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Abstract

In this thesis, we address three topics in the area of compatibility for probability mea-

sures. By “compatibility”, we mean the problems concerning the existence of random vari-

ables/stochastic processes which generate certain given probability distributions in some

predetermined way.

First, we study a compatibility problem for distributions on the real line and probability

measures on a measurable space. For a given set of probability measures and a correspond-

ing set of probability distributions, we propose sufficient and necessary conditions for the

existence of a random variable, such that under each measure, the distribution of this

random variable coincides with the corresponding distribution on the real line. Various

applications in optimization and risk management are discussed.

Secondly, we investigate a compatibility problem involving periodic stationary pro-

cesses. We consider a family of random locations, called intrinsic location functionals, of

periodic stationary processes. We show that the set of all possible distributions of intrinsic

location functionals for periodic stationary processes is the convex hull generated by a

specific group of distributions. Two special subclasses of these random locations, invariant

intrinsic location functionals and first-time intrinsic location functionals, are studied in

more detail.

Along this direction, we proceed to propose a unified framework for random locations

exhibiting some probabilistic symmetries. A theorem of Noether’s type is proved, which

gives rise to a conservation law describing the change of the density function of a ran-

dom location as the interval of interest changes. We also discuss the boundary and near

boundary behavior of the distribution of the random locations.
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Chapter 1

Introduction

This thesis addresses three topics in the area of compatibility for probability mea-

sures. By “compatibility”, we mean the problems concerning the existence of random vari-

ables/stochastic processes which generate certain given probability distributions in some

predetermined way. Different types of compatibility problems are frequently discussed and

explored in existing literature. For example, necessary and sufficient conditions for the

existence of a joint density with given families as its associated conditional densities were

discussed in Arnold and Press (1989). Given two marginals on a Polish space, Strassen

(1965) proposed a sufficient and necessary condition for a probability measure on a product

space to exist. An extended result was shown in Gutmann et al. (1991) by considering the

underlying probability space as Hausdorff spaces. In Joe (1997), the author explored the

existence of a trivariate distribution given bivariate margins and the existence of higher-

dimensional multivariate distribution under some marginal constraints.

Chapter 2 is based on the paper Shen et al. (2017), which is now under review for

publication. It is dedicated to a compatibility problem for change of measures. Many

change of measures problems have been investigated in previous literature, both in theory

and application. For stochastic processes, Girsanov theorem describes how the distribution

of a stochastic process changes under a given change of measure. It is widely used in the

study of diffusions and stochastic differential equations (Revuz and Yor, 2013) and deriving

the distributions of asset prices under different probability measures in financial market
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(Bingham and Kiesel, 2013). The basic idea of importance sampling is also based on the

probability change, which allows researchers to generate sampling points from another

distribution to study the properties of a given distribution, when sampling from the given

one is difficult. Importance sampling techniques are frequently used in Monte Carlo study

of sequential tests (Siegmund, 1976), portfolio credit risk (Glasserman and Li, 2005), etc.

In this chapter, for a given set of probability measures on a probability space and a

corresponding set of probability distributions on the real line, we develop sufficient and

necessary conditions for the existence of a random variable, such that under each measure

given on the probability space, the distribution of this random variable coincides with

the corresponding distribution on the real line. More precisely, let (F1, . . . , Fn) be a set

of distributions on the real line and (Q1, . . . , Qn) be a set of probability measures on a

probability space. We say (F1, . . . , Fn) and (Q1, . . . , Qn) are compatible if there exists a

random variable such that the distribution of this random variable under Qi is Fi, and

almost compatible if for any ε > 0, there exists a random variable such that the Kullback-

Leibler divergence between Fi and Fi,ε is smaller than ε, where Fi,ε is the distribution of

this random variable under Qi. Assuming that all the Qi’s are atomless, we show the

following equivalent condition holds: (F1, . . . , Fn) and (Q1, . . . , Qn) are almost compatible

if and only if there exist reference measures F and Q, such that(
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

, (1.1)

where ≺cx means 6 in the convex order. If almost compatibility is replaced by compati-

bility, an extra condition on the existence of a continuous random variable “independent

from the others” is proposed and shown to be enough to guarantee the compatibility.

Chapter 3 is based on the paper Shen et al. (2018), which is to appear in Stochastic

Processes and their Applications. In this chapter we study a compatibility problem involv-

ing periodic stationary processes. Given a random location in a certain family called the

intrinsic location functionals, a large class of random locations including and extending

far beyond locations of the path supremum/infimum, hitting times, etc, and a probability

distribution defined on an interval, we show how to decide whether there exists a periodic

stationary process with certain period, such that the given distribution is the distribution
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of the random location for that process over the interval. The definition and properties

of intrinsic location functionals for stationary processes were introduced and discussed in

Samorodnitsky and Shen (2013a). In addition, Samorodnitsky and Shen (2013a) character-

ized stationarity by the existence of a density satisfying certain conditions for appropriate

intrinsic location functionals. In Shen (2016), a characterization of stationary increments

for stochastic processes was established using doubly intrinsic location functionals, a sub-

class of intrinsic location functional which is invariant under vertical shift of the path. In

Shen (2018), given a probability distribution, the author considered the necessary condi-

tion for the existence of a self-similar process with stationary increments, such that the

distribution of the location of the path supremum agrees with the given one.

In this chapter, we first investigate the properties of different types of intrinsic loca-

tions for periodic stationary processes. More precisely, denote by L an intrinsic location

functional, X a periodic ergodic process with period 1. Let FX
L,T be the distribution of L

for the process X on the interval [0, T ] for T 6 1. We show that the density f of FX
L,T exists

in the interior of the interval [0, T ], and f takes non-negative integer values. Moreover, the

total variation of f on any interval is dominated by the sum of its values on the endpoints

of the interval. Besides, if f is at least 1 in some small neighbourhoods of 0 and T , then

f should be at least 1 on the whole interval [0, T ]. Conversely, we show that for any F in

a certain set of distributions, there exists an intrinsic location functional and a periodic

stationary process with period 1, such that F is the distribution of this intrinsic location

for such process on [0, T ]. Furthermore, two special classes of intrinsic location functionals,

invariant and first-time intrinsic location functionals, are explored. It is proved that for

any F in a certain set, there always exists a periodic stationary process with period 1, such

that the distribution of the supremum location for such process coincides with F on [0, T ].

For the first-time intrinsic location functional, a more specific characterization compared

to the general results is discussed.

Chapter 4 is an exploration of the Noether theorem for random locations, giving a

description of how the distribution of a random location over an interval can change as the

interval moves. This can be regarded as the compatibility problem of the distributions of

this random location with different intervals. On one hand, the famous Noether theorem

in mathematical physics (Noether, 1918) shows that each differentiable symmetry of a
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system corresponds to a conservation law. We refer to Kosmann-Schwarzbach (2011) for a

thorough review of the Noether theorems. Different generalizations can be found in Yasue

(1981); Thieullen and Zambrini (1997a); Baez and Fong (2013). On the other hand, the

random locations of stochastic processes exhibiting certain probabilistic symmetries have

been studied in a series of works in the past years. Samorodnitsky and Shen (2013a) showed

that the distribution of any intrinsic random location for a stationary process must satisfy

a specific set of conditions. Similar results were later established for intrinsic location

functionals of stochastic processes with stationary increments and of self-similar processes

with stationary increments (Shen, 2016, 2018). In a broad sense, all these processes share

the common point that they exhibit a certain kind of probabilistic symmetry, which means

invariance under a family of transformations.

In this chapter, we provide a framework for the aforementioned random locations and

probabilistic symmetries, in which a similar result as the Noether theorem can be estab-

lished. We first generalize the notion of intrinsic location functional to “intrinsic random

location” by dissociating it from the paths of stochastic processes. Then we call an intrin-

sic random location ϕ-stationary, if the distribution of this location is compatible under a

given flow ϕ = ϕt(x). We construct a point process related to the ϕ-stationary intrinsic

random location, and define the the control measure as the expectation of the point pro-

cess. After establishing a connection between the distribution of any ϕ-stationary intrinsic

random location and the control measure of a point process related to it, we show that

there exists two measures, such that the density of the ϕ-stationary intrinsic random lo-

cation is equal to the difference of these two measures, after some scaling. More precisely,

denote by L([a, b]) a ϕ-stationary intrinsic random location on the interval [a, b], then

ϕ̇0(x2)f(x2)− ϕ̇0(x1)f(x1) = ν(a,b)
ϕ ((x1, x2])− µ(a,b)

ϕ ((x1, x2]),

for any x1 6 x2, x1, x2 ∈ (a, b) and some measures µ
(a,b)
ϕ and ν

(a,b)
ϕ defined in terms of

the control measure of the related point process, where ϕ̇0(x) is the partial derivative of

ϕ with respect to t at time 0. With this equation, we can further derive a conservation

law associated with the flow ϕ. This indeed gives us a unified characterization for the

probabilistic symmetries of stochastic processes via certain groups of random locations.

Moreover, we develop results to get the probability that a random location over an interval
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falls on the boundaries of the interval, as well as criteria for the density of this random

location to explode near the boundaries.

In Chapter 5, we discuss three future directions: 1. The characterization of exchange-

ability for stochastic processes using a certain family of random locations; 2. The random

locations of Max-stable processes, especially moving maximum processes, extremal Gaus-

sian processes and Brown-Resnick processes; 3. Large deviation principles of the maximum

for stochastic processes.
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Chapter 2

Distributional Compatibility for

Change of Measures

2.1 Introduction

Change of probability measures is found ubiquitous in problems where multiple proba-

bility measures appear, with extensive theoretical treatment and applications in the fields

of probability theory, statistics, economic decision theory, simulation, and finance.

A key feature of a change of measure is that the distribution of a random variable is

transformed to another one, and this serves many theoretical as well as practical purposes,

such as in the modification of a Brownian motion drift (Revuz and Yor, 2013) or in im-

portance sampling (Siegmund, 1976; Glasserman and Li, 2005). In view of this, a question

seems natural to us: how much would the distribution change? We formulate this question

below.

(A) Given two probability measures P and Q defined on the same measurable space

(Ω,A), suppose that a random variable X : Ω→ R has a given distribution function

F under P . What are the possible distributions of X under Q?

Question (A) arises naturally if one has statistical (distributional) information about a

random variable X under P , but yet she is concerned about the behaviour of X under
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another measure Q. This includes many classic optimization problems in the literature;

see Section 2.5 for more details. A general version of question (A), the vocal focus of this

chapter, is the following.

(B) Given several probability measures Q1, . . . , Qn defined on (Ω,A), and distribution

measures F1, . . . , Fn on R, does there exist a random variable X : Ω → R such that

X has distribution Fi under Qi for i = 1, . . . , n?

Q1 Q2 Q3
. . . . . . Qn

X exists?

given probability measures

given distributions

Fi(·) = Qi(X ∈ ·)

F1 F2 F3
. . . . . . Fn

Question (B) is henceforth referred to as the compatibility problem for the n-tuples of

measures (Q1, . . . , Qn) and (F1, . . . , Fn). We give an analytical answer to question (B), and

hence (A). In the main part of this chapter, we focus on n-tuples of probability measures for

a positive integer n. Some results also hold for infinite (possibly uncountable) collections

of probability measures; see Remark 2.2.4.

Before describing our findings, let us look at a few intuitive cases of (B). Suppose

that (Q1, . . . , Qn) and (F1, . . . , Fn) are compatible, that is, (B) has an affirmative answer.

In case that Q1, . . . , Qn are identical, it is clear that the respective distributions of a

random variable under each Qi, i = 1, . . . , n are the same; thus F1 = · · · = Fn. In case

that Q1, . . . , Qn are mutually singular, the respective distributions of a random variable

under Qi, i = 1, . . . , n can be arbitrary. In case that F1, . . . , Fn are mutually singular

measures on (R,B(R)), Q1, . . . , Qn have to be also mutually singular. From the above
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observations, it then seems natural to us that whether (Q1, . . . , Qn) and (F1, . . . , Fn) are

compatible depends on the heterogeneity (in some sense) among Q1, . . . , Qn compared

to that of F1, . . . , Fn. More precisely, Q1, . . . , Qn need to be more heterogeneous than

F1, . . . , Fn to allow for compatibility.

To describe the above heterogeneity mathematically, we seek help from a notion of het-

erogeneity order. It turns out that compatibility of (Q1, . . . , Qn) and (F1, . . . , Fn) is closely

related to multivariate convex order between the Radon-Nikodym derivatives (dF1

dF
, . . . , dFn

dF
)

and (dQ1

dQ
, . . . , dQn

dQ
), where F and Q are two “reference probability measures” on (R,B(R))

and (Ω,A), respectively. In particular, we show that question (B) has an affirmative answer

only if for some measures F dominating (F1, . . . , Fn) and Q dominating (Q1, . . . , Qn),∫
R
f

(
dF1

dF
, . . . ,

dFn
dF

)
dF 6

∫
Ω

f

(
dQ1

dQ
, . . . ,

dQn

dQ

)
dQ (2.1)

for all convex functions f : Rn → R. Furthermore, if the measurable space (Ω,A) is rich

enough, the above necessary condition is sufficient for a positive answer to (B). We then

proceed to generalize our results to random vectors and stochastic processes, and conclude

the chapter with various optimization problems related to compatibility of distributions

under change of measures.

Most of the results in this chapter do not rely on the structure of the measurable

space (R,B(R)) and therefore they are valid for compatibility (the existence of a suitable

mapping) of tuples of probability measures on two general measurable spaces. Some of our

results turn out to be deeply related to comparison of statistical experiments (Torgersen,

1991), which shall be commented in Remark 2.3.19. For the purpose of intuitive illustration

and potential probabilistic applications, we write our main results for the cases of random

variables and stochastic processes.

Throughout, we work with a fixed measurable space (Ω,A), which allows for atomless

probability measures. A probability measure Q on (Ω,A) is said to be atomless if for

all A ∈ A with Q(A) > 0, there exists B ∈ A, B ⊂ A such that 0 < Q(B) < Q(A).

Equivalently, there exists a random variable in (Ω,A) that is continuously distributed

under Q. Let F be the set of probability measures on (R,B(R)), where B(R) stands for

the Borel σ-algebra of R, and P be the set of probability measures on (Ω,A). Let L(Ω,A)
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be the set of random variables defined on (Ω,A). For any measures Q,Q1, . . . , Qn, we say

that Q dominates (Q1, . . . , Qn), denoted by (Q1, . . . , Qn)� Q, if Q dominates Qi for each

i = 1, . . . , n.

Remark 2.1.1. A related question to ours is that, given a number of distributions on R,

can we construct, on some underlying space we can still choose, one random variable X

and the same number of probability measures such that X has under each probability the

corresponding distribution? The answer to this question is always affirmative due to the

excessive flexibility in choosing the probability measures. In fact, let Ω be a topological

space homomorphic to the real line, and let A be the Borel σ-field on Ω. For any bicon-

tinuous mapping X from (Ω,A) to (R,B(R)), if we define Qi to be the image of Fi under

X−1, then X has distribution Fi under Qi, i = 1, . . . , n. In fact, even if (Ω,A) and X

are both fixed, as long as the range of X covers the supports of F1, . . . , Fn, we can always

choose Q1, . . . , Qn so that X has the corresponding distributions.

2.2 Compatibility and an equivalent condition

We first define the compatibility problem for the n-tuples of measures (Q1, . . . , Qn) ∈
Pn and (F1, . . . , Fn) ∈ Fn, the main concept of this chapter.

Definition 2.2.1. (Q1, . . . , Qn) ∈ Pn and (F1, . . . , Fn) ∈ Fn are compatible if there exists

a random variable X in (Ω,A) such that Fi is the distribution of X under Qi for each

i = 1, . . . , n.

We note that F is the distribution of X under Q if and only if F = Q ◦ X−1. Below

we establish our first result, which leads to an equivalent condition for compatibility of

(Q1, . . . , Qn) ∈ Pn and (F1, . . . , Fn) ∈ Fn.

Theorem 2.2.2. For (Q1, . . . , Qn) ∈ Pn, (F1, . . . , Fn) ∈ Fn and X ∈ L(Ω,A), equivalent

are:

(i) X has distribution Fi under Qi for i = 1, . . . , n.

9



(ii) For all Q ∈ P dominating (Q1, . . . , Qn), the probability measure F = Q ◦X−1 domi-

nates (F1, . . . , Fn), and(
dF1

dF
, . . . ,

dFn
dF

)
(X) = EQ

[(
dQ1

dQ
, . . . ,

dQn

dQ

) ∣∣∣σ(X)

]
. (2.2)

(iii) For some Q ∈ P dominating (Q1, . . . , Qn), the probability measure F = Q ◦ X−1

dominates (F1, . . . , Fn), and (2.2) holds.

Proof. 1. (i)⇒(ii): By definition, X is such that Qi(X ∈ A) = Fi(A) for A ∈ B(R) and

i = 1, . . . , n. Let Q ∈ P such that Qi � Q, i = 1, . . . , n. Note that such Q always

exists since we can take, for example, Q = 1
n
(Q1 + · · · + Qn). For any A ∈ B(R), if

F (A) = 0, then Q(X ∈ A) = 0. Since Qi � Q, Qi(X ∈ A) = Fi(A) = 0, we have

Fi � F for i = 1, . . . , n. We can verify that for any A ∈ B(R) and i = 1, . . . , n,

EQ
[
I{X∈A}

dQi

dQ

]
= Qi(X ∈ A) = Fi(A) =

∫
A

dFi
dF

dF = EQ
[
I{X∈A}

dFi
dF

(X)

]
.

Therefore,
dFi
dF

(X) = EQ
[

dQi

dQ

∣∣σ(X)

]
, i = 1, . . . , n.

2. (ii)⇒(iii): Trivial.

3. (iii)⇒(i): Suppose that (2.2) holds and F dominates (F1, . . . , Fn). One can easily

verify that, for all A ∈ B(R) and i = 1, . . . , n,

EQi [I{X∈A}] = EQ
[
I{X∈A}

dQi

dQ

]
= EQ

[
EQ
[
I{X∈A}

dQi

dQ

∣∣∣X]]
= EQ

[
I{X∈A}EQ

[
dQi

dQ

∣∣∣X]]
= EQ

[
I{X∈A}

dFi
dF

(X)

]
= Fi(A).

Therefore, X has distribution Fi under Qi, i = 1, . . . , n, thus (Q1, . . . , Qn) and

(F1, . . . , Fn) are compatible.
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From Theorem 2.2.2, the necessary and sufficient condition of compatibility is the

existence of X ∈ L(Ω,A) satisfying (2.2) for some Q ∈ P dominating Q1, . . . , Qn. This

condition is not easy to verify in general. In the next sections we explore necessary and

sufficient conditions, much easier to verify, based on distributional properties of the random

vectors (dF1

dF
, . . . , dFn

dF
) and (dQ1

dQ
, . . . , dQn

dQ
), where F and Q are some measures dominating

(F1, . . . , Fn) and (Q1, . . . , Qn) respectively.

We conclude this section with the special case of n = 2 and Q1 � Q2. In this case, one

can take Q = Q2 in Theorem 2.2.2, and the two-dimensional equality in (2.2) reduces to a

one-dimensional equality.

Corollary 2.2.3. For (Q1, Q2) ∈ P2, Q1 � Q2 and (F1, F2) ∈ F2, (Q1, Q2) and (F1, F2)

are compatible if and only if there exists X ∈ L(Ω,A) with distribution F2 under Q2, such

that F1 � F2 and
dF1

dF2

(X) = EQ2

[
dQ1

dQ2

∣∣∣σ(X)

]
.

Remark 2.2.4. The result in Theorem 2.2.2 can be generalized to infinite collections of

probability measures. Let J be a (possibly uncountable) set of indices. We say that

(Qi)i∈J ⊂ P and (Fi)i∈J ⊂ F are compatible if there exists a random variable X in (Ω,A)

such that Fi is the distribution of X under Qi for each i ∈ J . Based on a proof analogous to

that of Theorem 2.2.2, we have the following result. For (Qi)i∈J ⊂ P and (Fi)i∈J ⊂ F and

X ∈ L(Ω,A), assuming that there exists a probability measure in P dominating (Qi)i∈J ,

equivalent are:

(i) X has distribution Fi under Qi for i ∈ J .

(ii) For all Q ∈ P dominating (Qi)i∈J , the probability measure F = Q ◦X−1 dominates

(Fi)i∈J , and
dFi
dF

(X) = EQ
[

dQi

dQ

∣∣∣σ(X)

]
for all i ∈ J . (2.3)

(iii) For some Q ∈ P dominating (Qi)i∈J , the probability measure F = Q◦X−1 dominates

(Fi)i∈J and (2.3) holds.
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2.3 Characterizing compatibility via heterogeneity or-

der

In this section, we explore analytical conditions for compatibility of (Q1, . . . , Qn) and

(F1, . . . , Fn) based on their Radon-Nikodym derivatives with respect to some reference

probability measures, which are much easier to verify than Theorem 2.2.2.

Our results in this section do not rely on the specific structure of (R,B(R)), and many

of them stay valid if (R,B(R)) is replaced by another measurable space. In particular, such

results hold for compatibility defined on random vectors or stochastic processes, which will

be studied in Section 2.4.

2.3.1 Preliminaries on convex order

For an arbitrary probability space (Γ,S, P ), denote by Ln1 (Γ,S, P ) the set of all inte-

grable n-dimensional random vectors in (Γ,S, P ). Multivariate convex order is a natural

notion of heterogeneity order, as defined below.

Definition 2.3.1 (Convex order). Let (Ω1,A1, P1) and (Ω2,A2, P2) be two probability

spaces. For X ∈ Ln1 (Ω1,A1, P1) and Y ∈ Ln1 (Ω2,A2, P2), we write X|P1 ≺cx Y|P2 , if

EP1 [f(X)] 6 EP2 [f(Y)] for all convex functions f : Rn → R.

For more on multi-dimensional convex order, we refer to Müller and Stoyan (2002,

Chapter 3) and Shaked and Shanthikumar (2007, Chapter 7).

For X ∈ Ln1 (Ω1,A1, P1) and Y ∈ Ln1 (Ω2,A2, P2), we use X|P1

d
= Y|P2 to represent that

X and Y have the same distribution under P1 and P2 respectively. Clearly, if X|P1

d
= Y|P2 ,

then X|P1 ≺cx Y|P2 and Y|P2 ≺cx X|P1 . A key feature of convex order is its connection

to conditional expectations. Below in Lemma 2.3.2 we quote Theorem 7.A.1 of Shaked

and Shanthikumar (2007) for this well-known result (an extension of Strassen’s theorem,

Strassen (1965)); one also finds a slightly simpler formulation as Theorem 3.4.2 of Müller

and Stoyan (2002). See also Hirsch et al. (2011) for a construction similar to Lemma 2.3.2

for stochastic processes (termed peacocks).
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Lemma 2.3.2. For X ∈ Ln1 (Ω1,A1, P1) and Y ∈ Ln1 (Ω2,A2, P2), X|P1 ≺cx Y|P2 if and

only if there exist a probability space (Ω3,A3, P3) and X′,Y′ ∈ Ln1 (Ω3,A3, P3) such that

X′|P3

d
= X|P1, Y′|P3

d
= Y|P2, and EP3 [Y′|X′] = X′.

2.3.2 Heterogeneity order

As mentioned in the introduction, compatibility intuitively concerns the heterogeneity

among (Q1, . . . , Qn) compared to (F1, . . . , Fn). The following lemma, based on Theorem

2.2.2, yields a possible way of characterizing the comparison between the two tuples of

measures. More precisely, a necessary condition for compatibility is built on a convex order

relation between the random vectors (dF1

dF
, . . . , dFn

dF
) and (dQ1

dQ
, . . . , dQn

dQ
) for some reference

probability measures F ∈ F and Q ∈ P .

Lemma 2.3.3. If (Q1, . . . , Qn) ∈ Pn and (F1, . . . , Fn) ∈ Fn are compatible, then for any

Q ∈ P dominating (Q1, . . . , Qn), there exists F ∈ F dominating (F1, . . . , Fn), such that(
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

. (2.4)

Moreover, F in (2.4) can be taken as Q ◦X−1, where X is a random variable with distri-

bution Fi under Qi, i = 1, . . . , n.

Proof. This lemma is directly obtained from Theorem 2.2.2 and Lemma 2.3.2. More pre-

cisely, by Theorem 2.2.2, there exists X ∈ L(Ω,A) such that(
dF1

dF
, . . . ,

dFn
dF

)
(X) = EQ

[(
dQ1

dQ
, . . . ,

dQn

dQ

) ∣∣∣σ(X)

]
where F = Q ◦X−1. Therefore,(

dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

d
= E

[(
dQ1

dQ
, . . . ,

dQn

dQ

) ∣∣σ(X)

]∣∣∣∣
Q

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

,

where the last inequality is by Lemma 2.3.2.
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We summarize the necessary condition in Lemma 2.3.3 for compatibility by introducing

the following heterogeneity order, which is shown to be a partial order in Lemma 2.3.5

below. In the following, M1 and M2 represent the sets of probability measures on two

arbitrary measurable spaces, respectively.

Definition 2.3.4. We say that (P1, . . . , Pn) ∈Mn
1 is dominated by (Q1, . . . , Qn) ∈Mn

2 in

heterogeneity , denoted by (P1, . . . , Pn) ≺h (Q1, . . . , Qn), if(
dP1

dP
, . . . ,

dPn
dP

)∣∣∣∣
P

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

. (2.5)

for some P ∈M1 dominating (P1, . . . , Pn) and Q ∈M2 dominating (Q1, . . . , Qn).

Using the language of heterogeneity order, Lemma 2.3.3 says that in order for compati-

bility of (Q1, . . . , Qn) ∈ Pn and (F1, . . . , Fn) ∈ Fn, a necessary condition is (F1, . . . , Fn) ≺h

(Q1, . . . , Qn). Before discussing the sufficiency of this condition, we first establish some

properties of heterogeneity order.

The following lemma implies that the choice of the reference measures P and Q in (2.5)

is irrelevant; in fact, they can be conveniently chosen as the averages of the corresponding

measures. It also justifies that Definition 2.3.4 defines ≺h as a partial order.

Lemma 2.3.5. For (P1, . . . , Pn) ∈ Mn
1 and (Q1, . . . , Qn) ∈ Mn

2 , let M∗
1 = {P ∈ M1 :

(P1, . . . , Pn) � P} and M∗
2 = {Q ∈ M2 : (Q1, . . . , Qn) � Q}. The following are equiva-

lent:

(i) (P1, . . . , Pn) ≺h (Q1, . . . , Qn); that is, for some P ∈M∗
1 and Q ∈M∗

2, (2.5) holds.

(ii) For P = 1
n

∑n
i=1 Pi and Q = 1

n

∑n
i=1 Qi, (2.5) holds.

(iii) For any Q ∈M∗
2, there exists P ∈M∗

1 such that (2.5) holds.

Proof. We proceed in the order (iii)⇒(ii)⇒(i)⇒(iii).

1. (iii)⇒(ii): For Q = 1
n

∑n
i=1Qi, there exists P ∗ ∈M∗

1 such that(
dP1

dP ∗
, . . . ,

dPn
dP ∗

)∣∣∣∣
P ∗
≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

.
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Take the convex function f : Rn → R, f(x1, . . . , xn) = (x1 + · · · + xn)2. It follows

from the definition of convex order that

EP ∗
[(

dP1

dP ∗
+ · · ·+ dPn

dP ∗

)2
]
6 EQ

[(
dQ1

dQ
+ · · ·+ dQn

dQ

)2
]

= EQ[n2] = n2.

On the other hand,

EP ∗
[

dP1

dP ∗
+ · · ·+ dPn

dP ∗

]
= EP1 [1] + · · ·+ EPn [1] = n.

Hence, dP1

dP ∗
+· · ·+ dPn

dP ∗
has zero variance under P ∗, implying that it is P ∗-almost surely

equal to n. In other words, P ∗ = 1
n

∑n
i=1 Pi on all sets with positive P ∗-measure.

Noting that P ∗ dominates (P1, . . . , Pn), we have P ∗ = 1
n

∑n
i=1 Pi. Therefore, (2.5)

holds for P = 1
n

∑n
i=1 Pi and Q = 1

n

∑n
i=1Qi.

2. (ii)⇒(i): trivial.

3. (i)⇒(iii): Assume (2.5) holds for someQ ∈M∗
2 and P ∈M∗

1. Let Y = (dQ1

dQ
, . . . , dQn

dQ
),

Z = (dP1

dP
, . . . , dPn

dP
). Let Q′ be another probability measure in M∗

2. First, note that

without loss of generality, we can assume that Q′ is dominated by Q. Indeed, any

general Q′ can be decomposed as Q′ = cQ′a + (1− c)Q′s, where c ∈ [0, 1], Q′a and Q′s
are probability measures being absolutely continuous and singular with respect to

Q, respectively. This implies that the distribution of (dQ1

dQ′
, . . . , dQn

dQ′
) is a mixture of

the distribution of c−1(dQ1

dQ′a
, . . . , dQn

dQ′a
) (with probability c) and (0, . . . , 0) (with prob-

ability 1 − c). It is easy to check that such a distribution has a larger convex order

than (dQ1

dQ′a
, . . . , dQn

dQ′a
). Thus, if we show (2.5) for Q′a, the result also holds for Q′. In

the sequel we assume Q′ is dominated by Q, hence the random variable X = dQ′

dQ
is

well-defined. Let a set A = {Y 6= 0}. Note that since Q′ dominates (Q1, . . . , Qn),

X > 0 Q-almost surely on A. (dQ1

dQ′
, . . . , dQn

dQ′
) can be then taken as X−1Y, where we

define X−1Y = 0 when both X and Y are 0.

