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Abstract 

Inspired by the needs for the preparation of protective coatings with enhanced protection properties 

especially corrosion resistance in the oil and gas industry, the research focuses on the synthesis and the 

evaluation of various polymer composites on different metals substrates as protective coatings in 

Chloride rich environment. In various areas of application including oil and gas industry, metals 

substrates are continuously exposed to various deterioration factors including corrosion, impact, 

thermal and UV degradation. In addition, the rates of deterioration based on those factors can be further 

accelerated in certain environment. For example, the rate of metal deterioration due to corrosion can be 

accelerated in a Chloride rich environment causing significant reduction in the life span of metal 

substrates in different fields including oil and gas industry. For instance, in off shore oil and gas 

operation, drilling rigs are continently exposed to the Chloride rich ocean’s wave, which may 

accelerates the corrosion process on various metals based items of the rigs. Therefore, various corrosion 

mitigation techniques including the use of protective coatings are utilized to attenuate the corrosion rate 

and extend the life span of metal substrates. In particular areas, protective coatings can be exposed to 

various degradation factors including UV, Thermal degradations as well as deterioration due to impact. 

Therefore, it was important to evaluate other protection properties of the prepared protective coatings 

in addition to corrosion resistance. The studies focused on the incorporation of pristine Graphene and 

Glass Flake in different polymer resin such as Epoxy and Polyetherimide and evaluates the composites 

as protective coating on different metals substrates such as Copper, Stainless Steel 304 and Cold Rolled 

Steel. Furthermore, the studies investigated the possibility of enhancing the protective properties of the 

prepared protective composites coating by surface modification and functionalization of the filler in 

order to enhance the level of interaction between the polymer resin and the fillers. The synthesized 
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composites are characterized using X-Ray diffraction (XRD) and Fourier transfer infrared (FTIR) 

techniques, while the dispersion of the fillers in polymeric matrices are examined using Transition 

electron microscopy (TEM) and Scanning electron microscopy (SEM). The corrosion protection 

properties of the prepared protective composites coatings are examined using Electrochemical 

impedance spectroscopy (EIS) and Cyclic voltammetry (CV) or potentiodynamic techniques. 

Furthermore, the interface adhesion between metal substrates and the protective coatings is examined 

and evaluated according to the ASTM-D3359 standard, while the impact resistance and the UV 

degradation properties are examined and evaluated according to the ASTM -D2794 and ASTM-D4587 

standards, respectively. Moreover, the thermal degradation properties of the prepared protective 

coatings are evaluated by examining the rate of degradation or weight loss of the composites using 

Thermal Gravimetric Analysis (TGA) techniques and examining the influences of the incorporation of 

the various fillers in the glass transition temperature of the composites using Differential Scanning 

Calorimetry (DSC) technique. The studies reveal that the incorporation of the different types of fillers 

will enhance the corrosion resistance properties of the polymer resin in addition to other properties such 

as impact resistance, thermal stability and UV degradation. Furthermore, the studies conclude that the 

level of enhancement in corrosion protection as well as other protection properties can be further 

excelled by increasing the load of fillers in the composites. Moreover, it was interesting to observe that 

increasing the load of filler in the composites may negatively impact imperative properties such as 

interface adhesion, where increasing the load of fillers may attenuate the interface adhesion between 

the protective coatings and the coated metal substrates. A number of contributions have been reported 

in this research project including the preparation and the examination of nanocomposites materials as 

protective coatings on different metals substrates after the incorporation of different pristine nano-fillers 

such as Graphene and Glass Flake. The contributions also include the reporting for the first time of new 
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and unique recipes that demonstrate simple steps for the surface functionalization of Graphene Oxide 

and Glass Flake before utilizing the functionalized fillers in the preparation of nanocomposites coatings 

with enhanced protective properties including corrosion resistance and thermal stability.          
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Chapter 1 

Introduction 

Corrosion is the destruction of materials by chemical or electrochemical reactions with their 

environments, typically a transfer of electrons from one material to another. Corrosion mainly occurs 

because of the natural tendency for most metals to return to their natural state. Metals are produced by 

applying energy to the basic minerals and ores and therefore, it is natural that these metals tend to release 

this energy and convert to the natural forms when exposed to the environment. This conversion can be 

accelerated by various physical and environmental factors such as exposed area, time of exposure, 

temperature and moisture. For most metals, oxide is more stable than the metal and therefore, the metal 

oxidizes with oxidation rate that depends on the nature of the oxide. Corrosion is a natural phenomenon 

that should be believed to be an inevitable process. However, failures from corrosion may cause severe 

safety hazards or interruptions to operations. Therefore, a great attention is given to the control and 

prevention of corrosion to extend the life of metallic components exposed to the environment. 

 Corrosion has negative impacts on various industrial areas such as transportation, utilities, infrastructure 

as well as production and manufacturing. In the United States, the National Association of Corrosion 

Engineers (NACE) reported that the direct cost of corrosion on various sectors in 2001 was $276 billion, 

which corresponds to 3.1% of the States’ gross national product (GNP). Considering the same percentage 

of the gross national product, the cost of corrosion was estimated to be $500.7 billion in 2013 and the cost 

of corrosion is expected to grow to $1 trillion in 2015. Furthermore, in oil and gas industry, the estimated 

cost of corrosion was reported to be $1.37 billion where this cost was broken down to $590 million for 

pipeline and facility, $463 million for downhole piping expenses and the rest in corrosion related capital 

expenditure [1]. The lack of prevention or mitigation of such a process results in serious threat to both 

economy and industry. Therefore, an increasing number of studies have focused on strategies to slow the 

kinetics and/or alternate the mechanism of corrosion. Examples of these strategies are anodic or cathodic 
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protection [2], [3], the use of protective coatings [4], and the use of corrosion inhibitors [5]. These protection 

techniques have been utilized in various fields such as marine, pipeline, construction and automobile 

industries. However, there is a growing demand for more robust techniques with enhanced inhibition 

efficiency in order to boost the life cycle of various materials for environmental and economic savings. 

Nanocomposites, hydrophobic and organic-inorganic hybrids coatings have already excelled in extending 

the life of various materials in corrosive environments [6]–[12]. 

 Copper and steel are extensively utilized in a wide range of technological and industrial applications due 

to their outstanding electrical and thermal conductivity, ductility, wear and shock resistance, and 

processabilty. Previous study showed that protective oxides or hydroxides layers form on the surface of the 

metal under neutral or near neutral pH conditions [13], [14]. However, the formation of these protective 

layers and the corrosion process will be more complex in the presence of chloride ions [15]. In an oxidative 

environment, the corrosion mechanism involves dissolution of metals at local areas, which are referred to 

as the anodic sites and electrochemical reduction of oxygen and water at cathodic sites. The formation of 

oxide or hydroxide layer will eventually slow down the rates of dissolution and reduction reactions. Indeed, 

studies have illustrated that the rates of these reactions are proportional to the rate of diffusion of metal ions 

into the chloride solution. Furthermore, the presence of the oxides or hydroxide insoluble layer will not 

prevent the diffusion and reduction of corrosive agents such as oxygen [16]. Limiting the diffusion of 

corrosive agents to the metal substrates can be achieved by coating the metal with anti-corrosive materials 

that can not only protect from corrosion, but also enhance the mechanical properties of the metal. Polymer 

based composites, which were first reported in the 1960s are perfect examples of compounds that can 

improve the properties of metal substrates especially when inorganic materials are incorporated as 

nanofillers to form organic-inorganic nanocomposites. These inorganic nanomaterials can be found in 

layered, tubular and spherical forms such as clay, carbon nanotubes and SiO2, respectively [17]–[24].  
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1.1 Types of corrosion 

There are two main types of corrosion the first is the dry chemical corrosion, which takes place in a dry 

environment and the second is the electrochemical corrosion, which is a combination of chemical reactions 

and a flow of an electric current. The dry reactions between some atmospheric gases such as Oxygen, 

Halogen and H2S and metals are examples of chemical corrosion. These reactions might form solid films 

of corrosion product, which protect the metal from further corrosion. For example, chlorine reacts with 

silver to produce a protective film of silver chloride as per the following chemical reaction. 

2Ag+CL2 → 2AgCl     (1.1) 

Furthermore, the corrosion product can be soluble or volatile, which exposes the metal to further 

corrosion. Unlike the chemical corrosion, the electrochemical corrosion requires a conductive medium for 

ionic movements, which is called electrolyte. In addition to the electrolyte, electrochemical corrosion 

requires an anode, a cathode and an electrical connection between the anode and the cathode for the flow 

of the electron current. At the anode an oxidization reaction takes place and the released electrons form 

positive metal ions that dissolved in the electrolyte before a precipitation takes place on the cathode, where 

this participation is referred to as the reduction reaction (i.e the anode corrodes while the cathode remains 

intact). The oxidation and reduction reactions of Zinc and Copper, respectively are illustrated in equations 

1.2, 1.3 and Figure 1.1. It is worth mentioning that anode and cathode phases may actually exist on the 

same piece of a metal with a potential difference at micro-structural levels as shown in Figure 1.2. 
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Figure 1.1: Galvanic corrosion between two different materials. 

Anode : Zn(s) → Zn2++2e− (1.2) 

Cathode :Cu2++2e− →Cu(s) (1.3) 

This potential difference can be a result of different factors such as irregularities of metal surface, 

differences in the concentration of metal ions or oxygen as well as differences in the residual stress level. 

Whether the corrosion phenomena occurs on a single metal or between multiple metals, potential difference 

is what forces the electrons to flow from the anode to the cathode and obviously the corrosion rate increases 

simultaneously with the potential difference. 
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Figure 1.2: Galvanic corrosion within the same material. 

1.2 Forms of corrosion 

There are different forms in which corrosion can be manifested; therefore it is convenient to classify 

corrosion based on the appearance of the corroded part of the material. In most cases, visual inspection is 

good enough to identify the form of corrosion and also to retrieve valuable information, which can be used 

to take corrective measures. However, magnification is still required for some cases where a naked eye 

cannot detects or evaluates corrosion. The various forms of corrosion can be classified as follow: 

 Uniform corrosion 

 Galvanic Corrosion 

 Pitting corrosion 

 Crevice corrosion 

 Erosion corrosion 

 Stress corrosion 

 Corrosion fatigue 

Conductive Fluid (Electrolyte) 

Anode Area  Cathode Area  

Current Flow 

Conductive Metal  

Electron Flow 
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Uniform corrosion is the most commonly observed form of corrosion, which is characterized by an even 

loss of the metal from the corroding surface. This form of corrosion is usually observed in automobile 

industry, outdoor appliances and steel structures. This form of corrosion can be easily identified by naked 

eyes and be characterized by calculating the weight loss. When dissimilar metals are coupled in a presence 

of an electrolyte the less noble metal corrodes and this corrosion is known as galvanic corrosion. Here too, 

visual inspection can be enough to identify and evaluate the degree of corrosion. Corrosion may take place 

in certain areas of the metal and removes a small part of the total volume, which results in craters or pits on 

the surface of the metal. In this case, corrosion is referred to as pitting corrosion, which is more difficult to 

detect than the uniform and the galvanic corrosion. Pitting corrosion is considered one of the most 

dangerous corrosion as the craters or pits can perforate through the metal and results in costly repairs or 

failures. Crevice corrosion usually takes place in narrow and confined spaced between similar or dissimilar 

metals and takes the forms of etched patches or pitting. Erosion corrosion is a combination of chemical and 

mechanical attacks, where the random movements of the liquid above the metal surface first remove the 

protective film on the surface before the metal oxidizes by reacting with the liquid. Erosion corrosion can 

be accelerated when solid particles or gaseous bubbles are suspended in the liquid. Both stress corrosion 

and corrosion fatigue are chemical-mechanical processes where metals crack below their tensile strengths. 

However, stress corrosion is usually a result of an enduring tensile stress, while corrosion fatigue is a result 

of repeated mechanical stresses over a period of time. In the proper chemical environment, these forms of 

corrosion may take place and result in sever damages. 

1.3 Electrochemistry of corrosion  

When a chemical reaction involves a transfer of electron, the term electrochemical is used to describe 

such a reaction. This type of reaction is a combination of oxidation and reduction reactions. Since almost 

all metals corrodes through an electrochemical process, it is crucial to understand the basics of 

electrochemical reactions. The electrochemical process contains three basic elements, on is the anode, 

which is the element that gives the electrons, then the cathode which takes the electrons and finally and 
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electrically conducting path is required between the first two elements in order to complete the 

electrochemical circuit. Figure 1.1, depicts a typical corrosion cell, where Zinc and Copper are used as 

anode and cathode, respectively and both metals are connected with an electrical path for the transfer of 

electrons. In nature, the environment serves as the conducting medium between the anode and the cathode 

and therefore the conductivity of the various medium Soil, Concrete or natural water is directly related to 

the degree of corrosion in the medium. 

 It is important to realize that for a complete electrochemical process, multiple metals are not always 

required. Indeed, the oxidation and reduction reactions may actually take place on the same piece of metal, 

where the electrons transfer from the anodic to the cathodic areas on of the metal as illustrated in Figure 

1.2. Finally, it should be noted that more than one oxidation reduction reactions might take place at the 

same time on the same piece of metal and this will accelerate the corrosion. For example, when Zinc is 

immersed in a Hydrochloride solution, two reduction reactions may take place, first is the evolution of 

Hydrogen gas and second is the reduction of Oxygen. With two different reduction reactions that consume 

electrons, a faster oxidation rate will be observed and therefore a Hydrochloride solution with dissolved 

Oxygen or exposure to the surrounding will be more corrosive than an isolated solution. 

1.4 Corrosion Kinetics 

In a corrosive medium, predicting the corrosion currents or corrosion rates plays an important role in 

designing, materials selection and scheduled maintenance. Indeed, the cathodic and anodic currents are the 

main components in corrosion processes and these two elements are controlled by polarization effects. 

Polarization is the difference between the observed potential and individual reaction equilibrium potential 

and the quantitative value of this difference is referred to as overpotential. Total polarization or 

overpotential consists of three distinct types of polarization, which are activation overpotential, 

concentration overpotential and ohmic drop and understanding these factors is a key to predict the kinetics 

of corrosion processes. For example, agitating the electrolyte or stirring will enhance corrosion in systems 

controlled by concentration polarization as stirring boost the diffusion rate of active species. 
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1.4.1 Activation Polarization 

Activation polarization is a complex function that describes the charge transfer kinetics of 

electrochemical reactions and this type to polarization is usually dominant in corrosion studies in strong 

acids, where electrons transfers from the metal surface to the electrolyte is fast. The rates at which electrons 

can transfer on different metals vary. If the simple reduction reaction of hydrogen is considered, the rate of 

hydrogen evolution for various metal substrates might highly varies as an effect of the different electron 

transfer rate on these metals. The variation of hydrogen production on different metals substrates can be 

explained by the exchange current density or the corrosion current density (Icorr), where this variable can be 

obtained by using a three electrodes configuration and a potentiostat/ galvanostat power controller. Here a 

current is passed through the working electrode to the auxiliary electrode and the potential is recorded 

between the working and the reference electrode. The collected current and potential data are used to extract 

the corrosion current density and the corrosion potential and illustrated in Figure 1.3. 

 

Figure 1.3: Tafel plot representing activation Polarization behavior of Carbon Steel. 
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1.4.2 Concentration Polarization 

The variation in concentrations in the environment close to metal substrate is what drives the 

concentration polarization. Therefore, concentration potential may limit the overpotential value in a dilute 

solution where low concentrations of corrosive agents are available. An example of this limitation is an 

isolated corrosion process where the cathodic process is oxygen reduction. In general, mass transfer is 

driven by three main forces, which are diffusion, migration and convection. The influences of migration 

and convection will be negligible in absence of electrical field and in stagnant conditions, respectively. In 

this case, mass transport will be controlled purely by diffusion. Here, Fick’s first law can be used to describe 

the flux of a certain species from the surrounding to the metal substrate, where the diffusion coefficients 

for some common elements such as hydrogen and copper are already reported in the literature. 

1.4.3 Ohmic Polarization 

Ohmic polarization represents the driving force from the environment. Therefore, in situations where the 

surrounding is a good conductor such as sea water, the influence of ohmic polarization is neglected. Ohmic 

polarization in significant in studies that focus on the effects of the electrolyte rather than metal substrates 

or coatings. Furthermore, this type of polarization is also significant in protection method such as cathodic 

and anodic protection, where a current is passed through the electrolyte in order to force a potential shift. 

In corrosion studies a Luggin capillary is always used and fixed as close as possible to the working electrode 

surface in order to minimize the variation in potential caused by the electrolyte 

1.5 Electrochemical corrosion testing 

1.5.1 Potentiodynamic Polarization 

In this testing technique, the potential of the working electrode is scanned over a certain range using a 

certain scanning rate, where the potential is controlled by applying a current through the electrolyte. Based 

on the activities on the working electrode, the polarization can be identified as anodic, where the potential 

is moved in the anodic direction forcing the working electrode to release electrons or cathodic polarization, 
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where the opposite happens and electrons are added to the working electrode. The most famous form of 

potetiodynamic polarization is cyclic voltammetry, where the potential is swiped from a certain start value 

in the positive direction until a predetermined value is reached and the potential reverses back to the original 

start point. During this sweep of potential, the current is recorded and presented as a function of potential 

to produce a polarization plot as depicted in Figure 1.4. Linear polarization resistance (Rp) is another 

parameter that can be computed using the polarization technique. This resistance is defined as the slop of 

potential-current density at the open circuit potential and it can also be calculated using the corrosion current 

density (Icorr) and the Steam-Geary equation. 

 

 

Figure 1.4: Polarization Curve 

1.5.2 Electrochemical impedance spectroscopy  

Electrochemical Impedance Spectroscopy (EIS) is another powerful and accurate technique that can be 

used to evaluate the corrosion resistance of metal substrate. In this technique an alternative current is passed 

through the corrosion system and the resulted resistivity is recorded as a complex number with real and 

imaginary parts. The main advantage of this technique over others is the possibility of testing the metal 

substrate without disturbing the properties being measured. In general, the resulted complex resistivity of 

the tested metal substrate provided qualitative conclusions only, however; these qualitative results can be 
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interpreted using a model of the metal interface, which might contain various electrical elements such as 

resistors and capacitors. For instance, Rp is one of the electrochemical variables that can be computed using 

the model of the metal interface. 

1.6 Objectives  

The objective of this research is to examine adhesive polymer such as (Polyetherimide) PEI and Epoxy 

as corrosion inhibition coatings after the incorporation of graphene sheets and GF as fillers. These coatings 

are expected to protect metal substrates through two mechanisms. First, the coatings serve as barrier to 

water and oxygen permeation. The second protection mechanism is attributed to the ability of the well 

dispersed graphene nanosheets in the polymer matrix in prolonging the diffusion pathway corrosive agents 

such as oxygen and water molecules cross to reach metal substrate. In this study, the corrosion prevention 

ability of graphene nanocomposites is examined through electrochemical corrosion measurements in a 3.5 

wt.% sodium chloride aqueous solution. Furthermore, the study investigates the long time performance of 

the coatings by performing the adhesion test after certain period of exposure to the 3.5 wt.% NaCl solution. 

In addition to the electrochemical and adhesion tests, other properties such as flexibility and thermal 

stability of the coatings are examined. 

This report is divided as follow, a brief overview about corrosion will be presented first, where the 

various types, forms, protection techniques of corrosion are illustrated in Part I. In addition, 

electrochemistry, thermodynamics and kinetics of corrosion are also presented in the same part. Following 

the general overview on corrosion, a detailed literature about graphene/glass flake and the current studies 

that focused on using graphene/glass flake composites for corrosion protection purposes will be presented 

in Part II. The methods used to evaluate the corrosion resistance properties of the prepared coatings in 

addition to other properties are detailed in Part III Then, Part IV-IX will illustrate the current advances in 

implementing PEI and Epoxy graphene/glass flake composites as anti-corrosion coatings and the various 

collected results from electrochemical measurements and other tests are presented and described. Finally, 
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Part X will illustrate the plan for the future work and the proposed ideas to excel the corrosion inhibition 

property of the prepared coatings. 
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Chapter 2 

Background 

2.1 Graphene and Glass Flake 

Graphene is a honeycomb lattice of carbon atoms and is believed to be the basic structural unit of various 

carbon allotropes such as graphite, carbon nanotube and fullerenes. For instance, carbon nanotube is a 

rolled-up cylinder of graphene, while graphite is viewed as a stack of graphene layers. Since the historical 

successful identification of single layer graphene, which was once considered to be unstable and could not 

exist under ambient conditions, by Geim and co-worker in 2004 [25] using a simple tabletop experiment, 

graphene has attracted remarkable attention as nanofiller for polymer nanocomposites and this is attributed 

to the extraordinary properties of graphene such as high surface area, aspect ratio, tensile strength, thermal 

and electrical conductivity, electromagnetic interference shielding ability, flexibility, transparency as well 

as low coefficient of thermal expansions. Therefore, graphene can be preferred over other nanofillers such 

as clay and carbon nanotube. There are four various approaches for graphene preparation. First approach is 

chemical vapor deposition (CVD) and epitaxial growth [26]. The second method, which is the one reported 

in 2004 by Geim and coworkers is the micromechanical exfoliation of graphite, which is known as the 

“scotch tape” method [25]. The third is epitaxial growth on electrically insulating surfaces [27], while the 

fourth and the most currently used method is the thermal exfoliation of graphene oxide [28]. In what 

follows, the various available methods for graphene composites will be illustrated before current advances 

in using graphene composites for corrosion inhibition purposes are detailed. 

Glass flake is an extremely thin glass platelets that can be produced in various thickness and size using 

two main approaches. First is the bubble method [29], where the glass marble is turned into liquid form by 

heating and then shattered into glass flake and filtered by particle size distribution. The second approach is 

the centrifuge method [30], where the glass is also turned into liquid by heating and the liquid glass flake 

is rotated creating glass flake due to the centrifuging force.   
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2.2 Graphene and Glass Flake composites 

The development of the incorporation and dispersion of graphene/glass flake particles in a polymer 

matrix has recently initiated studies in various fields of science and engineering. This is attributed to the 

considerable improvement in properties that cannot usually be achieved using composites with other 

nanofillers or virgin polymers. However, the extent of the enhancement in various properties can be directly 

related to the degree of dispersion of the graphene/glass flake particles in the polymer matrix. Furthermore, 

it is interesting to observe that such an enhancement in the properties of a polymer matrix can be achieved 

at a very low loading of the fillers [31]–[34]. These improvements in the properties for example, but not 

limited to tensile strength, storage modulus and electrical conductivity have been observed on various 

polymer resin such as epoxy, polyethylene, polypropylene, polystyrene and polyimide. The degree of 

dispersion of graphene/glass flake in a polymer matrix plays an important role in the degree of the 

improvement of the various properties. Therefore, various preparation methods have been established in 

order to maximize dispersion of graphene/glass flake for the purpose of achieving the optimum 

performances with minimum loadings of fillers. 

There are three main approaches for incorporation of graphene/glass flake in a polymer matrix. First is 

the in situ polymerization method, where graphene/glass flake is first swollen within the liquid monomer. 

Then based on the hosting polymer a suitable initiator is introduced to the filler solution and polymerization 

is initiated usually by thermal energy or radiation. The second method is known as the solution method, 

where a solvent is used in which the polymer or pre-polymer is solubilized and graphene/glass flake is 

allowed to swell. The advantage of this approach is that graphene/glass flake can be dispersed easily in 

various solvents such as water, acetone and toluene and this is attributed to the weak forces that stack the 

layers of graphene/glass flake together. Here, the polymer adsorbs onto the delaminated graphene/glass 

flake thin sheets and once the solvent is evaporated, the sheets reassemble in a form of sandwiching the 

resin to form the composites. Another advantage of this method is the possibility of synthesis of intercalated 

composites using polymers with low or even no polarity. However, a considerable amount of solvent might 
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be required in order to achieve an optimum dispersion of the fillers and this is considered a disadvantage 

of the approach since solvent removal can be a critical issue. Finally, graphene/glass flake composites can 

also be synthesized using the melt intercalation method, where no solvent is required and this is the main 

advantage of this approach. In this technique, graphene/glass flake is mixed with the hosting polymer matrix 

in molten state. Typically, a thermoplastic polymer is mixed mechanically with graphene/glass flake at 

certain temperatures using conventional methods, such as extrusion and injection molding and as a result 

graphene/glass flake composites are formed. 

2.3 Corrosion protection using Graphene and Glass Flake composites 

The implementation of graphene and glass flake composites have been widely reported in various fields 

and applications [35]. However, only studies that have focused on using graphene and glass flake 

composites for corrosion protection purposes are reported here. 

There are different approaches for the implementation of graphene and graphene composites as protective 

coatings on metals substrates. However, the majority of the previous studies have used the expensive 

chemical vapor deposition (CVD) approach for deposition of graphene on various metals substrate. For 

example, a graphene coating on the copper substrate has been prepared by the CVD technique and the study 

revealed that impedance of the substrate to electrochemical degradation can be improved significantly with 

a noticeable reduction in the anodic and cathodic current densities [36]. Using the same technique, another 

study has reported that a graphene coated copper substrate by CVD encountered a significant enhancement 

in corrosion resistance [32]. In the chemical vapor deposition approach, graphene is synthesized in situ on 

metal substrate a hydrocarbon element as carbon source in presence of catalyst under high vacuum. 

Furthermore, CVD operates at high temperature range that usually varies from 650 to 1000 ◦C based on the 

source of carbon as well as the nature of the metal substrate. These requirements of high operating 

temperature and high vacuum have resulted in limitation on the metal substrate sample size. Therefore, 

CVD technique lacks the potential to be developed for mass production. 
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Another coating approach is electrophoretic deposition (EPD), which is a colloidal forming process. In 

EPD, electrostatically charged colloidal particles in a stable suspension are deposited onto an oppositely 

charged metal substrate by introduction a DC electric field to the system. Furthermore, a post EPD 

treatment, normally a heat treatment is usually required in order to eliminate the coatings’ porosity [37]. 

EPD has been used to synthesis a graphene composite coating on copper substrate, where a coating 

thickness of about 40 nm was obtained at 10 V and 30 s deposition time at optimum EPD conditions [33]. 

