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Abstract

The transition to a low-carbon energy economy will remain a cornerstone of national

energy policies of countries committed to the climate change accord for decades to come.

We highlight the need for transmission investment as one key policy instrument among

others to achieve an energy economy with lower dependence on fossil fuels. We propose an

enhanced role for investing in transmission capacity in support of large-scale inter-regional

electricity trade to allow effective fuel switching among countries through a physically con-

nected transmission system and functioning markets. A conceptual framework of Regional

Energy Hubs Regional Electricity Hub (REH) is proposed. The cost minimization model

for the transmission investment strategy integrates the:

1. key geopolitical parameter for countries that are geographically close in a region but

under different political jurisdictions, judged as stable and receptive to firm trading

arrangements,

2. economic parameter related to the fuel mix where the differences in a country’s

supply and demand characteristics are significant enough for allow mutual benefits

to be realized through cost reduction,

3. environmental parameter linked to a country’s carbon intensity that could benefit

from the resources of a neighboring jurisdiction with lower intensities, and

4. financial parameter for each country within a region capable of attracting investment

capital for a common interest project.

The proposed REH is an innovative framework that is the basis for a cost-effective

but environmentally beneficial strategy for integrating the energy supply mix of several
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countries. The countries are geographically contiguous but operate as different jurisdictions

with diverse geopolitical, economic, environmental, and financial constraints. For a regional

energy hub, the transmission capacity investments act as one of the key policy instruments

allowing recognition of the REH interconnectors as the links. We have applied the REH

Framework for two case studies: one in developing markets in South Eastern Europe and

a developed market in the North American context.

In the first case study, we have utilized the REH Framework’s geopolitical parameter

to select a set of countries with developing markets to form a regional electricity hub and

applied an economic dispatch model to minimize generation costs and reduce CO2 emissions

simultaneously in the newly formed REH’s total energy fuel mix. The preliminary results

for this case study indicated that the total cost minimization approach for the region results

in a net benefit in favor of the transmission investment. The REH enables transmission

capacity to achieve reduced cost generation and emissions by physically interconnecting

markets in a predefined region, essentially enabling fuel switching of carbon based power

generation.

In the second case study, we have utilized the REH Framework’s financial parameter

for a developed market, e.g., the PJM’s capacity market, to identify the potential value of

interconnectors by employing a financial option theory to value capacity options between

a generation and an interconnector. Results of our analysis for the existing and planned

projects provides strong evidence of the value of transmission capacity as an option within

the REH Framework and points to a pathway to achieve decarbonisation at lower costs

across a region instead of focusing only on investments in generation capacity.

Following ratification of the Paris 2015 Climate Change Accord, all national govern-

ments are committed to a reduction of Greenhouse Gas Emissions (GHG) within their

jurisdictions. This puts a premium on identification of practical and cost-effective path-
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ways for achieving the national targets for reducing GHG within a regional context. The

case studies demonstrate the critical role of a REH in delivering tangible benefits through

interconnectors that would otherwise not be achievable if each countrys energy system was

isolated from its contiguous neighbours.

The REH allows integration of a diverse mix of generation supply of different countries

to yield maximum financial value and GHG reduction potential through transmission in-

terconnectors. To enable the transition to a low carbon energy system of the future, REHs

offer an expedient pathway through development of transmission interconnection capacity

consistent with geopolitical, environmental and financial criteria developed here.
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Chapter 1

Introduction

The threat to the global climate arising from the use of fossil fuels and emissions of GHG,

is a primary driving force for the transition of the energy system away from fossil fuels to

non-carbon sources of electricity generation.

The pathways to a low-carbon energy economy are influenced by (a) supply and de-

mand, (b) technological developments, (c) evolution of markets and regulatory structures

and (d) geopolitical considerations at the national and regional levels.

For the supply and demand balance of electricity, historically, generation capacity has

met the demand (load) for a particular state, province or a country. Centrally planned

large-scale generation (coal, hydro and nuclear units in Giga Watt (GW) installed capac-

ities) were constructed, operated and owned by integrated utilities either privately owned

or by the state. The organizing principle of the electricity sector has been on meeting

demand with supply through a transmission and distribution system allowing control and

management of all flows within the jurisdiction.

However, the energy sector is now changing with increased emphasis on renewable
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energy resources such as wind, solar, biomass, geothermal and distributed energy resources

within the overall energy supply mix. These resources are not only spread geographically

but also exhibit variability in output that has an intermittent characteristic where the

generation source may not be available as a dispatchable resource to meet system needs

continuously. The emerging diversity of the generation resources introduces a level of

complexity different from historical experience.

Transmission lines in most of the developed countries are recognized as aging infrastruc-

ture, and the capability of this legacy system to meet the challenges of new intermittent

generation resources represents an opportunity for new interconnectors and regional inte-

gration of supply resources through electricity trade. Therefore, there is not only a need for

new construction of lines but also a need to rethink the way we look at transmission lines

to help us tap more into the availability of these intermittent renewable energy sources

(Hogan et al., 2011). There is also a greater role for transmission and distribution for a

”smarter” grid integration as electric powered vehicles become important sources of new

demand (ENTSO-E, 2017). The role of the electricity system is changing from a simple

focus on large-scale generation, and delivery to managing end-use energy services and to

accommodate distributed energy resources to improve overall system efficiency.

In this context, the role of electricity markets is also changing from getting the most

economical pricing of resources to the development of optimal investment strategies. There-

fore, the rationale behind the establishment of markets such as NordPool is shifting towards

absorbing excess energy generated somewhere to be consumed elsewhere. Electricity day

ahead markets operate well only for the baseload. With the integration of renewables into

the supply mix, their intermittent nature is also reflected in their pricing from Feed-in-tariff

(FIT) to Contract for Differences (CfD) contracting (Hern et al., 2013). It is expected with

the upcoming low-carbon energy economy energy markets should also handle these issues
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(ENTSO-E, 2017).

The geopolitical considerations of extraction and utilization of energy resources around

the world are also becoming important not only for producers of that commodity (natural

gas) but also for consumers and more importantly for the transporters of that resource

as seen in the recent Russian and Ukraine crisis (Gabriel et al., 2012). Crisis whether

geopolitical driven or through nature as in Fukushima nuclear accident, which had its

effect on LiquidNaturalGas (LNG) prices around the world, affect the markets.

From the climate change perspective, the emphasis on energy policies towards a carbon-

free future has been evident since the 1990s with the introduction of Kyoto protocol in 1997.

With governments adopting various forms of feed-in-tariffs, renewable portfolio standards

and policy support mechanisms for incenting the integration of the renewable sources into

their fuel mix, it is clear that climate change challenge will continue to shape the energy

sector developments from different perspectives (Mideksa and Kallbekken, 2010).

Global energy trends are putting a new set of pressures for the existing energy system as

we are progressing towards a low-carbon energy economy. The new pressure requirements

can be described as: robust and flexible as opposed to robust and rigid, which was the

historical requirement. One way of answering to the flexibility requirement could be the

transmission investment.

Transmission investment strategy can now be viewed through a different lens as new

energy market requirements emerge to address the twin challenge of GHG reductions and

adequate supply of cost-effective energy services. Therefore, regional electricity concept

comes into play from a transmission investment angle. We believe the role of transmission

interconnectors across a large region, connecting diverse markets, for effective utilization

of remotely located renewable energy sources for carbon mitigation needs to be evalu-
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ated. Transmission investment decisions and the for assessment of value requires a fresh

perspective.

The future energy markets will require robustness and flexibility to handle these afore-

mentioned pressures at the infrastructure level before it moves into the markets. So, one

option is to invest in the transmission capacity. This will not only help transition to low

carbon energy economy but also will help better optimize and utilize generated electricity

at the global scale with the help of transmission lines (Guy Chazan, 2017).

In summary, tomorrow‘s energy markets are facing many pressures from many per-

spectives whether supply and demand, technology, markets, geopolitical and the climate

change. It seems that these pressures will not ease and the reliance upon fossil fuels will

not decrease without a better understanding of the value that a regional electricity hub can

deliver. The long term goal to reduce carbon generation in the decades ahead will require

rapid integration of non-carbon sources of into the current global supply mix.

1.1 Literature Review

As mentioned in Sioshansi (2013), ”electricity market reform was intended to increase the

role of market forces throughout electricity sector and correspondingly to reduce the role

of political forces.” Reform drivers were based on competition, privatization, restructuring

and regulation as depicted in Sioshansi (2013) so that governments can leave the control of

the sector (monopoly) and transfer ownership to market players. The rationale was that

proper implementation of the reform by the drivers as mentioned above could result in

efficient investments, lowered costs and consequently better consumer experience whether

in reliability or in pricing of electricity as a commodity. Therefore, as the market economy

has evolved around the world, many countries have opted for, one form or another in
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reforming of their electricity market starting as early as the 1980s in Chile and the UK

(Pollitt, 2012b), and have had functioning liberal electricity markets since 1990s (Stridbaek,

2006). Reforms have produced many positive results in many countries in moving their

electricity sector from purely controlled by a government to market dynamics where prices

have become the better reflection of costs.

This section reviews the rationale and background on electricity market reforms around

the world and its impact on transmission investment processes before and after that re-

forms. Reform means separation of the electricity value chain activities so that each

activity is a different business entity and paving the way for the establishment of the

wholesale/retail power markets so that competition is encouraged. The literature review

summarizes the evolution of energy markets with a focus on the importance of transmis-

sion investment rationale and concludes on by explaining existing knowledge gap as well

as linking this gap with a clear definition of the research problem.

1.1.1 Electricity markets

There are four main parts in the electricity sector value chain: generation, transmission,

distribution and market activities. In the generation, historically, electricity is generated

by many different technologies depending on the heat source: coal, oil, gas or nuclear

where the heat energy is used to heat the water to get steam, which turns the steam

turbines coupled to a generator where electricity is produced. Transmission serves the

purpose of transmitting electric power to distant locations. Once electric power reaches a

certain location or a region, then it is distributed to a final consumer via the distribution

network. Before the deregulation of the electricity industry, however state(s) around the

world has seen vertically integrated utilities in which power generation, transmission, and
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distribution assets are organized under a single publicly owned entity (Joskow et al., 2008).

Central planning agencies have overseen planning, investment, and execution stages before

the restructuring. After the deregulation, states have separated these value chain activities

into generation, transmission, and distribution (Cámara, 2013). The generation and distri-

bution assets have been privatized whereas transmission has remained a natural monopoly

where pricing was regulated, and open access to transmission services are provided.

Historically after the reform, electricity market enactment had somewhat different ratio-

nale than today‘s electricity markets for developing and developed countries. For example,

Australian and New Zealand experience has been for better management of the hydro re-

sources so that irrigation can be optimized for agriculture. The NordPool market, on the

other hand, is due to its participating countries economic cooperation strategy and elec-

tricity sector was an extension of this cooperation. Whereas PJM had started out as part

of the North American Electric Power System, which consists of Western Interconnection,

Eastern Interconnection, and Electric Reliability Council of Texas (ERCOT) had economic

and reliability rationale (Bhattacharya et al., 2012).

Electricity markets have the following value chain players: generators (state-owned or

private) are to generate electricity, Transmission System Operator (TSO) to operate, con-

trol, balance the system physically to ensure security, distribution (private) to operate the

system and distribute to the electricity to end user, power traders (in wholesale markets)

to facilitate/enable trading among the market participants to balance their portfolio of

customers, retailers to sell electricity to end users, ISO and Power Exchange (PX) are to

efficiently administer the financial settlements of delivered energy. The arrangement of

physical energy flows (trading) to end consumer, financial and administrative transactions

(charging) define the fundamentals of market designs of that particular market, which may

change from market to a market (Chawla and Pollitt, 2013). Therefore, market designs
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in North America and European Union (EU) are different in handling the roles of those

mentioned above.

In EU and Nordic Countries operation of day ahead markets where double-sided auction

(offers from generators and bids from large-scale buyers) takes place to identify the market

clearing price of physical trading of baseload (minimum level of demand over a time), peak

(maximum level of demand over a time) or off-peak (opposite of peak - where low demand

over a time) products. Intra day market allows for the adjustments before the real-time

market and finally spot or real-time market takes place for physical balancing of the electric

system. Also, financial trading occurs for baseload or peak products. For transmission,

operation of EU and Nordics countries are as follows: (i) transmission capacity allocation

method for bilateral trades (physical or financial transmission rights or options), (ii) trans-

mission capacity calculation method for day ahead market via flow- based market coupling

for the EU or market splitting for NordPool, (iii) transmission capacity allocation method

for the day ahead market via Implicit auction of inter-zonal capacity and congestion rent

for intra-zonal transmission. Market clearing price is set at the zonal level.

