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Abstract 

The global 3D imaging market is expected to reach $26 billion by 2024 with an annual growth of 23.7% 

(3D Imaging Market Global Scenario, Market Size, Trend and Forecast, 2015 – 2024. 2018). Various 

industries are extensively involved in this emergence including the healthcare and entertainment industries, 

the architecture and construction industries. Additionally, global steel pipe demand is predicted to rise by 

3.5% annually until 2019. The combination of the two growths raises the potential of 3D imaging 

technologies in the construction industry, especially in the piping industry. Thanks to the virtuous cycle 

between growth and innovation, development and applications of new 3D vision technologies and 

techniques has become a need for the construction industry facing harsh competition globally. Similarly, 

prefabrication has been boosted in the construction industry, reducing costs and optimizing time of 

fabrication. It also copes with the increased demand of small tolerances which sets the industry and its labor 

under high pressure. Thus, quality control is reinforced in fabrication facilities, and innovations can be 

deployed in that domain to preclude assemblies from any incompliance. Employing 3D scanners is one 

effective way to do so, and the recent emergence of handheld laser scanners has created the opportunity to 

develop efficient new methods to be used for quality control. 

This thesis proposes a novel methodology for deriving 3D models for assemblies to be fabricated, breaking 

down a barrier that previously inhibited the utilization of small-range handheld 3D laser scanners. The 

process is applicable for industrial assembly lines, which present a stepwise fabrication process such as that 

for pipe spools. The methodology also aims at streamlining the fabrication flow for workers, and can 

provide as-built information to the management team. To do so, piping assemblies are thoroughly analyzed 

and decomposed at each and every step around the weld of interest: one part is being added with respect to 

the other. From this decomposition of a pipe spool, the challenge of the methodology is to shrink down to 

the minimum the amount of components that have to be investigated to control the geometry of the 

assembly. The key concept of solid of revolution is introduced and permits the derivation of the Minimum 

Required Model (MRM). Examples are generated and experiments are conducted to test the effectiveness 

of the presented method. This is mainly realized by implementing the algorithm within an in-house 

software, developed along with another PhD student, a master’s student and a co-op student.  The software 

enables the comparison of the acquired scene to the 3D model by segmenting piping components 

individually, and generating the as-modelled point cloud. Consequently, piping components can directly be 

segmented within the software, and the MRM can be derived and compared to the expected model. 

In order to evaluate the efficiency of the method, three criteria are proposed: (1) the level of spatial 

complexity between the derived Minimum Required Model and the initial 3D model, (2) the capacity to 
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use a handheld scanner with or without the MRM, and finally (3) the accuracy of the comparison between 

the acquired scan and the 3D model. 
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1 Introduction 

Investment in innovation in construction companies is very low compared to others. In 2015, only 1% of 

revenues was spent in R&D in construction whereas 3.5% to 4.5% were spent in the auto and aerospace 

sectors. As a result, the industry is among the least digitized, and construction projects suffer from cost 

overruns and major schedule delays. As mentioned in a recent McKinsey report (Agarwal et al. 2016), some 

innovations could lead to high improvement of the industry operation. The major recommendation is to use 

higher-definition surveying and geolocation techniques in projects. Deploying 3D imaging techniques can 

allow high-quality 3D images to be gathered, which can be integrated with any project-planning tool, such 

as Building Information Modelling (BIM). As stated in a recent report (3D Imaging Market Size, Trends 

and Forecast. 2018), the 3D imaging market is expected to have an annually growth rate of about 25% until 

2022, reaching a market valued at $21bn. With such a market becoming more competitive, technologies 

are expected to gain accuracy and resolution with prices dropping down. In addition, industrial construction 

is categorized as one of the most expensive construction sectors and thus requires rigorous focus to avoid 

any incompliance. In particular, the piping industry accounts for a big amount in industrial construction. 

As the demand on infrastructure will keep growing in the next decade, global steep pipe demand is expected 

to rise 3.5% annually to 79.7 million metric tons in 2019 (Freedonia Group 2013).  

By merging all this information together, the potentialities of applying 3D imaging technologies within the 

piping industry are straight-forward. The enhancement of piping fabrication processes using 3D scanners 

could have many positive impacts by improving quality and productivity, reducing rework or building up 

an innovative corporate image. 3D scanners can also be called Light Detection and Ranging (LIDAR) 

devices and include terrestrial and handheld laser scanners. Due to their light weight, some of most recent 

ones can be mounted on unmanned aerial vehicles (UAVs). Developing handheld laser scanners in the 

construction industry has the benefit of not requiring an expensive investment and providing valuable 

results for comparing as-built assemblies to as-modelled designs, or conducting on-site progress tracking. 

In the following thesis, focus is brought on the deployment of handheld laser scanners in piping fabrication 

shops for assessing the geometric compliance of as-built pipe spool assemblies with regard to 3D Computer-

Aided Design (CAD) models. A methodology is extensively developed, which leverages the available 

design information to produce a reduced 3D design model and takes into account the stepwise fabrication 

flow for assembling pipe spools. The derived model, named the Minimum Required Model (MRM), is 

applied in the perspective of 3D vision-based stepwise quality control in a piping fabrication environment. 
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1.1 Problem Statement 

The emergence of modularization and prefabrication in the construction industry has enhanced the 

industry’s performance. Modular construction reduces the duration of the construction phase, saves on 

construction costs and improves end-product quality (Jaillon and Poon 2014). Given the controlled nature 

of the factory environment, quality control can be performed more accurately, and contractors are held to a 

higher standard to achieve strict tolerances. As a result, construction companies have looked to other 

manufacturing industries – such as the automotive industry – and started to use their measurement processes 

by adapting them (Jaillon and Poon 2008). 

Automation of construction processes in general and modular assembly specifically, would enable 

contractors to achieve a higher degree of accuracy with respect to geometrical deviations. For instance, 

automated machines are developed and utilized for welding and cutting (Gnanavel et al. 2017). 

Unlike the automotive industry, due to the nature of construction industry, most of the work is still manual 

and labor intensive. Furthermore, in the U.S, the construction industry has the highest fatality rate across 

all industries with approximately a thousand deaths in 2015 (Fatal Occupational Injuries by Selected 

Characteristics, 2003-2014. 2003). The required high skill level coupled with the high accidents rate has 

led to a major challenge in supplying the required workforce in construction projects (Pan et al. 2012). 

Focusing on the piping industry, workers need to develop a variety of skills, including interpretation of 

spatially complicated assemblies from two-dimensional isometric drawings, correctly positioning 

components and proper welding. 

In the piping industry, design files are transmitted in the form of a 2D drawing. These drawings are then 

printed and distributed to workers on the fabrication floor. Workers are trained to use these 2D drawings to 

build the 3D model of the design in their minds and then lay out the pipe spools based on their interpretation. 

Because of the complexity of this task, workers usually develop their own method to better understand 

(visualize) the drawing. One such method is to use a welding rod to quickly build a 3D model of the 

assembly. As such, utilization of 3D models (which could be digital or 3D-printed) along with the 

traditional 2D drawing has been proven to be effective when assembling components together (Goodrum 

et al. 2016). However, 3D model design during the prefabrication stages has been very limited due to the 

substantial changes in the internal workflows that it requires.  

One of the major bottlenecks in modular fabrication is the inspection process. Whether it uses high end 

laser scanners, experienced Quality Control (QC) personnel or third party QC firms, it can only be applied 

at the end of the fabrication process. Moreover, detection of a geometric deviation at the end of the 

fabrication process can cause major delays and costs to the project (Safa et al. 2015). Recently developed 



3 
 

range cameras can potentially be a solution to this problem since they can offer accurate real time 

information on the as-built status, which can then be compared with the 3D model (Omar and Nehdi 2016). 

In addition to their ability to collect real time information, these scanners require a minimum training 

experience, making them a great solution to be adapted on the fabrication floor. Yet, range cameras have a 

limited range of acquisition, which is the primary reason of their limited application in the industry (Sharif 

et al. 2016).  

1.2 Research Objectives 

The primary objective of this thesis is to develop a framework for generating a Minimum Required Model 

(MRM) to be used for stepwise 3D imaging quality control during the pipe fabrication cycle. A MRM 

would create several efficiencies in the fabrication process by minimizing scanning requirements and 

relaxing constraints. 

In addition to this primary objective, some secondary objectives are: 

 to propose a methodology fully integrated into a worker-based user-friendly software; 

 to overcome the short range limitation of handheld laser scanners; 

 to develop the premises of a framework, which enables handheld laser scanners to be completely 

deployed in piping fabrication shops. 

1.3 Research Approach 

This thesis focuses on the development of a solution to derive the Minimum Required Model (MRM) in 

order to facilitate the utilization of handheld laser scanners for geometric control in piping fabrication shops. 

The developed methodology aims at breaking down the barriers that prevent the utilization of consumer 

grade scanners in the industry. Such barriers include their small range, and the low point cloud density on 

large scans. 

To do so, the methodology is integrated into a software developed by the research project called Structure 

from Motion (SfM). The solution has been developed for more than two years through a research 

collaboration between the University of Waterloo and Aecon Industrial West. The main objective of this 

project is to develop an integrated software package to be used by workers in the fabrication shop to reduce 

rework and improve productivity by detecting defects before they occur. To do so, the SfM solution uses a 

handheld laser scanner to scan the as-built assembly, which is then compared to a 3D model of the assembly 

being fabricated. In addition, the SfM software enables the experimentation and the validation of the 

methodology. A database composed of about one hundred 3D piping models was created to test out the 

methodology. 
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The methodology was executed in a two-phased approach: (1) a method was developed to enable the 

segmentation of piping components in the appropriate 3D model format; (2) the algorithm for deriving the 

MRM was conceived and implemented in the SfM software. 

Several impact factors were evaluated in order to measure the effectiveness of the proposed methodology. 

1.4 Scope 

Although the developed methodology could be applied to any kind of industrial assembly, the thesis focuses 

on industrial assemblies from the piping industry. Some processes as well as fabrication inputs/outputs are 

industry-oriented. As a result, the flow of piping fabrication is considered to be stepwise, which implies 

that each assembly is fabricated one step at a time by fitting together one component, or group of 

components, onto another. 

The thesis and its inherent concepts were developed to be used with handheld consumer grade laser scanners 

and aim at solving the current challenges of those devices. The utilization of the methodology coupled with 

other acquisition devices such as terrestrial 3D laser scanners is not the original purpose of the methodology 

and may not be appropriate, because each technology has its inherent challenges which need to be tackled 

independently. 

1.5 Thesis Organization 

This thesis is organized into seven chapters: 

 Chapter 1 presents the introduction to the problem statement, objectives, approach and scope of the 

research contained in this thesis. 

 Chapter 2 provides a comprehensive overview of the literature and background information. The 

piping fabrication processes are extensively detailed to position the research in its context. A special 

attention is given to quality control during the fabrication. Relevant information surrounding 3D 

imaging technologies used to perform quality control is also provided. 

 Chapter 3 presents the proposed methodology. The overall workflow is contextualized and broken 

down into the key steps involved. Objectives and constraints are also addressed. 

 Chapter 4 details the methodology used to segment the piping components. Examples are provided 

and the process is explained. 

 Chapter 5 focuses on the method used to derive the Minimum Required Model and the concepts 

involved. 
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 Chapter 6 analyzes the effectiveness of the proposed methodology by assessing the MRM with 3 

metrics. The spatial complexity of the assembly, the possibility of scanning and the point cloud 

density are measured before and after using the methodology.  

 Chapter 7 summarizes all the developments of this research into key conclusions. Future work is 

also discussed in order to strengthen and supplement the proposed methodology and research 

undertaken in this thesis. 
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2 Research Background and Literature Review 

The following section entails a thorough description of the piping fabrication processes. First, the 

fabrication of a piping assembly is explained based on site visits. Secondly, the fabrication workflows, 

which determine the processes are detailed and provided. Finally, the theoretical implementation of the 

developed software is provided through improved workflows. This presentation enables a precise 

contextualization of this thesis. In the second part of this chapter, the decision making process which lead 

to the selection of Structure IO is provided. To conclude, a literature review is achieved and presents the 

3D imaging technologies in quality control in the construction industry. 

2.1 Piping Fabrication Processes and Quality Inspection 

In order to fully understand the applications of the developed thesis, a detailed presentation of the piping 

fabrication processes is required. Therefore, a realistic presentation of piping fabrication is given in the next 

part, supported by in-shop pictures. Following it, the fabrication workflows are analyzed, and the potential 

implementation of the developed solution is explained. 

2.1.1 Current Tolerance Control and Error Detection Within the Piping Industry 

During fabrication, all materials and components are assumed to have specific dimensions, and the locations 

of elements are dimensioned on the isometric drawings to a theoretically exact position relative to one or 

more datum points. In reality, these fabricated dimensions and locations vary somewhat. The contractually 

acceptable amount of variance is the tolerance for that specific measure. Tolerance specifications assure 

installation of a system within a reasonable degree of accuracy. For specifying tolerances, designers and 

QC specialists typically use standardized dimensional tolerance guidelines. For any contract, the designer 

must clearly state: (1) the tolerances allowed, (2) the standards used, (3) how compliance will be verified, 

and (4) what the result of noncompliance will be. PFI ES-03 has been selected as the dimensional guideline 

standard for the purpose of the Structure from Motion project since it will cover more than 80% of the 

contractual obligation that the Aecon Industrial West (AIW) fabrication facility is interacting with. 

Currently, the predominant processes for monitoring the critical dimensions outlined in these standards 

involve manual assessment by certified QC personnel using direct contact measurement devices such as 

metal measuring tapes, calipers, custom gauges, squares, and straight edges. No measurement process is 

exact, and this uncertainty needs to be taken into account when verifying compliance with any allowable 

tolerance. Measurement uncertainty is simply a quantified doubt about the result of a measurement. 

Uncertainties and errors in measurement can come from many sources, such as the measuring device, the 

component being measured, the skill of the craft worker or inspector performing the measurement, the 

measurement process, and the environment. For example, when taking a simple distance measurement with 

a measuring tape, a number of things can go wrong: (1) the tape could be mismarked or the end hook could 
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be out of position, (2) the tape sags during the measurement, (3) the tape may not be perfectly aligned with 

the desired axis of measurement, (4) the craft worker measuring might have poor eyesight, or be making 

the reading in dim lighting conditions, or (5) the craft worker may round, adopting a “close enough” attitude. 

In addition to measurement uncertainty, dimensional control problems also originate from existing poor 

design document creation practices. These include:  

 

 Chain dimensioning establishes ambiguity and the potential for accumulated measurement error - 

e.g., dimensioning a spool’s multiple nozzles centre to centre instead of to a single base point.  

 Problems can arise when copying values from guidelines or standards while neglecting to 

communicate if they are maximum or minimum values of an allowable range.  

 Less important dimensions may have a plus-or-minus sign as a suffix to indicate that the dimension 

can vary, but the amount of the allowable variation is not clear.  

  Errors can result from using units that the fabricator does not typically operate with.  

Adhering to tolerance specifications can take on an additional layer of complexity when practical cost-

benefit concerns are integrated into the decision making. For example, under a strict interpretation of the 

contract, a contractor would be required to re-fabricate an entire pipe spool assembly because it exceeded 

the specified tolerances by a quarter inch, but this could seriously delay construction progress, lead to 

litigation, make for a negative and adversarial work environment, and increase costs unnecessarily. For 

most large projects, the final tolerance inspection is performed by the regulatory agencies.  

For a more in-depth discussion of tolerances in pipe spool fabrication and construction in general, see 

(Thielsch 1965, Markowitz 1973, Ballast 2007, Antaki et al. 2005) as well as ISO 4463-1:1989 2012 and 

ASME B31.1-2014 2014). 

2.1.2 Aecon’s Overall Pipe Spool Fabrication Process 

This section provides Aecon workflows in terms of: (1) data, (2) physical, and (3) revision. Data workflow 

corresponds to the general workflow associated with data transmission in AIW (Aecon Industrial West). 

The physical flow is how different process in the shop are located relative to each other. The revision 

workflow focuses on quality control and the drafting process for spooling. It also helps in integrating SfM 

in Aecon’s work flows. 
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Figure 1: Example of Aecon data flow 
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Figure 2: Example of Aecon physical flow
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Figure 3: Aecon Industrial West facility layout



11 
 

 

Figure 4: Aecon revision flow
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2.1.3 Aecon’s Current Tolerance Mapping and Control Approaches 

Occasionally, some work will be performed that upon examination will be found to be out of tolerance. 

This is an instance of non-compliance with the contract. Dimensional non-compliance or defects are 

primarily caused by pipe fitter error or by the thermal expansion and contraction of metals during welding. 

The degree of distortion depends on the metal or alloy, its size, shape, thickness, the tacking and alignment, 

the welding process, procedure, and sequence, the care taken by the welder, and the positioning of the 

welded components in the design. Regardless of whether the defect originates from fitting or welding, 

dimensional examination usually does not occur until after welding, i.e., after the components have been 

permanently joined. Remediation of this type of non-compliance is expensive; more-so if the dimensional 

defect goes undetected until final installation on-site. The following table illustrates a list of non-compliance 

categories and their descriptions.  

Table 1: List of non-compliance categories and their descriptions 

Non-Compliance Categories Description 

Weld defect 

Due to the welding the size, shape, orientation, 

location, or properties do not meet specified 

acceptance criteria 

Dimensional defect 

A dimensional discrepancy greater than the 

acceptable tolerances stated by the applicable code 

or contract 

Drawing error 
An error or omission on drawings used for 

fabrication 

Pressure test failure 

The failure of a pressure test. Mechanical failures 

of equipment are not considered cause for an NCR 

but rather a retest 

Fitting error 
A dimensional discrepancy greater than the 

acceptable tolerances stated by the applicable code 

Material defect 

A defect in parent material which exceeds 

allowable tolerances and specifications of the 

applicable code 

Customer error Customer error resulting in a non-compliance 

Wrong material 
Material used in the procedure not as per required 

on the welding specification 
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Wrong WPS used 
Weld Procedure Specification used on production 

is not on the approved procedure list  

Damage part – general Damage to production parts 

Machining error (by fabricator) 

Machining completed by fabricator which falls 

outside that allowed by the applicable code or 

specification 

Supplier/Subcontractor error 

Defect or error incurred by supplier or 

subcontractor which impacts the compliancy of the 

component 

Painting defect 
Defect in coating systems which is not compliant 

to applicable code 

Contamination 
Material has been contaminated either through 

contact or improper packaging and requires rework 

Damaged part – flange face 
Flange face does not met the requirements per the 

applicable code 

Damaged part – ball value 
Ball value does not meet the requirements per the 

applicable code 

2.1.4 Aecon’s Current Metrics for Quantifying Non-conformance and Rework 

A rework activity is defined as an activity that is completed more than once or that removes work previously 

installed/created to correct non-conformance between the design and the as-built condition. Rework falls 

into two categories: corrective activities that are reported and tracked and unreported corrective activities 

that are performed by a craft worker during the fabrication of the component. This unreported rework is 

challenging to quantify as it is unreported. In heavy industrial projects, the highest impact on rework is 

caused by design error and omission (TFRF = 0.009) and owner change (TFRF = 0.005), while construction 

error has a TFRF of 0.002. TFRF is the total field rework factor and is defined as the total direct cost of 

field rework divided by the total construction phase cost (Hwang et al. 2009). 

When non-conformance is detected in the work completed during an inspection at an Aecon facility, the 

inspector completes a one-page non-conformance report to document the incident. The report details the 

incidence of non-conformance, the proposed disposition, a statement on acceptance of the proposed 

disposition, and completion of disposition.  

The inspector provides the identifying information about the spool being discussed in the report, including 

a NCR number, a spool number and a job number.  
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The inspector describes the non-conformance and recommends an action from the following choices: scrap, 

rework, use as is, and return. The inspector provides a root cause of the non-conformance.  

If applicable, the inspector then provides a proposed disposition that outlines a proposed solution to the 

non-conformance situation. The non-conformance report and its current state is provided to the client for 

review and approval (Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9).  

Once the work outlined in the disposition is completed and recorded, the final signatures can be applied to 

the original non-conformance report, and the incident of non-conformance has been resolved.  

2.1.5 Benefits and Feasibility of Augmented Reality Guided Assembly Framework 

In a study conducted by CII research team titled “Innovative Delivery of Information to the Crafts”, the 

research team found that there is a significant improvement in craft performance when 2D information is 

augmented with the corresponding 3D information. Their field experiments provided evidence of the 

benefits of providing 3D information, including: 

• A 16-percent improvement in time to completion using a two-sided isometric. 

• A 39-percent reduction in the number of errors using a two-sided isometric. 

• An 11-percent increase in direct work using a two-sided isometric. 

• An ROI of $33.47 saved for each dollar invested in the use of two-sided isometric drawings. 

(For more information on 2-Sided isometrics please refer to (Goodrum et al., 2016)). 

The University of Waterloo team was able to deliver an electronic version of the two-sided isometric with 

augmented reality features which is foreseen to provide an immediate efficiency gain from employing 

mobile technology to diffuse information to the craft workers, earlier than expected. This task was planned 

to be completed on the third phase of the project. The prototype is able to display the isometric drawings 

and 3d model of the selected pipe spool. The user is being able to navigate between these two screens by 

swiping the tablet screen or display both of them side by side. The user is being able to manipulate the 3d 

model using the tablet touch screen (a capability beyond the static 3D shape used in the aforementioned 

study). 
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Figure 5: Example of a non-conformance report log page 1 
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Figure 6: Example of a non-conformance report log page 2
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Figure 7: Example of a non-conformance report log page 3 
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Figure 8: Example of a non-conformance report log page 4 
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Figure 9: Example of a non-conformance report log page 5 
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2.1.6 Piping Fabrication in Practice 

The following section illustrates the physical workflows provided in Figure 2 and Figure 3. 

Once the drawings have been issued to the shop, the general foreman is responsible for properly distributing 

the drawings to the fitters and welders. Each worker has a ticket which allows him to perform certain types 

of fitting or welding. Also, drawings are dispatched between the different bays of the AIW facility. Figure 

10 represents the shelf located in the AIW facility where workers pick up their job in the form of drawings. 

 

Once the drawing is brought into the shop, fabrication can begin and follows the physical workflows. Four 

main tasks are involved in the piping fabrication. After loading the materials from the storage rack to the 

cutting rack (Figure 11) and making sure no component is missing, the first step consists in cutting the 

components to the proper dimensions specified on the fabrication drawing (cutsheet). This task is performed 

semi-automatically by the cutter. His job is to correctly specify the required settings for the specific spool. 

Figure 12 shows the operator performing a cutting on a spool. The cutting information are typed into the 

monitor, and the machine cuts the pipe spool by itself.  

Although this task could seem straightforward and not prone to defect, a common practice in the industry 

is to let extra tolerance to the spool so that it cannot be smaller than specified. As a result, the initial pipe is 

often longer than it should be. The reason to this practice is that it lets a chance to the fitters and welders to 

correct a potential mistake by giving the possibility to cut the extra length if the first attempt was 

miscellaneous. 

