
Enforcing Abstract Immutability
by

Jonathan Eyolfson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

© Jonathan Eyolfson 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner Ana Milanova
Associate Professor
Rensselaer Polytechnic Institute

Supervisor Patrick Lam
Associate Professor
University of Waterloo

Internal Member Lin Tan
Associate Professor
University of Waterloo

Internal Member Werner Dietl
Assistant Professor
University of Waterloo

Internal-external Member Gregor Richards
Assistant Professor
University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Researchers have recently proposed a number of systems for expressing, verifying, and
inferring immutability declarations. These systems are often rigid, and do not support
“abstract immutability”. An abstractly immutable object is an object o which is immutable
from the point of view of any external methods. The C++ programming language is
not rigid—it allows developers to express intent by adding immutability declarations to
methods. Abstract immutability allows for performance improvements such as caching,
even in the presence of writes to object fields. This dissertation presents a system to
enforce abstract immutability.

First, we explore abstract immutability in real-world systems. We found that developers
often incorrectly use abstract immutability, perhaps because no programming language
helps developers correctly implement abstract immutability. We believe that this omission
leads to incorrect usages. Specifically, we wrote a dynamic analysis that reports any writes
through immutability declarations. To our knowledge, this work was the first to explore
how objects implement abstract immutability (or fail to implement it). Our novel study
found three uses of abstract immutability: caching, delayed initialization, and unit testing.
Unit testing was a surprising application of abstract immutability, and we believe that the
ability to modify state is needed for proper unit testing.

Next, we explore developers’ revealed needs for immutability in the source code. We
found that the majority of classes contain a mix of immutable and mutable methods, with
a majority of the overall methods being immutable. Immutability systems with only im-
mutable or all-mutating classes are insufficient: developers need immutability declarations
at method granularity. Our study then combined developer immutability declarations with
results from a static analysis to estimate the true number of immutable methods. The
static analysis checked that no transitive writes to a receiver object occurred. Our results
indicated the need for a sophisticated analysis to check that these apparently abstractly
immutable methods were indeed abstractly immutable.

Finally, we created a novel static analysis which checks that developers follow abstract
immutability. Specifically, we define abstract immutability to mean that a class’s set of
immutable methods is collectively free of writes to exposed fields. Our analysis found
incorrect usages of abstract immutability, such as incorrect caching. This analysis is par-
ticularly valuable in the context of code evolution, whereby subsequent programmers may
make changes that break previously-correct cache implementations, for instance. Our work
allows developers to trust that their code is abstractly immutable.

iv

Acknowledgements

First, I need to thank my parents. Especially my dad, who has supported me to follow my
passion no matter what. Whether I’m at my highest highs or lowest lows, he has guided
me through them all. Thank you Grandma Cook, you’ve always ensured I was taken care
of and I couldn’t have done it without you. I would also like to thank Tracy for all her
love and support, and putting up with horrible puns.

I would be remiss if I didn’t thank my teachers at Frontenac High School: Mr. Kotecha,
Mr. Wills, Mr. Lee, and Mr. Grew. I would not have found my passion if it wasn’t for
them opening my eyes, and setting an excellent example. They encouraged the pursuit of
knowledge, and curiosity I didn’t know I had.

I owe a deep gratitude to my supervisor Patrick Lam, who has been guiding me ever
since we first met at Curry Original in Kingston. Without his knowledge and expertise I
would not have completed my masters, much less a doctorate. He has been patient and
understanding through my graduate studies, and always allowed me to explore problems
that interested me.

Thank you to my committee members. I appreciate the time you’ve taken out of your
busy schedules to add your valuable insight to this work.

Finally, I would like to thank friends that I’ve been able to bounce ideas off of during
my research. There are too many to name, you know who you are, thank you. For the
purpose of this thesis in particular: Jean-Christophe Petkovich, you’ve been invaluable, as
both a set of open ears and a friend dating back from grade 3.

v

Dedication

In memory of Sisters Kathryn and Mary Joan LaFleur.

vi

Table of Contents

List of Figures x

Listings xii

List of Tables xv

1 Introduction 1
1.1 Motivation . 2
1.2 Case Study: Clang . 4
1.3 Exploratory Study . 4
1.4 Outline . 6

2 Background 7
2.1 Immutability Terminology . 7

2.1.1 Transitive and Non-Transitive . 7
2.1.2 Concrete and Abstract . 8
2.1.3 Object and Reference Immutability 8
2.1.4 Relation to Purity . 9

2.2 Immutability in C++ . 9
2.2.1 const keyword . 10
2.2.2 mutable keyword . 11
2.2.3 Bitwise const . 12
2.2.4 Logically const . 12
2.2.5 Additional Loopholes . 12

2.3 Immutability in Java . 15
2.3.1 final Keyword . 17
2.3.2 Javari . 17

2.4 Static Analysis . 17
2.4.1 Dataflow Analysis . 17
2.4.2 Pointer Analysis . 18

3 Dynamic Observations of Writes-Through-Immutability 19
3.1 Motivation . 20
3.2 Technique . 23
3.3 Classification . 29

vii

3.4 Results . 32
3.4.1 Protobuf . 33
3.4.2 LevelDB . 35
3.4.3 fish shell . 38
3.4.4 Mosh (mobile shell) . 38
3.4.5 LLVM TableGen . 39
3.4.6 Tesseract . 40
3.4.7 Ninja . 40
3.4.8 Weston . 40
3.4.9 Summary . 42

4 Static Observations of Immutability 43
4.1 Motivation . 44
4.2 Technique . 45
4.3 Results . 48

4.3.1 LLVM . 50
4.3.2 OpenCV . 51
4.3.3 Protobuf . 53
4.3.4 fish shell . 54
4.3.5 libsequence . 56
4.3.6 Mosh . 57
4.3.7 Ninja . 58
4.3.8 Summary . 60

5 Abstract Immutability Analysis 63
5.1 Motivating Example . 64
5.2 Technique . 68

5.2.1 Formalization . 69
5.2.2 Analysis Operation . 71
5.2.3 Abstraction . 71
5.2.4 Running Example . 74
5.2.5 Transfer Functions . 77
5.2.6 Memory Alias Sets . 79
5.2.7 Merge Operation . 83
5.2.8 Assumptions . 86

5.3 Results . 87
5.3.1 libsequence . 87
5.3.2 fish shell . 90
5.3.3 Mosh . 92
5.3.4 Ninja . 92
5.3.5 Summary . 93

viii

6 Related Work 95
6.1 Type Systems . 96

6.1.1 Javari . 96
6.1.2 ReIm . 97
6.1.3 Glacier . 98

6.2 Type Inference . 98
6.2.1 Javarifier . 99
6.2.2 ReImInfer . 99
6.2.3 Inferring const for C programs . 100

6.3 Language Features . 100
6.3.1 Usability of Language Features . 100
6.3.2 Frozen Objects . 101
6.3.3 Abstract Machine . 101

6.4 Dynamic Analysis . 102
6.5 Static Analysis . 102

6.5.1 Stationary Fields . 103
6.5.2 Escape Analysis and Information Flow 103
6.5.3 JPPA . 103
6.5.4 JPure . 104
6.5.5 Combined Static and Dynamic Analysis 104
6.5.6 Pointer Analysis . 105

7 Conclusion 107

References 109

Appendices 115

A Clang Mailing List Discussion 117

ix

x

List of Figures

2.1 With non-transitive immutability, fields may be dereferenced and written
to. Transitive immutability disallows all writes (fields shown by × cannot
be written to while fields shown by ✓ may). 8

3.1 Our shadow values encode the const-ness of each level of an n level pointer. 21
3.2 ConstSanitizer generates instrumented LLVM bitcode which reports writes

through const qualifiers at runtime. 23

4.1 Our Immutability Check tool intercepts compile commands and stores re-
sults in a database. 46

4.2 const-overloading implies that the mutable interface of a class is not a
superset of the const interface. 47

4.3 Immutability Check divides classes with methods into 5 main categories,
depending on which members they contain. 49

5.1 Heap abstraction upon entry to getValue() showing that this points to an
object (structure node) of type A with unknown field values. Boxes indicate
sequential or structure nodes, while edges indicate pointee or struct edges.
Unboxed node %this indicates variable binding. 66

5.2 Heap abstraction, cached == false branch (condition true). 67
5.3 Heap abstraction, cached == true branch (condition false). 67
5.4 Heap abstraction after merge. 68
5.5 Heap abstraction upon return from B.unrelated(). 68
5.6 Heap abtraction after merge. 68
5.7 Weak edge (dotted) indicates nodes A, B may point to same object. 73
5.8 LLVM control-flow graph inspired by A in the motivating example. 75
5.9 Algorithm for marking nodes read and escaped at top-level returns. 82

xi

xii

Listings

1.1 Developers would expect this program to return success. 2
1.2 A Foo implementation that causes unexpected results. 3
1.3 A Date class that incorrectly omits const on string_rep. 3
1.4 Our patch improving Clang’s CFG class const correctness. 5
2.1 The const qualifier may apply to C++ member functions. 11
2.2 A Date class, using pointers, that allows const on string_rep method

without using mutable or const_cast. Date follows abstract and transivite
immutability. 13

2.3 A Date class inappropriately, but not incorrectly, allowing const on the
string_rep method through const_cast. 14

2.4 C style downcasts are not checked for const, C++ style dynamic casts are. 15
2.5 C style varargs are not checked for const, C++11 style are. 16
3.1 Method evil() violates the spirit of const by writing to an externally-

visible field of const object “a”. Circled numbers used for subsequent ex-
planations. 21

3.2 C++ source code showing a false negative due to expression handling. . . . 24
3.3 C++ source code showing calls to method foo() (with its definition and

associated LLVM bitcode) from const context cc and non-const context nc. 28
3.4 Protobuf’s Generator class performing transitive write-through-const to a

Printer field. 34
3.5 Protobuf’s Generate initialization method performing lazy initialization. . 34
3.6 Protobuf using Google test linked list that writes internally. 34
3.8 Protobuf writing to a source location object. 35
3.7 Protobuf writing to a message’s cached size field. 35
3.9 LevelDB write in db_test.cc incrementing counter tracking # of writes to

a file. 36
3.10 LevelDB write in cache.cc creating a new block cache in const Options

object. 37
3.11 LevelDB write in snapshot.h deleting a list element and updates pointers. 37
3.12 LevelDB write in memenv.cc changing the environment in options object. . 37
3.13 LevelDB write in testutil.h injecting faults into the test suite. 38
3.14 fish shell writing to const-qualified argv object. 38
3.15 Mosh handling terminal action with a write-through-const. 38
3.17 LLVM SubReg writes to a mutable field in a const method. 39
3.16 LLVM DFA code marks State const for no apparent reason. 39

xiii

3.18 Tesseract performs a strange write in its string class. 40
3.19 Ninja write-through-const in test code. 40
3.20 Weston option parser modifying its const option argument. 41
3.21 Weston config parser writing to its value argument. 41
5.1 Typical (correct) caching implementation in getValue() method. 65
5.2 An implementation for unrelated() that breaks A’s abstract immutability. 66
5.3 libsequence’s DepaulisVeuilleStatistics method misses a cache guard

write when _NumPoly == 0. 88
5.5 libsequence allows mutable access to internal data in 4 methods. 88
5.4 libsequence correctly using caching, checked by our abstract immutability

analysis. 89
5.6 fish correctly using caching. Our abstract immutability analysis could not

successfully check this usage due to complex string properties. 91
5.7 Mosh returning non-const qualified pointers to AlignedBuffer’s internal

data. 92
5.8 Ninja has 4 classes that return non-const qualified pointers to internal data. 92
A.1 Correspondence with Clang developers. 117

xiv

List of Tables

1.1 Number of non-const/const methods and non-mutable/mutable fields be-
tween LLVM/Clang versions. 6

2.1 C++ only prevents non-transitive field writes without mutable, it allows
all other writes. 12

3.1 Shadow values encode available const-ness restrictions on variables. 24
3.2 Dynamic analysis rules showing computation of shadow value for result %1. 26
3.3 Root causes of writes through const and our symbols for these causes. . . 30
3.4 Observed attributes of writes through const and corresponding symbols. . 31
3.5 We ran our experiments across 7 C++ (and 1 C) software projects; Const-

Sanitizer introduces a build slowdown of 1.05×–1.40× across all projects. . 33
3.6 Protobuf has 5 archetypes from 76 writes-through-const (127 644 occur-

rences). 33
3.7 LevelDB shows writes from 6 source locations, with 13 792 occurrences in

total. 36
3.8 Writes-through-const-qualifiers in other benchmark programs were mainly

incorrect uses of const. 42

4.1 We chose 7 open-source codebases as case studies, ranging from 13 000 to
over 3 million lines of code. 48

4.2 Most LLVM classes contain a mix of const and non-const methods, but
about a quarter of its classes are immutable or all-mutating. 50

4.3 All sampled LLVM classes that developers declared “Immutable” are in fact
immutable; only 8/20 “all-mutating” classes are all-mutating. Additionally,
4 “all-mutating” classes were in fact immutable. 50

4.4 LLVM methods, immutability declarations, and easily const-able methods.
LLVM contains a plurality of const-labelled methods, and about half of
LLVM methods are easily const-able. % developer-labelled indicates the
percentage of easily const-able methods that carry a const label. % trusted
indicates the percentage of methods that are easily const-able without the
trust assumption compared to with it. 51

4.5 OpenCV contains relatively many immutable classes and fewer all-mutating
classes. 52

xv

4.6 Fewer than a third of OpenCV’s immutable and all-mutating classes are non-
trivial. Manual inspection showed that almost all sampled classes declared
immutable are immutable, while a quarter of all-mutating classes are all-
mutating. 52

4.7 OpenCV methods, immutability declarations, and easily const-able meth-
ods. A plurality of OpenCV methods are const-labelled, and 38% are easily
const-able. % developer-labelled indicates the percentage of easily const-
able methods that carry a const label. % trusted indicates the percentage of
methods that are easily const-able without the trust assumption compared
to with it. 53

4.8 Protobuf has the highest proportion of immutable classes among our studied
codebases. 53

4.9 About half of Protobuf’s classes are non-trivial. Manual inspection showed
that almost all sampled classes declared immutable are immutable, while
20% of all-mutating classes are all-mutating. Additionally, 10 “all-mutating”
classes were in fact immutable. 54

4.10 Protobuf methods, immutability declarations, and easily const-able meth-
ods. Almost two-thirds of Protobuf methods are const-labelled, and 33%
are easily const-able. % developer-labelled indicates the percentage of eas-
ily const-able methods labelled const. % trusted indicates methods that
are easily const-able without the trust assumption compared to with it. . 54

4.11 Many fish classes contain a mix of const and non-const methods, but a
surprisingly high proportion of fish classes are all-mutating. 55

4.12 fish has no non-trivial immutable classes and only 6 non-trivial classes with
no const annotations, of which only 2 are all-mutating. 55

4.13 fish methods, immutability declarations, and easily const-able methods.
43% of fish’s methods are const-labelled, and 41% are easily const-able.
% developer-labelled indicates the percentage of easily const-able methods
labelled const. % trusted indicates methods that are easily const-able
without the trust assumption compared to with it. 55

4.14 Approximately half of libsequence’s classes are immutable, while the other
half contain a mix of const and non-const classes. No libsequence classes
are all-mutating. 56

4.15 All libsequence non-trivial classes that developers declare “Immutable” are
in fact immutable. libsequence contains 0 all-mutating classes. 56

4.16 All libsequence methods, immutability declarations, and easily const-able
methods. 91% of libsequence’s methods are const-labelled, yet only 40% are
easily const-able. % developer-labelled indicates the percentage of easily
const-able methods labelled const. % trusted indicates methods that are
easily const-able without the trust assumption compared to with it. . . . 57

4.17 A (relatively) smaller proportion of Mosh classes are immutable or all-
mutating compared to other benchmarks. 58

4.18 Mosh has 0 non-trivial immutable classes and 0 non-trivial all-mutating
classes. 58

xvi

4.19 Mosh methods, immutability declarations, and easily const-able methods.
54% of Mosh methods are const-labelled, and 45% are easily const-able.
% developer-labelled indicates the percentage of easily const-able methods
with a const label. % trusted indicates the percentage of methods that are
easily const-able without the trust assumption compared to with it. . . . 58

4.20 Ninja has many all-mutating classes and few immutable classes. 59
4.21 Ninja has 0 non-trivial immutable classes and 0 non-trivial all-mutating

classes. 59
4.22 Ninja methods, immutability declarations, and easily const-able methods.

22% of Ninja methods are const-labelled, and 26% are easily const-able.
% developer-labelled indicates the percentage of easily const-able methods
with a const label. % trusted indicates the percentage of methods that are
easily const-able without the trust assumption compared to with it. . . . 59

4.23 Our false positive rates across all projects is low (see note for libsequence).
Our analysis has few false positives for const methods and an acceptable
number for non-const methods. 60

4.24 Summary of results. (RQ4.1, 2) A median of 2% of the classes that de-
velopers write are immutable, and the same percentage is all-mutating.
(RQ4.3a) Developers write a far greater number of immutable methods than
immutable classes, with a median of 54% across our case studies. (RQ4.3b)
Compared to the number of immutable methods that they declare to be
const, developers could declare an additional 13% (median) methods to be
const. 61

5.1 Open-source benchmarks largely use abstract immutability correctly; im-
mutability errors in practice are usually representation exposure. 93

xvii

Chapter 1

Introduction

Mutation in software is challenging to reason about. Following and understanding mu-
tations is required for debugging many programs. Restricting mutation of a variable x
therefore enhances the ability of maintainers to reason about x. Making x immutable re-
duces developers’ cognitive load, as the developer does not have to worry about unexpected
changes to x.

However, even objects marked immutable may change internally. The canonical ex-
ample of internal mutation is caching. Performant code relies on these types of writes.
Unfortunately, such writes make it especially challenging to reason about immutability.
Aside from caching, other instances of immutability in the presence of writes is unclear.

The central concept of this dissertation is abstract immutability. Caching is an example
of abstract immutability. A caching implementation requires a write which is invisible to
the caller. A method in a class may internally mutate, and yet be callable on an immutable
receiver object. The caller would observe no difference between a bitwise immutable object
and an abstractly immutable object, aside from the performance benefit.

C++ allows developers to restrict mutation by including a const type qualifier in a
variable’s type. A const-labelled variable cannot be written to and should not change.
Properly using const gives 1) library users static guarantees about how the code behaves
and 2) compilers opportunity to more aggressively optimize the code. C++ experts rec-
ommend using const whenever possible [52]. In addition, developers are told to strive for
const correctness [24].

For instance, if a method bar acts on an object x with a const qualifier, the caller
can expect that bar will not modify the x. If the author of bar attempts to modify the
object, the compiler produces an error. When developers use const correctly, their code
is understood at a glance with respect to mutation, and the type checker will not allow
invalid code to compile.

However, functions such as bar may modify the object though one of many escape
hatches in C++. When writing, for instance, method that implements caching, developers
require these escape hatches to perform any writes. These writes need to be allowed.
However, although the writes are allowed, the compiler does not check that the writes are
valid. The method author could later add an unintended write, breaking immutability,
without any indication from the compiler. This would produce unexpected results if a
reader expected the immutable object not to change.

1

Listing 1.1: Developers would expect this program to return success.
#include <unordered_set>
#include "Foo.hpp"

int main(int argc, char *argv[])
{

const Foo f(7);
std::unordered_set<Foo> s;
s.insert(f); // copies f into the s container
f.bar(); // bar is a const member function
if (s.count(f) > 0) return EXIT_SUCCESS;
else return EXIT_FAILURE;

}

1.1 Motivation
A const declaration should mean that the declared const object should never observably
change. It is especially important that libraries are const correct so library users may
use them without any unexpected behaviour. For instance, if a library function takes a
const reference to an object, the library user can expect the library not to call non-const
member functions on the object. Consider the code in Listing 1.1 which uses a class Foo
declared in a library.

This simple program creates a const Foo called f. Since f is declared as const it
should not change for the duration of the program, or at least appear not to change
from the point of view of the library user. The program then adds a copy of f to set
s. Afterwards, there is a call to a const member function on f. Since f is unmodified
still, it should still be present in the set and the program should return success. While
these assumptions should be correct, the program could still return failure. Consider the
following, valid C++, definition of Foo in Listing 1.2.

We see that class Foo is a wrapper around an int variable. Its int field is declared
as mutable, which allows that field to change even in const member functions. The bar
function (or any other function) may now modify the field without any checks for const,
changing the meaning of the object. Foo successfully compiles, but what we expect from
the original code no longer holds, causing the program in Listing 1.1 to return failure.
Reasonable people would not consider this Foo to be logically const. Specifically, after
the call to f.bar() in the example, f’s wrapped int value is 42. The copy inserted into
s still has an int value of 7. This causes the lookup to fail. Our novel static analysis can
analyze such code and report an error.

Another problem with const is that a library with const incorrectly omitted by its
authors prevents the library’s users from including const in their own code. Consider
the definition of Date inspired from Stroustrup’s book [75] in Listing 1.3. This class uses
caching internally: it guards the cached value with the cache_valid boolean, and writes
to cache_rep. However, the caching is an implementation detail invisible to users of

2

Listing 1.2: A Foo implementation that causes unexpected results.
class Foo;
template<> struct std::hash<Foo> {

size_t operator()(const Foo& f) const;
};
class Foo
{
public:

Foo(int i) : d(i) {}
void bar() const { d = 42; }

private:
mutable int d;
friend bool operator==(const Foo& f1, const Foo& f2);
friend size_t std::hash<Foo>::operator()(const Foo& f) const;

};
inline bool operator==(const Foo& f1, const Foo& f2)
{ return f1.d == f2.d; }
inline size_t std::hash<Foo>::operator()(const Foo& f) const
{ return std::hash<int>()(f.d); }

Listing 1.3: A Date class that incorrectly omits const on string_rep.
#include <cstdlib>
#include <string>

class Date {
bool cache_valid;
std::string cache_rep;
void compute_cache_value()
{

cache_rep = std::string(1, std::rand() % 26 + 65);
}

public:
std::string string_rep() // ought to be const
{

if (cache_valid == false) {
compute_cache_value();
cache_valid = true;

}
return cache_rep;

}
};

3

this class. Users would correctly assume that the string representation of a date which
remains unmodified is also unmodified, even though a write to a field may occur in the
implementation. A const correct implementation of Date would change string_rep to
a const member function. Therefore this Date class needs to use either const_cast or
mutable when writing to cache_rep to subvert the restrictive const. As seen in Listing 1.2,
mutable can easily be misused (similarly, so can const_cast), especially with evolving code
adding more functions.

1.2 Case Study: Clang
On November 4th, 2013 we manually inspected a portion of Clang’s code looking for changes
which would improve const correctness. In the CFGBlock class we found two versions of
a getTerminatorCondition method: a non-const version returning a non-const pointer
and a const version returning a const pointer. The const version uses the non-const
code by casting away const on this.

We believe it is clearer to write a const (more restrictive) version of the function and
have the non-const version reuse the const version, while using const_cast on its return
value. In this specific case we observed that all internal client code did not attempt to
modify the returned Stmt indicating the (unused) non-const version could be removed.

We submitted the patch in Listing 1.4 with the intention of receiving valuable insight
from developers of a large widely used body of code regarding const. We modified the
CFG class to remove a non-const definition of a member function and replace it with a
const one. This class is used by external analysis tools, as well as Clang’s own internal
analysis. While we did not have any external analysis tools, our more restrictive const
correct version did not create any errors when compiling Clang itself. Refer to Appendix A
for full discussion on the mailing list.

The feedback we received indicates that although developers use const, its usage is not
consistent throughout the code. Our suggested changes disallows users from modifying the
AST in the CFG class. However the developers have not solidified how their library should
be used. Our experience indicates that even large well-constructed programs have many
improvements to make in regards to const correctness.

1.3 Exploratory Study
Our initial hypothesis is that const is a widely used and important factor in library de-
sign. We conducted an exploratory study on LLVM/Clang to observe const’s usage in
a real-world application. We counted the number of non-const/const methods and non-
mutable/mutable fields to compare how often each keyword occurs. We tracked these
numbers across multiple LLVM/Clang versions to observe any trends. In addition, we sep-
arated “include” code (which is meant for clients of LLVM/Clang) and “application” code
(which we observed typically is only used in one or two internal libraries). Specifically,
“include” code is used by any external code linked to the LLVM library, while “application”
code is private and is only used in the internal library code. Table 1.1 shows our results.

4

Listing 1.4: Our patch improving Clang’s CFG class const correctness.
diff --git a/include/clang/Analysis/CFG.h b/include/clang/Analysis/CFG.h
index d42b19e..9236bce 100644
--- a/include/clang/Analysis/CFG.h
+++ b/include/clang/Analysis/CFG.h
@@ -511,11 +511,11 @@ public:

CFGTerminator getTerminator() { return Terminator; }
const CFGTerminator getTerminator() const { return Terminator; }

- Stmt *getTerminatorCondition();
+ const Stmt *getTerminatorCondition() const;

- const Stmt *getTerminatorCondition() const {
- return const_cast<CFGBlock*>(this)->getTerminatorCondition();
- }
+ // const Stmt *getTerminatorCondition() const {
+ // return const_cast<CFGBlock*>(this)->getTerminatorCondition();
+ // }

const Stmt *getLoopTarget() const { return LoopTarget; }

diff --git a/lib/Analysis/CFG.cpp b/lib/Analysis/CFG.cpp
index 14b8fd4..6f50f49 100644
--- a/lib/Analysis/CFG.cpp
+++ b/lib/Analysis/CFG.cpp
@@ -3950,12 +3950,12 @@ void CFGBlock::printTerminator(raw_ostream &OS,

TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
}

-Stmt *CFGBlock::getTerminatorCondition() {
- Stmt *Terminator = this->Terminator;
+const Stmt *CFGBlock::getTerminatorCondition() const {
+ const Stmt *Terminator = this->Terminator;

if (!Terminator)
return NULL;

- Expr *E = NULL;
+ const Expr *E = NULL;

switch (Terminator->getStmtClass()) {
default:

5

Table 1.1: Number of non-const/const methods and non-mutable/mutable fields be-
tween LLVM/Clang versions.

LLVM/Clang
Version

Methods
(non-const)

Methods
(const)

Fields
(non-mutable)

Fields
(mutable)

2.9 21,293 15,587 13,331 269
(include) 10,648 10,599 7,594 143
(application) 10,645 4,988 5,737 126
3.0 23,660 17,441 15,185 319
(include) 11,760 12,292 8,711 160
(application) 11,900 5,149 6,474 159
3.1 25,579 19,131 16,626 333
(include) 12,604 13,544 9,553 173
(application) 12,975 5,587 7,073 160
3.2 28,413 20,834 19,150 365
(include) 13,381 14,690 11,124 200
(application) 15,032 6,144 8,026 165
3.3.1 30,361 22,583 19,736 389
(include) 14,060 15,441 10,781 215
(application) 16,301 7,142 8,955 174
3.4.2 32,347 22,977 21,080 390
(include) 14,410 15,069 11,192 211
(application) 17,937 7,908 9,888 179

We found that const accounts for over 40% of the methods in LLVM/Clang across
all versions. In general, for code intended to be used by clients, over 50% of the methods
include const. For fields, mutable is used far less, and split evenly between include and
application code. This initial exploration sparked the core idea for this dissertation, to
investigate immutability.

1.4 Outline
The thesis of this dissertation is that abstract immutability is important to developers and
checkable via static analysis. First, to establish a common understanding of immutability,
we provide background on immutability including generic terminology and how it applies to
C++ specifically in Chapter 2. Our next goal is to answer whether developers use abstract
immutability. What do they use it for? We developed a dynamic analysis to address this
question in Chapter 3. In a broader sense, we would also like to know whether developers
care about immutability. For instance, is it important enough to be worth the effort to use?
We investigate several codebases to determine the amount of immutable code in Chapter 4.
Finally, we check abstract immutability with a novel static analysis in Chapter 5.

6

Chapter 2

Background

Many definitions for immutability exist. Its definition can vary from developer to devel-
oper, and from programming language to programming language. This chapter breaks
down the general concept of immutability into different subconcepts: 1) transitivity, 2)
abstractness, and 3) object/reference. We explain how these general concepts relate to
what is currently available in programming languages. Our work uses these immutability
concepts and leverages both dynamic and static analysis to detect and enforce immutability
properties.

2.1 Immutability Terminology
We explore immutability applied to objects and primitive types, and in particular, we
describe the three most important aspects that are key to understanding our work. Note
that our generic terms differ from those of immutability in Java [14]. We use the generic
term pointer to match that of a C pointer; we would refer to a Java reference as a pointer
to an object.

2.1.1 Transitive and Non-Transitive
For a class, transitivity describes how immutability applies to its fields. For instance,
consider a class with two fields: a pointer to an object and a primitive type. A class that has
non-transitive (and transitive) immutability protects its fields from re-assignment; changes
to primitive values or pointer manipulations are not permitted. However, a class with
non-transitive immutability allows writes to values reachable through a pointer. Deep (or
transitive) immutability means that the class prevents modifications to any state reachable
through its fields. C++ supports non-transitive immutability.

Figure 2.1 visually illustrates transitivity. Figure 2.1a shows non-transitive, where fields
of the foo object may not be modified (shown in red with an ×). The bar object pointed to
by the field b may be modified (shown in green with a ✓). Figure 2.1b shows the transitive
case: neither the field nor anything reachable through the field may be modified. For foo
in this example, given a reference to a foo, it is not possible to modify the linked bar
through its b field.

