
An Integrated Model of Context,
Short-Term, and Long-Term Memory

by

Jan Gosmann

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2018

© Jan Gosmann 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision
of the Examining Committee is by majority vote.

External Examiner Marc Howard
Professor

Supervisor Chris Eliasmith
Professor

Internal Member Bryan Tripp
Associate Professor

Internal-external Member Jeff Orchard
Associate Professor

Internal-external Member Sue Ann Campbell
Professor

iii

This thesis consists of material all of which I authored or co-authored: see
Statement of Contributions included in the thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

v

Statement of Contributions

Chapter 10 (excluding Section 10.4) paraphrases a conference submission that
was co-authored by myself, a PhD student Aaron R. Voelker, and my supervisor,
Dr. Chris Eliasmith (Gosmann, Voelker, and Eliasmith 2017). Appendix C is
a verbatim copy from the supplementary material accompanying the same
paper. I implemented the network models, performed the benchmarks, and
data analysis. Mr. Voelker contributed the mathematical analyses.

vii

Abstract

I present the context-unified encoding (CUE) model, a large-scale spiking neu-
ral network model of human memory. It combines and integrates activity-based
short-term memory with weight-based long-term memory. The implemen-
tation with spiking neurons ensures biological plausibility and allows for
predictions on the neural level. At the same time, the model produces be-
havioural outputs that have been matched to human data from serial and free
recall experiments. In particular, well-known results such as primacy, recency,
transposition error gradients, and forward recall bias have been reproduced
with good quantitative matches. Additionally, the model accounts for the
effects of the acetylcholine antagonist scopolamine, and the Hebb repetition
effect.

The CUE model combines and extends the ordinal serial encoding (OSE)
model, a spiking neuron model of short-term memory, and the temporal con-
text model (TCM), a mathematical model of free recall. To the former, a neural
mechanism for tracking the list position is added. The latter is converted into a
spiking neural network under considerations of the main features and simplifi-
cation of equations where appropriate. Previous models of the recall process
in the TCM are replaced by a new independent accumulator recall process
that is more suited to the integration into a large-scale network. To implement
the modification of the required association matrices, a novel learning rule,
the association matrix learning rule (AML), is derived that allows for one-shot
learning without catastrophic forgetting. Its biological plausibility is discussed
and it is shown that it accounts for changes in neural firing observed in human
recordings from an association learning experiment. Furthermore, I discuss
a recent proposal of an optimal fuzzy temporal memory as replacement for
the TCM context signal and show it to be likely to require more neurons than
there are in the human brain.

To construct the CUE model, I have used the Neural Engineering Frame-
work (NEF) and Semantic Pointer Architecture (SPA). This thesis makes novel
contributions to both. I propose to distribute NEF intercepts according to
the distribution of cosine similarities of random uniformly distributed unit
vectors. This leads to a uniform distribution of active neurons and reduces
the error introduced by spiking noise considerably in high-dimensional neu-
ronal representations. It improves the asymptotic scaling of the noise error
with dimensions 𝑑 from 𝑂(𝑑) to 𝑂(𝑑3/4). These results are applied to achieve

ix

improved Semantic Pointer representations in neural networks are on par with
or better than previous methods of optimizing neural representations for the
Semantic Pointer Architecture. Furthermore, the vector-derived transformation
binding (VTB) is investigated as an alternative to circular convolution in the
SPA, with promising results.

x

Acknowledgements

I would like to thank my supervisor, Chris Eliasmith, for his continued support
and guidance. I am also grateful to my colleagues at the Centre for Theoreti-
cal Neuroscience, in particular Terrance Stewart and Aaron Voelker, for their
invaluable knowledge and helpful discussions. The research in this thesis
would have not been possible without the excellent and continuously improv-
ing work of the Nengo development team, spearheaded by Trevor Bekolay.
This research was also enabled in part by support provided by SHARCNET1

and Compute Canada2. Many CPU cycles were burned on their hardware,
simulating iterations of the CUE model. I also would like to acknowledge the
financial support for this research by the Canada Research Chairs program,
the NSERC Discovery grant 261453, the Air Force Office of Scientific Research
grant FA8655-13-1-3084, CFI, and OIT.

A special mention is deserved by the Interdisciplinary College, a unique
annual spring-school at the Lake Möhne in Germany. It is the place where
I met Chris Eliasmith for the first time and ultimately made me pursue this
research direction.

Finally, I would like to thank all the people I climbed with over the years as
they helped me to stay sane during the work on this thesis.

1www.sharcnet.ca
2www.computecanada.ca

xi

https://www.sharcnet.ca
https://www.computecanada.ca

Dedication

This is dedicated to my parents, for everything they gave me.

xiii

Table of Contents

List of Tables xix

List of Figures xxi

List of Symbols xxv

1. Introduction 1
1.1. Behavioural characterization of memory 3
1.2. Experimental findings in memory research 4
1.3. Neuroanatomy of memory . 6
1.4. Memory models . 9

1.4.1. Conceptual models . 9
1.4.2. Mathematical models 10
1.4.3. Connectionist models 13
1.4.4. Summary . 14

I. Methods 17

2. Modeling neurons 19

3. The Neural Engineering Framework 23
3.1. Representation . 23
3.2. Transformation . 26
3.3. Dynamics . 27
3.4. Simulating NEF networks . 28

4. Basic NEF networks 29
4.1. Differentiator . 30
4.2. Integrator . 31
4.3. Gated memory buffer . 32

xv

4.4. Thresholding ensembles . 33
4.5. Product . 34

5. The Semantic Pointer Architecture 35
5.1. Binding operations . 37

5.1.1. Circular convolution . 37
5.1.2. Vector-derived transformation binding 38
5.1.3. Comparison of circular convolution and vector-derived

transformation binding 40
5.2. Structured representations . 44

5.2.1. Comparison of encoding methods 47

6. Optimized high-dimensional representation in spiking neurons 51
6.1. Types of error in neural representations 51
6.2. Properties of the error in neural representations 53
6.3. Effect of the intercept distribution on noise and distortion . . . 56
6.4. Optimized Semantic Pointer Representation 62

II. The Context-Unified Encoding memory model 67

7. The Ordinal Serial Encoding Model 69
7.1. Neural STM implementation 70
7.2. Neural position counting . 70

8. The Temporal Context Model 75
8.1. Neural context update . 78

8.1.1. Bounded integrator . 78
8.1.2. Alternating update of two memories 80
8.1.3. Externally controlled alternating memory buffers . . . 80

9. Association Matrix Learning 85
9.1. Explicit calculation of weight change 86
9.2. Explicit calculation of weight change without weight symmetry 87
9.3. Implicit error calculation . 91
9.4. Normative interpretation . 92
9.5. Properties of the AML . 93

xvi

9.6. AML accounts for neural changes during association learning 95
9.7. Weight normalization . 96

10. Recalling items 101
10.1. Leaky, competing accumulator model 101
10.2. Independent accumulator model 102
10.3. Comparisons of the WTA networks 103

10.3.1. Results . 105
10.3.2. Discussion . 108

10.4. Recall network . 109

11. The complete model 113
11.1. Control . 115
11.2. Extension to the Hebb repetition effect 118

12. Results 121
12.1. Serial recall . 122
12.2. Free recall . 123
12.3. Scopolamine . 125
12.4. Hebb repetition effect . 127
12.5. Memory encoding . 128

13. Discussion 133
13.1. Anatomical mapping . 137
13.2. Optimally fuzzy temporal memory 139
13.3. Advances in large-scale cognitive modeling 145

14. Conclusion 147

References 149

Appendices 163

A. Derivation of the cosine similarity distribution 165

B. Comparisons of the uniform and cosine similarity intercept distribu-
tions 167

xvii

C. Leaky, Competing Accumulator Model Analysis 169
C.1. Effect of 𝜅 = 1 . 169
C.2. Effect of 𝜆 = 1 . 170

D. Fuzzy temporal memory 171
D.1. Discretized derivative . 171
D.2. Required neurons . 172

xviii

List of Tables

11.1. Neuron count in the CUE model. 114

12.1. Summary of free parameter values. 122

B.1. Comparison of uniformly and CS(𝑑 + 2) distributed intercepts. 168

xix

List of Figures

1.1. Categorization of memory by type of stored information. . . . 4
1.2. Immediate serial recall position curve. 5
1.3. Free recall probablitiy of first recall and CRP. 6
1.4. Hippocampal anatomy. 7

2.1. A typical neuron. 20

3.1. A typical neuron tuning curve. 25
3.2. Visualization of (3.9) and (3.10) as block diagram. 27
3.3. Block diagram of the linear system of a neural population. . . 28

4.1. Graphical elements in NEF network diagrams. 29
4.2. Differentiator. 31
4.3. Implementation of a differentiator with the NEF. 31
4.4. Implementation of an integrator with the NEF. 31
4.5. Neural integrator. 32
4.6. Gated memory buffer network. 33
4.7. Thresholding ensemble. 34
4.8. Implementation of an accurate product with the NEF. 34

5.1. Repeatedly binding a 256-dimensional vector with itself. . . . 41
5.2. Repeatedly binding a 256-dimensional vector with random vec-

tors. 42
5.3. Repeatedly binding a 256-dimensional vector with normalization. 43
5.4. Venn diagram of matrices for encoding with tagging. 47
5.5. Retrieval accuracy of encoding methods. 48
5.6. Retrieval accuracy of encoding with non-unitary tagging matrices. 49

6.1. Mean noise error with CS(𝑑 + 2) distributed intercepts. 54
6.2. Mean error along line cut through hyperball. 55
6.3. Covering of the unit-circle with evaluation points. 55

xxi

6.4. Mean error along line cut through hyperball with scaled evalu-
ation point radius. 56

6.5. Distribution of the proportion of active neurons. 57
6.6. PDF 𝑝CS(𝑥; 𝑑CS) of the cosine similarity distribution. 58
6.7. Proportion of inactive neurons and its distribution. 58
6.8. Mean error along line cut with different intercept distributions. 60
6.9. Mean error along line cut with different regularization. 61
6.10. Mean noise error with uniform intercepts. 61
6.11. Distribution of the RMSE in the representation of unit-vectors. 64
6.12. Distribution of the RMSE in dot product calculations. 65

7.1. Implementation of the OSE short-term memory trace 𝒎stm with
the NEF. 70

7.2. Implementation of position counting with the NEF. 71
7.3. Position increment in the position counting network. 73

8.1. Evolution of the context in the TCM during (a) item presentation
and (b) recall. 76

8.2. Similarity of the context to itself ⟨𝒄𝑖, 𝒄𝑗⟩ and to the retrieved
context ⟨𝒄IN

𝑖 , 𝒄𝑗⟩ for different lags 𝑗 − 𝑖. 77
8.3. Bounded integrator network. 79
8.4. Decay in context similarity with the bounded integrator network. 80
8.5. Alternating update of memory buffers. 81
8.6. Decay in context similarity with the alternating update of two

memories. 81
8.7. Alternating update of memory buffers with external control. . 82
8.8. Decay in context similarity with the alternating update of two

memories and external control. 83

9.1. Explicit neural calculation of the AML weight change. 86
9.2. Explicit neural calculation of the AML weight change avoiding

weight sharing. 88
9.3. Error ‖𝑫⊤𝑫 − 𝑫∗‖. 89
9.4. Example of two outputs decoded with the symmetric weights

being learned. 90
9.5. Neural computation of the error signal necessary for learning

symmetric decoders with gradient descent. 90

xxii

9.6. Error ‖𝑫⊤𝑫 − 𝑫∗‖ with neural gradient calculation. 91
9.7. Learning and recall testing of five cue-target pairs with the AML

and PES. 94
9.8. NEF network for associating two stimuli with the AML. 96
9.9. Change in spiking behaviour when learning associations. . . . 97
9.10. Population response for pair-coding units. 98

10.1. Leaky, competing accumulator (LCA) network. 102
10.2. Independent accumulator (IA) network. 103
10.3. Proportion of trials with a clear decision for the LCA network. 105
10.4. Proportion of correct trials for the IA network. 106
10.5. Mean WTA decisions times. 107
10.6. Transient WTA responses. 107
10.7. Recall network. 110

11.1. General information flow in the CUE model. 114
11.2. Information flow during the presentation phase. 116
11.3. Information flow during the recall phase. 116
11.4. Generation of control signals from the currently presented or

recalled item. 117
11.5. Extending the CUE model with forward associations. 119

12.1. Serial position curve and transpositions for serial recall with the
CUE model. 123

12.2. Serial position curves with disabled STM/LTM. 124
12.3. Comparison of experimental and model free recall data. 126
12.4. Serial position curve with a scopolamine injection predicted by

the CUE model. 127
12.5. Hebb repetition effect. 128
12.6. Memory encoding in the CUE model. 129
12.7. Change in similarity of the context population vector with recency. 130
12.8. Firirng rate of selected STM neurons. 132

13.1. Example of the effect of noise on the fuzzy temporal memory. 142
13.2. Noise amplification and timescales in fuzzy temporal memory. 142
13.3. Number of neurons required to implement a fuzzy temporal

memory. 144

xxiii

List of Symbols

𝑨 activity matrix
𝑎 neural spiking activity
𝛼 NEF neuron gain
B binding operator
B beta function
𝛽 TCM beta parameter
BV vector-derived transformation

binding operator
𝒄 TCM context vector
𝒄IN TCM input context vector
CS cosine similarity distribution
𝑫 NEF decoder matrix
𝒅 NEF decoding vector
𝑑 dimensionality
𝒆 NEF encoding vector
𝐸d distortion error
𝐸n noise error
𝑬 NEF encoder matrix
𝐸 error
𝐸tot total error
𝔼 expected value
F Fourier transform
𝒇 TCM item vector
𝒇 IN recalled TCM item vector
𝐺 neuron nonlinearity
Γ gamma function
𝛾 OSE short term decay
ℎ synaptic filter

Θ Heaviside function
𝑰 identity matrix
𝒊 identity under binding
i imaginary unit
𝐽bias NEF bias input current
δ Kronecker delta
𝜆 regularization scale
𝑴CF TCM context to item matrix
𝒎epis OSE episodic memory trace
𝑴FC TCM item to context matrix
𝒎stm OSE short-term memory trace
𝜇 null choice bias in recall
N normal distribution
𝒏 absorbing element under bind-

ing
ℕ>0 positive natural numbers (ex-

cluding zero)
𝑂 big O notation
Ω solid angle
𝑝CS PDF of cosine similarity distri-

bution
𝜙 distractor rate
𝑟 NEF representational radius
𝜌 OSE episodic scaling
S superposition operator
𝑠 similarity measure
𝜎 standard deviation of noise in

recall
𝜏𝑅𝐶 membrane time constant

xxv

𝜏ref refractory period
𝜏syn synaptic time constant
𝑻F discrete Fourier transform ma-

trix
𝑉𝑑 volume of a 𝑑-dimensional hy-

perball
𝑾 synaptic weight matrix
𝑿 evaluation point matrix
𝒙 evaluation point
X NEF representational space

xxvi

1. Introducঞon

If you have no memory, how can you

be certain of anything?

(Monkey in Kubo and the Two Strings)

Memory in its different forms is an important aspect of human and animal
cognition. It allows such agents to return to previously visited water and food
locations (Vorhees and Williams 2014), allows them to act more optimally
in situations similar to prior experiences, or allows them to avoid dangerous
situations. In this way, memory allows for adaptation to a complex environment
on a faster time scale than genetic selection. This is especially important in
unstable and changing environments. In humans, memory is also important
for forming social relationships, a shared culture, and even a functioning
society. For example, strategies in the repeated prisoner’s dilemma1 depend on
working memory capacity (Milinski and Wedekind 1998). Moreover, memory
contributes to our individual sense of self (Prebble, Addis, and Tippett 2013).

In addition to these functional reasons, an addressable memory is also im-
portant from a computational perspective. It allows for a more compact imple-
mentation of many computational processes than a pure state machine could
achieve (Gallistel and King 2009). Overall, the storage of information over time
is a fundamental requirement in many cognitive systems.

Accordingly, there is a long history of memory research. The well-known pri-
macy and recency effects (discussed in more detail in Section 1.2) have already
been described by Robinson and M. A. Brown (1926). Nevertheless, there are

1The scenario of the prisoner’s dilemma poses that two subjects are arrested, but the evidence
is not sufficient to convict them on the principle charge. If both subjects stay silent, they
each get a prison sentence of one year. Either subject can decide to betray the other in
which case they get no prison sentence while the other subject gets a sentence of three
years. However, if both subjects decide to betray each other, each gets a prison sentence
of two years. The subjects are not allowed to communicate, but in the repeated prisoner’s
dilemma they can penalize each other for previous decisions.

1

1. Introduction

still many open questions regarding memory function and implementation in
the brain. One important challenge that memory systems have to solve is the
so-called stability-plasticity dilemma (Abraham and A. Robins 2005). On the one
hand, there is a need to quickly form new memories, sometimes even with a
single exposure (also known as one-shot learning). On the other hand, such high
plasticity can easily lead to overwriting of old memories, rendering memory
systems useless. Buzsáki (1989) and others have proposed multi-stage memory
models to address this dilemma, where different memory systems are in place
for different timescales with different levels of plasticity.

Despite this, much experimental research and modeling treat different mem-
ory systems as isolated. This simplifies the analysis of results to an extent, but
to get a general understanding of memory as a whole our characterization
of memory phenomena needs to be integrated at some point. Furthermore,
many models of memory or learning focus on either small scale neural changes
without any direct connection to behaviour (e.g., Levy, Hocking, and Wu 2005),
or on idealized behaviour described with mathematical equations, but no solid
grounding in biological plausibility (e.g., Milford, Wyeth, and Prasser 2004).
So it is not only important to integrate our understanding of memory systems,
but also to bridge the gap from neural mechanisms to behaviour. With this
thesis I attempt to advance our understanding of memory in these ways by
proposing a model integrating short- and long-term memory, thus modeling
their interaction. Moreover, I implement the model as a spiking neural network
to ensure biological plausibility, while at the same time matching behavioural
data.

While this work is still limited with regard to the variety of memory systems
covered, there are promising long-term prospects for a better understanding
of human memory. Many forms of memory loss are currently untreatable.
However, diseases associated with aging, like Alzheimer’s, significantly impair
the function of memory systems and are getting more common as our life-span
increases due to medical and nutritional advances. A better understanding of
memory might allow us to devise better treatments, or even stop and reverse the
memory detoriation. A potential route to such treatments is through memory
implants of the kind already demonstrated in rats by Berger et al. (2011). For
these sort of implants, an understanding of how memories are encoded is at
least helpful, if not crucial.

These are certainly strong motivators for research into memory, but it is
also worthwhile to advance our general understanding of how the human

2

1.1. Behavioural characterization of memory

brain works. An important step in testing our current understanding of the
brain is the Spaun model (Eliasmith, Stewart, et al. 2012). Spaun is a spiking
neural network of 2.5 million neurons, grounded in biology, that can perform 8
different tasks. It gets sensory input (low resolution black and white symbols)
and produces a behavioural motor output with a simulated arm. The number
of tasks it can perform demonstrates that it is not a specialized model for a
single task, but can switch between different tasks. Obviously, Spaun is still
much simpler (and has many fewer neurons) than an actual brain, and is still
far from capturing the complexity of a real brain. But it incorporates a number
of qualitative key aspects, such as the ability to switch tasks, making human-
like errors, and being implemented in an anatomically constrained spiking
neural network. However, one key aspect is still missing. While it can perform
working memory dependent tasks and has simple reinforcement learning, it
is missing a declarative and episodic long-term memory. The work in this
thesis can also be seen as a step toward implementing a model of such memory
for the future integration in even larger scale models, combining further key
aspects of cognition within a single model.

1.1. Behavioural characterizaঞon of memory

Memory systems have been characterized in different and sometimes contra-
dictory ways. However, one commonly used distinction is made along two
orthogonal dimensions: by timescale and by type of information stored. On the
timescale axis one can differentiate between short-term memory (STM) lasting for
up to tens of seconds and long-term memory (LTM) which can last between hours
to decades (Chaudhuri and Fiete 2016). However, there is no single agreed
upon definition of the exact boundaries. Sometimes the term very long-term
memory (vLTM) is used in addition to STM and LTM for memory that exceeds
LTM (Solso 1998).

Another use of these terms defines STM as memory being maintained
through sustained neural firing, while LTM and vLTM are realized by synaptic-
weight changes. The volatility of sustained neural firing explains why in this
use of terms, STM usually corresponds to information maintained on shorter
timescales than in LTM. Moreover, the term working memory (WM) is often
used to refer to active representations that allow direct mental manipulation. In
this thesis, I will use the terms STM and LTM primarily to distinguish between

3

1. Introduction

Memory

Explict

Episodic Declarative Semantic

Implict

Priming Conditioning Procedural

Figure 1.1.: Categorization of memory by type of stored information.

activity-based and weight-based forms of memory.
When classifying memory by type of information, a representation as a tree

structure can be helpful (Fig. 1.1). On the highest level, we have the distinction
between implicit and explicit memory. Implicit memory does not allow for
conscious access. A typical example is procedural or motor memory like the
exact muscle contractions for keeping balance when riding a bike. Explicit
memory allows for conscious access and is further subdivided into declarative
and episodic memory. The declarative memory allows us to store and repro-
duce facts like the birthday of a friend, whereas the episodic memory provides
a recollection of life experiences. Here, I will focus on declarative memory as
this type of memory has been well-studied in many memory experiments.

1.2. Experimental findings in memory research

Many memory experiments require the participants to memorize lists of words
and recall them afterwards. Usually an experiment will fall into one of two
categories depending on how the subjects are required to recall the list items:
in free recall experiments, the subjects are free to recall the items in any order;
in serial recall experiments, the subjects are required to recall the items in the
order they were presented.

The hallmark finding in memory research, especially for serial recall experi-
ments, are the primacy and recency effects. Subjects tend to remember the start
of list (primacy) and the end of list (recency) better (Fig. 1.2). Furthermore, if
subjects in a serial recall experiment recall an item at the wrong position, a
so-called transposition, it is more likely to be an item that was close in the list
than an item several positions away.

4

1.2. Experimental findings in memory research

1 2 3 4 5 6 7 8 9 10
Serial position

0.0

0.2

0.4

0.6

0.8

Re
ca

ll
pr

op
or

tio
n

Immediate serial recall

Figure 1.2.: Serial position curve of a immediate serial recall experiment with
a 10 item list. Data reproduced from Jahnke (1968) with 95 % confi-
dence intervals.

In free recall experiments, a recency effect is observed as well. This does not
only show in the serial position curve, but participants often start out with
recalling the last item first. This can be measured by the probability of first recall
(Fig. 1.3). Another important aspect of free recall is captured by the conditional
response probability (CRP). It gives the probability for the difference (the lag)
in serial positions of two recalled items. It is peaked around zero, indicating
that items in proximity in the learned list tend to be recalled together, while
jumps to remote items are rarer. This is known as contiguity or the lag-recency
effect. The CRP curve also has a characteristic asymmetry which shows the bias
for forward (opposed to backward) recall.

By introducing a delay filled with a distractor task, referred to as delayed (free)
recall, both the probability of first recall and the CRP curve will become much
flatter. This effect cannot solely be attributed to (suppressed) rehearsal effects
as introducing an equally long distractor interval in-between the list items,
known as continuous distractor (free) recall, partially restores the recency effect in
the probability of first recall.

While there are many other experimental findings in memory research, there
are two more findings that I will focus on in this thesis. The first is the dif-
ferential effects of the acetylcholine antagonist scopolamine on encoding and
recall (Ghoneim and Mewaldt 1975). Recall performance is normal when scopo-
lamine is injected after the presentation phase, but the number of successful
recalls is considerably lower when the injection is done before the presentation

5

1. Introduction

2 4 6 8 10 12
Serial position

0.0

0.1

0.2

0.3

0.4

0.5

P(
fir

st
 re

ca
ll)

(a) Probability of first recall

immediate
delayed
continuous distractor

6 4 2 0 2 4 6
Lag

0.0

0.1

0.2

0.3

0.4

C
RP

(b) Conditional response probability

Figure 1.3.: Data from free recall experiments with 12 item lists. (a) Probability
of first recall. (b) Conditional response probability. All data from
Howard and Kahana (1999) with 95 % confidence intervals.

phase. The number of successfully recalled items in the latter case is around
the short-term memory span, which might show an effect purely on LTM, but
not STM. This experiment is of interest as a neural network model is more
suited to modeling such drug effects than typical mathematical models.

Second, the Hebb repetition effect is the observation that in repeated immediate
recall experiments, the recall accuracy of a repeated list (typically every third
list) will increase with repetitions (Hebb 1961). Whether the test subject has
to become consciously aware of the repetition is debated (Stadler 1993). It is
of interest in this thesis that the Hebb repetition effect has been regarded as
useful in testing the interaction of STM and LTM, or as Burgess and Hitch
(2005) phrase it, this effect is a “powerful vehicle for developing and testing
models of the relationship between STM and LTM”.

1.3. Neuroanatomy of memory

Short-term memory is attributed to cortical brain regions, but there is no
single region that is the unique locus of STM. Sensory short-term memory is
distributed across the corresponding cortical sensory and related brain regions
(Zelano et al. 2009; Todd and Marois 2004; Baldo, Katseff, and Dronkers 2012).
For example, auditory memory can be found in the temporal cortex close
to speech processing areas, whereas visual short-term memory is located in

6

1.3. Neuroanatomy of memory

(a)

EC

layer II

layer III

DG

CA3

CA1

proximal

distal

tri
sy

na
pt
ic
pa
th

w
ay

mossy fiber pathw

ay

Schaffer c
ollat

era
l p
at

hw
ay

dire
ct
p
ath

w
ay

(b)

Figure 1.4.: (a) Location of the hippocampus in the human brain. (b) Connectivity between
entorhinal cortex (EC) and hippocampal subregions: dentate gyrus (DG), CA1,
CA3.

parietal cortex. Furthermore, multimodal integration and manipulation in
working memory has been found to lead to increased activation in prefrontal
cortex (Rypma et al. 1999).

Compared to short-term memory, the formation of new long-term memories
is more localized. In particular, the hippocampus (HC) has been implicated in
the acquisition of new declarative and episodic memories (Eichenbaum 2001).
A finding originally derived from patients with hippocampal lesions, most
famously HM who got his hippocampus (but also other brain regions) removed
due to severe epilepsy (Penfield and Milner 1958; Scoville and Milner 1957;
Squire 2009). The hippocampus is named for its sea horse shaped structure. It
is located in the medial temporal lobe (Fig. 1.4) and lies near the subiculum and
entorhinal cortex (EC). The hippocampus is further divided into substructures
CA3, CA1, and the dentate gyrus (DG) by its cytoarchitectural structure. While
the CA3 and CA1 regions consist mainly of pyramidal neurons and about 10 %
GABAergic, inhibitory interneurons (Freund and Buzsáki 1996), granule cells
are the main constituent of the dentate gyrus. Furthermore, the dentate gyrus
has a large number of cells that exhibit sparse activity compared to CA3. In
humans the cell count of the DG is about twice as high as in CA3, whereas in
rats DG has about five times more cells than the CA3 region.

The connectivity to, from, and within hippocampus is exceptionally well

7

1. Introduction

known. There are two major pathways from entorhinal cortex. The direct
pathway originates in layer III of the entorhinal cortex and targets the distal
apical dendrites of CA1 neurons. The trisynaptic pathway originates in layer
II and leads via the dentate gyrus, and CA3 also to CA1, but targeting the
proximal dendrites (a signal thus crosses three synapses). The connections
from the dentate gyrus to the CA3 region are termed the mossy fiber pathway.
Each of these mossy fibers innervates about 15 neurons (Claiborne, Amaral, and
Cowan 1986) which results in each CA3 pyramidal neuron receiving input from
about 50 to 90 granule cells (Squire, Shimamura, and Amaral 1989, p. 230). The
final bundle of connections from CA3 to CA1 is known as the Schaffer collateral
pathway. Further major hippocampal connections exist from the entorhinal
cortex to CA3, mostly targeting the same cells as the connection from dentate
gyrus (Paxinos 2014), and recurrent connections in CA3. However, a single cell
in CA3 is not recurrently innervated by more than 5% of all CA3 cells (Squire,
Shimamura, and Amaral 1989, p. 231).

Given these neuroanatomical properties, some of the hippocampal regions
have been assumed to be involved in specific tasks. The sparse coding and large
cell count of the dentate gyrus led to the belief that it is responsible for pattern
separation (Rolls 2013). The CA3 region with its recurrent connectivity could
be involved in pattern completion or forward predictions (Guzowski, Knierim,
and Moser 2004; S. Leutgeb and J. K. Leutgeb 2007; Rolls 2013). Additional
evidence for this comes from unimpaired recognition memory after lesioning
the CA3 to CA1 connections despite impairing selective recall (Brun et al. 2002).

A review of hippocampal structures would not be complete without men-
tioning hippocampal place cells and entorhinal grid cells (Hafting et al. 2005),
first discovered in rats, but existent also in other animals (Buzsáki and Moser
2013). A grid cell fires when the animal is in locations arranged in a regular
hexagonal grid in an environment. Place cells are similar, but fire only for
one specific location in an environment and remap between environments.
While these cells are involved in navigational tasks, a connection to memory is
possible (Buzsáki and Moser 2013). However, paying further attention to these
cells is out of the scope of this thesis.

Closely related to grid and place cells is the hippocampal theta oscillation
of 4 Hz to 8 Hz found in rats. The spiking of place cells during a theta cycle is
timed according to the distance from corresponding land marks, a phenomen
termed phase precession (O’Keefe and Recce 1993). The coupling of the theta
and gamma bands has also been shown to be important in the learning of item-

8

1.4. Memory models

context associations (Tort et al. 2009). Despite some debate, there is evidence
for similar, but slower (< 4 Hz), hippocampal oscillations in humans related to
episodic memory encoding (Lega, Jacobs, and Kahana 2012). However, their
functional relevance is not entirely clear at this point.

Finally, most commonly during sleep, but also in immobile rats, sharp waves
(SPWs) are observed in the rat hippocampus (Chrobak and Buzsáki 1994;
Girardeau et al. 2009). These have been implicated to be involved in memory
consolidation from hippocampus to the neocortex, a process not covered in
this thesis.

1.4. Memory models

Different memory models can be roughly sorted into three classes. Conceptual
models describe different components and processes of memory and their
interaction. Often they are presented as box and arrow diagrams. They do
not allow for a precise mechanistic explanation or quantitative predictions.
Mathematical models address this by providing exact equations that can be
evaluated to obtain quantitative predictions. However, they do not explain the
neural implementation and thus are not constrained to biologically plausible
mechanisms. Finally, connectionist models use neural networks with varying
degrees of abstraction. As such their biological plausibility also varies. While
those models come closer to explaining neural mechanisms of memory, they
less often address the behavioural data from high-level cognitive experiments.

1.4.1. Conceptual models

Yntema and Trask (1963) presented one of the first models of memory. They
conceptualized retrieval as a search process where each item in memory is
associated with tags referencing further information. For example, a time tag
would encode the time an item was observed. The whole description, however,
is more based on how a memory system could be implemented on a classical
von Neumann computer and does not consider if or how those operations
could be neurally implemented.

Atkinson and Shiffrin (1968) developed another early memory model con-
sisting of a sensory memory, short-term store, and long-term store. Sensory
information enters the short-lived sensory memory, before it is (potentially

9

1. Introduction

partially) transmitted to the short-term store. This store can hold informa-
tion indefinitely with rehearsal, but without it is assumed to be lost within
thirty seconds. Furthermore, items in the short-term store can be transferred
to and retrieved from the long-term store. The model is very general and does
not provide many constraints or detailed mechanisms apart from this basic
distinction.

To date, the most influential conceptual organization of working memory
was proposed by Baddeley (1986). He proposed, based on experimental data,
separate stores for visual and acoustic information, termed the visuospatial
sketchpad and phonological loop respectively. These are controlled by a central
executive. Furthermore, in Baddeley (2000) the model was extended with an
episodic buffer for the binding of multimodal information and transfer to
episodic long-term memory. The main relevance of the model is that it informs
us about the organization of (working) memory by modality; but it does less
to elucidate mechanisms.

In general, conceptual models can give a high-level account and they can be
evaluated with respect to their qualitative agreement to behavioural data. How-
ever, they cannot provide us with quantitative predictions which makes a more
rigorous validation difficult. They, also, do not explain the cognitive mecha-
nisms in detail, and an account of the neural implementation is completely out
of their reach.

1.4.2. Mathemaঞcal models

Some of the weaknesses of conceptual models are addressed by mathematical
models. These models make quantitative predictions about the behavioural
data and describe underlying cognitive mechanisms to a varying degree, but do
not provide a neural implementation. There is a vast number of such models
and not all can be discussed here. Thus I will focus on some of the most
influential ones.

Such a list certainly contains the perturbation model for serial order by Estes
(1972), the free recall model Search of Associative Memory (SAM) by Raaijmak-
ers and Shiffrin (1981), the recognition memory model Retrieving Effectively
from Memory (REM) by Shiffrin and Steyvers (1997), and the episodic memory
model MINERVA2 by Hintzman (1988). The perturbation model is an early
attempt to provide a mathematical framework for how remembered item posi-
tions can drift over time. In SAM, cues are assembled in a short-term memory

10

1.4. Memory models

to retrieve associations from a long-term associative memory (the search part
of the model). In the REM, model error prone copies of feature vectors derived
from the study items are stored. A recognition probe is matched to the stored
feature vectors and a likelihood ratio of the match scores being generated by an
old versus a new item is calculated. The MINERVA2 model also uses feature
vectors that are stored as traces and can be probed by cues.

All of these models, and most other mathematical models, either assume
item-to-item or position-to-item associations. The primacy model by Page and
Norris (1998) is worth noting because it uses a different approach. In that
model, items are activated according to a primacy gradient, but the model is
agnostic as to how this gradient is generated. This, however, also leaves that
aspect underspecified.

Common to all of these models is that they do not consider biological plau-
sibility. Thus it is unclear whether any of the models can be implemented in
a neural substrate while preserving their predictions. Or, similarly what the
limitations with regard to noise and requirements for neural resources are.
Nevertheless, mathematical modelling is an important first step in figuring out
what sort of processes are worth considering for a neural implementation. Also,
there are some reoccurring ideas in these models that are useful to consider
in the context of a neural model. For example, starting with J. A. Anderson
(1973) many models have used random feature vectors to represent individual
items. That approach is similar to the Semantic Pointer Architecture (SPA)
presented in Chapter 5 which can be implemented neurally with the methods
of the Neural Engineering Framework (Chapter 3).

An especially influential model based on such random feature vectors was
TODAM2 (Murdock 1993). It was able to fit a large body of experimental
data and, in that regard, aims to be a general theory for item recognition,
serial order, and associative memory. A neural implementation could very
well be possible with the NEF, but has not been attempted so far. However,
Choo (2010) pointed out that the dimensionality of the vectors in the model
increases with each stored item due to the use of convolution powers. Thus, the
requirement for neural resources grows in an unbounded manner. Even when
using circular convolution in the model, a neural implementation might be
problematic because the vector norm can grow without bound (Section 5.1.3). It
is also worth noting, that TODAM2 does not give an account of how responses
are generated.

Another useful idea, that had its origin in mathematical models, is the

11

1. Introduction

idea of a randomly drifting context signal that items get associated to. Estes
(1955) presented the first model of this type and Murdock (1997) extended the
TODAM2 model in this way to explain additional data. Two open questions in
these sort of models are, (1) how is the context at an earlier time re-instantiated
to start the recall; and (2) how the context is advanced in the same way during
recall as in the study phase to recall the remaining items? As the signal drifts
randomly, a memory for the context signal itself would be needed. The OSCAR
model (G. D. A. Brown, Preece, and Hulme 2000) solves part of this by using a
deterministic context signal that is generated from multidimensional oscillators.
This allows replay of the exact same context signal once it has been reset. It still
does not describe how the context is re-instantiated to start the recall, as this
still requires knowledge of the oscillator states at the beginning of the study
phase.

All of these context-based models cannot explain the asymmetric CRP curves.
The temporal context model (Howard and Kahana 2002), however, was specifi-
cally constructed to explain these free recall data. It also uses a context signal,
but this signal is updated by the studied (and recalled) items themselves. Each
item recalls a prior context associated with that item to partially update the
current context, and the updated context gets associated with the studied item.
This solves the re-instantiation problem, as the right cue can set the context
to be similar to the study context to retrieve an item. That retrieved item in
turn updates the context to retrieve more items related to the updated context.
Thus, it is also available to appropriately advance the context after each recall.
The TCM model is discussed in more detail in Chapter 8. But it is not perfect. It
did not capture immediate free recall data involving short-term memory, even
though it was presented as a single-store framework, i.e. a single memory for
both STM and LTM. This single-store assumption was criticized by Davelaar
et al. (2008) and is in contradiction to neuroimaging data (Talmi et al. 2005).

Many of these models are also vague on the exact processes of recall. Though,
the ACT-R model of serial recall by J. R. Anderson and Matessa (1997), in
which items are associated with their serial positions, describes detailed steps
necessary for recall. Unfortunately, it is vague on the exact storage mechanism
of items.

Recently, Shankar and Howard (2013) proposed an optimally fuzzy temporal
memory that is less motivated by behavioural data, but more by a mathematical
optimal and scale-free storage of a time-varying signal. Nevertheless, it has
been proposed to model the coding in hippocampus (Howard, MacDonald,

12

1.4. Memory models

et al. 2014). In this framework, the input signal is stored by a bank of leaky
accumulators with different time constants. This corresponds to a Laplace
transform of the signal. To decode the history of the input signal, a linear
operator approximating the inverse Laplace transform is used. I discuss this
model in more detail in Section 13.2, and demonstrate that it is highly sensitive
to noise, which is prohibitive to a neural implementation.

