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Highlights1

• A socio-epidemiological model is proposed to study the influence of social behaviour on competition2

between virulent strains.3

• Due to social feedbacks, a virulent mutant strain can invade a population despite having a lower basic4

reproductive ratio.5

• In some situations, increasing the perceived severity of the avirulent resident strain can facilitate6

invasion of the virulent mutant strain.7

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The Influence Of Social Behavior On Competition Between8

Virulent Pathogen Strains9

Joe Pharaon1 and Chris T. Bauch1
10

1Dept. of Applied Mathematics, University of Waterloo, 200 University Ave West, Waterloo ON N2L 3G111

correspondence: cbauch@uwaterloo.ca12

1 Abstract13

Infectious disease interventions like contact precautions and vaccination have proven effective in disease14

control and elimination. The priority given to interventions can depend strongly on how virulent the pathogen15

is, and interventions may also depend partly for their success on social processes that respond adaptively16

to disease dynamics. However, mathematical models of competition between pathogen strains with differing17

natural history profiles typically assume that human behaviour is fixed. Here, our objective is to model the18

influence of social behaviour on the competition between pathogen strains with differing virulence. We couple19

a compartmental Susceptible-Infectious-Recovered model for a resident pathogen strain and a mutant strain20

with higher virulence, with a differential equation of a population where individuals learn to adopt protective21

behaviour from others according to the prevalence of infection of the two strains and the perceived severity of22

the respective strains in the population. We perform invasion analysis, time series analysis and phase plane23

analysis to show that perceived severities of pathogen strains and the efficacy of infection control against24

them can greatly impact the invasion of more virulent strain. We demonstrate that adaptive social behaviour25

enables invasion of the mutant strain under plausible epidemiological scenarios, even when the mutant strain26

has a lower basic reproductive number than the resident strain. Surprisingly, in some situations, increasing27

the perceived severity of the resident strain can facilitate invasion of the more virulent mutant strain. Our28

results demonstrate that for certain applications, it may be necessary to include adaptive social behaviour29

in models of the emergence of virulent pathogens, so that the models can better assist public health efforts30

to control infectious diseases.31
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2 Introduction32

Modern approaches to developing a theory of the spread of infectious diseases can be traced to 1927 when33

Kermack and McKendrick developed an integro-differential equation model now widely described as the SIR34

(Susceptible-Infected-Recovered) model [1]. The model tracks changes in the number of individuals suscep-35

tible to an infection S(t), the number of infected individuals I(t), and (implicitly) the number of recovered36

individuals R(t). Compartmental models such as the SIR model are useful for mechanistic modelling of37

infection transmission in populations. They have since been further developed to study the evolution and38

epidemiology of multiple species of pathogens in a population or different strains of the same species [2].39

Some models focus on between-host competition while some others on within-host competition [3]. Bull40

suggested in the 1990s that coupling inter-host and intra-host dynamics in models may be desirable [4].41

Models linking between-host transmission dynamics to within-host pathogen growth and immune response42

are now becoming commonplace [3, 5, 6, 7, 8]. One such approach is to link host viral load (which is a43

necessary condition of virulence) to the between-host transmission rate.44

Compartmental models have also been used to study the phenomenon of pathogen virulence–the rate45

at which a pathogen induces host mortality and/or reduces host fecundity [9, 10, 11, 12]. It was initially46

believed that hosts and parasites co-evolved to a state of commensalism (whereby parasites benefit from47

their host without harming them) [13, 14] but this hypothesis was later challenged [15]. In mathematical48

models, virulence is often treated as a fixed model parameter expressing the excess mortality rate caused49

by the pathogen. For instance, virulence has been assumed to depend on the intrinsic reproductive rate50

of the parasite [16]. Other research expresses the transmission rate β and the recovery rate µ in terms51

of a parameter ν that represents virulence [17]. When the impact of human behaviour is discussed in52

such models, it is discussed in terms of hypothesized effects of human behaviour on the value of the fixed53

parameter representing virulence. A Human Immunodeficiency Virus (HIV) virulence model by Massad et54

al [18] shows that reducing the number of sexual partners could possibly drive HIV to be a more benign55

pathogen. However, the model assumes that the number of sexual partners can simply be moved up or down56

as a model parameter, whereas in reality the number of sexual partners in a population is the outcome of57

a dynamic socio-epidemiological process that merits its own mechanistic modelling, and itself responds to58

pathogen virulence. In general, these models do not treat human behaviour as a dynamic variable that can59

evolve in response to transmission dynamics and influence the evolution of virulence. (A few exceptions60

exist, including work that allows virulence to be a function of the number of infected hosts, thus capturing a61

situation where the magnitude of the epidemics affects the ability of health care services to host patients [19].)62