 

Figure 10: Drawing shelf in the Aecon Industrial West facility 
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Figure 11: (a) Outdoor storage rack and (b) indoor cutting storage rack before being sent to the cutting machine 

 

Figure 12: Cutting operation performed by an operator 

Once the cutting is performed, the spools are sent to the designated fitting station using roof cranes through 

each bay. Figure 13 shows the general layout of bay 1 in the AIW facility. The crane fixed at the roof is 

used to transport the spools between different stations. Following the fabrication flow, the spool goes to a 

fitting station such as the one shown in Figure 14. 
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Figure 13: Overview of Bay 1 

 

Figure 14: Fitting station 

From there, the spool is unloaded by the fitter (Figure 15), and the second main task can begin: the fitting. 

Fitters are responsible for interpreting the cutsheet and performing the tack welds according to the 

drawing(s). Once a tack weld is performed by the fitter, the spool is shipped to the welding station for 

welding. One of the main tasks of fitters is to maximize the number of roll welds. This requires careful 

selection of sub-spools that can be tacked together, so the whole sub-spool can be rolled for all of its tacked 

welding locations. A complete spool is often too large or unwieldy to roll, and final welds to join sub-spools 

have to done manually by awkwardly moving around the fixed spool. Roll welds are welds in which the 
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spool is rotating in a machine where the speed of the rotation is controlled by the welder. Roll welds have 

a better quality and take an order of magnitude less time to complete (Figure 16). 

 

Figure 15: Pipe loaded at a fitting station for being assembled 

 

Figure 16: Pipe spool prepared for roll weld 
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Another main task of the fitters is to perform continuous geometrical control of the assembly. After 

performing a tack weld, fitters are supposed to control the alignment, geometry and orientation of the fitting 

so that no weld is performed on a miscellaneous assembly. To do so, the fitting table is equipped with 

manual tools such as the ones shown in Figure 17. Fitters have at their disposal digital levels to measure 

the inclination of the assembled spool as well as other common hard tools. 

 

Figure 17: Fitting table 

As stated in the physical workflows, pipe spools go back and forth between the fitting station and the 

welding station. Once the assembly is complete, the quality control personnel are in charge of controlling 

the assembly. The person responsible for quality control has to check all of the lengths, angles, materials 

and grading of the spool with respect to the drawings. For example, Figure 18 represents a drawing that has 

just been controlled by the QC personnel. Cross marks are placed next to each length/angle right after they 

got controlled and are within tolerance. Once the entire spool has been investigated and is correct, the QC 

person stamps the drawing. If demanded, the assembly may then be sent for hydro tests before shipping. In 

the case where a defect is detected, the quality control personnel has to fill a Non Conformance Report 

(NCR) as previously shown in Figure 5 to Figure 9. 
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Figure 18: Drawing after the QC personnel inspection 

One of the main shortcomings of the defect detection process is the poor level of accuracy and weight given 

to manual interpretation which makes it prone to human mistake. Integrating a 3D vision system for 

constant quality control has the potential to reduce the amount of rework detected at the end of the 

fabrication process by the quality control personnel. As briefly explained in 2.1.5, augmented reality could 

improve the efficiency of the fabrication by detecting defects right after tacking and before welding or at 

least right after they appear. This could drastically reduce the amount spent on fixing defects, and hence, 

making cost savings. 

2.1.7 Theoretical Implementation of the Stepwise Quality Control 

Following the shortcomings highlighted in the previous section, the following section describes the 

theoretical modifications that would be required in the current workflows in order to implement the 

proposed solution developed by the research team. Figure 19 shows the modification that would be required 

in the Aecon’s fabrication physical flow to implement the solution developed by the UW team. The changes 

are represented by the yellow rectangle. Each one is represented by a sub-process that refers to the workflow 

presented in Figure 20. The idea is to implement the solution before going from the fitting station to the 

welding station. By this way, we make sure the assembly is correctly aligned and positioned before the 

weld is being done. To do so, the SfM package equips each fitting station. The current solution is using a 

handheld laser scanner (Structure IO) mounted on a tablet (iPad) to acquire the as-built assembly. The scan 
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is then remotely sent to a general computer – which could be located at the fitting station – where the post 

processing is finally achieved by the craft worker. 

To perform such a stepwise quality control, some premises are required and are represented in the data flow 

(Figure 22) in yellow. Those changes consist in collecting to the client engineer not only the cutsheet of 

assemblies but also its 3D model and its Piping Component File (PCF). Also, because of the multiple 

revisions that can happen during the fabrication, the acquisition of a revised 3D model is necessary. These 

processes highlighted in the workflows are important for the effectiveness of the proposed quality control 

solution as well as for the future of the industry. 

As such, the fabrication physical flow (Figure 19) is slightly modified by adding an extra step each time 

the assembly must be moved from the fitting station to the welding station. The extra step consists in 

applying the developed QC solution before welding the components which have just been fitted. Figure 20 

provides the big picture of that step. The deployment of SfM in the AIW shop is then illustrated in Figure 

21 with an IPad equipped with the scanner positioned at each deployable shop location. In addition, the 

fabrication data flow needs to be adapted (Figure 22). For a project, the client engineer should be asked to 

provide the 3D models. A SfM database could then be created to gather the cutsheets, the PCFs and the 3D 

models to enable an optimized use of SfM. Finally, as depicted in Figure 23, the fabrication revision flow 

would also have to be updated: instead of only revising the cutsheet when a revision happens, a revised 3D 

model should be provided to AIW after any revision, and the SfM database would be updated to match with 

the new version of the design.
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Figure 19: Implementation of Structure from Motion in the Aecon's fabrication physical flow 
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Figure 20: Simplified workflow of Structure from Motion 
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Figure 21: Layout of the AIW facility equipped with Structure from Motion
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Figure 22: Implementation of Structure from Motion in the Aecon's fabrication data flow 
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Figure 23: Implementation of Structure from Motion in the Aecon's fabrication revision flow
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2.2 Decision Making Method  

To evaluate the best deployment option for the described scenario, focus was made on selecting the best 

scanner for the job, since scanning technology provides a wide spectrum of options to be evaluated. To 

simplify the analysis, only three criteria were used to evaluate the scanners: cost, fit for purpose, and 

deployability. Cost included acquiring enough hardware to deploy the system and not just the cost of an 

individual scanner. The computing system is also considered in the cost calculation. Fit for purpose refers 

to the scans produced and the scanner itself, taking into account the speed at which the scanner acquires 

points, the accuracy with which the points are captured and range at which the scanner works. Assessment 

of the fit for purpose of the scanners is based on the specifications provided by the manufacturers.  

Deployability accounts for how easily the scanner can be moved and how its physical properties suit the 

environment in which it is to be deployed.  

2.2.1 Scanners Evaluated 

Four scanners were evaluated for the purpose of this decision making. The scanners were selected to be 

demonstrative of their respective scanner categories and styles. The FARO Sense M70 (Figure 24) was 

selected as a standard tripod laser scanner, the BLK 360 (Figure 25) was chosen as a portable lower cost 

laser scanner, the Artec Eva (Figure 26) was chosen as a high-end portable structured light scanner and the 

Structure Sensor/IO (Figure 27) was chosen as an inexpensive super portable structured light scanner.  

The FARO Sense M70 is a $25,000 tripod laser scanner that captures points at 500,000 points per second. 

It is accurate up to 3mm and scans to a 70m range. It is the least portable scanner investigated as it is 

mounted on a tripod and is the heaviest scanner investigated. The FARO Sense M70 must be used in 

conjunction with a laptop or desktop computer.  

 

Figure 24: FARO Sense M70 

The BLK 360 is a small $16,000 dome-shaped laser scanner. It captures points at a speed of 300,000 points 

per second. It is accurate up to 4mm and has a 30m scanning range. The scanner is portable, it is light 

weight and can be placed on any flat surface. The BLK 360 works with an iPad.  
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Figure 25: BLK 360 

The Artec Eva is a high-end $15,000 structured light scanner. It resembles a clothes iron in shape and size. 

It captures 2,000,000 points per seconds with an accuracy of 0.1mm and a scanning range of 0.4m. The 

scanner is portable but must maintain a wired connection to a Microsoft Surface tablet or equivalent 

computing device.  

 

Figure 26: Artec Eva 

The Structure Sensor is an inexpensive $400 structured light scanner. It captures up to 1,000,000 points per 

second with an accuracy of 0.5mm and a 0.4m by 3.5m scanning range. It is the most portable scanner 

investigated as it can be mounted onto either an iPad or a Microsoft Surface tablet.  
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Figure 27: Structure Sensor mounted on an IPad 

Table 2 summarizes the 4 different scanners investigated.  

Table 2: Summarize of characteristics of different scanners 

 
Type 

Operating 

System 

Compatibility 

Cost Speed Accuracy Range 

FARO Focus 

M70 

Tripod laser 

scanner 
Windows $25,000 0.5 M pts/sec 3 mm 70 m 

BLK 360 
Portable dome 

laser scanner 
iOS $16,000 0.36 M pts/sec 4 mm 40 m 

ARTEC 

EVA 

Handheld 

structured light 

scanner 

Windows $15,000 2 M pts/sec 0.1 mm 0.4 m 

Structure 

Sensor 

Tablet-

mountable 

structured light 

scanner 

iOS/Windows $400 1 M pts/sec 0.5 mm 
0.4 m x 

3.5 m 

 

2.2.2 Multi Attribute Utility Analysis 

For the implementation of the solution described in Table 2, the fit for purpose of the scanner was deemed 

to be the most important factor, accounting for 61% of the decision. To minimize disruption to the existing 

work flow scans must be obtained quickly, while being accurate. The scanning range was also deemed 

important as needing to keep the scanner at a consistent distance from the object being scanned would make 

the scanning process too arduous to be implementable. In addition to the distance between the scanner and 

the object, the scanning area of the scanner was also an important factor in assessing the scanner’s range. 
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Each scanner was rated based on its specifications for speed, accuracy and range and how they pertain to 

this use case. The evaluation across the 3 categories was averaged as the 3 criteria were deemed to be of 

equal importance. Table 3 summarizes the evaluation of the scanners based on their fit for purpose.  

Table 3: Evaluation of the scanners based on their fit for purpose. 3 parameters are taken into account: the speed, the 

accuracy, and the range. The value is obtained by averaging the 3 parameters. 

Scanner Speed Accuracy Range Average 

FARO Focus 

M70 
0.9 0.8 0.5 0.75 

BLK 360 0.75 0.5 0.5 0.58 

ARTEC EVA 1 1 0.6 0.87 

Structure Sensor 1 1 0.7 0.90 

The scanner with the best fit for purpose score was determined to be the Structure Sensor.   

The cost of the scanner accounted for 25% of the decision as the shop environment is not ideal for fragile 

technology and a high replacement cost for damaged technology is not desirable. The determination of cost 

was based on the expected number of scanners and corresponding computing devices required to deploy 

the system in a shop. Table 4 summarizes the cost of the hardware required to deploy the scanners 

investigated.  

Table 4: Cost of the hardware required to deploy the scanners investigated 

Scanner Cost Computing System 

Cost of 

Computing 

System 

Number 

of Devices 

Needed 

Total Cost 

of System 

FARO Focus M70 $25,000 Laptop $700 4 $102,800 

BLK 360 $16,000 iPad $600 8 $132,800 

ARTEC EVA $15,000 Windows Tablet $1,500 15 $247,500 

Structure Sensor $400 iPad/Windows Tablet $1,500 30 $57,000 

The structure sensor provided the lowest cost scanning system.  

Lastly, deployability accounted for 14% of the decision as the ability to move the scanner would be nice to 

facilitate scanning from the best angles, but was deemed to not be crucial as lifting the scanner above the 

shop floor hazards may help prolong the life of the hardware. The structure sensor was determined to be 

the most deployable option for the use case 1 environment.  
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A summary table of the qualities evaluated and their weights is summarized below. The weights were 

determined using the Multi Attribute Utility Theory (MAUT) with fit for purpose being four times as 

important as cost and three times as important as deployability. Cost was also determined to be twice as 

important as deployability. Results are presented in Table 5.  

Table 5: Weight of each attribute for the MAUT analysis 

Category Weight 

Cost 25% 

Fit for Purpose 61% 

Deployability 14% 

Table 6 summarizes the utility provided to each scanner for each attribute. 

Table 6: Utility provided to each scanner for each attribute 

 Cost 
Fit for 

Purpose 
Deployability Utility 

FARO Focus 

M70 
0.4 0.73 0.4 0.604 

BLK360 0.3 0.58 0.6 0.515 

Artec Eva 0.2 0.87 0.8 0.692 

Structure Sensor 1 0.90 1 0.939 

Based on the decision making approach outlined, the Structure Sensor currently being used was determined 

to be the most appropriate scanner for this application. 

To put it in a nutshell, the solution using Structure IO on an IPad sending the as-built information to a 

general computer has been proven to be the most effective for our purpose which consists in developing a 

3D vision based stepwise quality control method for piping fabrication. However, this solution contains 

challenges which must be tackled before being able to implement the solution in a shop environment. The 

main challenge is the short range these sensors possess, which currently deters the industry from using them 

for quality control applications. In the next section, a literature review is done around the deployment of 

3D imaging technologies for quality control in the construction industry. 

2.3 3D Imaging Technologies for Quality Control 

This section is broken down into four sections: (1) an overview of the current quality control processes in 

pipe fabrication and their impact on obtaining the 3D model of the design, (2) utilization of 3D vision 
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technologies for visual inspection, (3) novel imaging tools and techniques to improve QC in construction 

industry, and (4) knowledge gap and problem statement of the proposed paper. 

2.3.1 Quality Control Processes in Pipe Fabrication 

The predominant processes for monitoring the geometrical correctness of fabrication assemblies in the 

piping industry involves manual inspection by certified QC personnel using direct contact measurement 

devices, such as, metal measuring tapes, calipers, custom gauges, squares, and straight edges. These manual 

methods of inspection can generate measurement uncertainties, which have to be taken into account when 

verifying assemblies’ compliance.  Uncertainties and errors in measurement can come from many sources, 

such as the measuring device, the component being measured, the skill of the craft worker or inspector 

performing the measurement, the measurement process, and the environment.  

In addition to measurement uncertainty, dimensional control problems also originate from poor existing 

document creation practices. For example, chain dimensioning establishes ambiguity and the potential for 

accumulated measurement error, or the drawings include units that may not be legible to the fabricator, 

which may cause delays. 

Another problem is the fragmented process from the design stage to the fabrication. Although not universal, 

some of the major steps include: (1) 3D design and modeling, (2) transmitting isometric drawings, (3) 

production drawing creation (referred to as “cutsheets”), and (4) work package distribution and fabrication. 

Depending on the contract, a different company may do each of these steps. As such, a major challenge is 

to address the interoperability issues, such as, different software packages used in the modeling process 

(Leite et al. 2016). Companies have developed different strategies as how to address the interoperability 

issue, including using their in-house workforce to re-model the design using 2D drawings, which can be 

very costly and inefficient (Holzer 2007) or, in many projects, not taking advantage of the 3D models. 

However, 3D modelling and especially Building Information Modelling (BIM) have been proven to be of 

a major importance in construction projects. Communication, coordination, visualization and clash 

detection are among the major advantages BIM models (Chen and Wu 2014, Farnsworth et al. 2015). As a 

result, in order to remedy the interoperability challenge and keep the benefits of using 3D-models, software 

independent CAD file formats have emerged. For instance, a commonly used format is Stereolithographic 

format (*.Stl) (Garcia et al. 1999), which is compatible with a variety of software packages and only 

contains the geometrical information of an assembly (Lee et al. 2016). 

Furthermore, a file data transfer method is used in the piping industry to pass along the most important 

geometrical information and management information related to the pipe spool assembly. Piping 

Component File (PCF) is a type of file which contains this important information (Fung et al. 2014). PCFs 
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are formatted as a text file and hence are not software dependent. End-points of the components, diameters, 

length, type of weld, and specific description are some instances of the PCF, which is segmented in 

paragraphs specifying each component or weld. 

2.3.2 Automated Visual Inspection in Construction 

Automated inspection is desirable because manual inspection by humans is time-consuming, and can be 

excessively subjective, unreliable, and not interesting for humans to perform. Also, many industrial 

assemblies are not easily accessible for manual inspection. Emergence of CAD models in the mid 1990’s 

(Newman and Jain 1995) and advanced 3D imaging technologies allowed for accurate dimensional 

evaluations as automated parts of the fabrication process. Bosché et al. (Bosché et al. 2015) presented a 

methodology for using 3D laser scanners and comparing the as-built data with the BIM model for 

construction projects.  

Building on this methodology, Nahangi et al. (Nahangi et al. 2015) presented an automated approach for 

monitoring and assessing fabricated pipe spools and structural systems using automated scan-to-BIM 

registration. The method reliably detects the presence of dimensional non-compliance and has consistently 

quantified deviations with less than 10% error in experimental studies. The method requires two 3D 

imaging input files: (1) a point cloud of the as-built assembly generated using a 3D reconstruction technique 

such as Light detection and ranging (LiDAR), and (2) the tolerance specifications as represented by a 3D 

CAD design file. LiDAR, often referred to as laser scanning in the construction industry, is an increasingly 

important technology. However, the acquired data can be too dense and a number of methods have been 

developed to automatically find objects of interest in the data (Sharif et al. 2017). Similar methods include 

the combination of BIM and LiDAR to build a real-time construction quality control system (Wang et al. 

2015). It is the state-of-the-art that 3D laser scanning technologies are commonly used in construction to 

inspect the quality of a project (Tang and Akinci 2012, Bosché 2010, Malamas et al. 2003). 

Researchers have created automated methods for monitoring and performing automated 3D image-to-BIM 

comparison of mechanical, electrical, and plumbing (MEP) systems (Bosché et al. 2013, Bosché et al 2015), 

and general building and structural systems (Bosché et al. 2009, Bosché 2010, Golparvar-Fard et al. 2011). 

Using 3D imaging for dimensional compliance assessment of construction components has the potential to 

mitigate costly repair and rework while tracking progress (Turkan et al. 2012).  

Laser scanning technologies have thus been under extensive investigation and have been successfully 

applied in the industry (Tang et al. 2011). Yet, most of the time, laser scanners are merely used at the end 

of the fabrication process to control and validate the assembly, because 3D imaging technologies require 

engineering work and are usually labor-intensive (Akinci et al. 2006). Consulting companies have to come 
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in the fabrication facility to scan the assembly and then have to process the data before providing a final 

report. The process is expensive and takes several days (Anil et al. 2013). Since the data captured by laser 

scanning typically includes a large number of point clouds, the derivation of as-built models in a quick and 

cost-effective manner is a major challenge (Brikalis et al. 2010, Tang et al. 2010, Bhatla et al. 2012). 

2.3.3 New 3D Vision Technologies in Fabrication 

With the advancements of technology, new methods have emerged such as augmented reality (AR) systems. 

Combined with BIM, AR can provide a full 3D interactive solid model of the design, giving the workers a 

visual understanding of the design. Wang et al. (Wang et al. 2014) describe some of the AR functionalities 

such as superimposing a 3D colored model onto the standard 2D drawing plan. As information can be made 

available in real-time, AR can be used to expedite tasks efficiently and effectively (Hou and Wang 2011). 

Head mounted displays (HMDs) can potentially be fully integrated in QC processes (Makris et al. 2013, 

Wang et al. 2016). In (Aiteanu et al. 2003), a welding helmet is presented which provides augmented visual 

information such as drawings and quality assistance. Schwerdtfeger et al. (Schwerdtfeger et al. 2008) 

employ laser projectors for stepwise fabrication. Laser beams of the component’s boundaries are projected 

on the surface where it is to be assembled. Molleda et al. (Molleda et al. 2013) developed a 3D imaging 

system for dimensional quality inspection that utilizes range images. Another category of acquisition 

devices for collecting as-built information is Unmanned Aerial Vehicles (UAVs). Seibert and Teizer used 

an UAV system to survey earthwork of large infrastructure projects (Siebert and Teizer 2014). Other uses 

include and are not limited to project tracking, quality inspection, and safety inspection (Irizarry and Costa 

2016). 

2.3.4 Knowledge Gap and Problem Statement 

Recently, structured light scanners have emerged as potential 3D imaging acquisition tools, but due to their 

short scanning range, no realistic utilization has been developed for construction assemblies (Fathi et al. 

2015). Despite their range that for most of them does not exceed four meters, structured light scanners such 

as the Structure IO are inexpensive and potentially accurate. This means that workers can use them with 

little fear of breaking them and that a precise quality control and geometric compliance can be performed 

(Golparvar-Fard et al. 2011). Combining the two characteristics opens the path to stepwise quality control 

of construction assemblies. However, the range constraint has to be addressed in order to be able to use 

range cameras for construction assemblies. 

Construction assemblies are often larger than the intrinsic structured light scanner range of a few meters 

(Kim et al. 2008). To face this major challenge, the solution proposed in the following thesis is to shrink 

down the dimensions of the required scan by redefining the boundaries of the model. The 3D model is 

derived to contain the minimum required geometrical information to enable the geometric control of the 
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assembly. A method is developed to automatically derive the Minimum Required Model (MRM) and allows 

structured light scanners to be effectively used for construction assembly control. To achieve the derivation 

of the MRM, an assembly guidance process is designed for workers and facilitates the stepwise tracking of 

the assembly. 

The proposed method combines STL and PCF file formats to prevent any possible interoperability 

challenges, to improve the control guidance and the quality control (QC) of the assembly in a stepwise 

manner. As new components are added to partially-built assemblies composed of one or more components, 

the geometric control can be applied at each step to prevent any ongoing deviation from being propagated 

throughout the completion of the assembly. 

2.3.5 Analogous Problem from Other Industries 

Completely different areas are facing similar problems and proposed somewhat similar approaches. This is 

the case in the 3D computer gaming industry where scenes need to be generated in real-time because 

complete gaming maps would be too computationally heavy for any GPUs. One major approach is the use 

of procedural modeling techniques (Patow and Besuievsky 2013). Procedural modeling describes a family 

of techniques that generate geometry from a set of rules. Therefore, those techniques are used in a variety 

of open world games such as Grand Theft Auto. As such, Steinberger et al. (Steinberger et al. 2014) applies 

a grammar-based procedural modeling technique in order to dynamically generate the real-time view of a 

city. However, it is still challenging to render large environments because of the huge amount of storage 

that would be required. To tackle the issue, they develop a specific methodology to only generate the 

required geometry to render the current view in real-time. They somehow manage to predict the next frame 

by taking advantage of the “frame-to-frame coherence”. Instead of building up a new tree to represent the 

next frame, specific procedures are set to only update the tree from the previous frame. Consequently, they 

are facing similar problems where a new model need to be derived with a minimum amount of geometry 

since the GPU memory usage has be restrained. The derivation of the next frame follows a set of rules to 

minimize the number of changes in between two consecutives trees. 

