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We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner–
Freedman window and derive a universal formula for the holographic speed of sound for any mixed 
boundary conditions of the scalar field. As an example, we numerically construct the most general class 
of planar black holes coupled to a single scalar field in the consistent truncation of type IIB supergravity 
that preserves the S O (3) × S O (3) R-symmetry group of the gauge theory. For this particular family 
of solutions, we find that the speed of sound exceeds the conformal value. From a phenomenological 
point of view, the fact that the conformal bound can be violated by choosing the right mixed boundary 
conditions is relevant for the existence of neutron stars with a certain mass-size relationship for which 
a large value of the speed of sound codifies a stiff equation of state. In the way, we also shed light on a 
puzzle regarding the appearance of the scalar charges in the first law. Finally, we generalize the formula 
of the speed of sound to arbitrary dimensional scalar-metric theories whose parameters lie within the 
Breitenlohner–Freedman window.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Gauge/gravity duality [1] is a very powerful conjecture, link-
ing together two apparently disparate descriptions of physics: a 
gravitational field theory and a quantum field theory in a lower 
dimension. One of its best known results is the universal value 
of the ratio of the shear viscosity to entropy density [2]. Finite 
’t Hooft coupling corrections on the field theory side correspond 
to α′ corrections on the gravity side, inclusion of which modi-
fies the ratio, thus violating the conjectured viscosity bound [3,4]. 
The computation of the transport coefficients thus seems to have a 
strong dependence on the bulk Lagrangian and the computation of 
the holographic speed of sound [5–9] was done with this idea in 
mind. Indeed, a bound on the speed of sound was also expected to 
exist [10], as well as a dynamical bound of the bulk viscosity [11]. 
The fact that different gravity Lagrangians are the key to describing 
different speeds of sound has been extensively used in the litera-
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ture (see for instance [12]), but not much emphasis was put on the 
boundary conditions.

The main goal of this Letter is to obtain a universal formula 
for the holographic speed of sound in gravity theories with scalar 
fields. If the scalar field is in the Breitenlohner–Freedman (BF) 
window [13,14]

− (D − 1)2

4l2
= m2

B F ≤ m2 < m2
B F + l−2, (1)

where D is the bulk spacetime dimension and l the AdS radius, the 
holographic speed of sound depends as much on the details of the 
scalar field potential as it does on the boundary conditions that 
the scalar field satisfies. The universal formula we obtain takes the 
details of this relation into account.

To obtain this general result, we face the problem of solving 
the bulk theory. We tackle this by means of a generalization of the 
designer gravity soliton line [15–17]. The key point is that scalar 
fields satisfying (1) admit an infinite number of possible boundary 
conditions, which can be traced back to the existence, in any di-
mension, of two normalizable modes [18]. In general, these bound-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ary conditions can break the conformal symmetry in the boundary 
[19,20]. When the scalar field mass is in the BF window (1), it pro-
vides two asymptotic integration constants (α, β) to the system. In 
addition, a static black hole metric provides one extra integration 
constant, μ, related to its mass. The solution space of the fully 
back-reacted metric plus the scalar field is characterized by three 
integration constants [21]. The solution of the non-linear system of 
differential equations provides the map

α = α(ϕh,A), β = β(ϕh,A), μ = μ(ϕh,A), (2)

where (ϕh,A) are the horizon data, namely the value of the scalar 
field at the horizon, ϕh , and the normalized black hole area,1 A. 
The proof that dependence on A of the map (2) is universal and 
related only to the mass of the scalar field is the second essential 
result of this letter.

An interesting phenomenological aspect where our results have 
an important impact is neutron stars, which provide a unique lab-
oratory for the study of ultra-dense nuclear matter. It is therefore 
of interest to construct a phenomenological model using hologra-
phy; however doubts concerning the applicability of the duality to 
the description of neutron stars [22] due to a possible bound of 
the speed of sound of strongly coupled theories with gravity du-
als were raised in [23]. We point out that this also depends on 
the mixed boundary conditions, a point that was not considered in 
[23], and explicitly show that, indeed, the bound can be violated.

