to make sure that they agree.

We can continuously deform the time function t to obtain the time function t′. The critical

=

Figure 6.6.4: The product M is associative.
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=

Figure 6.6.5: I is a unit of the product M .

=

Figure 6.6.6: The product is invariant under exchanging an incoming circle and an outgoing
circle.

points ti will move under this deformation and will cross each other. It is also possible for two
critical points to meet and annihilate each other or for two critical points to pop out of nowhere.
We therefore need to ensure that ZΣ remains invariant when ti and ti+1 cross each other, and
when two critical points are created or annihilated. For this, we just need to ensure that the
two-step composition from the cut between ti−1 and ti to the cut between ti+1 and ti+2 remains
invariant under these processes.

All possible types of the topology changes were enumerated carefully in Appendix A of
[171]. The cases are the following and their adjoints:

1. The creation or the annihilation of two critical points as shown in Fig. 6.6.5, or

2a. The exchange of two critical points as shown in Fig. 6.6.4, which we already encountered,
or

2b. the situation Fig. 6.6.7 where the number of intermediate circles changes from one to three,
or

2c. the situation Fig. 6.6.8 where the A-cycle and the B-cycle of a torus is exchanged. In more
detail, on one side, a circle consisting of segments a, b, c, d in this order splits to two circles
consisting of a, b and c, d, which are now along the A-cycle. They then merge into a circle
consisting of four segments with the order b, a, d, c. On the other side, the two circles in
the intermediate stage consists of segments b, c and d, a, and are along the B-cycle.

The invariance of ZΣ under the change 1 is the unit property itself, and the invariance under
the change 2a is the associativity itself. The invariance under the change 2b can be reduced to
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=

Figure 6.6.7: One possible topology change.

:
ab

c d

ab

c d

=
ab

c d

ab

c d

Figure 6.6.8: Another possible topology change concerns a torus with two holes. On the two
figures on the right, the time flows from inside to the outside, and the parallel edges of the
boundary need to be identified to form a torus. On one side, the intermediate two circles are
along the A-cycle, and on the other side, they are along the B-cycle.
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a b c

(a⊗b)⊗c

Figure 6.6.9: The Hilbert space of a circle with multiple line operators are identified with
the Hilbert space of a circle with the fused line operator.

a

b

m

a b ba
Z(m) : Va → Vb Xa,b : Va⊗b → Vb⊗a Yb,a : Vb⊗a → Va⊗b

Figure 6.6.10: Basic operations on the cylinder.

associativity by using the cyclic invariance of the product, shown in Fig. 6.6.6. Finally, under the
topology change 3b, the map ZΣ is trivially invariant.

In total, we have shown that a 2d TFT with no symmetry is completely defined by a vector
space V with the four maps ◦I, I,M, ◦M with the conditions described above. Such a vector
space is known as a commutative Frobenius algebra V .

6.6.2 TFT with C symmetry on a cylinder

Let us now move on to the discussion of TFTs with symmetry given by a symmetry category C.
In this subsection we start with the simplest geometry, namely cylinders. We already discussed
basics in Sec. 6.4.8. As mentioned there, we choose a base point along each constant-time cicle,
and call its trajectory the auxiliary line.

Basic ingredients: We first associate the Hibert space Va for a circle with a single insertion of
a line labeled by a ∈ C. We require Va⊕b = Va⊕Vb. We now associate a Hilbert space Va,b,c,... for
a circle with insertions of transverse lines a, b, c, . . . by fusing them in a fixed particular order,
starting from the closest line on the right of the base point and then toward the right :

Va,b,c,... := V(···((a⊗b)⊗c)··· ). (6.6.2)
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The case with three lines is shown in Fig. 6.6.9.

We have two basic operations we can perform on the cylinder, see Fig. 6.6.10. One is to
insert a morphism m : a → b, which defines an operator Z(m) : Va → Vb. Another is to move
the base point to the right and to the left, which defines morphisms Xa,b : Va⊗b → Vb⊗a and
Yb,a : Vb⊗a → Va⊗b.

Assignment of a map to a given network: With these basic operations, we can assign a map
Va,b,... → Vc,d,... for a cylinder equipped with an arbitrary network of lines and morphisms from
the symmetry category C, where an incoming circle have insertions a, b, . . . and an outgoing
circle have insertions c, d, . . . .

We choose a time function t on it, and we call any time ti a critical point when either of the
following happens: i) there is an insertion of a morphism on a line, ii) there is a fusion of two
lines a, b into one line a ⊗ b or vice versa, and iii) a line crosses an auxiliary line. Note that we
do not allow the auxiliary line to bend backward in time, as part of the definition.

We order 0 = t0 < t1 < · · · < tp−1 < tp = 1 so that the incoming circle is at t = 0 and the
outgoing circle is at t = 1. Each critical point of type i) gives a factor of Z(m), that of type ii)
gives a factor of Z(α) where α is an appropriate associator, and that of type iii) gives a factor of
X or Y . Then we define the map Va,b,··· → Vc,d,··· associated with this time function t to be the
composition of factors corresponding to these critical points.

Consistency of the assignment: We now need to show that this assignment is consistent.
There are three types of changes under which the assignment needs to be constant, namely

• the change of the time function t,

• the change of the positions of the auxiliary line, and

• the change of the network in a disk region that does not change the morphism within it.

The third point might need some clarification. In the symmetry category C, a topologically
different network can correspond to the same morphism. Then we need to ensure that if we
replace a subnetwork on a cylinder accordingly, the resulting map on the Hilbert space should
also be the same, see Fig. 6.6.11 This is not just a change in the time function, therefore we need
to guarantee the invariance separately.

The auxiliary line might cut though the subdiagram, as also shown in Fig. 6.6.11, but this
does not have to be treated separately, since we can first move the auxiliary line outside of the
disk region, assuming that it is shown that the auxiliary lines can be moved.

Then this third type of change can be just taken care of by assuming that we can fuse two
local operators, leading to the following constraint, see Fig. 6.6.12:

Z(n)Z(m) = Z(n ◦m). (6.6.3)
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If

a b

c d

=

a b

c d

: a⊗ b→ c⊗ d

then

a b

c d

=

a b

c d

and

a b

c d

=

a b

c d

Figure 6.6.11: A local change in the network should not affect the map on the Hilbert space
if the two subnetworks give the same morphism.

a

b

m

c

n =

a

c

nm

Figure 6.6.12: Two morphisms can be combined.
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a b

=

a b

Figure 6.6.13: Moving the auxiliary line back and forth should do nothing.

a

=

a

Figure 6.6.14: Winding the auxiliary line all the way around, represented by Xa,1, should
not do anything.

Next, let us take care of the second type of change, where we move the auxiliary lines keep-
ing the network and the time function fixed. First, moving the auxiliary line back and forth in
succession should not do anything, so we have

Xa,b = Y −1
b,a , (6.6.4)

see Fig. 6.6.13. Rotating the base point all the way around should not do anything either, there-
fore we have

Xa,1 = id, (6.6.5)

see Fig. 6.6.14.

Then we should be able to move the morphisms across the auxiliary line, leading to two
relations, as illustrated in Fig. 6.6.15:

Xa′,bZ(m⊗ 1) = Z(1⊗m)Xa,b, (6.6.6)
Xa,b′Z(1⊗ n) = Z(n⊗ 1)Xa,b (6.6.7)

for m : a→ a′ and n : b→ b′. We can also fuse two lines before crossing the auxiliary line, see
Fig. 6.6.16. This leads to the constraint

Xb,c⊗aZ(αb,c,a)Xa,b⊗cZ(αa,b,c) = Z(αc,a,b
−1)Xa⊗b,c. (6.6.8)
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ba

aʹ b

m

=

ba

aʹ b

m
;

a b

a bʹ

n

=

a b

a bʹ

n

Figure 6.6.15: Morphisms can be crossed across the auxiliary line.

a⊗b c

a b c

=

c

a b c

a⊗b

Figure 6.6.16: Crossing the fused line over the auxiliary line should be the same with cross-
ing two lines separately.

Finally, on the cylinder, the change in the time function itself does not do much, and possible
changes are already all covered. Thus, we see that to define a consistent TFT with C symmetry
on a cylinder, we need the data of an additive functor Z : C → Vec with morphisms Xa,b :
Va⊗b ' Vb⊗a satisfying (6.6.5), (6.6.6), (6.6.7) and (6.6.8).

Generalized associators on the cylinder: The relations so far guarantees that we can always
move the base point and change the order of the tensoring of lines in a consistent manner. .
For example, the relation (6.6.8) means that there is a single well-defined isomorphism between
V(a⊗b)⊗c and V(c⊗a)⊗b. We introduce a notation

A(a⊗b)⊗c→(c⊗a)⊗b : V(a⊗b)⊗c → V(c⊗a)⊗b (6.6.9)

for it, and call it a generalized associator on the cylinder. We similarly introduce generalized
associators for an arbitrary motion of the base point and an arbitrary rearrangement of paren-
theses. Each such generalized associator have multiple distinct-looking expressions in terms of
sequences of Z(α), X and X−1, but they give rise to the same isomorphism.

6.6.3 TFT with C symmetry on a general geometry

Basic data: Let us discuss now the TFT with C symmetry on a general geometry. The four
basic geometries are given in Fig. 6.6.17. For a pair of pants, we need to join the two auxiliary
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a b

a b

ba

ba

◦I : V1 → C I : C→ V1 Ma,b : Va ⊗ Vb → Va⊗b
◦Ma,b : Va⊗b → Va ⊗ Vb

Figure 6.6.17: The basic building blocks of a 2d TFT with C symmetry.

aa*

a*a

Figure 6.6.18: The pairing of Va and Va∗ .

lines coming from each leg into a single auxiliary line. We take the point where this happens to
coincide with the critical point where two circles join to form a single circle. In what follows,
we will refer to the initial two legs of a pair of pants as the initial legs and the final leg as the
product leg.

We can now associate to any geometry Σ withm initial legs and n final legs with an arbitrarily
complicated network of lines and morphisms from C a linear map as follows. We first choose a
time function t : Σ→ [0, 1]. We call a time value ti critical when any of the following happens:
i) the topology of the constant time slice change, ii) there is a morphism, or iii) a line crosses a
auxiliary line. We order the critical times so that 0 = t0 < t1 < t2 < · · · < tp = 1. We cut Σ
once in each interval (ti, ti+1), and associate to each critical time ti one of the basic linear maps.
We then compose them. We now need to guarantee that this assignment is consistent.

Basic consistency conditions: Let us first enumerate basic consistency conditions. First, we
define the pairing of Va and Va∗ as in Fig. 6.6.18:

◦IZ(εLa )Ma∗,a : Va∗ ⊗ Va → C, (6.6.10)
◦Ma,a∗Z(◦εLa )I : C→ Va ⊗ Va∗ . (6.6.11)

Then we require that

this pairing is non-degenerate and can be used to identify (Va)
∗ ' Va∗ . (6.6.12)

Under this pairing, the productMa,b and the coproduct ◦M b∗,a∗ are adjoint, etc. This again allows
us to reduce the number of cases need to be mentioned below roughly by half.

Before proceeding, we note that we used εLa , ◦εRa to define the pairing. We can also use εRa∗ ,
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a b

aʹ b

m

=

a b

baʹ
m

Figure 6.6.19: A morphism can be moved across the product.

=

Figure 6.6.20: I is a unit of the product Ma,1.

◦εRa∗ to define a slightly different pairing. Exactly which pairing to be used in each situation can
be determined by fully assigning orientations to every line involved in the diagram. Below, we
assume that every line carries an upward orientation, unless otherwise marked in the figure.

Second, a morphism can be moved across the product, see Fig. 6.6.19:

Ma,b(Z(m)⊗ idVb) = Z(m⊗ idb)Ma,b. (6.6.13)

Third, the map I defined by the bowl geometry gives the unit, see Fig. 6.6.20:

Ma,1(v ⊗ I) = v, v ∈ Va. (6.6.14)

Fourth, it is twisted commutative:

Xa,bMa,b(v ⊗ w) = Mb,a(w ⊗ v), v ∈ Va, w ∈ Vb (6.6.15)

as illustrated in Fig. 6.6.21. Fifth, it is associative up to the associator:

Z(αa,b,c)Ma⊗b,c(Ma,b ⊗ idc) = Ma,b⊗c(ida ⊗Mb,c), (6.6.16)

as shown in Fig. 6.6.22.

