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Abstract

This thesis is focused on the development of computer vision techniques for parsing web
pages using an image of the rendered page as evidence, and on understanding this under-
explored class of images from the perspective of computer vision. This project is divided
into two tracks—applied and theoretical—which complement each other. Our practical
motivation is the application of improved web page parsing to assistive technology, such
as screenreaders for visually impaired users or the ability to declutter the presentation of
a web page for those with cognitive deficit. From a more theoretical standpoint, images
of rendered web pages have interesting properties from a computer vision perspective; in
particular, low-level assumptions can be made in this domain, but the most important
cues are often subtle and can be highly non-local. The parsing system developed in this
thesis is a principled Bayesian segmentation-classification pipeline, using innovative tech-
niques to produce valuable results in this challenging domain. The thesis includes both
implementation and evaluation solutions.

Segmentation of a web page is the problem of dividing it into semantically significant,
visually coherent regions. We use a hierarchical segmentation method based on the de-
tection of semantically significant lines (possibly broken lines) which divide regions. The
Bayesian design allows sophisticated probability models to be applied to the segmentation
process, and our method produces segmentation trees that achieve good performance on a
variety of measures.

Classification, for our purposes, is identifying the semantic role of regions in the segmen-
tation tree of a page. We achieve promising results with a Bayesian classification algorithm
based on the novel use of a hidden Markov tree model, in which the structure of the model
is adapted to reflect the structure of the segmentation tree. This allows the algorithm to
make effective use of the context in which regions appear as well as the features of each
individual region.

The methods used to evaluate our page parsing system include qualitative and quanti-
tative evaluation of algorithm performance (using manually-prepared ground truth data)
as well as a user study of an assistive interface based on our page segmentation algorithm.
We also performed a separate user study to investigate users’ perceptions of web page
organization and to generate ground truth segmentations, leading to important insights
about consistency.

Taken as a whole, this thesis presents innovative work in computer vision which con-
tributes both to addressing the problem of web accessibility and to the understanding of
semantic cues in images.
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Chapter 1

Introduction

The focus of this thesis is the development of a computer vision system for parsing web
pages based solely on the visual appearance of the rendered page!. For the purposes of this
research, “parsing” refers to the process of determining the structure of the page content,
not the page implementation. This is quite distinct from the problem of parsing, for
example, the HTML source code of the page. Parsing the page content involves identifying
key regions in the page such as an article blurb or a header. This can be done using
evidence from the implementation of the page—and, as will be seen, this is a commonly-
used method—but it is a separate problem from parsing in the sense used in programming
languages. Our parsing method is based on a segmentation-classification pipeline. The
page is first segmented into visually coherent, semantically significant regions forming a
segmentation tree. These regions are then classified to identify their roles in the page,
resulting in a hierarchical parse tree of the page, including both the locations and roles of
the various regions that make up the page. Figure 1.1 shows this segmentation-classification
pipeline: the source code is rendered by the browser to produce an image of the page; the
segmentation algorithm produces a segmentation tree from the rendered page, and the
classification algorithm takes the rendered page and segmentation tree to produce a parse
tree, which is finally used for practical purposes by some other program such as a screen
reader.

There are a wide range of images that can be considered “man-made” in some sense.
In one sense, any photograph can be considered man-made, since it is technologically
produced, but this is not a meaningful distinction for computer vision applications, which

LOur published papers point to earlier versions of some of the work presented here, namely [32], [35],
[31] and [34] for Chapter 3 and [33] for Chapter 4.
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Figure 1.1: Diagram showing the segmentation-classification pipeline described in this
thesis in context, as a component of an assistive interface.

inherently require images captured by some form of man-made sensor. In the sense in
which we use the term here, man-made images are images in which the visual structure
of the image was produced intentionally, through a design process, rather than arising
naturally from projection of a scene without human intervention (although natural images
may form a component of a man-made image). Such images could include paintings and
drawings, as well as infographics, document layouts, and advertisements (when they are
not a simple photograph, which would be considered a natural image). We are particularly
interested in web pages as representatives of a sub-class of man-made images in which the
visual layout is intended to reflect the semantic structure of information, rather than the
physical structure of a scene.