We begin with a concise review of deformations of the gauge 
theory along the lines of [24]. We explicitly construct the map (2)
that allows us to obtain a general formula for the speed of sound. 
This formula is universal as is valid for all boundary conditions. 
Then, we present an explicit example in the consistent truncation 
of type IIB supergravity that breaks the isometries of the S5 to 
S O (3) × S O (3) and discuss the physics of a double trace deforma-
tion. We find that the speed of sound attains a maximum value 
at c2

s ≈ 0.458. We discuss the validity of our result for any value 
of the coupling constant of the deformation and its relation to the 
renormalization group (RG) flow in the gauge theory. In the last 
section we provide a formula for any scalar field with a mass in 
the range (1).

2. The Gauge theory deformation and holography

Here we briefly review the relation between the field theory 
deformation and its holographic interpretation. In field theory one 
would like to add to the action a functional of the form [24]

�I =
(

N

2π

)2 ∫
∂M

W (O)

√
−γ (0)d4x, (3)

where W (O) is an arbitrary function2 of a single trace operator 
O. Gravitational variables are recovered with the standard AdS/CFT 
identification N2 = π

2
l3

G [1]. The bulk metric is

ds2 = gμνdxμdxν = l2

r2
dr2 + r2

l2

[
γ

(0)

ab + O (r−2)
]

dxadxb. (4)

The gravitational action is

1 We shall consider planar horizons with one compact direction. In this case s =
A
4G is the entropy density.

2 While the function W is formally arbitrary, it has to be such that there is ei-
ther a soliton or a hairy black hole solution in the spacetime bulk. Otherwise the 
variational principle cannot attain a minimum due to potential bulk singularities.
I [g,ϕ] = 1

8πG

∫
M

d5x
√−g

[
R

2
− 1

2
(∂ϕ)2 − V (ϕ)

]

+ Ict + Iϕct + �I, (5)

where Ict and Iϕct are counterterms that render the variational 
principle well posed [17,25–32]. When the mass of the scalar field 
saturates the BF bound its fall-off is

ϕ = αl4

r2
ln

(
r

r0

)
+ βl4

r2
+ O

(
ln (r)2

r3

)
, (6)

where α and β are normalized to have engineering dimension 
2. Adding the relevant scalar counterterm [17,30], is possible to 
identify the vacuum expectation value (VEV) of the single trace 
operator with 〈O〉 = β as well as its source J = α − dW (β)

dβ
[30].

3. The black hole surface

In this section we shall outline the construction of the surface 
defined by the embedding (2). We consider the class of metrics in 
five dimensions

ds2 = e A(− f dt2 + d
) + eB dr2

f
, (7)

where d
 is a Ricci flat surface. For static metrics is possible to 
introduce the new variables X = dϕ

dA and Y = X f dϕ
df and show that 

the Einstein equations are satisfied if dB
dϕ = − 2

X
dX
dϕ + 4

3 X and

dX

dϕ
=

(
3

dV

dϕ
+ 4X V

) (
2X2Y − 6Y − 3X2

)
12V XY

dY

dϕ
=

(
3

dV

dϕ
+ 2X V

) (
2X2Y − 6Y − 3X2

)
6V X2

.

(8)

It follows that dX
dϕ is finite at the horizon, located at Y (ϕh) = 0, if 

and only if X (ϕh) = − 3
4V

dV
dϕ

∣∣∣
ϕ=ϕh

. Furthermore, we readily see 

that these equations decouple and reduce to the single master 
equation

− 3

(
3

dV

dϕ
+ 4X V

)
d2 X

dϕ2
X +

(
−9

dV

dϕ
+ 12X V

)(
dX

dϕ

)2

+
[(

X2 + 3
)

8X V +
(

18X2 + 1
) dV

dϕ
+ 9X

d2 V

dϕ2

]
dX

dϕ
= 0.