7

class foo
int i

bar * b

×

×

class bar
int i ✓

(a) Non-transitive immutability.
class foo

int i
bar * b

×

×

class bar
int i ×

(b) Transitive immutability.

Figure 2.1: With non-transitive immutability, fields may be dereferenced and written to.
Transitive immutability disallows all writes (fields shown by × cannot be
written to while fields shown by ✓ may).

2.1.2 Concrete and Abstract
Concrete and abstract immutability determine whether writes are allowed. Concrete im-
mutability is what first comes to mind as the meaning of immutability for most developers;
it disallows any writes that immutability applies to. However, consider an object with a
cache. Caching requires writes to implement. Yet the object could still be immutable if its
observable state does not change. Abstract immutability allows writes that don’t change
the behaviour of a class. The notion of abstract immutability exists in the literature. Lan-
guages provide some support for concrete immutability. Our work is the first to provide
an operational definition for abstract immutability.

The literature [61] contains examples of valid abstract immutability. For instance,
consider a class representing a tree data structure. Some operations could reorganize a
tree by rebalancing it, violating concrete immutability since writes occur. However, these
operations do not change the contents of the tree. Prior to this work, it was the developer’s
sole reposibility to ensure their writes preserved abstract immutability. We investigate real
world cases where programs violate concrete immutability in Chapter 3.

2.1.3 Object and Reference Immutability
Object immutability relates to an instance of class over its lifetime. If a class has class
immutability, then every instance of that class is immutable. Some languages, such as
Ruby, allows mutable objects to be frozen (see further dicussion in Chapter 6.3.2). When
an object is frozen, it becomes an immutable object for its remaining lifetime. The definition
of immutability can vary, as outlined in the previous two subsections.

For reference immutability, developers can declare a pointer to an immutable type. Typ-
ically the type system allows developers to add an “immutable” type qualifier. A pointer to
an immutable type can only call a set of methods which are marked as being immutable. A
pointer to a mutable type may call methods marked as immutable along with any unmarked
(hence potentially mutating) methods. C++ supports reference immutability. Note that
the set of callable methods for a pointer to a non-immutable type need not be a superset of
methods available to a pointer to an immmutable type: the set of methods may be disjoint.

8

If there is a pointer to an immutable type, reference immutability indicates that the
object will not change through that pointer. The difference between reference immutability
and object immutability is that there may be pointers to a non-immutable type that alias
pointers to an immutable type. In this case, an object may visibly change through a pointer
to an immutable type due to a change through a non-immutable pointer. Our work provides
an analysis for abstract immutability which provides checks for a set of methods marked
as immutable.

2.1.4 Relation to Purity
The term purity indicates that a function has no side effects. Informally, the function does
not modify any state within the program. In the strictest sense, a “pure” function may
not modify any variables. Less strict versions of purity may modify fresh variables. Purity
only applies to functions. It does not take encapsulation into account and does not have
an analogy to abstract immutability.

Observational Purity

Observational purity is less strict than purity. Intuitively, it considers methods pure if
any changes they make cannot be observed in the program. It is an extension of “weak”
purity. Weak purity prevents any location in the pre-state from being modified. A location
is modified if it’s available in both the pre and post-state and has a different value in
the post-state. This definition of weak purity allows a value to change and change back
within a method. The definition also allows newly allocated objects within a method to be
modified.

Observational purity is when a method is “weakly” pure from the point of view of the
caller, but may modify private data [6, 56]. For a method to be observationally pure, it
must not modify any locations in the pre and post-state that are available to the caller.
This allows writes to private fields. However, these writes to private fields aren’t checked.
There is only a rule that private fields cannot escape the method.

“Benign” side effects. These are side effects that do modify values, but do not change
the behaviour of the program. Such effects should be allowed by observational purity.
For instance, caching modifies values, but properly encapsulated caching through the im-
mutable interface is invisible to clients of the object [12]. Our work to check abstract
immutability is similar to checking “benign” side effects for objects.

2.2 Immutability in C++
In C++ developers specify immutability using the const type qualifier. At its core, const
does not have a specific meaning: while type rules govern its use, developers are free to use
it to specify any kind of immutability. The type system provides no guarantees for const
qualified types, and cannot be leveraged by compilers, e.g. for optimizations.

9

In this section we explain how const behaves in C++. To allow developers to write
abstract immutability, one of the facilities C++ provides is the mutable keyword. We
explain this keyword and other ways to implement abstract immutability in C++. We
relate commonly used C++ terms to generic immutability terms and finally show that
C++ developers do use const often in practice.

2.2.1 const keyword
Recall that the C++ const keyword allows programmers to declare, in some sense, that
a value should not change. In this section, we explain the specific guarantees that C++
provides.

The keyword const has two usages in C++: it can be either 1) a type qualifier (e.g.
const int x), or 2) a method specifier (e.g. void foo(int y) const). As a type qualifier,
const always applies to the type to its left. If there is no type to the left, it applies to the
right.

Meaning of const on C++ primitive and pointer types. The meaning of const in
C++ is an extension of its meaning in C. We start by describing the common meaning of
const across C and C++, applying to primitive and pointer types. In these languages, the
const-ness of a memory location depends on the qualifiers of the variable through which
the location is accessed.

Developers may const-qualify primitive types such as int, resulting in immutable
object types like const int. When variable v has primitive const-qualified type, the C++
type system prevents developers from assigning to v after its definition; i.e. it prevents
writes to v.

For pointer types, such as int *, developers may const-qualify both the pointee and
pointer type. The const qualifier applies to the type directly to the left of it; if there is
nothing to the left, then const applies to the right. If a variable has type int *const,
developers may not change the address value of the variable (where it points to), but they
may dereference the location and change the value it points to. A different type is int
const * (also known as const int *), which allows the address value to change, but not
the value pointed-to by the variable. The const qualifier may also apply to both the pointer
and pointee types (int const * const), which prevents writes to both the address value
and the value pointed-to. If all pointers to a value are to an immutable type, then the value
pointed-to is immutable. C++ references can be thought of as const-qualified pointers; a
developer may not write to the reference address value. However, in contrast with pointers,
developers cannot cast away reference address value const-ness and re-assign the address
value; this property is enforced by the language.

Meaning of const on C++ object types. We continue by exploring the meaning of
const in C++-specific contexts. When a C++ object type is const-qualified, the developer
may only call methods declared with a const qualifier.

const-qualifying a member function has two effects. First, const-qualifying a member
function allows it to be called on a const-qualified receiver object. Furthermore, inside
the function, the type qualifiers of the receiver object’s fields are treated as const.

10

Listing 2.1: The const qualifier may apply to C++ member functions.
class Pointish {
private:
int x;
int * y;

public:
int getX() const { return x; }
void setX(int val) { x = val; }
void setY(int val) { *y = val; }

};

not OK if setX() were const

transitive write
OK if setY() were const

Conceptually, each C++ class provides two interfaces: the const-qualified interface
and the non-const qualified interface. A const-qualified reference is meant to be a read-
only reference, although C++ enforces no guarantees. One of our goals is to evaluate
whether read-only guarantees hold in practice. When an object has non-const type, then
the developer may call all methods on that object1. On the other hand, when an object
has const type, then the developer may only call methods on that object that are const-
qualified.

Consider class Pointish, defined in Listing 2.1. As written, the developer could call
all methods on a non-const-qualified object of type Pointish. On the other hand, the
developer may only call the getX() method on a const-qualified Pointish object.

The second effect of const-qualifying a function changes the type qualifiers of fields
inside the function. In our example, field x becomes int const within const-qualified
member functions. The compiler successfully compiles getX(), since there are no writes
to x or y. But, if setX() was const-qualified, the compiler would refuse to compile the
code, since the type of x would be treated as const int and setX() contains a write to
that variable.

In C++, without using const escape hatches, developers may re-assign fields in non-
const qualified methods and may not re-assign fields in const-qualified methods. In
all methods, developers are permitted to mutate state outside of re-assignment (through
references or pointers). This type of immutability is non-transitive concrete immutability.

A C++ const-qualified stack/global object would be considered a shallow immutable
object. That is, without escape hatches, developers cannot create non-const references
(including through pointers) to such a const-qualified object. However, as we discuss next,
developers may indeed remove the const qualifier on references to the const-qualified
object. Therefore, C++ does not strongly enforce the concept of an immutable object.

2.2.2 mutable keyword
The keyword mutable is a storage specifier used to specify class/struct fields which may
change within a const qualified method. That is, any field with a mutable specifier does

1There is a small exception: on a non-const object, the developer cannot call const-qualified methods
that are hidden due to overloading by a non-const-qualified method of the same signature.

11

Table 2.1: C++ only prevents non-transitive field writes without mutable, it allows all
other writes.

Field declaration
Statement in
const method Permitted

int * i i = ... Disallowed
int * i *i = ... Allowed
mutable int * i i = ... Allowed
mutable int * i *i = ... Allowed

not get a const qualifier implicitly applied to its type within the context of a const
qualified method.

A C++ mutable field is never interpreted with const, even in const methods. Con-
versely, fields including const always have const applied to them, even in non-const
methods. Unlike const, mutable is a storage specifier and only applies to the memory
used by the field itself. This means if a mutable field is a pointer, the pointer value can
change. Note that a pointer field can always change the value being pointed to. All possible
usages of mutable with i are shown in Table 2.1.

2.2.3 Bitwise const

In C++ the term bitwise const refers to non-transitive concrete immutability. Bitwise
const means that, through an object’s const interface, the values of its field do not
change. In other words, the bits used to store the object do not change. In this case, a
const object’s methods may modify other objects, as long as it does not store the change
on its own fields. For instance, it may modify a second object through its pointer field, and
as long as the pointer value of its own field does not change, it is still considered bitwise
const.

2.2.4 Logically const

Logically const is, in practice, the goal of const qualified methods [52], which is why
mutable exists in C++. In general terms, if a class is logically const, then that the class
is transitively and abstractly immutable.

2.2.5 Additional Loopholes
C++ [72] is almost source-level compatible with C. However, this source-level compatibil-
ity allows several mechanisms for subverting the type system and discarding const type
qualifiers. The mechanisms are as follows: unchecked casts, unions and varargs.

Pointers. Listing 2.2 shows one way to subvert the example code from Listing 1.3 in
existing C++. Recall that Listing 1.3 has a logically const member function string_rep
which ought to, but does not, include const in its declaration.

12

Listing 2.2: A Date class, using pointers, that allows const on string_rep method with-
out using mutable or const_cast. Date follows abstract and transivite im-
mutability.

#include <cstdlib>
#include <string>

struct cache {
bool valid; // previously cache_valid field in Date
std::string rep; // previously cache_rep field in Date

};

class Date {
cache * c; // replaces cache_valid and cache_rep fields
// c's fields may be changed via dereferences in
// const member functions
void compute_cache_value() const
{

c->rep = std::string(1, std::rand() % 26 + 65);
}

public:
// c's fields may be changed via dereferences in
// const member functions
std::string string_rep() const
{

if (c->valid == false) {
compute_cache_value();
c->valid = true;

}
return c->rep;

}
};

13

Listing 2.3: A Date class inappropriately, but not incorrectly, allowing const on the
string_rep method through const_cast.

#include <cstdlib>
#include <string>

class Date {
bool cache_valid;
std::string cache_rep;
void compute_cache_value()
{

cache_rep = std::string(1, std::rand() % 26 + 65);
}

public:
std::string string_rep() const
{

if (cache_valid == false) {
// remove the const qualifier
Date * t = const_cast<Date *>(this);
t->compute_cache_value();
t->cache_valid = true;

}
return cache_rep;

}
};

There are minor differences between Listing 1.3 and Listing 2.2. Listing 2.2 1) declares
a struct cache with rep and valid fields, 2) replaces fields with a single field (a pointer
to struct cache), and 3) replaces all field reads/writes by referencing the pointer field.

The current type system allows string_rep to include const by adding one layer
of indirection (the pointer to the struct cache). We want to make the type system
consistent. If Listing 1.3’s string_rep can not include const without explicitly subverting
the type system, Listing 2.2 should not be able to include const on its string_rep either.
However, Listing 2.2 type checks because const member functions only apply const to
the pointer value, not what it points to.

There are two writes allowed by the type system in Date::string_rep. Our analysis
will subsequently verify these writes to c->rep and c->valid.

Casts. C casts are unchecked, and may remove const qualifiers. C++ introduces 4 types
of casts: static_cast, dynamic_cast, reinterpret_cast, and const_cast. Only one
type of cast, reinterpret_cast, is unchecked (equivalent to C style casts).

Listing 2.3 shows a way to subvert the type system using const_cast. This example
casts away the implicit const of this for const methods and writes to fields.

Some developers have a misconception that downcasts are not dynamically checked for

14

Listing 2.4: C style downcasts are not checked for const, C++ style dynamic casts are.
class A {
public:

A() {}
};
class B : public A {
public:

B() {}
};
int main(int argc, char * * argv)
{

const B b;
A * pa;
pa = (A *) &b; // allowed
pa = dynamic_cast<A *>(&b); // disallowed

// compile error: dynamic_cast from 'const B *' to 'A *' casts away
// qualifiers

return 0;
}

const. C++ style dynamic_casts, however, are statically checked for const and produce
an error at compile-time. This is possible since C++ encodes a type’s qualifiers in its
Run-time Type Information (RTTI). See Listing 2.4 for an example.

Unions. Unions allow mutually exclusive variables to share the same storage space. Each
variable name within a union can have any type. A trivial way to subvert const in this
case is if a union has two variables with the following types: const and non-const. In this
case a developer can modify the const variable name through its non-const name.

Varargs. C style varargs are unchecked variable-length procedure arguments. They have
major disadvantages: 1) argument types are unchecked by the type checker and 2) they
only support Plain Old Data (POD) types. A POD type only contains fields (it may not
have a constructor/destructor or member functions). C++11 initializer lists solve both of
these issues: argument types are checked, and classes are supported. See Listing 2.5 for an
example of C style varargs allowing unchecked casts while C++11 initializer lists do not.

2.3 Immutability in Java
Java has limited support for immutability by default. Immutability present in Java is
object immutability, where all instances of a class are immutable. A typical example of
this is the String class. Sometimes there are two versions of classes, one immutable and
the other allowing mutation (for example, StringBuilder). These classes may or may not

15

Listing 2.5: C style varargs are not checked for const, C++11 style are.
#include <cstdarg>
#include <initializer_list>

class A {
public:

A() {}
void non_const() {}

};

void c_varargs(int n, ...)
{

va_list list;
va_start(list, n);
for (int i = 0; i < n; ++i) {

A * a = va_arg(list, A *);
a->non_const();

}
va_end(list);

}

void cpp_initializer_list(std::initializer_list<A *> list)
{

for (auto a : list) {
a->non_const();

}
}

int main(int argc, char * * argv)
{

const A a1;
const A a2;
c_varargs(2, &a1, &a2); // allowed
cpp_initializer_list({&a1, &a2}); // disallowed

// compile error: no matching function for call to 'cpp_initializer_list'
// note: candidate function not viable: 1st argument ('const A *')
// would lose const qualifier
}

16

be related through the inheritance hierarchy. Java also has the final keyword (discussed
below), and extensions such as Javari which are more similar to C++.

2.3.1 final Keyword
The final keyword on variables in Java disallows reassignment. This behaves exactly the
same as C++ const when applied to a primitive type. Using final on every field of an
object gives the same effect as a const C++ method without mutable. In our terms this
is non-transitive concrete immutability.

2.3.2 Javari
Javari [83, 82] has a readonly keyword which has similar goals to C++ const (except for
fields it applies transitively). Class methods may be qualified readonly, allowing readonly
objects to call them. Like C++, Javari also includes a mutable keyword to support abstract
immutability. Unlike C++, Javari does not include additional loopholes for casting and
pointers.

2.4 Static Analysis
Our approach will primarily use static analysis to check that code follows our definition
of abstract immutability. Static analysis approximates execution traces of a program [54].
The two major techniques we use in our static analysis are dataflow and pointer analysis.

2.4.1 Dataflow Analysis
Dataflow analysis is a form of static analysis. A user of dataflow analysis proceeds as
follows [43]. First, define a property (such as number signs) and approximate its values
using a lattice. Next, using the Control Flow Graph (CFG), estimate the value of the
property at all program points. Read off selective points of interest.

This technique is thoroughly researched, widely used, and has frameworks for imple-
menting the analysis (such as Clang). Specifically, we present our analysis in the style of
Nielson, Nielson, and Hankin [58].

We chose dataflow analysis in particular because the properties we wish to express
should hold over every execution of the program and are closely related to the static
type system. Note that dataflow analysis is conservative since it must make imprecise
assumptions.

The first design decision when formulating a dataflow analysis is to pick a lattice.
Essentially, a lattice approximates some set of program values for an analysis. A standard
example is a powerset lattice. A powerset lattice includes all combinations of possible
values drawn from a fixed set. This means that at a particular program point there may
be no values or every value may exist (or any combination of values).

There are several ways to traverse the CFG for the analysis. The technique we plan to
use is a forward analysis. Forward analysis starts at the entry node of the CFG and moves

17

towards the exit nodes (as a normal execution would). This computes facts about the past.
Our analysis computes sets of program values using may information with kill and gen
transfer functions. A transfer function defines the values that are removed (in the case of
kill) or added (in the case of gen). The analysis computes least sets so we can ensure that
if a value is available in one execution path, it may be available at the exit node.

A worklist algorithm calculates the values at all program points. The worklist contains
a list of program points that need to be calculated using the transfer functions. Each
iteration refines the values at that program point and adds other program points that
program point depends on to the worklist. The algorithm terminates when the worklist is
empty, at which point the dataflow analysis has reached the fixed point.

Our analysis will also be path-sensitive. This means we use the information embedded
in conditionals when analyzing CFG blocks for both branches. Clang provides symbolic
conditional values as part of its static analysis framework.

Our analysis is context sensitive. A context sensitive analysis uses information at a call
site when analyzing a function. For const methods, calls within that function’s body take
context information into account in our analysis. Enabling context-sensitivity requires our
analysis to be interprocedural.

2.4.2 Pointer Analysis
Because C++ programs use pointers, we need alias information to properly analyze real
programs. In particular, since a program may take an address of a field, our analysis needs
to determine if a pointer aliases a field or not.

Pointer analysis answers whether two pointers must, may, or may not alias each other.
The common way to do pointer analysis is to first label all the static allocation sites within
the program and then to apply one of several analyses [34], e.g.: Andersen’s Algorithm (AA)
or Steensgaard’s Algorithm (SA). AA uses a flow and context insensitive dataflow analysis
and computes pointer constraints for the entire program. There are variants of AA which
ensure fields of the same class do not alias [32]. SA also uses a flow and context insensitive
dataflow analysis. However, SA uses a “union-find” data structure instead of constraints.
This data structure makes imprecise assumptions by merging pointer values. SA has less
overhead than AA but is also less precise. Clang/LLVM implement SA [79]. Another
variant is object sensitive analysis [53]. Object sensitive analysis allows the analysis designer
to distinguish different object types at static allocation sites. Due to our abstraction we
integrate pointer analysis with our state.

18

Chapter 3

Dynamic Observations of
Writes-Through-Immutability

Immutability, at its core, specifies that a variable does not change. So, if variable o carries
immutability declarations, one might expect that no writes occur to o. In this chapter we
explore writes-through-immutability declarations specified by developers. Specifically, we
use C++’s const qualifier as it is a widely used immutability declaration. Throughout this
chapter we refer to any writes-through-immutability specifically as writes-through-const.

We distinguish between two uses of C++’s const qualifier: const-qualified global or
stack objects, whose data may never change (i.e. immutable objects), and const-qualified
references/pointers to objects (i.e. read-only references [61]). (For now, assume that there
are no casts that remove const qualifiers and no mutable storage class specifiers; these
language features violate bitwise immutability.) An immutable object’s fields may never
change, and mutable references to that object may never be created. A read-only reference,
on the other hand, only guarantees immutability for accesses through qualified references.
An object with a read-only reference to it may still be mutated through other, mutable,
references. C++ enforces a shallow immutability guarantee (also known as bitwise const)
for writes through the read-only reference: while it is illegal to reassign the fields of such
an object, any referents of fields may change. We expanded on this in Chapter 2.

C++’s type system admits several workarounds to const’s supposed immutability guar-
antees. Much research defines type qualifiers similar to C++ const, but with stronger
guarantees. These type systems do not have any holes in the type system, such as unsafe
casts. Furthermore, they not only ensure that the field values do not change, but also
ensure that objects referenced through fields also do not change (i.e. deep, or transitive,
immutability; again, see Chapter 2 for more details).

On the other hand, our industrial contacts have indicated that, in their codebases,
const has been used to deter new developers from modifying certain variables. Such vari-
ables may be modified by an experienced developer ready to assume the consequences [21].
In such cases, const serves an advisory role, but does not provide any guarantees.

Our goal in this chapter is to explore the space of possible meanings for immutability
declarations in C++ and to examine what guarantees developers appear to be expecting in
practice. This allows us to observe any instances of abstract immutability. We developed
a tool, ConstSanitizer, that instruments programs to identify source locations that modify

19

const-qualified objects, using more restrictive semantics than guaranteed by C++. Const-
Sanitizer monitors writes-through-const, i.e. writes performed on const-qualified objects
or references, either transitively (which is allowed in C++), or through C++’s const es-
cape hatches. To better understand const usage in practice, we ran ConstSanitizer on a
benchmark suite and manually classified all writes-through-const.

Specifically, the goal of this chapter is to answer the following research questions:

(RQ3.1) Do developers perform shallow and transitive writes-through-const?
(Answer: Yes to both.)

(RQ3.2) How do developers write-through-const?
(Answer: By directly writing to fields of const-qualified objects and through transi-
tive writes; both are about equally common.)

(RQ3.3) Why do developers write to fields of const-qualified objects?
(Answer: Buffers and delayed initialization were important reasons, but over half
the time, we couldn’t find any clear reason motivating developers’ decisions to write
through const.)

Our contributions include:

• the design and implementation of a novel dynamic analysis for C++ that detects
writes-through-const-qualified variables (both shallow and transitive);

• an empirical study of const usage (including writes-through-const-qualifiers) on a
suite of 7 C++ benchmarks; and,

• based on the empirical study, a novel classification of writes-through-const-qualifiers
in the wild according to a root cause and a set of attributes.

3.1 Motivation
We continue with an example of a const usage that must be accepted by C++ compil-
ers [72] but leads to undefined behaviour when used with the C++11 standard library
specification. This may lead to difficult to debug errors.

Listing 3.1 contains function writeId(), which modifies field id of its parameter. Func-
tion evil() takes a const-qualified parameter, casts away the const qualifier, and calls
writeId(). Both these functions must be accepted by C++ compilers. Recall the purpose
of const_cast is to work around mis-qualified libraries.

Function writeId() does not perform anything unexpected. The write to id is legiti-
mate with respect to const: writeId() has a non-const reference to data and is therefore
entitled to write to it. At this point the write is valid, no analysis would attempt to pre-
vent it. (writeId() conflicts with a different part of the library specification—one oughtn’t

20

Listing 3.1: Method evil() violates the spirit of const by writing to an externally-visible
field of const object “a”. Circled numbers used for subsequent explanations.

class A { public: int id; };
size_t std::hash(const A& a) { return std::hash(a.id); }
std::unordered_map<A, std::string> m;
const A a;

m.insert(a, "Value");
evil(a);
m.find(a);

void evil(const A& a) { writeId(const_cast<A*>(&a)); }
void writeId(A *pa) { pa->id = 5; }

1

2
3

4

write to fields used as hashes—but that conflict is beyond the scope of this chapter. We
check these kinds of writes later in Chapter 5.)

Function evil() accepts a const parameter “a”; the const qualifier intuitively suggests
that the state of “a” should not change across a call to evil(). Chapter 2.2 explains the
C++ semantics of const in more detail; Section 3.2 explains the writes that ConstSanitizer
monitors.) evil() then casts away the const qualifier and calls writeId(), which writes
to the id field, thus changing the state of “a”.

Listing 3.1 also contains client code. This client code provides a hash() function for
when objects of type “A” are used with the standard library. It continues with a declaration
of an “std::unordered_map m”, which gets a const-qualified object “a” added to it. (In
C++, objects like “a” and m are constructed upon declaration.) Between the insert() call
and the find() call, the program calls evil(), which changes the id field, thus causing the
hash() of “a” to change. As a result, the find() call may unexpectedly return m.end(),
indicating that it did not find “a” in the expected bucket; that result should be a surprise
to the client.

In our example, the client code is doing nothing wrong, yet it may get an unexpected
result from the map. The client should be entitled to believe that its const-qualified “a”
object does not change between the two map calls and that the object is still in the map.
However, the client would not find the object in the map after the call to evil().

Shadow Value

bn+1 bn bn−1
... b0

Is T const?
Is T * const?

Is T ** const? Is T (*)n const?

Figure 3.1: Our shadow values encode the const-ness of each level of an n level pointer.

21

Analysis of example. We informally describe how ConstSanitizer works on our ex-
ample. Our LLVM-based tool actually operates at the llvm bitcode level (assisted by
metadata from clang), but for clarity we describe shadow values and the effects of state-
ments on them using C++ code. Section 3.2 describes our analysis as-implemented on top
of LLVM.

ConstSanitizer associates a shadow value with each variable. This shadow value de-
scribes whether or not the variable, and each of its dereferences, may be written to; Fig-
ure 3.1 shows how shadow values encode const-ness. We present the semantics of our
shadow encoding more thoroughly in Table 3.1. ConstSanitizer propagates shadow values
through the program’s execution. At each write, ConstSanitizer verifies that the shadow
value permits a write, and indicates a write-through-const-qualifier if not.

We next show how ConstSanitizer works; circled numbers refer back to Listing 3.1.

1 Program allocates const-qualified new object “a”. Using debug information, Const-
Sanitizer finds the const qualifier in “a”’s type, and associates shadow value (1)2
with “a”, indicating that “a” is const.

2 ConstSanitizer then propagates shadow value (1)2 to the function call evil(). Inside
function evil(), variable “a” is a reference, so we shift the shadow value to the left
and obtain (10)2 inside the function call boundary.

3 Program casts from type const A* to type A*. Because “a” is a reference inside
evil(), the address-of operation has no effect on the shadow value. (On a non-
reference, taking the address would also result in a logical shift left of the shadow
value.)
The cast of the const qualifier is invisible to LLVM, so ConstSanitizer propagates
shadow value (10)2 across the cast. (Had “a” originally not been const, a pointer to
it would have shadow value (00)2 and it would have shadow value (0)2.)
Finally, ConstSanitizer passes shadow value (10)2 for parameter “pa” of writeId().

4 Inside function writeId(), the instrumented write to field “id” observes that the
shadow value of the address of the containing object is (10)2. Because the left-hand
side uses the -> operator, ConstSanitizer shifts the shadow value back right once,
giving shadow value (1)2 for the containing object. Because the containing object is
const, we also apply a shadow value of (1)2 to all writes to fields of that object.
When executing the write, ConstSanitizer checks the right-most bit of the shadow
value for the destination. Since this value is (1)2, the program is writing a value
through a const reference. ConstSanitizer therefore signals a write-through-const.

Section 3.3 contains our classification of writes-through-const. We classify this write as
root cause “C”, a write after casting away a const, and assign attribute “I”, for incorrect.
Note that all of the writes-through-const we find may not all be writes implementing
abstract immutability. We use developer provided const qualifiers, this includes all pa-
rameters and variable declarations.

22

Source File(s)

clang

sanitizer flag

add metadata for
expression extents llvm

instrument LLVM
bitcode to track
const and

check stores

Object File(s)

clang

sanitizer flag

link with modified
runtime library

includes code to report writes-
through-const at runtime

compiler-rt

Executable

Figure 3.2: ConstSanitizer generates instrumented LLVM bitcode which reports writes
through const qualifiers at runtime.

3.2 Technique
Our ConstSanitizer tool generates instrumented code which, when executed, prints out no-
tifications about writes-through-const-qualifiers. ConstSanitizer builds upon LLVM [80]
and was inspired by existing sanitizers including AddressSanitizer [71] and MemorySani-
tizer [73].

We implemented ConstSanitizer by extending the clang frontend and adding instru-
mentation passes on llvm bitcode. The instrumented code calls hooks in our modified
version of llvm’s compiler-rt runtime library. Figure 3.2 depicts our processes for com-
piling instrumented code. Plain text indicates inputs and outputs; outlined boxes indicate
existing software components; and light gray boxes indicate our modifications.

We first describe our modifications to the clang frontend. When the developer enables
ConstSanitizer (using a command-line flag), our frontend adds metadata about initializa-
tion expression extents to the bitcode. This metadata notifies the llvm-level instrumen-
tation about source-level constructs that would otherwise be lost in translation to LLVM
bitcode.

Specifically, we modified clang’s bitcode generator at variable declaration statements.
At statements of the form type var = expr we mark the instructions making up expr
so that our llvm-level instrumentation can ignore them. The rationale for ignoring those
writes is that the primary user-visible write from a clang declaration statement is to var,
on the left-hand side. We empirically observed that other writes within expr are almost
always initialization writes to var, which ought not to be reported even if var is const.
Although a programmer may include explicit (side-effecting) writes within expr, we ignore
such writes to eliminate the false positives that otherwise occur due to initialization writes.

