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HILBERT SPACE OPERATORS WITH COMPATIBLE OFF-DIAGONAL

CORNERS

L. LIVSHITS, G. MACDONALD1, L.W. MARCOUX1, AND H. RADJAVI1

Abstract. Given a complex, separable Hilbert space H, we characterize those operators for
which ‖PT (I − P )‖ = ‖(I − P )TP‖ for all orthogonal projections P on H. When H is finite-
dimensional, we also obtain a complete characterization of those operators for which rank (I −
P )TP = rankPT (I − P ) for all orthogonal projections P . When H is infinite-dimensional, we
show that any operator with the latter property is normal, and its spectrum is contained in either
a line or a circle in the complex plane.

1. Introduction

1.1. Let H be a complex, separable Hilbert space. By B(H), we denote the algebra of bounded,
linear operators on H. If dim H = n < ∞, then we identify H with C

n and B(H) with Mn(C).
One of the most important open problems in operator theory is the Invariant Subspace Prob-

lem, which asks whether or not every bounded, linear operator T acting on a complex, infinite-
dimensional, separable Hilbert space H admits a non-trivial invariant subspace; that is, a closed
subspace M �∈ {{0},H} for which TM ⊆ M.

We say that an operator T ∈ B(H) is (orthogonally) reductive if for each orthogonal projection
P ∈ B(H), the condition PT (I − P ) = 0 implies that (I − P )TP = 0. The Reductive Operator
Conjecture is the assertion that every reductive operator is normal. It was shown by Dyer, Pederson
and Procelli [9] that the Invariant Subspace Problem admits a positive solution if and only if the
Reductive Operator Conjecture is true.

Our goal in this paper is to study two variants of orthogonal reductivity. Let T ∈ B(H) and
P ∈ B(H) be an orthogonal projection. We refer to the operator

P⊥TP : PH → P⊥H
as an off-diagonal corner of T .

Relative to the decomposition H = PH ⊕ P⊥H, we may write T = [A B
C D ]. We refer to the

block-entries of such block-matrices via their geographic positions: NW, NE, SE, SW, and the NE
and the SW block-entries are examples of the off-diagonal corners.

In the work below, we shall be interested in two phenomena: firstly, when the operator norm of
B(= BP ) coincides with the operator norm of C(= CP ) for all projections P , and secondly, when
the rank of B coincides with the rank of C for all projections P . Clearly, any operator which satisfies
one of these two conditions is orthogonally reductive. An example is given in Section 5 below to
show that the converse to this statement is false.

In the case of normal matrices, some related work has been done by Bhatia and Choi [5]. For
instance, if the dimension of the space is 2n < ∞, and if P is a projection of rank n, it is a
consequence of the fact that the Euclidean norm of the kth column of a normal matrix coincides
with that of the kth row for all k that the Hilbert-Schmidt (or Frobenius) norm of B always equals
that of C. Further, they show that ‖B‖ ≤ √

n‖C‖, and that equality can be achieved for some
normal matrix T ∈ M2n(C) and some projection P of rank n if and only if n ≤ 3.
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1.2. Definition. Let T ∈ B(H). We say that T has the common norm property (property
(CN)) if for any projection P ∈ B(H) we have that

‖PTP⊥‖ = ‖P⊥TP‖.
We denote by Gnorm the set of operators with property (CN). We say that T has the common

rank property (property (CR)) if for any projection P ∈ B(H) we have that

rankPTP⊥ = rankP⊥TP.

We denote by Grank the set of operators with property (CR).

As we shall see, our results depend upon whether or not H is finite-dimensional. When the
Hilbert space is finite-dimensional and of dimension at least four, then we shall show that the set
of operators satisfying property (CN) coincides with the set of operators satisfying property (CR),
and that this consists of those operators which are scalar translates of scalar multiples of hermitian
(or of unitary) operators. (See Theorem 3.15 below.)

In the infinite-dimensional setting, we obtain a complete characterization of those operators sat-
isfying property (CN). Again, any scalar translate of a scalar multiple of a hermitian operator will
suffice. This time, however, the unitary operators involved must have essential spectrum contained
in only half of a circle. (See Theorem 4.13 below.)

The problem of characterizing those operators acting on an infinite-dimensional Hilbert space
which enjoy property (CR) is much more delicate. We are able to demonstrate that any operator T
satisfying property (CR) must once again be a scalar translate of a scalar multiple of a hermitian
(or of a unitary) operator. In particular, such operators are normal. However, an obstruction occurs
in that it is not the case that every unitary operator has property (CR). Indeed, as is well-known
(see Section 5 for an example) – not every unitary operator is reductive.

1.3. We shall need some standard notations and definitions in what follows.
If T = [A B

C D ] is a block-matrix in Mn(C), and A is invertible, then the matrix D − CA−1B is
said to be the Schur complement of A in T and is denoted by T |A. In such a case T is invertible
if and only if T |A is, and when this happens, the SE block-corner

(
T−1

)
SE

of T−1 is (T |A)−1.

Furthermore: (
T−1

)
SW

= −(T |A)−1CA−1 and
(
T−1

)
NE

= −A−1B (T |A)−1.

Similarly, if B is invertible then C −DB−1A is the Schur complement T |B of B in T , and T is
invertible if and only if T |B is, in which case(

T−1
)
NE

= (T |B)−1.

Corresponding statements and concepts apply to C and D as well.
As always, T = {z ∈ C : |z| = 1}. A subset of C is circlinear if it is contained in a circle

or a straight line. By K(H), we denote the closed, two-sided ideal of compact operators in B(H),
and π : B(H) → B(H)/K(H) denotes the canonical map from B(H) into the Calkin algebra
B(H)/K(H). The essential spectrum σe(T ) of T ∈ B(H) is the spectrum of π(T ) in the Calkin
algebra B(H)/K(H), and we say that T is a Fredholm operator if 0 �∈ σe(T ). The Fredholm
domain of T is �F (T ) = C \ σe(T ). We say that T is a semi-Fredholm operator if π(T ) is
either left or right invertible in B(H)/K(H), and define the semi-Fredholm domain of T to be
�sF (T ) = {λ ∈ C : (T − λI) is semi-Fredholm}. The complement of �sF (T ) is called the left-right
essential spectrum of T and is denoted by σ�re(T ). If T is semi-Fredholm, we define the index
of T to be indT = nulT − nulT ∗ ∈ Z ∪ {−∞,∞}. When T is Fredholm, we have that indT ∈ Z.

We say that T is triangular if there exists an orthonormal basis {en}∞n=1 for H such that the
matrix [T ] = [ti,j ] for T relative to this basis (i.e. ti,j = 〈Tej , ei〉) satisfies ti,j = 0 for all i > j. The
operator is said to be quasitriangular if it is of the form T = T0 +K, where T0 is triangular and
K is compact. It was shown by Apostol, Foiaş, and Voiculescu [2] that T is quasitriangular if and
only if ind (T − λI) ≥ 0 whenever λ ∈ �sF (T ). Finally, T is biquasitriangular if each of T and T ∗

is quasitriangular, i.e. if and only if ind (T − λI) = 0 for all λ ∈ �sF (T ).
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Recall also that if T ∈ B(H), then |T | = (T ∗T )1/2 denotes the absolute value of T . A unitary
operator U ∈ B(H) is said to be absolutely continuous if the spectral measure for U is absolutely
continuous with respect to Lebesgue measure restricted to σ(U), while U is said to be singular if
the spectral measure of U is singular with respect to Lebesgue measure restricted to σ(U). These
notions will only be used in Section 5.

2. Preliminary results

2.1. We begin with a few simple remarks. Although the proofs are rather elementary, we shall list
these in the form of a Proposition so as to be able to more easily refer to them later. The proofs are
left to the reader.

2.2. Proposition. Suppose that R, T ∈ B(H) and that R has property (CR) and T has property
(CN).

(a) For all λ, μ ∈ C, we have that
• λI + μR and R∗ have property (CR), while
• λI + μT and T ∗ have property (CN).

(b) Suppose that H = H1 ⊕H2.
• If there exist A ∈ B(H1) and D ∈ B(H2) such that R = A ⊕ D, then A and D both

have property (CR).
• If there exist A ∈ B(H1) and D ∈ B(H2) such that T = A⊕D, then A and D both have
property (CN).

(c) If V ∈ B(H) is unitary, then
• V ∗RV has property (CR) and
• V ∗TV has property (CN).

(d) If L = L∗ ∈ B(H), then L has both property (CR) and property (CN).

In the case of property (CN), we also observe the following. For T ∈ B(H), let us denote by U(T )
the unitary orbit of T , i.e. U(T ) = {V ∗TV : V ∈ B(H) unitary}. Recall that two operators S and

T are said to be approximately unitarily equivalent if S ∈ U(T ) (equivalently, T ∈ U(S)). The
proofs of the following assertions are elementary and are left to the reader.

2.3. Proposition.

(a) The set Gnorm of operators with property (CN) is closed.

(b) If T ∈ B(H) has property (CN) and there exists S ∈ U(T ) of the form S = A ⊕ D, then
A,D have property (CN).

The following remark, while innocuous in appearance, is actually the key to a number of calcula-
tions below.

2.4. Remark. Let U ∈ B(H) be a unitary operator and P ∈ B(H) be a projection. Write U = [A B
C D ]

relative to H = PH⊕ P⊥H. The fact that U is unitary implies that

I = AA∗ +BB∗ = A∗A+ C∗C.

Thus BB∗ = I −AA∗ and C∗C = I −A∗A.
It follows that

‖B‖2 = ‖BB∗‖ = 1−min{λ : λ ∈ σ(AA∗)},
and similarly

‖C‖2 = ‖C∗C‖ = 1−min{μ : μ ∈ σ(A∗A)}.
However, it is a standard fact that σ(AA∗)∪{0} = σ(A∗A)∪{0}, and thus the only way that we

can have ‖B‖ �= ‖C‖ is if either

(I) 0 ∈ σ(AA∗) but 0 �∈ σ(A∗A), or
(II) 0 ∈ σ(A∗A) but 0 �∈ σ(AA∗).
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This argument demonstrates the rather interesting fact that if U = [A B
C D ] is a unitary operator

and ‖B‖ �= ‖C‖, then
min(‖B‖, ‖C‖) < 1 = max(‖B‖, ‖C‖).