Sixth, we want to formulate that the product is symmetric under the cyclic permutation of
three circles. To do this we first introduce a slightly generalized form of the product shown in
Fig. 6.6.23:

M(a⊗c∗,c⊗b∗)→a⊗b∗ : Va⊗c∗ ⊗ Vc⊗b∗ → Va⊗b∗ (6.6.17)
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a b

a b

=

a b

b a

Figure 6.6.21: The product M is twisted commutative.

a b c

a⊗b c

up to assoc.
=

a b c

a b⊗c

Figure 6.6.22: The product M is associative up to the associator.

given by

M(a⊗c∗,c⊗b∗)→a⊗b∗ = Z(ida ⊗ εLc ⊗ idb∗)A(a⊗c∗)⊗(c⊗b∗)→a⊗(c∗⊗c)⊗b∗Ma⊗c∗,c⊗b∗ (6.6.18)

where εLc : c∗⊗ c→ 1 is the evaluation morphism andA is the generalized associator introduced
in the last subsection.

The generalized product has an alternative definition as given in Fig. 6.6.24, where the line c

a b*

a b*

c* c

=

a b*

cc*

Figure 6.6.23: A slightly generalized version of the product operation. In the figure on the
right, the time flows from inside to the outside.
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a b*

cc*
=

a b*

cc*

Figure 6.6.24: An alternative definition of the generalized product. The time flows from the
inside to the outside.

a b*

a c* b*c

=

a c* b*c

Figure 6.6.25: The product is invariant under exchanging an incoming circle and an outgoing
circle.

crosses three auxiliary lines. This gives an alternative expression

M(a⊗c∗,c⊗b∗)→a⊗b∗ =

Z(ida⊗b∗ ⊗ εRc )A(c∗⊗a)⊗(b∗⊗c)→(a⊗b∗)⊗(c⊗c∗)Mc∗⊗a,b∗⊗c(Xa,c∗ ⊗Xc,b∗) (6.6.19)

and we demand

the right hand sides of the equations (6.6.18) and (6.6.19) are the same. (6.6.20)

We can now formulate the cyclic symmetry of the product:

M(a⊗c∗,c⊗b∗)→a⊗b∗ and M(c⊗b∗,b⊗a∗)→c⊗a∗ are related by the inner products, (6.6.21)

see Fig. 6.6.25. We can in fact derive this relation for general a, b, c just from the subcase when
c = 1 and the relations already mentioned. We keep the general case for cosmetic reasons, since
it looks more symmetric.

Seventh, we need a consistency on the torus. An incoming circle consisting of four segments
with lines a, b, c, d can first split into two circles with two segments a, b and c, d each and then
rejoins to form a circle with four segments in the order b, a, d, c; another way this happens is that
the two intermediate circles have segments b, c and d, a, see Fig. 6.6.26. They each determine
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ab
c d

ab

c d

ab
c d

ab

c d
V(a⊗b)⊗(c⊗d) → V(b⊗a)⊗(d⊗c) V(b⊗c)⊗(d⊗a) → V(c⊗b)⊗(a⊗d)

Figure 6.6.26: Two ways a circle splits into two and then rejoins. They should be equal up
to the action of X and the associators.

maps (M∆)a,b;c,d : V(a⊗b)⊗(c⊗d) → V(b⊗a)⊗(d⊗c) and (M∆)b,c;d,a : V(b⊗c)⊗(d⊗a) → V(c⊗b)⊗(a⊗d)

given by

(M∆)a,b;c,d := Mb⊗a,d⊗c(Xa,b ⊗Xc,d)∆a⊗b,c⊗d, (6.6.22)
(M∆)b,c;d,a := Mc⊗b,a⊗d(Xb,c ⊗Xd,a)∆b⊗c,d⊗a. (6.6.23)

We then demand that they are equal up to the generalized associators:

A(b⊗a)⊗(d⊗c)→(c⊗b)⊗(a⊗d)(M∆)a,b;c,d = (M∆)b,c;d,aA(a⊗b)⊗(c⊗d)→(b⊗c)⊗(d⊗a). (6.6.24)

Consistency in the general case: We finally finished writing down basic moves. Now we can
analyze the general moves. We again have three cases:

• the change of the time function t on the surface Σ,

• the change of the positions of the auxiliary line, and

• the change of the network in a disk region that does not change the morphism.

Let us start by discussing the third case. This is in fact automatic once the first two cases are
taken care of, since any disk region can be put into a cylinder under a topological change, and
then the auxiliary line can be moved off away from it. Then all we have to assume is that Z(m)
fuses appropriately, (6.6.3).

The change in the position of the auxiliary line can happen in the following three ways:

• The auxiliary line can move within a single cylinder. This was already discussed in the last
subsection.

• When a circle with line a and a circle with line b join to form a circle, the order of a, b and
the base point x in the product leg can either be x, a, b or a, b, x. The invariance under this
is the twisted commutativity (6.6.15).
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a b c

d

=

ca b

d

Figure 6.6.27: One possible topology change. The line d is on the back side of the figures.

• A line c ∈ C can cross the trivalent vertex of the auxiliary line. This move changes the
number of the intersection of the line c with the three auxiliary lines in one of the two
ways, 0 ↔ 3 or 1 ↔ 2. One example of the move 0 ↔ 3 is the equality (6.6.20) of the
two definitions (6.6.18) and (6.6.19) of the generalized product. The move 1 ↔ 2 can be
deduced by combining the twisted commutativity.

Finally we need to take care of the changes in the time function t. One possible change is that
a morphism and a product can happen in two different orders. The invariance under this move is
(6.6.13). Then there are topological changes in the cutting of the surface, which again comes in
the following varieties:

1. The creation or the annihilation of two critical points does Fig. 6.6.20. The consistency
under this change is the unit property (6.6.14).

2a. The exchange of two critical points does Fig. 6.6.22. The consistency under this change is
the associativity (6.6.16).

2b. The number of intermediate circles changes from one to three. One example is drawn in
Fig. 6.6.27. The consistency under this change can be reduced to the cyclic symmetry of
the generalized product (6.6.21).

2c. How the torus is decomposed is changed as in Fig. 6.6.26, for which we assigned a basic
relation (6.6.24).

Summarizing, a TFT with C symmetry is captured by the data (V ;Z,X; ◦I, I,M, ◦M) sat-
isfying the various relations listed above. Namely, on the cylinder, we have (6.6.3), (6.6.5),
(6.6.6), (6.6.7), (6.6.8), and on the general geometry, we have in addition (6.6.12), (6.6.13),
(6.6.14), (6.6.15), (6.6.16), (6.6.20), (6.6.21), and (6.6.24), and finally, diagrams turned upside
down correspond to adjoint linear maps.

6.6.4 Gauged TFT with the dual symmetry

Now we would like to discuss the definition of the TFT T/A gauged by an algebra object A in
terms of the ungauged TFT T . We start from the data (V ;Z,X; ◦I, I,M, ◦M) for the original
theory T .
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The Hilbert space of the gauged theory was introduced in Sec. 6.4.8. See that section for
some necessary background. We use the action by A on Vp, depicted in Fig. 6.4.15. This is given
by

P := Up,A(◦xR, xL) := Z(xL)Xp,AZ(◦xR) (6.6.25)

where xL : A ⊗ p → p and ◦xR : p → p ⊗ A are the morphisms defining the A-bimodule
structure on p. As we already discussed, P turns out to be a projector, and we define Wp to
be the projection PVp. Now, we define the data (W ; Z̃, X̃, ◦Ĩ , Ĩ , M̃ , ◦M̃) for T/A in terms of
corresponding data for T .

The morphism map Z̃ : We define the new Z̃ to be the restriction of the old Z. We need to
check that if the initial state lay in Wp ⊂ Vp then the final state also necessarily lies in Wq, for
a bimodule morphism p → q. This can be checked by gluing a cylinder on top of the final state
which corresponds to the action ofA. The wrappedA line can then be taken across any bimodule
morphism until it wraps the p line at the start of the cobordism. But then the wrapped A line has
no effect and can be removed because the initial state we started with is invariant under the action
of A.

The base point-change map X̃ : We now want to define the new X̃p,q : Wp⊗Aq → Wq⊗Ap.
We use π and ◦π (see Sec. 6.4.4) to define X̃p,q = Z(π)Xp,qZ(◦π). This is well defined because
a wrapped A line at the end of the cobordism can be moved to an A line propagating between a
and b at the start of the cobordism which can be removed because of the definition of ⊗A.

The unit and counit maps Ĩ and ◦Ĩ : Now the new unit morphism Ĩ would be a map from C
to WA ⊂ VA. We define it as Ĩ = Z(u)I where u : 1→ A is the unit morphism in the definition
of A. Similarly, ◦̃I = ◦IZ(v) where v : A → 1 is the co-unit morphism in the definition of A.
These are well-defined as can be shown by manipulations similar to those we are now going to
perform for the definition of M̃ .

The product and coproduct maps M̃ and ◦M̃ : The new M̃ is defined analogously as M̃p,q =
Z(π)Mp,q. This M̃ can be shown to be well defined as a map Wp ⊗Wq → Wp⊗Aq by a series of
manipulations using a lot of properties of A. See Figure 6.6.28. We represent a pair of pants as a
3-punctured plane for ease of illustration. The lower punctures correspond to input legs and the
upper puncture corresponds to the product leg of the pair of pants. Unlabeled lines correspond
to A. To explain various manipulations, let us refer to manipulations involving =i as “step i”.

• Step 1 just tells us that the left action of A on p⊗A q is defined by the left action on p, and
the right action on p⊗A q is defined by the right action on q.

• In step 2, we introduce an A line wrapping the leg carrying q. We can do that because the
input state in that leg is invariant under the action of A.

• In step 3, we first use the fact that q is an A-bimodule and then use the fact that q is a right
A-module.
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p⊗A q

p q

=1

p⊗A q

p q

=2

p⊗A q

p q

=3

p⊗A q

p q

=4

p⊗A q

p q

=5

p⊗A q

p q

Figure 6.6.28: The new product M̃ and its well-definedness. For details of the manipulation,
see the main text.
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• In step 4, we use the fact that q is a left module for A.

• Finally, in step 5, we first use the fact that q is a bimodule, then the fact that the tensor
product is ⊗A, and then the fact that p is a bimodule.

• Ultimately, we can simply remove both the A lines because the input states are invariant
under the action of A.

We define ◦M̃ as the adjoint of M̃ .

To complete the definition of T/A, we have to check that the operations defined above satisfy
the various conditions that we described in the last section. Most of them just concern some trivial
topological manipulations of lines and are manifestly satisfied. Some others, such as (6.6.14),
can be checked using manipulations similar to the ones we have been doing in this sub-section.
Yet some others, like the complicated relation (6.6.20) and (6.6.24)), require us to simplify a lot
of π and ◦π, but this can be done. This completes the definition of T/A.

6.7 Conclusions

In this chapter we reviewed the notion of unitary fusion categories, or symmetry categories as
we prefer to call them, and how they formalize the generalized notion of finite symmetries of
a two-dimensional system. We studied various explicit examples of such symmetry categories,
some of which are related rather directly to finite groups and some of which are not. We then
studied how a symmetry category can be gauged and be re-gauged back. We also defined 2d
topological quantum field theories admitting a symmetry given by a symmetry category. Many
questions remain. Here we mention just two.

The first is how to generalize the constructions discussed in this chapter to higher dimensions.
In a sense, this is a merger of the generalized symmetry in two dimensions in the sense of this
chapter, and of the generalized symmetry in the sense of [150]. That there should be something
that combines both is clear: even in general spacetime dimension d, the 0-form symmetries can
be any non-Abelian group G, possibly with an anomaly specified by Hd(G,U(1)) in the bosonic
case and by subtler objects in the fermionic case. Then the (d − 2)-form symmetry needs to be
extended at least to allow Rep(G). When d = 3, it seems that the notion of 1-form symmetries
needs to be extended at least to include modular tensor categories, with an action of the 0-form
symmetry group G with an anomaly. What should be the notion in d = 4 and higher?

