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Abstract 

Glycosylation is a critical quality attribute (CQA) of many therapeutic proteins, particularly 

monoclonal antibodies (mAbs), and is a major consideration in the approval of biosimilar 

biologics due to its effects to therapeutic efficacy. Glycosylation generates a distribution of 

glycoforms, resulting in glycoproteins with inherent molecule-to-molecule heterogeneity, 

capable of activating (or failing to activate) different effector functions of the immune system. 

Glycoforms can be affected by the supplementation of nucleotide-sugar precursors, and related 

components, to culture growth medium, affecting the metabolism of glycosylation. These 

supplementations has been demonstrated to increase nucleotide-sugar intracellular pools, and 

impact glycoform distributions, but with varied results. These variations can be attributed to five 

key factors: Differences between cell platforms (enzyme/transporter expression levels); 

differences between recombinant proteins produced (glycan-site accessibility); the fermentation 

and sampling timeline (glucose availability and exoglycosidase accumulation); glutamine levels 

(affecting ammonia levels, which impact Golgi pH, as well as UDP-GlcNAc pools); and finally, 

a lack of standardized metrics for observing shifts in glycoform distributions (glycosylation 

indices) across different experiments. The purpose of this review is to provide detail and clarity 

on the state of the art of supplementation strategies for nucleotide-sugar precursors for affecting 

glycosylation in cell culture processes, and to apply glycosylation indices for standardized 

comparisons across the field. 

 

Keywords: glycosylation; glycoform; nucleotide sugars; biosimilar; immune effector functions; 

mAbs; therapeutic protein; glutamine; ammonia; animal cell culture  
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1.0 Introduction 

Glycosylation is acknowledged to be among the most important critical quality attributes 

(CQAs) of therapeutic biologicals, particularly for monoclonal antibodies (mAbs), which must 

be glycosylated for bioactivity (Dordal et al., 1985; Nose and Wigzell, 1983). Glycosylation is 

performed by a varying succession of enzymes, which regulate the sculpting and pruning of 

complex oligosaccharides, referred to broadly as ‘glycans’, onto biomolecules forming 

glycoconjugates. With respect to glycoprotein therapeutics, glycosylation introduces one of the 

major forms of molecule to molecule heterogeneity, which is broadly understood to affect a wide 

range of biotherapeutic efficacy metrics, including function (Dubé et al., 1988), immunogenicity 

(Bosques et al., 2010; Ghaderi et al., 2010; Padler-Karavani et al., 2008), drug clearance-rate 

(Morell et al., 1968), protein stability (Mimura et al., 2001; Wyss and Wagner, 1996), solubility 

(Leavitt et al., 1977), and in the case of mAbs, immune system recognition for effector function 

(Tao and Morrison, 1989). 

Glycan heterogeneity can be influenced broadly by several process conditions including 

perturbations to temperature, pH and dissolved oxygen; an excellent review of which is 

presented by Hossler (2012). Other major factors of influence include the up/down regulation of 

membrane transporters and glycosyltransferases between cell platforms (Chen and Harcum, 

2006; McDonald et al., 2016; Wong et al., 2010), and interruptions to the substrate supply chain 

of nucleotide-sugar metabolism and transport (Liu et al., 2014; McDonald et al., 2016; Nyberg et 

al., 1999; Pels Rijcken et al., 1995b). Glycan heterogeneity indicates biotherapeutics with 

molecule-to-molecule quality differences, and in the case of mAbs will activate (or fail to 

activate) the immune system in different ways. This also creates a challenge for biosimilars to 
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match their glycan distributions with that of their reference (innovator) biologics, or at least 

demonstrate that any differences are not clinically significant (FDA, 2015). 

Three major strategies exist to affect the glycosylation of recombinant proteins: 

1. glycoengineering of cell platforms generally targeting either the addition or knock-

out (including silencing) of glycosyltransferases (Mori et al., 2004; Yamane-Ohnuki 

et al., 2004), or similarly targeting nucleotide-sugar Golgi transporters (Wright and 

Morrison, 1998); 

2. downstream in vitro remodelling of glycans (Hodoniczky et al., 2005); 

3. supplementation of nucleotide-sugar precursors and associated components, such as 

sugars and amine-sugars (Tables 1-3), including nucleosides like uridine and 

cytidine (Carvalhal et al., 2003; Nyberg et al., 1999), and the metallic ion manganese 

(Crowell et al., 2007; St Amand et al., 2014; Surve and Gadgil, 2015). 

This review will focus on the latter of these methods, providing clarity towards five key factors 

that have contributed to varied results and interpretations for this promising method of tuning 

glycosylation in cell culture processes. The first of these factors are the differences in 

enzyme/transporter expression levels across cell platforms. Secondly, differences between 

recombinant proteins produced, particularly with respect to the accessibility of their glycan sites 

by glycosyltransferases. Thirdly, the fermentation and sampling timeline, both with respect to the 

glucose availability, as well as the accumulation of exoglycosidases at the latter stages of 

cultures. A fourth factor is the glutamine levels, as increases in ammonia alter the pH of Golgi 

compartments, and also increase UDP-GlcNAc intracellular pools. Finally, differences in metrics 

for reporting different glycan attributes, for instance galactosylation, which prevent more 

standard comparisons of observed shifts in glycoform distributions between reports.  
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2.0 Glycosylation 

The variability and probabilistic nature of glycosylation (Spahn et al., 2016) lends itself to a 

security recognition function in vivo, mediating countless lectin/ligand binding scenarios for 

sensing and signaling events, both at the molecular level as well as more broadly for cell 

signalling. Moremen and colleagues (2012) provide an excellent overview of glycosylation in 

vertebrates, and the resulting complexity of system-level interactions. From a therapeutics 

perspective, the significance and potential of glycosylation with respect to current and future 

biologics continues to grow (Dalziel et al., 2014). 

Generally speaking, glycosylation comes in two main forms, N-linked and O-linked, which 

are designated by the functional group of the amino-acids where the glycans are bound. N-

glycans are bound via amide-linkages to asparagine residues, and are typically larger 

oligosaccharides compared to O-glycans, which are bound to serine or threonine by glycosidic 

bonds. With respect to therapeutic glycoproteins, N-linked glycosylation receives the most 

attention in literature, particularly regarding mAbs, as glycosylation of the Fc region is a major 

factor in immune system effector functions, such as complement activation, and binding to Fcγ 

receptors of leukocytes towards various immune responses (Tao and Morrison, 1989). O-

glycosylation is not yet recognized as notably consequential to effector functions or bioefficacy 

for many approved glycoprotein therapeutics, but will affect some basic efficacy characteristics 

like protein stability (Wang et al., 1996). 

2.1 Nucleotide-Sugar Metabolism 

Substrates of glycosylation generally take the form of monosaccharides paired to particular 

nucleoside-phosphates (i.e. UDP-GlcNAc, GDP-Fucose, CMP-NeuAc, etc.), and are derived 

generally from glucose metabolism, as detailed in Figure 1. Nucleotide-sugars are generally 
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produced in the cytoplasm, with the exception of cytidine monophosphate N-acetylneuraminic 

acid (CMP-NeuAc), which is formed in the nucleus (Kean, 1970). Mammalian cells are able to 

take up a wide diversity of saccharide nutrients through the GLUT and SGLT families of cell 

membrane transporters. Supplementing nucleotide-sugar precursors circumvents points of 

regulation and feedback inhibition (Pels Rijcken et al., 1995b), leading to large fold-change 

increases in intracellular metabolite pools (Tables 1-3). Augustin and Mayoux (2014) present an 

excellent review of these transporter families, while Freeze and Elbein (2009) provide an 

exceptional review of the points of regulation controlling this metabolic network. The formation 

of amine-sugars like glucosamine (GlcN) require an amine donor, such as glutamine, through the 

action of glutamine-fructose-6-phosphate transaminase (Figure 1, Reaction 3), and these 

intracellular pools will be starved in glutamine’s absence (Nyberg et al., 1999). However, it has 

also been demonstrated that ammonia can be utilized as a donor towards formation of UDP-

GlcNAc and subsequent amine sugar pools (Valley et al., 1999). 

With the exception of the endoplasmic reticulum (ER), where dolichol-linked 

monosaccharide substrates like glucose and mannose are ‘flipped’ from the cytosol into the 

organelle lumen (Figure 1, Reaction 24), nucleotide-sugars are typically transported by means of 

the SLC35 family of transporters, which require the respective nucleotide-monophosphate on the 

opposing side of the membrane to complete the exchange, as shown in Figure 1. Ishida and 

Kawakita (2004) have assembled a comprehensive review of the SLC35 family of transporters. 