In North America, PJM and Midcontinent Independent System Operator (MISO) mar-

kets are typically composed of four markets: energy markets, ancillary services, bilateral

transactions, financial transmission instruments and capacity markets. Energy markets

have two parts: (i) spot (real-time) market, and (ii) forward day-ahead market. The an-

cillary services market, similar to intraday market in EU , have: (i) regulation of real

time market, and (ii) reserve day ahead market and bilateral trades (Over the Counter

OTC- in EU) occur in two forms as physical and financial. Financial transmission markets

have two typical markets: (i) financial transmission right, and (ii) auction revenue rights.

Market clearing price is set at the nodal level. This review has not considered the supply

offers/demand bids processing of the electricity markets. However detailed information
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from the EU and North America comparison can be found in Imran and Kockar (2014).

The lessons learned with the electricity sector deregulation also clarify the issues and

challenges around the electricity markets and transmission investment. Although many

standard prescriptions exist for the full deregulation and liberalization of the sector as men-

tioned in Hunt (2002) and Joskow et al. (2008), they have indicated that a well-functioning

transmission investment framework is needed for efficient markets. As mentioned earlier,

as wholesale markets are developed, it has introduced some significant problems such as

congestion. Hence this hinders the efficient operation of wholesale markets even further.

Many of the countries, regions, and markets did not see transmission capacity in moving

parallel with the demand and new capacity. The regional investment in transmission ca-

pacity also had problems in many of the countries. Joskow and Tirole (2005) indicated

that the regional transmission expansion capacity was realized in ERCOT but this was

not sufficient enough because it was not part of the North American system. Therefore,

markets were not coordinating the efforts needed to communicate between the markets,

and one reason was a lack of market design similarities (Kassakian et al., 2011).

With the aforementioned global energy trends of the previous section, the transmission

has a more significant role in energy markets around the world in integrating upcoming re-

newable sources, connecting markets with mutually beneficial energy fuel mixes, increasing

wholesale trading, and reducing market power (Kassakian et al., 2011).

The current energy markets and their design will be insufficient in answering future

requirements due to aforementioned reasons. Since the fundamental rationale behind it

(irrigation, optimized use of hydros, economic efficiency) was different than today‘s and

future requirements of energy. Therefore, the future energy markets will require a different

rationale for their foundation: optimization of the world energy resources cooperatively:

moving from a single view of parameters considering only the economic side to a wide
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array of parameters considering: political, economic, financial and environmental issues.

Transmission investment may be one of the enablers of these requirements.

Today’s electricity markets around the world must address a number of key issues with

respect to the climate change, infrastructure as well as market designs as follows:

• The Climate change and its consequence of seeking reductions for in emissions (CO2,

NOx) around the world have been recognized by the governments for years. Moreover,

the industry has also recognized it and started to take action towards it. Hence,

concepts such as the low-carbon economy or low-carbon energy market, low-carbon

growth have been adopted by the industry and the governments work together to

better manage the transition into this new era by switching to renewable energy

resources or implementing energy efficiency measures (IPCC, 2017).

• Deciding on investment and/or replacement in value chain infrastructure: in gener-

ation (i.e., coal power and/or nuclear power plants); integrating renewable sources

(Schumacher et al., 2009) and storage into their system (Pollitt, 2016); increasing

energy trading among countries by connecting markets (Newbery et al., 2016); de-

ciding on investment and replacement in transmission system (Hogan, 1999) while

increasing reliability upgrades, generation interconnection, reducing congestion;

• overcoming market design issues preventing coordination among countries (Imran

and Kockar, 2014); while reducing market design differences (Kassakian et al., 2011);

and promoting regional coordination (Oseni and Pollitt, 2016).
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1.1.2 Transmission investment

This section briefly summarizes the before and after effects of restructuring on transmission

investment and draws attention to the upcoming global energy trends from a transmission

investment perspective and points out the knowledge gap today.

Prior to restructuring, central planners of a state planned the transmission investment

activity along with the generation activity. The transmission has acted as the highway

for delivering electrical energy between the generation and the load. Traditionally, it was

designed to meet the expected demand in the future within a market or a country. The main

rationale for transmission investment was: technical reliability and economic efficiency,

which has resulted in an overcapacity or lumpiness (Joskow et al., 2008). Transmission

investment decisions were primarily based on matching the demand (load) with generation

requirements to maintain the system reliability (Joskow et al., 2008).

After restructuring, with the development of privately owned power generators and

the wholesale trading had caused transmission capacity to be used efficiently not only

between the utilities but also between regions as well. Although this has caused stress

in the already aging transmission infrastructure, it has helped the wholesale markets to

become more liquid via transferring large bulks of power between regions (Pfeifenberger,

2012).

During that period, transmission investment has suffered from a long lag of investment

into the markets due to its monopolistic feature (Joskow and Tirole, 2005). This has also

caused congestion line failures and then cascading errors of voltage and frequency stability

problems. Many solutions have been developed to overcome the transmission investment

hurdle ranging from fully merchant (market) based forms to fully regulated forms such as

Financial Transmission Rights (FTR) and Physical Transmission Rights (PTR) (Pollitt,
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2012a; Rosellón et al., 2011).

In this process, transmission have been thought of saving fuel from the supply mix, and

generation capital, and more importantly complementary or substitutable as indicated

by Lévêque (2007). It also improves the system reliability and potentially removes or

mitigates market power. But it has always been a difficult task to assess the cost/benefit

measures of the investment process (Joskow et al., 2008). Therefore, economic benefits and

technical reliability parameters only helped during the regulated period. However, during

the deregulated phase many projects were canceled or mothballed.

One of the factors affecting the transmission investment process is also the bottom-up

nature of the planning step. It has been studied in the literature extensively by concen-

trating on economic benefits and equilibrium models which may not have helped with the

real transmission investment problem that is faced today. What has missed in those mod-

els was small scale, transmission planning conducted by utilities not considering regional

integration (Lévêque, 2007).

Transmission development has had difficulty attracting private sector investment pri-

marily because it is viewed as a public good similar to a highway. There are a few

transmission projects built by the private sector and they rely on FTR as the basis for a

business case. Our goal in developing the REH concept is to show that transmission can

bring a higher option value to an investor, and the hub concept of transmission integrated

with diverse generation across boundaries among many seen above, then this would be an

advancement of the principle of flexibility coupled to economic value.

Currently, decision-making process for transmission investments is still heavily influ-

enced by the monopolistic nature of the transmission system infrastructure. The dichotomy

arises from a deregulation effort that was primarily confined to the generation and distri-

11



bution of the regulated utility assets, but transmission system ownership remained as a

regulated monopoly and this, in turn, caused transmission investments to lag behind the

generation investment (i.e., centralized transmission planning versus decentralized gen-

eration investments) (Pfeifenberger, 2012). Although several options ranging from pure

merchant to fully regulated options were developed to incentivize investments, the trans-

mission system could not keep up with the demand and new emerging generation capacity

with increasing share of renewable generation with variable and intermittent output on the

system. Transmission investments initially flourished in the electricity markets in several

countries (e.g., United Kingdom UK, United States US, Norway, Sweden) led by a few

TSO (e.g., National Grid, Pennsylvania-New Jersey-Maryland PJM, Stattnet, Swenska

kraftnat, respectively), but further developments of the wholesale markets have not been

robust with the consequences that congestion is notable, the investment and integration

pathways are unclear and regional capacity planning issues among the markets and as the

regions are emerging (Ramachandra, 2009).

1.2 Research Problem Definition

Global energy trends pushing the electricity sector toward a low-carbon energy economy

will require:

• integrating the geographically distributed (onshore or offshore) of new renewable

energy resources,

• considering of the effect of climate change on the electricity markets,

• taking into account the changing hydrological conditions,
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• adding of the new demand growth, distributed generation capacity investments, and

• capacity to absorb energy shocks through development global and/or regionally re-

sponsive systems that are integrated and minimizing market interdependencies of

electricity and gas products.

There is a need for a radically new approach to reconsider the transmission investment

from different perspectives so that it can effectively support the transition to a low-carbon

energy economy. One approach to address the challenge through consideration of trans-

mission investments as part of a ”Regional Electricity Hub” concept.

All the above-mentioned challenges, as well as convergence with the climate change pol-

icy constraints, particularly the effect of climate change on electricity markets as argued

by Mideksa and Kallbekken (2010) can be overcome by a novel (top-down) approach to

transmission investment strategy in the evolving organized electricity markets and energy

policy requirements. Besides providing engineering reliability and facilitating economic

trade as the two primary objectives of transmission investments (Conejo et al., 2016), we

propose the concept of a REH that integrates key geopolitical, economic, environmental

and financial factors to foster investment decisions for transmission adequacy. A REH

enabled through requisite transmission capacity becomes an investment option for regional

optimization of diverse supply resource needs to come into play from similar concepts in-

troduced earlier (FERC, 2011; OFGEM, 2010; EC, 2015). We argue that transmission

has a positive and increasing role in the evolving convergence of climate change policies

as they relate to connected markets, integration of large amounts of renewable generation

and removal of congestion bottlenecks in the system. The goal is to optimize underuti-

lized generation capacities over a wide geographic area through additional transmission

interconnectors and to assess the benefits from a regional perspective that would sup-
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port a low-carbon energy economy across several independent jurisdictions and countries

(Aguado, Quintana, Madrigal, and Rosehart, 2004; EPRI, 2014; Baritaud and Volk, 2014;

Newbery, Strbac, and Viehoff, 2016; IEA, 2016; Oseni and Pollitt, 2016; Boffa and Sapio,

2015).

In this context, REH is a transmission investment model to provide key insights to

the policymakers in achieving a low-carbon energy transition regionally. Therefore, we

build upon the existing body of knowledge on transmission investment approaches to help

clarify the convergence of two high-level policy goals: energy policy as an integral part of

climate change mitigation and adaptation strategies. The REH approach has the potential

to provide key insights on how the transmission investments and effective pathways for

enhanced electricity trade can pave the way for a broader decarbonization strategy at a

lower cost to all consumers. The REH Framework can serve as a platform to:

1. identify the need for further investigation into adaptation strategies such as trans-

mission planning, generation expansion (i.e., renewables), demand side response, or

storage. However, the purpose of this study is not to investigate these adaptation

strategies individually, which is already studied extensively, but

2. capture and consider them from a regional perspective, so that transition to low-

carbon energy economy is effective.
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1.3 Motivation, Approach and Objectives of the Re-

search

The motivation of this research is to identify regional electricity hub strategies required

for future flexibility of the organized energy markets and countries in answering common

challenges such as:

• reducing the overall GHG emissions for a geographic region,

• utilizing idle energy within the region to compensate for the growing demand,

• providing generation flexibility across the region,

• providing increased reliability of the system,

• increasing energy trading among countries to increase overall social welfare,

• connecting - transmission, pipeline, or a LNG terminal,

• nudging investors more towards non-GHG polluting technologies, and

• creating a regional electricity hub that serves the region.

Therefore, overall thesis approach is based on:

• capturing global institutional energy knowledge gathered through platforms such

as: conventions, world trade agreements, energy exchanges, or markets in answering

common challenges stated above, and

• advancing this knowledge by applying standard operation research and financial op-

tion methods.
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Then, the research objective is to originate ways to answer the motivation by utilizing

the global institutional knowledge to:

1. develop a definition of the concept of REH to allow the need for transmission invest-

ments be better identified and tested against a full set of considerations that include

the geopolitical, financial, environmental and economic perspectives (i.e., the REH

parameters),

2. develop a framework for identifying the REH and the key parameters so that the

benefits for the region are better ascertained and measured,

3. develop a generic mathematical model based on (1) and (2) above, and to apply this

model to the evaluation of a case study for developing markets, Romania-Turkey

transmission investment,

4. quantify benefits for the defined region according to the REH parameters,

5. utilize the application of REH Framework for developed markets, PJM, and

6. create a tool for identification of flexible assets serving the climate change objectives

bringing policy makers, developers, and investors together to explore climate resilient

asset opportunities from a regional perspective.

1.4 Overview of the Thesis

As outlined in Section 1.1, there are two overarching long-term energy policy requirements

for the global energy sector:

1. enabling the transition to low-carbon energy economy, and,
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2. evolving global electricity markets to support a range of cost-effective technological

options at a regional level beyond the confines and constraints of one jurisdiction or

country.

In this work as seen in Figure 1.1, we highlight a strategic energy policy view to ad-

dressing these long-term challenges by introducing a Regional Electricity Hub concept.

Figure 1.1 illustrates a strategic view of energy policy considerations and requirements

for a typical asset investment cycle in an electricity market in any country with a typical

timeline planning, construction and operation of these assets for optimal outcomes. These

development cycles are based on similar standards across jurisdictions that address the

requirements of resource adequacy, reliability, and flexibility including approaches to ca-

pacity options. The general schematic is a characterization appropriate for developing or

developed markets. This investment cycle is usually determined at the individual corporate

or country level.