23

Listing 3.2: C++ source code showing a false negative due to expression handling.
const int * x = new int(0);
int * y = const_cast<int *>(x);
*y = 1; not reported

We use const-ness information as provided by declarations, rather than implementing
a taint-based approach. Listing 3.2 shows a false negative caused by our approach. The
debugging information for y gives shadow value (00)2. Hence, on the write through y, we
do not report a write-through-const, because we do not propagate const-ness information
from variable initializers. One might expect this write to trigger a report since y aliases
the read-only reference x. (We report a write if the cast is part of a function argument.)

Most of our instrumentation lives in a custom llvm pass that generates code to track
const-ness of the program’s values. The instrumentation manipulates shadow values to
track const qualifiers at every instruction that generates a pointer value. The const
information relies on type tables from DWARF 4 debugging information. In llvm, this
includes all variables in functions—all local variables are allocated on the stack and are
pointers.

Our dynamic analysis returns (as one might expect) no false positives, since it observes
program executions. However, it depends on the accuracy of the debugging information and
metadata, which it uses to identify which variables are const-qualified in the source and
to identify initialization expression extents. We ran into one false positive in our results
which we believe is the result of the metadata being invalidated between LLVM passes.
Throughout the remainder of the section, we point out a couple of cases where our analysis
must approximate intended const-ness because actual const-ness information does not
exist.

Structure of shadow values. A shadow value consists of n bits tracking const-ness
(where n is the word length of the processor architecture). Each bit represents whether a

Table 3.1: Shadow values encode available const-ness restrictions on variables.

Declaration Shadow value Example statement Allowed
int x (0)2 x = 5 ✓
const int x (1)2 x = 5 ×
int * x (00)2 x = y ✓

*x = 55 ✓
int *const x (01)2 x = y ×

*x = 55 ✓
const int * x (10)2 x = y ✓
(or int const * x) *x = 55 ×
const int *const (11)2 x = y ×
(or int const *const) *x = 55 ×

24

pointer or pointee has a const qualifier or not. The rightmost bit represents the const
qualifier of the value itself. Bits to the left (if the value is a pointer) represent what the
pointer transitively points to. Our encoding supports pointers up to n − 1 levels deep on
n-bit processors (64 for our experiments, although 32 is sufficient). Figure 3.1 depicted
our encoding of shadow values, while Table 3.1 shows how shadow values represent sample
const-ness settings and corresponding writes allowed. With these examples, a disallowed
write will generate a warning with ConstSanitizer.

Shadow value computation. We next describe how we create and propagate shadow
values. Our ConstSanitizer instrumentation dynamically propagates shadow values repre-
senting const qualifiers through a program’s instructions. Our goal is to monitor 1) writes
to mutable fields; 2) locations where const has been cast away; and 3) transitive writes,
to pointees of fields, through const references. Table 3.2 summarizes the analysis rules.

llvm bitcode uses alloca instructions to introduce new pointer values. Our llvm pass
instruments each alloca instruction with the appropriate shadow value, as extracted from
the type information in the source code, using standard clang debug information.

Ultimately, our instrumentation verifies the behaviour of store instructions. Recall
that we exclude store instructions that come from the right-hand side of a declaration
statement. For all other stores, we check whether the operand—the location being written-
to—represents a const-qualified type. The rightmost bit of the shadow value provides this
information. If that bit is 1, an execution of this store instruction is a write to a const-
qualified location. We insert a call to our runtime library to check the value of the bit and
to report a write-through-const if the bit is 1. (We later discuss a special case for store
instructions where the value being stored is a function argument.)

Conversely, load instructions return a pointer that represents a single pointer derefer-
ence. To compute the returned shadow value, we right shift the operand’s shadow value.
Recall that the least significant bit represents the current const-qualifier applied to the
value.

llvm’s getelementptr (GEP) instruction accesses arrays and fields of objects. This
instruction preserves type safety through dereferences in the compilation process and is
a safe alternative to directly generating pointer arithmetic code. Our instrumentation
performs a logical shift right by one bit for every pointer dereference implied in the GEP
instruction. Our treatment of GEP implicitly handles transitive immutability as follows:
when a GEP accesses an object field, and the containing object is const-qualified, we
generate a shadow value as if the field had a const qualifer on every type for the contained
field (this corresponds to a shadow value of all 1s). This treatment implies checks for
transitive immutability; generating a shadow value of 1 here (only the least significant bit
is 1) would generate the same bitwise immutability checks for const as specified by the
C++ standard.

Our instrumentation propagates const-ness information (in shadow values) alongside
references to that location. In C++, access restrictions to a location depend on whether
the program is accessing that location through a const reference or not. Therefore, in
the presence of casts and pointer arithmetic, there is no ground truth about the const-
ness of the resulting references and we must make a reasonable under-approximation as to

25

const-ness.
We next discuss casting-related llvm instructions. The bitcast instruction converts

a value into a specified type. If a program converts a pointer between equally-indirected
pointer types, then we copy the old shadow value to the result. (C++ const-casts do not
appear at LLVM bitcode level, nor do the component of a C-style cast that manipulates
const-ness. ConstSanitizer preserves declared const-ness for such variables.) Otherwise,
we choose to assume that the instruction’s result has no const qualifiers. We make this
assumption in all cases for the inttoptr instruction, which represents pointer arithmetic
not handled by the GEP instruction, as well as for extractvalue and extractelement.

Our instrumentation stores shadow values for function calls’ arguments and return

Table 3.2: Dynamic analysis rules showing computation of shadow value for result %1.

Instruction New shadow value

%1 = alloca ... from const qualifiers in debugging information,
consistent with Figure 3.1.

%1 = getelementptr %2 by logically shifting right %2’s shadow value once for
each dereference this instruction represents.
if field access: check const qualifier of base object;
for (immutable) const base objects, new shadow
value is all ones, otherwise all zeros.

%1 = call(%2) loaded from return shadow value in Thread-Local
Storage (TLS).
for pointer arguments %2: also write shadow
values to appropriate TLS slots for the function call;
if the call and argument are marked as ignored, write
all zeros for the shadow value for the argument.

%1 = phi/select ... carry out same operation on shadow value operands.
%1 = bitcast %2 from the shadow value for %2, if compatible;

otherwise all zeros.
%1 = load %2 logical shift right of %2’s shadow value.
store %2, %1 check rightmost bit of shadow value for %1, report

write-through-const if set. (Only applies if the
instruction not ignored as an initializer.)
if %2 is function argument: load shadow value for
%2 from TLS, left shifted once. New shadow value is
bitwise OR of shifted value with previously
computed shadow value for %1.
if %2 is “this” function argument: same steps as
above, except skip the bitwise OR step.
if %2 is “this” function argument for
destructor: shadow value for %1 is (00)2.

%1 = extractelement all zeros.
%1 = extractvalue
%1 = inttoptr
%1 = landingpad

26

values using thread local storage (TLS). In the straightforward case, we store shadow
values for pointer arguments in TLS slots reserved for each argument. However, we ignore
pointer arguments’ const qualifiers if the call and the argument are both part of a variable
declaration. As for (pointer) return values: if a function was instrumented by our tool,
then we read the shadow value from the appropriate TLS slot. We also store a mutable
shadow value in the return value TLS slot, in case the function had not been instrumented
by our tool. Our instrumentation either reads the approximation or, if applicable, the
actual return value generated by the called function. In the presence of callbacks from
uninstrumented code back to instrumented code, our instrumentation may use stale shadow
values and report extraneous results based on these stale shadow values.

We have a special case for store instructions where the value stored is a function argu-
ment, as mentioned above. Consider a store instruction “store value, location”. We
compute the shadow value for “location” as follows. First, we get the shadow value for
“value” from the TLS. Then, we adjust this shadow value to be compatible with the type of
“location”: our encoding requires one logical shift to match the type of “value” to that of
“location”. We bitwise OR the shadow value for “location” previously computed (from
an alloca instruction) with the shifted value to get the new shadow value for “location”.
This preserves const qualifiers of the original argument and of the local variables in the
function.

There are two further special sub-cases for store instructions and function arguments
for (i) method and (ii) destructor calls. Listing 3.3 illustrates sub-case (i). Here, foo()
is declared const. The compiler will hence treat this as const within foo(). However,
for our dynamic analysis, we want to detect writes based on the const-ness of this from
the caller; in method bar() in Listing 3.3, receiver object nc for foo is not const, so we
do not want to report the call’s (transitive) store to x. foo’s method arguments appear
as “value” operands of store instructions while the “location” is an alloca within the
function. We set the shadow value of the associated alloca instruction to the value of the
argument after applying a logical shift left by one (since it’s a pointer). This treatment
properly ignores const qualifiers added due to callee method signatures.

For sub-case (ii), destructors, we do not want to report any writes through this as the
object no longer exists after the call (so that writes to the object aren’t visible in any case).
We handle this case by simply assuming that the this argument is mutable.

For all other arguments, we do a bitwise OR between the alloca shadow value and the
argument shadow value logically shifted left by one, which maintains all const qualifiers.
This ensures that if either the original variable type or the argument type has a const
qualifier we would report a write-through-const.

Shadow value computation example. Listing 3.3 presents the C++ source code
for C::foo, a const qualified method, and the associated LLVM bitcode. Consider the
bar function, which calls foo twice, first with mutable (i.e. non-const) receiver object nc
and then with const receiver object cc. Within bar, the shadow value of nc is (0)2 and
the shadow value of cc is (1)2. Our instrumentation assigns shadow values for each LLVM
instruction with a pointer result. We instrument C::foo as follows:

• The first instruction, alloca, stores its result in %1. Since it is an alloca instruc-

27

Listing 3.3: C++ source code showing calls to method foo() (with its definition and
associated LLVM bitcode) from const context cc and non-const context
nc.

void bar() {
C nc;
const C cc;
nc.foo();
cc.foo();

}

class C {
int *x;

public:
void foo() const {
*x = 42;

}
};

define void @C::foo(%class.C* %this) {
%1 = alloca %class.C*
store %class.C* %this, %class.C** %1
%2 = load %class.C*, %class.C** %1
%3 = getelementptr %class.C, %class.C*

%2, i32 0, i32 0
%4 = load i32*, i32** %3
store i32 42, i32* %4
ret void

}

foo’s definition

foo’s LLVM bitcode

28

tion, we obtain its shadow value from clang debugging information. The associated
shadow value is (10)2: in this const-qualified method, the type of this is that of a
const pointer to the containing class, const C *.

• At the store instruction, without special handling, we would load the shadow value
of argument %this from the TLS; logically shift left the shadow value by one to
account for the fact that we are performing a store to memory allocated for that
argument; and bitwise OR the resulting shadow value with the original shadow value
for %1. In our example, whether the receiver object is cc or nc, the shadow value for
%1 is (10)2.

• Next, we obtain the shadow value for the result of the load, %2. As %2 returns a
pointer, we shift %1’s (the operand’s) shadow value right by one, giving a shadow
value of (1)2.

• Next, the getelementptr instruction results in a pointer to the class’s x field. Our
instrumentation of getelementptr could produce two different shadow values, de-
pending on the instruction’s operand. In this case, %2 is a const object, and the
resulting shadow value for a fully const-qualified x field is (11)2.

• Next, we obtain the shadow value for the load result %4 using the same technique
as for %2. The resulting shadow value is (1)2.

• Finally, we insert a check at the store instruction. In this case, the least significant
bit of the shadow value associated with location (%4) is 1. Therefore we would
dynamically report a write-through-const at the write to field x of the const method.

For methods, this instrumentation is not enough. We only want to report a write-
through-const for the call with const receiver object even though both objects call the
same static method. Before the call to foo, our instrumentation stores the shadow value of
the receiver object in its TLS slot. Our instrumentation of foo looks for store instructions
that use the receiver object and recomputes the shadow value of the location. Here, we
load the shadow value from its TLS slot and shift left to match the type of the expected
shadow value of %1. For nc’s call, this shadow value is (00)2. Since foo is a method, we
ignore the original shadow value of %1 ((10)2) and overwrite it with new shadow value (00)2.
Following the remaining steps in foo as above, the shadow value of %4 is now (0)2 and we
do not report a write-through-const. In the cc case, we would follow the same steps, but
instead report a write-through-const, because the shadow value would be (10)2.

3.3 Classification
One of our contributions is a careful analysis of the const usages detected by our ConstSan-
itizer dynamic analysis tool. We propose a classification for writes-through-const-qualifiers
along 2 axes. We manually assigned each write 1) a single cause, from a set of common
root causes; and 2) a set of additional attributes. This classification distills our empirical
observations about const use in practice.

29

Table 3.3: Root causes of writes through const and our symbols for these causes.

Root Cause Symbol
Write to mutable field M
Transitive write T
Write after casting a const qualifier away C

Table 3.3 lists all of the root causes for writes-through-const, along with a one-letter
abbreviation that we will use in Section 3.4’s tables. ConstSanitizer detects such writes
and reports them to the user. The causes are:

• mutable field (M): the program writes to a mutable-labelled field of a const object.
class Mutable {
mutable int x;

public:
void mutator() const { x = 42; }

};

mutable permits method mutator() to write to field x even though it is a const
method, which would ordinarily prevent (at compile-time) writes to fields of the this
object.

• transitive write (T): the program writes through a field of a const object.
class TW {
int *x;

public:
void transitiveWrite() const { *x = 42; }

};

const-qualified method transitiveWrite() writes through field x of the this ob-
ject. While the const qualifier prevents mutation of the x field, it does not prevent
transitive writes of the memory pointed to by x.

• casting away const (C): the program writes through a pointer which has previously
been const but whose const-ness has been cast away using a const_cast or C-style
cast.
void writeToArg(int *y) { *y = 17; }

const int *x = ...;
writeToArg(const_cast<int *>(x));

The write in writeToArg() mutates the value pointed-to by x while x is const-
qualified. ConstSanitizer reports writes-through-const-qualifiers whose const-ness
has been cast away, using the const-ness of the most recent declared type for the
value.

30

Table 3.4: Observed attributes of writes through const and corresponding symbols.

Attribute Symbol
Write is synchronized S
Write is not visible N
Write is to a buffer/cache B
Write is delayed initialization D
Write is incorrect I

Table 3.4 summarizes our attributes for writes-through-const-qualifiers. We assigned
attributes to writes based on our understanding of the code. Writes may have multiple
attributes; for instance, a write in our Protobuf benchmark is B & N & S. The attributes
are:

• synchronized (S): indicates that the write is always protected by a lock. This attribute
is often required under the C++11 standard: all types that are shared between
threads and that may be used with the standard library must be either bitwise const,
which is clearly not the case when we witness a write, or else protected against
concurrent accesses [76]. The following example, from Protobuf, is synchronized
using Google mutex primitives.
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
_cached_size_ = total_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();

• not visible (N): indicates that the result of the write is never externally visible (e.g.
private and with no accessor methods; may be accessed in the same translation unit).
Often occurs in the context of testing-related counters.
mutable int countFooCalls;
void foo() const { ++countFooCalls; }

• to a buffer/cache (B): indicates that the write is of a derived value which can be
computed from other currently-available state. Such writes are often optimizations.
_cached_size_ = total_size;

• delayed initialization (D): indicates that the write initializes state not initialized in
the constructor or its transitive callees. Writes with this attribute could have also
occurred in the constructor, but the written value was not yet available. Failure to
call a delayed initialization method would lead to undesired behaviours (or lack of
desired behaviours).
bool Generator::Generate(const FileDescriptor* file, ...) const {
this->file_ = file;

}

31

• incorrect (I): indicates that the write appeared to violate the const-ness of the object.

Note that S/N/B/D writes are not necessarily errors and do not necessarily violate
immutability properties. We thus chose the word “attribute” to suggest that S/N/B/D
indicate an incidental property of a write-through-const. If the code containing the writes
is properly written, an object with an S/N/B/D write-through-const can still appear to
be immutable to the client, assuming all references to that object are read-only. A write
with attribute I, however, is a client-visible violation of const.

3.4 Results
We evaluated our ConstSanitizer tool on 7 C++ software projects, plus 1 C project. We
attempted to choose significant benchmarks using these guidelines:

1. must span a range of application areas: applications and libraries; small, medium,
and large projects; interactive and non-interactive;

2. are used by the community: the Google projects are the most popular on GitHub;
the applications are popular among FOSS users; contributor-group sizes vary from a
core group to a large community; and,

3. must extensively use const constructs.

A ConstSanitizer report indicates that a write that would not be allowed under deep
immutability occurred through a read-only reference. Such writes are allowed under C++
semantics. They are only a departure from the const semantics that we experiment with
(i.e. deep immutability with no casts and no mutable). Our experiments classify writes-
through-const observed in actual const-using programs. Classifying these writes provides
us valuable insight about const usage in practice, which will guide future work.

Our approach was to modify the project’s build system to use our tool and to disable
optimizations. We then ran the project’s test suite, when available, and collected output
from our instrumentation. Using this output we categorized the writes that we found,
assigning root causes and attributes. Along with the number of static locations of writes
that we found (bolded), we also report the number of dynamic occurrences of each write
over observed executions. All else being equal, dynamic counts can help prioritize writes-
through-const, with more-frequent locations to be investigated first. We refer to these
dynamic occurrences of writes as “occurrences” in the sequel. Table 3.5 summarizes our
benchmark projects.

We recorded relative overhead introduced by our instrumentation with respect to both
building and testing times on the longest-running projects, Protobuf and LevelDB. Ta-
ble 3.5 includes build slowdowns induced by our tool, which ranged between 1.05× and
1.40×. Our tool caused a 3.3× slowdown and 1.3× slowdown in test execution times for
Protobuf and LevelDB respectively. The remaining projects were either interactive, or did
not have long enough running test suites to get meaningful results. We do not report any
LLVM TableGen numbers because we built it (with instrumentation) as part of the LLVM
build process and were not able to build the LLVM TablGen executable separately.

32

Table 3.5: We ran our experiments across 7 C++ (and 1 C) software projects; ConstSan-
itizer introduces a build slowdown of 1.05×–1.40× across all projects.

Name Version Description Build
Slowdown

C++ Protobuf 2.6.1 Serialization framework 1.40×
C++ LevelDB 1.18 Key/value database 1.05×
C++ fish shell 2.2.0 UNIX shell 1.32×
C++ Mosh (mobile shell) 1.2.5 SSH replacement 1.26×
C++ LLVM TableGen 3.7.0 Domain-specific generator —
C++ Tesseract 3.04.00 OCR engine 1.10×
C++ Ninja 1.6.0 Build system 1.20×
C Weston 1.9.0 Wayland compositor 1.28×

3.4.1 Protobuf
Protobuf is Google’s serializing framework for structured data, consisting of about 214 000
(we do not count comments or whitespace) lines of C++ code. We analyzed version 2.6.1
of Protobuf by running its test suite, which contains 5 tests. Table 3.6 summarizes the
Protobuf results. ConstSanitizer found 76 static write locations (and 127 644 occurrences).
We describe 5 archetypes for these writes. An archetype is a group of writes that we judged
to be similar; the writes may happen at different source locations.

Table 3.6: Protobuf has 5 archetypes from 76 writes-through-const (127 644 occur-
rences).

Archetype Locations Occurrences Root Cause Attributes
Generator printer 7 118464 T B & N & S
Message cache sizes 61 7158 M B & S
Source code locations 4 1898 T I
Linked list operations 2 84 M I & S
Generate initialization

method 2 40 M D & N & S

The “Generator printer” archetype occurred most often. Listing 3.4 presents a repre-
sentative expanded stack trace. The function at the top of the listing shows the initia-
tion of the write in Generator’s const-qualified Generate method. This method calls
PrintTopBoilerplate, passing a pointer to a mutable io::Printer. Then, Printer’s
WriteRaw method modifies (root cause T) two fields: buffer_ and buffer_size_. These
fields are protected by a lock, act as a buffer, and are not visible outside the class (which
is just a printer). This archetype also includes other Print-like calls with different source
locations but a common explanation.

The “Generate initialization method” archetype is related to “Generator printer”. List-
ing 3.5 shows this archetype. The printer_ field was initialized as seen above. C++ allows
this write due to the mutable specifier. Another field, file_, is lazily initialized as well.

33

Listing 3.4: Protobuf’s Generator class performing transitive write-through-const to a
Printer field.

bool Generator::Generate(...) const {
PrintTopBoilerplate(this->printer_, ...);

}

void PrintTopBoilerplate(io::Printer* printer, ...) {
printer->Print(...);

}

void Printer::Print(...) {
WriteRaw(text + pos, i - pos + 1);

}

void Printer::WriteRaw(..., int size)
this->buffer_ += size;
this->buffer_size_ -= size;

}

transitive writes
initiated by const ::Generate()

python_generator.cc
printer.cc

Both of these fields are protected by the same lock, and are not externally visible outside
the class.

Listing 3.5: Protobuf’s Generate initialization method performing lazy initialization.
bool Generator::Generate(...) const {
this->file_ = file;
this->printer_ = &printer;

}

python_generator.cc

We show an example of the “linked list operations” archetype in Listing 3.6. Here, the
depart method grabs a lock, and uses a pointer with type linked_ptr_internal const *,
so that the const applies to what is pointed to, not to the pointer. The method then
modifies the next_ field of a valid object at the point indicated by the comment. The root
cause here is mutable: the next_ field is declared mutable linked_ptr_internal const*
next_. This write, in the depart() method, is an incorrectly labelled write through p, and
synchronized.

Listing 3.6: Protobuf using Google test linked list that writes internally.
bool linked_ptr_internal::depart()

GTEST_LOCK_EXCLUDED_(g_linked_ptr_mutex) {
MutexLock lock(&g_linked_ptr_mutex);

if (this->next_ == this) return true;
linked_ptr_internal const* p = this->next_;
while (p->next_ != this) p = p->next_;

34

Listing 3.8: Protobuf writing to a source location object.
void Parser::LocationRecorder::AttachComments(...) const {
this->location_->mutable_leading_comments()->swap(*leading);

}

std::string* SourceCodeInfo_Location::mutable_leading_comments() {
this->leading_comments_ = new ::std::string;

}

parser.cc
descriptor.pb.h

p->next_ = this->next_;
return false;

}

gtest-linked_ptr.h

Listing 3.7 shows the “Message cache sizes” archetype. The write is protected by a lock,
and is allowed by C++ because the field is mutable. However, this write, while involved
with caching, is externally visible. The method void SetCachedSize(int size) const
enables external code to modify this field through a const reference to the containing
object.

Listing 3.7: Protobuf writing to a message’s cached size field.
int FieldDescriptorProto::ByteSize() const {
GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
this->_cached_size_ = total_size;
GOOGLE_SAFE_CONCURRENT_WRITES_END();

}

descriptor.pb.cc

Listing 3.8 shows the “Source code locations” archetype we found in Protobuf. The
mutable_leading_comments method, which includes “mutable” in its name, is not de-
clared as const, and thus allows writes. Its implementation writes to the location_
field; we show an example of a caller which causes such a write. The location_ field is
externally-visible, so this is a clearly incorrect externally-visible transitive write; we assign
attribute I.

We also found an archetype involving writing data to a message. This included 133
unique source locations, occurring 14 638 times in total. However, the code is heavily
inlined and the build system appears to overwrite optimization settings for this subdirectory.
Manual inspection of the code revealed no obvious writes. We believe this is a result of
optimizations causing invalid debugging information. We thus omitted this archetype from
Table 3.6.

3.4.2 LevelDB
LevelDB (1.18) is Google’s lightweight key/value database library, consisting of approxi-
mately 18 000 lines of C++ code. The test suite contains 23 test drivers. There were 6

35

archetypes and also 6 root source locations for these writes. These locations contributed
to 13 792 occurrences over the test drivers. Table 3.7 shows a summary of our findings for
LevelDB.

Table 3.7: LevelDB shows writes from 6 source locations, with 13 792 occurrences in
total.

Location Occurrences Root Cause Attributes
db/db_test.cc:40 10311 T N & S
util/cache.cc:315 2841 T B & S
db/snapshot.h:54 319 T I
db/snapshot.h:55 319 T I
helpers/memenv/memenv.cc:274 1 T I & S
util/testutil.h:42 1 T N

Listing 3.9 shows the source location that caused the majority of the occurrences. This
code extends the RandomAccessFile class to add an atomic counter field, counter_, that
tracks the number of read calls. The root cause is that counter_ is a pointer and is
transitively written to. The reason for this write is test controllability: this class is part of
the test infrastructure. Yet it must override the monitored call (and thus must be const).
This class is meant for testing purposes only, so we concluded the write was not visible
outside the class—the counter is only used in the testing code.

Listing 3.9: LevelDB write in db_test.cc incrementing counter tracking # of writes to
a file.

class CountingFile : public RandomAccessFile {
virtual Status Read(...) const {
this->counter_->Increment();

}
};

db_test.cc

Listing 3.10 shows a modification to a caching structure that generates a new identifier.
This cache is a field, block_cache, in options, which is declared as const Options& in
Table::Open. The root cause is a transitive write, since the code dereferences a field of
a const object to do the write. This write is protected by a lock and clearly involved in
caching. However, it appears that other code outside of Options uses this block cache
field.

Listing 3.11 shows a modification of a linked list node accessed through two pointer
dereferences. This corresponds to both snapshot.h locations shown in the table. This
code modifies the pointers obtained from following its own nodes, performing a transitive
write through a const qualifier. We do not know why the developers declared s as const
since it is also destroyed at the end of the method. In any case, we assigned this write
attribute I.

Listing 3.12 shows a write-through-const in the InMemoryEnv class. As with the cache,
the root cause is a transitive write: in the caller, options is declared const Options&.

36

Listing 3.10: LevelDB write in cache.cc creating a new block cache in const Options
object.

Status Table::Open(const Options& options, ...) {
rep->cache_id = (options.block_cache ?

options.block_cache->NewId() : 0);
}

virtual ShardedLRUCache::uint64_t NewId() {
MutexLock l(&id_mutex_);
return ++(last_id_);

}

table.cc
cache.cc

Listing 3.11: LevelDB write in snapshot.h deleting a list element and updates pointers.
void Delete(const SnapshotImpl* s) {
assert(s->list_ == this);
s->prev_->next_ = s->next_;
s->next_->prev_ = s->prev_;
delete s;

}

snapshot.h

Unlike the caching example, this file isn’t involved in caching and appears to be a visible
change to options. This write in NewWritableFile() is protected by a lock, giving
attribute I & S.

Listing 3.13 shows the final write-through-const-qualifier that we found for LevelDB.
The caller location is the same as in Listing 3.12 above. In this case, however, the containing
class extends InMemoryEnv and adds a field to count the number of errors (for testing
purposes only). Therefore we attribute this write as being not visible—it is only used in
tests.

Listing 3.12: LevelDB write in memenv.cc changing the environment in options object.
Status DB::Open(const Options& options, ...) {
s = options.env->NewWritableFile(...);

}

... InMemoryEnv::NewWritableFile(...) {
MutexLock lock(&mutex_);
file_map_[fname] = file;

}

db_impl.cc
memenv.cc

37

Listing 3.13: LevelDB write in testutil.h injecting faults into the test suite.
... EnvError::NewWritableFile(...) {
++this->num_writable_file_errors_;

}

testutil.h

3.4.3 fish shell
fish shell (2.2.0) is a UNIX shell providing advanced features, consisting of approximately
48 000 lines of C++ code. We compiled the project with our tool and executed an instance
of the shell. Our workload launched the shell and immediately exited. We found writes from
4 unique source locations for 98 occurrences in total. All locations are within the exchange
function. Listing 3.14 shows this function along with a snippet of _wgetopt_internal that
calls exchange. The root cause is that the const-qualified argv variable gets cast to non-
const and then passed to exchange. This write shows that the const-qualifier on argv is
incorrect and should not be included.

Listing 3.14: fish shell writing to const-qualified argv object.
... _wgetopt_internal(..., wchar_t *const *argv, ...) {
exchange((wchar_t **) argv);

}

... exchange(wchar_t **argv) {
argv[bottom + i] = argv[top - (middle - bottom) + i];
argv[top - (middle - bottom) + i] = tem;
argv[bottom + i] = argv[middle + i];
argv[middle + i] = tem;

}

wgetopt.cpp

3.4.4 Mosh (mobile shell)
Mosh (mobile shell) (1.2.5) is a remote terminal application that is a replacement for secure
shell (SSH), consisting of about 13 000 lines of C++ code. Our workload was to launch the
mosh server and immediately terminate it. We found writes-through-const at 8 unique
source locations (432 occurrences). Listing 3.15 shows one of the writes. Mosh parsing
code sets a flag to indicate completion. However, the developers declared the parser action
as const in the same method where they modify it. The root cause is that the variable
handled is declared public mutable. We believe this is an incorrectly const qualified
variable.

Listing 3.15: Mosh handling terminal action with a write-through-const.
void Emulator::print(const Parser::Print *act) {
act->handled = true;

}

terminal.cc

38

Listing 3.17: LLVM SubReg writes to a mutable field in a const method.
unsigned CodeGenSubRegIndex::computeLaneMask() const {
if (this->LaneMask)
return this->LaneMask;

this->LaneMask = ~0u;
unsigned M = ...;
this->LaneMask = M;
return this->LaneMask;

}

CodeGenRegisters.cpp

3.4.5 LLVM TableGen
We instrumented LLVM’s (3.7) TableGen executable, which uses domain-specific informa-
tion to generate files with custom backends. This part of LLVM consists of approximately
34 400 lines of C++ code. It is primarily used in building LLVM itself. We added our
instrumentation to the build system and observed an instrumented version of TableGen
executing as part of the build process. LLVM itself is a large body of code with too many
writes-through-const-qualifier objects to manually classify. In TableGen, we found writes
from 3 unique source locations (282 occurrences).