Availability of particular nucleoside-monophosphates within the Golgi lumen is dependent on 

the activity of nucleoside diphosphatase (NDPase) to convert nucleoside-diphosphates to their 

monophosphate form (Figure 1); which has been identified as a potential bottleneck in glycan 

metabolism (McDonald et al., 2016). 
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2.2 N-Linked Glycosylation 

N-linked glycosylation begins in the cytoplasm with the assembly of a seven sugar 

oligosaccharide onto a dolichol diphosphate anchor (Figure 1, Reaction 23). Once assembled, 

this oligosaccharide is flipped into the endoplasmic reticulum (ER) where dolichol phosphate 

linked mannose and glucose species donate the remaining four mannose residues and three 

glucose residues to complete the fourteen sugar N-glycosylation oligosaccharide precursor. This 

lipid-linked oligosaccharide is then detached from its dolichol phosphate anchor and bound to an 

asparagine amino acid of a protein undergoing translation by the oligosaccharyltransferase 

(OST) enzyme complex (Figure 1, Reaction 26). The resulting precursor to N-linked 

glycosylation is bound to the protein at a site referred to as a ‘sequon’. Once bound to its sequon, 

in step with protein folding, glycotransferase enzymes of the ER act upon the oligosaccharide 

precursor glycan, removing the three terminal glucose moieties as well as the centremost 

terminal mannose (Figure 1, Reaction 27). 

2.3 Microheterogeneity 

Glycosylation continues into the Golgi, where further glycosyltransferase activity will 

produce a myriad of glycans that diverge between different cell types. With particular regards to 

mammalian style complex glycans, forms of microheterogeneity include whether the terminal 

moieties are mannose (Man) or acetyl-glucosamine (GlcNAc). The degree of GlcNAc branching 

is referred to as “antennarity”, which can be as many as four, plus an extra bisecting GlcNAc on 

the central mannose. Other forms of microheterogeneity include the binding of core α1-6 fucose 

(Fuc) to the first GlcNAc bound to Asparagine (Asn); as well as the binding of galactose (Gal) to 

terminal GlcNAc moieties possibly followed by binding of sialic acids (NeuAc/Neu5Gc) to Gal, 

which are the only glycan moieties to confer a negative charge.  
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Differences between glycoforms can be written by abbreviated nomenclatures, such as the 

Oxford Glycobiology Institute convention, described by Gornik and colleagues (2007), and 

utilized here. In this convention, the ‘F’ refers to fucose bound by an α1-6 bond, the ‘A’ to the 

degree of antennarity (i.e. GlcNAc branching), ‘B’ for the presence of a bisecting GlcNAc, ‘G’ 

to the degree of galactosylation, and the ‘S’ for the degree of sialylation.  

3.0 Controlling Glycosylation by Supplementation 

Typical glycoforms observed for several commercial mAbs are under-galactosylated, 

hindering their therapeutic potential (Wacker et al., 2011). Research in the field of 

supplementing nucleotide sugar precursors for affecting glycoforms follows a hypothesis that 

either substrate-limitation or regulatory feedback bottlenecks prevent more complex glycoforms 

with terminal galactose and sialic acid moieties, like those observed in endogenous human sera 

(Flynn et al., 2010). These supplementation strategies, detailed in Tables 1-3, and Figures 3-5, 

offer a simple means to adjust product glycoforms without having to completely redesign (i.e. 

glycoengineer) cell platforms.  

Nucleotide-sugar precursors and associated components supplemented to growth media 

have conventionally targeted what were regarded as the most crucial glycan-moieties for 

mammalian N-glycosylation: N-acetylglucosamine (GlcNAc), galactose (Gal), and the sialic acid 

N-acetylneuraminic acid (NeuAc). Precursors selected for supplementation favour intermediate 

species at various points in the intracellular metabolic synthesis of these nucleotide-sugars that 

would otherwise be synthesized from glucose, as shown in Figure 1.  

The three compounds most commonly supplemented in literature include:  
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 Glucosamine (GlcN), and more recently N-acetylglucosamine (GlcNAc), often 

accompanied with uridine (Urd) – as detailed in Table 1 and Figure 3 

 Galactose (Gal), often accompanied with uridine (Urd), and occasionally 

manganese1 (Mn2+) – as detailed in Table 2 and Figure 4 

 N-acetylmannosamine (ManNAc), often accompanied with cytidine (Cyt) – as 

detailed in Table 3 and Figure 5  

These supplements have repeatedly been reported to increase the intracellular pools of 

nucleotide-sugars, and affect glycoform distributions. Inconsistencies in reported effects can be 

attributed to differences across five key factors: the host cell platform, the recombinant protein 

expressed, timeline of fermentation from supplementation to sampling/harvest, the amount of 

glutamine present in culture media, and a previous lack of standardized metrics for comparison 

i.e. glycosylation index equations (Figure 2) for observing shifts in glycoform distribution, 

applied here. 

3.1 Key Factors Impacting Supplementation Results 

3.1.1 Cell Platform  

Differences across cell platforms are expected to produce varying glycan distributions, as it 

is common even to have clones of the same cell-line that under or over-express an important 

enzyme or transporter, such as the YB2/0 rat hybridoma cells utilized by Shinkawa and 

colleagues (2003) that had low levels of fucosyltransferase-8 (FUT8), leading to low-fucose 

mAbs. Similarly, differences between different mammalian cell lines will commonly produce 

varying effects under identical nucleotide-sugar precursor supplementation strategies. This can 

be observed in the work of Baker and colleagues (2001), when the same TIMP-1 protein was 

                                                                 
1
 Manganese ions as a supplementation strategy has primarily been util ized in conjunction with uridine and 

galactose as part of the cocktail  recommended by Gramer and colleagues (2011). 
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expressed in both GS-CHO and GS-NS0 cells; 10mM glucosamine supplementation resulted in a 

significant antennarity index increase of 9% in the former (P < 0.05), but no change in the latter.  

3.1.2 Protein Glycan Site   

The type of protein examined is perhaps the greatest factor leading to differences in glycan 

profiles, as different glycan sequons will have very different solvent accessibility. A literature 

analysis conducted by Thaysen-Andersen and Packer (2012) determined that core α1-6 

fucosylation, glycan antennarity, and complex glycoforms vs high mannose, are all notably 

affected by the solvent-accessibility of glycan sites, and hypothesized the same to be true for 

terminal galactosylation and sialylation. Therefore, one cannot draw a direct comparison 

between the glycans derived from EPO and mAbs, without considering that the sequon sites on 

the two proteins will have very different accessibility to the Golgi infrastructure to modify those 

glycans. This issue can be observed in Figures 3-5, with respect to the antennarity of different 

proteins. In Figure 4, the proteins are predominantly IgGs, and glycans are uniformly 

biantennary or lower, keeping their AI below 40%, while proteins like EPO, TIMP-1, and IL-2 

shown in Figures 3&5 can have higher levels of branching due to the accessibility of these 

sequons to latter N-acetylglucosyltransferases (GnT IV&V) (Thaysen-Andersen and Packer, 

2012). Engineering of protein sequences and glycan sites towards affecting therapeutic efficacy 

further complicates comparisons between systems. Park and colleagues (2016) provide a 

comprehensive review of methods for modifying Fc sequences to alter glycoforms and generally 

improve therapeutic potential of biologics. 

3.1.3 Fermentation Sampling Timeline  

Another very important factor is the fermentation timeline, particularly the time of sampling 

or harvest of recombinant proteins for glycan analysis. It has been demonstrated by Gramer and 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

colleagues (1993, 1995), that CHO cells accumulate sialidase enzymes in their supernatant, and 

growing cultures past exponential phase until loss of viability can diminish the total sialylation of 

secreted recombinant proteins. Furthermore, a clear relationship has recently been demonstrated 

by Liu and colleagues (2014) between availability of glucose and the level of galactosylation and 

sialylation of mAbs grown in CHO cells. Therefore, in experiments where recombinant proteins 

are harvested for glycan analysis near the peak of exponential growth, proportions with terminal 

sialylation will be in greater proportion compared to those harvested when viability is 

decreasing. This can be observed in Figure 4, comparing the experiments of both Liu and 

colleagues (2014) and Surve and Gadgil (2015), who sampled their cultures during exponential 

phase, compared against those of St Amand and colleagues (2014) and Gramer and colleagues 

(2011), who sampled at the end of the culture. In the case of the former, both controls and final 

GI levels are generally higher than the latter, despite similar supplementation regimes, cell lines, 

and IgG proteins. Exceptions can be observed of course in the results of Grainger and James 

(2013), who sampled at the end of their culture, showing high GI values for both their controls 

and final galactosylation percentage; however, one can argue these values might have been even 

higher with earlier sampling. 

3.1.4 Glutamine Level  

Glutamine is of particular interest due to its relationship with ammonia, which directly 

impacts glycosylation activities in two ways. First, ammonia is a weak base capable of diffusing 

across cellular membranes, impacting the intracellular pH of cellular organelles like the Golgi. 