However, when a group of countries in a contiguous geographical region as seen in Figure

1.1 can operate through an integrated enabling market with a long view (i.e., beyond

ten years and longer), we see an opportunity for new value creation and cost-effective

transition to a low-carbon energy economy by considering capacity options from a regional

perspective.

REH Framework enables neighbouring countries integrated through markets to invest

in common interest assets (such as an interconnector) bringing to practical realization the

most capable options for a region. This type of ”common interest” but market driven asset

development cycle can be achieved by developing and developed markets.

Therefore, this thesis details the REH Framework and is organized as follows: Chapter

2 introduces the Regional Electricity Hub Framework and its major components: major
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parameters, indicators, and developing and developed market case studies. Chapter 3

reviews and details the REH Framework application process to developing markets to form

a REH, Chapter 4 reviews and details the framework to developed markets to interconnect

a REH, and Chapter 5 concludes with energy policy implications of geopolitics and finance

with a future research direction related to the REH Framework.
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Figure 1.1: Strategic Energy Policy View: Markets’ Evolution to Capability Options
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1.5 Thesis Contributions

1. The development and definition of a ”regional energy hub” to support the basis for

transmission investments,

2. A standardized energy policy tool for decision makers’ utilization at a regional level

in transition towards a low-carbon energy economy,

3. The REH Framework and the analytical methods supporting the framework offers an

innovative policy advance for evaluation of the readiness and capability of countries

in reaching their targets and goals for a low-carbon energy economy exploiting the

full benefits of regional integration. Being part of a Regional Electricity Hub offers a

country the option to accelerate its decisions towards becoming a less carbon intensive

economy at a lower cost, and

4. The REH Framework and the supporting tools and method can be applied as a

platform in testing the feasibility of a transmission investment strategy to selected

regions around the world.

1.6 Chapter 1: Summary

1. In light of the Paris Agreement, countries now around the world need to transit to-

wards low carbon energy economy states while accounting for the country based -

energy policy and evolving electricity market requirements, which alltogether estab-

lish the requirements for tomorrow.

2. There are many options as to how to reach to those targets. However, when we look
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from a long-term strategic energy policy perspective, one option could provide wide

and deeper decarbonization at the regional scale.

3. We propose a REH concept: optimizing regional generation sources via more trans-

mission investment into transmission capacity and help invest in climate-resilient

assets, so that transition towards low-carbon energy economy is effective.
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Chapter 2

Method

2.1 Why Regional Electricity Hub?

2.1.1 Rationale

There are many useful attempts around the world towards creating a REH concept, but the

framework and the parameters are not clarified for the hub or the region (Kassakian et al.,

2011; Joskow et al., 2008; Bower, 2002). Many examples have been already moving in that

direction, but without an appropriate definition for the REH. For instance, it is one of the

European Union’s objectives to create a single energy market by integrating regional elec-

tricity initiatives (Puka and Szulecki, 2014; Dimitrova et al., 2016; ECF, 2010). Another

study examines the use of Canada’s clean electricity exports as a route to a better energy

strategy for North American region (Nathwani, 2013). Tabors (2009) also shows the eco-

nomics of change before and after connection in the Gulf Countries Council region, while

Al-Asaad (2009) points out the creation of regional electricity markets. Gadonneix et al.
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(2008) argue that energy crises that have significantly dented economic growth in several

Latin American countries could have been relieved if there had been adequate capacity and

cooperation in the regional energy system. For South-East European region, Bajs (2003)

studies the importance of the regional transmission system planning. Koritarov et al.

(2004) investigate the economic and financial implications of regional electricity intercon-

nections in South-Eastern Europe. Udrea et al. (2014) examine the optimal configuration

of transmission corridor among countries Moldova, Ukraine, and Romania. Khalfallah

(2015) discusses that ”A super grid connecting the two shores of the Mediterranean where

it could help Europe meet its targets for integrating renewable energy.” Kravtsov (2009)

points out that the Central Asian countries Kazakhstan, Afghanistan, Uzbekistan are part

of the Central Asia Regional Economic Cooperation Program, where transmission invest-

ments can link these countries in delivering electricity. Musaba et al. (2006) discuss the

Southern African Development Community where the region is endured with a lot of power

generation potential, and integrated transmission expansion is the essential next step in

bringing the economic efficiency to the region. Rana and Karmacharya (2014) points out

that developing Nepal from land-locked state to a land-linked state would connect it with

India by the cross-border transmission link. Chattopadhyay and Fernando (2011) argue

that the improving cross-border trade by expanding on more transmission capacities in

South East Asia would have economic, environmental and reliability benefits that can be

captured under a new regulatory framework. Finally, Armar (2009) discusses creating re-

gional power pools as a how to kit. Many examples could be extended to include in the

aforementioned regional attempts.

It is clear that there have been many attempts in defining a framework for REH as

outlined above. However, a generic framework would facilitate the investment process re-

quired for transmission expansion and hence, deliver the benefits regionally for the common
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challenges faced today.

2.1.2 Approach

We have developed a hypothesis for inter-TSO transmission investment, where the invest-

ment is considered as strategic for all countries in the region rather than focusing purely

on economic efficiency and reliability of the individual country (Joskow et al., 2008). Such

strategic investments would also facilitate tactical investments (e.g., renewable energy in-

vestments) in these countries. Moreover, operational issues such as congestion within and

neighboring markets can be relieved with additional transmission capacity. It would also

allow large volumes of power exchange among countries.

In order to elaborate on what is discussed above, Figure 1.1 and Figure 2.1 show three

hypothetical countries/TSOs within the same region, but politically separated from each

other. In Figure 2.1 on the left, these countries are not physically interconnected, whereas

on the right side of Figure 2.1 they are interconnected by transmission lines.
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Figure 2.1: REH Concept: not connected (left) versus connected (right)

It is assumed that each country in Figure 2.1 has their unique fuel mix and demand

characteristics, where country 1 with a clean fuel mix (i.e., there are no GHG emissions

for its electricity generation within its political boundary), country 2 with a dirty fuel mix

(i.e., substantial emissions exist for its fuel mix), and country 3 with a partially clean fuel

mix (i.e., some clean and some dirty) fuel mix. Also, assume that all countries have unique

seasonal and fluctuating demands.

Through this hypothetical example, it can be noted that the left side of Figure 2.1 would

not lead to a low-carbon energy economy neither on a country basis nor within the same

region. When countries 1, 2, and 3 are not interconnected, fuel mixes used for electricity

generation in each country is not optimized to reduce their emissions. However, the right

side of Figure 2.1 may lead to a low-carbon energy economy either on a country basis

or within the same region. When these countries are interconnected, overall emissions
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of the region can be minimized by using available and cleaner fuel mix of any country.

Therefore, interconnected countries may be in a position to optimize their fuel mixes,

since they rely on a common interest project in the same region as well as they strive

for a low-carbon energy economy. Such a common interest project (e.g., interconnector

or transmission investment) also provides generation flexibility, reduced GHG emissions,

and access to renewables as described earlier. In this context, REH is a geographic area

where the boundaries of the countries are not defined by the political borders, but defined

by the potential electrical energy resources as shown in Figure 2.1, in which all countries

of the hub can jointly sustain. Hence, the REH hypothesis is that if the neighboring

countries with mutually beneficial fuel mixes have common electricity market challenges

and a common interest project such as a transmission investment, they can cooperate by

considering the REH factors and then there can be a case for these countries to consider

this transmission investment in transition to low-carbon energy economy. Consequently,

we define ”low-carbon energy economy” as the reduction of GHG emissions in a country’s

fuel mix.

In conclusion, we argue that transmission investment is one of the enablers that acts

as a substitute or complementary to generation investments (i.e., substitute for dirty fuel

generation investments and complementary to clean fuel generation investments) and fa-

cilitates the solutions for the short-term (e.g., energy trading) to long-term (e.g., climate

change) problems.

2.1.3 Benefits

Chang et al. (2013) and Frayer et al. (2018) indicate that today’s transmission invest-

ment realities need to take into account all the short to long-term benefits as well as
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regional considerations to extract the real value of the transmission investment shown in

the hypothetical example. One particular method that estimates the benefits among many

transmission expansion projects by a cooperative game - Aumann-Shapley approach is

provided by Banez-Chicharro et al. (2017). From that perspective, we propose a top-down

REH approach where the most common benefits such as increased reliability, decreased

transmission congestion, integrated renewables, reduced losses, reduced resource adequacy

requirements, increased connection, and increased competition in power markets are in-

cluded and more importantly, idle capacities are regionally optimized towards a low-carbon

energy economy. In this research, a REH Framework for transmission investment is pro-

posed that can provide the following major benefits:

1. geographic: (i) increased connectivity, (ii) increased competition and consequently

financial liquidity, (iii) flexibility for energy trading where common interests of coun-

tries are accounted in an integrated manner, and (iv) mitigation of weather and load

uncertainty.

2. economic: (i) lower costs and consequently lower prices, (ii) generation flexibility

by region’s complementary fuel mix (different country fuel mixes to be pooled as a

regional energy fuel mix) meeting peak consumption, and allowing access to lower

cost generation, (iii) utilization of idle generation capacity within a region to com-

pensate for the growing demand, (iv) substitution of capacities across generation and

transmission facilities, (v) increased employment, increased economic activity, and

(vi) reduced congestion due to improvements in transmission capacity.

3. environmental: (i) lower carbon-footprint in a region and mitigation of air pollu-

tant emissions, (ii) enabling integration of renewable energy sources and distributed

generation, (iii) exchanging for the cleaner form of electricity generation.
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4. financial: (i) filtering the best investment alternative, and (ii) cost/ benefit analyses.

2.2 REH Framework

REH Framework, developed by Guler et al. (2018), is designed around four parameters:

geopolitical, economic, environmental, and financial. Geopolitical parameter allows coun-

tries, markets, provinces to form broader alliances, and essentially, nudges them to rely

more on trading than isolation among themselves. Additionally, the parameter rests upon

four indicators (i) international economics, (ii) climate change with respect to transnational

energy policies, (iii) seamless energy markets, (iv) energy market regulations to capture

the global energy sector related to institutional knowledge. Geopolitical parameter enables

REHs to be formed for a region’s benefits developing out of these indicators. Economic pa-

rameter on the other hand optimizes the power generation capacities of mutually beneficial

fuel mixes of this newly formed REH, resulting for the cost reduction for the region. Envi-

ronmental parameter optimizes the region’s emissions rather than nation’s emissions, which

effectively helps management of carbon reductions to be able to meet the Paris agreement

commitments. Finally, financial parameter ultimately optimizes and potentially mobilizes

resources towards a common interest project. Hence, the REH Framework manages the

transition towards a low-carbon energy economy for the interest of energy policy makers,

investors, and for the public.

Although REH Framework has two major parts as seen in Figure 1.1: indicators and

parameters, the material effect of the REH Framework, however, is best seen in its appli-

cation in case studies. We think that case studies best represents the evolution of markets

from developing to developed markets perspectives. For a market to be considered as a

developed market, it needs to have a liquid physical as well as a financial market to show
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the direction of the evolution of the markets. Therefore, two types of case are studied to

best represent what may be available as potential scenarios globally : (i) developing elec-

tricity markets where we assume that markets have recently been restructured and there is

enough evidence for a functioning physical market where geopolitical parameter in forming

of REHs will be the starting point in the framework, (ii) developed electricity markets

where we assume that markets have been restructured and there is enough evidence for

a functioning physical market where financial parameter in interconnecting of REHs will

be the starting point in the framework. Figure 2.2 shows the REH Framework detailed as

follows:

Figure 2.2: The REH Framework
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2.2.1 Geopolitical parameter

The geopolitical parameter represents a broader alliance of countries, states or provinces

where countries are geographically close or in different jurisdictions, but ultimately rely

on trading rather than isolation. With the geopolitical parameter as an enabler, these

countries or TSOs can benefit from increased trading in the same region where trading

capacity is limited by existing interconnection (i.e., transmission) among the countries.

However, today’s energy geopolitics has been historically considered competitive/extractive

in nature and mostly results in zero-sum games among the players, which may even halt

trading among players in the long run (Austvik and Rzayeva, 2017).

Therefore, we propose that if geopolitics can be utilized to create a cooperative and

inclusive field in the energy realm by utilizing the existing global institutional knowledge

(deposited in agreements, platforms, connections, and exchanges) to identify REH coun-

tries, the transition to a low-carbon energy economy would be more effective. We think

that the global institutional knowledge has enough evidence in place to support this coop-

eration. Hence, investments in common projects, such as transmission investment, could be

accelerated, which would result in further slowing down of the climate change effects. For

this reason, we have developed a geopolitical parameter pertinent to the energy realm based

on four drivers where it best represents the global institutional knowledge, and where we

believe the most cooperation could occur in the optimization of a region’s energy resources.