However, as human responses to both endemic and emerging infectious diseases show, human behaviour can63
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have a significant influence on how infections get transmitted. For instance, an early and well-documented64

example shows how the residents of the village of Eyam, England quarantined themselves to prevent the65

spread of plague to neighbouring villages [20]. Individuals moved to less populated areas during the Spanish66

Influenza pandemic in the early 20th century [21]. More recently, masks became widely used during the67

outbreak of the Severe Acute Respiratory Syndrome (SARS) at the beginning of the 21st century [22], and68

it has been shown pathogen virulence in Marek’s disease can evolve in response to how vaccines are used69

[23].70

Theoretical models of the interactions between human behaviour and the spread of infectious diseases71

are increasingly studied [24, 25, 26, 27, 28, 29, 30]. For instance, Bagnoli et al [31] found that under72

certain conditions, a disease can be driven extinct by reducing the fraction of the infected neighbours of an73

individual. Zanette et al [32] showed that if susceptible individuals decide to break their links with infected74

agents and reconnect at a later time, then the infection is suppressed. Gross [33] also shows that rewiring of75

edges in a network (and thus social interaction) can greatly influence the spread of infectious diseases. Of76

the compartmental models, we focus on those that have used concepts from evolutionary game theory such77

as imitation dynamics [34] to describe the evolution of behaviour and its interplay with the epidemics. An78

example of imitation dynamics concerns, as described in detail in [35], the effect of vaccination on the spread79

of infectious diseases. Each individual in the population picks one strategy and adopts it: “to vaccinate” or80

“not to vaccinate”. The proportion of vaccinators is modelled using an ordinary differential equation and81

is coupled with a standard SIR model. An important aspect of behavioural models is to couple them with82

epidemiological processes such as transmission. This coupling creates a feedback loop between behaviour83

and spread of the disease.84

Given that adaptive social behaviour is important in many aspects of infection transmission, we hy-85

pothesize that adaptive social behaviour can also influence selection between pathogen strains with differing86

virulence in ways that cannot be captured by assuming it to be represented by a fixed parameter. Our87

objective in this paper was to explore how behaviour and virulence influence one another, in a coupled88

behaviour-disease differential equation model. The model allows individuals who perceive an increase in89

the prevalence of infection to increase their usage of practices that reduce transmission rates (such as social90

distancing and hand-washing) and thereby boost population-level immunity. This approach can help us91

understand the effects specific social dimensions, such as level of concern for a strain or the rate of social92

learning, on the coupled dynamics of pathogen strain emergence and human behaviour in a situation where93

virulence imposes evolutionary trade-offs and is strain-specific. Instead of considering long-term evolutionary94

processes with repeated rounds of mutation and selection, we focus on the case of invasion of a single mutant95

strain with a large phenotypical difference compared to the resident strain. In the next section, we describe96
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a model without adaptive social behaviour as well as a model that includes it, and in the following Results97

section we will compare their dynamics.98

3 Model99

We compare dynamics of a two-strain compartmental epidemic model in the presence and absence of adaptive100

social behaviour. Individuals are born susceptible (S). They may be infected either by a resident strain (I1)101

or a mutant strain (I2). For simplicity, we assume that co-infection and super-infection are not possible.102

Infected individuals can either recover (R) or die from infection. We furthermore assume that recovery from103

either strain offers permanent immunity to both strains. The system of differential equations representing104

the SI1I2R model in the absence of adaptive social behaviour (we will refer to this as the “uncoupled model”105

throughout) is given by106

dS

dt
= µ− δS − β1SI1 − β2SI2,

dI1
dt

= β1SI1 − (γ1 + δ + ν1)I1,

dI2
dt

= β2SI2 − (γ2 + δ + ν2)I2,

dR

dt
= γ1I1 + γ2I2 − δR,

(1)

where β1 (β2) represents the transmission rate of the resident (mutant) strain; γ1 (γ2) represents the recovery107

rate from the resident (mutant) strain; ν1 (ν2) represents the death rate from the resident (mutant) strain108

due to infection (virulence); µ is a birth rate and δ is the background death rate. All variables represent109

the number of individuals with the given infection status (for instance, S is the number of susceptible110

individuals). Since R does not appear in the other equations, we can omit R from the analysis.111