A simple example of manual parsing of a web page can be seen with an examination of
a Google search results page. The page, shown in Figure 1.2, shows a web page structure
with many regions made distinct using a variety of cues. Figure 1.3 shows how the page
can be parsed, at a high level, by a user. The regions shown here are can be parsed
further into smaller regions. The main results section, for example (Figure 1.3c) can be
parsed into seven regions, each consisting of a link to, and excerpt from, one of the pages
returned as a search result. Each of these regions could be parsed further (based on colour
information) into the link, the URL, and the excerpt. Clearly, even a relatively simple
page with a minimalist design can produce a large and complex parse tree. Note also that
there are clear semantic differences between, for example, a search-result blurb and the
page header. For many applications it is reasonable to assume that these regions should be
distinguished based on their semantic role and treated differently, while two result blurbs
should be treated similarly.

This research has two complementary tracks: one applied, and one theoretical. The
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applied track is focused on the applications of visual parsing of web pages to assistive
technology, although the proposed algorithms are potentially useful in other areas such as
information retrieval and web design. The theoretical track consists of the development
of computer vision techniques for understanding this under-explored class of image using
principled Bayesian? methods. These two approaches support each other: theoretical study
of web pages as a class of images helps to inform the development of parsing algorithms
for this domain, while the application domain suggests desiderata for the output of these
parsing algorithms and experimental results from practical tests raise questions for further
theoretical research. Similarly, both tracks lead to important contributions. Assistive
technology is an important area of research, particularly considering the needs of an aging
population [62], and our work in this area contributes to providing more effective solutions
for web accessibility, as we will demonstrate through user studies and offline testing. More
theoretically, our exploration of web pages as a domain for computer vision algorithms
and our development of web page parsing algorithms with a strong theoretical grounding
provides valuable insights into computer vision, with broader implications for other classes
of image. Ultimately this thesis is best seen as research into computer vision, motivated
and guided by socially important applications to assistive technology.

Our initial motivation in studying visual parsing of web pages was to investigate the
possibility of improving web accessibility. Users with a wide range of physical, sensory,
and cognitive disabilities may struggle to use web pages as they are normally presented.
Visually impaired users, of course, have difficulty seeing the page, and individuals with
cognitive, reading, or learning disabilities can find it difficult to process cluttered and
content-heavy pages. Assistive interfaces, such as screen readers for visually impaired users
(which convert the depiction of a web page into an audio transcript), can help to address
these challenges, but the complexity of modern webpages creates significant challenges for
users of assistive interfaces. Screen reader users can, for example, find it difficult and
laborious to reach desired content in a page. While guidelines exist for making webpages
more accessible, research has shown that these best practices are often ignored [60, 131]

Existing assistive interfaces primarily use the source code or the Document Object
Model (DOM) tree® to determine the semantic structure of the page in order to create
an appropriate alternative presentation of the page. There are frameworks to assist in
the automatic interpretation of the source code structure, such as WAI-ARIA labels (see
Section 4.3); unfortunately, these are not consistently or reliably used by web designers.

2For the purposes of this thesis, we use the term “Bayesian” in the sense that we make extensive use
of Bayes’ Theorem in relating a priori and a posteriori estimates of probability. This is different from the
sense of systematic use of integration over parameters.

3An intermediate representation of the page produced by the browser



Furthermore, implementation details can change over time as new frameworks and language
versions are introduced (requiring corresponding updates to the parsing algorithm used by
the assistive interface), and some objects such as infographics are “black boxes” with
no internal structure visible through source code or the DOM tree. These factors lead to
problematic implementation-dependence for conventional methods for parsing the semantic
structure of web pages. A vision-based method using the visual appearance of the page
avoids implementation dependence by entirely avoiding the implementation of the page,
focusing instead on the rendered page produced by the browser.

More fundamentally, the designer or designers of a web page create the visual appear-
ance of the page to clearly and simply convey the semantic structure of the page contents to
“typical” users (as the designers imagine them). The source code of the page, in contrast,
is simply designed to produce the correct appearance and functionality. We therefore argue
that the visual appearance is in some sense “closer” to the intended semantic structure of
the page. Of course, the visual appearance of the page is designed to be clear to humans
rather than to machines; as a result, sophisticated computer vision methods must be devel-
oped in order to leverage the visual appearance of the page in a page parsing algorithm. It
is the development of these methods, and their implications for computer vision research,
that form the core contributions of this thesis.