A parallel can be drawn between the frame-to-frame coherence concept used by the aforementioned 

research and the proposed step-by-step derivation of the Minimum Required Model. The big picture 

challenge of the MRM derivation is to reduce the 3D model geometry up to its minimum, because it is not 

necessary to check the entire model to control the geometric compliance of an assembly. Indeed, like for 

the frame-to-frame coherence, when a stepwise quality control is done, the just-assembled components are 

assured to be compliant. Similarly, a set of rules can be applied to minimize the amount of geometry in the 

next derived 3D model. 
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Another parallel that can be acknowledge between this thesis and gaming industry is the utilization of 

geometric symmetries. Among many applications, they are particularly used to perform improved model 

acquisition as only a base patch of an object need to be detected (Mitra et al. 2013). Consequently, model 

representations can be shrunk down using the detected symmetries which factored out models redundancies 

(Simari et al. 2006). Another benefit is that the symmetrical patch can directly be inferred thanks to 

symmetrical transformation. Therefore, higher model representations can be rendered and can carry more 

graphical details. This process is named model compression and is illustrated in Figure 28. 

 

Figure 28: Model compression using translational and rotational symmetries (Mitra and Pauly 2008) 

As a conclusion, development of algorithms capable of deriving the next model/scene by storing the 

minimum amount of information has been a major challenge and, for this reason, has been under extensive 

investigation. Unlike the gaming industry, the construction industry has not faced a similar challenge yet. 

But, with the development of large 3D models combined with the increased demand on quality, new 

processes for quality control, such as the stepwise process described in this thesis, are likely to be 

implemented in coming years. Such problems will most certainly become a matter of concern sooner than 

expected. Methods for performing an inexpensive, accurate (through 3D imaging techniques), and 

productive quality control will become necessary in the upcoming construction manufacturing world as it 

has been in gaming for real-time scene generation.  
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3 Proposed Implementation Workflow 

The thesis methodology is presented below. Figure 29 illustrates the main steps of the overall workflow 

being developed and the parts on which this thesis is focused. The workflow begins with the reception of 

the required inputs: (1) the CAD (Computer Aided Design) model, and (2) the Piping Component File 

(PCF). Once those two files are saved in the SfM data-base, the assembly of the pipe spool can start.    
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Figure 29: Scope of thesis within developed workflow 
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The worker chooses what stage of fabrication he wants to tackle and selects his components. From this 

selection, the derived Minimum Required Model is derived by: (1) segmenting each individual piping 

component, and (2) calculating the components which are part of the MRM based on geometrical properties. 

The MRM is produced in the format of a point cloud and serves as model in the subsequent Scan-vs-BIM 

comparison. Following the derivation of the model, the as-built assembly is scanned and remotely 

transferred in the format of a point cloud to the SfM computer. The scan is then superimposed on the 3D 

design in order to proceed to the deviation analysis. This process is repeated until the assembly is completed 

so that each step is controlled and the geometry of the assembly is assured.  

The purpose of this thesis is to study the derivation of the Minimum Required Model, but it is worth keeping 

in mind that the generated 3D design only has some potential when integrated to a complete fabrication 

solution.  

Therefore, Chapter 4 presents the methodology for segmenting each individual piping component within 

the Structure from Motion software. The methodology takes advantage of both CAD model and Piping 

Component File (PCF) to retrieve each component’s geometric characteristics. In Chapter 5, the derivation 

of the MRM is thoroughly detailed. Every theoretical aspect of the methodology is provided in this section, 

and each point is explained in detail.  

Chapter 6 presents the validation of the proposed methodology by quantifying its effectiveness based on 

three different metrics.  

 The first metric is the reduction of the spatial complexity of the 3D design resulting from deriving 

the MRM. In this section, a parameter is created entitled Level of Complexity (LOC). LOC is 

evaluated on a data-base of around a hundred 3D models as well as on the steel pipe spool of the 

University of Waterloo lab.  

 Secondly, the reduction of the assembly principal length is measured before and after applying the 

methodology. It gives an overview of the potential applications of the MRM in real situations using 

the chosen scanning package. Consequently, based on the utilized device maximal scanning range, 

areas of potentialities are created, splitting assemblies whether they can, or not, be scanned before 

and/or after applying the MRM methodology. When assemblies can just be scanned with the 

Structure IO if reduced to MRM, then the methodology is considered effective.  

 Finally, as the application of the MRM enables to reduce the size of the assembly and thus of the 

required scan volume, the scan density can be improved. As a result, the deviation analysis becomes 

more accurate as the scan is denser. The structural deviation measuring the distance between points 

on the same surface but located at a different position can be diminished by using the MRM. 
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As presented in the general workflow, the scope of the thesis is the required design scan volume acquisition 

process. However, the evaluation of the methodology is partially based on the improvement on the next 

step, that is, improving the accuracy of the deviation analysis and enabling the utilization of Structure 

Sensor for quality control in a piping fabrication facility.  

Consequently, Chapter 4 and 5 focus on the elements encapsulated in the red frame (Figure 29) and explain 

in detail how is the MRM correctly derived. Chapter 6 evaluates the improvement on the design acquisition, 

the as-built acquisition, and the deviation analysis. By this way, the implementation of the developed 

methodology is proven to enhance on every aspect the overall solution proposed in the Structure from 

Motion software. 
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4 Segmentation of Piping Components 

4.1 Introduction 

Segmentation of a 3D point cloud design model is a key process in a 3D vision-based stepwise assembly 

quality control. In a serial assembly fabrication, components are assembled one after the other in a very 

specific order. The fitter, according to his experience, chooses a specific assembly order to minimize the 

assembly time; that is, his goal is to optimize the number of roll welds along the assembly.  

To this extent, the segmentation of the 3D model has to enable the craft worker to select in the software any 

piping component involved in the stage of fabrication. 

However, as shown in Figure 29, the client only provides the contractor with the full 3D CAD model, which 

is, most of the time, in a non-editable format. By converting the CAD file (.STL) into a point cloud (.XYZ), 

one only has a single point cloud representing the whole originally designed 3D model assembly, with no 

distinction between different components, and no possibility for retrieving specific subsets of the assembly. 

Addressing this challenge implies developing a solution that allows for the generation of the required 

subsets of point cloud. To this end, each piping component type has to be segmented individually to take 

into account each geometric peculiarities. 

To achieve such a task, pre-processing the inputs is necessary. This implies being able to segment each 

piping component independently within the complete assembly point cloud. A method is developed that 

uses the properties of Piping Component Files (PCF) as well as Stereolithographic (STL) design models. 

One major benefit is that the segmentation method doesn’t rely on any software, because both the 3D design 

and the PCF are software-independent types of files.   

The following sections detail how the two specific inputs – (1) the 3D design of the whole assembly which 

contains the shape and a 3D visual representation of the job, and (2) the PCF of the assembly which contains 

all the engineering information of the component parts of the assembly – are used. Then, each segmented 

type of piping component is studied independently. 

4.2 Piping Components 

Before all, it is required to briefly present the most common piping components as they will be mentioned 

many times in the rest of the document. Table 7 shows the most common piping components with a realistic 

picture. 

Below are some specific details for each component: 

 Pipe: a straight pipe is a cylinder with a unique diameter. 
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 Elbow: elbows can have different angle such as 90˚ or 45˚ (a 90˚ elbow is represented in Table 7), 

and radii of curvature. 

 Tee: tees connect three branches. 

 Valve: a valve can be seen as a tee but instead of connecting another branch to the main route, it 

connects a spindle with a tap. 

 Flange: flanges have a nominal diameter and an outside diameter induced by their pipe standard 

and pressure class. 

 Concentric reducer: a concentric reducer is a cylinder with different diameters on both ends. 

 Eccentric reducer: it can be seen as concentric reducer except its two centers are out of alignment. 

 Olet: this component is usually added anywhere along a pipe spool and enables to branch out the 

main route. Olet is not considered in the thesis because their location is undetermined and most of 

the time it tends to be replaced by tees. 

 Nipple: it connects two pipes together when they have to be screwed. 

 Gasket: it serves as a joint in between two flanges that are bolted together. Gaskets are very thin 

and thus are skipped on purpose in the methodology, because they don’t account for a geometrically 

significant step of fabrication. 

 Coupling: it can be seen as a nipple when welding is involved. 

 Cap: it “closes” the pipe spool at its ends. Caps can either be screwed or welded. 

Table 7: List of the principal piping components with a picture 

Pipe Elbow Tee Valve 

Flange Concentric reducer Eccentric reducer Olet 

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjW96yu8v7SAhWF0YMKHSxCCq8QjRwIBw&url=http://www.atpturbo.com/mm5/merchant.mvc?Screen%3DPROD%26Store_Code%3Dtp%26Product_Code%3DATP-FLS-120%26Category_Code%3DPPB&bvm=bv.151325232,d.amc&psig=AFQjCNGgFITkR71JTc4kHeic9go6hVoytA&ust=1490986071309120
https://www.google.ca/imgres?imgurl=http://unitedstatesfittings.com/wp-content/uploads/2015/06/fabricated-tees-butt-weld.jpg&imgrefurl=http://unitedstatesfittings.com/fabricated-tees/&docid=UpCJjSXnihR17M&tbnid=40tCszqLj6sV2M:&vet=10ahUKEwj15_r58f7SAhVl0YMKHbsoDUMQMwhMKBQwFA..i&w=503&h=363&bih=747&biw=1371&q=tee pipe&ved=0ahUKEwj15_r58f7SAhVl0YMKHbsoDUMQMwhMKBQwFA&iact=mrc&uact=8
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi979rZ8v7SAhWl54MKHUXlCNcQjRwIBw&url=http://review.content-science.com/2012/01/think-mobile-is-only-a-channel-think-again/&bvm=bv.151325232,d.amc&psig=AFQjCNFSfXmXF8BvpYVtIcBeIi--QWNkFA&ust=1490986234487447
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjyj8vs8v7SAhVs1oMKHcqpD6UQjRwIBw&url=https://dir.indiamart.com/kolkata/pipe-flanges.html&bvm=bv.151325232,d.amc&psig=AFQjCNENNMgcJI3cUnme9u2YDXPqk11Swg&ust=1490986250197803
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjk9qef9f7SAhXo5oMKHdXTCsgQjRwIBw&url=http://www.pipefittings-flanges.in/pipe-fittings/concentric-reducer/&bvm=bv.151325232,d.amc&psig=AFQjCNGeGgw6NzDxAqCT6zh4WYF7RASwzA&ust=1490986916575098
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2tdjQ8v7SAhVG3IMKHaSbANEQjRwIBw&url=https://dir.indiamart.com/impcat/eccentric-reducer.html&bvm=bv.151325232,d.amc&psig=AFQjCNGvD1-KeI5gdXFNWis5tbSu6I032A&ust=1490986205346321
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiu14mH8_7SAhVJ4YMKHYPyDh0QjRwIBw&url=https://www.alibaba.com/product-detail/Socket-Threaded-Welded-Pipe-Elbolet-Fitting_701068167.html&bvm=bv.151325232,d.amc&psig=AFQjCNG-aDlPbVxQXSB9CbJEf7dkkBSKOA&ust=1490986319864991
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Many variations of those components exist but look similar. Other components are “support components” 

and are used to hold the spools or maintain components before they get welded. Every piping component 

can be found in the Isogen Symbol Key Definitions (Isogen Symbol Key (SKEY) Definitions, 2007). 

4.3 Use of 3D Model 

Use of 3D models is a challenge in the pipe industry and in construction in general because of the numerous 

revisions a job can have. Each change is recorded and the 2D drawing is typically modified, but the 3D 

model, unless specified in the contract, is usually not updated. Issuing a revised 3D model is considered too 

time-consuming and too expensive. That is why in most cases, the management team chooses to simply 

record the change in the database by red-lining the 2D drawing. However, shifting this process towards 

updating the 3D design model could bring tremendous benefits both to the client and to the contractor such 

as avoiding conflicts between stakeholders, providing 3D visualization to workers and enabling as-built to 

as-design comparison with 3D scans. Considering that the described process is reached, the proposed 

method can be performed using the appropriate 3D design file without any mistake. 

For the 3D design model of the piping assembly, the SfM solution uses the STL format. The STL assembly 

file is converted within the SfM solution to a point cloud as a XYZ file (.xyz). The software enables the 

user to choose the number of points of the model point cloud. Finally, on the segmentation page, the 3D 

model gives the user the opportunity to visualize its selection. It surrounds the selected component with an 

envelope that fits its size as shown in Figure 30. 

Nipple Gasket Coupling Cap 

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj69sTB8v7SAhUY0IMKHY-5CBAQjRwIBw&url=http://www.ebay.com/itm/Stainless-Steel-304-Cast-Pipe-Fitting-Coupling-Socket-Weld-3-4-034-Female-/201720743656&bvm=bv.151325232,d.amc&psig=AFQjCNHyI9PsGdRlzVr7v61HVQ0ZVOCIpg&ust=1490986169435371
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj3lKW68_7SAhWr7YMKHa9iCvoQjRwIBw&url=http://www.barrplastics.com/sch-80-pp-threaded-pipe-caps.html&bvm=bv.151325232,d.amc&psig=AFQjCNGZ56oCtFTylnC_OHcKcQXNgkkZ5g&ust=1490986402466195
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjVh7jh8_7SAhUD94MKHXrVDw8QjRwIBw&url=https://www.fastenal.com/products/details/66400&bvm=bv.151325232,d.amc&psig=AFQjCNFvGQ-JwCJLOGumOIblPKMEb8sQNA&ust=1490986505422852
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwir-ouG9P7SAhUC_IMKHVQCARsQjRwIBw&url=http://www.manishtradelink.com/PTFE-Joint-Sealant-Sheet-Gaskets.html&bvm=bv.151325232,d.amc&psig=AFQjCNE8tw3ER1msBwwOyJGnUoFINJAVUg&ust=1490986554930797
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Figure 30: SfM Segmentation page 

Once the selection has been made according to the fitter’s choice, the 3D model is displayed as a point 

cloud in a XYZ file. A straight pipe and an elbow have been selected in the segmentation page and the 

resulting point cloud is shown in Figure 31. 

The point cloud is set as the model point cloud and will be used to assess the compliance of the as-built 

assembly. The model point cloud density is defined as a setting (e.g. 10,000). The points are distributed 

onto the surface of the components based on the surface of the initial mesh. Consequently, more points will 

be part of a larger mesh.  
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Figure 31: Point cloud representing a straight pipe and an elbow 

4.4 Generation and Use of PCF File 

In addition to being issued the 3D model of the piping projects, piping fabrication shops usually receive 

another design/management file called Piping Component File (PCF). PCFs gather geometric information 

of the designed assembly, mainly the end points of the different components, as well as various information 

regarding specific details of components and, depending on the design, managerial specifications. PCFs are 

simply text files, readable by any hardware with any notepad software. For each component, a PCF includes 

various mandatory records: 

 Type: pipe, elbow, flange or valve etc… 

 Geometry: coordinates, diameter of key points 

 (optional) Description: semantic description, pressure class etc… 

In fact, the generation of the PCF relies on the generation of the CAD file or BIM. For example, in the case 

of a semantic BIM, it is possible to include specific details such as the name/type of worker assigned to a 

weld. Besides, an updated version of PCF called “Super PCF” has been recently launched by Isogen Inc., 

the company which initiated PCFs (Piping Data Exchange using the Super PCF. 2008). “Super PCF” are 

able to deal with more data to produce more detailed PCFs.  

In the current version of SfM, a PCF can simply be manually generated by inputting the end points 

coordinates (in metric unit) of each component and weld with their associated diameter (in imperial unit). 
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The word “FABRICATION-ITEM” has to be typed in for each component of the assembly because, in 

complex assemblies, some components out of the “real” assembly can be part of the PCF. Typically, it is 

the case for any piping support or components that would just be mentioned in the cutsheet as “piping 

continuation” but would belong to another cutsheet. As a result,  Figure 32 displays a manually created PCF 

from the steel pipe spool assembly located in the University of Waterloo (UW) lab. 

 

Figure 32: Extract of a manually created PCF 

As shown in Figure 32, PCF are initiated with “END-POSITION-NULL” followed by a single point – 

described with its coordinates. Those points account for the extreme end-points of the assembly where no 

component is attached to. Those points are not necessary for the generation of the PCF but are recommended 

because they facilitate the registration between the PCF and the STL coordinate systems. Since in some 

situations, the STL and the PCF have an offset. With this process, the offset is automatically calculated and 
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a file (AssemblyNumber.sfm) is created and stored in the associated design folder. As long as this offset 

file is located in the design folder, the two coordinate systems are registered together, and no manual 

selection for matching the coordinates together is required. Those points are very useful when an assembly 

is used for the first time. 

When PCFs are automatically generated from a 3D CAD software, such as AutoCAD Plant 3D or AutoCAD 

Inventor, the content for each component is much denser and contains more details regarding each 

component. An example of such a PCF is shown Figure 33. In Figure 34, the PCF of an elbow with its 

common attributes created from AutoCAD Plant 3D  is provided.  

 

Figure 33: Extract of a PCF file 

From any 3D CAD software, the PCF is generated using the 3D model coordinate system. Points are read 

from the negative to the positive values along the coordinate system. The x-axis is considered first followed 

by the y-axis and finally the z-axis. Consequently, as soon as a point is detected, the entire component is 

positioned in the PCF and so on. Welds are also taken into account, detected and positioned in the same 

order. As a result, linearly inferring the flow of the assembly can lead to misinterpretations. Rather, one 

should look for same or very close key-points coordinates to reconstruct the flow of assembly. 
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Figure 34: An example Piping Component File: (a) the described component is an elbow, (b) three key-points: two 

end-points and one center-point, (c) item description where, for instance the piping standard is specified, (d) x-

coordinates of the key points, (e) y-coordinates of the key-points, (f) z-coordinate of the key points, (g) diameter 

about the key-points. 

4.5 Segmentation of Components 

The general idea of the proposed segmentation is to construct an envelope surrounding the point cloud of 

the component of interest. This component’s point cloud originates from the complete design point cloud 

derived from the STL input file and converted into an XYZ file. To do so, the most accurate means is to 

reconstruct each component geometry using its geometric properties from the PCF.  

For every component, three parts need to be coded to extract its point cloud.  

 First, the detection of the component in the PCF file to generate a new object class with its 

respective attributes.  

 Secondly, the maths to segment a specific component are encoded.  

 Finally, criterions are implemented such as distance function or angle function that determine 

whether or not a specific point in the entire assembly point cloud is part of a component.  

To give a clear view of these functions, some parts of the code are provided in Appendix A.  

For every component, each process is explained, and particular attention is given to component 

specifications. Straight pipes as well as every cylindrical piping component are first investigated. Then, 

elbows, which are more complex to properly extract, are presented. Segmentation of tees is then detailed. 

Considered approximately identical to tees, valves segmentation follows the previous section. Eccentric 

reducers are then tackled, and finally, flanges segmentation is explained. 
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4.5.1 Segmentation of Pipe and Cylindrical Component 

A straight pipe is a cylindrical component and thus the segmentation of straight pipes and other cylindrical 

components such as caps, unions, couplings, nipples or concentric reducers is identical. In this section, 

straight pipe also accounts for any other cylindrical component. 

 

Figure 35: Representation of a straight pipe 

A straight pipe can simply be represented in the form of a cylinder. Geometrically, any cylinder can be 

completely determined by its two end-points with their respective diameter. Apart for concentric reducers, 

the diameter for each end-point is identical. Figure 35 shows the two end-points, A and B, of a pipe going 

from point A to point B with a specific diameter defined in the PCF. The coordinates of those two points 

and diameters are extracted from the PCF. 

Considering the point cloud generated from the original design file, the code calculates the projection of 

the distance from the first end-point A to a particular point P onto the lines made by the two end-points of 

pipe [AB]. The projection point is called M. If M is found to be out of the segment [AB] then the point is 

directly disregarded. For instance, point P’ in Figure 35 is excluded because M’ doesn’t belong to [AB]. If 

the projection point is included in [AB], then the distance [PM] is calculated.  
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As highlighted in Figure 36, the diameter of the pipe is indicated in inches. The conversion of this distance 

is made and a small tolerance is added to make sure every point of the pipe is selected. For example, the 

distance for a 2inches diameter is determined as followed: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑚 = 𝑃𝑖𝑝𝑒𝑅𝑎𝑑𝑖𝑢𝑠𝑚𝑚 + 10% 𝑜𝑓 𝑃𝑖𝑝𝑒𝑅𝑎𝑑𝑖𝑢𝑠𝑚𝑚  

                         = 1.1 ∗
𝑃𝑖𝑝𝑒𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑚𝑚

2
 

                         =
1.1

2
∗ 25.4 ∗ 𝑃𝑖𝑝𝑒𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑛𝑐ℎ  

                         = 14 ∗ 𝑃𝑖𝑝𝑒𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑛𝑐ℎ 

= 28 𝑚𝑚 

Thus,  

𝑖𝑓 [𝑃𝑀] ≤ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑚 , 𝑃 ∈ {𝑃𝑖𝑝𝑒} 

 To illustrate the previous statement, in Figure 35, P doesn’t belong to the pipe but P’’ does. The method 

assures the extraction of every point belonging to the pipe and no more. 

As a result, Figure 37 illustrates the result of the segmentation of a straight pipe in the SfM software. 

End-point 1 

End-point 2 

X coordinates 

Y coordinates 

Z coordinates 

Diameters 

Figure 36: Geometric definition of a pipe in a PCF 
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Figure 37: Segmented straight pipe in the SfM Software 

4.5.2 Segmentation of Elbow 

An elbow is a complex component as it can be very diverse with different angle, different curvature and 

length. The description of an elbow in a PCF is only 

described with three points: 

 End-point A with its diameter 

 End-point B with its diameter 

 Center-point C 

Most elbows are 90˚-elbows. In order to be as general as 

possible a random elbow is built in Figure 38. The angle 

of the elbow is described with 𝜃 value. 

The elbow can also be seen as an arc of a circle. The arc 

belongs to a circle and has a range angle, called 𝛾 in Figure 

38. In 3D, a circle is defined with three attributes: 

 A centre 

 A normal vector 

 A radius 
Figure 38: Representation of an elbow in 2D 
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Consequently, with the inputs provided in the PCF, we need to determine those three attributes. The code 

of the function is given in Appendix A. The first step consists in calculating the mid-point M defined as 

follows:  

𝑀 =
𝐴 + 𝐵

2
 

Secondly, the two tangents to the arc [AC] and [BC] are defined. By applying the cross product on the two 

segments the unit normal vector of the circle in the 3D space is obtained: 

�⃗� =
𝐴𝐶⃗⃗⃗⃗  ⃗ ∗ 𝐵𝐶⃗⃗⃗⃗  ⃗

‖𝐴𝐶⃗⃗⃗⃗  ⃗‖ ∗ ‖𝐵𝐶⃗⃗⃗⃗  ⃗‖
 

The next step is to extract the angle of the elbow. In the pipe industry, every elbow is denominated with its 

angle, (i.e. Elbow 90, Elbow 135). This value stands for the angle between the two vectors 𝐶𝐴⃗⃗⃗⃗  ⃗ and 𝐶𝐵⃗⃗⃗⃗  ⃗ and 

is called 𝜃 in Figure 38. Below is the equation used to determine 𝜃. 