The second is to actually construct two-dimensional systems T for a given symmetry category
C. For any group G without an anomaly, there is the trivial theory where the Hilbert space
is always one-dimensional. How about the other cases? We can roughly classify symmetry
categories C as follows, depending on the simplest possible theories T that have C as a symmetry:

1. The simplest C-symmetric theories have one-dimensional Hilbert space. These would be
C-symmetry protected topological (SPT) phases.

2. The simplest C-symmetric theories have finite-dimensional Hilbert space. These would be
C-symmetry enriched topological (SET) phases.
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3. The simplest C-symmetric theories have infinite-dimensional Hilbert space. Taking the
low energy limit, these would be C-symmetric conformal field theories (CFTs).

4. There is no C-symmetric theory.

Clearly this classification forms a hierarchy, and it would be nice if we have a uniform construc-
tion that tells easily which stage of the above classification a given symmetry category C belongs
to. There is a recent paper in this general direction [194], where a construction of 2d theory
starting from any given symmetry category C was discussed. We hope to see more developments
in the future.

Actually, there are various symmetry categories C constructed in the subfactor theory, e.g. what
is called the Haagerup fusion category, for which no C-symmetric theory is known. If a theory
symmetric under the Haagerup fusion category could be constructed, it would be considered as
a huge breakthrough.
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Appendix A

Appendix to Chapter 2

A.1 Brief Review of Anomaly Cancellation in F-theory

The allowed gauge algebras and matter content for a given tensor branch structure is heavily
constrained by anomaly cancellation. In 6D, anomalies are related to four-point amplitudes
of external currents Ja associated with continuous symmetry group Ga. In such a four-point
amplitude, insertions of external currents Ja for a given gauge group Ga must come in pairs,
so we need only consider the anomalies related to the four point functions 〈JaJaJaJa〉 (gauge
anomaly cancellation) and 〈JaJaJbJb〉 (mixed gauge anomaly cancellation).

For a representation R of some gauge group G, we introduce constants IndR, xR, and yR
relating the quadratic and quartic Casimirs of G as follows:

TrRF 2 = IndRtrF 2 , TrRF 4 = xRtrF 4 + yR(trF 2)2. (A.1.1)

Here, tr indicates the trace in a defining representation of the group1.

The constraints on gauge and mixed anomalies take the form [52, 195, 53, 51]

IndAdja −
∑

R

IndRanRa = 6(10− n)
ΩIJa

IbJa
ΩIJaIaJ

(A.1.2)

yAdja −
∑

R

yRanRa = −3(10− n)
ΩIJb

I
ab
J
a

ΩIJaIaJ
(A.1.3)

xAdja −
∑

R

xRanRa = 0 (A.1.4)

∑

R,R′

IndRaIndR′bnRaR′b = (10− n)
ΩIJb

I
ab
J
b

ΩIJaIaJ
. (A.1.5)

1For SU(N) and Sp(N), the defining representation is simply the fundamental representation. For SO(5) and
SO(6), it is the spinor representation. For SO(N), N ≥ 7, it is the fundamental representation, though normalized
with an additional factor of 2 so that TrfF 2 = 2trF 2, TrfF 4 = 2trF 4. A complete list including exceptional gauge
groups can be found in Table 2 of [51].
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Here, ΩIJ is the natural metric on the space of antisymmetric tensors, and aI , bJa are related to
the anomaly 8-form I8 via

I8 =
1

2
ΩIJX

IXJ , XI =
1

2
aI trR2 + 2bIatrF

2
a . (A.1.6)

These field theoretic conditions can be translated into F-theory language as restrictions on the
allowed gauge algebras and matter for a given base. Any gauge algebra summand ga in the
theory is paired with a tensor multiplet, which is in turn associated with a curve Σa in the base.
In these terms, the anomaly cancellation conditions become

IndAdja −
∑

R

IndRanRa = 6(K · Σa) = 6(2ga − 2− Σa · Σa) (A.1.7)

yAdja −
∑

R

yRanRa = −3(Σa · Σa) (A.1.8)

xAdja −
∑

R

xRanRa = 0 (A.1.9)

∑

R,R′

IndRaIndR′bnRaR′b = Σa · Σb. (A.1.10)

Here, K is the canonical divisor of the base and ga is the genus of Σa. The adjunction formula
K · Σa = 2(ga − 1)− Σa · Σa has been used in the second equality of (A.1.7).

Gauge anomaly cancellation may be used to constrain the gauge groups paired with a given
tensor node, and mixed anomaly cancellation constrains the gauge groups allowed on neigh-
boring tensor nodes. However, tensors need not be paired with gauge groups. In particular,
curves of self-intersection 0, −1, or −2 can be devoid of a gauge group entirely. Curves of self-
intersection 0 cannot touch any other curves, so this case is relatively uninteresting. Curves of
self-intersection −1 and −2, on the other hand, can touch other curves.

A.2 Matter for Singular Bases and Tangential Intersections

In this Appendix, we review the relationship between matter, singularities and tangential inter-
sections. Further information can be found in [54].

Consider some curve Σ. When this curve becomes singular, there are two distinct notions of
genus. Geometric genus, denoted pg, is the topological genus of the curve after all singularities
have been resolved. Arithmetic genus, denoted g, is the quantity related to the intersection theory
of the curve by

2g − 2 = K · Σ + Σ2. (A.2.1)

The arithmetic genus is the one that shows up in the adjunction formula and hence enters the
anomaly cancellation equation (A.1.7). These two notions of the genus are related via

g = pg +
∑

P

mP (mP − 1)

2
. (A.2.2)
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Here, the sum runs over all singular points P of the curve and mP is the multiplicity of the
singularity at P . For a curve with a nodal singularity (of Kodaira type I1) or a cusp singularity
(of Kodaira type II), there is a single singular point of multiplicity mP = 2. Hence, in each
of these cases we have g = pg + 1. The only values of g and pg that can actually arise in our
classification are g = 1 and pg = 0.

Although pg does not show up directly in the anomaly cancellation conditions, it still deter-
mines the F-theory matter content. Namely, pg is precisely the number of adjoint hypermultiplets
charged under the gauge algebra paired with this curve. For smooth LST bases, we see that there
is one adjoint whenever the genus g = pg of the curve is 1. For singular curves, on the other
hand, the arithmetic genus g can be 1 even without any adjoint hypermultiplets. For curves with
gauge algebra su(N), one instead finds symmetric and antisymmetric representations, as noted
in [52].

We now consider the Kodaira type III base configuration, which consists of two −2 curves
intersecting tangentially. First, we show that two curves meeting tangentially can indeed carry
fiber types I∗0 and I4, which correspond to gauge algebras g2/so(7)/so(8) and su(4), respectively.
For this, we consider the Weierstrass model:

y2 = x3 + (zu+ σ2)x2 + (zu+ σ2)2z2vx+ (zu+ σ2)3z4w (A.2.3)

Here z and σ are local coordinates on the base and u, v, and w are functions that do not vanish
at (z, σ) = (0, 0). From this, we compute f , g, and ∆ to be

f = (zu+ σ2)2(−1/3 + z2v)

g = (zu+ σ2)3(2/27− (1/3)z2v + z4w) (A.2.4)
∆ = z4(zu+ σ2)6(−v2 − 18z2wv + 4z2v3 + 27z4w2 + 4w).

From this, we see that the curve z = 0 has Kodaira type I4 whereas the curve zu + σ2 has
Kodaira type I∗0 . These curves meet at (z, σ) = (0, 0), where they are tangent to each other. The
multiplicities of f , g, and ∆ at (0, 0) are 2, 3, and 10, respectively. On the other hand, had we
attempted to intersect transversely curves with fibers of singularity types I∗0 and I4, we would
have found that the multiplicities of f , g, and ∆ would have been 4, 6, and 12, respectively.
Hence, curves with these fiber types cannot meet transversely, only tangentially.

We can enhance the gauge algebras on these tangent curves to so(12) and su(6), correspond-
ing to Kodaira fiber types I∗2 and I6, respectively. Here, the Weierstrass model is

y2 = x3 + (zu+ σ2)x2 + (zu+ σ2)3z3vx (A.2.5)

This yields

f = −1

3
(zu+ σ2)2 + vz3(zu+ σ2)3

g =
2

27
(zu+ σ2)3 − 1

3
vz3(zu+ σ2)4 (A.2.6)

∆ = −v2z6(zu+ σ2)8 + 4v3z9(zu+ σ2)9.
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Thus, from the degrees of vanishing of f , g, and ∆, we see the curve z = 0 has Kodaira type I6

whereas the curve zu+ σ2 has Kodaira type I∗2 .

We also get so(13) and su(7) from Kodaira fiber types I∗3 and I7, respectively, using the
Weierstrass model

y2 = x3 + (zu+ σ2)x2 + w(zu+ σ2)6z7. (A.2.7)

This model has

f = −1

3
(zu+ σ2)2

g =
2

27
(zu+ σ2)3 + wz7(zu+ σ2)6 (A.2.8)

∆ = 4wz7(zu+ σ2)9 + 27w2z12(zu+ σ2)16.

The fact that we got so(13) in this case and so(12) in the previous case follows from Table 7
of [51].

Using these Weierstrass models, we are able to realize the gauge algebra enhancements on
two tangent −2 curves discussed in section 2.7.

A.3 Novel DE Type Bases

Appendices B and C [10] provided a complete list of DE type bases that can be used to construct
6D SCFTs. All of these bases can show up in LSTs as well when certain non-DE type links are
suitably attached. However, there are also some novel DE type bases, which blow down to 0.

We use an abbreviated notation to describe these bases. Namely, we specify curves of self-
intersection −4, −6, −8, and −12 according to

D ' 4 (A.3.1)
E6 ' 6 (A.3.2)
E7 ' 8 (A.3.3)
E8 ' 12 (A.3.4)
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The allowed types of conformal matter between DE type nodes are represented as follows:

D1D ' D
1,1
⊕ D (A.3.5)

E6131E6 ' E6

2,2
⊕ E6 (A.3.6)

E712321E6 ' E7

3,3
⊕ E6 (A.3.7)

E712321E7 ' E7

3,3
⊕ E7 (A.3.8)

E71231D ' E7

3,2
⊕ D (A.3.9)

E812231D ' E8

4,2
⊕ D (A.3.10)

E61315131E6 ' E6

3,3

© E6 (A.3.11)

E613151321E7 ' E6

3,4
⊕ E7 (A.3.12)

E6131513221E8 ' E6

3,5
⊕ E8 (A.3.13)

E7123151321E7 ' E7

4,4
⊕ E7 (A.3.14)

E71231513221E8 ' E7

4,5
⊕ E8 (A.3.15)

E812231513221E8 ' E8

5,5
⊕ E8. (A.3.16)

We omit the subscripts above the⊕ when dealing with the minimal type of conformal matter:

D ⊕D ' D
1,1
⊕ D (A.3.17)

D ⊕ E6 ' D
2,2
⊕ E6 (A.3.18)

D ⊕ E7 ' D
2,3
⊕ E7 (A.3.19)

D ⊕ E8 ' D
2,4
⊕ E8 (A.3.20)

E6 ⊕ E6 ' E6

2,2
⊕ E6 (A.3.21)

E6 ⊕ E7 ' E6

3,3
⊕ E7 (A.3.22)

E6 ⊕ E8 ' E6

3,5
⊕ E8 (A.3.23)

E7 ⊕ E7 ' E7

3,3
⊕ E7 (A.3.24)

E7 ⊕ E8 ' E7

4,5
⊕ E8 (A.3.25)

E8 ⊕ E8 ' E8

5,5
⊕ E8 (A.3.26)

Using this notation, we now list the novel DE type bases for LSTs. All of these bases are
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positive semi-definite with a single zero eigenvalue. We begin with configurations with only D
nodes:

D
3,3
⊕ D (A.3.27)

D
3,3

©D (A.3.28)

The configurations with only E6 nodes:

E6

5,5
⊕ E6 (A.3.29)

The configurations with D and E6:

D
3,5
⊕ E6 (A.3.30)

D ⊕ E⊕2
6

3,3
⊕ E6 (A.3.31)

D ⊕ E⊕2
6

3,3

© E6 (A.3.32)

D ⊕ E6

3,4
⊕ E6 (A.3.33)

D ⊕ E6

3,2
⊕ D (A.3.34)

D⊕2 ⊕ E6 ⊕D (A.3.35)

The configurations with D and E7:

D
3,3
⊕ E⊕n7

3,3
⊕ D , n = 1, 2, ... (A.3.36)