1.4.3. Connecঞonist models

Compared to the vast number of mathematical models, there are many fewer
connectionist models, although most of those that exist try to ensure more bio-
logical realism. Many of these models focus on reproducing low-level findings
in the hippocampus, such as sequence compression in replay (Levy, Hocking,
and Wu 2005) or place cells (Milford, Wyeth, and Prasser 2004). The model
presented by Hasselmo (2012), might very well be the most comprehensive
hippocampus model to date, describing the storage of episodic memories as a
spatial trajectory. It addresses experimental data on place cells and the theta
rhythm. A very recent model by Yu et al. (2017), constructs a three-layer spiking
neural network that is able to encode a sequence over several iterations and
replay it during a cycle of the theta rhythm. These models, however, still leave
a large gap to high-level cognitive behaviour as modelled by mathematical
models. In addition, the Hasselmo (2012) relies on hypothetical “arc length”
cells to disambiguate memories (cp. S. Robins 2015).

Nevertheless, there are some connectionist models that try to reduce this
gap by addressing behavioural effects with a neural network implementation.
Namely, Burgess and Hitch (1992) and Burgess and Hitch (1996) propose mod-
els for the articulary loop, Norman and O’Reilly (2003) for recognition and
familiarity effects, and Botvinick and Plaut (2006) for immediate serial recall.
All of these models use rate based neurons as an abstraction. While rate neuron
models are a useful tool to build tractable models with a degree of biological
realism, one has to be careful to not introduce biologically implausible features.
For example, the noise introduced by discrete spikes is neglected. In particular,
Norman and O’Reilly (2003) use a 𝑘-winner-take-all mechanism that is hard
to realize in spiking neurons as it requires a fine balance of excitation and
inhibition. Potentially even more problematic is the use of back-propagation
learning in the model by Botvinick and Plaut (2006). While learning with
back-propagation is a tremendously successful technique in machine learning,

13

1. Introduction

it is still unclear whether biological neural networks can implement this sort of
learning. This remains true despite new techniques like feedback-alignment
(Lillicrap et al. 2016) and related work (Bengio et al. 2015), that might eventually
provide biological plausible implementations.

To the best of my knowledge there are only two memory-related models that
address these concerns about biological plausibility by using spiking neurons
while at the same time connecting to behavioural data. The first one is the
ordinal serial encoding (OSE) model of serial recall by Choo (2010). As a
primarily short-term memory model, it uses recurrently connected neurons to
store the memory trace in neural activity. This approach is also used to model
a long-term memory component that can be attributed to hippocampal storage.
While this allows for a first approximation, a storage in synaptic weights would
be more plausible for such a component. The second model was specifically
developed to model the storage of serial lists with hippocampus by Oliver
Trujillo (2014). It is able to reproduce neural data like replay and theta rhythm.
However, the length of stored lists is limited in similar fashion to the STM
capacity in the OSE model, despite long term memory being certainly able to
learn longer lists. Learning longer lists in the model would require the chaining
of individual lists with different contexts, but no mechanism for this has been
given in the model. Another questionable feature is the usage of a clock signal
that is adjusted to speed up compressed replay.

1.4.4. Summary

Despite many existing models, a number of questions have not been sufficiently
addressed (cp. Horwitz and J. F. Smith 2008). To date no model demonstrates
a satisfying degree of biological plausibility while at the same time addressing
behavioural data from cognitive psychology. Many models are not concerned
with the interaction of short-term and long-term memory despite the impor-
tance for many fundamental effects on memory performance. This includes
neural processes for the coordination and control of the interplay of these
memory components. Finally, the recall process or reinstantiation of recall
context is often not precisely explained even though it is an essential part of
memory function.

I address these points with the context-unified encoding (CUE) model pre-
sented in this thesis. It combines activity-based short-term memory with
weight-based long-term memory and also specifies the required control and

14

1.4. Memory models

recall processes. Biological plausibility is ensured by an implementation as a
spiking neural network. Despite the low-level implementation, it is validated
against human, behavioural data.

This thesis is divided into two parts. In the first part, all the basic methods
required for the construction of such a large-scale spiking neural network model
are developed and discussed. This includes some secondary research objectives
to improve neural representations to ultimately require fewer neurons for a
higher simulation throughput. In the second part, the methods from the
first part are employed to build up the CUE model and compare the model
predictions against human data.

15

Part I.

Methods

2. Modeling neurons

The information processing in the brain is performed by neurons (see Fig. 2.1).
Despite a wide variety of different neuron types and behaviours, the typical
behavior of most neurons can be described as follows. These cells build up
an electrical potential of about −70 mV, the resting membrane potential, across
their cell membrane with the ions in the intra- and extracellular fluid. When
the membrane potential is sufficiently depolarized (to about −50 mV), voltage
gated ion channels trigger a sudden and short-lived depolarization (typically
about 1 ms), generating a so-called action potential or spike. This action poten-
tial travels along the neuron’s axon and triggers the release of neurotransmitters
at the boutons, which open into synapses, where the axon comes extremely
close to other neuron’s dendrites. The released neurotransmitters will influ-
ence the ion channels of the post-synaptic neuron and either lower (inhibitory
synapse) or raise (excitatory synapse) the membrane potential. The deflection
of the membrane potential depends on the strength of the synapse and the
speed of the release and uptake of the neurotransmitter. If the post-synaptic
neuron receives sufficient input from other neurons, its membrane potential
will be sufficiently deflected to initiate a new action potential. By the pattern
of connectivity that controls what activity in some neurons triggers activity in
other neurons, the brain is able to perform the computations that lead to an
agent’s behavior.

To model neurons computationally, it is necessary to chose a level of ab-
straction. On the one hand, it is possible to create very detailed models with
spatial extent (e.g., Markram et al. 2015; Bahl et al. 2012) where individual ion
channels and the propagation of electrical potentials is modeled. On the other
hand, one can use very abstract neuron models that basically consist of nodes
summing their inputs and applying non-linearity using real valued stand-ins
for firing rates (instead of discrete spikes). This latter type of model is common
in artificial neural networks and deep learning.

A widely used neuron model in computational neuroscience, that is midway
between these two extremes, is the leaky integrate-and-fire (LIF) neuron model.

19

2. Modeling neurons

Figure 2.1.: A typical neuron. Image by Blausen Medical Communications, Inc.
and reused under the Creative Commons Attribution 3.0 Unported
license.

It is a point neuron model, thus not modeling any spatial extend. It models a
single membrane voltage 𝑉(𝑡) described by the differential equation

𝜏𝑅𝐶
d𝑉
d𝑡 = −𝑉(𝑡) + 𝑅𝐽(𝑡) (2.1)

where 𝑅 is the membrane resistance, 𝐽(𝑡) the input current, and 𝜏𝑅𝐶 the mem-
brane time constant. Whenever the membrane voltage reaches a certain thresh-
old 𝑉th, the LIF neuron transmits a spike and its membrane voltage is reset for
a refractory period of 𝜏ref. This type of neuron model allows the firing rate to
be derived for a given constant input current 𝐽 as

𝑎(𝐽) =
1

𝜏ref − 𝜏𝑅𝐶 ln(1 − 𝑉th
𝑅𝐽)

. (2.2)

The LIF neuron model is a good choice for the undertaking of this thesis as
it captures many aspects of neuron behaviour. It is detailed enough to relate
parameters like the membrane time constant to the actual biological correspon-
dents. This allows us to fix these parameters to values within a biologically

20

plausible range instead of having them as free parameters in the model that
would require parameter matching and give the model additional degrees of
freedom to match the data. At the same time, the model is simple enough to
allow for reasonable performance when simulating large-scale models with
these neurons.

21

3. The Neural Engineering Framework

To construct a large-scale spiking neural network with a certain behaviour, some
method for obtaining that behaviour is required. In most cases this method
will be a learning algorithm (e.g., O’Reilly and M. J. Frank 2006). However, this
requires time-intensive training of the model and is often not viable for large
models, complex behaviours, or models combining different behaviours. In
this work I opt to use the Neural Engineering Framework (NEF; Eliasmith and
C. H. Anderson 2003) which allows the direct construction of a spiking neural
network from the mathematical equations describing the desired dynamics
without the time-intensive training. As such the final model does not provide
a developmental account of how the neural network became organized or
learned to perform its task. But, it provides a biologically plausible explanation
of how the developed brain might perform that task. As well, it allows for
the inclusion of biologically plausible online learning rules, to test adaptation
in the adult system. Furthermore, it allows for manipulations to test known
experimental results in the model or obtain new predictions. The NEF consists
out of the three core principles for representation, transformation, and dynamics in
a neural network that I introduce in this order.

3.1. Representaঞon

Neurons within a neural network will have a preferred stimulus: they will
fire most strongly for that stimulus and less strongly as the stimulus gets
more dissimilar to the preferred stimulus (see Fig. 3.1). To capture this in a
mathematical description, we can treat the stimulus as a vector 𝒙(𝑡) that varies
over time. The preferred stimulus vector, that is the vector a neuron 𝑖 fires most
strongly for, will be denoted with 𝒆𝑖. The spiking activity 𝑎𝑖(𝑡) of a neuron can
then be described with

𝑎𝑖(𝑡) = 𝐺[𝛼𝑖⟨𝒆𝑖, 𝒙(𝑡)⟩ + 𝐽bias
𝑖] (3.1)

23

3. The Neural Engineering Framework

where 𝛼𝑖 is a neuron gain factor, 𝐽bias
𝑖 a bias input current, and 𝐺 the neuron

nonlinearity. The nonlinearity 𝐺 represents the neuron model and converts
an input current into spikes. Usually this is the spiking, leaky integrate-and-
fire model (LIF) discussed in Chapter 2, which provides a good trade-off of
captured neuron behaviour, detail, and simulation effort. But simpler neuron
models (e.g., a rate-based LIF model, or rectified linear units) could be used, as
well as much more complex neuron models, like the compartmental models in
Eliasmith, Gosmann, and Choo (2016) and Duggins (2017). The input current
to the neuron is obtained from how well the stimulus aligns with the preferred
stimulus as measured by the dot product. As this alignment with the preferred
stimulus “encodes” the stimulus into the neural representational space, 𝒆𝑖 is
usually referred to as encoder in the context of the NEF. Furthermore, the gain
factor 𝛼𝑖 and bias term 𝐽bias

𝑖 can be used to adjust the neuron’s tuning curve to
experimentally observed firing rates. However, it is also common to use higher
maximal firing rates to use fewer neurons in simulations while achieving a
similar accuracy. While this is not entirely adhering to biological constraints,
in most cases NEF models behave similarly when lowering the firing rates and
increasing neuron numbers accordingly (e.g., Gosmann and Eliasmith 2015).
As it is rare to have detailed information about the tuning curves in many parts
of the brain, those values are usually not directly set in the NEF. Instead a
representational space X is defined, usually as the 𝑑-dimensional hyperball
with radius 𝑟. Furthermore, for each neuron a maximum firing rate 𝑎max,𝑖 and
an intercept point 𝑝𝑖 are sampled from random distributions. These values are
used to calculate the gain and bias so that the neuron starts firing at 𝑝𝑖𝒆𝑖 when 𝒙
varies along the encoder 𝒆𝑖 and that the maximum 𝑎max,𝑖 is not exceeded across
the representational space X .

Given a population of neurons, also called a neural ensemble in NEF terms,
how can the encoded vector 𝒙(𝑡) be recovered? First the activity or spike trains
𝑎𝑖(𝑡) are convolved with a synaptic filter ℎ to obtain the induced post-synaptic
voltage change. Usually this is a decaying exponential

ℎ(𝑡) = 𝜏−1
syn exp(−𝑡/𝜏syn), (3.2)

but other filters can be used to more precisely model the dynamics of the
synapse (Voelker, Benjamin, et al. 2017) and even extensions to conductance-
based synapses are possible (Stöckel, Voelker, and Eliasmith 2017). From the
filtered activity, the represented vector can be reconstructed with a linear,

24

3.1. Representation

Figure 3.1.: A typical neuron tuning curve.
The thick black line shows the
mean firing rate in dependence of
a stimulus parameter (e.g., rota-
tion of a bar). The thin blue lines
show the standard deviation. Fig-
ure reproduced from Butts and
Goldman (2006) and reused un-
der the Creative Commons Attri-
bution license.

weighted decoding
̂𝒙(𝑡) = ∑

𝑖
𝒅𝑖 ⋅ [𝑎𝑖 ∗ ℎ](𝑡) (3.3)

with decoding weights 𝒅𝑖.
To get a good reconstruction of the represented value, the decoding weights

should minimize the error

𝐸 = ∫
X

∥𝒙 − ̂𝒙∥2 d𝒙. (3.4)

In general, this minimization cannot be solved analytically. Thus, in the NEF
the integral is approximated by randomly sampling 𝑀 evaluation points 𝒙𝑘 ∈ X .
Given the finite number of evaluation points, it becomes possible to solve for the
decoding weights with a least-squares minimization. The detailed derivation
is given in Eliasmith and C. H. Anderson (2003, Ch. 2). In short, one obtains
the matrices

𝑨 =
⎡
⎢⎢⎢⎢
⎣

𝑎1(𝒙1) 𝑎1(𝒙2) ⋯ 𝑎1(𝒙𝑀)
𝑎2(𝒙1) 𝑎2(𝒙2) ⋯ 𝑎2(𝒙𝑀)

⋮ ⋮ ⋱ ⋮
𝑎𝑁(𝒙1) 𝑎𝑁(𝒙2) ⋯ 𝑎𝑁(𝒙𝑀)

⎤
⎥⎥⎥⎥
⎦

and 𝑿 =
⎡
⎢⎢⎢⎢
⎣

𝒙1
𝒙2
⋮

𝒙𝑀

⎤
⎥⎥⎥⎥
⎦

(3.5)

where one can use the steady-state activities in the activity matrix 𝑨 which
can be obtained analytically for LIF neurons. Given these two matrices the
decoding weights can be obtained with the regularized pseudo-inverse as

⎡
⎢⎢⎢⎢
⎣

𝒅⊤
1

𝒅⊤
2
⋮

𝒅⊤
𝑁

⎤
⎥⎥⎥⎥
⎦

= (𝑨𝑨⊤ + 𝑀𝜆2max(𝑨)2𝑰)
−1

𝑨𝑿 (3.6)

25

3. The Neural Engineering Framework

where 𝜆 is the regularization scale (usually 𝜆 = 0.1).
The encoders and decoders not only allow us to encode information into a

neural ensemble and decode it back out, but also to transmit that information
from one neural population to another. By decoding from the pre-synaptic en-
semble and encoding into the post-synaptic ensemble, the connection weights
required between the two populations can be obtained as

𝑾𝑖𝑗 = 𝒆⊤
𝑖 𝑻𝒅𝑗 (3.7)

where 𝑻 can describe a linear transform to implement across the neural connec-
tions. If 𝑻 is the identity matrix, the connection will be a pure communication
channel.

3.2. Transformaঞon

To be useful, a neural network has to transform or compute functions on the
represented information. In the NEF, it is straight-forward to implement a
given transformation in the connection weights between two ensembles. To
implement a function 𝑓 (𝒙), one replaces the matrix 𝑿 with

𝑿𝑓 (𝒙) =
⎡
⎢⎢⎢⎢
⎣

𝑓 (𝒙1)
𝑓 (𝒙2)

⋮
𝑓 (𝒙𝑀)

⎤
⎥⎥⎥⎥
⎦

(3.8)

when solving for decoders. This corresponds to a minimization of the modified
error 𝐸𝑓 (𝒙) = ∫X ∥𝑓 (𝒙) − ̂𝒙∥2 d𝒙.

Eliasmith and C. H. Anderson (2003, Ch. 7) shows that a neural network
constructed in this way is typically best at computing low-order polynomi-
als. Non-smooth or discontinuous functions might require a large number of
neurons. In some cases a better function approximation can be achieved by
appropriately selecting parameters like intercepts or encoders or by changing
the network structure to decompose a function in a different way. An example
is the calculation of products and has been discussed in Gosmann (2015), and
Section 4.4 shows this for the thresholding of values.

26

3.3. Dynamics

u(t) B
∫

C y(t)

D

A

dx
dt x(t)

Figure 3.2.: Visualization of (3.9) and (3.10) as block diagram.

3.3. Dynamics

The final principle of the NEF addresses dynamics. In linear control theory a
dynamical system is often described by state equations of the form

d𝒙
d𝑡 = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) (3.9)

𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡) (3.10)

where 𝒙(𝑡) is the state vector, 𝒖(𝑡) the input vector, and 𝒚(𝑡) the output vector.
The system behaviour is determined by the dynamics matrix 𝑨, input matrix 𝑩,
output matrix 𝑪, and the feedthrough matrix 𝑫. Figure 3.2 shows a graphical
representation.

In the NEF, we want to map a given dynamical system onto neural compo-
nents (Fig. 3.3). The neuron dynamics are dominated by the synaptic filter
(Eliasmith and C. H. Anderson 2003, Appendix F.1) which becomes the transfer
function and gives

𝒙(𝑡) = ℎ(𝑡) ∗ [𝑨′𝒙(𝑡) + 𝑩′𝒖(𝑡)] . (3.11)

With help of the Laplace transform one can obtain 𝑨′ and 𝑩′ from 𝑨 and 𝑩 as

𝑨′ = 𝜏syn𝑨 + 𝑰 (3.12)
𝑩′ = 𝜏syn𝑩. (3.13)

This implies that to implement a dynamical system with a neural ensemble,
the input has to be multiplied by 𝜏syn to account for the synaptic filtering. In
addition, one needs to add a recurrent connection implementing the function
𝑓 (𝒙) = 𝜏syn𝑨𝒙 + 𝒙. Note that combining this third principle with the principle
of transfomation, allows the implementation of nonlinear dynamics in a spiking
neural network.

27

3. The Neural Engineering Framework

u(t) B′ h(s) x(t)

A′

dx
dt

Figure 3.3.: Block diagram of the linear system of a neural population. ℎ(𝑠) is
the Laplace transformed synaptic filter ℎ(𝑡).

3.4. Simulaঞng NEF networks

To simulate NEF style networks, I use the Python library Nengo (Bekolay,
Bergstra, et al. 2014; Sharma, Aubin, and Eliasmith 2016). It supports different
backends to run neural models on different hardware platforms. For example,
Nengo OCL targets GPUs with an OpenCL implementation. While this allows
better simulation performance, special case implementations are necessary for
certain features. In particular, this applies to the association matrix learning
rule (see Chapter 9). Moreover, I utilized the Sharcnet and Compute Canada
high-performance clusters which typically provide more CPU resources than
GPU resources. Thus, I mostly used the Nengo reference (CPU) backend. To
obtain sufficient simulation performance for the size of models constructed in
this work, it was necessary to optimize memory organization of the internal
data structures of the backend. While the exact details are out of the scope of
this thesis, they are published in Gosmann and Eliasmith (2017).

28

4. Basic NEF networks

When constructing neural models with the NEF, there are certain networks that
are often used in multiple places and constitute basic building blocks for larger
scale networks. In the following, I briefly discuss how to create a differentiator,
an integrator, a gated memory buffer based on that integrator, an ensemble
applying a threshold to a signal, and a multiplier in neurons.

Often it is helpful to use a graphic representation to understand NEF net-
works. The graphical primitives used in the network diagrams in this thesis are
shown in Fig. 4.1. Normal ensembles are marked with a circle. Sometimes the
dimensions of a vector are split across multiple ensembles, called an ensemble
array, and marked by a stack of circles. Multiple NEF components that con-
stitute a network not shown in full detail, are identified with rectangles with
rounded corners. Sometimes it is useful to combine decoded representations
before transmitting them to the destination neurons in a pass-through node.
Such nodes are marked by filled circles. Note that such pass-through nodes
could be replaced with the actual neuron-to-neuron connections and are not
biological implausible. Rectification ensembles are useful enough to warrant a

ext external inputs and outputs

𝒙 ensemble representing 𝒙

𝒙 ensemble array representing 𝒙

net network

pass-through node

rectification ensemble

connection

𝑻
connection with transform 𝑻

inhibitory connection

modulatory connection

recurrent connection

Figure 4.1.: Graphical elements in NEF network diagrams. See text for further
explanation.

29

4. Basic NEF networks

special symbol: a rectified linear plot in its circle. These ensembles are dis-
cussed in detail in Section 4.4. Normal NEF connections are represented by
arrows and typically have a synaptic time constant of 5 ms, which is in the
range of experimentally measured values for AMPA-type glutamate receptors
(Jonas, Major, and Sakmann 1993; Spruston, Jonas, and Sakmann 1995). Linear
transforms or functions computed across the connection are denoted along
the arrow. Inhibitory connections bypass the encoders of the target ensemble
and use a negative transform to suppress firing in the target ensemble. Finally,
modulatory connections do not influence the representation in an ensemble
directly, but the connection weights of another connection, and are indicated
with a half open circle terminating the connection.

4.1. Differenঞator

While a perfect differentiator is not physically realizable (it would require
infinite gain), it is often sufficient to detect a sudden change in a signal. For
this an approximation can be constructed out of two synaptic low pass filters

ℎ1(𝑡) = 𝜏−1
1 exp(−𝑡/𝜏1) and ℎ2(𝑡) = 𝜏−1

2 exp(−𝑡/𝜏2)

with time constants 𝜏1 < 𝜏2 as

d𝒙
d𝑡 ≈ 𝒚(𝑡) = 𝒙 ∗ ℎ1 − 𝒙 ∗ ℎ2

= 𝒙 ∗ (ℎ1 − ℎ2) .
(4.1)

Fig. 4.2 shows the impulse and the magnitude response of a differentiator
constructed this way. The attenuation of low frequencies is desired as this
corresponds to the differentiation. The attenuation of high-frequencies above
the pass-band is undesired, but given appropriate 𝜏1 and 𝜏2 unproblematic
in a neural network because signals will in general be subject to synaptic
filtering of high frequencies. The implementation of such a differentiator is
straight-forward with the NEF (Fig. 4.3) by feeding the same input with two
different synaptic time constants into an ensemble. In this work 𝜏1 = 5 ms
and 𝜏2 = 50 ms were used, which are in the range of experimentally observed
neurotransmitter decay constants (Sah, Hestrin, and Nicoll 1990; Moreno-Bote
and Parga 2005).

30

4.2. Integrator

0.0 0.2 0.4 0.6
Time t (s)

0.0

0.5

1.0
(a) Unit step response

Input x(t)
Output y(t)

10 2 10 1 100 101 102 103

Frequency f (Hz)

20

10

0

M
ag

ni
tu

de
 (d

B)

(b) Magnitude response

Figure 4.2.: Differentiator with 𝜏1 = 5 ms and 𝜏2 = 50 ms. (a) Response of the
differentiator to a unit step input. The output has been normalized
to the maximum. (b) Magnitude response for sinusoidal inputs
with different frequencies.

Figure 4.3.: Implementation of a differentiator with the NEF.
The connection labels state the transform and
synaptic time constants with 𝜏1 < 𝜏2.

𝒙 𝒚
+1, 𝜏syn = 𝜏1

−1, 𝜏syn = 𝜏2

4.2. Integrator

Integrators are important components in many NEF models because they en-
able the storage of values over some time span in neural activity. An integrator
is described by the differential equation

d𝒙(𝑡)
d𝑡 = 𝒖(𝑡) (4.2)

where 𝒖(𝑡) is the external input to the integrator. Applying principle 3 of the
NEF tells us that the input has to be scaled by the synaptic time constant 𝜏syn.
Furthermore, a recurrent connection feeding the output of the integrator back
to itself is needed (Fig. 4.4). To get a stable representations over a sufficient
time window, it is best to use a long time constant like 𝜏syn = 0.1 s which
is the range measured for the NMDA neurotransmitter (Sah, Hestrin, and

Figure 4.4.: Implementation of an integrator with the NEF.
𝒖 𝒙

𝜏syn

31

4. Basic NEF networks

0.0 2.5 5.0 7.5 10.0
Time t (s)

0.00

0.25

0.50

0.75

(a) Neural integrator

u(t)
x(t)

1.0 0.5 0.0 0.5 1.0
x

0.02

0.00

0.02

D
ist

or
tio

n
er

ro
r

(b) Fixed points

stable
unstable

Figure 4.5.: Neural integrator with 100 neurons and a recurrent synaptic time
constant of 𝜏syn = 100 ms. (a) Example input 𝑢(𝑡) and output 𝑥(𝑡)
of the neural integrator. (b) Distortion error (blue curve) and fixed
points. Stable fixed points are marked by filled circles, unstable
fixed points by unfilled circles.

Nicoll 1990; Moreno-Bote and Parga 2005). Due to neural noise and distortion
error, the represented value can drift over time (Fig. 4.5). The distortion in
the decoded representation leads to a finite number of fixed points and the
represented value will shift to one of the stable fixed points. The neural noise
prevents the representation from staying in an unstable fixed point and can
make the representation move out of the basin of attraction of a stable fixed
point. Adding more neurons to an integrator makes it more stable as the
spiking noise is decreased. Similarly, a longer recurrent synaptic time constant
also makes the integrator more stable. Increasing the number of represented
dimensions makes the integrator less stable because there are fewer fixed points.

4.3. Gated memory buffer

While the integrator enables us to store a value over time, it does not allow for
particularly quick updating. A quicker update can be achieved by adding a
difference ensemble (Fig. 4.6). By scaling the difference with a gain factor 𝑔
the updating speed can be regulated. However, too large of a value leads to
oscillations in the integrator. Note that feeding a null vector to the difference
ensemble clears out the memory instead of keeping the current value. Thus,
the input the integrator needs to be gated. This can be done by inhibiting the

32

4.4. Thresholding ensembles

Figure 4.6.: A gated memory buffer net-
work. The store input controls
whether the input 𝒖(𝑡) is al-
lowed to overwrite the stored
value 𝒙(𝑡).

𝒖 𝒖 − 𝒙 𝒙

𝑔𝜏syn

−1

store

neurons of the difference ensemble to keep the current value in the integrator.

4.4. Thresholding ensembles

Often one needs to apply a threshold to value, i.e. implement the function

𝑓 (𝑥) = { 0 𝑥 < 0
𝑥 𝑥 ≥ 0 , (4.3)

or compute the Heaviside step function

Θ(𝑥) = { 0 𝑥 < 0
1 𝑥 ≥ 0 . (4.4)

Both of these functions are non-differentiable at zero. The Heaviside function
is even discontinuous at that spot. These properties make it problematic to
implement this function with a standard NEF ensemble. Nevertheless, good
approximations of these functions can be achieved by aligning the neuron’s
tuning curves according to the shape of these functions.

Instead of choosing encoders randomly as −1 and 1, all encoders are set to
1 and all intercepts of the neuron tuning curves are chosen from 𝑥 ∈ [0; 1].
Choosing the intercept distribution in this interval appropriately can further
increase the accuracy. An exponential distribution that clusters intercepts close
to zero performs best (Fig. 4.7). Note that this is even better than setting all
intercepts to zero as this gives more variation in the tuning curves. The uniform
distribution often does not produce intercepts close enough to the threshold
value which leads to an increased effective threshold compared to the desired
threshold. To adjust the threshold to a non-zero value a constant bias term can
be fed into the thresholding ensemble.

33

4. Basic NEF networks

1.0 0.5 0.0 0.5 1.0
Input x

0.0

0.5

1.0

O
ut

pu
t

(a) Thresholding ensemble

rectified
Heaviside

0

200

Fi
rin

g
ra

te
 (s

1)

(b) Tuning curves

1.0 0.5 0.0 0.5 1.0
Input x

Figure 4.7.: Thresholding ensemble with 25 neurons. (a) Decoded rectified and
Heaviside output. (b) Tuning curves in the upper part; probability
density function of the exponential intercept distribution with
inverted y-axis (i.e. probability density increases downward).

𝑥 𝑎
𝑎2/4

𝑥𝑦

y 𝑏−1
𝑏2/4

Figure 4.8.: Implementation of an ac-
curate product with the
NEF.

4.5. Product

A product of two scalar numbers 𝑥 and 𝑦 could be computed by feeding them
into separate dimensions of a two-dimensional ensemble and decoding out
the product. A 37 % more accurate implementation (with the same number of
neurons) is, however, possible (Gosmann 2015) by rewriting the product with
squares as

𝑥𝑦 =
1
4 (𝑥2 + 2𝑥𝑦 + 𝑦2) −

1
4 (𝑥2 − 2𝑥𝑦 + 𝑦2) =

1
4 (𝑥 + 𝑦)2 −

1
4 (𝑥 − 𝑦)2 .

(4.5)
The neural implementation of this equation is straight-forward (Fig. 4.8).

Multiple scalar product networks can be combined to compute element-wise
vector products. By summing across those element-wise products a dot product
can be computed. Product networks are also used in the computation of circular
convolution as the binding operation in the Semantic Pointer Architecture
(Chapter 5).

34

5. The Semanঞc Pointer Architecture

While the Neural Engineering Framework allows us to encode vectors into
spiking neural networks and transform them, it does not tell us how to use
those vectors to represent structured, conceptual, or symbol-like information.
Different such methods could be devised, though in the context of the NEF the
most widely used method is the Semantic Pointer Architecture (SPA; Eliasmith
2013). The SPA has been used to build a multitude of cognitive models, includ-
ing the n-back task (Gosmann and Eliasmith 2015), the Tower of Hanoi task
(Stewart and Eliasmith 2011), human-scale knowledge representation (Craw-
ford, Gingerich, and Eliasmith 2016). The largest and most complex example
of a SPA model is Spaun, the Semantic Pointer Architecture Unified Network,
combining eight different tasks in a single functional spiking-neuron model
(Eliasmith, Stewart, et al. 2012).

The conceptual representations in the SPA are a specific instance of a Vector
Symbolic Architecture (VSA; Gayler 2004). In VSAs concepts are represented
with vectors, and linear and nonlinear operators are used to combine basic
concepts in more complex structured representations. Three types of operators
are considered essential in a VSA. First, a measure of similarity

𝑠 ∶ ℝ𝑑 × ℝ𝑑 ⟶ ℝ (5.1)

for which I use the normalized dot product (also known as cosine similarity)

𝑠(𝒙, 𝒚) ∶=
⟨𝒙, 𝒚⟩

‖𝒙‖ ⋅ ‖𝒚‖ (5.2)

for the remainder of this thesis. Second, a superposition operator

S ∶ ℝ𝑑 × ℝ𝑑 ⟶ ℝ𝑑 (5.3)

is required that produces a vector similar to both inputs, i.e., 𝑠(S(𝒙, 𝒚), 𝒙) ≈
𝑠(S(𝒙, 𝒚), 𝒚) ⪆ √1/2 for 𝑠(𝒙, 𝒚) ≈ 0. This is usually, and will be for the

35

5. The Semantic Pointer Architecture

remainder of this thesis, simple elementwise addition, i.e., S(𝒙, 𝒚) ∶= 𝒙 + 𝒚.
Finally, a binding operator

B ∶ ℝ𝑑1 × ℝ𝑑2 ⟶ ℝ𝑑 (5.4)

is needed with an approximate inverse or unbinding operation

B+ ∶ ℝ𝑑 × ℝ𝑑2 ⟶ ℝ𝑑1. (5.5)

To be able to build up and retrieve information from representations, the
binding and unbinding operations are required to be distributive, i.e.,

B(𝒙 + 𝒚, 𝒛) = B(𝒙, 𝒛) + B(𝒚, 𝒛) (5.6)
B+(𝒙 + 𝒚, 𝒛) = B+(𝒙, 𝒛) + B+(𝒚, 𝒛). (5.7)

For some proposed binding operations, like Tensor products (Smolensky
1990), the unbinding operation is the exact inverse B+ = B−1 with

B−1(B(𝒙, 𝒚), 𝒚) = 𝒙.

However, Tensor products increase the vector dimensionality with each succes-
sive binding which leads to biological implausible scaling problems (Eliasmith
2013, Appendix D.5). For that reason, I only consider binding methods that
keep the dimensionality 𝑑 = 𝑑1 = 𝑑2 constant.

In pure math, it is still possible to define binding operators with an exact
inverse, but we need to keep the implementation in neurons in mind. This
introduces additional constraints. First, the actual usable representational
space X ⊊ ℝ𝑑 is limited, constraining unlimited growth of bound vectors.
Second, neural noise limits the representational accuracy, preventing highly
non-linear operators. It follows that for a binding operator in a neural system
it is desired to maximize the set V ⊆ X for which 𝑠(B+(B(𝒙, 𝒚) + 𝜻, 𝒚), 𝒙) ≈ 1
for all 𝒙, 𝒚 ∈ V and samples of noise 𝜻 in the neural system. Note that this
condition would be satisfied by using the identity B(𝒙, 𝒚) = B+(𝒙, 𝒚) = 𝒙.
Thus, simultaneously it needs to hold that 𝑠(B+(B(𝒙, 𝒚), 𝒛), 𝒙) ≈ 0 for all
𝒙, 𝒚, 𝒛 ∈ V with 𝑠(𝒚, 𝒛) ≈ 0. At this point, it is useful to introduce three more
definitions.

Definition 1 (identity vector). A vector 𝒊B with the property B(𝒙, 𝒊B) = 𝒙 is called
identity vector under B.

36

5.1. Binding operations

Definition 2 (absorbing element). A vector 𝒏B with the property B(𝒙, 𝒏B) = 𝑐 ⋅ 𝒏B
where 𝑐 ∈ ℝ is called an absorbing element under B.

Such an absorbing element effectively destroys the information in the vector
𝒙. For that reason, absorbing elements should be avoided when constructing
representations with binding. Note that this definition slightly differs from the
usual definition of absorbing elements by allowing for a scaling factor.

Definition 3 (unitary vector). A vector 𝒖 with the property ⟨B(𝒙, 𝒖),B(𝒚, 𝒖)⟩ =
⟨𝒙, 𝒚⟩ is called unitary.

In other words, a unitary vector preserves the dot product under binding.
This is in analogy to unitary transformation matrices that also preserve the dot
product. It also implies that binding with a unitary vector preserves the length
of the bound vector.

5.1. Binding operaঞons

I introduce two specific binding operations now. First, circular convolution is
discussed, which has been the binding operation of choice in the SPA so far.
Second, I introduce a new binding method, termed vector-derived transfor-
mation binding, with some trade-offs. The two binding approaches and their
suitability for different problems is discussed.

5.1.1. Circular convoluঞon

The binding operator classically used in the SPA is circular convolution, and
was suggested by Plate (1995) and Plate (2003) for his Holographic Reduced
Representations (HRRs).

Definition 4 (circular convolution binding). The circular convolution binding
operator is given by

B⊛(𝒙, 𝒚) ∶= 𝒙 ⊛ 𝒚 with (𝒙 ⊛ 𝒚)𝑖 =
𝑑−1
∑
𝑗=0

𝑥𝑗𝑦(𝑖−𝑗) mod 𝑑 (5.8)

and has the approximate inverse (Plate 2003)

B+
⊛(𝒙, 𝒚) = 𝒙 ⊛ 𝒚+ with 𝒚+ ∶= (𝑦0, 𝑦𝑑−1, 𝑦𝑑−2, … , 𝑦1)⊤. (5.9)

37

5. The Semantic Pointer Architecture

The basic properties of

distributivity: (𝒙1 + 𝒙2) ⊛ 𝒚 = 𝒙1 ⊛ 𝒚 + 𝒙2 ⊛ 𝒚, (5.10)
associativity: (𝒙 ⊛ 𝒚) ⊛ 𝒛 = 𝒙 ⊛ (𝒚 ⊛ 𝒛), (5.11)
commutativity: 𝒙 ⊛ 𝒚 = 𝒚 ⊛ 𝒙 (5.12)

hold for circular convolution as a binding operator. A useful property of
circular convolution for the implementation in a neural network with the NEF
is, that it becomes element-wise multiplication in the Fourier space defined by

𝒙 ⊛ 𝒚 = 𝑻−1
F [(𝑻F𝒙) ∘ (𝑻F𝒚)] (5.13)

where 𝑻F is the discrete Fourier transform (DFT) matrix. The linear transform
with the DFT matrix can be put easily into the neural connection weights and
the element-wise product can be done with a well-optimized product network
(Gosmann 2015).

The expression in Fourier space also allows the derivation of the special
elements of circular convolution. The identity vector must not change the
complex Fourier coefficient in the element-wise multiplication. Thus, its Fourier
coefficients must all be 1 + 0i and the identity vector is given by

𝒊⊛ = (1, 0, 0, … , 0)⊤. (5.14)

Furthermore, all vectors with Fourier coefficients 𝑐𝑛 ∈ ℂ that have an absolute
value of ∣𝑐𝑛∣ = 1 are unitary, as one can easily verify. A trivial example of
a unitary vector is the identity vector 𝒊⊛. Finally, all vectors (𝑧, … , 𝑧)⊤ with
𝑧 ∈ ℝ are absorbing elements.

5.1.2. Vector-derived transformaঞon binding

Circular convolution can be interpreted as moving one of the operands around
in the 𝑑-dimensional space in a way defined by the other operand. This leads
to the question, whether there are other ways to project one vector to a new
location based on the other vector. One such way is what I call vector-derived
transformation binding (VTB), which to my knowledge has not been described
before.