𝜃 = 𝑎𝑐𝑜𝑠 (
𝐶𝐴⃗⃗⃗⃗  ⃗ ∙ 𝐶𝐵⃗⃗⃗⃗  ⃗

‖𝐴𝐶⃗⃗⃗⃗  ⃗‖ ∗ ‖𝐵𝐶⃗⃗⃗⃗  ⃗‖
) 

Then, 𝛾, which will be used to define the angular constraint to apply on the points from the point cloud, has 

to be determined from 𝜃. As noted in Figure 38, the following relation can be used:  

𝛾 = 𝜋 − 𝜃 

Every angle has been determined. Consequently, the coordinates of the center of the circle still have to be 

found out. To do so, the distance from an end-point to the mid-point M, which was calculated previously, 

is computed. This distance is named HalfChord:  

𝐻𝑎𝑙𝑓𝐶ℎ𝑜𝑟𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝑀⃗⃗⃗⃗ ⃗⃗   

Then, the unit vector along 𝐶𝑀⃗⃗⃗⃗ ⃗⃗  is extracted. Note that this vector also goes through O, center of the circle.  

𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝑜𝐶𝑒𝑛𝑡𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝐶𝑀⃗⃗⃗⃗ ⃗⃗ 

‖𝐶𝑀⃗⃗⃗⃗ ⃗⃗ ‖
 

The distance ‖𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ‖ is computed according to the trigonometric properties in the triangle defined by A, O 

and M.  

‖𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ‖ = ‖𝐻𝑎𝑙𝑓𝐶ℎ𝑜𝑟𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ ∗ 𝑡𝑎𝑛 (
𝜃

2
) 



58 
 

However, this equation just provides the distance from M to O. Point O coordinates are still unknown. The 

previous equations make possible the determination of x, y, and z coordinates. Point O is calculated in this 

equation: 

𝑂 = 𝑀 + ‖𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ‖ ∗ 𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝑜𝐶𝑒𝑛𝑡𝑒𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

The determination of the radius is then straightforward: 

{𝑟𝑎𝑑𝑖𝑢𝑠1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑂𝐴⃗⃗ ⃗⃗  ⃗

𝑟𝑎𝑑𝑖𝑢𝑠2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑂𝐵⃗⃗ ⃗⃗  ⃗
 

Note that the two radius can have a few gaps. To assure a good representation of the elbow, the average of 

𝑟𝑎𝑑𝑖𝑢𝑠1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑟𝑎𝑑𝑖𝑢𝑠2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is selected for radius.  

The arc of the circle is now entirely known and defined by its geometric characteristics. The torus shape in 

the 3D point cloud can now be computed. Indeed, the points that belong to an elbow are part of a torus 

shape constrained by a range angle. As explained above, the range angle is equal to the 𝛾 value. The torus 

diameter is retrieved from the PCF and corresponds to the value associated to the end-points. 

Every point belongs to the 3D space. Thus, a projection of the point onto the plane defined by the arc of the 

circle must be computed. As shown in Figure 39, a point P is divided into its vertical and horizontal 

projection. The green line represents the vertical distance to the plane. This length is parallel to the blue 

line, standing for the normal vector of the plane. This vector was determined previously and was called �⃗� . 

Finally, the red line is the total distance from a point on the plane to the point-of-interest P. 

The procedure for retrieving elbow’s points is detailed in Appendix A. The representation of the elbow is 

shown in Figure 40. The distance to be calculated is the distance from point P to the arc going from A to 

Figure 39: Projection of a point P on a plane in a 3D space 

P 
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B. In order to get this length, the distance from point P to the plane is obtained using the following dot 

product: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑃2𝑃𝑙𝑎𝑛𝑒 = 𝑂𝑃⃗⃗⃗⃗  ⃗ ∙ �⃗�  

Afterward, one still needs to calculate the distance from the projection of P onto the plane to the arc going 

from A to B. This point is point 𝑞 and is determined with the following expression: 

𝑞 = 𝑃 − (𝑛⃗⃗⃗⃗ ∙ 𝑂𝑃⃗⃗⃗⃗  ⃗)�⃗�  

At this point, the distance from that point to the arc can be computed. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑞2𝐴𝑟𝑐 = ‖𝑂𝑞⃗⃗⃗⃗  ⃗‖ − 𝑅𝑎𝑑𝑖𝑢𝑠𝑂𝑓𝐶𝑖𝑟𝑐𝑙𝑒 

Finally, the distance coloured in red on Figure 40 and going from P to this arc is given in the following 

equation.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑃2𝐴𝑟𝑐 = √𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑃2𝑃𝑙𝑎𝑛𝑒2 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑞2𝐴𝑟𝑐2 

This value can be compared to the radius of the elbow specified in the PCF. Basically, if the distance is 

smaller than the radius – plus a specific tolerance – then the point passes the test and goes to the angular 

criterion. Otherwise, the point is excluded and doesn’t belong to the elbow. 

 

Figure 40: Criteria for the elbow 

For the selected points, their position has to be analyzed in comparison to the elbow. Thus, the determination 

of its position around the circle is crucial to select the point. To do so, the angle between 𝑟𝑎𝑑𝑖𝑢𝑠1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑂𝑃⃗⃗⃗⃗  ⃗ 

is first calculated. Second, the angle between 𝑟𝑎𝑑𝑖𝑢𝑠2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and  𝑂𝑃⃗⃗⃗⃗  ⃗ is measured. Finally, the sum of the two 
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angles is compared to the angle of the elbow 𝛾. The equations used to obtain those values are given in the 

following equations. 

{
 
 

 
 𝐴𝑛𝑔𝑙𝑒1 = 𝐴𝑂�̂� = 𝑎𝑐𝑜𝑠 (

𝑟𝑎𝑑𝑖𝑢𝑠1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∙ 𝑂𝑃⃗⃗⃗⃗  ⃗

‖𝑟𝑎𝑑𝑖𝑢𝑠1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ∗ ‖𝑂𝑃⃗⃗⃗⃗  ⃗‖
)

𝐴𝑛𝑔𝑙𝑒2 = 𝐵𝑂�̂� = 𝑎𝑐𝑜𝑠 (
𝑟𝑎𝑑𝑖𝑢𝑠2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∙ 𝑂𝑃⃗⃗⃗⃗  ⃗

‖𝑟𝑎𝑑𝑖𝑢𝑠2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ∗ ‖𝑂𝑃⃗⃗⃗⃗  ⃗‖
)

 

If the point belongs to the elbow, then the sum of the angle is approximately equal to 𝛾, which can be 

written as: 

𝐹𝑜𝑟 𝑃 ∈ 𝐸𝑙𝑏𝑜𝑤, (𝐴𝑛𝑔𝑙𝑒1 + 𝐴𝑛𝑔𝑙𝑒2)  ≈  (𝛾 + 𝜀) 

where 𝜀 is a very small value taking into account the potential inaccuracy in the PCF data. In the code, the 

arbitrary value of 0.01 is used for 𝜀. If this criterion is met, then point P belongs to the elbow and is 

represented in the point cloud of the component (e.g. Figure 41).  

 

 

4.5.3 Segmentation of Tee 

In the piping industries, a tee is a very common fitting component. It is often used to divide or combine 

fluid flows. Tees can connect pipes of different diameter, change the direction of a pipe run, or both. Most 

common tees have a similar design to the one in Figure 44. 

In PCFs, tee’s geometric information is: 

 two end-points with their diameter 

Figure 41: Segmented elbow 
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 one branch-point with its diameter 

 the centre-point 

The two end-points define the main axis of the tee. The branch-point is the other part of the tee, and the 

centre-point is the intersection between the branch pipe and the main pipe of the tee. 

Consequently, a tee can be seen as two straight pipes interlocking each other and converging at the center-

point. The skeleton of a tee has been represented on Figure 43. Hence, segmentation of a tee is processed 

as the segmentation of a first straight pipe going from end-point 1 to end-point 2, and the segmentation of 

a second straight pipe going from branch-point to center-point. This process remains robust to any angle 

for the branch.  

The curvature from the main axis to the branch can change from a tee to another. To address the issue, we 

add a tolerance distance so that a point that belongs to the curve of a very curved tee would be segmented 

as well in the tee. Unfortunately, PCFs don’t mention this specificity.  But since the segmentation is 

processed with the 3D model only, there is no risk of clutter points interfering in the process. Increasing the 

tolerance to capture the points in the corner of the tee doesn’t jeopardize the accuracy of the process. Figure 

42 above represents the point cloud of a segmented tee. 

4.5.4 Segmentation of Valve 

Theoretically, valves seem like tees because they can be constructed from three end-points and a centre-

point. Instead of branching out from a branch-point, valves are equipped with a spindle terminating with a 

tap used to regulate the flow of liquid/gas in the pipe spool. A physical representation of a typical valve can 

be found in Table 7. 

Unlike tees, the PCF description of valves (Figure 45) is less straight-forward to process, because neither 

their centre-point nor branch-point is mentioned. Rather, their spindle direction is stated using bearing 

coordinates. 

Figure 44: Tee Figure 42: Skeleton of a tee Figure 43: Segmented tee 
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Figure 45: PCF description of a valve 

In the example above, the spindle direction is “South 30 East” which only points out the direction of the 

theoretical branch-point (or spindle-point) but doesn’t provide its exact location. Furthermore, the bearings 

are bounded to the main core of the valve which, itself, is randomly located in the global coordinate system. 

The bearing angle is therein a local angle instead of being global.  

Before going further on the bearing functioning, Figure 46 illustrates the bearing coordinate system with 

regard to the Cartesian one. A vector (in blue) is placed in the coordinate system and projected onto the 

(𝑥 ,𝑦 ) plane. 

 

Figure 46: bearings coordinate system 
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PCF bearings are segmented as follow: 

1. Bearing 1 

2. Angle between bearing 1 and bearing 2 

3. Bearing 2 

In the example plotted on Figure 46, 𝑣   bearing would typically be: EAST α NORTH, where α is the angle 

value in degree and smaller or equal than 45˚. Otherwise, bearing 1 and bearing 2 would be inverted to 

become, in the example above, NORTH α EAST. The 2 bearings chosen to represent the direction of the 

valve spindle are arbitrary and, for instance, 𝑣  could have been projected onto the (𝑦 ,𝑧 ) plane and another 

angle would have been prompted in the PCF.  

However, bearings describe the local direction of the spindle, based on the initial orientation of the valve 

(direction of the axis bounding the two end-points). From this description, the challenge is to retrieve the 

global angle in order to determine the global direction to be able to obtain some coordinates for the spindle-

point. This will enable to generate an envelope around the spindle axis to extract its model points. 

Because the spindle is perpendicular to the valve vector and is located at the valve’s center, one first 

calculates the valve’s center-point as the midpoint of the 2 end-points. Consequently, as explained above, 

according to the plane of projection, the angle will not be the same. Three cases are thus differentiated 

depending on which bearing direction is null. Let us study the situation where the 𝑧  bearing is left equal to 

0. We need to find a vector that is perpendicular to the valve vector. The following equations translate the 

previous sentence. Let us use (x, y, z) to denote the unknown vector and (a, b, c) for the valve vector. 

(𝑥, 𝑦, 𝑧) 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 (𝑎, 𝑏, 𝑐)
0
⇔𝑑𝑜𝑡𝑝𝑟𝑜𝑑((𝑥, 𝑦, 𝑧), (𝑎, 𝑏, 𝑐)) = 0

0
⇔

{
 

 
𝑥 = 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑥 
𝑦 = 𝑏𝑒𝑎𝑟𝑖𝑛𝑔�⃗� 

𝑧 = −
𝑥 ∗ 𝑎 + 𝑦 ∗ 𝑏

𝑐

 

We then assume the length of the spindle to be three times the valve’s main core length. 

Finally, denoting (u, v, w) being the centre-point, the spindle-point coordinates can be derived as follows: 

{
 
 

 
 𝑥𝑠𝑝𝑖𝑛𝑑𝑙𝑒 = 𝑢 +

𝑥

‖(𝑥, 𝑦, 𝑧)‖
∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑝𝑖𝑛𝑑𝑙𝑒

𝑦𝑠𝑝𝑖𝑛𝑑𝑙𝑒 = 𝑣 +
𝑦

‖(𝑥, 𝑦, 𝑧)‖
∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑝𝑖𝑛𝑑𝑙𝑒

𝑧𝑠𝑝𝑖𝑛𝑑𝑙𝑒 = 𝑤 +
𝑧

‖(𝑥, 𝑦, 𝑧)‖
∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑝𝑖𝑛𝑑𝑙𝑒

 

When the bearing is on one of the main axis (e.g. NORTH), the spindle point is calculated by simply 

estimating the offset to the centre-point. Its coordinates are computed in the following equation: 
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{

𝑥𝑠𝑝𝑖𝑛𝑑𝑙𝑒 = 𝑢 + 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑥 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑝𝑖𝑛𝑑𝑙𝑒
𝑦𝑠𝑝𝑖𝑛𝑑𝑙𝑒 = 𝑣 + 𝑏𝑒𝑎𝑟𝑖𝑛𝑔�⃗� ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑝𝑖𝑛𝑑𝑙𝑒
𝑧𝑠𝑝𝑖𝑛𝑑𝑙𝑒 = 𝑤 + 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑧 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑝𝑖𝑛𝑑𝑙𝑒

 

Then are shown some bearings examples: 

NORTH={

bearing x⃗ =0
bearingy⃗ =1

bearingz =0

 ;SOUTH 30 DOWN=

{
 

 
bearing x⃗ =0
bearing y⃗ =-1/2

bearingz =-
√3

2

 ;WEST 45 UP=

{
 
 

 
 bearing x⃗ =-

√2

2
bearing y⃗ =0

bearingz =
√2

2

   

Once the bearing has been computed, and the spindle point has been calculated, the same process used for 

tees is applied. Note that it is not our intention to necessarily segment the entire spindle with the tap. Rather, 

we intend to retrieve enough points from the spindle to control the spindle’s position because this position 

can cause conflicts. For instance, when placing it into a complex clustered module, a wrong spindle position 

may engender rework to fix a conflict. Figure 47 shows the segmented valve point cloud. 

 

Figure 47:  Segmented valve point cloud 

4.5.5 Segmentation of Eccentric Reducer 

As presented in Table 7, an eccentric reducer is a particular component that, at the same time, 

reduces/increases the spool diameter and shifts the axis to a parallel one. In term of segmentation, eccentric 

reducers don’t create a major problem, but they will be challenging for the upcoming chapter. Their 

distinctive feature is that they only have two end-points but are not a cylindrical component. Further 

explanations are provided in Chapter 5. Figure 48 shows an example of a segmented eccentric reducer point 

cloud. 
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Figure 48: Example of a segmented eccentric reducer point cloud 

4.5.6 Segmentation of Flange 

Flanges are piping components used to make a connection between two pipes or between a pipe and any 

type of fitting. Most of the time, flanges are placed at special locations to facilitate dismantling of piping 

assemblies or specific components (such as valves). Used as connectors, they are successfully used for high 

pressure piping applications.  

Two flanges are mechanically joined together through their flat surface via a certain number of bolts (Figure 

49). A gasket, used as a seal, is placed in between to maintain the impermeability of the system. The other 

flange end is usually welded to its following piping component. 

Flanges are assigned a pressure class which, owing to tables, provides the outside diameter given the 

nominal pipe size (NPS). Every standard has its own tables. SfM utilizes the ASME/ANSI B16.5 tables 

which can be found in References (Flanges and Bolt Dimensions ASME/ANSI B16.5 - Class 150 to 2500). 

 

Figure 49: Representation of flanges on a pipe spool assembly 
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As shown in Figure 50, the PCF mainly provides: (1) the two end-points with their respective NPS, (2) and 

the pressure class (highlighted in yellow). 

 

Figure 50: PCF description of a flange 

Pressure class is given in terms of class which, for instance, goes from 150 to 2500 in the ASME B16.5 

standards. Using ISO 7005 Pressure Nominal, Table 8 provides the associated pressure ratings in bars. The 

main advantage of using class numbers is that they provide a proportional relationship between different 

class numbers. 

Table 8: Piping Class Ratings based on the ASME B16.5 class and the corresponding ISO 7005 Pressure Nominal 

ratings 

Flange Class 150 300 400 600 900 1500 2500 

Flange Pressure Nominal (in bars) 20 50 68 110 150 260 420 

Class tables provided by the ASME B16.5 thereby can be used to reliably extract the outside diameter of 

any flange. For the time being, each table is directly stored within the SfM code. However, an optimal way 

would be to use an external file that would gather every existing standards tables. The program would then 

automatically access the suitable standard file and use the proper pressure class table. 

Once the outside diameter is retrieved, the flange can be segmented. The flange is considered as a 

cylindrical component and follows the same segmentation rules as described in 4.5.1. However, the 

diameter taken into account for the segmentation is the outside one as it surrounds the entire flange. Figure 

51 displays a segmented flange. 
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Figure 51: Segmented flange 

Point cloud representation of flanges may not allow a clear visualization of bolt holes. Furthermore, bolt 

position is not mentioned in the PCF which prevents the described methodology from controlling their 

alignment. That is why, manual quality control, as performed in Figure 52, is still required to check the bolt 

holes alignment on flanges.  

 

Figure 52: Bolt holes' alignment control performed by QC personnel 

4.6 Conclusion 

Segmentation of components in a pipe spool assembly is a crucial preprocess on the path of a step-by-step 

assembly quality control. As shown in Figure 29, as soon as a model has to be derived, segmentation is 

performed to correctly generate the point cloud.  
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Although being called in the SfM application software after the MRM process, the segmentation process is 

explained earlier in this thesis, because it must be considered as a prerequisite for any model derivation. 

Indeed, before applying any rule on the model to extract the required components, we need to make sure 

that each one can be properly generated. 

The objective of this chapter was to correctly detail how each component can be independently retrieved 

from the whole-spool design point cloud. As demonstrated, the vast majority of the piping components can 

be segmented in the developed solution due to the combination of the 3D model and the Piping Component 

File. The two files are associated to bring in the PCF geometric data into the 3D model representation. 

However, some components remain unconsidered either because of the lack of information in the PCF or 

because of their particular shape. Besides olets, the method is not looking at any pipe support such as pipe 

clamps, pipe shoes, pipe saddles or pipe cradles. Many times, those components are present in the as-built 

scenes and cannot be avoided when scanning. As a result, they are likely to cause occlusion in the scan 

point cloud. In a few situations, the author has encountered pipe supports in the PCF, but modelling them 

remains complex. As they are assigned a specific location in pipe assemblies, pipe supports could 

potentially be segmented in order to improve the potential of the described process. 
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5 Derivation of Minimum Required Model 

[Most of this chapter is extracted from a peer-reviewed publication by the author (Jeanclos et al. 2018)]. 

Following the thorough presentation of the segmentation process, this chapter focuses on the methodology 

for deriving the Minimum Required Model (MRM). It presents the theoretical concepts and general 

objectives of the method as well as its implementation. The major objective of the proposed method consists 

in reducing the number of components to be scanned for a 3D vision based quality control. The 

determination of these components is achieved to prevent any geometrical ambiguity in the MRM; that is, 

by ensuring the final derived assembly geometry, the whole assembly compliance is guaranteed. The entire 

process of MRM derivation is shown in Figure 53. The process is divided into three different sections. In 

Section 5.1, the basic concepts of the method are explained which includes explaining the use of Piping 

Component Files as well as a description of the appropriate categorization of components into Reference 

(REF) and Addition (ADD). In Section 5.2, the concept of Solid of Revolution (SOR) is presented and the 

determination of REF/ADD in SOR is explained. Finally, Section 5.3 studies how the MRM is derived 

using REF and ADD components. 

 

Figure 53: Minimum Required Model Workflow 

5.1 Parsing of the Piping Component File and Selection of Reference and Addition 

A major aspect of the MRM algorithm is its use of Piping Component Files (PCFs) and Stereolithographic 

files (STLs). Combining the 3D model, in the format of a software independent file such as a STL along 

with a PCF makes the method completely software independent. It solves the software compatibility 

challenge encountered by construction companies (Chien et al. 2014). The first part of this section details 

how a PCF is parsed to extract the appropriate information with regard to the use made by the MRM. The 

precise identification of Reference and Addition is explained afterwards.  
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5.1.1 Parsing of the Piping Component File 

As discussed in the thesis background chapter, a common practice in the piping industry is to transmit the 

PCF of the assembly along with the 2D drawings and/or the 3D model.  

Transmitting the PCF can be seen as a safe means to send the drafting information because it contains all 

the components information including their type, coordinates, size, shape, and weld location. The file is 

segmented into paragraphs where each one represents a different component. Explanations are provided in 

Chapter 4.  

In order to gather the proper components to derive the MRM, the components’ key-points are to be 

computed. The combination of the key-points allows a complete description of the component. For 

example, a pipe has two key-points while an elbow needs three key-points to be modelled. A representation 

of the most common components with their associated key-points is provided in Figure 54. As noticed in 

Chapter 4, a key-point can either be an end-point, a centre-point or a branch-point. Each type of component 

has its own key-points label. 

Using the key points, an envelope is calculated and encompasses the corresponding component in the STL 

file. Thus, the envelope provides the possibility to segment a specific component out of the assembly. 

Consequently, employing PCFs allows users to select and segment only the components they are working 

with as opposed to the complete assembly. 

 

Figure 54: Demonstration of piping components using key points and the hypothetical line to represent each 

component: (a) a pipe or any other cylindrical component with 2 end-points, (b) an elbow with two end-points and 

one center-point, (c) a tee with two end-points, one center-point and one branch-point, (d) a valve with two end-

points, one center-point and one branch-point, and (e) a reducer-eccentric with two end-points. 

The rest of the piping components presented in Table 7 are composed of two key-points only and thus may 

be represented as a straight pipe (cylindrical components). 

5.1.2 Identification of Reference and Addition.  

The derivation of the Minimum Required Model is to be integrated with a stepwise process of fabrication, 

meaning that workers would control the compliance of the fabricated assembly at each step. One of the 
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important steps for pipe fitters is to choose the sequence of the assembly. The selection of the sequence 

depends on a number of variables including maximizing number of roll welds. As roll weld machines are 

around 1.5m high, the idea is to limit the height of the current assembly as long as possible to remain smaller 

than the tolerable length. Roll welds allow for ergonomic and efficient welding by welders and thus same 

money over regular welding for a joint. When, by following linearly the flow of the assembly, the height is 

greater than the acceptable one, the fitter may rather choose to switch to another area of the assembly to 

enable the welder to perform a roll weld.  

In the example provided in Figure 55, an elbow is analyzed to this extent. Let us consider all the other areas 

assembled already. The question is whether the elbow encircled should first be welded to the area on its left 

or to the one above. The first solution would involve rotating the left part around the axis described by the 

arrow pointing left. As it can be seen, the height would be way too long to rotate the resultant assembly. 