In this study, morphological characterization was carried out using SEM, where graphene was observed to 

be uniformly coated on the copper substrate. Furthermore, the study concluded an enhancement and 

reduction in the resistance to electrochemical degradation and the corrosion rate, respectively. In 

comparison to CVD, this approach is very versatile, fast and cost effective in producing a coating with well 

controlled microstructure on a wide range of metals substrates. This is attributed to easiness in this method 

in controlling various variables such as dimensions, stoichiometry, deposition time and rate, thickness in 

addition to uniformity. Therefore, this method can be considered a substitute to other techniques such as 

slurry dipping, thermal spraying, sputtering as well as CVD [38]. Despite the remarkable advantages of 

EPD, it has an intrinsic disadvantage compared to other colloidal approaches such as dip and slurry coating, 

where EPD cannot be used in applications or fields where the liquid medium is water. This is due to the 

fact that application of a voltage to water will initiate the evolution of hydrogen and oxygen at the metal 

substrate and consequently attenuate the quality of the deposits. Moreover, it should be noted that the quality 

of coatings prepared by EPD will also depend on the electrical nature of the electrodes, where metal 

substrate with low conductivity are usually more difficult to coat. 

In addition to graphene based coating prepared using CVD and EPD, promising observations have been 

reported using graphene based adhesive composites such as epoxy and polyimide graphene composites. 

The possibility of using adhesive composites in various environments in addition to the low maintenance 

cost, simple preparation steps and the possibility of applying these coatings on various metal substrates, 

explain why these coatings are usually more preferable than coatings prepared using CVD or EPD. In 
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addition to these remarkable properties these resins combine other outstanding properties such as high 

thermal and chemical stability, temperature durability, low dielectric constant and thermal expansion 

coefficient [39]–[41]. A number of studies have focused on the probability of enhancing various valuable 

properties of polymer including corrosion protection by the incorporation of pristine graphene [32]. For 

example, Polyimide/Graphene composites coatings have been recently prepared by thermal imidization and 

the incorporation of graphene resulted in remarkable enhancement in the corrosion inhibition property of 

the coating [32]. In parallel an environmental friendly anti-corrosion epoxy/graphene composite coating on 

cold rolled steel has been prepared and cured at room temperature without using any type of solvent [31]. 

Similar to the previous study, the corrosion protection property of the coating has been examined using 

Tafel polarization and EIS, where both tests revealed an enhancement in both corrosion protection as well 

as gas barrier properties as a result of incorporating graphene in the epoxy resin. In addition, the 

hydrophobic property of this coating has been enhanced by modifying the surface of the coating using a 

cast. As a result of this surface modification, attenuation on the water and corrosive media adsorption has 

been reported on the epoxy/graphene coating surface. 

In addition to the simple incorporation of pristine graphene in polymer composites or CVD coating with 

graphene, many researchers have focused on the functionalization of graphene and the influences of such 

functionalization on various properties including corrosion resistance. For instance, a recent study revealed 

that the corrosion protection of epoxy and graphene oxide (GO) composites coatings can be enhanced the 

attaching titanium dioxide on the GO surface using 3-aminopropyltriethoxysilane as coupling agents [42]. 

Another study investigated the incorporation of fluorographene particles into polyvinyl butyral composite 

coatings for corrosion protection purposes. The study revealed that shielding property of may remarkably 

enhance the corrosion resistance of the coating by blocking the diffusion paths of corrosive elements and 

moisture [43]. Recently, the influences of the incorporation of functionalized GO in epoxy composites, 

through the wet transfer of amino functionalized GO, on the corrosion resistance property of epoxy coating 
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were investigated. The study demonstrated that significant enhancement in the corrosion mitigation 

property of epoxy can be achieved by improving both ionic resistance and barrier properties.  

A growing number of studies have focused on the utilization of glass flake as filler in polymer 

composites. This incorporation have delivered enhancement in various properties such as thermal and 

viscoelastic properties [44] in addition to corrosion mitigation. For example, the long term performance of 

epoxy/glass composites as corrosion protection coatings on cold rolled steel was investigated in Chloride 

rich environment and the study illustrated that the incorporation of glass flake in the epoxy resin may extend 

the life span of the coated metal substrates. Furthermore, the study revealed that glass flake may delivers 

further corrosion protection compared to other fillers such as clay [45]. In addition to epoxy, the 

incorporation of glass flake in various polymer composites was assessed and encouraging corrosion 

resistance properties were observed on different metal substrates [46]–[48].   
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Chapter 3 

Methodology 

The objective of this chapter is to describe in details all procedures followed to conduct the various 

experimental evaluation techniques utilized to evaluate the prepared protective coatings. In all evaluation 

techniques, tests were performed on coated samples before and after the incorporation of the fillers in order 

to illustrate the influences of this incorporation on the various properties of the hosting resin.   

3.1 Composites Synthesis  

Properties of a polymer composite coating may vary dramatically by incorporating a filler in the 

polymeric matrix. However, the variation in these properties depends intensely on the preparation 

procedures of the composite coating. Synthesis of a composite comprises different parameters such as 

reaction time, temperature, load of filler, dispersion time and thickness of the coating. Therefore, it is 

essential to conduct experimental analysis to identify the key parameters that may deliver major variation 

in the properties of the prepared composite coating. The identification of these parameters would help 

maximizing the valuable properties of a coating including, but not limited to corrosion protection. 

Therefore, a factorial experimental design statistical study was conducted in order to evaluate the impact 

of various preparation parameters such as load of filler, curing time, dispersion time and coating thickness 

[49].  

In this study, Epoxy was utilized as a resin while Graphene was incorporated in the Epoxy to prepare the 

protective coatings. Different samples were prepared with high and low levels of each examined preparation 

parameters various and the prepared coatings were evaluated using the potentiodynamic polarization 

technique. Previous studies revealed that the load of filler and the dispersion time are the most significant 

parameters that may influence the corrosion resistance performance of a protective coating, where 

increasing the load of filler and mixing time enhanced the corrosion protection properties of the coatings. 

Furthermore, the study illustrated that increasing the dispersion time is more momentous at low loading of 
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the filler, while the dispersion time is trivial at high load of filler. Therefore, in all studies the various 

prepared protective coatings were synthesized with different loads of filler in order to maximize the 

corrosion resistance properties of the coatings and the dispersion time was always high in order to enhance 

the dispersion of the different fillers in the prepared protective coatings.  

3.2 Composites Characterization 

The prepared protective polymer composites coatings were characterized using various techniques such 

as Fourier transfer infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Furthermore, the dispersion 

of fillers in polymer composites was captured using Scanning electron microscopy (SEM) and Transmission 

electron microscopy (TEM). The objective here, is to illustrate the sample preparations steps for each 

technique. 

 FTIR samples were prepared by scratching the polymer composites with a sharp fine knife in order to 

collect small amount of the composites. The collected composites samples were then mixed with certain 

amount of Potassium Bromide (KBr) in order to maintain the sample load to 2-5 wt.% of the mixture. The 

mixture was then compressed at 5000 pounds for 2 min to form the FTIR disk sample. FTIR data were 

recorded from 400-2000 wavenumber at 4 cm-1 resolution and a scan time of 64 sec. Unlike FTIR, the XRD 

samples did not require specific procedures to follow in sample preparation. However, the thicknesses of 

the prepared polymer composites were maintain below 20 µm in order to maximize the quality of diffraction 

peaks. XRD diffraction patterns for all prepared composites were recorded in the range of 2θ = 3-90ᵒ at scan 

rate of 0.24ᵒ/sec and 0.02ᵒ step size.   

The dispersion of fillers in the polymer composites was captured using SEM and TEM. SEM samples 

were fixed on SEM stub using conductive carbon tape. Furthermore, gold sputtering technique with 

sputtering time of 120 sec was utilized to coat non-conductive polymer composites samples. TEM samples 

were collected by scrapping the prepared polymer composites with a fine sharp knife and the collected 

samples were dispersed in methanol. The dispersion was sonicated in a sonication bath for 30 min before 
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the samples were fished with TEM copper grids. Finally, the collected samples in copper grids were allowed 

to dry under vacuum at room temperature over night before conduction TEM imaging.   

3.3 Adhesion 

Interface adhesion between polymer composites coatings and the coated metals substrates was evaluated 

according the ASTM-D3359 standard. An adhesion tape testing kit was used for this purpose with a 

standard 11-teeth and 1 mm spacing blade. The test was conducted by making parallel cuts on the coating 

before applying the tape on the cuts. After peeling off the tape from the coatings, SEM technique was 

utilized to observe the adhesion property of the various prepared coatings. Moreover, adhesion property of 

each coating was evaluated and rated according to the ASTM standard based on the amount of peeled 

composites from the coated samples after conducting the adhesion tape test.    

3.4 Electrochemical Measurements  

All electrochemical measurements were conducted in a 1L double jacked temperature controlled 

corrosion cell using 3.5 wt.% NaCl solution as electrolyte. A three electrodes configuration was used to 

conduct electrochemical measurements, where Ag/AgCl electrode was used as a reference electrode, A 

graphite rod was used as a counter electrode and coated samples were used as the working electrode. Coated 

samples were cleaned and dried then mounted in a Teflon holder with 1 cm2 exposed surface area and the 

potentials of the testing samples were allowed to stabilize for at least 30 min before conducting 

electrochemical measurements. The potential of the testing samples were recorded after stabilization as the 

Open Circuit Potentials (OCP). The electrochemical behaviors of coated samples were evaluated using 

Electrochemical Impedance Spectroscopy (EIS) and Cyclic voltammetry (CV) techniques.  

EIS measurements were carried out at frequency range from 200 kHz – 100 mHz and the collected raw 

impedance data were presented using Bode and Nyquist plots. Furthermore, equivalents circuits with 

specific combination of elements utilized for fitting raw impedance data and the variations in the magnitude 
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of the different elements were used to evaluate the corrosion resistance properties of the prepared protective 

coatings.  

Following the non-destructive EIS measurements, CV was also utilized to evaluate the corrosion 

protection properties of the prepared protective coatings using the similar testing setup. Here, the 

potentiodynamic measurements were carried out by scanning the potential of the testing sample from -0.5 

V to 0.5 V around OCP at a rate of 0.02 V/min.  The collected CV measurements were used to 

generate Tafel plots in order to extract valuable corrosion parameters such as corrosion current 

(Icorr) and potential (Ecorr). The variation of these parameters corrosion was investigated to evaluate 

the corrosion resistance properties of the different protective coatings. 

3.5 Gravimetric Analysis 

The long term performances of the prepared protective coatings were examined by conducting weight 

loss measurements. A 500 ml temperature controlled 3.5 wt% NaCl solution was used as the corrosion 

medium. Testing samples were cleaned with acetone, dried with KimTech paper and weighted before 

conducting the weight loss tests. After that the samples were mounted in Teflon holders with 1 cm2 exposed 

surface areas and immersed in the corrosive medium for 60 days. At the end of the exposure period and 

after removing the samples from the holders, samples were cleaned in order to remove the corrosive 

residues by washing the samples with distilled water and immersing the sample in bath sonication for 10 

min. Samples were allowed to dry under vacuum over night before the final weights were recorded. The 

corrosion protection properties of the different coatings were evaluated by comparing the weights of the 

samples before and after exposure to the corrosive medium. Furthermore, all weight loss measurement were 

conducted in triplicate in order to examine the reproducibility of the results.   

3.6 Thermal Analysis and UV Degradation 

Some of the prepared protective coatings are intended for utilization in outdoor environment and 

therefore, it was important to evaluate the thermal stability and UV degradation properties of those coatings. 
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Thermal stability property was evaluated using Thermal Gravimetric Analysis (TGA) and Differential 

Scanning Calorimetry (DSC) techniques. TGA analysis were conducted over temperature range of 25-800ᵒ 

C at heating rate of 15ᵒ C/min, DSC analysis were conducted over temperature range of 25-200ᵒ C at heating 

rate of 10ᵒ C/min. Thermal analysis helped evaluation important thermal properties such Glass Transition 

temperature (Tg) and the Onset temperature (Tonset), which is the temperature, where the composites loss 

5% of the original weight.  

In addition to thermal behaviors, it was important to evaluate UV degradation properties of the coatings 

intended for utilization in outdoor applications.  UV analysis were conducted and evaluated according to 

the ASTM standard D4587 using an accelerated weathering tester. In this test, the samples were 

continuously exposed to repeated cycles of UV light at 60 ± 2.5° C for 8 hours, followed by water 

condensation at 50 ± 2.5° C for 4 hours over 30 days. The surface morphology of the tested samples were 

examined by SEM and here too the samples were gold coated using the sputtering technique for 120 sec.   

3.7 Impact resistance 

In addition to thermal stability and UV degradation, impact resistance was an important property to 

evaluate for coatings intended for usage in outdoor environments. Two important properties were tested, 

which are flexibility and resistance to sudden deformation. Flexibility was evaluated by conducting a 

pending test, where the coated samples were bent with a conical shaped mandrel with diameter range 

from 3.1 – 38 mm. The diameter at which the coating cracked was noted in order to compare the 

flexibility of the prepared coatings before and after the incorporation of fillers.  

Resistance to sudden deformation was assessed according to the ASTM standard D2794 using a 

universal impact tester with 2 Ib falling weight attached to a ball with 0.5 inch diameter. The test 

was conducted by rising the falling weight 1 inch above the surface of the coatings and releasing 

the falling weight to impact the coating. This process was repeated with 1 inch increment in the 

distance between the height of the falling weight and the surface of the coating until the coating 
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cracks. The heights at which the coatings cracked were recorded and compared in order to examine 

the influences of the incorporated filler on the impact resistance properties of the coatings.  
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Chapter 4 

Optimizing Corrosion Protection of Stainless Steel 304 by Epoxy-

Graphene Composite using Factorial Experimental Design 

Abstract 

Epoxy-Graphene (E/G) composites were synthesized and evaluated as a corrosion protection coating on 

Stainless Steel type 304 (SS304) using in situ polymerization approach. Coatings were synthesized at 

various process variables in order to optimize the corrosion protection efficiency of the prepared protective 

E/G coating. Cyclic voltammetry (CV) electrochemical measurements were conducted to evaluate the 

protection efficiency of the prepared coatings.  In addition, dispersion of graphene in the polymeric matrix 

was observed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). 

The study revealed that load of graphene as well as mixing time significantly influenced the corrosion 

protection efficiency, where the protection efficiency increased simultaneously with load of graphene. 

4.1 Introduction 

A growing problematic natural problem in the metallic industry is corrosion, where metals deteriorate 

due to electrochemical reactions between metals and the surroundings. A growing number of studies 

focused on various corrosion protection techniques such as the design of advanced coatings that may 

significantly slow down corrosion rates and extend the lifetime of metals in different environments. Various 

materials such as nanocomposites, hydrophobic and organic-inorganic hybrid coatings have already been 

reported as a potential solution to extend the lifespan of metals [50] in addition to different approaches such 

as corrosion inhibitors [5], and anodic or cathodic protections [3]. The various protection technologies are 

currently utilized in fields such as construction, pipeline, and automobile industries.  

Stainless steel 304 (SS304) is widely utilized in various fields of industry. This is attributed to the 

valuable properties of SS304 such as formability, weldability as well as the substantial thermal and 
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electrical conductivity. Furthermore, SS304 may withstand different atmospheric conditions and 

temperatures up to 1650°F [51]; however, SS304 may corrode intensely in a chloride rich environment 

[52]. The incorporation of fillers in polymeric composites might slow the process of corrosion. The 

protection mechanism depends on the ability of the fillers to prolong the diffusion path corrosive agents 

follow to reach the surfaces of the metals. Graphene is material that has been increasingly investigated in 

the manufacturing of polymers composites. The growing interest in graphene is attributed to the ability of 

Graphene in enhancing mechanical, thermal and dielectric properties of different polymers [40], in addition 

to the low density and a very high aspect ratio of graphene compare to different fillers such as clay [53]. 

Therefore, graphene based materials have found wide applications in different fields including gas barrier 

application and the preparation of corrosion protective coatings [32], [54], [55]. 

The incorporation of graphene in epoxy may enhance the corrosion protection property of the polymer 

resin. However, there is no study that focuses on the influences of the E/G coating preparation variables on 

the corrosion protection property of the coatings.  In the present study, the influences of the coating 

preparation variables such as load of graphene, mixing time, curing temperature and the thickness of coating 

are examined at high (+1) and low (-1) levels using a full factorial experiment design in order to maximize 

the corrosion protection efficiency of the E/G protective coatings. Here, the corrosion protection efficiency 

of a coating is evaluated using electrochemical cyclic voltammetry measurements in a 3.5% aqueous 

Sodium Chloride (NaCl) solution. 

4.2 Experimental 

4.2.1 Materials 

Polished SS304 foil (McMASTER-CARR) was used as substrate. Graphene, prepared by thermal 

exfoliation/reduction of graphite oxide was utilized (ACS Material). Graphene has surface area of 400-1000 

m2/g and electrical resistivity of ≤ 0.3 Ω.cm According to the supplier. Bisphenol A diglycidyl ether 
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(BADGE) and Poly(propylene glycol) bis(2-aminopropyl ether) (Hardner, B230) were supplied by Sigma 

Aldrich. All chemicals were used as received. 

4.2.2 Composites Synthesis and Design of Experiments 

The process of E/G composites preparation is schematically presented in Figure 4.1, where high and low 

loads of graphene sheets were first dispersed in (2.58 g) of the hardner (B230). The graphene suspension 

was sonicated/mixed at high and low levels before (3.82 g) of the epoxy resin was added to the suspension. 

The final solution was mechanically mixed and homogenized for 20 min each before it was spin coated at 

300 rpm for 1 min and 4 min to produce thick and thin E/G coatings, respectively, on a SS304 substrate. 

Finally, the graphene solution on SS304 was thermally cured at high and low levels to produce E/G 

composite coated SS304 substrate. 

 

Figure 4.1: Synthesis and coating of E/G composites on SS304 substrates. 
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E/G coatings were prepared at high (+1) and low (-1) levels of graphene loading, mixing time, curing 

temperature and coating thickness as illustrated in Table 4.1.  

Table 4.1: High and low levels of factors for factorial designed experiments. 

Factor Name High 

(+1) 

Low(-1) 

G Load of Graphene (mg) 10 2 

MT Mixing time (min) 40 10 

T Curing Temperature (ᵒC) 70 40 

TH Coating Thickness (µm) 100 50 

4.2.3 Electrochemical Measurements 

Electrochemical measurements were performed at 25 °C in a double-jacketed corrosion cell. One Liter 

3.5% NaCl solution was used as electrolyte and experiments were conducted using a three electrode 

configuration, where the bare and coated SS304 substrates served as the working electrodes with 1 cm2 

exposed surface area. Silver/Silver Chloride (Ag/AgCl) and two graphite rods were used as reference (RE) 

and counter electrodes (CE), respectively. The working electrode (WE) was first washed with acetone and 

distilled deionized water then, dried and installed in a Teflon sample holder. The open circuit potential was 

allowed to stabilize for 30 min after immersion of the WE in the electrolyte and after stabilization, the 

potential was recorded as the corrosion potential (Ecorr). Cyclic voltammetry (CV) technique was utilized 

to examine the electrochemical behavior of the bare and coated SS304 samples using a VSP-300 

workstation (Uniscan instruments ltd.). 

4.2.4 Morphology 

Dispersion of graphene was observed using SEM (Zesis LEO 1550). In order to enhance the conductivity 

of E/G coating for SEM imaging, the coated SS304 substrates were further coated with gold using sputtering 
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technique for 120 sec. The samples were fixed on SEM holders using carbon tape and the dispersion was 

captured at high and low magnifications. Graphene dispersion in the polymeric matrix was also observed 

using TEM (Philips CM-10 TEM), where E/G samples were collected by scrapping the coatings with a fine 

knife, dispersed in methanol for 5 min using sonication technique and collected with TEM copper grid. 

TEM collected samples were left to dry overnight under vacuum at room temperature. 

4.3 Results 

4.3.1 Cyclic Voltammetry 

CV was used to record raw electrochemical data by scanning the potential of the WE from -0.5 to 0.5 V 

above the open circuit potential at 10 mV/min. This potential scanning generates Tafel plot, which permits 

the extraction of the corrosion current (Icorr) by extrapolating the straight portions of anodic and cathodic 

curves through Ecorr as illustrated in Figure 4.2. 

 

 

 

 

 

Figure 4.2: Synthesis and coating of E/G composites on SS304 substrates. 
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4.3.2 Design of Experiment 

24 full factorial design experiments were conducted in order to illustrate the significance of variable of 

the preparation process as well as the two factors interactions. The observed Icorr was reported for each 

experiment in Table 4.2 and in general, a drop in Icorr represent an enhancement in corrosion protection. 

Table 4.2: 24 Design levels and corrosion currents. 

 Design Factors  

Run G MT T TH Icorr(µA/cm2)  

I01 -1 -1 -1 -1 0.2 

I02 +1 -1 -1 -1 0.007 

I03 -1 +1 -1 -1 0.04 

I04 +1 +1 -1 -1 0.0091 

I05 -1 -1 +1 -1 0.19 

I06 +1 -1 +1 -1 0.0086 

I07 -1 +1 +1 -1 0.07 

I08 +1 +1 +1 -1 0.0066 

I09 -1 -1 -1 +1 0.3 

I10 +1 -1 -1 +1 0.0098 

I11 -1 +1 -1 +1 0.03 

I12 +1 +1 -1 +1 0.0088 

I13 -1 -1 +1 +1 0.25 
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I14 +1 -1 +1 +1 0.013 

I15 -1 +1 +1 +1 0.05 

I16 +1 +1 +1 +1 0.001 

 

Analysis of variance (ANOVA) approach was adopted to analyze the factorial design experimental and 

the results are presented in Table 4.3. The total sum of variance was calculated using equation 4.1, where 

yi and n represent the response of experiment I and the number of experiments, respectively. Furthermore, 

the sum of square (SS) for each factor and their interaction was calculated using equation 4.2, where k is 

the number of main factors. 

Table 4.3: Analysis of variance for main Effects and two-factor interactions for observed response. 

Factor Effect SS df MS F 

G -0.133 0.07 1 0.07 14.2* 

MT -0.095 0.036 1 0.036 7.2* 

T -0.002 1.5e-5 1 1.5e-5 0.003 

TH 0.016 0.001 1 0.001 0.2 

G×MT 0.092 0.03 1 0.03 6.79* 

G×T 0.001 1.3e-6 1 1.2e-6 2.5e-4 

G×TH -0.016 0.001 1 0.001 0.2 

MT×T 0.012 0.5e-3 1 0.0005 0.11 

MT×TH -0.025 0.003 1 0.003 0.51 

T×TH -0.007 0.2e-3 1 0.0002 0.03 
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Error - 0.017 5 0.003 - 

Total - 0.164 15 - - 

*Significance factors. 

                                            𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑦𝑖
2𝑛

𝑖=1 − (∑ 𝑦𝑖
𝑛
𝑖=1 )/𝑛                                           (4.1) 

                                               𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡 = 2𝑘−2(𝑒𝑓𝑓𝑒𝑐𝑡)2                                                  (4.2) 

The error sum of square was computed as the difference between the total sum of square and the 

summation of the sum of squares for main factors and their interactions. The degree of freedom (df) for 

factors and their interaction is the levels of factors less one. Therefore, main factors degree of freedom is 

(2-1), while, the interactions degree of freedom is (2-1) × (2-1). The error sum of square degree of freedom 

equal the total number of experiments less the sum of all main factors and interaction effects less one (16-

10-1=5). Finally, the degree of freedom of the total sum of square is the number of experiments less one 

(16-1=15). The mean squares (MS) are compute by dividing the sum of square over the degree of freedom 

and the F values for a main factor or an interaction is calculated by diving the mean square of the main 

factor or the interaction over the mean square of the error. At 95% confidence interval (F1,5=6.61) a main 

factor or an interaction is considered significant when the F value is grater then 6.61 and not otherwise.  

From the reported analysis in Table 4.3, it can be observed that load of graphene, mixing time and the 

interaction between these factors are significant. The importance of the significant factors can be observed 

in the results reported in Table 4.2, where the corrosion current drop when the load of graphene is high 

indicating an enhancement in corrosion protection. The same observation was noted for mixing time, where 

the corrosion current always drops at high mixing time. Finally, it was interesting to observe that at low 

load of graphene, increasing the mixing time excelled protection by attenuating the corrosion current. The 

interaction effect between the load of graphene and mixing time is explained in Figure 4.3, where corrosion 

currents are always low at high load of graphene, while the corrosion currents were high and low when a 

low and high mixing times were used at a low load of graphene.     
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The enhancement in corrosion protection efficiency can be attributed to the ability of graphene in 

prolonging pathways corrosive elements follow to reach metal surface and increasing the mixing time may 

help enhancing the dispersion of graphene and consequently advance corrosion protection property of the 

E/G coating.   

 

Figure 4.3: Interaction effects between load of graphene and mixing time. 

4.3.3  Morphology 

Dispersion of graphene in Epoxy resin was observed using SEM and TEM. Figure 4.4 (a and b), depicts 

the dispersion of graphene in samples I02 and I04, where the loads of graphene were high, while the mixing 

times were low and high, respectively. From the figures, it can be observed that in both cases graphene 

sheets were widely dispersed regardless of the mixing time. In contrast, graphene sheets were not always 

widely dispersed when a low load of graphene was incorporated in the polymeric matrix. This can be 

observed in Figure 4.5 (a and b), which depicts the dispersion of low loads of graphene in samples I03 and 

I01, where the mixing time is high and low, respectively. Here, graphene sheets were well dispersed in 

sample I03, where mixing time was high as presented in Figure 4.5a, while stacks of graphene sheets were 

observed at low mixing time in sample I01 as shown in Figure 4.5b. The observed degree of dispersion of 
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graphene in evaluated samples support the significance of the load of graphene, the mixing time and the 

interaction between the two factors as reported in previous section. The widely dispersed graphene sheets 

extend the pathway corrosive agents follow to reach SS304 substrates and consequently enhance the 

corrosion protection properties of the coatings. 

 

Figure 4.4: SEM images of graphene dispersion in (a) I02 and (b) I04. 

 

Figure 4.5: SEM images of graphene dispersion in (a) I03 and (b) I01. 

TEM was also utilized to observe the dispersion of low loadings of graphene at high and low mixing 

times in samples I03 and I01 as depicted in Figure 4.6 (a and b), respectively. The observed thin sheets of 

graphene in Figure 4.6a confirms that increasing mixing time resulted in a better dispersion of graphene 

sheets. In contrast, the low mixing in sample I01 resulted in poor exfoliation of graphene sheets, which can 

be observed as thick stacks of graphene sheets in Figure 4.6b. 