The system of differential equations in the presence of adaptive human behaviour couples the SI1I2R112

epidemic spread with a differential equation for human behaviour (“coupled model”). Each individual in the113

population can choose to accept or reject behaviours that reduce infection risk (e.g. washing hands, wearing114

a mask, social distancing), and individuals imitate successful strategies observed in others. Let x represent115

the proportion of individuals accepting preventive behaviour (we will call these “protectors”). Individuals116

sample others in the population at rate κ, representing social learning. The choice is based on the perceived117

severity ω1 (resp. ω2) from the resident (resp. mutant) strain, where ω1 (resp. ω2) can be quantified as the118

probability that an infection by the resident (resp. mutant) strain results in a severe case of disease. The119

more severe cases the population observes, the more attractive preventive behaviour becomes: we assume120
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that individuals respond to the total number of severe cases ω1I1 + ω2I2 they observe at a given time.121

Preventive behaviour is not always completely effective. We introduce efficacy of infection control ε1 (ε2)122

against the resident (mutant) strain. The efficacy of infection control influences the transmission process.123

The more effective infection control is against a strain, the less likely it will be transmitted.124

More formally, the preceding imitation dynamic (or equivalently, replicator dynamic) assumes that each125

individual samples others as a fixed rate, and if another person is found to be playing a different strategy126

but is receiving a higher payoff, the individual switches to their strategy with a probability proportional127

to the expected gain in payoff [36]. These assumptions give rise to a differential equation of the form128

dx/dt = kx(1 − x)∆U where k is the sampling rate and ∆U is the payoff difference between the two129

strategies. This equation is derived elsewhere and is used in other socio-ecological and socio-epidemiological130

models [35, 37, 38, 39]. The augmented system of differential equations representing the coupled social-131

epidemiological SI1I2RX model with adaptive human behaviour is therefore given by:132

dS

dt
= µ− δS − β1(1− ε1x)SI1 − β2(1− ε2x)SI2.

dI1
dt

= β1(1− ε1x)SI1 − (γ1 + δ + ν1)I1.

dI2
dt

= β2(1− ε2x)SI2 − (γ2 + δ + ν2)I2.

dR

dt
= γ1I1 + γ2I2 − δR.

dx

dt
= κx(1− x)(w1I1 + w2I2 − 1).

(2)

We apply the restrictions εi ∈ [0, 1] and ωi ≥ 0.133

Baseline parameter values are summarized in Table 1. We chose parameter values to represent an emerg-134

ing infectious disease with a relatively low basic reproduction number and an acute-self limited infection135

natural history, as might occur for viral infections such as ebola or influenza. Recruitment is assumed to136

occur due to births and immigration at a constant rate µ, while the per capita death rate due to all causes137

other than the infection is δ. The values of µ and δ are obtained as the reciprocal of an average human138

lifespan of 50 years. Note that γi + νi is the reciprocal of the average time spent in the infected class be-139

fore the individual recovers or dies from infection. Since we are assuming that strain 2 is more virulent,140

ν2− ν1 = 0.05/day can be considered as the excess death rate due to infection from the more virulent strain141

2. We assume β1 = β2 and therefore R0,2 ≈ 1.6 < R0,1 ≈ 2. Hence, all else being equal, the more virulent142

strain has a lower reproductive number and is therefore at a disadvantage to invade. We note that R does143

not appear in the other equations and hence could be omitted.144
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We identify all equilibria of the uncoupled and coupled systems and determine their local stability prop-145

erties. We study conditions under which the mutant strain successfully invades. Due to the analytical146

complexity of the coupled model, we rely primarily on numerical simulations. We used MATLAB to run147

our simulations and generate parameter planes (ODE45, ODE23tb, and ODE15s). We also wrote MATLAB148

code to analyze the stable regions of all equilibria versus a combination of parameters of interest.149

4 Results150

4.1 Invasion analysis: SI1I2R model151

The SI1I2R model has 3 equilibria [40]. One equilibrium is disease free and is stable when

max
{
R0,1,R0,2

}
< 1.

R0,1 (resp. R0,2) is the basic reproductive number of the resident (mutant) strain, where R0,i is given by

R0,i =
βi

γi + δ + νi
.