In particular, if U = [A B
C D ] is a unitary such that ‖B‖ < ‖C‖(= 1), then every unitary U ′ close

enough to U has the form
[
A′ B′
C′ D′

]
where ‖B′‖ < ‖C ′‖ = 1, which is remarkable.

3. The finite-dimensional setting

3.1. We now turn to the case where the Hilbert space under consideration is finite-dimensional (and
complex).

3.2. Proposition. Let n ≥ 2 be an integer and T ∈ Mn(C). If T has property (CN) or property
(CR), then T is normal.
Proof. This is an easy consequence of the fact that given any T ∈ Mn(C), there exists an orthonor-
mal basis with respect to which the matrix of T is upper triangular. Either property clearly implies
that the matrix of T is in fact diagonal with respect to this basis, and hence that T is normal.

�

3.3. Proposition. Let n ≥ 2, and let U ∈ Mn(C) be a unitary operator. Then U has both property
(CN) and property (CR).
Proof. Let P ∈ Mn(C) be a projection, and relative to the decomposition C

n = PC
n ⊕ P⊥

C
n, let

us write

U =

[
A B
C D

]
.

As noted in Remark 2.4, since U is unitary, we have that BB∗ = I − AA∗ and C∗C = I − A∗A.
Observe, however, that in the finite-dimensional setting we have that A∗A is unitarily equivalent to
AA∗, and thus BB∗ is unitarily equivalent to C∗C. Thus

• ‖B‖ = ‖C‖, and
• rankB = rankBB∗ = rankC∗C = rankC.

�

Combining this with Proposition 2.2 (a), we obtain:

3.4. Proposition. Let T ∈ Mn(C). If T is either hermitian or unitary, then for all λ, μ ∈ C,
λI + μT has both property (CN) and property (CR).

Our goal is to prove that if T ∈ Mn(C) has either property (CN) or property (CR), then it is of
the form λI + μX where X is either hermitian or unitary.

3.5. Remark. The common link between these two cases is the geometry of the set of eigenvalues
of T . If T is normal, then T = λI + μV where V is unitary if and only if all of the eigenvalues of
T lie on a common circle. If T is normal, then T = λI + μL where L = L∗ if and only if all of the
eigenvalues of T lie on a common line. That is to say, the union of these two sets of operators is
precisely the class of normal operators whose spectra are circlinear.

Given a matrix B ∈ Mn,m(C), we denote by ‖B‖2 = tr(B∗B)1/2 the Hilbert-Schmidt (or
Fröbenius) norm of B.
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3.6. Proposition. Let k, � ≥ 1 be integers, and suppose that T =

[
A B
C D

]
is a normal operator in

B(Ck ⊕ C
�). Then

‖B‖2 = ‖C‖2.

Proof. The fact that T is normal implies that AA∗ +BB∗ = A∗A+ C∗C. Using the fact that the
trace is linear and that tr(XY ) = tr(Y X) for all X ∈ Mk,�(C), Y ∈ M�,k(C), we see that

‖B‖2 = tr(BB∗) = tr(C∗C) = ‖C‖2.
�

We begin by considering the exceptional cases where the dimension of the underlying Hilbert
space is too small to allow anything interesting to happen.

3.7. Proposition. Let 2 ≤ n ≤ 3, and let T ∈ Mn(C). The following are equivalent.

(a) T is normal.
(b) T has property (CN).
(c) T has property (CR).

Proof. By Proposition 3.2, both (b) and (c) imply (a).
Conversely, if T ∈ Mn(C) is normal and 0 �= P �= I is a projection in Mn(C), then PTP⊥ and

P⊥TP both have rank at most one. From this and from Proposition 3.6, we find that

‖PTP⊥‖ = ‖PTP⊥‖2 = ‖P⊥TP‖2 = ‖P⊥TP‖.
Thus T has property (CN); that is, (a) implies (b). This also shows that PTP⊥ and P⊥TP

either both have rank 0 or both have rank 1. Hence (a) implies (c) as well.

�

For the remainder of this section, we shall assume that the dimension n of the underlying Hilbert
space is at least 4.

3.8. Remark. Let us now show that the problem of characterizing which operators in Mn(C) have
property (CN) (resp. property (CR)) reduces to the case where n = 4. Of course, by Proposition 3.2,
we may restrict our attention to normal operators.

Let n > 4, and suppose that T ∈ Mn(C) is normal.

• As observed in Remark 3.5, if all of the eigenvalues of T are either co-linear or co-circular
(i.e. all lie on the same circle), then there exist α, β ∈ C and either a hermitian operator
L or a unitary operator V such that T = αI + βL, or T = αI + βV . Either way, by
Proposition 3.4, T has property (CN) and property (CR).

• Conversely, suppose that T has property (CN) (resp. T has property (CR)), and suppose
we know that every X ∈ M4(C) with property (CN) (resp. with property (CR)) has
eigenvalues that are either co-linear or co-circular. Given any {θ1, θ2, θ3, θ4} in σ(T ), we can
write T = R ⊕ Y , where R is a normal operator in M4(C) with σ(R) = {θ1, θ2, θ3, θ4}. By
Proposition 2.2 (b), R has property (CN) (resp. R has property (CR)). It follows from our
hypothesis that {θ1, θ2, θ3, θ4} are either co-linear or co-circular. Since this is true for an
arbitrary collection of four elements from σ(T ), we conclude that all of the eigenvalues of T
are either co-linear or co-circular. As before, this implies the existence of α, β ∈ C and either
a hermitian operator L or a unitary operator V such that T = αI + βL, or T = αI + βV .

We now concentrate on proving that a 4× 4 matrix T has property (CN) (resp. property (CR))
if and only if the eigenvalues of T are either co-linear or co-circular.
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3.9. Lemma. Let X,Y ∈ M2(C) and suppose that ‖X‖2 = ‖Y ‖2. The following are equivalent.

(a) ‖X‖ = ‖Y ‖.
(b) tr((X∗X)2) = tr((Y ∗Y )2).
(c) | det(X)| = | det(Y )|.

Proof. Again, since the Fröbenius norm, the operator norm, and the trace functional are all
invariant under unitary conjugation, we may assume without loss of generality that X∗X and Y ∗Y
are not only positive but diagonal, say

X∗X =

[
x1 0
0 x2

]
, Y ∗Y =

[
y1 0
0 y2

]
,

with 0 ≤ x1, x2, y1, y2.
The hypothesis that ‖X‖2 = ‖Y ‖2 is the statement that � = x1 + x2 = y1 + y2.

(a) implies (b).
Suppose that ‖X‖ = ‖Y ‖. Then ‖X‖2 = ‖Y ‖2 and so max{x1, x2} = max{y1, y2}.

By reindexing if necessary, we may assume that x1 = y1. But we have also assumed that
x1 + x2 = y1 + y2, and so x2 = y2. It follows that

tr((X∗X)2) = x2
1 + x2

2 = y21 + y22 = tr((Y ∗Y )2).

(b) implies (c).
Our current hypotheses are that x1 + x2 = y1 + y2 and that x2

1 + x2
2 = y21 + y22 . Thus

| det(Y )|2 = det(Y ∗Y )

= y1y2

=
1

2

(
(y1 + y2)

2 − (y21 + y22)
)

=
1

2

(
(x1 + x2)

2 − (x2
1 + x2

2)
)

= x1x2

= det(X∗X)

= | det(X)|2,
from which (c) follows.

(c) implies (a).
Suppose that | det(X)| = | det(Y )|. Then, as we have just computed, x1x2 = | det(X)|2 =

| det(Y )|2 = y1y2.
But then x1 + x2 = y1 + y2 and x1x2 = y1y2 together imply that {x1, x2} = {y1, y2}. In

particular,

‖X‖2 = ‖X∗X‖ = max{x1, x2} = max{y1, y2} = ‖Y ∗Y ‖ = ‖Y ‖2.
This completes the proof.

�

3.10. Theorem. Suppose that T is an invertible normal block-matrix in M4(C) with 2× 2 blocks,
and the off-diagonal corners of T have equal rank (respectively equal operator norm), then the same
is true for the off-diagonal corners of T−1.
Proof. Let us start with the case of equal ranks, and employ a proof by contradiction, supposing that
T = [A B

C D ] is an invertible normal matrix with T−1 =
[
A′ B′
C′ D′

]
, and rankB = rankC, but rankB′ �=

rankC ′.
Since T−1 is normal, every invariant subspace of T−1 is reducing, and so if either B′ or C ′ is zero

then both B′ and C ′ are zero, contradicting our hypothesis. Hence we may assume that one of B′

and C ′ has rank 1 and the other has rank equal to 2. Passing to T ∗ if necessary, we can assume
without loss of generality that rankC ′ = 1 < 2 = rankB′.
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In particular, B′ is invertible, as is T−1, and therefore B =
(
T−1|B′)−1

, from which we conclude

that B is invertible. Consequently C has rank 2 and is invertible. Hence C ′ = (T |C)
−1

, and therefore
C ′ is invertible, i.e. has rank 2, equal to that of B′, contradicting our hypothesis.

Next let us deal with the case of equal operator norms. Let us suppose that ‖B‖ = ‖C‖, or
equivalently, by Lemma 3.9, that | detB| = | detC|.