By Lemma 2.3.2, there exists a probability space (Ω′,A′, η) and random vectors

Y′,Z′, such that Y′|η
d
= Y|Q, Z′|η

d
= Z|P , and Eη[Y′|Z′] = Z′. Furthermore, we can

obviously choose (Ω′,A′, η) to contain a random variable X ′ such that (X ′,Y′)|η
d
=
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(X,Y)|Q. On (Ω′,A′), define a new probability measure η′ by dη′

dη
= X ′, then

(X ′,Y′)|η′
d
= (X,Y)|Q′ . For any bounded measurable function f ,

Eη[f(Z′)Z′] = Eη[f(Z′)Y′] = Eη
[
f(Z′)

(
Y′

X ′

)
X ′
]

= Eη′
[
f(Z′)

(
Y′

X ′

)]
,

where, again, X ′ = 0 implies Y′ = 0, and in this case Y′

X′
is set to be 0. Hence

Eη[f(Z′)Z′] = Eη′
[
f(Z′)Eη′

[
Y′

X ′

∣∣∣∣Z′]]
= Eη

[
f(Z′)Eη′

[
Y′

X ′

∣∣∣∣Z′]X ′]
= Eη

[
f(Z′)Eη′

[
Y′

X ′

∣∣∣∣Z′]Eη[X ′|Z′]] .
Therefore we must have

Eη′
[

Y′

X ′

∣∣∣∣Z′] =
Z′

Eη[X ′|Z′]
η-almost surely. Define measure P ′ by dP ′

dP
(z) = Eη[X ′|Z′ = Z(z)] =: V (z). Note

that since∫
dP ′

dP
(z)dP (z) =

∫
Eη[X ′|Z′ = Z(z)]dP (z) = Eη [Eη[X ′|Z′]] = Eη[X ′] = EQ[X] = 1,

P ′ is a probability measure. Then we have (dP1

dP ′
, . . . , dPn

dP ′
) = Z

V
. Define probability

measure η′′ by dη′′

dη
= Eη[X ′|Z′]. Since the relation between Z′, η and η′′ is in parallel

with that between Z, P and P ′, we have

Z

V

∣∣∣∣
P ′

d
=

Z′

Eη[X ′|Z′]

∣∣∣∣
η′′
.

However, for any test function g,

Eη′′ [g(Z′)] =

∫
g(Z′)

dη′′

dη
dη =

∫
g(Z′)Eη[X ′|Z′]dη = Eη[g(Z′)X ′] = Eη′(g(Z′)),

hence Z′|η′
d
= Z′|η′′ . Thus, Z′

Eη [X′|Z′] , as a function of Z′, also has the same distribution

under η′ and η′′. Consequently, we have(
dP1

dP ′
, . . . ,

dPn
dP ′

)∣∣∣∣
P ′

=
Z

V

∣∣∣∣
P ′

d
=

Z′

Eη[X ′|Z′]

∣∣∣∣
η′
.
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Also, recalling that (X ′,Y′)|η′
d
= (X,Y)|Q′ ,(

dQ1

dQ′
, . . . ,

dQn

dQ′

)∣∣∣∣
Q′

=
Y

X

∣∣∣∣
Q′

d
=

Y′

X ′

∣∣∣∣
η′
.

The proof is finished by noting that

Eη′
[

Y′

X ′

∣∣∣∣ Z′

Eη[X ′|Z′]

]
= Eη′

[
Eη′
[

Y′

X ′

∣∣∣∣Z′]∣∣∣∣ Z′

Eη[X ′|Z′]

]
=

Z′

Eη[X ′|Z′]
,

and applying Lemma 2.3.2.

Some simple and intuitive properties of heterogeneity order are summarized in the

following proposition. These properties justify the term “heterogeneity” in the order ≺h.

Proposition 2.3.6. For (P1, . . . , Pn) ∈Mn
1 and (Q1, . . . , Qn) ∈Mn

2 , the following holds.

(i) If P1, . . . , Pn are identical, then (P1, . . . , Pn) ≺h (Q1, . . . , Qn).

(ii) If Q1, . . . , Qn are identical, and (P1, . . . , Pn) ≺h (Q1, . . . , Qn), then P1, . . . , Pn are

also identical.

(iii) If Q1, . . . , Qn are equivalent, and (P1, . . . , Pn) ≺h (Q1, . . . , Qn), then P1, . . . , Pn are

also equivalent.

(iv) If Q1, . . . , Qn are mutually singular, then (P1, . . . , Pn) ≺h (Q1, . . . , Qn).

(v) If P1, . . . , Pn are mutually singular, and (P1, . . . , Pn) ≺h (Q1, . . . , Qn), then Q1, . . . , Qn

are also mutually singular.

Proof. (i) It is straightforward to verify that(
dP1

dP1

, . . . ,
dPn
dP1

)∣∣∣∣
P1

d
= (1, . . . , 1)|P1

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

(2.6)

for any Q ∈M2 dominating (Q1, . . . , Qn). Therefore, (P1, . . . , Pn) ≺h (Q1, . . . , Qn).
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(ii) By (P1, . . . , Pn) ≺h (Q1, . . . , Qn) and Lemma 2.3.5, we have(
dP1

dP
, . . . ,

dPn
dP

)∣∣∣∣
P

≺cx (1, . . . , 1)|Q1
(2.7)

holds for some P ∈ M1 dominating (P1, . . . , Pn). By Lemma 2.3.2, (2.7) further

implies dP1/dP = 1 P -almost surely; thus P1, . . . , Pn are identical.

(iii) Let P = 1
n

∑n
i=1 Pi and Q = 1

n

∑n
i=1Qi. (P1, . . . , Pn) ≺h (Q1, . . . , Qn) implies that,

for each i = 1, . . . , n,
dPi
dP

∣∣∣
P
≺cx

dQi

dQ

∣∣∣
Q
.

Note that Q(dQi/dQ = 0) = 0 as Q1, . . . , Qn are equivalent. By Lemma 2.3.2, we

know P (dPi/dP = 0) = 0, which implies P � Pi. Thus, P1, . . . , Pn are equivalent.

(iv) As Q1, . . . , Qn are mutually singular, there exists a partition {Ω1, . . . ,Ωn} ⊂ A of Ω

such that Qi(Ωi) = 1, i = 1, . . . , n. Let P = 1
n

∑n
i=1 Pi and Q = 1

n

∑n
i=1Qi. Note

that (
dQ1

dQ
, . . . ,

dQn

dQ

)
= n× (IΩ1 , . . . , IΩn)

takes values in the vertices of the simplex S = {(s1, . . . , sn) ∈ Rn+ :
∑n

i=1 si = n},
and (dP1

dF
, . . . , dPn

dP
) takes values in S. Furthermore, EP [(dP1

dP
, . . . , dPn

dP
)] = (1, . . . , 1) =

EQ[(dQ1

dQ
, . . . , dQn

dQ
)]. By the Choquet-Meyer Theorem (Choquet and Meyer (1963); see

Section 10 of Phelps (2001)), stating that among random vectors distributed in a

simplex, the maximal elements with respect to convex order are supported over the

vertices of the simplex, we have(
dP1

dP
, . . . ,

dPn
dP

)∣∣∣∣
P

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

.

(v) Using the notation in (iv), (dP1

dP
, . . . , dPn

dP
) takes values in the vertices of the simplex

S, and (dQ1

dQ
, . . . , dQn

dQ
) takes values in S. Therefore, by the Choquet-Meyer Theorem

again, in order for (P1, . . . , Pn) ≺h (Q1, . . . , Qn) to hold, (dQ1

dQ
, . . . , dQn

dQ
) has to be

distributed over the vertices of the simplex S, and therefore, Q1, . . . , Qn are mutually

singular.
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There exists a concept called “majorization” in statistical decision theory, which is

closely related to the heterogeneity order given in Definition 2.3.4. We will discuss this link

in detail in Remark 2.3.19 after we present Theorem 2.3.15, which also finds an alternative

version in the context of comparison of experiments.

2.3.3 Almost compatibility

In Section 2.3.2, we see that a necessary condition for compatibility of (Q1, . . . , Qn) ∈
Pn and (F1, . . . , Fn) ∈ Fn is (F1, . . . , Fn) ≺h (Q1, . . . , Qn). A natural question is whether

(and with what additional assumptions) the above condition is sufficient for compatibility

of (Q1, . . . , Qn) and (F1, . . . , Fn). This boils down (via Theorem 2.2.2) to the question of,

given (
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

,

where F = 1
n

∑n
i=1 Fi and Q = 1

n

∑n
i=1 Qi, constructing a random variable X with distri-

bution F under Q such that(
dF1

dF
, . . . ,

dFn
dF

)
(X) = EQ

[(
dQ1

dQ
, . . . ,

dQn

dQ

) ∣∣∣σ(X)

]
. (2.8)

Such problem is similar to Lemma 2.3.2, and more generally, the martingale construction

in Strassen (1965) or Hirsch et al. (2011), albeit we need to construct X in the pre-

specified space (Ω,A, Q). Therefore, the existence of X satisfying (2.8) naturally depends

on the probability space (Ω,A, Q). As a simple example, if F is a continuous distribution

and one of Q1, . . . , Qn is not atomless, then there does not exist a random variable X

with distribution F under each of Q1, . . . , Qn, although (F, . . . , F ) ≺h (Q1, . . . , Qn) by

Proposition 2.3.6 (i).

It seems then natural to assume that each of Q1, . . . , Qn is atomless. Below we give a

counter example showing that this condition is still insufficient.

Example 2.3.7. Let Ω = [0, 1], A = B([0, 1]), Q2 = λ be the Lebesgue measure, dQ1

dQ2
(t) =

2t, t ∈ [0, 1], F2 = λ on [0, 1] and dF1

dF2
(x) = |4x − 2|, x ∈ [0, 1]. For this setting we have

(F1, F2) ≺h (Q1, Q2) but (F1, F2) and (Q1, Q2) are not compatible. The details of these

statements are given in Section 2.6.1.
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Example 2.3.7 suggests that the heterogeneity order condition (F1, . . . , Fn) ≺h (Q1, . . . , Qn)

is not sufficient for compatibility of (Q1, . . . , Qn) and (F1, . . . , Fn). Nevertheless, in this

section we show that, assuming Q1, . . . , Qn are atomless, (F1, . . . , Fn) ≺h (Q1, . . . , Qn) is

sufficient for almost compatibility, a weaker notion than compatibility, which we introduce

below. Denote by DKL(·||·) the Kullback-Leibler divergence between probability measures.

Definition 2.3.8. (Q1, . . . , Qn) ∈ Pn and (F1, . . . , Fn) ∈ Fn are almost compatible, if for

any ε > 0, there exists a random variable Xε in (Ω,A) such that for each i = 1, . . . , n, the

distribution of Xε under Qi, denoted by Fi,ε, is absolutely continuous with respect to Fi,

and satisfies DKL(Fi,ε||Fi) < ε.

The following theorem characterizes almost compatibility via heterogeneity order in

Definition 2.3.4, assuming each of Q1, . . . , Qn is atomless.

Theorem 2.3.9. Suppose that (Q1, . . . , Qn) ∈ Pn, (F1, . . . , Fn) ∈ Fn and each of Q1, . . . , Qn

is atomless. (Q1, . . . , Qn) and (F1, . . . , Fn) are almost compatible if and only if (F1, . . . , Fn) ≺h

(Q1, . . . , Qn).

The proof of Theorem 2.3.9 is a bit lengthy, and is postponed to Section 2.6.2 of the

chapter.

Remark 2.3.10. The Kullback-Leibler divergence in Definition 2.3.8 is not the only possible

choice to provide an equivalent condition in Theorem 2.3.9. Indeed, the condition for

necessity can be weakened to the convergence in probability of dFi,ε/dFi to 1 as ε → 0,

by using Fatou’s lemma and the fact that a sequence converging in probability has a

subsequence converging almost surely; the proof for sufficiency implies results as strong as

the uniform convergence of dFi,ε/dFi to 1. Consequently, the Kullback-Leibler divergence

used in the definition of the almost compatibility can be replaced by a series of other

conditions, including:

(i) dFi,ε/dFi
p→ 1;

(ii) dFi,ε/dFi
a.s.→ 1;

(iii) Fi,ε converges to Fi in total variation, and Fi,ε � Fi;
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(iv) The Rényi divergence of order ∞ between Fi,ε and Fi converges to 0 as ε→ 0,

among others, without altering the result of Theorem 2.3.9.

Almost compatibility has a practical implication for optimization problems. Suppose

that Q1, . . . , Qn are atomless. For optimization problems of the form

sup{φ(P ◦ Y −1) : Y ∈ L(Ω,A) has distribution Fi under Qi, i = 1, . . . , n}, (2.9)

where φ : F → [−∞,∞] is a functional, it suffices to consider

sup {φ(F ) : F ∈ F , (F1, . . . , Fn, F ) ≺h (Q1, . . . , Qn, P )} ,

as long as φ is continuous with respect to any of the convergence types listed in Remark

2.3.10. In Section 2.5 we present detailed discussions and examples of optimization prob-

lems of the type (2.9).

2.3.4 Equivalence of heterogeneous order and compatibility

In view of the discussions in Section 2.3.3, (F1, . . . , Fn) ≺h (Q1, . . . , Qn) is not sufficient

for compatibility of (Q1, . . . , Qn) and (F1, . . . , Fn), but sufficient for almost compatibility

if each of Q1, . . . , Qn is atomless. In this section, we seek for a slightly stronger condition

on the n-tuple (Q1, . . . , Qn), under which compatibility and almost compatibility coincide.

Definition 2.3.11. (Q1, . . . , Qn) ∈ Pn is conditionally atomless if there exist Q ∈ P dom-

inating (Q1, . . . , Qn) and X ∈ L(Ω,A) such that under Q, X is continuously distributed

and independent of (dQ1

dQ
, . . . , dQn

dQ
).

Clearly, if (Q1, . . . , Qn) is conditionally atomless, then each of Q1, . . . , Qn is atomless,

since a continuous random variable under Q is also continuous under each Q1, . . . , Qn.

Remark 2.3.12. If Q1, . . . , Qn are mutually singular and each of them is atomless, then

(Q1, . . . , Qn) is conditionally atomless. This can be seen directly by constructing a uniform

random variable Ui on [0, 1] under Qi for i = 1, . . . , n, and writing Q = 1
n

∑n
i=1 Qi. As

Q1, . . . , Qn are mutually singular, there exists a partition {Ω1, . . . ,Ωn} ⊂ A of Ω such

that Qi(Ωi) = 1, i = 1, . . . , n. Then the random variable U =
∑n

i=1 UiIΩi is uniformly

distributed and independent of (dQ1

dQ
, . . . , dQn

dQ
) under Q.
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Before approaching the main results of this section, we recall some basic facts about

conditional distributions. For random vectors T and S defined on a probability space

(Ω,A, P ) and taking values in Rm and Rn, respectively, the conditional distribution of

T given S (under P ), denoted by T|S, is a mapping from B(Rm) × Ω to R, such that

for each ω ∈ Ω, T|S(·, ω) is a probability measure on (Rm,B(Rm)), and for each A ∈
B(Rm), T|S(A, ·) = P (T ∈ A|σ(S)) P -almost surely. We write T|S(ω) for the probability

measure T|S(·, ω), and T|S(ω)P when it is necessary to specify the probability measure P .

Moreover, there exists a version of T|S for which the conditional distribution only depends

on the value of S, i.e., T|S(ω1) = T|S(ω2) whenever S(ω1) = S(ω2). We will always use

this version. For an event E ∈ A, the conditional probability of E given S = s, denoted

by P (E|S = s), should be understood as P [E|σ(S)](ω) for ω satisfying S(ω) = s.

With the help of conditional distributions, we first note that the independence in Defini-

tion 2.3.11 is not essential and can be replaced by continuity of the conditional distribution.

Moreover, similarly to the heterogeneity order, the reference probability measure Q can

always be taken as Q = 1
n

∑n
i=1Qi.

Proposition 2.3.13. For (Q1, . . . , Qn) ∈ Pn, the following are equivalent:

(i) (Q1, . . . , Qn) is conditionally atomless.

(ii) For Q = 1
n

∑n
i=1Qi, there exists a continuous random variable in (Ω,A) independent

of (dQ1

dQ
, . . . , dQn

dQ
) under Q.

(iii) There exists X ∈ L(Ω,A) such that for some Q ∈ P dominating (Q1, . . . , Qn) (equiv-

alently, for Q = 1
n

∑n
i=1 Qi), a version of the conditional distribution X|Y is every-

where continuous under Q where Y = (dQ1

dQ
, . . . , dQn

dQ
).

Proof. Note that (iii) has two versions: one states the existence of Q and the other specifies

Q. It is trivial to see that (ii) implies (i) and both versions of (iii). It remains to show

(iii)⇒(i)⇒(ii).

We first show (i)⇒(ii). Assume (Q1, . . . , Qn) is conditionally atomless, and thus there

exist Q′ ∈ P and a random variable X, such that X and Y :=
(

dQ1

dQ′
, . . . , dQn

dQ′

)
are inde-
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pendent under Q′. For i = 1, . . . , n, any A ∈ B(R) and B ∈ B(Rn),

Qi(X ∈ A,Y ∈ B) = EQ′
[

dQi

dQ′
I{X∈A}I{Y∈B}

]
= EQ′ [I{X∈A}]EQ

′
[

dQi

dQ′
I{Y∈B}

]
= Q′(X ∈ A)Qi(Y ∈ B).

The independence between X and Y also implies that

Qi(X ∈ A) = EQ′
[

dQi

dQ′
I{X∈A}

]
= EQ′

[
dQi

dQ′

]
EQ′ [I{X∈A}] = Q′(X ∈ A).

Thus, X has the same distribution under Qi, i = 1, . . . , n. Let Q = 1
n

∑n
i=1Qi, and note

that X also has the same distribution under Q. Moreover,

Qi(X ∈ A,Y ∈ B) = Q′(X ∈ A)Qi(Y ∈ B) = Qi(X ∈ A)Qi(Y ∈ B),

which means that X and Y are independent under Qi for i = 1, . . . , n. For any A ∈ B(R)

and B ∈ B(Rn),

Q(X ∈ A,Y ∈ B) =
1

n

n∑
i=1

Qi(X ∈ A,Y ∈ B)

=
1

n

n∑
i=1

Qi(X ∈ A)Qi(Y ∈ B)

= Q(X ∈ A)
1

n

n∑
i=1

Qi(Y ∈ B) = Q(X ∈ A)Q(Y ∈ B),

and hence X and Y are independent under Q. As a result, X is also independent of

Y

‖Y‖1

=
1

n

(
dQ1

dQ
, . . . ,

dQn

dQ

)
under Q, where || · ||1 is the Manhattan norm on Rn. Therefore, we conclude that X and(

dQ1

dQ
, . . . , dQn

dQ

)
are independent under Q.

Next we prove (iii)⇒(i). Assume there exists a random variable X in L(Ω,A) such that

for some Q ∈ P dominating Q1, . . . , Qn, the conditional distribution X|Y is everywhere

23



continuous under Q for Y = (dQ1

dQ
, . . . , dQn

dQ
). For any ω ∈ Ω, let Fω be the distribution

function of X|Y(ω), and define X ′ : Ω → R by X ′(ω) = Fω(X(ω)). It is fundamental,

though a bit lengthy, to check that X ′ is a random variable; moreover, X ′|Y almost surely

follows a uniform distribution on [0, 1]. As a result, X ′ is a continuous random variable

independent of (dQ1

dQ
, . . . , dQn

dQ
) under Q. Consequently, both versions of (iii) imply (i).

Remark 2.3.14. As a byproduct of the above proof, we note that if a random variable X is

independent of (dQ1

dQ
, . . . , dQn

dQ
) under a probability measure Q, then X is also independent

of (dQ1

dQ
, . . . , dQn

dQ
) under each of Q1, . . . , Qn. Moreover, X has the same distribution under

Q1, . . . , Qn and Q.

Now we turn back to our main target, compatibility of (F1, . . . , Fn) and (Q1, . . . , Qn).

As discussed in Section 2.3.3, to show compatibility one needs to construct a random

variable X in (Ω,A) such that(
dF1

dF
, . . . ,

dFn
dF

)
(X) = EQ

[(
dQ1

dQ
, . . . ,

dQn

dQ

) ∣∣∣σ(X)

]
.

It turns out that the assumption that (Q1, . . . , Qn) is conditionally atomless allows for such

a construction.

Theorem 2.3.15. Suppose that (Q1, . . . , Qn) ∈ Pn is conditionally atomless and (F1, . . . , Fn) ∈
Fn. (Q1, . . . , Qn) and (F1, . . . , Fn) are compatible if and only if (F1, . . . , Fn) ≺h (Q1, . . . , Qn).

The key step to prove Theorem 2.3.15 is the following lemma, which might be of

independent interest.

Lemma 2.3.16. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be random vectors defined on

probability spaces (Ω1,A1, P1) and (Ω2,A2, P2), respectively, and f be a measurable function

from (Rm,B(Rm)) to (Rn,B(Rn)). If f(X)|P1 ≺cx Y|P2, and there exists a continuous

random variable U defined on (Ω2,A2, P2) independent of Y, then there exists a random

vector W = (W1, . . . ,Wm) defined on (Ω2,A2, P2), such that W|P2

d
= X|P1, and

f(W) = EP2 [Y|W].
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Proof. Since f(X)|P1 ≺cx Y|P2 , by Lemma 2.3.2, there exists a probability space (Ω′,A′, P ′)
and random vectors Z, Y′ defined on it and taking values in Rn, such that Z|P ′

d
= f(X)|P1 ,

Y′|P ′
d
= Y|P2 , and Z = EP ′ [Y′|Z].

Construct random vectors X′′ = (X ′′1 , . . . , X
′′
m) and Y′′ = (Y ′′1 , . . . , Y

′′
n ) on a (possibly

different) probability space (Ω′′,A′′, P ′′), such that X′′|P ′′
d
= X|P1 and the conditional

distributions satisfy Y′′|X′′(ω′′)P ′′ = Y′|Z(ω′)P ′ for all ω′, ω′′ satisfying Z(ω′) = f(X′′(ω′′))

. It is easy to see that Y′′|P ′′
d
= Y|P2 , and

EP ′′ [Y′′|X′′](ω′′) = EP ′ [Y′|Z](ω′) = Z(ω′) = f(X′′(ω′′)), for P ′′-a.s. ω′′ ∈ Ω′′.

What is left is therefore to construct W on (Ω2,A2, P2) such that (W,Y)|P2

d
= (X′′,Y′′)|P ′′ .

The idea is similar to the proof of Theorem 2.3.9. More precisely, for l = 0, 1, . . . and

h = (h1, . . . , hm) ∈ Zm, consider the distribution of Y′′ restricted on the event {X ′′i ∈
[hi2

−l, (hi + 1)2−l), 1 6 i 6 m}. It has a density function, denoted by ψl,h(y), y ∈ Rn,

with respect to the unconditional distribution of Y′′. Without loss of generality, assume U

follows a uniform distribution on [0, 1]. Then for each y and l = 0, 1, . . . , we divide [0, 1]

into disjoint intervals {Il,h(y)}h∈Zm , such that |Il,h(y)| = ψl,h(y). Moreover, we can make

{Il′,h(y)}h∈Zm a refinement of {Il,h(y)}h∈Zm for any l′ > l. Then define random vector

Wl = (Wl,1, . . . ,Wl,m) by

Wl,i = hi2
−l for U ∈ Il,h(Y), i = 1, . . . ,m.

Let W = liml→∞Wl. The point-wise limit exists due to the completeness of Rm.

For any given y, any l = 0, 1, . . . and h ∈ Zm,

P2(Wi ∈ [hi2
−l, (hi + 1)2−l), 1 6 i 6 m|Y = y)

= P2(Wl,i = hi2
−l, 1 6 i 6 m|Y = y)

= ψl,h(y) = P ′′(X′′i ∈ [hi2
−l, (hi + 1)2−l), 1 6 i 6 m|Y′′ = y),

Since {[hi2−l, (hi + 1)2−l)}h∈Zm,l=0,1,... forms a basis for B(Rm), W|Y(ω) under P2 equals

X′′|Y′′(ω′′) for ω ∈ Ω and ω′′ ∈ Ω′′ satisfying Y(ω) = Y′′(ω′′). Moreover, recall that

Y|P2

d
= Y′′|P ′′ . As a result, we conclude that (W,Y)|P2

d
= (X′′,Y′′)P ′′ .
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Proof of Theorem 2.3.15. Necessity is guaranteed by Lemma 2.3.3. We only show suffi-

ciency. Suppose that (F1, . . . , Fn) ≺h (Q1, . . . , Qn). We shall show that (Q1, . . . , Qn) and

(F1, . . . , Fn) are compatible. By Lemma 2.3.5,(
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

for F = 1
n

∑n
i=1 Fi and Q = 1

n

∑n
i=1 Qi. Since (Q1, . . . , Qn) is conditionally atomless,

Q1, . . . , Qn are all atomless, so is Q. Hence there exists a random variable X ′ defined on

(Ω,A), such that F = Q ◦X ′−1. As a result,(
dF1

dF
, . . . ,

dFn
dF

)
(X ′)

∣∣∣∣
Q

d
=

(
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

.

Applying Lemma 2.3.16 with f(x) =
(

dF1

dF
, . . . , dFn

dF

)
(x), there exists a random variable X

defined on (Ω,A), such that(
dF1

dF
, . . . ,

dFn
dF

)
(X) = EQ

[(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣σ(X)

]
,

which, by Theorem 2.2.2, implies compatibility.

Remark 2.3.17. As shown in Theorem 2.3.15, compatibility is closely related to heterogene-

ity order ≺h, and hence it defines a partial order. The direction of the order comes from

the fact that a measurable mapping needs not to be a bijection. As multiple points are

mapped to a same image, the “heterogeneity” between measures decreases. However, if we

require the mapping to be a bijection, then compatibility becomes an equivalence relation.

Indeed, in this case Theorem 2.3.15 would be applicable to both directions, which means

that (2.5) holds for both directions, with P = 1
n

∑n
i=1 Pi and Q = 1

n

∑n
i=1 Qi. As a result,

we must have (
dP1

dP
, . . . ,

dPn
dP

)∣∣∣∣
P

d
=

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

.

Moreover, the proof of Theorem 2.3.15 actually shows that, assuming both tuples of mea-

sures are conditionally atomless, the above condition is not only necessary but also sufficient

to guarantee the existence of a bijection linking (P1, . . . , Pn) to (Q1, . . . , Qn).
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In the following corollary of our main result for n = 2, the heterogeneity order condition

becomes one-dimensional, and is easy to check. Chapter 3 of Shaked and Shanthikumar

(2007) contains several classic methods to check X|P ≺cx Y |Q for arbitrary random vari-

ables X and Y and probability measures P and Q. A convenient equivalent condition of

X|P ≺cx Y |Q is that EP [X] = EQ[Y ] and
∫∞
y
P (X > x)dx 6

∫∞
y
Q(Y > x)dx for all y ∈ R

(e.g. Theorem 3.A.1 of Shaked and Shanthikumar (2007)).

Corollary 2.3.18. Suppose that (Q1, Q2) ∈ P2, Q1 � Q2, and (F1, F2) ∈ F2. If (Q1, Q2)

and (F1, F2) are compatible, then F1 � F2 and

dF1

dF2

∣∣∣∣
F2

≺cx
dQ1

dQ2

∣∣∣∣
Q2

. (2.10)

Conversely, if F1 � F2, (2.10) holds, and in addition, (Q1, Q2) is conditionally atomless,

then (Q1, Q2) and (F1, F2) are compatible.

Proof. Necessity follows from Corollary 2.2.3. Sufficiency follows from the simple observa-

tion that, by taking F = F2, (2.10) implies (F1, F2) ≺h (Q1, Q2).

Below we discuss a few special cases of compatible (Q1, . . . , Qn) ∈ Pn and (F1, . . . , Fn) ∈
Fn based on the heterogeneity order condition, in particular in the context of Proposition

2.3.6 and Theorem 2.3.15. We shall see how our main results are consistent with natural

intuitions.

1. Assume that Q1, . . . , Qn are identical. The natural intuition is that the respective

distributions F1, . . . , Fn of a random variable under Q1, . . . , Qn have to be identical.

By Lemma 2.3.3, compatibility implies (F1, . . . , Fn) ≺h (Q1, . . . , Qn). By Proposition

2.3.6 (ii), F1, . . . , Fn are identical.

2. Assume that Q1, . . . , Qn are mutually singular, and each of them is atomless. The

natural intuition here is that the respective distributions F1, . . . , Fn of any ran-

dom variable under Q1, . . . , Qn are arbitrary. Proposition 2.3.6 (iv) suggests that

(F1, . . . , Fn) ≺h (Q1, . . . , Qn) holds for any (F1, . . . , Fn) ∈ Fn. Moreover, (Q1, . . . , Qn)

is conditionally atomless, as seen in Remark 2.3.12. Therefore, by Theorem 2.3.15,
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a mutually singular tuple of atomless probability measures on (Ω,A) is compatible

with an arbitrary tuple of distributions on R.

3. Assume that F1, . . . , Fn are mutually singular. The natural intuition here is that

the probability measures Q1, . . . , Qn have to be also mutually singular to allow for

compatibility. Similarly to the previous case, this is justified by Theorem 2.3.15 and

Proposition 2.3.6 (v).

4. Assume that F1, . . . , Fn are identical, and (Q1, . . . , Qn) is conditionally atomless.

Proposition 2.3.6 (i) gives (F1, . . . , Fn) ≺h (Q1, . . . , Qn). It follows from Theorem

2.3.15 that (Q1, . . . , Qn) and (F1, . . . , Fn) are compatible. We conclude that, as long

as (Q1, . . . , Qn) is conditionally atomless, for any distribution F ∈ F , there exists a

random variable X which has distribution F under each of Qi, i = 1, . . . , n. Indeed,

as (Q1, . . . , Qn) is conditionally atomless, there exists Q dominating (Q1, . . . , Qn) and

an F -distributed random variable X under Q independent of (dQ1

dQ
, . . . , dQn

dQ
). Remark

2.3.14 then implies that X also has distribution F under each Q1, . . . , Qn.

5. Assume that Q1, . . . , Qn are equivalent. Intuitively, the respective distributions

F1, . . . , Fn of any random variable under Q1, . . . , Qn have to be equivalent. This

fact is implied by Proposition 2.3.6 (iii).

We conclude this section by discussing the relation of Theorem 2.3.15 with some results

in statistical decision theory.

Remark 2.3.19. As pointed out previously, Theorem 2.3.15 and the heterogeneity order

in Definition 2.3.4 finds an important relation to comparison of statistical experiments,

an area of study originated by Blackwell (Blackwell, 1951, 1953); the reader is referred

to Le Cam (1996) and Torgersen (1991) for summaries. Very briefly, the question in the

latter literature is to compare two experiments in terms of the information they can provide.