 

 35 

 

Figure 4.6: TEM images of graphene dispersion in (a) I03 and (b) I01. 

4.4 Conclusion 

A full factorial experimental design study was conducted to optimize corrosion protection property of 

Epoxy/graphene composites coatings on SS304 substrates. Influences of the preparation parameters, which 

include load of graphene, mixing time, curing temperature and coating’s thickness on the corrosion 

protection properties of the coatings were evaluated at two levels using CV technique. E/G coatings were 

prepared by thermal curing, where in situ polymerization approach was utilized to incorporate graphene 

sheets in the epoxy matrix. The dispersion of graphene was captured using SEM and TEM techniques at 

high magnification. The study revealed that addition of graphene enhances the corrosion inhibition abilities 

of E/G coatings. Furthermore, it was concluded that load of graphene, mixing time and the interaction 

between those two parameters have significant influences on the corrosion protection properties of the E/G 

coatings. The enhancement in the protection properties was attributed to degree of dispersion of graphene 

in the matrices as presented in the SEM and TEM images, where graphene sheets may prolong the pathways 

corrosive agents cross to reach the metals and coatings interfaces.  
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Chapter 5 

Corrosion Inhibition of Copper in Sodium Chloride Solution Using 

Polyetherimide/Graphene Composites 

Abstract 

In this study, Polyetherimide-Graphene composites (PEI/G) were prepared and investigated as corrosion 

inhibition coatings on copper substrates. Various loadings of graphene were incorporated in the 

Polyetherimide matrix using in situ polymerization approach and the composite coatings were cured by 

thermal imidization. The effect of graphene loading on corrosion inhibition and the long-term performance 

of the PEI/G coatings were investigated. The dispersion of graphene in the polymer matrix was examined 

using SEM and TEM. The study demonstrated that PEI/G nanocomposites provide advanced corrosion 

inhibition of copper. This conclusion was supported by the results of various electrochemical techniques 

such as Tafel polarization and electrochemical impedance spectroscopy (EIS). In addition to corrosion 

protection, the long-term performance of the coatings was confirmed by testing the adhesion of PEI/G 

composites to copper substrates before conducting the electrochemical tests and after 15 days of exposure 

to the corrosive medium.  

5.1 Introduction 

Corrosion is the destruction of materials by electrochemical reactions with the environment. The lack of 

complete prevention of such a process results in serious threats to both economy and industry. Therefore, a 

large number of studies have focused on different strategies to slow the kinetics and/or alternate the 

mechanism of corrosion. Examples of these strategies are anodic or cathodic protection [2], [3] the use of 

protective coatings [4], and the use of corrosion inhibitors [5]. These protection techniques have been 

utilized in various fields such as marine, pipeline, construction and automobile industries. However, there 

is a growing demand for more robust techniques with enhanced inhibition efficiency in order to boost the 
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life cycle of various materials for environmental and economic savings. Nanocomposites, hydrophobic and 

organic-inorganic hybrid coatings have already excelled in extending the life of various materials in 

corrosive environments [6]–[12]. 

Copper is extensively utilized in a wide range of technological and industrial applications due to its 

outstanding electrical and thermal conductivity, ductility, wear and shock resistance, and processabilty. 

Previous studies showed that protective copper oxides or hydroxides layers form on the copper surface 

under neutral or near neutral pH conditions [56]. The formation of this protective layer and the corrosion 

process of copper are more complex in the presence of chloride ions [15]. In an oxidative environment, the 

corrosion mechanism involves the dissolution of copper at local areas, referred to as the anodic sites, and 

electrochemical reduction of oxygen and water at the cathodic sites. The formation of the oxide or 

hydroxide layer will eventually slow down the rates of dissolution and reduction reactions. Indeed, several 

studies have illustrated that the rate of these reactions is proportional to the rate of diffusion of copper 

chloride ions into the chloride solution. Nevertheless, the presence of the oxides or hydroxide insoluble 

layer will not prevent the diffusion and reduction of corrosive agents such as oxygen [16]. 

Coating the metal with anti-corrosion layer not only can limit the diffusion of corrosive agents to the 

metal substrates protecting the metal from corrosion but also enhances the mechanical properties of the 

metal. Polymer based composites, which were first reported in the 1960s are perfect examples of coatings 

that can improve the properties of metal substrates, especially when inorganic materials are incorporated as 

nanofillers to form organically-inorganic nanocomposites. These inorganic nanomaterials include layered, 

tubular and spherical forms such as clay, carbon nanotubes and SiO2, respectively [17]–[24]. The 

compatibility between the polymer matrix and the inorganic nanofillers and the dispersion of the nanofillers 

in the matrix plays an important role in the performance of nanocomposites and therefore, enhancing the 

compatibility and the nanofiller dispersion in the matrix is always desired. Several polymeric materials have 

shown good potential as corrosion inhibitors; however, their poor adhesion to metal substrates prohibits 

their use for corrosion protection purposes [57], [58]. Polyetherimide (PEI) is a high-performance 
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polymeric material that combines various desirable properties such as outstanding thermal and chemical 

stability, high temperature durability, low dielectric constant, and low thermal expansion coefficient [39], 

[41].  

Since the discovery of graphene [25], increasing number of studies has focused on incorporating 

graphene materials such as graphene nanosheets, graphene nanoplatelets and functionalized graphene in 

various polymers in order to enhance their mechanical, thermal and dielectric properties [59]–[61]. The 

lower density and very high aspect ratio of graphene [53] are among its main advantages over other 

nanofillers. These properties initiated the investigation of graphene-based materials as gas barriers and 

corrosion protection coatings [33], [62]–[65]. To the best of our knowledge, there is no study on use of 

graphene-PEI composites (PEI/G) for corrosion prevention of copper. The PEI/G coating is expected to 

provide protection to copper substrates through two mechanisms. First, the PEI serves as a barrier to water 

and oxygen permeation. The second protection mechanism is attributed to the ability of the well dispersed 

graphene nanosheets in PEI matrix to prolong the diffusion pathway of corrosive agents such as oxygen 

and water molecules. In this study, the corrosion inhibition ability of PEI/G nanocomposites is examined 

via electrochemical corrosion measurements in a 3.5 wt% sodium chloride aqueous solution. The long-term 

performance of the coatings is also investigated by carrying adhesion test after 15 days of exposure to the 

3.5 wt% NaCl solution. 

5.2 Experimental 

5.2.1 Materials 

4,4-Bisphenol A Dianhydride (BPADA. Polysciences, Inc.) was vacuum dried at 60 ᵒC for 3 h to remove 

moisture prior to use. N-Methyl-2-pyrrolidinone solvent (NMP, Sigma Aldrich), m-Phenylenediamine 

(mPDA, Sigma Aldrich) and single layer graphene prepared by thermal exfoliation/reduction of graphite 

oxide, which was prepared using the modified Hummer method have been supplied by (ACS Material) and 

used as received. According to the supplier, the single layer graphene has a surface area of 400-1000 m2/g 
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and electrical resistivity of ≤ 0.3 Ω·cm. Polished multipurpose copper bars 99.9 % purity (McMASTER-

CARR) were used as substrates. 

5.2.2 Composite preparation, coating, and curing 

PEI/G composites with graphene loading of 0.5 wt% (PEI/G0.5), 1 wt% (PEI/G1), and 2 wt% (PEI/G2) 

were prepared using in situ polymerization approach. The overall process of composite preparation, coating 

and curing is detailed below and schematically presented in figure 5.1.  

 (PEI/G0.5):  Single layer graphene (32.2 mg) was dispersed in 20 ml NMP by stirring for 1 h 

followed by bath sonication (Fisher Scientific, FS30H) for an additional hour. mPDA (1.1 g) was 

dissolved in 30 ml NMP and stirred until a clear solution is formed. The graphene suspension was 

added to the diamine solution and the mixture was stirred for 1 h followed by sonication for an 

additional hour. An equimolar amount of BPADA flakes (5.3 g) was added to the graphene-mPDA 

mixture. mPDA and BPADA were allowed to react overnight under N2 purge at 60°C producing 

Polyamic acid (PAA), the PEI precursor. The PAA-G was homogenized for 30 min using 

laboratory Homogenizer (Fisher Scientific, 125) and sonication for 5 min and used to coat a 

polished and cleaned copper substrate. The same procedure was used to prepare (PEI/G1) and 

(PEI/G2) using 64.6 and 130.6 mg of graphene, respectively. 

 Coating: the homogenized PAA-G mixture was applied to the polished and cleaned copper 

substrate using a brush and the thickness was controlled (65±1 µm) using a film applicator (Paul 

N.Gardner Company Inc.).   

 Curing: the coating was heated under vacuum at 70C for 10 h to remove most of the solvent and 

then subsequently heated at 100C, 150C and 205C for 2 h each to complete the imidization of 

PEI. The coated samples were allowed to cool down to room temperature under vacuum.  
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Figure 5.1: Synthesis of PEI and PEI/G composites. 

5.2.3 Morphology characterization 

Graphene dispersion on the PEI matrix was examined using SEM (Zeiss LEO 1550). The coated copper 

substrate was fixed on an SEM holder using carbon tape and it was gold coated via sputtering for 120 s. In 

addition, SEM was used to illustrate the conditions of the copper substrate as well as the coatings before 

and after conducting Tafel polarization and electrochemical impedance spectroscopy tests.    

TEM (Philips CM-10 TEM) was also used to analyze the morphology of the coatings and the dispersion 

of graphene into the matrix. A sample from the PEI/Graphene coating was collected by scraping the coating 



 

 41 

using a sharp knife. The collected sample was dispersed in methanol for 5 min, collected using TEM copper 

grid, and allowed to dry overnight under vacuum at room temperature. 

5.2.4 Adhesion Test 

The adhesion test was carried out according to ASTM-D3359 using adhesion- tape test kit (Paul 

N.Gardner Company Inc.) with 11-teeth blade with teeth spacing of 1 mm. The test was conducted twice, 

once after the preparation and again after 15 days of exposure to the 3.5 wt% NaCl solution in order to 

examine the durability of the coatings. Furthermore, the adhesion test was performed only once on PEI/G2 

due to the poor performance of the coating as will be illustrated later in the results sections. 

5.2.5 Electrochemical Measurements 

The electrochemical measurements were performed at 25C using a double-jacketed corrosion cell 

covered with a Teflon plate containing drilled holes for the immersion of the electrodes. The measurements 

were carried out using a three-electrode configuration, where circular copper specimen with exposed area 

of 1 cm2 was used as the working electrode (WE), two graphite rods as counter electrodes (CE) and a 

Silver/Silver Chloride electrode (Ag/AgCl) as the reference electrode (RE). The WE was cleaned with 

acetone and washed with distilled, deionized water before it was dried and installed in the Teflon sample 

holder. One L temperature controlled 3.5 wt% NaCl electrolyte solution was used. All electrochemical 

measurements were performed using VSP-300 workstation (Uniscan instruments Ltd.) and each 

measurement was repeated three times to check the reproducibility and the significance of the collected 

data. In addition, electrode potentials were allowed to stabilize for 30 min before performing the EIS 

followed by the potentiodynamic measurements. 

At equilibrium state, the open circuit potential (OCP) was recorded as the corrosion potential (Ecorr) in 

mV vs the RE. Data for Tafel plots were recorded at a rate of 10 mV/min by scanning the potential from -

500 to 500 mV above the corrosion potential. The corrosion current (Icorr) was determined by extrapolating 

the straight portions of the cathodic and the anodic curves through Ecorr. Bio-Logic EC-Lab software was 
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used to extract Ecorr and Icorr. The same workstation was used to perform the electrochemical impedance 

measurements to produce Bode and Nyquist plots. The measurements were carried out using a frequency 

range from 100 kHz to 100 mHz. Bio-Logic EC-Lab software was used for plotting and fitting the data.  

The corrosion rate (Rcorr) in milli-inch per year (MPY) was calculated as per ASTM standard G102 using 

equation 5.1: 

𝑅𝑐𝑜𝑟𝑟 =
0.13 × 𝐼𝑐𝑜𝑟𝑟  × 𝐸𝑊

𝐴 × 𝜌
     (5.1) 

Where EW is the equivalent weight of Copper (31.7 g),  is copper density (8.97 g/cm3) and A is the 

surface area (1 cm2). Tafel polarization and electrochemical impedance spectroscopy measurements were 

performed on bare copper as well as all coatings except PEI/G2 due to the conditions of the coating.  

5.3 Results 

5.3.1 Morphology of PEI/G composites and Copper substrate 

SEM is used to examine the conditions of the bare and PEI coated copper substrates before and after 

conducting the Tafel polarization and the EIS tests. Examining the morphology of the bare copper substrate 

before (Figure 5.2a) and after (Figure 5.2b) the electrochemical tests shows significant damage to the bare 

copper substrate during carrying the electrochemical tests.  In contrast, no change is observed in the surface 

morphology of the PEI coated copper substrate (Figure 5.2c) after the electrochemical tests (Figure 5.2d). 

This proves the ability of PEI to protect the copper substrate during the electrochemical tests as no evidence 

of surface damage is observed.  
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                                     (a)                                                                                (b) 

Figure 5.2: SEM images for bare (a) copper substrate and (b) PEI coated copper substrate (1) 

before and (2) after conducting Tafel polarization and EIS tests.  

 

     

                                     (a)                                                                                (b) 

Figure 5.3: SEM images for PEI/G0.5 and PEI/G1 (1) before and (2) after conducting Tafel 

polarization and EIS tests. 

The surface morphology of the copper substrate coated with PEI/G is also examined by SEM before and 

after the electrochemical tests. Figure 5.3, illustrates the conditions of PEI/G0.5 and PEI/G1 coatings before 

(Figure 5.3a and c) and after (Figure 5.3b and d) conducting the electrochemical tests. Here too, no evidence 

of damage is observed on the coatings confirming the quality of these coatings as anti-corrosion coatings. 

Moreover, a well dispersed graphene sheets can be observed in both PEI/G0.5 and PEI/G1 coatings. 
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Furthermore, the dispersion of graphene has been examined at higher magnification as shown in Figure 5.4, 

where the well dispersed graphene sheets in PEI/G0.5 and PEI/G1 coatings were manifested in a rug-like 

graphene.  

       

                                     (a)                                                                                 (b) 

Figure 5.4: SEM images for graphene dispersion in (a) PEI/G0.5 and (b) PEI/G1. 

The dispersion of graphene in PEI was also examined using TEM as presented in Figure 5.5 for PEI/G0.5 

and PEI/G1. From the TEM images, we clearly see the effect of graphene loading on dispersion. At low 

graphene loading (PEI/G0.5), the graphene is well dispersed as indicated by the very thin sheets In contrast 

to the thick stack of sheets for the PEI/G1 sample. The impact of graphene loading and the associated 

dispersion level on the electrochemical performance of the coating will be discussed in sections 3.3.3 and 

3.3.4.  

     

                                     (a)                                                                                 (b) 

Figure 5.5: TEM images for graphene dispersion in (a) PEI/G0.5 and (b) PEI/G1. 
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Finally, it was interesting to observe the disadvantage of use graphene loading much larger than the 

percolation loading as evident in Figure 5.6. Here, the excess load of graphene attenuated the coating 

flexibility and resulted in visible cracks on the coating. These cracks expose the copper substrate to the 

corrosive environment and therefore, no electrochemical measurements were conducted on PEI/G2. 

However, adhesion test was performed on PEI/G2 in order to illustrate the effect of the excessive graphene 

loading on the performance of the coating.  

 

Figure 5.6: SEM images of PEI/G2 coated copper. 

5.3.2 Adhesion Test  

The accumulation of corrosive agents and metal ions in void spaces at the interface between the metal 

substrate and the coating plays an important role in the kinetics of corrosion. Indeed, the existence of such 

voids is considered a primary failure mechanism for corrosion inhibition coatings. Therefore, good adhesion 

of the protective coating to the metal substrate is always desirable. The adhesion of PEI and PEI/G 

composites to copper substrate were evaluated according to the standard ASTM-3359 using adhesion tape 

test kit. Figure 5.7, 5.8 and 5.9, depict the adhesion test results before and after 15 days of exposure to the 

3.5 wt.% NaCl solution for PEI, PEI/G0.5 and PEI/G1 coatings, respectively. From the shown top view SEM 

images, we cannot observe any peelings of the coating after the adhesion tests and all the coatings received 

5B rating (0% Peeling) according to ASTM-D3359. In addition, the cross sectional SEM images 

demonstrate the strong adherence of PEI, PEI/G0.5 and PEI/G1 coatings to the copper substrates.  
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                                       (a)                                                                                (b) 

Figure 5.7: SEM image of post-adhesion test copper substrates coated with PEI (a) before and (b) 

after 15 days of exposure to the corrosive medium.  

 

                                       (a)                                                                                (b) 

Figure 5.8: SEM image of post-adhesion test copper substrates coated with PEI/G0.5 (a) before and 

(b) after 15 days of exposure to the corrosive medium.  
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                                       (a)                                                                                (b) 

Figure 5.9: SEM image of post-adhesion test copper substrates coated with PEI/G1 (a) before and 

(b) after 15 days of exposure to the corrosive medium.  

Figure 5.10 depicts the post adhesion test results for PEI/G2. The figure illustrates the poor adhesion of 

PEI/G2 to copper substrate, where peeling was observed on various spots and the coating received 0B rating 

(more than 65% peeling) according to the ASTM standard. The observed disadvantage of increasing the 

load of graphene can be attributed to the stacking and aggregation of graphene sheets, which attenuates the 

contact area between PEI/G and copper substrate. In addition, this accumulation of graphene attenuates the 

flexibility of the coating, considering the noble reinforcement property of graphene [66], and the 

combination between these two factors resulted in loss of interface adhesion. 

 

Figure 5.10: SEM image of post-adhesion test copper substrate coated with PEI/G2 before exposure 

to the corrosive medium.  
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5.3.3 Potentiodynamic measurements  

Cyclic voltammetry (CV) is a widely used approach to characterize the electrochemical properties of 

anti-corrosion coating. Here, a three electrode configuration has been used to collect the data. These 

potentiodynamic data were recorded using the EC-Lab software provided by Bio-Logic. All measurements 

were obtained in a 3.5% NaCl solution at 25 ᵒC after immersing the working electrode (WE) in the 

electrolyte for 30 min. Figure 5.11, depicts the Tafel plots for bare copper, PEI, PEI/G0.5 and PEI/G1 and 

the corrosion parameters obtained from the Tafel plots are summarized in Table 5.1. The variation in the 

corrosion protection behavior of different coatings was evaluated based on the variations in the reported 

corrosion parameters (Ecorr, Icorr, Rcorr and Rp) obtained from the Tafel plots. 

 

Figure 5.11: Tafel plots for (a) bare copper, (b) PEI, (c) PEI/G0.5 and (d) PEI/G1 coated copper 

electrodes in a 3.5 wt% NaCl solution at 25°C. 
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Table 5.1: Electrochemical corrosion parameters obtained from potentiodynamic measurements 

for bare copper, PEI, PEI/G0.5 and PEI/G1 coated copper in a 3.5 wt% NaCl solution. 

Sample 

Ecorr 

mV vs Ag/AgCl 

Icorr 

µA/cm2 

Rp 

Ω.cm2 

Rcorr 

MPY 

PEF 

% 

Cu -202 16.25 1.33 7.46 - 

PEI -171 1.78 18 0.82 89 

PEI/G0.5 -103.6 0.439 70 0.2 97.5 

PEI/G1 -10.7 0.15 142 0.07 99.1 

 

In general, higher values of Ecorr and polarization resistance (Rp) in addition to lower values of Icorr and 

Rcorr represent an enhancement in corrosion inhibition. Rp values were evaluated using the Stern-Geary 

equation, equation 5.2 [67].  

𝑅𝑝 =
𝑏𝑎𝑏𝑐

2.303(𝑏𝑎+ 𝑏𝑐)𝐼𝑐𝑜𝑟𝑟
       (5.2) 

The constants in equation 3.2 were obtained from the Tafel plots, where ba and bc are the anodic and the 

cathodic Tafel slops (dE/dlog I), respectively. Furthermore, the intersection between the extrapolated lines 

from the linear portions of the anodic and the cathodic curves determine Icorr. In addition to the parameters 

obtained from the Tafel plots, the protection efficiency (PEF) is a commonly used parameter to evaluate the 

corrosion protection ability of coatings and PEF can be calculated using equation 5.3 [68]. 

𝑃𝐸𝐹[%] = (1 −
𝐼𝑐𝑜𝑟𝑟

𝐼𝑐𝑜𝑟𝑟
° ) × 100      (5.3) 

The ability of PEI to protect the metal substrate is confirmed by the results presented in Figure 5.11 and 

Table 5.1, which are consistent with previously reported results [69]. In addition, these results illustrated 

that the performance of PEI in corrosion protection can be enhanced by the incorporation low loading of 
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graphene as demonstrated by a positive shift in the corrosion potential and attenuation of the corrosion 

current. As a result, an enhancement in the polarization resistivity was observed demonstrating the benefits 

of incorporating graphene in PEI matrix to fabricate anti-corrosion coatings with improved protection 

efficiency. Moreover, the level of the corrosion inhibition can be improved by increasing the load of 

graphene in the PEI matrix. This can be easily seen in Figure 5.11, where a positive shift in Ecorr and a drop 

in Icorr are encountered for the samples coated with PEI/G1 when compared to those coated with 

PEI/G0.5.This is also confirmed by the data in Table 5.1, where the Rp value for the electrode coated with 

PEI/G1 is over twice the value for the PEI/G0.5 coated electrode. This improved performance of PEI/G1 can 

be attributed to the increased tortuosity of the diffusion pathway of corrosive agents as the loading of 

graphene increases [70] as will be discussed in section 3.3.4. Nevertheless, the increase in the performance 

associated with increasing the graphene loading from 0.5 to 1 wt% is much lower than the increase 

associated with increasing the loading from 0 to 0.5 wt% due to the better dispersion of graphene at 0.5% 

loading compared to a 1% loading as discussed in section 5.3.1. 

5.3.4 Electrochemical impedance measurements  

In addition to CV, EIS is one of the widely used techniques to study the activity on metal substrates. This 

technique is used in this study in order to compare the variation in corrosion activities between bare and 

coated copper substrates. When an alternating current (AC) flows through a circuit, which might contain 

insulators, resistors or capacitors or a combination of items, the output is a complex resistance, known as 

impedance [71]. In EIS, an AC is fed to the corrosion system over a wide range of frequency and the 

impedance of the WE is reported as a complex value. The impedance behavior of the WE can be modeled 

using an equivalent circuit. In this study, the data fitting was performed using the EC-Lab software and all 

electrochemical measurements were collected after the immersion of the WE in a 3.5 wt% NaCl solution 

for 30 min. Figure 5.12, represents the equivalent circuit used to model the impedance raw data. In that 

circuit, Rs represents the solution resistance, Rp is the resistivity of the coating or the film formed on the 

copper substrate in the case of bare copper, CPE1 and CPE2 are the constant phase elements (CPEs), 𝑅𝑝
′  is 
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the charge transfer resistance and W is the Warburg impedance. All these elements were evaluated for each 

sample using the EC-Lab software and the impedance depends on the combination of these elements.  

 

Figure 5.12: Equivalent circuits used for modeling electrochemical impedance data for (a) bare 

and (b) coated copper substrates in a 3.5 wt% NaCl solution. 

Figure 5.13, depicts Nyquist plots, which represent the real and the imaginary part of the impedance data. 

Here, a typical impedance response of copper in NaCl solution is observed, where the impedance is 

characterized by a semi-circle followed by a sharp increase in impedance [72]. In general, a larger semi-

circle represents a larger resistance and consequently a slower corrosion rate.  
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Figure 5.13: Nyquist plots for bare copper, PEI, PEI/G0.5 and PEI/G1 coated copper. 

The ability of PEI to mitigate corrosion is clearly evident by the much larger semi-circle for PEI coated 

substrate compared to the bare copper substrate (inset Figure). Nevertheless, a more significant 

improvement in the protection of the copper substrate is observed when PEI/G composites are used as the 

high frequency end of the semi-circle size increases from 200x103ohm.cm2 for PEI to 800x103ohm.cm2 for 

PEI/G0.5 and 1700x103ohm.cm2 for PEI/G1. It is remarkable that this reduction in the corrosion with the 

PEI/G composite coating is achieved with graphene loading of only 0.5 and 1.0 wt%. The loading of 

graphene plays a significant role in the performance of the coating as the PEI/G1 coating has superior 

anticorrosion properties compared to PEI/G0.5. This is attributed to the ability of the extra graphene loading 

to increase the pathway for corrosive agents to reach the metal substrate.  

In addition to the qualitative investigation, an equivalent circuit can be used to fabricate the 

electrochemical impedance behavior of the coatings and the substrates. The equivalent circuit presented in 
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Figure 5.12 was used for this purpose. The unique combination of the various elements in the circuit is the 

best representation of impedance data for copper substrates as previously reported [72], [73]. From the 

fitting, the values of the different elements in the equivalent circuit are presented in Table 5.2. The results 

presented in Table 5.2 confirm the advanced corrosion inhibition performance of PEI/G1 over other 

coatings, where the charge transfer resistance 𝑅𝑝
′  of PEI/G1 coating is 48% higher than that of the PEI/G0.5 

coating and 94% higher than PEI coating. 

Table 5.2: Electrochemical corrosion parameters obtained from the equivalent circuit for EIS 

measurements for bare copper, PEI, PEI/G0.5 and PEI/G1 coated copper in a 3.5 wt% NaCl solution. 

Sample 

RS 

Ω 

cm2 

RP 

Ω cm2 

CPE1 

Ω-1Sn1 

cm-2 

n1 R’P 

Ω cm2 

CPE2 

Ω-1Sn2cm-

2 

n2 W 

Ω-1Sn1cm-

2 

PEF 

% 

Cu 5.2 8.2x102 2.5x10-5 0.74 1.4x103 1.3x10-3 0.83 1.4x10-3 - 

PEI 5.0 5.6x104 1.3x10-6 0.47 1.0x105 3.9x10-12 0.99 5.2x103 98.6 

PEI/G0.5 5.4 1.8x104 1.8x10-10 0.99 7.2x105 4.3x10-9 0.81 1.5x104 99.8 

PEI/G1 5.8 1.5x104 1.6x10-8 1.00 1.7x106 1.4x10-10 1.00 2.9x104 99.9 

 

In addition to Nyquist plots, the Bode plots are another way to present the corrosion inhibition ability of 

coatings. Figure 5.14, depicts the Bode plots, which represent changes in impedance vs frequency for bare 

copper, PEI, PEI/G0.5 and PEI/G1 coated copper. From the plots, the Zreal values at the lowest recorded 

frequency, which represents the corrosion resistance [74], for bare copper, PEI, PEI/G0.5 and PEI/G1 coated 

copper are 3.13, 4.1, 5.89 and 6.66 ohm.cm2, respectively. 
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Figure 5.14: Bode plots for (a) bare copper, (b) PEI, (c) PEI/G0.5 and (d) PEI/G1 coated copper. 