First, let us treat the case “A is invertible”. In this case

detC ′ = det
(−(T |A)−1CA−1

)
=

detC

det (T |A) detA

and

detB′ = det
(−A−1B (T |A)−1

)
=

detB

det (T |A) detA
,

so that detC ′ = detB′, and therefore ‖B′‖ = ‖C ′‖, again by Lemma 3.9.
Now, the remaining case is “A is not invertible”. In this case there is a sequence [αk]k∈N

convergent
to zero and such that each αk is neither an eigenvalue of T , nor of A. Applying the already settled
case “A is invertible” to each (invertible and normal) T − αk I, we can conclude that for each k the

off-diagonal corners of (T − αk I)
−1

have equal norms. Yet limk→∞ ‖(T − αkI)
−1 − T−1‖ = 0, and

therefore the off-diagonal corners of (T − αk I)
−1

converge to those of T−1, showing that the latter
have equal norms as well, and the proof is complete.

�

3.11. Corollary. Suppose that T is a normal block-matrix in M4(C) with 2× 2 blocks such that a
Möbius map

M(z) =
az + b

cz + d

is finite at all eigenvalues of T .
If the off-diagonal corners of T have equal rank (respectively, equal operator norm), then the same

is true for the off-diagonal corners of M(T ).

Proof. The claim is obviously true if c = 0 �= d. Let us consider the case c �= 0. In this case, −d
c is

not an eigenvalue of T , and

M(z) =
a

c
+

(
b− ad

c

c

)
· 1

z + d
c

.

If the off-diagonal corners of T have equal rank (respectively, equal operator norm), then the same

is true for T + d
c I. Then, by Theorem 3.10, the off-diagonal corners of

(
T + d

c I
)−1

have equal rank
(respectively, equal operator norm), and thus the same can be said about the off-diagonal corners
of M(T ).

�

3.12. Corollary. If T ∈ M4(C) has property (CN) or if T has property (CR), then T is normal
and M(T ) has the same property for any Möbius map M that is finite on the spectrum of T .

Proof. This is the consequence of Proposition 3.2, Corollary 3.11 and the standard analytic
functional-calculus fact that

M
(
U

∗
TU

)
= U

∗
M(T )U.

�
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3.13. Proposition. If T is a normal block-matrix in M4(C) with 2× 2 blocks, and the spectrum of
T is {0, 1, 2, δ}, where δ /∈ R, then there exists a unitary block-matrix U in M4(C) such that, with
respect to the 2× 2 block partitioning,

rank
(
U

∗
TU

)
NE

< 2 = rank
(
U

∗
TU

)
SW

.

Proof. Every complex number δ other than 2 can be expressed as 2−8/(6+β) for a unique β �= −6.
Furthermore, δ is real exactly when β is real.

Hence, after applying a unitary similarity we can assume without loss of generality that

T =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2− 8

β+6

⎞
⎟⎟⎠

The unitary U shall be the product VW of the unitaries

V =

⎛
⎜⎜⎝

σ 0 γ 0
0 γ 0 σ
γ 0 −σ 0
0 σ 0 −γ

⎞
⎟⎟⎠ and W =

⎛
⎜⎜⎜⎜⎝

1√
2

eiθ√
2

0 0
1√
2

− eiθ√
2

0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

⎞
⎟⎟⎟⎟⎠ ,

where σ, γ and θ, to be specified later, are subject to the conditions:

σ �= γ, σ2 + γ2 = 1, 0 < σ, 0 < γ, and θ is not an integer multiple of π.

A direct calculation shows that(
U

∗
TU

)
NE

=

(
− (3β+10)γσ

2(β+6) − 4γ2

β+6 − 1
2e

iθσ2

− 1
2e

−iθγ2 − 4σ2

β+6 − (3β+10)γσ
2(β+6)

)

and (
U

∗
TU

)
SW

=

(
− (3β+10)γσ

2(β+6) − 1
2e

iθγ2 − 4σ2

β+6

− 4γ2

β+6 − 1
2e

−iθσ2 − (3β+10)γσ
2(β+6)

)
,

and that

det
(
U

∗
TU

)
NE

=

(−2γ2σ2

β + 6

)(
1

eiθσ2

γ2

+
eiθσ2

γ2
− β

)
,

while

det
(
U

∗
TU

)
SW

=

( −2

β + 6

)(
γ4eiθ + e−iθσ4 − γ2σ2β

)
.

Now one can see that

det
(
U

∗
TU

)
NE

− det
(
U

∗
TU

)
SW

=
4i

(
γ4 − σ4

)
sin(θ)

β + 6
�= 0,

because of the conditions that we have imposed on σ, γ and θ.

Note that
eiθσ2

γ2
can take on any non-real complex value even when σ, γ are restricted to be

distinct positive numbers whose squares add up to 1, and θ is not an integer multiple of π.

It is also easy to see that the equation ζ +
1

ζ
= β has a complex solution for ζ, and since β �∈ R,

the solution cannot be real.
It follows that there exist σ, γ and θ satisfying the conditions:

σ �= γ, σ2 + γ2 = 1, 0 < σ, 0 < γ, and θ is not an integer multiple of π,
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as well as the condition
1

eiθσ2

γ2

+
eiθσ2

γ2
= β.

These are the σ, γ and θ that we use in the construction of U , and it is now clear that such a U is
the one we seek, since for this U :

0 = det
(
U

∗
TU

)
NE

�= det
(
U

∗
TU

)
SW

.

�

3.14. Corollary. If T ∈ M4(C) has property (CN) or if T has property (CR), then T is normal
and the spectrum of T is circlinear.

Proof. Such T has to be normal by Proposition 3.2. To verify the rest of the claim we proceed by
contradiction. Suppose that the eigenvalues λ0, λ1, λ2, λ3 of T are not circlinear. Then they are all
distinct.

By the spectral mapping theorem, given a Möbius map M that is finite on the spectrum of T , the
eigenvalues of M(T ) are the images of the eigenvalues of T under M . It is well-known that Möbius
maps take circlines to circlines, and exhibit sharp three-fold transitivity.

In particular there is a unique Möbius map Mo such that

Mo(λi) = i, for i = 0, 1, 2.

If Mo sends λ3 to zo that is a real number or “∞”, then the inverse of Mo sends 0, 1, 2, zo to
λ0, λ1, λ2, λ3, indicating that the latter set is part of the image (under Mo) of the extended real line,
and hence must be circlinear, contrary to our hypothesis. Therefore Mo sends λ3 to some complex
non-real number δ.

Applying Corollary 3.12 and Proposition 3.13 to Mo(T ) yields a contradiction, and the proof is
complete.

�

By combining Remark 3.8 and Corollary 3.14, we obtain the main theorem of this section.

3.15. Theorem. Let n ≥ 4 be an integer and T ∈ Mn(C). The following are equivalent.

(a) T has property (CN).
(b) T has property (CR).
(c) One of the following holds:

(i) there exist λ, μ ∈ C and V ∈ Mn(C) unitary such that T = λI + μV .
(ii) There exist λ, μ ∈ C and L = L∗ ∈ Mn(C) such that T = λI + μL.

3.16. There is also an alternative proof for Theorem 3.15 that does not involve Möbius maps, and
while we have chosen not to include it here, we will gladly share it with an interested reader. Clearly
the invariance of property (CN) and property (CR) under Möbius maps (as in Corollary 3.12) can
be inferred from Theorem 3.15.

4. The infinite-dimensional setting – property (CN)

4.1. Let us now consider the case where the underlying Hilbert space is infinite-dimensional and
separable. We begin by studying operators with property (CN). In the finite-dimensional setting,
we saw that any such operator is normal. While this is also true in the infinite-dimensional setting,
the proof is rather different.

Recall that an operator T ∈ B(H) is said to be strongly reductive if, whenever (Pn)
∞
n=1 is a

sequence of orthogonal projections such that limn ‖P⊥
n TPn‖ = 0, it follows that limn ‖PnTP

⊥
n ‖ = 0

(or equivalently, limn ‖PnT − TPn‖ = 0). Let us say that a compact set Ω ⊆ C is Lavrentiev if it
has empty interior and if C \ Ω is connected.



10

4.2. Proposition. Let H be an infinite-dimensional, separable Hilbert space. If T ∈ B(H) has
property (CN), then T is normal and has Lavrentiev spectrum.
Proof. It is an immediate consequence of the definition that if T has property (CN), then T is
strongly reductive. It was shown by Harrison [12] that any strongly reductive operator has Lavrentiev
spectrum. Apostol, Foiaş and Voiculescu [3] showed that any strongly reductive operator is normal.

It is also easy to obtain the normality of T which enjoys property (CN) directly. Suppose that
T ∈ B(H) has property (CN), and let e ∈ H be an arbitrary vector of norm one. Then Pe(x) =
〈x, e〉e, x ∈ H defines a rank one projection. By hypothesis, ‖P⊥

e T ∗Pe‖ = ‖PeTP
⊥
e ‖ = ‖P⊥

e TPe‖.
Now

〈TT ∗e, e〉 = ‖T ∗e‖2 = ‖PeT
∗e‖2 + ‖P⊥

e T ∗e‖2
= ‖PeT

∗Pee‖2 + ‖P⊥
e T ∗Pee‖2

= ‖PeT
∗Pe‖2 + ‖P⊥

e T ∗Pe‖2.
Similarly,

〈T ∗Te, e〉 = ‖PeTPe‖2 + ‖P⊥
e TPe‖2.

Now
‖PeTPe‖ = ‖PeT

∗Pe‖,
and combining this with the fact that ‖P⊥

e T ∗Pe‖ = ‖P⊥
e TPe‖ from above, we see that

〈TT ∗e, e〉 = 〈T ∗Te, e〉.
Since e was an arbitrary norm-one vector, we conclude that TT ∗ = T ∗T ; i.e. that T is normal.

�

4.3. In Section 2, we noted that if L = L∗ ∈ B(H) and λ, μ ∈ C, then λI + μL has property (CN).
Although in the finite-dimensional setting every unitary operator V also has property (CN), this is
no longer true in the infinite-dimensional setting, as the following counterexample shows.

Let {en}n∈Z be an orthonormal basis for our Hilbert space H, and consider the bilateral shift
operator W determined by Wen = en−1, n ∈ Z. Then W is unitary and σ(W ) = T. By Proposi-
tion 4.2, W does not have property (CN).