The other two equilibria are endemic. Assuming that basic reproductive numbers are not equal, strains can152

not co-exist and the strain with the higher basic reproductive number always invades.153

4.2 Invasion analysis: SI1I2RX model154

In contrast, the addition of a dynamic social variable x(t) generates 9 equilibria for the SI1I2RX model. Two155

equilibria are disease free and the other equilibria are endemic. One of the 7 endemic equilibria represents a156

state of coexistence of both strains (which can occur even if basic reproductive numbers are not the same).157

The analytical expression and stability criteria for the equilibrium with co-existing strains are difficult to158

compute and therefore, we analyze it numerically.159

If both basic reproductive numbers are less than 1, then the system is disease-free and social behaviour is

not relevant. Assume, on the other hand, that 1 < R0,2 < R0,1 (as in our baseline parameter values, Table

1, and where the expressions for R0,1 and R0,2 are the same as in the SI1I2R model and assume x = 0.

This corresponds to a scenario where the resident strain is more transmissible than the mutant strain. As

already noted the mutant strain can not invade in the absence of adaptive social behaviour (SI1I2R model).

However, in the presence of adaptive social behaviour, we can derive necessary and sufficient conditions for
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the mutant strain to invade when 1 < R0,2 < R0,1:

ω2 >
β2
δ

1

R0,2 − 1
1−ε2

, ε1 > 1− R0,2

R0,1
(1− ε2).

These results show that a high level of perceived severity from the mutant strain is a necessary condition160

for invasion. However, it has to be coupled with a sufficiently high efficacy of infection control against the161

resident strain (with ε1 > ε2). A high efficacy of infection control against the resident strain will effectively162

reduce its transmission and therefore creating a larger pool of susceptible individuals for the mutant strain.163

The two conditions must be met simultaneously to provide a necessary and sufficient condition for invasion.164

The condition that ε1 > ε2 could easily be met in a real population if the two strains differ in their model165

of transmission, and the population has more experience with controlling the resident strain than with the166

new mutant strain. Moreover, a high value of ω2 could easily be met in a real population due to spreading167

panic about a new and more virulent strain that public health does not yet know how to best control.168

We also consider necessary and sufficient conditions for failure of invasion of the mutant strain:

ω1 >
β1
δ

1

R0,1 − 1
1−ε1

, ε2 > 1− R0,1

R0,2
(1− ε1), ω2 <

β2
δ

1

R0,2 − 1
.

Invasion fails when perceived severity of the mutant strain is low enough but also that of the resident strain169

high enough. Note the difference between invasion and failure to invade. Here, we require conditions on170

both perceived severities. As predicted, if the efficacy of infection control against the mutant strain is high171

enough (relative to that of the resident strain) then invasion fails. Again, all three conditions must be met172

jointly. Together, they create a necessary and sufficient condition for the failure of invasion.173

Finally assume that R0,1 < R0,2 (this scenario is not discussed at length in this paper). In the absence174

of social behaviour, the mutant strain is bound to invade. However, we derive necessary and sufficient175

conditions for the failure of invasion when social behaviour is added to the system:176

ω1 >
β1
δ

1

R0,1 − 1
1−ε1

, ε2 > 1− R0,1

R0,2
(1− ε1).

Note the difference between this case and the case when R0,1 < R0,2: there is no conditioning on ω2.177

If the mutant strain has a higher fitness, it does not matter how severely it is perceived (since individuals178

respond to the weighted sum of mutant and resident prevalence and the mutant is initially rare, hence the179

early response is dominated by the resident). It will fail to invade provided that the perceived severity of the180

resident strain is high enough and that efficacy of infection control against the mutant strain is high enough181

relative to the resident strain (with ε2 > ε1). Once again we require both inequalities to be satisfied and182
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together they provide necessary and sufficient condition for the mutant strain to fail invasion.183

We finally turn our attention to the invasion of the mutant strain when it is more transmissible. The184

invasion is conditional: necessary and sufficient conditions for the invasion of the mutant strain are:185

ω1 <
β1
δ

1

R0,1 − 1
, ε1 > 1− R0,2

R0,1
(1− ε2).