Mathematically this translates into defining a partial order among two sets of measures

of the same cardinality. Such an order is called majorization, and one way to define it

is through (2.1). It is then shown that the majorization between two sets of probability

measures is equivalent to the existence of a (Markov) transition kernel which turns each

measure in one set into a measure in the other set. This is mathematically closely related
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to our definition of compatibility. As such, Theorem 2.3.15 finds a slightly different version

in the context of comparison of statistical experiments. Nevertheless, the existence of a

transition kernel is weaker than the existence of a point-to-point mapping; consequently,

the conditionally atomless assumption does not appear in the statistical decision theory

literature.

2.4 Distributional compatibility for stochastic processes

2.4.1 General results

In this section we extend our results to stochastic processes with sample paths which

are continuous from right with left limits (càdlàg). For a (finite or infinite) closed interval

I ⊂ R, let D(I) be the Skorokhod space on I, i.e., the space of all càdlàg functions

defined on I. Let DI be the Borel σ-field of the Skorokhod topology. Denote by GI the

set of probability measures on (D(I),DI). Our first step is to generalize the definition of

compatibility to this setting, which follows in a natural way.

Definition 2.4.1. For a closed interval I ⊂ R, (Q1, . . . , Qn) ∈ Pn and (G1, . . . , Gn) ∈ GnI
are compatible if there exists a càdlàg stochastic process X = {X(t)}t∈I defined on (Ω,A)

such that for each i = 1, . . . , n, the distribution of X under Qi is Gi.

The following result is a parallel result to Theorem 2.2.2, which shares the same proof.

Proposition 2.4.2. Let I ⊂ R be a closed interval, (Q1, . . . , Qn) ∈ Pn and (G1, . . . , Gn) ∈
GnI . A stochastic process X has distribution Gi under Qi for i = 1, . . . , n if and only if for

all Q ∈ P dominating (Q1, . . . , Qn), G = Q ◦X−1 dominates (G1, . . . , Gn), and(
dG1

dG
, . . . ,

dGn

dG

)
(X) = EQ

[(
dQ1

dQ
, . . . ,

dQn

dQ

) ∣∣∣σ(X)

]
.

In the proof of Lemma 2.3.3, no structure of the real line has been used. As a re-

sult, Lemma 2.3.3 can be directly generalized to the case of stochastic processes, with

(G1, . . . , Gn) ∈ GnI replacing (F1, . . . , Fn) ∈ Fn. For the other side we have, parallel to

Theorem 2.3.15:
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Theorem 2.4.3. Suppose that (Q1, . . . , Qn) ∈ Pn is conditionally atomless, I ⊂ R is a

closed interval, and (G1, . . . , Gn) ∈ GnI . (Q1, . . . , Qn) and (G1, . . . , Gn) are compatible if

and only if (G1, . . . , Gn) ≺h (Q1, . . . , Qn).

Proof. The proof is similar to that of Theorem 2.3.15. The only difference is that (R,B(R))

is replaced by (D(I),DI). A careful check of the proof of Theorem 2.3.15 shows, however,

that it only relies on the completely metrizable structure of (R,B(R)) to guarantee the

existence and uniqueness of the limit of the constructed sequence of random variables.

Since (D(I),DI) is also completely metrizable, the proof naturally extends to the case of

stochastic processes. More precisely, label the rational numbers in I as Q∩I = {t1, t2, . . . }.
Then we replace the refining partition of the real line {[h2−l, (h + 1)2−l), h ∈ Z}l=0,1,...

with the refining partition of D(I): {X(ti) ∈ [hl,i2
−l+i, (hl,i + 1)2−l+i), i = 1, . . . , l, hl,i ∈

Z}l=1,2,.... The rest follows in the same way as in the proof of Theorem 2.3.15.

2.4.2 Relation to the Girsanov Theorem

In this section we investigate how much the drift of a Brownian motion may vary un-

der a change of measure as in the classic Girsanov Theorem. We keep in mind that, the

distribution of a Brownian motion (with respect to its natural filtration) with a determin-

istic drift process only depends on this drift. On the other hand, Brownian motions with

stochastic drift processes are not identified by the distribution of the drift processes. Due

to this reason, we consider only Brownian motions with deterministic drift processes here.

Throughout this section, let P ∈ P and B = {Bt}t∈[0,T ] be a P -standard Brownian

motion. Furthermore, for a [0, T ]-square integrable deterministic process θ = {θt}t∈[0,T ],

define
dQθ

dP
= e

∫ T
0 θtdBt− 1

2

∫ T
0 θ2t dt,

and let Gθ be the distribution measure of a Brownian motion with drift process θ. The

Girsanov Theorem says that B is a Brownian motion with drift process θ and volatility 1

under Qθ (certainly, this statement is also true for adapted drift processes). Thus, (P,Qθ)

and (G0, Gθ) are compatible. It is clear that distribution measures of Brownian motions

with different non-random volatility terms are mutually singular, and hence they are not
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compatible with (P,Qθ). A next question is whether there exists a P -standard Brownian

motion which has a deterministic drift process µ = {µt}t∈[0,T ] under Qθ. We are interested

in the values of µ such that (G0, Gµ) and (P,Qθ) above are compatible. Here we do not

assume that (P,Qθ) is conditionally atomless, which means that there might not be any

other random source other than B.

Theorem 2.4.4. Suppose that the deterministic processes θ = {θt}t∈[0,T ] and µ = {µt}t∈[0,T ]

are [0, T ]-square integrable, and µt 6= 0 almost everywhere on [0, T ]. (P,Qθ) and (G0, Gµ)

are compatible if and only if ∫ T

0

µ2
tdt 6

∫ T

0

θ2
t dt.

Proof. (i) Necessity. By the Girsanov Theorem, we know that (G0, Gµ) and (P,Qµ) are

compatible. Using Proposition 2.4.2 for n = 2, we have

dGµ

dG0

(B) = E
[

dQµ

dP

∣∣∣σ(B)

]
= e

∫ T
0 µtdBt− 1

2

∫ T
0 µ2tdt.

Suppose that (P,Qθ) and (G0, Gµ) are compatible. Note that

e
∫ T
0 µtdBt− 1

2

∫ T
0 µ2tdt

∣∣∣
P

d
=

dGµ

dG0

(B)
∣∣∣
P

d
=

dGµ

dG0

∣∣∣
G0

.

By Theorem 2.4.3, we have

e
∫ T
0 µtdBt− 1

2

∫ T
0 µ2tdt

∣∣∣
P
≺cx

dQθ

dP

∣∣∣
P

d
= e

∫ T
0 θtdBt− 1

2

∫ T
0 θ2t dt

∣∣∣
P
.

Applying the convex function x 7→ x2, we have

e
∫ T
0 µ2tdt = E[(e

∫ T
0 µtdBt− 1

2

∫ T
0 µ2tdt)2] 6 E[(e

∫ T
0 θtdBt− 1

2

∫ T
0 θ2t dt)2] = e

∫ T
0 θ2t dt

and hence
∫ T

0
µ2
tdt 6

∫ T
0
θ2
t dt.

(ii) Sufficiency. Suppose
∫ T

0
µ2
tdt 6

∫ T
0
θ2
t dt. Define a deterministic process α = {αt}t∈[0,T ]

by

αt = inf

{
r > 0 :

∫ r

0

θ2
sds =

∫ t

0

µ2
sds

}
.
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It is easy to see that αt is strictly increasing in t, αT 6 T , and furthermore,

θ2
αtdαt = µ2

tdt. (2.11)

Let a stochastic process B̂ = {B̂t}t∈[0,T ] be given by dB̂t = dBt − θtdt. By the

Girsanov Theorem, B̂ is a Qθ-standard Brownian motion. Define

Wt =

∫ t

0

βαsdBαs , t ∈ [0, T ],

where β = {βs}s∈[0,αT ] is given by βαt =
θαt
µt

, t ∈ [0, T ]. Clearly, W = {Wt}t∈[0,T ] is a

Gaussian process, EP [Wt] = 0, and

EP [WtWs] = EP [W 2
s ] =

∫ s

0

θ2
αu

µ2
u

dαu = s, 0 6 s < t 6 T.

Therefore, W is a P -standard Brownian motion. Furthermore, for t ∈ [0, T ],

Wt =

∫ t

0

βαsdBαs =

∫ t

0

βαs(dB̂αs + θαsdαs)

=

∫ t

0

βαsdB̂αs +

∫ t

0

βαsθαsdαs

=

∫ t

0

βαsdB̂αs +

∫ t

0

µsds,

where the last equality is due to (2.11). As
∫ t

0
βαsdB̂αs defines a Qθ-standard Brow-

nian motion, we conclude that W has distribution Gµ under Qθ, and hence (P,Qθ)

and (G0, Gµ) are compatible.

We list Theorem 2.4.4 for the case of a constant drift term below, and look more closely

at the construction of the desired stochastic process.

Corollary 2.4.5. Let θt = a and µt = b, t ∈ [0, T ], where a and b are two constants, and

b 6= 0. (P,Qθ) and (G0, Gµ) are compatible if and only if b2 6 a2.

If b2 6 a2, the process which has distribution G0 under P and distribution Gµ under

Qθ can be written in a simple explicit form. Let

Wt =
a

b
B( b

a
)2t, t ∈ [0, T ].
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It is clear that W = {Wt}t∈[0,T ] is a P -Brownian motion. Furthermore,

Wt =
a

b
B( b

a
)2t =

a

b

(
B̂( b

a
)2t + a

b2

a2
t

)
=
a

b
B̂( b

a
)2t + bt, t ∈ [0, T ].

In this example, it is clear that 0 < b2 6 a2 is essential; otherwise W will not be well-

defined.

2.5 Related optimization problems

2.5.1 General problems

In this section, we discuss some optimization problems related to compatibility of dis-

tributions and probability measures. For given P,Q1, . . . , Qn ∈ P , F1, . . . , Fn ∈ F and an

objective φ : F → [−∞,∞], we focus on optimization problems of the form

max{φ(P ◦ Y −1) : Y ∈ L(Ω,A) has distribution Fi under Qi, i = 1, . . . , n}. (2.12)

Here we assume (Q1, . . . , Qn) and (F1, . . . , Fn) are compatible so that the above problem

is properly posed, and for the sake of illustration, we assume the maximum is attained;

otherwise it should be a supremum.

To simplify notation, define the set

LF1,...,Fn(Q1, . . . , Qn) = {Y ∈ L(Ω,A) : Y has distribution Fi under Qi, i = 1, . . . , n}.

Note that LF1,...,Fn(Q1, . . . , Qn) is non-empty if and only if (Q1, . . . , Qn) and (F1, . . . , Fn)

are compatible. Then, (2.12) reads as

max{φ(P ◦ Y −1) : Y ∈ LF1,...,Fn(Q1, . . . , Qn)}.

The optimization (2.12) includes many well-known problems; see Examples 2.5.4-2.5.14

below.

As mentioned in Section 2.3.3, our main results imply that the optimization (2.12)

admits an alternative form

max {φ(F ) : F ∈ F , (F1, . . . , Fn, F ) ≺h (Q1, . . . , Qn, P )} , (2.13)
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under some continuity assumption of φ.

The optimization problem in (2.12) is highly challenging even for n = 1, and few

analytical solutions are available. We first focus on the case n = 1. In this case, (2.12)

reads as

max{φ(P ◦ Y −1) : Y ∈ LG(Q)}, (2.14)

where P,Q ∈ P and G ∈ F are given. The optimization (2.14) includes a large class of

practical problems involving various types of uncertainty. For instance, P may represent

the real-world probability measure, and Q represents the pricing measure in a financial

market; distribution of an asset price Y under Q may be inferred from traded option prices

on Y (e.g. Jarrow and Rudd (1982), Buchen and Kelly (1996)) but its distribution under

P is unclear.

Assuming that (P,Q) is conditionally atomless and P � Q, our results imply the

equivalent formulation of (2.14)

max

{
φ(F ) : F ∈ F , dF

dG

∣∣∣
G
≺cx

dP

dQ

∣∣∣
Q

}
. (2.15)

In the next subsections, we discuss some results related to (2.12)-(2.15).

2.5.2 The set of compatible distributions and f-divergences

A straightforward consequence of our main results is that we arrive at inequalities for

f -divergences, relating to some special cases of (2.14). For two probability measures P1, P2

on an arbitrary probability space, the f -divergence df is defined as

df (P1, P2) =

∫
f

(
dP1

dP2

)
dP2,

where f is a convex function f : R+ → R. The Kullback-Leibler divergence (f(x) =

x log(x)), the total variation distance (f(x) = (x−1)+), and the Hellinger distance (f(x) =

(
√
x−1)2) are special cases of f -divergences. Noting that (F,G) ≺h (P,Q) can be rewritten

as an order between df (F,G) and df (P,Q), we have the following corollary, which is a direct

consequence of Corollary 2.3.18.
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Corollary 2.5.1. Suppose that (P,Q) ∈ P2 is conditionally atomless, P � Q, and

(F,G) ∈ F2. (P,Q) and (F,G) are compatible if and only if F � G and df (F,G) 6

df (P,Q) for all f -divergences df .

In the problem (2.14) for given P,Q ∈ P and G ∈ F , Corollary 2.5.1 becomes useful,

as it gives conditions, by choosing suitable f -divergences, on what F may be, such that

(P,Q) and (F,G) are compatible. An immediate consequence is that the set of all such F

is a convex set.

Corollary 2.5.2. Suppose that (P,Q) ∈ P2 is conditionally atomless, P � Q, and G ∈ F .

The set {F ∈ F : (P,Q) and (F,G) are compatible} is convex.

Proof. Denote by FG = {F ∈ F : (P,Q) and (F,G) are compatible}. For F1, F2 ∈ FG,

any convex function f , and λ ∈ [0, 1], by Corollary 2.5.1 we have

df (λF1 + (1− λ)F2, G) =

∫
R
f

(
λ

dF1

dG
+ (1− λ)

dF2

dG

)
dG

6 λdf (F1, G) + (1− λ)df (F2, G)

6 λdf (P,Q) + (1− λ)df (P,Q) = df (P,Q),

which, by Corollary 2.5.1 again, implies the compatibility of (λF1 + (1 − λ)F2, G) and

(P,Q), and hence λF1 + (1− λ)F2 ∈ FG.

Corollary 2.5.2 will be useful in some optimization problems; see Example 2.5.13 below.

Remark 2.5.3. We make two observations regarding Corollary 2.5.2.

1. The conditionally atomless assumption is essential for Corollary 2.5.2. Note that, in

a discrete probability space, a mixture of distributions may no longer be a possible

distribution of a random variable in that probability space; a similar phenomenon

appears if (P,Q) is not conditionally atomless.

2. Using Theorem 2.3.15, it can be checked that the statement in Corollary 2.5.2 holds in

the multi-dimensional case, that is, assuming (P,Q1, . . . , Qn) ∈ Pn+1 is conditionally

atomless, the set {F ∈ F : (P,Q1, . . . , Qn) and (F,G1, . . . , Gn) are compatible} is

convex for each (G1, . . . , Gn) ∈ Fn.
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In all examples of Section 2.5, for simplicity, we shall assume that P,Q ∈ P are equiva-

lent and (P,Q) is conditionally atomless. In case (P,Q) is not conditionally atomless, the

maximum should be replaced by a supremum in several places. The following example is

a simple application of Corollary 2.5.1.

Example 2.5.4 (f -divergence). For given G ∈ F , let

df (G) = max
Y ∈LG(Q)

df (P ◦ Y −1, G) and df (G) = min
Y ∈LG(Q)

df (P ◦ Y −1, G).

Then we have

df (G) = df (P,Q) and df (G) = 0.

To show the first statement, take X ∈ LG(Q) such that dP
dQ
∈ σ(X). Such X always exists

if Q is atomless (e.g. Lemma A.32 of Föllmer and Schied (2016)). Let F be the distribution

of X under P . By Theorem 2.2.2, we have

dF

dG
(X) = EQ

[
dP

dQ

∣∣∣σ(X)

]
=

dP

dQ
,

which implies ∫
R
f

(
dF

dG

)
dG =

∫
Ω

f

(
dP

dQ

)
dQ.

Therefore, df (F,G) = df (P,Q), which implies df (G) > df (P,Q). The reverse inequality

df (G) 6 df (P,Q) is immediate from Corollary 2.5.1. The second statement is straightfor-

ward by noting that (P,Q) and (G,G) are compatible.

2.5.3 Optimization of monotone objectives

In the following, we consider the case that φ in (2.14) is a monotone functional with

respect to the univariate stochastic order on a given probability space (Ω,A, P ). This

setting includes many classic problems.

Definition 2.5.5 (Univariate stochastic order). For X, Y ∈ L(Ω,A) and P ∈ P , we write

X|P ≺st Y |P , if P (X > x) 6 P (Y > x) for all x ∈ R. We shall also write F ≺st G for

F,G ∈ F , if F ((x,∞)) 6 G((x,∞)) for all x ∈ R.
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If φ is monotone with respect to ≺st, then to solve (2.14), it suffices to find the max-

imum and the minimum elements in LG(Q) with respect to stochastic order under P . In

what follows, we identify a measure F ∈ F with its distribution function, and write its

generalized inverse

F−1(t) = inf{x ∈ R : F (x) > t}, t ∈ (0, 1].

Recall that, for an atomless probability measure Q and any random variable X ∈ LF (Q),

there exists a uniform random variable on [0, 1], denoted by U(X;Q), such that F−1(U(X;Q)) =

X Q-almost surely.

Proposition 2.5.6. Suppose that P,Q ∈ P are equivalent and atomless, and G ∈ F .

Denote by U = U(dP
dQ

;Q) and let X∗ = G−1(U) and X∗ = G−1(1 − U). Then X∗, X
∗ ∈

LG(Q), and X∗|P ≺st Y |P ≺st X
∗|P for all Y ∈ LG(Q).

Proof. For Y ∈ LG(Q), denote by F the distribution of Y under P . Moreover, given

any a ∈ R, define Z = I{Y >a}, and let G′, F ′ be the distributions of Z under Q and P ,

respectively. Then

dF ′

dG′
=


F (Y >a)
G(Y >a)

if Y > a;

F (Y 6a)
G(Y 6a)

if Y 6 a,

with probabilities G(Y > a) and G(Y 6 a) under G′, respectively.

Applying Corollary 2.3.18 to (Q,P ), (G′, F ′) and convex function f(x) = (x − b)+,

b ∈ R, we have

P

(
dP

dQ
> b

)
− bQ

(
dP

dQ
> b

)
> G(Y > a)

(
F (Y > a)

G(Y > a)
− b
)+

+G(Y 6 a)

(
F (Y 6 a)

G(Y 6 a)
− b
)+

> F (Y > a)− bG(Y > a).

Therefore each b gives an upper bound P
(

dP
dQ

> b
)
− bQ

(
dP
dQ

> b
)

+ bG(Y > a) for F (Y >

a). On the other hand, for b such that

Q

(
dP

dQ
> b

)
6 G(Y > a) 6 Q

(
dP

dQ
> b

)
,

it is straightforward and intuitive to see that X∗ = G−1(U) achieves this bound, given

the fact that X∗ and dP
dQ

are comonotonic. Since this is true for all a ∈ R, we conclude
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that Y |P ≺st X
∗|P for all Y ∈ LG(Q). The other half of the proposition can be proved

symmetrically.

Remark 2.5.7. Proposition 2.5.6 can alternatively be obtained using a classic method of

Fréchet-Hoeffding bounds, and it is known in the literature in a different form (see Example

2.5.8 below).

Proposition 2.5.6 yields solutions to optimization problems in (2.14), where φ : F →
[−∞,∞] is an increasing or decreasing functional with respect to ≺st. A few classic exam-

ples are presented below. In all the following examples, U = U(dP
dQ

;Q), and the distribution

function of dP
dQ

under Q is denoted by HP,Q. Recall that we assume (P,Q) is conditionally

atomless, and P,Q are equivalent.

Example 2.5.8 (Fréchet-Hoeffding). The value of

M(G) = max{EP [Y ] : Y ∈ LG(Q)}

can be obtained, via Proposition 2.5.6, as

M(G) = EP [X∗] = EQ
[

dP

dQ
G−1 (U)

]
=

∫ 1

0

H−1
P,Q(u)G−1(u)du.

The value of M(G) is known as the classic Fréchet-Hoeffding bound; see Remark 3.25 of

Rüschendorf (2013).

Example 2.5.9 (Neyman-Pearson). The value of

k(q) = max{P (A) : A ∈ A, Q(A) = q}

can be obtained via Proposition 2.5.6. By letting X = IA and G be its distribution under

Q, we have

k(q) = EP [X∗] = EQ
[

dP

dQ
G−1 (U)

]
=

∫ 1

1−q
H−1
P,Q(u)du.

The optimal X∗ has the form X∗ = I{U>1−q}. This result is known as the Neyman-Pearson

lemma (Neyman and Pearson, 1933) in statistical hypothesis testing. Alternatively, it is

known as the classic knapsack problem in a continuous setting.
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Example 2.5.10 (Robust utility). The value of

Ru(G) = min{EP [u(Y )] : Y ∈ LG(Q)}

where u : R → R is an increasing utility function, can be obtained, via Proposition 2.5.6,

as

Ru(G) = EP [u(X∗)] = EQ
[

dP

dQ
u(G−1(1− U))

]
=

∫ 1

0

H−1
P,Q(t)u(G−1(1− t))dt.

The value Ru(G) represents the worst-case expected utility of the random outcome Y under

P if one knows the distribution of Y is G under another measure Q. The functional Ru

itself is a rank-dependent utility functional in decision theory (Quiggin, 2012).

2.5.4 Optimization of non-monotone objectives

If φ in (2.14) is not monotone, then Proposition 2.5.6 cannot be applied directly. In

such cases, we need to investigate the problem in more details, utilizing Theorem 2.3.15.

In the following, v : R → R is a measurable function, and φ : F → [−∞,∞] as in (2.14),

and we do not assume monotonicity of v or φ. For G ∈ F , denote by Gv the distribution

of v(Y ) where Y has distribution G.

Proposition 2.5.11. Suppose that (P,Q) ∈ P2 is conditionally atomless, P � Q and

G ∈ F . Then we have

sup{φ(P ◦ (v(Y ))−1) : Y ∈ LG(Q)} = sup{φ(P ◦ Z−1) : Z ∈ LGv(Q)}. (2.16)

Moreover, both supremums in (2.16) are attained simultaneously or none of them is at-

tained.

Proof. Let T (G) = sup{φ(P ◦ (v(Y ))−1) : Y ∈ LG(Q)}. First, it trivially holds that

T (G) 6 sup{φ(P ◦ Z−1) : Z ∈ LGv(Q)}.

For the reverse inequality, we give an explicit construction based on the conditional atom-

less assumption. For any Z ∈ LGv(Q), let FZ be the distribution of Z under P . By Remark
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2.3.14, since (P,Q) is conditionally atomless, there exist random variables U1 and U2 such

that, under both P and Q, U1 and U2 are [0, 1]-uniform, and U1, U2 and dP
dQ

are indepen-

dent. Consider the measurable space (Ω,A0) where A0 = σ(dP
dQ
, U1), and the restricted

probability measures P ′ = P |A0 , Q
′ = Q|A0 . It is clear that(

dP ′

dQ′
, U1

)∣∣∣∣
Q′

d
=

(
dP

dQ
,U1

)∣∣∣∣
Q

. (2.17)

Note that (P,Q) and (FZ , Gv) are compatible, as directly justified by the existence of

Z. By Theorem 2.3.15, we have (FZ , Gv) ≺h (P,Q). As a result, (FZ , Gv) ≺h (P ′, Q′)

via (2.17). Moreover, the existence of U1 and (2.17) assure that (P ′, Q′) is conditionally

atomless. Applying Theorem 2.3.15 to the measurable space (Ω,A0), we conclude that

there exists an A0-measurable random variable Z ′, such that Z ′ has distribution FZ under

P ′ and Gv under Q′. As a result, Z ′ and Z have the same distribution under both P and

Q. Furthermore, since Z ′ is determined by dP
dQ

and U1, it is independent of U2. Now define

a random variable Y ′ ∈ L(Ω,A) by Y ′(ω) = F−1
ω (U2(ω)), where Fω is the conditional

distribution function of Y ∈ LG(Q) given v(Y ) = Z ′(ω). Then Y ′ ∈ LG(Q) and v(Y ′) =

Z ′
d
= Z under both P and Q. As a result, T (G) > φ(P ◦Z−1), and hence the equality holds.

The above construction also justifies the statement on the attainability of supremums in

(2.16).

Proposition 2.5.11 allows us to freely transform random variables even if the transform

is not one-to-one or monotone. The case of φ being the expectation is illustrated below.

Example 2.5.12 (Expectation of a transform). The problem is to find the value of

Rv(G) = max{EP [v(Y )] : Y ∈ LG(Q)}.

This example is similar to Example 2.5.10, but v is not necessarily monotone, and hence

we need to utilize both Propositions 2.5.6 and 2.5.11. Using Propositions 2.5.6 and 2.5.11,

we have

Rv(G) = max{EP [Z] : Z ∈ LGv(Q)} = EQ
[

dP

dQ
G−1
v (U)

]
=

∫ 1

0

H−1
P,Q(t)G−1

v (t)dt.
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One of the most common non-monotone functional φ on F is the variance. We discuss

this problem below.

Example 2.5.13 (Robust variance). Assume the distribution G has a finite second mo-

ment. The problem is to find the values of

V (G) = max{VarP (Y ) : Y ∈ LG(Q)} and V (G) = min{VarP (Y ) : Y ∈ LG(Q)},

where VarP (Y ) = EP [(Y − EP [Y ])2] is the variance of Y under P . For this problem,

neither Proposition 2.5.6 nor Proposition 2.5.11 can be directly applied. Nevertheless,

using a standard minimax argument, one can show

V (G) = max
Y ∈LG(Q)

min
x∈R
{EP [(Y − x)2]} = min

x∈R
max

Y ∈LG(Q)
{EP [(Y − x)2]} = min

x∈R
Rx(G), (2.18)

where

Rx(G) = max{EP [(Y − x)2] : Y ∈ LG(Q)},

which can be calculated from Proposition 2.5.11 in the same way as in Example 2.5.12.

The exchangeability of minimax in (2.18) is justified by Sion’s minimax theorem through

the facts that the objective EP [(Y − x)2] is convex in x, linear in the distribution of Y

under P , and the set of distributions of random variables in LG(Q) is convex, thanks to

Corollary 2.5.2.

On the other hand,

V (G) = min
Y ∈LG(Q)

min
x∈R
{EP [(Y − x)2]} = min

x∈R
min

Y ∈LG(Q)
{EP [(Y − x)2]} = min

x∈R
Rx(G)

where

Rx(G) = min{EP [(Y − x)2] : Y ∈ LG(Q)},

which can also be calculated in the same way as in Example 2.5.12.

In the simple example below, we present the maximum and minimum values of EP [Y ],

EP [Y 2] and VarP (Y ) for a N(0, 1) distributed random variable Y under Q.
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Example 2.5.14 (Normal distribution). Let G = N(0, 1), B1 be N(0, 1) distributed under

P , and
dP

dQ
= exp

(
1

2
−B1

)
, or equivalently,

dQ

dP
= exp

(
B1 −

1

2

)
.

This is a special case of the Girsanov change of measure in Section 2.4.2 by choosing

θ = T = 1. Assume that (P,Q) is conditionally atomless. Using Examples 2.5.12 and

2.5.13, we obtain

max
Y ∈LG(Q)

EP [Y ] = 1,

which is attained by Y ∗ = 1−B1, and

max
Y ∈LG(Q)

EP [Y 2] = max
Y ∈LG(Q)

VarP (Y ) =

∫ 1

0

exp

(
q(u)− 1

2

)(
q

(
1 + u

2

))2

du ≈ 2.795,

where q is the quantile function of a standard normal distribution. On the other hand, we

have

min
Y ∈LG(Q)

EP [Y ] = −1,

which is attained by Y ∗ = B1 − 1, and

min
Y ∈LG(Q)

EP [Y 2] = min
Y ∈LG(Q)

VarP (Y ) =

∫ 1

0

exp

(
q(u)− 1

2

)(
q

(
2− u

2

))2

du ≈ 0.2579.

The details of the above calculation is given in Section 2.6.3.

From the above numbers, we note that the maximums of EP [Y ] and VarP (Y ) cannot be

attained with the same random variable, whereas EP [Y 2] and VarP (Y ) are both attained

by the same random variable with mean zero. A similar observation is made for the

minimums.

2.5.5 The case of mutual singularity for n > 2

For the case n > 2, the optimization problems in (2.12) are often highly difficult to

solve, even if φ is assumed to be monotone with respect to ≺st. Results are available for

the case that Q1, . . . , Qn are mutually singular, as presented below.
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Proposition 2.5.15. Suppose that (Q1, . . . , Qn) ∈ Pn (F1, . . . , Fn) ∈ Fn are compatible,

Q1, . . . , Qn are atomless and mutually singular with disjoint supports Ω1, . . . ,Ωn ∈ A,

respectively, and P � 1
n

∑n
i=1Qi. For i = 1, . . . , n, let Pi be given by Pi(A) = P (A ∩ Ωi)

for A ∈ A, and Ui = U( dPi
dQi

;Qi). Let X∗ =
∑n

i=1 F
−1
i (Ui)IΩi and X∗ =

∑n
i=1 F

−1
i (1 −

Ui)IΩi. Then X∗, X
∗ ∈ LF1,...,Fn(Q1, . . . , Qn), and X∗|P ≺st Y |P ≺st X

∗|P for all Y ∈
LF1,...,Fn(Q1, . . . , Qn).

Proof. Note that for i = 1, . . . , n and B ∈ B(R), Qi(X
∗ ∈ B) = Qi(F

−1
i (Ui) ∈ B) = Fi(B),

and therefore X∗ ∈ LF1,...,Fn(Q1, . . . , Qn). Moreover, Proposition 2.5.6 implies Y |Pi ≺st

X∗|Pi for each i = 1, . . . , n, yielding Y |P ≺st X
∗|P . The statements of X∗ are analogous to

those of X∗.

We conclude this chapter by remarking that a similar result to Proposition 2.5.15 where

Q1, . . . , Qn are not mutually singular seems extremely difficult to establish based on existing

techniques.