This can be seen directly as well. If P is the orthogonal projection of H onto M = span{en : n ≤
0}, then M is invariant for W , so that P⊥WP = 0. However, 0 �= e0 = We1 = PWP⊥e1, so that
PWP⊥ �= 0. A fortiori, W has neither property (CN) nor property (CR). Furthermore, since the
set of operators having property (CN) is clearly (norm-)closed, no operator close enough to W has
property (CN).

For n ≥ 3, let Cn ∈ Mn(C) denote an n-cycle; that is, there is an orthonormal basis {ek}nk=1

of Cn, such that Cnek = ek+1, 1 ≤ k ≤ n − 1, and Cnen = e1. It follows easily from the results
in [7] that there exists a sequence (Vn)

∞
n=1 of unitary operators with Vn � Cn ⊗ I for all n ≥ 1

such that limn Vn = W . Thus Vn does not have property (CN) for all sufficiently large n. That is,
for sufficiently large n, Cn ⊗ I fails to have property (CN), despite the fact that Cn ∈ Mn(C) has
property (CN) by Proposition 3.3. In fact, as we shall soon see, Cn ⊗ I fails to have property (CN)

for all n ≥ 3.

4.4. Let us recall that the numerical range of T ∈ B(H) is the set W (T ) = {〈Tx, x〉 : ‖x‖ = 1},
and the numerical radius of T is w(T ) = sup{|λ| : λ ∈ W (T )}. It is known that the numerical
range of an operator is always a convex set (this is the classical Toeplitz-Hausdorff Theorem), and
that the closure of the numerical range of T always contains σ(T ) (see, for example, Problem 214
of [11]).

In trying to characterize operators with property (CN), we know that we may restrict our at-

tention to normal operators. For a normal M , it is known that W (M) = co(σ(M)), that is, the
closure of the numerical range of M is the convex hull of the spectrum of M . If σ(M) happens to
be finite, then (by the Spectral Theorem) σ(M) consists of the eigenvalues of M , and these belong
to the numerical range of M , as does their convex hull. Hence in such a case W (M) = co(σ(M)).
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The numerical radius defines a norm on B(H) which is equivalent to the operator norm, because
1
2‖T‖ ≤ w(T ) ≤ ‖T‖ for all T ∈ B(H). (See, e.g. [11], Chapter 22 for all of these results.)

A state on B(H)/K(H) is a positive linear functional of norm one. For T ∈ B(H), the essential
numerical range We(T ) of T is the set {ϕ(π(T )) : ϕ is a state on B(H)/K(H)}. It is known that
We(T ) is closed and convex, and so it follows that We(T ) = co(σe(T )), whenever T is normal.

4.5. Theorem. (Fillmore-Stampfli-Williams; Theorem 5.1 of [10]) For T ∈ B(H), the following
conditions are equivalent.

(a) 0 ∈ We(T ).
(b) There exists an orthonormal sequence (en)

∞
n=1 in H such that limn〈Ten, en〉 = 0.

(c) 0 ∈ ∩{W (T + F ) : F is of finite rank}.
From this it easily follows that We(T ) = ∩{W (T + F ) : F is of finite rank}.

4.6. If R ∈ B(K) where K ⊆ H is a subspace of H, then T is said to be a dilation of R if, relative
to the decomposition H = K ⊕K⊥, we may write

T =

[
R B
C D

]
for some choice of B,C and D.

Recall that if {en}∞n=1 is an orthonormal basis for H, then the unilateral forward shift on H
is the operator S ∈ B(H) satisfying Sen = en+1 for all n ≥ 1.

The following result of Choi and Li will be useful.

4.7. Theorem. (Choi-Li; Theorem 4.3 of [6]) Suppose that A ∈ B(H), and T ∈ M3(C) has a
non-trivial reducing subspace. Then A has a dilation that is unitarily equivalent to T ⊗ I if and only
if W (A) ⊆ W (T ).

4.8. Theorem. Suppose that V ∈ M3(C) is a unitary operator and that 0 lies in the interior of
W (V ). Then V ⊗ I does not have property (CN).
Proof. Clearly every unitary operator V in M3(C) has a non-trivial reducing subspace. Note also
that if S ∈ B(H) is the unilateral forward shift, spr(S) ≤ ‖S‖ = 1. (In fact, spr(S) = 1, but that is
not important here.)

Thus spr(εS) ≤ ε for all ε > 0. Since 0 lies in the interior of W (V ), there exists ε0 > 0 such that
W (ε0S) ⊆ W (V ). Let A = ε0S. By Theorem 4.7 above, we may write

V ⊗ I �
[
A B
C D

]
.

Let P = SS∗, so that P is an orthogonal projection of co-rank one (i.e. the rank of (I − P ) is
equal to one). In particular, σ(P ) = {0, 1}.

Then, since V ⊗ I is unitary, we have that

BB∗ = I −AA∗ = I − ε20P

C∗C = I −A∗A = I − ε20I.

It follows that

‖B‖2 = ‖BB∗‖ = ‖I − ε20P‖ = 1,

while

‖C‖2 = ‖C∗C‖ = ‖I − ε20I‖ = 1− ε20.

In particular, ‖B‖ �= ‖C‖, so that V ⊗ I does not have property (CN).

�

It follows from Theorem 4.8 that Cn ⊗ I does not have property (CN) for n ≥ 3, since in such a
case 0 lies in the interior of W (Cn).
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4.9. Corollary. Suppose that U ∈ B(H) is a unitary operator that has property (CN). Then 0 does
not lie in the interior of We(U).
Proof. We prove a contrapositive implication. Suppose that 0 lies in the interior of the essential
numerical range of U , that is in the interior of the convex hull of the essential spectrum of U . Then
there exist α, β and γ in the essential spectrum of U such that 0 lies in the interior of the convex
hull of {α, β, γ}. Let V ∈ M3(C) be a unitary operator with spectrum {α, β, γ}. Then, as noted
in Section 4.4, W (V ) is closed and W (V ) = co{α, β, γ}. Hence 0 lies in the interior of W (V ). By
Theorem 4.8, V ⊗ I does not have property (CN).

Since α, β and γ lie in the essential spectrum of the normal operator U , U is approximately
unitarily equivalent to U⊕ (V ⊗I). (This is a consequence of the Weyl-von Neumann-Berg Theorem
for normal operators – see, e.g. Theorem II.4.4 of [8] – and can also be deduced from the results
of [7].) It now follows from Proposition 2.3 (b) that U does not have property (CN).

�

4.10. Theorem. Suppose that U ∈ B(H) is a unitary operator and 0 does not lie in We(U). Then
U has property (CN).
Proof. We prove a contrapositive implication. Let U be a unitary operator which fails to have
property (CN). Then there exists a projection P ∈ B(H) such that with respect to the decomposition
H = PH⊕ P⊥H, we may write

U =

[
A B
C D

]
where ‖B‖ �= ‖C‖.

As noted in Remark 2.4, this can only happen if one of the following holds:

(a) either 0 ∈ σ(AA∗) but 0 �∈ σ(A∗A),
(b) 0 ∈ σ(A∗A) but 0 �∈ σ(AA∗).
Since an operator T has property (CN) if and only if T ∗ has property (CN), by replacing U by

U∗ if necessary (which does not affect the conclusion, as 0 ∈ We(U) if and only if 0 ∈ We(U
∗)), we

may assume without loss of generality that 0 ∈ σ(AA∗) but 0 �∈ σ(A∗A). In particular, A is not
invertible.

Since A∗A is invertible, we see that A is bounded below. Hence ranA is closed and nulA = 0.
Therefore A is semi-Fredholm. If nulA∗ = 0, then ranA = PH, so that A is invertible, which is a
contradiction. Thus nulA∗ > 0, and so indA < 0.

Since ind (A+ F ) = indA < 0 for all finite-rank operators F ∈ B(PH), and since σ(T ) ⊆ W (T )
for all operators T , we may apply Theorem 4.5 of Fillmore, Stampfli and Williams to obtain:

0 ∈ ∩{σ(A+ F ) : F ∈ B(PH), F finite-rank}
⊆ ∩{W (A+ F ) : F ∈ B(PH), F finite-rank}
= We(A),

Since We(A) ⊆ We(U), the result follows.

�

4.11. Theorem. Suppose that U ∈ B(H) is unitary and that 0 lies on the boundary of We(U).
Then U has property (CN).
Proof. The hypotheses of the theorem imply that σe(U) lies on a closed half-circle of T, and
includes two diametrically opposite points. By multiplying U by an appropriate μ ∈ T (which
does not affect the conclusion of the Theorem), we may assume without loss of generality that
σe(U) ⊆ T ∩ {z ∈ C : Rez ≥ 0}, and that {i,−i} ⊆ σe(U).

For each n ≥ 1, let Cn = {z ∈ T : z = eiθ, π
2 − 1

n ≤ θ ≤ π
2 + 1

n}, and let Qn be the spectral

projection for U corresponding to Cn. Then U = Xn +Yn, where Xn = UQ⊥
n , and where Yn = UQn

is a unitary with σ(Yn) ⊆ Cn. Set Vn = Xn + ei(
π
2 − 1

n )Qn.
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It is reasonably straightforward to check that ‖U − Vn‖ = ‖Yn − ei(
π
2 − 1

n )Qn‖ ≤ 4π
n and that

σe(Vn) ⊆ Ωn = {z = eiθ ∈ T : −π
2 ≤ θ ≤ π

2 − 1
n}.

Thus 0 does not lie in the closed, convex hull of σe(Vn), and in particular, 0 does not lie in We(Vn)
for any n ≥ 1. By Theorem 4.10, Vn has property (CN). But as we saw in Proposition 2.3, the set
Gnorm of operators with property (CN) is closed, and thus U has property (CN).

�

Combining these results, and keeping in mind that We(T ) = co(σe(T )) for normal T , we obtain
the following.