38

5.1. Binding operations

Definition 5 (vector-derived transformation binding, VTB). Given a 𝑑′ = 𝑑1/2 ∈
ℕ>0, the vector-derived transformation binding operator BV ∶ ℝ𝑑 × ℝ𝑑 ⟶ ℝ𝑑 is
defined as

BV(𝒙, 𝒚) ∶= 𝑽̄𝒚𝒙 =
⎡
⎢⎢
⎣

𝑽𝒚 0 0
0 𝑽𝒚 0
0 0 ⋱

⎤
⎥⎥
⎦

𝒙 (5.15)

with

𝑽𝒚 = 𝑑
1
4

⎡
⎢⎢⎢⎢
⎣

𝑦1 𝑦2 … 𝑦𝑑′

𝑦𝑑′+1 𝑦𝑑′+2 … 𝑦2𝑑′

⋮ ⋮ ⋱ ⋮
𝑦𝑑−𝑑′+1 𝑦𝑑−𝑑′+2 … 𝑦𝑑

⎤
⎥⎥⎥⎥
⎦

. (5.16)

The approximate inverse is given by

B+
V (𝒙, 𝒚) = 𝑽̄⊤

𝒚 𝒙 =
⎡
⎢⎢
⎣

𝑉⊤
𝒚 0 0
0 𝑉⊤

𝒚 0
0 0 ⋱

⎤
⎥⎥
⎦

𝒙. (5.17)

This binding method is based on the fact that in the SPA vectors are usually
randomly generated and uniformly distributed with identically distributed
components. In that case each subvector (e.g., each row in 𝑽𝒚) is also uni-
formly distributed with identically distributed components. Furthermore, for
high-dimensional vector spaces almost all (uniformly sampled) vectors are
orthogonal and semantic pointers are usually picked to have unit-length. Thus,
the matrix 𝑽̄𝒚 is almost orthogonal with the implication 𝑽̄⊤

𝒚 𝑽̄𝒚 ≈ 𝑰. Vectors 𝒚,
that give a perfectly orthogonal matrix 𝑽𝒚, are unitary. One special unitary
vector is the identity vector.

Corollary 1 (VTB identity vector). The identity vector for VTB is given by

[𝒊V]𝑖 =
⎧{
⎨{⎩

𝑑− 1
4 𝑖 ∈ {(𝑘 − 1)𝑑′ + 𝑘 ∶ 𝑘 ≤ 𝑑′, 𝑘 ∈ ℕ>0}

0 otherwise
. (5.18)

Proof. By writing 𝒊V as 𝑽𝒊V
one can easily verify that 𝑽𝒊V

= 𝑰 ⇒ 𝑽̄𝒊V
= 𝑰.

Example for 𝑑 = 9: 𝒊(9)
V = (1, 0, 0, 0, 1, 0, 0, 0, 1)⊤.

Corollary 2 (VTB distributivity). VTB is distributive:

BV(𝒙1 + 𝒙2, 𝒚) = BV(𝒙1, 𝒚) + BV(𝒙2, 𝒚) and
BV(𝒙, 𝒚1 + 𝒚2) = BV(𝒙, 𝒚1) + BV(𝒙, 𝒚2).

(5.19)

39

5. The Semantic Pointer Architecture

Proof. By applying the definitions for both directions of the distributivity:

• BV(𝒙1 + 𝒙2, 𝒚) = 𝑽̄𝒚 (𝒙1 + 𝒙2) = 𝑽̄𝒚𝒙1 + 𝑽̄𝒚𝒙2 = BV(𝒙1, 𝒚) + BV(𝒙2, 𝒚)

• BV(𝒙, 𝒚1+𝒚1) = 𝑽̄𝒚1+𝒚2
𝒙 = (𝑽̄𝒚1

+ 𝑽̄𝒚2
) 𝒙 = 𝑽̄𝒚1

𝒙+𝑽̄𝒚2
𝒙 = BV(𝒙, 𝒚1)+

BV(𝒙, 𝒚2)

In contrast to circular convolution, VTB is neither commutative

BV(𝒙, 𝒚) = 𝑽̄𝒚𝒙 ≠ 𝑽̄𝒙𝒚 = BV(𝒚, 𝒙), (5.20)

nor associative

BV(𝒙,BV(𝒚, 𝒛)) = 𝑽̄𝑽̄𝒛𝒚𝒙 ≠ 𝑽̄𝒛𝑽̄𝒚𝒙 = BV(BV(𝒙, 𝒚), 𝒛). (5.21)

This implies that unlike circular convolution, multiple bindings cannot be
undone in a single step, but a separate unbinding step is required for each
binding. Despite the non-commutativity, it is possible to flip the operands in
the bound state BV(𝒙, 𝒚) = 𝑽↔BV(𝒚, 𝒙) with the matrix

[𝑽↔]𝑖𝑗 =
⎧{
⎨{⎩

1 𝑗 = 1 + ⌊ 𝑖−1
𝑑′ ⌋ + 𝑑′ [(𝑖 − 1) mod 𝑑′]

0 otherwise
. (5.22)

Example for 𝑑 = 4:

𝑽 (4)
↔ =

⎡
⎢⎢⎢⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎥⎥
⎦

5.1.3. Comparison of circular convoluঞon and vector-derived

transformaঞon binding

Both circular convolution and VTB are compressed binding operations. Because
of the lossy compression, we lose some information in each binding which
makes it increasingly harder to recover the original unbound vectors. To combat
this effect (and the effect of neuron noise) clean-up memories like the one by

40

5.1. Binding operations

0 5 10 15
Repeated auto-bindings

100

101

102

103

104

105
Le

ng
th

(a) Length under auto-binding

0 5 10 15
Repeated auto-bindings

0.0

0.2

0.4

0.6

0.8

1.0

s(o
rig

in
al

,u
nb

ou
nd

)

(b) Similarity of unbound vector

Circular convolution
VTB

Figure 5.1.: Repeatedly binding a 256-dimensional vector with itself. (a) Length
of the resulting vector. (b) Similarity of the original vector to the
vector obtained when undoing all bindings. The shaded areas
represent 95 % confidence intervals.

Stewart, Tang, and Eliasmith (2011) are required. Likewise the independent
accumulator model discussed in Section 10.2 can be used as a clean-up memory.

In addition to the information loss, the binding operations change the length
of the vector (if neither operand is unitary). This can be a problem in a neural
representation as neurons saturate and might not represent the vector accu-
rately anymore. In particular, neural ensembles in the NEF are optimized for
a certain representational space, usually a hyperball with a given radius 𝑟.
It is convenient to set 𝑟 = 1 and try to keep the Semantic Pointer vectors at
unit-length.

Figure 5.1 shows how the mean length of random vectors repeatedly bound
with themselves changes. For the circular convolution the length increases
much faster than for VTB. Such a rapid increase in length can be problematic
in a neural network with a limited representational radius as in the NEF. More-
over, VTB preserves more information of the bound vectors as shown by the
similarity to the original vectors when undoing all bindings. After repeated
binding with itself and then the same number of unbindings, the resulting VTB
bound vector is more similar to the original vector than the circular convolution
bound vector.

While binding vectors with themselves can sometimes be useful (e.g., for
generating Semantic Pointers with a successive relationship like position in-
dices), it is much more common to bind randomly sampled vectors. Figure 5.2

41

5. The Semantic Pointer Architecture

0 10 20 30 40
Repeated random bindings

10 2

10 1

100

Le
ng

th

(a) Length under random bindings

0 10 20 30 40
Repeated random bindings

0.0

0.2

0.4

0.6

0.8

1.0

s(o
rig

in
al

,u
nb

ou
nd

)

(b) Similarity of unbound vector

Circular convolution
VTB

Figure 5.2.: Repeatedly binding a 256-dimensional vector with random vectors.
(a) Length of the resulting vector. (b) Similarity of the original
vector to the vector obtained when undoing all bindings. The
shaded areas represent 95 % confidence intervals.

shows the same experiment where a random vector was used in each binding.
In this case, the vector length decreases to zero, even if it might increase in
some of the early bindings. Again, this decrease is much quicker for circular
convolution binding than for VTB and the latter method also preserves more
of the similarity across bindings.

It is conceivable that the problems with scaling of the vector length can be
fixed by normalizing after each binding. This, however, does not affect the loss
of information in each binding (Fig. 5.3). Also, implementing normalization in
a neural network is notoriously difficult because of the division involved with
an unbounded output as the divisor approaches zero. Good approximations of
normalization are only possible for a defined and finite input range. It is worth
noting that the neurons in the NEF perform a sort of “soft normalization”
for large values, as the neuron’s firing rates saturate. But this only affects
vectors exceeding a certain length and can lead to other distortions in the
representation.

Another approach to preventing the growth or decay of the vector length, and
even prevent the information loss, is the usage of unitary vectors. These keep
the vector length constant and perform lossless binding due to their perfect
inverse. Note that binding two unitary vectors gives another unitary vector.
Thus, repeated binding is not a problem. However, the scaling properties
of VSAs are based on the fact that the number of almost orthogonal vectors

42

5.1. Binding operations

0 5 10 15
Repeated auto-bindings

0.0

0.2

0.4

0.6

0.8

1.0
s(o

rig
in

al
,u

nb
ou

nd
)

(a) Normalized auto-bindings

0 5 10 15
Repeated random bindings

0.0

0.2

0.4

0.6

0.8

1.0
(b) Normalized binding with random vectors

Circular convolution
VTB

Figure 5.3.: Repeatedly binding a 256-dimensional vector with (a) itself or (b)
random vectors and normalizing in each step. The similarity to the
original vector after undoing all bindings is shown. The shaded
areas represent 95 % confidence intervals.

that fits into a vector space grows exponentially with the dimensionality of
that space (Wyner 1967; Cai, Fan, and Jiang 2013). Because not all vectors are
unitary, this scaling property might be lost when restricted to unitary vectors.
It might be best to use unitary vectors only for those Semantic Pointers that are
repeatedly used in bindings. But it is also worth keeping in mind that achieving
the theoretical limit of almost orthogonal vectors in a space is a hard problem,
closely related to sphere packing and unsolved for arbitrary dimensionality
(Cohn et al. 2017). Thus, the practical scaling of the number of useable vectors
might be less then the exponential scaling for both unitary and non-unitary
vectors.

So far VTB looks like the better choice for a binding operation. But it does
not come without downsides. In contrast to circular convolution, it is not
associative or commutative. While the desirability of commutativity depends
on the employed representation scheme, the non-associativity implies that
each binding has to be undone in an individual step, while circular convolution
allows us to undo a chain of bindings in a single step, if the vector representing
that chain is available. Thus, circular convolution might allow the recovery
of information more quickly. Ultimately, this is a question of what binding
operations the brain applies for different forms of processing (if such binding
is at all related to what the brain does). Potentially, the binding operations lead
to different timing predictions, as unbinding with the VTB may take more time.

43

5. The Semantic Pointer Architecture

Deriving such predictions and testing them experimentally is, however, out of
the scope of this thesis.

Finally, we have to consider the neural implementation of these binding
operations. Both essentially require a set of multiplication networks. For the
circular convolution, the DFT (and inverse DFT) can be implemented in feed-
forward connection weights that do not require any additional neurons. For
each of the input vectors, 𝑑 complex Fourier coefficients are produced, but
as the inputs are real-valued, half of these are the complex conjugate of the
other half. Thus, only 𝑑/2 coefficients have to be considered. Each coefficient
is a complex number multiplied with one coefficient of the other vector. That
results in four real-valued multiplies per coefficient. In total, 2𝑑 multiplications
are required for a circular convolution. For VTB, there are 𝑑1/2 multiplications
of 𝑑1/2 × 𝑑1/2 matrices with a vector, resulting in a total of 𝑑3/2 multiplications.
However, each column vector in 𝑽̄𝒚 gets scaled by the same component of
𝒙. That would allow the storage of each of these column vectors in a single
NEF ensemble with the respective 𝑥𝑖 in an additional dimension, and then
decode the scaled column vector. This requires only 𝑑 ensembles to decode
from, but each ensemble needs to represent 𝑑1/2 + 1 dimensions, and to keep
the noise error constant (as discussed in the next chapter1), the number of
neurons in each ensemble then needs to be scaled by (𝑑1/2 + 1)3/2 ≈ 𝑑3/4.
Across all ensembles this amounts to a scaling by 𝑑7/4. Thus, the VTB requires
more neural resources. It should be noted, that for either binding method,
the binding with a fixed vector can be implemented purely in the connection
weights as it reduces to a simple matrix multiplication in either case.

Despite VTB having many advantages over circular convolution, I decided to
use circular convolution in the memory model. The main reason is that support
for circular convolution is already implemented in Nengo and the model does
not use a lot of binding operations. Nevertheless, it would be interesting to
switch the model over to VTB and investigate effects on the performance in the
future.

5.2. Structured representaঞons

Once we defined a binding operation, it can be used to build up structured
representations with Semantic Pointers. For example, consider a scene with a

1Noise error scales by 𝑂(𝑑3/4/√𝑛), thus the neuron number has to be scaled by 𝑂(𝑑6/4/𝐸2).

44

5.2. Structured representations

red square and blue circle that we want to encode as Semantic Pointer. Assume
that we have Semantic Pointers red, square, blue, and circle. One possible
encoding would be

𝒔 = B(red, square) + B(blue, circle). (5.23)

We could then recover the color of the square as

B+(𝒔, square) = B+(B(red, square), square) + B+(B(blue, circle), square)

(5.24)
≈ red + noise. (5.25)

Note, however, that the binding operation needs to be commutative to recover
the shape from the color with this encoding scheme. Other encoding schemes
can be devised to alleviate this concern. For example, the properties can be
bound to a role and each object to an object identifier:

𝒐1 = B(red, color) + B(square, shape) (5.26)
𝒐2 = B(blue, color) + B(circle, shape) (5.27)

𝒔 = B(𝒐1, obj1) + B(𝒐2, obj2). (5.28)

To find the color of a specific shape, each object would have to be retrieved, then
the shape of the object to compare it to the target shape, and finally the color
has to recovered if the shape matches. Thus, different encoding schemes can
lead to different timing predictions. The latter approach requires scanning and
through multiple objects and thus it should take longer to recover information
with more items, while the former approach can recover any property in a
single step. Despite those differences, both encoding approaches are similar,
in so far as pairs of semantic pointers are bound together.

Definition 6 (encoding with binding). Given 𝑘 pairs (𝒙𝑖, 𝒚𝑖) ∈ ℝ𝑑 × ℝ𝑑, the
encoding of these pairs into a single Semantic Pointer 𝒎 with binding is given by

𝒎 =
𝑘

∑
𝑖=1

B(𝒙𝑖, 𝒚𝑖). (5.29)

An 𝒙𝑖 from such a trace can be recalled as 𝒙𝑖 ≈ ̂𝒙𝑖 = B+(𝒎, 𝒙𝑖). While most
concrete encoding schemes make use of encoding with binding, at least one
other method, encoding with tagging, has been proposed (Recchia et al. 2015).

45

5. The Semantic Pointer Architecture

Definition 7 (encoding with tagging). Given 𝑘 pairs (𝒙𝑖, 𝒚𝑖) ∈ ℝ𝑑 × ℝ𝑑 and
a matrix 𝑴 ∈ ℝ𝑑×𝑑 with an approximate inverse 𝑴+ satisfying 𝑴+𝑴 ≈ 𝑰, the
encoding into a single Semantic Pointer with tagging is given by

𝒎 =
𝑘

∑
𝑖=1

𝑴2𝑖−1 (𝒚𝑖 + 𝑴𝒙𝑖) =
𝑘

∑
𝑖=1

𝑴2𝑖−1𝒚𝑖 + 𝑴2𝑖𝒙𝑖. (5.30)

The retrieval of an 𝒙𝑖 ≈ ̂𝒙𝑖 is accomplished with

̂𝒙𝑖 ∶= (𝑴2𝑐)
+

𝒎 (5.31)

𝑐 = arg max
𝑗∈[1, 𝑘]

𝑠(𝒚𝑖, (𝑴2𝑗−1)
+

𝒎) . (5.32)

There are a number of sensible choices for the matrix 𝑴.

• First of all, for both, circular convolution and VTB, binding with a fixed
vector 𝒗 can be expressed as a matrix multiplication. A matrix 𝑴 derived
in this way is unitary, if and only if the vector 𝒗 is unitary for the given
binding operation.

• A common choice for encoding with tagging are permutation matrices.
These are unitary and an exact inverse is given by the transpose.

• A special permutation matrix is the matrix that shifts all vector compo-
nents by one. For a given permutation matrix, the vector space dimen-
sions can be reordered such that the permutation matrix becomes the
shift by one. Interestingly, the shift by one is also equivalent to a circular
convolution with the vector (0, 1, 0, 0, …)⊤.

• Other good candidates for 𝑀, that have not been considered to my knowl-
edge, are (random) orthogonal matrices. These are unitary operators on
ℝ𝑑 and thus have an exact inverse given by the transpose.

The relations of these different matrix choices is shown in the Venn diagram in
Fig. 5.4.

Either encoding method allows the recovery of encoded vectors, but the
encoding vector itself is (in general) not similar to those encoded vectors. In
this way, the vector is analogous to a pointer in computer science that doesn’t

46

5.2. Structured representations

orthogonal
matrices
(unitary)

random
permutations shifts

fixed
unitary
circular

convolutions

fixed
circular

convolutions

Figure 5.4.: Venn diagram of the relations between different classes of matrices
𝑴 that can be used for encoding with tagging.

directly contain the information, but can be dereferenced to access the informa-
tion it is pointing to. Unlike pointers, however, these vectors can also capture
semantic information by their distance in vector space. Due to the combination
of these two facts, these vectors are called Semantic Pointers.

5.2.1. Comparison of encoding methods

Based on the first experiment from Recchia et al. (2015), the encoding methods
can be compared by measuring the pairwise binding capacity. To do so, a
set of 1000 vectors with normally distributed components 𝑥𝑖 ∼ N(0, √1/𝑑)
are created (note that 𝔼[‖𝒙‖] = 1). From this set 500 pairs are sampled with
replacement. Then 𝑘 of these pairs are encoded into a single vector and it is
tested whether the 𝒙 of a random encoded pair (𝒙, 𝒚) can recovered with the
cue 𝒚. A vector counts a successfully recovered if ̂𝒙 is more similar to 𝒙 than any
other vector in the initial set of vectors. 1000 trials were run and averaged over
for each encoding scheme and vector dimensionality. Because VTB requires
the dimensionality 𝑑 to be square, 256, 484, 1024, and 2025 were picked.

Figure 5.5a shows the results for encoding with binding. Both binding opera-
tors perform about the same. While this experiment essentially follows Recchia
et al. (2015), it gives much better results. It is not clear whether they omitted
an essential detail from their description or whether their implementation of
the binding operation is flawed.

The results for encoding with tagging by a shift of one are shown in Fig. 5.5b
and closely match the results presented in Recchia et al. (2015). Note that the
same result applies to any other permutation matrix as the vector components
can be reordered accordingly. Very similar results are obtained with orthogonal

47

5. The Semantic Pointer Architecture

10 20
Number of pairs stored in trace (k)

0.25

0.50

0.75

1.00

Re
tr

ie
va

l a
cc

ur
ac

y

(a) Encoding with binding

d = 256
d = 484
d = 1024
d = 2025

10 20
Number of pairs stored in trace (k)

0.25

0.50

0.75

1.00
(b) Encoding with tagging

Figure 5.5.: Retrieval accuracy for (a) encoding with binding and (b) encoding
with unitary tagging matrices. Solid lines show results for VTB.
The dashed lines in (a) show results for binding with circular convo-
lution, in (b) results for unitary circular convolution matrices, shift
matrices, and orthogonal matrices without further indication as
the results are almost identical. Error bars denote 95 % confidence
intervals.

matrices, fixed unitary circular convolution, and unitary VTB. In all these cases,
the pairwise binding capacity is below the encoding with binding, opposed to
what Recchia et al. (2015) reported. Intuitively, this can be explained by the fact
that encoding with binding is a sum of 𝑘 vectors, where each vector has encoded
information about the pair’s constituents, whereas encoding with tagging is
a sum of 2𝑘 vectors because each pair’s constituent gets encoded separately.
In other words, encoding with binding has a pairwise binding capacity about
twice as high as encoding with tagging. In the plots, the retrieval accuracies
for encoding with binding at 2𝑘 matches roughly with the retrieval accuracy
with tagging at 𝑘, illustrating this fact.

Finally, we can observe that encoding with tagging completely fails with
fixed non-unitary circular convolution matrices and does not do much better
with non-unitary VTB matrices either (Fig. 5.6). This is likely due to the fact
that repeated circular convolution with the same (non-unitary) vector leads
to a super-exponential increase in length. That causes one pair (or even one
vector of that pair) to be much stronger than all the other pairs, preventing
their recovery.

These experiments clearly show that encoding with binding is preferable.

48

5.2. Structured representations

5 10 15 20 25
Number of pairs stored in trace (k)

0.00

0.25

0.50

0.75

1.00

Re
tr

ie
va

l a
cc

ur
ac

y

Encoding with non-unitary tagging

d = 256
d = 484
d = 1024
d = 2025

Figure 5.6.: Retrieval accuracy for encoding with non-unitary tagging matri-
ces. Solid lines show results for VTB matrics, while dashed lines
show results for circular convolution matrices. Error bars for 95 %
confidence intervals are smaller than then marker size.

This is even more so the case, as retrieving items from an encoding with tagging
is much more involved. Each potential cue vector 𝒚𝑖 has to be recovered and
compared to the actual cue 𝒚 to determine the maximum similarity to the
cue, and which 𝒙𝑖 has to be decoded from the encoding. The encoding with
binding allows direct querying of an 𝒙𝑖 with a given 𝒚𝑖. This makes for a
simpler implementation in a neural network. That being said, if the main
concern is not the implementation in a neural network, but the performance
of the vector operations on a classical digital computer, one might come to a
different conclusion as Recchia et al. (2015) did.

49

6. Opঞmized high-dimensional

representaঞon in spiking neurons

The implementation of the Semantic Pointer Architecture in a spiking neural
network requires the representation of high-dimensional vectors with a certain
accuracy. One of the main factors influencing the accuracy is the number of
neurons. A higher number of neurons improves accuracy and, unfortunately,
increases simulation times. If the accuracy of the representation can be im-
proved in a different way, it would allow a reduction in the neuron number
accordingly and a reduction in simulation times without sacrificing accuracy. I
previously proposed one such optimization method (Gosmann and Eliasmith
2016), which improved the accuracy of SPA operations by up to 25 times. Here,
I describe a more generally applicable method that supersedes the previous
method by matching or exceeding the previously achieved performance. The
new method also has a number of additional advantages. It does not require
any prior simulation to obtain empirical noise estimates and is simpler in its
implementation.

6.1. Types of error in neural representaঞons

In the NEF the total mean representational error is given by

𝐸2
tot = ⟨𝐸2

tot(𝒙)⟩
𝒙∈X

= ⟨∥𝒙 − ̂𝒙(𝑡)∥2⟩
𝑡, 𝒙∈X

. (6.1)

As detailed by Eliasmith and C. H. Anderson (2003, pp. 47–48), the total error
is constituted out of the error caused by spiking noise 𝐸n and the error due to
the static distortion 𝐸d from the imperfect decoding:

𝐸2
tot(𝒙) = 𝐸2

n(𝒙) + 𝐸2
d(𝒙) (6.2)

𝐸n(𝒙) = ⟨∥ ̂𝒙(𝑡) − ⟨ ̂𝒙(𝑡)⟩𝑡∥
2⟩

𝑡
(6.3)

51

6. Optimized high-dimensional representation in spiking neurons

𝐸d(𝒙) =∥𝒙 − ⟨ ̂𝒙(𝑡)⟩𝑡∥
2 . (6.4)

The relation of the error terms is explained by the partitioning of the sum of
squares in an ordinary least squares model (which is typically used to solve
for decoders in the NEF). Note that the noise error depends on the decoding
synapse. As 𝜏syn → ∞, the noise error approaches zero (𝐸n → 0). Because the
synapse limits how fast the neural representation can be updated, we get a
trade-off of the noise in the system and how fast it reacts to new inputs.

Due to the neuron nonlinearities, finding analytical solutions for the error
terms is likely not possible (except for constrained special cases). However, we
can estimate the error terms from computational experiments. To do so, we
sample 𝒙 ∈ X or use a regular grid of 𝒙. Each 𝒙 is then presented for some
duration Δ𝑡ss to reach the steady state and then ̂𝒙(𝑡) is measured for some
sample duration Δ𝑡sample. Appropriate durations depend on the decoding
synapse (longer synapses require more time to reach the steady state) and
firing rate (a longer sampling duration is required for accurate estimates with
low firing rates).

As the dimensionality of the higher-dimensional space increases, it becomes
increasingly difficult to cover the whole space with samples from X . Most of
the time, though, we can treat the space as an isotropic hyperball, i.e., it does
not matter along which direction we move through the space. This requires
that the NEF ensemble’s encoders are uniformly sampled from the hyper-
sphere surface, which is usually the case (but there are some exceptions like
certain implementations of a product network, Gosmann 2015, or thresholding
ensembles, Section 4.4). Without loss of generality, we assume the representa-
tional radius of the hyperball to be 𝑟 = 1 (as it is purely a scaling factor). The
isotropy property allows us to cut through the center of the hyperball with a
one-dimensional line. Measuring the error 𝐸(𝑥) = 𝐸(𝒙) at 𝑚 regularly spaced
points 𝒙𝑖 = (𝑥𝑖, 0, … , 0)⊤ with 𝑥𝑖 = 𝑖 ∗ Δ𝑥 − Δ𝑥/2, Δ𝑥 = 1/𝑚, 1 ≤ 𝑖 ≤ 𝑚 along
such a line, the mean error for the hyperball can be estimated as

𝐸 =
Ω𝑑
𝑉𝑑

𝑚
∑
𝑖=1

𝐸(𝑥𝑖) ⋅ Δ𝑥 ⋅ 𝑟(𝑥𝑖) (6.5)

Ω𝑑 =
2𝜋

𝑑
2

Γ(𝑑
2)

(6.6)

52

6.2. Properties of the error in neural representations

𝑉𝑑 =
𝜋

𝑑
2

Γ(𝑑
2 + 1)

(6.7)

𝑟(𝑥) =
1
𝑞

𝑞

∑
𝑖=1

∣∣∣∣
𝑥 − (1 +

1
𝑞)

Δ𝑥
2 + 𝑖

Δ𝑥
𝑞

∣∣∣∣

𝑑−1
(6.8)

where Ω𝑑 is the 𝑑-dimensional solid angle, 𝑉𝑑 the volume of a 𝑑-ball with
radius 𝑟 = 1, and 𝑟(𝑥) estimates the radius to the power of 𝑑 − 1 for an 𝑥 with
𝑞 evaluation points. This latter estimation of the radius across the Δ𝑥 interval
is necessary to not under- or overestimate the integral by a large amount. This
would happen if only the radius at the exact evaluation point was used.

6.2. Properঞes of the error in neural representaঞons

When looking at the representation of a spiking neural network, the noise error
is the main factor to consider. It goes down by 𝑂(1/√𝑛) where 𝑛 is the number
of neurons (Fig. 6.1a), whereas the distortion error decreases by 𝑂(1/𝑛). The
total error is thus dominated by the noise error for a sufficient number of
neurons (Eliasmith and C. H. Anderson 2003, Fig. 2.6). In contrast, for rate
neurons without spiking noise (𝐸n = 0) only the distortion error is relevant.
Furthermore, with the Nengo default parameters, the increase in the noise
error with dimensions 𝑑 is of 𝑂(𝑑) (Fig. 6.1b).

When looking at the error along a line through the hyperball (Fig. 6.2), it
becomes apparent that the distortion is mostly flat, but increases near the
surface. The noise error is slightly larger in the center of the ball than towards
the surface with higher dimensionalities (it is a flat line for 𝑑 = 1). Both of these
effects become more pronounced as the dimensionality increases. Moreover,
the one-dimensional cut shows a distorted picture of the importance of different
regions in the distortion. As the dimensionality increases, most of the volume
of the hyperball is close to the surface. Thus, the distortion (and noise) close to
−1 and 1 of the cut comes to dominate the mean error.

The main cause for the observed shape of the distortion is the uniform
sampling of evaluation points from the hyperball (Fig. 6.3). When looking
at the convex hull of the sample points, this hull is always smaller than the
hyperball (even if some evaluation points are exactly on the surface). Thus,
parts of the hyperball near the surface are not covered by the evaluation points

53

6. Optimized high-dimensional representation in spiking neurons

0 1000 2000
Number of neurons

0.0

0.2

0.4

0.6

0.8

M
ea

n
no

ise
 e

rr
or

 E
n

(a) Noise error in dependence of neurons

d = 1
d = 16
d = 32
d = 64

0 20 40 60
Dimensions d

0.0

0.1

0.2

0.3

M
ea

n
no

ise
 e

rr
or

 E
n

(b) Noise error in dependence of dimensions

Figure 6.1.: The mean noise error 𝐸n in dependence of (a) the number of neu-
rons and (b) the number of dimensions. Scatter points show em-
pirically determined values with 95 % confidence intervals smaller
than the marker size. Solid lines in (a) are extrapolated from the
mean values for 1000 neurons assuming the noise error is in 𝑂(𝑛).
The solid gray line in (b) is a linear regression through all shown
data points.

and are not considered in the least squares optimization of the decoders. As
the number of dimensions increases, this becomes a bigger problem as the
volume for a hyperball goes to zero as 𝑑 → ∞ (all of the ball is a surface).
To show that this distortion is indeed caused by the partial covering, we can
increase the radius of the hyperball for sampling the evaluation points slightly
to cover more of the unit-ball. This is done in Fig. 6.4 for a 64-dimensional
representation with 50 neurons per dimension (3200 in total). While this makes
the distortion more even (mean distortion reduced by 0.011), it unfortunately
also increases noise level (by 0.019) because evaluation points have a larger
spacing now.1

Vectors in the SPA are often of unit-length and thus a good, low-distortion
representation of the hyperball surface is desirable. Unfortunately, I am not
aware of any method to flatten out the distortion at the surface without a
higher increase in noise error. To completely cover the ball in a convex hull of
evaluation points, it is necessary to place some evaluation points outside of the
ball, which will cover and optimize for space outside of the representational

1Both values are statistically highly significant with 𝑝 < 0.0001 as determined by bootstrap-
ping.

54

6.2. Properties of the error in neural representations

1.0 0.5 0.0 0.5 1.0
x

0.0

0.1

0.2

0.3

M
ea

n
er

ro
r 〈 E〉

(a) Noise error

1.0 0.5 0.0 0.5 1.0
x

(b) Distortion error

1.0 0.5 0.0 0.5 1.0
x

(c) Total error

d = 1 d = 4 d = 16 d = 64

Figure 6.2.: Mean error along a line cut through the 𝑑-dimensional hyperball
with 50𝑑 neurons. The (a) noise error component, (b) distortion
error component, and (c) the total error are shown. The shaded
regions indicate 95 % confidence intervals.

Figure 6.3.: Covering of the two-dimensional
unit-circle with 50 uniformly sam-
pled evaluation points. The orange,
shaded region shows the convex
hull which fails to cover the area
close to the circle boundary.

55

6. Optimized high-dimensional representation in spiking neurons

1.0 0.5 0.0 0.5 1.0
x

0.0

0.1

0.2

0.3

M
ea

n
er

ro
r 〈 E〉

(a) Noise error

1.0 0.5 0.0 0.5 1.0
x

(b) Distortion error

1.0 0.5 0.0 0.5 1.0
x

(c) Total error

r = 1 r = 1.3

Figure 6.4.: Mean error along a line cut through the 64-dimensional hyperball
with 3200 neurons and different radii 𝑟 from which evaluation
points are picked. The shaded regions indicate 95 % confidence
intervals.

space. This leads to a trade-off of flatness of the distortion and baseline of
the distortion. Ultimately, the problem of distortion is minor, as for spiking
neurons the error is dominated by the noise component.

6.3. Effect of the intercept distribuঞon on noise and

distorঞon

The intercepts in Nengo are chosen to be distributed uniformly by default.
In higher dimensions, this has the effect that most neurons are either almost
never or almost always active for values in the representational space (Fig. 6.5).
Neurons that are always silent do not contribute to the representation as they
provide no information about the represented value. But also always active
neurons only contribute minimally to the representation. Even though the
firing rate still varies a bit over the representational space, the response curve
is steepest and carries the most information closest to the intercept for most
neuron models. The mapping of a small change in the represented value to
a large change in firing rate also allows for a less noisy decoding as a single
spike changes the decoded value less.

Thus, a better intercept distribution should have fewer neurons that are barely
ever active, but should also distribute the intercepts so that there is an even

56

6.3. Effect of the intercept distribution on noise and distortion

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of neurons active

0

2

4

6

8

N
or

m
ed

 fr
eq

ue
nc

y

Figure 6.5.: The histogram (shaded bar plot) and kernel-density estimate
(line) of the proportion of neurons active for uniformly sampled
64-dimensional vectors.

distribution of the fraction of space a neuron is active for. The latter criterion
can be achieved by distributing the intercepts according to CS(𝑑 + 2) where
CS(𝑑CS) is the distribution of cosine similarities between random uniformly
distributed 𝑑CS-dimensional unit-vectors. Its probability density function is
given by (also see Fig. 6.6, derivation in Appendix A)

𝑝CS(𝑥; 𝑑CS) =
1

𝐵(1
2 , 𝑑CS−1

2)
⋅ (1 − 𝑥2)

(𝑑CS−3)/2
, 𝑥 ∈ [−1, 1]. (6.9)

CS(𝑑 + 2) is equivalent to the distribution of single coordinates of points uni-
formly sampled from within the 𝑑-dimensional unit-ball (Voelker, Gosmann,
and Stewart 2017). Thus, by using this intercept distribution, the frequency
of intercepts corresponds to the distribution of ⟨𝒙, 𝒆⟩, 𝒙 ∈ X , i.e., values in
the representational space projected onto the (uniformly distributed) neuron
encoders. Note that for 𝑑 = 1, CS(𝑑 + 2) is the uniform distribution. Figure 6.7
compares the relative number of neurons that do not fire for any of the evalua-
tion points. For the standard uniform distribution, this fraction rises to above
0.35, but is close to zero with the cosine similarity intercept distribution.

While this gives a mathematical motivation to choose this intercept distri-
bution, it must be shown empirically that it performs better than a uniform
intercept distribution. In the following, I present a number of experiments to
make this case and give an intuition about the effect of this particular intercept

57

6. Optimized high-dimensional representation in spiking neurons

1.0 0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

p C
S(

x;
d C
S)

dCS = 2
dCS = 3
dCS = 4
dCS = 8
dCS = 16

Figure 6.6.: PDF 𝑝CS(𝑥; 𝑑CS) of the cosine similarity distribution.

0 50 100
Dimensions d

0.0

0.1

0.2

0.3

Pr
op

or
tio

n
in

ac
tiv

e
ne

ur
on

s (a) Proportion of inactive neurons

Intercepts
Uniform
CS(d + 2)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of neurons active

0.00

0.25

0.50

0.75

1.00

N
or

m
ed

 fr
eq

ue
nc

y
(b) CS(d + 2) distributed intercepts

Figure 6.7.: (a) Proportion of neurons inactive for all 10 000 uniformly sam-
pled 𝑑-dimensional vectors. The proportion is plotted for neural
ensembles with a uniform intercept distribution (blue) and inter-
cepts distributed according to CS(𝑑 + 2) (orange). The shaded
areas denote 95 % confidence intervals. (b) Histogram (shaded bar
plot) and kernel-density estimate (line) of the proportion of neu-
rons active for uniformly sampled 64-dimensional vectors when
distributing intercepts according to CS(𝑑 + 2).

58

6.3. Effect of the intercept distribution on noise and distortion

distribution. Further evidence is presented in Appendix B. All experiments
have been performed with 𝑑 = 64 dimensional representations and 50𝑑 = 3200
spiking LIF neurons unless otherwise noted. For each experiment 15 samples
using different random number seeds were obtained. The benefit of choosing
the CS(𝑑 + 2) intercept distribution is larger for increasing dimensionality, but
64 dimensions is sufficient to see a clear effect. For fewer dimensions the benefit
is less, but not worse than the uniform intercept distribution (Appendix B).
This is consistent with the CS(𝑑 + 2) distribution approaching a uniform dis-
tribution for 𝑑 → 1. The asymptotic scaling of the noise error component with
the number of neurons does not change for the given choices of the intercept
distribution. Any neuron number that is large enough for the noise error to
dominate can be used in these experiments, and noise error values for other
neuron numbers can be extrapolated. This might invalidate the results for
small neuron numbers, but such cases should be considered as special for any
intercept distribution. Finally, spiking LIF neurons are of primary interest, as
they are the most commonly used neuron model in the NEF. But, I give some
consideration to other neuron types in Appendix B. Any stated differences in
error are based on the aforementioned parameters. Furthermore, all stated dif-
ferences have been found to be statistically highly significant with 𝑝 < 0.0001
using bootstrapping.

The basic effects of the CS(𝑑+2) intercept distribution can be seen in Fig. 6.8.
The total mean error is reduced by −0.130. This is mainly due to a reduction
in the noise error. The distortion seemingly increases, but because most of the
volume of the space is near the surface and the distortion there ends up a little
bit lower, the total mean distortion also decreases (−0.020). However, where
the space is distorted changes. While the uniform distribution leads to an
even distortion except towards the hypersphere surface, the cosine similarity
distribution gives a distortion that varies more across the space. In particular,
there is a ring of higher distortion between the center and the surface of the
hyperball and another such ring around the surface.