The cis-, medial-, and trans-Golgi cisternae operate at distinct acidic pH levels, as shown in 

Figure 1. Glycosyltransferases form reversible homomeric and heteromeric dimers, which 

migrate as mobile complexes between the Golgi and the ER (Hassinen and Kellokumpu, 2014). 

Homodimers are favoured closer to the neutral pH of the ER, where these enzymes are 
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synthesized, while formation of heteromeric dimers, with enhanced activity, are favoured at the 

reduced pH points of the respective Golgi cisternae where they operate (Hassinen and 

Kellokumpu, 2014). This is illustrated in the Golgi glycosyltransferase enzyme pairings in Figure 

1. Higher ammonia levels will neutralize the intracellular pH of Golgi cisternae, causing 

heterodimer pairs to split and reform to their homodimer formats, reducing their functionality 

(Hassinen and Kellokumpu, 2014). Therefore, elevated supplementation of the labile nutrient 

glutamine, which increases intracellular ammonia levels, will in turn increase Golgi pH, and 

perturb the functionality of glycosyltransferases, particularly galactosyltransferase and 

sialyltransferase, decreasing the GI and SI of glycans. This result was demonstrated directly by 

Aghamohseni and colleagues (2014), who showed that supplementing increasing concentrations 

of glutamine to CHO cultures expressing a heavy-chain antibody (HCAb) reduced 

galactosylation and sialylation of these glycoproteins. This can further be observed in Figure 4, 

as groups utilizing glutamine synthase (GS) amplified cultures, also tend to have higher GI 

levels. 

The second manner in which glutamine supplementation affects glycoform distributions is 

by directly increasing UDP-GlcNAc pools producing similar effects and glycoform shifts to 

those detailed in Table 1. Valley and colleagues (1999) supplementing ammonium ions with 15N 

tracers to BHK-21 cells produced a significant increase in UDP-GlcNAc intracellular nucleotide 

sugar pools. Approximately 60% of this pool incorporated the 15N tracers – a proportion 

approximately equivalent to the increase in the pool itself (Valley et al., 1999). As is 

demonstrated in Figure 3, elevated glucosamine levels will reduce galactosylation and sialyation 

of glycoproteins. Therefore, elevated glutamine supplementations to cultures can have a similar 
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effect to those reported for either ammonium or glucosamine supplementation (Gawlitzek et al., 

1998; Grammatikos et al., 1998; Yang and Butler, 2002).  

CHO cells expressing glutamine synthase (GS) require little or no glutamine in their growth 

medium. St Amand and colleagues (2014), Kildegaard and colleagues (2015), and Surve and 

Gadgil (2015) all utilized glutamine nutrient in their cultures; 4mM for the former, and 8mM for 

the latter two respectively (Table 2). Galactose supplementation improves GI for all three of 

these research groups, but it’s typically an increase on the order of only 10%, while researchers 

supplementing galactose to GS-CHO cultures achieve GI increases for mAbs of 20% or higher 

(Figure 4). Therefore, addition of glutamine nutrient may limit the potential improvement to GI 

of galactose supplementation. 

3.1.5 Standardized Metrics for Reporting Glycan Shifts  

Lastly, given the various experimental differences across reports in literature, it is difficult 

to make comparisons and draw conclusions regarding the effectiveness of a particular 

supplementation regime without applying a standard metric and examining glycoform shifts with 

respect to control cultures. As such, new glycoform distribution index calculations have been 

created for this review. These calculations are detailed in the following section and have been 

applied to standardize comparisons between experimental controls and resulting shifts. These 

comparisons are detailed in Tables 1-3 and Figures 3-5. While glycan index equations have been 

proposed and utilized by previous researchers, our equations represent the first comprehensive 

set of equations that can describe N-glycoform characteristics of a range of complexity, 

including bisecting and multi-antennary glycoforms (Figure 2). A major difference between 

these equations and those presented by others is that these equations recognize that glycosylation 

is the result of a sequence of steps that build off one another. In other words, only species that 
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have a galactose moiety can be sialylated; therefore the number of sialylated species is compared 

to the species that have been galactosylated and not all glycoforms. This allows us to interpret 

the effectiveness of the methodologies to change the glycoform. Consider trying to improve 

sialylation of glycoforms where all species having galactose moieties are already sialylated. The 

chance of improving sialylation will be non-existant unless the strategy utilized also improves 

galactosylation. These equations, however, should not be used to describe the percent 

glycosylation of an entire population. For example, if the final drug formulation requires a 

certain percent of all species to contain a sialic acid, then these equations would misrepresent this 

idea. The equations proposed here have been designed with process improvements in mind.  

3.2 Glycoform Distribution Indexes 

Our set of indices summarize the degree of glycosylation with respect to glycoform 

characteristics such as galactosylation (GI), sialylation (SI), core α1-6 fucosylation (FI), 

antennarity (AI), and high-mannose types (MI). These equations can be described generally as a 

measurement of how much of an available glycan substrate has received a particular glycan 

moiety as described in the previous section. Figure 2 details each of the five equations, their 

derivation from a glycan distribution, and provides sample calculations with respect to human 

serum IgG1 (Flynn et al., 2010) and a recombinant HCAb (Blondeel et al., 2015). Furthermore, 

Figures 3-5 provide detailed comparisons across the state of the art, regarding both the shifts in 

the glycosylation of cultures under the reported supplementation regimes, but also comparisons 

of the starting glycoforms of control cultures. A detailed examination of these is found in the 

following sections. 
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3.3 Supplementation of Nucleotide-Sugar Precursors 

3.3.1 Glucosamine (GlcN) & Acetyl-glucosamine (GlcNAc) 

Glucosamine (GlcN) supplementation is consistently reported to increase intracellular pools 

of UDP-HexNAc (i.e. UDP-GlcNAc & UDP-GalNAc), as detailed in Table 1. UDP-

GlcNAc/GalNAc intracellular pools form in the cytoplasm and are linked by an epimerase 

(Figure 1, Reaction 17), which holds them in relatively fixed concentration proportions of 

approximately 2:1 (Blondeel et al., 2015; Glaser, 1959).  

Glucosamine supplementation is commonly reported to reduce the complexity of N-glycan 

terminal moieties, favouring “G0” glycoforms featuring terminal GlcNAc (i.e with reduced 

galactosylation and sialylation) (Hills et al., 2001; Pels Rijcken et al., 1995b; Yang and Butler, 

2002; Zanghi et al., 1998). GlcN is also reported to increase glycan antennarity (Baker et al., 

2001; Gawlitzek et al., 1998; Grammatikos et al., 1998); however, this is only reported for non-

IgG proteins with higher-antennarity glycans (Thaysen-Andersen and Packer, 2012), such as 

TIMP-1 & IL-2 to-date (Table 1, Figure 3). Conversely, Yang and Butler (2002) actually 

reported the opposite effect, with a reduction in antennarity of EPO from glucosamine feeding. 

However, Yang and Butler also reported elevated ammonia levels and increased glutamine 

uptake during GlcN supplementation, while Baker and colleagues (2001) reported minimal 

increase in ammonia in their GS cells. As such, this effect may depend on how efficiently the 

cell platform converts ammonia to UDP-GlcNAc (Valley et al., 1999), as opposed to harvesting 

the glucose from glucosamine via glucosamine-6-phosphate deaminase (Figure 1, Reaction 5). 

As noted in the previous section, Valley and colleagues (1999) supplementing 15N traced 

ammonium ions, determined that BHK-21 cells produced a significant increase in UDP-GlcNAc 

intracellular nucleotide sugar pools. Metabolomic analysis of CHO cultures producing HCAbs 

supplemented with both GlcN and GlcNAc reported neither elevated ammonia, nor increased 
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uptake of glutamine; however, a three-fold increase in acetate was observed after glucose 

exhaustion, which has been attributed to scavenging of glucose from UDP-GlcNAc pools in 

stationary phase (Blondeel et al., 2015). Elevated ammonia levels will raise the pH of Golgi 

compartments, and prevent heteromeric glycosyltransferase dimer complexes, such as GnT-IV/V 

from functioning properly (Hassinen and Kellokumpu, 2014). Further, increasing glutamine can 

produce a similar effect as supplementing GlcN and GlcNAc to mammalian cultures 

(Aghamohseni et al., 2014). Therefore, the effect of increasing antennarity may depend on 

whether the metabolism favours formation of UDP-GlcNAc pools or scavenging glucose 

depleting those same pools. 

Wong and colleagues (2010) reported the only instance where GlcN supplementation 

increases the complexity of N-glycans’ terminal moieties, with increased sialylation of IFN-γ. It 

is worth noting that increased sialylation was observed for all of Wong et al.’s experimental 

conditions including supplementation with galactose and ManNAc, with and without associated 

nucleosides. Furthermore, the experiment appears to be n=1, with only a single control flask. 