4.12. Corollary. The following are equivalent for a unitary operator U ∈ B(H).

(a) U has property (CN).
(b) 0 does not lie in the interior of We(U).
(c) There exists a half-circle C of T such that σe(U) ⊆ C

(i.e. there exists μ ∈ T such that σe(U) ⊆ T ∩ {μz ∈ C : Re(z) ≥ 0}).
We are now ready to state and prove the main theorem of this section.

4.13. Theorem. Let T ∈ B(H). The following conditions are equivalent.

(a) T has property (CN).
(b) One of the following holds.

(i) There exist λ, μ ∈ C and L = L∗ ∈ B(H) such that T = λI + μL.
(ii) There exist λ, μ ∈ C with μ �= 0 and a unitary operator U ∈ B(H) with σe(U) ⊆ T∩{z ∈

C : Re(z) ≥ 0} such that T = λI + μU .

Proof. Suppose first that (a) holds, and recall that this implies that T is normal.
If σ(T ) has at most three points, then those points are either co-linear or co-circular. It is routine

to check from this that T is either of the form of (b) (i), or there exist λ, μ ∈ C with μ �= 0 and a
unitary U ∈ B(H) such that T = λI + μU . In this case, since μ �= 0, T has property (CN) if and
only if U has property (CN). But then U has property (CN) by our hypothesis on T , and so the
spectral conditions on U follow from Corollary 4.12.

Thus we assume that σ(T ) has cardinality at least 4, and we let {α, β, γ, δ} be four distinct points
in σ(T ). By Theorem II.4.4 in [8], T is approximately unitarily equivalent to an operator of the
form A ⊕ D, where D = diag(α, β, γ, δ) ∈ M4(C). By Proposition 2.3 (b), D has property (CN).
By Corollary 3.14, the eigenvalues of D are either co-linear or co-circular. Since this is true for any
choice of four distinct points of σ(T ), we see that σ(T ) is either contained in a line – in which case
it is easily seen that there exist λ, μ and L as in (b) (i) such that T = λI + μL, or σ(T ) lies on a
proper circle, i.e. there exist λ, μ ∈ C with μ �= 0 and a unitary U ∈ B(H) such that T = λI + μU .
We argue as in the previous paragraph to obtain the spectral conditions on U .

Suppose next that (b) holds.
If there exist λ, μ ∈ C and L = L∗ ∈ B(H) such that T = λI +μL, then T has property (CN) by

Proposition 2.2 (d).
If there exist λ, μ ∈ C with μ �= 0 and a unitary operator U ∈ B(H) with σe(U) ⊆ T ∩ {z ∈ C :

Re(z) ≥ 0} such that T = λI +μU . Then T has property (CN) if and only if U has property (CN)

by Proposition 2.2 (a). But U has property (CN) by Corollary 4.12, whence T has property (CN).

�

4.14. It is natural to consider a weakening of the property (CN) obtained by restricting our
attention to the finite-rank projections P ∈ B(H) in the case when H is infinite-dimensional. As
the reader can easily check, the results and proofs presented in this section readily demonstrate that
such a “weakening” of the property (CN) is in fact equivalent to the original property (CN).
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5. The infinite-dimensional setting – property (CR)

5.1. We next turn our attention to the study of operators with property (CR), acting on an infinite-
dimensional Hilbert space. Although we have not been able to obtain a complete classification of
such operators, we will mention a number of interesting facts.

We recall from above that an operator T ∈ B(H) is said to be (orthogonally) reductive if for each
projection P ∈ B(H), the condition PTP⊥ = 0 implies that P⊥TP = 0. It is clear that if T has
property (CR), then T must be reductive.

It should be noted that not every normal operator is reductive. Sarason [18] has shown that a
normal operator N is reductive if and only if N∗ lies in the weak operator topology closure of the set
of polynomials in N . As a concrete example, let W ∈ B(H) be the bilateral shift; i.e. let {en}n∈Z

be an orthonormal basis for H and let W be defined by Wen = en−1 for all n ∈ Z. It is well-known
that W is unitary with σ(W ) = T. If P is the orthogonal projection onto M = span{en : n ≤ 0},
then clearly M is invariant for W – so rankP⊥WP = 0, but it is easily verified that PWP⊥ has
rank 1. Thus W fails to be reductive.

The condition that an operator has property (CR) is strictly stronger than asking that it be
orthogonally reductive – see Example 5.9 below. It is worth observing that there is one inherent
weakness in the definition of orthogonally reductive operators: it is entirely possible that there
might exist an operator with no non-trivial closed, invariant subspace, in which case the operator is
reductive for trivial reasons. On the other hand, it was shown by Popov and Tcaciuc [16] that given
any operator T acting on an infinite-dimensional, complex, separable Hilbert space H, there exists
an orthogonal projection P of infinite rank and co-rank such that rankPTP⊥ ≤ 1. (Their result
actually holds for operators acting on reflexive Banach spaces and beyond, but we do not require
that here.) As such, property (CR) always has significance for Hilbert space operators.

We begin with some observations regarding the general class Grank of operators with property
(CR).

5.2. Proposition. Suppose that T ∈ B(H) has property (CR). Then T is biquasitriangular; that
is, ind (T − λI) = 0 for all λ ∈ �sF (T ).
Proof. It is clear that if λ ∈ C, then T − λI and (T − λI)∗ also have property (CR).

Suppose that λ ∈ �sF (T ) and that ind(T − λI) �= 0. By considering (T − λI)∗ if necessary, we
may assume that ind (T − λI) > 0 (it is possibly infinite).

Thus nul (T − λI) > nul (T − λI)∗. Write H = ker (T − λI)⊕ (ker (T − λI))⊥, and write

(T − λI) =

[
0 B
0 D

]

relative to this decomposition. If B = 0, then (T − λI)∗ =

[
0 0
0 D∗

]
, showing that nul (T − λI)∗ ≥

nul (T − λI), a contradiction. But then B �= 0 implies that T − λI does not have property (CR),
and hence neither does T .

The contrapositive is the statement that if T has property (CR), then T is biquastriangular.

�

5.3. Let T ∈ B(H) and suppose that T has property(CR). It is clear that if λ is an eigenvalue
for T , then it is a reducing eigenvalue for T ; that is, we may write T � λQ ⊕ T0, where Q is an
orthogonal projection and λ is no longer an eigenvalue for T0 (though it may be an approximate
eigenvalue for T0).

Let Λ := {λ ∈ C : λ is an eigenvalue for T}. Suppose that λ1 �= λ2 ∈ Λ and that T = λ1Q1 ⊕ T1,
where Q1 is an orthogonal projection and λ1 is not an eigenvalue of T1. Let x be an eigenvector T
corresponding to the eigenvalue λ2, and write x = y + z, where y = Q1x and z = (I −Q1)x. Then

λ2y + λ2z = λ2x = Tx = λ1y + T1z.
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Since z, Tz ∈ (I − Q1)H while y ∈ Q1H, and since λ1 �= λ2, we see that Q1x = y = 0. In other
words, eigenvectors of T corresponding to distinct eigenvalues are mutually orthogonal. Since H
is assumed to be a separable Hilbert space, this implies that T admits at most countably many
eigenvalues, say Λ = {λn}n∈Γ (where Γ is some countable set).

For each n ∈ Γ, let Qn be the orthogonal projection of H onto the (reducing) space ker (T −λnI),
and set H0 = span{QnH : n ∈ Γ}. Then H0 is reducing for T (since each QnH is), and the
compression M of T to H0 is diagonalizable with eigenvalues precisely equal to Λ. Furthermore, the
compression T0 of T to H⊥

0 has no eigenvalues.
For each n ∈ Γ, choose a norm-one eigenvector wn ∈ ker (T − λnI). Given any four eigen-

values λ1, λ2, λ3 and λ4 of M , the compression of M to the 4-dimensional reducing subspace
span{w1, w2, w3, w4} of M still has property (CR) (it is, after all, a direct summand of T - which
has property (CR)). From the results of Section 3, we may conclude that {λ1, λ2, λ3, λ4} are either
co-linear or co-circular. Since this is true of any four elements of Λ, it follows that Λ either lies on
a line or on a circle in C. But M is diagonalizable, hence normal, and σ(M) = Λ. Thus σ(M) is
either co-linear or co-circular.

Summarizing the information we shall require, the eigenvalues of any operator T with property
(CR) are either co-linear or co-circular, and they are reducing eigenvalues for T .

Our next goal is to prove that every operator which satisfies property (CR) is normal with
circlinear spectrum. We shall accomplish this through a sequence of lemmas. It is worth noting
that we shall not invoke the full strength of the property (CR) hypothesis. Indeed, for the next few
results, we only require a weaker form of property (CR) that requires that T be reductive and that
if P is a projection for which rankP⊥TP = 1, then rankPTP⊥ = 1. It can in fact be shown that
Proposition 5.2 also holds under this weaker hypothesis, though we shall not need that here.

5.4. Proposition. Let T ∈ B(H) and suppose that T has property (CR). Then there exist α, β, γ
and δ ∈ C, not all equal to zero, and an operator F ∈ B(H) of rank at most three such that

αI + βT + γT ∗ + δT ∗T + F = 0.

Proof. Fix 0 �= ξ ∈ H. We first claim that the set Sξ = {ξ, T ξ, T ∗ξ, T ∗Tξ} is linearly dependent.
Let Mξ = span {ξ, T ξ}. If dim Mξ = 1, then clearly {ξ, T ξ} is linearly dependent, whence Sξ is

linearly dependent and we are done.
Suppose therefore that dim Mξ = 2 and let Pξ denote the orthogonal projection of H onto Mξ.

Note that Tξ ∈ Mξ implies that rankP⊥
ξ TPξ ∈ {0, 1}. From our hypothesis, rankP⊥

ξ T ∗Pξ ∈ {0, 1}.
But then

dim (PξH+ P⊥
ξ T ∗PξH) ≤ dim (PξH) + dim (P⊥

ξ T ∗PξH)

≤ 2 + 1 = 3.