The handling code for DFAs contains some puzzling writes, shown in Listing 3.16. The
write immediately follows an instantiation of a const State object. The State class itself
is only available in a file’s translation unit (not usable outside the file), which may indicate
that the State is not intended to be widely used. State only contains const methods and
all of its fields (except one explicitly declared const) are mutable. Since all methods are
const there is no difference in callable methods between non-const and const-qualified
access. In addition, since all other fields are mutable, developers are allowed to re-assign
the same fields in a const method as they would in a non-const method. Since only one
field doesn’t have mutable, developers could achieve the same effect by making all methods
non-const, removing all mutable specifiers on fields, and changing the one field that did
not have mutable to be const qualified. From inspection, this is not an immutable object.
We found an addTransition method that was const-qualified, which clear mutates the
object.

Listing 3.16: LLVM DFA code marks State const for no apparent reason.
void DFAPacketizerEmitter::run(raw_ostream &OS) {
const State *NewState;
NewState = &D.newState();
NewState->stateInfo = NewStateResources;

}

DFAPacketizerEmitter.cpp

The other write is in the code that computes a sub-register index for code generation.
Listing 3.17 shows the containing method. The root cause here is that the LaneMask field is
mutable. The write caches the value. However, this value is not used in any other methods.

39

3.4.6 Tesseract
Tesseract (3.04.00) is an optical character recognition (OCR) engine maintained by Google,
consisting of 147 000 lines of C++ code. This project does not contain any easy-to-run
tests. We compiled it with our tool and ran it with invalid arguments. With our limited
knowledge of Tesseract’s usage, we were not able to cause the core algorithm to execute.
However, we found a strange write, shown in Listing 3.18. The root cause is that the used_
field is mutable. This write appears to be an incorrect usage of const. Strangely, however,
the comments indicate that is a defensive write against possible further writes-through-
const-qualifiers.

Listing 3.18: Tesseract performs a strange write in its string class.
const char* STRING::string() const {
const STRING_HEADER* header = GetHeader();
header->used_ = -1;
return GetCStr();

}

strngs.cpp

/* mark header length unreliable because tesseract might
cast away the const and mutate the string directly. */

3.4.7 Ninja
Ninja (1.6.0) is a build system consisting of approximately 14 900 lines of C++ code. It
includes a modest test suite. Our tool reports 39 occurrences from calls to the standard
library. All of these warnings have a single source location outside the standard library:
src/disk_interface_test.cc:226:3. Listing 3.19 shows this static source location. This
is a quick hack to run the test suite with the same API as normal clients. This field stores
statistics that are checked in the test suite only. The field is mutable and not seen outside
the test suite, so we give this write the “not visible” attribute.

Listing 3.19: Ninja write-through-const in test code.
TimeStamp StatTest::Stat(const string& path, ...) const {
this->stats_.push_back(path);

} disk_interface_test.cc

3.4.8 Weston
While we focus on C++ in this work, our technique also works on const in C programs. We
therefore evaluated it on a C application. Since this is the sole C project, we omit Weston
from the overall table of results (Table 3.8). Weston (1.9.0) is a reference implementation
of a Wayland compositor. It consists of approximately 85 000 lines of C code and the
test suite has 20 tests. We did not expect to see many writes, as most C standard library
functions do not require const (corresponding C++ library functions usually do), and
also due to annoyances in using const in C, which we describe below. However, even
with a small test suite, we found 4 unique source locations for writes (accounting for 115
occurrences).

40

All of the writes-through-const are transitive and came from parsing code. The ar-
gument option parser accounts for 3 locations. Listing 3.20 shows a write in the parser.
Function handle_option does not modify the pointer value of option but modifies its
transitive data field. This does not change any data stored in the weston_option struc-
ture, maintaining bitwise const-ness. The data field’s type is void * and the cast does
not remove const. Based on the function name, one might expect a write to the data field,
not its pointee.

Listing 3.20: Weston option parser modifying its const option argument.
handle_option(const struct weston_option *option, ...) {
* (char **) option->data = strdup(value);

}

option-parser.c

The final location was in the configuration file parsing code. Listing 3.21 shows the
weston_config_section_get_uint function dereferencing and modifying the value ar-
gument passed in from a field of a const struct. As above, based on the function naming,
one would expect any writes to happen through the dest pointer. This write does not mod-
ify any data stored in the config_command structure and maintains bitwise const-ness as
well.

Listing 3.21: Weston config parser writing to its value argument.
struct config_command {
char *key;
uint32_t *dest;

};
const struct config_command *command = ...;

weston_config_section_get_uint(..., command->dest, ...);

... weston_config_section_get_uint(..., uint32_t *value, ...) {
*value = strtoul(entry->value, &end, 0);

}

hmi-controller.c

We made an observation as to why const may be unattractive to C developers: there
is no clean way to initialize a structure analogous to C++ constructors/destructors. A
popular C idiom is to assign constructor-like functions signatures like rec_init(struct
rec *r). This signature prevents initialization without casting: const struct rec r;
rec_init(&r) is illegal. However, it is cumbersome to always cast for constructor-like
calls. One could change the signature of the function to rec_init(const struct rec
*r) and perform the cast in the function. However, that function would violate shallow
immutability—it writes to fields as it initializes them. Using const in C appears to require
developers to ignore the casting away of const qualifiers for constructor-like functions.

41

3.4.9 Summary
Table 3.8 summarizes the writes-through-const-qualifiers from benchmarks other than Pro-
tobuf and LevelDB. Across the 7 C++ projects we instrumented and ran, we observed 17
unique archetypes across a total of 142 288 dynamic occurrences. We manually divided
these archetypes into 17 classifications. The root causes were evenly split between writes
through mutable fields and transitive writes (8 of each) with one write-through-const due
to casting. Valid attributes were mostly with-synchronization and because the write was
not visible (7 and 6 respectively). The other valid attributes, writing to a buffer/cache and
delayed initialization, occurred 4 times and 1 time respectively. The majority attribute,
in 9 cases, was that the write was incorrect and violated intuitive notions of what const
should mean. We reported our results to developers. Within a few days the developers
simply removed incorrect const qualifiers in both fish and Mosh.

Table 3.8: Writes-through-const-qualifiers in other benchmark programs were mainly in-
correct uses of const.

Project Location Occurrences Root Cause Attributes

fish shell wgetopt.cpp 98 C I
Mosh terminal.cc 432 M I
LLVM DFAPacketizerEmiter.cpp 112 M I

TableGen CodeGenRegisters.cpp 170 M B & N
Tesseract ccutil/strngs.cpp 1 M I
Ninja disk_interface_test.cpp 39 M N

We found 3 projects (LevelDB, Mosh, and Ninja) had writes for the purposes of testing.
The writes-through-const we found in testing code were writes to counters only present in
test environments. In Mosh, the fact that the writes were only for test purposes was not
immediately obvious. However, discussions with the developers revealed that the handled
variable was only used for debugging. All of these writes-through-const are related to test
controllability, suggesting that this idiom should be supported directly in the programming
language.

Since this is a dynamic analysis, we only observe writes-through-const at run-time.
These results do not show how often developers use const more broadly. If developers use
const only in these complex cases, developers could manually review all cases of const to
check correctness. In this case developers would not find writes-through-const unexpected
if that is their sole use case.

42

Chapter 4

Static Observations of Immutability

Modern programming languages enable developers to declare that objects (or parts thereof)
are immutable. Immutability enables both developers and compilers to better reason about
the code and potentially enables compiler optimizations. For instance, objects without
mutable state are immune from unexpected changes to mutable state, thus simplifying
debugging and program maintenance. Furthermore, immutable objects can be shared
between concurrent threads of execution without the need for locking, thereby helping
enable automatic parallelization. One of our goals was to understand whether developers
buy into arguments in favour of immutability and actually label immutability in their code.

In the previous chapter we found, dynamically, that developers violate deep concrete
immutability through immutability declarations. This chapter, by contrast, examines devel-
opers’ API design decisions and when developers label members as const. We investigate
developers’ immutability declarations (through const) more broadly. If we find that a sim-
pler analysis cannot check developer’s const declarations it justifies the need for a more
complex abstract immutability analysis.

C++ developers are encouraged to use the const keyword to declare immutability [52].
In this work, we statically investigate how C++ developers use const in classes’ public
interfaces. For instance, are there many classes without mutable state? More generally, we
wanted to know which fields and methods C++ developers const-annotated, and why.

We developed a tool that identifies immutable classes (where all members are im-
mutable) as well as all-mutating classes (where no members are declared immutable). Be-
cause the default in C++ is that class members are mutable (e.g. a member with no
annotations is mutable), it could be the case that a method does not modify state and yet
the developer omitted a const annotation from it. We therefore wanted to know whether
C++ developers const-annotated all of the methods that they could have annotated.

To our surprise, many of the all-mutating classes that we found did indeed have all
member functions potentially modifying their containing class; developers were generally
not just also under-labelling their code.

Our tool, Immutability Check, performs inference for a restricted subset of const-able
methods. We found that it could propose improvements to the existing immutability anno-
tations for a significant fraction of method implementations. We discuss the effectiveness
of our inference tool, along with some cases where it is not sophisticated enough to make
suggestions.

43

We explore two lines of questioning in this chapter. First, we investigate how developers
use C++ const in practice, as witnessed through Application Programming Interface dec-
larations. Second, we investigate questions related to const inference and the limitations
of a simple inference approach.

Use of const. In our first set of research questions, we study how developers use const
when declaring the members of a class. To understand aspects of how developers use const,
we explored two questions:

(RQ4.1) how often are classes all-const (i.e. declared to be completely immutable)?

(RQ4.2) how often are classes free of const methods (all-mutating)?

Analysis and Evaluation. Our tool suggests const annotations in simple cases. We
therefore further investigate whether our tool can successfully infer const annotations.

(RQ4.3) does our tool successfully identify enough new const annotations to be useful?

The contributions of this chapter are:

• We formulated a set of questions about the usage of immutability in C++ codebases:
do developers write immutable classes? all-mutating classes? Why?

• We answered these questions for 6 moderate-to-large C++ case studies and identified
trends in const usage that hold across our set of case studies. To our knowledge, we
are the first to empirically investigate the use of const in actual codebases.

• We developed and implemented a novel static analysis that identifies methods that
could easily be labelled const and applied it to our set of case studies, finding a
significant number of such methods.

Our work contributes observations of actual developer behaviour across a variety of real-
world codebases, and can thus inform developers about best practices today. Furthermore,
programming language designers often add features to languages based on intuition and
experience. (Tunnell Wilson et al. discuss shortcomings of alternate approaches to language
design in [88].) In the future, we hope that our work can guide language designers when
considering features to add to languages.

4.1 Motivation
Our research questions focus on three archetypal uses/non-uses of const: immutable
classes, all-mutating classes, and easily const-able methods. An immutable class has
no user-visible mutable state. An all-mutating class is never invariant under method calls.
Finally, an easily const-able method is one that can quickly be seen to not change internal
state.

44

Immutable class. The most straightforward example of an immutable class is an im-
mutable tuple implementation. Consider, for instance, this Point class:
class Point {
int x, y;

public:
Point(int x, int y) : x(x), y(y) {}
int getX() const { return x; }
int getY() const { return y; }

};

Once a Point object is constructed, it cannot be changed.

All-mutating class. On the other hand, an all-mutating class contains no methods that
do not modify state. Random number generators are typical examples:
class RandomNumberGenerator {
int64_t state;

public:
RandomNumberGenerator() { state = 17L; }
int getNext() {
state = state * 134775813 + 1;
return state;

}
};

Easily const-able methods. Finally, we are interested in methods that can easily be
seen to be const-able. For instance, if method Point::getX() above was not const-
annotated, our analysis would flag it as a potentially const-able method.

The core of our analysis tracks which expressions may contain a copy of a field value.
We can conclude that there are no writes to a field in getX and that this method returns
a copy of the field. Since it cannot mutate, and returns a field copy, this method ought to
be const.

4.2 Technique
We designed an Immutability Check tool to answer our research questions, building on the
LLVM compiler infrastructure [47] and the Clang frontend. Figure 4.1 shows where the
Immutability Check tool fits in: it records compiler invocation commands executed during
a build and re-runs the front-end stages to collect information on const usage, storing the
results to a web-accessible database.

To improve its signal-to-noise ratio, Immutability Check ignores a number of classes and
methods. Immutability Check ignores classes with no source code, abstract classes, and
classes with no public members. It also ignores some more classes based on inheritance—
classes which inherit from a standard library class within the std namespace; classes which

45

Source Files Build System Binary Files

Compile CommandsImmutability Check

Database

Figure 4.1: Our Immutability Check tool intercepts compile commands and stores results
in a database.

inherit (transititively) from a class with no source; and classes whose inheritance hierar-
chy includes a template parameter. Within the set of included classes, we analyze all
non-static public methods except for constructors/destructors, conversion operators, and
operator=.

The C++ standard [72] allows developers to const-qualify methods and types. A class
C effectively publishes two interfaces: a non-const (aka mutable) reference to C allows
access to almost all of C’s members, while a const reference only allows access to const-
qualified members. However, the const interface is not necessarily a subset of the mutable
interface. Figure 4.2 shows how. In the Figure, class C has two foo() methods with the
same signature, differing only by const qualifier. The two foo() methods are thus said to
be const-overloaded. A const-qualified reference to C would expose the const-qualified
foo() method, while a mutable reference to C would expose the non-const-qualified foo()
method. Historically, this const overloading exists as a way to match the const-ness of
a return value based off the callee. The canonical reason for this is to fix the “strchr”
problem in C, so the const-ness of the input variable can propagate to the return value.

Immutability Check stores its results in a web-accessible database. This database holds
the public members of every class, along with additional metadata. For methods, we store
whether or not they are const-qualified along with the results of our analysis. For fields,
we store whether or not they are mutable, and whether or not the outermost type is
const-qualified.

Explicit const We call a field explicitly const if the field’s outermost type is const-
qualified. In that case, the field contains an object that is at least shallow immutable. A
shallow immutable object has the property that the fields in the class itself do not change,
but data pointed to by its fields may change. For instance, if a field of the object is a
pointer, the pointer itself cannot change, but the data pointed to may. On the other hand,
a transitively const type may not be mutated, and neither may anything obtained by
dereferencing it.

To answer RQ4.1, we look for classes that only have const-qualified methods and
explicitly const fields. We label such classes are considered “Immutable”.

To answer RQ4.2, we look for classes without const-qualified methods and without
fields. Such classes have all methods mutable and no accessors. A class may be considered
“All-mutating” either if the developers neglected to use const, or if all methods could
potentially change the class’s state. To distinguish these cases, we investigated method
implementations. We found that a nontrivial fraction of “All-mutating” classes indeed had

46

class C {
public:
int foo() { return 1; }
int foo() const { return 2; }
int bar() { return 3; }
int baz() const { return 4; }

};

mutable interface const interface

int foo(),
int bar()

int foo() constint baz() const

C c1;
c1.foo(); // returns 1
c1.bar(); // returns 3
c1.baz(); // returns 4

const C c2;
c2.foo(); // returns 2
c2.bar(); // not allowed
c2.baz(); // returns 4

Figure 4.2: const-overloading implies that the mutable interface of a class is not a su-
perset of the const interface.

all methods potentially mutate object state, which was somewhat surprising to us.

Static analysis. Our static analysis, implemented using Clang, is similar to an available
expressions analysis. Our analysis computes whether or not a variable or expression must
be a literal, or may be a field. The analysis is intraprocedural, flow sensitive, and path
insensitive. Our join operation for literals is intersection, and union for fields. We make
two unsound assumptions to lower the number of false positives in our analysis. The first
assumption is that overloaded comparsions (e.g. operator<) never mutate. We do not
expect this assumption to be violated in sane codebases, and it allows us to find trivial
comparsion methods for custom classes. The second assumption is that global variables
never point to objects’ fields or contain values copied from fields.

Queries. We use the results of the static analysis to answer two queries about methods:
whether or not a method mutates, and what the method returns. There are two options
for whether a method mutates: 1) does not mutate, and 2) maybe mutates. There are
three options for what a method returns: 1) noop (void or a literal), 2) field, and 3) other.
For the mutation property, a method maybe mutates if either: 1) there is an assignment
to an expression that may be a field, 2) there is a call to a member fuction, or 3) there is
a call to a function where an argument may be a field. For the return property we join all
return expressions.

47

Table 4.1: We chose 7 open-source codebases as case studies, ranging from 13 000 to over
3 million lines of code.

kLOC Classes
LLVM 4.0.0 ≈ 3,200 10521 compiler infrastructure
OpenCV 3.2.0 1,167 2221 computer vision library
Protobuf 3.3.1 625 407 compiler for data serializer/unserializer
fish 2.5.0 112 129 modern shell
mosh 1.2.6 14 86 mobile shell
ninja 1.7.2 13 36 build system
libsequence 1.8.7 18 33 library for evolutionary genetics

Transitivity To further reduce the number of false positives, we consider the return type
of the method. Consider a class with disjoint mutable and const interfaces. Typically,
these interfaces would be disjoint due to pointer accessor functions. The mutable method
returns a pointer without a const qualifier to the object. Unsurprisingly, the const method
returns a pointer to a const-qualified object. We do not want to report the mutable method
as easily const-able, even though it just returns a field. To be sure we don’t report the
mutable version as a false positive, we ensure the return type is transitively const. That is,
the return type must not allow mutation through indirection (e.g. const int * getP();
does not allow its return value to be dereferenced and then mutated). Transitively const is
the strictest definition of const, and reduces the number of potential false positives. Note
that, since C++ is pass by value, we do not consider the const qualifier on the outermost
type. Our definition of transitivity is incomplete when the transitivity depends on the
internals of the class (for example, if the class contains a bare pointer); our results do
include some false positives that are not properly filtered by transitivity.

Easily const-able methods Combining answers from our queries, and transitivity, we
can determine whether or not a method is easily const-able. An easily const-able method:
1) is not already const-qualified; 1) does not mutate (according to our query); and 2) if
our query says that the method returns a field, the return type must be transitively const.

4.3 Results
We evaluated 7 open source projects: fish, libsequence, LLVM, Mosh, Ninja, OpenCV, and
Protobuf. We chose these projects because they are popular, well maintained, and span a
variety of domains, including I/O-focussed applications as well as both graph-manipulating
and array-manipulating codes. Table 4.1 lists characteristics of our chosen projects.

We present two major tables for each case study. The first table shows the overall
distribution of all classes with a public interface. The second table shows the number of
methods which are easily const-able.

Reading the class tables Following Figure 4.3, we divide classes into 6 categories. The
first two categories, “Immutable” and “Query”, only have const methods. “Immutable”

48

Classes

Only
fields

Has methods

All constSome const
“Mix”

No const

No fields “All-
mutating”

Has fields
“Throwaway”

Not all explicit
fields “Query”

All explicit fields
“Immutable”

Figure 4.3: Immutability Check divides classes with methods into 5 main categories, de-
pending on which members they contain.

has every public field explicitly declared const. On the other hand, “Query” has fields
which may be modified by member functions when accessed through a non-const reference.
“Mix” classes have both const and non-const methods. The last two categories, “Throw-
away” and “All-mutating”, both only have non-const methods. The “Throwaway” classes
have fields, but these fields can only be read. Such classes therefore have accessors that
could trivially be made const. We call these classes throwaway since there are no const
qualifiers at all, and also public fields. Typically such classes are a quick and dirty struc-
ture. “All-mutating” classes, by contrast, do not have fields; we believe that all methods
in such classes should mutate. Finally, we show the number of classes with only fields (no
methods) for completeness.

For answering RQ4.1 and RQ4.2 we only consider non-trivial classes. A non-trivial
class has more than 3 methods. To estimate the number of immutable and all-mutating
classes, we take the appropriate categories (from the developer labelling) and manually
sample them to find the true number of these classes. For larger projects where we cannot
reasonably manually check all classes, we randomly sample 40 classes (20 of each category).

Reading the easily const-able methods tables The first row of the table shows
the number of methods in the project, which covers 100% of the total methods in the
project (indicated by % total). The next row shows how many easily const-able methods
we find using our “trust” analysis across all methods, ignoring developer labelling. Next,
we present how many easily const-able methods we find using our base analysis, without
trust. In this row we show relative percentages to the total number of methods, and to the
number of methods found with the trust analysis. For instance, if the relative % to trusted
is 50%, then the “trust” analysis found twice as many easily const-able methods as the
base analysis. The middle 3 rows are similar to the previous 3 rows, except all the methods
included have a const label provided by the developers. This allows us to determine the

49

percentage of more simple const methods. The final 3 rows are similar to the previous sets
of 3, except that they describe the methods where developers did not include a const label.
The easily const-able entries for these methods without const show potentially missing
const labels.

4.3.1 LLVM
Compilers extensively manipulate structured intermediate representations, and must main-
tain invariants to preserve the meaning of the code being compiled. We expect that record-
ing design intent with respect to immutability would be key to successfully developing
LLVM.

The LLVM compiler infrastructure [47] is our largest case study. We ran our tool on
version 4.0.0, which has approximately 3,246,000 lines of code. (We did not include unit
tests in our analysis, but we included auto-generated code.) Table 4.2 shows our overall
results. Because LLVM has thousands of classes, we randomly sampled 20 all-immutable
and all-mutating classes for manual analysis.

Table 4.2: Most LLVM classes contain a mix of const and non-const methods, but about
a quarter of its classes are immutable or all-mutating.

Classes 10 521 100%
Has methods 8 395 79.8%
Immutable 1 135 10.8%
Query 474 4.5%
Mix 4 762 45.3%
Throwaway 568 5.4%
All-mutating 1 456 13.8%
Only fields 2 126 20.2%

Table 4.3: All sampled LLVM classes that developers declared “Immutable” are in fact
immutable; only 8/20 “all-mutating” classes are all-mutating. Additionally, 4
“all-mutating” classes were in fact immutable.

Classes Total Non-trivial Sampled Actual
Immutable 1 135 582 20 20
All-mutating 1 456 546 20 8

[RQ4.1a, RQ4.2a] Table 4.3 shows that at a class level, we expect that about 663 =
582+15%×546 of the classes in LLVM will be non-trivial (more than 3 methods) immutable
classes: our sampling shows that about 100% of the const-annotated immutable classes
are immutable, while about 15% of the non-trivial classes annotated as all-mutating were
immutable. This accounts for about 6% of the total number of LLVM classes. On the other
hand, we expect that 218 classes will be non-trivial all-mutating, or about 2% of the total
number of classes. A plurality of classes, and a majority of classes with methods, contained
a mix of const and mutable methods. [RQ4.1b, RQ4.2b] We found that classes that

50

Table 4.4: LLVM methods, immutability declarations, and easily const-able methods.
LLVM contains a plurality of const-labelled methods, and about half of LLVM
methods are easily const-able. % developer-labelled indicates the percentage
of easily const-able methods that carry a const label. % trusted indicates the
percentage of methods that are easily const-able without the trust assumption
compared to with it.

Total % total % developer- % trusted
labelled

All methods 213 968 100%
Easily const-able (trust) 106 631 49.8%
Easily const-able (base) 70 703 33.0% 66.3%
const methods 129 582 60.6%
Easily const-able (trust) 86 060 40.2% 66.4%
Easily const-able (base) 51 482 24.1% 39.7% 59.8%
Non-const methods 84 386 39.4%
Easily const-able (trust) 20 571 9.6% 24.4%
Easily const-able (base) 19 221 9.0% 22.8% 93.4%

developers labelled as immutable were indeed immutable, while classes that lacked const
declarations could have used them on some of their member functions more often than not.
[RQ4.3] Table 4.4 shows that, at a method-level granularity, developers declared about
60% of methods to be const, while we found that about 50% of methods could be easily
seen to be immutable by the “trust” variant of our analysis (and 33% by the non-“trust”
variant). Furthermore, about 66% of the developer-labelled const methods were easily-
const-able (with “trust”), while only 24% of non-const methods were easily-const-able.
Interestingly, the trust assumption has little effect on non-const methods; the analysis
identifies 93% as many const-able methods with the trust assumption as without it.

Discussion. Many of the immutable classes that we manually inspected in LLVM were
either checker or code generator classes. Code generator classes change program state (or
emit side effects), but do not change the state of the receiver object. We also encountered
some immutable code generator classes in our inspection of all-mutating classes; these
classes simply did not have any const-labelled methods.

4.3.2 OpenCV
To explore numeric codes, we studied the OpenCV computer vision library. The parts of
OpenCV that carry out regular calculations on large arrays are more amenable to paral-
lelization than codes that process graphs. As expected, we found that OpenCV mutated
many of its arrays. However, we found some usage of const on function parameters. We
ran our tool on version 3.2.0 with 1,167,551 lines of code. Table 4.5 presents our overall
results.

51

Table 4.5: OpenCV contains relatively many immutable classes and fewer all-mutating
classes.

Classes 2 221 100%
Has methods 1 607 72.4%
Immutable 332 14.9%
Query 246 11.1%
Mix 712 32.1%
Throwaway 129 5.8%
All-mutating 188 8.5%
Only fields 614 27.6%

Table 4.6: Fewer than a third of OpenCV’s immutable and all-mutating classes are non-
trivial. Manual inspection showed that almost all sampled classes declared
immutable are immutable, while a quarter of all-mutating classes are all-
mutating.

Classes Total Non-trivial Sampled Actual
Immutable 332 45 20 18
All-mutating 188 62 20 5

[RQ4.1a, RQ4.2a] For OpenCV, Table 4.6 shows that we expect 90% of 45 non-trivial
classes to be immutable, or about 41, which accounts for 1.8% of its classes. (Many of
OpenCV’s classes are trivial.) None of the sampled all-mutating classes were immutable.
Hence, we expect 25% of 62 non-trivial classes to be all-mutating, or about 16, which
accounts for 0.7% of its classes. [RQ4.1b, RQ4.2b] Again, classes that were labelled as
immutable often were immutable, while all-mutating classes often could have had some
methods const-labelled (identified by the analysis).
[RQ4.3] Table 4.7 shows that, once again, developers const-labelled a 54% majority of
methods. For OpenCV, about 13% more methods were easily const-able, which makes up
about 68% of methods overall. The “trust” variant of the easily const-able analysis finds
about twice as many methods to be easily const-able among methods that are already
const-labelled, but does not contribute much for non-const-labelled methods.

Discussion. OpenCV contains many implementations of mathematical functions. It ap-
pears that the convention in OpenCV is to implement these functions within classes (similar
to the Strategy design pattern). An alternate system design could have manipulated these
functions using function pointers. In any case, OpenCV’s function classes fit the definition
of an immutable object. However, these function classes appear to often be trivial (fewer
than 4 methods).

52

Table 4.7: OpenCV methods, immutability declarations, and easily const-able methods.
A plurality of OpenCV methods are const-labelled, and 38% are easily const-
able. % developer-labelled indicates the percentage of easily const-able meth-
ods that carry a const label. % trusted indicates the percentage of methods
that are easily const-able without the trust assumption compared to with it.

Total % total % developer % trusted
All methods 16 864 100%
Easily const-able (trust) 6 503 38.6%
Easily const-able (base) 3 797 22.5% 58.4%
const methods 9 139 54.2%
Easily const-able (trust) 5 449 32.3% 59.6%
Easily const-able (base) 2 769 16.4% 30.3% 50.8%
Non-const methods 7 725 45.8%
Easily const-able (trust) 1 054 6.2% 13.6%
Easily const-able (base) 1 028 6.1% 13.3% 97.5%

4.3.3 Protobuf
Protobuf (protocol buffers) serializes structured data. We analyzed the protocol buffer
compiler, which generates code (in a number of languages) to serialize and deserialize
to/from specified data formats. This compiler also happens to contain generated protocol
buffer code. We ran our tool on version 3.3.1 of Protobuf, which had 625,820 lines of code.
Table 4.8 shows our overall results.

Table 4.8: Protobuf has the highest proportion of immutable classes among our studied
codebases.

Classes 407 100%
Has methods 352 86.5%
Immutable 107 26.3%
Query 4 1.0%
Mix 133 32.7%
Throwaway 2 0.5%
All-mutating 106 26.0%
Only fields 55 13.5%

[RQ4.1a, RQ4.2a] Based on the results in Table 4.9, in Protobuf’s case, we estimate that
about 82 of 407 (20%) classes are immutable—that is 95% of 67 non-trivial const-labelled
classes, plus 50% of 36 non-trivial classes with no const labels. Furthermore, we expect
about 8 (2%) non-trivial all-mutating classes, or 20% of 36. [RQ4.1b, RQ4.2b] Protobuf
shows similar proportions as OpenCV for all-const-labelled classes being immutable and
non-const-labelled classes being all-mutating. However, Protobuf has a significantly higher
proportion of immutable classes that are free of const labels than our other case studies
(50%).

53

Table 4.9: About half of Protobuf’s classes are non-trivial. Manual inspection showed
that almost all sampled classes declared immutable are immutable, while 20%
of all-mutating classes are all-mutating. Additionally, 10 “all-mutating” classes
were in fact immutable.

Classes Total Non-trivial Sampled Actual
Immutable 107 67 20 19
All-mutating 106 36 20 4

Table 4.10: Protobuf methods, immutability declarations, and easily const-able meth-
ods. Almost two-thirds of Protobuf methods are const-labelled, and 33%
are easily const-able. % developer-labelled indicates the percentage of easily
const-able methods labelled const. % trusted indicates methods that are
easily const-able without the trust assumption compared to with it.