2.6 Technical Details

2.6.1 Details in Example 2.3.7

Note that dQ1

dQ2
is uniform on [0, 2] under Q2 = λ, and dF1

dF2
is also uniform on [0, 2] under

F2 = λ. Thus, (
dF1

dλ
,
dF2

dλ

)∣∣∣∣
λ

d
=

(
dQ1

dλ
,
dQ2

dλ

)∣∣∣∣
λ

.

Therefore, (F1, F2) ≺h (Q1, Q2).

Next, we will see that (Q1, Q2) and (F1, F2) are not compatible. Suppose for the purpose

of contradiction that (Q1, Q2) and (F1, F2) are compatible. By Theorem 2.2.2, there exists

a random variable X in (Ω,A) with a uniform distribution on [0, 1] under Q2 = λ such

that
dF1

dλ
(X) = Eλ

[
dQ1

dλ

∣∣∣σ(X)

]
.
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In addition,
dF1

dλ
(X)

∣∣∣∣
λ

d
=

dQ1

dλ

∣∣∣∣
λ

,

and therefore,
dF1

dλ
(X) =

dQ1

dλ
, λ-almost surely.

From the definition of F1 and Q1, we have, for λ-almost surely t ∈ [0, 1], |4X(t)− 2| = 2t.

It follows that X(t) = (t+ 1)/2 or X(t) = (1− t)/2 for all t ∈ [0, 1]. Write

A =

{
t ∈ [0, 1] : X(t) =

t+ 1

2

}
, B =

{
t ∈ [0, 1] : X(t) =

1− t
2

}
and C =

{
1− t

2
: t ∈ A

}
.

As X is B([0, 1])-measurable and has distribution F2 under λ, we have A,B ∈ B([0, 1]) and

λ(A) = λ(B) = 1/2. Note that λ(C) = 1/4; however λ(C ∩X(A ∪ B)) = 0, contradicting

the fact that X has a uniform distribution on [0, 1] under λ.

2.6.2 Proof of Theorem 2.3.9

Proof of Theorem 2.3.9. Necessity. Assume that (Q1, . . . , Qn) and (F1, . . . , Fn) are almost

compatible. This means that for any ε > 0, there exists (F1,ε, . . . , Fn,ε) such thatDKL(Fi,ε||Fi) <
ε for i = 1, . . . , n, and (Q1, . . . , Qn) is compatible with (F1,ε, . . . , Fn,ε). Define probability

measures

Fε =
1

n
(F1,ε + · · ·+ Fn,ε),

F =
1

n
(F1 + · · ·+ Fn)

and

Q =
1

n
(Q1 + · · ·+Qn).

Note that the distribution of Xε under Q is Fε, where Xε is the random variable defining

the compatibility between (Q1, . . . , Qn) and (F1,ε, . . . , Fn,ε). Moreover, Fi,ε � Fε, Qi � Q,

and dFi,ε/dFε 6 n, dQi/dQ 6 n for i = 1, . . . , n. For ε > 0, by Lemma 2.3.3,(
dF1,ε

dFε
, . . . ,

dFn,ε
dFε

)∣∣∣∣
Fε

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

.
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As a result, for any convex function f : Rn → R,

EFε
[
f

(
dF1,ε

dFε
, . . . ,

dFn,ε
dFε

)]
6 EQ

[
f

(
dQ1

dQ
, . . . ,

dQn

dQ

)]
.

For i = 1, . . . , n,
dFi,ε
dFε

=
dFi
dF

dFi,ε/dFi
dFε/dF

. (2.19)

Since DKL(Fi,ε||Fi) converges to 0, by Pinsker’s inequality, Fi,ε converges to Fi in total

variation, which is equivalent to dFi,ε/dFi converging in L1|Fi to 1. Hence for any sequence

εm ↓ 0, there exists a subsequence, which we still denote as εm ↓ 0 by a slight abuse of

notation, such that dFi,εm/dFi converge to 1 Fi-almost surely. It is easy to check that we

have dFεm/dF converge to 1 as well. (2.19) then implies that

dFi,εm
dFεm

→ dFi
dF

Fi-almost surely. (2.20)

On any set B ∈ B(R) such that Fi(B) = 0 but F (B) > 0, suppose dFi,ε/dFε does not

converge to dFi/dF = 0 in probability under F |B, the measure F restricted on B. Then

there exists a positive number δ > 0, and a subsequence of εm (again denoted as εm),

such that P F |B(dFi,εm/dFεm > δ) > c for some constant c > 0. Since Fεm converges

to F in total variation, for m large enough, P Fεm |B(dFi,εm/dFεm > δ) > c/2. Hence

Fi,εm(B) > δP Fεm |B(dFi,εm/dFεm > δ) > cδ
2

, which contradicts the fact that Fi,εm converges

to Fi in total variation. We conclude that dFi,ε/dFε converge to dFi/dF = 0 in probability

under F on set {dFi/dF = 0}. Combining this result with (2.20) and taking a further

subsequence allows us to replace the Fi-almost sure convergence in (2.20) by F -almost sure

convergence.

For any convex function f : Rn → R,

EFεm
[
f

(
dF1,εm

dFεm
, . . . ,

dFn,εm
dFεm

)]
=

∫
f

(
dF1,εm

dFεm
, . . . ,

dFn,εm
dFεm

)
dFεm .

Since
dFi,εm
dFεm

∈ [0, n], and f is convex hence continuous,
∣∣∣f (dF1,εm

dFεm
, . . . , dFn,εm

dFεm

)∣∣∣ is bounded.

Let b be an upper bound of it. Because Fεm converges in total variation to F , we have∣∣∣∣∫ f

(
dF1,εm

dFεm
, . . . ,

dFn,εm
dFεm

)
dFεm −

∫
f

(
dF1,εm

dFεm
, . . . ,

dFn,εm
dFεm

)
dF

∣∣∣∣ 6 2bδ(Fεm , F )→ 0

(2.21)
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uniformly, where δ(·, ·) is the total variation distance. Moreover, by dominated convergence,

we have ∫
f

(
dF1,εm

dFεm
, . . . ,

dFn,εm
dFεm

)
dF →

∫
f

(
dF1

dF
, . . . ,

dFn
dF

)
dF. (2.22)

(2.21) and (2.22) together show that

EF
[
f

(
dF1

dF
, . . . ,

dFn
dF

)]
= lim

m→∞
EFεm

[
f

(
dF1,εm

dFεm
, . . . ,

dFn,εm
dFεm

)]
6 EQ

[
f

(
dQ1

dQ
, . . . ,

dQn

dQ

)]
.

Sufficiency. Assume that (F1, . . . , Fn) ≺h (Q1, . . . , Qn). By Lemma 2.3.5, this means

that (
dF1

dF
, . . . ,

dFn
dF

)∣∣∣∣
F

≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

holds for F = 1
n

∑n
i=1 Fi and Q = 1

n

∑n
i=1Qi.

By Lemma 2.3.2, there exists a probability space (Ω′,A′, Q′) and random vectors Y′ =

(Y ′1 , . . . , Y
′
n),Z′ = (Z ′1, . . . , Z

′
n) defined on (Ω′,A′, Q′), such that

(Y ′1 , . . . , Y
′
n)

d
=

(
dQ1

dQ
, . . . ,

dQn

dQ

)
=: Y = (Y1, . . . , Yn),

(Z ′1, . . . , Z
′
n)

d
=

(
dF1

dF
, . . . ,

dFn
dF

)
=: Z = (Z1, . . . , Zn),

and

EQ′ [Y ′i |Z ′i] = Z ′i, i = 1, . . . , n.

Given m = 0, 1, . . . , define random vector Ym = (Ym,1, . . . , Ym,n) by

Ym,i =

{
0 if Yi = 0

exp(2−mb2m log(Yi)c) otherwise

for i = 1, . . . , n. Similarly we define Y′m, Zm and Z′m for Y′, Z and Z′, respectively. Note

that

EQ′
[
Y ′m,i|Z ′m,i

]
∈
[
exp(−2−m)EQ′ [Y ′i |Z ′m,i],EQ

′
[Y ′i |Z ′m,i]

]
⊆
[
exp(−2−m)Z ′m,i, exp(2−m)Z ′m,i

]
for i = 1, . . . , n.
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Each of Q1, . . . , Qn is atomless, and so is Q. As a result, we can divide Ω into dis-

joint sets Amk,j, k = (k1, . . . , kn) ∈ (Z ∪ {−∞})n, j = (j1, . . . , jn) ∈ (Z ∪ {−∞})n,

such that Ym,i(ω) = exp(ki2
−m) for ω ∈ Amk,j and i = 1, . . . , n, Q(Amk,j) = Q′(Y ′m,i =

exp(ki2
−m), Z ′m,i = exp(ji2

−m), i = 1, . . . , n). Here we follow the tradition that exp(−∞) =

0 for ease of notation. Define random vector Z′′m on (Ω,A, Q) by Z ′′m,i(ω) = exp(ji2
−m) for

ω ∈ Amk,j, then (Ym,Z
′′
m)|Q

d
= (Y′m,Z

′
m)|Q′ .

Let Id be the identity random variable on (R,B(R)). For l = 0, 1, . . . and h ∈ Z, denote

by ϕml,h(z) the conditional probability under F that Id ∈ [h2−l, (h+ 1)2−l) given Zm = z:

ϕml,h(z) = F (Id ∈ [h2−l, (h+ 1)2−l)|Zm = z).

Then for any l = 0, 1, . . . , Amk,j can be further divided into disjoint subsets Amk,j,l,h, such

that Q(Amk,j,l,h) = Q(Amk,j)ϕ
m
l,h(exp(j2−m)). Moreover, the partitions can be made such that

{Amk,j,l′,h}h∈Z is a refinement of {Amk,j,l,h}h∈Z for any l′ > l and any given m, k, j. Define

Xm,l(ω) = h2−l for ω ∈ Amk,j,l,h, and Xm = liml→∞Xm,l. The limit exists since it is easy to

check that Xm,l is increasing with respect to l. Note that Xm,l is conditionally independent

of Ym given Z′′m, hence Xm is also conditionally independent of Ym given Z′′m.

By construction, for any A ∈ Rn, l = 0, 1, . . . , and h ∈ Z,

Q(Z′′m ∈ A,Xm,l′ ∈ [h2−l, (h+ 1)2−l))

= Q(Z′′m ∈ A,Xm,l = h2−l)

=
∑
k

j:exp(j2−m)∈A

Q(Amk,j,l,h)

=
∑
k

j:exp(j2−m)∈A

Q(Amk,j)ϕ
m
l,h(exp(j2−m))

=
∑

j:exp(j2−m)∈A

Q(Z′′m = exp(j2−m))ϕml,h(exp(j2−m))

=
∑

j:exp(j2−m)∈A

F (Zm = exp(j2−m))F ([h2−l, (h+ 1)2−l)|Zm = exp(j2−m))

= F (Z−1
m (A) ∩ [h2−l, (h+ 1)2−l))

(2.23)
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for all l′ > l. Thus, Zm, restricted on interval [h2−l, (h+ 1)2−l), has the same distribution

as Z′′m, restricted on set X−1
m,l′([h2−l, (h + 1)2−l)). Note that X−1

m,l′([h2−l, (h + 1)2−l)) is

the same set for any l′ > l, hence Zm restricted on interval [h2−l, (h + 1)2−l) also has

the same distribution as Z′′m restricted on X−1
m ([h2−l, (h + 1)2−l)) for all m = 0, 1, . . . .

Since {[h2−l, (h+ 1)2−l)}h∈Z,l=0,1,... forms a basis for B(R), Zm restricted on any Borel set

B has the same distribution as Z′′m restricted on X−1
m (B). Therefore we conclude that

Z′′m = Zm ◦ Xm Q-almost surely. Moreover, by taking A = Rn in (2.23), it follows that

Q(Xm,l′ ∈ [h2−l, (h + 1)2−l)) = F ([h2−l, (h + 1)2−l)) for all l′ > l. A similar reasoning as

above then shows that F = Q ◦X−1
m .

For any A ∈ B and any i = 1, . . . , n,

Qi(Xm ∈ A) =

∫
X−1
m (A)

YidQ. (2.24)

It is easy to see that∫
X−1
m (A)

Ym,idQ 6
∫
X−1
m (A)

YidQ 6 exp(2−m)

∫
X−1
m (A)

Ym,idQ. (2.25)

Moreover,∫
X−1
m (A)

Ym,idQ

=
∑
k,j

eki2
−m
Q
(
Ym = ek2−m ,Z′′m = ej2

−m
)
Q
(
Xm ∈ A

∣∣Ym = ek2−m ,Z′′m = ej2
−m
)

=
∑
j

Q
(
Xm ∈ A

∣∣Z′′m = ej2
−m
)∑

k

eki2
−m
Q
(
Ym = ek2−m ,Z′′m = ej2

−m
)

=
∑
j

Q
(
Xm ∈ A

∣∣Z′′m = ej2
−m
)
Q
(
Z′′m = ej2

−m
)
EQ[Ym,i|Z′′m = ej2

−m
]

=
∑
j

Q
(
Xm ∈ A

∣∣Z′′m = ej2
−m
)
Q
(
Z′′m = ej2

−m
)
EQ′ [Y ′m,i|Z′m = ej2

−m
]

>
∑
j

Q
(
Xm ∈ A

∣∣Z′′m = ej2
−m
)
Q
(
Z′′m = ej2

−m
)

exp
(
ji2
−m − 2−m

)
=
∑
j

F
(
A
∣∣Zm = ej2

−m
)
F
(
Zm = ej2

−m
)

exp
(
ji2
−m − 2−m

)
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> exp
(
−2−m

)∑
j

exp
(
ji2
−m)F (A ∩ {Zm = ej2

−m}
)

= exp
(
−2−m

) ∫
A

Zm,idF

> exp
(
−2−m+1

) ∫
A

ZidF

= exp
(
−2−m+1

)
Fi(A),

where the second equality holds since Xm is independent of Ym given Z′′m, and the fifth

equality holds because Q ◦X−1
m = F and Zm ◦Xm = Z′′m. Symmetrically,∫
X−1
m (A)

Ym,idQ 6 exp(2−m)Fi(A). (2.26)

Combining (2.24)-(2.26), we have

Qi(Xm ∈ A) ∈ [exp(−2−m+1)Fi(A), exp(2−m+1)Fi(A)].

Since this holds for any A ∈ B(B), we conclude that Qi ◦ X−1
m is absolutely continuous

with respect to Fi, and dQi ◦X−1
m /dFi ∈ [exp(−2−m+1), exp(2−m+1)]. It is easy to see that

DKL(Qi ◦X−1
m ||Fi) converges to 0 as m→∞.

2.6.3 Details in Example 2.5.14

We only present details for the maximum values, as the case for the minimum values

is analogous.

Note that by the Girsanov Theorem, X = B1−1 is N(0, 1) distributed under Q. Denote

by HP,Q the distribution of dP
dQ

under Q, which is clearly a log-normal distribution with

parameter (−1/2, 1). Using Example 2.5.8, we can calculate the maximum value of EP [Y ],

as

max
Y ∈LG(Q)

EP [Y ] =

∫ 1

0

H−1
P,Q(u)q(u)du =

∫ 1

0

exp

(
q(u)− 1

2

)
q(u)du

=

∫ ∞
−∞

exp

(
s− 1

2

)
sdq−1(s)

=

∫ ∞
−∞

s√
2π

exp

(
−(s− 1)2

2

)
ds = 1.
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Noting that 1 − B1 is N(0, 1) distributed under Q, the above maximum value is attained

by Y ∗ = 1−B1.

We proceed to calculate maxY ∈LG(Q) EP [Y 2]. Denote by G0 the distribution of X2 under

Q, which is a chi-square distribution with 1 degree of freedom. Using Example 2.5.12, we

have

max
Y ∈LG(Q)

EP [Y 2] =

∫ 1

0

H−1
P,Q(u)G−1

0 (u)du =

∫ 1

0

exp

(
q(u)− 1

2

)(
q

(
1 + u

2

))2

du.

The numerical value of the above integral is 2.795.

Finally, we investigate maxY ∈LG(Q) VarP (Y ). Using Example 2.5.13, we have

max
Y ∈LG(Q)

VarP (Y ) = min
x∈R

Rx(G),

where for x ∈ R,

Rx(G) = max
Y ∈LG(Q)

EP [(Y − x)2].

Using Example 2.5.12 again, we have, for x ∈ R,

Rx(G) =

∫ 1

0

H−1
P,Q(u)G−1

x (u)du,

where Gx is the distribution of (X − x)2 under Q. Clearly,

Gx(t) =

∫ √t+x
−
√
t+x

1√
2π

exp

(
−s

2

2

)
ds, t > 0,

and hence Gx is symmetric in x. Moreover, it is easy to see that, for x > 0 and t > 0,

Gx(t) is decreasing in x. As a consequence, G−1
0 (s) 6 G−1

x (s) for s ∈ [0, 1] and x ∈ R.

Therefore, the minimum value of Rx(G) is attained by x = 0, namely

max
Y ∈LG(Q)

VarP (Y ) = R0(G) = max
Y ∈LG(Q)

EP [Y 2].
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Chapter 3

Random Locations of Periodic

Stationary Processes

3.1 Introduction

Random locations of stationary processes have been studied for a long time, and various

results exist for special random locations and processes. For example, the results regarding

the hitting time for Ornstein-Uhlenbeck processes date back to Breiman’s paper in 1967

(Breiman, 1967), with recent developments made by Leblanc et al. (Leblanc et al., 2000)

and Alili et al. (Alili et al., 2005). Early discussions about the location of path supremum

over an interval can be found in the work of Leadbetter et al (Leadbetter et al., 1983).

The book by Lindgren Lindgren (2012) provides an excellent summary of general results

in stationary processes.

Recently, properties of possible distributions of the location of the path supremum have

been obtained, and the sufficiency of the properties was proven (Samorodnitsky and Shen,

2012, 2013b). In Samorodnitsky and Shen (2013a), Samorodnitsky and Shen proceeded to

introduce a general type of random locations called intrinsic location functionals, including

but also extending far beyond the random locations mentioned above. In Shen (2016),

equivalent representations of intrinsic location functionals were established using partially
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ordered random sets and piecewise linear functions.

In this chapter, we study intrinsic location functionals of periodic stationary processes,

and characterize all the possible distributions of these random locations. The periodic

setting leads to new properties along with challenges, which are the focus of this chapter.

The periodicity also adds a discrete flavor to the problem, which, surprisingly, suggests a

link with other well-studied properties such as joint mixability (Wang and Wang, 2016).

The motivation of this work is twofold. From the general theoretical perspective, since

the study of continuous-time stationary processes requires a differentiable manifold struc-

ture to apply analysis techniques as well as a group structure to define stationarity, the

most general and natural framework under which the random locations of stationary pro-

cesses can be considered is an Abelian Lie group. It is well known that any connected

Abelian Lie group can be represented as the product of real lines and one-dimensional

torus, i.e., circles. In other words, the real line R and one-dimension circle S1 are building

blocks for connected Abelian Lie groups. Therefore, in order to understand the properties

of random locations of stationary processes in the general setting, it is crucial to study

their behaviors on R and S1 first. While the case for R was done in Samorodnitsky and

Shen (2013b), this chapter deals with the circular case, which is equivalent to imposing a

periodic condition on the stationary processes over the real line.

A more specific motivation comes from a problem in the extension of the so-called “rel-

atively stationary process”. A relatively stationary process is, briefly speaking, a stochastic

process only defined on a compact interval, the finite dimensional distribution of which is

invariant under translation, as long as all the time indices in the distribution remain inside

the interval. Parthasarathy and Varadhan (Parthasarathy and Varadhan, 1964) showed

that a relatively stationary process can always be extended to a stationary process over

the whole real line. A question to ask as the next step is when such an extension can be

periodic. Equivalently, if the relatively stationary process is defined on an arc of a circle

instead of the compact interval on the real line, can it always be extended to a stationary

process over the circle? This chapter will provide an answer to this question.

The rest of the chapter is organized as follows. In Section 3.2, we introduce some

notation and assumptions for intrinsic location functionals and stationary and ergodic
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processes. In Section 3.3, we show some general results on intrinsic location functionals

of periodic stationary processes. Sufficient and necessary conditions are established to

characterize the distributions of these random locations. The following two sections are

devoted to two special types of intrinsic location functionals. In Section 3.4, the class of

invariant intrinsic location functionals is studied. The density of any invariant intrinsic

location functional has a uniform lower bound, and such a distribution can always be

constructed via the location of the path supremum over the interval. In Section 3.5,

we show that the density of a first-time intrinsic location functional is non-increasing, and

establish a link between the structure of the set of first-time intrinsic locations’ distributions

and the joint mixability of some distributions.

3.2 Notation and preliminaries

Throughout the chapter, X = {X(t), t ∈ R} will denote a periodic stationary process.

Without loss of generality, assume X has period 1. Moreover, for simplicity, we assume the

sample function X(t) is continuous unless specified otherwise. Indeed, all the arguments

in the following parts also work for X with càdlàg sample paths.

As mentioned in the Introduction, an equivalent description of a periodic stationary

stochastic process is a stationary process on a circle. That is, consider {X(t), t ∈ R} as a

process defined on S1, where S1 is a circle with perimeter 1.

Let H be a set of functions on R with period 1, and assume it is invariant under shifts.

The latter means that for all g ∈ H and c ∈ R, the function θcg(x) := g(x + c), x ∈ R
belongs to H. We equip H with its cylindrical σ-field. Let I be the set of all compact,

non-degenerate intervals in R: I = {[a, b] : a < b, [a, b] ⊂ R}. We first define intrinsic

location functional, the primary object of this chapter.

Definition 3.2.1. (Samorodnitsky and Shen, 2013a) A mapping L: H ×I → R∪ {∞} is

called an intrinsic location functional, if it satisfies the following conditions:

1. For every I ∈ I, the mapping L(·, I) : H → R ∪ {∞} is measurable.
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2. For every g ∈ H and I ∈ I, L(g, I) ∈ I ∪ {∞}.

3. (Shift compatibility) For every g ∈ H, I ∈ I and c ∈ R,

L(g, I) = L(θcg, I − c) + c,

where I − c is the interval I shifted by −c, and by convention, ∞+ c =∞.

4. (Stability under restrictions) For every g ∈ H and I1, I2 ∈ I, I2 ⊆ I1, if L(g, I1) ∈ I2,

then L(g, I2) = L(g, I1).

5. (Consistency of existence) For every g ∈ H and I1, I2 ∈ I, I2 ⊆ I1, if L(g, I2) 6=∞,

then L(g, I1) 6=∞.

All the conditions in Definition 3.2.1 being natural and general, the family of intrinsic

location functionals is a very large family of random locations, including and extending

far beyond the location of the path supremum/infimum, the first/last hitting times, the

location of the first/largest jump, etc.

Remark 3.2.2. ∞ is added to the range of the intrinsic location functionals to deal with

the issue that some intrinsic location functionals may not be well defined for certain paths

in some intervals. The σ-field on R ∪ {∞} is then given by treating {∞} as a separate

point and taking the σ-field generated by the Borel sets in R and {∞}.

It turns out that with the presence of a period, the relation between stationary processes

and ergodic processes plays a crucial role in analyzing the distributions of the random

locations. Let (Ω,F , P ) be a probability space. Recall that a measurable function f is

called T -invariant for a measurable mapping T : Ω→ Ω, if

f(Tω) = f(ω) P -almost surely.

For a stationary process X = {X(t), t ∈ R}, let Ω̃ be its canonical space equipped with

the cylindrical σ-field F̃ , and θt be the shift operator as defined earlier. That is,

θtω̃(s) = w̃(s+ t), for ω̃ ∈ Ω̃.
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Denote by PX(·) = P (X ∈ ·) the distribution of X on (Ω̃, F̃). A stationary process

{X(t), t ∈ R} is called ergodic, if each measurable function f defined on (Ω̃, F̃) which is

θt-invariant for every t is constant PX-almost surely.

It is known that the set of the laws of all stationary processes is a convex set and the

extreme points of this set are the laws of the ergodic processes. Thus, we have the ergodic

decomposition for stationary processes:

Theorem 3.2.3. (Theorem A.1.1, Kifer (Kifer, 1988)) LetM be the space of all stationary

probability measures, andMe the subset ofM consisting of all ergodic probability measures.

Equip M and Me with the natural σ-field: σ(µ → µ(A) : A ∈ F). For any stationary

probability measure µX ∈M, there exists a probability measure λ on Me such that

µX =

∫
ρ∈Me

ρdλ.

The following proposition shows that for periodic stationary processes, ergodicity simply

means that all the paths are the same up to translation. This simple fact will be used later

in showing the main results of this chapter.

We say a probability space (Ω,F , P ) can be extended to a probability space (Ω̃, F̃ , P̃ ),

if there exists a measurable mapping π from (Ω̃, F̃) to (Ω,F) satisfying P = P̃ ◦ π−1. In

this case, the process X̃ defined on (Ω̃, F̃ , P̃ ) by X̃(ω̃) = X(π(ω̃)) will be identified with

the original process X.

Proposition 3.2.4. For any continuous periodic ergodic process X with period 1, there

exists a deterministic function g with period 1, such that X(t) = g(t+ Ũ) for t ∈ R almost

surely on an extended probability space, in which Ũ follows a uniform distribution on [0, 1].

Proof. Let C1(R) be the space of continuous functions with period 1. For h > 0, define

set Bh := {g ∈ C1(R) : supt∈R |g(t)| 6 h}. Note that Bh is in the invariant σ-algebra, and

hence by ergodicity, P (X ∈ Bh) is either 0 or 1 for any h. Consequently, there exists h0

(depending on X) such that P (X ∈ Bh0) = 1.

Similarly, for function δ : [0,∞)→ [0,∞), define set

Cδ := {g ∈ C1(R) : |g(x)− g(y)| < ε for any ε > 0 and all |x− y| < δ(ε)},
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then Cδ is in the invariant σ-algebra, P (X ∈ Cδ) ∈ {0, 1}, and there exists function δ0

such that P (X ∈ Cδ0) = 1.

Furthermore, for any n, t = (t1, ..., tn) and A = (A1, ..., An), where t1 < t2 < · · · < tn

and A1, ..., An are non-degenerate closed intervals, define sets

Ht,A := {g ∈ C1(R) : g(t1) ∈ A1, . . . , g(tn) ∈ An}

and

H0
t,A := {g ∈ C(R) : there exists a constant c, θcg ∈ Ht,A}.

Again, H0
t,A is in the invariant σ-algebra, and hence by ergodicity P (X ∈ H0

t,A) is either 0

or 1 for any n, t1, ..., tn and A1, ..., An.

For m = 0, 1, ..., let nm = 2m and tmi = (i − 1)2−m for i = 1, ..., nm. Then there exists

Am1 , ..., A
m
nm of the form Ami = [ki2

−m, (ki + 1)2−m], ki ∈ Z, i = 1, ..., nm, such that P (X ∈
H0

tm,Am) = 1, where tm = (tm1 , ..., t
m
nm), Am = (Am1 , ..., A

m
nm). Moreover, we can choose the

sets such that {H0
tm,Am}m=0,1,... form a decreasing sequence, i.e., H0

tm1 ,Am1 ⊇ H0
tm2 ,Am2 if

m1 6 m2.

Consider the sequence of sets {H0
tm,Am ∩ Bh0 ∩ Cδ0}m=0,1,.... Each set in this sequence

is closed and consists of functions which are uniformly bounded and equicontinuous. By

Arzelà-Ascoli Theorem and the fact that we are looking at functions with period 1, which

can be 1-1 mapped to {g ∈ C([0, 1]) : g(0) = g(1)} ⊂ C([0, 1]), the sets in this sequence

are compact. As a result, the intersection of all the sets is non-empty. Moreover, there

exists a single deterministic function with period 1, denoted by g, such that for any f in

the intersection, f(t) = g(t + c) for some c ∈ R. Indeed, assume this is not the case, i.e.,

there exists f1, f2 both in H0
tm,Am ∩ Bh0 ∩ Cδ0 for all m = 0, 1, ..., yet f1 6= θcf2 for any c,

then fundamental analysis shows that

inf
c∈R

sup
i∈Z
|f1(i2−m)− θcf2(i2−m)| > 1

2
inf
c∈R

sup
t∈R
|f1(t)− θcf2(t)| > 0

for m large enough, hence f1 and f2 will eventually be separated by some H0
tm,Am . Thus,

we conclude that X(t) = g(t+ V ) almost surely for some random variable V .

The last step is to show that there exists an extended probability space and a uniform

[0, 1] random variable Ũ defined on that space, such that X(t) = g(t + Ũ) almost surely.
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First, suppose there exists a uniform [0, 1] random variable U in some probability space,

then {X(t), t ∈ R} d
= {g(t + U), t ∈ R}. Indeed, since the equality is in the distributional

sense, we can assume that U is independent of everything else by considering, for example,

the product space of the original probability space and [0, 1] equipped with the Borel σ-field

and the Lebesgue measure. Then by stationarity and ergodicity, we have

{X(t), t ∈ R} d
= {X(t+ U), t ∈ R}
= {g(t+ V + U), t ∈ R}
d
= {g(t+ U), t ∈ R}.

Moreover, the mapping h : [0, 1] → C([0, 1]) given by h(x) = {g(t + x), t ∈ [0, 1]} is

continuous, hence measurable. (Note that the Borel σ-field and the cylindrical σ-field

coincide on C([0, 1]).) As a result, there exists an extended probability space (Ω̃, F̃ , P̃ )

with a uniform [0,1] random variable Ũ defined on that, such that {X(t), t ∈ R} = h(Ũ) =

{g(t+ Ũ), t ∈ R} almost surely on (Ω̃, F̃ , P̃ ).

3.3 Distributions of intrinsic location functionals

In this section, we characterize (properties of) intrinsic location functionals of periodic

stationary processes. For a compact interval [a, b], denote the value of an intrinsic location

functional L for the process X on that interval by L(X, [a, b]). Since X is stationary and L

is shift compatible, the distribution of L− a depends solely on the length of the interval.

Thus, we can focus on the intervals starting from 0, in which case L(X, [0, b]) is abbreviated

as L(X, b). Furthermore, with the 1-periodicity of X, it turns out that the only interesting

cases are those with b 6 1. In the following we assume b 6 1 throughout. The case where

b > 1 will be briefly discussed in Remark 3.3.4, after the introduction of a representation

result for intrinsic location functional.