Therefore, it is possible that the control flask for this experiment is merely an outlier of reduced 

sialylation. Nyberg and colleagues (1999) similarly cultured CHO cells expressing IFN-γ, and 

supplemented uridine rather than GlcN, reporting smaller but significant increases to intracellular 

UDP-GlcNAc pools (Table 1); however, no such increase in sialylation of IFN-γ glycoforms was 

observed.  

While more complex glycans (i.e. those possessing terminal galactose and sialic acid 

moieties) are therapeutically more desirable, the glycoform distributions of commercial 

therapeutic mAbs have a greater proportion of terminal GlcNAc “G0” glycoforms (Wacker et al., 

2011). As such, reference biologics for the development of biosimilars also favour G0 glycan 
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types. Therefore, GlcN/GlcNAc supplementation has been demonstrated as a useful tool for 

tuning N-glycan distributions towards G0 forms in cultures to achieve a target glycoform 

distribution (Blondeel et al., 2015). For supplementation strategies, GlcNAc should be 

considered more favourable compared to GlcN, which has been shown to restrict growth in 

mammalian cultures producing recombinant proteins (Baker et al., 2001; Blondeel et al., 2015; 

Grammatikos et al., 1998; Hills et al., 2001; Wong et al., 2010; Yang and Butler, 2002; Zanghi et 

al., 1998). Glucosamine has further been demonstrated to restrict growth intransformed 

cancerous cells that are not expressing recombinant proteins (Bekesi and Winzler, 1970; Krug et 

al., 1984; Oh et al., 2007; Pederson et al., 1992). A similar species to GlcN, galactosamine 

(GalN) also produces cytotoxic effects when supplemented to cultures (Pels Rijcken et al., 

1995a). Restricted growth from supplementation of hexosamines (GlcN/GalN) have been 

attributed to either competition with glucose transport (Yang and Butler, 2002), or depletion of 

intracellular ATP and UTP pools (Pels Rijcken et al., 1995a). Pels Rijcken and colleagues 

(1995a) hypothesized this effect was due to depletion of phosphorylated pyrimidines inhibiting 

RNA synthesis. However, it has more recently been demonstrated that negative growth from 

GlcN (and likely GalN) is actually from depleting pools of cytosolic acetyl-CoA, which convert 

GlcN to GlcNAc (Blondeel et al., 2015), an essential pool for lipid biosynthesis and cell division 

(Goudar et al., 2010; Quek et al., 2010). Supplementing GlcNAc has been demonstrated to 

remove this growth inhibition, while still producing an increase in intracellular UDP-GlcNAc 

pools (Blondeel et al., 2015; Kildegaard et al., 2015). GlcNAc supplementation may still draw 

phosphorylated pyrimidines away from pools for RNA synthesis leading to more rapid loss of 

viability in stationary phase; however, the demonstrated improved growth from avoiding 

acetylation by supplementing GlcNAc makes the activity of glucosamine-phosphate N-
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acetyltransferase the more likely source of growth inhibition for this group of glycosylation 

supplements. 

3.3.2 Galactose 

Galactose (Gal) supplementation represents the most successful example of nucleotide-

sugar precursor feeding to affect glycoforms to-date. This strategy has been reliably reported 

across several different research groups, utilizing different cell platforms, expressing different 

proteins, to increase galactosylation (Figure 4). Even beyond galactosylated glycoforms, 

supplementation of Gal has also been demonstrated to relieve bottlenecks towards improving the 

sialylation of Fc-fusion glycoproteins in GS-CHO cultures (Liu et al., 2015). Increased 

galactosylation is generally accepted to be of therapeutic benefit, with lack of galactosylation 

associated endogenously with several disease states (discussed in Section 4).  

Precursor supplementation strategies often include the complementary nucleoside for a 

supplemented sugar, such as uridine (Urd) for GlcN and Gal, or cytidine (Cyt) for ManNac. 

Galactose supplementation strategies are the first to also incorporate manganese ions (Mn2+) to 

enhance the activity of galactosyltransferase, demonstrated by Gramer and colleagues (2011) in 

GS-CHO cultures producing IgG. These researchers proposed a synergistic cocktail (in static 

proportions), featuring uridine, manganese ions, and galactose (UMG), and experimented with 

increasing concentrations up to 20mM galactose, to achieve more than a 20% increase in 

galactosylation (Figure 4), with improvements plateauing at 8x UMG (16µM Mn2+, 8mM Urd, 

and 40mM galactose).  

The results of the UMG cocktail were replicated by Grainger and James (2013) utilizing a 

face-centred designed experiment (i.e. varying the proportions of the UMG supplements), for 

main effects analysis in two CHO cell lines expressing IgG. These researchers also demonstrated 
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more than a 20% increase in IgG galactosylation (Figure 4); however, they determined the best 

results overall – including growth, mAb titre, mAb galactosylation – from supplementing the 

low-low-high (LLH) condition (1µM Mn2+, 0.5mM Urd, and 100mM Gal). Variations on the 

UMG cocktail have continued to be utilized by researchers reporting varying degrees of success 

for increasing glycoprotein galactosylation (Liu et al., 2014; St Amand et al., 2014; Surve and 

Gadgil, 2015). 

Towards better understanding the main effects of supplementing Gal, Urd, and Mn2+, 

researchers have pursued various experimental arrangements and concentrations (Table 2, Figure 

4). While galactose together with uridine is reported to generate superior results (Grainger and 

James, 2013; Gramer et al., 2011; Wong et al., 2010), galactose together with manganese alone 

performs slightly worse (St Amand et al., 2014; Surve and Gadgil, 2015) (Figure 4). Manganese 

supplementation has been reported to actually reduce fucosylation of IgG in CHO cultures (St 

Amand et al., 2014; Surve and Gadgil, 2015); however, St Amand and colleagues (2014) report 

this effect coincides with increased high-mannose type glycans and loss of antennarity (Figure 

4). 

3.3.3 ManNAc 

N-acetylmannosamine (ManNAc), often accompanied by the nucleoside cytidine (Cyt) is 

supplemented to cultures to increase the intracellular nucleotide-sugar pool of CMP-

acetylneuraminic acid (CMP-NeuAc), with the goal of improving the sialylation of glycoproteins 

(Table 3). Several researchers have reported improvements in the sialylation of glycoproteins in 

mammalian cell culture following supplementation of ManNAc (Gu and Wang, 1998; Wong et 

al., 2010; Zanghi et al., 1998). Gu and Wang reported a 15% increase in sialylation, and when 

supplementing 20mM radiolabelled ManNAc, all of the resulting sialylation included the tracer 
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(Gu and Wang, 1998). Interestingly, researchers that do not observe increases in sialylation 

typically reported a deficit of galactosylation that could be improved with galactose feeding 

(Hills et al., 2001; Kildegaard et al., 2015; Liu et al., 2015). Liu and colleagues (2015) 

supplementing galactose improved galactosylation in cultures, which subsequently also lead to 

increased sialylation by 14%. Synergistic supplementation of galactose and ManNAc is still yet 

to be reported. 

Sialylation of glycoproteins by rodent-derived mammalian cell cultures comes with some 

risk of the immunogenic glycoform CMP-Neu5Gc, a glycan which does not occur endogenously 

in humans (Ghaderi et al., 2010; Padler-Karavani et al., 2008). A benefit of ManNAc 

supplementation reported by Baker and colleagues (2001) is that Neu5Gc moieties were reduced 

by 22%, making this an intelligent culture addition regardless of whether overall sialylation 

increases. 

3.3.4 Nucleosides 

Nucleoside supplementation on its own has been considered a viable strategy for affecting 

glycoforms, as they have similarly been shown, if more moderately, to increase nucleotide-sugar 

pools (Tables 1&3). Nyberg and colleagues (1999) reported that supplementing up to 10mM 

uridine to CHO cultures expressing IFN-γ observed a linear correlation between increased UTP 

levels and UDP-GlcNAc pools. Pels Rijcken and colleagues (1995b) similarly observed 

corresponding increases of UTP, UDP-glucose/galactose, and UDP-GlcNAc/GalNAc upon 

supplementing either 0.5mM uridine or cytidine to primary cultures of rat hepatocytes. Few 

strategies for supplementation of nucleotides, nucleosides, or nitrogenous bases beyond the 

pyrimidines exist, as these have been demonstrated to produce negative growth effects 

(Carvalhal et al., 2003). 
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3.3.5 Other Exotic Sugars and Supplements 

Beyond the classic nucleotide sugar precursor supplements detailed in Tables 1-3, several 

additional supplementation strategies have been attempted to exert control over glycan 

distributions. Inhibitors to particular glycosyltransferases may be utilized to produce hybrid and 

high-mannose type glycans; however, these present little therapeutic advantage (Section 4). 