These are (i) international economics, (ii) climate change with respect to transnational en-

ergy policies, (iii) seamless energy markets, and (iv) energy market regulations. Moreover,

specific indicators can be developed out of these four fundamental drivers which would

help forming a REH effectively.
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International Economics

With international trade barriers removed after the Second World War, goods and services

have been traded across the borders around the world. The capital has followed the same

suit and has financed the international trade since Bretton Woods IMF (2017). With

the globalization effect during the 1990s, this move has helped shape the markets, trade

patterns, and financing needs around the world. In fact, General Agreement on Tariffs and

Trade (GATT) and World Trade Agreement have born in 1948 and evolved into World

Trade Organization (WTO) in 1995 (WTO, 2017b).

In that sense, Weber and Peters (2009) argue that ”trade presents challenges to climate

policy through carbon leakage and competitiveness concerns, but also potential solutions

through the use of cooperative trade agreements, technology transfer, or carbon tariffs

against recalcitrant nations”. Therefore, we argue that institutional knowledge regarding

international economics from international trade and finance perspectives are further de-

veloped since the 1970s and can be utilized to develop indicators for energy markets. In

our study, we have adapted these indicators that show the range and direction of trade re-

lationship. On the one hand, the range can represent the existence of political union trade

agreements or regional trade agreements, and on the other hand, it can indicate research

studies advancing these regional trade agreements. We think that international economics

is an externality that can be internalized while forming a REH.

Climate change with respect to transnational energy policies

United Nation’s Framework Convention on Climate Change (UNFCCC) is one of the global

institutional knowledge base that helps combat climate change by limiting average tem-

perature increases. It has several essential parts. The convention, signed by 197 countries,
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is indicating that climate change and its adverse effects are well known by the parties.

The Kyoto Agreement (the second part, which entered into effect in 1997 and signed by

192 countries) indicates that the signing parties agreed upon the emission reduction tar-

gets that are legally binding. The Paris Agreement (adopted in 2015 and ratified by 152

countries so far) also indicates that the convention’s aim to accelerate and intensify the

actions and investment needed for a sustainable low carbon future.” The convention’s in-

stitutional knowledge can be further developed for indicators to be used in energy markets.

See UNFCCC (2017) for detailed information.

Similar to international economics, we have adapted indicators for a country advancing

towards a low-carbon energy economy. In this case, the range can represent being a party to

the convention or, on the other hand, being a party to the Paris Agreement. In this context,

Keohane and Victor (2013) have argued that ”the structure of international cooperation

on some energy problems, such as climate change, is prone to deadlock. But by recrafting

these problems usually by making them ”smaller” and focusing on the areas where national

interests are better aligned for international cooperation participating countries can avoid

an impasse”. Therefore, in this research, we propose that climate change effects could be

best attacked by investing in common challenges (i.e., national interests) regionally rather

than nationally. In this case, the number of countries involved in that specific common

project would be determined by the geopolitical parameter.

Seamless energy markets

Electricity markets around the world have liberalized, progressed and gathered institutional

knowledge in the form of day-ahead, futures/ forward, options or capacity markets. How-

ever, as the renewables deployment into electricity markets has increased, it has required

a geographic coverage to obtain the least cost generation output out of the available en-
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ergy sources. Particularly, without enough available capacity, transmission investment has

lagged the generation expansion plans as it was originally designed for reliability, but not

for the efficient use of resources in a region. Therefore, general electricity market challenges

mentioned in Chapter 1 as well as in IEA (2016) need to be integrated systematically and

regionally towards seamless operations as argued by Baritaud and Volk (2014) and Boffa

and Sapio (2015).

Similar to indicators of climate change policies along with transnational energy policies,

we have adapted indicators that would best reflect the direction of the development in the

electricity markets, whether liberalization efforts take place in a specific country or there is

an operational futures/forward market. An important issue, in this case, is that if there is

an improving bilateral agreement in a trade relationship formed between parties, there is

a possibility for building cross-border connectors as argued by Fischhendler et al. (2016).

Also, if the trade has resulted in mistrust, then it is possible that investment in transmission

may not be implemented. In order to capture this perspective, we have included additional

indicators showing whether there is already an investment plan for a connector in place or

not.

Energy market regulations

We have not adopted any indicators to reflect the institutional knowledge on market reg-

ulations as these are usually country specific. However, we argue that energy market

regulations covering transparency platforms, financial regulations (whether physical or fi-

nancial trades) and the role of institutions should be at least similar. More importantly,

policies covering optimization of resources and actions on climate change should be inline

regionally, but this is not the scope of this research.
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Essentially, the geopolitical parameter narrows down to an identification of countries

that can form a regional electricity hub to allow the quantitative determination of the cost

minimization and emission reductions through a model to show the benefits of transmission

capacity.

In this research, this is performed through utilization of the indicators born out of

aforementioned four drivers of the geopolitical parameter. Detailed representation of these

indicators will be depicted in the first case study.

Hence, the geopolitical parameter is the first step in a feasibility assessment of additional

transmission capacity that can utilize and optimize the energy resources of the whole region

while promoting a low-carbon energy future.

2.2.2 Economic parameter

This parameter optimizes capacities of mutually beneficial fuel mix and demand charac-

teristics of countries, states or provinces, regionally and ultimately leads to regional power

generation cost reduction reflected in the corresponding functioning electricity markets.

2.2.3 Environmental parameter

This parameter optimizes emissions of mutually beneficial fuel mixes of countries, states

or provinces regionally and ultimately leads to a regional emission reduction.

2.2.4 Financial parameter

This parameter optimizes financial resources towards a common interest project by compar-

ing with uncommon ones in a regional setting, and ultimately leads to optimized adaptation
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strategies towards a low-carbon energy economy for the region.

Once the corresponding REH is selected and evaluated, a common interest project for

the REH can be achieved. Overall net benefit from these REH factors would lead to an

investment decision while unlocking the region’s potential as a REH. In this context, we

propose a formal definition of REH as follows:

Regional energy hub is an intersection point of all energy (electricity) supply and de-

mand routes geographically originating, transiting, ending (centralizing) in a pre-defined

region where there is an ultimate net benefit for that region from the following perspectives:

geopolitical, environmental, economic, and financial. When the net benefit is evaluated

(e.g., it is positive), there is a need for a transmission investment for that region.

The final REH Framework is presented in Table 2.1.
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2.3 Chapter 2: Summary

1. Regional electricity hub as a concept has been explored sporadically in various parts

of the world with a non-standardized approach.

2. To further develop the REH concept, we studied a wide range of planning concepts,

practices and research approximately 18-20 studies - from around the world to identify

key underlying theme and indicators of energy markets, optimization of capacities

and emissions regionally.

3. Then, through the synthesis of these indicators, we developed REH parameters:

geopolitical, economic, environmental, and financial. These are the core of the frame-

work. However, no framework is complete without verification of these parameters

in case studies.

4. Then, considering the different phases of development of electricity markets around

the world, we streamed our case studies into two: developing or developed markets.
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Chapter 3

Case Study 1: Forming a REH in

developing markets: Romania -

Turkey Interconnector

3.1 Overview

A recent study regarding a subsea cable between Romania (RO) and Turkey (TR) had

been completed by Guler et al. (2013). This project has been rejected due to economic

unfeasibility, i.e., only considering market price differences between the two countries. In

this case, the transmission investment was only evaluated based on the benefits of the

strategic interconnection capability between the countries and the arbitrage opportunities

arising from price differences between the markets (Newbery et al., 2016). However, it

could have arisen as a common interest project to support the transition to a low-carbon

energy economy in the region. In the context that transmission may complement genera-
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tion (Lévêque, 2007), this transmission investment project could have been implemented

and it might have replaced a coal power plant investment planned in the region. Then,

the transmission project would not only be able to mitigate emissions (or decrease carbon

costs), but also more interconnection could have enabled the utilization of the idle capac-

ity in the region, hence resulting further trading. Moreover, it could have also enabled

the optimization of the regional electrical energy sources where transmission could be a

substitute for generation sources (Lévêque, 2007; Hooper and Medvedev, 2009).

As developed by Guler et al. (2013), Tables 3.1 and 3.2 show the REH Framework ap-

plied to four countries: Bulgaria (BG), Greece (GR), RO and TR, i.e., the REH Countries.

In this case study, TR and RO subsea interconnector is considered as a common interest

project, which was found unfeasible due to the previous investment selection method (i.e.,

only based on market price differentials).

Table 3.1 shows the geopolitical parameter indicators developed in Chapter 2 and they

are evaluated for the aforementioned countries with a simple grading system (e.g., 0 or 1

point). The objective of this grading is to indicate/gauge the REH readiness such that the

hypothetical REH countries shown in Figure 3.1 would have same or closer grade points.

With this method, we think that the geopolitical parameter table can be universally applied

for developing potential REH(s) around the world. Table 3.1 gives the details on the

evidences for the REH in question as follows.

From an international economics point of view, indicators show evidence of a potential

regional trade agreement benefiting REH countries, particularly Greece and Turkey, as

argued by Kocaslan et al. (2014). Hence, one point is given to each country indicating

the existence of a regional study. Also, WTO publishes a list of regional trade agreements

among REH countries in their corresponding database (WTO, 2017a). In this case, one

point is given to each country, since there is a bilateral or a regional economic integration
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agreement (e.g., European Union) in place among the REH countries.

Table 3.1: REH case study: select a set of countries to form a REH
1. Geopolitical Parameter:

Which countries could benefit from the increasing trading?
Evidence Required BG TR GR RO

International Economics

1. Is there an indication of increased

economic welfare after forming

a regional trade agreement?

Existence of a study or

negotiations under way.

(0 or 1 point)

1 1 1 1

2. Party to any trade agreement?

Existence of a WTO based or

Regional economic

integration organization

(i.e. EU, NAFTA)

agreement in place.

(0 or 1 point)

1 1 1 1

Climate Change Policies

with respect to

Transnational Politics of Energy

3. Party to UNFCCC?

Annex I. 1

Non-Annex I. 0

(0 or 1 point)

1 1 1 1

4. Ratified the Paris Agreement?

Yes. 1

No. 0

(0 or 1 point)

1 0 1 1

Seamless Markets

5. Is there a liberalization of

electricity market act or

an operating financial market in place?

(any applicable one)

Any, 1;

Non, 0.
1 1 1 1

6. Is there a liberalization of

gas market act or an operating

financial market in place?

(any applicable one)

Any, 1;

Non, 0.
1 1 1 1

7. Electricity- Interconnector?
Any, 1;

Non, 0.
1 1 1 0

8. Gas - Interconnector?
Any, 1;

Non, 0.
1 1 1 0

Common Project(s)

9. List any common project

being considered

but not undertaken yet?

Any, 1;

Non, 0.
0 0 0 1

Geopolitical Parameter - Outcome 10. Outcome 8 7 8 7
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Table 3.2: REH case study 1: select a set of countries to form a REH
2. Economic Parameter. Do these countries have functioning electricity markets (intra-day, day-ahead markets) that

could reflect increase in social welfare or decrease in generation costs?

BG - Independent Bulgarian Energy Exchange, IBEX

GR - Operator of Electricity Market - LAGIE

RO - Romanian Gas and Electricity Market Operator, OPCOM

TR - Energy Exchange Istanbul, EXIST

3. Environmental Parameter. Do these countries have fuel mixes that are beneficial to eliminate emissions environmentally?

Table 3.3 shows region’s clean energy fuel mix vs. dirty one.

53,024 out of 120,378 MW total installed capacity is clean energy.

4. Financial Parameter. Do these countries have a portfolio of common interests that need to be invested in financially?

TR-RO Transmission Investment.

From the climate policies perspective, indicators show evidence related to the UNFCCC

participation indicated by one point in the table as well as one point for ratification infor-

mation related to the Paris (2018) Agreement. From the seamless markets point of view, a

list of energy (power and gas) exchanges in REH countries is published at the Association

of European Energy Exchanges member website given in Europex (2017). We have graded

the existence for each electricity and gas markets as one point.

Furthermore, evidence showing existence of a physical electricity interconnection can be

found at European Network of Transmission System Operators for Electricity (ENTSO-E)

transparency platform under cross-border transmission flows at the border-country level

(ENTSO-E-TP, 2017a). Accordingly, we have graded the existence of a connection from/to

each country as one point regardless of the number of lines. Therefore, each BG-TR, TR-

GR, GR-BG, and RO-BG connections are given one point, whereas each RO-TR and

RO-GR connections are given zero point.

Similarly, evidence showing existence of a physical gas interconnection can be found at

European Network of Transmission System Operators for Gas (ENTSO-G) transparency
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platform under cross-border transmission flows at the border-country level (ENTSO-G-TP,

2017). Similar to grading for electricity connections, we have graded one point for each

BG-TR, TR-GR, GR-BG and RO-BG connections, whereas zero point is given to each

RO-TR and RO-GR connections.