Denote by FX
L,[a,b] the law of L(X, [a, b]). It is a probability measure supported on

[a, b] ∪ {∞}.
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It was shown in Samorodnitsky and Shen (2013a) that the distribution of an intrinsic

location functional for any stationary process over the real line, not necessarily periodic,

possesses a specific group of properties. Adding periodicity obviously will not change these

results. Here we present a simplified version of the original theorem for succinctness.

Proposition 3.3.1. Let L be an intrinsic location functional and {X(t), t ∈ R} a sta-

tionary process. The restriction of the law FX
L,T to the interior (0, T ) of the interval is

absolutely continuous. Moreover, there exists a càdlàg version of the density function, de-

noted by fX
L,T , which satisfies the following conditions:

(a) The limits

fX
L,T (0+) = lim

t↓0
fX
L,T (t) and fX

L,T (T−) = lim
t↑T

fX
L,T (t) (3.1)

exist.

(b)

TV(t1,t2)(f
X
L,T ) 6 fX

L,T (t1) + fX
L,T (t2)

for all 0 < t1 < t2 < T , where

TV(t1,t2)(f
X
L,T ) = sup

n−1∑
i=1

∣∣fX
L,T (si+1)− fX

L,T (si)
∣∣

is the total variation of fX
L,T on the interval (t1, t2), and the supremum is taken over all

choices of t1 < s1 < · · · < sn < t2.

Note that we have
∫ T

0
fX
L,T (s)ds < 1 if there exists a point mass at ∞ or at the bound-

aries 0 and T .

We call the condition (b) in Proposition 3.3.1 “Condition (TV )”, or the “variation

constraint”, because it puts a constraint on the total variation of the density function. It

is not difficult to show that Condition (TV ) is equivalent to the following Condition (TV ′):

There exists a sequence {tn}, tn ↓ 0, such that

TV(tn,T−tn)(f) 6 f(tn) + f(T − tn), n ∈ N.
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The above general result about the distribution of the intrinsic location functionals for

stationary processes over the real line is still valid for periodic stationary processes, and

serves as a basis for further exploration. It is, however, not the focus of this chapter.

For the rest of the chapter we will concentrate on the new properties introduced by the

periodicity assumption, which do not hold in the general case.

For any intrinsic location functional L and T 6 1, let IL,T be the set of probability

distributions FX
L,T for periodic stationary processes X with period 1 on [0, T ]. Our goal is

to understand the structure of the set IL,T , and the conditions that the distributions in IL,T

need to satisfy. To this end, note that since ergodic processes are extreme points of the set

of stationary processes, the extreme points of the set IL,T can only be the distributions of L

for periodic ergodic processes with period 1. The next proposition gives a list of properties

for these distributions.

Proposition 3.3.2. Let L be an intrinsic location functional, X be a periodic ergodic

process with period 1, and T 6 1. Then FX
L,T and its càdlàg density function on (0, T ),

denoted by f , satisfy:

1. f takes values in non-negative integers;

2. f satisfies the condition (TV );

3. If FX
L,T [0, T ] > 0, and there does not exist t ∈ (0, T ) such that FX

L,T [0, t] = 1 or

FX
L,T [t, T ] = 1, then f(t) > 1 for all t ∈ (0, T ). If furthermore, FX

L,T ({∞}) > 0, then

f − 1 also satisfies the condition (TV ).

Note that the condition in the first part of property 3 can be translated into requiring

either a positive but smaller than 1 mass at∞, or a positive point mass or a positive limit

of the density function at each of the two boundaries 0 and T .

The proof of Proposition 3.3.2 relies on the following representation result given in Shen

(2016).

Proposition 3.3.3. A mapping L(g, I) : H × I → R ∪ {∞} is an intrinsic location

functional if and only if
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1. L(·, I) is measurable for I ∈ I;

2. There exists a subset of R determined by g, denoted as S(g), and a partial order �
on it, satisfying:

(1) For any c ∈ R, S(g) = S(θcg) + c;

(2) For any c ∈ R and t1, t2 ∈ S(g), t1 � t2 implies t1 − c � t2 − c in S(θcg),

such that for any I ∈ I, either S(g) ∩ I = ∅, in which case L(g, I) =∞, or L(g, I) is the

unique maximal element in S(g) ∩ I according to �.

Such a pair (S,�) in the above proposition is called a partially ordered random set

representation of L. Intuitively, this representation result shows that a random location is

an intrinsic location functional if and only if it always takes the location of the maximal

element in a random set of points, according to some partial order. Both the random set

and the order are determined by the path and are shift-invariant.

Remark 3.3.4. By Proposition 3.3.3, for a function g with period 1, t ∈ S(g) implies

t + c ∈ S(θ−cg) = S(g) for any c ∈ Z. Moreover, if t + 1 � t, then t + c2 � t + c1 for all

c1, c2 ∈ Z, c2 > c1. As a result, for an interval [a, b] with length greater than 1, only the

points in the leftmost cycle [a, a + 1) can have the maximal order. Thus, the location of

the intrinsic location functional on [a, b] will be the same as on [a, a + 1]. Symmetrically,

if t � t+ 1, then the location of the intrinsic location functional on [a, b] will be the same

as on [b− 1, b]. Hence we only need to consider the intervals with length no larger than 1.

Proof of Proposition 3.3.2. Property 2 directly comes from Proposition 3.3.1. We only

need to check properties 1 and 3.

Property 1. Since X is a periodic ergodic process with period 1, by Proposition 3.2.4,

there exists a periodic deterministic function g with period 1 such that X(t) = g(t + U)

for t ∈ R, where U follows a uniform distribution on [0, 1]. In other words, all the sample

paths of X are the same up to translation. Let (S,�) be a partially ordered random set

representation of L. For any s ∈ S(g), define

as := sup{∆s ∈ R : r � s for all r ∈ (s−∆s, s) ∩ S(g)},
bs := sup{∆s ∈ R : r � s for all r ∈ (s, s+ ∆s) ∩ S(g)},
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and define sup ∅ =∞ by convention. By a slight abuse of notation, we also use as and bs

to denote the same quantity for s ∈ S(X). Intuitively, as and bs are the largest distance

by which we can go to the left and right of the point s without passing a point with higher

order than s according to �, respectively. Thus, for 0 < t < t+ ∆t < T , we have

P (there exists s ∈ [t, t+ ∆t] ∩ S(X) : as > t+ ∆t, bs > T − t)
6 P (t 6 L(X, (0, T )) 6 t+ ∆t)

6 P (there exists s ∈ [t, t+ ∆t] ∩ S(X) : as > t, bs > T − t−∆t) . (3.2)

Seeing that X(t) = g(t+ U), S(X) = S(g)− U . By change of variable s→ s− U ,

P (there exists s ∈ [t, t+ ∆t] ∩ S(X) : as > t+ ∆t, bs > T − t)
=P (there exists s ∈ S(g) : as > t+ ∆t, bs > T − t, s− U ∈ [t, t+ ∆t]) .

Note the values of as and bs remain unchanged, since they are defined with respect to X

on the left hand side, and with respect to g on the right hand side.

Since S(g) has period 1, s ∈ S(g) if and only if s− bsc ∈ S(g)∩ [0, 1). Moreover, since

s−U and s−bsc−U −bs−bsc−Uc share the same fractional part and are both in [0, 1),

s − U = s − bsc − U − bs − bsc − Uc. Thus, by another change of variable s − bsc → s,

we have

P (there exists s ∈ S(g) : as > t+ ∆t, bs > T − t, s− U ∈ [t, t+ ∆t])

= P (there exists s ∈ S(g) ∩ [0, 1)

such that as > t+ ∆t, bs > T − t, and s− U − bs− Uc ∈ [t, t+ ∆t]) .

Therefore, for ∆t small enough,

P (there exists s ∈ [t, t+ ∆t] ∩ S(X) : as > t+ ∆t, bs > T − t)
= |{s ∈ S(g) ∩ [0, 1) : as > t+ ∆t, bs > T − t}| ·∆t,

where |A| denotes the cardinal of set A. Thus, we have

f(t) = lim
∆t→0

P (t 6 L(X, (0, T )) 6 t+ ∆t)

∆t

> |{s ∈ S(g) ∩ [0, 1) : as > t, bs > T − t}| . (3.3)
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Symmetrically,

f(t) = lim
∆t→0

P (t 6 L(X, (0, T )) 6 t+ ∆t)

∆t

6 |{s ∈ S(g) ∩ [0, 1) : as > t, bs > T − t}|. (3.4)

Moreover, it is easy to see that the set Σ := {s ∈ S(g)∩[0, 1) : as > 0 and bs > 0} is at most

countable, then {t : as = t or bs = T − t for some s ∈ Σ} is also at most countable. Hence

the density can be taken as the càdlàg modification of |{s ∈ S(g) ∩ [0, 1) : as > t, bs > T − t}|,
which only takes values in non-negative integers.

Property 3. Assume FX
L,T [0, T ] > 0 and there does not exist t ∈ (0, T ), such that

FX
L,T [0, t] = 1 or FX

L,T [t, T ] = 1. There are two possible cases depending on whether FX
L,T

has a point mass at ∞.

First suppose FX
L,T ({∞}) ∈ (0, 1). Then by the partially ordered random set rep-

resentation, there exists an interval [s∞, t∞] (depending on g) satisfying t∞ − s∞ > T ,

such that S(g) ∩ [s∞, t∞] = ∅. Since g has period 1, S(g) ∩ [s∞ + 1, t∞ + 1] = ∅ as

well. Let τ = L(g, [t∞, s∞ + 1]). Since L is not identically ∞, such a finite τ must exist.

Moreover note that there is no point of S(g) in [s∞, t∞] and [s∞ + 1, t∞ + 1], hence τ is

actually the maximal element in S(g) according to � on the interval [s∞, t∞ + 1]. Thus,

aτ > τ−s∞ = τ−t∞+t∞−s∞ > T , and symmetrically bτ > T . Consequently, τ−bτc is in

the set {s ∈ S(g) ∩ [0, 1) : as > t, bs > T − t} for all t ∈ (0, T ). Since the density function

f(t) can be taken as the càdlàg modification of |{s ∈ S(g) ∩ [0, 1) : as > t, bs > T − t}|,
f(t) > 1 for all t ∈ (0, T ).

For the second possibility, suppose now there is either a positive mass or a positive limit

of the density function on each of the two boundaries 0 and T . Suppose for the purpose of

contradiction that there exists a non-degenerate interval [u, T − v] such that f(t) = 0 for

all t ∈ [u, T − v]. For t ∈ S(g), we distinguish four different types: A := {t ∈ S(g) : at 6

u, bt > T − u− ε}, B := {t ∈ S(g) : at > T − v− ε, bt 6 v}, C := {t ∈ S(g) : at > u, bt >

v, at + bt > T} and D := {t ∈ S(g) : at > u, bt > v, at + bt = T}, where 0 < ε < T−u−v
2

.

Sets A, B, C and D are disjoint, and for any t ∈ S(g) such that t = L(g, I) for some

interval I with length T , t ∈ A ∪B ∪C ∪D. By the assumption about f , it is easy to see

that A 6= ∅, B 6= ∅ and C = ∅.
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We claim that for any x ∈ A and y ∈ B, if x > y, then x − y > T . Suppose it

is not true. For interval I = [t, t + T ], where t satisfies 0 6 y − t < T − v − ε and

0 6 t + T − x < T − u − ε, let z be the maximal element in S(g) ∩ I according to �.

Note that the choice of t guarantees that x, y ∈ I, hence S(g) ∩ I 6= ∅, z always exists.

Moreover, x � z and y � z. Because y ∈ B, y is larger in � than any point to its left

within a distance smaller than T − v − ε, which contains [t, y]. Thus, z cannot be in this

part of the interval I. Similarly, z cannot be in [x, t+ T ], hence z ∈ [y, x]. For such z,

az > ay > T − v − ε > u, bz > bx > T − u− ε > v,

and az + bz > T − v − ε + T − u − ε > T , which means z ∈ C. However, C = ∅ by

assumption. Therefore, for any x ∈ A, y ∈ B and x > y, we have x− y > T .

On the other hand, we show in the following paragraphs that for any point y ∈ B, there

exists another point y′ ∈ B, such that u
2
< y′ − y 6 T . To this end, consider a number of

intervals [y − εi, y − εi + T ] given any arbitrary point y ∈ B and εi = 1
2i
u for i = 1, 2, . . . .

Denote li as the maximal element in [y− εi, y− εi +T ]∩S(g) according to �. Notice that

since y ∈ S(g), li always exists. Seeing that ay > T − v − ε > u, li must be in [y, y + T ].

Since li − y 6 T , li must be in the set B ∪D.

Next, we show that there exists i such that li ∈ B. Suppose li ∈ D for all i. If there exist

li = lj ∈ D for some i < j, then li is the maximal element in both [y− εi, y− εi +T ]∩S(g)

and [y−εj, y−εj +T ]∩S(g). As a result, we have ali > li−y+εi, and bli > y−εj +T − li.
However, this leads to

ali + bli > T + εi − εj > T,

hence li cannot be in D. Thus, for any i 6= j, li 6= lj. By the fact that ali > u and bli > v,

there are at most T
min{u,v} points in the set D∩ [y, y+T ], which contradicts the assumption

that li ∈ D ∩ [y, y + T ] for all i = 1, 2, . . . . As a result, there always exists at least one

point li ∈ B.

Furthermore, for such li, if li − y 6 u
2
, then

bli > T − u

2
− εi > T − u > v,
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which contradicts the fact that li ∈ B. Therefore for any y ∈ B, there always exists a

point y′ = li ∈ B, such that

u

2
< y′ − y 6 T.

As a result, for any periodic function g with period 1, there exists y1 ∈ B and then a

sequence of points {yi, i = 2, . . . , k} in B such that for i = 1, . . . , k − 1,

u

2
< yi+1 − yi 6 T,

and k is chosen such that

yk−1 < 1 + y1 6 yk.

However, since g is a periodic function with period 1 and A 6= ∅, this means that there

must exist some points x ∈ A and y ∈ B such that x− y 6 T , which contradicts the result

we derived before. Therefore, we conclude that there does not exist a non-degenerate

interval [u, T − v] such that f(t) = 0 for all t ∈ [u, T − v], if the condition in the first part

of property 3 holds.

Finally we turn to the second part in property 3. Assume FX
L,T ({∞}) > 0, then we show

that f − 1 will satisfy the condition (TV). Recall that a positive probability at ∞ for FX
L,T

implies the existence of a maximal interval [s∞, t∞] depending on g satisfying t∞−s∞ > T

and S(g) ∩ [s∞, t∞] = ∅. Indeed, the inequality t∞ − s∞ > T can be strengthened to

t∞ − s∞ > T , since otherwise its contribution to the point mass at ∞ will be 0, even

though it allows one particular value of U such that g(t + U) ∩ [0, T ] = ∅. Consider an

interval [u, v] ⊂ (0, T ), such that f is flat on [u, v]. Since f takes integer values and satisfies

the variation constraint, such an interval always exists. Define

S ′(g) = S(g) ∪ {s∞ + v − ε+ C : C ∈ Z} ∪
⋃
C∈Z

(s∞ + T + ε+ C, t∞ + C)

for ε small enough, and extend the order � to S ′(g) (still denoted by �) by setting s∞ +

v − ε+ C � t1 � t2 � t for any C ∈ Z, t1, t2 ∈ (s∞ + T + ε+ C, t∞ + C), t1 < t2, and any

t ∈ S(g). Intuitively, the extended order assigns the minimal order to s∞ + v − ε, then an
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increasing order to the points in (s∞ + T + ε, t∞), while keeping the order for the added

points always inferior to the original points in S(g), and is finally completed by a periodic

extension to R. Let L′ be an intrinsic location functional having (S ′(g),�) as its partially

ordered random set representation, and denote by f ′ the density of FX
L′,T . It is easy to

see that f ′ = f + I(v−2ε,v−ε]. Hence for ε small enough and tn ↓ 0 with t1 being small

enough, TV(tn,T−tn)(f
′) = TV(tn,T−tn)(f) + 2 for any n. Since f ′ satisfies the condition

(TV ), we must have TV(tn,T−tn)(f) + 2 6 f(tn) + f(T − tn). Thus TV(tn,T−tn)(f − 1) 6

(f(tn)− 1) + (f(T − tn)− 1), which is the variation constraint for f − 1.

With the properties of the distributions of L for periodic ergodic processes with period

1 at hand, we proceed to study the structure of IL,T , the set of all distributions of L for

periodic stationary processes. Denote by ET the collection of probability distributions on

[0, T ] ∪ {∞} satisfying the three properties listed in Proposition 3.3.2, and let PT be the

collection of all probability distributions on [0, T ] ∪ {∞} which are absolutely continuous

on (0, T ). For the rest of the chapter, denote by C(A) the convex hull generated by a set

A ⊆ PT under the weak topology.

Theorem 3.3.5. IL,T is a convex subset of PT . Moreover, IL,T ⊆ C(ET ).

Proof. The convexity of IL,T is obvious. If F1, F2 ∈ IL,T , then there exist stationary

processes with period 1, denoted by X1,X2, such that F1 = FX1
L,T and F2 = FX2

L,T . For any

a ∈ [0, 1], aF1 + (1 − a)F2 = FX
L,T , where the process X is a mixture of X1 and X2, with

weights a and 1− a, respectively.

Next we show IL,T ⊆ C(ET ). By ergodic decomposition, any F ∈ IL,T can be written

as F =
∫
G∈ET

Gdλ, where λ is a probability measure on ET . The integration holds in the

sense of mixture of probability measures, i.e.,∫
x∈[0,T ]∪{∞}

h(x)dF (x) =

∫
G∈ET

∫
x∈[0,T ]∪{∞}

h(x)dG(x)dλ

for all bounded and continuous function h defined on [0, T ]∪ {∞}. Since the set of proba-

bility measures on [0, T ]∪{∞} equipped with the weak topology is separable, we conclude

that F ∈ C(ET ).

65



The converse of Theorem 3.3.5, that for an arbitrarily given intrinsic location functional

L and any distribution F ∈ C(ET ) there exists a periodic stationary process X such that

F = FX
L,T , is not true in general. For example, it can be easily checked that L(g, I =

[a, b]) := a is an intrinsic location functional. Yet the only possible distribution for L

on [0, T ] is a Dirac measure on the boundary 0. However, the next result shows that

the converse does hold if we do not focus on any particular L, but collect the possible

distributions for all the intrinsic locations functionals. In other words, any member in

C(ET ) can be the distribution of some intrinsic location functional on [0, T ] and some

periodic stationary process with period 1. More formally, define IT =
⋃
L IL,T to be the

set of all possible distributions of intrinsic location functionals on [0, T ], then IT = C(ET ).

Here and throughout the chapter, when we discuss the existence of a stochastic process

without specifying the underlying probability space, the existence should be understood as

that of the process together with the existence of a probability space on which the process

is defined.

Theorem 3.3.6. For any F ∈ C(ET ), there exist an intrinsic location functional and a

periodic stationary process with period 1, such that F is the distribution of this intrinsic

location for such process on [0, T ].

The proof of Theorem 3.3.6 consists of three parts. The main steps of the proof are

presented in Part I below. Parts II and III are put in Sections 3.4 and 3.5, respectively,

due to the explicit construction required for specific types of intrinsic location functionals.

Proof of Theorem 3.3.6, Part I. We define an intrinsic location functional L = L(g, I) as

L(g, I) =


L1(g, I) if g(t) > 0 for all t ∈ R,

L2(g, I) if there exists t ∈ R such that g(t) = −1,

L3(g, I) otherwise,

where

L1(g, I) = inf

{
t ∈ I : g(t) = sup

s∈I
g(s), g(t) >

1

2

}
,

L2(g, I) = inf{t ∈ I : g(t) = −1},
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and

L3(g, I) = sup{t ∈ I : g(t) = −2}.

Intuitively, L1 is based on the location of the path supremum, but truncated at level 1
2
. L2

and L3 are first and last hitting times, respectively.

We first show that such L is an intrinsic location functional, by using the partially

ordered random set representation of intrinsic location functionals. It is not difficult to

verify that L1, L2 and L3 are all intrinsic location functionals, and hence they all have

their own partially ordered random set representations, denoted as (S1(g),�1), (S2(g),�2)

and (S3(g),�3). For positive sample paths, L has (S1,�1) as its partially ordered random

representation; otherwise for sample paths reaching level −1, L has (S2,�2); otherwise,

L has (S3,�3). Combining the three cases gives a complete partially ordered random set

representation for L. Thus, L is an intrinsic location functional.

Next, we need to show that for any F ∈ ET , there exists a periodic ergodic process with

period 1 such that F is the distribution of L over [0, T ] for such process. For any F ∈ ET ,

let f be its density function on (0, T ). We discuss two possible scenarios depending on

whether f(t) > 1 for all t or not.

1. If f(t) > 1 for all t ∈ (0, T ), we are going to show that there exists a periodic ergodic

process with period 1 and positive sample paths, such that F is the distribution of

L1 on [0, T ] for that process. Since L1 is a modified version of the location of the

path supremum, this part of the proof is postponed and will be resumed right after

the proof of Theorem 3.4.7, in which we focus on the distribution of the location of

the path supremum.

2. Otherwise, f(t) = 0 for some t. Recall from the definition of ET that if f(0+) > 1

and f(T−) > 1, then f(t) > 1 for all t ∈ (0, T ). Hence in this case we must have

f(0+) = 0 or f(T−) = 0. Assume f(T−) = 0 for example. Take u := inf{t ∈
(0, T ) : f(t) = 0} and a sequence {tn ∈ (u, T )}n∈N such that tn ↑ T as n → ∞
and f(tn) = 0 for all n. The variation constraint applied to the intervals (0, u) and

(u, tn) implies that f is non-increasing in (0, u) and that f(t) = 0 for f ∈ [u, T ),

respectively. Symmetric results hold for the case where f(0+) = 0. To summarize,

if f is the density function for a distribution in ET and f(t) = 0 for some t, we have
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(1) f takes values in non-negative integers;

(2) Either there exists u ∈ (0, T ) such that f is a non-increasing function in the

interval (0, u) and f(t) = 0 for t ∈ [u, T ), or there exists v ∈ (0, T ) such that f

is a non-decreasing function in the interval [v, T ) and f(t) = 0 for t ∈ (0, v).

By symmetry, we only prove the case where f is non-increasing in the interval (0, u) and

f(t) = 0 for t ∈ [u, T ). Since the intrinsic location functional that we are going to use in

this case, L2, is a first hitting time, this part of the proof is postponed and will be resumed

right after the proof of Proposition 3.5.4, which deals with this type of intrinsic location

functionals.

Remark 3.3.7. The proof of Theorem 3.3.6 actually implies a stronger result: all the dis-

tributions in C(ET ) can be generated by a single intrinsic location functional, which is the

location L defined in the proof of the theorem.

Remark 3.3.8. Among the three conditions defining the set ET , the condition (TV ) is

stable under convex combination, while the other two, integer values and a lower bound

at level 1 under some conditions, are not. Therefore when passing from ergodic processes

to stationary processes, these two conditions will not persist. However, this does not

mean that they will simply disappear. They still affect the structure of the set of all

possible distributions IT = C(ET ), but in a complicated way. While an explicit, analytical

description of IT is not known, we point out in the following example that IT is indeed a

proper subset of the set of all distributions solely satisfying condition (TV ).

Denote by AT the class of probability distributions on [0, T ] ∪ {∞} with densities

satisfying the variation constraint (TV ). Let T = 1 and consider a probability distribution

F with density function

f(t) =

4
3
, t ∈ (0, 3

4
),

0, t ∈ [3
4
, 1).

From the construction of f , it is easy to check that F ∈ AT . Suppose F is also in the set

IT , then it can be written as an integral of the elements in the set ET with respect to a

probability measure on ET , as discussed in the proof of Theorem 3.3.5. Since f(t) = 0 for
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all t ∈ [3
4
, 1), the variation constraint implies that any candidate density g to construct

f must be non-increasing on the interval (0, 3
4
) and g(t) = 0 for all t ∈ [3

4
, 1). Moreover,

g takes integer values, so there exists g such that g(t) = 2 for t ∈ (0, 3
4
). However, the

integral of g is ∫ T

0

g(t)dt =
3

2
> 1,

which means that there does not exist a distribution in ET such that g is its density

function. Therefore, F /∈ C(ET ), hence IT is a proper subset of AT .

3.4 Invariant intrinsic location functionals

In this section, we consider a special type of intrinsic location functionals, referred to

as the invariant intrinsic location functionals.

Definition 3.4.1. An intrinsic location functional L is called invariant , if it satisfies

1. L(g, I) 6=∞ for any compact interval I and g ∈ H.

2. L(g, [0, 1]) = L(g, [a, a+ 1]) mod 1, for any a ∈ R and g ∈ H.

Remark 3.4.2. Invariance is a natural requirement for an intrinsic location functional on

S1. The projection of an interval with length of 1 in S1 forms a loop, with the starting

and ending points being mapped to the same point. The above definition then requires

that the location over the whole circle is always well-defined, and does not depend on the

location of the starting/ending point.

Example 3.4.3. It is easy to see that the location of the path supremum

τg,[a,b] = inf
{
t ∈ [a, b] : g(t) = sup

a6s6b
g(s)

}
is an invariant intrinsic location functional, provided that the path supremum is uniquely

achieved.
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Besides the location of the path supremum, other invariant intrinsic location functionals

include the location of the point with the largest/smallest slope (if the sample paths are in

C1), the location of the point with the largest/smallest curvature (if the sample paths are

in C2), etc, provided the uniqueness of these locations. The related criteria for uniqueness

often go back to checking the uniqueness of the path supremum/infimum in one period.

Indeed, if the a periodic stationary process has sample paths in C1 (resp. C2), then its first

(resp. second) derivative is again a periodic stationary process. For a Gaussian process X,

its derivative X′ is still Gaussian, and Kim and Pollard (Kim and Pollard, 1990) showed

that the supremum is almost surely achieved at a unique point if Var(X ′(s), X ′(t)) 6= 0

for s 6= t. In our periodic case, this means that the process has no period smaller than 1.

Another condition was developed by Pimentel (Pimentel, 2014) for general processes with

continuous sample paths.

For an invariant intrinsic location functional, we have the following lower bound for its

density function.

Proposition 3.4.4. For T ∈ (0, 1], any invariant intrinsic location functional L and any

periodic stationary process X with period 1, the density fX
L,T of L on (0, T ) satisfies

fX
L,T (t) > 1 for all t ∈ (0, T ). (3.5)

Proof. Let 0 < a < b < 1. Since X is stationary, we have

P (L(X, [0, 1]) ∈ (0, b− a)) = P (L(X, [a, a+ 1]) ∈ (a, b)). (3.6)

By the assumption of invariant intrinsic location functionals, for any a ∈ R,

L(X, [0, 1]) = L(X, [a, a+ 1]) mod 1.

Then

P (L(X, [0, 1]) ∈ (0, b− a)) = P (L(X, [a, a+ 1]) ∈ (a, b))

= P (L(X, [0, 1]) ∈ (a, b)).
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It means that L(X, [0, 1]) follows a uniform distribution on the interval [0, 1]. Thus, for

any t ∈ (0, 1),

fX
L,[0,1](t) = 1.

For any Borel set B ∈ B([0, T ]), T 6 1, by condition 4 (stability under restrictions) in

Definition 3.2.1,

FX
L,[0,T ](B) > FX

L,[0,1](B).

Therefore, for any 0 < t < T ,

fX
L,T (t) > fX

L,1(t) = 1.

For a given invariant intrinsic location functional L and T 6 1, let I1
L,T be the collection

of probability distributions of L on [0, T ] for periodic stationary processes with period 1.

Let E1
T be the collection of probability distributions with no point mass at∞, and (càdlàg)

densities f on (0, T ) satisfying:

1. f takes values in positive integers for all t ∈ (0, T );

2. f satisfies the condition (TV ).

Then we have the following result regarding the structure of the set I1
L,T , parallel to the

result for general intrinsic location functionals, Theorem 3.3.5.

Corollary 3.4.5. I1
L,T is a convex subset of PT . Moreover, I1

L,T ⊆ C(E1
T ).

Proof. By Proposition 3.4.4, the density f for any periodic ergodic process X with period

1 satisfies f(t) > 1 for all t ∈ (0, T ). The rest of the proof follows in the same way as that

of Theorem 3.3.5.
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Before proceeding to the next result, Theorem 3.4.7, which gives the other direction

of the relation between C(E1
T ) and the set of all possible distributions, we note that the

definition of the location of the path supremum can be extended to the processes with

càdlàg sample paths. This extension will be helpful in the proof of Theorem 3.4.7.

Remark 3.4.6. For any periodic stationary process X with period 1 and càdlàg sample

paths, let X ′(t) = lim sups→tX(s), t ∈ R. Then X′ = {X ′(t), t ∈ R} has upper semi-

continuous sample paths and its supremum over the interval can be attained. As a result,

for any X with càdlàg sample paths, the location of the path supremum for X can be

defined as

τX,T := inf

{
t ∈ [0, T ] : X ′(t) = sup

s∈[0,T ]

X ′(s)

}
.

Denote by LI the set of invariant intrinsic location functionals. Let I1
T =

⋃
L∈LI I

1
L,T

be the collection of all the possible distributions for invariant intrinsic location functionals

and periodic stationary processes with period 1 on [0, T ]. The next result, in combination

with Corollary 3.4.5, shows that I1
T = C(E1

T ).

Theorem 3.4.7. For any F ∈ C(E1
T ), there exists an invariant intrinsic location func-

tional and a periodic stationary process with period 1, such that F is the distribution of

this invariant intrinsic location functional for such process.

Proof. It suffices to show that for any distribution F ∈ E1
T , there exists a periodic ergodic

process Y with period 1 such that F is the distribution of the unique location of the path

supremum for Y on [0, T ]. By Proposition 3.3.2, the density function of F , denoted by f ,

takes non-negative integer values and satisfies the condition (TV). As a result, f must be

a piecewise constant function and has a unique decomposition

f(t) =
m∑
i=1

I(ui,vi](t), (3.7)

where m can be infinity and the intervals are maximal, in the sense that for any i, j =

1, . . . ,m, (ui, vi] and (uj, vj] have only three possible relations:

(ui, vi] ⊂ (uj, vj], or (uj, vj] ⊂ (ui, vi], or [ui, vi] ∩ [uj, vj] = ∅.
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According to whether ui = 0 or vi = T , we call the intervals of the form (0, T ], (0, vi],

(ui, T ] and (ui, vi] the base, left, right and central block(s), respectively. Observe that

properties 1 and 2 in the definition of E1
T are equivalent to requiring that there is at least

one base block, and the number of the central blocks does not exceed the number of the

base blocks.