Several unconventional saccharides have been attempted, including mannose, fucose, and 

N-acetylneuraminic acid (NeuAc); however, none of these produced any notable shifts to 

glycoforms (Kildegaard et al., 2015). Hossler and colleagues (2017) have recently reported 

supplementation of nine unconventional sugars to CHO cultures expressing a mAb glycoprotein. 

While several of these sugars produced high-mannose and hybrid type glycoforms, melezitose, 

turanose and to a lesser extent lactose supplemented at 1, 10, 25 and 50mM, created significant 

increases in galactosylation of the mAb (Hossler et al., 2016). Similarly, these researchers have 

previously demonstrated that supplementing D-arabinose and L-galactose at 50 mM to CHO 

cultures expressing a mAb glycoprotein can achieve a complete exchange of fucose moieties for 

these alternate sugars producing benefits for bioactivity by antibody dependent cell cytotoxicity 

(ADCC) (Hossler et al., 2017). 

4.0 Glycoforms: Bioefficacy and Functionality 

Glycoprotein biotherapeutics include mAbs, cytokines, hormones, clotting factors, and 

growth factors, a thorough listing of these approved by the FDA are available (Ghaderi et al., 

2012). Much research has been devoted to understanding how shifts in glycoforms change 

effector function for mAbs, due the myriad ways IgGs activate the immune system (Tables 4-8). 

For other glycoproteins, the primary concern is generally terminal sialylation, as this has the 

greatest impact on extending serum half-life for most glycoprotein therapeutics like tissue 
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plasminogen activator (tPA) and erythropoietin (EPO), and reducing how often drugs must be re-

administered to patients (Cole et al., 1993; Elliott et al., 2004). Albrecht and colleagues (2014) 

provide an excellent examination of the impact of glycoform on commercial therapeutics, 

particularly Darbepoetin-α, a commercial therapeutic recombinant erythropoietin (EPO), which 

is modified to possess two additional N-glycan sites compared to the usual three in human EPO. 

Darbepoetin-α carries a much greater proportion of sialic acid moieties compared to the two 

other commercial forms of EPO, epoetin-α/β (Egrie et al., 2003). These additional sialylated 

glycan sites effectively double the half-life and bioactivity; however, Darbepoetin’s higher 

aggregate sialylation causes a 5-fold reduced receptor binding, requiring higher dosages (Egrie et 

al., 2003; Elliott et al., 2004). This result corresponds to reports by Scallon and colleagues 

(2007), who observed that higher sialylation of mAbs impeded their binding to FcγRIIIa 

receptors to activate antibody dependent cell cytotoxicity (ADCC), a major bioactivity metric of 

mAbs (Table 7).  

Serum clearance of glycoproteins is often the result of receptors for specific terminal 

glycans, like mannose binding receptors on liver endothelial cells, or asialoglycoprotein 

receptors for galactose moieties, also of the liver (Smedsrød and Einarsson, 1990). Conversely to 

most glycoproteins, it has been reported that sialylation does not extend serum half-life in vivo 

for mAbs (Kaneko et al., 2006; Wright and Morrison, 1998), a result possibly due to the 

positioning of the glycan site on the Fc region, where IgG glycans are predominantly located.  

4.1 Immune Effector Functions for Antibodies 

The Fab regions of antibodies allow them to bind to their target antigens with high 

specificity, but it is their glycosylated Fc regions that interact with and activate immune 

responses. IgGs possess paired glycosylation sequons at ‘asparagine 297’ (Asn297) on the heavy 
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chain CH2 domain of their Fc region, and produce varying immune response activation 

capability in vivo depending on their glycoform (Tables 4-8). Jefferis (2012) provides an 

excellent overview of antibody isotypes, their key features, and interactions with the immune 

system. 

The Fc region of antibodies interacts with the immune system by binding to numerous 

different Fc receptors on the surfaces of immune cells, as well as complexing with C1q, which 

activates the Complement system cascade. Complement can also be activated by G0 and high-

mannose glycans via mannose-binding lectin (MBL) activation; however, such glycoforms also 

observe rapid clearance from serum (Table 6) (Malhotra et al., 1995; Nimmerjahn et al., 2007). 

The interaction of immune cell antibody receptors (FcγR) with an antibody-antigen complex 

mediates a host of immune effector functions, such as antibody-dependent cell phagocytosis 

(ADCP), cytolysis or cytotoxicity (ADCC), and the release of cytokines and chemokines 

spurring further cascades of immune responses within the highly regulated immune system. 

Vidarsson and colleagues (2014) provide a comprehensive review of these effector functions. 

Therapeutic monoclonal antibody (mAb) glycoforms are often characterized by how well they 

can recruit immune effector functions, particularly ADCC and Complement dependent cell 

cytotoxicity (CDC).  

Regarding activation of ADCC and CDC endogenously, a typical glycan distribution for 

human serum IgG1&2 from five healthy volunteers showed a prevalence for five main 

glycoforms: fucosylated biantennary G0, G1, G2, G2S1, and bisecting G1 (Flynn et al., 2010). 

While this and similar studies provide a general conception of a “normal” glycan distribution for 

mAbs, an important characteristic of antibody glycoforms in vivo, is their tendency to shift with 

pathology, as evidenced by Kaneko and colleagues (2006), who reported the downregulation of 
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sialylated antibodies in vivo during antigenic challenge removing their anti-inflammatory 

properties (Table 7). Therefore, the optimal distribution of glycans on therapeutic antibodies 

likely varies from the distribution reported by Flynn and colleagues for treating a particular 

disorder/pathology. Kapur and colleagues (2014) provide a summary of patterns of IgG-antibody 

glycosylation with respect to their effects in reported pathologies. 

4.2 Glycoforms and Antibody Immune Effector Functions 

Recognition and binding of IgGs by C1q and Fc receptors are affected by glycoforms 

yielding different binding affinities, or steric effects (Ferrara et al., 2006), and therefore 

significant variation in triggering the immune system. Tables 4-8 demonstrate how changes in 

glycoforms of antibodies affect their immune effector functions (IEF). 

4.2.1 Fucosylation 

Core α1-6 fucosylation on the first GlcNAc moiety of the N-glycoform is typical for the 

majority of human glycans both for antibodies (Flynn et al., 2010) and other secreted 

glycoproteins (Takeuchi et al., 1988). However, absence of fucosylation has been reported to 

dramatically increase affinity of IgGs for FcγRIIIa receptors of NK cells, increasing ADCC 

responses by purified peripheral blood monocytes during in vitro assays (Table 4). Steric 

interaction between the Asn297 glycan of the antibody Fc and the Asn162 glycan of the FcγRIIIa 

receptor has been proposed as the mechanism behind this improvement (Ferrara et al., 2006). 

This also corresponds with research linking individuals with polymorphic FcγRIIIa receptors to 

improved clinical outcomes when treated with rituximab where core-fucosylation is still present 

(Cartron et al., 2002). While a clear relationship between fucosylation and ADCC has been 

reported, several researchers have found no relationship between the core α1-6 fucose moiety and 

CDC (Chung et al., 2012; Shields et al., 2002; Yamane-Ohnuki et al., 2004). 
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4.2.2 Bisecting N-Acetylglucosamine (biGlcNAc) 

Core α1-6 fucosylation of the N-glycoform is partially inhibited by the GnT-III enzyme, 

absent in the CHO genome (Xu et al., 2011). GnT-III acts to append a bisecting GlcNAc moiety 

to the first mannose residue of the glycan (Schachter, 1986). The higher ADCC response from 

NK cells via FcγRIIIa binding was initially associated with antibodies bearing the bisecting N-

GlcNAc (these results are detailed in Table 5); however, it was reported that in vitro remodelling 

of rituximab and trastuzumab glycans to produce antibodies with both core-fucose and bisecting 

GlcNAc glycoforms demonstrated little improvement (~10%) to ADCC (Hodoniczky et al., 

2005). In contrast, Shinkawa and colleagues (2003) column-purified fractions of IgG produced 

from rat hybridoma YB2/0 cells to obtain fractions high in both bisecting GlcNAc and core α1-6 

fucosylation, and determined no improvement towards ADCC. Therefore, the benefit of the 

bisecting glycoform, at least with respect to ADCC mediated by NK cells is not as significant as 

afucosylation. However, endogenous human IgG1&2 glycoforms in vivo possess bisecting 

GlcNAc with approximately 12% and 9.3% proportions, respectively  (Flynn et al., 2010). As 

such, this glycoform may bear some yet unknown regulatory property for antibodies. 