On the contrary, rotating the above assembly around the arrow pointing up would be totally feasible as the 

required height would be close to 50cm. Considering the dimensions, unlike the second option, the first 

option would not be in accordance with a roll weld. Therefore, a good strategy would be to first roll weld 

the elbow to the above assembly, and then completely manually weld the resultant assembly to the left part.  

 

Figure 55: Photography of the steel pipe assembly located in the UW lab. The green oval surrounds the elbow. Each 

green arrow is pointing at an area of the assembly. 

Regardless of the sequence, there would always be a component, or group of components, taken as 

Reference (REF) which would be leveled, and the next component, or group of components, would be 
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added, called Addition (ADD). Figure 56 further illustrates the concepts of REF and ADD from a real 

example that was photographed during a visit in the AIW fab shop. Reference – part (a) in (2) and blue part 

in (3) – consists of a flange, a pipe and an elbow; Addition – part (b) in (2) and red part in (3) – is a straight 

pipe. The weld point – part (c) in (2) – is located between the elbow and the pipe. 

 

Figure 56: Illustration of REF, ADD and connection point on a pipe spool assembly in a fabrication facility. It 

respectively presents: (1) the original photograph, (2) the extracted assembly being tackled, (3) and the 

corresponding 3D model. (a) Reference consists of a flange, a pipe, and an elbow. (b) Addition is a straight pipe (c) 

The weld point shared between REF and ADD. 

As previously mentioned, the sequence by which an assembly is built depends on the worker. For example, 

in Figure 56, a worker could decide to first weld the pipe in the box (a) to the flange in box (a). Then, he 

would weld the elbow in the box (a) and the pipe in the box (a). Finally, the pipe in the box (b) and the 

resultant sub-assembly of box (a) would be assembled. The proposed method is robust to any combination 

of REF and ADD since the algorithm takes advantage of the welding point between REF and ADD. It does 

not rely on the components available in each group. The weld point accounts for the starting point of REF 

and ADD. It is worth noting that a weld point is shared by two components and thus belongs to both REF 

and ADD. Also, it is the unique shared point between REF and ADD (Figure 56 box (c)). 

Any given assembly can be represented in a tree, binary sorted according to the sequence of the components. 

The tree is made of nodes where each stands for a key-point. It begins at the root with the selected weld, 

which is also a key-point shared between REF and ADD, and goes down until all key-points are stored. 

This representation improves the mental visualization of pipe assemblies and facilitates the explanation of 

the methodology. Each step possesses its own binary search tree (BST) as the root is given by the selected 
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weld, and the tree will stop based on the components selection. As a result, the tree construction can be 

considered as a dynamic process. Once the worker selects his REF and his ADD, the weld is automatically 

found by comparing the common key-points. The tree is thus initiated by positioning the weld point at its 

root. Reading through the PCF, one of the branch is first analyzed. The other component’s key-point is 

positioned as the child of the root. The algorithm then searches for the approximate same key-point within 

the PCF and extracts the second component’s key-point which becomes the child of the previous node. If a 

component has more than two key-points, then a branch is created, meaning that the first key-point will 

have two children: the second key-point, and the branch-point.   

 

Figure 57: Construction of the graph using the 3D model and the PCF file. (a) 3D model assembly.  (b) Constructed 

graph. Each node corresponds to a key-point. 

Figure 57 illustrates the tree construction of an assembly that has pipes, elbows, flanges, a tee, and two 

valves. The algorithm starts reading the key-points information from the weld point and follows the flow 

of the assembly by reading into its associated PCF. As shown, the weld point is located between the blue 

part (REF) and the red part (ADD), between a pipe and an elbow. Considering the Reference tree (in blue), 

the weld moves on to the adjacent point, standing for the second end-point of the pipe. Then, it follows 

linearly the path with an elbow, a pipe, an elbow and another pipe. At that point, the first end-point of the 

tee is divided into two children: one is the branch-point and the other is the second key-point.  

Depending on the properties of the selected assembly, the tree generation may be terminated before every 

component gets analyzed and stored. Indeed, along the constitution of the tree on each side, REF and ADD 

are continuously evaluated to determine whether or not they are a Solid of Revolution (SOR). This is the 

objective of the two upcoming sections.  
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5.2 Determining the Property of Solid of Revolution for Reference and Addition 

5.2.1 Solid of Revolution 

To evaluate whether REF/ADD is a Solid of Revolution (SOR) or not (SOR̅̅ ̅̅ ̅̅ ), a clear explanation has to be 

given around the concept of solid of revolution. By definition, a solid of revolution is an object that can be 

generated by rotating any arbitrary shape around a straight line (Jeffery 1915). Ten 3D models are displayed 

in Figure 58. The first four models have been generated by rotating respectively a rectangle (a), a trapeze 

(b), a spline (c), and an association of lines (d) around a straight line corresponding to the axis of symmetry. 

Physically, solids of revolution have a specific inertia property described by the shape of the inertia tensor. 

Using the Cartesian coordinate system and considering the cylindrical symmetry to be around the 𝑧 -axis, 

the inertia tensor is thereby defined as followed: 

I = [
I1 0 0

0 I1 0

0 0 I3

] 

where 𝐼1 and 𝐼3 are the principal moments of inertia. For a SOR, the products of inertia are null and the 

principal moments of inertia around 𝑥  and 𝑦  are equal. More information related to moments of inertia and 

specifically to the inertia for solids of revolution can be found in (Diaz et al. 2006). 

 

Figure 58: 3D models of SOR and SOR̅̅ ̅̅ ̅̅ . (a-d) are solids of revolution. (e-j) are not solids of revolution. 

According to the previous definition and the followed explanations; every piping cylindrical object (pipe, 

flange, cap, and coupling) is a SOR. Elbows, tees, valves or eccentric reducers are not SOR (SOR̅̅ ̅̅ ̅̅ ). 
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Considering that piping components are assembled by aligning them together (sharing the same axis such 

as shown with w1⃗⃗⃗⃗  ⃗ and u1⃗⃗⃗⃗  in Figure 60), the SOR becomes a conservative property. This means that 

assembling two SOR piping components will result in a SOR assembly. Also, if a SOR̅̅ ̅̅ ̅̅  piping component 

is added to a SOR component the assembly becomes SOR̅̅ ̅̅ ̅̅ . Equation 1 summarizes this concept: 

h∀ (𝑆1, 𝑆2)  ∈ {𝑆𝑂𝑅}, ∀ 𝑆3 ∈ {𝑆𝑂𝑅}, {

 
(𝑆1 + 𝑆2) ∈ {𝑆𝑂𝑅}

(𝑆1 + 𝑆2 + 𝑆3) ∈ {𝑆𝑂𝑅}
h  

,where 𝑆1and 𝑆2 denote to a piping component that is a solid of revolution, and S3 denotes to a component 

that is not a solid of revolution. To illustrate Equation 1, Figure 59 shows two assemblies: (a) the first one 

combines two solids of revolution that have been joined along their axis of symmetry; (b) the second 

presents a semi-cylinder (SOR̅̅ ̅̅ ̅̅ ) associated with a solid of revolution along their axis of generation. As 

explained by Equation 1, the SOR property remains in (a) but is lost in (b). 

 

Figure 59: Combination of: (a) 2 SOR along their axis of symmetry, and (b) 1 SOR and 1 SOR̅̅ ̅̅ ̅̅ . 

Fitting piping components can be envisioned as previously described. Indeed, each component is or is not 

a SOR and fittings are, for most of them, done by aligning the two axis of generation. As a result, the next 

section describes the applied method to assess this property on REF and ADD. 

5.2.2 Assessing the Solid of Revolution Property for Reference and Addition  

Finding out the SOR property permits the creation of the key-points list for REF and ADD. The combined 

list will be used to extract the MRM. Algorithm 1 describes how this process is performed. The SOR 

property is defined as a Boolean variable, which is initially set as true, and can be changed to false for 

specific conditions. 
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Algorithm 1. Pseudo code for Solid of Revolution (SOR) determination 

and extraction of key-points for one part of the selected assembly (REF or 

ADD) 

SOR=true 

i=1 

P0 is the weld-point 

KeyPointsList = {P0} 

while 𝑃𝑖  has at least 1 child 

if Pi has 2 children 

SOR=false 

break 

else 

Calculate the angle between Pi-1Pi⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and PiPi+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
if (angle>0) 

SOR=false 

break 

end if 

end if 

add Pi to KeyPointsList 

i=i+1  

end while 

if all Pi are in KeyPointsList 

KeyPointsList = {P0} 

end if 
KeyPointsList 

end 

The appraisal of the SOR property is accomplished by evaluating the angle between two consecutive lines 

virtually drawn by bounding two consecutive key-points together. Those lines can qualitatively be depicted 

by the lines connecting two consecutive points in the tree described in Figure 57. The next bullet points 

sequentially describe the aforementioned algorithm. The entire code of this process can be found in 

Appendix B. 

 First, the list gathering the key-points is initiated and filled with the weld point P0.  

 The first neighbour (P1) is analyzed. Its number of children is assessed. If P1 only has 1 neighbour 

(P0) then it signifies that P1 is an end-point. Thus, the selected part (REF or ADD) is only composed 

of a single component defined by solely two key-points. Except eccentric reducers, all piping 

components defined in that way are SOR. The only stored key-point will then be the weld-point 

P0. (If an eccentric reducer is instead detected, the points are shifted to the other weld neighbour to 

still evaluate the angle and conclude that the component is not a solid of revolution. Otherwise, no 

angle would ever be calculated and the program would conclude that because only 2 key-points 

were detected the part is a SOR.) 
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 As soon as P1 possesses 2 children (3 neighbours), then the part is automatically considered as SOR̅̅ ̅̅ ̅̅  

and once again only the weld point P0 is stored in the key points list. This would typically be the 

case for tees or valves. Indeed, when welding a single tee to an assembly, P1 has 3 neighbours: the 

weld point, the end-point of the tee, and the branch point. 

 When P1 is found to have 2 neighbours (1 children), two normalized vectors are created binding P1 

to its neighbours P0 and P2. As written in Algorithm 1, the angle is evaluated using the inverse 

cosine function between these vectors. The detection of a non-zero angle reveals the presence of a 

SOR̅̅ ̅̅ ̅̅  component in the inspected group of components. Following Algorithm 1, this implies that 

the current key-point P1 is not aligned with its previous and next neighbor (P0P1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and P1P2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  don’t 

form a straight line) The situation happens when an elbow or an eccentric reducer is in the assembly. 

For instance, if a 90-degree elbow is in the chain of components, when calculating the angle for its 

first key-point, an angle of 90 degrees will be found. As a result, the whole group of components 

would be SOR̅̅ ̅̅ ̅̅ . Detecting a non-zero angle stops the algorithm and returns only P0 within the key 

points list for the investigated part (REF or ADD). 

 If the angle is null, P1 is stored into the key-points list and P2 is investigated as described. The 

algorithm runs, and so on, until all key-points Pi are processed. 

 For both Reference and Addition, the algorithm will be terminated as soon as a non-zero angle is 

detected. In the situation where every key-point has been stored in the list (when REF and ADD 

are SOR), the algorithm will reduce the list to its initial configuration with only the weld point P0. 

For both REF and ADD, the algorithm runs and their respective final key-points list, depending on the SOR 

property, are generated. Once the SOR property is determined, the final components of the MRM can be 

extracted.  The next subsection leads to the procurement of the definitive list of components defining the 

Minimum Required Model.   

5.3 Derivation of the Minimum Required Model 

The objective of MRM is to eliminate the geometrical ambiguities in the sub-assembly being fabricated  

all the components belonging to REF and ADD for a specific stage of fabrication are included in the sub-

assembly  in order to lessen its complexity by reducing its scan volume and the number of components. 

Consequently, instead of analyzing and scanning the entire assembly to perform a geometrical control, the 

inspection can be performed on the reduced assembly (MRM) only. 

In the following subsections, the rules of component selection and the constitution of the Minimum 

Required Model are explained.  
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5.3.1 Analysis of the Structure for Reference and Addition 

As explained in the previous section, a flow of vectors is constructed. Each vector is associated to a node 

and its direction is dictated by the component direction in space. After being normalized, the unit vectors 

can be used to determine the calculate angle value (Algorithm 1).  To facilitate the understanding, an 

example is provided in Figure 60 in the form of a 2D-representation. The associated 3D model is shown in 

Figure 61 to get a clear idea of the presented example. REF is composed of a pipe and an elbow and makes 

the group of key-points (DCBA). ADD is made up of a pipe, an elbow, and a pipe, grouping the key-points 

(DEFGH). The weld-point (D) is the initial position for both chains (REF and ADD). From there, the unit 

vector representing the first pipe of REF is built (u1⃗⃗⃗⃗ ) between D and C. While going to the next point, the 

vector is built in order to be able to calculate the angle (v1⃗⃗  ⃗ is built at C and the angle between u1⃗⃗⃗⃗  and v1⃗⃗  ⃗ is 

evaluated). On this example, the angle is null, so the next point B is analyzed. The process is then repeated 

for ADD. 

 

Figure 60: 2D-representation of a Pipe-Elbow-Pipe assembly (Addition) welded onto an Elbow-Pipe assembly 

(Reference). Reference is composed of a pipe (CD) and an Elbow (CBA) and Addition is made of a pipe (DE), an 

Elbow (EFG) and a pipe (GH). The unit vectors represent the normalized vectors connecting two consecutive points. 
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Figure 61: 3D model of the 2D-representation of the assembly presented in Figure 60. ADD is colored in red and 

REF is colored in blue. 

It is crucial to understand that the geometric compliance of (DCBA) and (DEFGH) have been established 

in the hypothetical previous stages of fabrication. In other words, each sub-assembly is correct: first, the 

geometric compliance of (DCBA) was controlled when welding the blue pipe (DC) to the blue elbow 

(CBA); second, the compliance of (DEFG) was ascertained when welding the red pipe (DE) to the red 

elbow (EFG); finally, ((DEFG)H) was checked when welding the red pipe and elbow (DEFG) to the red 

pipe (GH). Consequently, the stage under investigation in Figure 60 is the assembly of ADD (DEFGH) 

with REF (DCBA). When applying Algorithm 1, the key-points list of REF and ADD are respectively 

composed of points D,C and B and points D, E and F (since a non-zero angle is respectively detected at 

point B and point F. As a consequence, the red pipe (GH) is removed from the model, because it doesn’t 

necessitate controlling the geometrical correctness of the current stage. The elimination of some 

components in the MRM is further justified in the next section along with the example depicted in Figure 

60. 

5.3.2 Principle of Geometric Control 

To assess the geometric alignment, every axis of ADD has to be controlled with respect to the ones of REF. 

The objective is then to constrain the vectors from ADD to the ones from REF. The representation of vectors 

is provided in Figure 60. To this extent, the vectors are compared together within each sub-assembly to 

only keep the ones needed. The process of isolating the unit vectors is done using the two rules described 

as follows:  

 h𝐼𝑓  𝑎1 ⃗⃗ ⃗⃗  =  𝑏1⃗⃗  ⃗ 𝑡ℎ𝑒𝑛 𝑜𝑛𝑙𝑦 𝑘𝑒𝑒𝑝 𝑏1⃗⃗  ⃗h  

 h𝐼𝑓 𝑎1⃗⃗⃗⃗  ≠  𝑎2⃗⃗⃗⃗  ⃗ 𝑡ℎ𝑒𝑛 𝑘𝑒𝑒𝑝 (𝑎1⃗⃗⃗⃗  𝑎𝑛𝑑 𝑎2⃗⃗⃗⃗ )h  
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where a1⃗⃗  ⃗ and b1⃗⃗⃗⃗  denote two unit vectors connecting two consecutive key-points. The analysis of vectors 

and their selection enables the constitution of the sub-set of points used to form the MRM and control the 

correctness of the assembly. Applying the two rules described above to Figure 60 would result in keeping 

v1⃗⃗  ⃗, v2⃗⃗  ⃗ , k1⃗⃗⃗⃗  , and k2⃗⃗⃗⃗  and removing all the remaining vectors. 

To assess the alignment of ADD to REF, controlling the position of k1⃗⃗⃗⃗ with respect to v1⃗⃗  ⃗ is required. By 

constraining them together, a revolute pair is created and removes five of the six degrees of freedom. In 

other words, after fixing k1⃗⃗⃗⃗ , ADD has only one more degree of freedom left around v1⃗⃗  ⃗. The representation 

of a revolute pair is provided in Figure 62. A revolute pair keeps the axes of two rigid bodies together. Two 

right bodies constrained by a revolute pair have an independent rotary motion around their common axis. 

Therefore, a revolute pair removes five degrees of freedom (DOF) in spatial mechanism (DOF = 1). 

 

Figure 62: a revolute pair 

However, ADD can still rotate around k1⃗⃗⃗⃗ . Therefore, an additional constraint must be set to remove the last 

DOF. For this purpose, the position of k2⃗⃗⃗⃗  is fixed based on v2⃗⃗  ⃗. ADD is thus completely constrained to REF. 

Finally, l2⃗⃗  does not have to be analyzed since ADD is fully constrained to REF.  

The outcome on the kinematic torsor 𝑉𝐴𝐷𝐷/𝑅𝐸𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝐻

is presented and expressed as the base (k1⃗⃗⃗⃗ , k1⃗⃗⃗⃗ ∗ 𝑧 , 𝑧 ) 

following the two steps described in the previous paragraph. The first constraint removes five of the six 

DOFs. Except the rotational velocity ω around k1⃗⃗⃗⃗ , it cancels five velocities around any point belonging to 

the rotational axis such as point F. When moving the velocity to point H, ω creates a linear velocity on the 

𝑧 -axis. Consequently, a second constraint is defined to remove the rotational velocity ω and set each 

velocity of the kinematic torsor to zero. By this way, the end-point of ADD, point H has no motion left. 

More generally, any point on the second axis k2⃗⃗⃗⃗  could have been picked to define the kinematic tensor 

presented as follows. 
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𝑉𝐴𝐷𝐷/𝑅𝐸𝐹𝐻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {

𝐴𝐷𝐷/𝑅𝐸𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑉𝐻 ∈ 𝐴𝐷𝐷/𝑅𝐸𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
}

𝐻

0

(k1⃗⃗⃗⃗ ,k1⃗⃗⃗⃗ ∗𝑧 ,𝑧 )

𝐹𝑖𝑥𝑖𝑛𝑔 k1/v1⃗⃗⃗⃗ 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

⇔        𝑉𝐴𝐷𝐷/𝑅𝐸𝐹𝐻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

= {

0
 
0
0
 
0

𝐻𝐹 ∗ 
}

𝐻

0

(k1⃗⃗⃗⃗ ,k1⃗⃗⃗⃗ ∗𝑧 ,𝑧 )

𝐹𝑖𝑥𝑖𝑛𝑔 k2⃗⃗⃗⃗ /v2⃗⃗⃗⃗  
⇔         𝑉𝐴𝐷𝐷/𝑅𝐸𝐹𝐻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {
0
0
 
0
0
 
0
0
}

𝐻

0

(k1⃗⃗⃗⃗ ,k1⃗⃗⃗⃗ ∗𝑧 ,𝑧 )

 

However, in the situation where all the unit vectors are equal – this means that all vectors are aligned and 

belong to the same axis –, for REF or ADD, then no constraint needs to be set up to remove the potential 

rotation around the first axis. Indeed: 

 if REF has just one unit vector, there is no v2⃗⃗  ⃗ to assess a potential k2
⃗⃗  ⃗. This stands for situations 

where REF is SOR. For example, if REF is a pipe and a flange, then there is no v2⃗⃗  ⃗ in REF to assess 

any potential second axis in ADD.  

 respectively, if ADD has just one unit vector there is no k2
⃗⃗  ⃗ to be constrained to a potential v2⃗⃗  ⃗. This 

stands for situations where ADD is SOR. For example, with ADD being a single straight pipe, the 

composition of REF doesn’t matter as there is no k2
⃗⃗  ⃗. 

The described situations stand for scenarios where either REF or ADD is SOR. The idea to bear in mind is 

that each point is analyzed until REF and ADD are fully constrained one over the other as best as possible. 

Once all 6 degrees of freedom have been removed, the analysis can be stopped, and the investigated points 

can be stored and utilized to derive the unambiguous model. In the previous example, after analyzing k2
⃗⃗  ⃗ 

with respect to v2⃗⃗  ⃗ – that is, F with respect to B –, no more motion remains between REF and ADD. This is 

the conceptual reason why no other point needs to be investigated.  

5.3.3 Constituting the Minimum Required Model 

Once the key-points lists are finalized for REF and ADD, the constitution of the Minimum Required Model 

can be done. The outcome is to extract the components that are associated to the embedded key-points. 

Because of the parsing of PCF, each key-point is directly associated to, at least, one component. Therefore, 

a component is retrieved when one of its end-points is detected in a key-points list. Building on the two 

key-points lists for REF and ADD, a Minimum Required Reference (MRR) and a Minimum Required 

Addition (MRA) are created using the detected components.  

For instance in Figure 60, point C is stored in the REF key-points list. Point C both belongs to the blue pipe 

and the blue elbow. It results that the two components are stored in MRR. On the contrary, none of the end-

points from the red pipe (GH) was stored in the ADD key-points list because the analysis was stopped after 

point F. Therefore, the red pipe (GH) is not part of MRA. 
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The Minimum Required Model is obtained by adding MRR and MRA. Equation 4 below provides the 

mathematical expression of the MRM once REFS and ADDS have been derived. 

 h 𝑀𝑅𝑀 = 𝑀𝑅𝑅 +𝑀𝑅𝐴   

The derived 3D model is only made up with the minimum required components to control the geometry 

and the alignment of the complete assembly. 

Following the previous example from Figure 60 and Figure 61, the MRM is given below in Figure 63. The 

red pipe (GH) has been removed from the original 3D model because it is not required to assess the 

alignment and orientation of the assembly. 

 

Figure 63: Minimum Required Model of 3D model in Figure 61 

Finally, four different situations can be encountered and impact the constitution of the Minimum Required 

Model. These potential situations are based on the result of the Boolean variable SOR defined in Algorithm 

1. Whether SOR is true or false for REF and for ADD leads to different approaches in the way of deriving 

the MRM. Table 9 summarizes the 4 situations which will be used to design the experimental 3D models. 

Table 9: All possible cases with respect to ADD/REF being or not being a SOR. The 1-value stands for SOR and the 

0-value for SOR̅̅ ̅̅ ̅̅ . 

Case Reference Addition Outcome 

1 1 1 
MRM composed of the closest component to the weld of REF and 

ADD 
2 0 1 

3 1 0 

4 0 0 
MRM composed of components from the weld to the component 

associated to the non-zero angle for REF and ADD 

As described above, the same approach is employed when at least one group of components identified to 

be SOR (SOR = 1).  

Using the logic gate terminations, the overall function for deriving the MRM could be envisioned as an OR 

gate which behaves according to the truth table below (Table 10): 
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Table 10: OR gate truth table 

Input Output 

A B A OR B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

By describing the truth table, a high output (1) results if one or both the inputs to the gate are high. If neither 

input is high, a low output (0) results. By simply associating the low output to the outcome from case 4 

(Table 9) and the high output to the other cases outcome, the derivation of the MRM can be conceived as 

an OR logic gate. 