Our research contributes to the study of parsing a broader class of man-made images
in which, as in web pages, visual cues (e.g., layout, alignment, and background colour)
are used to convey semantic relationships between regions. Web pages have particularly
useful features as exemplars of this class of image, since the rendering process results
in “well-behaved” low-level properties, and there are vast numbers of readily-available
examples. As an example, while many images in this class can be modelled by rectangular
regions, only rendered images such as web pages guarantee that these regions are aligned
to the image axes; it is therefore possible to ignore the initial stage of estimating the
transformation between the coordinate systems of the image and of the document. Of
course, a document could in principle be aligned sufficiently carefully with a scanning
system and made sufficiently flat to make the image and document coordinate systems
identical, but this process would be very labour-intensive and may not be possible for rare
or valuable documents (for example, it may not be possible to flatten the pages of a book
enough to avoid distortion near the spine without damaging the binding). As a result,
using the rendered image of a web page allows the study of the higher-level properties
without relying on preprocessing steps which may be time-consuming or introduce errors.

Images of web pages have a number of interesting properties from the perspective
of computer vision research. Although they are man-made images rather than natural
images, they are designed for human perception, not for the strengths of computer vision



algorithms. Some useful assumptions about the properties of these images can be made.
Because web pages are rendered images, the “camera” position is not arbitrary; the image
axes are significant without any additional alignment step. Similarly, there is no need
to account for blurring of the image or perspective projection outside of natural images
embedded in the page, and it is often sensible to treat embedded natural images (as opposed
to infographics or other images that behave as complex document components) as atomic
objects in the page. At a higher level, it is reasonable to assume that regions in the
web page have axis-parallel rectangular boundaries due to common design conventions
and the convenience of implementing such regions in the CSS box model [66]. Despite
these assumptions, however, parsing a web page still requires the interpretation of complex
cues such as long-range alignments, complex layouts with large numbers of regions and
potentially deep hierarchies, and the presence of regions of many different types (including
text, natural images, line drawings, and many others). As a result, images of web pages
can be seen as an intermediate class between natural images—with all the complexity of
natural scenes—and the toy problems often used for testing specific aspects of a computer
vision algorithm in a controlled setting. As a domain, images of web pages are restricted
but not trivial, making them an excellent domain for the development of sophisticated
algorithms grounded in a principled analysis of the properties of a class of images, with the
potential for extending these algorithms to natural images. In fact, due to the ubiquity of
web pages, their persistence across many types of devices, and the fact that they are used
by nearly everyone, this under-studied class of images is especially valuable to examine.

Image segmentation is the process of dividing a page into semantically meaningful re-
gions. Our proposed segmentation algorithms take a hierarchical, top-down approach,
recursively dividing regions until no further divisions are possible. This produces a seg-
mentation tree, in which small regions are grouped together as the children of the larger
regions that contain them. Both segmentation algorithms presented in this thesis use as
evidence the presence or absence of lines in the page.

A Bayesian framework is used to determine the likelihood that semantically significant
lines exist, and these estimates are used to find divisions in each page given the page
image and a prior probability distribution over segmentation structures. Each region is
divided according to the maximum a posterior: likelihood segmentation of the region. Our
approach uses a Bayesian segmentation architecture, in which successive edge detection,
line detection, and segmentation steps are performed in a Bayesian setting. This principled
Bayesian approach is particularly advantageous for this class of images: assumptions about
segmentation structure can be made because of the restricted domain. These assumptions
are sufficient to narrow the search space in order to make the search for a high-quality
segmentation tractable. Within this framework, we are able to perform experiments to



test the effects of different prior probability distributions and probability models. Also of
interest is that by using explicitly calculated probabilities based on suitable prior proba-
bility distributions rather than an unnormalized energy function we are able to determine
thresholds based on probabilistic reasoning (e.g., accepting divisions that are more likely
to be valid than not). The fact that taking our algorithms’ probability estimates as gen-
uine probabilities produces plausible segmentations, is evidence for the validity, at least in
broad terms, of these models.