Total % total % developer % trusted
All methods 5 893 100%
Easily const-able (trust) 1 959 33.2%
Easily const-able (base) 782 13.3% 39.9%
const methods 3 753 63.7%
Easily const-able (trust) 1 812 30.7% 48.3%
Easily const-able (base) 640 10.9% 17.1% 35.3%
Non-const methods 2 140 36.3%
Easily const-able (trust) 147 2.5% 6.9%
Easily const-able (base) 142 2.4% 6.6% 96.6%

[RQ4.3] Table 4.10 shows that almost two-thirds of Protobuf’s methods are immutable.
However, most of these immutable methods were already declared as const; our easily
const-able analysis (both with and without “trust”) does not contribute much. The Pro-
tobuf developers used const for complex methods: when looking at methods that the
developers labelled const, the easily const-able analysis only found about half, which
is less than for other benchmarks. The trust assumption almost triples the number of
methods found to be easily const-able.

Discussion. Protobuf, like LLVM, contains many classes that generate code. When we
manually inspected them, we verified that they were immutable. Some of the immutable
classes had no const labels and hence had originally been identified as all-mutating classes.

4.3.4 fish shell
The fish shell (fishshell.com) is a modern command line shell. Shells are particularly
concerned with file-based I/O. We ran our experiments on version 2.5.0, which has 112,951
lines of code. Table 4.11 shows our overall findings.

Since fish and the subsequent benchmarks have no more than 20 classes in each category,
we exhaustively examined each of the immutable and all-mutating classes.

54

fishshell.com

Table 4.11: Many fish classes contain a mix of const and non-const methods, but a
surprisingly high proportion of fish classes are all-mutating.

Classes 129 100%
Has methods 89 69.0%
Immutable 8 6.2%
Query 23 17.8%
Mix 27 20.9%
Throwaway 11 8.5%
All-mutating 20 15.5%
Only fields 40 31.0%

Table 4.12: fish has no non-trivial immutable classes and only 6 non-trivial classes with
no const annotations, of which only 2 are all-mutating.

Classes Total Non-trivial Actual
Immutable 8 0 0
All-mutating 20 6 2

Table 4.13: fish methods, immutability declarations, and easily const-able methods. 43%
of fish’s methods are const-labelled, and 41% are easily const-able. %
developer-labelled indicates the percentage of easily const-able methods la-
belled const. % trusted indicates methods that are easily const-able without
the trust assumption compared to with it.

Total % total % developer % trusted
All methods 341 100%
Easily const-able (trust) 138 40.5%
Easily const-able (base) 99 29.0% 71.7%
const methods 145 42.5%
Easily const-able (trust) 112 32.8% 77.2%
Easily const-able (base) 73 21.4% 50.3% 65.2%
Non-const methods 196 57.5%
Easily const-able (trust) 26 7.6% 13.3%
Easily const-able (base) 26 7.6% 13.3% 100.0%

[RQ4.1a, RQ4.2a] As seen in Table 4.12, we expect fish to have 0 (and hence 0%) non-
trivial immutable classes. It is possible that some of the classes that have some, but not
all, const-labelled methods might actually be fully immutable; however, we believe that
this is unlikely—if developers have const-labelled some of the immutable methods, they
would be likely to have labelled all of them. Of the 6 non-trivial classes that lack const-
annotated methods, 2 (1.5%) of them are non-trivial all-mutating. [RQ4.1b, RQ4.2b]
Since we estimate that fish contains 0 immutable classes, we believe that developers did
not leave out any const annotations on the immutable classes. About a third of classes
without any const annotations could have used some.

55

[RQ4.3] Table 4.13 shows that, even though fish has no immutable classes, it still has
immutable methods. Developers const-qualified 43% of methods, and we found another
8% to be easily const-able with “trust”, which makes up about half of the methods for
this application. Many (77%) const-qualified methods were easily const-able with “trust”,
while only half could be const-able without it. Once again, the trust assumption has little
effect on methods without const annotations.

4.3.5 libsequence
The libsequence project is a library for evolutionary genetics. This library is primarily
a collection of mathematical functions. Mathematical functions are a use case where we
would expect mutation to be kept at a minimum. We ran our tool on version 1.8.7 of
libsequence which contains approximately 18,000 lines of code. We present our overall
results in Table 4.14.

Table 4.14: Approximately half of libsequence’s classes are immutable, while the other
half contain a mix of const and non-const classes. No libsequence classes
are all-mutating.

Classes 33 100%
Has methods 29 87.9%
Immutable 16 48.5%
Query 1 3.0%
Mix 11 33.3%
Throwaway 1 3.0%
All-mutating 0 0.0%
Only fields 4 12.1%

Table 4.15: All libsequence non-trivial classes that developers declare “Immutable” are
in fact immutable. libsequence contains 0 all-mutating classes.

Classes Total Non-trivial Actual
Immutable 16 8 8
All-mutating 0 0 0

[RQ4.1a, RQ4.2a] For libsequence, Table 4.15 shows 8 non-trivial immutable classes,
as manually verified, accounting for 25% of all classes. However, libsequence has no
all-mutating classes: every class in libsequence has at least one const-labelled method.
[RQ4.1b, RQ4.2b] Our manual inspection, which was exhaustive in this case, did not
find any missing const annotations on the all-mutating classes nor any inappropriate const
annotations on the immutable classes.
[RQ4.3] As seen in Table 4.16, the libsequence developers labelled 91% of libsequence’s
methods as const, which is the highest in our set of programs. Our easily const-able
analysis only found 39% of this 91%, even with the “trust” assumption. Without the

56

Table 4.16: All libsequence methods, immutability declarations, and easily const-able
methods. 91% of libsequence’s methods are const-labelled, yet only 40%
are easily const-able. % developer-labelled indicates the percentage of easily
const-able methods labelled const. % trusted indicates methods that are
easily const-able without the trust assumption compared to with it.

Total % total % developer % trusted
All methods 211 100%
Easily const-able (trust) 84 39.8%
Easily const-able (base) 71 33.6% 84.5%
const methods 192 91.0%
Easily const-able (trust) 82 38.9% 42.7%
Easily const-able (base) 70 33.2% 36.5% 85.4%
Non-const methods 19 9.0%
Easily const-able (trust) 2 0.9% 10.5%
Easily const-able (base) 1 0.5% 5.3% 50.0%

“trust” assumption, our easily const-able analysis found 85% as many immutable methods.
Additionally, we only found another 2 methods (1% of the overall method count) to be
easily const-able that were not already const-labelled.

Discussion. Like OpenCV, libsequence contains many mathematical functions. The de-
velopers have also already const-annotated these functions. Our easily const-able analysis
does not find many immutable functions for libsequence, so it would have been difficult to
understand its immutability structure without the developer annotations. Note that both
variants of the analysis can only check just over a third of const methods.

4.3.6 Mosh
Mosh is a utility for maintaining terminal connections over low-quality (e.g. cellular data)
networks. It sends and receives data over the network, encrypting and decrypting the
data as necessary. We ran our tool on version 1.2.6 which contains 14 415 lines of code.
Table 4.17 shows our overall findings.
[RQ4.1, RQ4.2] Table 4.18 shows that we expect Mosh to have 0 non-trivial immutable
classes and 0 non-trivial all-mutating classes. Again, it is possible but unlikely that Mosh
actually has immutable classes with some but not all methods const-annotated.
[RQ4.3] Mosh has a typical proportion of immutable methods, as seen in Table 4.19. Here,
we see that developers const-labelled 54% of the methods and that an additional 5% are
easily const-able, for a total of 59%. The easily const-able analysis identifies 45% of
methods as immutable, which is 83% of the number of const-labelled methods. “Trust”
helps identify about 8% more methods as being immutable.

Discussion. Because Mosh is a smaller project, developers might not believe there is an
advantage to creating immutable classes (or maybe the domain). The developers, however,

57

Table 4.17: A (relatively) smaller proportion of Mosh classes are immutable or all-
mutating compared to other benchmarks.

Classes 74 100%
Has methods 68 91.9%
Immutable 5 6.8%
Query 3 4.1%
Mix 52 70.3%
Throwaway 2 2.7%
All-mutating 6 8.1%
Only fields 6 8.1%

Table 4.18: Mosh has 0 non-trivial immutable classes and 0 non-trivial all-mutating
classes.

Classes Total Non-trivial Actual
Immutable 5 0 0
All-mutating 6 0 0

Table 4.19: Mosh methods, immutability declarations, and easily const-able methods.
54% of Mosh methods are const-labelled, and 45% are easily const-able.
% developer-labelled indicates the percentage of easily const-able methods
with a const label. % trusted indicates the percentage of methods that are
easily const-able without the trust assumption compared to with it.

Total % total % developer % trusted
All methods 416 100%
Easily const-able (trust) 185 44.5%
Easily const-able (base) 153 36.8% 82.7%
const methods 225 54.1%
Easily const-able (trust) 164 39.4% 72.9%
Easily const-able (base) 135 32.5% 60.0% 82.3%
Non-const methods 191 45.9%
Easily const-able (trust) 21 5.0% 11.0%
Easily const-able (base) 18 4.3% 9.4% 85.7%

did seem to take care to const-label methods.

4.3.7 Ninja
The Ninja build system creates a dependency graph and runs commands to rebuild tar-
gets when their dependencies change. Ninja outsources almost everything to other tools—
notably the calculation of the dependency graph. It focuses on its core functionality—the
processing of the dependency graph and the selection of the appropriate commands to exe-
cute. We ran our tool on version 1.7.2, which is 13,662 lines of code. Table 4.20 shows our

58

overall results.
Table 4.20: Ninja has many all-mutating classes and few immutable classes.

Classes 36 100%
Has methods 32 88.9%
Immutable 1 2.8%
Query 2 5.6%
Mix 17 47.2%
Throwaway 5 13.9%
All-mutating 7 19.4%
Only fields 4 11.1%

Table 4.21: Ninja has 0 non-trivial immutable classes and 0 non-trivial all-mutating
classes.

Classes Total Non-trivial Actual
Immutable 1 0 0
All-mutating 7 2 0

Table 4.22: Ninja methods, immutability declarations, and easily const-able methods.
22% of Ninja methods are const-labelled, and 26% are easily const-able.
% developer-labelled indicates the percentage of easily const-able methods
with a const label. % trusted indicates the percentage of methods that are
easily const-able without the trust assumption compared to with it.

Total % total % developer % trusted
All methods 165 100%
Easily const-able (trust) 43 26.1%
Easily const-able (base) 36 21.8% 83.7%
const methods 36 21.8%
Easily const-able (trust) 23 13.9% 63.9%
Easily const-able (base) 18 10.9% 50.0% 78.3%
Non-const methods 129 78.2%
Easily const-able (trust) 20 12.1% 15.5%
Easily const-able (base) 18 10.9% 14.0% 90.0%

[RQ4.1, RQ4.2] Table 4.21 shows that we also expect Ninja to have 0 non-trivial im-
mutable classes and 0 non-trivial all-mutating classes.
[RQ4.3] Ninja has a lower-than-usual proportion of immutable methods, as seen in Ta-
ble 4.19. Here, we see that developers const-labelled only 22% of the methods and that
an additional 12% are easily const-able, for a total of 34%. The easily const-able analysis
identifies 26% of methods as immutable, which is more than the number of methods that
the developers labelled const. “Trust” only helps identify a few more methods as being
immutable.

59

Discussion. This lower-than-usual proporation of immutable methods may be due to
the problem domain. Ninja, as a build system, typically mutates its dependency tree as
a result of running commands. These commands cause mutations in system state which
Ninja needs to reflect.

4.3.8 Summary
Table 4.23 shows our overall false positive rates. We identified the false positives by ran-
domly sampling and manually inspecting 20 methods each of const and non-const with
both our “trust” and base analysis, up to a maximum of 560 methods across the 7 projects.
If there were fewer than 20 methods in a category, we manually inspected all methods.
Note that the 50% false positive rate for libsequence was due to only having 2 classes in
that category. Overall, we found our false positive rate for const-labelled methods to be
very low for the “trust” analysis, and zero for the base analysis. For non-const methods,
our false positive rate is between 5-6% for either analysis, which is useful for developers.

Table 4.23: Our false positive rates across all projects is low (see note for libsequence).
Our analysis has few false positives for const methods and an acceptable
number for non-const methods.

const
methods
% false

positives
(trust)

const
methods
% false

positives
(base)

non-const
methods
% false

positives
(trust)

non-const
methods
% false

positives (base)

LLVM 0 0 5 0
OpenCV 0 0 5 10
Protobuf 5 0 20 10
fish shell 0 0 5 10
libsequence 0 0 50 0
Mosh 0 0 0 0
Ninja 0 0 0 0

Overall 0.7 0 6.6 5.1

We summarize our findings with respect to the research questions. For RQ4.1 and
RQ4.2, we verified the classes by manually inspecting every class in the smaller projects
and 60 randomly-selected classes across the larger projects (20 per project).

[RQ4.1a.] Do C++ developers reveal a preference for writing all-immutable classes?
[Finding 4.1a.] Across the projects we surveyed, developers only declare a median of 2%
non-trivial all-immutable classes (with a range between 0 and 25%).

[RQ4.1b.] How effective are they at labelling classes where all methods are immutable?
[Finding 1b.] Across the immutable classes we manually inspected, we found that 96%
of them were properly const-annotated.

60

Table 4.24: Summary of results. (RQ4.1, 2) A median of 2% of the classes that developers
write are immutable, and the same percentage is all-mutating. (RQ4.3a)
Developers write a far greater number of immutable methods than immutable
classes, with a median of 54% across our case studies. (RQ4.3b) Compared to
the number of immutable methods that they declare to be const, developers
could declare an additional 13% (median) methods to be const.

% non-trivial
immutable

classes

% non-trivial
all-mutating

classes

% declared
const methods

% undeclared
easily const-
able methods

LLVM 6 2 70 24
OpenCV 2 1 60 14
Protobuf 20 2 65 7
fish shell 0 2 49 13
libsequence 25 0 92 10
Mosh 0 0 59 11
Ninja 0 0 22 16

[RQ4.2a.] Do C++ developers reveal a preference for writing all-mutating classes?
[Finding 4.2a.] Across the projects we surveyed, developers declare between 0 and 2%
non-trivial all-mutating classes (median 1%).

[RQ4.2b.] How effective are they at labelling classes where all methods mutate the receiver
object?
[Finding 4.2b.] We found that 28% of non-trivial all-mutating classes we manually in-
spected were indeed all-mutating.

We then shifted our focus to counting the number of immutable methods that should
exist in a codebase. First, we used the developer-provided const label as an approximation
of that number, but we also added an estimated number of un-annotated methods. Second,
to measure effectiveness, we noted that it is impossible to add const annotations to a class
if all of its methods are already const. Therefore, when answering RQ4.2b, we count the
remaining classes, which are classes that could have a const qualifier added.

[RQ4.3a.] Do C++ developers write methods (rather than classes) that should be labelled
as immutable?
[Finding 3a.] We found that developers declare a median of 54% of methods to be im-
mutable using the const qualifier. Furthermore, we estimate that at least 60% of methods
(median) are in fact immutable.

[RQ4.3b.] How effective are C++ developers at labelling immutable methods?
[Finding 4.3b.] Of the potential methods that could have a const method, developers
fail to label a median of 13%.

We found that the “trust” variant of our easily const-able analysis was far more effective

61

when analyzing const methods than when analyzing non-const methods. Recall that the
“trust” variant relies on const annotations to exist on callee methods, and such annotations
are far more likely to exist when the method under analysis is already const.

Implications to language design. We formulated our research questions to guide lan-
guage design around immutability. RQ4.1 addresses how much developers could benefit
from support for declaring immutable objects. Our results show that non-trivial immutable
objects were rare across our case studies. Therefore, we would advocate that developers’
needs are not served by simply adding support for immutable objects. RQ4.2 addresses
whether or not developers would notice a lack of immutability annotations. Consider that,
if a significant number of classes contain methods that all mutate state, then developers
would not benefit from immutability labels for those classes. We found very few (but, to
our surprise, more than zero) non-trivial classes that only contained mutating methods.
Switching our focus from classes to methods, we found that the ability to label methods
as immutable is useful. RQ4.3 shows that developers label a majority of their methods
as immutable, which exceeded our expectations. We also found that even more methods
could be labelled as immutable, suggesting that tools to enable developers to add missing
const annotations to their already-immutable code would be helpful.

Further Analysis Insights. This work shows that developers do fail to label some const
methods which could be easily labelled. However, it also shows that a simpler analysis
(even one that trusts const callees) is not sufficient to check most immutable methods.
The trust variant of the analysis did show that an analysis that checks immutability must
be interprocedural. Trust typically doubled the number of immutable methods. We believe
that the results from this chapter and Chapter 3 illustrate the need for an interprocedural
analysis that can check for abstract immutability.

62

Chapter 5

Abstract Immutability Analysis

The ability to mutate state is the distinguishing feature of imperative programming lan-
guages. It is ubiquitous in today’s popular object-oriented programming languages like
C++ and Java. Mutation’s disadvantages are well known: in particular, unexpected side
effects can send developers on lengthy debugging missions. Modern languages therefore
include some support for controlling mutability—for instance, const in C++ and final
in Java, among others. In principle, protecting parts of the program state from change can
improve the quality of software abstractions and reduce developers’ cognitive load. How-
ever, support for immutability in today’s mainstream languages is quite limited, as noted
by Coblenz et al. [14].

C++ includes the const keyword, which provides some support for immutability. Ac-
cording to the C++ Foundation’s FAQ [24], C++ const is intended to mean “logically
const”. We specifically interpret “logically const” to mean abstract immutability. That is,
while the bits physically representing an object may change even across a const operation,
the abstract (or logical) state of the object is not allowed to change. Quoting from the
FAQ:

This is going to get inane, but let’s be precise about whether a method changes
the object’s logical state. If you are outside the class—you are a normal user, every
experiment you could perform (every method or sequence of methods you call) would
have the same results (same return values, same exceptions or lack of exceptions)
irrespective of whether you first called that lookup method. If the lookup function
changed any future behavior of any future method (not just making it faster but
changed the outcome, changed the return value, changed the exception), then the
lookup method changed the object’s logical state—it is a mutator. But if the lookup
method changed nothing other than perhaps making some things faster, then it is
an inspector.

— C++ Foundation FAQ on const

Current state-of-the-art techniques, both for C++ and for Java immutability systems,
protect fields from mutation in const methods. However, usability considerations dictate
that these techniques also allow developers to exempt fields declared as mutable from
protection under const. Existing systems therefore allow arbitrary changes to mutable
fields in const methods, and the values of such fields can be exposed to the user. Given

63

the existence of mutable, it is currently largely the responsibility of the developer to
guarantee “logical const”, which undermines the safety that could potentially be provided
by proper support for immutabilty.

Our goal is to enable developers to maintain classes that implement abstract immutabil-
ity. In particular, we intend our tool to be part of a continuous integration workflow: the
tool would verify that class implementations continue to be abstractly immutable, or else
point out methods that may mutate abstract state yet are labelled const. We believe that
support for verified abstract immutability can help with program understanding and evo-
lution by preventing unintended side effects. The key technical insight behind our analysis
is that abstract immutability implementations like caches may write to a class’s internal
state, but that such writes are permissible as long as they precede reads of the same fields.
Note that there are other cases of abstractly immutable class we would not be able to iden-
tifiy, however a sound version of our analysis verifies a subset of all abstractly immutable
classes. Our analysis does not require any developer annotations.

Our contributions include:

• a class-based static immutability analysis which identifies abstractly immutable class
implementations, even in the presence of controlled writes;

• an implementation of our analysis in the LLVM framework; and

• an evaluation of our approach on sizeable C++ programs.

5.1 Motivating Example
We next demonstrate our technique on a pair of motivating examples. Our analysis identi-
fies classes that are abstractly immutable, even if they contain const methods that mutate
fields (i.e. are not concretely immutable). When a class is not logically const, our analysis
identifies the writes that potentially break that class’s const-ness.

Our goal. Our immutability analysis establishes that: if an object is only accessed
through its const interface, then no writes will modify any exposed fields. An
exposed field affects a value returned to a caller through an explicit value flow (see [50] for
a discussion of explicit vs implicit flows and their impact on static analysis). A positive
answer from our analysis therefore implies that calling any const method on an object
will not change subsequent return values from any other const method on that object,
satisfying the C++ Foundation’s recommendation for const usage.

Our analysis establishes class-level properties by analyzing all of the methods of a
particular class, including any methods that it may inherit from superclasses. Although
our analysis visits transitive callees of the methods in the class under analysis, making
conservative assumptions when needed, it is not a whole-program analysis: it does not
visit methods unreachable from the class under analysis. Hence, to obtain a result about
abstract immutability of a subclass, the developer must explicitly analyze the subclass.

We emphasize that C++’s const qualifier makes no guarantee about abstract im-
mutability: if mutable fields exist, it is the responsibility of the developer to ensure abstract

64

immutability. In particular, const methods may violate abstract immutability by return-
ing values derived from mutable fields despite the presence of mutations to those fields.
Our analysis identifies such violating methods.

We acknowledge that non-const references to A objects may exist alongside const
references to the same objects. In other words, in C++, a developer may modify an object
with const references to it, by using a non-const reference to that object. Our analysis
aims to show that if a developer only uses const references to an object, then the object’s
abstract state will not change. C++ programmers must use coding conventions to ensure
that no unexpected non-const references are shared.

We continue with an implementation of a standard caching lookup. Recall that, in
Chapter 3, we reported that 3 of the widely-used C++ case studies use const objects
with caches. Listing 5.1 contains lookup method getValue(), which satisfies C++’s re-
quirements for const methods: it calls only const methods and contains only writes to
mutable fields. The getValue() method also calls an unrelated() function, which has a
do-nothing implementation in class A; we return to this function later. For now, observe
that getValue() is abstractly immutable when the receiver object is of type A, since it
contains no writes that change fields visible to callers.

Listing 5.1: Typical (correct) caching implementation in getValue() method.
1 class A {
2 protected:
3 mutable int value;
4 mutable bool cached;
5
6 virtual void unrelated() const {}
7
8 public:
9 // C++ allows setCached to be const because cached is mutable,

10 // but setCached violates abstract immutability.
11 void setCached(bool c) { cached = c; }
12
13 int getValue() const {
14 unrelated();
15 if (!cached) {
16 value = 3;
17 cached = true;
18 }
19 return value;
20 }
21 };

The getValue() implementation in A is abstractly immutable as long as method
unrelated() does not modify the cached and value fields which influence getValue()’s
return value. Consider, then, Listing 5.2, which shows a subclass B for which getValue()
is no longer abstractly immutable. B’s method may return either 3 or 42, depending on
the value of the cached field. Note that B’s getValue() has the same implementation as

65

A.getValue() and still satisfies the requirements for C++’s const qualifier. Note also that
B.unrelated(), on its own, is abstractly immutable—B.unrelated() does not contain
any field reads.

Listing 5.2: An implementation for unrelated() that breaks A’s abstract immutability.
class B : A {
protected:
virtual void unrelated() const {
value = 42;

}
};

Analysis of abstractly immutable class A As discussed above, our immutability anal-
ysis proceeds on a per-class basis. We will first describe how our analysis handles class A.
This class contains two const methods, getValue() and unrelated().

Upon entry to getValue() (i.e. before Line 14) in Listing 5.1, our analysis constructs
the abstract state in Figure 5.1. This graph starts with local variable %this, which is
(in this case) LLVM’s representation for this. The local variable contains a pointer node.
The pointer node, in turn, points to a struct node (LLVM terminology). This struct node
represents an instance of an A object and itself contains unknown-valued int nodes for fields
cached (on the left) and value.

%this Pointer

Struct

Int ⊤ Int ⊤

Figure 5.1: Heap abstraction upon entry to getValue() showing that this points to an
object (structure node) of type A with unknown field values. Boxes indicate
sequential or structure nodes, while edges indicate pointee or struct edges.
Unboxed node %this indicates variable binding.

The analysis then encounters the call to unrelated(). For this per-class analysis,
there is only one possible callee for unrelated(): the empty implementation in A. The
analysis visits the empty body and returns with the same abstraction. (Our analysis
continues visiting callees until the flow of control hits a recursive call or leaves the class
being analyzed. It makes worst-case assumptions when it skips a callee.)

Next, the analysis processes the if statement. It uses the if-condition to refine the
abstraction and produces Figure 5.2a for the true branch and Figure 5.3 for the false
branch. Abstractly executing the body of the true branch yields Figure 5.2b. Notice
how the true branch contains known values for both fields, while the false branch knows
only that cached is true but not the contents of value. The control-flow merge gives the

66

abstraction in Figure 5.4, which has cached known true and value shown as 3 ∪ ⊤ for
legibility (actually ⊤).

A key part of our immutability analysis consists of ensuring that exposed fields are not
subsequently modified. getValue()’s return statement exposes the this object’s value
field, so we will report any modifications of it in future passes. (Figure 5.4 shows such
nodes with grey backgrounds.)

More generally, at return statements, the analysis uses its abstraction to check whether
any edges from the node representing the return value reach any nodes representing values
from the this object. If so, then it marks all reachable nodes as being read. Any writes
to these fields in subsequent calls will cause an error.

We iterate the per-method analysis on all public const methods until we reach a fixed-
point. Between iterations, we only keep the abstraction for state reachable from this
through directed edges.

In this case, a second analysis of getValue() checks that calls to getValue() will
never store to fields that were read by any public const method of A. This second analysis
iteration changes nothing in the abstraction, so the analysis has reached its fixed point and
terminates.

For class A, our analysis concludes that there are no writes modifying exposed field
value, and thus that the public const interface of A is abstractly immutable.

%this Pointer

Struct

Int 0 Int ⊤
(a) Abstraction before line 16.

%this Pointer

Struct

Int 1 Int 3

(b) Abstraction after line 17.

Figure 5.2: Heap abstraction, cached == false branch (condition true).

%this Pointer

Struct

Int 1 Int ⊤

Figure 5.3: Heap abstraction, cached == true branch (condition false).

Analysis of non-abstractly immutable class B We next consider class B, whose
unrelated() implementation modifies field value. The analysis once again starts with
method getValue(). This time, the call to unrelated() resolves to B’s implementation.
Figure 5.5 shows the heap abstraction upon exit from unrelated()1.

1Our actual abstraction is somewhat more complicated because of subclassing and virtual dispatch, but
the differences do not affect this analysis result.

67

%this Pointer

Struct

Int 1 Int 3 ∪ ⊤ return

Figure 5.4: Heap abstraction after return (line 19).

%this Pointer

Struct

Int ⊤ Int 42

Figure 5.5: Heap abstraction upon return from B.unrelated().

After the analysis processes all of the statements in the method, it obtains the abstract
state in Figure 5.6. The first analysis of getValue() once again identifies the int 3 ∪ 42
node as the value being returned, and marks it as a node that is read from.

The analysis then revisits getValue(), working towards a fixed point. This time, when
it analyzes unrelated(), it observes the write to the value field, which has been marked
as being returned (grey background), and thus flags an immutability violation error at that
write. The developer can investigate the immutability violation and correct it.

%this Pointer

Struct

Int 1 Int 3 ∪ 42 return

Figure 5.6: Heap abstraction in B.getValue() after merge (line 18).

5.2 Technique
Section 5.1 presented our analysis via examples. In this section, we more formally describe
our analysis, starting with the abstraction, which tracks information about which values
have been exposed and about aliasing in the heap. This abstraction enables the analysis to
deduce, at a per-class level, that no exposed value is modified by a const method. Note that
this analysis does not detect all cases of abstract immutability. It would capture caching
properties, but not others such as a move-to-front optimization. We continue by explaining
our transfer functions and finally present the merge operation. Because we implemented
our system on top of LLVM [47], we use many terms from its compiler infrastructure, which
we will explain as needed.

68

5.2.1 Formalization
The most general definition of abstract immutability is that a caller cannot observe any
changes to the object, across any sequence of method calls. Our formalization describes
a dynamic property which captures a subset of this most general definition; it prohibits
writes to a field after that field has been exposed (e.g. returned to a caller). Our static
analysis flags any prohibited writes.

We describe our approach using a minimal language. The syntax we use is similar to
Featherweight Java [40]. Unlike Featherweight Java, our syntax includes field writes. The
important parts of the syntax are field reads/writes, method calls, and return statements.
We present the syntax below:

Class := class ClassName {Field∗ Method∗}
Field := Type fieldId

Method := Type methodId (Arg∗) { Stmt∗ } (implicit this argument)
Arg := Type argId
Type := ClassName | int | Type*
Stmt := return Expr

Expr
o = new ClassName (object creation)
o.f = Expr (field write)
x = Expr (local variable write)

Expr := o.f (field read)
x (local variable read)
o.m(Expr∗) (method call)

This grammar represents a minimal version of classes, similar to those in C++ and Java.
A class can have many methods and fields. Without loss of generality, we assume fields
behave as private fields in C++ and Java, because public fields break encapsulation. To
model public fields we could replace them with accessor methods. A method consists of
a list of arguments (with this always being present) and a sequence of statements. The
important statements for the analysis are field writes and returns. The return statement
only returns primitive values.

Concrete semantics. Let V be the set of root variables, F be the set of field names, O be
the set of typed heap objects, and T be the set of types, T = {Struct, Pointer, Primitive}.
Objects can hold primitive values.