These results demonstrate that PEI and its graphene composite coatings are capable of protecting copper 

substrates from corrosion. In addition, the results reveal that the addition of graphene as a nanofiller 

enhances the corrosion inhibition. Moreover, the results confirm that the performance of PEI/G composites 

depends on the graphene loading. The enhancement in corrosion protection by the incorporation of 

graphene can be attributed to the barrier effect of dispersed graphene in the polymeric matrix. From this 

concept, the variation in corrosion inhibition of the PEI/G0.5 and PEI/G1 is attributed to the impact of 

graphene on the tortuosity of the diffusion pathway of the corrosive agents [70] as presented schematically 

in Figure 5.15. 

 

Figure 5.15: Representation of tortuous paths as corrosive agents pass through PEI and PEI/G 

coatings to reach the copper substrate. 
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5.4 Conclusion 

Polyetherimide/graphene composites were prepared by thermal imidization and the graphene nanofillers 

were incorporated into the polymer matrix via in situ polymerization process. The dispersion of graphene 

in the PEI matrix was examined by SEM and TEM. In addition, the corrosion inhibition properties of the 

coatings with various graphene loadings were evaluated using the potentiodynamic and the EIS techniques. 

The study revealed that incorporation of graphene in PEI matrix enhances the corrosion prevention ability. 

Remarkable improvement in corrosion inhibition was observed and is attributed to the well dispersion of 

graphene in the polymer matrix. The well dispersed graphene acts as a protective barrier to the corrosive 

agents by increasing their pathways to reach the metal substrate. 

Furthermore, the study concludes that graphene loading plays an important role in the corrosion 

inhibition and the adhesion properties of PEI. Nevertheless, an optimum graphene loading of about 1 wt% 

is required to avoid the poor adhesion and increased PEI stiffness at the very high loading.  
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Chapter 6 

Enhanced Protective Properties and UV Stability of Epoxy/Graphene 

Nanocomposite Coating on Stainless Steel 

Abstract 

Epoxy-Graphene (E/G) nanocomposites with different loading of graphene were prepared via situ 

prepolymerization and evaluated as protective coating for Stainless Steel 304 (SS304). The prepolymer 

composites were spun coated on SS304 substrates and thermally cured. Transmission Electron Microscopy 

(TEM) and Scanning Electron Microscopy (SEM) were utilized to examine the dispersion of graphene in 

the epoxy matrix. Epoxy and E/G nanocomposites were characterized using X-ray diffraction (XRD) and 

Fourier Transform Infrared (FTIR) techniques and the thermal behavior of the prepared coatings is analyzed 

using Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The corrosion 

protection properties of the prepared coatings were evaluated using Electrochemical Impedance 

Spectroscopy (EIS) and Cyclic Voltammetry (CV) measurements. In addition to corrosion mitigation 

properties, the long-term adhesion performance of the coatings was evaluated by measuring the adhesion 

of the coatings to the SS304 substrate after 60 days of exposure to 3.5% NaCl medium. The effects of 

graphene loading on the impact resistance, flexibility, and UV stability of the coating are analyzed and 

discussed. SEM was utilized to evaluate post adhesion and UV stability results. Our results indicate that 

very low graphene loading up to 0.5 wt. % significantly enhances the corrosion protection. 

6.1 Introduction 

Damage due to corrosion is one of the most common causes of metal component failures. The lack of 

mitigation protocols or methods of such electrochemical reactions may result in serious losses in both 

economy and industry. Although, total elimination of the corrosion process is not possible, there are 

different techniques that are utilized in various fields such as marine equipment, pipelines and construction 
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in order to attenuate the intensity and severity of corrosion. Anodic or cathodic protection [2], corrosion 

inhibitors [4] and protective coatings [5] are examples of these techniques. Nevertheless, an increasing 

number of research studies have been devoted to develop more robust techniques to extend the life cycle of 

metals in various environments. An effective example of such technique is the use of nanocomposites, 

hydrophobic and organic-inorganic hybrid materials as anti-corrosion coatings in various corrosive 

environments [6], [8], [10], [12]. 

Stainless steel already has remarkable corrosion resistance and is expected to perform satisfactorily in 

different environments. However, stainless steel is susceptible to pitting corrosion in chloride ions rich 

environments such as the marine atmospheric environment. Pitting corrosion is a galvanic corrosion process 

where localized active areas are formed as a result of localized inclusions or breakdown of the protective 

passive film of chromium oxide. The presence of corrosion agents such as chloride, water and oxygen 

initiates localized dissolution that penetrates through the metal thickness. This penetration may not be 

detected until severe damages has occurred and therefore pitting corrosion is considered insidious and more 

difficult to detect, evaluate and mitigate compared to other more uniform corrosions. 

Therefore, additional means of corrosion protection are required to boost the life cycle of stainless steel 

substrates in chloride ions rich environment. Polymer based composites are perfect examples of protective 

coatings that can enhance various properties of the coated metal substrates including but not limited to 

corrosion resistance. A number of polymeric matrices have already been evaluated for corrosion protection 

purposes; however, the lack of interface adhesion foils the use of most of these polymeric matrices as 

anticorrosion coatings [57], [58]. Epoxy is an environmental friendly polymeric matrix that combines 

various remarkable properties such as exceptional thermal stability and low thermal expansion coefficient. 

These desirable properties in addition to the noble interface adhesion of epoxy with various metal substrates 

trigger the investigation of epoxy as an anticorrosion coating on SS304 substrates. 

The properties of the polymer matrix can be further enhanced by the incorporation of nanofillers. Clay 

and carbon nanotubes are examples of nanofillers that are incorporated in epoxy matrix to enhance the 
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remarkable properties. However, the lower density, high surface area, and the very high aspect ratio 

attracted much attention to graphene [53] as a candidate for enhancing the corrosion protection property of 

epoxy. Graphene nanosheets, graphene nanoplatelets and functionalized graphene are different forms of 

graphene that have been utilized as fillers in various polymeric matrices to enhance their mechanical, 

thermal, dielectric, gas barrier, and corrosion resistance properties [32], [59], [60], [75]–[83]. The 

incorporation of graphene into the epoxy matrix is expected to prolong the pathway corrosive agents follow 

to reach the metal substrate. This graphene barrier effect is expected to limit the diffusion of ions and water 

molecules and consequently extends the life cycle of the coated substrates. To the best of our knowledge, 

there is no study that investigates the application of epoxy/graphene composites as anticorrosion coating 

for stainless steel Type 304. 

In this study, E/G nanocomposites are developed and used as protective coating for stainless steel. The 

corrosion protection property of the E/G nanocomposite is evaluated by conducting electrochemical and 

weight loss measurements in 3.5 wt.% Sodium Chloride aqueous solution. The study also examines the 

effect of graphene loading on the adhesion, impact resistance and flexibility of E/G composite coatings. 

Furthermore, the long-term performance of the protective coatings is also examined by conducting the 

adhesion test after exposing the coated substrates to the 3.5 wt. % NaCl solution for 60 days. In addition, 

the influences of the incorporation of graphene on the thermal behavior as well as UV resistance of epoxy 

are evaluated. 

6.2 Experimental 

6.2.1 Materials 

Polished SS304 sheet 99.9 % purity (3254K91, McMASTER-CARR, Ohio, USA) was used as 

substrates., Bisphenol A diglycidyl ether (D3415, BADGE, Sigma Aldrich, Ontario, Canada) and 

Poly(propylene glycol) bis(2-aminopropyl ether) (406651, B230, Sigma Aldrich, Ontario, Canada) 

were used as received. Graphene nanosheets (GN1P0005, ACS Material, Massachusetts, USA) 
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were synthesized by thermal exfoliation/reduction of graphite oxide, which was prepared using the 

modified Hummer method and it has a surface area of 400-1000 m2/g and electrical resistivity of ≤ 

0.3 Ω. cm, as per the supplier specifications.  

6.2.2 Composites synthesis and coating 

E/G composites with graphene loading of 0.1 wt.% (E/G0.1), 0.5 wt.% (E/G0.5) and 1 wt.% (E/G1) 

were prepared using in situ polymerization approach. The prepolymer\graphene mixture was then 

spin coated on a SS304 substrate before thermal curing. Figure 6.1, schematically depicts the overall 

composite preparation, coating and curing process. 

 

Figure 6.1: Schematic description of the process for the synthesis of E/G composites using in situ 

polymerization. 



 

 60 

As an example, to prepare E/G nanocomposite with 0.1 wt.% graphene via situ prepolymerization, 

graphene (2.1 mg) was dispersed in 0.5 g curing agent (hardener) B230 by stirring and bath sonication 

(FS30H, Fisher Scientific, Ontario, Canada) for an hour each. BADGE (1.5 g) was added to the graphene 

suspension and the mixture was stirred for 1 h followed by sonication for an additional hour. The mixture 

was homogenized (125, Fisher Scientific, Ontario, Canada) for 30 min, sonicated for 5 min and spin coated 

(SC 100, Smart Coater, Missouri, USA) at 400 RPM for 1 min on a clean SS304 substrate. The composite 

was cured at 50° C for 4 h to obtain 124 ±2 µm thick E/G0.1 coated SS304 substrate. The same procedure 

was followed to prepare (E/G0.5) and (E/G1) using 10.1 and 20.3 mg of graphene, respectively. 

6.2.3 Composite characterization  

The dispersion of graphene in the epoxy matrix was examined using TEM (Philips CM-10 TEM, Geneva, 

Switzerland). Samples for the TEM study were prepared by scraping the E/G coating with a sharp knife 

and the collected E/G composite was dispersed in methanol for 5 min. The sample was then fished using 

TEM copper grid and allowed to dry under vacuum at room temperature. FTIR (Tensor 27, Bruker, 

Massachusetts, USA) was used to acquire spectra of epoxy and E/G composites at room temperature. XRD 

diffraction patterns of epoxy and E/G composites are recorded in the range of 2 = 3° to 90° at 0.24° /min 

scan rate and 0.02° step size using MiniFlex 600 (Rigaku, Beijing, China). 

6.2.4 Adhesion 

The interfacial adhesion between the coating and the SS304 substrate was measured according to the 

ASTM-D3359 standard using an adhesion tape kit (PA-2000, Paul N. Gardner Company Inc., Florida, 

USA) with standard blade (11-teeth with teeth spacing of 1 mm). The Interface adhesion was evaluated 

before and after exposing the coating to the 3.5 wt.% NaCl solution for 60 days in order to examine the 

long-term durability of the coatings. Post-adhesion tests results were captured using SEM (Zeiss LEO 1550, 

New York, USA). SEM samples were placed on carbon tape attached to the SEM holder and the sample 

was further coated with gold via sputtering for 120 sec. 
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6.2.5 Gravimetric Analysis 

The weight loss measurements were conducted in 500 ml glass beaker placed in a temperature controlled 

water bath. Coated and uncoated SS304 substrates were weighted, placed in Teflon holders with 1 cm2 

exposed surface area and immersed in a 3.5 wt.% NaCl solution for 60 days at 25° C. At the end of the 

exposure period, the samples were removed and washed with double distilled water before a fine brush was 

used to strip off the corrosion products. The samples were cleaned again by bath sonication in a double 

distilled water for 10 min to ensure the removal of corrosion residues, dried and weighted. All mass loss 

measurements were carried out in triplicate and the mean weight and the standard deviation is reported.        

6.2.6 Electrochemical Measurements  

Electrochemical measurements were conducted at 25°C in a double-jacketed 1 L corrosion cell covered 

with a drilled Teflon plate to allow electrodes immersion. A three electrode configuration was used to 

conduct the measurements, where a Silver/Silver Chloride (Ag/AgCl) electrode was used as the reference 

electrode (RE), two graphite rods as the auxiliary electrodes (AE) and a 1 cm2 coated/uncoated SS304 

substrate as the working electrode (WE). The WE was washed with acetone and double distilled water, 

dried and then installed in the sample holder before conducting the tests. 1 L temperature controlled 3.5 

wt.% NaCl solution was used as the electrolyte. EC-Lab software (Bio-Logic) and VSP-300 workstation 

(Uniscan instruments Ltd., Claix, France) were used to conduct all electrochemical measurements, where 

each measurement was repeated three times in order to confirm the reproducibility of the collected raw 

data.  

The potential of the WE was allowed to stabilize for 30 min before conducting the EIS followed by the 

potentiodynamic measurements. The EIS measurements were conducted at frequency range from 200 kHz 

to 100 MHz to generate Bode and Nyquist plots. Furthermore, an equivalent circuit was used to fit the raw 

impedance data and EC-Lab software was used to evaluate the different components of the equivalent 

circuits. The potentiodynamic measurements were conducted by scanning the potential of the WE from -

500 mV to 500 mV at a rate of 20 mV/min to produce the Tafel plots. These plots were used to extract the 
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corrosion current (Icorr) using EC-Lab software by extrapolating the linear portion of the anodic and the 

cathodic curves. 

6.2.7 Thermal behavior and UV degradation 

The thermal stability of the nanocomposite coatings was evaluated using thermal gravimetric analysis 

(TGA) (TA instruments, Q500, Ontario, Canada) in the temperature range 25-800 ᵒC, while the glass 

transition temperature was observed using differential scanning calorimetry (DSC) (TA instruments, 

Q2000, Ontario, Canada) in the temperature range 25-200 ᵒC at 10 ᵒC/min heating rate. 

The Resistance of the prepared Epoxy and E/G coatings to UV degradation was assessed using an 

accelerated weathering tester (QUV, Q-LAB, Florida, USA) according to ASTM-D4587 standard. Testing 

specimens were continuously exposed to repeated UV cycle at 60 ± 2.5° C for 8 hours, followed by a 

condensation cycle at 50 ± 2.5° C for 4 hours over 30 days followed by SEM examination of the surface 

morphology of the epoxy and E/G coatings. 

 

6.2.8 Flexibility and Impact resistance 

Two different types of tests were carried out to illustrate the influences of graphene loading on the room 

temperature flexibility and impact resistance of the coatings. In the bending test, the coated substrate was 

bent over a conical shaped mandrel (MN-301003, Paul N. Gardner Company Inc., Florida, USA) with a 

diameter ranges from 3.1 to 38 mm to assess the flexibility of the coatings. The test was repeated three 

times and the mean diameter at which the coatings cracked were reported.   

Impact resistance was performed to evaluate the resistance of the prepared coatings to rapid deformation 

by a falling weight. The test was conducted using a universal impact tester (IM-172RF, Paul N. Gardner 

Company Inc., Florida, USA) with combined 0.5-inch ball and 2-lb weight indenter according to ASTM 

D2794 standard. The combined weight and indenter were raised 1 inch in the testing tube and released to 

drop on the coated substrate and the falling weight test was repeated with 1 inch increments in height until 
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a crack in the coating was observed. The height at which the coating cracks was recorded and the test was 

repeated slightly above, slightly below and at the recorded height five times each according to the ASTM 

standard. The elevation at which the coating cracks in all five trials is reported as the impact resistance limit 

of the coating to rapid deformation.       

6.3 Results 

6.3.1 Characterization of E/G composites 

The dispersion of graphene in the polymeric matrix for E/G0.1 and E/G0.5 composites was examined using 

SEM and TEM as shown in Figure 6.2. The TEM images, clearly illustrate the influence of graphene loading 

on the degree of dispersion, where graphene is well dispersed as indicated by thin sheets in the E/G0.1 

coating, while thick stack of graphene sheets were observed in E/G0.5 coating. SEM images, depicts wide 

degrees of dispersion in both E/G0.1 and E/G0.5 composites. 

 

                                     (a)                                                                             (b)   

Figure 6.2: TEM and SEM images for graphene dispersion in (a) E/G0.5 and (b) E/G0.1. 



 

 64 

FTIR was utilized to characterize both epoxy and E/G composites as depicted in Figure 6.3. Different 

characteristic peaks are identified, such as the peaks at 1508 cm-1 and 1609 cm-1 (C–C skeletal stretching), 

915 cm-1 (epoxide ring) and 3380 cm-1 (-OH stretching), which confirms the curing of the epoxy resin. 

Comparing the epoxy spectrum to the E/G composite spectra revealed that there were no clear dissimilar 

absorption peaks indicating no chemical linkages between graphene and the epoxy function groups. Epoxy 

and E/G composites were also characterized using XRD and the diffraction spectrum are depicted in Figure 

6.4. All XRD patterns show broadly amorphous peak appearing around 2θ value between 10 and 30°, which 

ascribed to the homogeneously amorphous of epoxy. Moreover, the observed XRD patterns indicate that 

the degree of crystallinity of epoxy is retained after incorporation of graphene. 

 

Figure 6.3: FTIR spectra of epoxy and E/G composites. 
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Figure 6.4: XRD patterns of epoxy and E/G composites. 

6.3.2 Adhesion test 

Interface adhesion between the metal substrate and the coating is a significant property that needs to be 

examined before the coating can be considered protective. Poor interface adhesion may result in the 

formation of voids between the metal substrate and the coating, where corrosive agents may accumulate 

and accelerate the corrosion process. Therefore, decent interface adhesion is always desired. The adhesion 

of E/G coatings to the SS304 substrates were examined and evaluated according to ASTM D3359 adhesion 

tape standard test. The test was performed on E/G0.1 and E/G0.5 coatings before and after 60 days of exposure 

to the 3.5 wt.% NaCl solution. The post adhesion test results are presented in Figure 6.5, where no peelings 

were observed in any of the coatings and all coatings received 5B rating (0% peeling) according to the 

ASTM standard. 
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                                     (a)                                                                             (b)   

Figure 6.5: SEM images of post-adhesion tests of (1) E/G0.1 and (2) E/G0.5 coated SS304 substrates 

(a) before and (b) after 60 days of exposure to the corrosive medium. 

Moreover, it was interesting to observe the shortcoming of increasing the load of graphene beyond the 

percolation loading. The disadvantage of increasing the graphene loading is clearly depicted in Figure 6.6 

a, where poor interface adhesion between the E/G1 coating and SS304 substrate was observed and the 

coating receives 0B rate (more than 65% peeling) according to the ASTM standard. The observed 

undesirable influence of the load of graphene on the interface adhesion can be attributed to accumulation 

of graphene at the interface, which attenuates the contact area between epoxy resin and SS304 substrate as 

depicted in Figure 6.6 b, where clear gaps can be observed between E/G1 and the SS304 substrate. 

 

                                                            (a)                                        (b)   

Figure 6.6: SEM image of (a) post-adhesion test and (b) cross section view of E/G1 coated SS304 

substrate. 
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6.3.3 Weight Loss 

Weight loss measurements for coated/uncoated SS304 substrate were reported after 60 days of immersion 

in the 3.5 wt.% NaCl solution at 25° C. These measurements were used to calculate the corrosion rate (Rcorr) 

and the protection efficiency (PEF) of the different coatings using (6.1) and (6.2). 

𝑅𝑐𝑜𝑟𝑟 =
𝑊0−𝑊

A𝑥𝑡
      (6.1) 

𝑃𝐸𝐹[%] = (1 −
𝑅𝑐𝑜𝑟𝑟

𝑅𝑐𝑜𝑟𝑟
° ) 𝑥100      (6.2) 

Where, A is the exposed surface area (1 cm2), W0 and W are the weight (mg) before and after exposure, 

respectively, t is the immersion time (60 days),  Rcorr and Rº
corr are the corrosion rate of coated and bare 

SS304 substrates, respectively. Furthermore, standard deviation of Rcorr (Rcorr, STD) was computed and 

reported in Table 6.1 using triplicate weight loss measurements for each sample.  

Table 6.1: Weight loss measurements for bare SS304, epoxy, E/G0.1 and E/G0.5 coated SS304 in a 

3.5 wt.% NaCl solution. 

Sample 

W0 

mg 

W 

mg 

Rcorr 

mg.cm-2.d-1 

Rcorr, STD 

mg.cm-2.d-1 

PEF 

% 

SS304 93.1 66.9 0.44 0.009 - 

Epoxy 107 101.6 0.09 0.011 79.5 

E/G0.1 115.9 113.5 0.04 0.008 90.9 

E/G0.5 122.9 122 0.015 0.005 96.6 

 

The data reported in Table 6.1 illustrate that coating SS304 with epoxy may prolong the life cycle of the 

metal substrate as indicated by the decrease in the corrosion rate. Furthermore, the results demonstrate that 
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the corrosion rate is attenuated and the protection efficiency of epoxy is enhanced by the incorporation of 

graphene. Moreover, the low values of Rcorr, STD demonstrate the excellent reproducibility of the results. 

6.3.4 Electrochemical Impedance measurements 

EIS is a widely used technique to investigate electrochemical activity on metal substrates. Here, EIS is 

utilized to examine the corrosion behavior of bare and coated SS304 substrates. In EIS, an alternating 

current (AC) is forced through a circuit that may contain insulators, resistors and capacitors or combinations 

of items resulting in a complex output resistance known as impedance. In corrosion studies, the AC is fed 

to the system over a range of frequency and the complex output at different frequencies are reported as the 

impedance of the WE. Furthermore, impedance can be modelled using equivalent circuits that contain a 

specific combination of different elements such as resistors and capacitors. 

The impedance behavior of bare and coated SS304 substrates is measured in temperature controlled 3.5 

wt.% NaCl electrolyte using the EC-Lab software after allowing the potential of the WE to stabilize for 30 

min. The EC-Lab software was also used to model and fit the raw impedance data using equivalent circuits 

with specific combinations as shown in Figure 6.7. In the equivalent circuits, Rs and Rch represent electrolyte 

and charge transfer resistances, respectively, while C is a double layer capacitor. The magnitudes of the 

various elements in the equivalent circuit and the frequency of the AC signal (ω) were utilized to fit raw 

impedance data using (6.3). 

𝑍 = 𝑍′ + 𝑗𝑍" = 𝑅𝑠
𝑅𝑐ℎ

1+(𝑅𝑐ℎ×𝐶×𝜔)2 + 𝑗
𝑅𝑐ℎ

2×𝐶×𝜔

1+(𝑅𝑐ℎ×𝐶×𝜔)2       (6.3) 
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Figure 6.7: Equivalent circuits used to model the electrochemical impedance data. 

 

Figure 6.8: Nyquist plots for bare SS304, epoxy, E/G0.1 and E/G0.5 coated SS304 substrates. 

Figure 6.8, depicts Nyquist plots for bare and coated SS304 substrate, where real and imaginary parts of 

the impedance are presented. The Nyquist plot clearly represents the corrosion protection by the epoxy 

coating as demonstrated by the increase in the size of the impedance semi-circle indicating an enhancement 

in corrosion mitigation and slower corrosion rate for the epoxy coated sample compared to the bare SS304. 

Nevertheless, this corrosion protection enhancement is further improved by incorporating graphene in the 
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epoxy matrix, where the real resistivity value at the high frequency end has increased from 1.0x106 ohm.cm2 

for the epoxy coated sample to 3.8x106 ohm.cm2 for E/G0.1 coated sample and 7.8x106 ohm.cm2 for E/G0.5 

coated sample. 

In addition to the qualitative analysis, the computed values of the different elements of the equivalent 

circuits shown in Figure 6.7 can be used to evaluate the corrosion protection properties of the different 

coatings. It should be noted that the unique combinations of elements in the presented circuits resulted in 

the best fitting of raw impedance data. Table 6.2, represents the values of the various elements in the 

equivalent circuits and the repeatability of triplicate measurements is illustrated by the small values of Rch, 

STD. The results clearly illustrate the ability of the epoxy coating to protect the SS304 substrate from 

corrosion as indicated by the increase in the charge transfer resistance. Moreover, the results illustrate the 

advantages of incorporating graphene as implied by the significant increase in the charge transfer resistance 

for E/G0.1 and E/G0.5. 

Table 6.2: Electrochemical corrosion parameters obtained from equivalent circuit for EIS raw 

measurements for bare SS304, epoxy, E/G0.1 and E/G0.5 coated SS304 in 3.5 wt.% NaCl solution. 

 

 

 

 

 

 

 

Bode plots are another representation of the corrosion protection ability of the coating. Figure 6.9(a), 

depicts the Bode plots, where the real part of impedance (Zreal) is plotted versus frequency, while Figure 

Sample 

RS 

Ω.cm2 

C 

F 

Rch 

Ω.cm2 

Rch , STD 

Ω.cm2 

SS304 18.5 8.5x10-6 450.5 10 

Epoxy 18 1.4x10-10 8.7x105 190 

E/G0.1 18.2 3.9x10-11 3.63x16 380 

E/G0.5 18.1 3.9x10-11 7.55x16 260 



 

 71 

6.9(b) depicts the phase plots. Corrosion resistance can also be represented by the Zreal values at the lowest 

recorded frequencies. From Figure 6.9(a), Log Zreal at the lowest frequencies for bare, epoxy, E/G0.1 and 

E/G0.5 coated SS304 are 2.7, 6.0, 6.6 and 6.9 ohm.cm2, respectively.   

 

Figure 6.9: (a) Bode and (b) phase plots for bare SS304, epoxy, E/G0.1 and E/G0.5 coated SS304 

substrates 

EIS results illustrate that epoxy coatings may mitigate the corrosion process on SS304 substrate and 

prolong the life cycle of the metal. However, the incorporation of graphene would further enhance such a 

protection characteristic of the epoxy and the degree of enhancement depends on graphene loading. This 

variation in protection efficiencies can be attributed to the noble barrier property of graphene [78], which 

attenuate the corrosion rate by prolonging the tortuosity pathway for the corrosive agents to reach the SS304 

substrate. 
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6.3.5 Potentiodynamic measurements  

Cyclic Voltammetry is a widely utilized technique to characterize electrochemical behavior of metal 

substrates and coatings. In this study, a three-electrode configuration was used to conduct cyclic 

voltammetry tests on bare and coated SS304 substrates. The raw data were recorded using the EC-Lab 

software and all measurements were obtained in 3.5 wt. % NaCl solution at 25° C. Furthermore, the 

potential of the testing sample was allowed to stabilize for 30 min before conducting any experiment. Even 

though the potential of the working electrode was scanned from -500 mV to 500 mV, only the areas where 

the electrode shifted from the anodic to cathodic behavior, which is known as the Tafel plots, were presented 

as shown in Figure 6.10. Important parameters such as Ecorr and Icorr were extracted from the Tafel plots. 