Segmentation is valuable in that it tells us where the semantically significant regions
of the page are, but for many applications it is also important to know what these regions
are. Classification of regions in the segmentation tree is therefore an important process.
Our classification algorithm takes as input the segmentation tree and the image of the
page. From this input the segmentation algorithm creates feature vectors describing each
region in the segmentation tree. It is reasonable to expect, based on knowledge of web
page structure, that regions of similar appearance will have different roles depending on
their context in the page. Consider, for example, a line drawing. If the line drawing
appears in the header of the page, it is likely to represent the logo of the web site or the
organization which owns it; it if appears in the main article, it is more likely to represent
some sort of diagram or illustration. It is therefore important to use a rich and informative
representation of the context of each region in the page, including the roles of its parent
and child regions. It is also desirable to use a Bayesian approach to classification, for the
same reasons that this is a desirable approach for segmentation. Both of these objectives
are accomplished through the innovative use of a probabilistic graphical model called a
hidden Markov tree (HMT). The structure of the HMT is adapted to each page to reflect
the structure of the segmentation tree; regions are classified by simultaneously finding the
MAP (maximum a posteriori) labels for all regions.

Returning to the applied track, it is worth considering in more detail the types of
assistive interfaces a visual parsing system could support. Although a high-quality parsing
algorithm could in principle support a wide range of assistive features, in our work we focus
on the application of our system to three types: screen readers, magnifying interfaces, and
decluttering interfaces.

A major component of browsing the web is locating content areas within each page
and assessing that content against current information needs. While sighted web users can
quickly locate main content areas on the page and skim them for relevance, users with severe
visual impairment relying on screen readers are often forced to process content sequentially.
Because this can be a slow process, screen readers typically provide mechanisms for skipping
forward. For example, users can often jump ahead by using structural markers (such as
<h> tags) to move between content areas [19]. Unfortunately, such approaches rely heavily
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on the quality of the underlying code. The code structure also tends to be complex,
resulting in page segmentations that consist of many small segments of text. As a result,
screen reader navigation is much more difficult than browsing a page with full access to two-
dimensional visual cues. An analogy with computer games may illuminate the difficulty
of navigating between regions in a page with a screen reader. Compare the problem of
navigating through a maze-like level with a clear overhead view, to navigating through the
same level in a text adventure game such as “Adventure” [37]; it is clearly much easier in
the former case. A web page implementation that does not reflect the semantic structure
of the page contents, or has misleading cues due to constructions used in contexts for which
they were not intended, can leave users of screen readers and other assistive technology “in
a maze of twisty little passages, all alike” [37].

Not all users who are visually impaired require a screen reader program. For some,
it may be sufficient to simply present regions at a larger scale. Individuals with certain
types of cognitive impairment can also benefit from larger text [107]. Simply enlarging
the entire page may obscure the large-scale organization of the page, however. Similarly,
accessibility features such as Windows Magnifier or the Picture-In-Picture Zoom on Mac
OS X, which use a fixed magnification boundary, may not allow the user to read an entire
visually coherent region at once. We propose an interface which selects an entire visually-
coherent region to enlarge as an overlay, as shown in Figure 1.4a. Allowing the user to
reposition the overlay would assist in maintaining context in the page, as the users could
uncover nearby regions at will to select the next region they would like to enlarge. Another
avenue to explore would be to combine this approach with a “fisheye” distortion around
the enlarged areas (as discussed by Furnas [50]) so that the enlarged area does not obscure
any of the content; this, however, may prove confusing or distracting for some users.

Figure 1.4b shows another possible adaptation that could be achieved with our seg-
mentation, this time designed for users with cognitive impairments or attention deficits.
In this design mock up, all segments of the webpage are greyed out except the one cur-
rently selected. This approach could help users to maintain control over their area of focus.
Other methods, such as blurring, could be used instead of or in combination with greying
out non-focus regions, depending on what method is found to be most effective for users
in general or on the preferences of individual users. Both magnification and decluttering
(based on greying out non-focus regions) are available in the prototype assistive interface
tested in Chapter 5.

The remainder of this thesis is organized as follows. In Chapter 2, we discuss back-
ground information that is helpful in understanding the motivation for this research in
more detail. This includes the state of assistive technology on the web and the reasons to
believe that a vision-based approach holds promise. Chapters 3, 4, 5, and 6 form the core
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of the thesis; each focuses on one major aspect of the thesis research. Chapter 3 describes
the segmentation algorithms developed and the experiments used to evaluate them, in-
cluding both qualitative and quantitative results. Chapter 4 describes our work on region
classification, using a hidden Markov tree model. Chapter 5 describes a study of an assis-
tive interface based on our segmentation algorithm, and includes discussion of a user study
and offline tests of the complete system. Chapter 6 describes our research into human
perception of the semantic structures of web pages and methods for eliciting ground truth
segmentations (methods which are in many respects applicable to other domains as well).
Having presented the research performed in the course of the thesis, we move on to discuss
related work in more detail in Chapter 7, and contrast existing work with our approach to
demonstrate its novelty. Finally, in Chapter 8, we summarize the key contributions of our
work and discuss the avenues for future research that it has revealed.
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Chapter 2