5.4 Conclusion 

To conclude, the methodology for deriving the MRM has been entirely explained in this chapter. The 

genesis of the MRM was detailed and thorough explanations were provided throughout Chapters 4 and 5. 

The algorithm was described in the format of pseudo-code and examples rendered clear illustrations of the 

proposed concepts. In the two previous chapters, the complete methodology was studied, starting with an 

unviolated PCF and heading to a correct derived Minimum Required Model. 
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6 Effectiveness of the Proposed Methodology 

To assess the previous methodology, the MRM impact was measured and estimated. Three potential 

outcomes of the MRM are surveyed: (1) the spatial complexity reduction, (2) the use of the 3D mobile laser 

scanner, (3) the obtained scan point cloud density. The evaluation of those three criterions was conducted 

using an experimental data set of 3D models comprised of: (1) a database of 95 models created by the author 

and split into the 4 potential situations that can be encountered (Table 9), and (2) a steel pipe spool assembly 

located in the UW laboratory. 

6.1 Designing the Models 

The following section expounds on how the models where designed and used. 

6.1.1 Database of the 95 Models 

 

Figure 64: 3D models of five scenario examples per case: components in blue belong to REF and those is red to 

ADD. 

Designing a significant amount of 3D models originates from the need to test the methodology out on the 

4 potential situations described in Table 9. Once implemented into the SfM Code, the algorithm had to be 

validated and examined for each situation on realistic piping models. In addition, the 3D models in our 

possession were not sufficient enough for trying out an important amount of cases.  

Consequently, the requirement of building up a database became obvious. To do so, AutoCAD Plant 3D 

2018 was used. Prior to generating the 3D models, they had to be designed cautiously to count enough 

models within each situation (Case 1, 2,3, and 4). 

For cases 1,2, and 3, both REF and ADD, or one of both, need to be SOR. This constraint restrains the 

possibilities of diverse assemblies. Consequently, designing a substantially higher number of models for 
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case 4 is a voluntary decision and corresponds to an industry reality since most of the sub-assemblies 

include at least one SOR̅̅ ̅̅ ̅̅  component (i.e. elbow, tee, valve, and reducer-eccentric). The odds are greater that 

REF/ADD will be SOR̅̅ ̅̅ ̅̅  than the opposite. This is why case 4 includes more scenarios. For this reason, the 

number of scenarios designed for cases 1, 2, and 3 is significantly smaller than it is for case 4 (15 versus 

50).  

In case 4, both REF and ADD are SOR. Thus, no constraint is set to choose components; that is, every type 

of piping component can be part of REF/ADD as long as one SOR̅̅ ̅̅ ̅̅  component is in the chain of components. 

The potential situations are therein countless. Even if two identical components are welded together, the 

other components located in the group of components matter as well as their position in the chain. For 

example, assembling a single elbow (REF) to another single elbow (ADD) is different than fitting a pipe 

and an elbow (REF) to a single elbow (ADD) and is also different than welding an elbow and a pipe (REF) 

to a single elbow (ADD). This simple case illustrates the impossibility to test out every existing scenario. 

Therefore, a larger number of scenarios was designed for this specific case. It includes scenarios with small 

amount of components as well as larger assemblies containing more components. The entire list of design 

models can be visualized in Appendix C. 

Once all the scenarios were designed, AutoCAD Plant 3D 2018 was used to created the 3D models. The 

software enables to create piping assemblies by using components belonging to piping catalogs. Thus, their 

shape and design are monitored and correspond to real piping components. The database was generated 

using the SS150 pressure class. An overview of some 3D models is provided Figure 64. Five examples of 

each case are provided. An ID number is assigned to each scenario to facilitate referring to them throughout 

this manuscript. 

In designing these scenarios, the author endeavored to take into account the occurrences of SOR and SOR̅̅ ̅̅ ̅̅  

group of components in realistic pipe spool assemblies. The database was reviewed by industry’s experts 

and was judged realistic and consistent. Its significance comes from its diversity that enables to prove, first, 

the correctness of the developed methodology, and second, its effectiveness. 
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6.1.2 Laboratory Steel Pipe Spool Assembly 

 

Figure 65: 3D model of the laboratory steel pipe spool 

The lab pipe assembly accounts for a real end-application of the proposed methodology as it was actually 

fabricated in a fab shop. It is made of 52 components distributed between 4 branches. All components are 

welded together except between two flanges that are bolted together. The assembly contains 22 pipes, 13 

flanges, 12 elbows, 2 tees, 2 unions, and 1 valve. The diversity of the components makes the assembly a 

valuable case in point. The assembly was designed onto AutoCAD Inventor and its Piping Component File 

was realized afterward manually. 

In order to apply the algorithm to the steel pipe spool, the fabrication stages were inferred based on the 

knowledge and experience of the author. Forty-six stages were required to assemble the entire assembly. 

Those stages are described in Appendix D. Among the stages, 13 belong to case 1, 9 to case 2, 13 to case 

3, and 11 to case 4. 

The results coming from this particular example are very representative of the potential utilization of the 

MRM along the entire fabrication process. The impacts are threefold: 

1. Reduction of the spatial complexity of the model (Section 6.2) 

2. Opening of new potentialities for consumer grade scanners (Section 6.3) 
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3. Improvement of the scan point cloud density (Section 6.4) 

6.2 Impact of MRM on Reducing the Spatial Complexity and Number of Components 

The effectiveness of the method is first evaluated in terms of the spatial complexity reduction and the 

decrease in the number of components. To this end, the concept of Level of Complexity (LOC) is 

introduced. LOC is a value that attempts to gather the spatial complexity and the number of components 

together. LOC is a driver of 3D scanning requirements. Each component is assigned a LOC detailed in 

Table 11.  

Table 11: LOC value for each type of piping component 

 

 

 

 

 

 

 

For each component, key-points are established, and their associated unit vector is calculated. The number 

of unaligned vectors within a component provides the LOC for that component. Once each component has 

been assigned a value, the LOC of the full assembly can be calculated using Equation 5.  

 hLOCassembly=∑LOCcomponentsh  

Consequently, the LOC handles at the same time the spatial complexity of the assembly and the number of 

components. The LOC before and after applying the MRM is calculated for all of the designed scenarios 

and is tabulated in Figure 66. 

6.2.1 Experiment on the Database Models 

In the four cases, all the MRMs have a reduced LOC. The reduction of the Level of Complexity is important 

when a SOR̅̅ ̅̅ ̅̅  component is found as the first component of REF and/or ADD. The more components the 

initial assembly has, the more likely the MRM becomes useful. Thus, as shown in Table 12, the mean 

reduction of LOC for case 2,3 and 4 is higher than case 1. This is due to the fact that all the components in 

case 1 are SOR and, as explained earlier, a limited amount of assemblies have this quality. Case 1, 2 and 3, 

have at least REF or ADD being SOR. As a result, the MRM can be reduced to the only two components 

Type of component Level of Complexity 

Pipe 1 

Flange 1 

Elbow 2 

Concentric reducer 1 

Eccentric reducer 2 

Tee 2 

Valve 2 

Coupling 1 

Cap 1 
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being welded regardless of the other components. In case 4, the reduction can be very important if the first 

two components are SOR̅̅ ̅̅ ̅̅ , but can also be very small when the first SOR̅̅ ̅̅ ̅̅  components are far from the weld.  

 

Figure 66: LOC Reduction between initial 3D models and after applying MRM for (a) Case 1, (b) Case 2, (c) Case 3 

and (d) Case 4 

Table 12:  Average LOC Reduction for each Case 

Case Number Case 1 Case 2 Case 3 Case 4 

Mean reduction of LOC 31% 40% 47% 41% 

For example, in ID_C4_26, REF is composed of an elbow, a pipe and an elbow and ADD is an eccentric 

reducer, a pipe and an elbow. The weld is between the elbow and the reducer-eccentric. Thus, the MRM is 

only composed of the elbow and the reducer-eccentric. The result of LOCs for ID_C4_26 is detailed in 

Table 13. 

Table 13: Result of Level of Complexity for ID_C4_26 

LOCInitialModel LOCMRM Reduction of LOC 

10 4 60% 

The reduced LOC is important since it directly correlates with the time required for inspection of an 

assembly. Furthermore, the lower the LOC is, the more accurate the acquisition result will be. 

6.2.2 Experiment on the Steel Pipe Spool 

As for the steel pipe spool, each LOC is evaluated for each stage. Table 14 shows the percentage of LOC 

reduction for each case of the steel pipe spool assembly. The difference between case 1 and case 4 is 
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striking. This is due to the fact that case 4 stages usually happen after a certain number of components have 

been assembled, whereas case 1 stages are, most of the time, located at the beginning of the fabrication. For 

instance, welding a pipe to a flange is accomplished at the first stages. Thus, the initial LOC is already 

minimal (LOC = 2). On the contrary, welding two sub-assemblies together such as in stage 23 includes a 

high number of component (LOC = 11) which can be reduced with the MRM (LOC = 5) producing a high 

percentage of reduction (55%). 

Table 14: Average LOC reduction for each case in the steel pipe spool assembly 

Case Number Case 1 Case 2 Case 3 Case 4 

Mean reduction of LOC 13% 40% 26% 44% 

Thanks to this assembly, it is possible to evaluate the overall assembly LOC reduction using the MRM. To 

do so, the total LOC of the initial model is computed by adding the initial LOC of each stage. The same 

process is applied to the MRM and the percentage reduction is calculated. The values are presented in Table 

15. 

Table 15: Total LOC comparison 

Total initial LOC Total MRM LOC Reduction of LOC 

261 150 43% 

The percentage of 43% of LOC reduction is certainly the best way to estimate the effectiveness of the MRM 

on the reduction of spatial complexity. This way of calculating the average LOC reduction permits taking 

into account the higher importance of some stages rather than others. Instead of averaging out each 

reduction, this method renders the value each stage has as well as the total reduction. Moreover, at the end, 

what matters the most is the saved scanning time of the as-built assembly which is directly correlated to the 

overall LOC reduction Therefore, it can be evaluated that, using the MRM methodology, 43% of the 

scanning time would be cut down compared to applying the same QC process by scanning all current 

components. 

With the above example, the point is brought on the overall effectiveness of the MRM as it has value when 

implemented along the complete assembly fabrication. 

6.3 Opening New Perspectives to Handheld Laser Scanners 

As explained earlier, MRM is designed to be employed in a step-wise assembly control system for 

construction workers. To that end, measuring its performance with respect to limitations of consumer grade 

scanning devices is a matter of concern. 
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One of the major challenges of real-time mobile scanners are their limited scanning range and accuracy 

(Figure 67). While being cost effective and easy to use, the accuracy of this type of sensors decreases as 

objects are placed further away. For instance, the structured light sensor used on the SfM solution, called 

Structure Sensor, has a specific graph describing the relationship between the scanning distance and the 

depth precision (z-axis) (Figure 68). The range is only defined until 3.5m from the scanned object. At this 

distance, the depth precision is equal to 4cm. Regarding the precision on x and y-axis, it is linearly 

proportional to the observed depth and can be calculated as followed: 

𝑋/𝑌𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑎𝑛
−1 (

1 𝑝𝑖𝑥𝑒𝑙

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐼𝑂 𝐹𝑜𝑐𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ
) ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑂𝑏𝑗𝑒𝑐𝑡 

The Structure IO focal length can be found in the device’s datasheet and is equal to 570. Using the 3.5m 

depth (DistanceToObject), the x/y precision is 6.1mm. Obviously, a strong correlation exists between the 

precision and the accuracy of the acquisition device. At least, to be able to obtain an accurate scan, the 

precision must be high enough. 

Consequently, based on how depth and precision are bounded, it will be significantly beneficial to reduce 

the length of objects that need to be scanned. Figure 67 illustrates the example of the Structure Sensor with 

its limited range of 4x4x4m. It results in a maximum feasible length to obtain as-built information of 6.92m. 

 

Figure 67: (a) Scanning range and maximum feasible length for scanning. a: acquisition device, b: only objects 

within the projected cube can be scanned, c: maximum allowable length for an object to be scanned, assemblies that 

have a principal length of more than 6.92 (m) cannot be scanned and controlled. d: infrared beams projected to 

capture the scene. (b) Principal length before and after applying MRM. D1 is the principal length of the assembly 

before applying MRM. D2 is the principal length of the assembly after applying MRM. 

By defining principal length as the shortest line connecting the two ends of the assembly, a performance 

measure can then be defined (Equation 6) for MRM with respect to a components’ length. 
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 h𝑈𝑀𝑅𝑀 =
(𝐾1−𝐾2)

𝐾1
× 100h  

where K1 denotes to the principal length of the assembly before applying MRM and K2 denotes to the 

principal length of the component after applying MRM. 

 

Figure 68: Structure Sensor’s depth precision 

6.3.1 Monte Carlo Simulation 

To more accurately quantify the effectiveness of MRM on addressing the above challenges, Monte Carlo 

simulations were performed on the created 3D models database. It was assumed that the only contributor 

to assemblies’ length are pipes. In order to simulate variability of pipes’ length, an expert’s advice was 

sought and the assemblies were divided into 3 groups based on their length (Table 16). Each type of length 

matches with specific applications and thus can be associated to a particular industry. Along with the 

variation of lengths, pipes’ diameters were also modeled to account for the variability. However, as they 

don’t directly influence the required scan volume, no special consideration is established in this experiment. 

Table 16: Categorization of the assemblies based on average length of pipes in the assemblies and the intended 

application. The length of pipes in each category was assumed to follow a normal distribution. 

Attributes: Small   Medium Large  
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Mean Length 

(M) 
1.5 3.5 5 

Standard 

deviation 
0.5 1 2 

Application 
Mostly residential and 

non-industrial 

Nuclear and water 

supply 

Oil and gas, large industrial 

projects, and pipe lines 

Monte Carlo simulations were designed using a Normal distribution to estimate pipes’ lengths. Independent 

simulations were run for pipe’s length 1 (PL1), pipe’s length 2 (PL2), pipe length’s 3 (PL3) … Each 

simulation was made of 1,000 independent events providing for each PL 1,000 lengths. Those results were 

then averaged out to obtain a mean length for each PL. Finally, PLs are added up to get total lengths.  

For each database scenario, the number of pipes is computed for the initial model and the MRM. Based on 

the geometry of the initial model, the principal assembly length (PAL) is computed. For instance, if two 

pipes are aligned, PAL is obtained by simply adding up PL1 and PL2. But if they are perpendicular, PAL 

is computed by assuming PL1 equal to PL2 – where PL1 is the PL of the pipe left in the MRM – and PAL 

is equal to the square root of 2 multiplied by PL1. 

A new Monte Carlo simulation is run for each of the 95 scenarios within each size category. Therefore, a 

total of 95 Monte Carlo simulations are done for each pipe’s application, achieving a total of 285 

independent simulations (95 different simulations for each of the 3 applications). 

To calculate UMRM for each assembly, the principal lengths were then calculated and recorded for both 

initial model and MRM for each scenario within each size category. The comparison of MRM principal 

length and initial model one is plotted in Figure 69. The utility functions are also plotted on the graph to 

render a visual estimation of the MRM performance. 



93 
 

 

Figure 69: Monte Carlo simulation results using the assemblies from the database with three size categories 

Each point in Figure 69 corresponds to an assembly existing in the database and has 2 values associated 

with it, K1 and K2. Points in blue color show the K1 and K2 values for scenarios simulated for small 

assemblies, red points correspond to medium-size assemblies, and finally, green points belong to assemblies 

made up with large pipes. As shown, the line UMRM=0, divides the space into 2 areas: A4 and A1, A2 and 

A3. As explained earlier, in the worst-case scenario, applying MRM will not reduce the LOC, and thus the 

principal components’ length will not change (K1=K2). As anticipated, no point exists in the A4 area. The 

remainder of space is divided into 3 areas by drawing the lines L1 (K2=6.92) and L2 (K1=6.92).  

 Points in the A3 area correspond to scenarios were each principal length of both the initial assembly 

and the MRM exceeds the scanner’s range. Thus, obtaining the as-built information is infeasible. 

These assemblies are too large to be scanned and employing MRM will have no utility.  

 Points in the A2 area correspond to assemblies that can only be scanned if MRM is applied. In other 

words, this area shows assemblies whose as-built information could not be obtained without the 

use of MRM.  
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 Finally, points in the A1 area can be scanned whether MRM is applied or not. However, applying 

MRM on some of the assemblies can reduce the principal length in the assembly and thus increase 

the accuracy of the obtained information.  

The diagonal line drawings in this area indicate how much the principal length was reduced. For 

example, if a point lies between lines UMRM=40% and UMRM=60%, it has had a reduction of more 

than 40% and less than 60% in the assembly’s principal length which directly correlates with the 

accuracy of the obtained as-built information. Table 17 shows the distribution of points within A1, 

A2 and A3.  

Table 17: Distribution of points in the simulation and MRM utility in each group.  

Area Ratio MRM’s Utility 

A1 61.0% Increased acquisition accuracy 

A2 36.9% Only feasible to inspect with MRM 

A3 2.1% No Utility 

Furthermore, in order to investigate the application and the performance of MRM within the three 

categories, Figure 70 was prepared.  

 

Figure 70: Comparing MRM utility within the three size groups 

As can be seen, regardless of the assembly’s size, MRM will not be useful for the assemblies that have a 

specific geometry (UMRM=0%). For instance, ID_C1_07 initial model is composed of a flange and a pipe 
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welded to a concentric reducer. Applying MRM only removes the flange, which doesn’t impact the 

principal length. Besides, the results show that applying MRM has the most impact on accuracy for 

assemblies with small dimensions. Finally, more than 70% of the assemblies are infeasible to obtain as-

built information in large assemblies. This shows that applying MRM is critical for any step-wise assembly 

process control for large assemblies. 

6.3.2 Bounding Box Diagonal Length Analysis 

Using the same 95 scenarios, another analysis was run using the real dimension of the 3D models 

determined by inputting them into CloudCompare. Figure 71 below gives the representation of the 

CloudCompare bounding box that is displayed around a point cloud.  

 

Figure 71: Point cloud in CloudCompare surrounded by its bounding box 

The maximum dimension of the box is extracted for each of the 95 initial models and 95 MRMs. Knowing 

that the scanner’s bounding box is a cube, the required cube dimension is estimated by calculating the 

required diagonal length of the bounding box. To this end, the maximum dimension is multiplied by √3. 

The reduction of the diagonal length is then computed for each scenario. One example (ID_C1_08) is 

depicted in Table 18.  

Table 18: Example of reduction of diagonal length for scenario ID_C1_08 

 
Result in meters 

(m) 
Bounding box 

maximum dimension 

Bounding box 

diagonal length 

Reduction of 

diagonal length 

ID_C1_08 
Initial model 2.41 4.20 

68% 
MRM 0.76 1.32 

Once the reduction is computed for all scenarios, the similar chart presented earlier can be drawn. The 95 

points are plotted in Figure 72. As explained earlier, the chart is segmented into A1, A2, A3, and A4. The 

distribution of the data is displayed directly on the chart. 
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Figure 72: Analysis of the bounding box diagonal length for the database scenarios 

The design of the scenarios was performed independently of the proposed analysis. Thus, no trick was 

applied to reach this result. How data is distributed among regions can therein be considered realistic. 

Besides, in addition to belonging to the same piping pressure class, all components used in the models were 

designed to remain within realistic dimensional lengths with regard to their diameter. 

The above representation differs from the one obtained with Monte Carlo simulations because it compares 

the diagonal of the required bounding box whereas the first one focuses on the principal length of the 

obtained assembly and assumes the principal length of the assembly matches with the bounding box 

diagonal. In practice, aligning the principal length with the scanner’s bounding box is not quite manageable. 

However, both approaches are valuable and provide a significant performance measurement of the MRM 

methodology.  

6.4 Improving the Scan-vs-BIM Comparison 

Last but not least, the point cloud density is measured, whether or not the MRM is applied. Use of MRM 

shrinks down the initial model. The potential impact of this reduction is a considerable improvement of the 

point cloud density enabling a more accurate deviation analysis (comparison of the scan point cloud to the 

model point cloud). Indeed, since the model is smaller, the required scan is smaller. Thus, the scanner’s 

bounding box can be significantly diminished. Because the size of the scan affects the point cloud density 
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, and thus the precision of the deviation analysis, MRM is found to be very effective for improving the 

Scan-vs-BIM comparison. 

6.4.1 Dependency between the Number of Vertices and the Bounding Box Size 

So as to prove the influence of the scanner’s bounding box size on the obtained point cloud density, an 

experiment was carried out. Four scans were acquired from the same position pointing at the same object: 

a monitor (Figure 73). All 4 scans were taken facing the monitor without moving around and only the 

bounding box was changed. 

 

Figure 73: Monitor used as the center object of the four scans 

 

Figure 74: Scans of the monitor without the clutter with different bounding box size: (a) scan 1, (b) scan 2, (c) scan 

3, (d) scan 4. 
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The scans were then post-processed to remove the clutter (all the points which do not belong to the monitor). 

The four scans are presented in Figure 74. The raw scans were imported into CloudCompare to estimate 

the scan’s bounding box size. The given dimension is assumed to match with the scanner’s bounding box 

size. Then, the number of vertices on the monitor was computed by removing all the clutter from the initial 

scans. By this way, a relationship between the two parameters can be established. Table 19 below 

summarizes the scans properties. 

Table 19: Scans properties 

 Smaller   Larger 

 Scan 1 Scan 2 Scan 3 Scan 4 

Bounding box maximum 

dimension (m) 
0.5984 0.8724 1.9662 2.7459 

Number of vertices 21829 10277 1830 944 

The above data clearly underlines the falling-off in the point cloud density– represented by the number of 

vertices – when the bounding box is enlarged. To illustrate this phenomena, a graph was drawn by using 

the above data and is presented in Figure 75. 

 

Figure 75: Graph representing the number of vertices of a scanned monitor as a function of the scanner's bounding 

box size. The blue line is the curve binding the 4 data points. The dotter orange line stands for the trend line. Its 

equation and R2value are also displayed. 
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The data points were linked together in order to visualize the shape of the relationship. A trend line was 

then associated to the curve. The best matching function is a power function proportional to 
1

x2
. By modeling 

the data with the rendered function, the R2-value of 0.9998 appears to be high enough to state the existence 

of a correlation between the two factors. 

However, the equation is most probably size-dependent, meaning that the number of points obtained after 

removing the clutter relies on the size of the scanned object. The scanned monitor’s dimensions are 

45*30cm creating a surface of 1350cm2. Consequently, a relationship may exist between the scanned 

surface area, the bounding box size, and the point cloud density and may be further investigated to excerpt 

a proper connection from the Structure IO. 

6.4.2 Comparison of Scanning from a Large vs. Small Volume with Structure IO 

Since a correlation between the bounding box size and the scan point cloud density has been established, 

the concept can henceforth be proven onto pipe spool assemblies. 