In general, there is a noise-distortion trade-off. Reducing the noise error by
changing the intercept distribution, leads to a more uneven distortion and can
potentially increase the total distortion. For spiking neurons with short synaptic
time constants, the noise error is usually much higher and thus the change in
the distortion is often negligible. Longer synaptic time constants shift this trade-
off as the noise error is lower. Still, for biologically realistic time constants of
up to 0.1 s, the cosine similarity intercept distribution performs better. It is also

59

6. Optimized high-dimensional representation in spiking neurons

1 0 1
x

0.0

0.1

0.2

0.3

M
ea

n
er

ro
r 〈 E〉

(a) Noise error

1 0 1
x

(b) Distortion error

1 0 1
x

(c) Total error

Uniform intercepts
CS(d + 2) intercepts

syn = 0.005s

syn = 0.1s

Figure 6.8.: Mean error along a line cut through the 64-dimensional hyper-
ball with 3200 neurons, different intercept distributions (pink vs.
turquoise) and different synaptic time constants (solid vs. dotted
line). The shaded regions indicate 95 % confidence intervals.

worth noting that this trade-off is slightly affected by the regularization term
when solving for the decoders (Fig. 6.9). A higher regularization decreases the
noise as the decoders get less sensitive to small fluctuations, but increases the
distortion towards the hypersphere surface. The opposite effects are observed
with less regularization.

Interestingly, the cosine intercept distribution not only reduces the noise by
a constant factor compared to the uniform distribution, it also improves the
scaling of the noise error from 𝑂(𝑑/√𝑛) to 𝑂(𝑑3/4/√𝑛) as shown in Fig. 6.10.

So far, we only considered spiking neurons, but the NEF also allows the use
of rate neuron models. In that case, the noise error is zero because the firing
rate can be represented with arbitrary precision. With the default parameters,
the cosine similarity distribution still gives a slightly lower total distortion
(−0.020). However, due to the non-existent noise, the default regularization
of 𝜆 = 0.1 is too large and a lower error can be obtained by reducing the
regularization to 𝜆 = 0.01. Then the uniform distribution performs better,
while the cosine similarity intercept distribution increases the distortion (by
0.0262).

These results demonstrate the benefit of the CS(𝑑 + 2) intercept distribu-
tion for the most commonly used neuron types and parameters in the NEF.
Technically, the optimal intercept distribution depends on the exact parameters
set and can differ depending on them. It is not possible to do an exhaustive

60

6.3. Effect of the intercept distribution on noise and distortion

1.0 0.5 0.0 0.5 1.0
x

0.0

0.1

0.2

M
ea

n
er

ro
r 〈 E〉

(a) Noise error

1.0 0.5 0.0 0.5 1.0
x

(b) Distortion error

1.0 0.5 0.0 0.5 1.0
x

(c) Total error

= 0.2 = 0.1 = 0.05

Figure 6.9.: Mean error along a line cut through the 64-dimensional hyperball
with 3200 neurons and different regularization 𝜆. The shaded
regions indicate 95 % confidence intervals.

0 10 20 30 40 50 60
Dimensions d

0.00

0.05

0.10

0.15

0.20

M
ea

n
no

ise
 e

rr
or

 E
n

Figure 6.10.: The mean noise error 𝐸n with CS(𝑑 + 2) distributed intercepts in
dependence of the number of dimensions. Scatter points show
empirically determined values with 95 % confidence intervals
smaller than the marker size. The solid gray line in is a linear
regression fitted to 𝑑3/4.

61

6. Optimized high-dimensional representation in spiking neurons

comparison due to the multitude of parameters and valid parameter choices.
Nevertheless, Appendix B demonstrates the benefit of distributing spiking
neuron intercepts according to CS(𝑑 + 2) for a wide range of parameter manip-
ulations including varied neuron numbers, dimensionalities, neuron models,
and nonlinear function decoding.

It is also worth noting that the present analysis assumes that all values in the
representational space X are uniformly distributed. If certain values appear
more frequently than others, the optimal intercept distribution might change.
The experimental procedure used here to compare intercept distributions
might still be used, but the error needs to be weighted by the frequency of the
represented values 𝒙.

6.4. Opঞmized Semanঞc Pointer Representaঞon

The NEF only requires multiple vector dimensions to be represented in a single
ensemble if functions with a nonlinear interaction of the individual dimen-
sions is decoded. Such interactions are rarely needed in the Semantic Pointer
Architecture and there are a number of reasons to split up the 𝑑-dimensional
vector into 𝑞 vectors of 𝑑𝑞 = 𝑑/𝑞 dimensions.

First of all, solving for decoders requires the inversion of an 𝑛×𝑛 matrix with
a runtime complexity of 𝑂(𝑛3) where 𝑛 is the total number of neurons in the
ensemble. When instead using 𝑞 ensembles with 𝑛/𝑞 neurons each to represent
𝑑𝑞-dimensional segments of the vector, only 𝑞 inversions of 𝑛/𝑞 × 𝑛/𝑞 matrices
are required, which give a runtime complexity of only 𝑂(𝑛3/𝑞2). Thus, solving
for the decoders can be a lot more efficient when splitting up a vector into
multiple ensembles for the representation. Second, the noise error grows only
in 𝑂(√𝑞/𝑛) if 𝑑𝑞 is kept constant. In other words, adding 𝑑𝑞 more dimensions,
requires only 𝑛/𝑞 additional neurons to keep the noise error constant.

Splitting up the input space in this manner, however, introduces a slight
complication. While we can assume the full vectors 𝒙 ∈ X to be uniformly dis-
tributed, this is not the case for the 𝑑𝑞-dimensional subvectors. The distribution
of the subvectors clusters around shorter vectors. One way to account for that,
is to reduce the representational radius 𝑟 of the ensembles, which improves the
representation of the most common vectors, but worsens the representation of
subvectors that fall outside of that radius (which might still occur occasionally).
Gosmann and Eliasmith (2016) describe in detail how to find a good value for

62

6.4. Optimized Semantic Pointer Representation

𝑟.
Here, I use a different method, where both the intercept distribution and

evaluation point distribution are set to the cosine similarity distribution CS(𝑑 +
2) (note that this uses the dimensionality of the complete vector, not 𝑑𝑞). As
before, the distribution of evaluation points accounts for the fact that the
represented values are no longer uniformly distributed. This can be seen as
setting a “soft” radius. The prior radius adjustment method effectively changed
the intercept and evaluation point distributions to cover a hyperball of reduced
radius. By using the cosine similarity distribution instead, most of these points
are inside such a hyperball, but some evaluation points are still allowed to fall
outside of such a hard radius cutoff.

To verify the performance, I repeated the benchmarks from Gosmann and
Eliasmith (2016). A randomly moving unit-length semantic pointer is fed as
input to the set of ensembles and the distribution of resulting root mean square
error (RMSE) in the representation is measured in each time step. The first
0.5 s are discarded to allow for the delayed rise of the neural firing rates at
the beginning of the simulation. In comparison to Gosmann and Eliasmith
(2016), the total simulation time has been halved to 5 s and only 15 instead of
20 independent simulations have been run per condition. These numbers are
still sufficient to give highly significant results.

The results for a 64-dimensional representation are shown in Fig. 6.11. All
the mean RMSEs for one value of 𝑑𝑞 are significantly different (𝑝 < 0.0001,
determined with bootstrapping), with the exception of the radius adjustment
method compared to the default parameters when 𝑑𝑞 = 𝑑 = 64 (𝑝 > 0.93).
This latter result is expected because for 𝑑𝑞 = 𝑑, the radius adjustment method
keeps a unit radius and has no effect. Further, the previous result of the radius
method increasingly reducing the error as 𝑑𝑞 → 1 is reproduced. The method
of setting the intercepts and evaluation points performs better for 𝑑𝑞 = 16,
which is a typical choice in SPA model, and the same improvement is obtained
for larger values of 𝑑𝑞 in contrast to the radius adjustment. For 𝑑𝑞 = 1 it is
slightly worse and has a long tail, but it is still a much lower error than obtained
with the default parameters. Overall, setting the intercepts and evaluation
points gives a significant improvement in a wider range of cases and is only
slightly worse than the radius adjustment for small 𝑑𝑞.

In addition to pure representation, it is common to compute dot products
in the context of the SPA. For the dot product the element-wise products are
computed in separate product networks and summed afterwards. In these

63

6. Optimized high-dimensional representation in spiking neurons

0.000 0.005 0.010 0.015 0.020 0.025 0.030
RMSE

1

16

64

Su
bd

im
en

sio
ns

 d
q

Default
Radius adjustment
CS(d + 2)

Figure 6.11.: Distribution of the RMSE in the representation of 64-dimensional
unit-vectors. The violinplots visualize the distribution with a
kernel-density estimate mirrored horizontally. The midlines show
box plots with mean (white) and quartiles (thick black). Results
obtained with the Nengo default parameters are blue, with the
radius adjustment method from Gosmann and Eliasmith (2016)
are orange, and using the CS(𝑑 + 2) distribution for intercepts
and evaluation points are green. Along the y-axis the number of
subdimensions 𝑑𝑞 represented in a single ensemble are arranged.

64

6.4. Optimized Semantic Pointer Representation

0.0 0.2 0.4 0.6 0.8 1.0
RMSE

Default

Radius adjustment

CS(d + 2) Dot product
2 norm

Figure 6.12.: Distribution of the RMSE in the calculation of dot products and
vector lengths. The violinplots visualize the distribution with a
kernel-density estimate. The midline of shows a box plot with
mean (white) and quartiles (thick black).

product networks the sum (and difference) of the two input elements needs
to be represented (see Section 4.5), which means that the represented value is
distributed according to the sum of two cosine similarity distributions in the
general case. However, the dot product is often used to check the similarity of
two unit-vectors and a result of one should be obtained for identical vectors.
For identical vectors, the two inputs to the element-wise products are the same
and the sum follows the distribution of a single input stretched out by a factor
of 2. Thus, it is appropriate to use the CS(𝑑 + 2) distribution for intercepts
and evaluation points in the product networks used for dot products. In the
general case of non-identical inputs, this might not be fully optimal, but still
performs well (Fig. 6.12). It is also only minimally worse than the previous
radius adjustment method.

Furthermore, the benchmark was only run for 64 dimensions with 200 neu-
rons per dimension. However, the same conclusions as in Gosmann and Elia-
smith (2016) can be expected to hold for different dimensionalities and neuron
numbers. Increasing the dimensionality improves the benefit of adjusting
the radius, or the intercept and evaluation point distributions. Similarly, the
neuron number can be reduced to achieve faster simulation times without an
increase in error.

65

Part II.

The Context-Unified Encoding memory

model

7. The Ordinal Serial Encoding Model

The Ordinal Serial Encoding (OSE) model (Choo 2010) is an NEF and SPA based
model of serial recall. It was able to reproduce various effects found in human
recall data such as the primacy effect, recency effect, and transposition gradients
in serial and delayed forward recall. Within the context-unified encoding (CUE)
memory model it provides the basis for the short-term memory component.

In the OSE, 𝑚 presented items 𝒗𝑖 are bound to fixed position vectors 𝒑𝑖 and
stored in two memory traces

𝒎stm =
𝑚

∑
𝑖=1

𝛾𝑚−𝑖B(𝒗𝑖, 𝒑𝑖) (7.1)

𝒎epis =
𝑚

∑
𝑖=1

𝜌𝑚−𝑖B(𝒗𝑖, 𝒑𝑖) (7.2)

with decay factor 𝛾 < 1 and scaling factor 𝜌 > 1. The memory traces 𝒎stm and
𝒎epis represent the short-term and episodic memory store, respectively. The
binding operation B used here is circular convolution, but it could be worth
exploring the effect of other binding operations in the future. The recall of an
item is given by unbinding the corresponding position vector as

𝒗𝑖 ≈ B+(𝒎stm + 𝒎epis, 𝒑𝑖). (7.3)

These encoding equations produce the primacy and recency effect due to the
differential effect of the decay and scaling factors 𝛾 and 𝜌.

For the neural implementation, each memory trace can be stored in an inte-
grator with some additional processes for updating and unbinding the recalled
item. For the integration within the CUE memory model, the episodic memory
trace is replaced by a version based on the temporal context model presented
in the next chapter. This introduces a more plausible episodic memory, stor-
ing experiences in actual synaptic weight changes rather than in the activities
of a neural population. In addition, the recall process needs to be adjusted
to integrate information from the exchanged episodic memory component
(Chapter 10).

69

7. The Ordinal Serial Encoding Model

item 𝒗

posiঞon 𝒑
⊛

combined

𝒎stm⊛−1recalled 𝒗̂

input_store

𝛾

−1

−1

−1

1

Figure 7.1.: Implementation of the OSE short-term memory trace 𝒎stm with
the NEF. See text for additional details.

7.1. Neural STM implementaঞon

In the CUE model, the short-term memory buffer of the OSE model is imple-
mented as depicted in Fig. 7.1. The network gets an item and position Semantic
Pointer as input which are bound together. The bound result is added into the
memory trace stored in combined as long as it does not receive the input_store

signal. Once the input_store signal is received, the contents from combined are
transferred to the 𝒎stm populations. Items are decoded from the memory via
the approximate inverse circular convolution. The decay factor of 𝛾 = 0.9775 is
taken from the original OSE implementation (Choo 2010) and is implemented
on the connection from 𝒎stm to combined.

7.2. Neural posiঞon counঞng

For the OSE it is necessary to keep track of the ordinal position of the current
item. The CUE model extends the OSE to do this also in neurons. Figure 7.2
shows the network implementing this functionality. All ensembles in this
network are implementing a threshold at zero so that represented values are
always positive. The state ensemble array has one ensemble for each possible
position and only the ensemble for the current position is active. This is en-
sured by providing a small negative bias (−0.2) to all ensembles to prevent
spontaneous activity. Furthermore, a recurrent connection with 𝜏syn = 0.1 s
decoding a constant of 1.2 keeps the current position in a state of stable activity.

70

7.2. Neural position counting

increment 𝜏syn = 5 ms

−1, 𝜏syn = 50 ms

advance threshold

state

inhibit threshold

0.8Θ(𝑥)𝑰

𝑻2, 𝜏syn = 0.1 s

𝑻1

output

𝑻3Θ(𝒙)

−0.6

−0.2

1.2Θ(𝒙)

gate signal

Figure 7.2.: Implementation of position counting with the NEF. See text for
details.

To advance to the next position a signal with a rising edge has to be provided
to the increment input. To detect the rising edge, a differentiator ensemble is
used that receives its input via two connections where one connection has a
fast synaptic time constant (𝜏syn = 5 ms) and the other connection has a slow
synaptic time constant (𝜏syn = 50 ms) and a transform of −1 (Section 4.1). The
output is fed through a gate ensemble that can be inhibited to prevent position
increments.

Then the Heaviside step function is decoded from the gate signal and fed into
the advance threshold ensemble array scaled by a factor of 0.8. The output of
state is also fed into advance threshold with the transform

𝑻1 =
⎡
⎢⎢⎢⎢
⎣

0 −1 −1 ⋯
−1 0 −1 ⋯
−1 −1 0 ⋯
⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎥
⎦

(7.4)

which inhibits all ensembles except the one corresponding to the current posi-
tion. This ensemble only becomes active when a rising edge for the increment

input is detected. The advance threshold ensemble projects back to the state

71

7. The Ordinal Serial Encoding Model

ensembles with a transform of

𝑻2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 0
2 0 ⋯ 0 0
0 2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(7.5)

to excite the population representing the next position.
When the next position gets active, the old position needs to be inhibited at

some point to prevent two positions from being active at the same time. This is
done via the inhibit threshold ensemble array. It receives a bias input of −0.6 and
input from the decoded constant from state. Once the threshold (decoded as
Heaviside step function) is exceeded, the previous and next item are inhibited
with the transform given by

𝑻3 = −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 2 0 ⋯ 0
0 0 2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 2
2 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 2 0
0 0 ⋯ 0 2
2 0 ⋯ 0 0
0 2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (7.6)

An example of how these component interact to advance the represented
position is given in Fig. 7.3.

72

7.2. Neural position counting

0.0

0.5

1.0
Input
Differentiator output

0

1

O
ut

pu
t

0.0

0.5

1.0

St
at

e

0.0

0.2

0.4

Ad
va

nc
e

th
re

sh
ol

d

Position 1
Position 2
Position 3

0.8 0.9 1.0 1.1 1.2 1.3
Time (s)

2

1

0

In
hi

bi
t t

hr
es

ho
ld

Figure 7.3.: Position increment in the position counting network. The top-most
plot shows the input signal and output of the differentiator. The
following plots from top to bottom show: Heaviside output of the
network, representation in the state ensembles, transformed input
to the state ensembles from the advance threshold ensembles, and
transformed input from the inhibit threshold ensembles.

73

8. The Temporal Context Model

The temporal context model (TCM) was proposed by Howard and Kahana
(2002) as a model of free recall. It matched data of immediate, delayed, and
continuous distractor recall tasks. As the distractor task used in the delayed
and continuous distractor condition is designed to prevent active rehearsal,
this model is likely to address more long-term, synaptic storage as opposed to
the short-term OSE model. Similar to a number of other memory models, the
TCM assumes a time varying context signal that items are associated with. But
unlike those other models, this context is based on the items themselves rather
than being randomly generated.

In particular, items in the TCM are represented as orthogonal vectors 𝒇𝑖 and
the context signal is also a vector 𝒄. If we relax the orthogonality constraint
on the items to almost (instead of perfectly) orthogonal, we can use Semantic
Pointers for these vectors. To associate items and contexts, two association
matrices are used. The 𝑴CF matrix represents the associations from a context
to an item and is constructed as an outer product matrix as

𝑴CF = ∑
𝑖

𝒇𝑖𝒄⊤
𝑖 . (8.1)

Note that the 𝑴CF matrix can be easily updated by adding another item/context
outer product. The 𝑴FC matrix is used to retrieve a context vector 𝒄IN

𝑖 =
𝑴FC𝒇𝑖 to update the current context according to the evolution equation (also see
Fig. 8.1a)

𝒄𝑖 = 𝜃𝑖𝒄𝑖−1 + 𝛽𝒄IN
𝑖 (8.2)

where 𝛽 is a free parameter controlling how fast the context drifts and 0 < 𝜃𝑖 ≤
1 is determined to ensure unit length of 𝒄𝑖 in each timestep as

𝜃𝑖 = √1 + 𝛽2 [⟨𝒄𝑖−1, 𝒄IN
𝑖 ⟩

2
− 1] − 𝛽 ⟨𝒄𝑖−1, 𝒄IN

𝑖 ⟩ . (8.3)

75

8. The Temporal Context Model

𝒇𝑖−2

𝒄IN
𝑖−2

𝑴FC

𝒄𝑖−2

𝛽

𝒇𝑖−1

𝒄IN
𝑖−1

𝒄𝑖−1

𝒇𝑖

𝒄IN
𝑖

𝒄𝑖…
𝜃

…

(a)

… 𝒄𝑖

𝒇 IN
𝑖

𝑴CF

𝒄IN
𝑖

𝑴FC

𝒄𝑖+1

𝒇 IN
𝑖+1

𝒄IN
𝑖+1

𝒄𝑖+2

𝒇 IN
𝑖+2

𝒄IN
𝑖+2

𝛽

𝜃 …

(b)

Figure 8.1.: Evolution of the context in the TCM during (a) item presentation
and (b) recall.

In the CUE model, however, 𝜃𝑖 is fixed to the asymptotic value for ⟨𝒄𝑖−1, 𝒄IN
𝑖 ⟩ →

0
𝜃𝑖 = √1 − 𝛽2. (8.4)

In the TCM this corresponds to the assumption that item 𝑖 has not been pre-
sented for a sufficiently long time which results in a retrieved context 𝒄IN

𝑖 that
is almost orthogonal to the current context. This change is further motivated
by still producing a good match to the data and simplifying the neural imple-
mentation as no dynamic scaling of a vector is required. Such scaling would
require a product network for each vector dimension in the NEF. Equation (8.2)
introduces the asymmetric bias to forward recall into the model (Fig. 8.2).
While the similarity of contexts ⟨𝒄𝑖, 𝒄𝑗⟩ is symmetric for the lag 𝑗 − 𝑖, 𝒄IN

𝑖 is only
included in context vectors 𝒄𝑗 with 𝑗 ≥ 𝑖.

Finally, the associations from items to context 𝑴FC need to be updated, so
that a recalled item can be used to update and partially restore a previous
context to retrieve further items. In the original TCM, this update is given by

𝑴FC
𝑖+1 = 𝑴FC

𝑖 𝑷̃𝒇𝑖
+ 𝑎𝑖𝑴FC

𝑖 𝑷𝒇𝑖
+ 𝑏𝑖𝒄𝑖𝒇 ⊤

𝑖 (8.5)
𝑎𝑖 = 𝛾𝑏𝑖 (8.6)

𝑏𝑖 =
1

𝛾2 + 2𝛾 ⟨𝒄IN, 𝒄𝑖⟩ + 1
(8.7)

with projection operators 𝑷𝒗 = 𝒗𝒗⊤/‖𝒗‖2, 𝑷̃𝒗 = 𝑰 − 𝑷𝒗, and a free parameter
𝛾 specifying the relative contribution of previously associated context 𝒄IN

𝑖

76

4 2 0 2 4
Lag j i

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

〈
ci, cj

〉
〈
cIN

i , cj
〉

Figure 8.2.: Similarity of the context to itself ⟨𝒄𝑖, 𝒄𝑗⟩ and to the retrieved context
⟨𝒄IN

𝑖 , 𝒄𝑗⟩ for different lags 𝑗 − 𝑖.

and new context 𝒄𝑖. Again, to facilitate the neural implementation, the exact
weighting of 𝒄IN

𝑖 and 𝒄𝑖 is relaxed while still achieving a good match to data.
Instead of splitting 𝑴FC

𝑖 into components parallel and orthogonal to 𝒇𝑖, 𝒄𝑖𝒇 ⊤
𝑖 is

added directly into the matrix with a fixed parameter 𝑏,

𝑴FC
𝑖+1 = 𝑴FC

𝑖 + 𝑏𝒄𝑖𝒇 ⊤
𝑖 . (8.8)

Given a context 𝒄, a mixture of associated items can be recalled as 𝒇 IN = 𝑴CF𝒄.
To retrieve a single item some form of cleanup has to performed. Once such
a single item has been recalled, the item can be used to recall the associated
context as 𝑴FC𝒇 IN which in turn can be used to update the current context
according to (8.2). The updated context allows recalling further items (Fig. 8.1b).

Different cleanup strategies for the recalled item vector can be used. In the
original TCM model, a set of activities 𝑎𝑖 = 𝒇 ⊤

𝑖 𝒇 IN was obtained and used to
make a probabilistic decision according to Luce’s choice rule. The probability
of retrieving item 𝒇𝑖 is given as

𝑃(𝒇𝑖∣ 𝒇 IN) =
exp(2𝑎𝑖

𝜏)

∑𝑗 exp(
2𝑎𝑗
𝜏)

(8.9)

with a parameter 𝜏 that specifies the sensitivity to the activities.
The version of the TCM model presented by Sederberg, Howard, and Kahana

(2008) uses a winner-take-all process based on the leaky, competing accumu-
lator model (Usher and McClelland 2001). In this model, for each possible

77

8. The Temporal Context Model

item a leaky integrator integrates evidence over time. At the same time, the
integrators inhibit each other laterally. The dynamics can be described by

𝒙𝑠 = 𝒙𝑠−1 +
1
𝜏 (𝒖 − 𝜅𝒙𝑠−1 − 𝜆𝑳𝒙𝑠−1) + 𝜼 (8.10)

where 𝒖 is the scaled vector of inputs determined from 𝑴CF𝒄 with the current
context, 𝜅 the leak rate, 𝜆 the lateral inhibition, [𝑳]𝑖𝑗 = 1 − δ𝑖𝑗 the lateral
inhibition matrix, and 𝜼 normal distributed random noise. This is a more
detailed description of how the brain might actually decide for a single item.
However, it is problematic to incorporate within a larger scale neural model
under noisy conditions as detailed in Chapter 10. For this reason, a different
winner-take-all process described in that chapter is used.

8.1. Neural context update

A neural implementation of the TCM needs to implement the updating of the
𝑴FC and 𝑴CF matrices discussed in Chapter 9, the recall of items discussed
in Chapter 10, and updating of the context given by (8.2), discussed in the re-
mainder of this chapter. Despite being a simple equation, a number of different
implementation approaches are potentially viable. However, only one of these
methods was successful in matching the human data when incorporated into
the complete model. It is still instructive to compare these different approaches
and consider why they fail.

8.1.1. Bounded integrator

Equation (8.2) assumes discrete steps, but for a neural implementation a con-
tinuous formulation is more natural and given by

d𝒄
d𝑡 = (̄𝜃 − 1)𝒄 + ̄𝛽𝒄IN . (8.11)

This equation is easily implemented with a neural integrator for a constant ̄𝜃
and ̄𝛽. However, there is no limit on the integration of 𝒄IN anymore so that
the proportion of 𝒄IN added into 𝒄 can exceed 𝛽. To add at most 𝛽𝒄IN to the
context 𝒄, we can gate the input to the integrator and add a network computing
the dot product between 𝒄 and 𝒄IN. After thresholding the dot product at

78

8.1. Neural context update

𝒄IN 𝒄
̄𝛽

𝒄↓

dot
Θ

(𝑥
−

𝛽)

̄𝜃

𝜁 1 −‖𝒄‖

Figure 8.3.: Bounded integrator network.

𝛽, it can be used to suppress the input by inhibiting the gate ensembles (see
Fig. 8.3). Furthermore, in the original TCM 𝒄 was kept at unit length while the
integration has no such bound. To keep the unit length, we can project 𝒄 to
another population 𝒄↓ which projects back to the integrator with a transform
of 𝜁 = −0.1. Picking a 𝜁 closer to zero allows the 𝒄 vector exceed unit length
by a larger amount while the integrator receives input and will increase the
time required to settle back to unit length, whereas a large magnitude of 𝜁
can lead to oscillatory behaviour. The 𝒄↓ population needs to be controlled to
only provide the inhibitory input to the integrator as long as ‖𝒄‖ > 1. This is
achieved by decoding the length of 𝒄 from the integrator and thresholding it at
1. As long as the threshold is not exceeded 𝒄↓ is inhibited.

To investigate the behaviour of the network, it was fed with new context vec-
tors 𝒄IN at rate of one vector per second. These vectors were either orthogonal
or had a cosine similarity of 0.6 between successive pairs. Figure 8.4 shows the
mean similarity of the context vector to itself with given time lag. For (almost)
orthogonal vectors 𝒄IN, the similarity between the context vectors is close under
the target. For non-orthogonal vectors with ⟨𝒄IN

𝑖 , 𝒄IN
𝑖+1⟩ ≈ 0.6, however, the

similarity of the context vectors is by far larger than the target. This is caused
by the input already being similar to the context and thus stopping the update
too early. Note that it is not sufficient to simply adjust 𝛽 as depending on the
similarity of the inputs it needs to either be incremented or decremented.

79

8. The Temporal Context Model

0 1 2 3 4 5 6
Time lag (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

te
xt

 s
im

ila
rit

y

Orthogonal
Non-orthogonal
Target

Figure 8.4.: Decay in context similarity with the bounded integrator network
given almost orthogonal inputs and inputs with a similarity of
approximately 0.6. The desired similarity is given by the gray line.
Shaded regions indicate 95 % confidence intervals.

8.1.2. Alternaঞng update of two memories

With a single integrator, we have to rely on the dot product between the input
vector and current context as a measure of 𝛽. This dot product is biased in
different directions if the input vectors have differing similarities. To circum-
vent this, we need to use two gated memory populations that are updated in
alternating fashion. Then the output of the old context and input vector can
be combined according to 𝜃𝒄 + 𝛽𝒄IN and fed into to the memory buffer for
the current context. The completion of that memory update can be detected
by the dot product of the updated context and the current context crossing a
threshold of one. Such a network is shown in Fig. 8.5.

Unfortunately, this still does not work for non-orthogonal input vectors
(Fig. 8.6). In that case the dot product of the updated context and current
context are already quite high and the updated context is not completely
loaded into the current memory buffer.

8.1.3. Externally controlled alternaঞng memory buffers

All approaches to determine required context updates based on vector simi-
larity will fail because the similarity of 𝒄IN

𝑖 and 𝒄𝑖−1 is not known beforehand
and can vary widely depending on what contexts are recalled. Thus, for a

80

8.1. Neural context update

𝒄IN
𝛽

𝒄

𝒄′

𝜃

−1

dot

Θ(𝑥)

1
−1

Figure 8.5.: Alternating update of memory buffers.

0 1 2 3 4 5 6
Time lag (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

te
xt

 s
im

ila
rit

y

Orthogonal
Non-orthogonal
Target

Figure 8.6.: Decay in context similarity with the alternating update of two mem-
ories given almost orthogonal inputs and inputs with a similarity
of approximately 0.6. The desired similarity is given by the gray
line. Shaded regions indicate 95 % confidence intervals.

81

8. The Temporal Context Model

𝒄IN
𝛽

𝒄

𝒄′𝜃

−1

keep context
−1

1

−1

Figure 8.7.: Alternating update of memory buffers with external control.

properly working context update in the TCM model, the update process has
to be controlled by an external control signal (see Section 11.1). This control
signal indicates when the context signal needs to be updated with the provided
input and when it has to be kept stable. If we take the alternating memory
buffer network, but control the updating externally (Fig. 8.7), it works for both
orthogonal and similar input vectors (Fig. 8.8).

This leads to two predictions. First, the update of the context signal is not
directly regulated by the input, but externally controlled. Second, there are
neural populations that start representing the current context in succession:
first the updated context 𝒄 is constructed in one memory population before it
is transmitted to a secondary population 𝒄′ to be available as old context for
the next update.

82

8.1. Neural context update

0 1 2 3 4 5 6
Time lag (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
on

te
xt

 s
im

ila
rit

y

Orthogonal
Non-orthogonal
Target

Figure 8.8.: Decay in context similarity with the alternating update of two
memories and external control given almost orthogonal inputs
and inputs with a similarity of approximately 0.6. The desired
similarity is given by the gray line. Shaded regions indicate 95 %
confidence intervals.

83

9. Associaঞon Matrix Learning

The TCM requires two association matrices, 𝑴CF and 𝑴FC, to be updated. To
translate this into neurons, an appropriate learning rule, the association matrix
learning rule (AML), has to be derived. The TCM gives the update of such an
association matrix as

𝑴𝑖+1 = 𝑴𝑖 + Δ𝑴𝑖 (9.1)
Δ𝑴𝑖 = 𝒗𝑖𝒖⊤

𝑖 (9.2)

for adding an association from 𝒖𝑖 to 𝒗𝑖. The association matrix after 𝑛 updates
can be expressed as

𝑴𝑛 = 𝑴0 +
𝑛

∑
𝑖=1

Δ𝑴𝑖 = 𝑴0 +
𝑛

∑
𝑖=1

𝒗𝑖𝒖⊤
𝑖 . (9.3)

This allows us to express the neural connection weights after learning 𝑛 associ-
ations as

𝑾 = 𝑬𝑴𝑛𝑫 = 𝑬𝑴0𝑫 + 𝑬
𝑛

∑
𝑖=1

𝒗𝑖𝒖⊤
𝑖 𝑫 (9.4)

where 𝑬 is the post-synaptic encoder matrix and 𝑫 are the pre-synaptic de-
coders of the identity function. This equation gives us some important infor-
mation on how the learning of such association matrices can be implemented.
First, preexisting weights can be implemented as a transform on a normal
neural connection that is kept constant. Second, all the weight changes can
be collapsed into decoder changes. Thus, we need the AML to implement the
decoder change given by

𝑫̃𝑖+1 = 𝑫̃𝑖 + Δ𝑫̃𝑖 (9.5)
Δ𝑫̃𝑖 = 𝒗𝑖𝒖⊤

𝑖 𝑫 (9.6)

where 𝑫̃ is the matrix of learned decoders.

85

9. Association Matrix Learning

𝒖 𝒗

𝒗𝒖⊤

pre post

𝑫⊤

Figure 9.1.: Explicit neural calculation of the AML weight change.

To implement this within a neural network, the discrete equation has to be
converted into continuous form:

d𝑫̃
d𝑡 = 𝜂𝒗(𝑡)𝒖(𝑡)⊤𝑫 (9.7)

with learning rate 𝜂. Note that while in the discrete formulation all associations
are added in with the same strength, in the continuous formulation, the associa-
tive strength depends on the learning rate and presentation time. This equation
can be directly implemented with the NEF and thus realized with spiking neu-
rons. That alone, however, does not ensure the biological plausibility, as any
mathematical formulation of synaptic weight changes could be implemented
with the NEF. There are also multiple ways to implement the equation with the
NEF that have different implications about a potential biological realization.
In the following, several of these possibilities are discussed.

9.1. Explicit calculaঞon of weight change

Both the cue 𝒖(𝑡) and target 𝒗(𝑡) are available as neural signals. That allows
the implementation of the calculation of the outer product 𝒗(𝑡)𝒖(𝑡)⊤ in a set of
neural ensembles. The multiplication of each pair of scalars can be accurately
implemented in spiking neurons as demonstrated by Gosmann (2015). Those
ensembles can then be connected up to modulate the synaptic strengths from
the pre- to the post-populations (see Fig. 9.1) by forming the transpose of the
outer product, applying a transform of 𝑫⊤, and transposing back.

It might be surprising that the change in the connection weights between the
pre- and post-ensemble does not depend on their own activity, but is controlled

86

9.2. Explicit calculation of weight change without weight symmetry

externally. While this is different from many other common learning rules,
there is evidence of such heterosynaptic learning in the brain and specifically
the hippocampus (Huilme et al. 2014; Rebola, Carta, and Mulle 2017; Uchida,
Fukuda, and Kamiya 2012). Furthermore, this learning rule requires some
preexisting structure and connection weights to calculate the signal for the
weight modulation. But as most NEF models do not give a developmental
account of how such structures come about, I put this question aside and leave
it at something that has to be answered in the future and concerns any type of
NEF model, not just this learning rule. However, there is one more aspect that
can be criticized as being biologically implausible: the connections from the
outer product calculation depend on the decoders of the pre-population. It is
not clear how the pre-population could transmit this information to this other
place.

A similar problem of biological plausibility occurs in classical neural net-
works and deep learning with back propagation, where the weights for the
transmission of the error signal need to be symmetric to the forward weights.
Recently, this concern of biological plausibility in deep learning has been
slightly alleviated by the discovery that the weight symmetry is not strictly
required. It is possible for the network to adjust its forward weights to account
for existing, non-symmetric backward weights, a process known as feedback
alignment (Lillicrap et al. 2016). Unfortunately, it is not clear whether this can
be applied to the situation here.

9.2. Explicit calculaঞon of weight change without weight

symmetry

By reformulating 𝒗(𝑡)𝒖(𝑡)⊤𝑫 as 𝒗(𝑡)[𝑫⊤𝒖(𝑡)]⊤ it is possible to implement the
learning rule without the need for a connection to be based on decoders of a
neural ensemble it is not related to. Again there is a set of neural ensembles
calculating an outer product (see Fig. 9.2). But in contrast to the previous
approach, if the pre-ensemble is also used as the cue input 𝒖(𝑡), the transform
𝑫⊤ applied to 𝒖(𝑡) is based on that ensemble’s decoders decoding 𝒖(𝑡). The
transform could even be rolled into the decoder matrix

𝑫∗ = 𝑫⊤𝑫. (9.8)

87

9. Association Matrix Learning

𝒗

𝒗(𝑫⊤𝒖)⊤

pre post

𝑫⊤

𝒖

Figure 9.2.: Explicit neural calculation of the AML weight change avoiding
weight sharing.

As we generally assume, in the context of the NEF, that there is some mechanism
in place to establish the decoders to compute arbitrary given functions, this
might already be considered a satisfactory answer to the biological plausibility.

However, it is not possible to state the function to obtain the decoders 𝑫∗
because the function itself depends on the encoding by the neurons. Moreover,
𝑫∗ is a symmetric matrix, which is a constraint not respected by the normal
decoder optimization process. But in the context of the NEF, it can be assumed
that the neural network can decode the identity function, i.e., there is a connec-
tion with decoders 𝑫. This can be used to learn a connection with decoders
𝑫∗.

Given the vector of neural activities 𝒂 at time 𝑡, we have 𝒙 = 𝑫𝒂 and can
state

𝒙⊤𝒙 = 𝒂⊤𝑫⊤𝑫𝒂 != 𝒂⊤𝑫∗𝒂. (9.9)

This gives us an error expression as

𝐸2(𝒂) = ∣𝒙⊤𝒙 − 𝒂⊤𝑫∗𝒂∣
2 != 0 (9.10)

with the gradient defined as

𝜕𝐸2(𝒂)
𝜕𝑫∗

= 2 (𝒂⊤𝑫∗𝒂 − 𝒙⊤𝒙) (𝒂𝒂⊤) . (9.11)

The gradient can be used for a weight update rule

d𝑫∗
d𝑡 = −𝜂∗

𝜕𝐸2(𝒂)
𝜕𝑫∗

(9.12)

88

9.2. Explicit calculation of weight change without weight symmetry

0 1000 2000 3000 4000 5000
Time (s)

0.0000010

0.0000015

0.0000020

0.0000025

|D
>

D
D

*|

Figure 9.3.: Error ‖𝑫⊤𝑫 − 𝑫∗‖.

in a (spiking) neural network to perform stochastic gradient descent.
To demonstrate that this learning rule allows the learning of the desired sym-

metric matrix, it was applied to a connection where the pre-synaptic ensemble
was fed with a randomly varying vector signal. The vector was generated
from bandwidth limited Gaussian white noise (upper limit 40 Hz) for each
component, normalized, and then multiplied by a bandwidth limited white
noise scalar. The learning rate was set to 𝜂∗ = 1 × 10−13 s−1. We can see that
the Frobenius norm of the difference between the learned matrix 𝑫∗ and the
desired matrix 𝑫⊤𝑫 continuously decreases (Fig. 9.3). The decoded output
for some dimensions quickly aligns with the target output (Fig. 9.4), but that
does not happen for all dimensions. This might be due to the random input
not sufficiently covering the representational space.