(9)

It is a consequence of the fall-off of the scalar (6) that, asymptoti-
cally, e Aϕ ∼ αl2 ln( r

r0
). The derivative of this relation with respect 

to ln r ∼ A
2 yields 2e A

(
ϕ + dϕ

dA

)
∼ αl2. Thus,

l2α (ϕh,A) = lim
ϕ→0

2 (X + ϕ) e A = αh (ϕh)A
2
3 . (10)

We see that α is generically a function of ϕh times a very precise 
function of the normalized black hole area. When there exists a 
black hole the metric fall-off can be taken as

e A f = r2

l2
− μl6

r2
+ O (r−3),

e A = r2

l2
+ O (r−3),

eB

f
= l2

r2
+ O (

ln (r)2

r6
),

(11)

where the normalization of the integration constant μ is chosen to 
match its mass scaling dimension, � (μ) = 4 with its engineering 
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Fig. 1. Black hole line and black hole surface for theories with potential (20).
dimension. The introduction of the scalar field yields a dual perfect 
fluid with energy momentum tensor [17]

− 2√−γ (0)

δ I

δγ ab(0)
= 〈Tab〉 = (ρ + p) uaub + pγ

(0)

ab , (12)

where

p = l3

8πG

[
μ

2
+ 1

8

(
α2 − 4αβ + 8W (β)

)]
, (13)

ρ = l3

8πG

[
3μ

2
− 1

8

(
α2 − 4αβ + 8W (β)

)]
, (14)

with u = ∂t . Note that when the scalar field vanishes (14) we re-
cover the standard relation ρ = 3p for a thermal gas of massless 
particles [33]. Using the Smarr formula of [21] we get

μ(ϕh,A) = l−4μh (ϕh)A
4
3 . (15)

Inserting (2) in the first law of black hole thermodynamics, δρ =
T δs, with the knowledge of (15) and (10), it shows that the terms 
proportional to δA cancel, provided

β (ϕh,A) = −1

2
α ln

∣∣∣∣ α

α0

∣∣∣∣ + αzh (ϕh) , (16)

where zh(ϕh) is a function of the value of the scalar at the horizon. 
The equations (10), (15) and (16) define the black hole surface.

4. Universal formula for the speed of sound

A useful consequence of the general considerations made so far, 
it is that there are two A-independent functions

z ≡ β

α
+ 1

2
ln

∣∣∣∣ α

α0

∣∣∣∣ , μ

α2
≡ F (z) = lim

r→∞
(1 − f ) A2

4ϕ2
. (17)

The characterization of the speed of sound for a single scalar field 
theory can then be reduced to finding the black hole line F (z). 
AdS-invariant boundary conditions correspond to z = z∗ , where z∗
is a fixed number. In this case the energy density, pressure and 
speed of sound are automatically ρ = 3l3

2κ F (z∗)α2, p = l3

2κ F (z∗)α2, 

c2
s =

(
∂ p
∂ρ

)
J

= 1
3 where the partial derivative is taken at fixed 

source, J = α − dW (β) . It follows that there are infinite number 
dβ
of theories with c2
s = 1

3 . To move away from this point one should 
consider a generic boundary condition, of the form z = ω(α), the 
knowledge of the black hole line (17) allows the construction of 
the derivative of the pressure and density at fixed source and fi-
nally from (13) and (14) a formula for the speed of sound:(

∂ p

∂α

)
J
= l3

8πG

[
αF + α2 Ḟω′

2
+ 1

2
α2ω′

]
,

(
∂ρ

∂α

)
J
= l3

8πG

[
3αF + 3

2
α2 Ḟω′ − 1

2
α2ω′

]
,

(18)

c2
s =

(
∂ p

∂ρ

)
J
= 1

3
+ 4

3

αω′

6F + 3α Ḟω′ − αω′ , (19)

where Ḟ = dF
dz , ω′ = dω

dα . It follows that the speed of sound can be 
fully characterized using the black hole line defined by F and the 
boundary condition defined by ω(α).

In holographic terms, (19) yields the dependence of the speed 
of sound on the VEV β associated with the source J . Note that the 
formula (19) is universal and can be constructed for any theory 
in terms of its black hole line and boundary condition. It is worth 
mentioning that the second term in (19) does not have a definite 
sign, so a priori it is not clear if the speed of sound for these theo-
ries will be bounded by the conformal value c2

s = 1/3. (19) indeed 
reproduces the result for a gas of massless particles for AdS invari-
ant boundary conditions where ω′ = 0.

A minimal example that captures the ideas discussed here is a 
consistent single scalar field truncation of maximal supergravity in 
five dimensions:

V (ϕ) = − 3

2l2

[
3 + cosh

(
2
√

6

3
ϕ

)]
, (20)

which breaks the isometries of the S5 to S O (3) × S O (3) [34]. 
Using the standard AdS/CFT dictionary, the operator dual to β is 
O = 1

N Tr
(
φ2

1 + φ2
2 + φ2

3 − φ2
4 − φ2

5 − φ2
6

)
where the φI are the Su-

per Yang–Mills scalars [35].
The AdS background with ϕ = 0 is maximally supersymmetric. 