We construct the stationary process in spirit of Proposition 3.2.4. That is, first con-

struct a periodic deterministic function g, and then uniformly shift its starting point to get

Y (t) = g(t+U), where U is a uniform random variable on [0, 1]. Let m1 be the number of

the base blocks in the collection. We group the entire collection of blocks into m1 compo-

nents by assigning to each base block at most one central block, and assigning the left and

the right blocks in an arbitrary way. Assume a = F (0) > 0 and b = 1− F (T ) > 0. Let

d1 =
1

m1

a and d2 =
1

m1

b.

For j = 1, . . . ,m1, let

Lj = d1 + the total length of the blocks in the jth component + d2,

then
∑m1

i=1 Li = 1. Set g(0) = 2 and g(L1) = 2. Using the blocks of the first component,

we will define the function g on the interval (0, L1]. If the first component has l left blocks,

r right blocks and a central block, where l and r can potentially be infinity, we denote

them by (0, vj], j = 1, . . . , l, (uk, T ], k = 1, . . . , r and (u, v] respectively. The case where a

central block does not exist corresponds to letting u = v. Set

g

(
j−1∑
i=1

vi +

j∑
i=1

1

2i+1
d1

)
= g

(
j∑
i=1

vi +

j∑
i=1

1

2i+1
d1

)
= 1 + 2−j, j = 1, . . . , l, (3.8)

g

(
d1 +

l∑
i=1

vi

)
= g

(
d1 +

l∑
i=1

vi + v

)
= g

(
d1 +

l∑
i=1

vi + v + T − u

)
=

1

2
,

and

g

(
L1 −

j∑
i=1

1

2i+1
d2 −

j−1∑
i=1

(T − ui)

)
= g

(
L1 −

j∑
i=1

1

2i+1
d2 −

j∑
i=1

(T − ui)

)
= 1 + 2−j, j = 1, . . . , r. (3.9)
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Next, if the values of g at two adjacent points constructed above, t1 < t2, are equal, we join

them by a V-shaped curve satisfying some Lipschitz condition. We complete the function

g by filling in the other gaps with straight lines between adjacent points (with different

values). With the similar construction, we can also define g on the interval [Li, Li+1], for

i = 1, . . . ,m1−1. Then g is well defined on the interval [0, 1] and we extend g as a periodic

function with period 1. If a or b is equal to 0, we take (the càdlàg version of) the limit of

the corresponding construction with a ↓ 0 or b ↓ 0. We have a periodic ergodic process Y as

Y (t) = g(t+U) for t ∈ R, where U is uniformly distributed on [0, 1]. It is straightforward,

though lengthy, by tracking the value of L(g(t+ U), [0, T ]) as a function of U , to see that

the distribution of the location of the path supremum for Y is F . The proof is finally

complete with an application of ergodic decomposition.

Remark 3.4.8. Since the only random location used in the proof of Theorem 3.4.7 is the

location of the path supremum, we actually showed that the set of all possible distributions

for invariant intrinsic location functionals is contained in the set of possible distributions

solely for the location of path supremum. In this sense, the location of path supremum is

a representative of the invariant intrinsic location functionals. This fact is related to the

partially ordered random set representation of the intrinsic location functionals.

Remark 3.4.9. In the part of introduction we mentioned the question as whether every

relatively stationary process defined on an interval [0, T ] can always be extended to a

periodic stationary process with a given period T ′ > T . Proposition 3.4.4, together with

Theorem 3.4.7, gives a negative answer to this question. To see this, let T ′ = 1, and

consider the location of the path supremum denoted as τ . Let T ′′ > 1. As a result of

Theorem 3.4.7, a simple scaling shows that for a probability distribution F on [0, T ] with

its density function f on (0, T ), as long as f only takes values in positive multiples of 1
T ′′

and satisfies the variation constraint (TV ), there exists a periodic ergodic process X with

period T ′′, such that F is the distribution of τ over the interval [0, T ] for X. In particular,

the value of f(t) can be as small as 1
T ′′

for some t ∈ (0, T ). Consider X|[0,T ], the restriction

of X on [0, T ]. It is a relatively stationary process. Suppose it can be extended to a

periodic stationary process with period 1, denoted by Y. Then by Proposition 3.4.4, the

density of τ on (0, T ) for Y is bounded from below by 1. Since Y agrees with X|[0,T ] on

[0, T ], the lower bound 1 is also valid for X|[0,T ], hence X as well. This contradicts the fact
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that f(t) can take value 1
T ′′

. We therefore conclude that the relatively stationary process

X|[0,T ] does not have a stationary extension with period 1.

We now turn back to the second part of the proof of Theorem 3.3.6 which we promised

in the previous section.

Proof of Theorem 3.3.6, Part II. Recall that an intrinsic location functional L1 is defined

as follows:

L1(g, I) = inf

{
t ∈ I : g(t) = sup

s∈I
g(s), g(t) >

1

2

}
,

and our goal in this part is to show that for any probability distribution F ∈ ET such

that f(t) > 1 for all t ∈ (0, T ), there exists a periodic ergodic process with period 1 and

non-negative sample paths, such that F is the distribution of L1 on [0, T ] for that process.

Comparing the conditions for the distribution F and those for the distributions that

we constructed in Theorem 3.4.7, the only difference is that F allows a possible point

mass at ∞ while the distributions in Theorem 3.4.7 do not, because the location of the

path supremum will always exist for processes with upper semi-continuous paths. This

is the reason for which a modification is necessary. The way to construct the process

changes accordingly, but not much. More precisely, let F be our target distribution, with

possible point masses a and b at the two boundaries 0 and T , respectively. Additionally,

it has a possible point mass c at ∞. Since the case where c = 0 has been covered in the

proof of Theorem 3.4.7, here we focus on c > 0. Note that since f − 1 also satisfies the

variation constraint in this case, there exists at least one component which does not have a

central block. Set this component as the first component. The construction of the process

X(t) = g(t + U), hence the function g, goes exactly in the same way as in the proof of

Theorem 3.4.7, except for that now for this first component, instead of building the central

block by setting

g

(
d1 +

l∑
i=1

vi

)
= g

(
d1 +

l∑
i=1

vi + v

)
= g

(
d1 +

l∑
i=1

vi + v + T − u

)
=

1

2
,

we set

g

(
d1 +

l∑
i=1

vi

)
= g

(
d1 +

l∑
i=1

vi + T + c

)
=

1

2
,
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and join them using a V-shaped curve as in the other cases. The construction of the rest

of this component is shifted correspondingly. It is not difficult to verify that this part will

contribute the desired mass at ∞.

The variation constraint (TV) implies an upper bound for the density for intrinsic

location functionals and stationary processes:

fX
L,T (t) 6 max

(
1

t
,

1

T − t

)
, 0 < t < T. (3.10)

Moreover, such an upper bound was proved to be optimal (Samorodnitsky and Shen,

2013b). With periodicity and the invariance property, we can now improve the above

bound, and show that the improved upper bound is also optimal.

Proposition 3.4.10. Let L be an invariant intrinsic location functional, X be a periodic

stationary process with period 1, and T ∈ (0, 1]. Then the density fX
L,T satisfies

fX
L,T (t) 6 max

(
b1− T

t
c, b1− T

T − t
c
)

+ 2. (3.11)

Moreover, for any t ∈ (0, T
2
) such that 1−T

t
is not an integer and t ∈ [T

2
, T ) such that 1−T

T−t
is not an integer, there exists an invariant intrinsic location functional L and a periodic

stationary process X with period 1, such that the equality in (3.11) is achieved at t.

Proof. Let gXL,T (t) = fX
L,T (t) − 1, then for every 0 < t1 < t2 < T , the variation constraint

will be

TV(t1,t2)(g
X
L,T ) = TV(t1,t2)(f

X
L,T ) 6 fX

L,T (t1) + fX
L,T (t2) = gXL,T (t1) + gXL,T (t2) + 2.

Denote a = inf0<s6t g
X
L,T (s), b = inft6s<T g

X
L,T (s). For any given ε > 0, there exists u ∈ (0, t]

such that

gXL,T (u) 6 a+ ε,

and there exists v ∈ [t, T ) such that

gXL,T (v) 6 b+ ε.
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Note that

at+ b(T − t) 6
∫ T

0

gXL,T (s)ds =

∫ T

0

(fX
L,T (s)− 1)ds 6 1− T. (3.12)

Now applying the variation constraint to the interval [u, v], we have

a+ b+ 2ε > gXL,T (u) + gXL,T (v)

> |gXL,T (t)− gXL,T (u)|+ |gXL,T (v)− gXL,T (t)| − 2

> (gXL,T (t)− a− ε)+ + (gXL,T (t)− b− ε)+ − 2.

By the definition of a and b, a 6 gXL,T (t) and b 6 gXL,T (t). Letting ε→ 0, we have

gXL,T (t) 6 a+ b+ 1. (3.13)

Combining (3.12) and (3.13) leads to

gXL,T (t) 6 max

(
1− T
t

,
1− T
T − t

)
+ 1.

Then for every 0 < t < T , an upper bound of fX
L,T (t) is

fX
L,T (t) 6 max

(
1− T
t

,
1− T
T − t

)
+ 2.

By Proposition 3.3.2, fY
L,T takes integer values for any periodic ergodic process Y with

period 1. Through ergodic decomposition, we further have the upper bound:

fX
L,T (t) 6 max

(
b1− T

t
c, b1− T

T − t
c
)

+ 2.

It remains to prove that such upper bound can be approached. For any t ∈ (0, T
2
) such

that 1−T
t

is not an integer, define f by

f(s) =


1 + b1−T

t
c, s ∈ (0, t),

2 + b1−T
t
c, s ∈ [t, t+ ε),

1, s ∈ [t+ ε, T ),
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where ε is small enough so that
∫ T

0
f(s)ds 6 1. As f takes integer values and satisfies the

condition (TV ), by Theorem 3.4.7, there exists an invariant intrinsic location functional

L and a periodic ergodic stationary process with period 1 such that f is the density of L

for such process. By similar construction, we can also find an invariant intrinsic location

functional L and a periodic ergodic process with period 1 such that the density of L for such

process approaches b1−T
T−t c+2 at point t for t ∈ [T

2
, T ) satisfying 1−T

T−t is not an integer.

We end this section by comparing the upper bound (3.11) with the result (3.10) for

general stationary processes. For t 6 T
2
, the following inequality holds between these two

bounds:

max

{
b1− T

t
c, b1− T

T − t
c
}

+ 2 6
1− T
t

+ 2 6
1

t
= max

{
1

t
,

1

T − t

}
.

For t > T
2
,

max

{
b1− T

t
c, b1− T

T − t
c
}

+ 2 6
1− T
T − t

+ 2 6
1

T − t
= max

{
1

t
,

1

T − t

}
.

Therefore, the upper bound in (3.11) is always sharper than that in (3.10). The improve-

ment is most significant when T is close to 1 and t is close to 0 or T .

3.5 First-time intrinsic location functionals

In this section, we introduce another type of intrinsic location functionals called the

first-time intrinsic location functionals via the partially ordered random set representation.

Definition 3.5.1. An intrinsic location functional L is called a first-time intrinsic location

functional , if it has a partially ordered random set representation (S(X),�) such that for

any t1, t2 ∈ S(X), t1 6 t2 implies t2 � t1.

It is easy to see that the notion of the first-time intrinsic location functionals is a

generalization of the first hitting times. As its name suggests, it contains all the intrinsic

location functionals which can be defined as “the first time” that some condition is met.
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Proposition 3.5.2. Let X be a periodic stationary process with period 1, and L be a first-

time intrinsic location functional. Fix T ∈ (0, 1]. Then the density of L on (0, T ) for X is

non-increasing.

Proof. By ergodic decomposition, it suffices to prove the result for periodic ergodic process

X with period 1 having the representation X(t) = g(t+U), where U is a uniform random

variable on [0, 1]. Let (S,�) be a partially ordered random set representation for L. By a

similar argument as the discussion below (3.4), we have for t ∈ (0, T ),

f(t) = |{s ∈ S(g) ∩ (0, 1] : as > t, bs > T − t}| ,

where as = sup{∆s ∈ R : r � s for all r ∈ (s − ∆s, s) ∩ S(g)}, bs = sup{∆s ∈ R : r �
s for all r ∈ (s, s+∆s)∩S(g)}. By the definition of first-time intrinsic location functionals

and that of bs, we have

bs =∞, for any s ∈ S(g).

Thus for t1 6 t2,

f(t2) = |{s ∈ S(g) ∩ (0, 1] : as > t2}| and f(t1) = |{s ∈ S(g) ∩ (0, 1] : as > t1}| .

If there exists s ∈ S(g) ∩ (0, 1] such that as > t2, then as > t2 > t1, which means that

f(t1) > f(t2). As a result, f is non-increasing on the interval (0, T ).

For any first-time intrinsic location functional L and T 6 1, let IML,T be the collection of

the probability distributions of L on [0, T ] for all periodic stationary processes with period

1. Denote by EM
T the subset of ET consisting of the distributions with non-increasing

density functions on (0, T ) and no point mass at T . Then we have the following result of

the structure of IML,T , parallel to Section 4.

Proposition 3.5.3. IML,T is a convex subset of PT and IML,T ⊆ C(EM
T ).

The proof of Proposition 3.5.3 follows in a similar way to that of Theorem 3.3.5 and is

omitted.

As in the previous cases, the other direction also holds.
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Proposition 3.5.4. For any F ∈ C(EM
T ), there exists a first-time intrinsic location func-

tional and a periodic stationary process with period 1, such that F is the distribution of

this first-time intrinsic location functional for such process.

Proof. We can actually use a single first-time intrinsic location functional for the proof. For

example, let L(g, I) = L2(g, I) = inf{t ∈ I : g(t) = −1} as defined in the proof of Theorem

3.3.6. By ergodic decomposition, it suffices to show the result for distributions in EM
T .

Let F be a probability distribution in EM
T . Equivalently, F is a probability distribution

supported on [0, T ] ∪ {∞}, with a possible point mass a at 0, a possible point mass at

∞, and a non-increasing density function f which takes non-negative integer values. Our

goal is to show that there exists a periodic ergodic process with period 1 such that the

distribution of the first time reaching level −1 between 0 and T for such process is F .

For ease of exposition, assume the point masses at 0 and at ∞ are both positive. The

degenerate cases can be handled in a similar way. Since f is non-increasing on (0, T ) with

non-negative integer values, it can be written as

f(t) =
∞∑
i=0

I(0,ui)(t),

where ui > ui+1. Define si =
∑i

k=1 uk, i = 1, 2, ... and s0 = 0. Let

g(si) = −1, for i = 0, 1, . . .

In addition to s0, s1, . . . , we set g(t) = −1 for t ∈ [s∞, s∞+a] and g(1) = −1. Note that

since
∫ 1

0
f(t)dt 6 1, 0 6 s∞ 6 s∞+a 6 1. Next we join the consecutive points (si,−1) and

(si+1,−1), i = 0, 1, . . . using V-shaped curves satisfying some Lipschitz condition with, for

example, Lipschitz constant 1. Similarly, use a V-shaped curve to join (s∞ + a,−1) and

(1,−1). Therefore, we can construct a periodic deterministic function g with period 1, and

the required periodic ergodic process can be written as X(t) = g(t + U) for t ∈ R, where

U follows a uniform distribution on [0, 1]. It is then routine to check that the distribution

of L is exactly F by expressing the value of L as a function of U .

We have now all the pieces to complete the proof of Theorem 3.3.6.
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Proof of Theorem 3.3.6, Part III. Let F ∈ ET , and f be its density function on (0, T ).

Recall that our goal in this part is to show that if f is non-increasing with sup{t : f(t) >

0} < T , then for the intrinsic location functional L2(g, I) = inf{t ∈ I : g(t) = −1}, there

exists a periodic ergodic process X, such that F is the distribution of L2 on [0, T ] for X.

Note that since f(t) takes value 0 as t approaches T , by the definition of ET , F do not

have a point mass at T . As a result, F ∈ EM
T . Thus, by the proof of Proposition 3.5.4, F

is the distribution of L2 for some periodic ergodic process with period 1.

Denote by LM the set of first-time intrinsic location functionals. Let IMT =
⋃
L∈LM I

M
L,T

be the collection of all the possible distributions for first-time intrinsic location functionals

and periodic stationary processes with period 1 on [0, T ]. Denote by AMT the class of

probability distribution on (0, T ) with the properties that the corresponding density is

càdlàg and non-increasing. We would like to give a verification whether a function in AMT
is also in IMT . The recently developed concept of joint mixability (Wang et al., 2013) is

helpful.

In the following part, for any set A of distributions, we write f ∈d A, if there exists

F ∈ A such that f is the corresponding density part of F .

In the definition below, we slightly generalize the concept of joint mixability to the case

of possibly countably many distributions. In the following N is either a positive integer

or it is infinity. If N =∞, we interpret any tuple (x1, . . . , xN) as (xi, i = 1, 2, . . . ). Joint

mixability and intrinsic location functionals are connected in Proposition 3.5.6 below.

Definition 3.5.5. (Wang et al., 2013) SupposeN ∈ N∪{∞}. A random vector (X1, . . . , XN)

is said to be a joint mix if P (
∑N

i=1 Xi = C) = 1 for some C ∈ R. An N -tuple of distribu-

tions (F1, . . . , FN) is said to be jointly mixable if there exists a joint mix X = (X1, . . . , XN)

such that Xi ∼ Fi, i = 1, . . . , N .

Proposition 3.5.6. For any f ∈d AMT , let N = df(0+)e, and define the distribution

functions

Fi : R→ [0, 1], x 7→ min{(i− f(x)I{x<T})+, 1}I{x>0}, i = 1, . . . , N. (3.14)
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Then f ∈d IMT if there exists a random vector X = (X1, . . . , XN) such that Xi ∼ Fi,

i = 1, . . . , N and P (
∑N

i=1Xi 6 1) = 1. In particular, f ∈d IMT if (F1, . . . , FN) is jointly

mixable.

Proof. Suppose that there exists a random vector X = (X1, . . . , XN) such that Xi ∼ Fi,

i = 1, . . . , N and P (
∑N

i=1Xi 6 1) = 1. For x = (x1, . . . , xN) satisfying
∑N

i=1 xi 6 1, define

fx : [0, T ]→ R+, y 7→
N∑
i=1

I{y6xi}.

Obviously fx is a non-increasing function and we can check∫ T

0

fx(y)dy =
N∑
i=1

∫ T

0

I{y6xi}dy =
N∑
i=1

xi 6 1.

Thus, fx is a non-increasing function on [0, T ] taking values in N0,
∫ T

0
fx(y)dy 6 1, and

hence fx ∈d EM
T . Moreover, for y ∈ [0, T ],

E[fX(y)] = E

[
N∑
i=1

I{y6Xi}

]
= bf(y)c+ E

[
I{y6Xbf(y)c}

]
= bf(y)c+ (f(y)− bf(y)c) = f(y).

Therefore, we conclude that f ∈d IMT since it is a convex combination of fx.

Now suppose that (F1, . . . , FN) is jointly mixable. Then there exists a joint mix X =

(X1, . . . , XN) such that Xi ∼ Fi, i = 1, . . . , N and P (
∑N

i=1Xi = C) = 1 for some C ∈ R.

It suffices to verify that C 6 1, which follows from

C =
N∑
i=1

E[Xi] =
N∑
i=1

∫ T

0

(1− Fi(x))dx

=
N∑
i=1

∫ T

0

min{(f(x)− i+ 1)+, 1}dx =

∫ T

0

f(x)dx 6 1. (3.15)

This completes the proof.
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Remark 3.5.7. In this section, N might be infinity. It can be easily checked that in the

case of N =∞, the limit
∑N

i=1Xi in the above proof is well-defined since
∑N

i=1 E[Xi] 6 1

and Xi > 0, i = 1, . . . , N .

Corollary 3.5.8. For a given density function f ∈d AMT , if there exists a step function

g ∈d EM
T such that

g(t) > f(t), for all t ∈ (0, T ),

then f ∈d IMT .

Proof. For any f ∈d AMT , take N and Fi, i = 1, . . . , N as defined in Proposition 3.5.6. Let

X = (X1, . . . , XN) be a random vector such that Xi ∼ Fi, i = 1, . . . , N . Then we have

N∑
i=1

Xi 6
N∑
i=1

f−1(i− 1) 6
∫ T

0

g(t)dt 6 1

hold almost surely. Thus, f ∈d IMT by Proposition 3.5.6.

Corollary 3.5.9. Suppose that f ∈d AMT is convex on [0, T ] and

N∑
i=0

f−1(i) 6 1 + f−1(1). (3.16)

Then f ∈d IMT .

Proof. Let N = df(0+)e and Fi, i = 1, . . . , N be as in (3.14). Denote by µi the mean of Fi

for i = 1, . . . , N . Apparently Fi has a non-increasing density supported in [f−1(i), f−1(i−
1)] for each i = 1, . . . , N . By the convexity of f , we have

N∑
i=1

f−1(i) + max{f−1(i− 1)− f−1(i) : i = 1, . . . , N} =
N∑
i=0

f−1(i)− f−1(1) 6 1.

Since each Fi has non-increasing densities, conditions in Corollary 4.7 of Jakobsons et al.

(2016) are satisfied, giving that there exists X = (X1, . . . , XN) such that Xi ∼ Fi, i =

1, . . . , N and

ess-sup

(
N∑
i=1

Xi

)
= max

{
N∑
i=1

f−1(i) + max
i=1,...,N

{f−1(i− 1)− f−1(i)},
N∑
i=1

µi

}
6 1.

The corollary follows from Proposition 3.5.6.
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Remark 3.5.10. Formally, Corollary 4.7 of Jakobsons et al. (2016) only gives, for any ε > 0

and N ∈ N, the existence of X = (X1, . . . , XN) such that

ess-sup

(
N∑
i=1

Xi

)
< max

{
N∑
i=1

f−1(i) + max
i=1,...,N

{f−1(i− 1)− f−1(i)},
N∑
i=1

µi

}
+ ε.

A standard compactness argument would justify the case ε = 0 and N = ∞. Corollary

4.7 of Jakobsons et al. (2016) requires the joint mixability of non-increasing densities; see

Theorem 3.2 of Wang and Wang (2016). For f ∈d AMT , there is generally no constraints

(except for location constraints) on the distributions F1, . . . , FN . It is a difficult task to

analytically verify whether a given tuple of distributions is jointly mixable. For some other

known necessary and sufficient conditions for joint mixability, see Wang and Wang (2016).

Corollary 3.5.11. Suppose that f ∈d AMT is linear on its essential support [0, b] and

f(b) = 0. Then f ∈d IMT .

Proof. Obviously the slope of the linear function f on its support is not zero.

1.
∫ T

0
f(x)dx = 1. In this case, f is convex on [0, T ]. We only need to verify (3.16) in

Corollary 3.5.9. Since T < 1 and since f integrates to 1, we have N > 3. Note that,

from integration by parts and change of variables,
∫ N

0
f−1(t)dt =

∫ T
0
f(x)dx = 1. It

follows from the linearity of f that

N∑
i=0

f−1(i)− f−1(1) =
N∑
i=3

f−1(i) + f−1(0) + f−1(2)

=
N∑
i=3

f−1(i) +

∫ 2

0

f−1(t)dt

6
∫ N

2

f−1(t)dt+

∫ 2

0

f−1(t)dt = 1.

The desired result follows from Corollary 3.5.9.

2.
∫ T

0
f(x)dx < 1. This case can be obtained from a mixture of (a) and g ∈d EM

T where

g : [0, T ]→ {0}.

84



When
∫ T

0
f(x)dx < 1, we obtain a sufficient condition for f ∈d ATM to be f ∈d IMT using

Proposition 3.5.6 together with a result in Embrechts et al. (2015).

Corollary 3.5.12. For any f ∈d AMT , let N = df(0+)e. Then f ∈d IMT if

max
i=1,...,N

{f−1(i− 1)− f−1(i)} 6 1−
∫ T

0

f(x)dx.

Proof. Let Fi, i = 1, . . . , N be as in (3.14). Apparently Fi is supported in [f−1(i), f−1(i−1)]

for each i = 1, . . . , N . Denote L = max{f−1(i−1)−f−1(i) : i = 1, . . . , N}. From Corollary

A.3 of Embrechts et al. (2015), there exists a random vector X = (X1, . . . , XN) such that

Xi ∼ Fi, i = 1, . . . , N and

P

(∣∣∣∣∣
N∑
i=1

Xi −
N∑
i=1

E [Xi]

∣∣∣∣∣ 6 L

)
= 1.

From (3.15), we have
∑N

i=1 E [Xi] =
∫ T

0
f(x)dx and therefore,

P

(
N∑
i=1

Xi 6 1

)
> P

(
N∑
i=1

Xi 6 L+

∫ T

0

f(x)dx

)
= 1.
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Chapter 4

Noether Theorem for Random

Locations

4.1 Introduction

The famous Noether theorem in mathematical physics Noether (1918) shows that each

differentiable symmetry of a system corresponds to a corresponding conservation law. The

most important and immediate examples include translation in space and the conservation

of momentum, translation in time and the conservation of energy, rotation in space and

the conservation of angular momentum, etc. A thorough review of the Noether theorem

can be found in the book by Kosmann-Schwarzbach (Kosmann-Schwarzbach, 2011).

Since the last two decades of the twentieth century, various works have been carried out

to extend the Noether theorem to stochastic settings. Just to name a few, Yasue (Yasue,

1981) proposed a theory for stochastic calculus of variations, and got a corresponding gen-

eralization of the Noether theorem. Misawa (Misawa, 1994) considered the conservative

quantities and symmetry for stochastic dynamical systems described by certain type of

stochastic differential equations. Thieullen and Zambrini proved a version of the Noether

theorem, in which they associated a function giving a martingale to each family of transfor-

mations exhibiting certain symmetry (Thieullen and Zambrini, 1997b). They also extended
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the Noether theorem to diffusion processes in R3 whose diffusion matrix is proportional

to identity (Thieullen and Zambrini, 1997a). Entering the new century, van Casteren

(Van Casteren, 2003) obtained a version of the stochastic Noether theorem using the ideas

and backgrounds from stochastic control. More recently, Baez and Fong (Baez and Fong,

2013) considered Markov processes and found an analogy of the classical Noether theorem

in this setting. Along this direction, Gough, Ratiu and Smolyanov (Gough et al., 2015)

gave a Noether theorem for dissipative quantum dynamical semi-groups. Another scenario

where an external random force exists was studied by Luzcano and de Oca (Lezcano and

de Oca, 2018).

The random locations of stochastic processes exhibiting certain probabilistic symmetries

have been studied in a series of works in the past years. In Samorodnitsky and Shen

(2013a), Samorodnitsky and Shen introduced a large family of random locations called

“intrinsic location functionals”, which include the location of the path supremum, the

first/last hitting time to a fixed level, etc. It was shown that the distribution of any random

location in this family for a stationary process must satisfy a specific set of conditions.

Similar results were later established between a subclass of intrinsic location functionals and

stochastic processes with stationary increments (Shen, 2016). In Shen (2018), the stochastic

processes combining both a scaling symmetry and a stationarity of the increments were

studied, and it is shown that stronger conditions hold for the distribution of its path

supremum over an interval.

As the research of random locations progressed, it became clearer and clearer that

there is a general correspondence between probabilistic symmetries and classes of random

locations, such that the distributions of the random locations behave in a very specific

way under the corresponding symmetry. Indeed, it is not difficult to see that the setting

for the random locations of stochastic processes having probabilistic symmetries is similar

to the settings in which the Noether theorems hold, in that they are both systems with

infinitesimally generated symmetries. This observation leads to the question as whether a

result of the Noether type exists for the random locations. There is, however, a critical

difference: in the case of random locations, the symmetries are only in the distributional

sense. While the overall distribution of the processes, hence also the distributions of the

random locations, remain invariant after the corresponding transformations, the values
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of the locations do evolve after the transformations in each realization. As a result, the

mathematical tools used to derive the Noether theorems for deterministic systems can not

be applied to get similar results here. It turns out that the methods developed in the

literature previously mentioned are not helpful as well.

The goal of this chapter is, therefore, to provide a framework which contains the afore-

mentioned random locations and probabilistic symmetries as special cases, and in which a

Noether theorem can be established. To this end, we generalize the notion of random loca-

tion by dissociating it from the paths of stochastic processes. More precisely, the random

locations are no longer functionals of the paths as in Samorodnitsky and Shen (2013a);

Shen (2016, 2018), but special elements in a point process which may or may not be related

to a stochastic process in continuous time. Another point process is then constructed, and

we show that the distribution of the random locations can be expressed in terms of the

control measure of the latter point processes. Finally, a conservation law appears using a

function derived from the control measure.

The rest of this chapter is organized as follows. In section 4.2 we introduce the basic

settings and definitions, with examples making connections to the existing literature. In

section 4.3 we state and prove the main results, including the Noether theorem as a conser-

vation law when the interval of interest moves along a flow, and its consequences, such as

a constraint on the total variation of the density function of the random locations. Section

4.4 discusses the boundary and near-boundary behavior of the random locations.

4.2 Basic settings

Here and throughout the chapter, let I be the collection of all the non-degenerate

compact intervals on R. Let R̄ = R∪{∞}, and equip it with the σ-field B̄ = σ(B(R), {∞}).
That is, we treat∞ as a separate point and take the Borel σ-field of the extended topology.

Definition 4.2.1. A stochastic process {L(I)}I∈I indexed by compact intervals and taking

values in R̄ is called an intrinsic random location, if it satisfies the following conditions:

1. For every I ∈ I, L(I) ∈ I ∪ {∞}.
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2. (Stability under restriction) For every I1, I2 ∈ I, I2 ⊆ I1, if L(I1) ∈ I2, then L(I1) =

L(I2).

3. (Consistency of existence) For every I1, I2 ∈ I, I2 ⊆ I1, if L(I2) 6= ∞, then L(I1) 6=
∞.