TypeOf :
{
O → T

o 7→ t

Element :
{
O × F → O

(o, f) 7→ e
where TypeOf(o) ∈ {Pointer, Struct}

Value :
{
O → Z
o 7→ x

where TypeOf(o) = Primitive

Location :
{
V → O

v 7→ o

69

These functions represent the state of the heap. We track pointees of pointers and fields
of structures through the Element function. We model a pointer as a structure with a single
field value representing the pointee. The Value function contains the value of primitive
objects. The final function, Location, maps variables to objects in the heap. Let this
be a distinguished variable, TypeOf(Location(this)) = Pointer, representing the receiver
object of method calls.

Definition 5.2.1 A heap, h, consists of valuations for TypeOf,Element,Value,Element
along with sets V , F , and O.

Definition 5.2.2 Let Reachable(h, v) be a function that returns the set of objects reachable
from variable v.

Reachable(h, v) = ∪
i∈{x | 1≤x≤|O|}

Si

S1 = {Location(v)}
Si = ∪

o∈Si−1

Next(o)
where Next(o) = {Element(o, f) | ∀f ∈ F}

Definition 5.2.3 Let predicate ReachableFromThis(h, o) be true when object o is reachable
through Element, rooted from the distinguished this. The set of objects that satisfies
ReachableFromThis is Reachable(h, this).

Definition 5.2.4 A trace, tr, is a sequence of pairs, ⟨h, pc⟩, where pc is the program
counter and activation records. The successor relation in a valid trace, tri → tri+1, respects
the operational semantics of our language [40].

Definition 5.2.5 A developer-provided set of const methods, MC, satisfies MC ⊆ M for
class C.

We represent a C++ class’s set of const methods using MC , and our analysis checks
abstract immutability for the methods in MC . Proposition 1 states that if our (sound)
analysis does not produce a warning, then there can be no writes to any exposed fields in
any future calls to any method in MC .

We use the next definition to differentiate actions that are encapsulated within an object
from actions that are externally-visible. In particular, this definition identifies calls and
returns that cross the object’s encapsulation boundary.

Definition 5.2.6 Given a trace tr, a boundary for object o with methodm (where m ∈ MC)
consists of an entry, o.m(), in tr and the corresponding exit from m, return v. The
receiver object o, upon entering the boundary entry, is bound to this.

Definition 5.2.7 Let predicate PreviouslyReturned(o, tr) be true when an object o was
returned to the outside world previously on that trace. Specifically, at a boundary exit
(return v), on the trace tr, we add all objects in Reachable(v) to PreviouslyReturned(o, tr).

The reason that Definition 5.2.7 only adds objects at boundaries is that within a bound-
ary, any further method calls on the same this are considered internal, and do not return
values to the original caller (unless object o is subsequently returned at the boundary exit).

70

Definition 5.2.8 Let predicate IsExposed(o, tr) be true when an object o satisfies predicates
ReachableFromThis(h, o) and PreviouslyReturned(o, tr).

Definition 5.2.9 A valid heap for pc is any heap reachable from an empty heap by executing
statements according to the operational semantics beginning at the entry point of the program
until reaching pc. An empty heap contains empty valuations for all of its mappings.

Definition 5.2.10 Let predicate IsAbstractlyImmutable(M) be true when a set of methods
M on a distinguished this object o can not write to fields of o where IsExposed(o, tr) for
any trace tr.

Proposition 1 (Soundness) If the analysis analyzes a set of methods, MC, starting with a
maximal abstract heap, and returns no warnings, then: given a trace tr with final program
point pc, a valid heap for pc, and a distinguished object this in the heap, for all objects o
such that IsExposed(o, tr) is true, then there is no write to o in either tr or any extensions
of tr. In this case the predicate IsAbstractlyImmutable is true for MC.

5.2.2 Analysis Operation
Recall that our analysis considers each class in isolation to determine whether all of its
const member functions are logically const. Our analysis computes heap abstractions
for member functions to track exposed nodes, i.e. nodes with their “read” property set
in the abstraction. A method is logically const if it is free of writes to exposed nodes.
After analyzing a method, the analysis discards everything not reachable from this, and
continues analyzing other const member functions until it reaches a fixed point. This
corresponds to analyzing a method at the boundary; it takes into account all possible
sequence of method calls. If all const methods are logically const, then the class is
logically const—calling a const method never causes a change in the object’s visible state.
Since we have reached a fixed point no other method calls (corresponding to MC in the
formalization) may write to a “read” (or exposed) value. This corresponds to no extension
of a dynamic trace being able to write to an exposed value in the formalization.

5.2.3 Abstraction
We use a novel class-based approach for our analysis. The analysis considers one class at a
time, attempting to show that the class’s public methods’ implementations respect abstract
immutability. We represent the (intra-class but inter-procedural) analysis state with a
graph Gp = (N,E) for each program point p. Nodes in these graphs represent abstract
heap objects or constant values, while edges represent pointer and aliasing relationships
between nodes. Our graphs include directed edges for pointer relationships and undirected
edges for aliasing relationships.

Nodes. At its core, our analysis tracks which values may be exposed to callers. Since
our analysis is built on LLVM, we map each LLVM value to a node. Nodes represent heap
objects and integer values. We focus on three kinds of LLVM nodes: pointer nodes NPointer,

71

structure nodes NStruct, and integer nodes NInt. Each abstract pointer and structure node
represents one or more concrete heap objects. Integer nodes represent constant integer
values. LLVM pointer nodes represent pointers while structure nodes represent object
instances. (LLVM also has floating point and function nodes, but they are not relevant
to our analysis: we do not consider floating point; and we handle function calls when
analyzing call and return instructions.) Nodes that are no longer reachable from LLVM
variables may be omitted from a graph.

Because our analysis seeks to show that this remains abstractly unchanged across
const methods, it tracks a boolean “this” flag for each node. A node n’s “this” flag is
true when n represents an object currently reachable (along pointers and field references)
from the this object as defined at a given program point. If the “this” boolean is true
for a node, this corresponds with the predicate ReachableFromThis(h, o) being true from
Definition 5.2.3.

For each node with true “this” flag, our analysis also tracks a boolean “read” property.
Our analysis verifies that nodes with “read” set to true are never written to after being
marked as “read”. In our illustrations, we use a grey background to denote “read” being
true. The initial value for “read” is false. If the “read” boolean is true for a node, this
corresponds with the predicate IsExposed(o, tr) being true from Definition 5.2.7.

Our analysis tracks nullness for each pointer node using a standard 4-element lat-
tice (impossible/definitely-null/definitely-not-null/anything). LLVM’s struct nodes are like
pointer nodes for structures (including classes); our abstraction uses edges to represent a
map, keyed on field names, from struct nodes to field contents.

We also track possible values for integer nodes. At these nodes, we explicitly use ⊤ to
represent “any value”, ⊥ to represent “impossible”, and ranges otherwise.

Edges. Edges in our graph represent pointer and aliasing relationships between nodes.
Our analysis maintains four types of directed edges between nodes: pointee edges, struct
edges, substruct edges, and this edges. To determine all objects that we reachable, we
follow pointee and struct edges. It also maintains a set of undirected edges between nodes:
weak edges. Finally, our analysis maintains a mapping between LLVM variables (which
are not nodes) and graph nodes.

Directed edges are as follows:

• “Pointee” directed edges e ∈ EPointer link pointers to pointees. Every pointer node
has at most one pointee edge out of it—in our abstraction, a pointer may only point
to one pointee. A pointer node without an outgoing pointer may point to any object
of appropriate type, as tracked by our memory alias sets (described below). Directed
edges, including pointee edges, respect types; for instance, a pointee edge could go
from a pointer int32 * node to an int32 int node, but not vice-versa.

• “Struct” directed edges e ∈ EStruct link struct nodes with their field contents. Index
labels indicate which field.

• “Substruct” edges e ∈ ESubStruct handle subtyping relations between objects. If class
B is a subclass of A, and if we are analyzing in the context that this is a B, then any
“this” node representing an instance of an A object will have a substruct edge to the

72

B subclass. This maintains object state, so that virtual methods on B that require
the subtype B from an A can find one.

• “This” edges e ∈ EThis between nodes represent explicit flow from a node with “this”
flag true to any other node in the graph (regardless of type). For instance, after state-
ment t = x.f+1, where x has “this” flag true (and hence so does f), then our analysis
will create a “this” edge from the “t” to the int node for “f”. The purpose of these
edges is to conservatively approximate the nodes that are in ReachableFromThis.

Undirected edges are as follows:

• “Weak” edges e ∈ EWeak indicate that two values may be aliased; a strong update of
one of the values associated with the edge requires a weak update of the other. We
denote weak edges with dotted lines.
As Figure 5.7 illustrates, however, the relationship is not between the connected
nodes, but rather between the nodes that point to the connected nodes. That is, if
pointer node A points to int node intA and pointer node B points to int node intB,
then a weak edge between the int nodes indicates that pointer nodes A and B may
point to the same object. A strong update to A’s pointee must trigger a weak update
to B’s pointee, and vice-versa. Weak edges arise due to control-flow merges.

A

B

IntA

IntB

Figure 5.7: Weak edge (dotted) indicates nodes A, B may point to same object.

LLVM variable mapping edges EVar associate each LLVM variable (e.g. %0) with a
node.

All together,

E = EPointer ∪ EStruct ∪ ESubStruct ∪ EThis ∪ EWeak ∪ EVar.

Initial state. Our analysis starts analyzing a method in the initial state where the LLVM
variable associated with this (typically %0) points to a pointer node n0. Node n0 then has
a pointee edge to a struct node nthis representing the this object. The struct node’s int
fields are initialized to fresh int nodes containing ⊤, while other fields get pointer nodes
with no aliases and outgoing pointers. Note that this does not represent a maximal heap,
which we use in the formal definition. If we assumed the this object could contain aliases,
it would model a maximal heap, however practically this makes the analysis unusable for
any objects with multiple pointer fields. In other ways our analysis is more conservative.
Our analysis considers initial object state that may not be possible in executions of the
program. For instance, there may be an invariant set in an object’s constructor. Method
parameters are also initialized to fresh pointer nodes np; however, the objects that the np

73

point to may alias existing objects in the heap. All together, the analysis assumes that
there is a this object with unaliased fields, and nothing about its contents.

A method with two int * parameters on a class with one int field would have this
initial abstraction:

%0 Pointer

n0

Pointer

nthis

Int ⊤

%1 Pointer Int ⊤

%2 Pointer Int ⊤

The weak edge indicates that %1 and %2 may alias. We assume %1 and %2 don’t alias
fields of parameters.

5.2.4 Running Example
Figure 5.8 presents the LLVM control-flow graph for code similar to getValue() from
Section 5.1. We will use this CFG to illustrate our transfer functions.

Section 5.2.5 presents key transfer functions for our analysis. We explain the functions
below.

ID = alloca TYPE. The LLVM alloca instruction allocates a fresh memory location.
Our analysis thus creates a fresh pointer node and a fresh node containing the default
value for the corresponding type, along with edges from the LLVM variable to the new
pointer node and from the new pointer node to the new instance of the default value.

Instruction %2 = alloca %class.A* adds fragment:

%2 Pointer
n0

Pointer
n1

ID = getelementptr PTR(, INDEX)+. This instruction creates a pointer node which
provides direct access to a pointee or a field node.

The example contains statement %4 = getelementptr %3, 0, 1, which creates a
pointer that follows the pointer edge followed by the struct edge for cached. For this
graph only, we’ve labelled the EPointer edges with indices; everywhere else, we omit indices
for clarity. Our analysis creates fresh pointer node n%4 bound to variable %4, along with
a pointee edge from n%4 to nv (which it arrives at by following indices 0, 1 starting from
n%3), yielding the following graph after analyzing getelementptr:

74

define i32 @C::getValue(%class.A* %0)
%2 = alloca %class.A*
store %0, %2
%3 = load %2
%4 = getelementptr %3, 0, 1
%5 = load
%6 = trunc %5 to i1
br %6, label %10, label %7

%8 = getelementptr %3, 0, 0
store 42, %8 ; %3.0 = 42
%9 = getelementptr %3, 0, 1
store 1, %9 ; %3.1 = 1
br label %10

%11 = getelementptr %3, 0, 0
%12 = load %11
ret %12

Figure 5.8: LLVM control-flow graph inspired by A in the motivating example.

75

Pointer%2 Pointer Struct Int ⊤

Pointer

n%3

%3 Int ⊤
nv

Pointer

n%4

%4

0

1

ID = load PTR. The LLVM load instruction loads a value from memory at address PTR
and puts the value into ID, i.e. ID = *PTR. Our analysis creates a fresh pointer node which
points to the pointee (*PTR). The new node also gets weak and “this” edges patterned after
the node that it was copied from.

In the example, %3 = load %2 would have before and after states:

Before:

%2 Pointer
nPointer

Pointer
np

Struct

Int ⊤ Int ⊤

0 1

After:

%2 Pointer
nPointer

Pointer
np

Struct

Int ⊤ Int ⊤

0 1

%3 Pointer
nv

This shows how %3 gets a fresh pointer node that points to np’s pointee.

store VAL, PTR. The LLVM store instruction stores a value to the location referenced
by a pointer (i.e. *PTR = VAL). Our analysis therefore updates the contents of the location
pointed-to by PTR and relevant “this” edges.

Let PTR map to pointer node npointer ∈ NPointer (i.e. (PTR, nPointer) ∈ EVar), and let
VAL map to node nv. Node npointer may have one pointee edge; let the target of that
edge (i.e. *PTR) be node np. (If no such edge exists, our analysis makes the conservative
assumption that npointer points to a fresh pointee object, weakly aliased with all other
objects of appropriate type; if npointer has “this” flag true, our analysis assumes the new
pointee object is unique.)

The analysis updates “this” edges and replaces the contents of np with those of nv. It
removes all “this” edges involving np, reflecting the fact that np’s value has changed. If nv

is a “this” node, it adds a “this” edge (np, nv). Finally, for all “this” edges (nv, n
′
v), the

analysis creates “this” edges (np, n
′
v).

76

In the example, store 42, %8 would have these before and after states:

Before:

%8 Pointer
nPointer

Int ⊤
np

Int 42

After:

%8 Pointer
nPointer

Int 42
np

Int 42

If np is a pointer node (i.e. PTR is a pointer to a pointer), the analysis will change
pointee edges out of np to reflect the change. It removes any edges (np, ∗) from EPointer
and adds a new edge (np, nv).

In our example, we have statement store %0, %2, which results in the addition of an
edge from pointer node np to struct node nv.

Before:

%0 Pointer
nv

Struct Int ⊤

Int ⊤

0

1

%2 Pointer
nPointer

Pointer
np

After:

%0 Pointer
nv

Struct Int ⊤

Int ⊤

0

1

%2 Pointer
nPointer

Pointer
np

5.2.5 Transfer Functions
We next present the transfer functions underlying our analysis. Our transfer functions
determine whether const methods are abstractly immutable with respect to the distin-
guished this object, by tracking which parts of this have been made visible to callers and
verifying that these parts do not subsequently get modified. The transfer functions update
heap abstractions across LLVM statements.

freshNode(T) means a new, non-null node representing an object of type T.
freshWeak(T) means freshNode(T) with weak edges to all objects of appropriate type.

77

ID = alloca TYPE. Let:

n0 := freshNode(TYPE ∗) n1 := freshNode(TYPE).

Then:

N ′ = N ∪ {n0, n1};
E ′

Var = EVar \ (ID, ∗) ∪ (ID, n0); and,
E ′

Pointer = EPointer ∪ {(n0, n1)}.

ID = getelementptr PTR(, INDEX)*. Let:

(PTR, n0) ∈ EVar (ni, ni+1) ∈ EPointer ∪ EStruct

where [n0, . . . , nk] are the specified indices;
npointer := freshNode(typeof(ID)).

Then:

N ′ = N ∪ {nPointer};
E ′

Var = EVar \ {(ID, ∗)} ∪ {(ID, npointer)}; and
E ′

Pointer = EPointer ∪ {(npointer, nk)}.

ID = load PTR. Let:
(PTR, npointer) ∈ EVar

(npointer, np) ∈ Epointer if such an np exists;
else np is freshWeak(typeof(ID)).

if np pointer: (np, n
′
p) ∈ Epointer such an n′

p exists;
else n′

p is freshWeak(typeof(ID)).

Then:

N ′ = N ∪ {nv = freshNode(typeof(ID))}
E ′

Var = EVar \ {(ID, ∗)} ∪ {(ID, nv)}
E ′

this = Ethis ∪ {(nv, np)} if np has “this” true;
∪ {(nv, nt) for all nt such that (np, nt) ∈ Ethis;

if np int node: copy contents of np to nv;
if np pointer node: E ′

Pointer = EPointer ∪ {(nv, n
′
p)}.

78

store VAL, PTR. Let:

(VAL, nv), (PTR, npointer) ∈ EVar

np = if it exists,
the unique node {np | (npointer, np) ∈ EPointer};

else, freshWeak(typeof(VAL)).

Our analysis updates edges:

E ′
this = Ethis \ {(np, ∗)}

∪ {(np, nv)} if nv has “this” true;
∪ {(np, n

′
v) for all n′

v such that (nv, n
′
v) ∈ Ethis;

if np Int node: copy contents of nv to np;
if np Pointer node: E ′

Pointer = EPointer \ {(np, ∗)} ∪ {(np, nv)};
plus weak updates for np (see text).

5.2.6 Memory Alias Sets
Our analysis uses a type-based approach to conservatively estimate worst-case aliasing
relationships between objects. That is, for each type, the analysis tracks all potentially
pointed-to nodes of that type. The analysis uses this information to perform worst-case
updates across functions that it does not analyze. In addition, for structs (including classes),
our analysis encodes the C++ implementation guarantee that different fields of the same
struct instance do not alias.

Our per-statement graph abstraction therefore includes 4 maps. Specifically, we store:
1) known pointees, 2) unknown pointees, 3) known fields, and 4) unknown fields. Maps 1
and 2 are keyed by the type of the node. Maps 3 and 4 are keyed by the type of the node,
the containing struct type, and the field. Let T be a type, S be a struct type, F be a field
name, and N be a set of nodes. Formally, the resulting maps are as follows:

1. MemKnown : T → N ,
2. MemUnknown : T → N ,
3. MemKnownField : T × S × F → N , and
4. MemUnknownField : T × S × F → N .

Note that any nodes created with proper allocation (such as alloca) are added to the
known sets. If there is any pointee or field accesses with no information, we create a new
node and add it to the corresponding unknown set. For instance, if there is an uninitialized
pointer, we create a new node of the appropriate type, which may alias any other node of
the same type. Maps 3 and 4 are for fields. If there is an uninitialized struct that has 2
fields of the same type, we do not want these fields to alias.

These memory alias sets add additional weak edges to our abstraction, as follows:

79

Unknown. Let:

n0 ∈ MemUnknown(t0).

Then:

(n0, n1) ∈ EWeak

where

n1 ∈ MemUnknown(t0), n0 ̸= n1

∪ MemKnown(t0)

∪ MemUnknown(t0, ∗, ∗)
∪ MemKnownField(t0, ∗, ∗).

Intuitively, an unknown pointee may alias any other node of the same type (even if that
node is part of a struct).

Unknown Fields. Let:

n0 ∈ MemUnknownField(t0, s0, f0).

Then:

(n0, n1) ∈ EWeak

where

n1 ∈ MemUnknownField(t0, s0, f0), n0 ̸= n1

∪ MemKnownField(t0, s0, f0).

Intuitively, an unknown field may alias any other matching field. Note that fields may
still alias unknown pointees from the previous rule.

Other Transfer Functions

We include descriptions of our other transfer functions below. Because they are straight-
forward, we chose to omit them from Section 5.2.5.

Arithmetic operations. In addition to updating the ranges at int nodes, our analysis
also updates “this” edges. In particular, at an operation %z = ADD %x, %y, let nx, ny,
and nz be the relevant nodes after EVar lookups. If there is an edge (nx, nt) ∈ EThis, then
we propagate the “this” property by adding edge (nz, nt) to EThis as well. (Note that our
analysis guarantees that nt will have had its “this” flag set to true.)

80

branch. Our analysis performs predicated analysis at conditionals; for instance, at br %6,
label %10, label %7, it propagates %6 true at successor %10 and %6 false at successor
%7, by adding relevant EVar edges.

call. Our analysis analyzes the call LLVM instruction by leveraging the fact that it
is a class-based analysis. Specifically, it continues across method boundaries if the callee
remains in the class under analysis, and makes worst-case assumptions if the callee is
outside the class. Because the analysis is focussed on a particular class, it assumes that
“this” is an object of that exact class. This allows the analysis to devirtualize the method
call.

Once the analysis has identified the callee, it maps the caller’s actuals to the callee’s
formals and continues the analysis at the callee’s entry point. After the call completes, the
analysis removes any mappings specific to the callee.

return. At a return statement, the analysis propagates the program state back to the
caller, binding the callee’s return value to the appropriate variable in the caller.

At a top-level return statement, our analysis also marks state as escaping or being read.
Recall that the analysis considers each public const method in turn, iterating on the set
of methods until it reaches a fixed point. Top-level return statements are the statements
which return from these public const methods. Figure 5.9 illustrates our algorithm for
handling top-level returns. At a top-level return %r, the analysis sets the “read” flag for
all “this”-flagged nodes reachable from %r. The analysis also reports, upon return, any
immediate pointees of the formal method parameters that are “this”-flagged; such nodes
may escape the method.

Weak Updates. Our analysis also performs weak updates as required by the weak edges
in the graph. Consider a store store v, %q with the following initial state:

%q

Pointer

Pointernp

Int 2

Pointernv

Int 1ni

Pointer

Int 2 ∪ 3 n′
i

First, the analysis swings the np edge in EPointer, adding an edge to nv’s pointee:

81

1: define immediatePointees(n):
2: if n ∈ NPointer then
3: S ′ := S ∪ {np} where (n, np) ∈ EPointer
4: else if n ∈ Nstruct then
5: S ′ := immediatePointees(nf) where (n, nf) ∈ Estruct
6: end if
7: return S ′

1: for all parameters np do
2: Np := immediatePointees(np)
3: for all n′

p ∈ Np do
4: mark n′

p read and escaped, if not this
5: Nreach := Reachable(n′

p)
6: mark nr ∈ Nreach read and escaped, if n′

p not this
7: end for
8: end for

1: for all n such that n is reachable from %r do
2: if isThis[n] then
3: mark n read
4: end if
5: if (n, nt) ∈ EThis then
6: mark nt read
7: end if
8: end for

Figure 5.9: Algorithm for marking nodes read and escaped at top-level returns.

82

%q

Pointer

PointernpPointernv

Int 1ni

Pointer

Int 2 ∪ 3 n′
i

Then, the analysis performs weak updates and adds new weak edges:

%q

Pointer

PointernpPointernv

Int 1ni

Pointer n′
p

Int 1 ∪ 2 ∪ 3 n′
i

In particular, the analysis sees the weak edge involving np and n′
p, which causes it to create

a new weak edge involving the pointees of np and n′
p—that is, from ni to n′

i. Because those
nodes are linked, the analysis also widens the int 2 ∪ 3 node to include the weak update
result 1.

We formally express the rules for a weak update following an update out of np as follows.
For all n′

p such that (np, n
′
p) ∈ EWeak, let ni, n

′
i satisfy (np, ni), (n

′
p, n

′
i) ∈ EPointer. Then

E ′
Weak = EWeak ∪ (ni, n

′
i); and

n′
i is widened to include ni.

If ni is a pointer node, then we recursively update ni and its counterparts.

5.2.7 Merge Operation
Our merge operation takes two graphs A and B as input and produces graph R as output.
A sound merge operation must produce a graph R that represents at least all of the concrete
heaps that the input graphs A and B represent. Although pruning could conceptually occur
anywhere in the analysis, we implement pruning as part of our implementation of the merge
operation—we eliminate nodes that are no longer reachable from LLVM variables.

We first illustrate merging by means of examples. Consider these graphs:

A:

83

%1 Pointer
A1

Pointer
A2

Int 1
A3

%2 Pointer
A4

Pointer
A5

Int 2
A6

B:

%1 Pointer
B1

Pointer
B2

Int 1
B3

%2 Pointer
B4

Pointer
B5

We create merged graph R by simultaneously traversing graphs A and B starting at
each LLVM value and creating sets of equivalent nodes. Starting at node %1, our analysis
would create the path:

%1 Pointer
(A1, B1)

Pointer
(A2, B2)

Int 1
(A3, B3)

which associates An and Bn in the obvious way. (If the paths are not of the same length,
our merging algorithm will first equalize them.) All integer nodes contain the union of
both ranges. Starting at %2, our analysis would also create the path:

%2 Pointer
(A4, B4)

Pointer
(A5, B5)

Int 1 ∪ 2

(A6, B3)

widening the node at (A6, B3) to account for both possibilities. Finally, the analysis
searches for nodes that belong to more than one set, and links them with weak edges.
In our example, B3 belongs to two sets, prompting the addition of a weak edge. The
analysis yields:

%1 Pointer
(A1, B1)

Pointer
(A2, B2)

Int 1
(A3, B3)

%2 Pointer
(A4, B4)

Pointer
(A5, B5)

Int 1 ∪ 2

(A6, B3)

84

Node splitting. Recall that a weak edge between pointer nodes n1, n2 and pointer edges
(n1, n

′
1) and (n2, n

′
2) imply the presence of a weak edge between nodes n′

1, n
′
2. Our merging

algorithm therefore splits nodes if n′
1 = n′

2. Consider, for instance:

A:
%1 Pointer Pointer Int

%2 Pointer Pointer

B:
%1 Pointer

Pointer Int

%2 Pointer

The first phase of the merge yields R as follows:

%1 Pointer Pointer

n1

Int
np

%2 Pointer Pointer
n2

The second phase of the algorithm therefore searches for pointer nodes n1, n2 which point
to a common object np, such that (n1, n2) ∈ EWeak. It adjusts the graph by making a fresh
copy n′

p of np and setting n2’s pointee to the copy, linking np and n′
p with a weak edge:

%1 Pointer Pointer

n1

Int

np

%2 Pointer Pointer
n2

Int
n′
p

Formalization of merge operation.

First, note that EA and EB have the same sets of paths starting at local variables, if we
add nodes when necessary. We formalize this property as follows.

Let EA and EB be sets of edges for graphs A and B and let v be an LLVM variable.
Let (v, nA

v) ∈ EA
Var and (v, nB

v) ∈ EB
Var. Let path pA start at nA

v in EA. Let pA take the
sequence c of choices of indices at struct nodes. (At pointer nodes, there is only one choice.)
Then, we can construct a corresponding path pB starting at nB

v in EB which takes the same
choices c. (Recall that a missing edge in our abstraction is equivalent to edges to all nodes
of appropriate type in the global alias set; we add edges to nodes in the global alias set as
needed.)

85

Equalization phase. Our algorithm starts by equalizing the lengths of all paths along
pointer and structure edges. For each local variable v, it constructs the set of maximal-
length acyclic paths in EA

Pointer ∪EA
Struct and EB

Pointer ∪EB
Struct. If corresponding paths have

different lengths because path p terminates at node n while p′ does not, then the algorithm
extends p′ by adding edges from its last node to the global alias set.

Labelling phase. The algorithm assigns a unique label to every reachable node in NA

and NB.

Copying phase. Next, the algorithm creates graph R by copying the corresponding
equalized paths from EA and EB. It associates with each node nR ∈ R the labels from its
source nodes (i.e. nodes in A,B reachable with the same choices taken to reach nR) in NA

and nB. The contents of nR is the least upper bound of the contents of its source nodes.
The algorithm also copies other edges from the source graphs, including pointer and struct
edges which induce cycles, but does not visit them, to ensure termination.

Weak edges phase. The analysis then adds weak edges between nodes in R with the
same labels, reflecting the fact that such nodes may alias.

Splitting phase. Finally, the analysis searches for weak edges between pointer nodes
which share a pointee. It splits such nodes, erasing one of the pointer edges and replacing
it with an edge to the copy. It then creates a weak edge between the split node and its
new copy.

5.2.8 Assumptions
As is the case with many static analyses, our analysis is subject to assumptions about the
programs under analysis. In our case, we expect that our analysis will identify logically
const implementations as long as:

1. method arguments never alias any objects reachable from this;

2. no part of the heap reachable from this may alias any other part of the heap reach-
able from this; and,

3. implicit flows of information do not invalidate logical const-ness.

We encode the fairly mild aliasing requirements in how we set up our heap abstraction.
Without them, our analysis would report too many false positives. We chose to support
only explicit information flows because they suffice for reasoning about the caching im-
plementations that we are most interested in; using implicit flows opens the potential for
many more false positives.

For point 2 consider the following:

86

class C {
mutable bool cached;
mutable int value;
bool *internal;

public:
int getValue() const {
... // proper caching

}
void unrelated() const {
*internal = ...;

}
}

Without point 2 we would have to conservatively assume the two boolean fields may
alias prior to any call. In unrelated the analysis would assume internal may point to
cached. With proper caching the write to value within getValue would be protected
by cached being true. If we analyzed unrelated with this state, it would set cached to
unknown while value is still read. This would give us a false positive on the next call to
getValue.

5.3 Results
We implemented our analyses in the LLVM compiler framework and investigated abstract
immutability on code from 4 sizeable open-source benchmarks. Our benchmarks are a
subset of the benchmarks from Chapter 4. We use the following projects: libsequence, fish
shell, Ninja, and Mosh.