Background

In this chapter we discuss the context which motivates our work in the visual parsing of
web pages. The purpose of this chapter is to provide necessary background information
prior to the discussion of the research performed in the course of this thesis; as such, the
focus is not on the detailed mechanics of related work, but rather on the broader issues
involved. Detailed comparisons of approaches to web page parsing and assistive technology
are presented in Chapter 7. We begin with a brief description of some important features
of the web page rendering process that influence the work described in this thesis. Having
laid this groundwork we discuss, in general terms, how assistive technology works on the
web today and what challenges remain to be addressed in this area. In Section 2.3, we
discuss why, given the considerations described in previous sections, vision-based web page
parsing is necessary. The discussion of the motivation for using vision-based parsing is
continued in Section 2.4, which discusses more theoretical reasons for the study of images
of web pages from the perspective of computer vision. Section 2.5 provides background
information related to image segmentation and region classification, as these are the two
key steps in our segmentation-classification pipeline.

2.1 Web Page Rendering

Although we do not propose to discuss in detail the entire page rendering process, as most
of the complexities of the process are beyond the scope of this work, it is useful to provide
some background information about those aspects of the process that directly affect page
parsing tools.
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Modern web pages are complex, and are implemented through a variety of languages
and frameworks. HTML provides a skeleton and some of the appearance of the page; other
aspects of the appearance are controlled using CSS (Cascading Style-Sheets). Many pages
also have dynamic content implemented in Javascript and other scripting languages (e.g.,
infinite scrolling and cycling headlines). The process of rendering a web page is, therefore,
the process of generating the visual appearance of the page as displayed from this complex
source code. Web development is a complex area, and both standards and practices evolve
quickly. The complexity and rapid change in the way web pages are implemented is a major
challenge for assistive interfaces that rely on interpretation of implementation details to
present the page appropriately, and is one factor in motivating our vision-based approach.

Because of the complexity of the implementation of a modern web page, a common
representation is needed. This common representation is provided by the Document Object
Model (DOM) tree. The DOM is an object-oriented logical model, defined in a W3C
recommendation [108]. The description of a document in the DOM takes the form of a
tree or forest, reflecting a hierarchical logical organization of the document structure [103].
A DOM representation of a page is created by web browsers as an internal representation
of the page during the rendering process; this is generally known as the DOM tree, to
reflect its hierarchical structure. Scripts and extensions can read and alter the DOM tree.
Dynamic content can be implemented through scripts modifying the DOM tree; an assistive
interface can be implemented by reading the DOM tree and either modifying it to provide
an alternative presentation on the screen or producing an entirely new presentation such
as a audio stream. As will be shown, this is a very common approach, but one which has
important drawbacks.

Most web pages are based on axis-parallel, rectangular objects. The CSS box model,
for example, models each region as a rectangular content region plus surrounding padding,
border, and margin areas [(66]. Broadly speaking, this is a reasonable structural assump-
tion for typical content. Most photographs, for example, are rectangular; paragraphs are
approximately rectangular; articles are made up of stacks of paragraphs; and so on. There
are occasional exceptions, but in most cases an axis-parallel rectangle is a good model for
units of content. As a result of the strong tendency toward axis-parallel rectangles in web
pages, we are able to make useful assumptions in our vision-based methods.

2.2 Assistive Technology and the Web

The complexity of modern webpages creates substantial accessibility barriers for users with
a wide range of physical, sensory, and cognitive disabilities. For example, screen reader

12



users can find it difficult and laborious to reach desired content in a page, while individuals
with cognitive, reading, or learning disabilities can find it difficult to process cluttered
and content-heavy pages. While guidelines exist for making webpages more accessible,
research has shown that these best practices are often ignored [0, |. In response to
these challenges, researchers have explored a number of approaches to segmenting pages
and reducing page complexity.