Table 3.2 shows the economic, environmental, and financial parameters applied to the

REH countries formed in Table 3.1. For further clarification, the economic parameter

regarding the existence of a functioning electricity market given in Table 3.1 is not repeated

here. It merely shows that the countries have already developed their markets.

In the subsequent sections, a mathematical framework for this REH case study is de-

veloped.

3.2 Mathematical Model

In Figure 3.1, the transmission line connections between the countries of the REH are

displayed and each node (i.e., bus) represents a country in the REH (i.e., there is no

detailed representation of countries’ transmission systems). Power imports/exports of the

countries from/to other countries outside of the REH are not considered, but it can be

easily incorporated into the model. Although financial constraints are not modeled at this

stage of the study, the role of financial constraints, i.e., debt, is central in structuring such

major infrastructure projects. As Tverberg (2015) discusses, inability to originate financial

resources for energy projects could create significant problems in energy supply security.
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Figure 3.1: REH Case Study for Developing Markets: Bulgaria, Greece, Romania, and

Turkey

Sets and indices

• i ∈ N set of buses (countries): BG, TR, GR, RO

• j ∈ Ni set of buses connected to bus i

• h ∈ H set of generation technologies: nuclear, coal, hydro, gas, renewables

• m ∈M set of time blocks: peak, intermediate, base
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Parameters

• cGh Cost of generation by technology h, $/MWh

• cCO2
h Cost of emissions by generation technology h, $/MWh

• dmi Demand at each bus i for time block m , hundred MW

• Bij Susceptance of each transmission line connecting buses i and j, per unit (p.u.)

• fminij , fmaxij Minimum and maximum of flow limits on transmission line connecting

buses i and j, hundred MW

• gmaxih Maximum power output of generation technology h at bus i , hundred MW

Variables

• gih Generation by technology h at bus i , hundred MW

• θi, θj Bus angle at buses i and j, radian
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• γ Dual variable for reference bus constraint

• ρminij , ρmaxij Dual variables for flow limit constraints

• λi Dual variable for energy balance at each bus i (i.e., nodal price), $/MWh

• φmaxih Dual variable for maximum generation output constraint

The mathematical notation and the model for the REH Framework are as follows:

min
giθi

∑
i∈N

∑
h∈H

(cGh + cCO2
h )gih (3.1)

subject to

∑
h∈H

gih − dmi =
∑
j∈Ni

Bij(θi − θj) λi ∀i ∈ N and m ∈M (3.2)

− fminij ≤ Bij(θi − θj) ≤ fmaxij ρmij in, ρ
m
ijax ∀i ∈ N and j ∈ Ni (3.3)

θGR = 0 γ reference bus (3.4)

gih ≤ gmaxih φmaxih ∀i ∈ N and h ∈ H (3.5)
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gih ≥ 0 ∀i ∈ N and h ∈ H (3.6)

− π ≤ θi ≤ π ∀i ∈ N (3.7)

The objective function (3.1) of this model minimizes the total of the generation and

emission costs. Constraints (3.2) is the energy balance at each bus where the dual variables

represent the electricity prices at each bus and constraints (3.3) are the power flow limits

through transmission lines, where flows are modeled according to the linear Direct Current

(DC) flow assumptions for simplicity and tractability (Gabriel et al., 2012). Constraint

(3.4) defines the reference bus as GR and constraints (3.5) are for the maximum power

outputs for each generation technology and country. Finally, non-negativity constraints

for generation are modeled by constraints (3.6), and bus angle limits are represented by

(3.7). Clearly, the model is a Linear Programming (LP) problem that can be solved very

easily using the state of the art LP solvers (e.g., CPLEX in GAMS (2015)).

As described in Chapter 2, utilizing REH approach for novel transmission investment

strategies could reduce countries’ carbon emissions. It can facilitate the integration of

renewables and also release congestions. To better assess the impact of transmission in-

vestment between Romania and Turkey, we have discretized the load-duration curves using

several demand blocks. We have modeled the yearly demand, by three load blocks (denoted

by m) using the base, intermediate (mid) and peak hours of a typical load-duration curve

at bus i. Baseload is a permanent load and is generally supplied by nuclear and coal power

generation. Intermediate and peak loads are the average and maximum loads, respectively,

and are usually satisfied by flexible power generation such as gas and hydro.
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3.3 Assumptions

Traditionally, transmission investment assessment studies are conducted for a target year,

e.g., using target year’s load-duration curve or its approximation (Kazempour, 2013). In

our REH approach, instead of a target year load-duration curve, we have utilized a dis-

cretized load- duration curve for each bus in the recent year to assess for the transmission

investment feasibility. We have done this to see whether a regional electricity trading op-

portunity could have been enabled by a potential transmission investment for the REH in

question or not. The use of this model for realistic purposes would require careful fore-

casts for both generation and demand in the target year. In Figure 3.2, a typical annual

load-duration curve is depicted, and it is discretized by using three-time blocks (peak, in-

termediate, and base). We assume that peak, intermediate (mid) and base loads appear,

20 percent, 35 percent, and 45 percent, respectively, of total hours in a year (i.e., 8,760

h). This corresponds to 1,752 peak load hours 3,066 intermediate load hours and 3,942

baseload hours. Consequently, we have assumed the following load factors: 1.0 (peak),

0.70 (intermediate), and 0.50 (base).
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Figure 3.2: Discretized load-duration curve

3.4 Data Set

The model concentrates on the generation and emission cost minimization of the REH

countries selected. Table 3.3 presents the breakdown of the REH countries’ installed ca-

pacity by generation technology in 2015 (ENTSO-E-TP, 2017b). It also shows the peak

demand values for Bulgaria, Greece, Romania (EUMarkets, 2014) and Turkey (TEIAS,

2015). Table 3.4 shows the marginal generation and emission costs of the installed capac-

ity per technology assumed for this study (IEA, 2010), and our assumptions on capacity

factors from a long-term system planning perspective. Finally, Table 3.5 presents the data
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related to the transmission system (ENTSO-E-TP, 2017a; Gabriel et al., 2012).

Table 3.3: REH installed capacity (MW) and peak demand (MW)

REH Capacity Nuclear Coal Hydro Gas Renewable Total Peak Demand

BG 2,000 5,648 2,965 19 653 11,285 7,967

TR - 15,226 23,664 25,643 4,345 68,878 41,002

GR - 4,459 3,149 5,631 4,386 17,625 9,894

RO 1,298 5,872 6,470 4,861 4,089 22,590 8,627

REH (Total) 3,298 31,205 36,248 36,154 13,473 120,378 67,490

Table 3.4: Transmission line parameters

Line

#
From To

Susceptance - Bij

(Siemens)

Capacity

(MW)

1 BG TR 1,000 500

2 BG GR 1,250 800

3 TR GR 1,500 500

4 BG RO 1,500 500

5 TR RO 1,500 500
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Table 3.5: REH generation parameters per technology

REH Nuclear Coal Hydro Gas Renewable

Generation Cost ($/MWh) 24 25 6 65 22

CO2 Cost ($/MWh) 0 24 0 11 0

Peak capacity factor 0.80 0.50 0.75 0.65 0.35

Mid capacity factor 0.85 0.75 0.45 0.40 0.25

Base capacity factor 0.95 0.75 0.25 0.10 0

3.5 Results and Discussion

The LP models for different demand blocks are solved using CPLEX under GAMS (2015)

on a Windows-based personal computer with a processor at 2.4 GHz and 8 GB of RAM. The

transmission investment simulated between RO and TR resulted in a cost-effective fuel mix

switching among REH countries. This ultimately reduced generation costs and emissions

for these countries because low cost/emission generation technologies are utilized. Table

3.6 presents the results of power flows among REH countries before and after transmission

investment.

It can be observed that in base- and mid-load blocks, there are net power flows from

Romania to Turkey in the amount of 500 MW. On the other hand, there is a net power

flow of 59 MW from Turkey to Romania in the peak load block. Note that negative values

in Table 3.6 depict the power flows in reverse direction and these flows are governed by the

Kirchhoff’s Laws of current and voltage. In the peak demand case, the Kirchhoff’s laws

do not allow any net flows from RO to TR, but from TR to RO only. Hence, this reduces

the generation of coal plants by 59 MW. In the peak demand case, the feasibility of the

solution is satisfied by higher generation/emission costs.
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The dual variable for the power flow constraints (e.g., ρminij or ρmaxij depending on the

flow direction) shows the value of the unit MW increase in the new transmission line

capacity (i.e., the marginal value of transmission line capacity). It is found to be $53/hour

for both base- and mid-load demand blocks, where the full capacity of the new RO-TR line

is used. In the peak demand case, as the capacity of the line is not fully utilized, it is zero.

A future extension of this study may consider the capacity size of the new transmission

line as a decision variable in the model, where the model also determines optimal capacity

size. But this would require a new modeling approach, i.e., an equilibrium model, which

is out of the scope of this study and left for future research.

Table 3.7 presents the net change in fuel mix (installed capacity) of each REH country

(after minus before transmission investment), complying with the objective of the REH

model, e.g., minimizing generation costs and emissions for the overall region. Note that

there are only changes in capacity utilization of coal and gas generation, whereas there was

no change in the capacity utilization of nuclear, hydro, and renewable generation. This

suggests that the new transmission line between Turkey and Romania exchanges fossil-fuel

based gas generation with cheaper coal generation. This has reduced not only the costs

of generation but also the emissions with the flexibility enabled by the new transmission

capacity. Table 3.8 shows the associated cost and emission reductions as a result of this

fuel switching.

For the peak-load block, hourly generation and emission cost figures have increased by

3,149 $/hour. On the other hand, for the base- and mid-load blocks, hourly generation,

and emission cost figures have decreased by 26,500 $/hour and 35,559 $/hour, respectively.

Additionally, overall annual cost savings can be estimated from these figures using the

number of hours per load block:

(26, 837 ∗ 3, 942) + (20, 000 ∗ 3, 066)− (2, 376 ∗ 1, 752) ≈ 160Million $/year (3.8)
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It should be noted that new transmission investment among REH countries would re-

duce power generation costs and emissions. Also, the REH method can integrate countries

in such a way that transmission investment would create ultimate benefits for each REH

country.

Table 3.6: REH power flows before and after transmission investment based on discretized

load-duration curve (”-”: 0%, ”NA”: not applicable)

REH Power Flows BG-TR BG-GR TR-GR BG-RO RO-TR

Peak Before (MW) -442 -136 500 -500 -

After (MW) -373 -205 313 -500 -59

Change -16% 51% -37% - NA

Mid Before (MW) 500 800 210 500 -

After (MW) 500 800 210 250 500

Change - - - -50% NA

Base Before (MW) 500 541 -101 500 -

After (MW) 500 712 104 250 500

Change - 32% -203% -50% NA
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Table 3.7: Change in REH capacity utilization (after minus before transmission investment

in MW, percent changes in parentheses)

REH Capacity Change Coal Gas

Peak

BG 0 0

TR 0 -197 (-1%)

GR 0 256 (8%)

RO -59 (-3%) 0

Mid

BG -250 (-6%) 0

TR 0 -500 (-10%)

GR 0 0

RO 750 (149%) 0

Base

BG -79 (-3%) 0

TR 0 -295 (-11%)

GR 0 -376 (-100%)

RO 750 (78%) 0
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Table 3.8: REH costs (before and after transmission investment)

REH Cost ($/hour) Generation CO2 Total

Peak

Before 1,893,075 602,672 2,495,747

After 1,895,451 603,445 2,498,896

Difference 2,376 772 3,149

Change 0.13% 0.13% 0.13%

Mid

Before 1,070,841 341,451 1,412,292

After 1,050,841 334,951 1,385,792

Difference -20,000 -6,500 -26,500

Change -1.87% -1.90% -1.88%

Base

Before 785,927 275,273 1,061,200

After 759,090 266,551 1,025,641

Difference -26,837 -8,722 -35,559

Change -3.41% -3.17% -3.35%
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3.6 Case Study 1: Sensitivity Analyses

Utilizing different sources of data sets after forming a REH and analyzing it by a mathe-

matical model shown in equation 3.1 have generated a need to conduct sensitivity analyses

for some of the model parameters used in the case study 1. The sensitivity analyses have

been performed for major model parameters such as: generation plus CO2 costs as well as

peak demand values for countries. The results below shows that the optimal solution is

unchanged, i.e., where TR-RO interconnector is beneficial.