Again, the pure derivation of a learning rule does not ensure its biological
plausibility. Thus, let us consider the individual terms in the gradient. The term
𝒂⊤𝑫∗𝒂 is using the current decoders to decode the ensemble’s activity in no way
different than usually done in the NEF where the existence of these standard
decoders is generally assumed. The decoded value is then correlated with the
ensemble’s activity. The plausibility of this is somewhat unclear to the direct
interaction of decoded values and neural activities, but to my knowledge there is
no data excluding this possibility. In particular, the decoded value and activities
could be projected to another neural ensembles (see Fig. 9.5) that calculates the
inner product. The same, a projection to neural ensemble calculating the inner
product, could happen with the decoded value 𝒙. Alternatively, 𝒙⊤𝒙 could
directly be decoded (as a square of the individual components all projecting

89

9. Association Matrix Learning

0 200 400 600 800 1000
Time (s)

0.00004

0.00002

0.00000

0.00002

0.00004

y

0 200 400 600 800 1000
Time (s)

Target
Actual

Figure 9.4.: Example of two outputs decoded with the symmetric weights being
learned. The output dimensions on the left quickly aligns with the
target, while this does not happen (within the shown time frame)
for the output dimension on the right.

into the same dimension). Figure 9.6 shows the time course of the error when
learning 𝑫∗ with such a neural gradient computation. The observed decrease
demonstrates the basic viability of this approach, but the learning is slower
and flattens out earlier due to the spiking noise.

The whole term 𝒂⊤𝑫∗𝒂 − 𝒙⊤𝒙 is a scalar that influences all synapses. This
could be realized by a broadly acting neuro-modulator or by extensive con-
nectivity of the neural ensembles calculating this error term. Neither option is
implausible. This gradient term seems to play a role in weight normalization as
it acts equally on all weights and the magnitude depends on the magnitude of

pre post

𝒂⊤𝑫∗𝒂

𝑫∗
𝒙⊤𝒙

−1

Figure 9.5.: Neural computation of the error signal necessary for learning sym-
metric decoders with gradient descent.

90

9.3. Implicit error calculation

0 25 50 75 100 125
Time (s)

0.000002720

0.000002725

0.000002730

|D
>

D
D

*|

Figure 9.6.: Error ‖𝑫⊤𝑫 − 𝑫∗‖ with neural gradient calculation.

the values of 𝑫∗. Also, without it all weight changes would always be negative.
Note that in many learning rules, normalization factors are often criticized as
implausible for requiring knowledge of the whole weight matrix at the level
of a single synapse. This critique does not apply to this learning rule. The
decoding matrix is only used to decode from the activities which require only
local knowledge of the weights.

Finally, the term 𝒂𝒂⊤ correlates neuron activities and appears somewhat
Hebbian-like. Hebbian learning is one of the best studied ways that biological
systems learn. In this form of learning pre- and post-synaptic neurons become
connected when they fire in short succession. In contrast to this usual account,
here two pre-synaptic neurons connect to the same post-synaptic neuron if they
fire together. Again, the biological plausibility of this is somewhat uncertain,
but cannot be outright rejected.

9.3. Implicit error calculaঞon

The previous two implementations of the AML use minimal assumptions about
the computational power of synapses. All that is needed are additive weight
changes proportional to some error signal. However, it has been proposed
that synapses might not simply transmit information, but also perform com-
putations (Abbott and Regehr 2004; Koch 2004, Ch. 5). In particular, Stöckel,
Voelker, and Eliasmith (2018) showed that conductance-based synapses can
be used in the NEF to compute nonlinear functions like multiplication. That

91

9. Association Matrix Learning

should allow us to roll the explicit outer product, required in the previous two
approaches, into the synapses itself. This requires considerably fewer neurons
as no neural populations are required for each product.

In this thesis, I am using an implementation that corresponds to this implicit
error calculation, but implements the required synaptic computation in pure
math rather than implementing it with actual synaptic models. This is mainly
to reduce simulation times and is not meant as a statement that this is likely to
correspond to the brain’s implementation as there is not enough evidence to
make such a strong claim.

9.4. Normaঞve interpretaঞon

While the AML cannot be outright rejected as biologically implausible, there
are definitely some open questions concerning it. Nevertheless, it should not
be evaluated purely on this fact. Many models in cognitive science, psychology,
and computational neuroscience assume the encoding of associations in an
outer product matrix (e.g., Kajic et al. 2017; Nowak and Komarova 2001; G. D. A.
Brown, Preece, and Hulme 2000). Ultimately, the validity of all those models
depends on the possibility that the brain can learn such a matrix. As such,
the AML makes it explicit which operations have to be implemented to enable
such learning. If these turn out as either not being implemented in the brain
or as not being implementable at all, it would follow that the brain has to use
some other mechanism to represent associations. Thus, the AML has merit
as a normative theory, describing what the brain is ought to do, and directing
research to open questions.

That being said, the AML does not make any assumption about the pre-
synaptic neurons. With such assumptions, some of the restrictions of the AML
might be lessened. For example, assuming orthogonal encoders, the decoder
matrix 𝑫 will be orthogonal too. That in turn means that 𝑫∗ = 𝑫⊤𝑫 = 𝑰
becomes the identity matrix which is independent of the exact decoders. This
simplifies connectivity and removes the need to learn the symmetric matrix
𝑫∗ which alleviates some of the concerns of biological plausibility.

The dentate gyrus in the hippocampus is often assumed to perform pattern
separation, which is a form of orthogonalization. Hence, it might be possible
that the hippocampus learns associations with a form of the AML where 𝑫∗
ends up being the identity matrix and thus simplifies the learning rule itself.

92

9.5. Properties of the AML

9.5. Properঞes of the AML

So far the considerations about the AML were purely theoretical. Figure 9.7
demonstrates that an implementation of the AML can indeed learn associations
in a spiking neural network. Five different cue-target pairs were presented for
one second each, before testing the recall with the same cues, but no target
vectors. The initially presented target vectors are almost perfectly recalled.
Note that no catastrophic forgetting occurred and each association was learned
with a single presentation of the cue-target pair (one-shot learning). Most other
learning rules exhibit destructive interference between the items in this scenario.
As an example, Fig. 9.7 also shows the same experiment using the Prescribed
Error Sensitivity (PES) learning rule (Bekolay, Kolbeck, and Eliasmith 2013),
which is commonly used in NEF models (e.g., Komer 2015; Rasmussen, Voelker,
and Eliasmith 2017). Here all associations except for the last get destroyed. It is
still possible to learn associations with PES, but it requires the presentation of
each item multiple times in interleaved fashion, i.e., one-shot learning cannot
be done to learn associations in a reliable way.

This ability for one-shot learning with the AML is due to the 𝑫∗ matrix,
which accounts for the interference between neurons. In fact, the AML and
PES are the same except for that matrix. The PES learning rule can be expressed
as

d𝑫̃
d𝑡 = 𝜂𝒗(𝑡)𝒂⊤

𝒖 (𝑡), (9.13)

while the AML learning rule can be written as

d𝑫̃
d𝑡 = 𝜂𝒗(𝑡)𝒖(𝑡)⊤𝑫 = 𝜂𝒗(𝑡)𝒂⊤

𝒖 (𝑡)𝑫⊤𝑫 (9.14)

which is the same, except for 𝑫∗ = 𝑫⊤𝑫.
The one-shot learning ability comes with some limitations, though. The

learning rule is restricted to learn transformations that can be expressed as
outer product matrices, while learning rules like PES can learn arbitrary trans-
formation matrices. Moreover, the learning rule is essentially trying to learn a
look-up table, mapping items to other items. Thus, one should not expect the
AML to generalize to unseen mappings.

This might be another reason, besides the stability-plasticity dilemma, why
a two-stage memory system is needed. The first stage would learn simple
associations with the AML and only in the second step of consolidation with a

93

9. Association Matrix Learning

0

1

C
ue

 u
(t)

0

1

Ta
rg

et
 v

(t)

0

1

AM
L

ou
tp

ut

0 2 4 6 8 10
Time / s

0

1

PE
S

ou
tp

ut

Figure 9.7.: Learning and recall testing of five cue-target pairs with the AML
and PES. Each colored trace is the dot product with one of the
vectors used. The cue vectors 𝒖(𝑡) and target vectors 𝒗(𝑡) differ.

94

9.6. AML accounts for neural changes during association learning

different learning rule, commonalities get extracted for generalization. This is
consistent with data that shows that generalization improves with sleep. For
example, sleep improves transitive inference (Stickgold 2013) and gives insight
into implicit rules (Wagner et al. 2004). Experience replay in hippocampus
might be responsible for the necessary interleaving of memory traces when
using a learning rule that allows for more generalization, but exhibits destruc-
tive interference such as PES (McClelland, McNaughton, and O’Reilly 1995;
Kumaran, Hassabis, and McClelland 2016). Overall, it is likely that AML only
represents a first step in the association learning process and multiple learning
rules are at play here. That the brain uses no single general purpose learn-
ing rule, but combines different learning rules has been forcefully argued by
Gallistel and King (2009).

9.6. AML accounts for neural changes during associaঞon

learning

Ison, Quian Quiroga, and Fried (2015) reported that individual neurons in
hippocampus (and parahippocampal cortex) change their firing rapidly to
encode newly learned associations. They recorded from the medial temporal
lobe of 14 epilepsy patients that needed to undergo surgery. They identified
neurons that responded to specific visual stimuli of pictures of persons and
landmarks and recorded the response to this preferred (P) stimulus. Then the
participants learned associations between pairs of a person and a landmark.
Besides multiple tasks to assess the learning, the neuron responses to the
different stimuli were recorded again after learning.

Pair-coding units could be identified that showed an elevated firing rate
only to the preferred stimulus before learning (BL). After learning (AL), those
same units showed an elevated firing rate only to the preferred and associated
non-preferred (NP) stimulus. This can also be observed for associations learned
with the AML. Figure 9.8 shows a NEF network that implements the learning
of associations between persons and landmarks to reproduce the experiment by
Ison, Quian Quiroga, and Fried (2015). The connections weights from both pre-
ensembles 𝒍 and 𝒑 are initialized with the identity transform. To achieve firing
rates closer to the recorded data, the maximum firing rates of the ensembles
were sampled uniformly from 10 s−1 to 20 s−1 (instead of 200 s−1 to 400 s−1

95

9. Association Matrix Learning

landmark 𝒍

post

person 𝒑

Figure 9.8.: NEF network for associating two stimuli (persons with landmarks
here) with the AML.

used in the CUE model) and intercepts were sampled uniformly from 0.1 to
1. The dimensionality of the ensembles and semantic pointers was set to 32.
Furthermore, Gaussian white noise with a mean of 0.01 and standard deviation
of 0.05, low-pass filtered with a time-constant of 0.1 s, was injected into the
neurons to account for neural background firing. The recorded spikes were
analyzed analogous to Ison, Quian Quiroga, and Fried (2015).

The main results obtained from the experimental and model data are shown
in Figs. 9.9 and 9.10. Pairwise coding units, showing elevated firing in response
to the preferred stimulus before learning and the non-preferred stimulus after
learning without an increased response to any other stimuli, have been selected.
The normalized population activity in response to the preferred stimulus shows
no or only a minimal change with learning in both the experimental and model
data. For the non-preferred stimulus the population activity increases slightly
on stimulus onset which is more pronounced in the model data. This might be
explained by the model not including any visual processing that could delay
and smooth out that response. After learning, this population response is
increased in both sets of data. For non-associated stimuli the model shows a
minimal decrease in the normalized population activity with learning, while
the experimental data shows no significant change. Overall, the model matches
the main aspects of the experimental observations. A better quantitative fit
might be achievable with more careful parameter selection in the model.

9.7. Weight normalizaঞon

Note that the AML allows weights to grow without bound. By introducing a
factor of 1−𝒗(𝑡)⊤𝒗̂(𝑡) this can be prevented where 𝒗̂(𝑡) is the retrieved, learned
association. But similar to other weight normalizations it introduces the need

96

9.7. Weight normalization

(a) Experimental data

Be
fo

re
 le

ar
ni

ng
 (B

L) Preferred (P) Non-preferred (NP)

1000 500 0 500 1000
Time (ms)

Af
te

r l
ea

rn
in

g
(A

L)

1000 500 0 500 1000
Time (ms)

(b) Model data

Figure 9.9.: Change in spiking behaviour when learning associations. (a) Exem-
plary spikes recorded from human hippocampus for the preferred
(P) and non-preferred (NP) stimulus. Task 1 (blue) is before, task
2 (red) after learning the P-NP association. The black line marks
the stimulus onset. Figure adopted from Ison, Quian Quiroga, and
Fried (2015) under the Creative Commons Attribution 4.0 Interna-
tional license. (b) Spikes recorded from the NEF model learning
the P-NP association with the AML.

97

9. Association Matrix Learning

(a) Experimental data

0 1000
Time (ms)

0

2

4

6

8

10

N
or

m
al

iz
ed

 p
op

ul
at

io
n

ac
tiv

ity Preferred (P)

Before learning
After learning

0 1000
Time (ms)

Non-Preferred (NP)

Before learning
After learning

0 1000
Time (ms)

Non-Associated (NA)

Before learning
After learning

(b) Model data

Figure 9.10.: Population response for pair-coding units to the preferred (P), non-
preferred (NP), and non-associated (NA) stimuli before and after
learning. Times are relative to stimulus onset. Shaded regions
indicate the standard error of mean. (a) Normalized population
activity from (a) experimental and (b) model data. Figure (a)
adopted from Ison, Quian Quiroga, and Fried (2015) under the
Creative Commons Attribution 4.0 International license.

98

9.7. Weight normalization

for each weight to have access to the global population activity and weights
as 𝒗̂(𝑡) = 𝑫̃𝒂𝒖(𝑡). Such global dependencies are often criticized for not being
biologically plausible. As such, I decided to take a slightly different approach
with an equivalent effect. Instead of including the dot product 𝒗(𝑡)⊤𝒗̂(𝑡) in
the learning rule, it can be computed by another neural population and the
thresholded result can be used to inhibit the population providing 𝒗. Once
fully inhibited, 𝒂𝒗(𝑡) will be all-zero and thus prevent further weight changes.
In the CUE model, the inhibition threshold is adjusted to follow 1 + exp(−𝑡)
for learning the 𝑴CF matrix where 𝑡 is the time since the trial started. This is
intended to account for rehearsal effects that are not explicitly modelled and is
analogous to the extended TCM model by Sederberg, Howard, and Kahana
(2008).

99

10. Recalling items

In the original TCM model (Howard and Kahana 2002) the activations 𝑎𝑖 of
items in the memory is mapped to a recall probability by a softmax function

𝑃(𝒇𝑖|𝒄) =
exp (2𝑎𝑖/𝜏)

∑𝑗 exp (2𝑎𝑗/𝜏)
(10.1)

with a free parameter 𝜏 controlling for the sensitivity. While this does well in
capturing the recall probabilities, it does not provide much insight in how this
recall process might be realized neurally. In an extension of the TCM model
(Sederberg, Howard, and Kahana 2008) a winner-take-all (WTA) process based
on the widely-used leaky, competing accumulator (LCA) model by Usher and
McClelland (2001) was used. This works well if the output can be evaluated
in a mathematical analysis. However, within the CUE model other parts of
the model need to recognize when a single recall is completed to update the
context and reset the recall system. As I show, this is difficult to do robustly
with the LCA model, but more easily accomplished with an alternate WTA
mechanism termed the independent accumulator (IA) model. A comparison of
these two networks has also been previously published as Gosmann, Voelker,
and Eliasmith (2017).

10.1. Leaky, compeঞng accumulator model

Given 𝐷 choices, the leaky, competing accumulator (LCA) model proposed by
Usher and McClelland (2001) describes the dynamics of 𝐷 scalar state variables
𝑥𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝐷 as

d𝑥𝑖
d𝑡 =

1
𝜏

⎛⎜⎜
⎝

𝑢𝑖(𝑡) − 𝜅𝑥𝑖 − 𝜆 ∑
𝑗≠𝑖

𝑥𝑗
⎞⎟⎟
⎠

, 𝑥𝑖 ≥ 0 (10.2)

101

10. Recalling items

𝜌1 𝑥1

𝜌2 𝑥2

⋮

𝜌𝐷 𝑥𝐷 Figure 10.1.: Leaky, competing accumulator (LCA)
network.

where 𝑢𝑖(𝑡) are the external inputs, 𝜅 is the leak rate, 𝜆 the lateral inhibition,
and 𝜏 the integration time-constant. Each state variable 𝑥𝑖 is kept non-negative
by setting negative values to zero. Intuitively, each state variable integrates
its input with a leak term of −𝜅𝑥𝑖 and provides lateral inhibition to all other
state variables. Given one input 𝑢𝑖 > 𝑢𝑗 for all 𝑗 ≠ 𝑖, the state variable 𝑥𝑖 will
converge to 𝑢𝑖 while all other state variables 𝑥𝑗, 𝑗 ≠ 𝑖 will converge to 0 if
𝜅 = 𝜆 = 1 (Appendix C). In the following analysis, 𝜅 = 𝜆 = 1 will be fixed.
Other choices of 𝜆 affect the effective integration time-constant 𝜏 and gain on
the input, while changing 𝜅 results in undesired behaviour where the history
of inputs influences the current choice.

By means of principle 3 of the NEF, the prescribed dynamics can be ex-
actly implemented in the NEF. Here, one ensemble per state variable is used
(Fig. 10.1) and the gains and biases of the neurons are distributed as described
in Section 4.4 to ensure the rectification of the state variables.

10.2. Independent accumulator model

The dynamics of the independent accumulator (IA) model are given by

d𝑥𝑖
d𝑡 =

1
𝜏1

𝑢𝑖(𝑡) +
1
𝜏2

⎛⎜⎜
⎝

̄𝑥𝑖 − 𝜆̄ ∑
𝑗≠𝑖

̄𝑥𝑗
⎞⎟⎟
⎠

, 𝑥𝑖 ≥ 0 (10.3)

̄𝑥𝑖 = Θ(𝑥𝑖 − 𝜗) (10.4)

where 𝑢𝑖(𝑡) again gives the external input, 𝜏1 and 𝜏2 are feedforward and
feedback time-constants, 𝜆̄ is an inhibition constant, Θ is the Heaviside step

102

10.3. Comparisons of the WTA networks

𝜌1 𝑥1 ̄𝑥1

𝜌2 𝑥2 ̄𝑥2

⋮ ⋮

𝜌𝐷 𝑥𝐷 ̄𝑥𝐷

Layer 1 Layer 2Inputs

Figure 10.2.: The independent accumula-
tor (IA) network. The second
layer is used to compute the
function ̄𝑥𝑖 = Θ(𝑥𝑖 − 𝜗).

function, and 𝜗 is a threshold. The Heaviside non-linearity is the crucial
difference to the LCA model as we can reduce this equation to (10.2) by setting
𝜏 = 𝜏1, 𝑘 = −𝜏1/𝜏2, and 𝜆 = 𝜆̄𝜏1/𝜏2 when not considering the Heaviside
function. Through the Heaviside function, the accumulators act as perfect
(opposed to leaky) and independent integrators. Only when the threshold 𝜗 is
reached, the winning choice is stabilized by feedback while all non-winning
choices are inhibited.

These dynamics can again be neurally implemented by means of the NEF
(Fig. 10.2). While for the LCA model a single layer was sufficient, it is best to use
two layers to implement the IA model. The first layer consists of independent
accumulators representing the state variables 𝑥𝑖. This layer projects to the
second layer that performs the computation of ̄𝑥𝑖 (i.e. the Heaviside function).
The second layer projects back to first layer and can be used to read out the
output of the network.

10.3. Comparisons of the WTA networks

The pure analytical description does not tell us which network is better suited
for certain tasks. To compare these networks, I simulate them with an input of
𝑢𝑖 = 𝑢 − 𝑠 (1 − δ1𝑖) + 𝜂𝑖, where 𝑢 is the magnitude of the largest input, 𝑠 > 0 is
the target separation, δ is the Kronecker delta, and 𝜂𝑖 is Gaussian white noise
with a standard deviation of 𝜎. The first input is always set to be the target
and all other inputs are set to be lower by 𝑠 (without loss of generality as we
can reorder the indices). The rationale behind this is that it should present the

103

10. Recalling items

hardest case because every choice is close to the largest input. As 𝑠 → 0, the
problem gets more difficult as the separation to the target shrinks. Note, that 𝑢
determines the general baseline of inputs in addition to the value of the largest
input. Furthermore, it is important to consider the influence of noise 𝜂𝑖 on the
robustness of the decision process.

As the input lists to the CUE model are about ten to twelve items, I compare
the networks for 𝐷 = 10 choices. To make a fair comparison 200 LIF neurons
are used per choice in either model. In the IA model this means, that the
number of neurons is split between the first and second layer. Here I use 150
neurons in the first, and 50 neurons in the second layer. As the first layer
is performing the evidence accumulation it needs to be more accurate and
requires more neural resources. Due to the lower number of neurons in the
output layer, the decoded output has a higher variance. This, however, is not as
relevant as variation of index of the highest output. If all other choices do not
produce an output, the winning choice can still be clearly identified despite
the variance in the decoded output.

Given this basic setup of the comparison, a number of metrics give insight
in the performance of the networks. First, we want the network to reach a clear
decision which I define as exactly one output being above a threshold of 0.15
during the time interval from 1 s to 2 s simulation time, while all other outputs
remain below the threshold. The threshold of 0.15 was chosen as it is usually
sufficient to tell a zero and non-zero signal apart despite spiking noise (except
for very low neuron numbers or firing rates). This metric requires that the
output does not change during the interval as this might cause problems in
downstream networks that operate on the output. Also, with a change in output
it would be unclear which output should be taken as the actual decision. One
thing this metric does not take into account is whether the output corresponds
to the highest input. This, whether a decision is correct, is the second metric.
But note, that in some situations within a larger scale network a wrong, but
clear decision, can be preferable to a decision that tends to be correct, but is
unstable.

Two more metrics are used for all trials that reached a clear decision. The
amount of time taken to fulfill the conditions for a clear decision are considered
as the decision time. It measures how fast the network is obtaining the decision.
Finally, the networks can produce transient outputs unrelated to the final
decision. A downstream network might consider this output as an actual
decision and thus those transient outputs should be as small as possible. The

104

10.3. Comparisons of the WTA networks

0.00 0.02 0.04
Noise standard deviation

0.00

0.25

0.50

0.75

1.00
Pr

op
or

tio
n

w
ith

 c
le

ar
 d

ec
isi

on (a) LCA, u = 0.2

s = 0.05
s = 0.1
s = 0.15
s = 0.2

0.00 0.02 0.04
Noise standard deviation

(b) LCA, u = 0.6

0.00 0.02 0.04
Noise standard deviation

(c) LCA, u = 1.0

Figure 10.3.: Proportion of trials with a clear decision for the LCA network.
The data for correct trials is exactly the same. Each plot shows a
different input magnitude 𝑢 and each curve is for a different target
separation 𝑠. The optimum is marked with the gray horizontal
line and coincides with the performance of the IA network for
clear decisions. Error bars show 95 % confidence intervals.

highest output of a losing choice during the whole simulation is taken as a metric
for this.

10.3.1. Results

Figure 10.3 shows the proportion of trials that the LCA network reaches a clear
decision for different input parameters. The input magnitude 𝑢 must be large
enough to reliably exceed the 0.15 detection threshold under noise. For 𝑢 = 0.2
and even low amounts of noise the network fails to reach a clear decision.
However, it seems that a too large input magnitude decreases performance
as well when we compare the performance for 𝑢 = 0.6 and 𝑢 = 1. Increasing
the noise standard deviation 𝜎 or decreasing the target separation 𝑠, both
decrease the performance as this makes the problem harder. Interestingly, the
IA network does not fail to reach a clear decision in any of these conditions.

Moving on to correct decisions, the LCA network always produced the cor-
rect output given it produced a clear decision. The IA network, may produce
incorrect outputs despite a clear decision (Fig. 10.4). Again, as the problem
gets more difficult either by decreased target separation or increased noise, the
network performance on this metric decreases. Note that the IA feedforward

105

10. Recalling items

0.00 0.02 0.04
Noise standard deviation

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n
of

 c
or

re
ct

 tr
ia

ls (a) IA, u = 0.2, 1 = 0.1

0.00 0.02 0.04
Noise standard deviation

0.00

0.25

0.50

0.75

1.00

(b) IA, u = 1, 1 = 0.1

0.00 0.02 0.04
Noise standard deviation

0.00

0.25

0.50

0.75

1.00

(c) IA, u = 1, 1 = 0.5

s = 0.05 s = 0.1 s = 0.15 s = 0.2

Figure 10.4.: Proportion of correct trials for the IA network. Each plot shows a
different combination of input magnitude 𝑢 and integration time
constant 𝜏1. Each curve shows a different target separation 𝑠. The
optimum is marked with the gray horizontal line. Error bars show
95 % confidence intervals.

integration time-constant can be increased to integrate evidence over a pro-
longed time period to increase performance on this metric (compare Fig. 10.4b
and c).

This, however, increases the decision times. These tend to be already slower
for the IA network than for the LCA network (Fig. 10.5). Additional noise can
shorten the decision times in the IA network as it increases the likelihood of
an integrator randomly accumulating enough evidence to cross the threshold.
For the LCA network the noise level only has a minor influence on the decision
time and was averaged over in the plot. In other words, noise in the LCA
network influences whether a decision can be reached, but not how long it
takes to reach a decision if one is reached.

Finally, both networks might produce a transient response that gets worse
with increased noise (Fig. 10.6). This is inherent in the LCA network because
the state variables are directly used as output. In the IA network, this transient
response is caused when two accumulators cross the threshold in close temporal
proximity before the inhibition from the first one can silence the remaining
accumulators. By increasing the feedforward time-constant, this transient
response gets reduced as the evidence integration gets slowed down, which
temporally stretches out when accumulators cross the threshold.

106

10.3. Comparisons of the WTA networks

0.2 0.4 0.6 0.8 1.0
Input magnitude u

0.1

0.2

0.3

0.4

M
ea

n
de

ci
sio

n
tim

e
[s

]
(a) LCA

s = 0.05
s = 0.1
s = 0.15
s = 0.2

0.00 0.01 0.02 0.03 0.04 0.05
Noise standard deviation

(b) IA, u = 0.2 (solid) and u = 1 (dashed)

u = 0.2
u = 1

Figure 10.5.: Mean decision times for the (a) LCA and (b) IA network. Data for
the LCA network is shown as depending on the input magnitude 𝑢
and is averaged over all noise levels 𝜎 because noise had a minimal
effect on decision times. Data from the IA network is shown
as depending on the noise standard deviation 𝜎 for two input
magnitudes of 𝑢 = 1 (dashed lines) and 𝑢 = 0.2 (solid lines).
Target separation is indicated by color. Error bars show 95 %
confidence intervals.

0.00 0.02 0.04
Noise standard deviation

0.00

0.25

0.50

0.75

1.00

Tr
an

sie
nt

 re
sp

on
se

(a) LCA

0.00 0.02 0.04
Noise standard deviation

(b) IA, 1 = 0.1

0.00 0.02 0.04
Noise standard deviation

(c) IA, 1 = 0.5

s = 0.05
s = 0.1
s = 0.15
s = 0.2

Figure 10.6.: Transient responses (i.e. highest output of a non-winning choice)
for the WTA networks as depending on the noise standard devi-
ation 𝜎. Data from the IA network is shown for two integration
constants. Each curves shows a different target separation 𝑠. Error
bars show 95 % confidence intervals.

107

10. Recalling items

10.3.2. Discussion

Neither network performs better on all metrics. Thus, each is best suited for a
different purpose. In situations where a continuous adjustment of a decision
is necessary, the LCA network is most likely the better choice. Under noisy
conditions it is not necessarily able to produce a stable, clear output, but if a
clear output is obtained, it is always correct. If the input changes, the output
adjusts according to the network’s time constant and allows for continuous
updates. Unfortunately, this also makes the network susceptible to noise.

The IA network is better for a discrete series of decisions. It does not produce
a continuous output, but waits until the evidence integration threshold is
crossed, at which point the network needs to be inhibited to be reset and obtain
another decision. While this produces sequential and discrete decisions, it has
the advantage that evidence can be accumulated over a longer time frame to
average out noise. Depending on the choice of the integration time-constant,
the IA network may either be not as quick or as reliable in identifying the
correct winner as the LCA network. However, it will eventually produce a
clear decision that a downstream network can act on (as long as at least one
input is strictly positive). This can be important in a larger scale model where
stalling a decision indefinitely can result in a breakdown of model behaviour.
Or in other words, sometimes it is better to act on a wrong decision than to
not act at all. For example, in memory recall it might be better to produce a
wrong output and continue to recall the next item than indefinitely be trying
to recall an item that cannot be recalled. It is also worth pointing out that the
IA network allows for dynamic control of the decision speed by adjusting the
𝜗 threshold through a bias input to the second layer.

As mentioned, it is also important to consider the transient outputs of the
network within a larger scale model. Such transient responses are inherent in
the LCA model as the state variable is directly used as an output. One could
pass the output through a thresholding layer, but the right choice of threshold
is not clear, as the output magnitude depends on the input magnitude. If the
threshold is too low, a transient response would be produced even with the
thresholding layer. If it is too high, small inputs might not produce an output
at all. While the IA can also produce transient responses, these can be reduced
to almost zero by a proper selection of the integration time-constant according
to the input magnitude and target separation.

By increasing 𝜏1 → ∞, the IA discrimination ability can be increased without

108

10.4. Recall network

bound. This is sometimes used as argument to criticize these sort of models
(e.g., Usher and McClelland 2001), because there is no sensible stopping cri-
terion. However, this does not consider that there might be a cost to taking
more time for a decision. If that cost is included, then there is a trade-off be-
tween accurate decisions and the cost incurred by taking more time to decide.
Furthermore, this argument also assumes perfect integration accuracy, which
an actual neural system cannot have due to neural noise and limited neural
resources.

To summarize these findings, for the recall of items in memory experiments
the IA network is better suited. Such recall requires discrete decisions and
a stable input to downstream motor systems producing the response. Such
a stable input cannot be guaranteed with the LCA network and it proves a
challenge to detect when a recall is completed. Sederberg, Howard, and Kahana
(2008) used the LCA network for modelling the recall, but it is important to
highlight that upon reaching the decision threshold, the state variables were
immediately set back to zero. This is easy to do in a pure math model, but
when transitioning to a full neural model detecting the decision and resetting
the state variables is much more difficult, as it cannot be done instantaneously.

Finally, let us consider biological plausibility briefly. Both networks where
simulated in spiking neurons, which ensures a certain degree of biological
plausibility. Also, accumulation of evidence to a threshold is a well known
finding for neurons in LIP (Gold and Shadlen 2007; P. L. Smith and Ratcliff
2004). Often this is assumed to be a gradual integration, but when looking at
individual trials instead of the trial-average, a distinct step response becomes
evident (Latimer et al. 2015). This matches the output of the second layer
of the IA network. However, both networks have an integration layer with
gradually increasing firing rates, which implies that such neurons should exist
too. Ultimately, it is possible, that the brain employs both networks for different
tasks as they have different strengths and weaknesses.

10.4. Recall network

The recall network in the CUE model is based on the independent accumu-
lator network. Each potentially recallable item is regarded as one choice. An
additional null choice is added to represent a failed recall. This is a stand-in
for additional items that might be present in the recall network, but have not

109

10. Recalling items

noise

𝑥𝑖 ̄𝑥𝑖

OSE
𝑽

−0.1

TCM
𝑽

𝑽⊤
recalled

−1

1

𝑥null

Θ(𝑥 − 0.3)

dot

−0.5
−6

−1

ext. processing done

∑
IA

output

failed recall reset

recall inhibiঞon stage 1

recall inhibiঞon stage 2

Figure 10.7.: Recall network. See text for details.

occurred in the learned list. It is also a way of providing a time-limit on trying
to recall a particular item, and prevents pure noise resulting in a successful
recall of one of the learned list items. The additional choice is fed a constant
signal of 𝜇. Additive Gaussian white noise is applied to each input with zero
mean and a standard deviation of 𝜎 to account for additional processes that
might interfere with the recall process.

Furthermore, the IA network is embedded into further components (Fig. 10.7).
First, items are represented as Semantic Pointers, but the IA network needs
a separate utility value for each potential choice. Thus, the incoming connec-
tion uses the matrix of the Semantic Pointers of all possible list items as a
transform, effectively calculating a dot product between the input signal and
each potential item. These utility values are then rectified to only consider
positive evidence. By subtracting 0.1 from the input utilities provided by the
OSE output, integration of pure noise from a failed short-term memory recall
is prevented.

The IA network does not produce an output during the evidence accumula-
tion phase. It is, however, helpful to have a persistent output of the last recalled

110

10.4. Recall network

item (note that this is still different from the output of the LCA network). This
allows for a simpler analysis and can provide potential future downstream
networks with a longer lasting input. To achieve this, the output of the IA
network is routed through a gated memory that is only updated when the IA
network produces an output. As the gated memory stores a Semantic Pointer,
a transform matrix needs to be applied to the IA output to project the choice
back into the Semantic Pointer space. The updating is controlled by inhibiting
the memory gate by default and disinhibiting it (by inhbiting the inhibitory
population) when the IA network produces an output.

Repetition errors are rarely made in recall experiments. Thus, it is necessary
to inhibit already recalled items. However, this inhibition should not happen
immediately as otherwise the recall output would be inhibited too quickly
for the downstream network to act upon. Thus, a two-stage process is used.
First, an initial working memory population gets immediately updated by
feeding in the currently recalled item. This adds the recalled Semantic Pointer
into the representation of items to inhibit. From that representation and the
current recalled item, a dot product is calculated and thresholded at 0.5. Once
the threshold is crossed, the gate to the memory population is inhibited as
the new item should be added into the representation, but not completely
overwrite it. The output of that memory population is fed to a gated memory
that provides the inhibition to recall in the IA. The gate for this memory is
controlled externally and disinhibited once the downstream processing has
completed. Note that the output of that memory population is projected back
into utility values and rectified. This prevents that a negative cosine similarity
with one of the vectors stored in the memory population contributes positive
evidence.

Finally, the recall network needs to be reset if a recall fails to allow it to
continue trying to recall the item for the next position in serial recall. Here
the problem is that if the IA output for a failed recall is directly used to inhibit
the IA network to reset it, this also immediately inhibits the output used for
the inhibition. This does not reliably reset the network as the reset signal is
disabling itself. Thus, the signal is fed to an integrator until a threshold is
reached and then the signal of the integrator is used to provide an inhibitory
pulse to the IA network. The slower decay of the integrator ensures a sufficient
pulse length to restart the recall process.

111

11. The complete model

Now we have all the essential components to construct the complete context-
unified encoding (CUE) model.1 Figure 11.1 gives an overview of the informa-
tion flow between the different components, and Table 11.1 states the neuron
count for different model components. The Semantic Pointers 𝒗 for the pre-
sented items are the input to the model and the recalled items 𝒗̂ of the item

recall network are the model output. The part of the model corresponding to
the TCM consists mainly of the 𝑴FC, 𝑴CF, and context networks, whereas OSE

and posiঞon correspond to the OSE. The posiঞon network (Section 7.2) stores a
Semantic Pointer 𝒑 indicating the current list position. The position is advanced
by a control signal discussed in the next section. Both the current list item and
position are input to the 𝑴FC and OSE networks.

Within the OSE network, the list item and position Semantic Pointers are
bound together and added into the representation of the current list in a neural
integrator. The inputted position is also used to unbind an item from the list
representation and feed it to the item recall network.

In the 𝑴FC network the superposition of the input item and position (instead
of the binding) is created. This superposition is used to recall the context
previously associated with the item and position and to update the current
context in the context network accordingly. Furthermore, the current context
is fed back to 𝑴FC as a modulatory signal to learn the association from the
current item and position input to the current context. Via the 𝑴CF network, the
context recalls the associated Semantic Pointer and transmits it to the item recall

and posiঞon recall networks. The current item and position are a modulatory
input to the 𝑴CF network to create the association from the current context to
these Semantic Pointers.

During the recall phase, recalled items and positions are routed back to the
𝑴FC network to recall further items. The recalled position sets the current

1The complete model and evaluation source code is available from https://github.com/
ctn-archive/cue-model.

113

https://github.com/ctn-archive/cue-model
https://github.com/ctn-archive/cue-model

11. The complete model

list item 𝒗

OSE

posiঞon 𝒑

item recall 𝒗̂

posiঞon recall ̂𝒑

𝑴FC

𝑴CF

context

output

Figure 11.1.: General information flow in the CUE model. The routing of infor-
mation depending on the task, and task phase is not shown in this
figure. Thus, not all shown connections are active at all times.

Table 11.1.: Neuron count in the cue model with up to 20 positions (each addi-
tional position adds 120 neurons).