2.2.1 Screen Readers

A screen reader is a program that converts content originally displayed visually on a screen
into an audio stream; these programs are used by users with visual impairments to access
content which would otherwise be unavailable to them. Although screen readers are an
important means of accessing online content for users with severe visual impairments, there
are significant challenges in using them effectively. A sighted user with access to the two-
dimensional rendered page can quickly shift focus from one region of the page to another
with a mere eye movement. A screen reader user, on the other hand, must navigate between
regions by explicitly redirecting the focus point of the screen reader program. This must
also be done with limited or no direct access to the layout cues used to express the structure
of the page.

Many popular screen readers such as Google’s ChromeVox [53], Apple’s VoiceOver [7],
and NVDA [97] are based on the source code or the DOM tree of the page to interpret and
read out the content of the page. These methods can be readily integrated into a browser,
but they suffer a number of important drawbacks. It is often difficult to distinguish between
important and unimportant content solely based on source code. A block of text under a
“<div>" tag could be a highlighted warning or summary of interest to all readers interested
in the content of the page; alternatively, it could be a boilerplate copyright statement that
is irrelevant to most users. This can easily result in “cluttered” output that wastes users’
time on irrelevant sections of the page. Furthermore, as web languages and especially
web frameworks evolve quickly, different websites might use different technologies for the
development of their web pages, even when the visual appearances of the rendered pages
are very similar. Methods such as source code analysis would require constant updates to
comply with new standards, which is not scalable. Many modern web pages load content
dynamically using scripting languages such as Javascript; the resulting changes in the page
represent an additional challenge for any screen reader.

Various accessibility frameworks have been proposed to help address these issues. WAI-
ARIA (or, more commonly, “ARIA”) role labels are intended to allow web developers to
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include semantic labels for elements within the source code, for the use of screenreaders
and other assistive interfaces [129]. ARIA role labels are discussed in detail in Section
4.3. These labels, however, are often not included in the implementation of the web page,
and cannot in any case be applied to elements within images or Flash objects [19]. As
with many other aspects of accessible web design, ARIA labels are often ignored or used
inconsistently in web site development. Because they are a server-side technology and must
be incorporated into the development process, supporting frameworks and standards such
as ARIA labels imposes a burden on developers to support a relatively small proportion
of the user base, and is therefore likely to be abandoned to cut development costs.

One method used in popular screen readers to facilitate understanding of the layout of
a web page is an adjustable level of verbosity. When configured for high verbosity, screen
readers can explicitly state when a frame begins, when images appear on web pages, and
other formatting information. Some users enjoy a high verbosity screen reader because it
can help to create a mental model of the web page in their minds; adjustable verbosity is
intended to allow users to receive the level of detail that is most useful to them. It may be
valuable to think of low vision users performing web page rendering in their mind, using
the output of a screen reader as their own “source code” to generate the display of the web
page in their own mental model. It is important to note, however, that we do not claim that
this model is the same as the visual appearance of the page as rendered by a web browser;
it is possible that these users imagine a different set of cues for semantic structure. Goble
et al. discuss how web navigation differs between visually impaired and sighted users, and
include a discussion of how this relates to physical navigation [52]. Current screen reader
technology detects semantically significant formatting and layout cues primarily based on
the DOM tree and source code of the page [53] [7] [97]; it is reasonable to believe that there
is room for improvement using solutions from computer vision to more accurately describe
these cues, especially when the implementation of the page does not follow best practices
or is otherwise unclear.

Screen readers have been the most prominent area for research into advanced assistive
technology for the web, although the principles developed in this domain have great po-
tential to be used in other types of assistive interfaces. Asakawa and Takagi [11] developed
a system that transcodes existing Web pages with manual annotations to add structure
that can be used for reordering visually fragmented grouping according to performance.
Because manually annotating pages is very labour intensive, follow-on work focused on
automatically annotating similarly structured pages across multi-page websites [121]. Yesi-
lada et al. [136] use a structured ontology to identify visual segments in a web page and
re-engineer pages to facilitate navigation using a screen reader. Mahmud, Borodin, and
Ramakrishnan [39] introduced CSurf, a system that uses web page partitioning techniques
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from natural language processing and machine learning to capture the context of a link
to enable the screen reader to start reading the next page starting from the most relevant
section. HearSay [18] extends this approach to additionally facilitate movement between
the segments of a page.