Intuitively, the value∞ is typically used to deal with the case where a random location

is not well-defined on a given interval for certain realization. For example, if the random

location is defined as the first hitting time of a continuous-time stochastic process to certain

level, then it is possible that the process does not hit the level in the given interval. In this

case we will assign ∞ as the value of the random location.

Let ϕ = {ϕt}t∈R be a flow on R. That is, {ϕt}t∈R is a family of real-valued functions

defined on R, satisfying ϕ0 = Id and ϕs ◦ ϕt = ϕs+t for s, t ∈ R. We further assume that

ϕ(x, t) = ϕt(x) ∈ C1,1(R× R); (4.1)

the fixed points Φ0 := {x : ϕt(x) ≡ x} are isolated. (4.2)

In many cases, it will be convenient to consider the extended real line R ∪ {−∞,∞}
and the set of extended fixed points Φ̄0 = Φ0 ∪ {−∞,∞}. Two points α, β, α < β are

called consecutive in Φ̄0, if α, β ∈ Φ̄0, and (α, β)∩ Φ̄0 = φ. Note that since there is no fixed

point between α and β, and ϕ is continuous, ϕt(x) must be monotone in t for any fixed

x ∈ (α, β) and increasing in x for any fixed t ∈ R. In particular, for every fixed x ∈ (α, β),

ϕ·(x) is a bijection from R to (α, β).

An intrinsic random location is called ϕ-stationary, if its distribution is compatible

with the flow ϕ, more precisely, if ϕt(L([a, b]))
d
= L([ϕt(a), ϕt(b)]) for every t ∈ R and

a, b ∈ R, a < b. It is called stationary if the flow is the translation ϕt(x) = x+ t.

Remark 4.2.2. Due to the continuity of ϕ, a ϕ-stationary intrinsic random location, re-

stricted to the open interval between two consecutive extended fixed points of ϕ, can be

easily transformed into a stationary intrinsic random location using a transformation. More

precisely, let L be a ϕ-stationary intrinsic random location and α, β be two consecutive

points in Φ̄0. Fix any x0 ∈ (α, β). Then ϕt(x0) is a continuous monotone function in t
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with limt→−∞ ϕ
t(x0) = α and limt→∞ ϕ

t(x0) = β, or symmetrically, limt→−∞ ϕ
t(x0) = β

and limt→∞ ϕ
t(x0) = α. As a result, we can define a transform τ : (α, β)→ R by

ϕτ(x)(x0) = x.

That is, τ(x) is the time it takes to go from x0 to x following the flow ϕ, or from x to x0

if its value is negative. Note that we have identity between τ and ϕ:

τ(x) = τ((ϕt)−1(x)) + t (4.3)

for x ∈ (α, β) and t ∈ R.

Since τ is a bijection, its inverse τ−1 is well-defined. Define L′ by

L′(I) = τ(L(τ−1(I))), I ∈ I,

then it is elementary to check that such defined L′ is a stationary intrinsic random location.

Consequently, all the results regarding a ϕ-stationary intrinsic random location can be

transformed into corresponding results regarding stationary intrinsic random locations,

and we only need to prove the latter ones.

As explained in Introduction, the definition of intrinsic random location is motivated

by the random locations of stochastic processes studied in previous literature (Samorod-

nitsky and Shen, 2013a; Shen, 2016); Shen (2018). Therefore, it is not surprising that one

important way to obtain ϕ-stationary intrinsic random locations is through the stochastic

processes exhibiting some probabilistic symmetry under ϕ, and to define the random loca-

tion as a functional which is determined by the path of the process and compatible with ϕ.

For example, let the flow be the translation ϕt(x) = x + t. Correspondingly, we have the

(strictly) stationary processes as the family of processes whose distributions are invariant

under ϕ. In this case, let H be a space of functions closed under translation, equipped

with the cylindrical σ-field, and consider a mapping LH : I ×H → R̄ satisfying

1. LH(I, ·) : H → R̄ is measurable;

2. LH(I, f) ∈ I ∪ {∞} for every f ∈ H;
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3. For every I1, I2 ∈ I, I2 ⊆ I1 and every f ∈ H, if LH(I1, f) ∈ I2, then LH(I2, f) =

LH(I1, f);

4. For every I1, I2 ∈ I, I2 ⊆ I1 and every f ∈ H, if LH(I2, f) 6=∞, then LH(I1, f) 6=∞;

5. LH(I, f) = L(I − t, f ◦ ϕt) + t for any f ∈ H, where I − t := {x ∈ R : x+ t ∈ I}.

Conditions 2, 3 and 4 correspond to the three conditions in the definition for intrinsic

random locations, while condition 5 requires the random location to be compatible with

translation. Then it is easy to check that the random location L defined by

L(I)(ω) = LH(I,X(·, ω))

is a stationary intrinsic random location if X = {X(t, ω)}t∈R is a stationary process with

sample paths in H. Such a mapping like LH was introduced in Samorodnitsky and Shen

(2013a), where its relation to stationarity has also been studied in detail.

Other probabilistic symmetries of stochastic processes which can be used to define

intrinsic random locations stationary with respect to certain flow include self-similarity,

isometry (in higher dimension), stationarity of the increments, etc. They have been dis-

cussed respectively in the sequence of papers (Shen, 2016, 2013, 2018). Two cases are

special and worth some more attention.

First, even for the same ϕ, there can be various ways to construct ϕ-stationary intrinsic

random locations from stochastic processes. For instance, still consider the translation. If

instead of the distribution of the process, we only require the distribution of the increments

of the process to be translation invariant, then the resulting family of processes is the family

of processes with stationary increments, which is strictly larger compared to the family of

stationary processes. As a price for the relaxation of the condition on the side of processes,

a stronger assumption needs to be imposed to the mapping LH . More precisely, LH now

needs to be invariant under vertical shift of the path: LH(I, f) = LH(I, f+c) for any f ∈ H
and c ∈ R. It has been shown in Shen (2016) that similar results as in Samorodnitsky and

Shen (2013a) hold between such random locations and stochastic processes with stationary

increments.
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Second, different symmetries can be combined together. For instance, self-similarity by

itself does not give any new result in nature, due to the Lamperti transformation (see, for

example, Embrechts and Maejima (2002)). However, as shown in Shen (2018), when it is

combined with the stationarity of the increments, stronger distributional properties can be

derived for the random locations which are compatible with both scaling and translation.

It should be pointed out that although many ϕ-intrinsic random locations are defined

using certain continuous-time stochastic processes, such processes are not an indispensable

part of the construction. It is in this sense that the current framework is a generalization

of those used in previous works, where the definition of the random location does require

a continuous-time process.

Example 4.2.3. Let {(Xi, Yi)}i∈Z be a point process in R2, where Xi+1 − Xi are inde-

pendent and identically distributed positive random variables, and {Yi}i∈Z is a stationary

sequence. Then one can define random locations such as

L1(I) = sup{Xi : Xi ∈ I}

and

L2(I) = inf{Xi : Xi ∈ I, Yi = sup
j:Xj∈I

Yj},

where the tradition inf(φ) = sup(φ) = ∞ is used. Intuitively, among all the points with

the first coordinate in I, L1 takes the largest first coordinate, while L2 takes the first

coordinate of the point with the largest second coordinate. The infimum in the definition

of L2 is to deal with the case where the supremum is achieved in multiple points. If in

addition, we have P (Yi = Yj) = 0 for all i, j, then the infimum can be removed. It is easy

to check that both L1 and L2 are stationary intrinsic random locations.

The point process in example 4.2.3 can be regarded as a one-dimensional point process

{Xi}i∈Z in which each point Xi also gets a label Yi in a stationary way. The following

example is more “higher dimensional” and geometrical in nature.

Example 4.2.4. Consider a stationary random tessellation of R2 such as the Gilbert

tessellation. Let I ′ be a fixed compact interval. For any compact intervals I and I ′, among
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all the pieces of the tessellation for which the geometric center is located in I× I ′, take the

one with the largest area. Then the first or the second coordinate of its geometric center

is a stationary intrinsic random location indexed by I or I ′, respectively, if we again follow

the tradition to assign value ∞ when no piece has its center in I × I ′.

4.3 Main results

We start this section by introducing some preparatory results.

The stability under restriction property in Definition 4.2.1 implies the following trivial

comparison lemma.

Lemma 4.3.1. Let L be an intrinsic random location. Then for any I1, I2 ∈ I, I2 ⊆ I1

and any I ⊆ I2, P (L(I1) ∈ I) 6 P (L(I2) ∈ I).

Proof. By stability under restriction, L(I1) ∈ I ⊆ I2 implies L(I2) = L(I1) ∈ I, hence the

result.

The distribution of a stationary intrinsic random location L = L(I) is absolutely con-

tinuous in the interior of the interval I. Indeed, the next proposition does not only show

the absolute continuity, but also provides an upper bound for the density. It was first

proved in Samorodnitsky and Shen (2013a) for the stationary processes and random loca-

tions which are compatible with translation. Here we include a short proof for a modified

version for the sake of completeness.

Proposition 4.3.2. Let L be a stationary intrinsic random location. For any a < b and

0 < ε < min {x− a, b− x},

P (L([a, b]) ∈ (x, x+ ε]) 6 2εmax{ 1

x− a
,

1

b− x
}. (4.4)

Proof. Suppose that, to the contrary, (4.4) fails for some a, b, x and ε. That is,

P (L([a, b]) ∈ (x, x+ ε]) > 2εmax{ 1

x− a
,

1

b− x
}.
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Without loss of generality, assume x− a 6 b− x. Then

P (L([a, x]) ∈ (x− yi, x+ ε− yi]) = P (L([a+ yi, x+ yi]) ∈ (x, x+ ε])

> P (L([a, b]) ∈ (x, x+ ε])

> 2εmax{ 1

x− a
,

1

b− x
}

=
2ε

x− a

for yi = iε, i = 1, . . . , bx−a
ε
c. Since x−a

ε
> 1, bx−a

ε
c > x−a

2ε
. Hence we have

1 >

bx−a
ε
c∑

i=1

P (L([a, x]) ∈ (x− yi, x+ ε− yi])

> bx− a
ε
c 2ε

x− a
> 1.

Contradiction. A similar contradiction can be derived for the case where x − a > b − x.

Hence (4.4) is proved.

As a consequence of Proposition 4.3.2, we also have the following continuity result.

Lemma 4.3.3. Let L be a stationary intrinsic random location, then for any u, v ∈ R, u <
v, P (L([a, b]) ∈ [u, v]) is continuous in a and b for a < u and b > v.

Proof. By symmetry it suffices to prove P (L([a, b]) ∈ [u, v]) is continuous in a for a < u.

For ε ∈
(
0, u−a

2

)
, we have

0 6P (L([a+ ε, b]) ∈ [u, v])− P (L([a− ε, b]) ∈ [u, v])

=(P (L([a− ε, b]) ∈ [a− ε, u))− P (L([a+ ε, b]) ∈ [a+ ε, u)))

− (P (L([a+ ε, b]) ∈ (v, b])− P (L([a− ε, b]) ∈ (v, b]))

− (P (L([a+ ε, b]) =∞)− P (L([a− ε, b]) =∞))

6P (L([a− ε, b]) ∈ [a− ε, u))− P (L([a+ ε, b]) ∈ [a+ ε, u)),
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where the inequality comes from Lemma 4.3.1 and the consistence of existence property in

Definition 4.2.1. Also, by stationarity and Lemma 4.3.1,

P (L([a+ ε, b]) ∈ [a+ ε, u)) = P (L([a− ε, b− 2ε]) ∈ [a− ε, u− 2ε))

> P (L([a− ε, b]) ∈ [a− ε, u− 2ε)).

Hence

P (L([a+ ε, b]) ∈ [u, v])− P (L([a− ε, b]) ∈ [u, v])

6P (L([a− ε, b]) ∈ [a− ε, u))− P (L([a− ε, b]) ∈ [a− ε, u− 2ε))

=P (L([a− ε, b]) ∈ [u− 2ε, u)). (4.5)

By Proposition 4.3.2, P (L([a − ε, b]) ∈ [u − 2ε, u)) 6 P (L([a, b]) ∈ [u − 2ε, u)) → 0 as

ε→ 0. Thus we conclude that P (L([a, b]) ∈ [u, v]) is continuous in a for a < u.

In order to introduce a point process which will play an essential role in deriving the

main results, we first show that each intrinsic random location gives a partial order among

the potential values of the random location. Similar idea originated in Shen (2016). The

proof is however different due to the difference in settings. More precisely, let L be an

intrinsic random location. Define the random set S := {x ∈ R : x = L(I) for some I ∈ I}.
Define a binary relation “�” on S:

x � y if there exists I ∈ I, such that x, y ∈ I, L(I) = y.

Intuitively, x � y if both points are in an interval, and the location falls on y, not on x.

Lemma 4.3.4. � is a partial order.

Proof. It is easy to see that � is reflexive. It is antisymmetric since for any I containing x

and y and satisfying L(I) = x or L(I) = y, L(I) = L([x ∧ y, x ∨ y]) by the stability under

restriction property in Definition 4.2.1. As a result, x � y if and only if L([x∧y, x∨y]) = y.

Finally, if x � y and y � z, then by Definition 4.2.1,

L([x∧ y, x∨ y]∪ [y ∧ z, y ∨ z]) ∈ {L([x∧ y, x∨ y]), L([y ∧ z, y ∨ z])} = {y, z} ⊂ [y ∧ z, y ∨ z]

Again by the stability under restriction property, we must have L([x∧y, x∨y]∪[y∧z, y∨z]) =

L([y ∧ z, y ∨ z]) = z, hence x � z.
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For each x ∈ S, define lx := sup{y ∈ S : y < x, x � y} and rx := inf{y ∈ S : y > x, x �
y}. Intuitively, lx and rx are the farthest locations to the left and to the right of the point

x such that no point in S between this location and x has a higher order than x according

to �. It is easy to see that if in addition, there exists [a, b] ∈ I such that x = L([a, b])

and x ∈ (a, b), then lx 6 a < x and rx > b > x. Thus, for every such x, the point in R3

defined by εx := (lx, x, rx) falls in the area E := {(z1, z2, z3) : z1 < z2 < z3}. Let E be the

collection of such points, then the (random) counting measure determined by E , denoted

by ξ :=
∑

εx∈E δεx , forms a point process in E. Since lx < a, rx > b and x ∈ (a, b) implies

L([a, b]) = x, E has at most one point in (−∞, a)× (a, b)× (b,∞) for any a, b ∈ R, a < b,

hence the point process ξ is σ-finite. Denote by η its control measure, i.e., η(A) = E(ξ(A))

for any A ∈ B(E), where B(E) is the Borel σ-field on E.

Theorem 4.3.5. Let L be a stationary intrinsic random location, and η be the control

measure of the point process ξ just defined for L. Then for any a < u < v < b,

P (L([a, b]) ∈ [u, v]) = η((−∞, a)× (u, v)× (b,∞)) = η((−∞, a]× [u, v]× [b,∞)). (4.6)

Remark 4.3.6. Theorem 4.3.5 serves for three purposes. First, it builds a connection be-

tween the distribution of a stationary intrinsic random location and the control measure

of the point process related to it. Second, it also shows that the planes in E with one of

the three coordinates fixed are always null sets under η. As a result, one does not need to

pay special attention to the openness/closedness of the boundaries of the intervals for the

coordinates. Finally, since L is stationary, i.e., P (L([a, b]) ∈ [u, v]) = P (L([a+ c, b+ c]) ∈
[u+c, v+c]) for all a 6 u < v 6 b and c ∈ R, and the sets of the form (−∞, a]×[u, v]×[b,∞)

generate B(E), the Borel σ-field on E, the measure η is also invariant under translation

along the direction (1, 1, 1). We formulate this result as the following corollary, the proof

of which is obvious and omitted.

Corollary 4.3.7. Let A ∈ B(E). Then η(A) = η(A + c) for any c ∈ R, where A + c =

{(z1, z2, z3) : (z1 − c, z2 − c, z3 − c) ∈ A}.

Proof of Theorem 4.3.5. If x = L([a, b]) ∈ [u, v], then x ∈ S, lx 6 a, and rx > b. Note that

it is possible that lx = a (resp. rx = b), since a (resp. b) can be the limit of an increasing

(resp. decreasing) sequence of points in S with higher orders than x according to �, while
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the endpoint itself is not in S or does not have a higher order than x. Meanwhile, if there

exists x ∈ [u, v]∩S such that lx < a and rx > b, then we must have x = L([a, b]). Therefore,

P (L([a− ε, b+ ε]) ∈ [u, v]) 6 η((−∞, a)× [u, v]× (b,∞)) 6 P (L([a, b]) ∈ [u, v])

6η((−∞, a]× [u, v]× [b,∞)) 6 P (L([a+ ε, b− ε]) ∈ [u, v]).

The control measure η appears in the above expression because there can be at most one

point in E in the area (−∞, a]× [u, v]× [b,∞). In this case the expectation coincides with

the corresponding probability.

By Lemma 4.3.3,

lim
ε↓0

P (L([a− ε, b+ ε]) ∈ [u, v]) = lim
ε↓0

P (L([a+ ε, b− ε]) ∈ [u, v]),

hence we must have

η((−∞, a)× [u, v]× (b,∞)) = P (L([a, b]) ∈ [u, v]) = η((−∞, a]× [x, y]× [b,∞)). (4.7)

Finally, by Proposition 4.3.2, L([a, b]) is continuously distributed on (a, b), hence P (L([a, b]) ∈
[u, v]) is continuous in u and v, so is η((−∞, a)× [u, v]× (b,∞)). Therefore, η((−∞, a)×
[u, v]× (b,∞)) = η((−∞, a)× (u, v)× (b,∞)).

Our last preparation before proceeding to prove the main result of this chapter is the

following proposition.

For a stationary intrinsic random location L, a < u < v < b and any ε > 0, define

Mε,[u,v] = P (L([a, b]) ∈ [a, a+ ε), L([a+ ε, b+ ε]) ∈ [u, v])

and

Nε,[u,v] = P (L([a+ ε, b+ ε]) ∈ (b, b+ ε], L([a, b]) ∈ [u, v]).

Further define µε,[u,v] to be the conditional distribution of L([a+ ε, b+ ε]) given L([a, b]) ∈
[a, a + ε) and L([a + ε, b + ε]) ∈ [u, v], and νε,[u,v] to be the conditional distribution of

L([a, b]) given L([a + ε, b + ε]) ∈ (b, b + ε] and L([a, b]) ∈ [u, v], if Mε,[u,v] and Nε,[u,v] are
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strictly positive. If Mε,[u,v] = 0 or Nε,[u,v] = 0, define the corresponding µε,[u,v] or νε,[u,v] to

be the null measure.

Let µ(a,b) and ν(a,b) be measures on (a, b) (equipped with the Borel σ-field) given by

µ(a,b)([w, y)) = η ((z1, z2, z3) : z1 ∈ [a, a+ 1), z2 ∈ [z1 + w − a, z1 + y − a), z3 ∈ (z1 + b− a,∞))

(4.8)

and

ν(a,b)([w, y)) = η ((z1, z2, z3) : z1 ∈ (−∞, z3 + a− b), z2 ∈ [z3 + w − b, z3 + y − b), z3 ∈ (b, b+ 1])

(4.9)

for all w, y ∈ (a, b), w < y, where η is the control measure of the point process ξ corre-

sponding to L as defined previously. Denote by µ(a,b)|[u,v] and ν(a,b)|[u,v] the restriction of

the measures µ(a,b) and ν(a,b) on [u, v], respectively.

Proposition 4.3.8. Let L be a stationary intrinsic random location. For a < u < v <

b, let Mε,[u,v], Nε,[u,v], µε,[u,v] and νε,[u,v] be defined as above. Then 1
ε
Mε,[u,v]µε,[u,v] and

1
ε
Nε,[u,v]νε,[u,v] converge vaguely as ε→ 0 to µ(a,b)|[u,v] and ν(a,b)|[u,v], respectively.

Proof. By symmetry it suffices to prove the convergence for 1
ε
Mε,[u,v]µε,[u,v] as ε → 0. For

any ε ∈ (0, b− a), define measure λε on [a+ ε, b) by

λε(A) = P (L([a, b]) ∈ [a, a+ ε), L([a+ ε, b+ ε]) ∈ A), A ∈ B([a+ ε, b)),

then it is easy to see that for any ε < u− a and A′ ∈ B([u, v]),

Mε,[u,v]µε,[u,v](A
′) = P (L([a, b]) ∈ [a, a+ ε), L([a+ ε, b+ ε]) ∈ A′) = λε(A

′).

Hence it suffices to prove that 1
ε
λε([w, y)) converges to µ(a,b)([w, y)) for any w, y ∈ (a, b), w <

y.

Note that L([a, b]) ∈ [a, a + ε) and L([a + ε, b + ε]) ∈ [w, y) implies that there exists a

point x ∈ [w, y)∩S, such that lx ∈ [a, a+ ε] and rx ∈ [b+ ε,∞). Meanwhile, the existence

of a x ∈ [w, y) ∩ S satisfying lx ∈ (a, a + ε) and rx ∈ (b + ε,∞) would guarantee that

L([a, b]) ∈ [a, a+ ε) and L([a+ ε, b+ ε]) ∈ [w, y). Therefore, we have

η((a, a+ ε)× [w, y)× (b+ ε,∞)) 6 λε([w, y)) 6 η([a, a+ ε]× [w, y)× [b+ ε,∞)).
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By Theorem 4.3.5, the boundaries of the intervals are negligible under η. Hence

λε([w, y)) = η([a, a+ ε)× [w, y)× (b+ ε,∞)).

For ε = 1
n
, n ∈ N, by Corollary 4.3.7, we have

1

ε
η([a, a+ ε)× [w, y)× (b+ ε,∞))

=nη

([
a, a+

1

n

)
× [w, y)×

(
b+

1

n
,∞
))

=
n−1∑
i=0

η

([
a+

i

n
, a+

i+ 1

n

)
×
[
w +

i

n
, y +

i

n

)
×
(
b+

i+ 1

n
,∞
))

.

Note that the set

n−1⋃
i=0

([
a+

i

n
, a+

i+ 1

n

)
×
[
w +

i

n
, y +

i

n

)
×
(
b+

i+ 1

n
,∞
))

contains

{(z1, z2, z3) : z1 ∈ [a, a+ 1), z2 ∈ [z1 + w − a, z1 + y − a− ε) , z3 ∈ (z1 + b− a+ ε,∞)} ,

and is contained in

{(z1, z2, z3) : z1 ∈ [a, a+ 1), z2 ∈ [z1 + w − a− ε, z1 + y − a) , z3 ∈ (z1 + b− a,∞)} .

Moreover, these bounds naturally extend to the case where ε is any positive rational

number. Indeed, let ε = m
n

, m,n ∈ N. Then a similar reasoning as above leads to

η ({(z1, z2, z3) : z1 ∈ [a, a+m), z2 ∈ [z1 + w − a, z1 + y − a− ε) , z3 ∈ (z1 + b− a+ ε,∞)})

6
m

ε
η([a, a+ ε)× [w, y)× (b+ ε,∞))

6η ({(z1, z2, z3) : z1 ∈ [a, a+m), z2 ∈ [z1 + w − a− ε, z1 + y − a) , z3 ∈ (z1 + b− a,∞)}) .

Then by Corollary 4.3.7,

η ({(z1, z2, z3) : z1 ∈ [a, a+ 1), z2 ∈ [z1 + w − a, z1 + y − a− ε) , z3 ∈ (z1 + b− a+ ε,∞)})

6
1

ε
η([a, a+ ε)× [w, y)× (b+ ε,∞))

6η ({(z1, z2, z3) : z1 ∈ [a, a+ 1), z2 ∈ [z1 + w − a− ε, z1 + y − a) , z3 ∈ (z1 + b− a,∞)})
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for any positive rational ε > 0. Since 1
ε
η([a, a + ε) × [w, y) × (b + ε,∞)) is continuous in

ε, by the continuity of measure, we have

1

ε
η([a, a+ ε)× [w, y)× (b+ ε,∞))

→ η ((z1, z2, z3) : z1 ∈ [a, a+ 1), z2 ∈ [z1 + w − a, z1 + y − a), z3 ∈ (z1 + b− a,∞))

as ε → 0. This is exactly µ(a,b)|[u,v]([w, y)) defined in (4.8). The convergence to ν(a,b)|[u,v]

can be shown symmetrically.

We now prove the main result of this chapter. Denote by I̊ the interior of the compact

interval I, and let ϕ̇t(x) = ∂ϕ(x,t)
∂t
|x,t. In addition, for any flow ϕ on R satisfying Assump-

tions (4.1) and (4.2) and a given interval [a, b] between two consecutive extended fixed

points of ϕ, we define measures µ
(a,b)
ϕ and ν

(a,b)
ϕ as the pull-backs of µ(a,b) and ν(a,b) under

the bijection τ . More precisely, assuming that τ is increasing, then define measure µ
(a,b)
ϕ

on (a, b) by

µ(a,b)
ϕ ([w, y)) := η ((z1, z2, z3) : τ(z1) ∈ [τ(a), τ(a+ 1)),

τ(z2) ∈ [τ(z1) + τ(w)− τ(a), τ(z1) + τ(y)− τ(a)), τ(z3) ∈ (τ(z1) + τ(b)− τ(a),∞))

for all w, y ∈ (a, b), w < y. ν
(a,b)
ϕ is defined similarly. The case where τ is decreasing is

symmetric.

Theorem 4.3.9. Let ϕ be a flow on R satisfying Assumptions (4.1) and (4.2), and L be a

ϕ-stationary intrinsic random location. Let α, β be two consecutive points in Φ̄0. Then for

any I = [a, b] ⊂ (α, β), the distribution of L(I) is absolutely continuous in I̊, and it has a

càdlàg density function, denoted by f . Moreover, f satisfies

ϕ̇0(x2)f(x2)− ϕ̇0(x1)f(x1) = ν(a,b)
ϕ ((x1, x2])− µ(a,b)

ϕ ((x1, x2])

for any x1 6 x2, x1, x2 ∈ I̊.

Proof. By Remark (4.2.2), it suffices to prove the result for ϕt(x) = x + t, where ϕ̇0(x)

becomes the constant 1, and µ
(a,b)
ϕ and ν

(a,b)
ϕ are simply µ(a,b) and ν(a,b) defined before

Proposition 4.3.8.
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Let C∞C ((u, v)) be the set of smooth functions from R̄ to R with support in (u, v), and

g be any function in C∞C ((u, v)). By stationarity, for any ε > 0, we have

E[g(L([a+ ε, b+ ε]))] = E[g(L([a, b]) + ε)],

hence

E[g(L([a+ ε, b+ ε]))]− E[g(L([a, b]))] = E[g(L([a, b]) + ε)]− E[g(L([a, b]))]. (4.10)

Denote by F the distribution of L([a, b]), then the right hand side of (4.10) can be

rewritten as ∫ b

a

(g(s+ ε)− g(s))dF (s).

Since g is smooth and compactly supported, g′ is bounded, hence g is uniformly Lipschitz.

As a result, Dominated Convergence Theorem applies and we have

lim
ε→0

1

ε
(E[g(L([a, b]) + ε)]− E[g(L([a, b]))])

= lim
ε→0

1

ε

∫ b

a

(g(s+ ε)− g(s))dF (s)

=

∫ b

a

g′(s)dF (s) =

∫ v

u

g′(s)dF (s). (4.11)

For the left hand side of (4.10), we have

E[g(L([a+ ε, b+ ε]))]− E[g(L([a, b]))]

=E[g(L([a+ ε, b+ ε]));L([a, b]) ∈ [a, a+ ε)]− E[g(L([a, b]));L([a+ ε, b+ ε]) ∈ (b, b+ ε]]

+ E[g(L([a+ ε, b+ ε]));L([a, b]) ∈ [a+ ε, b]]− E[g(L([a, b]));L([a+ ε, b+ ε]) ∈ [a+ ε, b]],

where the notation E[X;A] stands for the expectation of X restricted on A, i.e., E[X;A] =

E[X1A]. Since g is supported on [u, v] ⊂ (a, b), for ε < u− a,

E[g(L([a+ ε, b+ ε]));L([a, b]) ∈ [a+ ε, b]]

=E[g(L([a+ ε, b+ ε]));L([a, b]) ∈ [a+ ε, b], L([a+ ε, b+ ε]) ∈ [a+ ε, b]]

=E[g(L([a, b]));L([a, b]) ∈ [a+ ε, b], L([a+ ε, b+ ε]) ∈ [a+ ε, b]]

=E[g(L([a, b]));L([a+ ε, b+ ε]) ∈ [a+ ε, b]],
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where the equality in the middle comes from the stability under restriction property of L.

Therefore, we have

E[g(L([a+ ε, b+ ε]))]− E[g(L([a, b]))]

=E[g(L([a+ ε, b+ ε]));L([a, b]) ∈ [a, a+ ε)]− E[g(L([a, b]));L([a+ ε, b+ ε]) ∈ (b, b+ ε]]

=E[g(L([a+ ε, b+ ε]));L([a, b]) ∈ [a, a+ ε), L([a+ ε, b+ ε]) ∈ [u, v]]

− E[g(L([a, b]));L([a+ ε, b+ ε]) ∈ (b, b+ ε], L([a, b]) ∈ [u, v]] (4.12)

=

∫ v

u

g(s)Mε,[u,v]dµε,[u,v](s)−
∫ v

u

g(s)Nε,[u,v]dνε,[u,v](s). (4.13)

Combining (4.13) with Proposition 4.3.8, we have

lim
ε→0

1

ε
(E[g(L([a+ ε, b+ ε]))]− E[g(L([a, b]))])

=

∫ v

u

g(s)d(µ(a,b) − ν(a,b))(s),

hence by (4.10) and (4.11),∫ v

u

g′(s)dF (s) =

∫ v

u

g(s)d(µ(a,b) − ν(a,b))(s)

for all g ∈ C∞C ((u, v)). This means, the signed measure on (u, v) given by d(ν(a,b) −
µ(a,b))(s) is a derivative of the measure given by dF (s) in the sense of generalized function.