We leveraged our framework in Chapter 4 to get information regarding the build process
of a project. This information includes all linkage information required to build a library
or executable. Given a library or executable, our tool recompiles all the source to LLVM
bitcode. It then links all the output together to create an LLVM bitcode version of the
library or executable. Our tool analyzes this final linked LLVM bitcode.

We summarize our results at the end of the section. Table 5.1 presents our findings.

5.3.1 libsequence
We analyzed 28 classes from libsequence 1.8.7. Our abstract immutability analysis iden-
tified 5 true positives which contain invalid stores, and 4 escaped returns. We found
libsequence extensively uses caching. In one case, it misses writing to a cache guard in
one branch. This missed write invalidates the caching scheme for the class, resulting in 5
reported writes. Listing 5.3 shows a pruned version of the offending method (we removed
one of the writes for brevity).

The DepaulisVeuilleStatistics method is responsible for caching the values of
the _DVK and _DVH, and guarding the writes to these fields with _CalculatedDandV. If
_NumPoly != 0, then the caching behaves as expected. When the values are not cached,

87

Listing 5.3: libsequence’s DepaulisVeuilleStatistics method misses a cache guard
write when _NumPoly == 0.

1 void DepaulisVeuilleStatistics() const {
2 if (!(rep->_CalculatedDandV)) {
3 if (rep->_NumPoly == 0) {
4 rep->_DVK = 1;
5 rep->_DVH = 0.;
6 return;
7 }
8 else {
9 rep->_DVK = /* ... */;

10 rep->_DVH = /* ... */;
11 rep->_CalculatedDandV = 1;
12 }
13 }
14 }

the code begins execution from line 9. Lines 9 and 10 writes the values, then line 11 sets
that the values are cached. Any subsequent calls would not write on lines 9 and 10 since
_CalculatedDandV is true. Otherwise, if _NumPoly == 0, every call to this method writes
to _DVK and _DVH. Our analysis found writes to these fields after they were read by the
caller of another method (that method returns _DVK). In this case, every call recomputes
the values, negating any benefit of caching.

We modified the code to correctly write 1 to _CalculatedDandV after line 5, and our
analysis no longer reported any errors. To libsequence’s credit, we later manually inspected
the code and found many correct usages of caching. Listing 5.4 shows one such example.

In Listing 5.4, all code that uses _walls_B, _walls_Bprime, or _walls_Q must check
_calculated_wall_stats before calling WallStats. There are no missing checks in the
code base. However, one could imagine a new method forgetting this check. This would
either remove the performance benefits of caching, as it would have to recompute the
values, or be possibly incorrect. It would be incorrect if there was no call to WallStats
before using, for example, _walls_B as it would not have been initialized. We verified
that our analysis reports errors when we artificially injected faults by removing the call to
WallStats, and removing the guard check.

Listing 5.5: libsequence allows mutable access to internal data in 4 methods.
double * Sequence::GranthamWeights2::weights() const { return __weights; }
double * Sequence::GranthamWeights3::weights() const { return __weights; }
double * Sequence::Unweighted2::weights() const { return __weights; }
double * Sequence::Unweighted3::weights() const { return __weights; }

The 4 escaped returns we found are shown in Listing 5.5. These 4 methods clearly ex-
pose internal data. The developers declare the __weights field as mutable double [2],
and mutable double [6] for GranthamWeights2 and GranthamWeights3 respectively.

88

Listing 5.4: libsequence correctly using caching, checked by our abstract immutability
analysis.

unsigned PolySNP::WallsBprime() const {
if (rep->_calculated_wall_stats == false) {
WallStats();

}
return rep->_walls_Bprime;

}

void PolySNP::WallStats() const {
if (/* ... */) {
rep->_walls_B = /* ... */;
rep->_walls_Bprime = /* ... */;
rep->_walls_Q = /* ... */;

}
else {
rep->_walls_B = /* ... */;
rep->_walls_Bprime = /* ... */;
rep->_walls_Q = /* ... */;

}
rep->_calculated_wall_stats = true;

}

89

Both of these fields carry an “logically const” comment. Unweighted2 and Unweighted3
are similar.

As well as weights(), the GranthamWeights2 and GranthamWeights3 classes have a
calculate method. The calculate method computes a result from its inputs and writes
the result to the mutable __weights field. It does not cache or protect the values at
all. The weights method subsequently returns the __weights array as a pointer, also
not protecting anything. Our immutability analysis detects that the calculate() and
weights() methods work together to violate logical immutability, and reports a const
violation. The calculate method for Unweighted2 and Unweighted3 are similar, but
they unconditionally write constant values to array elements.

5.3.2 fish shell
We ran our analysis on 56 classes from fish version 2.5.0. Our analysis reported 2 writes
and 1 unknown call from fish. The 2 reported writes were interesting. At first glance
we believed there was a bug. However, on deeper inspection we found that the caching
implementation was correct, but difficult to reason about. The writes are shown on lines
17 and 25 in Listing 5.6.

In Listing 5.6 the initial call to parser_t’s get_lineno accesses the element at the
end of its execution_contexts field and calls its get_current_line_number() method.
This method in turn calls line_offset_of_character_at_offset, which then writes to
cached_lineno_count on lines 17 and 25. The call chain completes and the caller reads
the cached_lineno_count field.

On subsequent calls our analysis cannot conclude that neither branch can execute. The
conditional for neither branch to execute is cached_lineno_offset == offset. On the
initial call this is satisfied on line 27. However, it is not satisified on line 19. If line 19 was
changed to cached_lineno_offset = offset instead, our analysis could conclude that
property holds on both sides of the branch.

To manually verify this code, the comment indicating why cached_lineno_offset
isn’t offset is critical. The write on line 17 is in a loop that iterates over a string,
terminating the loop on a null character. If offset was beyond the length of the string,
that would trigger undefined behaviour. So, instead of being beyond the length of the
string, cached_lineno_offset will be the index of the null character in the edge case
that offset is beyond the length of the string. Subsequent calls would not execute line
17, since the character at cached_lineno_offset’s index is the null character. For our
analysis to verify this method, it would need to understand the layout of C strings, and
have a special case for offset being beyond the length of the string. This is outside the
scope of our analysis.

The sole unknown call for fish is in history_item_t’s matches_search method. This
method calls find on a string field to search for an argument substring, and returns whether
it was found. Again, we do not explicitly handle C++ standard library functions.

We found fish to be the most conservative of all the benchmarks using const. Looking
deeper at fish, we found 12 methods that return fields. However, all of the return types for
these functions are properly const qualified.

90

Listing 5.6: fish correctly using caching. Our abstract immutability analysis could not
successfully check this usage due to complex string properties.

1 int parser_t::get_lineno() const {
2 // ...
3 lineno = execution_contexts.back()->get_current_line_number();
4 // ...
5 return lineno;
6 }
7 int parse_execution_context_t::get_current_line_number() {
8 // ...
9 int line_offset = this->line_offset_of_character_at_offset(/* ... */);

10 // ...
11 }
12 int
13 parse_execution_context_t::line_offset_of_character_at_offset(/* ... */) {
14 // ...
15 if (offset > cached_lineno_offset) {
16 // ...
17 cached_lineno_count++;
18 // ...
19 cached_lineno_offset = i;
20 // note: i, not offset, in case offset is
21 // beyond the length of the string
22 }
23 else if (offset < cached_lineno_offset) {
24 // ...
25 cached_lineno_count--;
26 // ...
27 cached_lineno_offset = offset;
28 }
29 return cached_lineno_count;
30 }

91

5.3.3 Mosh
We ran our analysis on 48 classes from Mosh version 1.2.6. Of these classes, we found 1
with an escaped return and 3 where the state of this reaches an unknown call.

Listing 5.7 shows the invalid escaped return. AlignedBuffer’s data method (which is
const-qualified) returns a plain char *, allowing the caller to modify internal data through
the returned pointer.
Listing 5.7: Mosh returning non-const qualified pointers to AlignedBuffer’s internal

data.
char * AlignedBuffer::data() const { return m_data; }

The 3 unknown calls were all false positives. The first two stem from the compare
method in Complete. At some point this method writes fields to a local string buffer and
compares the string’s content. LLVM does not provide our analysis with the implementa-
tion of string’s append method, so our analysis conservatively assumes the field arguments
may be written to. The final unknown call stems from the diff_from method in the same
Complete class. This method creates a temporary object from values of fields and explicitly
calls operator delete, which our analysis does not understand.

Our immutability analysis produced false positives in 3 cases. All of them are essentially
due to not having enough information about standard library functions and conservatively
overapproximating their behaviour.

5.3.4 Ninja
We ran our analysis on 20 classes from Ninja version 1.7.2. None of the classes from
Ninja generated any results due to store, or unknown calls. However, our analysis found
4 instances of fields that escaped through the return value without a fully const qualified
return type. Listing 5.8 shows these methods, along with their bodies.

Listing 5.8: Ninja has 4 classes that return non-const qualified pointers to internal data.
const vector<Node*>& DepsLog::nodes() const {
return nodes_;

}
DepsLog* ImplicitDepLoader::deps_log() const {
return deps_log_;

}
DepsLog* DependencyScan::deps_log() const {
return dep_loader_.deps_log();

}
BuildLog* DependencyScan::build_log() const {
return build_log_;

}

First, DepsLog::nodes should instead return a vector of const Node* to be transitively
immutable. The remaining 3 methods should const qualify the object type to be transi-
tively immutable. Otherwise, for example, the caller of deps_log may mutate the state of

92

a const qualified ImplicitDepLoader through the returned value. All of these methods
expose internal state.

5.3.5 Summary
Table 5.1 summarizes our results. Our analysis checked 152 classes across 4 projects. Out
of the 18 warnings generated by our tool, there were 6 false positives. 2 of the false positives
in fish were related to writes. Manual inspsection of these writes found they were indeed
valid, but required complicated reasoning about strings to check. The remaining false
positives stem from 5 calls to standard string methods, and one explicit call to the delete
operator.

Table 5.1: Open-source benchmarks largely use abstract immutability correctly; im-
mutability errors in practice are usually representation exposure.

Classes Escaped Unknown False
analyzed returns calls Writes positives Runtime

libsequence 1.8.7 28 4 0 5 0 2h 57m 53s
fish 2.5.0 56 0 1 2 3 6m 37s
Ninja 1.7.2 20 4 0 0 0 11s
Mosh 1.2.6 48 1 3 0 3 3h 42m 44s

Our analysis generated a low number of false positives. We believe our assumptions
were needed to make our tool useable. The runtime is within an acceptable range: we
do not expect the analysis to run for every project compliation. For fish, the write false
positive, while it was incorrect, did indicate a complicated method which could be very
brittle.

93

94

Chapter 6

Related Work

We discuss 3 major categories of related work: types, language features, and analyses.
For types we explore both type systems and type inference. Some of these type systems,
along with inference, support further analyses. There is great potential for future work to
study the benefit of language features in general. In this work we aim to show the benefit
of immutability. Our work uses both dynamic and static analyses to enforce abstract
immutability. We leverage existing techniques for both dynamic and static analysis, and
compare our work to related analyses.

Types include type system extensions to Java similar to const. The Java programming
language has no exact analog to C++’s const operator. Related work defined immutability
annotations for Java and statically and dynamically verified that programs satisfy their
annotations. Potanin et al. [61] provide a recent discussion of immutability terminology,
consistent with our description in Chapter 2, and compare research implementations in
depth. Type systems for immutability often include type inference, which automatically
finds types that should include, for instance, a const-like keyword. Reference immutability
in Java has not yet been added to the Java language specification; authors of related work
augment un-annotated programs.

We believed it was important to show that developers benefit from immutability decla-
rations. Prior to this work, there was no hard evidence that developers used immutability
in practice despite a pervasive belief on the part of language implementations and much
work in this space (as discussed in this chapter). Chapter 4 is partly inspired by studies of
other language features. We also explore whether developers use abstract immutability in
Chapter 3. Other related work improves the flexibility of immutability for developers. Note
that both inference systems and static analysis can improve usability by helping developers
add immutability declarations.

Our dynamic analysis implementation in Chapter 3, at its core, verifies that C++
programs satisfy a strengthened version (deep concrete immutability) of their const an-
notations. In Chapter 4 we use static analysis to find methods that obey deep concrete
immutability. Our analysis in Chapter 5 verifies abstract immutability: it permits writes
that do not modify a caller’s view of an object. Other proposed analyses verify whether
(Java) methods are pure, i.e. have no visible side-effects; there is a strong connection be-
tween purity and immutability [74]. Some purity analyses build on top of proposed type
systems.

95

6.1 Type Systems
Researchers have developed type systems that extend Java to add reference immutability.
Reference immutability ensures that objects accessed through a reference cannot be modi-
fied. Typically these systems ensure deep concrete immutability. Object immutability, on
the other hand, ensures that the object itself does not change. Reference immutabilityis
similar to const references or pointers in C++, while object immutability is equivalent to
having a class with only const methods (and no public fields). We chose to study C++
because it’s widely used in practice along with its existing const annotation, which enables
us to analyze code in the wild. Reference immutability in Java is not standard; authors of
related work augment un-annotated programs.

6.1.1 Javari
Javari [83, 82] adds reference immutability to Java. The authors extend Java’s type system
and add additional run-time checks using the Checker framework [59]. Their type system
introduces 4 new keywords to Java: assignable, readonly, mutable, and romaybe.

Java’s final does not allow a reference to change after its declaration. The assignable
keyword complements the final keyword by allowing the reference to change in any context.
The other keywords control the mutability of the object pointed to by the reference. The
readonly keyword indicates that the reference can only use readonly object methods.

Javari’s cited improvements over C++ are as follows:

• Does not allow unchecked casts;

• Prevents misuse of the type system (unions and varargs);

• Supports multi-dimensional arrays;

• Allows parameterization of code based on variable immutability;

• Ensures pointers are transitively const.

Since Javari does not have an underlying C++ const specification to build on top of,
it has to implement all of those checks itself. In terms of what we check, our work in
Chapter 5 matches Javari in terms of transitivity and downcasts. Our work in Chapter 3
also reports writes to mutable fields at runtime.

Unlike Javari, we investigate the behaviour of a set of real-world benchmark programs,
developed against the C++ const semantics (and which, by necessity, satisfy those seman-
tics). Our empirical study therefore points out the difference in practice between const
semantics as they exist—shallow immutability, mutable, and const casting; and a stronger
version of these semantics—deep immutability, no mutable, and no const casting.

Javari aims to ensure that a readonly (effectively, deep concrete immutable) typed
object does not mutate its state or any state transitively reachable through its references.
Javari, like C++, includes a mutable keyword, which allows developers to specify that a
field may be modified regardless of readonly qualifiers. Javari also inserts dynamic checks
to verify that downcasts maintain the immutability qualifier of the type. Essentially, Javari

96

provides a safer version of C++’s const that, due to the nature of Java, maintains deep
immutability unless the developer explicitly opts out of the checks.

Discussion. Javari keywords behave similarly to C++’s const and mutable. When
const applies to a primitive type in C++, it behaves the same as final. A lack of
const qualifier behaves the same as assignable. The keyword romaybe allows Javari to
template methods over mutability. Any method using romaybe compiles to two versions:
a mutable version and a readonly one. A disadvantage to this approach is that romaybe
is an additional keyword for developers and is often needed, adding noise to the source
code. For instance, a get method needs romaybe on the this parameter allow its use on
a mutable reference.

Javari’s type system has many improvements over C++. In Chapter 3, we propagate
const similar to Javari’s default behaviour of readonly (deep concrete immutability). The
writes-through-const we report would require the mutable keyword in Javari. We found
that, in our benchmarks, most writes were explicitly allowed by developers, which Javari
cannot check.

Our analysis in Chapter 4 checks a subset of methods that could be readonly in Javari.
In Javari, if a method is readonly it must have deep concrete immutability. C++, provides
no similar guarantees.

The key difference between our approach in Chapter 5 and Javari is that we use a
static analysis to ensure that writes do not affect the visible state of an object, compared
to Javari’s approach of marking fields as mutable and allowing arbitrary access. Checking
abstract immutability properties requires in-depth analysis to ensure the visible state of
the object is not modified.

6.1.2 ReIm
ReIm [36, 17], by Huang, Milanova, Dietl, and Ernst, is another framework which adds
reference immutability to Java. ReIm is intended for purity inference, and can therefore
use a simpler type system, omitting parts that are not needed for purity inference. For
instance, references may never be modified through a readonly reference, and there is
no assignable or mutable that allows fields to change in a readonly method. The type
system also differs in that ReIm’s system is context-sensitive. Instead of romaybe in Javari,
ReIm introduces polyread. The immutability of references returned using polyread match
the qualifier of the caller. This allows methods to vary over immutability without having
to create two versions of the same method. The intention of ReIm is to ensure methods
are side-effect free (pure).

ReIm uses a viewpoint adaptation from Universe Types [18]. They combine the declared
type of a method parameter and the type of the parameter used in a call to determine the
type from the caller’s point of view. This ensures that any returned types have the correct
immutability type qualifiers (always preferring readonly if possible).

Discussion ReIm’s type system, unlike Javari, cannot handle caching as there is no
mutable or assignable keyword. The simpler type system suffices for purity—caches are

97

impure. Javari also supports annotations on type arguments for parametric classes, while
ReIm does not.

6.1.3 Glacier
The Glacier system by Coblenz et al [13, 14] implements transitive class-based immutability
in Java, and justifies its immutability design with a significant case study, but no empirical
numbers (unlike our results in Chapter 4). In Glacier, an object that instantiates a class
declared as @Immutable will have all fields immutable. Furthermore, any transitively reach-
able fields must also be immutable. Glacier’s immutable objects are completely immutable;
Glacier does not contain the notion of a “mutable field” and prohibits transitive writes for
immutable classes.

Any class developers add @Immutable to is checked by the type system. The authors
added their immutable annonations, and rules, using the Checker framework. Any fields
or methods that are not immutable are shown to the developer as a compile-time error.

Discussion. The Glacier system assists developers writing immutable objects. It does
not have a notion of reference immutability: all classes must be written with deep concrete
immutability. We believe this work is useful for Java developers. In Java, writing an
immutable object requires making every field is private and final. This requirement
applies to any objects referred to by fields as well, but developers may miss those fields. This
work, through its user study, shows a vast improvement for developers writing immutable
classes over using final. Glacier does not allow for reference immutability or abstract
immutability.

6.2 Type Inference
Both Javari and ReIm have corresponding inference systems. However, neither of these
systems can check abstract immutability, our focus in Chapter 5. They take existing source
code and analyze it to add type qualifiers such that it type checks.

In C++, the const qualifier serves two roles: it is a type qualifier (for fields and local
variables) as well as an annotation for methods. Foster et al. [23] inferred const type
qualifiers for C programs and found that their case studies could have included many more
const annotations than they did. More recently, Greenfieldboyce and Foster [27] presented
a technique for inferring type qualifiers for Java using their JQual tool. They apply JQual
to inferring the readonly qualifier, a variant of the version of readonly proposed by
Javari [83]. Both of these related works use a type systems approach to propagate type
constraints through the program. We focus on the method-annotation role of const, which
is closer in spirit to determining whether a method is pure or not. Our approach in
Chapter 4 uses a simple dataflow analysis rather than a type systems approach, and we
work at a per-method granularity, determining whether each method should be const or
not (optionally using the assumption that const methods do not mutate).

98

6.2.1 Javarifier
Javarifier uses the type system described in Javari [62], but renaming romaybe to polyread.
Their analysis is built on Soot [45]. Their analysis is flow and context insensitive for
inferring readonly. For inferring assignable and mutable they use heuristics. Their 2
heuristics are as follows:

1. Methods annotated as readonly are correct, so any modifications do not change the
abstract state.

2. Fields that are only used in a single method or fields that are declared as transient
are not part of the state (they don’t serialize).

Discussion. These heuristics are simple and do not capture many uses that would be
considered abstractly immutable. For instance, they can not handle caching or logging. Our
analysis in Chapter 4 is similar. However, our analysis in Chapter 5 could be extended to
maximize the set of immutable methods. This would allow inferring abstractly immutable
methods.

6.2.2 ReImInfer
ReImInfer [36, 39, 38, 37] uses the type system described in ReIm, which was designed
to find method purity. Their type inference analysis is precise, scalable, and requires no
manual annotations. For each reference type in the program they find the most restrictive
type qualifier possible. They found their runtime almost scaled linearly while being as
precise as Javarifier.

ReImInfer defines a “best typing” policy. They found a lexicographic ordering of types
from most restrictive to least restrictive produced the best results. They implemented their
inference system using the Checker framework and found that their system is precise and
scalable.

ReIm and its corresponding type inference system, ReImInfer [36], are similar to Javari,
except with a context sensitive type system. Its type system allows the immutability of
the return type to match that of the calling reference. This allows methods to be reused
without requiring mutable and read-only versions. ReImInfer is a type inference system
that maximizes the amount of methods marked as readonly. The authors of ReImInfer
report that 41–69% of methods can be marked as readonly.

Discussion. Aside from the type system, their analysis is similar to our analysis in Chap-
ter 4. The major difference is that their type qualifier depends on the current context. This
is an improvement over C++ where developers need to write two versions of the method.
However, we found the number of immutable methods was higher than ReImInfer’s since
we include more than deep concrete immutability.

Some developers do not intend deep immutability for data structures. For instance,
some methods return an immutable list of mutable objects. Our results agree with ReIm-
Infer’s, we found that developers do miss many immutable methods. Overall, we found
developers annotate the majority of the immutable methods without any assistance.

99

6.2.3 Inferring const for C programs
There are a number of generic frameworks for inferring user-defined type qualifiers for
programming languages [23, 9]. We investigated Foster, Fähndrich, and Aiken’s [23] frame-
work since they demonstrate their framework by creating a const inference system for C
programs. Their system infers the maximum number of consts that can be present in a
program. They found, for programs that already used const, there could be up to 2.5
times more consts than currently present in the code.

C/C++ uses a monomorphic type qualifier system, while their proposed type qualifier
system uses polymorphic type qualifiers. A monomorphic type inferencer system adds
const if it’s possible, regardless of the context. Note that monomorphic type qualifiers
causes the problem of repeated functions. For instance, in C++, there needs to be two
versions of strchr. There’s no way to express that the const qualifier of the input type
should match the returned type. They found 5-16% more const annotations could be
added to C functions using their polymorphic analysis.

Discussion. Since their inference system operates on C programs, they must make con-
servative assumptions due to loopholes in C (as discussed in Chapter 2.2.5). Their poly-
morphic system also would correctly type strchr, since the type of a possible return value
(return NULL;) would be seen as unrelated in their system. In Chapter 4 we ensure that
if a field is returned, the return type is also immutable. This allows us to infer that two
versions of the same method are both correct.

The definition of const the authors use is shallow concrete immutability. Since their
analysis is for C programs, there is no concept of mutable, const_cast or member func-
tions, and thus no abstract immutability. They also do not verify polymorphic relationships.
For instance, two type qualifiers could both vary with respect to const within a function
but be unrelated.

6.3 Language Features
We believe it is important to show immutability is useful for developers. There are no
previous studies specifically on immutability, however there are existing studies for other
language features. For immutability, there are proposals for improving the usability of
immutability: frozen objects and explict immutable annotations for immutable objects.

6.3.1 Usability of Language Features
Our work empirically surveys existing codebases to explore developers’ use of language
features—in our case, C++ and the const qualifier. Related work in this area is rare.
Richards et al. [64] surveyed deployed JavaScript code to understand how the eval keyword
is used in practice, and characterized the uses that they found. In the Python world,
Holkner and Harland investigated the use of dynamic features in that language [35].

100

Discussion. Our work shares with theirs the desire to understand code as it exists in
the wild. A key difference between our work and theirs is that const could be elided
without any immediate implications on software behaviour. (We presume that this elision
would make long-term maintenance more difficult). On the other hand, eval makes code
maintenance more difficult.

6.3.2 Frozen Objects
Leino, Müller, and Wallenburg [49] have proposed frozen objects, a flexible version of
immutable objects. Frozen objects are supported as part of the base language in Ruby.
This system allows a mutable object to become an immutable object by applying the
freeze operator. After an object becomes frozen, it is a transitively immutable object.
This system is dynamic, all checks are done at run-time. However, the authors mention
this system applies to static type systems which support ownership transfer.

Frozen objects allow for multi-stage initialization. Immutable objects usually require
all writes to occur in the constructor, and such a scheme is not possible if two objects have
a direct dependence on each other.

Discussion. While frozen objects are more flexible than immutable objects, we believe
reference immutability has similar flexibility (although for different purposes). However,
under reference immutability developers would have to ensure that, after an object’s ini-
tialization, the only references to the object are immutable. It is not clear whether or not
frozen objects are more usable for developers. Leino, Müller, and Wallenburg [49] do not
include any studies of their system’s usability.

6.3.3 Abstract Machine
Chisnall et al. [10] propose a memory-safe abstract machine for C, and identify programs
relying on implementation defined behaviour for correctness. The main focus of the work is
pointer arithmetic. However, one property from the C standard is that immutable objects
(declared with const) are never mutated through non-const aliases. They identified static
source locations which removed a const qualifier. Later they enforced const at runtime.
In the end the authors disabled const enforcement by making it advisory.

Discussion. The abstract machine run-time resembles our approach in Chapter 3 of
using shadow values to track the declared const-ness of an object. (They do not investi-
gate transitive immutability.) However, their runtime would halt on writes-through-const,
while we report them. The authors noted they had to disable this run-time enforcement.
All of their subject programs removed a const qualifier at some point. It was beyond the
scope of their work to investigate how and why their subject programs removed the const
qualifier. They also statically checked source locations that removed const (through mod-
ifying Clang). The number of static locations was high, and the authors did not comment
on them.

101

6.4 Dynamic Analysis
Our dynamic analysis approach is similar to approaches used in Umbra [94] and Dr. Mem-
ory [8]. Like Umbra and Dr. Memory, we use shadow memory to detect interesting program
behaviours. However, our ConstSanitizer approach builds directly on LLVM and does not
use a dynamic instrumentation platform. We follow the sanitizer family of tools in Clang
including AddressSanitizer [71] and MemorySanitizer [73].

Discussion. Like our tool, the sanitizer tools generate additional code and interact with
lightweight run-time libraries. Furthermore, the properties that we verify in Chapter 3 are
novel const-related properties, compared to Dr. Memory, which looks for memory errors
such as accesses to unallocated space, and Umbra, which helps developers understand
threads’ memory access patterns and implements almost-free custom watchpoints. Unlike
the other tools, violations of our property is not necessarily an error. We use our reports
to better understand how developers use immutability.

6.5 Static Analysis
To our knowledge, our work in Chapter 5 is the first to reason about abstract immutability
in the presence of writes to all parts of an object. There has been much previous work on
immutability, but that work typically excluded some parts of the objects (i.e. certain fields)
from the analysis. Our class-based approach, by contrast, allows writes to object fields, as
long as the writes do not change a previously-exposed part of an object. We compare our
work to previous work in more detail below.

Our work also uses some notions of information flow; however, it avoids the limitations
inherent in a purely information-flow approach. Of course, our work relies on results from
pointer analysis, and we situate our use of pointer analysis within the context of that area
of research.

Other analyses look for pure functions. Pure functions are functions with no side
effects. For object immutability, this definition is very restrictive, side effects may be
desired. Developers could still benefit from the knowledge that the underlying object itself
did not change. The tools we discuss analyze methods that use a less restrictive version
of purity, allowing new state. Note that our abstract immutability definition applies to
objects only.

A pure method does not modify any state accessible before the method was called. Pure
methods may create and modify objects to return to the caller. A function which writes
to no global state and has all arguments transitively const is pure.

Our analysis in Chapter 4 identifies a limited subset of those that would be identified as
pure by typical purity analyses, e.g. [68, 36]. Many pure methods do more than is allowed
by our analysis; the most significant difference is that a pure method may write to parts
of the heap that are freshly-allocated by that method. Our analysis in Chapter 4 is also
quite conservative in declaring methods to be const-able and will reject any writes; more
sophisticated analyses will allow writes to unrelated parts of the heap.

102

6.5.1 Stationary Fields
Unkel and Lam developed a tool which analyzed Java code for stationary fields [84]. A
stationary field is a field that only has writes to it before reads. A Java final field can
only be written to in a constructor. By contrast, a stationary field is only written to before
it is read. In essence, a stationary field acts like a final field but with fewer restrictions on
where initialization may occur. They found that stationary fields are more common than
final fields (44–59% vs. 11–17% respectively). This indicates that, for their benchmark
programs, a majority of the fields are stationary.

Their static analysis uses a summary-based algorithm. Their analysis is flow-sensitive,
context-sensitive and interprocedural. They track when an object is “lost”, that is when
some other object may point to it. For a field to be stationary, all reads must happen after
writes before the object is lost, and lost objects may only have field reads.

Nelson et al. [57] performed a follow-up study using a dynamic analysis. That study
found that 72–82% of fields in Java programs are stationary. Their work, like ours, empir-
ically explores how programs use (or could use, in their case) language features.

Discussion. Stationary fields are similar to abstract immutability. However, stationary
fields apply to the lifetime of the object: we focus on an object’s immutable methods.
This allows us to capture objects that vary between stationary and non-stationary several
times over the object’s lifetime. Since the type qualifiers of active references to objects
can change between program points, our system supports programs that cycle between
write and read phases. Note that if all references to an object are const, the definition of
abstract immutability and stationary fields are the same. Unkel and Lam do not mention
how many of these stationary fields represent immutable objects.