D ⊕ E⊕3
7

4,4
⊕ E7 (A.3.37)

D ⊕ E⊕2
7

4,5
⊕ E7 (A.3.38)

D⊕2 ⊕ E7 ⊕D (A.3.39)

D
2,4
⊕ E7 ⊕D (A.3.40)

D ⊕ 1
2

321⊕ E7 (A.3.41)

The configurations with D and E8:

D
3,5
⊕ E⊕n8

5,3
⊕ D , n = 1, 2, ... (A.3.42)

D⊕3 ⊕ E8 ⊕D⊕2 (A.3.43)
D⊕4 ⊕ E8 ⊕D (A.3.44)
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The configurations with E6 and E8:

E6

5,5
⊕ E⊕n8

5,5
⊕ E6 , n = 1, 2, ... (A.3.45)

E6

4,5
⊕ E⊕2

8 ⊕ E⊕2
6 (A.3.46)

The configurations with D, E6 and E7:

D ⊕ E7

4,4
⊕ E6 (A.3.47)

D ⊕ E⊕2
7

4,3
⊕ E6 (A.3.48)

D ⊕ E⊕2
6

3,5
⊕ E7 (A.3.49)

D ⊕ E⊕3
6

3,4
⊕ E7 (A.3.50)

D ⊕ E⊕4
6 ⊕ E7 (A.3.51)

D ⊕ E⊕2
7 ⊕ E⊕2

6 (A.3.52)
D ⊕ E6 ⊕ E7 ⊕ E⊕2

6 (A.3.53)

The configurations with D, E6 and E8:

D
4,5
⊕ E⊕n8

5,5
⊕ E6 , n = 1, 2, ... (A.3.54)

D ⊕ E⊕6
6 ⊕ E8 (A.3.55)

D⊕2 ⊕ E⊕2
8 ⊕ E⊕2

6 (A.3.56)

D⊕3 ⊕ E8

5,4
⊕ E6 (A.3.57)

The configurations with D, E7 and E8:

D ⊕ E⊕6
7

4,5
⊕ E8 (A.3.58)

D⊕2 ⊕ E⊕3
8 ⊕ E⊕2

7 (A.3.59)

The configurations with E6, E7 and E8:

E6

4,5
⊕ E8 ⊕ E7 ⊕ E6 (A.3.60)

E6

4,5
⊕ E⊕3

8 ⊕ E⊕2
7 (A.3.61)

The configurations with D, E6, E7 and E8:

D ⊕ E8 ⊕ E⊕2
7 ⊕ E6 (A.3.62)

D⊕2 ⊕ E8 ⊕ E7 ⊕ E6 (A.3.63)

283



A.4 Novel Non-DE Type Bases

The following is the list of novel bases constructed solely from curves of self-intersection −1,
−2, −3, and −5:

12....21 (A.4.1)
5⊕ 1⊕5 (A.4.2)

1
1

5
1
12 (A.4.3)

21
1

512 (A.4.4)
1312 (A.4.5)

1
1

31 (A.4.6)

131
1

512 (A.4.7)

131
1

5
1
12 (A.4.8)

1231
1

512 (A.4.9)

1231
1

5
1
12 (A.4.10)

12231
1

512 (A.4.11)

12231
1

5
1
12 (A.4.12)

2
1

31512 (A.4.13)

2
1

31
1

51 (A.4.14)
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3131512 (A.4.15)

3131
1

51 (A.4.16)
215131512 (A.4.17)

215131
1

51 (A.4.18)

1
1

5131
1

51 (A.4.19)

1
1

5131512 (A.4.20)

1
1

5131
1

51 (A.4.21)
1315131512 (A.4.22)

1315131
1

51 (A.4.23)
12315131512 (A.4.24)

12315131
1

51 (A.4.25)
122315131512 (A.4.26)

122315131
1

51 (A.4.27)
151231512 (A.4.28)

151231
1

51 (A.4.29)
512231512 (A.4.30)

512231
1

51 (A.4.31)
12321512 (A.4.32)

12321
1

51 (A.4.33)
1321512 (A.4.34)

1321
1

51 (A.4.35)

13
1

22 (A.4.36)

2
2

2...21 (A.4.37)

151
1

322 (A.4.38)

1512
1

32 (A.4.39)
512222 (A.4.40)
151222 (A.4.41)
3122 (A.4.42)

1315122 (A.4.43)
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12315122 (A.4.44)
122315122 (A.4.45)

215122 (A.4.46)

1
1

5122 (A.4.47)

13151
1

32 (A.4.48)

123151
1

32 (A.4.49)

1223151
1

32 (A.4.50)

2151
1

32 (A.4.51)

1
1

51
1

32 (A.4.52)
32132 (A.4.53)

12231321 (A.4.54)
23123 (A.4.55)

12313221 (A.4.56)
1313221 (A.4.57)
1512231 (A.4.58)
13213 (A.4.59)
123131 (A.4.60)
13131 (A.4.61)
312321 (A.4.62)
3132151 (A.4.63)
2313151 (A.4.64)

151232151 (A.4.65)
1232151321 (A.4.66)

5123132 (A.4.67)
3215123 (A.4.68)

123151231 (A.4.69)
13151231 (A.4.70)

1321513221 (A.4.71)
5131322 (A.4.72)
13215131 (A.4.73)
3221513 (A.4.74)
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1512313 (A.4.75)
5122313 (A.4.76)

1231512321 (A.4.77)
12231512321 (A.4.78)
131512321 (A.4.79)

12315132151 (A.4.80)
1315132151 (A.4.81)
315123151 (A.4.82)

122315132215 (A.4.83)
321513151 (A.4.84)
315123215 (A.4.85)
513215132 (A.4.86)

51223151321 (A.4.87)
512315123 (A.4.88)

151231513221 (A.4.89)
3131513221 (A.4.90)
1512315131 (A.4.91)
5122315131 (A.4.92)
512321513 (A.4.93)
123151313 (A.4.94)
13151313 (A.4.95)
513151232 (A.4.96)

15131513215 (A.4.97)
15131513151 (A.4.98)

12231513151321 (A.4.99)
12315131513221 (A.4.100)
1315131513221 (A.4.101)
123151315131 (A.4.102)
13151315131 (A.4.103)
51315131513 (A.4.104)

A.5 Novel Gluings

At times, non-DE type side links or noble atoms can attach to DE type nodes in ways they could
not for 6D SCFTs. For instance, the side link 2151321 could never attach to a D node in a 6D
SCFT, since it induces four blow-downs on the −4 curve. However, this is allowed for LSTs.
The full list of these novel gluings of one side link to a single node is as follows:
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For gluing to a D-type node (i.e. a −4 curve), we have:

2221⊕D (A.5.1)
2151321⊕D (A.5.2)
3215131⊕D (A.5.3)
1512321⊕D (A.5.4)
3151231⊕D (A.5.5)

31
1

5131⊕D (A.5.6)

22
1

31⊕D (A.5.7)

1
1

51321⊕D (A.5.8)
151315131⊕D (A.5.9)
512315131⊕D (A.5.10)

For gluing to an E6-type node (i.e. a −6 curve), we have:

222221⊕ E6 (A.5.11)

2231
1

5131⊕ E6 (A.5.12)
231512321⊕ E6 (A.5.13)
232151321⊕ E6 (A.5.14)
321513221⊕ E6 (A.5.15)

31
1

513221⊕ E6 (A.5.16)

231
1

51321⊕ E6 (A.5.17)
15131513221⊕ E6 (A.5.18)
51231513221⊕ E6 (A.5.19)
3151315121⊕ E6 (A.5.20)
23151315131⊕ E6 (A.5.21)

For gluing to an E7-type node (i.e. a −8 curve), we have:

22222221︸ ︷︷ ︸
8

⊕ E7 (A.5.22)

2231513151321⊕ E7 (A.5.23)

2231
1

513221⊕ E7 (A.5.24)

2231
1

513221⊕ E7 (A.5.25)
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while for an E8-type node (i.e. a −12 curve), we have:

222222222221︸ ︷︷ ︸
12

⊕ E8. (A.5.26)

We remark that in the case of theE7 andE8 nodes, we can also delete some of the aforementioned
curves, using instead a “primed” node, (i.e. by adding a small instanton link elsewhere).

A.6 T-Duality in the 1, 2, . . . , 2, 1 Model

Let us consider the LST whose F-theory base B has a chain of rational curves consisting of two
curves of self-intersection−1 at the ends of the chain, and k ≥ 0 curves of self-intersection−2 in
between meet each other. The union of those k + 2 curves on the base deforms to a nonsingular
rational curve of self-intersection 0, and provides a fibration π : B → C on the base whose
general fiber is P1. The total space of the elliptic fibration looks like a one parameter family of
elliptic K3 surfaces (over general fibers of π) degenerating to a pair of dP9’s with k intermediate
elliptic ruled surfaces (over π−1(0)), which (when k = 0) is precisely the degeneration which
appears in the analysis of heterotic / F-theory duality in reference [72].

Remarkably, the total space of this elliptic fibration admits a second elliptic fibration, at least
birationally. The computation which shows this was written out in reference [196], although it
has some earlier antecedents in the math literature [197–200].2

Consider a base of the form P1 × C where the homogeneous coordinates on P1 are [σ, τ ] on
the coordinate on C is ψ. We write a Weierstrass equation of the form

Y 2 = X3 + aσ4τ 4X + (ψk+1σ5τ 7 + cσ6τ 6 + σ7τ 5), (A.6.1)

where a and c are constants. (In [196] only the τ = 1 affine chart appears.) Notice that we get a
small instanton with instanton number k + 1 when ψ = σ = 0, so to get the 1, 2, . . . , 2, 1 model
we should blowup the point ψ = σ = 0 k + 1 times. We keep this implicit in what follows.

Note that we have Kodaira type II∗ at both σ = 0 and τ = 0, and since those represent
non-compact curves, we see E8 × E8 global symmetry.

Now there is a remarkable coordinate change:

X = st−5x2 (A.6.2)
Y = t−8x2y (A.6.3)
σ = t−3x (A.6.4)
τ = t. (A.6.5)

(This is only a “rational map” because of the division by powers of t.) The result of the substitu-

2There was a subsequent extension of this computation to a more general case [200–202], which will undoubtedly
be useful for understanding additional T-dualities of LSTs.

289



tion is

t−16x4y2 = s3t−15x6 + ast−13x6 + (ψk+1t−8x5 + ct−12x6 + t−16x7). (A.6.6)

If we multiply the resulting equation by t16/x4, we obtain

y2 = s3tx2 + ast3x2 + (ψk+1t8x+ ct4x2 + x3) (A.6.7)

= x3 + (s3t+ ast3 + ct4)x2 + ψk+1t8x. (A.6.8)

We interpret this as a family elliptic curves over P1
[s,t] × C. (Note that this is a very different

base, with coordinates [s, t] which mix the former base and fiber coordinates.) Remarkably, this
is the equation for the F-theory dual of the Spin(32)/Z2 heterotic string with a small instanton
at t = ψ = 0 (as derived in [72, 15])! We have a global symmetry algebra so(32) along t = 0.
Note that we should also blow up t = ψ = 0.

Thus, in a quite subtle way there is T-duality for this pair of models, in which the two different
elliptic fibrations on the semi-local total space are exchanged, after a birational change. Note that
the coordinate change given above is (rationally) invertible. The inverse is:

x = στ 3 (A.6.9)
y = σ−2τY (A.6.10)
s = σ−2τ−1X (A.6.11)
t = τ. (A.6.12)

A.7 F-Theory Construction of N = (1, 1) LSTs

The M-theory construction for little string theories with N = (1, 1) supersymmetry is described
in [47]. Such a theory can be seen as M-theory compactified on a spacetime of the form (C2 ×
S1)/Γ for Γ ⊂ SU(2) a finite subgroup. The action on S1 is by rotations, and there is a subgroup
Γ′ of Γ which acts trivially on S1, leading to a short exact sequence of groups

0→ Γ′ → Γ→ Zr → 0. (A.7.1)

Geometrically, there is an action of Zr on the ALE space C2/Γ′ corresponding to an automor-
phism of the corresponding Lie group; the gauge group of the little string theory is the subgroup
commuting with the outer automorphism.