Since Sξ ⊆ PξH+ P⊥
ξ T ∗PξH, our claim follows.

As 0 �= ξ ∈ H was arbitrary, we see that the set {I, T, T ∗, T ∗T} is locally linearly dependent in
the sense of [1, 4] and [14]. By Theorem 2 of [4], there exist α, β, γ, and δ ∈ C, not all equal to zero,
such that

rank (αI + βT + γT ∗ + δT ∗T ) ≤ 3.

This clearly implies the statement of the proposition.

�

We begin by dealing with the case where δ above is equal to zero.

5.5. Lemma. Let H be a complex Hilbert space and suppose that T ∈ B(H). If there exist complex
numbers α, β and γ, not all equal to zero, and F ∈ B(H) of rank at most m < 1

2 dim H such that

αI + βT + γT ∗ + F = 0,
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then there exist a hermitian operator R, a finite-rank operator L of rank at most 2m, and μ, λ ∈ C

such that
T = λ(R+ L) + μI.

Proof. Case 1. Suppose that γ = 0.
In this case, we have that αI + βT + F = 0. If β = 0, then the fact that F has finite rank

rankF = m < dim H = rank I implies that α = 0(= β = γ), contradicting our hypothesis. Hence
β �= 0.

But then
T = −αβ−1I − β−1F.

• If α = 0, then
T = −β−1F = −β−1(0 + F ) + 0I

expresses T in the desired form.
• If α �= 0, then writing

T = −αβ−1(I − α−1F ) + 0I

expresses T in the desired form.

Case 2. Suppose that β = 0.
Then αI + γT ∗ + F = 0, and arguing as before, γ �= 0. Thus T ∗ = −αγ−1I − γ−1F .

• If α = 0, then
T ∗ = −γ−1(0 + F ) + 0I

means that
T = −γ−1(0 + F ∗) + 0I

expresses T in the desired form.
• If α �= 0, then writing

T ∗ = −αγ−1(I − α−1F ) + 0I

means that
T = −αγ−1(I − α−1F ∗) + 0I

expresses T in the desired form.

Case 3. Suppose that β �= 0 �= γ.
We have that αI+βT +γT ∗+F = 0, whence αI+βT ∗+γT +F ∗ = 0. Set � = (α+α), θ = β+γ

and F0 = F + F ∗. Adding the two previous equations involving T yields:

�I + θT + θT ∗ + F0 = 0,

and rankF0 ≤ 2 rankF ≤ 2m < dim H.

Subcase 3.A. θ = 0.
If θ = 0, then �I+F0 = 0, combined with the fact that dim H > rankF0 implies that � = 0 = F0.

That is, α ∈ iR and γ = −β �= 0, so that

αI + βT − βT ∗ + F = 0.

Let A = βT + α
2 I, and let A = R + iB be the Cartesian decomposition of A, so that R and B are

hermitian. The above equation shows that 0 = (A−A∗)+F = 2iB+F , and thus B has finite rank
at most m and

T = β−1(R+ iB)− αβ−1

2
I

expresses T in the desired form.

Subcase 3.B. θ �= 0.
We have

�I + θT + θT ∗ + F0 = 0,
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where rankF0 ≤ 2m and � ∈ R.

Let κ =
�i

2|θ|2 ∈ iR, and A = (θi)−1T − κI. Then T = θi(A + κI) and our equation �I + θT +

θT ∗ + F0 = 0 implies that

0 = |θ|2i(A−A∗) + F0.

In particular, A − A∗ has rank at most 2m. Again, we write A = R + iB where R = (A + A∗)/2
and B = (A−A∗)/2i. Then B has rank at most rankF0 ≤ 2m and

T = θi(R+ iB) + θiκI

expresses T in the desired form.

�

5.6. Lemma. Let H be a complex Hilbert space and suppose that T ∈ B(H) satisfies

rank (αI + βT + γT ∗ + δT ∗T ) ≤ 3

for some α, β, γ, δ ∈ C, where δ �= 0. Then there exist a unitary operator V , a finite-rank operator
L of rank at most 6, and μ, λ ∈ C such that

T = λ(V + L) + μI.

Proof. It is clear that there is no loss of generality in assuming that δ = 1
2 . Choose F ∈ B(H) with

rankF ≤ 3 such that

αI + βT + γT ∗ +
1

2
T ∗T + F = 0.

This trivially implies that αI + γT + βT ∗ + 1
2T

∗T +F ∗ = 0. As before, we set � = α+α, θ = β+ γ
and F0 = F + F ∗, and note that rankF0 ≤ 6. Then

�I + θT + θT + T ∗T + F0 = 0.

A routine calculation shows that

(�− |θ|2)I + (T + θI)∗(T + θI) + F0 = 0.

Of course, (T+θI)∗(T+θI) ≥ 0, and so - by considering this equation modulo the compact operators,
we conclude that |θ|2 − � ≥ 0.

We again consider two cases.

Case 1. |θ|2 = �.
Then

(T + θI)∗(T + θI) = −F0.

But then |T + θI| has finite rank, so that G = T + θI has finite rank. More specifically, rankG =
rankG∗G = rankF0 ≤ 6. Thus

T = −θ(I − θ
−1

G) + 0I

expresses T in the desired form.

Case 2. |θ|2 > �.
Set V0 = (|θ|2 − �)−1/2(T + θI) and F2 = (|θ|2 − �)−1F0, so that rankF2 = rankF0 ≤ 6. Then

V ∗
0 V0 = (|θ|2 − �)−1(T + θI)∗(T + θI)

= (|θ|2 − �)−1((|θ|2 − �)I − F0)

= I − F2.

That is, π(V0) is an isometry in the Calkin algebra. In particular, V0 is semi-Fredholm, and
therefore (T + θI) is semi-Fredholm. But T + θI has property (CR), so T + θI is biquasitriangular,
by Proposition 5.2.
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Hence V0 is Fredholm with index 0. Using the polar decomposition and the fact that V0 has
index 0, we may find a unitary operator U such that V0 = U |V0| = U(I − F2)

1/2. Thus U − V0 =
U(I − (I − F2)

1/2) is of finite rank at most 6, and

V0 = U − (U − V0) = (|θ|2 − �)−1/2(T + θI).

In other words,

T = (|θ|2 − �)1/2(U + (V0 − U))− θI

again expresses T in the desired form.

�

5.7. Proposition. Let H be an infinite-dimensional complex Hilbert space and F ∈ B(H) be a
finite-rank operator.

(a) Suppose that V ∈ B(H) is unitary. If W = V + F has property (CR), then W is normal
and σ(W ) is circlinear.

(b) Suppose that R ∈ B(H) is hermitian. If L = R + F has property (CR), then R is normal
and σ(L) is circlinear.

Proof.

(a) It is obvious that I − W ∗W is of finite rank. By Corollary 6.17 of [17], W must have a
non-trivial invariant subspace, which must – by virtue of property (CR) – in fact be an
orthogonally reducing subspace for W . Thus we may write W � W1 ⊕W2, and it is clear
that each Wk must satisfy property (CR) (by Proposition 2.2) and be of the form Vk+Fk for
some unitary operator Vk and some finite-rank operator Fk, k = 1, 2. At least one of these
summands acts on an infinite-dimensional space, and thus we may again apply Theorem 6.17
of [17] to find non-trivial invariant – hence reducing – subspaces for that summand.

Repeating this process, we see that for any n ≥ 1, we can find n summandsXn,1, Xn,2, . . . ,
Xn,n of W such that

W = Xn,1 ⊕Xn,2 ⊕ · · · ⊕Xn,n.

Furthermore, a moments’ thought will convince the reader that at most rankF of these
summands can fail to be unitary themselves, and hence when n > rankF , at least one of
the Xn,k’s is a unitary operator.

Let

J = {(U,M) : U is a unitary direct summand of W acting on the subspace M of H}.
The above paragraph shows that J is non-empty. Partially order J by setting (U1,M1) ≤
(U2,M2) if M1 ⊆ M2. (Note that this automatically implies that U1 is a direct summand
of U2.) If C = {(Uν ,Mν) : ν ∈ Γ} is a chain in C, then by setting M = ∪ν∈ΓMν , we see that
M is a reducing subspace for W (as each Mν is), and U = W |M is unitary (since it is clearly
unitary on the dense submanifold ∪ν∈ΓMν of M). It follows from Zorn’s Lemma that J
admits a maximal element (U0,M0). If M⊥

0 is infinite-dimensional, then the argument of
the first two paragraphs can be used to show that W |M⊥

0
admits a unitary direct summand,

contradicting the maximality of (U0,M0). Thus m = dim M⊥
0 < ∞.

Write W = U0 ⊕ Y , where Y acts on M⊥
0 , and note that Y has property (CR). We may

view Y as an element of Mm(C), so that Y can be upper triangularized with respect to some
orthonormal basis. The fact that Y has property (CR) implies that it is reductive, and is
therefore normal. This forces W to be normal as well. There remains to show that σ(W )
is circlinear. Note that if σ(W ) is finite, then all elements of σ(W ) are eigenvalues, and so
σ(W ) is circlinear by the comments of Section 5.3.

Hence we may assume that σ(W ) is infinite, which is equivalent to assuming that σ(U0) is
infinite. In this case, we shall prove that W is unitary. We argue by contradiction. Suppose
otherwise, and let τ ∈ σ(Y ) with |τ | �= 1. Let N ⊆ ker (W−τI) ⊆ M⊥

0 be a one-dimensional
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subspace. We see that the operator Z = U0⊕ τ , being a direct summand of W , also satisfies
property (CR). With respect to the decomposition M0 ⊕N , we may write

Z =

[
U0 0
0 τ

]
.

Let x ∈ M0 be a unit vector such that {x, U0x, U
2
0x} is linearly independent. Such a vec-

tor must exist, otherwise U0 is boundedly locally linearly dependent, which – by Kaplansky’s
Theorem [13], Lemma 14 – implies that U0 is algebraic, and therefore has finite spectrum,
a contradiction of our current assumption.