In this scenario, a low perceived severity of the resident strain will allow invasion of the mutant strain186

provided that the efficacy of infection control against the resident strain is high enough.187

The addition of adaptive social behaviour to the epidemic model introduced four new parameters, and188

it is clear that the model permits conditions for the mutant strain to invade on account of behaviour, even189

when the mutant strain has a lower basic reproductive ratio, as long as certain conditions for efficacy of190

infection control are satisfied and level of concern about the severity of the mutant strain are satisfied. To191

gain further insight into how adaptive social behaviour influences the invasion of the more virulent strain,192

we turn to numerical simulation and generation of time series and parameter planes.193

4.3 Time series analysis194

We use time series of model simulations to illustrate some of the model’s dynamical regimes. We consider the195

case where ν1 = 0 and ν2 = 0.25 and therefore R0,1 > R0,2 while assuming (for simplicity) that β1 = β2 and196

µ1 = µ2. Hence, the mutant strain is more virulent and kills its hosts more quickly, giving it a significantly197

lower basic reproduction number. We use a simulation time horizon on the order of hundreds of years–198

although both pathogen and social parameters could vary over this period, a long time horizon ensures that199

the asymptotic model states are correctly characterized, and thus enables us to meet our objective of gaining200

insight into the types of dynamics exhibited by the model.201

We first consider a scenario where the mutant strain, on account of its greater virulence, is perceived to202

be ten times more severe than the resident strain (ω2 = 105 = 10ω1). Moreover, infection control against the203

resident strain is much more effective, on account of less being known about the modes of transmission of204

the mutant strain (baseline values: ε1 = 0.7 > ε2 = 0.4). In this scenario, the mutant strain invades (Figure205

1a). This agrees with the conditions determined in our invasion analysis. We observe that the mutant strain206

quickly displaces the resident strain and converges to an endemic state where the proportion of protectors207

x remains relatively high (Figure 1a). On shorter timescales, we see a transient phase at the start of the208

simulation with a sharp epidemic of the resident strain, followed by periodic epidemics with much lower209

incidence of the mutant strain (Figure 1b,c). The numerical simulations agree with the values computed210

from analytical expressions at equilibrium (for sufficiently large values of t).211
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Decreasing the efficacy of infection control against the resident strain and equating it to that of the more212

virulent strain (ε1 = ε2 = 0.4, with all other parameter values at baseline values) prevents the invasion213

of the mutant strain (Fig. 1d). This occurs because more susceptible individuals will be infected by the214

resident strain, thereby significantly decreasing the pool of susceptible individuals available for infection by215

the mutant strain.216

A surprising scenario under which the invasion of the mutant strain fails is when both perceived severity217

of the mutant strain and the efficacy of infection control against are low (Figure 1e,f, ω2 = 102 and ε2 = 0.3218

with other parameter values at baseline). It is worth noting in this case that we initially have a few outbreaks219

of the mutant strain with high incidence. Fig 1f represents the same dynamics as Fig 1e but on a longer time220

scale. The oscillations in the prevalence of infection and the prevalence of protectors is typical of coupled221

behaviour-disease models with adaptive social behaviour [35].222

It is difficult for both strains to co-exist without imposing ω1 = 105 > ω2 = 104. If the resident strain223

is perceived to be ten times more severe, then co-existence is achieved via a transient but very long-term224

pattern of switching between oscillatory regimes before the system finally converges to an equilibrium of225

co-existence (Fig 1g). The system switches between a longer-lived regime with relatively small epidemics of226

the resident strain, and a shorter-lived regime with very large epidemics of the mutant strain. Changes in the227

proportion adopting contact precautions, x, facilitates the switching. As x rises, it allows a series of periodic228

outbreaks of the mutant strain which in turn decreases the proportion of people adopting prevention and229

starts a series of outbreaks of the resident strain. This loop continues with diminishing switching-period as230

well as amplitude. If we bring back efficacies of infection control to baseline values, this phenomenon persists231

but with wilder oscillations in x. This happens because lower values of ε increase the effective transmission232

rate which in turns leads to rapid changes in x. Figure 1h shows the same dynamics as in Figure 1g but on233

a shorter timescale.234

We also allowed the perceived severities to be equally high (ω1 = ω2 = 104) and we have increased the235

efficacies from their baseline values (ε1 = 0.9 and ε2 = 0.6) (Figure 1i). We observe that the mutant strain236

fails to invade and the prevalence of the resident strain remains relatively close to the initial condition.237

In order to refine our understanding of the influence of social parameters on the invasion of the mutant238

strain, we proceed in the next subsection with phase plane analysis that studies the interplay between the239

parameters determining regions of invasion.240
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4.4 Phase plane analysis241