Table 3.9 shows three time blocks of base, intermediate (mid) and peak as well as the

corresponding demand values ranging between lower (LO) and upper (UP) limits for the

assumptions discussed in section 3.3

Table 3.9: REH case study 1: a country’s peak demand parameter limits (MW)

Upper

Lower

Base Mid Peak

LO UP LO UP LO UP Current

BG 1,179 5,415 1,647 5,883 7,339 8,180 7,967

TR 18,231 20,795 23,944 34,201 26,136 42,804 41,002

GR 3,839 5,141 6,867 9,120 8,870 10,150 9,894

RO 2,600 7,004 4,787 9,191 6,881 9,817 8,627

Similarly, Table 3.10 shows three time blocks and the corresponding per unit generation

plus CO2 cost parameter values ranging between lower (LO) and upper (UP) limits for the

cost assumptions discussed in Table 3.4.
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Table 3.10: REH case study 1: per unit generation plus CO2 cost parameter limits

($/MWh)

Generation

Technologies

Base Mid Peak

LO UP LO UP LO UP

BG Nuclear -inf 36 -inf 36 -inf 136

BG Coal 24 64 24 57 -inf 136

BG Hydro -inf 36 -inf 36 -inf 136

BG Gas 36 inf 36 inf -inf 136

BG Renewable -inf 36 -inf 36 -inf 136

TR Nuclear -inf 89 -inf 89 -inf 89

TR Coal -inf 89 -inf 89 -inf 89

TR Hydro -inf 89 -inf 89 -inf 89

TR Gas 36 133 67 133 73 inf

TR Renewable -inf 89 -inf 89 -inf 89

GR Nuclear -inf 64 -inf 89 -inf 110

GR Coal -inf 64 -inf 89 -inf 110

GR Hydro -inf 64 -inf 89 -inf 110

GR Gas 64 inf 64 124 -inf 110

GR Renewable -inf 64 -inf 89 -inf 110

RO Nuclear -inf 36 -inf 36 -inf 36

RO Coal 24 62 24 62 24 89

RO Hydro -inf 36 -inf 36 -inf 36

RO Gas 36 inf 36 inf 36 inf

RO Renewable -inf 36 -inf 36 -inf 36
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On the other hand, Table 3.11 displays three time blocks and the corresponding gener-

ation capacity values ranging between lower (LO) and upper (UP) limits, for the installed

capacity assumptions discussed in Table 3.3.

The sensitivity results have shown that the optimal solution that enables TR-RO inter-

connector is robust, particularly for each countries’ peak demand values, total generation

plus CO2 costs, and generation capacities. Moreover, we have also presented sensitivity

analyses for transmission line limit parameters for case study 1 in Appendix C, where

robustness of the results are, again, validated.
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Table 3.11: REH case study 1: generation capacity limits (MW)

Gmax
Offpeak Mid Peak

LO UP LO UP LO UP

BG Nuclear 467 4,703 1,393 5,629 1,386 2,227

BG Coal 2,803 inf 3,929 inf 2,610 3,451

BG Hydro 0 3,545 1,027 5,263 2,010 2,850

BG Gas 0 inf 0 inf 0 639

BG Renewable 0 2,803 0 4,092 14 855

TR Nuclear 0 2,269 0 4,756 0 14,685

TR Coal 11,124 13,688 5,919 16,176 5,810 22,478

TR Hydro 5,621 8,185 5,148 15,405 15,945 32,613

TR Gas 2,269 inf 4,756 inf 14,685 inf

TR Renewable 0 2,269 0 5,843 0 16,386

GR Nuclear 0 1,107 0 58 0 1,113

GR Coal 3,149 4,451 1,149 3,402 1,973 3,343

GR Hydro 592 1,894 0 1,475 2,105 3,475

GR Gas 0 inf 58 inf 3,403 4,774

GR Renewable 0 1,107 0 1,154 1,278 2,649

RO Nuclear 0 2,956 0 2,355 0 2,783

RO Coal 1,712 inf 1,251 inf 1,745 inf

RO Hydro 0 3,330 0 4,163 3,662 6,598

RO Gas 0 inf 0 inf 0 inf

RO Renewable 0 1,712 0 2,274 240 3,716
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3.7 Chapter 3: Summary

1. For the first case study, we have first started off by applying the geopolitical pa-

rameter of the REH Framework to form a REH. The geopolitical parameter enables

countries for further trading by application of institutional knowledge present for

the region. Hence we have asked the question: which countries could benefit from

increased trading. Indicators such as international economics, climate change agree-

ments, transnational politics of energy, seamless markets and common projects along

with the questionnaires provide a basis of knowledge and evidence for establishing the

requirements leading towards a common interest project within a regional electricity

hub. The result is that these four countries could form a REH.

2. Now, we have formed a REH in South-Eastern Europe with a TR-RO common inter-

est project. The economic parameter optimizes newly formed REHs capacity. Before

proceeding, we have shown evidence for the following question: is there evidence

that these countries can individually reduce their cost in their corresponding indi-

cators? Then, the environmental parameter optimizes newly formed REHs capacity.

Before proceeding, we have shown evidence for the following question: do we have

evidence in place that these countries have mutually beneficial supply mixes?. Then,

the financial parameter optimizes resources towards a common interest project.

3. Then, we have applied cost minimization for generation and emission for the newly

formed REH to optimize the resources of the formed REH in reducing cost, measur-

ing emissions, and quantifying financial resources saved before / after enabling an

interconnector.

4. Then, we have applied cost minimization for generation and emission for the newly
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formed REH in order to optimize the resources of the formed REH in reducing cost,

measuring emissions, and quantifying financial resources saved before / after enabling

an interconnector.

5. Results have shown that TR-RO Interconnector, enables power flow between the

countries. As a result, enabled TR-RO Interconnector, changes the capacity uti-

lization of each country away from fossil fuel utilization. Hence, the interconnector

enables cost reduction and emission reduction for the defined region.
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Chapter 4

Case Study 2: Interconnecting a

REH in developed markets: PJM

4.1 Overview

Besides developing markets, such as the case study in Section 3, the REH Framework can

be utilized by applying this innovative method for developed markets, such as the ones

in North America. Developed markets include both liquid physical markets as well as

financial transactions (futures, options, swaps operated by exchanges) as recently noted by

PJM (2017) in its correspondence to the US House of Representatives. In this case study,

we have assumed that PJM interconnection is a good example of a developed market,

and hence, based on the REH Framework parameters, it is also a representative regional

electricity hub.

The REH Framework financial parameter indicator represents an optimization of fi-

nancial resources towards a common interest project as seen in Table 2.1, which is equally

61



similar to the PJM capacity markets’ representation of optimization of generation or de-

mand resources based on a resource adequacy requirements as documented by The Brattle

Group, Astrape Consulting (2013) for Federal Energy Regulatory Commission (FERC).

Therefore, according to the REH Framework, we identify an opportunity to compare com-

mon interest projects (e.g., transmission investments) with uncommon ones (e.g., capacity

markets) from a regional perspective. The REH Framework puts a light on transmission

capacity opportunities regionally for a regional hub (or market, e.g., PJM) by utilizing its

existing forward-looking capacity market. If the capacity market price shows the regional

need for a generation resource by utilizing the REH Framework, this can be also used to

indicate a potential recognition or a need for an interconnector capacity.

4.2 PJM is a Regional Electricity Hub

Pennsylvania and New Jersey had formed the world’s first interconnection and continuing

power pool in 1927 by amalgamating three utilities from these states based on sharing

resources on the economic benefits of forming a market. Later on, by addition of two more

utilities from Maryland formed PJM, making of the Pennsylvania-New Jersey-Maryland

in 1956. Utilities continued joining in 1956, 1965 and 1981. In 1993, PJM became an

independent entity when the PJM Interconnection Association was formed to administer

the power pool. In 1997, PJM started administering bid-based day-ahead market as well

as became the US’s first ISO (i.e., an ISO operates but does not own transmission assets).

Later in year 2002, PJM was designated as a RTO by the FERC in 2002 to operate

the multi-state transmission projects in the states (PJM, 2018). Today, PJM, as part

of the Eastern Interconnection, serves 13 states as well as District of Columbia with 165

GW of installed capacity that provides electricity for 65 million people. As PJM has
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developed towards a REH, the states and utilities explored efficiencies and benefits brought

by interconnecting and sharing resources and joined an RTO (FERC, 2018b). Figure 4.1

shows RTOs in North America.

Figure 4.1: RTO Map in North America (Source: ISO RTO Council)

Briefly, when we apply the REH Framework and its associated parameters (geopolitical,

economic, environmental and financial) to the PJM market, we see it evolving from devel-

oping to developed market today. Two fundamental parameters, geopolitical and economic

had initially helped established this market and played an essential role in its expansion.

Hence, aforementioned states formed the interconnection in 1927 in which the economic

benefits to be reaped based on the purpose of dispatching a low-cost generation regionally.
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We assumed that geopolitical benefits of resource sharing by a common interest project

such as a transmission capacity had been sufficient enough as an objective at that time

compared to today’s objectives of transitioning to low-carbon energy economy according

to the Paris Accord targets. In the REH Framework, we quantify the reduction targets as

the environmental parameter within the framework that was not explicitly considered by

PJM in early developments. Nevertheless, PJM has been an evolving and a functioning

developed market with the addition of states to extend the geopolitical coverage of the re-

gion and by building additional transmission capacities. Throughout the years, to further

enable the benefits and optimize resources regionally, transmission capacities have been

built within PJM.

4.3 Capacity Options: Generation vs. Interconnector

Markets around the world value electricity in a day-ahead market where supply resources

and demand-side meet to form prices. This has been a prominent method of valuing

resources producing electricity since the 1980s with the transformative work of Schweppe

et al. (2013). When energy-only markets clear based on prices formed, suppliers earn

their revenue by selling electricity as a product and by providing ancillary services. When

markets are not cleared either by demand inflexibility (i.e., unable to respond to prices) or

by inelastic supply (due to costly electricity storage), blackouts could occur as discussed by

Cramton et al. (2013) extensively. Therefore, energy-only markets allow prices to rise so

high above the operating costs of resources that recovery of the cost of capital is possible

to avoid possible blackouts.

In the US, ERCOT is the only energy market that allows this to happen where suppliers

can recover capital costs of resources invested. For other markets, such as PJM and
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California Independent System Operator (CAISO), wholesale electricity markets have price

caps (mostly between $1,000 and $10,000 per MWh) that constrain how much sellers can

make when supply is tight (Bushnell et al., 2017). Therefore, now it is argued that without

this stream of income, it may not be profitable to build new capacity to meet demand in

the future that can result in potential blackouts. The deferral or the missing money

problem has been put into perspective with a comparison of 15 resource adequacy markets

in Cramton and Stoft (2006).

In order to overcome this issue, developed markets (e.g., PJM) have designed and added

capacity markets besides the energy-only one. In this capacity market, suppliers providing

electricity to consumers have to procure enough resources to meet demand not only for

the day-ahead market but also for the predicted demand (also known as variable resource

requirements curve) in the future as well. Therefore, Reliability Pricing Model (RPM), a

PJM capacity market, effectively ensures the grid reliability for the long-term (i.e., three

years in PJM capacity market). As part of this process, participants must procure capac-

ities to generate electricity or reduce demand three years into the future. PJM, through

its RPM process, establishes a virtual resource requirement curve and determines a cost

of new entry based on a generation resource (e.g., a gas-fired technology such as combined

cycle or open cycle). Through the auctions in PJM capacity market, capacity prices are

determined, and this process repeats itself annually.

These capacities may include new and existing generators, upgrades for existing gener-

ators, demand response (i.e., consumers reducing electricity use in exchange for payment),

energy efficiency and transmission upgrades as per PJM. For transmission capacity up-

grades, an offer made through the capacity market is referred to as Qualifying Transmission

Upgrade (QTU) and it does not include newly build interconnectors. For an interconnec-

tor to be considered beyond the QTU, it needs to be part of the Regional Transmission
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Expansion Planing (RTEP) where it takes into account load growth, changing the capacity

mix, distributed energy sources and aging infrastructure with a 15-year planning horizon

(PJM.RTEP, 2018).

Cepeda et al. (2009) had discussed the importance of regional coordination of ade-

quacy policies to ensure long-term reliability for optimal choice between generation and

interconnection. In that sense, PJM.RTEP (2018) oversees the system enhancement pro-

cess from the reliability lenses while managing the inputs from public policy, resilience,

capacity resources, market efficiency, interregional coordination, aging infrastructure, oper-

ational performance, transmission service, load forecast, and demand resources as detailed

in PJM.RTEP (2018).

As an input to the RTEP process, the REH Framework can help improve utilization of

capacity markets further as an early indicator to show the need for a capacity option as

an interconnector in PJM. Hence, the RTEP process can be enhanced to monitor not only

generation capacity but also interconnector capacity options for consideration in the long-

term development on an annual basis. This approach would make the grid more reliable

in terms of monitoring its options for flexibility, enabling capable capacities and alignment

with the FERC definition of resilience, i.e., ”The ability to withstand and reduce the

magnitude and/or duration of disruptive events, which includes the capability to anticipate,

absorb, adapt to, and/or rapidly recover from such an event” (FERC, 2018a).