 

Figure 76: Assembling the red part on the blue part. The weld is located at the branch of the tee. The green oval 

surrounds the Minimum Required Model. 

The objective of this section is twofold: 

1. Provide a real application of the Minimum Required Model on the model point cloud generation. 

2. Prove the importance of reducing the scan volume with consumer grade scanners such as Structure 

IO. 

To this end, the steel pipe spool assembly is chosen as an experimental assembly. In particular, focus is 

made on fabrication stage 21 displayed on Figure 76. Following the color rule, red components (ADD) are 

assembled to blue components (REF). The weld is performed at the branch of the tee and the MRM is 
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surrounded by the green oval. Using the SfM software as shown in Figure 77, the MRM components can 

be segmented.  

 

Figure 77: Segmenting the MRM on Stage 21 of the steel pipe spool assembly in the SfM software 

The result is presented in . It is composed of the tee (in blue) from REF, and the pipe and the elbow (in red) 

from ADD. The point cloud is defined by 345 vertices. The vertices are randomly distributed among the 

meshes of the original model based on the mesh surface. Owing to algorithmic functions, the intrinsic 

density could be increased to obtain a denser model point cloud. Although the model point cloud number 

of vertices can account for a minimum barrier to reach, the following study mainly focuses on the scan 

point cloud number of vertices. 
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Figure 78: Model point cloud derived from the Minimum Required Model 

The following experiment is using two different scan point clouds. The first scan (Figure 79) has been 

acquired with the Structure IO with a small cube of 1x1x1m (denoted “small” scan). The second scan 

(Figure 80) was acquired with the maximum scan volume of 4x4x4m (denoted “large” scan). Once the two 

acquisitions were completed, the clutter – all points not belonging to the MRM – was manually removed. 

Consequently, this process renders two different point clouds representing the same components. 

 

Figure 79: "Small" scan acquired with a cube volume of 1m3 
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Figure 80: "Large" scan acquired with a cube volume of 4x4x4m 

The two scans can be visualized in Figure 81 and are intentionally shown in parallel so that one can realize 

the density contrast. 

 

Figure 81: Parallel representation of the two scans obtained after removing the clutter 
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Each scan point cloud is used to perform a deviation analysis. The result is analyzed with the aim of proving 

the advantage of scanning a smaller assembly thanks to the MRM algorithm. In addition, the two scan point 

clouds are compared together to reveal some potential causes of the differences. 

6.4.2.1 Comparison using the “large” scan 

The first deviation analysis is performed on the “large” scan data. For the purpose of scanning this volume, 

the bounding box was extended to its limit (4x4x4m). After preprocessing the raw scan, the minimum 

required scan was loaded into the SfM software to be compared to the model point cloud of Figure 78. The 

scan point cloud is displayed with red points, on the right side of Figure 82, and is composed of 625 vertices.  

 

Figure 82: SfM 3 points registration page. On the left, the model point cloud. On the right, the scan point cloud from 

the "big" scan 

The two point clouds are superimposed by matching 3 points. Finally, the clutter is removed to keep the 10 

closest neighbours to each model point. Every point not detected in the neighborhood of a model point is 

removed from the scan point cloud. Once completed, the result of the deviation analysis is given by the 

software and shown in Figure 83. The maximum deviation detected on the heat map is 0.981mm.  
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Figure 83: Comparison of model point cloud to scan point cloud from the "large" scan 

6.4.2.2 Comparison using the “small” scan 

The same process is performed with the “small” scan. 

Using the “small” scan, the scan point cloud is made up of 6,632 vertices and is shown on the right side of 

Figure 84. As noted, the point cloud is about 10 times denser than the one from the “large” scan.  

 

Figure 84: SfM 3 points registration page. On the left, the model point cloud. On the right, the scan point cloud from 

the "small" scan. 
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The result of the comparison, once clutter removal has been applied, is presented in Figure 85. 

 

Figure 85: Comparison of model point cloud to scan point cloud from the "small" scan 

This time, the maximum deviation displayed by the heat map is 0.29mm, mostly located on the components 

surfaces. The explanation can be found in the density difference between the two point clouds. In other 

words, since the analysis is run on the scan point cloud, denser than the model, some of its points can be 

far from a point belonging to the model point cloud (up to 0.29mm). However, as the number of closest 

neighbours used in the clutter removal has been taken at 10, one can infer that each point of the model point 

cloud has its 10 closest neighbours within a sphere of 0.29mm radius. Because the scan point cloud is very 

dense, this value is very acceptable. 

Comparing this result to the previous one highlights the sensitivity of the result to the point cloud density 

and thus to the initial scan volume. The fact is that some outliers cannot be removed with the clutter removal 

when the density is too low. For instance, with a 10th closest neighbour being far from a model point, 

increasing the maximum value of the heat map will automatically be surged. 

Table 20: Comparison of the measured maximum deviation 

Maximum deviation 

with the “big” scan 

Maximum deviation 

with the “small” scan 

Improvement of the 

deviation analysis 

0.981 0.29 70% 
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To summarize the result, the maximum deviations are compared and its improvement is calculated (Table 

20). A 70% reduction of the measured maximum deviation is reached simply by reducing the scan volume 

from 64m3 to 13 which can be critical when controlling tight tolerances assemblies. 

6.4.2.3 Comparison of the two scan parts 

To further investigate this result, a comparison has been realized on CloudCompare between the two scans 

and is provided in Figure 86. 

 

Figure 86: Comparison of the two point cloud. The scan from the "big" scan (colored points) is evaluated with 

respect to the scan from the "small" scan (white points). 
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The maximum deviation is found to be 11mm and is located in the elbow’s inner curvature. Indeed, this 

area seems to have a deviation when comparing the two scans. Almost all points from the “large” scan have 

been found to have an approximate deviation of 3-4mm which can substantially influence the interpretation 

of a Scan-vs-BIM analysis. In general, the points from the “large” scan appear to be located above those 

from the “small” scan. One explanation may be the decline of the precision when increasing the depth 

(Figure 68) going from 0.3% precision for an observed depth of 1m up to 1.1% for a 3.5m observed depth. 

However, other parameters may influence the difference between those two scan point clouds which could 

be extensively investigated. This also depends on the scanner acquisition technology and its inherent 

parameters. 

As a conclusion, the important outcome of this section is to show the density impact of the scan point cloud 

on the deviation analysis. The denser the scan is the more accurate the analysis is. As the density of 

consumer grade scanners such as the Structure IO can be directly associated with the scan volume, the 

finding is that utilizing the Minimum Required Model in deviation analysis can significantly enhance the 

accuracy of the analysis by cutting the structural deviation, thereby bringing more confidence in the 

outcomes. 
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7 Thesis Summary, Conclusions and Future Work 

7.1 Summary 

Due to higher requirements of accuracy and economical consequences of any defect, controlling the quality 

of industrial assemblies in fabrication shops has become crucial. Manual tools are usually utilized to 

measure dimensions and check alignments. To reduce the number of tasks performed manually, 3D vision 

technologies have become common practice.  

Yet, these methods are often applied at the end of the fabrication process, because they can be cumbersome, 

time consuming and require engineering knowledge. In fact, when laser technologies are used to inspect 

the quality of industrial construction assemblies, the work is carried out by specialists who need to process 

the scanned data for a certain period of time, and who usually draft a report aimed at managers. The 

consequences are that those techniques only benefit the company late in the assembly process thus 

increasing the impact of fitting and rework risk. 

As a result, this thesis develops a straight-forward methodology that can easily be implemented in a worker-

designed device to streamline the quality control process. By using the Minimum Required Model on a 

real-time mobile scanner, workers can perform the inspection every time components are assembled. The 

proposed method is necessary for any 3D visual stepwise quality control process. 

Along this thesis, the overall methodology is envisioned into a general process and fabrication workflows 

that utilize consumer grade scanners (e.g. Structure IO) to inspect pipe spool assemblies within a 

manufacturing environment. The methodology gives a significant role to Piping Component Files. Building 

on the piping inputs, the derivation of the Minimum Required Model is thoroughly detailed in Chapter 5. 

The effectiveness of the Minimum Required Model in reducing the spatial complexity of the original 

assembly, in facilitating the utilization of consumer grade scanning devices, and in improving the scan point 

cloud density was shown Chapter 6. The methodology was then tested on multiple industrial assembly 

models with different configurations and dimensions (length, diameter) as well as on a real steel pipe spool 

assembly. 

When designing the 3D model database, the objective was to make sure that the assemblies are realistic and 

simulate real scenarios encountered in the industry. The value provided is based on the designed models 

and may change with different designs. However, the provided framework to obtain the MRM is universal 

and can be applied to any assembly. 
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7.2 Research Contributions and Conclusions 

The contributions of the work are as follows: (1) an innovative method was developed that uses a non-

software dependent 3D model and its Piping Component File to accurately segment piping components 

from their complete model; (2) a worker-oriented 3D visual stepwise quality control for piping assemblies 

designed in fabrication shop was proposed; (3) building on the geometrical properties of piping assemblies 

and the limitations of handheld laser scanners, a solution to reduce the 3D model to its minimum was 

realized. 

Following from these contributions are four conclusions: 

1. The utilization of two software independent inputs in the methodology renders an important 

adaptability to the overall methodology that can thus be used independently from the original 

design model format. In particular, PCFs have been found to be very effective and trustworthy input 

files. They provide flexible data that can be easily post-processed. 

2. Based on the designed database and the steel laboratory pipe spool, the MRM impact has been 

demonstrated to be more important on large and spatially complex assemblies. 

3. The experiments have shown a consequent increase in the utility of consumer grade scanners (i.e. 

Structure IO) with the developed methodology paving the way to their emergence for industrial 

applications. In other words, when 3D models are not reduced, those devices may not have the 

intrinsic range to scan the entire model, whereas using the MRM, the required scanning size would 

potentially be reduced allowing those scanners to be used. 

4. Consumer grades scanners that use structured light technology (i.e. Structure IO) to acquired point 

clouds have their density varying based on the scanning depth. Scanning smaller sized assemblies 

can thus enhance the as-built point cloud density, which benefits the deviation analysis accuracy. 

Consequently, most of the emerging Scan-vs-3D model applications could use the MRM with 

positive effect. 

7.3 Limitations 

Despite the continuous move toward digitization of the construction industry, a lot of companies are still 

not using 3D models for their design. In a lot of projects, providing 3D data to the contractor is not a 

mandatory duty, and thereby, none of the key players is urged to use a 3D design of the project. As the 

entire method is built on 3D files, if no data can be obtained from a project then it becomes impossible to 

apply the proposed stepwise control process. 

Another potential limitation to the overall method is the scanner precision. Indeed, based on the required 

assembly tolerances, the scanner may not be able to acquired precise enough data. As presented in the 
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thesis, the Structure IO’s precision decreases logarithmically with the distance. The low level of precision 

could simply prevent the utilization of those devices for industrial applications. The accuracy itself is 

complex to quantify as it depends on multiple factors, which are hard to measure, but the intrinsic precision 

unfortunately lowers the odds to obtain an accurate scan. 

Last but not least, quantifying the potential geometric deviations could be bothersome, since some lengths, 

which would have been used to visually estimate the deviation, are removed from the deviation analysis. 

In addition, automatic deviation measurement and orientation detection have not yet been implemented in 

the SfM software. For now, the worker has to use a heat map to estimate the location of the deviation and 

quantify it based on individual points color. An additional solution should therein be proposed in the 

software to (semi) automatically display the information. Otherwise, the deviation analysis could become 

useless to the worker regardless to any other considerations. 

7.4 Future Work 

In order to truly evaluate the effectiveness of the method, future work could be conducted and would consist 

of applying the proposed methodology for each step of the construction assembly fabrication during the 

construction phase. Following workers’ steps of assembling would enable observation of the real stages of 

fabrication and thus applying the methodology for each stage of the evaluated assembly. Several industrial 

assemblies would be investigated under the proposed measurements of effectiveness, and the utility of the 

MRM would be measured based on real fabrication shop situations. 

Other benefits of the MRM should be analyzed such as time and cost savings, which could be measured 

and compared to the same process without the MRM, hence, obtaining a monetary impact factor for the 

MRM. Performing stepwise quality control using the MRM with a consumer grade scanning device may 

reduce even more rework and measurement time. Also, the use of such a technique would certainly reduce 

the number of incompliances detected at the end of the fabrication, which could either be caused by a 

worker’s mistake or by the propagation of tolerances along the assembly. Therefore, quantifying the savings 

of the described methodology in the overall construction process of industrial assemblies could be done as 

future work. 

Finally, other domains of applicability of the MRM may be investigated. For manufactured industrial 

assemblies where QC is performed, the MRM overall workflow could potentially be tested. Considering 

the rise of digitization in industries and, in particular, the recourse to 3D models for every type of product, 

applying the MRM for 3D visual stepwise geometric quality control may be of great value and cost efficient 

in plenty of situations. 
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Appendix A 

Definition of pipe 

if (item.Split()[0] == "PIPE") 
                    { 
                        SfMPoint endPoint1 = null; 
                        SfMPoint endPoint2 = null; 
                        double diameter1 = 0; 
                        double diameter2 = 0; 
                        foreach (string attribute in parsedDictionary[item].Keys) 
                        { 
                            if (attribute.Split()[0] == "END-POINT") 
                            { 
                                string[] attributeSplitted = 
parsedDictionary[item][attribute].Split((string[])null, 
StringSplitOptions.RemoveEmptyEntries); 
                                double x = Convert.ToDouble(attributeSplitted[0]); 
                                double y = Convert.ToDouble(attributeSplitted[1]); 
                                double z = Convert.ToDouble(attributeSplitted[2]); 
                                double diameter = Convert.ToDouble(attributeSplitted[3]); 
                                if (endPoint1 == null) 
                                { 
                                    endPoint1 = new SfMPoint(x, y, z); 
                                    diameter1 = diameter; 
                                } 
                                else 
                                { 
                                    endPoint2 = new SfMPoint(x, y, z); 
                                    diameter2 = diameter; 
                                    break; 
                                } 
                            } 
                        } 
                        allComponents.Add(new SfMPipe(endPoint1, endPoint2, diameter1, 

diameter2)); 

Extraction of elbow from the PCF 

                    else if (item.Split()[0] == "ELBOW") 
                    { 
                        SfMPoint endPoint1 = null; 
                        SfMPoint endPoint2 = null; 
                        SfMPoint centrePoint = null; 
                        double diameter1 = 0; 
                        double diameter2 = 0; 
                        foreach (string attribute in parsedDictionary[item].Keys) 
                        { 
                            if (attribute.Split()[0] == "END-POINT") 
                            { 
                                string[] attributeSplitted = 
parsedDictionary[item][attribute].Split((string[])null, 
StringSplitOptions.RemoveEmptyEntries); 
                                double x = Convert.ToDouble(attributeSplitted[0]); 
                                double y = Convert.ToDouble(attributeSplitted[1]); 
                                double z = Convert.ToDouble(attributeSplitted[2]); 
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                                double diameter = Convert.ToDouble(attributeSplitted[3]); 
                                if (endPoint1 == null) 
                                { 
                                    endPoint1 = new SfMPoint(x, y, z); 
                                    diameter1 = diameter; 
                                } 
                                else 
                                { 
                                    endPoint2 = new SfMPoint(x, y, z); 
                                    diameter2 = diameter; 
                                    if (centrePoint != null) 
                                        break; 
                                } 
                            } 
                            else if (attribute.Split()[0] == "CENTRE-POINT") 
                            { 
                                string[] attributeSplitted = 
parsedDictionary[item][attribute].Split((string[])null, 
StringSplitOptions.RemoveEmptyEntries); 
                                double x = Convert.ToDouble(attributeSplitted[0]); 
                                double y = Convert.ToDouble(attributeSplitted[1]); 
                                double z = Convert.ToDouble(attributeSplitted[2]); 
                                centrePoint = new SfMPoint(x, y, z); 
                                if (endPoint2 != null) 
                                    break; 
                            } 
                        } 
                        allComponents.Add(new SfMElbow(endPoint1, endPoint2, centrePoint, 
diameter1, diameter2)); 
                    } 

Distance of a line to a segment for pipes 

        /// <summary> 
        /// Determine whether a point is within the cylindrical spatial boundary defined 
by a pipe 
        /// </summary> 
        /// <param name="pipe">the pipe of interest, defines a cylindrical spatial 
boundary</param> 
        /// <returns>True if the point is within the cylindrical spatial boundary defined 
by the pipe, vise versa</returns> 
        public bool isInPipe(SfMPipe pipe) 
        { 
            SfMPoint v = pipe.endPoint2 - pipe.endPoint1; 
            SfMPoint w = this - pipe.endPoint1; 
 
            double c1 = w * v; 
            if (c1 <= 0) 
                return false; 
 
            double c2 = v * v; 
            if (c2 <= c1) 
                return false; 
 
            double b = c1 / c2; 
            SfMPoint pointB = pipe.endPoint1 + b * v; 
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            return distance(this, pointB) < PipeSpoolManager.toleratedInchToMillimeter * 
pipe.diameter1; 
        } 

 

Distance of a point to a circle for elbows 

        /// <summary> 
        /// Determine whether a point is within the spatial boundary defined by an elbow 
        /// </summary> 
        /// <param name="elbow">the pipe of interest, defines an elbow shaped (part of a 
torus) spatial boundary</param> 
        /// <returns>True if the point is within the spatial boundary defined by the 
elbow, vise versa</returns> 
        public bool isInElbow(SfMElbow elbow) 
        { 
            SfMPoint v = this - elbow.circleCentre; 
            double perpendicularDistance = v * elbow.normal; 
            SfMPoint q = this - perpendicularDistance * elbow.normal; 
            SfMPoint projectedToCenter = q - elbow.circleCentre; 
            double parallelDistance = Math.Sqrt(projectedToCenter * projectedToCenter) - 
elbow.radius; 
            double distance = Math.Sqrt(parallelDistance * parallelDistance + 
perpendicularDistance * perpendicularDistance); 
 
            if (distance > PipeSpoolManager.toleratedInchToMillimeter * elbow.diameter1) 
                return false; 
 
            SfMPoint oq = q - elbow.circleCentre; 
 
            double angle1 = Math.Acos(elbow.radius1 * oq / (Math.Sqrt(elbow.radius1 * 
elbow.radius1) * Math.Sqrt(oq * oq))); 
            double angle2 = Math.Acos(elbow.radius2 * oq / (Math.Sqrt(elbow.radius2 * 
elbow.radius2) * Math.Sqrt(oq * oq))); 
 
            if (Math.Abs(angle1 + angle2 - elbow.angle) < 0.01) 
                return true; 
 
            return false; 
        } 

Calculation of the parameters of an elbow 

public class SfMElbow 
    { 
        /// <summary> 
        /// first endpoint of the elbow 
        /// </summary> 
        public SfMPoint endPoint1; 
        /// <summary> 
        /// second endpoint of the elbow 
        /// </summary> 
        public SfMPoint endPoint2; 
        /// <summary> 
        /// centre point of the elbow 
        /// </summary> 
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        public SfMPoint circleCentre; 
        /// <summary> 
        /// diameter of the elbow at the first endpoint 
        /// </summary> 
        public double diameter1; 
        /// <summary> 
        /// diameter of the elbow at the second endpoint 
        /// </summary> 
        public double diameter2; 
 
        public SfMPoint radius1; 
 
        public SfMPoint radius2; 
        /// <summary> 
        /// Normal vector that the circle lies on 
        /// </summary> 
        public SfMPoint normal; 
        /// <summary> 
        /// The radius of curvature of the elbow 
        /// </summary> 
        public double radius; 
        /// <summary> 
        /// The angle between the two pipes that the elbow connect to 
        /// </summary> 
        public double angle; 
 
        /// <summary> 
        /// Constructor of a elbow, input: 2 endpoints and 2 corresponding diameters 
        /// </summary> 
        /// <param name="point1">first endpoint of the new elbow</param> 
        /// <param name="point2">second endpoint of the new elbow</param> 
        /// <param name="diameter1">diameter of the new elbow at the first 
endpoint</param> 
        /// <param name="diameter2">diameter of the new elbow at the second 
endpoint</param> 
        public SfMElbow(SfMPoint endPoint1, SfMPoint endPoint2, SfMPoint centrePoint, 
double diameter1, double diameter2) 
        { 
            this.endPoint1 = endPoint1; 
            this.endPoint2 = endPoint2; 
 
            this.diameter1 = diameter1; 
            this.diameter2 = diameter2; 
 
            SfMPoint chordMidPoint = 0.5 * (endPoint1 + endPoint2); 
 
            SfMPoint tangent1 = endPoint1 - centrePoint; 
            SfMPoint tangent2 = endPoint2 - centrePoint; 
            normal = SfMPoint.normalize(SfMPoint.cross(tangent1, tangent2)); 
 
            double theta = Math.Acos(tangent1 * tangent2 / (Math.Sqrt(tangent1 * 
tangent1) * Math.Sqrt(tangent2 * tangent2))); 
            angle = Math.PI - theta; 
 
            SfMPoint halfChord = endPoint1 - chordMidPoint; 
 
            SfMPoint vectorToCentre = SfMPoint.normalize(chordMidPoint - centrePoint); 
            double om = Math.Sqrt(halfChord * halfChord) * Math.Tan(theta / 2); 
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            circleCentre = chordMidPoint + om * vectorToCentre; 
 
            SfMPoint r = endPoint1 - circleCentre; 
            radius = Math.Sqrt(r * r); 
 
            radius1 = endPoint1 - circleCentre; 
            radius2 = endPoint2 - circleCentre; 
        } 

Determination of the belonging of point to a flange 

        /// <summary> 
        /// Determine whether a point is within the cylindrical spatial boundary defined 
by a flange 
        /// </summary> 
        /// <param name="flange">the flange of interest, defines a cylindrical spatial 
boundary</param> 
        /// <returns>True if the point is within the cylindrical spatial boundary defined 
by the flange, vise versa</returns> 
        public bool isInFlange(SfMFlange flange) 
        { 
            SfMPoint v = flange.endPoint2 - flange.endPoint1; 
            SfMPoint w = this - flange.endPoint1; 
 
            double c1 = w * v; 
            if (c1 <= 0) 
                return false; 
 
            double c2 = v * v; 
            if (c2 <= c1) 
                return false; 
 
            double b = c1 / c2; 
            SfMPoint pointB = flange.endPoint1 + b * v; 
            return distance(this, pointB) < PipeSpoolManager.toleratedInchToMillimeter * 
flange.diameter1 * flangeDiameter(flange.classNumber, flange.diameter1); 
        }  
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Appendix B 