Furthermore, the extracted Ecorr and Icorr from triplicates measurement for each sample were utilized to 

demonstrate the reproducibility of the results by analysis of the standard deviation of Ecorr (Ecorr, STD) and Icorr 

(Icorr, STD), which are reported in Table 6.3. 

 

Figure 6.10: Tafel plots for bare SS304, epoxy, E/G0.1 and E/G0.5 coated SS304 substrates. 
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Table 6.3: Electrochemical corrosion parameters obtained from cyclic voltammetry measurements 

for bare SS304, epoxy, E/G0.1 and E/G0.5 coated SS304 in a 3.5 wt.% NaCl solution 

These extracted parameters can be used to compute the polarization resistances (Rp) of the protective 

coatings using (6.4), which is known as the Stern-Geary equation.  

𝑅𝑃 =
(𝑏𝑎𝑥𝑏𝑐)

2.303(𝑏𝑎+𝑏𝑐)
𝑥𝐼𝑐𝑜𝑟𝑟      (6.4) 

Where ba/bc are the anodic/cathodic Tafel slops (dE/dlog I), respectively, and extrapolating the linear 

portion of these curves determines Icorr at the intersection. Finally, Icorr values can be used to evaluate the 

protection efficiencies of the different coatings using (6.5):   

𝑃𝐸𝐹[%] = (1 − 𝐼𝑐𝑜𝑟𝑟/𝐼𝑐𝑜𝑟𝑟
° )𝑥100     (6.5) 

Where I°
corr and Icorr are corrosion currents of bare and coated SS304, respectively. The variations in 

corrosion and computed parameters (Ecorr, Icorr, Rp), which are reported in Table 6.3 may explain the 

influences of the various protective coatings on the electrochemical behavior of the SS304 substrate. In 

general, a positive shift in Ecorr, Rp and PEF plus a drop in Icorr, represents an enhancement in corrosion 

mitigation.  

The abilities of E/G coatings in mitigating corrosion on SS304 substrates were confirmed by the results 

presented in Figure 6.10 and Table 6.3. These results demonstrate that the corrosion protection performance 

Sample 

Ecorr 

mV 

Ecorr, STD 

V 

Icorr 

µA/cm2 

Icorr,  STD 

µA/cm2 

ba bc RP 

Ω.cm2
 

PEF 

% 

SS304 -113.5 0.009 2.4 0.002 48.2 55.3 4.6 - 

Epoxy -69.4 0.06 0.46 0.01 87 88.2 41.3 80.8 

E/G0.1 -65 0.01 0.06 0.009 82.3 74 282 97.5 

E/G0.5 -27.7 0.007 8.7×10-3 0.005 61.4 54.5 1441 99.6 
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of epoxy coatings can be significantly enhanced by the incorporation of graphene as illustrated by the 

positive shifts in the Ecorr, RP and PEF and the attenuation of the Icorr. Furthermore, it was interesting to 

observe that the level of enhancement in PEF of E/G can be positively influenced by increasing the graphene 

loading as illustrated in Figure 6.10 and Table 6.3, which is in agreement with the results obtained from the 

gravimetric method. This enhancement in corrosion mitigation properties of E/G coatings can again be 

attributed to the barrier property of graphene, which prolong the pathway that corrosive agents follow to 

reach the metal substrate.  

6.3.6 Thermal behavior and UV degradation 

The incorporation of graphene in polymeric matrix has influenced the thermal stability of the resin. This 

can be observed as an upward shift in the glass transition temperature (Tg) as depicted in Figure 6.11. The 

increase in Tg has been reported for other graphene polymer nanocomposites and is attributed to the strong 

interface between the filler and polymer matrix, which restricts the polymer chains’ mobility [84]. 

Moreover, incorporation of graphene increases the thermal stability of the epoxy composite as observed by 

the increase in onset  degradation temperature (Tonset), which is the  temperature where 5 wt.% is observed 

as depicted in Figure 6.12, inset has increased from 352.8 °C for the neat epoxy to 358.5 °C and 358.8 ° C 

for E/G0.1 and E/G0.5, respectively, confirming the strong interactions between graphene and epoxy polymer 

possibility through the amine groups on the polymer chains and the epoxy/hydroxyl groups on the reduced 

graphene surface. 



 

 75 

 

Figure 6.11: DSC thermograms of Epoxy and E/G coatings. 

 

Figure 6.12:  TGA thermograms of Epoxy and E/G coatings.  

Epoxy polymers are known to degrade when exposed to UV radiation [85]. Therefore, the surface 

morphology of the prepared coatings were observed after 30 days of exposure to UV and condensation 
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cycles using SEM and results are depicted in Figure 6.13. Sever damages can be observed on the epoxy 

surface, where the damages were manifested in forms of micro-cracks and pits as illustrated in Figure 

6.13.a. Surface cracking was also observed on E/G0.1 coating as depicted in Figure 6.13.b; however, no 

evidence of pitting was observed. The capacity of graphene in enhancing the durability of the epoxy coating 

is well illustrated in Figure 6.13.c, where increasing the load of graphene to 0.5%, E/G0.5, leads to prevention 

of pitting as well as significant reduction in the number of observed micro-cracks due to the enhanced UV 

stability induced by graphene [86].  

 

                           (a)                                                    (b)                                                    (c) 

Figure 6.13: SEM images of post-UV degradation tests of (a) epoxy (b) E/G0.1 and (c) E/G0.5 coated 

SS304 substrates after 30 days of exposure to UV and condensation cycles. 

6.3.7 Flexibility and impact resistance 

Mechanical properties such as elasticity and impact resistance in addition to adhesion and corrosion 

mitigation are important characteristics of polymer coatings. The bending and the impact resistance tests 

were conducted on epoxy and E/G composites coatings in order to evaluate the impact of graphene on the 

flexibility and impact resistance. Figure 6.14 shows the bending and impact resistance results for different 

coatings, where the main bending diameters and the elevations at which the coating fails for five times are 

reported. These results illustrate that incorporation of graphene reduces the flexibility of the epoxy coating 
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and the degree of reduction increases with graphene loading, which is attributed to the increase in stiffness. 

In contrast, the addition of graphene enhances the impact resistance of epoxy and here too, the degree of 

enhancement is proportional to the graphene loading. The observed effects of graphene on the bending and 

the impact resistance are attributed to the increase in stiffness and toughness of the epoxy composite with 

graphene loading, which was also reported [82], [87]–[89], which enhances the resistance to sudden 

deformation and reduces the elasticity of the epoxy coating.  

 

Figure 6.14: Bending and impact resistance test results for epoxy, E/G0.1 and E/G0.5 coatings on 

SS304. 

6.4 Conclusion 

Epoxy/graphene composites were prepared using situ prepolymerization approach, spin coated and 

thermally cured on SS304 substrates. We demonstrated that the corrosion protection ability of the epoxy is 

significantly enhanced by incorporation of graphene due to the barrier property of graphene, which shields 

the corrosive agents from reaching the SS304 substrate. Moreover, incorporation of graphene enhances the 
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mechanical properties and impact the thermal properties as well as the adhesion of the epoxy composite to 

the SS substrate. Graphene loading and the degree of dispersion have significant impact on the thermal, and 

mechanical properties as well as adhesion to the SS substrate, the corrosion protection characteristics and 

UV stability.  Indeed, it is interesting to observe that increasing graphene loading in the epoxy matrix 

beyond an optimum loading of 0.5 wt.% may attenuate the interface adhesion between coating and the 

SS304 substrate due to aggregation of graphene and reduction of the interface area.   
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Chapter 7 

Enhanced Advanced Electroactive Epoxy–Glass Flakes composite 

anticorrosive coatings on Cold-Rolled Steel 

Abstract 

Electroactive Epoxy-Glass Flakes composites (EE/GF) were prepared and evaluated as anticorrosion 

coating on Cold-Rolled Steel (CRS). EE/GF with different loadings of glass flakes were prepared via in-

situ polymerization. The prepolymer composites were brush coated on CRS substrates and thermally cured. 

Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were utilized to 

examine the dispersion of glass flakes in the electroactive epoxy matrix. The corrosion protection properties 

of the prepared coatings were evaluated using Electrochemical Impedance Spectroscopy (EIS) and Cyclic 

Voltammetry measurements. In addition to corrosion mitigation properties, the effects of the glass flakes 

loading on the impact resistance and UV stability of the coating are analyzed and discussed. Post interface 

adhesion and UV degradation morphology results were evaluated using SEM. 

7.1 Introduction 

One component polymeric (organic) coatings have long been used to protect substrates against versatile 

corrosive environments in academic and industrial fields [8]. There are two sides of protection, physically 

where the polymeric matrix acts as a barrier and chemically where an internal sacrificial electrode is formed, 

which give protection to the underlying substrate. Moreover, it has been proven that the incorporation of 

well-dispersed filler in the polymer matrix may effectively enhance the corrosion protection due to the 

increased tortuosity of diffusion pathway of corroding agents such as O2 and H2O molecules and destructive 

ions like Cl-, H+ and SO2- from the corrosive environment to the metallic substrate, in addition to having a 

high degree of polymer ordering, thermal stability, and enhanced mechanical properties compared with the 
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pristine polymers [90]. A filler (inorganic) could be for example, SiO2, TiO2, clay, graphene, glass flakes 

and carbon nanotubes. 

As polymers could be of either electrically conducting or non-conducting nature, conducting polymers 

such as polyaniline, poly(n-methylaniline) and polyphenylene oxide are more widely used in comparison 

to their counterparts, for their applicability in more advanced and versatile fields. Lately, the preparation of 

such polymers as well as the evaluation of their corrosion protection effect attracts an extensive research 

activity, for instance, polyaniline [91], poly(n-ethylaniline) [92], as an example of the conducting polymer-

filler composite, polyaniline/graphene [62], also, as an example of the non-conducting polymer-filler 

composite, polyetherimide/graphene [32]. 

Aniline oligomer-derivative electroactive polymers can also be utilized as anticorrosive coatings, by 

incorporating the redox catalytic (i.e., electroactivity) capability into the non-conducting polymers. For 

example, the preparation and electrochemical behavior of electroactive polyimide [93]–[97], electroactive 

polyamide [98]–[101], electroactive epoxy thermosets (EET) [101], super-hydrophobic electroactive epoxy 

(SEE) [102]. Also, some examples of aniline oligomer-derivative electroactive polymer-filler composite 

anticorrosive coatings are, electroactive epoxy/amino-SiO2, electroactive polyimide/Clay, electroactive 

polyimide/SiO2 and electroactive polyimide/TiO2 [103]–[106]. There are academic literatures that covered 

the topics of epoxy/clay composites as a polymer/filler anticorrosive coating, and other work on 

electroactive epoxy (EE) as pristine polymer anticorrosive coating. Nevertheless, to the best of our 

knowledge, there has not been any effort done on preparing and characterizing electroactive epoxy/glass 

flakes (EE/GF) composite as an anticorrosive coating. 

In this study, the preparation of EE/GF composite is presented, and the results of a series of 

electrochemical corrosion measurements in saline condition, UV degradation, and the adhesion to the metal 

substrate are analyzed. Tests are conducted on two EE/GF composite samples differing in the load of the 

glass flakes (10% GF, and 20% GF) and results are compared to a pristine epoxy coating. 
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7.2 Experimental 

7.2.1 Material 

Cold-Rolled Steel (CRS, McMASTER-CARR) substrates were polished, cleaned with ethanol and 

distilled water and dried with Kim-Tech paper before coating. Aniline (Sigma-Aldrich) was distilled prior 

to use. 1,4-phenylenediamine (Sigma Aldrich), trimethylolpropane tris[poly-(propylene glycol) amine 

terminated] ether (T-403, Sigma Aldrich), bisphenol A diglycidyl ether (BADGE, Sigma Aldrich), Glass 

flakes (GF, NSG) and N-Methyl-2-pyrrolidinone solvent (NMP, Sigma Aldrich) were used as received 

without further purification. All the reagents were reagent grade unless otherwise stated. 

 

7.2.2 Composites preparation  

A typical procedure was recently established by Wei et al. for the synthesis of the ACAT and accordingly, 

ACAT could be easily synthesized by oxidative coupling of 1,4-phenylenediamine and 2 equivalent aniline 

with ammonium persulfate as oxidant. 

The electroactive epoxy resin was prepared by reacting Amino –Capped Aniline Trimer (ACAT) with 

T-403 and DGEBA in the presence of GF in suitable amount of  NMP solvent at an epoxy equivalent weight 

of 0.42:0.43:1 (molar ratio of terminal amino with respect to epoxy groups is 1:1) for 30 min. under 

magnetically stirring at room temperature. The sample was then homogenized (125, Fisher Scientific) for 

20 min. and spread on a cleaned CRS substrate. NMP solvent was extracted at 50 °C for 6 hrs. before 

thermally curing the coating at 120 °C for 2 hrs. and 140 °C for 0.5 hr. under vacuum. EE/GF preparation 

procedure is schematically presented in Figure 7.1, where 98 mg and 220 mg of GF were used to prepared 

10 wt.% (EE/GF10) and 20 wt.% (EE/GF20)  EE/GF composites protective coatings, respectively. 
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Figure 7.1: Scheme for the synthesis of electroactive epoxy/Glass Flake (EE/GF) composite coating. 

7.2.3 Composites Characterization 

The dispersion of the glass flakes in the electroactive epoxy matrix was investigated using transmission 

electron microscopy (TEM) (Philips CM-10 TEM) and scanning electron microscope (SEM) (Zeiss LEO 

1550). SEM samples were placed on carbon tape attached to the SEM holder and samples were coated with 

gold via sputtering for 120 sec. Samples for the TEM study were prepared by scraping the EE/GF composite 

coatings with a sharp knife/blade then collected and dispersed in methanol for 5 min. The sample was then 

fished using TEM copper grid and allowed to dry under vacuum at room temperature. FTIR spectrometer 

(Tensor 27, Bruker) was used to acquire the FTIR spectra of pristine electroactive epoxy and EE/GF 
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composites and XRD diffraction patterns were recorded in the range of 2 = 3° to 90° at 0.24° /min 

scan rate and 0.02° step size (MiniFlex 600, Rigaku). 

7.2.4 Adhesion 

The interface adhesion between the EE/GF composite coating and CRS metallic substrate was assessed 

according to the Standard Test Methods for Measuring Adhesion (ASTM-D3359). A standard blade (11-

teeth with teeth spacing of 1 mm) was used to make lattice pattern cut in the film and a pressure-sensitive 

tape kit (Paul N. Gardner Company Inc.) was applied over cuts made. Post-adhesion tests results were 

captured using scanning electron microscope (SEM) (Zeiss LEO 1550). 

7.2.5 Electrochemical measurements  

Electrochemical measurements were conducted at room temperature in a double-jacketed 1 L corrosion 

cell covered with a drilled Teflon plate to allow electrodes immersion. A three electrode configuration was 

used to conduct the measurements, where a Silver/Silver Chloride (Ag/AgCl) electrode was used as the 

reference electrode (RE), two graphite rods as the auxiliary electrode (AE) and a 1 cm2 circular piece of the 

sample as the working electrode (WE). The WE was washed with acetone and distilled water, dried and 

then installed in the sample holder before conducting the tests. The 3.5 wt.% NaCl solution was used as the 

electrolyte. EC-Lab software (Bio-Logic) and VSP-300 workstation (Uniscan instruments Ltd.) were used 

to conduct all electrochemical measurements, where each measurement was repeated three times in order 

to confirm the reproducibility of the collected raw data.  

The potential of the WE was allowed to stabilize for 30 min. to 1 hr, before conducting electrochemical 

measurements. The electrochemical impedance spectroscopy (EIS) measurements were conducted at 

frequency range from 100 kHz to 100 mHz to generate Bode and Nyquist plots. Furthermore, an equivalent 

circuit was used to fit the raw impedance data and EC-Lab software was used to evaluate the different 

components of the equivalent circuits. At equilibrium, the potential of the working electrode was recorded 

as the open circuit potential (OCP) or the corrosion potential (Ecorr). The potentiodynamic measurements 
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were conducted by scanning the potential of the WE from -500 mV to 500 mV at a rate of 20 mV/min to 

produce the Tafel plots. Tafel plots were used to extract the corrosion current (Icorr) using EC-Lab software 

by extrapolating the linear portion of the anodic and the cathodic curves. 

7.2.6 UV stability 

The Resistance of the electroactive epoxy and EE/GF coatings to UV degradation was assessed using an 

accelerated weathering tester (QUV, Q-LAB) according to the Standard Practice for Fluorescent UV-

Condensation Exposures of Paint and Related Coatings (ASTM-D4587). Testing specimens were 

continuously exposed to repeated UV cycle at 60 ± 2.5 °C for 8 hrs, followed by a condensation cycle at 

50 ± 2.5 °C for 4 hrs. for 30 days before evaluating surface morphology using SEM. 

7.2.7 Impact resistance 

Impact resistance was performed to assess the resistance of the prepared coatings to rapid deformation 

by a falling weight. The test was conducted using a universal impact tester (Paul N. Gardner Company Inc.) 

with combined 0.5-inch ball and 2-lb weight indenter according to the Standard Test Method for Resistance 

of Organic Coatings to the Effects of Rapid Deformation (ASTM-D2794). The combined weight and 

indenter were raised 1 inch in the testing tube and released to drop on the coated substrate and the falling 

weight test was repeated with 1 inch increments in height until a crack in the coating was observed. The 

height at which the coating cracks was recorded, and the test was repeated at three configurations: slightly 

above, slightly below and at the recorded height, five times each. The elevation at which the coating cracks 

in all five trials was reported as the “impact resistance limit” of the coating to rapid deformation. 

7.3 Results 

7.3.1 Characterization 

Dispersion of GF in the EE was examined using TEM as shown in Figure 7.2. TEM images clearly 

illustrate the variation in the degree of dispersion with the load of GF.  Images of thick stacks of GF were 
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captured in the EE/GF20 composite, while thinner and more dispersed GF where observed in the EE/GF10 

composite. Figure 7.3 depicts cross-sectional SEM images of EE/GF composites, where wide dispersion of 

GF were observed in EE/GF10 and EE/GF20.  

 

Figure 7.2: TEM images of dispersion of GF in (a) EE/GF20 and (b) EE/GF10 composites. 

 

Figure 7.3: SEM images of dispersion of GF in (a) EE/GF20 and (b) EE/GF10 composites. 

FTIR and X-ray diffraction (XRD) techniques were utilized to characterize EE and EE/GF composites. 

FTIR spectra confirm the completeness of the epoxide-ring opening curing process, where characteristic 

peaks such as the peaks at 3380 cm-1 (-OH stretching) were observed. Furthermore, no clear dissimilar 
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peaks were observed in the spectra of EE and EE/GF composites, which terminate the probability of 

chemical linkage between GF and EE function groups. XRD patterns display broadly peak observed at 2θ 

value between 10 and 30° and this broadly amorphous peak is ascribed to the homogeneously amorphous 

of EE. Furthermore, the intensity of XRD patterns for EE and EE/GF composites indicates that 

incorporation of GF in the polymer matrix retains the degree of crystallinity (please refer to supporting 

information for FTIR spectra and XRD patterns). 

7.3.2 Adhesion 

The corrosion process can be excelled by the accumulation of the various corrosive agents at the interface 

between the coating and the metal substrate. Therefore, a substantial adhesion between the coating and the 

substrate is always a desire. Here, the interface adhesion is evaluated according to the ASTM D3359 

standard using the tape adhesion kit. Figure 7.4 depicts the post adhesion test results on EE and EE/GF 

coatings. The figure represents the noble interface adhesion between the prepared coatings and the 

substrates, where no peelings from the protective coatings were observed. The coatings received 5B (0% 

peeling) rating according to the ASTM standard. This confirms the robust interface adhesion of the 

protective EE and EE/GF coatings. 

 

Figure 7.4: SEM images of post-adhesion tests of EE and EE/GF coated CRS substrates. 

7.3.3 Impedance and cyclic voltammetry 

Impedance is a complex resistance that may results from passing an alternative current through a circuit. 

In this study, the impedance behaviors of the bare and coated CRS substrates were investigated. Moreover, 
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equivalent circuits, which are depicted in Figure 7.5, were used to model the impedance behavior of the 

bare and coated CRS substrates. In these circuits, CPE is a constant phase elements and W is the Warburg 

impedance, while Rs, Rp and Rch represent the electrolyte, polarization and charge transfer resistances, 

respectively. 

 

Figure 7.5: Equivalent circuits utilized to model impedance behavior of (a) Bare and EE coated 

CRS (b) EE/GF coated CRS substrates. 

Figure 7.6 depicts the Nyquist plots for bare and coated substrates, where the plots illustrate that the 

incorporation of GF in the polymeric matrix influenced the single step impedance behavior of bare and EE 

coated substrates and resulted in the appearance of the Warburg behavior. The fitting data obtained from 

the equivalent circuits fit well to the raw impedance data and these fittings were used to evaluate the various 

elements in the equivalent circuits as reported in Table 7.1. The variations in the magnitudes of these 

elements may be used to evaluate the corrosion mitigation properties of EE and EE/GF protective coatings. 

Indeed, an increase in the charge transfer resistance reflects an enhancement in corrosion inhibition. The 

charge transfer resistance obtained from the fittings are 432.5, 4.09 × 105, 2.71 × 106 and 4.08 × 106 Ω.cm2 

for bare, EE, EE/GF10 and EE/GF20 coated CRS, respectively.    
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Figure 7.6: Nyquist plots for Bare, EE and EE/GF coated CRS substrates. 

Table 7.1: Electrochemical corrosion parameters obtained from the equivalent circuit for EIS 

measurements for bare, EE, EE/GF10 and EE/GF20 coated CRS substrates in a 3.5 wt.% NaCl 

solution. 

 

Sample 

RS 

Ω.cm2 

CPE1 

F 

n1 RP 

Ω.cm2 

CPE2 

F 

n2 Rch 

Ω.cm2 

W 

Ω-1S-0.5cm-2 

CRS 13.8 4.2x10-4 0.79 - - - 432.5 - 

EE 13.2 1.5x10-10 0.98 - - - 4.09x105 - 

EE/GF10 13.2 3.06x10-10 0.96 1.4x106 4.4x10-8 0.66 2.71x106 7.51x104 

EE/GF20 13.1 2.9x10-10 0.96 4.02x106 6.7x10-8 0.61 4.08x106 8.09x105 
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Bode plots may also be utilized to illustrate the corrosion protection ability of coatings. Figure 7.7 depicts 

the Bode plots, which represent changes in impedance with frequency for bare and coated substrates. The 

Zreal values recorded at the lowest recorded frequency may represent the corrosion resistance properties. 

From Figure 7.7.a, log Zreal for bare, EE, EE/GF10 and EE/GF20 coated substrates at the lowest frequency 

are 2.6, 5.7, 6.6 and 6.9 ohm.cm2, respectively. 

 

Figure 7.7: Bode and phase plots for (a) bare, (b) EE, (c) EE/GF10 and (d) EE/GF20 coated CRS. 

Tafel polarization was also utilized to evaluate the electrochemical behavior of the bare and coated CRS 

substrate. Figure 7.8 depicts the Tafel plots for bare, EE, EE/GF10 and EE/GF20 coted substrates. These 

plots were used to extract valuable corrosion parameters such as corrosion potential (Ecorr) and corrosion 

current (Icorr). The corrosion current was recorded as the intersection between the extrapolation of the linear 
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portions of the anodic and the cathodic curves. All extracted corrosion parameters are reported in Table 7.2, 

where a positive shift was observed in the corrosion potential after coating the CRS substrate with EE and 

a further shift was observed after incorporating the GF in the EE matrix. Furthermore, coating the CRS 

substrate with EE and the incorporation of GF attenuated the corrosion currents and consequently the 

corrosion rates, which were calculated using Eq. (7.1). Furthermore, the polarization resistance (Rp) was 

calculated using Eq. (7.2) and incorporating and increasing the load of GF have significantly enhanced Rp 

as reported in Table 7.2. 

 

Figure 7.8: Tafel plots for bare, EE, EE/GF10 and EE/GF20 coated CRS. 
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Table 7.2: Electrochemical corrosion parameters obtained from potentiodynamic measurements 

for bare, EE, EE/GF10 and EE/GF20 coated CRS substrates in a 3.5 wt.% NaCl solution. 

 

 

                                                 

                                                

 

 

 

 

Rcorr=(0.13×Icorr×EW)/(A×ρ)      (7.1) 

Where EW is the equivalent weight,  is the density and A is the surface area. 

                                                     Rp=(ba×bc)/(2.303×(ba+bc)×Icorr)     (7.2) 

The reported results indicate that coating CRS with EE may slow the deterioration rate of CRS and this 

rate can be further attenuated by the incorporation of GF. The protection efficiency (PEF) is another 

parameter that can be calculated using Eq. (7.3) to reflect the degree of corrosion mitigation a protective 

coating may deliver. The protection efficiencies for EE and EE/GF coatings were computed and reported 

in Table 7.2, where the PEF magnitudes confirm that an enhancement in corrosion mitigation can be 

achieved by coating the substrate with EE and this enhancement can be further excelled by incorporating 

GF in the polymeric matrix. 

                                                   PEF [%] = [1-Icorr/I°
corr] × 100                                                             (7.3) 

Where, I⁰
corr represents the corrosion current of the bare CRS substrate.  

Sample 

Ecorr 

mV vs 

Ag/AgCl 

Icorr 

µA.c

m-2 

ba bc RP 

Ω.cm2
 

Rcorr  

MPY 

PEF 

% 

CRS -706 2.92 68.6 84.8 5.6 1.36 - 

EE -545.8 1.07 83.7 91.0 17.7 0.5 63.4 

EE/GF10 -455.9 0.1 129.9 126.4 278.1 0.046 96.6 

EE/GF20 -329.5 0.015 206.6 210.1 3015.4 0.007 99.6 
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Reported results from both Tafel polarization and impedance spectroscopy measurements revealed that 

EE might enhance the corrosion mitigation on CRS substrate. Furthermore, incorporation of GF may further 

excel this corrosion inhibition property. 