4.4 A Model for the REH Framework

Based on the earlier discussion about PJM as a REH in Section 4.1, we identify the REH

Framework’s financial parameter indicator as optimization of financial resources towards a

common interest project and this can be best reflected in the PJM capacity markets. The
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REH Framework through the financial parameter enables us to make a valid comparison

of common interest project (e.g., interconnector capacity) with uncommon ones (e.g., gen-

eration capacity). Through this comparison, the REH Framework provides better insights

into the operation of the capacity markets by allowing a clear delineation of the value of

capacity as an option between a generation source and a transmission interconnector as

an enabler of the capacity mechanism. Thereafter, the fundamental question would be as

”which asset would be the better option, generation or transmission?”, which is considered

from a flexibility perspective by (Hogan, 2017). In this context, we argue that the capacity

markets’ three-year forward price could help us determine the best option among these

assets.

4.4.1 Linking capacity markets parameters to financial option

value determinants

The utilization of derivatives (or instruments such as futures, options or swaps) has been

widely discussed and applied in electricity markets for risk management, valuation and

optimization of operating assets as shown by many authors (Pineda and Conejo, 2012;

Deng and Oren, 2006; Carmona and Durrleman, 2003; Liu and Wu, 2007). Utilities and

investors have used these instruments to hedge against commodity fluctuations (as a fuel

input) and volatile electricity day-ahead market prices to avoid jeopardizing operating

assets’ profitability. Application of these instruments on capacity markets, however, have

mostly been on the generation adequacy and capacity payment mechanisms as discussed

fairly by Vazquez et al. (2002) and Oren (2005), but not specifically on transmission as a

potential regional option. In this respect, PJM’s capacity markets could help decision and

policy makers on recognizing or determining the most capable option between a generation
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or an interconnector capacity.

PJM, through its reliability pricing model, organizes capacity auctions every year, which

sets the price for the region in the three-year forward planning horizon. Base residual

auction planning period parameters such as target level of capacity and net cost of new

entry for generation or other resources are published by PJM.RPM1 (2018) annually. Once

the auction is completed, base residual auction results are published where it shows the

cleared capacity market prices and capacities in PJM.RPM2 (2017). Out of this process,

two key parameters emerge that could help determine the capable options: net cost of new

entry for the auction and the capacity market prices cleared for the region.

Table 4.1: Linking capacity markets parameters to option value determinants

Determinants Option Determinants Capacity Market Parameters

S Stock price Capacity market price ($/MW- Day)

K Exercise price Net cost of new entry ($/MW- Day)

t Time to expiration Investment time horizon

r Risk free rate of return Risk free rate of return

Sigma Variance of returns of stock price Variance of returns of capacity market price

Table 4.1 shows an assumed link between the option value determinants, as infamously

described by Black and Scholes (1973), to capacity market parameters where similar anal-

ogy has been presented by Haahtela (2012) and Fernandes et al. (2011) in relating financial

options to real options. As argued by Lambrecht (2017) extensively, ”a real option’s under-

lying asset or payoff is often highly complex, not traded and subject to strategic interactions

with its environment”, and ”hence causing real (projects or assets) options not to be traded

in the market”. This, in turn, as argued by Lambrecht (2017), causes ”absent a market

price”. Therefore, we assume that the existence of a capacity market and price formation
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in PJM enables to conclude a potential link between the option value determinants and

capacity market parameters (see Table 4.1).

Accordingly, we assume that capacity market is the underlying asset and its price is

formed in PJM’s RPM similar to the stock price, S. RPM’s capacity market price and

its historical variance reflect the sigma, which is the variance of returns on a stock price.

Exercise price, K, is similar to the net cost of new entry parameter. Now, this is an

important assumption from capacity option perspective, since we assume that net cost of

new entry could be either a generation or an interconnector cost. Life of the option is the

same as the life of the project considered. Risk-free rate of return is the same as that could

be applied in a capacity market.

4.4.2 Approach to valuation of capacity options

As shown by Black and Scholes (1973), John et al. (2006) and also depicted by Damodaran

(2018) as ”an option contract provides the holder with the right to buy or sell a specified

quantity of an underlying asset at a fixed price at or before the expiration date of the

option”. There are two types of options: (i) call options (right to buy), and (ii) put

options (right to sell). As Damodaran (2018) further details in the following: a call option

gives the buyer of the option the right to buy the underlying asset at a fixed price (exercise

price or K) at any time prior to the expiration date of the option. Moreover, Damodaran

(2018) details further in the following: a put option gives the buyer of the option the right

to sell the underlying asset at a fixed price at any time prior to the expiration date of

the option. An option can be exercised any time prior to its expiration (i.e., an American

option) or it can be exercised only at expiration (i.e., a European option).

As defined by John et al. (2006), option values are categorized as: (i) in-the-money,
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(ii) at-the-money, (iii) or out-of-the money. Therefore, a call option is in-the-money when

S>K, at-the-money when S=K, and out-of-the money when S<K. On the other hand, a

put option is in-the-money when S<K, at-the-money when S=K, and out-of-the-money

when S>K.

Any option, whether call or put, are exercised only when it is in-the-money. John et al.

(2006) specifies that an in-the-money option will always be exercised on the expiration date

if it has not been exercised previously. Moreover, John et al. (2006) defines the intrinsic

value of an option as the maximum of zero and the value the option if it were exercised

immediately. Hence,

• Call option’s intrinsic value: Max (S-K,0)

• Put option’s intrinsic value: Max (K-S, 0)

As argued by Newbery (2016), ”whether or not interconnectors should be included in

auctions is less important than that their contribution should be recognized in determining

the procurement amount”. Hence, we use this recognition as a starting point and argue

that this could be achieved by determining the intrinsic option value between generator

and interconnector projects by using historical and forward net cost of new entry as well

as capacity market prices published by PJM.RPM1 (2018) and PJM.RPM2 (2017) against

the net cost of new entry for interconnector projects.

Besides the intrinsic value, an option has a time value as well. And this is directly re-

lated to how much time, which an option has until it expires and associated the volatility

of the underlying stock. As a result, the total option value is equal to its time value and its

intrinsic value. The option parameters are shown in Table 4.1, such as volatility (Sigma),

t (time to expiration), and r (interest rate) are used in option valuation (e.g., market price
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of an option). Black and Scholes (1973) option pricing formula is one way of calculat-

ing this among many. However, further research is required in using Black and Scholes

(1973) application in capacity markets, particularly in capacity market price formation

fundamentals as well as in volatility relation to REH Framework and its parameters.

In summary, the objective in linking option pricing theory to capacity markets is to dif-

ferentiate and recognize the so-called in-the-money capacity options based on cost spreads

of generation and interconnector projects by utilizing the intrinsic value of an option.

4.4.3 Data set

Different HVDC transmission interconnectors (a common interest project) currently oper-

ating and those expected to connect to PJM would provide a valid range of total invest-

ment costs for comparing an interconnector as a capacity option to a generation project.

By further studying these projects from the REH Framework, we can verify our initial

investigation on whether the PJM’s capacity market inherently values interconnectors as

a capacity mechanism on the same basis as a generator, or not.

We have selected the merchant HVDC projects (presented in Table 4.2) based on three

rationale: (i) REH Framework: we have assumed that PJM is already a REH and it con-

siders interconnecting with other neighboring markets, (ii) time span: we have particularly

concentrated on projects in covering the operational time span of PJM’s capacity mar-

kets, which has been officially in operation since 2007, and (iii) interconnectors: we have

not selected any transmission projects within the PJM, where it would only contribute to

releasing congestions rather than help connect with other markets. Therefore, our fun-

damental argument is to investigate whether PJM capacity markets intrinsically treats

interconnector capacity as an option or not. This would help determine REH Framework’s
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effectiveness in originating and identifying interconnector capacity options in a developed

market such as PJM.

Based on the aforementioned requirements, Table 4.2 displays interconnector projects

and their associated development and cost information. Total Investment Cost (TIC)

figures have been discounted to daily equivalent values (using an annual interest rate of

ten percent and a life-time of twenty years) denoted by net cost of new entry for an

interconnector to compare them with the net cost of new entry for generation presented

in Table 4.3. Some of the PJM’s merchant transmission projects and detailed information

can be found in PJM.MTP (2018).

All interconnector projects are unique due to different types of connections (e.g., un-

derground, overhead, or submarine), distances, development risks and geographic locations

that result in distinct TIC profiles. The selected interconnector projects are as follows:

• Neptune project is an operating 660 MW interconnector capacity by merchant in-

vestment that connects PJM to New York Independent System Operator (NYISO)

in the USA with a total investment cost of 600 million $ (M$).

• Hudson project is an operating 660 MW interconnector capacity by merchant invest-

ment that connects PJM to NYISO with a total investment cost of 850 M$.

• Lake Erie project is a proposed 1,000 MW interconnector capacity by merchant

investment that connects PJM to Independent Electricity System Operator (IESO)

in Ontario, Canada with a total investment cost of 1,000 M$.

• Grain Belt Express Clean Line is a proposed 3,500 MW interconnector capacity by

merchant investment that connects PJM to Southwest Power Pool (SPP) in the USA

with a total investment cost of 2,300 M$.
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• Eastern interconnector is a 1,300 MW interconnector capacity by merchant invest-

ment that connects PJM to MISO in the USA with a total investment cost of 200

M$. This is a hypothetical project recently referenced in Frayer et al. (2018) .

Table 4.2: Recent HVDC projects connecting to PJM

Projects Neptune Hudson
Eastern

Interconnector

Grain Belt

Express

Clean Line

Lake Erie

Interconnector

Status Operating Operating Hypothetical Proposed Proposed

As of 2007 2013 2018 2019 2021

Hub
PJM to

NYISO

PJM to

NYISO

PJM to

MISO

SPP to

PJM

PJM to

IESO

Type
Under +

Submarine
Submarine Overhead Overhead Submarine

Distance

(mile)
65 65 45 780 73

Capacity

(MW)
660 660 1,300 3,500 1,000

TIC

(M$)
600 850 200 2,300 1,000

$/MW-Day 288 408 49 208 316

Table 4.3 presents the net cost of new entry for generation and the resulting capacity

market prices retrieved from the corresponding auction year along with net cost of new

entry for interconnectors. As it is shown in Table A.1 in Appendix A, there is no cor-
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Table 4.3: Net cost of new entry cost for generation and transmission against capacity

market prices

PJM

RPM

Net Cost of New Entry
Capacity

Market

Generation
Transmission

Hypothetical

Transmission

Operating

Transmission

Proposed
Prices

Three-Year

Forward
$/MW-Day $/MW-Day $/MW-Day $/MW-Day $/MW-Day

Averaged

Cost & Prices
263.94 48.75 348.47 262.87 100.39

responding net cost of new entry for an interconnector for each auction year due to the

development time of interconnectors. Therefore, to make consistent comparisons among

net costs of new entry for generation and capacity market prices against different intercon-

nector types (e.g., operating, proposed and hypothetical), we have utilized average values

for the net costs of new entry for interconnectors as in Table 4.3.
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4.4.4 Results and discussion

As in-the-money figures in Table 4.4 presents, HVDC projects deliver value against the

generation capacity. This is not only evident in the hypothetical project, but also in the

four other operating and proposed projects. This validates the type of recognition delivered

by an interconnector as argued by Newbery (2016).

We have known that the potential discrepancy rising from the cost figures sets a chal-

lenge as well as an opportunity for the purpose of this research. Therefore, we recommend

that ISOs and RTOs, as part of their RTEP process, should calculate merchant HVDC

the net cost of new entry figures similar to net cost of new entry for generation and they

should provide this information to the capacity market base residual planning for each year.

Markets are evolving and flexibility needed by resiliency requirement of FERC is a prime

example of markets as well as the grid. Earlier load matching with generation stood well

with the technical requirements of electricity transmission. However, as markets evolve,

transmission needs have to be considered in concert with generators’ capacity additions for

a determination of value to the system. The proposed REH Framework provides a solid

basis for assessing interconnections with other REHs.

The REH Framework provides the cost of installed transmission capacity ranging from

49 to 350.00 $/MW-Day or on average 220.03 $/MW-Day, from simple overhead to sub-

marine cables as shown in Table 4.3. The average interconnector cost is still lower than

the RTO average generation capacity: 264.94 $/MW-Day. Here, we employed intrinsic

option value calculation method to compare cost figures of interconnector and generation

against a capacity price. As the results show that PJM capacity market intrinsically values

interconnector as a capacity option.

It is also possible to mention other benefits, such as the availability that transmission
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provides for other generation resources such as in the case of Lake Erie interconnector

which provides access to Ontario’s nuclear power generation fleet.
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4.5 Chapter 4: Summary

1. In our previous case study 1, we have formed a REH by utilizing the geopolitical pa-

rameter, in case study 2 , we have utilized the REH Framework’s financial parameter

for an existing REH such as PJM to seek for capacity options so that further trading

can be enabled.