Black hole solutions dressed with non-trivial scalars can be eas-
ily constructed numerically using a simple shooting method. Doing 
so for the theories determined from the potential (20) we find 
the black hole line shown in Fig. 1a. The function F (z) acquires 
a minimum at zmin ≈ 1.532 at which F (zmin) ≈ 0.975. In Fig. 1b 
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Fig. 2. Speed of sound as a function of z for the family of boundary conditions 
β = λα. The dashed line depicts the conformal value c2

s = 1/3, which is approached 
for large and small z.

we display the surface μ = μ(α, β) alongside with the bound-
ary condition β = α. Their intersection defines a uni-parametric 
family of black holes as described above. Note that because of 
the reflection symmetry ϕ → −ϕ , the black hole surface satisfies 
μ(−α, −β) = μ(α, β) (to ease visualization the region of negative 
α, β is not shown in Fig. 1b). Furthermore, our numerics indicate 
that black holes with different signs of α and β cannot exist.

For the linear boundary condition β = λα, we plot the speed of 
sound as a function of z in Fig. 2 — for this deformation the energy 
density is obtained by replacing W = β2

2λ
and α = β

λ
in (14). This 

yields ρ = α2l3

κ

(
3
2 F (z) − 1

8

)
. This is indeed an everywhere posi-

tive convex function for all the deformations we are considering. 
In the plots we have set z = 1

2 ln |α| + 1. So, when α 
 1, then z
is very large and the deformed theory explores very high energies, 
where the conformal value for the speed of sound is recovered 
as one would expect. When α ∼ 0 then z < 0 and the deforma-
tion vanishes. The conformal value for the speed of sound is again 
recovered in this limit. In the intermediate regime the speed of 
sound is larger than the conformal value, attaining a maximum 
at c2

s ≈ 0.458; a very interacting state of matter which might be 
relevant for the description of neutron stars, where the speed of 
sound is believed to be bounded only by the speed of light [22]. 
We note that the conjectured bound (c2

s ≤ 1/3) for the speed of 
sound in theories with an holographic dual was only supposed to 
hold when there is no chemical potential [10]. This bound was in-
deed shown to be violated when a chemical potential is introduced 
in [12]. In this sense, this is the first example of the violation of 
the conjectured bound with an everywhere positive convex energy 
functional.

5. The renormalization group

The field theory variables α and β have an ambiguity when 
written in terms of the gravity variable ϕ , see (6). This is 
parametrized by the constant r0 necessary to make the argument 
of the logarithm dimensionless. This is interpreted on the field 
theory side as a standard one-loop renormalization [24]. We take 
the bare coupling constant λ� and the bare field β� to be de-
fined at the cutoff scale � and the renormalized coupling constant 
λν and renormalized field βν defined at the mass scale ν . The in-
dependence of the bulk field from the renormalization procedure 
yields

ϕl−4 = βν

(
λ−1
ν ln (rν) + 1

)
2

+ O (
ln(r)2

3
)

r r
=
β�

(
λ−1

� ln (r�) + 1
)

r2
+ O (

ln(r)2

r3
), (21)

where the latter equality implies βνλ−1
ν = β�λ−1

� and λν = λ� +
ln (�/ν) which has the form of a one loop renormalization of a 
dimensionless coupling constant [24]. In the plot of the speed of 
sound of the previous section we have set z = 1

2 ln |α| + 1, which 
means setting the renormalized coupling constant to one and mea-
suring α in terms of the scale given by ν2:

z = 1

2
ln

∣∣∣ α

ν2

∣∣∣ + λν. (22)

One can obtain the relation between ν2, λν and the energy density 
ρν with the equation ρν = ν2l3

κ

(
3
2 F (λν) − 1

8

)
. The energy density 

and the value of the dressed coupling constant are indeed neces-
sary to compare the theoretical prediction with the experiment. 
A change in the values that we picked would imply a simple shift 
in the graph of Fig. 2.