Surprisingly, there are parameter regimes where increasing the perceived severity of the resident strain (ω1)242

allows the mutant strain to invade (Figure 2a-c). This occurs across a nontrivial portion of parameter space243

despite the fact that R0,2 < R0,1. This regime shift occurs because a sufficiently high perceived severity244

of the resident strain creates a large pool of susceptible individuals, and coupled with a higher efficacy of245

infection control against the resident strain, this means that the invading mutant strain can take advantage of246

the increased pool of susceptible individuals to invade. This effect occurs only when the efficacy of infection247

control against the resident strain is relatively high (e.g. ε1 = 0.9 and ε2 = 0.6). However, this phenomenon248

does not hold when ε1 and ε2 are low, in which event the model behaves similar to the SI1I2R model where249

the strain with the higher basic reproductive number invades, as expected. Similarly, increasing ω2 can push250

the system from a regime of co-existence of the two strains to a region where only strain 2 persists.251

In ε1 = ε2 parameter planes we again find parameter regimes where the more virulent strain can invade252

due to adaptive social behaviour, despite the fact that R0,2 < R0,1, if there is an imbalance in the perceived253

severity of the two strains. When perceived severities are sufficiently low, the mutant strain can never invade254

(Figure 2d). But when ω2 >> ω1, the mutant strain can invade and remove the resident strain if ε1 is255

sufficiently large and ε2 is sufficiently small (Figure 2e). When ω1 >> ω2, the mutant strain and the resident256

strain coexist, when ε1 is sufficiently large and ε2 is sufficiently small (Figure 6f). Increasing the efficacy of257

infection control against the resident strain (ε1) or decreasing efficacy of control against the mutant strain258

(ε2) can allow the mutant strain to invade (Figure 2e-f). We note again that, surprisingly, invasion can result259

in the elimination of the resident strain if the perceived severity of the mutant strain is significantly higher260

than that of the resident strain (ω2 >> ω1), but when the opposite applies, coexistence results.261

5 Discussion262

We have showed how adaptive social behaviour greatly impacts the evolution of virulence in a coupled263

behaviour-disease model. If we neglect social behaviour, the basic reproductive numbers of the two strains264

are sufficient to predict which of the strains will invade a population. However, adding adaptive social265

behaviour with asymmetric stimulation and effects on either strain to an epidemiological system completely266

shifts how we view whether a more virulent strain will be selected for. As we have seen, social behaviour267

can either act in favour or against the invasion of a more virulent strain, and we can describe these effects268

with reference to specific social parameters (ω1,2) quantifying how concerned individuals are about the two269

strains, and control parameters (ε1,2) quantifying how well infection control measures like hand-washing270
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work. Most interestingly, adaptive social behaviour enables invasion of the mutant strain under plausible271

epidemiological and social conditions even when it has a lower basic reproductive number.272

Future work can generate further insights into how behaviour and virulence interact for specific infectious273

diseases, by building on existing research on the coupled dynamics of behaviour and infection transmission.274

For instance, an increase in the average number of sexual partners of an individual has been predicted275

by mathematical models to cause increased HIV virulence [18, 41]. These models use a fixed parameter276

to quantify the number of sexual partners, but the number of sexual partners could be made to evolve277

dynamically based on the number of infected individuals in a particular population, similar to seminal278

work using compartmental models to model core group dynamics [42]. An increase in the number of sexual279

partners will decrease the efficacy of infection control against the more virulent strain and effectively increase280

its transmission and hence leads to higher virulence. Other future research could explore how adaptive281

social behaviour interacts with evolutionary trade-offs to determine virulence evolution. One of the most282

common hypotheses is that a trade-off exists for between-host transmission and virulence. To increase its283

probability of transmission, the parasite must replicate within the host. This replication, on the other hand,284

must be controlled because otherwise it might lead to the host’s death and therefore prevent transmission.285

However, other trade-offs have been suggested, such as between transmission rate and host recovery rate286

[43]. Moreover, complicated host life cycles imply that many other types of trade-offs are also possible287