/// <summary> 
    /// A pipe spool component key point graph. 
    /// Containing set of geometric key points as its nodes, and an edge between the 
nodes if they are connected in the pipe spool. 
    /// Used to obtain an consistent ordering of the key points and derive the minimum 
required planning horizon of the pipe spool. 
    /// Implemented for the Structure from Motion project. 
    /// </summary> 
    public class SfMKeyPointGraph 
    { 
        /// <summary> 
        /// Set of nodes, i.e. set of all key points in all the selected pipe spool 
components 
        /// </summary> 
        public List<SfMKeyPointGraphNode> nodes; 
        /// <summary> 
        /// Coordianates of the calculated weld point 
        /// </summary> 
        public SfMPoint weldPoint; 
        /// <summary> 
        /// Number of weld encountered. Every weld s encountered twice due to the double 
counting in the nested loop. 
        /// If weld count is 0, then no common key point between the selected reference 
and addition parts. 
        /// If weld count is 2, then there is a unique common key point between the 
reference and addition parts. 
        /// ^(The derivation of the Minimum Required Model can be carried out using the 
unique weld as the starting point) 
        /// If weld count is 4, then there are more than one common key poitn between the 
reference and addition parts. 
        /// </summary> 
        public int weldCount; 
        /// <summary> 
        /// Constructor of a key point graph. Construct an empty graph 
        /// </summary> 
        public SfMKeyPointGraph() 
        { 
            nodes = new List<SfMKeyPointGraphNode>(); 
        } 
         
        /// <summary> 
        /// Overrides the default ToString() method, 
        /// returns a string that is a user friendly representation of the key point 
graph by listing out all its nodes in a sequential manner 
        /// </summary> 
        /// <returns>a string that is a user friendly representation of the key point 
graph</returns> 
        public override string ToString() 
        { 
            string graphString = ""; 
            foreach (SfMKeyPointGraphNode node in nodes) 
                graphString += node.ToString() + "\n"; 
            return graphString; 
        } 
 
        /// <summary> 
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        /// Extract all the key points (e.g. end points, centre point, and branch point 
for a tee) from the list of components, 
        /// then generate all the internal (within the component) edges. 
        /// After this step, most of the key points will be included twice in the graph 
(once from each component it belows to). 
        /// </summary> 
        /// <param name="referenceComponents">List of selected reference 
components</param> 
        /// <param name="additionComponents">List of selected addition components</param> 
        public void extractKeyPoints(List<object> referenceComponents, List<object> 
additionComponents) 
        { 
            foreach (object component in referenceComponents) 
            { 
                if (component is SfMCylindricalGeneric) 
                { 
                    SfMCylindricalGeneric cylindricalGeneric = component as 
SfMCylindricalGeneric; 
                    SfMKeyPointGraphNode endNode1 = new 
SfMKeyPointGraphNode(cylindricalGeneric.endPoint1, true); 
                    SfMKeyPointGraphNode endNode2 = new 
SfMKeyPointGraphNode(cylindricalGeneric.endPoint2, true); 
                    endNode1.addNeighbour(endNode2); 
                    endNode2.addNeighbour(endNode1); 
                    nodes.Add(endNode1); 
                    nodes.Add(endNode2); 
                } 
                else if (component is SfMElbow) 
                { 
                    SfMElbow elbow = component as SfMElbow; 
                    SfMKeyPointGraphNode endNode1 = new 
SfMKeyPointGraphNode(elbow.endPoint1, true); 
                    SfMKeyPointGraphNode endNode2 = new 
SfMKeyPointGraphNode(elbow.endPoint2, true); 
                    SfMKeyPointGraphNode centreNode = new 
SfMKeyPointGraphNode(elbow.pcfCentre, true); 
                    endNode1.addNeighbour(centreNode); 
                    endNode2.addNeighbour(centreNode); 
                    centreNode.addNeighbour(endNode1); 
                    centreNode.addNeighbour(endNode2); 
                    nodes.Add(endNode1); 
                    nodes.Add(endNode2); 
                    nodes.Add(centreNode); 
                } 
                else if (component is SfMFlange) 
                { 
                    SfMFlange flange = component as SfMFlange; 
                    SfMKeyPointGraphNode endNode1 = new 
SfMKeyPointGraphNode(flange.endPoint1, true); 
                    SfMKeyPointGraphNode endNode2 = new 
SfMKeyPointGraphNode(flange.endPoint2, true); 
                    endNode1.addNeighbour(endNode2); 
                    endNode2.addNeighbour(endNode1); 
                    nodes.Add(endNode1); 
                    nodes.Add(endNode2); 
                } 
                else if (component is SfMTee) 
                { 
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                    SfMTee tee = component as SfMTee; 
                    SfMKeyPointGraphNode endNode1 = new 
SfMKeyPointGraphNode(tee.endPoint1, true); 
                    SfMKeyPointGraphNode endNode2 = new 
SfMKeyPointGraphNode(tee.endPoint2, true); 
                    SfMKeyPointGraphNode centreNode = new 
SfMKeyPointGraphNode(tee.centrePoint, true); 
                    SfMKeyPointGraphNode branchNode = new 
SfMKeyPointGraphNode(tee.branchPoint, true); 
                    endNode1.addNeighbour(centreNode); 
                    endNode2.addNeighbour(centreNode); 
                    branchNode.addNeighbour(centreNode); 
                    centreNode.addNeighbour(endNode1); 
                    centreNode.addNeighbour(endNode2); 
                    centreNode.addNeighbour(branchNode); 
                    nodes.Add(endNode1); 
                    nodes.Add(endNode2); 
                    nodes.Add(centreNode); 
                    nodes.Add(branchNode); 
                } 
            } 
            foreach (object component in additionComponents) 
            { 
                if (component is SfMCylindricalGeneric) 
                { 
                    SfMCylindricalGeneric cylindricalGeneric = component as 
SfMCylindricalGeneric; 
                    SfMKeyPointGraphNode endNode1 = new 
SfMKeyPointGraphNode(cylindricalGeneric.endPoint1, false); 
                    SfMKeyPointGraphNode endNode2 = new 
SfMKeyPointGraphNode(cylindricalGeneric.endPoint2, false); 
                    endNode1.addNeighbour(endNode2); 
                    endNode2.addNeighbour(endNode1); 
                    nodes.Add(endNode1); 
                    nodes.Add(endNode2); 
                } 
                else if (component is SfMElbow) 
                { 
                    SfMElbow elbow = component as SfMElbow; 
                    SfMKeyPointGraphNode endNode1 = new 
SfMKeyPointGraphNode(elbow.endPoint1, false); 
                    SfMKeyPointGraphNode endNode2 = new 
SfMKeyPointGraphNode(elbow.endPoint2, false); 
                    SfMKeyPointGraphNode centreNode = new 
SfMKeyPointGraphNode(elbow.pcfCentre, false); 
                    endNode1.addNeighbour(centreNode); 
                    endNode2.addNeighbour(centreNode); 
                    centreNode.addNeighbour(endNode1); 
                    centreNode.addNeighbour(endNode2); 
                    nodes.Add(endNode1); 
                    nodes.Add(endNode2); 
                    nodes.Add(centreNode); 
                } 
                else if (component is SfMFlange) 
                { 
                    SfMFlange flange = component as SfMFlange; 
                    SfMKeyPointGraphNode endNode1 = new 
SfMKeyPointGraphNode(flange.endPoint1, false); 
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                    SfMKeyPointGraphNode endNode2 = new 
SfMKeyPointGraphNode(flange.endPoint2, false); 
                    endNode1.addNeighbour(endNode2); 
                    endNode2.addNeighbour(endNode1); 
                    nodes.Add(endNode1); 
                    nodes.Add(endNode2); 
                } 
                else if (component is SfMTee) 
                { 
                    SfMTee tee = component as SfMTee; 
                    SfMKeyPointGraphNode endNode1 = new 
SfMKeyPointGraphNode(tee.endPoint1, false); 
                    SfMKeyPointGraphNode endNode2 = new 
SfMKeyPointGraphNode(tee.endPoint2, false); 
                    SfMKeyPointGraphNode centreNode = new 
SfMKeyPointGraphNode(tee.centrePoint, false); 
                    SfMKeyPointGraphNode branchNode = new 
SfMKeyPointGraphNode(tee.branchPoint, false); 
                    endNode1.addNeighbour(centreNode); 
                    endNode2.addNeighbour(centreNode); 
                    branchNode.addNeighbour(centreNode); 
                    centreNode.addNeighbour(endNode1); 
                    centreNode.addNeighbour(endNode2); 
                    centreNode.addNeighbour(branchNode); 
                    nodes.Add(endNode1); 
                    nodes.Add(endNode2); 
                    nodes.Add(centreNode); 
                    nodes.Add(branchNode); 
                } 
            } 
        } 

/// <summary> 
        /// Merge all the key point nodes with the same (or within 5 millimeters) 
coordinates into the same node. 
        /// All the neighbours of the nodes that are being merged become neighbours of 
the new node 
        /// </summary> 
        public void mergeDuplicates() 
        { 
            weldCount = 0; 
            List<SfMKeyPointGraphNode> oldNodes = new List<SfMKeyPointGraphNode>(nodes); 
            nodes.Clear(); 
            for (int i = 0; i < oldNodes.Count; i++) 
            { 
                Boolean duplicateFound = false; 
                // Find and merge all the nodes with the same (or within 5 millimeters) 
coordinates 
                for (int j = 0; j < oldNodes.Count; j++) 
                    if (i != j && SfMPoint.distance(oldNodes[i].keyPoint, 
oldNodes[j].keyPoint) < PipeSpoolManager.minimumAcceptableLength) 
                    { 
                        SfMKeyPointGraphNode newNode; 
                        if (oldNodes[i].isReference && oldNodes[j].isReference) 
                            newNode = new SfMKeyPointGraphNode(oldNodes[i].keyPoint, 
true); 
                        else if (!oldNodes[i].isReference && !oldNodes[j].isReference) 
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                            newNode = new SfMKeyPointGraphNode(oldNodes[i].keyPoint, 
false); 
                        else 
                        { 
                            newNode = new SfMKeyPointGraphNode(oldNodes[i].keyPoint, 
true); 
                            weldPoint = newNode.keyPoint; 
                            weldCount++; 
                        } 
 
                        List<SfMKeyPointGraphNode> newNeighbours = new 
List<SfMKeyPointGraphNode>(oldNodes[i].neighbours); 
 
                        newNeighbours.AddRange(oldNodes[j].neighbours); 
 
                        newNode.neighbours = newNeighbours; 
 
                        if (i < j) 
                            nodes.Add(newNode); 
 
                        duplicateFound = true; 
                    } 
                // If duplicate is not found for a node, add it directly to the new list 
                if (!duplicateFound) 
                    nodes.Add(oldNodes[i]); 
            } 
 
            // Remake the list of nodes, to fix the reference mismatch issue 
            for (int i = 0; i < nodes.Count; i++) 
            { 
                SfMKeyPointGraphNode node = nodes[i]; 
                List<SfMKeyPointGraphNode> newNeighbours = new 
List<SfMKeyPointGraphNode>(); 
                foreach (SfMKeyPointGraphNode neighbour in node.neighbours) 
                    for (int j = 0; j < nodes.Count; j++) 
                        if (i != j && SfMPoint.distance(neighbour.keyPoint, 
nodes[j].keyPoint) < PipeSpoolManager.minimumAcceptableLength) 
                            newNeighbours.Add(nodes[j]); 
                node.neighbours = newNeighbours; 
            } 
        }  

/// <summary> 
        /// Given a selected node, order all the nodes in the graph in a consistent 
sequential manner by traversing the nodes 
        /// The traversal is stopped whenever the component have more than two neighbours 
        /// </summary> 
        /// <param name="selectedNode">Selected node, the starting point of the 
traversal</param> 
        public List<SfMKeyPointGraphNode> 
getMinimumRequiredModelKeyPoints(SfMKeyPointGraphNode selectedNode) 
        { 
            List<SfMKeyPointGraphNode> fullKeyPointNodes = new 
List<SfMKeyPointGraphNode>(); 
            fullKeyPointNodes.Add(selectedNode); 
            // If the selected node has no neighbours, then the ordered node list have 
only such node, and is already sorted 
            if (selectedNode.neighbours.Count == 0) 
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                return fullKeyPointNodes; 
            // If the selected node has one and only one neighbour, then it is an end 
point. 
            // Go one direction and add all the traversed nodes in order 
            else if (selectedNode.neighbours.Count == 1) 
            { 
                SfMKeyPointGraphNode previousNode = selectedNode; 
                SfMKeyPointGraphNode currentNode = selectedNode.neighbours[0]; 
 
                List<SfMKeyPointGraphNode> branchKeyPointNodes = new 
List<SfMKeyPointGraphNode>(); 
                while (currentNode.neighbours.Count > 1) 
                { 
                    if (currentNode.neighbours.Count > 2) 
                    { 
                        fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                        return fullKeyPointNodes; 
                    } 
                    else 
                    { 
                        if (SfMPoint.distance(currentNode.neighbours[0].keyPoint, 
previousNode.keyPoint) < PipeSpoolManager.minimumAcceptableLength) 
                        { 
                            double angle = 
SfMPoint.angleFromVectors(previousNode.keyPoint - currentNode.keyPoint, 
currentNode.keyPoint - currentNode.neighbours[1].keyPoint); 
                            previousNode = currentNode; 
                            currentNode = currentNode.neighbours[1]; 
                            Console.WriteLine(angle); 
                            if (angle > 0.001) 
                            { 
                                fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                                break; 
                            } 
                        } 
                        else 
                        { 
                            double angle = 
SfMPoint.angleFromVectors(previousNode.keyPoint - currentNode.keyPoint, 
currentNode.keyPoint - currentNode.neighbours[0].keyPoint); 
                            previousNode = currentNode; 
                            currentNode = currentNode.neighbours[0]; 
                            Console.WriteLine(angle); 
                            if (angle > 0.001) 
                            { 
                                fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                                break; 
                            } 
                        } 
                        branchKeyPointNodes.Add(currentNode); 
                    } 
                } 
 
                return fullKeyPointNodes; 
            } 
            // If the selected node has two neighbours, then it is where two selected 
component connects. 
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            // Go one direction adn add all te traversed nodes in order, and then go the 
other direction and do the same 
            else if (selectedNode.neighbours.Count == 2) 
            { 
                SfMKeyPointGraphNode previousNode = selectedNode; 
                SfMKeyPointGraphNode currentNode = selectedNode.neighbours[0]; 
                bool SolidOfRevolution = true; 
 
                List<SfMKeyPointGraphNode> branchKeyPointNodes = new 
List<SfMKeyPointGraphNode>(); 
 
                //Dealing with Eccentric reducer when it is the entire part 
                if (currentNode.neighbours.Count == 1) 
                { 
                    foreach (object component in PipeSpoolManager.allComponents) 
                    { 
                        if (component is SfMReducerEccentric) 
                        { 
                            SfMReducerEccentric ReducerEccentric = component as 
SfMReducerEccentric; 
                            if (SfMPoint.distance(currentNode.keyPoint, 
ReducerEccentric.endPoint1) < PipeSpoolManager.minimumAcceptableLength || 
                                SfMPoint.distance(currentNode.keyPoint, 
ReducerEccentric.endPoint2) < PipeSpoolManager.minimumAcceptableLength) 
                            { 
                                previousNode = selectedNode.neighbours[1]; 
                                currentNode = selectedNode; 
                            } 
                        } 
                    } 
                } 

while (currentNode.neighbours.Count > 1) 
                    { 
                        if (currentNode.neighbours.Count > 2) 
                        { 
                            fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                            SolidOfRevolution = false; 
                            break; 
                        } 
                        else 
                        { 
                            if (SfMPoint.distance(currentNode.neighbours[0].keyPoint, 
previousNode.keyPoint) < PipeSpoolManager.minimumAcceptableLength) 
                            { 
                                double angle = 
SfMPoint.angleFromVectors(previousNode.keyPoint - currentNode.keyPoint, 
currentNode.keyPoint - currentNode.neighbours[1].keyPoint); 
                                previousNode = currentNode; 
                                currentNode = currentNode.neighbours[1]; 
                                Console.WriteLine(angle); 
                                if (angle > 0.001) 
                                { 
                                    fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                                    SolidOfRevolution = false; 
                                    break; 
                                } 
                            } 
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                            else 
                            { 
                                double angle = 
SfMPoint.angleFromVectors(previousNode.keyPoint - currentNode.keyPoint, 
currentNode.keyPoint - currentNode.neighbours[0].keyPoint); 
                                previousNode = currentNode; 
                                currentNode = currentNode.neighbours[0]; 
                                Console.WriteLine(angle); 
                                if (angle > 0.001) 
                                { 
                                    fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                                    SolidOfRevolution = false; 
                                    break; 
                                } 
                            } 
                        branchKeyPointNodes.Add(currentNode); 
                    } 
                    } 
 
                    if (SolidOfRevolution) 
                    { 
                        return new List<SfMKeyPointGraphNode> { selectedNode }; 
                    } 
 
 
                    previousNode = selectedNode; 
                    currentNode = selectedNode.neighbours[1]; 
 
                    SolidOfRevolution = true; 
 
                    branchKeyPointNodes = new List<SfMKeyPointGraphNode>(); 
 
                //Dealing with Eccentric reducer when it is the entire part 
                if (currentNode.neighbours.Count == 1) 
                { 
                    foreach (object component in PipeSpoolManager.allComponents) 
                    { 
                        if (component is SfMReducerEccentric) 
                        { 
                            SfMReducerEccentric ReducerEccentric = component as 
SfMReducerEccentric; 
                            if (SfMPoint.distance(currentNode.keyPoint, 
ReducerEccentric.endPoint1) < PipeSpoolManager.minimumAcceptableLength || 
                                SfMPoint.distance(currentNode.keyPoint, 
ReducerEccentric.endPoint2) < PipeSpoolManager.minimumAcceptableLength) 
                            { 
                                previousNode = selectedNode.neighbours[0]; 
                                currentNode = selectedNode; 
                            } 
                        } 
                    } 
                } 
                while (currentNode.neighbours.Count > 1) 
                    { 
                        if (currentNode.neighbours.Count > 2) 
                        { 
                            fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                            SolidOfRevolution = false; 
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                            return fullKeyPointNodes; 
                        } 
                        else 
                        { 
                            if (SfMPoint.distance(currentNode.neighbours[0].keyPoint, 
previousNode.keyPoint) < PipeSpoolManager.minimumAcceptableLength) 
                            { 
                                double angle = 
SfMPoint.angleFromVectors(previousNode.keyPoint - currentNode.keyPoint, 
currentNode.keyPoint - currentNode.neighbours[1].keyPoint); 
                                previousNode = currentNode; 
                                currentNode = currentNode.neighbours[1]; 
                                if (angle > 0.001) 
                                { 
                                    fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                                    SolidOfRevolution = false; 
                                    break; 
                                } 
                            } 
                            else 
                            { 
                                double angle = 
SfMPoint.angleFromVectors(previousNode.keyPoint - currentNode.keyPoint, 
currentNode.keyPoint - currentNode.neighbours[0].keyPoint); 
                                previousNode = currentNode; 
                                currentNode = currentNode.neighbours[0]; 
                                if (angle > 0.001) 
                                { 
                                    fullKeyPointNodes.AddRange(branchKeyPointNodes); 
                                    SolidOfRevolution = false; 
                                    break; 
                                } 
                            } 
                        branchKeyPointNodes.Add(currentNode); 
                    } 
                    } 
                    if (SolidOfRevolution) 
                    { 
                        return new List<SfMKeyPointGraphNode> { selectedNode }; 
                    } 
                } 
                // If the selected node has 3 or more neighbours, the program can conclud 
that the first component is not a solid of revolution 
                else 
                    return fullKeyPointNodes; 
 
                return fullKeyPointNodes; 
            } 

/// <summary> 
        /// Getting the list of component that contains at least a key point in the 
minimum required model using a nested loop. 
        /// </summary> 
        /// <param name="keyPoints">List of key point nodes in the minimum required 
model</param> 
        /// <returns>List of components in the minimum required model</returns> 
        public static List<object> 
getMinimumRequiredModelComponents(List<SfMKeyPointGraphNode> keyPointNodes) 



129 
 

        { 
            List<object> components = new List<object>(); 
            foreach (object component in PipeSpoolManager.allComponents) 
            { 
                if (component is SfMCylindricalGeneric) 
                { 
                    SfMCylindricalGeneric cylindricalGeneric = component as 
SfMCylindricalGeneric; 
                    foreach (SfMKeyPointGraphNode keyPointNode in keyPointNodes) 
                        if (SfMPoint.distance(keyPointNode.keyPoint, 
cylindricalGeneric.endPoint1) < PipeSpoolManager.minimumAcceptableLength || 
                            SfMPoint.distance(keyPointNode.keyPoint, 
cylindricalGeneric.endPoint2) < PipeSpoolManager.minimumAcceptableLength) 
                        { 
                            components.Add(component); 
                            break; 
                        } 
                } 
                else if (component is SfMElbow) 
                { 
                    SfMElbow elbow = component as SfMElbow; 
                    foreach (SfMKeyPointGraphNode keyPointNode in keyPointNodes) 
                        if (SfMPoint.distance(keyPointNode.keyPoint, elbow.endPoint1) < 
PipeSpoolManager.minimumAcceptableLength || 
                            SfMPoint.distance(keyPointNode.keyPoint, elbow.endPoint2) < 
PipeSpoolManager.minimumAcceptableLength || 
                            SfMPoint.distance(keyPointNode.keyPoint, elbow.pcfCentre) < 
PipeSpoolManager.minimumAcceptableLength) 
                        { 
                            components.Add(component); 
                            break; 
                        } 
                } 
                else if (component is SfMFlange) 
                { 
                    SfMFlange flange = component as SfMFlange; 
                    foreach (SfMKeyPointGraphNode keyPointNode in keyPointNodes) 
                        if (SfMPoint.distance(keyPointNode.keyPoint, flange.endPoint1) < 
PipeSpoolManager.minimumAcceptableLength || 
                            SfMPoint.distance(keyPointNode.keyPoint, flange.endPoint2) < 
PipeSpoolManager.minimumAcceptableLength) 
                        { 
                            components.Add(component); 
                            break; 
                        } 
                } 
                else if (component is SfMTee) 
                { 
                    SfMTee tee = component as SfMTee; 
                    foreach (SfMKeyPointGraphNode keyPointNode in keyPointNodes) 
                        if (SfMPoint.distance(keyPointNode.keyPoint, tee.endPoint1) < 
PipeSpoolManager.minimumAcceptableLength || 
                            SfMPoint.distance(keyPointNode.keyPoint, tee.endPoint2) < 
PipeSpoolManager.minimumAcceptableLength || 
                            SfMPoint.distance(keyPointNode.keyPoint, tee.centrePoint) < 
PipeSpoolManager.minimumAcceptableLength || 
                            SfMPoint.distance(keyPointNode.keyPoint, tee.branchPoint) < 
PipeSpoolManager.minimumAcceptableLength) 
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                        { 
                            components.Add(component); 
                            break; 
                        } 
                } 
            } 
            return components; 
        } 
    } 
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Appendix C 

Class 1: 14 Cases 

 

Class 2: 15 Cases 

 

Class 3: 15 Cases 
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Class 4: 50 Cases 
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Class 4 continued 
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Appendix D 
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