7.3.4 UV stability 

Resistance of a protective coating to UV degradation is a crucial property that need to be assessed in 

addition to adhesion and corrosion mitigation in order to evaluate the durability of the coating. EE and 

EE/GF coatings were exposed to continuously alternating UV, condensation cycles for 30 days before the 

surface morphology of the coatings were observed, and evaluated using SEM. Figure 7.9 depicts post UV 

degradation test results for EE and EE/GF coatings. From the figure, sever damages were observed on the 

EE coating surface and the damages were manifested in micro-cracks. Surface cracking was also captured 

on EE/GF10 coating surface; however, it can be observed that the incorporation of GF attenuated the severity 

of cracking. Results illustrated in Figure 7.9 illustrate the capacity of GF in improving the durability of the 

EE coating, where no surface cracking were observed as the load of GF increases to 20 wt.%.  

 

Figure 7.9: SEM images of post UV degradation test on EE, EE/GF10 and EE/GF20 coatings. 

7.3.5 Impact resistance 

Mechanical properties such as impact resistance is an important characterization of protective coatings 

in addition to interface adhesion and corrosion protection. Resistance to sudden deformation test was 

conducted on the prepared EE and EE/GF coatings in order to evaluate the impact of GF on the impact 

resistance property. Figure 7.10 depicts the impact resistance results for EE and EE/GF coatings and reports 

the elevations at which the coating deforms for five times. The reported results illustrate that the 
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incorporation of GF enhances the impact resistance property of EE and the degree of enhancement is 

proportional to the load of GF.  

 

 

Figure 7.10: Elevation of falling weight at which EE, EE/GF10 and EE/GF20 coatings deform. 

7.4 Conclusion 

In this study, Electroactive Epoxy/ Glass Flake composite was synthesized using in situ polymerization 

and thermal curing and the prepared coatings were characterized using FTIR and XRD techniques. The 

dispersion of the filler was captured using SEM and TEM. The corrosion protection properties of the 

coatings were evaluated using Tafel polarization and EIS. Moreover, the interface adhesion between the 

metal substrate and the EE and EE/GF coating were evaluated as per the ASTM standard D3359. 

Furthermore, the durability of the prepared protective coatings were evaluated for UV degradation and 

impact resistances. It was reported that the incorporation of GF in the polymeric matrix might excel the 

corrosion protection in addition to UV stability and impact resistance properties.  
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Chapter 8 

Role of surface functionalization on corrosion resistance and thermal 

stability of Epoxy/Glass Flake coating on Cold Rolled Steel 

Abstract 

Epoxy/Functional Glass flake (E/FGF) composites with different loadings of FGF were synthesized 

through in situ polymerization and examined as protective coatings on Cold Rolled Steel (CRS) substrates 

in a Chloride rich environment. The E/FGF composites were analyzed with X-ray diffraction (XRD) and 

Fourier Transform Infrared (FTIR). The influences of the functionalization of Glass flake (GF) on the 

dispersion of the GF/FGF in the resin was examined using Transmission Electron Microscopy (TEM), while 

Scanning Electron Microscopy (SEM) technique was utilized to evaluate the interface adhesion . The 

corrosion resistance properties of the coatings were examined using various electrochemical techniques 

such as Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) measurements and 

the long term protection efficiencies of the coatings were confirmed by a 90 days gravimetric study in 3.5 

wt.% NaCl solution. In addition to corrosion protection properties, thermal stabilities of the coatings were 

assessed using Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) 

techniques. The study demonstrates the surface modification of GF by attaching a functional Silane 

coupling agent with grafted amino group plays a critical role in the corrosion protection and thermal stability 

of the E/FGF composites coatings as revealed by substantial enhancements in corrosion resistance as well 

as thermal stability properties of E/GF composites can be achieved by surface functionalization of GF.
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8.1 Introduction 

Corrosion is a natural phenomenon that takes place in various environments causing metal 

components to fail at different rates based on the metal composition and environmental factors such as 

temperature, humidity and salinity. The lack of mitigating of such electrochemical interactions between 

the metal and the surroundings might raise serious threats to both economy and industry. Therefore, a 

growing number of research studies are dedicated to investigate the corrosion process in various 

mediums and to examine possible mitigation options. Indeed, total elimination of the corrosion process 

may not be possible especially in particular environments such as a Chloride rich mediums. Therefore, 

the wide utilization to metals and in particular cold rolled steel in various field including construction, 

pipeline and marine equipment, motivates researchers to investigate various corrosion protection 

techniques such as Anodic or Cathodic protection, the use of corrosion inhibitors and protective 

coatings [2], [4], [5] in order to extend the life span of the metal in different environments. In particular, 

the easiness of application, low cost and the remarkable corrosion protection efficiency of protective 

coatings initiates further investigation and utilization of the coating techniques for corrosion protection 

purposes. A growing number of research have been devoted to investigate and to further develop the 

coating techniques including the utilization of nanocomposites, hydrophobic and hybrid materials [6], 

[8], [10], [12].   

There are different forms of corrosion; however, in a Chloride rich environment a metal substrate 

will be more susceptible to pitting corrosion. In pitting corrosion, localize active areas of the metals 

take part in a galvanic corrosion process and release metal ions to the surroundings resulting in localized 

inclusions or breakdown that might be difficult to detect. In a Chloride rich environment, the rate of the 

localized dissolution and penetration of the metal might be accelerated due to the presence of corrosion 

agents such as Oxygen, moisture and Chloride. In such form of corrosion, the level of penetration may 

not be detected until a severe damage has occurred and possibly leading to catastrophic failure. 
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Therefore, pitting corrosion can be considered insidious and unlike other forms of corrosion such as 

uniform corrosion, pitting corrosion is very difficult not only to detect or predict, but also to evaluate 

and mitigate.  

Polymer composites are perfect examples of corrosion protection coatings that have already been 

utilized in various fields in order to extend the life span of metals. However, the lack of some essential 

property such as interface adhesion with metal substrates foils the use of some polymer composites 

based coatings for corrosion protection purposes [57], [58]. Epoxy is an example of polymers that have 

been widely utilized and investigated as corrosion protective coating on various metals substrates. 

Moreover, studies have shown that the remarkable corrosion mitigation property of epoxy can be 

further enhanced by the incorporation of a filler in the polymeric matrix [32], [34], [64], [79]. In 

particular, the advanced barrier properties of Glass flakes encourage researchers to investigate and 

develop corrosion resistance coatings with advances protection properties based on composites with 

glass flakes [45]–[48], [107]. In addition to corrosion protection, some studies have focused on the 

utilization of Glass flake to enhance various properties such as thermal and viscoelastic properties [44]. 

However, the prospect of further enhancing the corrosion mitigation performance of Glass flake 

composites by surface treatment and functionalization of Glass flake, to the better of our knowledge, 

has not been explored in the literature, which inspires the current study. 

In this study, composites of epoxy resin with Glass flakes as filler were developed and evaluated as 

corrosion protective coating for cold rolled steel in a Chloride rich environment. The corrosion 

protection property of the prepared coating is examined in 3.5 wt.% NaCl solution by conducting 

electrochemical measurements as well as gravimetric analysis. Furthermore, the interface adhesion 

between the prepared coating and the Cold rolled steel metal substrate is evaluated according to ASTM 

standard. Besides corrosion resistance property, the study investigates the influences of the 
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incorporation of Glass flake in the thermal stability of the prepared protective coating. In addition to 

the synthesis and the evaluation of Epoxy/Glass flake composites as corrosion protective coatings, 

facile surface modification procedures have been developed to functionalize the surface of Glass flake 

and the role of the attached functional groups on the corrosion protection efficiency and the thermal 

stability properties of the Epoxy/Glass flake composites were analyzed.    

8.2 Experimental  

8.2.1 Materials 

25 m-thick Cold Rolled Steel (CRS) sheet (McMaster-Carr) was used as the substrate. It were 

polished, washed with acetone and DDI water and cleaned with KIMTECH wipes before coating.  

Bisphenol A diglycidyl ether (BADGE, sigma Aldrich) and Poly(propylene glycol) bis(2-aminopropyl 

ether) (B230 ,Sigma Aldrich) were the Epoxy resin and hardener. (3-Aminopropyl) triethoxysilane 

(3AS, sigma Aldrich) was utilized to modify the surface functionality of GF, GF were supplied by NSG 

Group as micro-pigment with average thickness of 1-3 m.  

8.2.2 Functionalization of GF 

To prepare the FGF, the desired amount of GF is added to 10 ml of 1M Ammonium hydroxide 

solution. The solution was stirred in ice bath at 5 ᵒC for 30 min then 3 ml of 3AS was added slowly 

under continued stirring for another 30 min at 5° C followed by 6 hrs stirring  at room temperature. 

FGF were collected by vacuum filtration and the collected particles were washed with 40 ml ethanol to 

remove excess 3AS before the particles were finally washed with double distilled water until neutral 

pH was observed. 
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8.2.3 Composites preparation 

E/GF and E/FGF composites were prepared by in situ polymerization approach by dispersing the 

desired amount of the filler in 1.5 g BADGE under stirring for 1 hr,  followed by sonication (add bath 

brand and watt) for an additional hour. 0.5 g of B230 was then added to the Epoxy/filler mixture and 

the mixture was stirred for 30 min and homogenized (125, Fisher Scientific) for another 30 min at room 

temperature. Composites were prepared with various filler loading using 225 mg, 500 mg and 860 mg 

of FGF to prepare about 2 g of E/FGF10, E/FGF20 and E/FGF30, respectively. For comparison purpose, 

similar synthesis procedures and the same loadings of GF were utilized to prepared E/GF10, E/GF20 and 

E/GF30 composites. 

The composites were spin coated (SC 100, Smart Coater) on clean CRS substrates at 500 RPM for 2 

min and cured at 50 ᵒC for 4 hr to prepare CRS coated substrates with 30 ±2 µm thick coatings. The 

preparation procedures are schematically depicted in Figure 8.1.  
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Figure 8.1: Schematic description of the preparation of E/GF and E/FGF composites using in 

situ polymerization. 
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8.3 Characterization 

FTIR (Tensor 27, Bruker) was used to record the IR spectra Epoxy, E/GF and E/FGF composites in 

the range of 400 to 4000. XRD (Rigaku) was used to record diffraction patterns of Epoxy, E/GF and 

E/FGF composites in the range of 2 = 3° to 90° at 0.24° /min scan rate and 0.02° step size. 

The filler dispersion in the polymeric matrix was examined using TEM (Philips CM-10 TEM). To 

prepare the TEM samples, the composites coating were scrapped with a sharp knife and the collected 

samples were dispersed in methanol and sonicated for 5 min. the samples were fished on TEM copper 

grids and allowed to dry over night at room temperature.  

Adhesion of the composites to CRS substrates were examined and evaluated according to ASTM-

D3359 standard using  Adhesion tape kit (PA-2000, Paul N. Gardner Company Inc.) with 11 teeth and 

1 mm teeth spacing blade and the post adhesion surface morphology were captured using SEM (Zeiss 

LEO 1550). Samples for SEM imaging were attached to SEM holder using carbon tape and gold coated 

via sputtering for 120 sec. Further corrosion testing via weight loss and electrochemical measurements 

as well thermal stability were only conducted on composites coatings that display novel interface 

adhesion with the metal substrates.  

Gravimetric analysis were conducted in order to confirm the long term protection performances of 

the prepared coatings. The weight loss measurements were carried out in a 500 ml of 3.5 wt.% NaCl 

solution at 25ᵒC ± 2. Coated and uncoated CRS substrates were cleaned with double distilled water, 

dried with KIMTECH paper, weighted and placed in a Teflon holder with 1 cm2 exposed area before 

the samples were immersed separately in 3.5 wt.% NaCl solutions for 90 days. After exposing the 

coated and uncoated samples for the Chloride rich environment for 90 days, samples were removed 

from the Teflon holders, washed with double distilled water and corrosion products were stripped using 
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a fine brush. Finally, the samples were immersed in double distilled water sonication bath for 10 min 

to remove any corrosion residues before the samples were dried and weighted. Gravimetric analysis 

were carried out in triplicate and the mean weight loss in reported in addition to the standard deviation.     

Electrochemical properties of the prepared coated/uncoated substrates were evaluated using a 

temperature controlled 1 L corrosion cell at 25 ᵒC, where 3.5 wt% NaCl was used as the electrolyte, 

graphite rods as the counter electrodes and Silver/Silver Chloride (Ag/AgCl) as the reference electrode. 

Testing sample, which will be referred to as the working electrode was washed with acetone and double 

distilled water and placed in a Teflon sample holder with 1 cm2 exposed surface area. Electrochemical 

measurements were conducted using VSP-300 workstation (Uniscan instruments Ltd.) and EC-Lab 

software (Bio-Logic). The open circuit potential was allowed to stabilize for 30 min before conduction 

electrochemical measurements. Impedance study was performed at frequency range from 200 kHz to 

100 mHz and the measurements were repeated three times in order to examine the repeatability of the 

recorded impedance data. Furthermore, an equivalent circuit with various components was utilized to 

fit the raw impedance data and the values of the various components were used to evaluate the 

impedance behavior of the testing samples. Following the non-destructive impedance test, CV 

measurements were carried out by scanning the potential of the testing samples from -500 mV to 500 

mV around the open circuit potential at 20 mV/min.     

Thermal stabilities of the prepared composites were evaluated by thermal gravimetric analysis (TGA) 

(TA instruments, Q500), where the thermal degradation of the prepared composites was observed over 

temperature range 30-800 ᵒC at 10 ᵒC/min heating rate. In addition, the shift in glass transition 

temperature (Tg) of the prepared composites with the load and surface modification of GF was 

examined with Differential Scanning Calorimetry (DSC) (TA instruments, Q2000) over temperature 

range from 30-100 ᵒC at 10 ᵒC/min. 
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8.4 Results and Discussion 

8.4.1 Characterization of GF and FGF 

The prepared functionalized filler and composites were characterized using FTIR and XRD. The 

FTIR spectra and the XRD diffraction patterns of GF and FGF are depicted in Figures 8.2 and 8.3. 

FTIR spectra of GF and FGF depicted in Figure 8.2 display typical absorption bands of Silica [20], 

which is the main component of composition of GF. These absorption bands include peaks at 452 and 

1048 cm-1 (Si-O), peak at 794 cm-1 (Si-O-Si) and the moisture (H2O) peak at 1430 cm-1. After 

functionalization of GF with the silane coupling agents, new absorption bands were observed in the 

FTIR spectra of FGF as depicted in Figure 8.2. For instance, the appearance of the absorption peak at 

1457 cm-1 corresponds to NH2 group attached to the 3AS coupling agent [108]. In addition, the 

appearance of broad peak at 1100-1126 cm-1 corresponds to Si-O-C, which bridges the grafted NH2 

functional group to the GF [108]. Furthermore, the broadening of the absorption peaks at 1100-1126 

cm-1 can be attributed to various types of molecular vibrations of the Si-O-C (Rocking; Scissoring; 

Wagging; Twisting). 

The XRD patterns of GF and FGF are presented in Figure 8.3, where typical XRD patterns of Silica 

based materials [109] such as GF were observed, where a broad diffraction peaks around 2θ values 

from 15-40 were detected for both GF and FGF. The reported XRD patterns and in particular the 

similarity in the amplitude of the diffraction peaks for both GF and FGF illustrates that the surface 

treatment of GF by attaching the Saline coupling agent 3AS had no influences on the structure of GF.  
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Figure 8.2: FTIR spectra of GF and FGF. 
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Figure 8.3: XRD patterns of GF and FGF. 

8.4.2 Composites and coatings Characterization  

The FTIR spectra of epoxy, E/GF and E/FGF composites are shown in Figure 8.4, where various 

characteristic peaks were identified such as peaks at 1508 cm-1 and 1609 cm-1 (C–C skeletal stretching), 

915 cm-1 (epoxide ring) and the appearance of the (-OH stretching) peak at 3380 cm-1, which confirms 

the thorough curing of epoxy. In addition, no clear dissimilar absorption peaks were identified between 

epoxy, E/GF and E/FGF composites.  
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Figure 8.4: FTIR spectra of epoxy, E/GF and E/FGF composites. 

The XRD diffraction patterns of epoxy, E/GF and E/FGF are presented in Figure 8.5, where broad 

amorphous peak appears around 2θ of 10 to 30° for all the samples. This is ascribed to the 

homogeneously amorphous morphology of epoxy. Furthermore, the XRD patterns shown in Figure 8.5 

demonstrate that the degree of crystallinity of epoxy was not altered by the incorporation of GF/FGF.  
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Figure 8.5: XRD patterns of epoxy, E/GF and E/FGF composites. 

8.4.3 Adhesion Test  

The interface adhesion is a crucial property for protective coatings and therefore must be well 

examined before progressing with electrochemical evaluations. Indeed, defects in interface adhesion 

disqualify the coating from being utilized for protection purposes. The interface adhesion between the 

prepared protective E, E/GF and E/FGF composites coatings were assessed according to ASTM-D3359, 

however; post adhesion test for the epoxy coating is not presented for brevity. Figure 8.6, depicts the 

post adhesion results for E/GF10,20 and E/FGF10,20 coatings where no peelings were observed and the 

coatings received 5B rating (0% peeling) as per the ASTM standard.  
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 Figure 8.6: SEM images of post-adhesion tests of E/GF10,20 and E/FGF10,20 coated CRS 

substrates. 

Furthermore, it was interesting to the shortcoming of incorporating higher load of GF or FGF in the 

polymeric matrix. This is clearly evident in Figure 8.7, where both E/GF30 and E/FGF30 protective 

coatings lose interface adhesion with underneath CRS substrates and therefore, adhesion tests were not 

conducted on E/GF30 and E/FGF30. The poor interface adhesion between E/GF30 and E/FGF30 coatings 

and CRS substrates can be attributed to the accumulation (aggregation) of GF or FGF particles at the 

coating and metal substrates interfaces resulting in formation of void spaces at the interfaces as depicted 

in Figure 8.7.   
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Figure 8.7: SEM cross section view of the interface between (a) E/GF30, (b) E/FGF30 coatings 

and CRS substrates. 

8.4.4 Dispersion  

The dispersion of the GF/FGF particles in the polymeric matrix was captured with TEM and depicted 

in Figure 8.8. The role of the surface modification of the GF by attaching the Amino based functional 

group in the dispersion of the filler is clearly observed in the presented TEM images, where well 

dispersed FGF particles were detected in both E/FGF10 and E/FGF20 composites. Whereas, TEM images 

for E/GF10 and E/GF20 composites show accumulations of GF particles in the resin as depicted in the 

figure. The enhanced degree of dispersion after the functionalization of GF can be attributed to the 

improved interaction and compatibility between FGF and epoxy as the attached amino group to the 

FGF could crosslink with the epoxy group of the resin.    
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Figure 8.8: TEM images for GF and FGF dispersion in E/GF10, E/GF20, E/FGF10, and E/FGF20. 

8.4.5 Impedance measurements 

Impedance is very relevant characteristic for corrosion protection coatings that is widely utilized to 

evaluate the electrochemical activity on coated metal substrates. Impedance is a complex resistance 

generally observed when passing an alternating current (AC) through an electrical circuit composed of 

various elements such as insulators, resistors and capacitors. In corrosion studies, AC is fed through 

the corrosion cell over a range of frequency and the complex output is reported as the impedance of the 

bare or coated testing samples.  Furthermore, an equivalent circuit can be used to fit the raw impedance 

data and evaluate the magnitude of the various components of the circuit. The variation in the 

magnitudes of these components can be utilized to evaluate the corrosion protection performance of 

different protective coatings.  
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In this study, the impedance behaviours of bare and coated CRS substrates are examined to evaluate 

the corrosion resistance properties of the prepared coatings. The impedance behaviour was examined 

after allowing the potential of the test samples to stabilize for 30 min in 3.5 wt.% NaCl electrolyte 

solution at room temperature. The raw impedance data fitted to equivalent circuit with combination of 

components using the EC-Lab software and equation (8.1).  

𝑍 = 𝑍′ + 𝑗𝑍" = 𝑅𝑠
𝑅𝑐ℎ

1+(𝑅𝑐ℎ×𝐶×𝜔)2 + 𝑗
𝑅𝑐ℎ

2×𝐶×𝜔

1+(𝑅𝑐ℎ×𝐶×𝜔)2       (1) 

Where (ω) represents the frequency of the AC signal 

The circuit that provides the best fitting of the raw impedance data and equation (8.1) is presented in 

Figure 8.9. In this circuit, C represents a double layer capacitor, Rs represent the electrolyte solution 

resistance, and Rch represent the charge transfer resistance.   

 

Figure 8.9: Equivalent circuits used to model the electrochemical impedance data 

The raw and fitting impedance results are presented in the Nyquist plots shown in Figure 8.10. In 

Nyquist plot, an increase in the size of the semi-circle of raw impedance data generally represents an 

enhancement in the corrosion resistance. The results depicted in the Nyquist plots demonstrates the 

excellent corrosion protection property of the epoxy coating and the potential to significantly make this 

performance superior by incorporation of GF and FGF in the polymeric epoxy matrix. Furthermore, 

The Nyquist plots clearly illustrate the importance of functionalizing the GF as higher enhancement in 
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the corrosion resistance was observed for E/FGF compared to E/GF coatings with exact loadings of 

filler. In addition to the qualitative analysis, fitting the data computed from the equivalent circuit 

depicted in Figure 8.9 and equation (8.1) can be used to provide quantitative analysis by examining the 

variation in the magnitudes of the various elements of the equivalent circuit and these results can be 

used to evaluate the variation in the corrosion protection properties of the protective coatings. In 

particular, an increase in the charge transfer resistance indicates an enhancement in the corrosion 

resistance of a coating. Table 8.1 provides the magnitudes of the various elements of the equivalent 

circuit for all coatings. Here too, the increase in Rch illustrates the corrosion protection properties of 

epoxy and the possibility of enhancing this protection property by the incorporation of GF.  Nerveless, 

such an enhancement in the corrosion resistance property can be further improved by surface 

modification of GF.     
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Figure 8.10: Nyquist plots for bare CRS, Epoxy, E/GF10, E/GF20, E/FGF10 and E/FGF20 coated 

CRS substrates. 

Table 8.1: The electrochemical corrosion parameters obtained from equivalent circuit for EIS 

measurements for bare CRS, Epoxy, E/GF10, E/GF20, E/FGF10 and E/FGF20 coated CRS in a 3.5 

wt.% NaCl solution. 

Sample 

RS 

Ω.cm2 

C 

F 

Rch 

Ω.cm2 

Rch,ST

D Ω.cm2 

CRS 18.1 4..3x10-4 433.7 2 
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In addition to the qualitative and quantitative analysis of the Nyquist plots, the real part of the raw 

impedance data (Zreal) can be plotted versus the frequency in a Bode plot as depicted in Figure 8.11.a 

in order to examine the corrosion protection properties of the prepared coatings. An increase in the 

magnitudes of Zreal at the lowest recorded frequency represents an enhancement in the corrosion 

resistance of a coating and from the figure, Zreal values at the lowest frequency for bare CRS, epoxy, 

E/GF10, E/GF20, E/FGF10 and E/FGF20 coated CRS substrates are 2.62, 5.83, 6.02, 6.59, 6.36 and 6.90 

MΩ.cm2, respectively.      

Epoxy 18.3 6.9x10-11 6.70x105 20 

E/GF10 18.4 9.0x10-11 1.06x16 450 

E/FGF10 18.3 1.9x10-10 2.20x16 330 

E/GF20 18.1 6.2 x 10-11 3.58x16 210 

E/FGF20 18.2 9.5 x 10-11 7.60x16 180 
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Figure 8.11: (a) Bode and (b) phase plots for bare CRS, Epoxy, E/GF10, E/GF20, E/FGF10 and 

E/FGF20 coated CRS substrates. 

The reported impedance results illustrate possibility of protecting CRS substrates from corrosion in 

Chloride rich environment. Furthermore, the incorporation of GF in the resin may further enhance the 

corrosion protection property of epoxy. This enhancement in corrosion protection can be attributed to 

the barrier property of GF, which extend the pathways corrosion elements such as Oxygen and moisture 

travel to reach the underneath metal substrate. Moreover, the presented results demonstrate that the 

corrosion protection properties of E/GF coatings can be further excelled by attaching an Amino based 

functional group to the GF  functionalization of GF may deliver significant enhancement in corrosion 
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resistance properties. The observed gain of surface treatment of GF in corrosion resistances properties 

can be attributed to role of functional group in enhancing the compatibility and dispersion of the filler 

in the polymeric matrix, which further add to the tortuosity of pathways corrosion agents follow to 

reach coated substrates.  

8.4.6 Potentiodynamic measurements 

Cyclic voltammetry is another electrochemical technique that is widely used to study the 

electrochemical behavior of bare and coated metal substrates. A three electrodes configuration was 

used to study the electrochemical behavior of bare and coated CRS in a temperature controlled 3.5 wt.% 

NaCl at 25 ᵒC. After allowing the potential of the bare or coated CRS samples to stabilized for 30 mins, 

the observed potential of the sample was recorded as the open circuit potential and CV study was carried 

out by scanning the potential of the bare/coated CRS from -0.5 V to 0.5 V above the open circuit 

potential. The area where the electrochemical behavior of the testing sample shifts from anodic to 

cathodic behavior, which is known as the Tafel plot was reported as depicted in Figure 8.12. The 

reported results in Tafel plots can be used to extract significant parameters such as corrosion current 

(Icorr) and corrosion potential (Ecorr) that may allow assessing the corrosion protection properties of the 

prepared protective coatings. Furthermore, the extracted Icorr can be further utilized with equation (8.2), 

which is known as the Stern-Geary equation to compute the polarization resistances (Rp) of the coatings. 

In addition, the reported Icoor for bare and coated CRS substrates can be used to compute the corrosion 

protection efficiency of the coatings (PEF) using (8.3).  
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Figure 8.12: Tafel plots for bare CRS, Epoxy, E/GF10, E/GF20, E/FGF10 and E/FGF20 coated 

CRS substrates. 