Component Neuron count

LTM (TCM) 205 125
thereof for context 51 225

STM (OSE) 360 000
Position network 2860
Recall networks 189 350

thereof for items 94 875
thereof for positions 94 475

Other 129 170
Total 886 505

114

11.1. Control

position in the posiঞon network to recall that position’s item from the OSE

short-term memory. The recall networks also store recently recalled items in
neural integrators to prevent repetition errors that happen rarely in human
experiments.

11.1. Control

While the general structure of the model is important, the desired model
behaviour can only be achieved by controlling the flow of information ap-
propriately. This control happens on multiple levels. On the highest levels,
the effective connectivity is modified by the general task performed (e.g., an
immediate versus a serial recall task) and the task phase (e.g., presentation
versus recall phase). Below that, certain information routing is done for each
item until it has been stored in memory or for each recall. On the lowest levels,
some control and routing happens within the individual networks of the CUE
model as described in the corresponding sections. For example, the 𝑴FC and
𝑴CF networks inhibit the modulatory signal once a certain association strength
has been reached.

Figure 11.2 shows the information flow during the presentation phase. Parts
of the recall networks and the input to them are inhibited. During the recall
phase, the routing of information depends in part on the type of recall task
as shown in Fig. 11.3. For serial recall, the transmission of the recall network
outputs is inhibited because the recalled item is not supposed to be a cue for
recalling the next item. Instead, the output of the posiঞon network is used as
a cue. During free recall, instead, the output of 𝑴FC is used to update the
context as usual and the updated context acts as input to the 𝑴CF network.

The main control problem for each item is to regulate the context update
because (as discussed in Section 8.1) this cannot be done based on the context
signal alone, but requires an external control signal. Before the context can be
updated, the new input signal 𝒄IN needs to be present at the network input,
which requires a delay after a new list item has been presented. Accordingly,
as soon as a new item is presented, the context update should be stopped until
that input signal is propagated and the current context has been propagated to
the buffer for the old context in the context network. To achieve this delay, the
Semantic Pointer of the new item is fed into an integrator with a slow synaptic
time constant of 𝜏 = 0.1 s (Fig. 11.4). Between the input Semantic Pointer and

115

11. The complete model

list item 𝒗

OSE

posiঞon 𝒑

item recall 𝒗̂

posiঞon recall ̂𝒑

𝑴FC

𝑴CF

context

Figure 11.2.: Information flow during the presentation phase.

OSE

posiঞon 𝒑

item recall 𝒗̂

posiঞon recall ̂𝒑

𝑴FC

𝑴CF

context

output

(a) Serial recall

OSE

posiঞon 𝒑

item recall 𝒗̂

posiঞon recall ̂𝒑

𝑴FC

𝑴CF

context

output

(b) Free recall

Figure 11.3.: Information flow during the recall phase.

116

11.1. Control

presented

recalled dot

presentaঞon phase

recall phase

increment posiঞon

update context

OSE store

recall net processing done

𝜏 = 0.1 s

−1

−1

Figure 11.4.: Generation of control signals from the currently presented or
recalled item.

the output of the integrator a dot product is calculated that slowly increases
towards one. The threshold, obtained with a thresholding ensemble, gives the
required control signal for the presentation phase. During the recall phase,
the logic is inverted. That enables an immediate update of the current context
based on the position provided by the posiঞon network and last recalled item.
Once an item has been recalled, it is used like a newly presented item and fed to
the integrator and dot product. This provides the signal to transfer the current
context to the secondary buffer after a delay. The thresholded dot product
signal is also used to control three other aspects of the model:

• It is required to enable the learning of associations in the 𝑴FC and 𝑴CF

matrices to prevent the creation of associations before the context has
been updated.

• It is used to provide the control signal to transfer the updated OSE
memory to the secondary memory buffer to allow for the next update.

• The inverted signal is used to gate the transmission of the recalled item in
the recall network to the memory of recalled items preventing repetition
errors.

Special control and information routing is also necessary during the distrac-

117

11. The complete model

tor tasks or when no list item stimulus is present. Because the distractors are
irrelevant to the task, they are assumed to be not encoded in the hippocampal
long-term memory. Thus, during the distractor phases the error signals for
the association learning are inhibited to prevent the distractors from being
learned. Moreover, the distractors are not part of the learned list and thus
the advancement of the position counter is inhibited. Instead of the position
network output, a different Semantic Pointer indicating an irrelevant position
is routed to networks otherwise receiving the position Semantic Pointer.

Switching of task phases also requires some reconfiguration of the network
state. The start of the recall phase is detected with thresholded differentiators
for serial and free recall (one of them is inhibited). For serial recall the position
network is reset to the first position by exciting the neural ensemble for the
first position and inhibiting all others. At the same time the Semantic Pointer
for the first position is fed to the 𝑴FC network to start of the recall while the
position network is still transitioning to representing the first position. Because
some subjects may use a serial recall strategy even in free recall, models are
configured with probability 𝜓 = 0.1 to perform this serial recall routing even
in free recall (except in the delayed recall condition). In free recall, the position
network is inhibited at the start of recall to base the first recall purely on the
currently active context signal. If later during the free recall process a position
vector is recalled, it may still set the position network to represent that position.

Finally, the recall networks might fail to recall an item (or position) if the
input evidence is too low or too noisy. While these networks will restart the
recall process internally, some global actions are necessary for the failed recall
of items. The context network is provided with a signal to update the current
context to then use the updated context for the next recall attempt. Also, for
serial recall, the position network is provided with a signal to increment the
current position to attempt recalling the next serial position in the list.

11.2. Extension to the Hebb repeঞঞon effect

The CUE model as presented so far is unable to reproduce the Hebb repetition
effect. Two different extensions, but both involving an additional type of
learned, weight-based associative memory, make it possible to reproduce the
effect. First, it is possible to learn the direct association between Semantic
Pointers for positions and the presented items with the AML. The associations

118

11.2. Extension to the Hebb repetition effect

item input 𝒇𝑖+1 𝒇𝑖 ⊛

dot new item recall phase previous posiঞon 𝒑𝑖

𝑴fw

recall

−1 −1

1

Figure 11.5.: Extending the CUE model with forward associations.

for the repeated list become stronger than the associations for the other lists
over time. This will bias the recall towards items in that repeated list.

A second alternative, is to learn the association from 𝒇𝑖 ⊛ 𝒑𝑖 to 𝒇𝑖+1, where 𝒇𝑖
and 𝒑𝑖 are the 𝑖-th list item and position vector (Fig. 11.5). This is essentially
learning of foward associations. The binding to the position vector disam-
biguates between lists as 𝒇𝑖 ⊛ 𝒑𝑖 is only the same vector if the same item is
presented in the same position. In the recall phase, a previously recalled item
and its serial position can be used as a cue to support the recall of the next
item with this additional learned association matrix. Besides the networks for
binding and learning the associations, the previous item needs to be stored.
This is done with two chained gated memory networks. When the stimulus
switches, the first memory network still stores the previous stimulus and trans-
mits it to the second memory network. Once the update finished, the gate of
the second memory network gets inhibited while the first memory network is
allowed to receive the current item as input. The required control signal new
item is provided by the rectified dot product in Fig. 11.4. To prevent premature
overwriting of the first memorized item, a secondary dot product inhibiting
that gate is used. The Semantic Pointer for the previous position can be trivially
decoded from the position network.

Furthermore, a weight-decay for the 𝑴CF and 𝑴FC association matrices

119

11. The complete model

needs to be introduced for either approach. This prevents the weights in these
matrices from growing too large which would induce saturation effects in
other parts of the model. It also prevents previously learned associations from
providing noise overpowering the associations from the current list.

These extensions should have minimal influence on the single-trial CUE
model. The additional learned association matrices use a learning rate much
lower than the 𝑴CF and 𝑴FC matrics. Thus, the single-trial performance is
dominated by those latter matrices. The added decay requires adjustment
of the recall parameters, but will also play a more significant role on longer
timescales, i.e., when new associations are learned after a recall phase, but not
when items are presented in quick succession.

120

12. Results

To validate the CUE model, I matched it against human experimental data of
serial and free recall experiments. The same model architecture was used in all
of these simulations, except for the Hebb repetition effect where the extensions
discussed in the previous sections have been used. Parameter values were
kept constant across conditions as much as possible, but some small changes
were necessary in some instances as noted when results are discussed. The
simulations were designed to replicate the experimental paradigms as closely
as possible. In particular, the list length, item presentation times, delay times,
and recall times were matched to the actual experiments with human subjects.

To model the effect of distractor tasks during delay phases, non-list items
where presented a rate of 𝜙 items per second. These were allowed to influence
the STM component, but learning in the LTM component was disabled as
these items were irrelevant to the main memorization task. This is similar to
how Howard and Kahana (2002) modeled the distractor interval, though in
their case they did not define the distractor rate, but the effective length of the
distractor interval. As I was aiming to match the experimental paradigms as
closely as possible, changing the length of the distractor interval was not an
option.

Unless otherwise noted, 100 simulations with different seeds were run per
experimental condition. This number is sufficient to get clear results with
reasonably small confidence intervals, but still small enough that the simulation
and parameter matching is feasible on a high-performance computing cluster.
The values used for free parameters in the different settings are summarized
in Table 12.1. In addition to these, the context drift parameter was set to
𝛽 = 0.62676 and the OSE short term decay was set to 𝛾 = 0.9775 in all
simulations. These are the values reported as best fitting by Sederberg, Howard,
and Kahana (2008) and Choo (2010) respectively. Some other parameters, like
the OSE scaling 𝜌 for episodic memory and the TCM ratio 𝛾 for updating 𝑴FC,
are not present in the CUE model. The extensions for the Hebb repetition
effect introduced two additional parameters. The learning rate for the direct

121

12. Results

Table 12.1.: Summary of free parameters values for distractor rate 𝜙, probability
𝜓 of using the serial recall strategy, bias of the null choice 𝜇 in
recall, standard deviation of the input noise 𝜎 in recall, and the
AML learning rate 𝜂 for 𝑴CF and 𝑴FC. See text for discussion of
the parameter choices and two additional parameters in the Hebb
repetition condition not listed in the table.

Experimental condition 𝜙/s−1 𝜓 𝜇 𝜎 𝜂
Serial recall

Immediate — 1 0.04 0.009 10
w/o STM — 1 0.04 0.009 10
w/o LTM — 1 0.03 0.015 10

Free recall
Immediate — 0.1 0.04 0.015 10
Delayed 0.4 0 0.0325 0.015 10
Continuous distractor 0.3 0.1 0.03 0.009 10

Scopolamine
Placebo — 0.1 0.02 0.015 10
Scopolamine — 0.1 0.02 0.015 0.1

Hebb repetition — 1 0.015 0.009 10

or forward associations was set 0.05 or 0.25 respectively. The decay rate for
the 𝑴CF and 𝑴FC weights was set to 0.999 973 176 which corresponds to a
decay to about 0.2 of the original weight over a period of 60 s with a simulation
timestep of 1 ms. This decay required adjusting the bias of the null choice to
𝜇 = 0.015.

12.1. Serial recall

In serial recall participants are asked to recall items in the same order as they
were presented. In an experiment presented by Jahnke (1968), lists of ten items
were presented at the rate of one item per second and recalled immediately by
the 96 subjects. Figure 12.1 shows the serial position curve for the experimental
and model data and the distribution of transposition errors averaged over all
serial positions. In both cases the serial position curve shows a clear primacy

122

12.2. Free recall

1 2 3 4 5 6 7 8 9 10
Serial position

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
pr

op
or

tio
n experimental

model

8 6 4 2 0 2 4 6 8
Transposition

0.0

0.2

0.4

0.6

0.8

1.0

Re
sp

on
se

 p
ro

po
rt

io
n

Figure 12.1.: Serial position curve (left) and transpositions (right) for the serial
recall of a 10 item list with the CUE model. The experimental
data from Jahnke (1968) is shown for comparison in the serial po-
sition curve (blue squares). The error bars show 95 % confidence
intervals.

and recency effect. The model predictions are statistically indistinguishable
from the human data as all confidence intervals overlap. While Jahnke (1968)
did not provide the transposition data, the model qualitatively matches the
transposition gradients reported elsewhere (e.g., Henson 1996). In general, few
transposition errors are made, but for those that occur, transpositions of nearby
items are more likely than transpositions of distant items.

The model allows selective disabling of the recall from the STM or LTM
component. Doing so, with appropriate adjustment of the recall noise level
to account for the reduced evidence input, shows that the primacy effect is
mediated by the LTM, while the recency effect depends on the STM (Fig. 12.2).
The recall performance without the LTM contribution is also much worse. This
might be the case either because the input to the recall network might need
further adjustment or because no rehearsal mechanism is modelled, resulting
in drift of the OSE integrator.

12.2. Free recall

While the order of recall is predetermined in serial recall, in free recall list items
may be recalled in any order. Here, I provide the model match to the data from
Howard and Kahana (1999), which has also been used in the original fits of

123

12. Results

1 2 3 4 5 6 7 8 9 10
Serial position

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
pr

op
or

tio
n

(a) No STM

1 2 3 4 5 6 7 8 9 10
Serial position

(b) No LTM

Figure 12.2.: Serial position curves when either (a) STM recall or (b) LTM recall
is disabled in the model. The error bars show 95 % confidence
intervals.

the TCM model in Howard and Kahana (2002) and Sederberg, Howard, and
Kahana (2008). Three experimental conditions are matched: immediate recall,
delayed recall, and continuous distractor recall.

In the immediate free recall condition, list items are presented at a rate of
one item every second. After the presentation phase, a recall phase of 45 s fol-
lowed immediately. This protocol is changed to a presentation rate of one item
every 1.2 s and a recall phase of 60 s in the delayed and continuous distractor
conditions. In both of these latter conditions, the presentation and recall phase
are separated by a 16 s distractor task. In addition, in the continuous distractor
conditions such a 16 s distractor phase is inserted in between every pair of
items. A list length of twelve items is used in all conditions. The experimental
data was obtained from 65 subjects presented with 25 lists each for the imme-
diate recall condition, and from 16 subjects presented with 15 lists each for the
remaining conditions.

Four resulting metrics from the model and experimental data are shown in
Fig. 12.3. First, the distribution of the total number of successful recalls is shown.
To my knowledge, this data has not been analyzed for the original TCM model,
even though it is arguably the most fundamental comparison. In all conditions,
the 95 % confidence intervals of the mean, standard deviation, and kurtosis
overlap with the exception of the kurtosis in the immediate recall condition.
Thus, no significant difference for the most essential moments is shown, which
indicates that the model approximates the experimental distributions well,

124

12.3. Scopolamine

even though an equality of the distributions cannot be inferred.
Second, the serial position curves are given. The strong recency effect in

immediate recall is attenuated in delayed recall, but reappears to some degree
in continuous distractor recall. Interestingly, the recency effect in immediate
recall gives the curve an S-like shape that is missing in continuous distractor
recall.

Third, these effects also show in the probability of first recall. In immediate
recall, the first recall is, with high probability, from the end of the list, whereas
in delayed recall the probability is much more uniform. In continuous distractor
recall, the probability to start the recall at the end of the list is partially restored.

Finally, the conditional response probability (CRP) gives the probability
of how much lag there is between the positions of two recalled items. For
example, the asymmetry in immediate recall shows the bias to do forward
recall and the peak around zero that nearby items tend to be recalled together.
Both of these effects become attenuated in delayed and continuous distractor
recall. In delayed free recall, the model predicts a stronger forward bias than
the experimental data shows.

The model provides an excellent fit on most measures. The confidence
intervals of 101 of the 108 data points overlap. This amounts to less than
7 % confidence intervals that do not overlap, while about 5 % are expected to
be non-overlapping by pure chance given a 95 % confidence level. The most
salient deviation of the model and experimental data is observed in the CRP
curve for the delayed recall condition. The model predicts a slightly higher
forward bias than is actually found.

12.3. Scopolamine

A spiking neural network model allows the investigation of the effects of drugs
more readily than a pure mathematical model. I demonstrate this here with
the acetylcholine antagonist scopolamine. Administered before the presen-
tation phase in an immediate recall experiment, scopolamine is detrimental
to recall performance (Ghoneim and Mewaldt 1975). However, scopolamine
administered in between the presentation and recall phase does not influence
performance. This indicates that scopolamine prevents encoding of new mem-
ories in LTM, but does not prevent recall of already encoded memories. More
precisely, scopolamine has been shown to attenuate long-term potentiation in

125

12. Results

0 2 4 6 8 10 12
successful recalls

0.0

0.1

0.2

Pr
op

or
tio

n

Immediate

0 2 4 6 8 10 12
successful recalls

Delayed

0 2 4 6 8 10 12
successful recalls

Continuous distractor

2 4 6 8 10 12
Serial position

0.0

0.5

1.0

Re
ca

ll
pr

op
or

tio
n

2 4 6 8 10 12
Serial position

2 4 6 8 10 12
Serial position

2 4 6 8 10 12
Serial position

0.00

0.25

0.50

P(
fir

st
 re

ca
ll)

2 4 6 8 10 12
Serial position

experimental
model

2 4 6 8 10 12
Serial position

5 0 5
Lag position

0.0

0.2

0.4

C
RP

5 0 5
Lag position

5 0 5
Lag position

Figure 12.3.: Comparison of experimental and model free recall data. The
columns show the immediate, delayed, and continuous distractor
conditions. The rows show from top to bottom: distribution of
the number of successful recalls (mean marked by vertical line),
serial positions curves, probability of first recall, and the condi-
tional response probability. The error bars show 95 % confidence
intervals. Experimental data by Howard and Kahana (1999).

126

12.4. Hebb repetition effect

2 4 6 8 10 12 14 16
Serial position

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
pr

op
or

tio
n

Figure 12.4.: Serial position curve with a scopolamine injection predicted by
the CUE model. The error bars show 95 % confidence intervals.

hippocampus (Leung et al. 2003; Ito, Miura, and Kadokawa 1988; Hirotsu et al.
1989).

To model the effect of scopolamine on LTP, I adjusted the AML learning rate
for learning the 𝑴CF and 𝑴FC matrices. With this approach the experimental
results obtained by Ghoneim and Mewaldt (1975) from 36 subjects (8 trials
each) are reproduced. I focus here on the immediate recall experiment with
16 item word lists. The simulation protocols were again modeled to replicate
the experimental settings, with a presentation time of two seconds per item.
To obtain a similar effect, the normal AML learning rate was used before the
time point of scopolamine injection and in placebo trials. After the time point
of scopolamine injection it was set to 0.1.

Ghoneim and Mewaldt (1975) reported a recall accuracy of 77.92 ± 4.94 %
(mean ± standard error) in the placebo condition and a recall accuracy of
31.67 ± 2.28 % in the scopolamine condition. The model produces recall accu-
racies of 74.18 ± 1.08 % and 37.94 ± 0.99 % respectively. Moreover, the serial
position curve for the scopolamine condition shows no primacy effect, but a
recency effect (Fig. 12.4).

12.4. Hebb repeঞঞon effect

To model the Hebb repetition effect, the extensions described in Section 11.2
where required. The simulations for the effect were modelled after Hebb (1961).

127

12. Results

0 10 20
Trial

0

2

4

6

M
ea

n
co

rr
ec

t r
ec

al
ls Experimental

0 10 20
Trial

Position-item associations

0 10 20
Trial

Forward associations

non-repeated repeated

Figure 12.5.: Experimental and model data showing the Hebb repetition effect.
Nine item lists were presented and one list was repeated on every
third trial. From left to right: experimental data (Hebb 1961),
model data with direct learning of position to item associations,
and model data with learning of forward associations. The error
bars show 95 % confidence intervals (no confidence intervals were
provided for the experimental data).

A total of 25 model instances, equivalent to the 25 experimental subjects, were
run for 24 consecutive trials each. Each trial consisted of a nine item list (of the
digits from one to nine in random order) and starting with the third trial every
third list was identical.

While the model performance seems slightly worse overall, the qualitive
Hebb repetititon effect is reproduced (Fig. 12.5). In both the experimental and
all sets of model data, the number of correct recalls increases by about two to
three items on the repeated list.

12.5. Memory encoding

As a spiking neural network model, the CUE model allows the recording of
spikes and examination of changes in neural firing (Fig. 12.6). The distribution
of active neurons changes for the STM neurons with each item, with a delay of
about 250 ms to encode the new item. When no new item is present, persistent
neural firing preserves the firing pattern. Similar behaviour is observed for
neurons encoding the current context signal that gets updated with about a
100 ms delay. The LTM for 𝑴CF (and 𝑴FC, but not shown) is encoded in neural

128

12.5. Memory encoding

0.0

0.5

W
ei

gh
t

1e 5

0

100

200

ST
M

 n
eu

ro
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0

100

200

C
on

te
xt

 n
eu

ro
n

Figure 12.6.: Memory encoding in the CUE model. From top to bottom: weights
encoding 𝑴CF in LTM, spiking activity of a subset of STM neurons,
and spiking activity of a subset of neurons encoing the context
signal 𝒄. The colored bars at the top mark the presentation of four
different list items.

129

12. Results

10 8 6 4 2
Recency

0.5

0.6

0.7

0.8

0.9

Si
m

ila
rit

y
of

 p
op

ul
at

io
n

ve
ct

or

Figure 12.7.: Change in similarity of the context population vector with recency.

weights that change for each list item to encode the newly learned associations.
Folkerts, Rutishauser, and Howard (2018) recorded from the medial temporal

lobe of epilepsy patients and found that the population activity vector exhibits
a neural recency effect. The similarity of the population vector decreases with
lag between presented items. A similar analysis can be done in the CUE model
by recording spikes from the context component of the model. The population
vector is given by the average firing rates during the presentation window
of each item in a list. A decline in similarity qualitatively similar to Folkerts,
Rutishauser, and Howard (2018), when comparing to less recent population
vectors, can be found as shown in Fig. 12.7. The absolute similarity values
are higher than reported in the experimental data which can be attributed
to the possibility of specifically recording from the neurons responsible for
representing the context, whereas experimentally many unrelated neurons
will be included in the analysis.

Furthermore, Ninokura, Mushiake, and Tanji (2003) identified neurons with
activity selective to the serial order of items in the lateral prefrontal cortex
of monkeys. Using permutations of a three item list, analogous to Ninokura,
Mushiake, and Tanji (2003), similar neurons can be found among the STM
neurons of the CUE model (Fig. 12.8). Besides neurons selective to a single
permutation of items that fire persistently during the delay period, some neu-
rons appear selective for one permutation and either increase or decrease their
firing rate during the delay period. Some neurons are selective for multiple
sequences. Figure 12.8d shows a neuron that responds to sequences starting
with ZY, but also the sequence XYZ. Finally, many neurons are much more

130

12.5. Memory encoding

complex in their responses and cannot easily be assigned a specific preferred
stimulus sequence (no figure shown).

131

12. Results

2 3 4 5 6
Time (s)

0

20

40

Fi
rin

g
ra

te
 (1

/s
)

(a)

2 3 4 5 6
Time (s)

0

20

40

Fi
rin

g
ra

te
 (1

/s
)

(b)

2 3 4 5 6
Time (s)

0

10

20

30

40

Fi
rin

g
ra

te
 (1

/s
)

(c)

2 3 4 5 6
Time (s)

0

50

100

150

Fi
rin

g
ra

te
 (1

/s
)

(d)

XYZ
XZY

YXZ
YZX

ZXY
ZYX

Figure 12.8.: Firing rate of selected STM neurons, smoothed with a Gaussian
filter with a standard deviation of 25 ms, in response to permuta-
tions of a three item list. Analogous to Ninokura, Mushiake, and
Tanji (2003), each list item was presented for 0.5 s preceded by 1 s
delays. The presentation of all items was followed by a 1.5 s delay
period. The presentation intervals for the second and third item
are marked with the vertical lines.

132

13. Discussion

In this thesis, I presented the context-unified encoding (CUE) model. To my
knowledge, it is the first spiking neural network model of human memory
that integrates activity-based short-term memory and weight-based long-term
memory. The same model matches a variety of behavioural data from serial
and free recall experiments, but in contrast to previous models provides a
hypothesis of a neural mechanistic explanation.

The CUE model exhibits many of the hallmark findings in memory research.
It shows the primacy and recency effect in immediate serial and free recall.
These effects get attenuated in delayed free recall, but in continuous distractor
free recall the recency effect reappears. Furthermore, the model was found
to make very few transposition errors in serial recall, and if it does so nearby
items are transposed. In the free recall conditions, the model tends to start with
items at the end of the list, recall nearby items together, and favour recall in
forward direction. Introducing delays and distractors attenuates these effects.
All of these observations match the findings from experiments with human
subjects.

Not only are these qualitative effects reproduced, but also the quantitative
match to the data is very good. Only few significant differences, close to
the number of differences expected by chance, were found. One of these
differences is worth considering in more detail: the model predicts a too strong
forward bias in delayed free recall with both the lag 1 and 2 values of the CRP
curve being significantly above the experimentally found values. Interestingly,
this is also highlighted as the least well matched aspect in the original TCM
(Howard and Kahana 2002). While in that publication the TCM prediction is
closer to the experimental data, the TCM prediction from a more recent paper
(Sederberg, Howard, and Kahana 2008) is closer to the CUE model prediction.
This makes it likely that the difference is not based on pure statistical chance,
but that both the TCM and CUE model do not capture an essential aspect of
memory, potentially related to the evolution of the context signal, that leads
to reduced forward bias in delayed free recall. It remains for future work,

133

13. Discussion

to precisely identify the reason for this mismatch and to extend the model.
Despite Farrell and Lewandowsky (2008) criticizing the TCM for being unable
to simultaneously match the probability of first recall and CRP curves, (but see
Howard, Sederberg, and Kahana 2009), the CUE model matches both forms
of the data simultaneously. It also uses contextual evolution during the recall
process in all simulations addressing another criticism.

Extending the CUE model with slow learning of either direct position to
item associations or forward associations allowed the reproduction of the Hebb
repetition effect qualitatively. The involvement of such secondary learning
should be considered a model prediction, as the effect could not be obtained
without this extension. Modelling the Hebb repetition effect also extends the
model to effects across multiple trials of memory experiments. This is done by
only few memory models, in particular, neither the OSE, nor the TCM model
attempted to match this kind of data.

As opposed to pure math models, the implementation as a spiking neural
network allows the comparison and validation of the model against data from
neural recordings in addition to the behavioural data. Neurons sensitive to
the serial order of items and a neural recency effect could be found. Both
findings have also been reported in experimental data. In Section 9.6, it was
demonstrated that the proposed mechanism of association learning is able
to explain neural data. Unfortunately, neural data recorded from humans in
memory experiments is still scarce, because invasive recordings can only be
done when such recordings are required for medical reasons. Nevertheless,
implementing models with spiking neurons is worthwhile for several other
reasons, despite the more complicated model construction and increased sim-
ulation times. Drug effects, like scopolamine, can be more readily modelled,
as was done with CUE model (though I note that Hasselmo and Wyble 1997
did address the effects of scopolamine with more detail). Also a higher degree
of biological plausibility is achieved as one is forced to consider, for example,
spiking noise and synaptic time constants. This prevents common assumptions
like arbitrary precision or perfectly orthogonal vectors made in many math
models, and forces the consideration of dynamics.

The spiking neural implementation also helps to constrain many parameter
values. Synaptic time constants, membrane time constants, and similar cellu-
lar physical quantities can be set to biologically plausible values reported in
experimental findings. These are fixed parameters that have not been adjusted
for matching the behavioural data. Similarly, as in the NEF, most connection

134

weights are directly determined by least-squares minimization to implement
a given function determined by the prescribed model architecture, hence the
connection weights are fixed as well. This leaves the model with very few free
parameters.

To match the immediate serial recall, only two parameters were adjusted:
the bias of the null choice 𝜇 and the input noise standard deviation 𝜎 in recall.
Both account for the fact that the recall network was restricted to recalling the
items used within the memory experiment, while in reality a number of other
items might interfere with the recall process. For free recall experiments, one
additional parameter 𝜓 is added that determines the probability of using the
serial recall strategy even for free recall. (For serial recall, a fixed value of 𝜓 = 1
is implied as no free recall is allowed.) Furthermore, in experiments with delay
periods, a distractor rate 𝜙 needs to be set. To simulate the effect of scopo-
lamine the AML learning rate 𝜂 was adjusted. However, in non-scopolamine
conditions, it was treated as a fixed parameter and set to a value high enough
to learn associations until the threshold for inhibition was achieved within
the presentation duration. Even higher values would not have any effect as
long as it does not largely exceed the inverse of the synaptic time delay of the
inhibition. Lastly, only two additional parameters (weight decay rate and a
separate learning rate) were introduced by the model extension to the Hebb
repetition effect.

While few free parameters are desirable with respect to model parsimony,
they should also be assigned similar values to model-related experimental
conditions. This is mostly the case for the CUE model. The bias of the null
choice in recall ranges from 0.03 to 0.04 and values get monotonically smaller
as the task difficulty increases with additional delays. This corresponds to
plausible longer recall attempts in more difficult experimental conditions. Only
a small difference is also observed in the distractor rates (0.3 to 0.4) and the
probability of using a serial recall strategy (zero for delayed recall and 0.1 in all
other free recall conditions). However, the noise standard deviation 𝜎 in recall
differs by a factor of more than 1.5 without a clear relation to the experimental
condition. It is hard to hypothesize potential reasons for this difference as the
parameter is accounting for things not explicitly modeled in recall.

It is also of interest how robust the model is against parameter changes. I
have not done a formal analysis of this because the model simulation times are
prohibitive. However, this also means that only a small set of parameter values
without a lot of fine tuning has been tested (less than 200 combinations summed

135

13. Discussion

over all experimental conditions). Given that finding the right parameters with
few simulations is less likely if the model were highly sensitive to the parameter
choice, a sufficient robustness to the exact choice of parameter values can be
expected.

The CUE model is based on prior models of memory, but improves on them
in important ways. With regard to the OSE model, two main advancements
can be stated. First, the episodic memory buffer has been replaced with a much
more plausible long-term memory mechanism that relies on synaptic-weight
changes rather than reverberating neural activity. Second, the CUE model
also implements the mechanism providing the position tags fully in spiking
neurons.

Implementing a long-term memory component based on the TCM in a spik-
ing neural network provides a strong support for the biological plausibility of
the TCM that previously was missing. Certain simplifications of the TCM equa-
tions in this process to facilitate this implementation highlight which aspects
of the TCM are essential and which do not contribute to the explanation of the
data. In particular, it also shows that certain assumptions, like perfectly orthog-
onal vectors, useful in the mathematical analysis, are not essential. In addition,
the modified TCM has been extended with a short-term memory component in
the CUE model. While the TCM has been posited as a single-store model, this
has been criticized (Davelaar et al. 2008). The CUE model demonstrates that
treating the TCM as part of a multi-store model is not unreasonable, provides
good matches to the free recall data, and in addition allows matches to serial
recall data. Finally, the recall process in the TCM has been replaced with a
more plausible spiking neural mechanism (Chapter 10). Existing versions of
the TCM used either the much more abstract Luce’s choice rule with unclear
biological plausibility, or a competitive queueing mechanism that has been
shown to be not in accordance with experimental data (Davelaar 2007).

In the broader context of memory models, the CUE model is unique as
providing a low-level spiking network implementation, but matching high-level
behavioural data. This includes the recall process that is not explicitly modeled
in many other models. Furthermore, due to the item based context, there is no
reinstantiation problem found in most context-based memory models.

A key part of the CUE model is the association matrix learning rule. It
provides insight into how one-shot learning without catastrophic forgetting is
possible. Several options and their biological plausibility of how this learning
rule might be realized in the brain have been discussed in Chapter 9. The

136

13.1. Anatomical mapping

main point there is that either some form of weight-sharing or symmetric
decoder matrix is needed, or the input needs to be transformed into a sparse
representation. The dentate gyrus of the hippocampus exhibits such sparse
firing and is implicated in associative learning, giving support to the latter
hypothesis. However, I also provided evidence that a symmetric decoder matrix
might be learned in a biological plausible way. Moreover, using the AML for
learning simple pairwise associations, allows the reproduction of changes in
firing rates that have been observed in recordings from human hippocampus.
These results are not only of interest for the CUE and TCM models, but many
other cognitive models that assume the storage of associations in a similar
association matrix without further explanation of how these associations are
learned.

One potential criticism of the CUE model could target the method of position
counting (Section 7.2). Only a limited number of positions can be represented,
even though this number can be configured as large as permitted by neural
resources. If the number of positions is exceeded, the representation can be
made to wrap around back to the first position. Thus, the model does not
need to fail catastrophically, but a specific pattern of recall errors could be
introduced by encoding different sequences of items to the same positions.
However, an experimental test of such predictions will be hard, as long lists are
likely required, and thus for most positions no item is recalled above chance.
It is worth highlighting that the position counting network in the CUE model
can be replaced easily to test other hypotheses. But it seems unlikely that the
limited number of positions can be eliminated completely, because there will
always be a limited number of almost orthogonal Semantic Pointers that fit
into a vector space of given dimensionality.

13.1. Anatomical mapping

Given that the CUE model is neural, it is of interest to consider how the parts
of the model map to brain areas. Howard, Fotedar, et al. (2005) proposed a
mapping of the TCM model to brain areas that applies to a large degree also
to the TCM-based part of the CUE model. There are, however, some details
to be reconsidered, and the OSE-based STM part of the model has not been
discussed.

The medial temporal lobe (MTL) is known to be essential for free recall.

137

13. Discussion

Damage to the MTL is detrimental to free recall performance (Graf, Squire,
and Mandler 1984). Thus, we can assume that the TCM-related parts of the
model reside in the MTL.

More precisely, the context storage network can be mapped onto parahip-
pocampal areas, in particular the entorhinal cortex (EC). Its properties are
consistent with the storage of non-spatial memories for tens of seconds. In
delay periods, stimulus dependent persistent activity can be observed (Suzuki,
Miller, and Desimone 1997; Young et al. 1997). Quirk et al. (1992) showed
EC has a higher mean firing rate than hippocampus, which is not caused by
short bursts, and is thus compatible with the sustained maintenance of neural
firing. Also, the electrophysiological properties of the EC support integra-
tion (Egorov et al. 2002). These findings are, however, based on intrinsic cell
properties, whereas the CUE model uses recurrent connectivity for integration
instead. Note that the context network also contains integration ensembles
that maintain the context signal over the timespan of seconds.

While the EC firing is modulated to some degree by the item position, this
coding is more noisy than in the hippocampus (Quirk et al. 1992). This indicates
that EC codes for additional information. L. M. Frank, E. N. Brown, and Wilson
(2000) have shown that superficial EC employs retrospective coding, i.e., that it
differentiates visits to the same position by the history leading up to that visit.
This is consistent with a context signal encoding the history of items leading
up to the current item.

The other major components to map to brain structures are related to the
learning and retrieval of associations in the 𝑴FC and 𝑴CF matrices. Howard,
Fotedar, et al. (2005) stated that the 𝑴FC matrix might not be implemented
by a single anatomical region due to its complicated structure. However, the
updating equation for 𝑴FC in the CUE model has been simplified, which
makes the correspondence to a single region more plausible. The learning
of new associations in these matrices is attributed to the hippocampus by
Howard, Fotedar, et al. (2005). This is consistent with the results about the
AML presented in Chapter 9.

The CUE model provides a more detailed description of the updating of the
association matrices due to the neural implementation by means of the AML.
The learning network has recurrent connectivity to inhibit the learning once an
association has been learned with the desired strength. Recurrent connectivity
is also found in the CA3 region of hippocampus. Furthermore, CA3 receives
input via the dentate gyrus and directly from entorhinal cortex, which could

138

13.2. Optimally fuzzy temporal memory

correspond to separate transmission pathways for the associated cue and target.
Interestingly, the AML highlighted the need to incorporate the decoder matrix
𝑫⊤ into the connections. While I have shown it might be plausible that this
connectivity is learned, the matrix could be reduced to the identity if the input
ensemble were to provide orthogonalized inputs. The dentate gyrus, providing
input to CA3, is commonly assumed to perform such orthogonalization given
its large neuron count, sparse firing, and neurogenesis (e.g., Boss et al. 1987;
Jung and McNaughton 1993; Piatti, Ewell, and J. K. Leutgeb 2013). Thus,
while the CUE model does not explicitly model the dentate gyrus (which is a
significant research problem in itself), the learning rule used at least provides
a principled reason for its existence.

Further evidence for this neuroanatomical mapping can be obtained from
the connectivity between hippocampus and EC. The superficial EC provides
input to hippocampus, but does not receive direct input for hippocampus
(Witter 2010). In contrast to that, the deep layers of EC receive input from
hippocampus and might be relevant for recall, especially the recall of pre-
experimental context. This is consistent with the connectivity in the model
where the context network projects to the association matrix learning network
attributed to hippocampus. The learning network for 𝑴FC also projects back
to an ensemble recalling the prior context before it gets combined in a different
ensemble.

The short-term memory related components of the CUE model can be as-
sumed to correspond to cortical areas, in particular the prefrontal cortex. The
prefrontal cortex has been found to be involved in working memory tasks in
many studies (e.g., Goldman-Rakic 1995; Owen 1997).

13.2. Opঞmally fuzzy temporal memory

Shankar and Howard (2013) proposed a mathematical model of an optimally
fuzzy temporal memory. According to them it can replace the context signal in
the TCM (Howard, Shankar, et al. 2015). Thus it could also be relevant to the
CUE model, but I argue below that a spiking neural version of this memory is
unlikely to work without an implausible number of neurons.