4.2.3 Galactosylation 

Terminal galactosylation is not perceived to be an essential factor for stimulating ADCC 

responses; however, non-galactosylated IgGs have consistently been shown to have weaker C1q 

binding and complement-dependent cytotoxicity (CDC) responses (Table 6). Reviews of mAb 

effector function with respect to N-glycoforms have noted that lower galactosylation in vivo has 

been linked to aging, auto-immune disorders and disease states such as rheumatoid arthritis 

(Harris et al., 2010; Jefferis, 2012; Spearman et al., 2011). Therefore, increased galactosylation is 

viewed as therapeutically favourable; however, compared to human IgG, commercial 

monoclonal antibody formulations tend to be under-galactosylated (Wacker et al., 2011). 
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4.2.4 Sialylation 

Terminal sialylation, unlike other glycoforms, introduces a negative charge to glycans. This 

glycoform has been reported to reduce binding affinity of mAbs to antigens, FcγR receptors, and 

reduce ADCC immune responses (Table 7). However, it does possess anti-inflammatory 

properties, and is credited with the success of intravenous immunoglobulin (IVIG) therapies 

(Kaneko et al., 2006; Scallon et al., 2007). This seems to mainly be a feature of α2-6 linked sialic 

glycoforms rather than α2-3 (Anthony et al., 2008). Unlike other therapeutic glycoproteins, mAbs 

with elevated sialylation have not been reported to receive improvements to serum half-life 

(Kaneko et al., 2006; Wright and Morrison, 1998). Raju and Lang (2014) provide a thorough 

examination of the effects of sialyation to a range of commercial glycoproteins. 

4.2.5 High Mannose 

High mannose glycans typically represent an early departure from glycosylation, either after 

the endoplasmic reticulum, or the cis-Golgi (Figure 1). This glycoform possesses minimal 

capability to activate CDC, impaired binding to FcγR receptors, and rapid in vivo clearance 

(Table 8).  

4.3 Immunogenic Glycoforms 

Several established rodent-derived cell lines such as NS0 and CHO form glycosylation 

structures immunogenic in humans such as terminal alpha-gal and a sialic acid variant, N-

glycolylneuraminic acid (Neu5Gc) (Bosques et al., 2010; Ghaderi et al., 2010; Padler-Karavani 

et al., 2008). As such, fully human cell lines have grown more popular and attempts have been 

made with some success to “glycoengineer” human-like glycosylation in alternative production 

platforms of bacteria, yeast, insect cells, as well as making improvements to mammalian 

platforms currently in use. Ghaderi and colleagues provide an excellent examination of this 

subject from the perspective of immunogenic glycoforms (Ghaderi et al., 2012). 
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5.0 Conclusions 

Glycosylation remains among the most important critical quality attributes (CQAs) of 

recombinant therapeutic glycoproteins, particularly regarding mAbs, where they directly impact 

the immune effector function of therapeutics. Galactosylation and afucosylation are the most 

desirable glycoforms for mAbs towards eliciting immune effector functions, while sialylation is 

the most desirable for other therapeutic glycoproteins.  

Supplementation of nucleotide sugar precursors to tune glycan distributions for more 

desirable therapeutically active glycoforms continues to demonstrate strong potential as a 

process improvement strategy. These supplementations, while often effective, are reported with 

inconsistent results. This is primarily due to five key factors beyond the supplementations 

themselves. The first is differences across cell platforms, such as the up/down regulation of 

enzymes and transporters; two different cell platforms expressing the same recombinant protein 

can produce different effects from the same supplementation regime. Secondly, differences 

between expressed proteins, and by extension differences in the accessibility of the protein 

glycan sites, can translate to hard limits on the potential glycan complexity and effectiveness of 

supplementation; mAbs for instance are naturally limited to only having biantennary glycans 

compared to other therapeutic glycoproteins. The third factor is the fermentation and sampling 

timeline, specifically glucose availability, which is inversely correlated to galactosylation and 

sialylation of glycans. This, together with accumulation of exoglycosidases in cultures, 

particularly sialidase means that harvesting at the end of exponential phase will result in a 

different glycan distribution than during stationary phase, following a decrease in cell viability. 

The fourth factor is the concentration of glutamine supplemented to cultures, as the subsequent 

increase in ammonia will increase UDP-GlcNAc pools affecting glycoforms, as well as altering 
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the pH of Golgi compartments preventing the proper formation of heteromeric dimer 

glycosyltransferases necessary for complex terminal glycan additions such as galactosylation and 

sialylation. Finally, a lack of standardized glycosylation index metrics for observing shifts in 

glycoform distribution, and making suitable comparisons between researchers. 

The supplementation of glucosamine (GlcN) and acetylglucosamine (GlcNAc) reduces the 

terminal complexity of glycans to favour the G0 glycoforms, and can increase antennarity of 

non-IgG proteins. GlcN causes significant restriction to cell growth, but its acetylated form 

GlcNAc does not. Galactose supplementation achieves increased galactosylation with the 

greatest reported consistency, and can be enhanced by the addition of uridine and manganese 

ions, with best results in a glutamine-synthase cell platform. Acetylmannosamine (ManNAc) 

supplementation, optionally with cytidine, has been reported to significantly increase sialylation; 

reports of it not succeeding tend to coincide with cell platforms that already have a deficit in 

galactosylation. Several other exotic sugars also have the potential to affect factors such as 

fucosylation in the case of D-arabinose, and galactosylation in the case of melezitose, turanose 

and to a lesser extent lactose. 

While this field continues to present exciting new paths likely to achieve more therapeutic 

glycoforms, there remains much opportunity for examining the synergistic supplementation of 

galactose and ManNac to improve sialylation of glycoproteins. Using these supplementation 

methods to tune glycan distributions towards targeted glycoforms should enter the toolkit of 

every bioprocess engineer. 
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Table 1 

Supplement Cell Protein 
Fermentation 

Timeline 

Gln 

(mM) 
Effect Researchers 

 20mM 

GlcNac 

CHO 
(DG44) 

IgG  Bioreactor, 

fedbatch 

 1L 

 Addition 

48h 

 Harvest 

336h 

8  Reduced glycan complexity 

to favour G0 and FG0 

glycoforms 

 Reduced galactosylation 

(Kildegaard et 

al., 2015) 

 7.5mM 

GlcN 

 2.5 - 10mM 

GlcNAc 

CHO 
(Dukx) 

IgG 

HCAb 

 Flasks  

 125mL 

 Addition 

50h 

 Harvest 

144h-168h 

5  Reduced glycan complexity 

to favour G0 and FG0 

glycoforms – both GlcN & 

GlcNAc supplementation 

 ~50% drop in growth rate 

with GlcN supplementation 

 <5% drop in growth rate with 

GlcNAc supplementation 

 proportional increase in 

UDP-GlcNAc pool up to 2x 

with GlcNAc 

supplementation 

(Blondeel et al., 

2015) 

 10mM 

GlcN 

NS0 
(GS) 

IgG  Flasks 

 500mL 

 Addition 

48h 

 Harvest 96h 

0.4 

(GS) 

 17x UDP HexNAc 

 -56% Galactosylation 

 -63% UDP-Hex 

 Reduced growth 

(Hills et al., 

2001)  

 10mM 

GlcN 

CHO 
(K1) 

EPO  Flasks 

 250mL 

 Addition 0h 

 Harvest day 

4-5 

-  18.5x UDP-GlcNAc 

 Increased glycan 

heterogeneity 

 -22% tetrasialylation 

(Yang and 

Butler, 2002) 

 10mM 

GlcN, 

glutamine 

free 

BHK IL-2  Perfusion 

 2.5 L 

 Addition: 

day 21 

 Harvest:  

days 26-28 

and 29-30 

0  Greater antennarity, but 

lower complexity of glycans  

 3x UDP-HexNAc 

 Greater proportion of 

monosialylation with GlcN 

 +58% sialylation in std 

culture without glutamine 

(Gawlitzek et 

al., 1998) 

 10mM 

GlcN + 

2mM Urd 

CHO 
(GS) 

NS0 
(GS) 

TIMP-1  Flasks 

 1000mL 

 Addition 

24h 

 Harvest 48h 

0.4 

(GS) 

 58x UDP-HexNAc 

 8x UDP-Hex 

 +9% antennarity 

 -8% sialylation 

(Baker et al., 

2001) 
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 10mM 

GlcN + 

2mM Urd 

BHK IL-2
2
  Perfusion 

 2.5 L 

 Addition 

10d 

 Harvest 14d 

0  12x UDP-GlcNAc 

 5x UTP 

 Rise antennarity 

(Grammat ikos 

et al., 1998) 

 10mM 

GlcN 

 +5mM Urd 

CHO 
(Dukx) 