Thus {U∗
0x, x, U0x} is again linearly independent, as U0 is unitary. We shall now find

vectors y and z in M0 ⊕ N such that E1 = {y, z, Zy, Zz} is linearly independent, but
E2 = {y, z, Z∗y, Z∗z} is not. This will yield the desired contradiction, by implying that
(I − P )ZP and (I − P )Z∗P have ranks two and one respectively.

Let y =

[
x
1

]
and z =

[
U0x
ξ

]
, with ξ ∈ C to be determined shortly. (Here, we have

identified N with C.) Now

E1 =

{[
x
1

]
,

[
U0x
ξ

]
,

[
U0x
τ

]
,

[
U2
0x
τξ

]}
,

and

E2 =

{[
x
1

]
,

[
U0x
ξ

]
,

[
U∗
0x
τ

]
,

[
x
τξ

]}
.

Let ξ = τ . Then E1 is linearly dependent, but E2 is not, because τξ = |τ |2 �= 1.
(b) The proof of this result is similar. We may use Corollary 6.15 of [17] to assert that if L−L∗

has finite rank, then L has a non-trivial invariant subspace, which is again orthogonally
reducing by our hypothesis that L satisfies property (CR). One then looks for a maximal
hermitian direct summand, and separately argues the cases where that summand has finite
or infinite spectrum. The details are left to the reader.

�

5.8. Theorem. Let H be an infinite-dimensional, complex Hilbert space, and let T ∈ B(H). If T
satisfies property (CR), then there exist λ, μ ∈ C and A ∈ B(H) with A either selfadjoint or an
orthogonally reductive unitary operator such that T = λA+ μI.

In particular, if T satisfies property (CR), then T is normal with circlinear spectrum.
Proof. By combining Lemma 5.5 and Lemma 5.6, we can assume without loss of generality that
T = X + F , where F is of finite rank and X is either selfadjoint or unitary.

Either way, by Proposition 5.7, we see that T is normal with circlinear spectrum. From this
it is easy to verify that T is of the form λA + μI for some λ, μ ∈ C with A either selfadjoint or
unitary. The fact that T is orthogonally reductive implies that A is as well. (This last argument is
superfluous when considering the case where A is selfadjoint.)

�

5.9. Example. We mention in passing that property (CR) is a strictly stronger condition than
that of being orthogonally reductive. Indeed, suppose that N ∈ B(H) is a normal operator with
σ(N) = {1, 2, 3, 4 + i}. Thus the eigenvalues of N are neither co-linear nor co-circular, and so N
does not have property (CR), by Corollary 3.14. However, N is orthogonally reductive, as N∗ is a
polynomial function of N , combined with Sarason’s result [18].
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5.10. It would be interesting to know whether or not the converse of Theorem 5.8 holds.
On the one hand, suppose that N ∈ B(H) is normal and has co-linear spectrum. Arguing as

before, we have that there exist scalars λ, μ ∈ C and a hermitian operator L such that N = λI+μL.
It is routine to verify that N has property (CR).

On the other hand, for normal operators with co-circular spectrum, the problem is a bit more
complicated.

5.11. Proposition. Let U ∈ B(H) be unitary and suppose that σ(U) �= T. Then U has property
(CR).
Proof. Let 0 �= P �= I be a projection in B(H), and relative to H = PH⊕ P⊥H, write

U =

[
A B
C D

]
.

Our goal is to show that rankB = rankC. As always, we have

BB∗ = I −AA∗

C∗C = I −A∗A.

If B and C are both of infinite rank, then there is nothing to prove. Thus we may suppose that
either B or C is of finite rank. Now, since U has property (CR) if and only if U∗ has property (CR),
we may suppose – by taking adjoints if necessary – that C is of finite rank and that rankC ≤ rankB.

Case 1. B is compact.

Then A and D are essentially unitary. Since σe(A) ⊆ σe(U) �= T, it follows that indA = 0. (That
is, in order for A to have non-zero index, 0 must lie in a bounded component of C \ σe(A), of which
there are none.)

Write A = V |A|, and note that as indA = 0, we may assume without loss of generality that V is
unitary. Thus AA∗ = V |A||A|V ∗ = V (A∗A)V ∗. That is, AA∗ and A∗A are unitarily equivalent.

But then BB∗ and C∗C are unitarily equivalent, whence rankB = rankBB∗ = rankC∗C =
rankC.
Case 2. B is not compact.

We shall show that under the hypothesis that σ(U) �= T, this cannot happen. Indeed, the equation
C∗C = I −A∗A with rankC < ∞ implies that

1 = π(I) = π(A)∗π(A).

Thus π(A) is a partial isometry in the Calkin algebra B(H)/K(H), which implies that π(A)π(A)∗ is
a projection. The fact that B is not compact, combined with the fact that BB∗ = I − AA∗ shows
that

1 = π(I) �= π(A)π(A)∗.
Thus π(A) is not unitary. Choose a projection R ∈ B(H) such that π(R) = π(A)π(A)∗. By
Lemma V.6.4 of [8], there exists a partial isometryW ∈ B(H) such thatW = RW and π(W ) = π(A).
Moreover, by that same result, the integer

ξ = rank (I −W ∗W )− rank (R−WW ∗)

is defined independent of the choice of W .
In our case, rank (I −W ∗W ) < ∞ while rank (I − R) = ∞ and rank (R −WW ∗) < ∞. Hence

rank (I −WW ∗) = ∞.
Thus we have that W is a partial isometry with initial space W ∗WH, and final space WH, and

(i) dim (W ∗WH)⊥ < ∞; and
(ii) dim (WH)⊥ = ∞.

It is routine to produce a partial isometry W0 with initial space (W ∗WH)⊥ < ∞ and final space
contained in (WH)⊥, and to verify that V = W +W0 is an isometry on H.

By the Wold Decomposition, V is unitarily equivalent to S(κ)⊕Y , where S denotes the unilateral
forward shift, Y is a unitary operator, and κ ∈ N ∪ {0,∞}.
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If κ = 0, then V is unitary. But then π(V ) = π(W ) = π(A) is also unitary, a contradiction. Thus
κ �= 0. But then σe(A) = σe(V ) ⊇ σe(S) = T.

On the other hand, it is not too hard to show that ∂(σe(A)) ⊆ σ�re(A) ⊆ σe(U). (For example,
by the Corollary to Theorem 4.3 of [10], there exists a compact operator K1 ∈ B(PH) such that

A+K1 =

[
λI 0
0 A4

]
with respect to the decomposition PH = M⊕ (PH�M), for an appropriate

subspace M ⊆ PH satisfying dim M = dim (PH � M) = ∞. Letting K = K1 ⊕ 0 yields that

U + K =

⎡
⎣λI 0 B1

0 A4 B2

0 0 D

⎤
⎦. Thus λ ∈ σe(U + K) = σe(K).) But ∂(σe(A)) = T, which contradicts

our hypothesis that σ(U) �= T.
This shows that the case where C is of finite rank and B is not compact cannot happen, and

completes the proof.

�

Having seen that the bilateral shift W is a unitary operator with σ(W ) = T which is not reductive,
we now show that there exists a unitary operator whose spectrum is the unit circle T, but which
nonetheless has property (CR).

Before embarking upon the proof of this, we first require a result due to Wu and Takahashi [20].
Recall that if X ∈ B(H) is an operator, then we define the defect indices of X to be

dX = dim(ran(I −X∗X)1/2) and

dX∗ = dim(ran(I −XX∗)1/2).

5.12. Proposition. (Wu-Takahashi; Theorem 3.5 of [20]) Let X ∈ B(H) be a contraction and
suppose that dX �= dX∗ . Then X does not admit a singular unitary dilation.

5.13. Proposition. Let (dn)
∞
n=1 be a sequence in T and let V = diag (dn)

∞
n=1 be a corresponding

diagonal unitary operator in B(H). Then V has property (CR).
Proof. Suppose that we can find a projection P ∈ B(H) such that with respect to the decomposition
H = PH⊕ P⊥H we may write

V =

[
A B
C D

]
with rankC < rankB.

(In particular, we must have rankC < ∞). Then

BB∗ = I −AA∗ and

C∗C = I −A∗A

have different ranks. Since C is of finite rank, A is essentially isometric and thus is a semi-Fredholm
operator - in particular, both A and A∗ have closed range. Also,

rankC = rankC∗C = rank (I −AA∗) = dA∗ < ∞, while

rankB = rankBB∗ = rank (I −A∗A) = dA.

In other words, A is a contraction and the defect indices of A are unequal. By Proposition 5.12
above, A does not admit unitary dilation. But U is diagonal, and is therefore a singular unitary
dilation of A, which is obviously a contradiction.

�

If, in Proposition 5.13 we choose {dn}n to be dense in T, we immediately obtain the following
consequence:

5.14. Corollary. There exists a unitary operator V with σ(V ) = T which has property (CR).
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5.15. Wermer [19] has shown that a unitary operator U fails to be reductive if and only if Lebesgue
measure is absolutely continuous with respect to the spectral measure μ for U . Since any opera-
tor with property (CR) is necessarily reductive, this provides a measure-theoretic obstruction to
property (CR) for unitary operators.

Another consequence of the above analysis is that it proves that the set Grank of operators with
property (CR) is not closed. Indeed, it follows easily from [7] that the bilateral shift W is a limit of
unitary operators Vn such that σ(Vn) �= T. (The Vn’s can in fact be chosen to be unitary operators
with spectrum Γn = {e2πiθ : 0 ≤ θ ≤ 1− 1

n}.) As we saw in Proposition 5.11, each Vn has property
(CR), but W = limn Vn does not.

Alternatively, the Weyl-von Neumann-Berg Theorem (see, e.g., [8], Theorem II.4.4) shows that
there exists a sequence (Wn)

∞
n=1 of diagonal unitary operators such that σ(Wn) = T for all n ≥ 1,

such that W = limn Wn.