                                                       𝑅𝑃 =
(𝑏𝑎𝑥𝑏𝑐)

2.303×(𝑏𝑎+𝑏𝑐)×𝐼𝑐𝑜𝑟𝑟
    (8.2) 

𝑃𝐸𝐹[%] = (1 − 𝐼𝑐𝑜𝑟𝑟/𝐼𝑐𝑜𝑟𝑟
° )𝑥100    (8.3) 

Where, ba/bc represent the slops of the linear portion of the anodic/cathodic sides of Tafel plots, 

respectively. In addition, I°
corr and Icorr are corrosion currents of bare and coated CRS, respectively.  
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The magnitudes of the computed parameters (Ecorr, Icorr, Rp and PEF), which are reported in Table 8.2 

may explain how the prepared coatings influence the corrosion behavior of the coated CRS substrates 

as well as the influences of the incorporation and the functionalization of GF. In general, a positive 

shift in Ecorr and drops in Icorr represent an enhancement in corrosion protection and these shifts in Ecorr 

and Icorr may deliver enhancements in Rp as well as PEF. 

Table 8.2: Electrochemical corrosion parameters obtained from cyclic voltammetry 

measurements for bare CRS, Epoxy, E/GF10, E/GF20, E/FGF10 and E/FGF20 coated CRS in a 3.5 

wt.% NaCl solution. 

 

Results reported in Figure 8.12 and Table 8.2 demonstrate the possibility of enhancing the life span 

of CRS substrates by coating and the prospect to prompt the corrosion protection property of coating 

Sample 

Ecorr 

mV vs Ag/AgCl 

Ecorr,STD 

V vs Ag/AgCl 

Icorr 

µA/cm2 

Icorr,STD 

µA/cm

2 

ba bc RP 

Ω.cm2
 

PEF 

% 

CRS -750 0.009 5.4 0.002 171.3 242.6 8.07 - 

Epoxy -537 2.5 0.55 0.001 293.4 396.5 133.3 89.8 

E/GF10 -456.5 30.8 0.3 0.02 256.1 358.2 216.4 94.4 

E/GF20 -366 28.5 0.121 0.01 309.9 302.6 549.4 97.7 

E/FGF10 -428 5.6 0.144 0.008 236.8 175.2 303.6 97.3 

E/FGF20 -260.4 6.2 0.072 0.005 295.3 291.2 12732.7 99.8 
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by incorporating a filler in the polymeric matrix such as GF. Furthermore, the reported results illustrate 

the advantage of increasing the load of the filler in the resin, which provide further corrosion protection 

to the coated metal substrates. Moreover, it was interesting to observe the substantial influences of 

functionalization of GF on the protection performance of the prepared coatings. Functionalizing the GF 

facilitates significant enhancement in the corrosion protection properties of the coatings without 

manipulating the load of GF, which may attenuate the interface adhesion between the coating and the 

CRS substrates as reported in the adhesion section. Here too, the enhancement in corrosion protection 

property after the incorporation of GF can be attributed to the barrier property of GF and the role of 

functionalization in improving the dispersion of GF in Epoxy can be accountable for the excelled 

corrosion resistances of E/FGF10 and E/FGF20 over E/GF10 and E/GF20. 

8.4.7 Long term corrosion protection 

Bare and coated CRS substrates were exposed with surface area of 1 cm2 to 3.5 wt.% NaCl solutions 

at 25° C for 90 days to evaluate the long term corrosion prevention properties of the prepared coatings. 

Weight loss measurements were used to compute the corrosion rate (Rcorr) as well as the protection 

efficiency (PEF) for each coating using equation (8.4) and (8.5).   

𝑅𝑐𝑜𝑟𝑟 =
𝑊0−𝑊

A𝑥𝑡
      (8.4) 

𝑃𝐸𝐹[%] = (1 −
𝑅𝑐𝑜𝑟𝑟

𝑅𝑐𝑜𝑟𝑟
° ) 𝑥100      (8.5) 

Where, A is the coated/uncoated exposed surface area (1 cm2), W0 and W are the weight of the 

sample (mg) before and after exposure period, respectively, t is immersion time (90 days) and Rcorr and 

Rº
corr represent the corrosion rate of the coated and bare CRS substrates, respectively. Furthermore, 
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triplicate measurements for each sample were used to calculate the average and standard deviation 

(Rcorr, STD) of Rcorr as reported in Table 8.3.  

Table 8.3: Weight loss measurements for bare CRS, Epoxy, E/GF10, E/GF20, E/FGF10 and 

E/FGF20 coated CRS in a 3.5 wt.% NaCl solution. 

Sample 

W0 

mg 

W 

mg 

Rcorr 

mg.cm-

2.d-1 

Rcorr,STD 

mg.cm-

2.d-1 

PEF 

% 

CRS 81 52 0.45 0.003 - 

Epoxy 115.1 112.3 0.3 0.006 93.1 

E/GF10 120.4 118.9 0.017 0.01 96.3 

E/GF20 121.2 120.6 0.006 0.02 98.5 

E/FGF10 115.3 114.4 0.01 0.007 97.8 

E/FGF20 120.1 119.9 0.002 0.004 99.5 

 

The weight loss analysis demonstrates that coating CRS with epoxy would prolong the life span of 

the metal substrate and the incorporation of GF would further enhance this corrosion protection 

property of epoxy. Furthermore, the results reported in Table 8.3 reveals that the corrosion resistance 

efficiency of E/GF composites could be further excelled by functionalizing the GF.  
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8.4.8 Thermal stability 

Thermal gravimetric analysis (TGA) was used to assess the thermal stability of the prepared E/GF 

and E/FGF composites in order to illustrate the role of surface functionalization of GF as well as the 

load of the GF/FGF on the thermal degradation. Figure 8.13, shows the thermograms for E/GF and 

E/FGF composites over temperature range 30-800 ᵒC. The TGA results clearly demonstrate the 

influences of the incorporation of GF on the nonoxidative degradation of the epoxy. The incorporation 

of GF and FGF and increasing their loading clearly enhances the thermal stability of the epoxy as 

demonstrated by the increase in the degradation temperature (Tonset), which is taken as the temperature 

where 5% of the materials is degraded. For example,  Tonset  of epoxy was 352.6 ᵒ C and has increased 

to 356.4ᵒ C for E/GF10 and to 357.2 ᵒ C for E/GF20.  Moreover, the TGA data depicted in Figure 8.13, 

evidently presents the positive influences of FGF on the thermal stability and Tonset of the prepared 

E/FGF, where at FGF leads to higher shift in the Tonset compared to that caused by GF of the same 

loading as the Tonset was increased to 358.5ᵒ C for E/FGF10 and to 360.6 ᵒC for E/FGF20 as reported in 

Table 8.4.  The positive impacts of the incorporation of GF in the thermal stability of the coating can 

be attributed to the enhanced interface interaction between the resin and the FGF. In addition to Tonset, 

the temperature at which the materials degrade by 50% (T50%) were also reported in Table 8.4 and it 

was interesting to observe that the incorporation of GF in Epoxy caused minor drop in T50%, while the 

functionalization of GF positively shifts T50%. These influences of GF/FGF in T50% can be attributed to 

excelled interactions between Epoxy FGF, while the poor interaction with GF causes some of the fluffy 

GF particles to get alienated from E/GF10 and E/GF20 composites.     
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Figure 8.13: TGA thermo-grams of Epoxy, E/GF10, E/GF20, E/FGF10 and E/FGF20 coatings. 

The impact of the incorporation of GF and FGF on the second order phase transition, glass transition 

(Tg),  for the epoxy was examined by DSC. The DSC thermograms for the epoxy and the composite 

samples shown in Figure 8.14 clearly demonstrate the impact of the incorporation of GF and the 

utilization of FGF as observed by an upward shift in the glass transition temperature. This upward shift 

in Tg is attributed to the restricted epoxy polymer chain’s mobility by the GF and the FGF. Moreover, 

the high Tg shift observed for the E/FGF composites in comparison to the E/FG composites is attributed 



 

 122 

to the to the stronger interface interaction and potential cross linking between the epoxy group in the 

resin and the amino group on the FGF as reported in Table 8.4. 

Table 8.4: Thermal analysis results for Epoxy, E/GF10, E/GF20, E/FGF10 and E/FGF20 

composites 

Sample 

Initial weight 

mg 

Tonset 

°C 

T50% 

°C 

Residue 

% 

Tg 

°C 

Epoxy 25.48 352.6 385.6 3.85 79.6 

E/GF10 30.14 356.4 383.5 6.76 81.3 

E/GF20 38.99 357.2 385.5 17.07 86.78 

E/FGF10 31.47 358.5 387.1 10.11 87.95 

E/FGF20 34.79 360.6 389.4 13.34 89.1 
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Figure 8.14: DSC thermo-grams of Epoxy, E/GF10, E/GF20, E/FGF10 and E/FGF20 coatings 

8.5 Conclusions  

Protective coating of Epoxy/Glass flake and Epoxy/Functional Glass flake composites were spin 

coated on CRS substrates and thermally cured and their corrosion protection of CRS in Na+ rich 

aqueous environment was analyzed gravimetrically as well as using impedance and electrochemical 

analysis. Our results clearly demonstrate incorporation of GF in Epoxy significantly enhance the 
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corrosion protection and the thermal stability properties of Epoxy and the level of such enhancements 

can be further excelled by increasing the load of GF up to 20%.  Furthermore, epoxy composite 

containing GF functionalization with aminosilane groups leads to much more significant enhancement 

in the corrosion protection and the thermal stability of the coating compared to the composites 

containing GF. The improvements in the corrosion protection and the thermal stability of E/FGF can 

be attributed to the enhanced dispersion of the filler in the polymeric matrix and the stronger surface 

interaction between the host resin and the functionalized filler as demonstrated by the significant shift 

in Tg and Tonset.  

Moreover, the long term performances of the prepared composites were examined and confirmed by 

conducting gravimetric analysis over 90 days exposure period to 3.5 wt.% NaCl solution in a controlled 

temperature environment. Finally, it was interesting to observe that increasing the loading of GF and 

FGF above 20% may attenuates the interface adhesion between the coatings and the underneath CRS 

substrates. 
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Chapter 9 

Amino functionalized Graphene oxide/Epoxy nanocomposite 

coatings with advanced protection properties 

Abstract 

Advanced anticorrosion coating with superior corrosion resistance, thermal stability and impact 

resistance properties is developed based on epoxy nanocomposite with amino functionalized graphene 

oxide (FGO) and used as protective coating for Cold rolled steel (CRS) substrates in a Chloride rich 

environment. The performance of the epoxy-FGO nanocomposite (E/FGO) prepared via situ pre-

polymerization is superior not only to the epoxy coating but also to epoxy-graphene oxide (E/GO) 

coating with the same loading and prepared in similar manner as the E/FGO. The dispersion of GO and 

FGO in the Epoxy composite matrix is examined using TEM, XRD and FTIR are used to characterize 

the synthesized nanocomposites. The corrosion resistance properties of the prepared coatings are 

examined using Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic measurements 

in 3.5 wt. % Sodium Chloride (NaCl) solution. In addition to the electrochemical measurements, the 

long-term corrosion protection properties of the nanocomposite coatings are evaluated by gravimetric 

analysis over 90 days exposure period to the 3.5 wt.% NaCl solution. The interface adhesion between 

the prepared coatings and the CRS substrates are examined as per ASTM-D3359 and SEM is used to 

evaluate the adhesion. The thermal stability and thermal transition of the nanocomposite coatings are 

analyzed using TGA and DSC. The impact resistance of the prepared coatings is measured according 

to ASTM-D2794. 
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9.1 Introduction 

Corrosion is the deterioration of metal driven by electrochemical reactions between the metal and 

the environment and the severity and rate of corrosion are governed by various factors including the 

nature of the metal and the surrounding environment. The failure to mitigate corrosion may cause 

serious threats to both industry and the economy. Therefore, a growing number of studies have been 

devoted to exploring the possibility of complete prevention or mitigation of corrosion using different 

strategies, including anodic/cathodic protection, use of corrosion inhibitors and protective coatings[2], 

[3], [5]. Coating is one of the eminent approaches utilized in various areas of applications for corrosion 

protection purposes. Organic coatings, in particular, have been widely utilized to mitigate the 

deterioration of metals by acting as a physical barrier between metal substrates and the surrounding 

corrosion environments. However, pores in organic coatings may network and create channels that 

allow corrosion species such as chloride, oxygen and moisture to diffuse to the interface between the 

protective coating and the metal substrate. The migration of the corrosion elements through the 

protective coating may attenuate the protection performance of the coating and accelerate adhesion 

loss, coating blistering and metal corrosion.   

A growing number of studies have focused on the possibility of enhancing the corrosion resistance 

properties of organic coating particularly by incorporating additives or corrosion resistance pigments. 

For example, Jiang et. al.  revealed that the corrosion protection performance in addition to the adhesion 

of epoxy can be enhanced by incorporating active (amino-propyltrimethoxy) and non-active (bis-1,2-

[triethoxysilyl]ethane) silane precursors [110], [111]. Other studies revealed that the utilization of TiO2 

doped poly-pyrrole coating could result in significant enhancements in the corrosion resistance of 

Aluminum substrates [112], while the life span of Magnesium alloy can be extended by applying 

hydroxyapatite and octacalcium phosphate coatings [113]. In addition to the simple incorporation of 
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fillers in polymeric matrices, studies have focused on the utilization of nano-materials to excel the 

corrosion performance of protective coatings. For instance, Pour-Ali et al. investigated 

epoxy/polyaniline–camphorsulfonate nanocomposite as a corrosion protection coating on steel in 

Chloride rich environment and the investigation illustrated the possibility of enhancing the corrosion 

protection properties by the application of the coating [114].  

There are different types of filler that have been investigated for corrosion protection purposes [115]–

[121]. However, a growing number of studies have focused on graphene and graphene derivatives as 

fillers in various polymer composite coatings in order to enhance various properties including corrosion 

resistances [32], [34], [62], [78], [79]. In addition to the utilization of protective composite coatings, 

several studies have investigated the chemical vapor deposition (CVD) method for deposition of 

graphene on various metal substrates and reported that deposited graphene coating may excel the 

corrosion resistance of the underneath metal substrates by acting as a passive layer that shields the 

transportation of ions and electrons between metals and surroundings [36], [55], [122]–[126]. The 

excellent performance of graphene coating is attributed to the lower density, high surface area, and high 

aspect ratio of graphene compared to other fillers such as clay [53].  

 In addition to the simple incorporation of pristine graphene in polymer composites or CVD coating 

with graphene, many researchers have focused on the functionalization of graphene and the influences 

of such functionalization on various properties including corrosion resistance. For instance, a recent 

study revealed that the corrosion protection of epoxy and graphene oxide (GO) composites coatings 

can be enhanced the attaching titanium dioxide on the GO surface using 3-aminopropyltriethoxysilane 

as coupling agents [42]. Another study investigated the incorporation of fluorographene particles into 

polyvinyl butyral composite coatings for corrosion protection purposes. The study revealed that 

shielding property of may remarkably enhance the corrosion resistance of the coating by blocking the 
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diffusion paths of corrosive elements and moisture [43]. Recently, the influences of the incorporation 

of functionalized GO in epoxy composites, through the wet transfer of amino functionalized GO, on 

the corrosion resistance property of epoxy coating were investigated. The study demonstrated that 

significant enhancement in the corrosion mitigation property of epoxy can be achieved by improving 

both ionic resistance and barrier properties.  

In this study, amino functional group was grafted on the surface of GO to synthesize FGO that is 

used to make epoxy nanocomposite, which is used as protective coatings on CRS substrates. The 

pristine GO and FGO were characterized using FTIR and XRD techniques, while the dispersion of the 

fillers in the polymeric matrix was examined using TEM. The study reports the influences of the GO 

surface modification on various properties including corrosion and impact resistance as well as thermal 

stability and thermal transition. The long-term corrosion protection ability of the prepared E/FGO was 

evaluated by gravimetric analysis in 3.5% NaCl solution. Moreover, electrochemical techniques such 

as EIS and potentiodynamic measurements were utilized to examine the corrosion resistance properties 

of the epoxy, epoxy-GO, and epoxy FGO nanocomposites in 3.5% NaCl solution. The thermal stability 

of the prepared coatings was investigated using DSC and TGA. Furthermore, the impact resistance of 

the prepared coatings was measured according to ASTM D2794 standard.  

9.2 Experimental 

9.2.1 Materials  

Polished CRS sheet (McMASTER-CARR) was used as substrates, Bisphenol A diglycidyl ether 

(BADGE, Sigma Aldrich,), N-Methyl-2-pyrrolidinone solvent (NMP, Sigma Aldrich), m-

Phenylenediamine (mPDA, Sigma Aldrich) and GO with average diameters of 1-5 µm and average 
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thickness of 0.8 - 1.2, which was synthesized by the modified Hummer method and thermally treated 

to improve dispersion, was supplied by ACS Material and used as received.  

9.2.2 Composite Synthesis 

Graphene functionalization: the functionalization of GO with amine groups was carried as follows: 

2.1 mg GO were dispersed in NMP via bath sonication (FS30H, Fisher Scientific) overnight. 0.5 g of 

mPDA was added to the GO suspension and mixed under reflux for 6 h at 90° C to prepare the FGO 

suspension. NMP solvent were removed at 90° C under vacuum and the dry FGO is collected and 

washed three times with ethanol and double distilled water to remove any residual mPDA and dried 

under vacuum overnight. 

Composite preparation: 2.1 FGO is dispersed in 1.5 g of BADGE under reflux for 1 h and bath 

sonicated for an additional hour. 0.5 g curing agent (hardener) B230 was added to the FGO/BADGE 

suspension and the mixture was mixed under reflux for 1 h, homogenized (125, Fisher Scientific) for 

30 min and bath sonicated for additional 30 min.  

9.2.3 Coating and curing 

The CRS substrate was polished with different grades of sand papers, cleaned with acetone and 

double distilled water and dried with KimTech wipes before applying the prepolymer/FGO mixture. 

The prepolymer/FGO mixture was spin coated (SC 100, Smart Coater) at 400 RPM for 1 min on a clean 

metal substrate and cured at 50 °C under vacuum for 4h to produce 120 ±2 µm E/FGO coated CRS 

substrate.  

The functionalization process of GO and the composite synthesis procedure are schematically 

depicted in Figure 9.1. Similar procedures were followed to prepare Epoxy and E/GO composites, 
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where 0.5 g B230 and 1.5 g BADGE were mixed without/with the incorporation of 2.1 mg of GO to 

prepared 120 ±2 µm Epoxy and E/GO coated CRS substrates.  

 

Figure 9.1: Schematic description of the process for the functionalization of GO and synthesis 

of E/FGO composites using in situ polymerization. 
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9.2.4 Composite and Coating Characterization 

The functionalization of GO sheets was examined using FTIR (Tensor 27, Bruker) and XRD 

(MiniFlex 600, Rigaku). FTIR spectra of GO, FGO, Epoxy, E/GO and E/FGO composites were 

recorded from 400 to 4000 cm-1 and the XRD diffraction patterns were recorded in a range of 2θ = 3 to 

90° at 0.02° step size and 0.24° /min scan rate.  

The dispersion of the FGO and GO in the composites was examined using TEM (Philips CM-10 

TEM). TEM samples were prepared by scrapping the prepared composite coatings with a sharp knife 

before dispersing the collected samples in methanol using a sonication bath for 30 min. Copper grids 

were used to collect the dispersed composites samples from methanol and the collected samples on the 

grids were allowed to dry under vacuum at room temperature overnight.    

The interface adhesion between the prepared coatings and the CRS substrates were examined and 

evaluated according to ASTM D3359. To evaluate the long-term durability of the coatings, the interface 

adhesion was evaluated after exposing the prepared protective coatings to 3.5% NaCl solution for 90 

days. The adhesion test was conducted using tape kit (PA-2000, Paul N. Gardner Company Inc.) with 

a standard blade (11-teeth with teeth spacing of 1 mm). The state of the coating post adhesion was 

observed using SEM (Zeiss LEO 1550). The samples were fixed on SEM holder using carbon tape and 

gold coated via sputtering for 120 sec. The post-adhesion SEM images were evaluated according to 

ASTM D3359.  

9.2.5 Coating Testing 

Gravimetric analysis was conducted for 90 days in 3.5% NaCl solution at room temperature to 

examine the long-term corrosion protection properties of the prepared coatings. The bare and coated 

samples were washed with acetone and double distilled water and dried using KimTech wipes before 
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the initial weights were recorded and the samples were placed in Teflon holders with 1 cm2 exposed 

area. At the end of the exposure period, the samples were again washed with double distilled water and 

cleaned with a fine brush to remove any corrosion residues. After that, the samples were dried under 

vacuum at room temperature overnight before recording the final weight. Mass loss measurements were 

conducted on triplicates to examine the reproducibility of the results and the mean and standard 

deviation data are reported.      

Electrochemical measurements were conducted at 22°C in a temperature controlled double jacketed 

1 L corrosion cell using a three-electrode configuration in 3.5% NaCl solution as electrolyte. 

Silver/Silver Chloride electrode was used as the reference electrode (RE), two graphite rods as the 

auxiliary electrodes and sample of the prepared composite coating in a Teflon holder with 1 cm2 

exposed surface area as the working electrode (WE). After immersing the samples in the electrolyte, 

the potential of the working electrode was allowed to stabilize for 30 min before conducting the 

electrochemical measurements using potentiostat (VSP-300, Uniscan instruments ltd.). All 

electrochemical measurements were conducted in triplicates to evaluate the reproducibility of raw 

electrochemical data. The nondestructive EIS measurements were carried out first followed by the 

potentiodynamic measurements. EIS tests were conducted over frequency range from 200 KHz to 200 

mHz and the collected raw impedance data were used to generate the Bode and Nyquist plots. In 

addition, equivalent circuits with specific combinations were utilized to generate a matching fitting for 

the raw impedance data and the variation in the scales of the different components of the equivalent 

circuits were used to compare the corrosion resistance performance of the different coatings. Following 

EIS tests, the potentiodynamic measurements were conducted to generate the Tafel plots and extract 

imperative corrosion parameters. Starting from the potential of the working electrode, the potential was 

scanned from -0.5 V to 0.5 V around the potential of the working electrode at a rate of 20 mV/min.  
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Thermal stability of the prepared composites was evaluated by conducting a thermal degradation 

analysis using thermal gravimetric analysis (TGA) (TA instruments, Q500) in the temperature range of 

25 to 800° C. In addition to the thermal degradation analysis, the glass transition temperatures (Tg) of 

the composites were measured using differential scanning calorimetry (DSC) (TA instruments, Q2000) 

by heating the sample from 25 to 100ᵒ C at 10ᵒ C/min heating rate.  

Impact resistance is the resistance of the material to deformation by sudden impact of a falling 

weight, was examined and evaluated according to ASTM D2794 using universal impact tester (IM-

172RF, Paul N. Gardner Company Inc.) with a combined 0.5 in. ball and 2 Ib. weight indenter. The 

influence of the incorporation of GO and FGO in the epoxy resin on the impact resistance is analyzed. 

The impact resistance of the prepared composites was evaluated by rising the falling combined weight 

1 inch in the testing tube and allowing the weight to drop on the composite surface. The falling 

procedure were repeated with 1 inch increment in height until the first sign of cracks were observed on 

the surface of the composite. Following the ASTM standard, the height at which the cracks were 

observed was recorded and the falling test was repeated five times at the recoded height, 1 inch above, 

and 1inch below the recorded height and the height at which the composite cracks all the times was 

reported as the impact resistance limit of the composite to sudden deformation. 

9.3 Results and Discussion  

9.3.1 Composites characterization 

FTIR and XRD techniques were utilized to evaluate the surface modification of GO with the grafted 

Amino group from the Diamine. Figure 9.2 depicts FTIR spectra for GO and FGO. From the figure, 

peaks that correspond to typical groups attached to GO sheets, which are epoxide, carboxyl and 

hydroxyl were observed at 1226, 1602 and 3410 cm-1, respectively. Moreover, the FTIR spectra for GO 
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illustrates the weak adsorption peak for O-H at 3410 cm-1, which can be attributed to the thermal 

reduction of GO to enhance the exfoliation of the GO sheets.  The bonding between the diamine and 

the GO sheets may occur as a ring opening reaction between the amino group in the diamine and the 

epoxide group on the surface of GO. Another possible reaction is the interaction between the amino 

group in the diamine and the carboxyl group on the edge of GO sheets to form Ammonium carboxylate 

or salt. FTIR spectra of FGO confirms the bonding between the diamine and GO sheets. For instance, 

the strong adsorption peak around 3000 cm-1, represents C-H stretching, which is an indication of the 

existence of aromatic diamine in FGO. In addition, the new adsorption peak at 1500 cm-1, confirms the 

C-N bonding resulted from the ring opening reaction between the Diamine and the epoxide group on 

the basal plan of GO. Finally, the attenuation in the intensity of the epoxide adsorption peak at 1226 

cm-1 confirm the reduction in the density of the epoxide group on the basal plan of GO and this in 

addition to the increased density of the hydroxyl group at 3410 cm-1 can be attributed to the ring opening 

reaction. XRD was also utilized to examine the bonding between diamine and GO sheets as depicted 

in Figure 9.3. XRD patterns of GO and FGO confirms the influences of the bonding between the 

diamine and the GO sheets on the crystal structure and the d-spacing, where the d-spacing increased 

from 7.96 Å for GO sheets to 22.41 Å for FGO based on Bragg’s law.   

FTIR and XRD were also utilized to confirm the completion of the curing process of the Epoxy 

composites. The FTIR spectra depicted in Figure 9.4, clearly show some characteristic peaks such as 

the peaks at 3380 cm-1 (-OH stretching), which confirm the curing of the Epoxy resin in addition to the 

peaks at 1508 cm-1 and 1609 cm-1 (C–C skeletal stretching), 915 cm-1 (epoxide ring). XRD depicted in 

Figure 9.5, represent a typical XRD patterns for Epoxy composites, where a broad amorphous peak 

around 2θ value 10° - 30°, which attributes to the homogeneously amorphous of Epoxy. Furthermore, 
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the amplitudes of the diffraction peaks for E/GO and E/FGO indicate that the degree of crystallinity of 

Epoxy is reserved after the incorporation of GO and FGO in the polymeric matrices. 

Dispersion of GO and FGO filler in the E/GO and E/FGO composites was observed and captured 

using TEM as depicted in Figure 9.6. The TEM images illustrates the influences of the surface 

modification of GO, which can be observed as significant improvement in dispersion and exfoliation 

of the filler in the Epoxy composites. GO sheets were manifests in thick stacks of GO layers, whereas 

the attachment of the grafted amino group on the surface of FGO enhances the degree of dispersion and 

thin sheets of FGO are observed in the E/FGO composites. The impact of GO functionalization on the 

degree of dispersion and exfoliation can be attributed to enhanced surface interaction between the 

amino group on FGO and the Epoxy group in the resin.     