[44], and the presence of multiple trade-offs may complicate the relationship between transmission rate and288

virulence [45]. Social behaviour could interact with evolutionary trade-offs to alter the virulence evolution289

of an emerging pathogen, and this process could be modelled by building on existing virulence evolution290

models.291

While the model discussed in this paper serves as a general framework for studying the influence of social292

behaviour on strain competition and emergence, further research needs to be carried out to understand the293

interplay between the epidemiological and social parameters. For instance, we did not model virulence evo-294

lution explicitly but rather by assuming two strains have already emerged due to mutation and addressing295

conditions under which the more virulent mutant strain is more fit. Future research could instead model296

virulence by defining transmission and recovery rates in terms of a virulence parameter, or by using an297

adaptive dynamics approach. Future research could also explore different possible relationships between the298

virulence parameters ν1,2 and the perceived severity parameters ω1,2, or the interaction between social learn-299

ing timescales and pathogen evolutionary timescales. We did not study the influence of the social learning300

parameter κ in this paper, but previous research on other socio-ecological and socio-epidemiological systems301

suggests that the social learning rate can destabilize interior equilibria [39, 38]. A model that accounts302

for multiple rounds of mutation would enable studying how pathogen evolutionary timescales interact with303

12
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social learning dynamics. Finally, we assumed no specific relationship between the perceived severity ω1,2304

and the virulence ν1,2 although a non-trivial relationship certainly exists, and future research could explore305

possible assumptions for their formal relationship.306

In conclusion, our model shows how social behaviour can influence the virulence of emerging strains307

under plausible parameter regimes when using standard models for social and infection dynamics. When308

analyzing emerging and re-emerging pathogens and continually evolving infectious diseases such as influenza,309

it is worthwhile further considering aspects of social behaviour in efforts to mitigate serious threats.310
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Parameter Definition Value
δ death rate 1/18250 per day, [34].
µ birth rate 1/18250 per day, [34].
γ1 recovery rate for strain 1 0.2 per day (assumed).
ν1 disease death rate for strain 1 0.0 per day (assumed).
γ2 recovery rate for strain 2 0.2 per day (assumed).
ν2 disease death rate for strain 2 0.05 per day (assumed).
β1 transmission rate for strain 1 0.4 per day (assumed).
β2 transmission rate for strain 2 0.4 per day (assumed.)
κ sampling rate 1/365 per day, [37].
w1 perceived severity from strain 1 10000 (assumed)
w2 perceived severity from strain 2 100000 (assumed)
ε1 efficacy of infection control against strain 1 0.7 (assumed)
ε1 efficacy of infection control against strain 2 0.4 (assumed)

Table 1: Baseline parameter values. Strain 1 is taken to be an avirulent resident strain, and strain 2 is taken
to be a more virulent mutant strain.
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Figure 1: Numerical simulations for the SI1I2RX model at various values for the social and infection
control parameters. (a,b,c) show baseline values where the mutant strain is perceived to be 10 times more
severe (ω2 = 10ω1 = 105) and where efficacy of infection control against the resident strain is greater
ε1 = 0.7 > ε2 = 0.4. The dynamics are shown at different timescales in (a), (b) and (c). (d) ε1 = 0.4. (e,f)
ω2 = 102, ε2 = 0.3. (g,h) ω1 = 10ω2 = 105. (i) ω1 = ω2 = 104. ε1 = 0.9, ε2 = 0.6. All other parameters are
held at their baseline values. Red line represents prevalence of protectors x. Blue line represents prevalence
of the resident strain I1. Black line represents prevalence of the more virulent mutant strain I2.
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Figure 2: Parameter plane analysis of the SI1I2RX model. These dynamics are more complex than those
exhibited by the SI1I2R model, which only predicts persistence of strain 1 for equivalent parameter values.
The epidemiological parameters are at baseline values (Table 1). The social parameters are varied. (a) and
(d) show no invasion of the mutant strain when ε1 = 0.2 and ε2 = 0.1 in the ω1 − ω2 parameter plane (a)
and when ω1 = ω2 = 102 in the ε1 − ε2 parameter plane (d). (b) and (c) represent similar qualitative
results when for large ε1 = 0.9 we get invasion of the mutant strain in the black region and co-existence
with the resident strain in the red region. The invasion region is bigger when ε2 is lower (ε2 = 0.1 in (b)
and ε2 = 0.6 in (c) ). Finally, in (e) and (f) we observe qualitatively different results when we vary ω2

in the ε1 − ε2 parameter plane. In (e) , 108 = ω2 > ω1, we have invasion of the mutant strain. In (f) ,
ω1 = 106 > ω2, we have co-existence of the strains. The light gray region in the lower-left hand corner of
subpanel (b) corresponds to both strains being extinct.
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