The mathematical description of these groups has been known for a long time, and is nicely
summarized in a table on p. 376 of [203] which we reproduce as Table A.7.1. We have made
a minor correction to the table (already noted in footnote 15 of [47]), and we have added the
information about the gauge group and theta angle as discussed in [47]. In the table, the cyclic
group action on C3 with coordinates (x, y, z) is described in terms of exponents (a

r
, b
r
, c
r
) of the

generators; the notation also indicates how the equation transforms under the action.

To construct these theories using F-theory, we use a base B which is a neighborhood of an
elliptic curve Σ whose normal bundle is a torsion line bundle of order r. The base has a finite
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unramified cover of degree r which is a product Σ × C, and the cyclic group Zr will act on the
elliptic fibration over Σ × C (which we take to be in Weierstrass form). Thus, the classification
is analogous – we must find cyclic group actions on Weierstrass elliptic fibrations which induce
the corresponding actions on the ADE singularities.

Note that, as observed in section 2.7.1, this construction requires r ∈ {2, 3, 4, 6}, so that most
of the instances of case (1) are ruled out. In fact, we have been unable to find a conventional F-
theory construction of any instance of case (1) (which would correspond, in the interpretation
of [47], to an SU(n) theory with a rational theta angle). Instead, as mentioned in section 2.10.2,
we anticipate an F-theory construction for these models involving B-field expectation values.

In Table A.7.2, we present explicit forms of these group actions in cases (3), (4), and (6),
using a Weierstrass equation ϕ with variables (x, y, t). The quotient can be described in terms
of a Weierstrass equation Φ whose variables (X, Y, T ) are expressed in terms of (x, y, t) in the
table.

We now explain the geometry of the group actions by means of figures illustrating cases (2),
(3), (4), and (6). We will explain the cases in the reverse order from the one given in Table A.7.1.

We begin with case (6) leading to gauge symmetry F4, illustrated in Figure A.7.1. The M-
theory construction only involved the Dynkin diagram of the singularities, but here we must
consider the entire Kodaira fiber as represented by the affine Dynkin diagram. Thus, in the
bottom half of Figure A.7.1 we see Ê6, with the affine node represented by a square rather than
a circle. This diagram has been obtained as a double cover of the affine E8 diagram shown in the
top half of Figure A.7.1, in which the solid circles represent curves along which we branch as we
construct a double cover. The two curves on the left are duplicated in the bottom half because
they don’t meet the trivalent vertex at a branch point of the double cover. After taking the double
cover, the solid curves have become −1 curves and are to be blown down. (Alternatively, the
solid curves can be contracted to A1 singularities prior to taking the double cover.)

Note that the quotient involves an affine E8 diagram rather than an affine E7 diagram. This
is because the Z2 action on the “extra” curve in the Kodaira fiber (corresponding to the image
of the affine node) has two fixed points, one giving an E7 singularity and the other giving an A1

singularity. The two together fit into an affine E8 diagram.

We next treat case (4) leading to gauge symmetry G2, depicted in Figure A.7.2. The bottom

r Type ϕ Description Gauge Group θ

(1) any 1
r
(1,−1, 0; 0) xy + zn An−1

r-to-1−→ Arn−1 SU(n) ∈ πQ
(2) 4 1

4
(1, 3, 2; 2) x2 + y2 + z2n−1 A2n

4-to-1−→ D2n+3 Sp(n) π

(3) 2 1
2
(0, 1, 1; 0) x2 + y2 + z2n A2n−1

2-to-1−→ Dn+2 Sp(n) 0

(4) 3 1
3
(0, 1, 2; 0) x2 + y3 + z3 D4

3-to-1−→ E6 G2 0

(5) 2 1
2
(1, 1, 0; 0) x2 + y2z + zn Dn+1

2-to-1−→ D2n SO(2n+ 1) 0

(6) 2 1
2
(1, 0, 1; 0) x2 + y3 + z4 E6

2-to-1−→ E7 F4 0

Table A.7.1: Cyclic actions on ALE spaces
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Type ϕ (X, Y, T ) Φ
(3) 1

2
(0, 1, 1) −y2 + x3 + ux2 + wt2n (t2x, t3y, t2) −Y 2 +X3 + uTX2 + wT n+3

(4) 1
3
(1, 0, 2) −y2 + x3 + wt3 (t4x, t6y, t3) −Y 2 +X3 + wT 5

(6) 1
2
(0, 1, 1) −y2 + x3 + wt4 (t2x, t3y, t2) −Y 2 +X3 + wT 5

Table A.7.2: Group actions on Weierstrass models. Here u and w represent invariant functions
of t which do not vanish at t = 0.
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Figure A.7.2: G2

half of the figure this time is D̂4 with the affine node again represented by a square. This diagram
has been obtained as a triple cover of the affineE8 diagram shown in the top half of Figure A.7.2,
in which the solid circles represent curves along which we branch as we construct a triple cover.
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Figure A.7.3: Sp(n), θ = 0

(For an adjacent pair of solid curves, the branching is via 1/3 on one curve and 2/3 on the other.)
The lowest curve in the top half of the diagram is triplicated in the bottom half because it doesn’t
meet the trivalent vertex at a branch point of the triple cover. After taking the triple cover, the
solid curves have become −1, −2 pairs and are to be blown down. (Alternatively, the solid
curves can be contracted to A2 singularities prior to taking the triple cover.) Note that the Z3

action on the image of the affine node has two fixed points, one giving an E6 singularity and the
other giving an A2 singularity; the two together fit into an affine E8 diagram.

Now we consider case (3), depicted in Figure A.7.3. The bottom half is Â2n−1, obtained as
a branched double cover of the top half, which is D̂n+4. The square denotes the affine node (or
its image), and the solid circles in the top half denote curves along which the double cover is
branched. This time, the Z2 action on the the affine node has two fixed points unrelated to the
singularity we are studying, creating the two extra solid curves at the left of the diagram.

Finally, we treat case (2), depicted in Figure A.7.4, which is the most complicated case. Here,
we have a Z4 action on Â2n at the bottom of the figure, and we describe the quotient in two stages:
the quotient by the Z2 subgroup (shown in the middle of the figure as an Â4n+1 diagram) and the
quotient by the full Z4 (shown at the top of the figure as a D̂2n+5 diagram). The diagram at the
top includes a resolved A3 singularity (three connected solid dots), two resolved A1 singularities
(at the far left) which are to be branched along during the first double cover, and points marked
by × which are A1 singularities not branched during the first double cover (from top to middle)
but branched during the second double cover (from middle to bottom).
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Appendix B

Appendix to Chapter 3

B.1 Dimension eight

There are three families [23] of vacua with 16 supercharges in dimension eight. The standard
one has gauge algebra of rank 20, the next one has gauge algebra of rank 12, and the final one
has gauge algebra of rank 4.

The rank-12 case was originally found in the context of heterotic string by Chaudhuri, Hock-
ney and Lykken in [204] and is called the CHL string. An easy generalization leads to the rank-4
case. The moduli space of these systems and the possible enhancements of gauge algebras are
studied in detail in [205].

In this appendix, we give an F-theory description of three cases: they are models on elliptically-
fibered K3 with 0, 1, or 2 frozen seven-branes.

B.1.1 IIB with seven-branes

Let us start by the perturbative IIB setup on the orientifold T 2/Z2. We can either have zero O7+,
one O7+ or two O7+:

−

− −

− , +

− −

− , +

− −

+ (B.1.1)

with 16, 8 or 0 D7-branes, respectively. The first one, under T-duality, maps to 2 O8− in type
IIA, and then 1 O9− in type IIB. The last one, under T-duality, maps to O8− and O8+, or to a
shift-orientifold of type IIA, and then a shift-orientifold of type IIB, without any D9-brane.

The second one is more peculiar. One T-duality should combine a pair of two O7−s to O8−,
while the other pair of O7− and O7+ to a shift orientifold. The resulting geometry is shown
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below:
−O8

shift

−O8 . (B.1.2)

Namely, we consider a T 2 whose complex structure modulus is of the form τ ∈ 1

2
+iR, and take

the Z2 flip along the horizontal axis. Then we have just one O8− locus and a shift-orientifold
locus. Another T-duality leads to the Spin(32)/Z2 bundle without vector structure [23].

B.1.2 F-theory interpretation

The F-theory representation of the rank-20 case is the standard F-theory compactification on the
elliptically-fibered K3 surface.

The F-theory representation of the rank-12 case is given by an elliptic K3 compactification
with a single frozen seven-brane.1 We use projective coordinates [z, w] on CP1 and locate the
frozen brane at z = 0:

y2 = x3 + u3(z, w)zx2 + v4(z, w)z4x+ w5(z, w)z7. (B.1.3)

Here we have used the “Tate form” [95, 208] to present the equation, which involves arbitrary
homogeneous polynomials u3, v4, and w5 of the labeled degrees. By a change of variables, the
equation can be put into Weierstrass form:

y2 = x̂3 + z2(−1

3
u3

3 + z2v4)x̂+ z3(
2

27
u3

3 −
1

3
z2u3v4 + z4w5), (B.1.4)

from which we can read off the equation of the discriminant locus

∆ = z10
(
4u3

3w5 − u2
3v

2
4 − 18z2u3v4w5 + 4z2v3

4 + 27z4w2
5.
)

(B.1.5)

Generically, in addition to the frozen seven-brane of type Î∗4 at z = 0, which makes no
contribution to enhanced gauge symmetry, there are 14 additional zeros of the discriminant,
which correspond to 14 seven-branes of type I1 (i.e., 14 individual D7-branes) also contributing
no enhanced gauge symmetry. Tuning the coefficients can lead to enhanced gauge symmetry.

The brane counting becomes clear if we explicitly include a Kodaira fiber of type I∗0 sup-
porting an so8 gauge algebra: this “uses up” 6 of the 14 D7-branes, but can be interpreted as an
O7−-plane on top of a stack of 4 D7-branes, which is the quantum splitting of the O7−-plane [90].

The F-theory representation of the rank-4 8D vacuum with 16 supercharges involves two
frozen seven-branes, which we can locate at z = 0 and w = 0, respectively. The equation for

1Note that this is a substantially different description than the ones proposed in [206] and [207], where a torsion
flux on the base CP1 was proposed. It is possible that they are all dual descriptions.
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these models (in Tate form) is

y2 = x3 + u2(z, w)zwx2 + v0(z, w)z4w4x (B.1.6)

with frozen brane-locus δ = zw. Note that v0(z, w) is constant, and the x0 term in the equation
vanishes due to degree considerations. This implies that (x, y) = (0, 0) is a section which has
order 2 in the Mordell–Weil group, and suggests a subtle modification of the F-theory gauge
group.2

B.2 CP1 × CP1 model and its flips via branes

B.2.1 Unflipped case

The original model considered by Bianchi–Sagnotti and Gimon–Polchinski was given in terms
of Type I on T 4/Z2. It has O9− with 16 D9s in the bulk, with 16 O5− at the Z2 fixed points, and
16 D5s.3

Let us determine its massless spectrum. From the bulk closed string modes, we have one
supergravity multiplet, one tensor, and four neutral hypermultiplets. From the Z2 twisted closed
strings, one neutral hypermultiplet arises from each Z2 singularity.

As for the open strings, O9− wants to make the gauge algebra on D9 orthogonal. Therefore
the bulk of the 9-brane has Spin(32)/Z2 as the gauge group. But O5− wants to make the gauge
algebra on D9 symplectic. This gives a localized Spin(32)/Z2 holonomy around the intersection
point, and the massless gauge algebra on D9 that can remain is u16, the intersection of sp16 and
so32. This will keep charged hypermultiplets in 2 · ∧216. One can do the same analysis on the
D5-branes, and get the same answer, when all the D5s are on a single O5−. Finally, the 5-9
strings give hypermultiplets in 16× 16. The spectrum is then

• gauge algebras u16 × u′16,

• charged hypermultiplets in 2 · ∧216⊕ 16× 16′ ⊕ 2 · ∧216′,

• one supergravity multiplet, one tensor multiplet, and 20 neutral hypermultiplets.

Anomalies correctly cancel [97].

We can take T-duality along two directions and bring this model to the type IIB T 4/Z2 ori-
entifolds with seven-branes, with the structure below:

−

− −

− × −

− −

− (B.2.1)

2We are assuming here that the torsion in the Mordell–Weil group is calculated for frozen F-theory models in
the same way it is calculated for conventional F-theory models [209]. We leave detailed investigations of this for
the future.