 

 136 

 

Figure 9.2: FTIR spectra of GO and FGO composites. 
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Figure 9.3: XRD patterns of GO and FGO composites 

 

Figure 9.4: FTIR spectra of Epoxy, E/GO and E/FGO composites. 
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Figure 9.5: XRD patterns of Epoxy, E/GO and E/FGO composites. 

 

Figure 9.6: TEM images of E/GO and E/FGO. 
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9.3.2 Coating Adhesion 

The main objective of coating metal substrates is to protect the coated metals from corrosion by 

aggressive corrosion agents in the surrounding environment. However, poor interface adhesion between 

the metal substrates and the protective coating may result in void spaces at the interface between the 

coating and the coated substrate, where corrosive elements might accumulate and accelerate the 

corrosion process. Therefore, one of the critical properties of protective coating that needs to be 

assessed before testing the corrosion resistance ability of a protective coating in corrosive medium is 

interface adhesion. Here, the interface adhesion between the CRS substrate and the prepared protective 

composite coatings is examined and evaluated according to ASTM D3359 using adhesion tape test kit. 

In this test, perpendicular cuts are made on the coating surface using standard blade (11-teeth with teeth 

spacing of 1 mm) and the adhesion tape is applied on the surface. After peeling off the adhesion tape, 

the condition of the coating where the cuts were made are examined and the interface adhesion property 

of the coating is evaluated based on the amount of peeled materials from the coating.  

Here, interface adhesion tests were performed after exposing the protective coatings to 3.5% NaCl 

solution for 90 days at room temperature to confirm the long-term interface adhesion properties of the 

prepared coatings. Figure 9.7, illustrates the post adhesion test results for Epoxy, E/GO and E/FGO. 

From the figure, no peelings were observed on any of the coatings and therefore, all coatings were rated 

at 5B rating (0% peeling) according to ASTM standard.     
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Figure 9.7: SEM images of post-adhesion tests of Epoxy, E/GO and E/FGO coated CRS 

substrates 

9.3.3 Gravimetric Analysis  

The long-term corrosion resistance properties of the prepared protective coatings were examined by 

conducting weight loss measurements in 3.5% NaCl solution at 22ᵒ 

C for 90 days. The study permits the calculation of the corrosion rates (Rcorr) based on the variations in 

the initial and final weight of coated CRS substrates after the exposure period using equation (9.1). In 

addition to the corrosion rates, the weight loss measurements were utilized to calculate the protection 

efficiency (PEF) of the prepared protective composites coatings by comparing the corrosion rates for 

bare and coated CRS substrates using equation (9.2).    

𝑅𝑐𝑜𝑟𝑟 =
𝑊0−𝑊

𝐴𝑥𝑡
     (9.1) 

𝑃𝐸𝐹[%] = (1 −
𝑅𝑐𝑜𝑟𝑟

𝑅𝑐𝑜𝑟𝑟
° ) 𝑥100    (9.2) 

In the above equations, A is the exposed surface area of the bare and coated CRS substrates (1 cm2), 

t is the exposure time (90 days), Rcorr and Rº
corr are the corrosion rates of the coated and bare CRS 

substrates, respectively, while W0 and W are the weight (mg) before and after exposure to the corrosive 

medium. The data associated with the weight loss measurements are reported in Table 9.1 and in 
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addition to the corrosion rates and protection efficiencies, the triplicate measurements allow the 

calculation of the standard deviation of the corrosion rates (Rcorr, STD). 

Table 9.1: Weight loss measurements for bare CRS, Epoxy, E/GO and E/FGO coated CRS 

substrates in a 3.5 wt.% NaCl solution 

Sample 
W0 

mg 

W 

mg 

Rcorr 

mg.cm-

2.d-1 

Rcorr, STD 
mg.cm-2.d-1 

PEF 

% 

CRS 110.3 72.1 0.42 0.02 - 

Epoxy 130.5 126.8 0.04 0.04 90.3 

E/GO 132.8 131.1 0.018 0.005 95.5 

E/FGO 132.1 131.9 0.003 0.001 99.5 

 

The weight loss measurement results reported in Table 9.1 illustrate the possibility of enhancing the 

corrosion resistance of epoxy coatings by the incorporation of a nanofiller such as GO. This can be 

clearly observed as descent in corrosion rate in addition to enhancement in corrosion protection 

efficiency. Furthermore, the results reported in Table 9.1 clearly demonstrate the advantage of GO 

surface modification, where the incorporation of FGO in the epoxy resin leads to further attenuation in 

the corrosion rates and further enhancement in protection efficiency. In addition to the enhancement in 

corrosion resistance, the results illustrate the superior reproducibility of corrosion resistance 

performance of E/FGO compared to E/GO, which can be observed as lower magnitude of Rcorr, STD.    

9.3.4 Impedance Measurements 

Electrochemical impedance spectroscopy is one of the main techniques utilized to investigate the 

electrochemical behavior of bare or coated metal substrates. Here, the electrochemical behavior of bare 
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and coated CRS is compared to examine the corrosion resistance properties of the prepared protective 

coatings. An impedance study involves passing an alternative current through electrical circuit that may 

contain various element such as resistances, insulators and capacitors or a combination of these 

elements. The observed outcome resistance of passing the alternative current through the circuits is a 

complex output known as impedance. In corrosion experiments, the alternative current is forced 

through the bare or coated metal substrates over a range of frequencies and the observed complex output 

is reported as the impedance of the bare or coated metal substrates. Furthermore, equivalent circuits 

with specific combination of electrical elements such as resistors, insulator and capacitors can be 

utilized to fit the raw impedance data, where the order of combination and the magnitude of each 

element in the equivalent circuit control the feature of the fitting. Once the best fitting of raw impedance 

data for bare and coated CRS substrates are captured, the variations in the magnitude of the various 

elements of the equivalent circuits can be used to evaluate the corrosion protection properties of the 

protective coatings.  

After collecting raw impedance data for bare and coated CRS substrates, an equivalent circuit with 

specific combination as depicted in Figure 9.8 was used to fit the raw impedance data.  The type and 

order of electrical elements in the equivalent circuit was chosen in order to obtain the best fitting for 

raw impedance data, where Rs represents the resistance of the 3.5% NaCl electrolyte solution, Rch 

represents the charge transfer resistance of the bare or coated metal substrates and C represents a double 

layer capacitor. The magnitudes of the different elements in the equivalent circuits in addition to the 

frequencies of the alternative current signal (ω) were used to fit the raw impedance data using equation 

(9.3).  

𝑍 = 𝑍′ + 𝑗𝑍" = 𝑅𝑠
𝑅𝑐ℎ

1+(𝑅𝑐ℎ×𝐶×𝜔)2
+ 𝑗

𝑅𝑐ℎ
2×𝐶×𝜔

1+(𝑅𝑐ℎ×𝐶×𝜔)2
      (9.3) 
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Figure 9.8: Equivalent circuits used to fit raw electrochemical impedance data 

The collected raw and fitting impedance data are depicted in Figure 9.9, which is known in corrosion 

studies as the Nyquist plots, where the real and the imaginary parts of the complex impedance data are 

reported. In general, an increase in the size of the impedance semi-circle represents an enhancement in 

corrosion resistance. The Nyquist plots clearly illustrates the possibility of enhancing the corrosion 

resistance behavior of CRS by coating the metal substrates with Epoxy. Furthermore, the reported 

results in the Nyquist plots demonstrates that the corrosion protection property of Epoxy can be excelled 

by the incorporation of GO in the polymeric matrix. Nevertheless, the plots clearly indicate that such 

an enhancement in corrosion protection can be further surpassed by surface modification of GO. This 

can be observed for the case of E/FGO composites coatings as a significant increase in the magnitude 

of the real resistivity parts at the lowest recorded frequencies. 
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Figure 9.9: Nyquist plots for bare CRS, Epoxy, E/GO and E/FGO coated CRS substrates 

In addition to the qualitative analysis of the Nyquist plots, quantitative analysis can be carried out on 

the magnitudes of the various elements of the equivalent circuits to evaluate the variation in corrosion 

protection behavior of the prepared protective composite coatings. It is important to note that the choice 

of the elements in the equivalent circuit in addition to the unique combination of these elements were 

adopted in order to obtain the best fitting results for the raw impedance data for bare and coated CRS 

substrates. All raw impedance data were collected in triplicates and therefore, the magnitudes of the 

mean values of the various elements of the equivalent circuit for all samples are reported in Table 9.2. 

The reported results noticeably illustrate the advantage of incorporating GO in the Epoxy matrix in the 

corrosion protection property of Epoxy. However, The results also demonstrates the significant values 

of functionalization of GO on the corrosion mitigation property, where the charge transfer resistance 



 

 145 

increased from 433.6 ohm.cm2 for bare CRS to 6.5×105 ohm.cm2 for Epoxy, 2.3×106  ohm.cm2 for 

pristine E/GO and 9.5×106 ohm.cm2 for E/FGO coated CRS. The repeatability of the collected raw 

impedance data is illustrated by the small values of the standard deviations of the charge transfer 

resistance (Rch, STD) for all samples. 

Table 9.2: Electrochemical corrosion parameters obtained from equivalent circuit for EIS raw 

measurements for bare CRS, Epoxy, E/GO and E/FGO coated CRS in 3.5 wt.% NaCl solution. 

Sample 
RS 

Ω.cm2 

C 

F 

Rch 

Ω.cm2
 

Rch , STD 

Ω.cm2 

CRS 18.3 4.5x10-04 433.6 4 

Epoxy 17.9 6.7x10-11 6.5x105 110 

E/GO 18.0 1.24x10-10 2.34x106 700 

E/FGO 18.2 6.3x10-11 9.57x106 220 

 

Bode plots are another approach to represent impedance behavior of bare and coated metals and can 

be utilized to assess the corrosion resistance properties of the prepared protective composite coatings. 

In Bode plots, the real part of impedance (Zreal) is presented versus the entire frequency range of the 

impedance EIS test in logarithmic scales as depicted in Figure 9.10(a), while Figure 9.10(b) depict the 

phase plots of raw impedance data. The corrosion resistance property of a coating can be evaluated 

based on the Zreal values at the lowest recorded frequency and comparing the Zreal values for the various 

coatings demonstrate the variation in the corrosion protection properties of the different coatings. The 

results presented in Figure 9.10(a), illustrates the advantages of incorporating FGO in the Epoxy resin 

over pristine GO, where the utilization of FOG remarkably increased the value of log Zreal at the lowest 
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frequencies from 2.6 ohm.cm2 for bare CRS to 5.8 ohm.cm2 for Epoxy, 6.43 ohm.cm2 for pristine E/GO 

and 7.0 ohm.cm2 for E/FGO coated CRS. 

 

 

Figure 9.10: (a) Bode and (b) phase plots for bare CRS, Epoxy, E/GO and E/FGO coated CRS 

substrates 

The reported EIS results in various forms illustrates the possibility of prolonging the life span of CRS 

in a Chloride rich environment by coating the metal substrate with Epoxy. Furthermore, the results 

show that the corrosion resistance property of Epoxy can be further enhanced by the incorporation of 

GO as a filler in the polymeric matrix. This enhancement in corrosion protection can be attributed to 

the superior barrier property of GO sheets [64], which may prolong the pathways corrosion agents 

follow to reach the interface between the metal substrates and the protective coating. Moreover, the 
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reported data clearly demonstrates the fact that corrosion property of E/GO composite coating can be 

further excelled by functionalization of GO. This further enhancement in corrosion resistance property 

of E/FGO can be attributed to improved dispersion of FGO in the Epoxy matrix, which may further 

attenuate the corrosion rate by increasing the tortuosity pathway the corrosive agents follow to reach 

the coated metal substrate.   

9.3.5 Cyclic Voltammetry 

Another widely utilized electrochemical approach in corrosion studies is cyclic voltammetry (CV) 

or potentiodynamic measurements, where the potential of the working electrode is scanned over a range 

of potential difference against the constant potential of the reference electrode in order to examine the 

anodic and cathodic behavior of the working electrode. After immersing the working electrode in the 

electrolyte, the potential of the working electrode was allowed to stabilize for 30 min and the stable 

potential of the working electrode was recorded as the open circuit potential (OCP) before conducting 

the test. It should be noted that CV is a destructive test and therefore, a new electrolyte solution was 

prepared for each experiment. Starting from OCP and scanning in the anodic direction, CV test was 

conducted by scanning the potential of the working electrode from -0.5 V to 0.5 V around the OCP at 

a rate of 20 mV/Min.  

Even though the CV test was conducted over a wide range of potential, only the area where the 

potential of the working electrode shifts from anodic to cathodic behavior, which is known as the Tafel 

plots are presented in Figure 9.11. The potentiodynamic results depicted in the figure allow the 

extraction of significant corrosion parameters such as corrosion potential (Ecorr) and corrosion current 

(Icorr). Furthermore, the triplicates measurements for each sample facilitate the examination of the 

reproducibility of the raw data by calculating the standard deviation of Ecorr (Ecorr, STD) and Icorr (Icorr, STD) 
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as reported in Table 9.3. Furthermore, the extracted corrosion currents were implemented in equation 

(9.4), which is known as the Stern-Geary equation to compute the polarization resistances (Rp) of the 

bare and coated CRS substrates. Finally, the extracted corrosion potential was also utilized and 

compared to compute the protection efficiency (PEF) of the prepared protective coatings using equation 

(9.5).  

 

 

Figure 9.11: Tafel plots for bare CRS, Epoxy, E/GO and E/FGO coated CRS substrates 

𝑅𝑃 =
(𝑏𝑎𝑥𝑏𝑐)

2.303𝑥(𝑏𝑎+𝑏𝑐)𝑥𝐼𝑐𝑜𝑟𝑟
    (9.4) 

𝑃𝐸𝐹[%] = (1 − 𝐼𝑐𝑜𝑟𝑟/𝐼𝑐𝑜𝑟𝑟
° )𝑥100   (9.5) 
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In the above equation, ba/bc are the anodic and the cathodic Tafel slope (dE/dlog I), 

respectively, where the intersection of the extrapolations of the linear portions of the slopes 

indicates the corrosion current. In equation (9.5), I°
corr and Icorr are corrosion current of bare 

and coated CRS substrates, respectively. The quantitative variations in the corrosion 

parameters reported in Table 9.3 can be utilized to evaluate the corrosion protection properties 

of the prepared protective composite coatings. For instance, a positive shift in Ecorr and Rp in 

addition to a drop in Icorr represents an enhancement in corrosion resistance.  

Table 9.3: Electrochemical corrosion parameters obtained from cyclic voltammetry 

measurements for bare CRS, Epoxy, E/GO and E/FGO coated CRS in a 3.5 wt.% NaCl solution. 

 

The potentiodynamic measurements results depicted in Figure 9.11 and reported in Table 9.3, 

illustrates the noble corrosion resistance property of epoxy. In addition, the results demonstrated that 

the noble corrosion resistance of epoxy can be further enhanced by the incorporation of GO as a filler 

in the polymeric matrix. Furthermore, such an imperative property of a protection coating can be further 

Sample 

Ecorr 

mV vs 
Ag/AgCl 

Ecorr,STD 

V vs 
Ag/AgCl 

Icorr 

µA/cm2 

Icorr,STD 

µA/cm2 
ba bc 

RP 

Ω.cm2
 

PEF 

% 

CRS -756 0.03 6.78 0.003 162.6 269.6 6.5 - 

Epoxy -537 1.9 0.55 0.001 293.4 396.5 133.1 
91.
9 

E/GO -366 8.5 0.099 0.007 219.3 208.8 469.1 
98.
5 

E/FGO -120 2.1 0.005 0.002 276.3 251.6 11436 
99.
9 



 

 150 

excelled by functionalization of GO and this can be clearly observed in the case of using E/FGO, where 

the utilization of FGO leads to remarkable positive shift in Ecorr and Rp in addition to a significant 

attenuation in Icorr.   

It is worth noting, even though E/GO enhances corrosion protection over pristine epoxy resin, the 

triplicate measurements indicate the poor reproducibility of the CV results for E/GO as indicated by 

the higher magnitude of Ecorr, STD. On the other hand, the superior corrosion mitigation property of 

E/FGO was combined with a remarkable reproducibility as indicated by the by the small Ecorr value as 

reported in Table 9.3. The advanced corrosion protection property of E/FGO can be attributed to the 

shielding property of FGO as well as the improved degree of dispersion of the filler in E/FGO as 

indicated by the TEM images, while the highly dispersed FGO sheets might be responsible for the noble 

reproducibility of the CV results.  

9.3.6 Thermal Stability 

The influences of the incorporated GO and FGO in the thermal stability of the prepared composites 

coatings are evaluated using DSC and TGA techniques. DSC was utilized to examined the influences 

of GO and FGO on the glass transition temperature (Tg) of the composites and the results are depicted 

in Figure 9.12. From the figure, it can be observed that the incorporation of GO slightly increases the 

Tg from 80.5 to 82.6° C, while the incorporation of FGO causes a more significant increase in Tg to 

86.8° C. The influence of GO and FGO on Tg can be attributed to the restriction of the mobility of the 

polymer chains by the filler [84]. In addition to Tg, the impacts of the fillers on the thermal degradation 

of E/GO and E/FGO composite coatings were examined using TGA and here too, the incorporation of 

the fillers enhances the thermal stability of the composites as indicated by increase in the onset 

temperature (Tonset), which is the temperature at which the composites degrade by 5% of the initial 
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weight as depicted in Figure 9.13. Moreover, the TGA results indicates that functionalization of GO 

further excels the thermal stability of the epoxy composite, where Tonset increased from 354.5 ᵒC for 

Epoxy to 359.4 ᵒC and 362.3 ᵒC for E/GO and E/FGO, respectively.  

 

Figure 9.12: DSC thermograms of Epoxy, E/GO and E/FGO composites coatings 
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Figure 9.13: TGA thermograms of Epoxy, E/GO and E/FGO composites coatings 

 

Table 9.4: Thermal analysis results for Epoxy, E/GO and E/FGO composites 

Sample 
Initial weight 

mg 

Tonset 

°C 

T50% 

°C 

Residue 

% 

Tg 

°C 

Epoxy 41.1 354.5 390.5 27.31 80.5 

E/GO 31.2 359.4 390.4 15.22 82.7 

E/FGO 35.02 362.3 
394.0
4 

27.35 86.8 
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The positive impacts of GO and FGO can also be attributed to the restriction in chain’s mobility in 

addition to the possible interaction between the amino group in epoxy with the epoxy/ hydroxyl groups 

on GO or the possible direct bonding between the grafted amino group on FGO and Epoxy.  

9.3.7 Impact resistance 

Impact resistance of a protective composite coating is another property that can be examined in 

addition to corrosion resistance and thermal stability in order to evaluate the durability of the coatings 

and the possibility of utilizing the coatings in various applications, where the coatings might be exposed 

to sudden impacts. The impact test was conducted according to the ASTM D2794 to analyze the 

influences of GO and FGO on the impact resistance of E/GO and E/FGO composites. Several previous 

studies have examined the effect of GO and graphene on the mechanical properties of epoxy composites 

[82], [87]–[89], however; the objective here is to examine the impacts of GO functionalization on the 

resistance of epoxy composite to sudden deformation. Figure 9.14 depicts the elevations at which the 

composites coatings fail five times. The impact resistance results revealed that the incorporation of GO 

in the epoxy matrix may enhances the impact resistance property of the resin. Moreover, the surface 

modification of GO further improves the impact resistance as observed in the case of E/FGO. These 

effects of GO and FGO on the impact resistance of epoxy can be attributed to the increase/decrease of 

toughness/elasticity of the epoxy composite after the incorporation of the fillers.  
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Figure 9.14: Impact resistance test results for Epoxy, E/GO and E/FGO composites coatings 

9.4 Conclusion 

E/GO and E/FGO composites were synthesized using situ pre-polymerization approach and 

evaluated as protective coatings on CRS substrates. The study demonstrates that the corrosion 

resistance property of Epoxy coating can be excelled by the incorporation of pristine GO sheets in the 

resin, where the GO sheets may shield corrosive agents such as Oxygen and Chloride ions. Furthermore, 

surface functionalization of GO sheets with diamine may further enhance the corrosion protection 

properties. This enhancement in the corrosion protection properties may be attributed to the interaction 

between the amino group in the diamine and the epoxide group in the Epoxy resin, which improve the 

degree of dispersion of FGO in the polymeric matrix and consequently prolong the pathways corrosive 

agents follow to reach the coated metal substrate. Moreover, the surface modification of GO and the 

interaction between the FGO sheets and the Epoxy resin may also enhance thermal stability of the 

composites as well as resistance to sudden deformation.  

 

 



 

 155 

Chapter 10 

Conclusions and Future Work 

10.1 Summary of Contributions and Concluding Remarks 

A number of corrosion protection polymer composites based coatings product were synthesized and 

evaluated on different metal substrates that are utilized in oil and gas industry in addition to a wide 

range of applications. The protective coatings products studied in this research project and the 

contributions of the studies on the different products can be listed and summarized as follow.  

 Polyetherimide-Graphene (PEI/G) composites on Copper substrates: 

o Enhanced the inhibition of copper corrosion by coating with polyetherimide-

graphene nanocomposite containing a very low loading of graphene. 

o Analyzed the electrochemical behavior of bare copper, copper coated with 

polyetherimide, and copper coated with polyetherimide-graphene 

nanocomposites. 

o Discussed the mechanism by which graphene enhances the anticorrosion 

performance of the coating. 

o Evaluated the adhesion and the long term performances of the prepared 

protective coatings. 

o Illustrated the variation in the performances of the prepared coatings as well 

as the drawbacks associated with varying the load of Graphene.   
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 Epoxy-Graphene (E/G) composites on Stainless Steel type 304 (SS304): 

o Study the influences of an epoxy coating on the electrochemical behavior of Stainless 

Steel 304.  

o Evaluated the possibility of enhancing the corrosion protection property of epoxy by 

the incorporation of graphene. 

o Investigated the variation in the corrosion protection efficiencies of epoxy/graphene 

coatings at different loads of graphene. 

o Demonstrated the impacts of the load of graphene on imperative properties of epoxy 

such as interface adhesion, flexibility, impact and UV resistances.  

o Evaluated the influences of graphene on thermal behavior of epoxy.  

o Illustrated how the degree of dispersion in the polymeric matrix may vary with the load 

of graphene.   

 Electro-active Epoxy-Glass Flake (EE/GF) composites on Cold Rolled Steel (CRS): 

o Studied the influences of an electroactive Epoxy coating on the electrochemical 

behavior of CRS.  

o Evaluated the possibility of enhancing the corrosion protection property of 

electroactive Epoxy by the incorporation of Glass Flake. 

o Investigated the variation in the corrosion protection efficiencies of electroactive 

Epoxy/Glass Flake coatings at different loads of Glass Flake. 



 

 157 

o Demonstrated the impacts of the load of Glass Flake on imperative properties of 

electroactive epoxy such as interface adhesion, impact resistance and UV degradation.  

o Illustrated how the degree of dispersion in the polymeric matrix may vary with the load 

of Glass Flake.   

 Epoxy-Functional Glass Flake (E/FGF) composites on Cold Rolled Steel (CRS): 

o Studied the influences of an Epoxy coating on the electrochemical behavior of Cold 

rolled steel (CRS).  

o Evaluated the possibility of enhancing the corrosion protection property of Epoxy by 

the incorporation of Glass Flake (GF). 

o Investigated the variation in the corrosion protection efficiencies of Epoxy/GF coatings 

at different loads of GF. 

o Demonstrated the possibility of modifying the surface of GF by attaching Amino 

grafted saline functional group and study the role of the functionalization of GF on 

corrosion mitigating properties of Epoxy/Functional Glass Flake (E/FGF) composites.  

o Studied the influences of the load of FGF on the corrosion protection properties of 

E/FGF composites.  

o Illustrated the role of functionalization of GF on the degree of dispersion in the 

polymeric matrix.  

o Examined interface adhesion between Epoxy. E/GF and E/FGF E coatings and CRS 

substrates and illustrates the influences of the load of GF/FGF on such a significant 

property.  
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o Evaluated the influences of the incorporation and the load of GF/FGF on thermal 

behavior of Epoxy.  

 Epoxy-Functional Graphene (E/FGO) composites on Cold Rolled Steel (CRS): 

o Examined the corrosion protection property of an Epoxy coating on Cold rolled steel 

(CRS).  

o Evaluated the possibility of enhancing the corrosion protection property of Epoxy by 

the incorporation of Graphene Oxide (GO). 

o Investigated the variation in the corrosion protection efficiencies of Epoxy/GO coating. 

o Demonstrated the possibility of modifying the surface of GO by attaching Amino 

grafted functional group and study the role of the functionalization of FGO on 

corrosion mitigating properties of Epoxy/Functional Graphene Oxide (E/FGO) 

composites.  

o Studied the influences of the load of FGO on the corrosion protection properties of 

E/FGO composites.  

o Illustrated the role of functionalization of GO on the degree of dispersion in the 

polymeric matrix.  

o Examined interface adhesion between Epoxy. E/GO and E/FGO coatings and CRS 

substrates.  

o Evaluated the influences of the incorporation of GO/FGO on thermal behavior of 

Epoxy. 
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10.2 Future Work 

A variety of polymer based composites protective coatings products have been examined and 

evaluated for corrosion mitigation purposes. The current studies can be further extended to evaluate the 

prepared protective coatings in different environment. For instance, a salt spray chamber can be utilized 

in the future to evaluate the long-term corrosion resistance properties of the coatings with artificial 

defects. In addition, studies can be extended to illustrate the influences of the incorporation of Graphene 

or Glass Flakes materials on the biofouling property of Epoxy and other polymer resin. In particular, a 

number of studies in the literature have investigated Graphene based materials for water treatment and 

the possibility of using Graphene based materials for water purification. A biofouling study requires 

immersing coated samples in natural sea or ocean water for a long period of time while exposing the 

testing environment to natural sunlight. Such a study can be conducted in collaboration with a research 

facility in an area where the exposing the samples to sea or ocean water around the year is possible. In 

addition to biofouling study, the influences of the incorporated fillers in the mechanical properties of 

the different types of polymer resin can be evaluated. In this research, studies focused on impact 

resistance and bending properties, but further testing can be conducted to evaluate properties such as 

tensile strength and tensile modulus.   
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