We now investigate a consequence of property (CR) which relates to cyclic subspaces for opera-
tors.

5.16. Proposition. Suppose that T is reductive. Then T and T ∗ have the same cyclic subspaces.
In particular, if T has property (CR), then T and T ∗ have the same cyclic subspaces.
Proof. Suppose that 0 �= M ⊆ H is a cyclic subspace for T , and let 0 �= x ∈ M be a cyclic vector
for T in M, so that M = span{x, Tx, T 2x, . . .}. If P is the orthogonal projection of H onto M,
then P⊥TP = 0, so by reductivity, PTP⊥ = 0, which implies that M is invariant for T ∗.

Now let N = span {x, T ∗x, (T ∗)2x, . . .} be the cyclic subspace for T ∗ generated by x. Since
x ∈ M and M is invariant for T ∗, we see that N ⊆ M. Also, as T ∗ is also reductive, the argument
of the first paragraph shows that x ∈ N is invariant for T . But then N ⊇ M, whence N = M,
completing the proof.

�

There exists a variant of this result which is somewhat interesting.

5.17. Proposition. Let T ∈ B(H) and suppose that for each orthogonal projection P ∈ B(H), the
off-diagonal corner P⊥TP has rank one if and only if PTP⊥ has rank one. A subspace M of H of
dimension at least 3 is cyclic for T if and only if it is cyclic for T ∗.
Proof. Given T as in the statement of the Proposition, it is clear that T ∗ also has this property.
The argument used to prove Proposition 5.16 shows that it suffices to show that the cyclic subspace
M = span{x, Tx, T 2x, . . .} for T generated by a non-zero vector x is invariant for T ∗.

We consider first the case where M is infinite-dimensional, as it is the easier of the two.
For each n ≥ 1, let Pn denote the orthogonal projection of H onto span{x, Tx, T 2x, . . . , Tnx},

and let P denote the orthogonal projection of H onto M. It is clear that (Pn)
∞
n=1 is an increasing

sequence which converges in the strong operator topology to P . An easy calculation then shows
that the sequence (P⊥

n TPn)
∞
n=1 converges in the strong operator topology to P⊥TP .

As x is a cyclic vector for T in M, we have that rank (P⊥
n TPn) = 1 for all n ≥ 1, and our

hypothesis then asserts that rank (P⊥
n T ∗Pn) = 1 for all n ≥ 1. But rank is lower-semicontinuous

with respect to the strong operator topology, and thus rankP⊥T ∗P ≤ 1. If rankP⊥T ∗P = 1, then
the hypothesis on T implies that rankP⊥TP = 1, contradicting the fact that M is invariant for T .
Hence P⊥T ∗P = 0, proving that M is invariant for T ∗.

Next we suppose that M is finite-dimensional with dim M = N ≥ 3, and we find a cyclic
vector x for T so that M = span{x, Tx, T 2x, . . . , TN−1x}. Let {e1, e2, . . . , eN} be the orthonor-
mal basis obtained from {x, Tx, T 2x, . . . , TN−1x} by applying the Gram-Schmidt process, so that
span{e1, e2, . . . , ek} = span{x, Tx, . . . , T k−1x} for 1 ≤ k ≤ N . Let Qk denote the orthogonal pro-
jection of H onto Cek, 1 ≤ k, and define Pk = Q1 + Q2 + · · · + Qk, 1 ≤ k ≤ N . Finally, extend
{ek}Nk=1 to an orthonormal basis {ek}∞k=1 for H.
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Note that the fact that x is cyclic forM, combined with our hypothesis, implies that rankP⊥
k TPk =

1 = rankPkTP
⊥
k , 1 ≤ k ≤ N − 1. Moreover, M is invariant for T , whence P⊥

N TPN = P⊥TP = 0.
By hypothesis, rankPTP⊥ �= 1.

But

PTP⊥ = PNTP⊥
N

= PN−1TP
⊥
N−1P

⊥
N +QNTP⊥

N ,

so that rankPTP⊥ ≤ rankPN−1TP
⊥
N−1 + rankQNTP⊥

N ≤ 1 + 1 = 2.

Thus rankPTP⊥ ∈ {0, 2}, and our goal is to show that rankPTP⊥ �= 2.

Suppose, to the contrary, that rankPTP⊥ = 2. It follows that rankPN−1TP
⊥
N−1 = 1 =

rankQNTP⊥
N . Thus there exists 1 ≤ k ≤ N − 1 such that QkTP

⊥
N �= 0, and rank (Qk +QN )TP⊥ =

rank (Qk +QN )TP⊥
N = 2.

Case 1. k = N − 1. Let us reorder the basis for PH as {eN−1, eN , e1, e2, . . . , eN−2}. The matrix
for T relative to PH⊕ P⊥H is:

[T ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tN−1,N−1 tN−1,N tN−1,1 tN−1,2 . . . tN−1,N−3 tN−1,N−2 QN−1TP
⊥

tN,N−1 tN,N tN,1 tN,2 . . . tN,N−3 tN,N−2 QNTP⊥
... . . .

...
tN−3,N−1 tN−3,N tN−3,1 tN−3,2 . . . tN−3,N−3 tN−3,N−2 QN−3TP

⊥

tN−2,N−1 tN−2,N tN−2,1 tN−2,2 . . . tN−2,N−3 tN−2,N−2 QN−2TP
⊥

0 0 0 0 . . . 0 0 P⊥TP⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Let R = P − QN−2. Since tN−2,N−3 �= 0 (as x is a cyclic vector for M), it follows that
rankR⊥TR = 1.

Thus

rank

⎡
⎢⎢⎢⎣
tN−1,N−2 QN−1TP

⊥

tN,N−2 QNTP⊥
...

...
tN−3,N−2 QN−3TP

⊥

⎤
⎥⎥⎥⎦ = rankRTR⊥ = 1,

and so rank (QN−1 + QN )TP⊥ = rank

[
QN−1TP

⊥

QNTP⊥

]
≤ 1, a contradiction. Thus in this case,

PTP⊥ = 0, so M is invariant for T ∗.

Case 2. 1 ≤ k < N − 1.
This time we reorder the basis for PH as {ek, ek+2, . . . , eN , e1, . . . , ek−1, ek+1}. The matrix for T

relative to PH⊕ P⊥H is then:

[T ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tk,k tk,k+2 . . . tk,N tk,1 . . . tk,k−1 tk,k+1 QkTP
⊥
N

tk+2,k tk+2,k+2 . . . tk+2,N tk+2,1 . . . tk+2,k−1 tk+2,k+1 Qk+2TP
⊥
N

... . . .
...

tk−1,k tk−1,k+2 . . . tk−1,N tk−1,1 . . . tk−1,k−1 tk−1,k+1 Qk−1TP
⊥
N

tk+1,k tk+1,k+2 . . . tk+1,N tk+1,1 . . . tk+1,k−1 tk+1,k+1 Qk+1TP
⊥
N

0 0 0 0 0 . . . 0 0 P⊥
N TP⊥

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Let R = P−Qk+1. Since tk+1,k �= 0 (as x is a cyclic vector forM), it follows that rankR⊥TR = 1.
By hypothesis, rankRTR⊥ = 1.

Thus
rank (Qk +QN )TP⊥ = rank (Qk +QN )[RTR⊥]P⊥ ≤ rankRTR⊥ = 1,

a contradiction. Thus in this case as well, PTP⊥ = 0, so M is invariant for T ∗.

The remainder of the proof is identical to the second paragraph of the proof of Proposition 5.16.

�
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6. Essentially reductive operators with property (CR)

6.1. In [12], Ken Harrison introduced the notion of essentially reductive operators: we say that
T ∈ B(H) is essentially reductive if for each projection P we have that PTP⊥ compact if and
only if P⊥TP is compact. (One can view this as π(T ) having property (CR) in the Calkin algebra.)

In the paper [15] (Theorem 2), Moore shows that every essentially reductive operator T is es-
sentially normal – i.e. π(T ) is normal in the Calkin algebra. Earlier, Harrison ([12], Theorem 4.5)
had characterized all essentially normal operators which are essentially reductive. Combining these
results, one obtains the following.

6.2. Theorem. (Moore; Corollary 1 of [15]) Let T ∈ B(H). The following are equivalent.

(a) T is essentially reductive.
(b) T is essentially normal and σe(T ) is Lavrentiev.

The next result is a simple consequence of Moore’s Theorem together with Theorem 5.8 and
Proposition 5.11.

6.3. Corollary. Let T ∈ B(H). The following are equivalent.

(a) T is essentially reductive and has property (CR).
(b) One of the following holds.

(i) There exist λ, μ ∈ C and a hermitian operator R such that T = λR+ μI.
(ii) There exist λ, μ ∈ C and a unitary operator V with σ(V ) �= T such that T = λV + μI.

We would like to thank the referee for a careful reading of the manuscript.
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14. R. Meshulam and P. Šemrl, Locally linearly dependent operators, Pacific J. Math. 203 (2002), 441–459.

15. R.L. Moore, Reductivity in C∗-algebras and essentially reductive operators, Pacific J. Math. 74 (1978), 419–428.
16. A.I. Popov and A. Tcaciuc, Every operator has almost-invariant subspaces, J. Funct. An. 265 (2013), 257–265.
17. H. Radjavi and P. Rosenthal, Invariant subspaces, 2nd edition, Dover Publications, Inc., Mineola, NY, 2003.

18. D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511–517.
19. J. Wermer, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), 270–277.
20. P.Y. Wu and K. Takahashi, Singular unitary dilations, Integ. Eq. Operator Th. 33 (1999), 231–247.



25

Department of Mathematics, Colby College, Waterville, ME, USA 188745

E-mail address: llivshi@colby.edu

School of Mathematical and Computational Sciences, University of Prince Edward Island, Charlot-

tetown, PE, Canada C1A 4P3

E-mail address: gmacdonald@upei.ca

Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1

E-mail address: LWMarcoux@uwaterloo.ca

Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1

E-mail address: hradjavi@uwaterloo.ca