3Here the number of D-branes is counted in terms of Type IIB or Type IIA RR-charge, in a way invariant under
T-duality. In simple orientifold models, this number equals the number of mobile D-branes or the rank of the gauge
groups, but in more complicated models such as those discussed in this chapter, they can be different.
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where the first T 2 has the coordinate u, the second has the coordinate v, with the orientifolding
action sending u → −u and v → −v individually. The spectrum above are when all 16 D7s
along v are on u = 0 and when all 16 D7s along u are on v = 0.

B.2.2 Singly-flipped case

For this, we consider the setup

−

− −

− × +

− −

− (B.2.2)

with 16 D7s perpendicular to the first T 2 and 8 D7s perpendicular to the second T 2.

To deduce the open string spectrum on the 8 D7s perpendicular to the second T 2, we just T-
dualize one direction of the first T 2 and apply the rules of [74]. When the 8D7s are on a generic
point, one gets sp4 with a full antisymmetric tensor (both the traceless part and a singlet), and
with 16 fundamentals. If they are on O7−, it gets enhanced to u8 with 2 · ∧28, and if they are on
O7+, it gets enhanced to sp4 × sp4 with a bifundamental.

For the 16 D7s on the first T 2, we can take the T-dual of the second T 2:

shift

−O6
−O8

−O8

−O6

. (B.2.3)

This T-duality was derived from the worldsheet point of view in [210].

When 16 D7s are on a single generic point on T 2, the T-dual is just 8 D6s suspended between
two D8s that are in fact the same due to the funny geometry. This is sp4 with one asym and 16
flavors. When they are all on an O7−, this gets enhanced to u8 with 2 · ∧28. Although we started
from 32 Chan-Paton indices but we got just u8. We give two other explanations to this somewhat
unexpected fact:

• If we T-dualize the second torus twice, this describes instantons (or 5-branes) in the Spin(32)/Z2

gauge fields on T 2 without vector structure. As discussed in [23], a minimal flat Spin(32)/Z2

configuration without vector structure is in SU(2) embedded in so32 as sp1 × sp8. Then
the instanton needs to be embedded into this sp8; a single such instanton counts as two in-
stantons in the original Spin(32)/Z2. In other words, two small instantons of Spin(32)/Z2

needs to move together.

• In the original 7-brane description, there are four intersections with transverse O7s; one is
with O7+ and three are with O7−. The former has a monodromy that squares to −1 and
the latter has a monodromy that squares to 1. But one cannot embed them into O(1): they
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are not consistent, since the four monodromies need to multiply to one. To compensate
this, one needs an additional flat SO(3) background on the 7-brane.

Summarizing, when 16 D7s perpendicular to the first T 2 are on a single O7− and 8 D7s
perpendicular to the second T 2 are on a single O7+, the spectrum is

• gauge algebras u8 ×
∏

i=1,2(sp4)i,

• charged hypermultiplets in 2 · ∧28⊕ (
⊕

i=1,2 8⊗ 8i)⊕ 81 ⊗ 82,

• one supergravity multiplet, 5 tensor multiplets, and 16 neutral hypermultiplets.

B.2.3 Doubly-flipped case

Let us finally consider

+

− −

− × +

− −

− (B.2.4)

with 8 D7-branes on each T 2. Using the analysis as in case II, we see that when 8 D7s are on a
single O7+, the gauge algebra is sp2× sp2. Considering D7s on both T 2, we have (sp2)4 in total.
The matter spectrum can be worked out as before:

• gauge algebras
∏4

i=1(sp2)i,

• charged hypermultiplets in
⊕

i<j 4i ⊗ 4j ,

• one supergravity multiplet, 7 tensor multiplets, and 14 neutral hypermultiplets.

The anomaly cancels; although there are 8 additional tensors, they do not participate in the gauge
anomaly cancellation. This is as it should be, since they are localized on the intersections of O7−
and O7+, and bifundamentals are supported away from them.
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Appendix C

Appendix to Chapter 4

C.1 Spin-TFTs from Rational spin-CFTs

Unitary rational conformal field theory is a rich source of examples of topological field theories
in 2 + 1 dimensions. The Hilbert space of the topological field theory is identified with the space
of conformal blocks for the chiral algebra the conformal field theory.

If we endow the Riemann surface with a spin structure, we can consider conformal blocks for
a chiral super-algebra A = A0 ⊕ A1, which includes both bosonic currents of integral spin and
fermionic currents of half-integral spin. The conformal blocks for A can be naturally identified
with the Hilbert space of a spin-TFT Ts.

We expect the shadow Tf to be the TFT associated to the bosonic sub-algebraA0. Notice that
A1 is a module forA0 and thus gives a quasi-particle in Tf , a fermion. AsA1 currents fuse toA0

currents, the fermionic quasi-particle fuses to the identity. We identify it with Π. Thus fermionic
anyon condensation is related to fermionic current algebra extensions, in the same way as the
standard anyon condensation is related to standard current algebra extensions.

It should be possible to pursue this analogy further and derive from spin-RCFTs appropriate
axioms for “super modular tensor categories”.

We can give a few well-known examples of this construction.

C.1.1 Ising model and a chiral fermion

The Ising modular tensor category is naturally associated to the current algebra of a c = 1
2

Virasoro minimal model.

The current algebra is generated by the stress tensor and can also be described as the coset
SU(2)1×SU(2)1

SU(2)2
. It has three modules, which we can denote asM1 ≡ A0,Mσ andMψ, of conformal

dimension 0, 1
16

and 1
2
. The latter is associated to the fermionc quasi-particle of the Ising modular

tensor category.
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We can consider the super-algebra A consisting of A0 and A1 = Mψ. This is simply the
algebra generated by a free chiral fermion ψ(z). This algebra has a single Neveu-Schwarz (NS)
module, A itself. It corresponds to the identity quasi-particle in the bulk spin-TFT. On the other
hand, Mσ is a Ramond module. It must lie at the end of a bulk defect with a non-bounding spin
structure.

The Ising 3d TFT is the shadow of the spin-TFT associated to a free chiral fermion. We could
denote it as Tψs .

C.1.2 Π-product of Ising models and multiple chiral fermions

In order to find the shadow of the product of two free chiral fermions, we are supposed to gauge
the Z2 1-form symmetry generated by ΠΠ′. This is the same as a simple current extension.

Consider two copies of the c = 1
2

Virasoro minimal model. The module corresponding to
ΠΠ′ is Mψ ⊗Mψ′ . We thus consider the chiral algebra A0 = M1 ⊗M1′ ⊕Mψ ⊗Mψ′ . In other
words, the chiral algebra generated by ψ∂ψ, ψψ′ and ψ′∂ψ′.

By bosonization, we identify that with the algebraA0 defined by a free boson current ∂φ and
vertex operators e2niφ, of dimension 2n2. In other words, this is the U(1)4 current algebra. It has
4 modules generated respectively by 1, e

iφ
2 , ψ = eiφ and e−

iφ
2 .

The chiral super-algebra generated by A0 and by ψ can be identified with U(1)1 and is asso-
ciated to the simplest spin Chern-Simons TFT. Again, it has a single quasi-particle, the identity,
and an extra Ramond line defect associated to the module generated by e

iφ
2 . We can also identify

it as the square of Tψs .

More generally, a set of N free chiral fermions has bosonic 1-form symmetry generators
ψiψj . Adjoining them to the identity module gives us the SO(N)1 WZW current algebra, with a
module Mψ generated by the ψi and one or two modules generated by twist fields, associated to
the spinor representation(s). This is the shadow of the N -th power of Tψs .

C.1.3 U(1)4k Chern-Simons theories

Consider the current algebra A0 = U(1)4k for odd k, generated by the bosonic current ∂φ and
vertex operators e2

√
kniφ. This is associated to an U(1)4k Chern-Simons theory.

The algebra A0 has modules Mm generated by e
m

2
√
k
iφ, for −2k < m ≤ 2k. In particular,

MΠ ≡M2k is generated by e
√
kiφ, which has half-integral dimension k/2.

The chiral super-algebra A generated by ∂φ and vertex operators e
√
kniφ is associated to an

U(1)k spin Chern-simons theory. It has NS modules generated by e
m√
k
iφ for −k/2 < m < k/2

and Ramond modules generated by e
2m+1

2
√
k
iφ.

In particular, U(1)4k is the shadow of U(1)k.
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C.2 G-equivariant toric code

C.2.1 Symmetries of the toric code and their anomalies

The toric code (also known as Z2 topological gauge theory in 2+1d with a trivial Dijkgraaf-Witten
class) can be described by a Euclidean action

Storic = πi

∫

M

b ∪ δa, (C.2.1)

where a and b are Z2-valued 1-cochains on a triangulation of an oriented 3-manifold M . One
may call a the gauge field, then b is a Lagrange multiplier field imposing the constraint δa = 0.
The model has Z2 × Z2 0-form gauge symmetry:

a 7→ a+ δλa, b 7→ b+ δλb, λa, λb ∈ C0(M,Z2). (C.2.2)

As for global symmetries, the toric code has a Z2 0-form global symmetry F0 exchanging a and
b. We will call it particle-vortex symmetry, since the Wilson line for a represents an electrically
charged particle, while the Wilson line for b represents a vortex excitation. This symmetry is not
manifest in the action since the cup product is not supercommutative on the cochain level. There
is also Z2 × Z2 = F1 1-form global symmetry

a 7→ a+ α, b 7→ b+ β, α, β ∈ Z1(M,Z2). (C.2.3)

Crucially, F0 acts on F1 by a nontrivial automorphism exchanging α and β. The combined
symmetry is described by a 2-group (or equivalently a crossed module) [211]. In general, the
equivalence class of a 2-group F is described by a pair of groups F0, F1, where F1 is abelian, an
action π of F0 on F1, and a Postnikov class γ ∈ H3

π(F0, F1). The Postnikov class describes the
failure of the fusion of F0 domain walls to be associative ”on the nose”. In the case of the toric
code we can use Shapiro’s lemma [212] to compute Hn

π (F0, F1) = Hn(ker π,Z2) = 0 for n > 0.
Hence the Postnikov class is necessarily trivial.

Global symmetries may have ’t Hooft anomalies, i.e. obstructions to gauging. Such anoma-
lies can always be canceled by coupling the theory to a topological gauge theory in one dimension
higher. Thus anomalies are classified by topological actions for the gauge fields in one dimension
higher. In the case of a 2-group symmetry, such actions have been classified in [211]. The gauge
fields are a 1-form F0 gauge field A and a 2-form F1 gauge field B = (Ba, Bb). More precisely,
A is a 1-cocycle with values in F0, while B is a twisted 2-cocycle with values in a local system
(i.e. flat bundle) with fiber F1. The twist arises from the fact that F0 acts nontrivially on F1. The
most general action in 4d representing the anomaly for a 2-group symmetry is

Sanomaly = 2πi

∫

M4

(Pq(B) + 〈B,∪c2(A)〉+ ω4(A)) . (C.2.4)

The notation is as follows. We regard the pair (A,B) as map fromM4 to the classifying spaceBF
of the 2-group, which is a bundle over BF0 with fiber BF1. The action depends on a quadratic
function q : F1→R/Z invariant under the F0 action, a class c2 ∈ H2

π(F0, F
∗
1 ), and a class
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ω4 ∈ H4(F0,R/Z). P denotes the Pontryagin square (a cohomological operation associated to
the quadratic function q which maps a twisted 2-cocycle B to an R/Z-valued 4-cocycle P(B)).
In the case of interest to us, both H2

π(F0, F
∗
1 ) and H4(F0,R/Z) vanish (the former by Shapiro’s

lemma again), so there are no anomalies for F0 or a mixed anomaly between F0 and F1. On
the other hand, there exist F0-invariant quadratic functions on F1, so the 1-form symmetry F1

could be anomalous. In fact, it is easy to see that the anomaly is nontrivial and corresponds to
the quadratic function

q : Z2 × Z2→R/Z, q : (x, y) 7→ 1

2
xy. (C.2.5)

Indeed, let the F0 gauge field A be trivial, so that B is an ordinary 2-cocycle (Ba, Bb) with values
in F1 = Z2 × Z2. If we perform the shifts (C.2.3) with not-necessarily-closed 1-cochains α and
β, the action (C.2.1) transforms as follows:

Storic 7→ Storic + πi

∫

M

(b ∪ δα + β ∪ δa+ β ∪ δα). (C.2.6)

To cancel the terms which depend on b and a we couple the action to the 2-form gauge fields Ba

and Bb which transform as Ba 7→ Ba + δα, Bb 7→ Bb + δβ and define

S ′toric = πi

∫

M

(b ∪ δa+ b ∪Ba +Bb ∪ a). (C.2.7)

The new action transforms as

S ′toric 7→ S ′toric + πi

∫

M

(β ∪Ba +Bb ∪ β + β ∪ α), (C.2.8)

which is precisely the boundary term in the variation of

πi

∫

M4

Bb ∪Ba. (C.2.9)

This is nothing but the Pontryagin square of B ∈ Z2(M4, F1) for the quadratic function (C.2.5).1

To summarize, the anomaly action for the toric code is

Sanomaly = 2πi

∫

M4

Pq(B). (C.2.10)

In particular, the anomaly for the diagonal subgroup of F1 is obtained by letting Ba = Bb = B.
Note that this subgroup is F0-invariant. The corresponding anomaly action is

Sanomaly = πi

∫

M4

B ∪B, (C.2.11)

which means that the toric code is a shadow of a fermionic theory. The worldline ot the corre-

1In general, if A is nontrivial, B is a twisted 2-cocycle, and the Pontryagin square for twisted cocycles is more
difficult to write down.
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sponding fermion Π is represented by the Wilson line exp(iπ
∫

(a+ b)).