IFN-γ  Flasks 

(n=1)
3
 

 1000mL 

 Addition 

48h 

 Harvest 96h 

4  Reduced growth 

 +28% sialylation 

 6-15x increase UDP-HexNAc 

(Wong et al., 

2010) 

 3.5 & 

17.5mM 

GlcN + 

1mM Urd 

CHO 

SCLC 

NCAM  6 & 24-well 

plates 

 Addition 12-

18h 

 Harvest 

128h 

6  25x UDP GlcNAc 

 Reduced growth 

 -90% polysialylation
4
 

(Zanghi et al., 

1998) 

 1-10mM 

Urd 

CHO 

(Dukx) 

IFN-γ  Flasks 

 100mL 

3  Increased UTP correlated to 

increased UDP-HexNAc 

except in absence of 

glutamine 

(Nyberg et al., 

1999) 

 0.5mM Urd RH N/A  Culture dish 

 3 mL 

 Addition 

16h 

 Harvest 24h 

2.4
5
  Reduced sialylation 

 6.7x UTP 

 3.8x UDP-hexose 

 4.6x UDP-HexNAc 

(Pels Rijcken et 

al., 1995b) 

 

  

                                                                 
2
 Modified Il -2 variant featuring an artificial N-glycan site 

3
 Only a single flask for each experiment, and only one control flask appears to have been used 

4
 NCAM protein glycan results reported only relative to controls  

5
 Waymouth culture medium (Morton, 1970) 
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Table 2 

Supplement Cell Protein 
Fermentation 

Timeline 

Gln 

(mM) 
Effect Researchers 

 20mM Gal CHO 
(DG44) 

IgG  Fed-batch 

bioreactor 

 1L 

 Addition 48h 

 Harvest 336h 

8  +12% galactosylation 

 No reduction to cell growth or 

productivity 

(Kildegaard et 

al., 2015) 

 10mM galactose NS0 
(GS) 

IgG  Flasks 

 500mL 

 Addition 48h 

 Harvest 96h 

0.4 

(GS) 

 5x UDP-Gal (Hills et al., 

2001)  

 10mM Gal  

 20mM Gal  

 40mM Gal 

CHO 
(GS) 

Fc-TNF 

fusion 

 Fed-batch 

bioreactor 

 2L 

 Addition 120h 

 Harvest 288h 

GS  +22% galactosylation 

 +14% sialylation 

 No negative growth effects  

 Glycan distribution scaled 

well to 200L bioreactor 

(Liu et al., 

2015) 

 20mM galactose CHO IL-4/13  Batch 

bioreactor 

 1L 

 Addition 0h 

 Harvest 112h 

2  No notable effects to 

sialylation or gene expression 

(Clark et al., 

2005)  

 10mM Gal 

 +5mM Urd 

CHO 
(Dukx) 

IFN-γ  Flasks (n=1)
6
 

 1000mL 

 Addition 48h 

 Harvest 96h 

4  20x UDP-Gal 

 +12% sialylation 

(Wong et al., 

2010) 

 0.4, 4, 40µM 

Mn
2+

 

CHO 
(dhfr-) 

EPO  Roller bottles 

 850cm
2
 

 Media 

replaced every 

7 days 

 Addition 

 Harvest 19d 

15  Reduced titres at 40µM Mn
2+

 

feed 

 UDP-Gal pools unchanged 

 Improved galactosylation and 

sialylation 

(Crowell et al., 

2007) 

 10, 20, 40mM Gal 

 17-68mg/L Mn
2+

 

CHO 

S 

FII  Flasks 

 Addition 48h 

 Harvest 144h 

-  +26% sialylation from 

galactose addition 

 +30% sialylation from 

addition of MnSO4 

 Temperature-shift resulted in 

similar sialyation 

improvement for final process  

(Lee et al., 

2017) 

 100mM Gal 

 40µM Mn
2+

 

 100mM Gal 

 + 40µM Mn
2+

 

CHO 
(K1) 

IgG  Flasks 

 250mL 

 Addition 0h 

 Harvest 168h 

4  +9% galactosylation 

 -31% fucosylation and +21% 

high-mannose glycans for 

Mn+Gal 

 -30% fucosylation and +14% 

high-mannose glycans for Mn 

alone 

 9x UDP-Gal pool 

 Increased expression of β-Gal 

II, III, IV and UDP-GalT 

transcripts 

(St Amand et 

al., 2014) 

                                                                 
6
 Only a single flask for each experiment, and only one control flask appears to have been used  
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 4µM Mn
2+

 

 16µM Mn
2+

 

 

 30mM Gal
7
 

 +4µM Mn
2+

 

 +16µM Mn
2+

 

CHO 
(DG44) 

IgG  Flasks 

 100mL 

 Addition 0h 

 Harvest 72h 

8  -30-50% IgG when Replacing 

/lowering Glc or matching Gal 

 +11% galactosylation 

 -5% fucosylation with 16µM 

Mn
2+

 

(Surve and 

Gadgil, 2015) 

 5-100mM Gal 

+1-20mM Urd 

+2-40µM Mn
2+

 

 Factors:
 8

 

1,2,3,4,8,12,16,20 

 Factors: 8,12 

(2) 

CHO 
(GS) 

IgG  Fed-batch 

bioreactor 

 2L 

 Addition 0h 

 Harvest 360h 

GS  +20% galactosylation for 1st 

cell line at 100mM Gal  

 +24% galactosylation for 2
nd

 

cell line at 40mM Gal 

 Glycan distribution scaled 

well to 100L and 1000L 

bioreactors 

(Gramer et al., 

2011) 

 2.5-100mM Gal
9
 

+0.5-20mM Urd 

+1-40µM Mn
2+

 

CHO 
(GS) 

IgG  Flasks 

 125mL 

 Addition 72h 

 Harvest 192h 

GS  +21-24% galactosylatio 

 +1.5-5% sialylation 

 Best overall IVCC, MAb titre 

and galactosylation results 

with low Mn
2+

/Urd and high 

Gal condition 

 Mab galactosylation correlated 

well with cell-surface Gal 

(Grainger and 

James, 2013) 

 

  

                                                                 
7
 Additional experiments changed the main carbon source to fructose, glucose-free (only gal), and low-glucose 

delivered from a hydrogel for slow release. 
8
 Galactose, urdine and manganese (Mn

2+
) fed in ratios of 5:1:0.002 mM (UMG cocktail) for two CHO-K1SV cell  

l ines expressing two separate IgGs under GS expression system 
9
 Face-centred DOE design for main-effects modeling of UMG cocktail  developed by Gramer et al. cocktail, tested 

on two CHO-K1SV cell  l ines stably expressing IgG4 under GS expression system (Gramer et al., 2011). 
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Table 3 

 

 

 

                                                                 
10

 Supplementations of mannose, NeuAc, and cytidine were also attempted, but did not vary significantly from 
control cultures 
11

 Waymouth culture medium (Morton, 1970) 

Feed Cell Protein 
Fermentation 

Timeline 

Gln 

(mM) 
Effect Researchers 

 20mM 

ManNac
10

 

CHO 
(DG44) 

IgG  1L -

Bioreactor, 

fedbatch 

 Addition 

48h 

 Harvest 

336h 

8  Hypothesis that increases in 

CMP-NeuAc lead to feedback 

inhibition, UDP-GlcNAc 

accumulation, and decrease in 

galactosylation. 

(Kildegaard et 

al., 2015) 

 20mM 

ManNAc 

NS0 
(GS) 

IgG  500mL 

Flasks 

 Addition 48h 

 Harvest 96h 

0.4 

(GS) 

 44x CMP-NeuAc 

 No improvement to sialylation 

(Hills et al., 

2001) 

 20mM 

ManNAc 

CHO 
(GS) 

NS0 
(GS) 

TIMP-1  1L - Flasks 

 Addition 24h 

 Harvest 48h 

0.4 

(GS) 

 -22% Neu5Gc content in NS0 

cultures 

 +1% shifts in %-sialylation 

 12x increase in CMP-SA (CHO) 

 30x increase in CMP-SA (NS0) 

(Baker et al., 

2001) 

 10, 20, 

40mM 

ManNAc 

CHO 

S 

FII  Flasks 

 Addition 48h 

 Harvest 144h 

-  +20% sialylation from ManNAc 

addition 

 Temperature-shift resulted in 

similar sialyation improvement 

for final process 

(Lee et al., 

2017) 

 0.2, 2, 20, 

40mM 

ManNAc 

CHO 
(Dukx) 

IFN-γ  100mL 

Flasks 

 Addition 0h 

 Harvest 96h 

-   27x increase CMP-SA 

 +15% complete sialylation 

 60% & 100% of sialylation from 

radiolabelled supplemented 

ManNAc fed at 2mM & 20mM 

respectively 

 No effect to cell growth or 

productivity 

(Gu and 

Wang, 1998) 