The fuzzy temporal memory is constructed with the aim of representing past
values of a function 𝑓 (𝑡) with a scale-free fall off in accuracy. Note that multiple
such fuzzy temporal memories could be combined to represent a vector-valued

139

13. Discussion

function as needed for the context signal in the TCM or CUE models. The
memory itself consists of a set of independent, leaky accumulators given by
the differential equation

d𝑐𝑖(𝑡)
d𝑡 = −𝑠𝑖𝑐𝑖(𝑡) + 𝑓 (𝑡) (13.1)

where 𝑠𝑖 are decay constants. This set of integrators is essentially computing a
Laplace transform. To readout the memory, the Laplace transform is inverted
approximately with a linear operator 𝑳−1

𝑘 given by

[𝑳−1
𝑘]

𝑖𝑗
=

(−1)𝑘

𝑘! 𝑠𝑘+1
𝑖 [𝑫𝑘]𝑖𝑗 (13.2)

where 𝑫𝑘 is a square matrix that computes the 𝑘-th discrete derivative with
respect to 𝑠. The reconstructed ̂𝑓𝑡(𝑡 + 𝑡∗

𝑖) = [𝑳−1
𝑘 𝒄(𝑡)]

𝑖
with 𝑡∗

𝑖 = −𝑘/𝑠𝑖 < 0
estimates the values of 𝑓 at times 𝑡 + 𝑡∗

𝑖 in the past. The reconstruction becomes
more accurate as 𝑘 → ∞.

Shankar and Howard (2013) derive a signal to noise ratio, but use the magni-
tude of a delta impulse input to do so. As the magnitude of a delta impulse
is infinite in the limit, the signal to noise ratio also grows without bound for
𝑘 → ∞. However, it is physically impossible to deliver a perfect delta impulse.
Instead it is more appropriate to analyze the steady state response for a fixed
input 𝑓 (𝑡) = 𝑢. In the context of the NEF, 𝑢 = 1 can be assumed without loss of
generality because any change in the magnitude 𝑢 requires a matched change
in the representational radius 𝑟 which will also scale the absolute error, keeping
the relative error the same. The steady state of the leaky integrators is then
given by 𝑐𝑖(𝑡) = 𝑠−1

𝑖 . This implies that NEF ensembles representing 𝑐𝑖 should
use a radius of 𝑟 = 𝑠−1

𝑖 .
The amplification of the noise standard deviation is given by Shankar and

Howard (2013) as

𝑔𝜂(𝑠𝑖, 𝑘) =
√2𝑘𝑠𝑘+1

𝑖
𝛿𝑘

𝑠𝑖
𝑘!

(13.3)

where 𝛿𝑠𝑖
= 𝑠𝑖 − 𝑠𝑖−1. When following their proposal for optimal spacing of

the 𝑠𝑖 by picking 𝑡∗
𝑖 = (1 + 𝜈)𝑖−1𝑡∗

1 for some constant 𝜈 > 0, it follows that

140

13.2. Optimally fuzzy temporal memory

𝛿𝑠𝑖
/𝑠𝑖 = 𝜈 and the formula can be simplified to

𝑔𝜂(𝑠𝑖, 𝑘) =
√2𝑘𝑠𝑖
𝜈𝑘𝑘!

= −
√2𝑘

𝜈𝑘(𝑘 − 1)!𝑡∗
𝑖

. (13.4)

Note that this amplification is not independent of 𝑡∗
𝑖 = −𝑘/𝑠𝑖, but increases

as 𝑡∗ → 0. This can be seen easily when adding some Gaussian noise to all 𝑐𝑖
before the reconstruction as done in Fig. 13.1a. It also refutes that “the signal
to noise ratio will remain constant over all timescales” (Shankar and Howard
2013); a statement based on the assumption of a perfect delta impulse. However,
as stated above, NEF ensembles should use a radius of 𝑟 = 𝑠−1

𝑖 which scales
the noise by the same factor and thus indeed leads to a constant amplification
of the noise across timescales (Fig. 13.1b) given by

𝑔𝜂,NEF(𝜈, 𝑘) =
√2𝑘

𝜈𝑘𝑘!
. (13.5)

Figure 13.2a shows this amplification for different parameter values. When both
𝜈 and 𝑘 are chosen large enough, noise will actually be attenuated. However,
this also increases the timescale (Fig. 13.2b) and as such there is a trade-off
between the time resolution of the memory and noise amplification. This
increase in timescale is given by

𝜏𝑖(𝜈) = −(1 + 𝜈)𝑘𝑡∗
𝑖 (13.6)

and is caused by the discrete approximation of the derivative that relies on
unequally spaced 𝑠𝑖−𝑘 to 𝑠𝑖+𝑘 for the reconstruction of ̂𝑓𝑡(𝑡+𝑡∗

𝑖) and is dominated
by 𝑡∗

𝑖+𝑘 (Appendix D.1).
Based on these equations, the total number of neurons 𝑁tot required can be

estimated as (Appendix D.2)

𝑁tot(𝑡∗
1, 𝑘) = 𝑁𝑑 𝑔2

𝜂,NEF(𝜈, 𝑘) (𝑀 + 2𝑘) (13.7)

𝑀 ≥
log(𝑡∗

max/𝑡∗
1)

log(1 + 𝜈) (13.8)

𝜈 ≤ 𝑘√−𝜏1/𝑡∗
1 − 1 (13.9)

where 𝑁 is the number of neurons to represent a single dimension with suffi-
cient accuracy (before the effect of the noise amplification), 𝑑 is the dimension-
ality of the input signal, 𝑀 gives the number of required leaky integrators, 𝜏1

141

13. Discussion

10 8 6 4 2 0
Internal time t *

0.6

0.8

1.0

1.2

1.4

(a) Added Gaussian noise

added noise
noise-free

10 8 6 4 2 0
Internal time t *

0.6

0.8

1.0

1.2

1.4

f

(b) Added Gaussian noise scaled by si

Figure 13.1.: Examples of the effect of noise in the leaky integrators 𝑐𝑖 of the
fuzzy temporal memory on the reconstruction ̂𝑓. (a) Gaussian
noise with mean zero and a constant standard deviation is added
to the output of all integrators. (b) Gaussian noise with mean zero
and standard deviation scaled by 𝑠−1

𝑖 is added to the output of all
integrators.

0.5 1.0 1.5 2.0

5

10

15

k

(a) Noise amplification g , NEF

200 150 100 50 0 50 100 150 200
dB

0.5 1.0 1.5 2.0

(b) Timescale i/t *
i

10 1 101 103 105 107 109 1011

Figure 13.2.: (a) Noise amplification 𝑔𝜂,NEF in the fuzzy temporal memory. (b)
Timescale 𝜏1 for the 𝑡∗

1 reconstruction of the fuzzy temporal mem-
ory.

142

13.2. Optimally fuzzy temporal memory

gives the desired smallest timescale, and 𝑡∗
max gives the desired timespan of the

fuzzy memory. Assuming that the fuzzy temporal memory is to be used for the
TCM context signal, 𝜏1 ≤ 1 s and 𝑡∗

max ≥ 10 s are reasonable choices because
ten item lists with a presentation rate one item per second are typical for the
memory experiments matched in this work. Furthermore, 𝑁 = 50 and 𝑑 = 64
can be used as conservative estimates. Using 50 neurons with maximum firing
rates between 200 s−1 to 400 s−1 is sufficient to read out the represented value,
but not very precisely. This default range of firing rates is much higher than
firing rates typically observed in vivo. Thus, the actual required number of
neurons can be expected to be higher. A dimensionality of 𝑑 = 64 is also on
the lower end to be able to fit sufficiently many almost orthogonal vectors into
the space. The CUE model uses four times as much, 𝑑 = 256, dimensions.
Ultimately, the choice of 𝑁 and 𝑑 has only a minor influence on the results
as they are just linear factors while the required number of neurons grows
exponentially for |𝑡∗

1|, 𝑘 → ∞. The results for this choice of parameter values
is shown in Fig. 13.3. For most parameter combinations, the number of about
13 × 106 neurons in the entorhinal cortex (West and Slomianka 1998), assumed
to be the locus of the CUE/TCM context signal, and even the number of about
86 × 109 neurons in the human brain (Azevedo et al. 2009) is far exceeded. For
an implementation with a realistic limit on the neuron number, |𝑡∗

1|, but also 𝑘,
needs to be sufficiently small.

Unfortunately, choosing small |𝑡∗
1| and 𝑘 is also problematic. The error of the

approximate inversion of the Laplace transform with Post’s formula converges
only at a rate of 1/𝑘 (Vu Kim Tuan and Dinh Thanh Duc 2000). Shankar and
Howard (2013) also comment themselves that 𝑡∗

1 needs to be kept sufficiently
far from zero as it introduces a relative error in the order of 𝑂(𝑘3𝜈2/96𝑡∗2

1) in
the construction of the activity of 𝑐𝑖.

In conclusion, the fuzzy temporal memory has only a small parameter space
that allows an implementation with feasible neural resources due to noise
sensitivity. This parameter space suffers from large relative errors unrelated to
noise in the approximation of the inverse Laplace transform with Post’s formula
and discretized derivative. Currently, it is not clear whether these non-noise
related errors are sufficiently small to allow the fuzzy temporal memory to be
used as a context signal in the CUE model. At the same time it would require
an increased number of neurons compared to the current implementation
as each dimension requires a set of leaky integrators, i.e. additional values
have to be stored for each dimension. In comparison, the context network for

143

13. Discussion

0.8 0.6 0.4 0.2

t *
1

2

4

6

8

10

12

14

16

18

k

13 ·10686 ·109 103

108

1013

1018

1023

1028

1033

N
um

be
r o

f r
eq

ui
re

d
ne

ur
on

s

Figure 13.3.: Number of neurons required to implement a fuzzy temporal
memory with a lower timescale of 𝜏1 = 1 s and a timespan of
𝑡∗
max = 10 s. The white contours give the approximate number

of neurons in the human entorhinal cortex (13 × 106) and human
brain (86 × 109). See text for further details.

144

13.3. Advances in large-scale cognitive modeling

256 dimensional vectors uses only 51 225 neurons, and even when adjusting by
a factor of 10, this is many fewer neurons than found in the human entorhinal
cortex.

Apart from this theoretical argument, it might be possible to differentiate
experimentally between the context representation used in the CUE model and
the fuzzy temporal memory. With the fuzzy memory, the context representa-
tion gets updated continuously, whereas in the CUE model the context signal
is subject to discrete updates for each presented item. Such discrete changes in
the firing pattern could potentially be detected if such discrete updates are not
too fine grained. A related prediction of the fuzzy temporal memory is that
the context signal will depend on presentation and inter-stimulus intervals
which should have an effect on the contiguity in recall if their length is varied
within a trial.

13.3. Advances in large-scale cogniঞve modeling

The primary objectives of building the CUE model lead to a number of ad-
vances in large-scale cognitive modeling that are worth summarizing, even
though not all have been presented as part of this thesis. Most importantly, opti-
mizations for high-dimensional representations in neural networks (Chapter 6;
Gosmann and Eliasmith 2016). These allow the use of fewer neurons in such
models, which ultimately allows more complex networks to be built without
prohibitively long simulation times. A similar benefit is the improved product
network (Gosmann 2015), as the calculation of products is often required, for
example for the implementation of circular convolution. Also a significant
improvement to simulation times was achieved by the implementation of an
optimization procedure in the Nengo simulator (Gosmann and Eliasmith 2017).
Chapter 5 described a new method for binding Semantic Pointers, the vector-
derived transformation binding. Even though it has not been used in the CUE
model yet, it might provide a more precise binding and unbinding. Finally, the
independent accumulator network described in Section 10.2 might not only be
useful in recall, but for other large-scale models requiring clear decisions as
part of a cognitive process.

145

14. Conclusion

To summarize, the context-unified encoding model advances our understand-
ing of human memory by matching human behavioural data using an im-
plementation grounded in a spiking neural network. The difficult task of
building a spiking neuron model of this scale also led to a number advances
in large-scale cognitive modeling in general, such as high-dimensional neural
representations with reduced noise. Despite this, the CUE model is only a
first step in the integration of neural and behavioural data as well as the un-
derstanding the interaction of short- and long-term memory. Much more data
from memory experiments exists that could be matched, and can be used to
highlight where the CUE model is wrong or needs to be extended. One such
aspect that was already evident is the strength of the forward recall bias in
delayed free recall. Future work could also focus on mapping the long-term
memory components more precisely onto hippocampal structures and cellular
properties in the relevant regions. In particular, introducing sparsification with
a dentate gyrus model could improve the biological plausibility of the AML.

The sequences that the CUE model can memorize are much simpler than
the richness of actual human memory. But they have been proven useful in
psychology to investigate basic properties of memory. Also, many forms of
memory can be understood as a sequence: episodic memory is essentially a
sequence of events or a sequence of left and right turns might be necessary
to navigate from one place to another. Thus, the model is relevant to our
understanding despite the relative simplicity of modelled tasks.

Finally, the CUE model, in the broader context of large scale cognitive mod-
eling, could provide an excellent extension to the Spaun model. A proper
long-term memory component is missing from this model so far, despite being
essential for cognition. The CUE model itself could also benefit from such an
integration, as Spaun’s ability to perform multiple tasks would allow to model
experimental delay phases with an actual distractor task.

147

References

Abbott, L. F. and W. G. Regehr (2004). “Synaptic Computation”. In: Nature
431.7010, pp. 796–803. doi: 10.1038/nature03010. pmid: 15483601.

Abraham, W. C. and A. Robins (2005). “Memory retention – the synaptic
stability versus plasticity dilemma”. In: Trends in Neurosciences 28.2, pp. 73–
78. doi: 10.1016/j.tins.2004.12.003.

Anderson, J. A. (1973). “A theory for the recognition of items from short memo-
rized lists”. In: Psychological Review 80.6, pp. 417–438. doi: 10.1037/h0035486.

Anderson, J. R. and M. Matessa (1997). “A production system theory of serial
memory”. In: Psychological Review 104.4, pp. 728–748. doi: 10.1037/0033-
295X.104.4.728.

Atkinson, R. C. and R. M. Shiffrin (1968). “Human Memory: A Proposed System
and Its Control Processes”. In: Psychology of Learning and Motivation. Ed. by
K. W. Spence and J. T. Spence. Vol. 2. New York, NY, USA: Academic Press,
pp. 89–195. doi: 10.1016/S0079-7421(08)60422-3.

Azevedo, F. A. C. et al. (2009). “Equal Numbers of Neuronal and Nonneuronal
Cells Make the Human Brain an Isometrically Scaled-up Primate Brain”. In:
The Journal of Comparative Neurology 513.5, pp. 532–541. doi: 10.1002/cne.21974.
pmid: 19226510.

Baddeley, A. D. (1986). Working memory. Oxford Psychology Series 11. Oxford,
England: Clarendon Press. 308 pp.

– (2000). “The episodic buffer: a new component of working memory?” In:
Trends in Cognitive Sciences 4.11, pp. 417–423. doi: 10.1016/S1364-6613(00)
01538-2.

Bahl, A. et al. (2012). “Automated Optimization of a Reduced Layer 5 Pyramidal
Cell Model Based on Experimental Data”. In: Journal of Neuroscience Methods.
Special Issue on Computational Neuroscience 210.1, pp. 22–34. doi: 10.1016/
j.jneumeth.2012.04.006.

Baldo, J. V., S. Katseff, and N. F. Dronkers (2012). “Brain Regions Underlying
Repetition and Auditory-Verbal Short-Term Memory Deficits in Aphasia:

149

https://doi.org/10.1038/nature03010
15483601
https://doi.org/10.1016/j.tins.2004.12.003
https://doi.org/10.1037/h0035486
https://doi.org/10.1037/0033-295X.104.4.728
https://doi.org/10.1037/0033-295X.104.4.728
https://doi.org/10.1016/S0079-7421(08)60422-3
https://doi.org/10.1002/cne.21974
19226510
https://doi.org/10.1016/S1364-6613(00)01538-2
https://doi.org/10.1016/S1364-6613(00)01538-2
https://doi.org/10.1016/j.jneumeth.2012.04.006
https://doi.org/10.1016/j.jneumeth.2012.04.006

References

Evidence from Voxel-Based Lesion Symptom Mapping”. In: Aphasiology
26.3-4, pp. 338–354. doi: 10.1080/02687038.2011.602391.

Bekolay, T., J. Bergstra, et al. (2014). “Nengo: A Python Tool for Building Large-
Scale Functional Brain Models”. In: Frontiers in Neuroinformatics 7.48. doi:
10.3389/fninf.2013.00048. pmid: 24431999.

Bekolay, T., C. Kolbeck, and C. Eliasmith (2013). “Simultaneous Unsupervised
and Supervised Learning of Cognitive Functions in Biologically Plausible
Spiking Neural Networks”. In: 35th Annual Conference of the Cognitive Science
Society. Cognitive Science Society, pp. 169–174.

Bengio, Y. et al. (2015). “Towards Biologically Plausible Deep Learning”. In:
arXiv: 1502.04156 [cs].

Berger, T. W. et al. (2011). “A cortical neural prosthesis for restoring and en-
hancing memory”. In: Journal of Neural Engineering 8.4. doi: 10.1088/1741-
2560/8/4/046017.

Boss, B. D. et al. (1987). “On the Numbers of Neurons on Fields CA1 and CA3
of the Hippocampus of Sprague-Dawley and Wistar Rats”. In: Brain Research
406.1–2, pp. 280–287. doi: 10.1016/0006-8993(87)90793-1.

Botvinick, M. M. and D. C. Plaut (2006). “Short-term memory for serial order: A
recurrent neural network model”. In: Psychological Review 113.2, pp. 201–233.
doi: 10.1037/0033-295X.113.2.201.

Brown, G. D. A., T. Preece, and C. Hulme (2000). “Oscillator-based memory
for serial order”. In: Psychological Review 107.1, pp. 127–181. doi: 10.1037/0033-
295X.107.1.127.

Brun, V. H. et al. (2002). “Place cells and place recognition maintained by direct
entorhinal-hippocampal circuitry”. In: Science 296.5576, pp. 2243–2246. doi:
10.1126/science.1071089. pmid: 12077421.

Burgess, N. and G. J. Hitch (1992). “Toward a network model of the articulatory
loop”. In: Journal of Memory and Language 31.4, pp. 429–460. doi: 10.1016/0749-
596X(92)90022-P.

– (1996). “A connectionist model of STM for serial order”. In: Models of Short-
term Memory. Ed. by S. E. Gathercole. East Sussex, England: Psychology Press,
pp. 51–72.

– (2005). “Computational models of working memory: putting long-term
memory into context”. In: Trends in Cognitive Sciences 9.11, pp. 535–541. doi:
10.1016/j.tics.2005.09.011.

150

https://doi.org/10.1080/02687038.2011.602391
https://doi.org/10.3389/fninf.2013.00048
24431999
http://arxiv.org/abs/1502.04156
https://doi.org/10.1088/1741-2560/8/4/046017
https://doi.org/10.1088/1741-2560/8/4/046017
https://doi.org/10.1016/0006-8993(87)90793-1
https://doi.org/10.1037/0033-295X.113.2.201
https://doi.org/10.1037/0033-295X.107.1.127
https://doi.org/10.1037/0033-295X.107.1.127
https://doi.org/10.1126/science.1071089
12077421
https://doi.org/10.1016/0749-596X(92)90022-P
https://doi.org/10.1016/0749-596X(92)90022-P
https://doi.org/10.1016/j.tics.2005.09.011

Butts, D. A. and M. S. Goldman (2006). “Tuning Curves, Neuronal Variability,
and Sensory Coding”. In: PLOS Biology 4.4, e92. doi: 10.1371/journal.pbio.
0040092.

Buzsáki, G. (1989). “Two-stage model of memory trace formation: a role for
‘noisy’ brain states”. In: Neuroscience 31.3, pp. 551–570.

Buzsáki, G. and E. I. Moser (2013). “Memory, Navigation and Theta Rhythm
in the Hippocampal-Entorhinal System”. In: Nature Neuroscience 16.2, p. 130.
doi: 10.1038/nn.3304.

Cai, T., J. Fan, and T. Jiang (2013). “Distributions of Angles in Random Packing
on Spheres”. In: Journal of Machine Learning Research 14.1, pp. 1837–1864.

Chaudhuri, R. and I. Fiete (2016). “Computational Principles of Memory”. In:
Nature Neuroscience 19.3, pp. 394–403. doi: 10.1038/nn.4237.

Choo, X. (2010). “The ordinal serial encoding model: serial memory in spiking
neurons”. Master Thesis. Waterloo, Ontario, Canada: University of Waterloo.
url: https://uwspace.uwaterloo.ca/handle/10012/5385.

Chrobak, J. J. and G. Buzsáki (1994). “Selective Activation of Deep Layer (V-VI)
Retrohippocampal Cortical Neurons during Hippocampal Sharp Waves in
the Behaving Rat”. In: Journal of Neuroscience 14.10, pp. 6160–6170. pmid:
7931570.

Claiborne, B. J., D. G. Amaral, and W. M. Cowan (1986). “A light and electron mi-
croscopic analysis of the mossy fibers of the rat dentate gyrus”. In: The Journal
of Comparative Neurology 246.4, pp. 435–458. doi: 10.1002/cne.902460403.

Cohn, H. et al. (2017). “The Sphere Packing Problem in Dimension 24”. In:
Annals of Mathematics 185.3, pp. 1017–1033. doi: 10.4007/annals.2017.185.3.8.
arXiv: 1603.06518.

Crawford, E., M. Gingerich, and C. Eliasmith (2016). “Biologically Plausible,
Human-Scale Knowledge Representation”. In: Cognitive Science 40.4, pp. 782–
821. doi: 10.1111/cogs.12261.

Davelaar, E. J. (2007). “Sequential Retrieval and Inhibition of Parallel (Re)Acti-
vated Representations: A Neurocomputational Comparison of Competitive
Queuing and Resampling Models”. In: Adaptive Behavior 15.1, pp. 51–71. doi:
10.1177/1059712306076250.

Davelaar, E. J. et al. (2008). “Postscript: Through TCM, STM shines bright.” In:
Psychological Review 115.4, pp. 1116–1118. doi: 10.1037/0033-295X.115.4.1116.

Duggins, P. (2017). “Incorporating Biologically Realistic Neuron Models into
the NEF”. Master Thesis. Waterloo, Ontario, Canada: University of Waterloo.
url: https://uwspace.uwaterloo.ca/handle/10012/12393.

151

https://doi.org/10.1371/journal.pbio.0040092
https://doi.org/10.1371/journal.pbio.0040092
https://doi.org/10.1038/nn.3304
https://doi.org/10.1038/nn.4237
https://uwspace.uwaterloo.ca/handle/10012/5385
7931570
https://doi.org/10.1002/cne.902460403
https://doi.org/10.4007/annals.2017.185.3.8
http://arxiv.org/abs/1603.06518
https://doi.org/10.1111/cogs.12261
https://doi.org/10.1177/1059712306076250
https://doi.org/10.1037/0033-295X.115.4.1116
https://uwspace.uwaterloo.ca/handle/10012/12393

References

Egorov, A. V. et al. (2002). “Graded Persistent Activity in Entorhinal Cortex
Neurons”. In: Nature 420.6912, pp. 173–178. doi: 10.1038/nature01171.

Eichenbaum, H. (2001). “The Hippocampus and Declarative Memory: Cogni-
tive Mechanisms and Neural Codes”. In: Behavioural Brain Research 127.1-2,
pp. 199–207. doi: 10.1016/S0166-4328(01)00365-5. pmid: 11718892.

Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biological
Cognition. New York, NY: Oxford University Press.

Eliasmith, C. and C. H. Anderson (2003). Neural Engineering: Computation, Rep-
resentation, and Dynamics in Neurobiological Systems. Cambridge, MA: MIT
Press.

Eliasmith, C., J. Gosmann, and X. Choo (2016). “BioSpaun: A Large-Scale
Behaving Brain Model with Complex Neurons”. In: arXiv: 1602.05220 [cs,
q-bio].

Eliasmith, C., T. C. Stewart, et al. (2012). “A large-scale model of the functioning
brain”. In: Science 338.6111, pp. 1202–1205. doi: 10.1126/science.1225266.

Estes, W. K. (1955). “Statistical theory of spontaneous recovery and regression”.
In: Psychological Review 62.3, pp. 145–154. doi: 10.1037/h0048509.

– (1972). “An associative basis for coding and organiation in memory”. In:
Coding Processes in Human Memory. Ed. by A. W. Melton and E. Martin. The
Experimental Psychology Series. Washington, D.C.: V. H. Winston & Sons,
pp. 161–190.

Farrell, S. and S. Lewandowsky (2008). “Empirical and Theoretical Limits on
Lag Recency in Free Recall”. In: Psychonomic Bulletin & Review 15.6, pp. 1236–
1250. doi: 10.3758/PBR.15.6.1236.

Folkerts, S., U. Rutishauser, and M. W. Howard (2018). “Human Episodic
Memory Retrieval Is Accompanied by a Neural Contiguity Effect”. In: Journal
of Neuroscience 38.17, pp. 4200–4211. doi: 10.1523/JNEUROSCI.2312-17.2018.
pmid: 29615486.

Frank, L. M., E. N. Brown, and M. Wilson (2000). “Trajectory Encoding in the
Hippocampus and Entorhinal Cortex”. In: Neuron 27.1, pp. 169–178. doi:
10.1016/S0896-6273(00)00018-0.

Freund, T. F. and G. Buzsáki (1996). “Interneurons of the hippocampus”. In:
Hippocampus 6.4, pp. 347–470. doi: 10.1002/(SICI)1098-1063(1996)6:4<347::
AID-HIPO1>3.0.CO;2-I.

Gallistel, C. R. and A. P. King (2009). Memory and the Computational Brain: Why
Cognitive Science will Transform Neuroscience. 1st ed. Chichester, West Sussex,
UK; Malden, MA: Wiley-Blackwell. 336 pp.

152

https://doi.org/10.1038/nature01171
https://doi.org/10.1016/S0166-4328(01)00365-5
11718892
http://arxiv.org/abs/1602.05220
http://arxiv.org/abs/1602.05220
https://doi.org/10.1126/science.1225266
https://doi.org/10.1037/h0048509
https://doi.org/10.3758/PBR.15.6.1236
https://doi.org/10.1523/JNEUROSCI.2312-17.2018
29615486
https://doi.org/10.1016/S0896-6273(00)00018-0
https://doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
https://doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I

Gayler, R. W. (2004). “Vector Symbolic Architectures Answer Jackendoff’s
Challenges for Cognitive Neuroscience”. In: arXiv: cs/0412059.

Ghoneim, M. M. and S. P. Mewaldt (1975). “Effects of Diazepam and Scopo-
lamine on Storage, Retrieval and Organizational Processes in Memory”. In:
Psychopharmacologia 44.3, pp. 257–262. doi: 10.1007/BF00428903.

Girardeau, G. et al. (2009). “Selective Suppression of Hippocampal Ripples
Impairs Spatial Memory”. In: Nature Neuroscience 12.10, pp. 1222–1223. doi:
10.1038/nn.2384.

Gold, J. I. and M. N. Shadlen (2007). “The Neural Basis of Decision Making”.
In: Annual Review of Neuroscience 30.1, pp. 535–574. doi: 10.1146/annurev.
neuro.29.051605.113038. pmid: 17600525.

Goldman-Rakic, P. S. (1995). “Cellular Basis of Working Memory”. In: Neuron
14.3, pp. 477–485. doi: 10.1016/0896-6273(95)90304-6.

Gosmann, J. (2015). Precise Multiplications with the NEF. Waterloo, Ontario,
Canada: University of Waterloo. doi: 10.5281/zenodo.35680.

Gosmann, J. and C. Eliasmith (2015). “A Spiking Neural Model of the N-Back
Task”. In: 37th Annual Meeting of the Cognitive Science Society, pp. 812–817.

– (2016). “Optimizing Semantic Pointer Representations for Symbol-Like Pro-
cessing in Spiking Neural Networks”. In: PLoS ONE 11.2, e0149928. doi:
10.1371/journal.pone.0149928.

– (2017). “Automatic Optimization of the Computation Graph in the Nengo
Neural Network Simulator”. In: Frontiers in Neuroinformatics 11. doi: 10.3389/
fninf.2017.00033.

Gosmann, J., A. R. Voelker, and C. Eliasmith (2017). “A Spiking Independent
Accumulator Model for Winner-Take-All Computation”. In: Proceedings of the
39th Annual Conference of the Cognitive Science Society. CogSci 2017. Austin, TX:
Cognitive Science Society.

Graf, P., L. R. Squire, and G. Mandler (1984). “The Information That Amnesic Pa-
tients Do Not Forget”. In: Journal of Experimental Psychology. Learning, Memory,
and Cognition 10.1, pp. 164–178. pmid: 6242734.

Guzowski, J. F., J. J. Knierim, and E. I. Moser (2004). “Ensemble dynamics
of hippocampal regions CA3 and CA1”. In: Neuron 44.4, pp. 581–584. doi:
10.1016/j.neuron.2004.11.003.

Hafting, T. et al. (2005). “Microstructure of a Spatial Map in the Entorhinal
Cortex”. In: Nature 436.7052, pp. 801–806. doi: 10.1038/nature03721.

153

http://arxiv.org/abs/cs/0412059
https://doi.org/10.1007/BF00428903
https://doi.org/10.1038/nn.2384
https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://doi.org/10.1146/annurev.neuro.29.051605.113038
17600525
https://doi.org/10.1016/0896-6273(95)90304-6
https://doi.org/10.5281/zenodo.35680
https://doi.org/10.1371/journal.pone.0149928
https://doi.org/10.3389/fninf.2017.00033
https://doi.org/10.3389/fninf.2017.00033
6242734
https://doi.org/10.1016/j.neuron.2004.11.003
https://doi.org/10.1038/nature03721

References

Harman, R. and V. Lacko (2010). “On Decompositional Algorithms for Uniform
Sampling from -Spheres and -Balls”. In: Journal of Multivariate Analysis 101.10,
pp. 2297–2304. doi: 10.1016/j.jmva.2010.06.002.

Hasselmo, M. E. (2012). How We Remember: Brain Mechanisms of Episodic Memory.
Cambridge, MA: MIT Press. 383 pp.

Hasselmo, M. E. and B. P. Wyble (1997). “Free Recall and Recognition in a
Network Model of the Hippocampus: Simulating Effects of Scopolamine on
Human Memory Function”. In: Behavioural Brain Research 89.1–2, pp. 1–34.
doi: 10.1016/S0166-4328(97)00048-X.

Hebb, D. O. (1961). “Distinctive features of learning in the higher animal”. In:
Brain mechanisms and learning. Ed. by J. F. Delafresnaye. Oxford, England:
Blackwell, pp. 37–46.

Henson, R. N. A. (1996). “Short-term memory for serial order”. unpublished.
Dissertation. Cambridge, England: University of Cambridge.

Hintzman, D. L. (1988). “Judgments of frequency and recognition memory in
a multiple-trace memory model”. In: Psychological Review 95.4, pp. 528–551.
doi: 10.1037/0033-295X.95.4.528.

Hirotsu, I. et al. (1989). “Effect of Anticholinergic Drug on Long-Term Potentia-
tion in Rat Hippocampal Slices”. In: Brain Research 482.1, pp. 194–197. doi:
10.1016/0006-8993(89)90561-1.

Horwitz, B. and J. F. Smith (2008). “A Link Between Neuroscience and In-
formatics: Large-Scale Modeling of Memory Processes”. In: Methods 44.4,
pp. 338–347. doi: 10.1016/j.ymeth.2007.02.007. pmid: 18374277.

Howard, M. W., M. S. Fotedar, et al. (2005). “The Temporal Context Model in
Spatial Navigation and Relational Learning: Toward a Common Explanation
of Medial Temporal Lobe Function across Domains”. In: Psychological Review
112.1, pp. 75–116. doi: 10.1037/0033-295X.112.1.75.

Howard, M. W. and M. J. Kahana (1999). “Contextual variability and serial
position effects in free recall”. In: Journal of Experimental Psychology: Learning,
Memory, and Cognition 25.4, pp. 923–941. doi: 10.1037/0278-7393.25.4.923.

– (2002). “A distributed representation of temporal context”. In: Journal of
Mathematical Psychology 46.3, pp. 269–299. doi: 10.1006/jmps.2001.1388.

Howard, M. W., C. J. MacDonald, et al. (2014). “A Unified Mathematical Frame-
work for Coding Time, Space, and Sequences in the Hippocampal Region”.
In: The Journal of Neuroscience 34.13, pp. 4692–4707.

Howard, M. W., P. B. Sederberg, and M. J. Kahana (2009). “Reply to Farrell and
Lewandowsky: Recency-Contiguity Interactions Predicted by the Temporal

154

https://doi.org/10.1016/j.jmva.2010.06.002
https://doi.org/10.1016/S0166-4328(97)00048-X
https://doi.org/10.1037/0033-295X.95.4.528
https://doi.org/10.1016/0006-8993(89)90561-1
https://doi.org/10.1016/j.ymeth.2007.02.007
18374277
https://doi.org/10.1037/0033-295X.112.1.75
https://doi.org/10.1037/0278-7393.25.4.923
https://doi.org/10.1006/jmps.2001.1388

Context Model”. In: Psychonomic Bulletin & Review 16.5, pp. 973–984. pmid:
19927395.

Howard, M. W., K. H. Shankar, et al. (2015). “A Distributed Representation of
Internal Time.” In: Psychological Review 122.1, p. 24. doi: 10.1037/a0037840.

Huilme, S. R. et al. (2014). “Mechanisms of Heterosynaptic Metaplasticity”. In:
Philosophical Transactions of the Royal Society 369. doi: 10.1098/rstb.2013.0148.

Ison, M. J., R. Quian Quiroga, and I. Fried (2015). “Rapid Encoding of New
Memories by Individual Neurons in the Human Brain”. In: Neuron 87.1,
pp. 220–230. doi: 10.1016/j.neuron.2015.06.016. pmid: 26139375.

Ito, T., Y. Miura, and T. Kadokawa (1988). “Effects of Physostigmine and Scopo-
lamine on Long-Term Potentiation of Hippocampal Population Spikes in
Rats”. In: Canadian Journal of Physiology and Pharmacology 66.8, pp. 1010–1016.
pmid: 3179833.

Jahnke, J. C. (1968). “Delayed recall and the serial-position effect of short-term
memory”. In: Journal of Experimental Psychology 76.4, pp. 618–622.

Jonas, P., G. Major, and B. Sakmann (1993). “Quantal Components of Unitary
EPSCs at the Mossy Fibre Synapse on CA3 Pyramidal Cells of Rat Hippocam-
pus.” In: The Journal of Physiology 472.1, pp. 615–663. doi: 10.1113/jphysiol.
1993.sp019965.

Jung, M. W. and B. L. McNaughton (1993). “Spatial Selectivity of Unit Activity
in the Hippocampal Granular Layer”. In: Hippocampus 3.2, pp. 165–182. doi:
10.1002/hipo.450030209.

Kajic, I. et al. (2017). “A Spiking Neuron Model of Word Associations for the
Remote Associates Test”. In: Frontiers in Psychology 8.99. doi: 10.3389/fpsyg.
2017.00099.

Koch, C. (2004). Biophysics of Computation: Information Processing in Single Neurons.
Oxford University Press, USA. 588 pp.

Komer, B. (2015). “Biologically Inspired Adaptive Control of Quadcopter Flight”.
Masters Thesis. Waterloo, ON: University of Waterloo. 65 pp. url: https:
//uwspace.uwaterloo.ca/handle/10012/9549.

Kumaran, D., D. Hassabis, and J. L. McClelland (2016). “What Learning Systems
Do Intelligent Agents Need? Complementary Learning Systems Theory
Updated”. In: Trends in Cognitive Sciences 20.7, pp. 512–534. doi: 10.1016/j.
tics.2016.05.004.

Latimer, K. W. et al. (2015). “Single-Trial Spike Trains in Parietal Cortex Reveal
Discrete Steps during Decision-Making”. In: Science 349.6244, pp. 184–187.
doi: 10.1126/science.aaa4056. pmid: 26160947.

155

19927395
https://doi.org/10.1037/a0037840
https://doi.org/10.1098/rstb.2013.0148
https://doi.org/10.1016/j.neuron.2015.06.016
26139375
3179833
https://doi.org/10.1113/jphysiol.1993.sp019965
https://doi.org/10.1113/jphysiol.1993.sp019965
https://doi.org/10.1002/hipo.450030209
https://doi.org/10.3389/fpsyg.2017.00099
https://doi.org/10.3389/fpsyg.2017.00099
https://uwspace.uwaterloo.ca/handle/10012/9549
https://uwspace.uwaterloo.ca/handle/10012/9549
https://doi.org/10.1016/j.tics.2016.05.004
https://doi.org/10.1016/j.tics.2016.05.004
https://doi.org/10.1126/science.aaa4056
26160947

References

Lega, B. C., J. Jacobs, and M. J. Kahana (2012). “Human Hippocampal Theta
Oscillations and the Formation of Episodic Memories”. In: Hippocampus 22.4,
pp. 748–761. doi: 10.1002/hipo.20937. pmid: 21538660.

Leung, L. S. et al. (2003). “Cholinergic Activity Enhances Hippocampal Long-
Term Potentiation in CA1 during Walking in Rats”. In: The Journal of Neuro-
science: The Official Journal of the Society for Neuroscience 23.28, pp. 9297–9304.
pmid: 14561856.

Leutgeb, S. and J. K. Leutgeb (2007). “Pattern separation, pattern completion,
and new neuronal codes within a continuous CA3 map”. In: Learning &
Memory 14.11, pp. 745–757. doi: 10.1101/lm.703907. pmid: 18007018.