C.2.2 G-equivariant toric code

We are now ready to promote the toric code to a G-equivariant toric code, i.e. couple it to a G
gauge field A. Mathematically, this means embedding G into the symmetry of the toric code.
Since the “target” symmetry is a 2-group F rather than a group, this means specifying a homotopy
class of maps BG→BF. Physically, we make the fields A and B functions of A so that under
G gauge transformations A and B transform by F0 and F1 gauge transformations, respectively.
Such am embedding is characterized by a homomorphism π : G→F0 and a cohomology class
[Λ2] ∈ H2

π(G,F1). That is, we set

A = π(A), B = Λ2(A). (C.2.12)

The corresponding anomaly action is obtained by substituting into (C.2.10):

Sanomaly =

∫

M5

Pq(Λ2(A)). (C.2.13)

This means that the symmetry G is free of ’t Hooft anomalies if and only if Pq(Λ2(A)) is coho-
mologically trivial, i.e. if and only if there exists a 3-cochain ν3 ∈ Z3(G,R/Z) such that

δν3 = Pq(Λ2). (C.2.14)

Then G gauge-invariance can be restored by modifying the 3d action by a term 2πi
∫
M
ν3(A).

Let us specialize this to the case of trivial π. Then A is trivial, and B = Λ2(A) is an ordinary
(not twisted) 2-cocycle on M with values in F1 = Z2 × Z2. We can write Λ2 = (βa2 , β

b
2), where

βa2 , β
b
2 ∈ Z2(G,Z2). The condition (C.2.14) simplifies to

δν3 =
1

2
βb2 ∪ βa2 . (C.2.15)

The action of the equivariant toric code in this case is

2πi

∫

M

(
1

2
b ∪ δa+

1

2
b ∪ βa2 (A) +

1

2
βb2 ∪ a+ ν3(A)

)
. (C.2.16)

Regarding b as a Lagrange multiplier, we see that it imposes a constraint δa = βa2 (A). This
means that the pair (A, a) is a 1-cocycle with values in Ĝ, where Ĝ is a central extension of G by
Z2 whose extension class is βa2 . The part of the action independent of b can then be interpreted
as an integral of a pull-back of a 3-cocycle ν̂3, where ν̂3 is given by

ν̂3 = ν3 +
1

2
βb2 ∪ ε, (C.2.17)

where ε is a Z2-valued 1-cochain on Ĝ trivializing the pull-back of βa2 and restricting to the
identity on the central Z2 subgroup of Ĝ. The corresponding fusion category is a twisted Drinfeld
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double of Ĝ, with the twist given by ν̂3. Essentially, we have shown that this is the most general
G-equivariant extension of the toric code where G acts trivially on the toric code quasi-particles
(none of the elements of G exchange e and m). Note that the model considered in section (4.3.4)
has this general form, but in addition has βa2 = βb2 = β2. We will see shortly that this constraint
arises if we require the model to contain a fermion.

Now suppose π is nontrivial. Let G0 = ker π. It is easy to check that the action of G on
F1 ' Z2 × Z2 is induced from the trivial action of G0 on Z2. .2 Therefore by Shapiro’s lemma
H2
π(G,F1) ' H2(G0,Z2). Thus for nontrivial π G-equivariant extensions of the toric code

are labeled by a central extension of G0 together with a trivialization ν3 of the corresponding
Pontryagin square P(Λ2). The model considered in section (4.3.6) is of this form. Below we
will determine the condition on Λ2 imposed by the existence of a fermion.

C.2.3 One-form symmetries of the equivariant toric code

Consider enlarging the symmetry group G to a 2-group G, such that the group of 1-form symme-
tries is Z2. Since Z2 has no nontrivial automorphisms, the 2-group structure of G is controlled
by a Postnikov class Γ ∈ H3(G,Z2). Enhancing the symmetry of the toric code from G to G
involves extending the map BG→BF to a map BG→BF. Since the Postnikov class γ of F is
trivial, this is only possible if Γ is trivial. Physically, since the fusion of F0 domain walls in
the toric code is associative “on the nose”, this remains true even after we reinterpret them as G
domain walls via a homomorphism π : G→F0.

Specifying the homotopy class of a map BG→BF is equivalent to specifying B and A as
functions ofB ∈ Z2(M,Z2) andA ∈ Z1(M,G) in a way compatible with gauge transformations
of B and A. This means

A = π(A), B = Λ2(A) + ρ(B), (C.2.18)

where π and Λ2 are as before, and ρ is a nonzero homomorphism from Z2 to F1 which is invariant
with respect to the G action on F1 induced by π : G→F0.

The anomaly for the 2-group G is obtained by substituting the expressions for B and A into
(C.2.10). Using the properties of the Pontryagin square, we get

Sanomaly = 2πi

∫

M4

(
Pq(Λ2(A)) + bq(Λ(A),∪ρ(B) +

1

2
ρ(B) ∪ ρ(B)

)
, (C.2.19)

where bq is an F0-invariant bilinear form on F1 associated to the quadratic function q. Explicitly:

bq(x1, y1;x2, y2) =
1

2
(x1y2 + y1x2). (C.2.20)

We will assume as before that anomalies for G are absent, i.e. P(Λ2) is cohomologically trivial.
Then the first term in (C.2.19) is exact. The second term describes the mixed anomaly between
Z2 1-form symmetry and G, so it must be exact for Z2 to be a global 1-form symmetry of the
G-equivariant toric code. This means that the cohomology class of ρ(1) must be orthogonal to

2We are grateful to V. Ostrik for pointing this out.
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the cohomology class of Λ2 with respect to bq. Finally, the last term describes the anomaly of the
1-form Z2 symmetry.

Let us focus on fermionic Z2 1-form symmetries. Such symmetries must have a nontrivial
anomaly, so q(ρ(1)) 6= 0. This uniquely fixes ρ : it must send 1 to the generator of F F0

1 . That is,
the fermion must be represented by a Wilson line exp(πi

∫
(a+ b)). The orthogonal complement

of F F0
1 is F F0

1 itself, therefore the mixed anomaly is absent if and only if [Λ2] ∈ H2
π(G,F1) is in

the image of the map H2(G,F F0
1 )→H2

π(G,F1). That is, we must have

Λ2 = Λ̃2 + δπψ̃1, (C.2.21)

where Λ̃ ∈ Z1(G,F F0
1 ) and ψ̃1 ∈ C1

π(G,F1). The anomaly action for symmetry G is now exact,
and if we let M4 = ∂M3, it becomes

Sanomaly = 2πi

∫

M3

(
ν3(A) + bq(ψ̃1(A), ρ(B))

)
+ πi

∫

M4

B ∪B. (C.2.22)

The first term is not invariant under 0-form and 1-form gauge symmetries, but it does not repre-
sent a true anomaly: it can be removed by modifying the action of the equivariant toric code by
a local counterterm

Sct3 (A,B) = −2πi

∫

M3

(
ν3(A) + bq(ψ̃1(A), ρ(B))

)
. (C.2.23)

The last term in (C.2.22) is the correct anomaly for the 1-form Z2 symmetry to be fermionic.

The 1-cochain ψ̃1 ∈ C1(G,F1) does not affect the cohomology class of the B-field and can
be removed by a 1-form gauge transformation with a parameter −ψ̃1. (This transformation also
shifts ν3). Then Λ2 = Λ̃2 ∈ Z2(G,Z2), and the constraint on ν3 simplifies:

δν3 = Pq(Λ̃2) =
1

2
Λ̃2 ∪ Λ̃2. (C.2.24)

This is nothing but the Gu-Wen equation. The counterterm action also takes a simple form:

Sct3 (A,B) = −2πi

∫

M3

ν3(A). (C.2.25)

We still retain the ability to perform 1-form symmetry transformations valued in F F0
1 ' Z2.

Indeed, while such transformations shift ψ̃1, they do not affect Sct3 (C.2.23), since F F0
1 is an

isotropic subgroup of F1. Under a transformation with a parameter λ1 ∈ C1(G,Z2) the data
(ν3, Λ̃2) transform as follows:

ν3 7→
1

2
λ1 ∪ δλ1, Λ̃2 7→ Λ̃2 + δλ1. (C.2.26)

Changing ν3 by exact cocycles also does not affect the action.

We conclude that G-equivariant versions of the toric code with a fermionic Z2 1-form sym-
metry are labeled by triples (π, Λ̃2, ν3), where π is a homomorphism G→Z2 and (ν3, Λ̃2) ∈
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C3(G,U(1)) × Z2(G,Z2) satisfy the Gu-Wen equations. We also described the identifications
on this set which do not affect the model.

C.3 Wen plaquette model

The Wen placquette model for the toric code is defined on a square lattice with Z2 variables
at each site. The commuting projectors are Pi,j = σxi,jσ

y
i+1,jσ

y
i,j+1σ

x
i+1,j+1, associated to the

plaquettes of the lattice. This is a realization of the toric code.

The model realizes the Z2 symmetry of the equivariat toric code, but not in an on-site manner:
the Z2 symmetry maps to translations of the lattice by one unit.

The e and m quasi-particles are described by switching the sign of a plaquette at even or odd
locations on the lattice. The corresponding string operators can be taken to be, say, products
of the form σxi,jσ

y
i,j+1σ

x
i,j+2 · · · which create a particle in the plaquette to the left and below the

beginning of the string. A similar effect is archived by σyi,jσ
x
i,j+1σ

y
i,j+2 · · · .

The combination σzi,jσ
z
i,j+1σ

z
i,j+2 · · · creates a pair of e and m particles at neighbouring pla-

quettes, i.e. an ε particle.

C.3.1 Fermionic “boundary condition”

Consider the model restricted to the upper half-plane. The bulk plaquettes do not gap the system
completely. At the boundary, degrees of freedom survive which roughly correspond to a Z2 spin
chain of twice the lattice spacing: the boundary operators Si = σyi,0σ

x
i+1,0 commute with all bulk

plaquette operators. They anti-commute with nearest neighbours and commute with all others.

The Be gapped boundary condition where e condenses is easily described: we can add
∑

i S2i

to the Hamiltonian. This commute with e string operators ending on the boundary. Similarly,
we obtain Bm by adding

∑
i S2i+1 to the Hamiltonian. This commute with m string operators

ending on the boundary. 3

Both choices break explicitly the translation symmetry along the boundary by one unit, which
maps one into the other. This is compatible with the action of the Z2 symmetry of the toric
code. A boundary condition defined by a bosonic boundary Hamiltonian which preserves the
translation symmetry will flow to a Z2-symmetric boundary condition for the equivariant toric
code. If gapped, it must coincide with a direct sum of Be and Bm, i.e. it must spontaneously
break the Z2 symmetry.