 0.5mM Cyt RH N/A  3mL Culture 

dish 

 Addition 

16h 

 Harvest 24h 

2.4
11

  3.0x CTP 

 3.2x UDP-HexNAc 

 2.6x UDP-hexose 

(Pels Rijcken 

et al., 1995b) 

 20mM 

ManNAc 

+ 10mM 

Cyt 

CHO 
(GS) 

Fc-TNF 

fusion 

 2L Fed-

batch 

bioreactor 

 Addition 

120h 

 Harvest 

GS  Statistically insignificant sialic-

acid content increase (terminal 

galactose determined to be 

limiting) 

(Liu et al., 

2015) 
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12

 NCAM protein glycan results reported only relative to controls  

288h 

 20mM 

ManNac 

 + 0.5mM 

Cyt 

CHO 

SCLC 

NCAM  6 & 24-well 

plates 

 Addition 12-

18h 

 Harvest 

128h 

6  +10-20% polysialylation
12

 in 

CHO 

 -20-30% NCAM production 

(Zanghi et al., 

1998) 

 20mM 

ManNAc 

 10mM 

cytidine 

CHO 
(Dukx) 

IFN-γ  1L - Flasks 

(n=1) 

 Addition 

48h 

 Harvest 96h 

4  30-120x increase in CMP-SA 

 +32-36% sialylation -/+ Cyt 

 +26-52% higher specific 

productivity 

(Wong et al., 

2010) 
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Table 4 

 

N-Glycoform IEF Effects Researchers 

 
 

 

 

 
Asn 

 

Core α1-6 

fucosylation 

ADCC 

 50 fold improvement in binding in vitro of IgGs to FcγRIIIa 

receptors enhancing ADCC 

 ~90% afucosylated IgGs expressed in CHO and HEK cells 

deficient in FucT produce IgGs with 40-60% increase ADCC 

(Shields et al., 2002) 

ADCC 

 30% increase in ADCC for anti-CD20 IgGs produced in FUT8 

mRNA deficient YB2/0 rat hybridoma produced IgGs (-91% 

fucosylation) compared to Rituxan™ 

 40% increase in ADCC for afucosylated IgGs produced YB2/0 

compared to CHO (-21% fucosylation) 

 Overexpression of FUT8 removes ADCC enhancement in anti-

CD20 IgGs from YB2/0 cells  

(Shinkawa et al., 2003) 

ADCC 

 ~40-100% increase in ADCC from a 90% reduction in 

fucosylation of IgG demonstrated both via in vitro ADCC 

assays from four donors and via an in vivo mouse model, which 

prevented tumor formation in mice injected with leukemia cells 

for ~25 days 

(Niwa et al., 2004) 

ADCC 

 ~50% increase ADCC from IgG with a 52-63% decrease in 

fucosylation; plasmids coding siRNA for FUT8 mRNA 

introduced to CHO 

(Mori et al., 2004) 

ADCC 

 20% increase in ADCC from complete removal of fucose 

moiety; FUT8 mRNA knockout CHO culture producing anti-

CD20 IgGs 

(Yamane-Ohnuki et al., 

2004) 

ADCC 

 ~20-30% increase in ADCC reactivity with afucosylated IgG 

pools 

 Galactosidase treated pools of IgG were 100% fucosylated or 

afucosylated mixed in defined proportions  

(Chung et al., 2012) 

CDC  Fucose moiety on Fc glycans yields no effect to complement  

(Chung et al., 2012; 

Shields et al., 2002; 

Yamane-Ohnuki et al., 

2004) 

FcγRIIIa 

 Afucosylation of just one Fc glycan (G0/G0F) sufficient to 

enhance ADCC because of steric hindrance between receptor 

glycan at Asn162 and fucose moiety on Fc-glycan at Asn297  

(Ferrara et al., 2006) 
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Table 5 

N-Glycoform IEF Effects Researchers 

 

 
 

 

 
Asn 

 

Bisecting-

GlcNAc 

ADCC 

 10% increase in ADCC of Rituxan & Herceptin mAbs remodelled in vitro 

to include bisecting GlcNAc (~80% of IgG population, mAbs retained 

fucose) 

(Hodoniczky et 

al., 2005) 

 15-25% increase in ADCC from a 48-71% increase in bisecting GlcNAc 

on IgG from CHO modified to express GnT-III 

(Davies et al., 

2001) 

 ~30% increase in ADCC after GnT-III enzyme introduced to CHO, 

reducing fucosylation and increasing bisecting GlcNAc structures  

(Umaña et al., 

1999) 

 No improvement in ADCC resulted from column-purified fractions of 

IgG1 from rat hybridoma YB2/0 possessing bisecting GlcNAc increased 

from 4-30%, and 0-45% (separate experiments), but constant fucosylation 

proportions 

(Shinkawa et al., 

2003) 
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Table 6 

N-Glycoform IEF Effects Researchers 

 
 

 

 
Asn 

 

Galactosylation 

CDC 

 Reduced C1q binding in vitro for agalactosylated IgG from 

patient serum with rheumatoid arthritis  
(Tsuchiya et al., 1989) 

 35-50% reduction complement lysis activity in vitro for rIgG1 

expressed in CHO treated with sialidase and galactosidase 
(Boyd et al., 1995) 

 3-fold reduction in CDC for rituximab treated with galactosidase 
(Hodoniczky et al., 

2005) 

 ~2-fold enhanced binding of mannose-binding-lectin (MBL) for 

IgGs treated with galactosidase to convert from 20% to 100% 

G0 Fc glycans 

(Malhotra et al., 1995) 

 60-70% increase in binding to mannose-binding-lectin (MBL) 

protein activating complement by agalactosylated IgGs  

 25-45% decrease in C1Q binding for complement activation 

(Nimmerjahn et al., 

2007) 

 G0 IgGs produced in CHO knockout cultures, without UDP-gal 

transport and CMP-NeuAC transport, do not to activate 

complement 

(Wright and Morrison, 

1998) 

ADCC  Limited improvement to ADCC with galactosylation 
(Kumpel et al., 1995, 

1994) 

ADCC 
 No observed relationship between galactosylation and in vitro 

ADCC 

(Boyd et al., 1995; 

Shinkawa et al., 2003) 
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Table 7 

N-Glycoform IEF Effects Researchers 

 
 

 

 
Asn 

 

Sialylation 

ADCC 

 ~20% reduced ADCC in populations fractionated to include 

increased sialylated glycans (~10-60% increased sialylated 

content) or treated with SialT to increase sialylated content. 

 ~40% reduced ADCC for glycoengineered glycans (~90% 

sialylated) 

 Increased sialylation reduces affinity for FcγRIIIa as well as 

antibody-antigen affinity 

 Sialylated glycans on Fc region impact hinge flexibility 

impeding FcγR binding 

(Scallon et al., 

2007) 

Anti-

inflammatory 

 Terminal sialylation provides anti-inflammatory action 

 Sialylated glycoform is actively downregulated in vivo upon 

antigenic challenge 

 60-80-fold increase of sialylated IgGs from hybridomas 

purified via affinity chromatography 

 40-80% reduction in IgG cytotoxicity (reversible with 

sialidase), and 5-10-fold reduction in FcR binding affinity  

 10-fold increase in anti-inflammatory reaction when high 

sialic-acid fraction IgG injected into in vivo mouse 

rheumatoid arthritis model 

(Kaneko et al., 

2006) 

CDC 

& 

ADCC 

 No effect towards complement lysis activity in vitro for 

rIgG1 expressed in CHO treated with sialidase 
(Boyd et al., 1995) 

Serum t1/2 

 No effect for IgGs produced in galT and sialT deficient CHO 

cells 

 No effect for high sialylated fraction (Kaneko) 

(Kaneko et al., 

2006; Wright and 

Morrison, 1998) 
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Table 8 

N-Glycoform IEF Effects Researchers 

 
 

 

 
Asn    Asn 

 

High-mannose 

 

FcγRI 
 4-6-fold impairment in binding of FcγRI receptor 

compared to complex glycoforms 

(Wright and Morrison, 

1998, 1994) 

CDC 
 Nearly complete loss of CDC activity and C1q binding 

with Man5 glycoforms on GnT-I knockout CHO cells  

(Wright and Morrison, 

1998, 1994) 

CDC 
 Loss of CDC activity in IgGs with high mannose glycans 

from yeast cells with up to 30 mannose structures  

(Tao and Morrison, 

1989) 

Serum t1/2 
 Rapid in vivo clearance in mice of 80% of antibodies, 

significantly shorter overall serum half-life 

(Wright and Morrison, 

1998, 1994) 

Serum t1/2 
 High-mannose MAbs administered to patients cleared 

rapidly out of circulation before other glycoforms  
(Goetze et al., 2011) 
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