Levy, W. B., A. B. Hocking, and X. Wu (2005). “Interpreting hippocampal
function as recoding and forecasting”. In: Neural Networks. Computational
Theories of the Functions of the Hippocampus 18.9, pp. 1242–1264. doi:
10.1016/j.neunet.2005.08.005.

Lillicrap, T. P. et al. (2016). “Random Synaptic Feedback Weights Support Error
Backpropagation for Deep Learning”. In: Nature Communications 7.13276. doi:
10.1038/ncomms13276.

Markram, H. et al. (2015). “Reconstruction and Simulation of Neocortical Mi-
crocircuitry”. In: Cell 163.2, pp. 456–492. doi: 10.1016/j.cell.2015.09.029.

McClelland, J. L., B. L. McNaughton, and R. C. O’Reilly (1995). “Why There
Are Complementary Learning Systems in the Hippocampus and Neocortex:
Insights from the Successes and Failures of Connectionist Models of Learning
and Memory.” In: Psychological Review 102.3, pp. 419–457. doi: 10.1037/0033-
295X.102.3.419.

Milford, M., G. Wyeth, and D. Prasser (2004). “RatSLAM: a hippocampal
model for simultaneous localization and mapping”. In: IEEE International
Conference on Robotics and Automation. Vol. 1, pp. 403–408. doi: 10.1109/
ROBOT.2004.1307183.

Milinski, M. and C. Wedekind (1998). “Working Memory Constrains Human
Cooperation in the Prisoner’s Dilemma”. In: Proceedings of the National Academy
of Sciences 95.23, pp. 13755–13758. doi: 10.1073/pnas.95.23.13755. pmid:
9811873.

Moreno-Bote, R. and N. Parga (2005). “Simple Model Neurons with AMPA
and NMDA Filters: Role of Synaptic Time Scales”. In: Neurocomputing. Com-
putational Neuroscience: Trends in Research 2005 65-66, pp. 441–448. doi:
10.1016/j.neucom.2004.10.016.

156

https://doi.org/10.1002/hipo.20937
21538660
14561856
https://doi.org/10.1101/lm.703907
18007018
https://doi.org/10.1016/j.neunet.2005.08.005
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1109/ROBOT.2004.1307183
https://doi.org/10.1109/ROBOT.2004.1307183
https://doi.org/10.1073/pnas.95.23.13755
9811873
https://doi.org/10.1016/j.neucom.2004.10.016

Murdock, B. B. (1993). “TODAM2: A model for the storage and retrieval of
item, associative, and serial-order information”. In: Psychological Review 100.2,
pp. 183–203. doi: 10.1037/0033-295X.100.2.183.

– (1997). “Context and mediators in a theory of distributed associative memory
(TODAM2)”. In: Psychological Review 104.4, pp. 839–862. doi: 10.1037/0033-
295X.104.4.839.

Ninokura, Y., H. Mushiake, and J. Tanji (2003). “Representation of the Temporal
Order of Visual Objects in the Primate Lateral Prefrontal Cortex”. In: Journal
of Neurophysiology 89.5, pp. 2868–2873. doi: 10.1152/jn.00647.2002.

Norman, K. A. and R. C. O’Reilly (2003). “Modeling hippocampal and neo-
cortical contributions to recognition memory: A complementary-learning-
systems approach.” In: Psychological Review 110.4, pp. 611–646. doi: 10.1037/
0033-295X.110.4.611.

Nowak, M. A. and N. L. Komarova (2001). “Towards an Evolutionary Theory
of Language”. In: Trends in Cognitive Sciences 5.7, pp. 288–295. doi: 10.1016/
S1364-6613(00)01683-1.

O’Keefe, J. and M. L. Recce (1993). “Phase Relationship between Hippocampal
Place Units and the EEG Theta Rhythm”. In: Hippocampus 3.3, pp. 317–330.
doi: 10.1002/hipo.450030307. pmid: 8353611.

O’Reilly, R. C. and M. J. Frank (2006). “Making Working Memory Work: A Com-
putational Model of Learning in the Prefrontal Cortex and Basal Ganglia”.
In: Neural Computation 18.2, pp. 283–328. doi: 10.1162/089976606775093909.

Oliver Trujillo (2014). “A spiking neural model of episodic memory encoding
and replay in hippocampus”. Master Thesis. Waterloo, Ontario, Canada:
University of Waterloo. url: https://uwspace.uwaterloo.ca/handle/10012/
8970.

Owen, A. M. (1997). “The Functional Organization of Working Memory Pro-
cesses Within Human Lateral Frontal Cortex: The Contribution of Functional
Neuroimaging”. In: European Journal of Neuroscience 9.7, pp. 1329–1339. doi:
10.1111/j.1460-9568.1997.tb01487.x.

Page, M. P. A. and D. Norris (1998). “The primacy model: A new model of
immediate serial recall”. In: Psychological Review 105.4, pp. 761–781. doi: 10.
1037/0033-295X.105.4.761-781.

Paxinos, G., ed. (2014). The Rat Nervous System. 3rd ed. Amsterdam; Boston:
Elsevier Academic Press. 1053 pp.

157

https://doi.org/10.1037/0033-295X.100.2.183
https://doi.org/10.1037/0033-295X.104.4.839
https://doi.org/10.1037/0033-295X.104.4.839
https://doi.org/10.1152/jn.00647.2002
https://doi.org/10.1037/0033-295X.110.4.611
https://doi.org/10.1037/0033-295X.110.4.611
https://doi.org/10.1016/S1364-6613(00)01683-1
https://doi.org/10.1016/S1364-6613(00)01683-1
https://doi.org/10.1002/hipo.450030307
8353611
https://doi.org/10.1162/089976606775093909
https://uwspace.uwaterloo.ca/handle/10012/8970
https://uwspace.uwaterloo.ca/handle/10012/8970
https://doi.org/10.1111/j.1460-9568.1997.tb01487.x
https://doi.org/10.1037/0033-295X.105.4.761-781
https://doi.org/10.1037/0033-295X.105.4.761-781

References

Penfield, W. and B. Milner (1958). “Memory Deficit Produced by Bilateral
Lesions in the Hippocampal Zone”. In: Archives of Neurology And Psychiatry
79.5, pp. 475–497. doi: 10.1001/archneurpsyc.1958.02340050003001.

Piatti, V. C., L. A. Ewell, and J. K. Leutgeb (2013). “Neurogenesis in the Den-
tate Gyrus: Carrying the Message or Dictating the Tone”. In: Frontiers in
Neuroscience 7. doi: 10.3389/fnins.2013.00050. pmid: 23576950.

Plate, T. A. (1995). “Holographic Reduced Representations”. In: IEEE Transac-
tions on Neural Networks 6.3, pp. 623–641.

– (2003). Holographic Reduced Representation: Distributed Representation for Cogni-
tive Structures. Stanford, CA: CSLI Publications. 300 pp.

Prebble, S. C., D. R. Addis, and L. J. Tippett (2013). “Autobiographical Memory
and Sense of Self”. In: Psychological Bulletin 139.4, pp. 815–840. doi: 10.1037/
a0030146. pmid: 23025923.

Quirk, G. J. et al. (1992). “The Positional Firing Properties of Medial Entorhinal
Neurons: Description and Comparison with Hippocampal Place Cells”. In:
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 12.5,
pp. 1945–1963. pmid: 1578279.

Raaijmakers, J. G. and R. M. Shiffrin (1981). “Search of associative memory”.
In: Psychological Review 88.2, pp. 93–134. doi: 10.1037/0033-295X.88.2.93.

Rasmussen, D., A. R. Voelker, and C. Eliasmith (2017). “A Neural Model of
Hierarchical Reinforcement Learning”. In: PLoS ONE 12.7, pp. 1–39. doi:
10.1371/journal.pone.0180234.

Rebola, N., M. Carta, and C. Mulle (2017). “Operation and Plasticity of Hip-
pocampal CA3 Circuits: Implications for Memory Encoding”. In: Nature
Reviews Neuroscience 18.4, pp. 208–220. doi: 10.1038/nrn.2017.10.

Recchia, G. et al. (2015). “Encoding Sequential Information in Semantic Space
Models: Comparing Holographic Reduced Representation and Random
Permutation”. In: Computational Intelligence and Neuroscience 2015. doi: 10 .
1155/2015/986574.

Robins, S. (2015). “A mechanism for mental time travel? A critical review of
Hasselmo’s How we remember: Brain mechanisms of episodic memory”. In:
Philosophical Psychology 28.6, pp. 903–915. doi: 10.1080/09515089.2013.877243.

Robinson, E. S. and M. A. Brown (1926). “Effect of serial position upon mem-
orization”. In: The American Journal of Psychology 37.4, pp. 538–552. doi: 10.
2307/1414914. JSTOR: 1414914.

158

https://doi.org/10.1001/archneurpsyc.1958.02340050003001
https://doi.org/10.3389/fnins.2013.00050
23576950
https://doi.org/10.1037/a0030146
https://doi.org/10.1037/a0030146
23025923
1578279
https://doi.org/10.1037/0033-295X.88.2.93
https://doi.org/10.1371/journal.pone.0180234
https://doi.org/10.1038/nrn.2017.10
https://doi.org/10.1155/2015/986574
https://doi.org/10.1155/2015/986574
https://doi.org/10.1080/09515089.2013.877243
https://doi.org/10.2307/1414914
https://doi.org/10.2307/1414914
http://www.jstor.org/stable/1414914

Rolls, E. T. (2013). “The mechanisms for pattern completion and pattern sep-
aration in the hippocampus”. In: Frontiers in Systems Neuroscience 7.74. doi:
10.3389/fnsys.2013.00074. pmid: 24198767.

Rypma, B. et al. (1999). “Load-Dependent Roles of Frontal Brain Regions in
the Maintenance of Working Memory”. In: NeuroImage 9.2, pp. 216–226. doi:
10.1006/nimg.1998.0404.

Sah, P., S. Hestrin, and R. A. Nicoll (1990). “Properties of Excitatory Postsynaptic
Currents Recorded in Vitro from Rat Hippocampal Interneurones.” In: The
Journal of Physiology 430.1, pp. 605–616. doi: 10.1113/jphysiol.1990.sp018310.

Scoville, W. B. and B. Milner (1957). “Loss of Recent Memory after Bilateral
Hippocampal Lesions”. In: Journal of Neurology, Neurosurgery, and Psychiatry
20.1, pp. 11–21. pmid: 13406589.

Sederberg, P. B., M. W. Howard, and M. J. Kahana (2008). “A context-based
theory of recency and contiguity in free recall”. In: Psychological Review 115.4,
pp. 893–912. doi: 10.1037/a0013396.

Shankar, K. H. and M. W. Howard (2013). “Optimally Fuzzy Temporal Memory.”
In: Journal of Machine Learning Research 14.1, pp. 3785–3812.

Sharma, S., S. Aubin, and C. Eliasmith (2016). “Large-Scale Cognitive Model
Design Using the Nengo Neural Simulator”. In: Biologically Inspired Cognitive
Architectures 17, pp. 86–100. doi: 10.1016/j.bica.2016.05.001.

Shiffrin, R. M. and M. Steyvers (1997). “A model for recognition memory:
REM—retrieving effectively from memory”. In: Psychonomic Bulletin & Review
4.2, pp. 145–166. doi: 10.3758/BF03209391.

Smith, P. L. and R. Ratcliff (2004). “Psychology and Neurobiology of Simple
Decisions”. In: Trends in Neurosciences 27.3, pp. 161–168. doi: 10.1016/j.tins.
2004.01.006.

Smolensky, P. (1990). “Tensor Product Variable Binding and the Representation
of Symbolic Structures in Connectionist Systems”. In: Artificial Intelligence
46.1, pp. 159–216. doi: 10.1016/0004-3702(90)90007-M.

Solso, R. L. (1998). Cognitive Psychology. 5th ed. Needham Heights, MA: Allyn
and Bacon. 632 pp.

Spruston, N., P. Jonas, and B. Sakmann (1995). “Dendritic Glutamate Receptor
Channels in Rat Hippocampal CA3 and CA1 Pyramidal Neurons.” In: The
Journal of Physiology 482.2, pp. 325–352. doi: 10.1113/jphysiol.1995.sp020521.

Squire, L. R. (2009). “The Legacy of Patient H.M. for Neuroscience”. In: Neuron
61.1, pp. 6–9. doi: 10.1016/j.neuron.2008.12.023.

159

https://doi.org/10.3389/fnsys.2013.00074
24198767
https://doi.org/10.1006/nimg.1998.0404
https://doi.org/10.1113/jphysiol.1990.sp018310
13406589
https://doi.org/10.1037/a0013396
https://doi.org/10.1016/j.bica.2016.05.001
https://doi.org/10.3758/BF03209391
https://doi.org/10.1016/j.tins.2004.01.006
https://doi.org/10.1016/j.tins.2004.01.006
https://doi.org/10.1016/0004-3702(90)90007-M
https://doi.org/10.1113/jphysiol.1995.sp020521
https://doi.org/10.1016/j.neuron.2008.12.023

References

Squire, L. R., A. P. Shimamura, and D. G. Amaral (1989). “Memory and the
hippocampus”. In: Neural Models of Plasticity: Experimental and Theoretical Ap-
proaches. Ed. by J. H. Byrne and W. O. Berry. San Diego, CA: Academic Press.

Stadler, M. A. (1993). “Implicit serial learning: Questions inspired by Hebb
(1961)”. In: Memory & Cognition 21.6, pp. 819–827. doi: 10.3758/BF03202749.

Stewart, T. C. and C. Eliasmith (2011). “Neural Cognitive Modelling: A Biologi-
cally Constrained Spiking Neuron Model of the Tower of Hanoi Task”. In:
Proceedings of the 33rd Annual Meeting of the Cogni6ve Science Society. CogSci
2011. Austin, TX: Cognitive Science Society, pp. 656–661.

Stewart, T. C., Y. Tang, and C. Eliasmith (2011). “A Biologically Realistic Cleanup
Memory: Autoassociation in Spiking Neurons”. In: Cognitive Systems Research
12.2, pp. 84–92. doi: 10.1016/j.cogsys.2010.06.006.

Stickgold, R. (2013). “Parsing the Role of Sleep in Memory Processing”. In:
Current opinion in neurobiology 23.5, pp. 847–853. doi: 10.1016/j.conb.2013.04.
002. pmid: 23618558.

Stöckel, A., A. R. Voelker, and C. Eliasmith (2017). “Point Neurons with Con-
ductance-Based Synapses in the Neural Engineering Framework”. In: arXiv:
1710.07659 [cs, q-bio].

– (2018). “Nonlinear Synaptic Interaction as a Computational Resource in the
Neural Engineering Framework”. In: Cosyne Abstracts. Cosyne. Denver, CO.

Suzuki, W. A., E. K. Miller, and R. Desimone (1997). “Object and Place Mem-
ory in the Macaque Entorhinal Cortex”. In: Journal of Neurophysiology 78.2,
pp. 1062–1081. pmid: 9307135.

Talmi, D. et al. (2005). “Neuroimaging the Serial Position Curve. A Test of
Single-Store versus Dual-Store Models”. In: Psychological Science 16.9, pp. 716–
723. doi: 10.1111/j.1467-9280.2005.01601.x. pmid: 16137258.

Todd, J. J. and R. Marois (2004). “Capacity Limit of Visual Short-Term Memory
in Human Posterior Parietal Cortex”. In: Nature 428.6984, p. 751. doi: 10.
1038/nature02466.

Tort, A. B. L. et al. (2009). “Theta–Gamma Coupling Increases during the
Learning of Item–Context Associations”. In: Proceedings of the National Academy
of Sciences 106.49, pp. 20942–20947. doi: 10.1073/pnas.0911331106. pmid:
19934062.

Uchida, T., S. Fukuda, and H. Kamiya (2012). “Heterosynaptic Enhancement
of the Excitability of Hippocampal Mossy Fibers by Long-Range Spill-over
of Glutamate”. In: Hippocampus 22.2, pp. 222–229. doi: 10.1002/hipo.20885.

160

https://doi.org/10.3758/BF03202749
https://doi.org/10.1016/j.cogsys.2010.06.006
https://doi.org/10.1016/j.conb.2013.04.002
https://doi.org/10.1016/j.conb.2013.04.002
23618558
http://arxiv.org/abs/1710.07659
9307135
https://doi.org/10.1111/j.1467-9280.2005.01601.x
16137258
https://doi.org/10.1038/nature02466
https://doi.org/10.1038/nature02466
https://doi.org/10.1073/pnas.0911331106
19934062
https://doi.org/10.1002/hipo.20885

Usher, M. and J. L. McClelland (2001). “The time course of perceptual choice:
The leaky, competing accumulator model”. In: Psychological Review 108.3,
pp. 550–592. doi: 10.1037/0033-295X.108.3.550.

Voelker, A. R., B. V. Benjamin, et al. (2017). “Extending the Neural Engineering
Framework for Nonideal Silicon Synapses”. In: IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE. Baltimore, MD.

Voelker, A. R., J. Gosmann, and T. C. Stewart (2017). Efficiently Sampling Vec-
tors and Coordinates from the N-Sphere and n-Ball. Waterloo, ON: Centre for
Theoretical Neuroscience. doi: 10.13140/RG.2.2.15829.01767/1.

Vorhees, C. V. and M. T. Williams (2014). “Assessing Spatial Learning and
Memory in Rodents”. In: ILAR Journal 55.2, pp. 310–332. doi: 10.1093/ilar/
ilu013. pmid: 25225309.

Vu Kim Tuan and Dinh Thanh Duc (2000). “Convergence Rate of Post-Widder
Approximate Inversion of the Laplace Transform”. In: Vietnam Journal of
Mathematics 28.1, pp. 93–96.

Wagner, U. et al. (2004). “Sleep Inspires Insight”. In: Nature 427.6972, pp. 352–
355. doi: 10.1038/nature02223.

West, M. J. and L. Slomianka (1998). “Total Number of Neurons in the Layers
of the Human Entorhinal Cortex”. In: Hippocampus 8.1, pp. 69–82. doi: 10.
1002/(SICI)1098-1063(1998)8:1<69::AID-HIPO7>3.0.CO;2-2. pmid: 9519888.

Witter, M. P. (2010). “Connectivity of the Hippocampus”. In: Hippocampal Mi-
crocircuits. Ed. by V. Cutsuridis et al. Springer Series in Computational Neu-
roscience 5. Springer New York, pp. 5–26. doi: 10.1007/978-1-4419-0996-1_1.

Wyner, A. D. (1967). “Random Packings and Coverings of the Unit N-Sphere”.
In: The Bell System Technical Journal 46.9, pp. 2111–2118. doi: 10.1002/j.1538-
7305.1967.tb04246.x.

Yntema, D. B. and F. P. Trask (1963). “Recall as a search process”. In: Journal
of Verbal Learning and Verbal Behavior 2.1, pp. 65–74. doi: 10 . 1016/S0022 -
5371(63)80069-9.

Young, B. J. et al. (1997). “Memory Representation within the Parahippocampal
Region”. In: The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience 17.13, pp. 5183–5195. pmid: 9185556.

Yu, Q. et al. (2017). “A Hierarchically Organized Memory Model with Temporal
Population Coding”. In: Neuromorphic Cognitive Systems. Intelligent Systems
Reference Library 126. Springer International Publishing, pp. 131–152. doi:
10.1007/978-3-319-55310-8_7.

161

https://doi.org/10.1037/0033-295X.108.3.550
https://doi.org/10.13140/RG.2.2.15829.01767/1
https://doi.org/10.1093/ilar/ilu013
https://doi.org/10.1093/ilar/ilu013
25225309
https://doi.org/10.1038/nature02223
https://doi.org/10.1002/(SICI)1098-1063(1998)8:1<69::AID-HIPO7>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1098-1063(1998)8:1<69::AID-HIPO7>3.0.CO;2-2
9519888
https://doi.org/10.1007/978-1-4419-0996-1_1
https://doi.org/10.1002/j.1538-7305.1967.tb04246.x
https://doi.org/10.1002/j.1538-7305.1967.tb04246.x
https://doi.org/10.1016/S0022-5371(63)80069-9
https://doi.org/10.1016/S0022-5371(63)80069-9
9185556
https://doi.org/10.1007/978-3-319-55310-8_7

References

Zelano, C. et al. (2009). “A Specialized Odor Memory Buffer in Primary Olfac-
tory Cortex”. In: PLOS ONE 4.3, e4965. doi: 10.1371/journal.pone.0004965.

162

https://doi.org/10.1371/journal.pone.0004965

Appendices

A. Derivaঞon of the cosine similarity

distribuঞon

Proof. A straight-forward way to derive the cosine similarity distribution is to
use a result by Cai, Fan, and Jiang (2013). Theorem 1 states that the probability
density of the angles 𝜃 between independent 𝑑-dimensional vectors is given by

ℎ(𝜃) = 𝐾𝑑 ⋅ (sin 𝜃)𝑑−2 , 𝜃 ∈ [0, π] (A.1)

with

𝐾𝑑 =
1

√π

Γ(𝑑
2)

Γ(𝑑−1
2)

=
Γ(𝑑

2)

Γ(1
2) Γ(𝑑−1

2)
=

1

𝐵(1
2 , 𝑑−1

2)
. (A.2)

To obtain the cosine similarity distribution a change of variables with 𝜃 =
arccos 𝑥, 𝑥 ∈ [−1, 1] has to be performed:

𝑝CS(𝑥; 𝑑) =∣ d
d𝑥 (arccos 𝑥)∣ ⋅ ℎ(arccos 𝑥) (A.3)

=
1

√1 − 𝑥2
⋅ 𝐾𝑑 ⋅ (sin arccos 𝑥)𝑑−2 (A.4)

=
1

√1 − 𝑥2
⋅ 𝐾𝑑 ⋅ (√1 − 𝑥2)

𝑑−2
(A.5)

= 𝐾𝑑 ⋅ (1 − 𝑥2)
(𝑑−3)/2

. (A.6)

This matches (6.9).

The cosine similarity distribution can also be obtained as a special case
of a more general distribution of the ℓ2-norm of 𝑚 components of an 𝑛 +
𝑚-dimensional unit vector. The PDF of this distribution is given by Harman
and Lacko (2010) and Gosmann and Eliasmith (2016)

𝑝SB(𝑥; 𝑛, 𝑚) =
2

𝐵(𝑛
2 , 𝑚

2)
(𝑥2)

(𝑚−1)/2
(1 − 𝑥2)

𝑛/2−1
, 𝑥 ∈ [−1, 1]. (A.7)

165

A. Derivation of the cosine similarity distribution

When determining the cosine similarity of two uniformly distributed random
vectors 𝒂 and 𝒃, we are free to chose any set of basis vectors without loss of
generality. Let us chose the basis such that 𝒂 = (𝑎1, 0, 0, …)⊤ is aligned with
the first vector of the standard basis. The cosine similarity then becomes

cos(𝒂∠𝒃) =
⟨𝒂, 𝒃⟩

∥𝒂∥ ⋅ ∥𝒃∥
=

𝑎1 ⋅ 𝑏1
𝑎1 ⋅ ∥𝒃∥

=
𝑏1
∥𝒃∥

. (A.8)

The absolute value of this is equal to the length of a one-component subvector
of the unit-vector 𝒃/∥𝒃∥. Thus, we can use (A.7) and divide it by two to account
for the symmetry of the absolute value to determine the PDF of the cosine
similarity as

𝑝CS(𝑥; 𝑑) =
1
2𝑝SB(𝑥; 𝑑 − 1, 1) =

1

𝐵(1
2 , 𝑑−1

2)
(1 − 𝑥2)

(𝑑−3)/2
. (A.9)

166

B. Comparisons of the uniform and

cosine similarity intercept distribuঞons

Table B.1 summarizes the change in error over a wide range of parameters when
switching from a uniform intercept distribution to the CS(𝑑 + 2) distribution.
In general, the cosine similarity distribution performs better. It performs equal
to the uniform distribution for 𝑑 = 1 in which case CS(𝑑 + 2) reduces to a
uniform distribution and rectified linear (rate) neurons with a regularization
of 𝜆 = 0.1. The cosine similarity distribution performs slightly worse for rate
neurons (LIF rate and rectified linear) when the regularization is adjusted
to 𝜆 = 0.01 to account for the non-existent spiking noise. The only other
case with slightly worse performance is when computing pairwise products
𝑦𝑖 = 𝑥2𝑖−2𝑥2𝑖−1, 1 ≤ 𝑖 ≤ 𝑖/2, but note that no further optimization for this
sort of function has been done and the high dimensionality makes this a hard
function to compute. On the simpler squaring, the cosine similarity distribution
performs better.

167

B. Comparisons of the uniform and cosine similarity intercept distributions

Table B.1.: Change in representational error in the NEF when switching from uni-
formly distributed intercepts to CS(𝑑 + 2) distributed intercepts for differ-
ent dimensionalities 𝑑, neuron numbers 𝑛, synaptic time constants 𝜏syn,
decoded functions, regularization 𝜆, and neuron types. A negative change
in error (highlighted red) means that the cosine similarity distribution
performed better. Statistical significance, determined with bootstrapping,
is marked with **** for 𝑝 < 0.0001 and * for 𝑝 < 0.05.

Change in
⟨𝐸d⟩ ⟨𝐸n⟩ ⟨𝐸tot⟩

𝑑 𝑛/𝑑 𝜏syn/s Function 𝜆 Neuron type

1 50 0.005 𝒙 0.100 LIF 0.0000 0.0009 0.0010
2 0.0007 −0.0050**** −0.0043****
4 −0.0020 −0.0139**** −0.0137****
8 0.0037 −0.0318**** −0.0268****

64 10 −0.1239**** −0.2131**** −0.2458****
25 −0.0438**** −0.1743**** −0.1778****
50 0.005 0.0347**** −0.2836**** −0.2790****

0.010 Adaptive LIF 0.0821**** −0.2249**** −0.1790****
LIF 0.0262**** −0.2191**** −0.2142****
LIF Rate 0.0262**** 0.0000* 0.0262****
Rectified Linear 0.0307**** 0.0000 0.0307****

0.100 Adaptive LIF 0.0311**** −0.1315**** −0.0815****
LIF −0.0200**** −0.1313**** −0.1304****
LIF Rate −0.0200**** 0.0000 −0.0200****
Rectified Linear 0.0022 0.0000 0.0022

0.200 LIF −0.0873**** −0.1004**** −0.1320****
𝒙2 0.100 −0.1030**** 0.0229**** −0.1016****
𝑥2𝑖−2𝑥2𝑖−1 0.0084**** 0.0115**** 0.0142****

0.100 𝒙 −0.0200**** −0.0066**** −0.0207****

168

C. Leaky, Compeঞng Accumulator Model

Analysis

The model dynamics for the leaky, competing accumulator (LCA) are given as
follows:

𝜕𝑥𝑖
𝜕𝑡 = ⎛⎜⎜

⎝
𝑢𝑖 − 𝜅𝑥𝑖 − 𝜆 ∑

𝑗≠𝑖
𝑥𝑗

⎞⎟⎟
⎠

1
𝜏, 𝑥𝑖 ≥ 0. (C.1)

We now justify our choice of 𝜅 = 𝜆 = 1 from the text. This guarantees that
the winning state will converge to its input value, and each losing state will
converge to zero.

C.1. Effect of 𝜅 = 1
To isolate the ‘role’ of 𝜅, we consider the case where 𝜆 ∑𝑗≠𝑖 𝑥𝑗 = 0. This
situation obeys the dynamics:

𝜕𝑥𝑖
𝜕𝑡 = (𝑢𝑖 − 𝜅𝑥𝑖)

1
𝜏

. (C.2)

We then take the Laplace transform of both sides, and rearrange to obtain:

𝑠L{𝑥𝑖} = (L{𝑢𝑖} − 𝜅L{𝑥𝑖})
1
𝜏 ⟺

L{𝑥𝑖}
L{𝑢𝑖}

=
1

𝜏𝑠 + 𝜅. (C.3)

When 𝜅 = 1, this is commonly referred to as a first-order lowpass filter with
time-constant 𝜏. The effect of this filter in the time-domain is a convolution with
the exponentially decaying function ℎ(𝑡) ∶= 𝜏−1 exp (−𝑡/𝜏). More generally,
when 𝜅 > 0, this has the transfer function:

1
𝜏𝑠 + 𝜅 =

𝜅−1

(𝜏𝜅−1)𝑠 + 1
(C.4)

169

C. Leaky, Competing Accumulator Model Analysis

which is the same lowpass with an effective time-constant of (𝜏𝜅−1) and a
multiplicative gain of 𝜅−1. In plain words, different values of 𝜅 > 0 do nothing
but alter the effective time-constant and the effective gain on the input.

Therefore, by setting 𝜅 = 1, we have 𝑥𝑖 = 𝑢𝑖 ∗ ℎ provided that 𝜆 ∑𝑗≠𝑖 𝑥𝑗 = 0.
Below we prove that the latter assumption eventually holds whenever 𝑖 is the
index of the winner and 𝜆 = 1, and so the winner 𝑥𝑖 will converge to the value
of its input 𝑢𝑖.

C.2. Effect of 𝜆 = 1
Setting 𝜆 = 𝜅 = 1, and defining 𝜒 ∶= ∑𝑗 𝑥𝑗, we rewrite the dynamics as:

𝜕𝑥𝑖
𝜕𝑡 = (𝑢𝑖 − 𝜒)

1
𝜏, 𝑥𝑖 ≥ 0. (C.5)

We conceptualize 𝜒 as a single “meta state-variable” that, based on the value of
each 𝑢𝑖, will change each corresponding 𝑥𝑖. For instance, if 𝑖 is the index of the
winner, then 𝑥𝑖 is necessarily only stable when 𝜒 = 𝑢𝑖 ⟺ 𝜕𝑥𝑖

𝜕𝑡 = 0. Assuming
stability, 𝜒 = 𝑢𝑖 > 𝑢𝑗 for all 𝑗 ≠ 𝑖, and thus each 𝑥𝑗 necessarily has a negative
derivative. Consequently, all losers 𝑥𝑗 will decrease to zero and stabilize there
due to rectification (and then 𝜒 = 𝑢𝑖 = 𝑥𝑖 holds as anticipated).

We also remark that if 𝜆 ≠ 1 then the derivatives are no longer sorted by their
inputs, and in fact the order will depend on the current state (for instance, it will
depend on the previous winner if the inputs were just altered). Consequently,
if 𝜆 < 1, then not all losers will necessarily go to zero, and if 𝜆 > 1, then the
previous winner may persist.

170

D. Fuzzy temporal memory

Here, I derive relations used in the analysis of the optimal fuzzy temporal
memory (Shankar and Howard 2013) used in the main text.

D.1. Discreঞzed derivaঞve

The first discretized derivative of 𝒄 with regard to 𝑠 at 𝑠𝑖 is given by (Shankar
and Howard 2013)

𝑐(1)
𝑖 =

𝑐𝑖+1 − 𝑐𝑖
𝑠𝑖+1 − 𝑠𝑖

⋅
𝑠𝑖 − 𝑠𝑖−1

𝑠𝑖+1 − 𝑠𝑖−1
+

𝑐𝑖 − 𝑐𝑖−1
𝑠𝑖 − 𝑠𝑖−1

⋅
𝑠𝑖+1 − 𝑠𝑖

𝑠𝑖+1 − 𝑠𝑖−1

=
1
𝐾𝑐

[𝑐𝑖−1 (𝑠𝑖 − 𝑠𝑖+1)2 + 𝑐𝑖 ((𝑠𝑖 − 𝑠𝑖−1)2 − (𝑠𝑖 − 𝑠𝑖+1)2)

− 𝑐𝑖+1 (𝑠𝑖 − 𝑠𝑖−1)2]

(D.1)

with

𝐾𝑐 = 𝑠2
𝑖 𝑠𝑖+1 − 𝑠2

𝑖 𝑠𝑖−1 − 𝑠𝑖𝑠2
𝑖+1 + 𝑠𝑖𝑠2

𝑖−1 + 𝑠2
𝑖+1𝑠𝑖−1 − 𝑠𝑖+1𝑠2

𝑖−1.

Lemma 1. When using the optimal fuzzy temporal memory spacing of 𝑠𝑖 given by
𝑡∗
𝑖+1 = (1 + 𝜈)𝑡∗

𝑖 ⇔ 𝑠𝑖 = (1 + 𝜈)𝑠𝑖+1 with 𝜈 > 0 and 𝑠𝑖 > 𝑠𝑖+1, we have
𝑠𝑖 − 𝑠𝑖+1 < 𝑠𝑖−1 − 𝑠𝑖.

Proof.

𝑠𝑖 − 𝑠𝑖+1
?< 𝑠𝑖−1 − 𝑠𝑖

⇔ (1 + 𝜈)𝑠𝑖+1 − 𝑠𝑖+1
?< (1 + 𝜈)2𝑠𝑖+1 − (1 + 𝜈)𝑠𝑖+1

⇔ 2 + 2𝜈 − 1 − 1 − 2𝜈 − 𝜈2 ?< 0
⇔ −𝜈2 < 0

171

D. Fuzzy temporal memory

It follows from Lemma 1 that

(𝑠𝑖 − 𝑠𝑖−1)2 > (𝑠𝑖 − 𝑠𝑖−1)2 − (𝑠𝑖 − 𝑠𝑖+1)2 (D.2)

and
(𝑠𝑖 − 𝑠𝑖−1)2 > (𝑠𝑖 − 𝑠𝑖+1)2 . (D.3)

This gives the 𝑐𝑖+1 coefficient corresponding, to (𝑠𝑖 − 𝑠𝑖−1)2, the largest contri-
bution in the discrete derivative. Repeated application to obtain a higher-order
𝑘-th derivative will yield 𝑐𝑖+𝑘 with the largest coefficient accordingly. Thus, the
𝑘-th derivative for 𝑐𝑖 with respect to 𝑠 will be dominated by the timescale 𝑡∗

𝑖+𝑘.

D.2. Required neurons

To achieve a lower timescale of 𝜏1 an appropriate 𝜈 for spacing 𝑡∗
𝑖 can be

obtained with (13.6) as

− (1 + 𝜈)𝑘𝑡∗
1 ≤ 𝜏1 ⇔ 𝜈 ≤ 𝑘√−𝜏1/𝑡∗

1 − 1. (D.4)

By spacing 𝑀 nodes, the earliest reconstructable point 𝑡∗
max is given by

𝑡∗
max = (1 + 𝜈)𝑀𝑡∗

1 (D.5)

from which the minimum 𝑀 for given 𝑡∗
max follows as

𝑀 ≥
log(𝑡∗

max/𝑡∗
1)

log(1 + 𝜈) . (D.6)

To be able to construct the 𝑘-th discrete derivative an additional 2𝑘 nodes for
a total of 𝑀 + 2𝑘 nodes are required. The noise in the output of the leaky
accumulators is amplified by 𝑔𝜂,NEF. As additional neurons will diminish
noise by 𝑂(1/√𝑛) (Section 6.2), the number of neurons needs to be scaled
by 𝑔2

𝜂,NEF to achieve the same noise level that would be present without the
noise amplification. Multiplying these factors together with a base number of
neurons 𝑁 used to represent a single dimension and the number of dimensions
𝑑 yields (13.7):

𝑁tot(𝑡∗
1, 𝑘) = 𝑁𝑑 𝑔2

𝜂,NEF(𝜈, 𝑘) (𝑀 + 2𝑘) .

172

	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Behavioural characterization of memory
	Experimental findings in memory research
	Neuroanatomy of memory
	Memory models
	Conceptual models
	Mathematical models
	Connectionist models
	Summary

	Methods
	Modeling neurons
	The Neural Engineering Framework
	Representation
	Transformation
	Dynamics
	Simulating NEF networks

	Basic NEF networks
	Differentiator
	Integrator
	Gated memory buffer
	Thresholding ensembles
	Product

	The Semantic Pointer Architecture
	Binding operations
	Circular convolution
	Vector-derived transformation binding
	Comparison of circular convolution and vector-derived transformation binding

	Structured representations
	Comparison of encoding methods

	Optimized high-dimensional representation in spiking neurons
	Types of error in neural representations
	Properties of the error in neural representations
	Effect of the intercept distribution on noise and distortion
	Optimized Semantic Pointer Representation

	The Context-Unified Encoding memory model
	The Ordinal Serial Encoding Model
	Neural STM implementation
	Neural position counting

	The Temporal Context Model
	Neural context update
	Bounded integrator
	Alternating update of two memories
	Externally controlled alternating memory buffers

	Association Matrix Learning
	Explicit calculation of weight change
	Explicit calculation of weight change without weight symmetry
	Implicit error calculation
	Normative interpretation
	Properties of the AML
	AML accounts for neural changes during association learning
	Weight normalization

	Recalling items
	Leaky, competing accumulator model
	Independent accumulator model
	Comparisons of the WTA networks
	Results
	Discussion

	Recall network

	The complete model
	Control
	Extension to the Hebb repetition effect

	Results
	Serial recall
	Free recall
	Scopolamine
	Hebb repetition effect
	Memory encoding

	Discussion
	Anatomical mapping
	Optimally fuzzy temporal memory
	Advances in large-scale cognitive modeling

	Conclusion
	References

	Appendices
	Derivation of the cosine similarity distribution
	Comparisons of the uniform and cosine similarity intercept distributions
	Leaky, Competing Accumulator Model Analysis
	Effect of κ=1
	Effect of λ=1

	Fuzzy temporal memory
	Discretized derivative
	Required neurons