2. Here, we have linked the financial option theory determinants to capacity market

determinants of the PJM market to recognize, differentiate and value between a

generation and an interconnector capacity option need in a developed market.

3. Then, we have picked five interconnectors to present the common interest part (inter-

connector) of the financial parameter of the REH Framework where we have utilized

PJMs capacity market to present the uncommon interest (local generation). Here,

we have employed intrinsic option value calculation method to compare cost figures

of interconnector and generation against a capacity price.

4. Results show that PJM intrinsically values interconnector as a capacity option within

its capacity market to interconnect with other neighboring markets.
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Chapter 5

Conclusion

5.1 Overview

REH Framework, as an energy policy tool, enables countries in their respective geography

to strategize energy and electricity market transitions towards a low-carbon energy econ-

omy by mobilizing financial resources more towards common interest projects. Two case

studies presented in this thesis have shown that REH Framework is universally applicable

for developing as well as developed markets and brings higher option value whether from

financial or emission perspectives.

REH Framework through case studies showed that the fundamental difference between

developing and developed markets is reflected in utilizing the framework by a range of

countries from geopolitically different ones to financially integrated ones.

However, potential limitations for the REH Framework may exist (see section 5.3). But,

the very core of the Framework facilitates and acts as a feasibility platform in bringing

countries and markets together which allows transitioning towards a low-carbon energy
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economy.

Therefore, future research for the REH Framework should essentially concentrate on

identifying potential hubs around the world by applying data-driven methods. This could

be achieved by utilizing REH Framework’s parameters and indicators in capturing the

global energy institutional knowledge, consequently, resulting in ironing out specific adap-

tation strategies for each REH.

5.1.1 Case study 1

We have utilized a geopolitical parameter to select a set of countries to form a regional

electricity hub. We have utilized the economic parameter to minimize cost and the envi-

ronmental parameter to reduce CO2 emissions simultaneously in the newly formed REH’s

total energy fuel mix. The results for TR-RO case study indicated that the total cost

minimization approach for the region results in a net benefit in favor of the transmission

investment. The REH enables transmission capacity to achieve reduced cost generation

and emissions by physically interconnecting markets in a predefined region, essentially

enabling fuel switching of carbon-based power generation. We have introduced a formal

definition of the REH and presented a conceptual framework for the REH development

including the underlying mathematical model.

5.1.2 Case study 2

We have utilized the financial parameter of the REH Framework for an existing REH such

as PJM. Our case study showed that by investigating PJM’s capacity market from the

REH Framework’s perspective, PJM intrinsically values transmission capacity within its
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capacity market. This is validated by HVDC interconnector investments in PJM that are

currently operating or proposed. PJM has been operating as a regional electricity market

operator and can be considered as a successful ’exemplary’ REH that could serve as a model

for newly formed REHs around the world. The REH Framework bridges an important gap

between the capacity markets and the RTEP process such that the net cost of new entry

figures for transmission could be developed alongside with the net cost of new entry for

generation for other REHs around the world.

Development of such a database would make application of the REH Framework a

highly effective policy instrument for enhancing the quality of decisions on transmission

investments in support of a low-carbon energy future.

5.2 Energy Policy Implications: Geopolitics and Fi-

nance

We expect that given an investment time horizon of 5-10 years, a region should be able to

identify and consider an adaptation strategy in their corresponding REH Framework. In

our view, the framework will act as a platform to explore feasible options. Hence, we expect

that transmission investment could be a key enabler of renewable energy, which will profit

by accessing to transmission in remote locations where demand is not in proximity. In

conclusion, REH Framework would be an important energy policy instrument to evaluate

the readiness (or effectiveness) of countries in reaching low-carbon energy economy as a

region collectively. Hence, it can also accelerate country’s decision towards becoming less

carbon-intensive by determining clear policy options among many. Therefore, we think

this method can also be applied as a feasibility platform to selected regions around the
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world.

Tomorrow’s grid will simply need to be highly capable and resilient to maneuver around

short-term challenges arising from extreme weather events such as hurricanes, floods,

storms and extreme heat. Moreover, it should meet the long-term challenge of greenhouse

gas mitigation through effective optimization of the energy supply mix at the regional level.

Enabling transmission investment and large-scale enhanced electricity trading among coun-

tries on a continent-wide basis is one part of the answer about whether to form a REH

(and interconnect several REHs), or not. We expect that a clear stipulation and definition

of a REH will play key roles in tomorrow’s flexible grid and markets. Furthermore, the

REH Framework for a region is a building block of truly interconnected global markets in

leading to low-carbon energy transition.

Investment into climate-resilient assets is important for countries to transit to low-

carbon energy economy. Long-term perspective in managing this transition rests with a

vision of today’s policy for the future. However, assets are facing the impasse imposed by

two major parameters, geopolitics and finance, wherever they may be applicable around

the world. Geopolitics is now a key parameter not only for carbon mitigation but also

for renewable energy. Finance has never been so available yet not so accessible. So,

the opportunity lies in treating these two parameters where they could most facilitate

investment into common interest assets or projects. One global market for power where

assets become geopolitically indifferent and financially available for global trade could even

further help transitioning to low-carbon energy economies.
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5.3 Limitations of the REH Framework

Below are some of the limitations for the implementation of the REH Framework.

REH Framework does not currently consider the technical aspects of how newly formed

REH could operate and whether current electricity market structures need to be revisited

or not. Therefore, as this is a strategic system planning tool, it does not take into account

how technical challenges could be faced in the day-to-day operation of a REH.

REH Framework rests upon parameters where it enables further investment in transmis-

sion capacity for reducing country’s reliance on fossil fuel-based power generation. There

may be cases that REH Framework cannot allow further reduction of carbon emissions for

some countries, because countries or markets may have already clean fuel mixes. However,

then, REH Framework can still serve as a feasibility platform to study the flexibility of a

REH.

Current economic dispatch model used in the case study 1 only considers forming a

REH from a system planning perspective and does not include costs for other sources of

emissions (SOx, NOx) and investments. However, the model is flexible enough to cover

these issues in future research.

REH Framework currently formulates a geopolitical parameter from a perspective of ac-

cumulated institutional knowledge and it develops indicators in bringing countries/markets

to form a REH. However, there may be cases that although rational formation of a REH

would be evident, parties may opt not to form a REH. This could be due to political

tensions that may exist among regional countries. Hence, further research in the influence

of political issues on system planning is required.
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5.4 Future Research

As for the future research, we plan to work on two general research streams. The first

theme is the energy policy research based on a geopolitical framing of regional electricity

hubs leading to optimization of resources of combined fuel mixes of in developing markets.

We forecast that there will be 15-20 regional electricity hubs around the world that need to

be studied from a geopolitical perspective. Secondly, we plan to develop financial engineer-

ing methods to value asset options in developed markets by benchmarking investments:

transmission, renewables, gas, coal, nuclear, and storage in an investment horizon of 5-10

years. This is an important area of research where financialization of energy markets are

taking shape around the markets today.

Finally, a research program based on the REH framework would be needed to further

develop the concepts mentioned above. The following scope map shows some of the core

elements of the program.

1. REH Development: Energy Policy

• Identify and form REHs around the world based on a geopolitical parameter

as utilized in case study 1 by employing a data driven approach to originate

potential interconnector options for each REH, and run an economic dispatch

model for each identified REH to quantify benefits based on REH Framework

parameters before and after implementation of interconnectors. Identification

and formation of REHs will enable future research perspectives in presenting

potential energy transition strategies specific for each region.

• Identify REHs around the world based on a financial parameter as utilized

in case study 2 by employing a data driven approach to originate potential
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interconnector options for each REH, and investigate by financial option theory

whether each identified REH values interconnectors as part of their long term

planning perspective or not.

2. REH Energy Technology Investment Alternatives: Financial Engineering of Options

• Compare results found above in the energy policy section for each REH

• List and value investment alternatives for each REH.

• Publish results for each REH.

• Study the effect of inter-REH behaviour.

3. REH Potential Funding Sources

• United Nation’s Sustainable Development Solutions Network

• National Science Foundation - Innovations at the Nexus of Food, Energy and

Water Systems

• Natural Sciences and Engineering Research Council of Canada

• International Energy Agency collaborative research projects.

• World Bank through applications in its projects.

(1) Guler, B., Celebi, E., and Nathwani, J. (2018). A Regional Energy Hub for achiev-

ing a low-carbon energy transition. Energy Policy, 113, 376-385. doi:10.1016/j.enpol.2017.10.044
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Appendix A

Net cost of new entry for generation

and interconnector vs. capacity

market prices

A.1 Net cost of new entry for generation and inter-

connector vs. capacity market prices
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Table A.1: Net cost of new entry for generation and interconnector vs. capacity market

prices

PJM

RPM
Net Cost of New Entry

Capacity

Market

Auction Generation
Transmission

Hypothetical

Transmission

Operating

Transmission

Proposed
Prices

Three -Year

Forward
$/MW-Day $/MW-Day $/MW-Day $/MW-Day $/MW-Day

2021/2022 321.57 316.87 140.00

2020/2021 292.95 76.53

2019/2020 299.30 208.88 100.00

2018/2019 298.53 48.75 164.77

2017/2018 351.39 120.00

2016/2017 330.53 59.37

2015/2016 320.63 136.00

2014/2015 342.23 125.99

2013/2014 317.95 408.88 27.73

2012/2013 276.09 16.46

2011/2012 160.76 110.00

2010/2011 163.46 174.29

2009/2010 161.27 102.04

2008/2009 161.27 111.92

2007/2008 161.27 288.06 40.80
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Appendix B

Data Set Links

B.1 Data set links for the case study 1

ENTSO-E links for physical flow, installed capacities, and peak demand.

entsoe.eu

transparency.entsoe.eu

ec.europa.eu

WTO Regional trade agreements.

wto.org
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https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
https://ec.europa.eu/energy/sites/ener/files/documents/2014_energy_market_en_0.pdf
https://https://www.wto.org/english/tratop_e/region_e/rta_participation_map_e.htm


B.2 Data set links for the case study 2

PJM links for capacity market planning parameters and results.

pjm.com

pjm.com
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Appendix C

Case Study 1: Sensitivity Tables
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Table C.1: Limits on the transmission line capacity (negative direction)

Tmin Offpeak Mid Peak

LO UP LO UP LO UP

BG TR -inf 500 -inf 500 -inf -372

BG GR -inf 711 -inf 800 -inf -205

BG RO -inf 250 -inf 250 -inf -500

TR BG -inf -500 -inf -500 -inf 372

TR GR -inf 103 -inf 210 -inf 312

TR RO -inf -500 -inf -500 -inf 59

GR BG -inf -711 -800 -208 -inf 205

GR TR -inf -103 -inf -210 -inf -312

RO BG -inf -250 -inf -250 -inf 500

RO TR -inf 500 -inf 500 -inf -59
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Table C.2: Limits on the transmission line capacity (positive direction)

Tmax Offpeak Mid Peak

LO UP LO UP LO UP

BG TR 324 500 461 500 -372 inf

BG GR 711 inf 800 inf 205 inf

BG RO 250 inf 250 inf -500 inf

TR BG -500 inf -500 inf 372 inf

TR GR 103 inf 210 inf 312 inf

TR RO -500 inf -500 inf 59 inf

GR BG -711 inf -800 inf 205 inf

GR TR -103 inf -210 inf -312 inf

RO BG -250 inf -250 inf 286 500

RO TR 250 500 250 500 -59 inf

106


	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Literature Review
	Electricity markets
	Transmission investment

	Research Problem Definition
	Motivation, Approach and Objectives of the Research
	Overview of the Thesis
	Thesis Contributions
	Chapter 1: Summary

	Method
	Why Regional Electricity Hub?
	Rationale
	Approach
	Benefits

	REH Framework
	Geopolitical parameter
	Economic parameter
	Environmental parameter
	Financial parameter

	Chapter 2: Summary

	Case Study 1: Forming a REH in developing markets: Romania - Turkey Interconnector
	Overview
	Mathematical Model
	Assumptions
	Data Set
	Results and Discussion
	Case Study 1: Sensitivity Analyses
	Chapter 3: Summary

	Case Study 2: Interconnecting a REH in developed markets: PJM
	Overview
	PJM is a Regional Electricity Hub
	Capacity Options: Generation vs. Interconnector
	A Model for the REH Framework
	Linking capacity markets parameters to financial option value determinants
	Approach to valuation of capacity options
	Data set
	Results and discussion

	Chapter 4: Summary

	Conclusion
	Overview
	Case study 1
	Case study 2

	Energy Policy Implications: Geopolitics and Finance
	Limitations of the REH Framework
	Future Research

	References
	APPENDICES
	Costs vs. Prices
	Net cost of new entry for generation and interconnector vs. capacity market prices

	Data Set Links
	Data set links for the case study 1
	Data set links for the case study 2

	Sensitivity Studies