6. Other scaling and spacetime dimensions

Scalar fields with mass in the BF window (1) fall-off as

ϕ ∼ α

r�− + β

r�+ + O (r−�−−1), (23)

where 2 < �− < �+ = D − 1 − �− and �+
�− is not an integer [19]. 

The energy density is known for these theories [20]. Using the 
Smarr formula of [21] and the fact that ρ − (D − 2)p vanishes 
for AdS invariant boundary conditions yields the pressure. In these 
cases the black hole surface takes the form

α = αh (ϕh)A
�−
D−2 , μ (ϕh,A) = μh (ϕh)A

D−1
D−2 ,

β = z (ϕh)α
�+
�− ,

(24)

and using the black hole line μ = F (z)α
D−1
�− and the boundary con-

dition z = ω(α), the universal formula for the speed of sound is

c2
s = 1

D − 2
+ 2

D − 1

D − 2

× ω′α(D − 1 − 2�−)�2−
(D − 2)(D − 1)

(
(D − 1)F + ω′α�− Ḟ

)−2�2−(D − 1 − 2�−)ω′α
.

(25)

7. Conclusions

We have investigated the role of mixed boundary conditions 
of the scalar field in the physics of hairy black holes withing 
gauge/gravity dualities. As we are going to detail below, our anal-
ysis is relevant in a broad sense and can be concretely used for 
phenomenological models in condensed matter, field theory, astro-
physics, and cosmology.

We have crucially exploited that the physics of the system is 
not only a function of the bulk Lagrangian, but also of the bound-
ary conditions of the scalar fields in the BF window (1). We have 
obtained a universal formula of the speed of sound in gravity the-
ories with scalar fields where the boundary condition appears ex-
plicitly through ω in (25). Since similar techniques can be applied 
in cosmology, our result could be useful for obtaining the speed of 
sound of primordial fluctuations in supergravity models of infla-
tion, e.g. [37]. Another important phenomenological consequence 
of our result is that the conformal bound on the speed of sound 



A. Anabalón et al. / Physics Letters B 781 (2018) 547–552 551
for strongly coupled field theories with gravity duals can be vio-
lated by choosing suitable boundary conditions. Therefore, one can 
model neutron stars withing gauge/gravity dualities and the bound 
on neutron star mass of [23] when the speed of sound is less than 
1/

√
3 is no longer relevant. As expected, the maximum value of 

the speed of sound is invariant under the RG flow of the defor-
mation. Our analysis was possible due to the obtention of the map 
(24), which bring in a new general understanding of the non-linear 
equation (9). It is worth noting that the Smarr relation for planar 
black holes is necessary to construct our universal formula for the 
speed of sound. When the black hole has a different topology, in 
general there is no scaling relation and therefore, is not possible 
to find the IR-UV map that follows from it. Further analysis is re-
quired in these non-planar cases.

This deeper understanding of holography and gravity also sheds 
light in a long debate about the scalar charge in gravitational the-
ories. By explicitly obtaining the map (2), we have shown that 
there is only one independent integration constant that charac-
terizes the system, which can be also interpreted as a proof of a 
no-hair theorem (in the ‘parlance’ of general relativity, the hair is 
secondary). In [36] it was proposed that a the first law can have 
extra contributions due to the existence of more asymptotic in-
tegration constants. Our analysis proves that, indeed, there is no 
need for a modification of the first law by including the “scalar 
charges” and so the puzzle raised by [36] for asymptotically AdS 
hairy black holes is solved.

In summary, we have shown that an infinite number of inequiv-
alent thermodynamic systems can be modeled using the same bulk 
Lagrangian by changing the boundary terms associated with de-
formations on the dual field theory. This provides an interesting 
mechanism that can be used to fit phenomenological data while 
keeping the gravity Lagrangian fixed. Of course, the set of defor-
mations one is allowed to introduce are required to fulfill some 
physical criteria of consistency, such as positivity of the energy or 
reality of the speed of sound. The double trace deformation dis-
cussed in this paper is a simple example that provides a convex 
energy functional, so we expect this background solution to be sta-
ble under metric perturbations. A more ambitious and natural goal 
would be to fit the equation of state given by lattice QCD (for refer-
ences see the recent review [38]) using our proposed mechanism. 
We expect to address this interesting point in future work.
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