Simple choices of bosonic boundary conditions, such as adding
∑

i Si to the Hamiltonian,
leave the Z2 symmetry unbroken and give a gapless critical Ising model at the boundary. The
Ising model is coupled to the bulk toric code in a straightforward manner: the bulk Z2 gauge the-
ory couples to the Ising symmetry of the gapless theory. In particular, e lines can end on σ(z, z)

3In a gauge theory description, these boundary conditions are either Dirichlet, i.e. fix the connection at the
boundary, or Neumann, i.e. leave the connection free to fluctuate at the boundary.
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operators, m lines on the dual µ(z, z) operators and ε lines on the fermionic local operators ψ(z)
and ψ(z).

As the result of fermionic anyon condensation of ε is the root Z2 fermionic SPT phase, we
should be able to produce a boundary condition Bε at which ε ends and the Z2 symmetry is
broken. The boundary condition should be related to a Z2-invariant interface between the toric
code and the root Z2 fermionic SPT phase.

We can define Bε as follows. First, we add a Majorana mode γi at each boundary lattice
site. Next, we add the following commuting projectors to the Hamiltonian:

∑
i γiγi+1Si. This

Hamiltonian gaps the system. Indeed, if we fermionize locally the boundary Ising degrees of
freedom in terms of new Majoranas ci, the commuting projectors become

∑
i γiγi+1cici+1 and

we have massive ground states where all the ciγi have the same sign.

The boundary Hamiltonian commutes with the ε line defects ciσzi,jσ
z
i,j+1σ

z
i,j+2 · · · ending at

the boundary. This motivates the identification with Bε. 4

Although the new Hamiltonian is naively invariant under translations along the boundary, in
oder to define the actual Hilbert space we need to pair up the Majorana modes in some manner.
This breaks the Z2 symmetry, as expected.

There is a neat way to restore it: we can place on the lower half plane some gapped system
which has Majorana boundary oscillators. An example is an infinite collection of Kitaev chains
extended along the vertical direction. Concretely, we can put a pair of Majorana modes γi,j and
γ′ij at each site in the lower half plane and build the Hamiltonian with projectors γ′i,jγi,j−1. These
boundary plaquettes commute with the γi ≡ γi,−1 oscillators used in the boundary Hamiltonian.

This is a microscopic description of the expected gapped interface between the root Z2 SPT
phase and the equivariant toric code.

C.3.2 Anyon condensation

It is straightforward to implement the bosonic anyon condensation in the plaquette model.

We can populate the lattice with an arbitrary number of e particles by removing from the
Hamiltonian the odd plaquettes, using the Hamiltonian −∑i,j|i+jeven Pij .

The “edge operators” U b can be taken to be σxij for even i + j and σyij for odd ij: they
commute with the Hamiltonian and move or annihilate e particles along diagonals in the lattice.
They clearly all commute.

Adding the U b edge operators to the Hamiltonian eliminates all the spin degrees of freedom
and returns the trivial theory, as expected.

Fermionic anyon condensation is a bit more subtle. We can populate the lattice with an

4In a gauge theory language, we expect Bε to correspond to a deformed Neumann boundary condition, with
extra boundary action given by the quadratic refinement of the intersection pairing associated to a spin structure on
the boundary.
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arbitrary number of ε particles if we use the Hamiltonian

Hε =
∑

i,j

P2i,jP2i+1,j =
∑

ij

σx2i,jσ
z
2i+1,jσ

y
2i+2,jσ

y
2i,j+1σ

z
2i+1,j+1σ

x
2i+2,j+1 (C.3.1)

We can visualize the ε particles as living in the middle of vertical edges at odd horizontal loca-
tions.

The operator σz2i+1,j commute with the new Hamiltonian but anti-commute with the four P
operators around the vertex. It moves an ε particle vertically by one unit.

The operator σx2i−1,jσ
z
2iσ

y
2i+1 anti-commutes with the four P operators above it. It moves an

ε particle horizontally by one unit.

As expected these V ε operators do not commute: vertical operators commute with each other,
but horizontal operators anti-commute with horizontal neighbours and vertical operators imme-
diately below.

We can add Majorana pairs. It is convenient to denote them as γ2i+1,j and γ′2i+1,j .

The dressed hopping operators U f take the form: U f
2i+1,j ≡ iσz2i+1,jγ2i+1,jγ

′
2i+1,j and U f

2i,j ≡
iσx2i−1,jσ

z
2i,jσ

y
2i+1,jγ2i−1,jγ2i+1,j .

The U f operators square to 1. The product of the operators around a closed path is

P2i−1,j−1P2i,j−1γ
′
2i−1,jγ2i−1,j−1γ

′
2i+1,jγ2i+1,j−1 (C.3.2)

This will become 1 as soon as we impose the Coulomb branch constraints

C2i−1,j−1 ≡ P2i−1,j−1γ
′
2i−1,jγ2i−1,j−1 = i(−1)i (C.3.3)

Overall, we only need to impose the C2i+1,j+1, U f
2i+1,j and U f

2i,j projectors, as they imply the
original P2i,jP2i+1,j = 1 constraints.

It is straightforward, if tedious, to show that we can use the U f
2i+1,j = 1 and U f

2i,j = 1
constraints to gauge-fix the spin variables. In terms of dressed fermionic operators

Γ2j+1,j = γ2j+1,jσ
x
2i+1,jσ

y
2i+2,j Γ′2j+1,j = γ′2j+1,jσ

y
2i+1,jσ

x
2i+2,j (C.3.4)

commuting with the U f projectors, the Gauss law constraints involve Γ′2j+1,jΓ2j+1,j−1 and make
the system into a collection of vertical Kitaev chains.
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Appendix D

Appendix to Chapter 6

D.1 Group cohomology

In this appendix, we collect various standard facts about group cohomology.

Definition: Given a finite group G and its module A, we define n-cochains Cn(G,A) as func-
tions Gn → A. The differential is given by

df(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)

+
n∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1) + (−1)n+1f(g1, . . . , gn). (D.1.1)

The differential squares to zero: d2 = 0. Then we define the group cohomology H i(G,A) as the
cohomology of this differential. Explicitly, the first few differentials are given by

df(g, h) = gf(h)− f(gh) + f(g), (D.1.2)
df(a, b, c) = af(b, c)− f(ab, c) + f(a, bc)− f(a, b), (D.1.3)

df(x, y, z, w) = xf(y, z, w)− f(xy, z, w) + f(x, yz, w)− f(x, y, zw) + f(x, y, z). (D.1.4)

Some points on notation: It does not lead to any loss of generality if we assume that every
cochain/cocycle/coboundary is normalized, i.e. it is zero whenever at least one of gi = 1. See
e.g. [155]. We have assumed throughout the chapter that every cochain is normalized. We are
often interested in H i(G,U(1)) for i = 2, 3 where the action of G on U(1) is taken to be trivial.
Henceforth, we will assume the trivial action whenever we write U(1). It is also convenient to
treat U(1) elements as phases and in this case the + sign in above definitions should be replaced
by the usual multiplication of phases. For instance we have,

df(g, h) =
f(h)f(g)

f(gh)
. (D.1.5)
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We have used the product notation throughout the chapter in the context of group cohomology
valued in U(1).

Pull-back: Recall that given a map M1 → M2 between two manifolds, one can pull-back n-
forms on M2 to n-forms on M1. The analogous statement in group cohomology is that given a
group homomorphism G → G′, we obtain a module homomorphism H i(G′, A) → H i(G,A).
Explicitly, let h : G→ G′, then h̃ : H i(G′, A)→ H i(G,A) is given by

h̃(α)(g1, · · · , gi) = α (h(g1), · · · , h(gi)) . (D.1.6)

Cup product: There is an operation called cup product Ci(G,A)× Cj(G,A) → Ci+j(G,A)
when A is a ring. If α ∈ H i(G,A) and β ∈ Hj(G,A), then the cup product is defined as

(α ∪ β)(g1, · · · , gi+j) = α(g1, · · · , gi)β(gi+1, · · · , gi+j). (D.1.7)

It can be easily checked that this product descends to a product on cohomologies.

One-dimensional representations of G: Let us ask what is the meaning of H1(G,U(1)). The
1-cochains are maps from G to U(1) and imposing the cocycle condition turns them into group
homomorphisms. Hence H1(G,U(1)) is the group formed by one-dimensional representations
of G. In particular, when G is a finite Abelian group, then H1(G,U(1)) ' Ĝ is the dual group.

Projective representations of G: Now, let us ask what is the meaning of ε ∈ H2(G,U(1)).
We want to interpret the ε(g1, g2) as the phases defining a projective representation of G. The
cocyle condition reads

ε(g1, g2)ε(g1g2, g3) = ε(g2, g3)ε(g1, g2g3) (D.1.8)

which is the associativity condition such phases are required to satisfy. Such a cocycle can be
shifted by a coboundary of the form

dβ(g1, g2) =
β(g1g2)

β(g1)β(g2)
(D.1.9)

which corresponds to rephasing of the group action on the projective representation. Thus, we see
that H2(G,U(1)) classifies the phases encountered in projective representations upto rephasing.
The usual representations correspond to the trivial element of H2(G,U(1)).

Crossed products and extensions of groups: Consider an Abelian group H and a (possibly
non-Abelian) group K. Consider an action of K on H and use it to define H2(K,H). An
element κ ∈ H2(K,H) can be used to define a group extension G of K by H , that is there is a
short exact sequence

0→ H → G→ K → 0 (D.1.10)
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and G is called the κ-cross product of K and H and it is written as G = H oκK. Explicitly, the
group G as a set is the direct product H ×K with the group multiplication given as follows

(h1, k1)(h2, k2) = (h1 + (k1 . h2) + κ(k1, k2), k1k2). (D.1.11)

Here, . denotes the action of K on H via inner automorphism in G. The reader can verify that
the associativity of the group multiplication is ensured by the cocycle condition on κ. Shifting
κ by a coboundary changes G upto isomorphism. Hence, group extensions of K by an Abelian
group H are classified by a group action of K on H along with an element in H2(K,H) defined
using the group action.

Bicharacters on G: Consider an Abelian group G and a trivial module A of G. Given a
cohomology element in H2(G,A) represented by a cocycle ε(g, h), one can form α(g, h) =
ε(g, h) − ε(h, g) which is an antisymmetric function on G. This is indeed well defined because
adding a coboundary to ε doesn’t change α. When A is U(1) this α is a bicharacter, and there’s
a bijection between an antisymmetric bicharacter on G and H2(G,U(1)).

A useful isomorphism: Recall the familiar statement that any closed n-form is exact locally.
In group cohomology, the analogous statement is that

H i(G,R) = 1, (D.1.12)

that is H i(G,R) is trivial. We can use this to obtain H i+1(G,Z) ' H i(G,U(1)). This follows
from the long exact sequence associated to the sequence 0→ Z→ R→ U(1)→ 0.

Explicit group cohomologies:

• H∗(Zn,Z) = Z[x2]/(nx2).

• H2((Zn)k,U(1)) = (Zn)k(k−1)/2.

• H3((Zn)k,U(1)) = (Zn)k+k(k−1)/2+k(k−1)(k−2)/6, with generators given by

α(i)(a, b, c) = e2πiai(bi+ci−〈bi+ci〉)/n2

, (D.1.13)

α(i,j)(a, b, c) = e2πiai(bj+cj−〈bj+cj〉)/n2

, (D.1.14)

α(i,j,k)(a, b, c) = e2πiaibjck/n (D.1.15)

where a, b, c = {0, 1, . . . , n − 1} and 〈a〉 is the mod n function to {0, . . . , n − 1}. In
particular, H3(Zn,U(1)) = Zn and its generator has the cocycle

α(a, b, c) = e2πia(b+c−〈b+c〉)/n2

. (D.1.16)

• For Dm the dihedral group with m elements we have [213],

H∗(Dm,Z) = Z[a2, b2, c3, d4]/(2a2, 2b2, 2c3,md4, (b2)2 + a2b2 + (m2/4)d4). (D.1.17)
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In particular, H2(D2n+1,U(1)) = 0, H3(D2n+1,U(1)) = Z4n+2; H2(D2n,U(1)) = Z2 ×
Z2, H3(D2n,U(1)) = Z2 × Z2 × Z2n. The explicit generators can be found in [214].

• For Q8, the quaternion group, we have [215]

H∗(Q8,Z) = Z[A2, B2, C4]/(2A2, 2B2, 8C4, A
2
2, B

2
2 , A2B2 − 4C4). (D.1.18)
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