(Generalized functions are alternatively called distributions. In this chapter we would use

the term “generalized functions” to avoid confusion with the probability distributions of

the random locations. Readers are referred to Barros-Neto (1973) for an overview of the

generalized functions.) Consequently, we have

F ((u, x]) =

∫ x

u

ν(a,b)((u, s])− µ(a,b)((u, s]) + c ds

for all x ∈ (u, v) and some constant c. As a result, F is differentiable on (u, v); its derivative,

denoted as f , satisfies

f(x) = ν(a,b)((u, x])− µ(a,b)((u, x]) + c,
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for almost all x in (u, v). It is easy to see that f is càdlàg on (u, v). Taking u ↓ a and v ↑ b
shows that F is absolutely continuous on (a, b), and f(x) = ν(a,b)((x0, x])−µ(a,b)((x0, x])+c,

x ∈ (a, b) is a càdlàg version of the density of F on (a, b). Here x0 is an arbitrary fixed

point in (a, b), and ν(a,b)((x0, x]) (resp. µ(a,b)((x0, x])) is understood as −ν(a,b)((x, x0]) (resp.

−µ(a,b)((x, x0])) when x < x0. Moreover, taking x = x0 leads to c = f(x0). Therefore, we

have

f(x) = f(x0) + ν(a,b)((x0, x])− µ(a,b)((x0, x]), x ∈ (a, b),

or alternatively,

f(x2)− f(x1) = ν(a,b)((x1, x2])− µ(a,b)((x1, x2]), x1, x2 ∈ (a, b), x1 6 x2.

We complete the proof by applying the change of variable given in Remark (4.2.2) for

general flow ϕ satisfying Assumptions (4.1) and (4.2).

A simple rewrite of the result in Theorem 4.3.9 gives rise to a conservation law when the

interval of interest moves according to the flow ϕ, which indicates clearly that what we ob-

tained is, by its nature, a Noether theorem. More precisely, consider a given interval [a0, b0]

between two consecutive extended fixed points, α and β, of ϕ. Let L be a ϕ-stationary

intrinsic random location. For any x ∈ (α, β) and t ∈ R such that x ∈ (ϕt(a0), ϕt(b0)),

denote by ft(x) the density of L([ϕt(a0), ϕt(b0)]) at point x. Moreover, define the single-

variable function K(y) = ν
(a0,b0)
ϕ ((x0, y]) − µ

(a0,b0)
ϕ ((x0, y]) for y ∈ (a0, b0), where x0 ∈

(a0, b0), and ν
(a0,b0)
ϕ ((x0, y]) (resp. ν

(a0,b0)
ϕ ((x0, y])) is understood as −ν(a0,b0)

ϕ ((y, x0]) (resp.

−ν(a0,b0)
ϕ ((y, x0])) for y < x0. Then we have

Corollary 4.3.10.

ϕ̇0(x)ft(x)−K((ϕt)−1(x))

is a constant for t satisfying x ∈ (ϕt(a0), ϕt(b0)).

Proof. Since L is ϕ-stationary, by the change of variable formula and (4.3),

ϕ̇0(x)ft(x) = f ′t(τ(x)) = f ′0(τ((ϕt)−1(x))) = ϕ̇0((ϕt)−1(x))f0((ϕt)−1(x)),
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where f ′t is the density function of the stationary intrinsic random location L′ defined by

L′(I) = τ(L(τ−1(I)))

on interval I = [τ(a0) + t, τ(b0) + t].

By Theorem 4.3.9, we have

ϕ̇0((ϕt)−1(x))f0((ϕt)−1(x))

=ϕ̇0(x0)f0(x0) + ν(a0,b0)
ϕ ((x0, (ϕ

t)−1(x)])− µ(a0,b0)
ϕ ((x0, (ϕ

t)−1(x)])

=ϕ̇0(x0)f0(x0) +K((ϕt)−1(x)),

hence

ϕ̇0(x)ft(x)−K((ϕt)−1(x)) = ϕ̇0(x0)f0(x0),

which is a constant for t satisfying x ∈ (ϕt(a0), ϕt(b0)).

Also as a consequence of Theorem 4.3.9, we have the following result, which shows

that the total variation of ϕ̇0(x)f(x) is bounded by its values and limits. Special cases for

stationary processes, processes with stationary increments and self-similar processes with

stationary increments have been studied in Shen (2013, 2016); Shen (2018).

Denote by TV+
(u,v)(f),TV−(u,v)(f) and TV(u,v)(f) the positive variation, negative varia-

tion and total variation of the function f on the interval (u, v), respectively. That is,

TV+
(u,v)(f) := sup

u<x1<···<xn<v

n−1∑
i=1

(f(xi+1)− f(xi))
+,

TV−(u,v)(f) := sup
u<x1<···<xn<v

n−1∑
i=1

(f(xi+1)− f(xi))
−,

and

TV(u,v)(f) := sup
u<x1<···<xn<v

n−1∑
i=1

|f(xi+1)− f(xi)|,

where the suprema are taken over all the partitions of (u, v). Define f(x−) = limy↑x f(y)

to be the left limit of a càdlàg function.
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Corollary 4.3.11. Let ϕ be a flow on R satisfying Assumptions (4.1) and (4.2), and L be

a ϕ-stationary intrinsic random location. Let α, β be two consecutive points in Φ̄0. Then

for any I = [a, b] ∈ I such that I ⊂ (α, β) and u, v ∈ (a, b), u < v, the càdlàg density

function f of L(I) on (a, b) satisfies

TV+
(u,v)(ϕ̇

0(·)f(·)) 6 ϕ̇0(v) min{f(v), f(v−)}, (4.14)

TV−(u,v)(ϕ̇
0(·)f(·)) 6 ϕ̇0(u) min{f(u), f(u−)}, (4.15)

and

TV(u,v)(ϕ̇
0(·)f(·)) 6 ϕ̇0(u) min{f(u), f(u−)}+ ϕ̇0(v) min{f(v), f(v−)}. (4.16)

Remark 4.3.12. One of the main results in Samorodnitsky and Shen (2013a) and Shen

(2016) was the so-called “total variation constraints”, which states that the density f

of the distribution of a random location compatible with translation, for stationary or

stationary increment processes, satisfies

TV+
(u,v)(f) 6 min{f(v), f(v−)},

TV−(u,v)(f) 6 min{f(u), f(u−)},

and

TV(u,v)(f) 6 min{f(u), f(u−)}+ min{f(v), f(v−)}.

Now it becomes clear that they are special cases of Corollary 4.3.11 where ϕt(x) = x + t,

hence consequences of the Noether theorem for random locations.

The proof of Corollary 4.3.11 mainly relies on the following proposition, which gives

upper bounds for the mass that µ(a,b) and ν(a,b) can put on an interval. For simplicity, the

proposition is presented using stationary intrinsic random locations. It is straightforward

to extend all the definitions and results to general ϕ-stationary intrinsic random locations

if needed.

Proposition 4.3.13. Let L be a stationary intrinsic random location. Under the same

setting as before, µ(a,b)([u, v]) 6 f(u−), ν(a,b)([u, v]) 6 f(v).
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Proof. Take v′ ∈ (v, b), then

µ(a,b)([u, v]) 6 µ(a,b)([u, v′)) = lim
ε→0

1

ε
Mε,[u,v′]µε,[u,v′]([u, v

′)) 6 lim sup
ε→0

1

ε
Mε,[u,v′],

since µε,[u,v′] is a probability measure.

On the other hand, by definition,

Mε,[u,v′] = P (L([a, b]) ∈ [a, a+ ε), L[a+ ε, b+ ε] ∈ [u, v′])

6 P (L([a, b]) ∈ [a, a+ ε), L[a+ ε, b] ∈ [u, v′])

= P (L([a+ ε, b]) ∈ [u, v′])− P (L([a, b]) ∈ [u, v′]).

Moreover, recall that by (4.5) and Lemma 4.3.1, we have, for ε small enough,

P (L([a+ ε, b]) ∈ [u, v′])− P (L([a, b]) ∈ [u, v′]) 6 P (L([a, b]) ∈ [u− ε, u)).

Hence

lim sup
ε→0

1

ε
Mε,[u,v′] 6 lim

ε→0

1

ε
P (L([a, b]) ∈ [u− ε, u)) = f(u−).

The bound for ν(a,b)([u, v]) can be derived symmetrically.

Proof of Corollary 4.3.11. For simplicity we only prove the result for ϕt(x) = x + t. The

general case then follows by the change of variable discussed in Remark 4.2.2.

In this case, by Theorem 4.3.9, we have

f(x2)− f(x1) = ν(a,b)((x1, x2])− µ(a,b)((x1, x2])

for any x1, x2 ∈ [u, v], x1 < x2.

Hence

(f(x2)− f(x1))+ 6 ν((x1, x2]).

Therefore, for any partition u < x1 < · · · < xn < v of (u, v),

n−1∑
i=1

(f(xi+1)− f(xi))
+ 6 ν((u, v]) 6 f(v)
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by Proposition 4.3.13. Taking supremum over all partitions of (u, v) on the left hand side

leads to

TV+
(u,v)(f) 6 f(v).

Moreover, since f is càdlàg, we also have

TV+
(u,v)(f) = lim

y↑v
TV+

(u,y)(f) 6 lim
y↑v

f(y) = f(v−),

hence

TV+
(u,v)(f) 6 min{f(v−), f(v)}.

The result for TV−(u,v)(f) can be proved symmetrically. Finally, adding the two inequalities

(4.14) and (4.15) gives (4.16).

4.4 Boundary and near-boundary behavior

In Section 4.3, we mainly focus on the behavior of the distribution of a ϕ-stationary

intrinsic random location L in the interior of the interval of interest I = [a, b]. We have

seem that a càdlàg density, denoted by f , exists on (a, b). Indeed, (4.4) gives an upper

bound for f(x), x ∈ (a, b). Such a bound, however, diverges as the x approaches a or b.

Moreover, there may also be point masses on the two boundaries of the interval, which

were not studied in Section 4.3. Now we provide these missing pieces by discussing the

boundary and near-boundary behavior of L.

For simplicity, in this section we always assume that L is a stationary intrinsic random

location. The results can be easily generalized to the case where L is ϕ-stationary.

Recall that S = {x ∈ R : x = L(I) for some I ∈ I}, lx = sup{y ∈ S : y < x, x � y} and

rx = inf{y ∈ S : y > x, x � y}, where “�” is the partial order determined by L. For any

T > 0, define Sl,T := {x ∈ S : lx = x, rx > x+T} and Sr,T := {x ∈ S : rx = x, lx 6 x−T}.
Denote by Leb(·) the Lebesgue measure on R. Then we have

Proposition 4.4.1. For I = [a, b],

P (L(I) = a) = P (a ∈ Sl,b−a) = E(Leb(Sl,b−a ∩ [0, 1))), (4.17)

P (L(I) = b) = P (b ∈ Sr,b−a) = E(Leb(Sr,b−a ∩ [0, 1))). (4.18)
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Proof. By symmetry, it suffices to prove 4.17. Note that for x ∈ S, lx = x, rx > x + b− a
implies that L([x, x+ b− a]) = x, which in turn implies that lx 6 x, rx > x+ b− a. Hence

we have

P (a ∈ S, la = a, ra > b) 6 P (L([a, b]) = a) 6 P (a ∈ S, la 6 a, ra > b).

However,

P (a ∈ S, la < a, ra > b) = η((−∞, a)× {a} × [b,∞)) = 0,

since the plane with the second coordinate fixed is a η−null set, according to Theorem

4.3.5. Therefore for ε > 0,

P (L([a, b+ ε]) = a) 6 P (a ∈ S, la = a, ra > b)

6 P (L([a, b]) = a) 6 P (a ∈ S, la = a, ra > b) 6 P (L([a, b− ε]) = a). (4.19)

Next, by a similar reasoning as in the proof of Lemma 4.3.3, P (L([a, b]) = a) is continuous

in b for b > a. Indeed, for b′ > b,

P (L([a, b]) = a)− P (L([a, b′]) = a)

=P (L([a, b′]) ∈ (b, b′))− [P (L([a, b] ∈ (a, b)))− P (L([a, b′]) ∈ (a, b))]

− [P (L([a, b]) = b)− P (L([a, b′]) = b′)]− [P (L([a, b]) =∞)− P (L([a, b′]) =∞)]

6P (L([a, b′]) ∈ (b, b′)) 6 P (L([a+ b′ − b, b′]) ∈ (b, b′)) = P (L([a, b]) ∈ (2b− b′, b))→ 0

as b′ ↓ b, where the inequalities follow from Lemma 4.3.1, and the convergence is due to

the existence of a density of L([a, b]) on (a, b) given by Theorem 4.3.9.

Thus, we have P (L(I) = a) = P (a ∈ Sl,b−a) by taking ε→ 0 in (4.19) and applying the

continuity result proved above. The second equality in (4.17) then follows naturally by the

fact that P (x ∈ Sl,b−a) is a constant in x, due to the equality P (L(I) = a) = P (a ∈ Sl,b−a)
and the fact that L is a stationary intrinsic random location.

We now turn to the near-boundary behavior of the distribution of L(I), I = [a, b].

More precisely, we would like to know when the density f(x) will explode as x approaches
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the boundaries of the interval I. Clearly, by Theorem 4.3.9, limx↓a f(x) =∞ if and only if

µ(a,b)((a, x0]) =∞ for some (equivalently, any) x0 ∈ (a, b). By (4.8), this means

η({(z1, z2, z3) : z1 ∈ [a, a+ 1), z2 ∈ (z1, z1 + x0 − a], z3 ∈ (z1 + b− a,∞)}) =∞. (4.20)

Similarly, limx↑b f(x) =∞ if any only if

η({(z1, z2, z3) : z1 ∈ (−∞, z3 + a− b), z2 ∈ (z3 + x0 − b, z3), z3 ∈ (b, b+ 1]}) =∞. (4.21)

Define set

S1 := {x ∈ [0, 1) : lx < x, rx > x, rx − lx > b− a},

then (4.20) or (4.21) would require E(|S1|) =∞, where |S1| is the cardinal number of S1,

with the convention that | · | = ∞ for any infinite set. Indeed, assume (4.20) holds for

example. Then by Corollary 4.3.7 and taking x0 = min{a+ 1
2
, b}, (4.20) holds if and only

if

2η({(z1, z2, z3) : z1 ∈ [a, a+ 1/2) , z2 ∈ (z1, z1 + min{1/2, b− a}] , z3 ∈ (z1+b−a,∞)}) =∞.
(4.22)

Since the set {(z1, z2, z3) : z1 ∈ [a, a+ 1/2) , z2 ∈ (z1, z1 + min{1/2, b− a}] , z3 ∈ (z1 + b −
a,∞)} is a subset of {(z1, z2, z3) : z1 < z2, z2 ∈ [a, a + 1), z3 > z2, z3 − z1 > b − a}, (4.22)

implies that the latter set must also have measure ∞ under η. Then

η({(z1, z2, z3) : z1 < z2, z2 ∈ [0, 1), z3 > z2, z3 − z1 > b− a}) = E(|S1|) =∞

by Corollary 4.3.7.

Although not necessary, one direct and simple way leading to E(|S1|) =∞ is, of course,

to have S1 to be infinite with positive probability. The next proposition gives a necessary

and sufficient condition for S1 to be infinite.

Proposition 4.4.2. The set S1 has infinite number of elements if and only if at least one

of the following four scenarios is true:

(1) There exists an increasing sequence {xn}n=1,2,... in S ∩ [0, 1), such that for each n,

xn+1 � xn, lxn < xn, and rxn > xn + b− a;
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(2) There exists an decreasing sequence {xn}n=1,2,... in S ∩ [0, 1), such that for each n,

xn � xn+1, lxn < xn, and rxn > xn + b− a;

(3) There exists an decreasing sequence {xn}n=1,2,... in S ∩ [0, 1), such that for each n,

xn+1 � xn, rxn > xn, and lxn 6 xn − b+ a;

(4) There exists an increasing sequence {xn}n=1,2,... in S ∩ [0, 1), such that for each n,

xn � xn+1, rxn > xn, and lxn 6 xn − b+ a.

Proof. The “if” part is trivial. For the “only if” part, assume |S1| =∞. Then there exists

a monotone sequence of points in S1. Without loss of generality, assume the sequence is

increasing, and denote it by {xn}n=1,2,..., with limn→∞ xn = x∞, which is not necessarily in

S1. Moreover, x1 can be chosen so that x∞ − x1 < b− a.

Next, the sequence can be taken such that for any n = 1, 2, ..., either xn � xn+1 or

xn � xn+1, which is not trivial since “�” is only a partial order. To see this, consider the

set of indices J = {j : xj � xj+1, xj � xj+1}. For any n ∈ J , let yn = L([xn, xn+1]), then

yn ∈ (xn, xn+1). As such, we have rxn 6 yn. By the definition of S1, this implies that

lyn 6 lxn < rxn − (b − a) 6 yn − (b − a). Symmetrically, ryn > yn + (b − a). This means,

for any n1, n2 ∈ J , |yn1 − yn2| > b− a, which guarantees that J is a finite set. Taking the

subsequence of {xn} starting from n0 = max{j : j ∈ J}+ 1 gives a new sequence for which

either xn � xn+1 or xn � xn+1.

For such a sequence, it is clear that for any n > 2, xn � xn−1 and xn � xn+1 can not

hold at the same time, since otherwise rxn − lxn 6 xn+1 − xn−1 < b− a, implying that xn

can not be in S1. Thus, either {xn}n=1,2,... is monotone according to �, or there exists n0,

such that x1 � x2 � · · · � xn0 and xn0 � xn0+1 � . . . . As a result, there always exists

a subsequence of {xn}n=1,2,..., still denoted as {xn}n=1,2,... by a slight abuse of notation,

which is monotone according to �. Next we discuss the two possible cases.

Case 1: xn+1 � xn for any n. In this case note that lxn ∈ [xn−1, xn), hence limn→∞ lxn =

x∞. Moreover, since xn is decreasing in n according to � and rxn > lxn + b − a >

xn−1 + b− a > x∞ for any n > 2, rxn is non-increasing in n for n > 2. Therefore,

rxn > lim
n→∞

rxn > lim
n→∞

lxn + b− a = x∞ + b− a > xn + b− a
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for n = 2, .... Thus, scenario (1) in the proposition holds for {xn}n=2,3,....

Case 2: xn � xn+1 for any n. Then rx1 < x∞, hence lx1 < x∞ − b + a. By a similar

reasoning as in case 1, lxn is non-increasing in n, so lxn 6 lx1 . Recall that xn is increasing

and limn→∞ xn = x∞, therefore, there exists n0, such that x∞ − xn < x∞ − b+ a− lx1 for

any n > n0, which implies lxn 6 lx1 < xn − b + a for n > n0. Taking the subsequence of

{xn}n=1,2,... starting from xn0 leads to scenario (4).

Scenarios (2) and (3) can be derived symmetrically by assuming that the sequence

{xn}n=1,2,... is decreasing.

With Proposition 4.4.2 proved, it is then obvious that scenarios (1) and (2) corre-

sponds to the explosion of the density f near the boundary a, while scenarios (3) and (4)

corresponds to the explosion of f near the boundary b.

Corollary 4.4.3. Under the same setting as in Proposition 4.4.2, (1) or (2) implies that

limx↓a f(x) =∞, (3) or (4) implies that limx↑b f(x) =∞.

Proof. We prove that scenario (1) implies limx↓a f(x) =∞. The other cases are similar.

In scenario (1), for any n > 2, 0 6 xn−1 6 lxn < xn < 1, and rxn > xn+b−a > lxn+b−a.

Moreover, xn − lxn 6 xn − xn−1 → 0 as n→∞. Hence scenario (1) happens with positive

probability implies that

η({(z1, z2, z3) : z1 ∈ [z2 −∆, z2), z2 ∈ [0, 1), z3 ∈ (z1 + b− a,∞)}) =∞

for any ∆ > 0. In particular,

η({(z1, z2, z3) : z1 ∈ [z2 − x0 + a, z2), z2 ∈ [0, 1), z3 ∈ (z1 + b− a,∞)}) =∞.

Note that

{(z1, z2, z3) : z1 ∈ [z2 − x0 + a, z2), z2 ∈ [0, 1), z3 ∈ (z1 + b− a,∞)}
⊂{(z1, z2, z3) : z1 ∈ [−x0 + a, 1), z2 ∈ (z1, z1 + x0 − a], z3 ∈ (z1 + b− a,∞)}.
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Thus (4.20) holds:

η({(z1, z2, z3) : z1 ∈ [a, a+ 1), z2 ∈ (z1, z1 + x0 − a], z3 ∈ (z1 + b− a,∞)})

=
1

1 + x0 − a
η({(z1, z2, z3) : z1 ∈ [−x0 + a, 1), z2 ∈ (z1, z1 + x0 − a], z3 ∈ (z1 + b− a,∞)})

=∞,

where the first equality follows from Corollary 4.3.7.

As an application of Proposition 4.3.2 and Corollary 4.4.3, consider the location of

the path supremum of a stochastic process X = {X(t)}t∈R with continuous sample paths,

formally defined as

τX,I := inf{t ∈ I : X(t) = sup
s∈I

X(s)}.

The infimum is used to choose the leftmost point among all the points where sups∈I X(s)

is achieved, in the case where there are more than one such point. If we further assume

that

Assumption U. For any I ∈ I,

P (there exist t1, t2 ∈ I, t1 6= t2, such that X(t1) = X(t2) = sup
s∈I

X(s)) = 0,

i.e., the location of the path supremum is almost surely unique, then the infimum in the

definition of τX,I can be removed.

Most of the commonly used processes do satisfy Assumption U. It is proved in Kim

and Pollard (1990) that for a Gaussian process X, Assumption U holds if and only if

V ar(X(t)−X(s)) 6= 0 for any s 6= t. A necessary and sufficient condition for more general

processes with continuous sample paths can be found in Pimentel (2014).

Note that in the case of the location of the path supremum, the random set S, as

defined before Lemma 4.3.4, takes the form

S = {t : there exists ∆ > 0, such that X(t) = sup
s∈[t−∆,t]

X(s) or X(t) = sup
s∈[t,t+∆]

X(s)},

and the partial order � is the natural order of the value of the process X(t).
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Corollary 4.4.4. Let X = {X(t)}t∈R be a stochastic process with continuous sample paths

and stationary increments. Assume X satisfies Assumption U. If the local maxima of X

is dense in [a, b] with positive probability, then the density of τX,I , denoted by f , satisfies

limt↓a f(t) =∞ or limt↑b f(t) =∞.

Proof. By the stationarity of the increments, it suffices to prove the results for the case

where a = 0. Denote by D the event that the local maxima of X is dense. Let τ ′ = τX,[0,4b],

then rτ ′ − lτ ′ > 4b. Therefore, P (D, rτ ′ − τ ′ > 2b) > 0 or P (D, τ ′− lτ ′ > 2b) > 0. Without

loss of generality, assume that P (D, rτ ′ − τ ′ > 2b) > 0. As a result,

P (D, there exists t ∈ S ∩ [0, 4b], rt − t > 2b) > 0,

hence also

P (D, there exists t ∈ S ∩ [0, b), rt − t > 2b) > 0

by the stationarity of the increments.

Let t∞ = τX,[0,b]. From now on we focus on the event

{D, there exists t ∈ S ∩ [0, b), rt − t > 2b}.

In this case, t∞ = τX,[0,2b] < b, and rt∞ > 2b. By Assumption U, there exists ε ∈ (0, b−t∞),

such that infs∈[t∞,t∞+ε] X(s) > sups∈[b,2b] X(s). For n = 1, 2, ..., let tn = τX,[t∞+ 1
n+1

ε,2b].

Then tn is a non-increasing sequence satisfying limn→∞ tn = t∞, and X(tn) 6 X(tn+1) for

all n. Moreover, since

sup
s∈[t∞+ 1

n+1
ε,b]

X(s) > sup
s∈[t∞+ 1

n+1
ε,t∞+ε]

X(s) > sup
s∈[b,2b]

X(s),

tn ∈ [t∞ + 1
n+1

ε, b], and rtn > 2b > tn + b. By removing all equal terms in {tn}n=1,2,...

and all the terms in {tn}n=1,2,... at which the values of X are equal, we get a decreasing

sequence {tn}n=1,2,..., satisfying limn→∞ tn = t∞ and X(tn) < X(tn+1), hence tn � tn+1,

for all n. Since the local maxima are dense and the sample paths are continuous, such

a sequence can be approached by a sequence of local maxima {t′n}n=1,2,..., while all the

properties derived above still hold. In addition, as all the points in the new sequence are

local maxima, we have lt′n < t′n, n = 1, 2, .... By the stationarity of the increments, this is
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scenario (2) in Proposition 4.4.2. Symmetrically, if P (τ ′ − lτ ′ > 2b) > 0, then scenario (4)

in Proposition 4.4.2 happens with positive probability.

The following result is a direct application of Corollary 4.4.4 and Proposition 4.3.2.

The processes for which the result applies include Brownian motion, Ornstein-Uhlenbeck

processes, or more generally, any process {X(t)}t>0 satisfying Assumption U and of the

form

X(t) =

∫ t

0

Y (s)dBs,

where {Y (t)}t>0 is a predictable stationary process which is independent of the standard

Brownian motion {Bt}t>0, and for which the above stochastic integral is well-defined.

Corollary 4.4.5. Let X = {X(t)}t>0 be a continuous semimartingale with stationary

increments, satisfying Assumption U. Assume that the local martingale part of X almost

surely does not have any flat part. For any I = [a, b] ∈ I, let τX,I be defined as previously,

and f be its density on (a, b). Then P (τX,I = a) = P (τX,I = b) = 0, and limt↓a f(t) +

limt↑b f(t) =∞.

Proof. Since the X is a semimartingale and has a local martingale part which is nowhere

flat, it is of unbounded variation over any interval, hence the local maxima and the lo-

cal minima of X are almost surely dense in any interval. Thus, Corollary 4.4.4 applies.

Moreover, also because of the unbounded variation and the continuity of the path, with

probability 1, a is an accumulation point, both from the left and from the right, of the level

set {t ∈ R : X(t) = X(a)}. As a result, for any ε > 0, there exists t ∈ (a, a+ ε], such that

X(t) > X(a). If the equality holds for all such t ∈ (a, b], then Assumption U is violated.

Hence almost surely there exists t ∈ (a, b] such that X(t) > X(a). Thus, P (τX,I = a) = 0.

The case for the right boundary b is symmetric.
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Chapter 5

Future Works

In Chapter 2, we proposed a sufficient and necessary condition for the compatibility

of probability measures on a probability space with their corresponding distributions on

the real line. In Chapter 3, we studied the existence of a periodic stationary process

such that the distribution of an intrinsic location functional for this process coincides with

given distribution. In Chapter 4, we gave a unified framework for random locations with

probabilistic symmetries. In this chapter, we are mainly focused on three future directions:

random locations for exchangeable processes, random locations, especially the location of

the path supremum, of max-stable processes, and large deviation of the maximum for

stochastic processes.

5.1 Random locations for exchangeable processes

In this part we will study another probabilistic symmetry: exchangeability. For 0 6

a 6 b, let transposition Ta,b(t) be

Ta,b(t) =


t+ b− a, t 6 a,

t− a, t ∈ (a, b],

t, t > b.
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An R-valued process X on R+ with X0 = 0 is said to be exchangeable if X ◦ T−1
a,b

d
= X for

all a, b ∈ R+. Here the notation

(X ◦ f−1)t =

∫
I{s∈R,f(s)6t}dXs, for t ∈ R.

I plan to work on the properties of a subclass of intrinsic location functionals for ex-

changeable processes. Conversely, I will proceed to characterizing the exchangeability for

stochastic processes using this family of random locations. More precisely, for any intrinsic

location functional, a partially ordered random set representation was proposed in Shen

(2016). Consider the intrinsic location functionals whose corresponding partial order at

each point solely depends on a small neighbourhood of this point. It should not be difficult

to show that the distribution of such intrinsic location for any exchangeable process on a

compact interval converges to the uniform distribution on this interval, as the length of

the neighbourhood goes to 0.

For the other direction, I expect to propose sufficient conditions for the exchangeability

of stochastic processes using the distribution of a certain set of random locations. For sim-

plicity, I will start with point processes and further extend the results to general continuous

processes.

5.2 Max-stable processes

Max-stable processes arise as the limit of maxima of independent and identically dis-

tributed processes, under appropriate normalization. The theoretical properties of max-

stable processes have been extensively studied, including the finite dimension distribution,

connection with Poisson point processes, the spectral representations and association with

α-stable processes (De Haan, 1984; Stoev and Taqqu, 2005), while little attention has been

paid to the random locations of these processes. Thus, it will be interesting to see how

the random locations are distributed for the max-stable processes, with special attention

to the random locations naturally related to the maximum, such as the location of the

path supremum over an interval. With the spectral representation, I can start with the
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location of the path supremum of each component over an interval, and hopefully I can dis-

cover interesting results for some special max-stable processes, such as moving maximum

processes, extremal Gaussian processes and Brown-Resnick processes. Another interesting

aspect of max-stable processes is stationarity. For the stationarity of a max-stable pro-

cess, Engelke and Kabluchko (2016) explores a special form of η(t) = maxi∈N Uie
<Xi,t>−κ(t),

where {Ui, i ∈ N} are Poisson processes, {Xi, i ∈ N}, are independent copies of a random

vector X, and κ : Rd → R is a function. I am interested in the stationarity of more general

max-stable processes, and will try to come up with a set of simple sufficient and necessary

conditions.

5.3 Large deviation of the maximum for stochastic

processes

Large deviation theory has been developed in various fields, ranging from queuing the-

ory to statistics and from interacting particle systems to superexponential estimates, see

Varadhan (2008) for a survey of large deviation. In risk models, for example, large devi-

ation principles are widely used to estimate the asymptotic behavior and the exponential

rate of the total claims probability (Klüppelberg and Mikosch, 1997; Tang et al., 2001).

I am interested in the application of large deviation principles to the maximum of the

stochastic processes, which is naturally related to the problems about the random loca-

tions discussed in previous chapters, including the location of the path supremum, the first

hitting time to high levels, etc. For example, for a stochastic process, one can consider

how the distributions of first hitting times to a level over an interval evolve when both the

length of the interval and the level grow to infinity in an appropriate way. I expect that

large deviation principles to be a powerful tool to investigate the asymptotic behaviors

of the set of first hitting times. This can be regarded as a compatibility problem of the

distributions of this random location with extreme values and larger and larger intervals.
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