6.5.2 Escape Analysis and Information Flow
Our analysis builds on the concept of escape analysis [11]. Essentially, escape analysis
flags locations that escape from a class that are written to after they escape. Choi’s work
on escape analysis attempted to detect non-escaping objects, while our work flags escaped
values.

Our work shares some goals with information flow analysis [91, 55]. Both our work and
information flow analysis aim to prevent the release of certain information. However, a key
difference is that the release of information is not sufficient to make an object not abstract
immutable; we flag code that releases a value and also subsequently changes the backing
location.

6.5.3 JPPA
Java Pointer and Purity Analysis (JPPA) [68, 67] defines a method as pure if it does not
mutate any location that exists in the program state right before the invocation of the
method. Their analysis also provides useful information for parameters in impure methods.
They identify two types of parameters: read-only and safe. A read-only parameter does
not mutate any objects transitively reachable from the parameter within the method. A

103

safe parameter is a read-only parameter that does not create any new externally visible
heap paths to objects transitively reachable from the parameter.

Their analysis is built on top of a combined pointer and escape analysis [86]. Their
purity analysis is interprocedural and depends on a complex analysis. Pure methods must
not have a reference escape globally and must not mutate any reference’s fields. They
found that on average half the methods in their benchmark suite are pure. Rytz et al. [66]
instead use a simpler flow-insensitive analysis and find similar results.

Discussion. Their analysis requires manual inspection to establish that implementations,
such as caching, are pure. Their system also does not rely on type qualifiers and requires the
whole program. Our analysis instead focuses on the code at a per-class level, adding correct
type qualifiers for our definition of const. Later, our analysis could leverage our abstractly
immutable methods for more complex whole program analyses (including optimizations).

6.5.4 JPure
JPure [60] defines a method as pure if it does not assign (directly or indirectly) to any
field or array cell that existed before it was called. Their tool does purity checking for
methods annotated with @Pure, @Local, and @Fresh. For a method to be @Pure, it must
fit their original definition. Methods annotated with @Fresh only return newly allocated
objects. To deal with objects such as iterators that only update their own fields, methods
may be annotated with @Local to ensure only local changes. This allows their system
to handle iterators, as @Fresh objects that only update their @Local state are allowed in
@Pure methods.

Their static analysis is flow-sensitive, context-sensitive and intraprocedural. They check
that every annotation is valid or flag the error to the developer. If code passes their static
analysis, the annotations are correct. Note that, because of dynamic dispatch in Java,
subclass implementations must have the expected annotations as well.

They also include a purity inference tool, which uses a greedy approach. It assumes
all methods are annotated as @Fresh or @Pure and that all fields are @Local. Based of
the content of the method or its context in the static class hierarchy [16], the tool removes
annotations as needed.

Discussion. Their checker tool attempts to verify their annotations, like ours, which
checks type qualifiers. However, since they are concerned about purity, they analyze static
methods in addition to object methods at this stage. Our analysis in Chapters 4 and 5
only needs to handle object method definitions and their fields.

6.5.5 Combined Static and Dynamic Analysis
Artzi et al. [4] propose a staged approach for finding reference immutability for Java pro-
grams. Their stages are as follows: 1) an intraprocedural static analysis, 2) an interproce-
dural static analysis, and 3) a dynamic analysis. Their analysis determines the mutability
of method parameters. The goal of that work was to scale better and produce more precise
results than static analysis alone.

104

Discussion. Artzi et al.’s work shows an interesting application of dynamic analysis
applied to reference immutability. We may choose to add dynamic analysis to our approach
to improve precision. Artzi et al.’s definition of purity is similar to that used by JPPA in
Chapter 6.5.3.

6.5.6 Pointer Analysis
Because we aim to check abstract immutability of objects, and because our definition
of abstract immutability includes the transitive state of objects (through pointers), our
analysis must track relatively detailed pointer information. In particular, we use standard
pointer analysis techniques [33] to track intraprocedural may- and must-information. The
concept of integrating pointer analysis with client analyses is fairly common, e.g. Fink et
al.’s typestate verification [22].

To situate our abstraction: it is a field-sensitive, flow-sensitive intraprocedural pointer
analysis which tracks may-alias information using weak edges and must-alias information
using ESeq edges. We use the global alias set to represent unknown objects (rather than
using summary objects). We effectively inline method calls that do not cross a class
boundary; exhaustive inlining works because our class-based scope is narrow.

105

106

Chapter 7

Conclusion

This dissertation investigated the usage and enforcement of abstract immutability in code.
In Chapter 3, we explored how often and why developers write through immutability decla-
rations. We found that, in the cases which were not mistakes, developers principally used
abstract immutability. In Chapter 4, we showed that developers strive to add immutability
declarations to methods. We found that over 50% of methods in our benchmark suite are
immutable, while immutable and all-mutating classes are not common. In Chapter 5, we
defined abstract immutability formally. We created a novel static analysis that checks for
abstract immutability and does not flag many false positives. We expand on our conclusions
below.

Dynamic Observations of Writes-Through-Immutability (Chapter 3). We show,
through our dynamic analysis, that the const qualifier (indicating immutability) in C++
is extensively used in real-world code, but the developer intent behind const usage is un-
clear. This dissertation presented our ConstSanitizer system. ConstSanitizer dynamically
detects writes through const qualifiers which are legal in C++, but which modify state
transitively starting from a const qualifier, write to mutable fields, or write to values whose
const-ness has been cast away. Our results show that, although writes through const are
ubiquitous across our 7 C++ and 1 C benchmark programs, there are only a small num-
ber (17) of archetypes for these writes. We used our results to develop a classification of
writes according to root cause (transitivity, mutable field, or const cast) and attributes
(synchronized, not visible, buffer/cache, delayed initialization, incorrect). Our work helps
understand how the const qualifier is used in practice and leads us to conclude:

• Developers definitely violate bitwise const.

• The majority of write-through-const archetypes (9/17) are incorrect code which
observably change an object’s state.

• On our benchmarks, programs write-through-const about equally often using tran-
sitive writes through fields (8/17) and writes to mutable fields (8/17).

• We observed four classes (N, B, D, S, discussed in Chapter 3.3) of valid reasons for
writes-through-const-qualifiers. For instance, sometimes developers write-through-

107

const to delay initialization or implement buffer caches. Such writes should be
checked by tools.

• About half (9/17) of the observed usages are invalid, consisting of methods which
implemented exceptions to an object’s const-ness; perhaps the developers chose to
add one exception rather than remove const completely.

Static Observations of Immutability (Chapter 4). We created a framework to col-
lect all immutability declarations in a project, along with a conservative static analysis that
checks concretely immutable methods. We found that immutable classes are often used
among all 7 open software projects we investigated. Across all the projects we found that
a median of 7.15% of classes are immutable classes. To the best of our knowledge, these
were all written correctly for the definition of immutability proposed in this dissertation.
Developers also write all-mutating classes, which should contain only mutating methods. A
median 15.5% of a program’s classes are written as all-mutating. However, we found that
approximately half of these classes omitted const annotations on some of their methods.
We manually verified they our analysis finds most of the omitted annotations. Using our
analysis we found that a median of 22.6% of classes that are eligible to have const anno-
tations added should have at least one of their methods const-annotated. We intend to
release our Immutability Check tool as open-source software and believe that it is already
useful for developers.

Abstract Immutability Analysis (Chapter 5). This dissertation presented a sophis-
ticated analysis that is the first to verify abstractly immutable methods. We formally define
abstract immutability, and implemented the analysis using LLVM bitcode. Succinctly, a
set of methods are abstractly immutable if no locations are written-to after they have be-
come visible to callers. Our analysis uses a novel subsequent call analysis to check abstract
immutability properties. We explored the use of immutability in 4 real-world benchmarks
and found that our analyses enabled us to find incorrect implementations of abstract im-
mutability in these benchmarks. Without our analysis, it would be very difficult to in vast
codebases implementing abstract immutability in sometimes-intricate ways.

Summary. This dissertation explores abstract immutability. We developed tools to: 1)
investigate the purposes developers use abstract immutability for; 2) confirm the ubiquity
of abstract immutability across codebases; and 3) check abstract immutability via a novel
static analysis.

108

References

[1] Jason Ansel, Cy P. Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman,
and Saman P. Amarasinghe. “PetaBricks: a language and compiler for algorithmic
choice”. In: PLDI. June 2009, pp. 38–49.

[2] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. “JDiff: A dif-
ferencing technique and tool for object-oriented programs”. In: ASE 14.1 (2007),
pp. 3–36.

[3] Taweesup Apiwattanapong, Raúl A. Santelices, Pavan Kumar Chittimalli, Alessan-
dro Orso, and Mary Jean Harrold. “MATRIX: Maintenance-Oriented Testing Re-
quirements Identifier and Examiner”. In: TAIC PART. Aug. 2006, pp. 137–146.

[4] Shay Artzi, Adam Kiezun, David Glasser, and Michael D. Ernst. “Combined Static
and Dynamic Mutability Analysis”. In: ASE. Nov. 2007, pp. 104–113.

[5] Vipin Balachandran. “Reducing Human Effort and Improving Quality in Peer Code
Reviews using Automatic Static Analysis and Reviewer Recommendation”. In: ICSE.
May 2013, pp. 931–940.

[6] Mike Barnett, David A Naumann, Wolfram Schulte, and Qi Sun. “99.44% pure: Useful
abstractions in specifications”. In: FTfJP. 2004.

[7] Samual Bates and Susan Horwitz. “Incremental Program Testing Using Program
Dependence Graphs”. In: POPL. Jan. 1993, pp. 384–396.

[8] Derek Bruening and Qin Zhao. “Practical memory checking with Dr. Memory”. In:
CC. 2011, pp. 213–223.

[9] Brian Chin, Shane Markstrum, Todd D. Millstein, and Jens Palsberg. “Inference of
User-Defined Type Qualifiers and Qualifier Rules”. In: ESOP. Mar. 2006, pp. 264–
278.

[10] David Chisnall, Colin Rothwell, Robert N. M. Watson, Jonathan Woodruff, Munraj
Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann. “Be-
yond the PDP-11: Architectural Support for a Memory-Safe C Abstract Machine”.
In: ASPLOS. 2015.

[11] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam
Midkiff. “Escape Analysis for Java”. In: OOPSLA. 1999, pp. 1–19.

[12] David G. Clarke and Sophia Drossopoulou. “Ownership, Encapsulation and the Dis-
jointness of Type and Effect”. In: OOPSLA. Nov. 2002, pp. 292–310.

109

[13] Michael J. Coblenz, Whitney Nelson, Jonathan Aldrich, Brad A. Myers, and Joshua
Sunshine. “Glacier: transitive class immutability for Java”. In: ICSE. 2017, pp. 496–
506.

[14] Michael J. Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad A. Myers, Sam Weber,
and Forrest Shull. “Exploring language support for immutability”. In: ICSE. 2016,
pp. 736–747.

[15] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. “Input-sensitive profiling”. In:
PLDI. June 2012, pp. 89–98.

[16] Jeffrey Dean, David Grove, and Craig Chambers. “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis”. In: ECOOP. Aug. 1995, pp. 77–
101.

[17] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muslu, and Todd W.
Schiller. “Building and Using Pluggable Type-Checkers”. In: ICSE. May 2011,
pp. 681–690.

[18] Werner Dietl, Sophia Drossopoulou, and Peter Müller. “Generic Universe Types”. In:
ECOOP. Aug. 2007, pp. 28–53.

[19] Will Dietz, Peng Li, John Regehr, and Vikram S. Adve. “Understanding integer
overflow in C/C++”. In: ICSE. June 2012, pp. 760–770.

[20] Jon Eyolfson and Patrick Lam. “C++ const and Immutability: An Empirical Study of
Writes-Through-const”. In: European Conference on Object-Oriented Programming
(ECOOP). 2016, 8:1–8:25.

[21] Felix Fang. Personal communication. 2015.
[22] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanual Geay. “Ef-

fective Typestate Verification in the Presence of Aliasing”. In: ISSTA. 2006.
[23] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. “A Theory of Type Qual-

ifiers”. In: PLDI. May 1999, pp. 192–203.
[24] The C++ Foundation. The C++ Super FAQ: Const Correctness. Apr. 2017. url:

https://isocpp.org/wiki/faq/const-correctness.
[25] M. Frigo and S.G. Johnson. “The design and implementation of FFTW3”. In: Pro-

ceedings of the IEEE 93.2 (2005), pp. 216–231.
[26] Robert M. Fuhrer, Frank Tip, Adam Kiezun, Julian Dolby, and Markus Keller. “Ef-

ficiently Refactoring Java Applications to Use Generic Libraries”. In: ECOOP. July
2005, pp. 71–96.

[27] David Greenfieldboyce and Jeffrey S. Foster. “Type qualifier inference for Java”. In:
OOPSLA. 2007, pp. 321–336.

[28] Dan Hao, Tian Lan, Hongyu Zhang, Chao Guo, and Lu Zhang. “Is This a Bug or an
Obsolete Test?” In: ECOOP. July 2013, pp. 602–628.

[29] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. “On-Demand
Test Suite Reduction”. In: ICSE. June 2012, pp. 738–748.

110

https://isocpp.org/wiki/faq/const-correctness

[30] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and Mooly Sagiv.
“Data representation synthesis”. In: PLDI. June 2011, pp. 38–49.

[31] Christopher M. Hayden, Edward K. Smith, Eric A. Hardisty, Michael Hicks, and
Jeffrey S. Foster. “Evaluating Dynamic Software Update Safety Using Systematic
Testing”. In: IEEE Trans. Software Eng. 38.6 (2012), pp. 1340–1354.

[32] Nevin Heintze and Olivier Tardieu. “Ultra-fast Aliasing Analysis using CLA: A Mil-
lion Lines of C Code in a Second”. In: PLDI. June 2001, pp. 254–263.

[33] Michael Hind. “Pointer analysis: haven’t we solved this problem yet?” In: PASTE.
June 2001, pp. 54–61.

[34] Michael Hind and Anthony Pioli. “Which Pointer Analysis Should I Use?” In: ISSTA.
Aug. 2000, pp. 113–123.

[35] Alex Holkner and James Harland. “Evaluating the Dynamic Behaviour of Python
Applications”. In: ACSC. 2009, pp. 17–22.

[36] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst. “ReIm & ReImInfer: Checking
and Inference of Reference Immutability and Method Purity”. In: OOPSLA. Oct.
2012, pp. 879–896.

[37] Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. “Inference and
Checking of Object Ownership”. In: ECOOP. June 2012, pp. 181–206.

[38] Wei Huang and Ana Milanova. “Inferring AJ types for Concurrent Libraries”. In:
FOOL. Oct. 2012, pp. 82–88.

[39] Wei Huang and Ana Milanova. “ReImInfer: Method Purity Inference for Java”. In:
FSE. Nov. 2012, p. 38.

[40] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. “Featherweight Java: a
minimal core calculus for Java and GJ”. In: ACM TOPLAS 23.3 (2001), pp. 396–
450.

[41] Marc Fisher II, Jan Wloka, Frank Tip, Barbara G. Ryder, and Alexander Luchansky.
“An Evaluation of Change-Based Coverage Criteria”. In: PASTE. Sept. 2011, pp. 21–
28.

[42] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. “Understand-
ing and detecting real-world performance bugs”. In: PLDI. June 2012, pp. 77–88.

[43] John B Kam and Jeffrey D. Ullman. “Monotone Data Flow Analysis Frameworks”.
In: Acta Informatica 7.3 (1977), pp. 305–317.

[44] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. “Automatic Patch
Generation Learned from Human-Written Patches”. In: ICSE. May 2013, pp. 802–
811.

[45] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. “The Soot frame-
work for Java program analysis: a retrospective”. In: CETUS. Oct. 2011.

[46] Chris Lattner. “LLVM and Clang: Advancing Compiler Technology”. In: FOSDEM.
Feb. 2011.

111

[47] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation”. In: Code Generation and Optimization (CGO).
Mar. 2004, pp. 75–88.

[48] Anatole Le, Ondrej Lhoták, and Laurie J. Hendren. “Using Inter-Procedural Side-
Effect Information in JIT Optimizations”. In: CC. Apr. 2005, pp. 287–304.

[49] K. Rustan M. Leino, Peter Müller, and Angela Wallenburg. “Flexible Immutability
with Frozen Objects”. In: Verified Software: Theories, Tools, Experiments (VSTTE).
Oct. 2008, pp. 192–208.

[50] Yin Liu and Ana Milanova. “Static Information Flow Analysis with Handling of
Implicit Flows and a Study on Effects of Implicit Flows vs Explicit Flows”. In: CSMR.
2010, pp. 146–155.

[51] James R. Low. “Automatic Data Structure Selection: An Example and Overview”.
In: Communications of the ACM 21.5 (1978), pp. 376–385.

[52] Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and De-
signs. 3rd Edition. Addison Wesley, 2005. isbn: 0321334876.

[53] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. “Parameterized object sen-
sitivity for points-to and side-effect analyses for Java”. In: ISSTA. July 2002, pp. 1–
11.

[54] Anders Møller. “Static Program Analysis”. Notes. Feb. 2012.
[55] Andrew C. Myers. “JFlow: practical mostly-static information flow control”. In:

POPL. 1999, pp. 228–241.
[56] David A. Naumann. “Observational purity and encapsulation”. In: TCS 376.3 (2007),

pp. 205–224.
[57] Stephen Nelson, David J. Pearce, and James Noble. “Profiling Field Initialisation in

Java”. In: RV. Vol. 7687. LNCS. 2012, pp. 292–307.
[58] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Anal-

ysis. Springer, 1999. isbn: 3540654100.
[59] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael

D. Ernst. “Practical Pluggable Types for Java”. In: ISSTA. July 2008, pp. 201–212.
[60] David J. Pearce. “JPure: A Modular Purity System for Java”. In: CC. Mar. 2011,

pp. 104–123.
[61] Alex Potanin, Johan Östlund, Yoav Zibin, and Michael D. Ernst. “Immutability”.

In: Aliasing in Object-Oriented Programming. Types, Analysis and Verification.
Vol. 7850. LNCS. 2013, pp. 233–269.

[62] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. “Inference of Reference
Immutability”. In: ECOOP. July 2008, pp. 616–641.

[63] Ariel Rabkin and Randy H. Katz. “Static extraction of program configuration op-
tions”. In: ICSE. May 2011, pp. 131–140.

112

[64] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. “The Eval That
Men Do - A Large-Scale Study of the Use of Eval in JavaScript Applications”. In:
ECOOP. 2011, pp. 52–78.

[65] Gregg Rothermel and Mary Jean Harrold. “Selecting Tests and Identifying Test Cov-
erage Requirements for Modified Software”. In: ISSTA. 1994, pp. 169–184.

[66] Lukas Rytz, Nada Amin, and Martin Odersky. “A Flow-Insensitive, Modular Effect
System for Purity”. In: FTFJP. July 2013.

[67] Alexandru Salcianu. “Pointer Analysis for Java Programs: Novel Techniques and
Applications”. PhD thesis. 2006.

[68] Alexandru Salcianu and Martin C. Rinard. “Purity and Side Effect Analysis for Java
Programs”. In: VMCAI. Jan. 2005, pp. 199–215.

[69] Raúl A. Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessandro
Orso, and Mary Jean Harrold. “Test-Suite Augmentation for Evolving Software”. In:
ASE. Sept. 2008, pp. 218–227.

[70] Hyunmin Seo, Caitlin Sadowski, Sebastian G. Elbaum, Edward Aftandilian, and
Robert W. Bowdidge. “Programmers’ Build Errors: A Case Study (at Google)”. In:
ICSE. May 2014, pp. 724–734.

[71] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
“AddressSanitizer: A Fast Address Sanity Checker”. In: USENIX Annual Technical
Conference. 2012, pp. 309–318.

[72] International Organization for Standardization (ISO). “Programming Languages —
C++”. N3690. May 2013.

[73] Evgeniy Stepanov and Konstantin Serebryany. “MemorySanitizer: Fast Detector of
Uninitialized Memory use in C++”. In: CGO. 2015, pp. 46–55.

[74] Arran D. Stewart, Rachel Cardell-Oliver, and Rowan Davies. “Side effect and purity
checking in Java: a review”. In: CSSE (2014).

[75] Bjarne Stroustrup. The C++ Programming Language. 3rd Edition. Addison Wesley,
2000. isbn: 0201700735.

[76] Herb Sutter. GotW #6a Solution: Const-Correctness, Part 1. http://herbsutter.
com/2013/05/24/gotw-6a-const-correctness-part-1-3/. Accessed Dec 2015.
May 2013.

[77] LLVM Team. Checker Developer Manual. Apr. 2014. url: http://clang-analyzer.
llvm.org/checker_dev_manual.html.

[78] LLVM Team. clang: a C language family frontend for LLVM. Apr. 2014. url: http:
//clang.llvm.org/.

[79] LLVM Team. LLVM Alias Analysis Infrastructure. Apr. 2014. url: http://llvm.
org/docs/AliasAnalysis.html.

[80] LLVM Team. The LLVM Compiler Infrastructure. Apr. 2014. url: http://llvm.
org/.

113

http://herbsutter.com/2013/05/24/gotw-6a-const-correctness-part-1-3/
http://herbsutter.com/2013/05/24/gotw-6a-const-correctness-part-1-3/
http://clang-analyzer.llvm.org/checker_dev_manual.html
http://clang-analyzer.llvm.org/checker_dev_manual.html
http://clang.llvm.org/
http://clang.llvm.org/
http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/
http://llvm.org/

[81] Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai Balaban, and
Bjorn De Sutter. “Refactoring Using Type Constraints”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 33.3 (2011), p. 9.

[82] Matthew S. Tschantz. “Javari: Adding Reference Immutability to Java”. MA thesis.
Massachusetts Institute of Technology, 2006.

[83] Matthew S. Tschantz and Michael D. Ernst. “Javari: Adding Reference Immutability
to Java”. In: OOPSLA. Oct. 2005, pp. 211–230.

[84] Christopher Unkel and Monica S. Lam. “Automatic Inference of Stationary Fields: a
Generalization of Java’s Final Fields”. In: POPL. Jan. 2008, pp. 183–195.

[85] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. “Soot - a Java Bytecode Optimization Framework”. In: CASCON.
Nov. 1999, p. 13.

[86] John Whaley and Martin Rinard. “Compositional Pointer and Escape Analysis for
Java Programs”. In: OOPSLA. Oct. 1999, pp. 187–206.

[87] R. Clinton Whaley, Antoine Petitet, and Jack Dongarra. “Automated empirical opti-
mizations of software and the ATLAS project”. In: Parallel Computing 27.1–2 (2001),
pp. 3–35.

[88] Preston Tunnell Wilson, Justin Pombrio, and Shriram Krishnamurthi. “Can We
Crowdsource Language Design?” In: SPLASH. Oct. 2017, pp. 1–17.

[89] Jan Wloka, Einar Hoest, and Barbara G. Ryder. “Tool Support for Change-Centric
Test Development”. In: IEEE Software 27.3 (2010), pp. 66–71.

[90] Jan Wloka, Barbara G. Ryder, and Frank Tip. “JUnitMX — A Change-aware Unit
Testing Tool”. In: ICSE. May 2009, pp. 567–570.

[91] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flana-
gan, and Stephen Chong. “Precise, Dynamic Information Flow for Database-backed
Applications”. In: PLDI. 2016, pp. 631–647.

[92] Shin Yoo and Mark Harman. “Regression testing minimization, selection and priori-
tization: a survey”. In: STVR 22.2 (2012), pp. 67–120.

[93] Dmitrijs Zaparanuks and Matthias Hauswirth. “Algorithmic profiling”. In: PLDI.
June 2012, pp. 67–76.

[94] Qin Zhao, Derek Bruening, and Saman P. Amarasinghe. “Umbra: Efficient and Scal-
able Memory Shadowing”. In: CC. 2010, pp. 22–31.

[95] Qin Zhao, Rodric M. Rabbah, Saman P. Amarasinghe, Larry Rudolph, and Weng-
Fai Wong. “How to Do a Million Watchpoints: Efficient Debugging Using Dynamic
Instrumentation”. In: CC. 2008, pp. 147–162.

114

Appendices

115

116

Appendix A

Clang Mailing List Discussion

Listing A.1: Correspondence with Clang developers.
Jon Eyolfson wrote:

Hello Clang Developers,

In my brief time with the clang codebase I've noticed instances of
const_cast and mutable I don't believe are necessary. Are the uses of
const_cast and mutable just temporary to avoid some compile-time type
errors?

> David Blaikie wrote:
>
> Some might be temporary, there are varying levels of 'technical
> debt' that are acceptable/accrued/historical. Some might be
> deliberate/acceptable. It's hard to say generally.

Does const have a different meaning for internal clang code?

> Not especially, though there are perhaps some quirks. One is that if
> an class represents immutable objects then we may not bother using
> 'const' at all, since all instances will always be const, we just
> drop the 'const' from all instances. (see the llvm::Type hierarchy
> for an example of that)

>> Jon Eyolfson wrote:
>>
>> That's a good point, although const wouldn't really hurt either.

>>> David Blaikie wrote:
>>>
>>> Some people (by some people I mean the lead of the project, Chris

117

>>> Lattner) find the const to be just extra textual noise/volume and
>>> prefer not to include it for immutable types.

Is developer time prioritized elsewhere and you're looking for
contributors to help with const-correctness?

> Possibly

The attached example diff demonstrates what I believe is a
const-correct version of CFGBlock::getTerminatorCondition(). I don't
understand the reasoning behind including a non-const version of this
member function that may unintentionally allow bad client code.

> What bad client code do you think this might unintentionally allow?

>> It allows clients to get a Stmt*, which could be used to modify the
>> Stmt (although looking at the Doxygen, Stmt mostly has const member
>> functions). It may be an issue if they use children() and modify
>> something they shouldn't.

>>> That assumes they shouldn't modify them - yes, I suppose certain
>>> modifications would invalidate the CFG, but that's not necessarily
>>> the CFG's responsibility to ensure that. I haven't looked at the
>>> API design enough to know (as a rule, the AST is not mutated, but
>>> there are some narrow cases where it is, I believe). Evidently in
>>> this particular case no client needed to mutate the Stmt at the
>>> moment, but without looking more broadly I wouldn't assume that's
>>> never the case (it might even be valuable to look at what commit
>>> introduced the const/non-const overloads and whether there was a
>>> use-case at some point for the non-const overload).

> I believe this code just provided a const and non-const overload for
> the convenience of users (arguable as to whether that's necessary at
> all, but evidently no one relies on it at the moment if your code
> change compiles). It just happens to be easier to implement the
> overloads by having one overload defer to the other.
>
> Personally I probably would've had the non-const overload defer to
> the const overload (and const_cast the result) as that would be more
> correct than possibly casting away const on an actually const object
> to call a non-const member function from a const member function.

>> What's the reason for the non-const overload at this point? It
>> seems to me that all AST nodes returned by any analysis should
>> always be const. For me, if I wrote "Stmt* S =

118

>> block->getTerminatorCondition();", I'd rather get a compiler error
>> that it should be "const Stmt* S" then have a const_cast that I
>> personally don't expect.

>>> There is no 'real' const_cast, though - the const_cast is just an
>>> implementation detail used to avoid duplicating the implementation
>>> for const and non-const. Note that CFG already has non-const Stmt
>>> pointers that it could just return without any const_casting.

> Thanks for the reply, Jon

After applying the diff, clang and the default plugins compile
successfully as expected. Granted I don't have any other client code,
so I can't see their uses (or misuses). I would argue that bad client
code would now get a helpful error message instead of possibly really
breaking something in the future. Clients can either fix their code or
be explicit about breaking const and include the const_cast
themselves.

This is my first email to a mailing list, so I apologize in advance
for any misuse.

Jon

119

	List of Figures
	Listings
	List of Tables
	Introduction
	Motivation
	Case Study: Clang
	Exploratory Study
	Outline

	Background
	Immutability Terminology
	Transitive and Non-Transitive
	Concrete and Abstract
	Object and Reference Immutability
	Relation to Purity

	Immutability in C++
	const keyword
	mutable keyword
	Bitwise const
	Logically const
	Additional Loopholes

	Immutability in Java
	final Keyword
	Javari

	Static Analysis
	Dataflow Analysis
	Pointer Analysis

	Dynamic Observations of Writes-Through-Immutability
	Motivation
	Technique
	Classification
	Results
	Protobuf
	LevelDB
	fish shell
	Mosh (mobile shell)
	LLVM TableGen
	Tesseract
	Ninja
	Weston
	Summary

	Static Observations of Immutability
	Motivation
	Technique
	Results
	LLVM
	OpenCV
	Protobuf
	fish shell
	libsequence
	Mosh
	Ninja
	Summary

	Abstract Immutability Analysis
	Motivating Example
	Technique
	Formalization
	Analysis Operation
	Abstraction
	Running Example
	Transfer Functions
	Memory Alias Sets
	Merge Operation
	Assumptions

	Results
	libsequence
	fish shell
	Mosh
	Ninja
	Summary

	Related Work
	Type Systems
	Javari
	ReIm
	Glacier

	Type Inference
	Javarifier
	ReImInfer
	Inferring const for C programs

	Language Features
	Usability of Language Features
	Frozen Objects
	Abstract Machine

	Dynamic Analysis
	Static Analysis
	Stationary Fields
	Escape Analysis and Information Flow
	JPPA
	JPure
	Combined Static and Dynamic Analysis
	Pointer Analysis

	Conclusion
	References
	Appendices
	Clang Mailing List Discussion