2.2.2 Other Assistive Interfaces

Where work has targeted cognitive accessibility on the web, it has often focused more on
the viability of potential supports than on the technical challenges associated with imple-
menting them. Lee explored the general acceptability of a number of scaffolds for managing
visual complexity, including visually highlighting core content, reading content aloud, and
rendering page segments as buttons [85]. While these features received positive support
from two groups of informants (people working with seniors and working with individu-
als who have developmental disabilities), the paper did not address how these supports
could be implemented at large. IBM developed an enhanced open-source browser that
provided a wide range of accessibility transformations, including—through manipulations
of the web page’s DOM tree—clutter-reducing features such as adjustment of font-size and
line-spacing, stopping animations, hiding backgrounds, and reformatting pages for a single-
column layout [53]. While these enhancements can help users to manage page complexity,
they do not directly address the problem of excess content. Kurniawan et al. compared
five different personalized web page presentations [33]. While the tools included in their
evaluation were quite different from the approach we consider here, two important lessons
emerge: first, personalization places extra demands on the user which must be balanced
against the benefit gained from the personalization; and second, approaches that remove
or filter content create a trade-off between simplification and faithful representation. Thus,
approaches that can ease reading and navigation while preserving layout and content will
generally be preferable.

2.3 Practical Motivation for Visual Parsing

Our vision-based approach to the problem of parsing web pages is motivated by the im-
portant practical advantages of this type of approach. In this section we discuss the first-
principles reasons to believe that a vision-based approach is not only viable but preferable
to other methods.

It is important to consider the purposes of the visual appearance of a web page, its
DOM tree, and its source code. The designer of the page designs the layout and other visual
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cues—colour, alignment, whitespace, borders, and so on—to convey the semantic structure
of the page to a “typical user” as imagined by the designer. Furthermore, these cues are
intended to be perceived by viewing the page on a screen, not as a list of properties. The
primary role of the source code is to produce the desired appearance (as well as functional
features of the page such as comment sections and dynamic content). Through frameworks
such as ARIA labels, it is possible to support additional functions (including accessibility)
in the source code; although useful, however, these additional features are often neglected
due to complexity, cost, development time, or simple lack of awareness. Even clarity of
structure and standards compliance may be sacrificed in order to meet a schedule or budget.
The DOM tree of the page is a standardized representation of the page produced by the
browser during the rendering process; it does not contain anything that is not specified
(implicitly or explicitly) by the source code and any subsequent modifications by scripts.
As a result of these considerations, we can conclude that an image of the page is in some
sense “closer” to the semantic structure of the page than the implementation mechanisms
such as the source code or the DOM tree.

Vision-based parsing of web pages has the important advantage of implementation
independence. Even if some content is not generated through the standard web page
rendering process, a vision-based parser can understand its structure. A notable case where
this occurs for part of the contents of a page is images that contain structured content.
While it is often possible to obtain the same layout and presentation using HT'ML and CSS
(especially with HTML5), images are still very commonly used for graphs, infographics,
and other types of structured content. These images are “black boxes” from the perspective
of a method that relies on HTML and CSS source code or the DOM tree of the page, but
an image of the rendered page shows the contents of these objects as a user would perceive
them. Vision-based parsing therefore allows seamless parsing of embedded content that
is inaccessible in the DOM tree, including images and Flash objects. In some cases the
implementation structure is visible but difficult to interpret. In modern web pages, many
regions are defined using <DIV> and <SPAN> tags, differentiated only by CSS class names,
which may vary between pages for similar content.

Implementation independence also applies to changes in language versions. Page pars-
ing systems that rely on the source code or DOM tree often have rules specific to HTML
tags or other features, which may change over time, as in the transition from HTML 4.0.1
to HTML5, which introduced many features including the versatile <CANVAS> element,
which allows complex drawing operations. Parsing algorithms designed for one version
obviously cannot make use of new features introduced after they were designed without an
update, which imposes a significant maintenance burden. The significance of this is best
shown through an example.
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VIPS [22], proposed by Cai et al. in 2003, is one of the most prominent DOM tree-
based segmentation algorithms and has inspired a considerable number of descendants.
It is based on a set of rules that determine when and where the algorithm should divide
a region. The following tags and DOM node types are given special treatment in these
heuristics:

e Inline text nodes

e <TABLE>, intended to represent a table but often used for layout, especially at the
time

e <TR>, representing a table row
e <TD>, representing a table cell

e <P> representing a paragraph

Additionally, HTML tags are used to determine the degree of coherence for a given block in
the segmentation, which plays an important role in guiding the segmentation process. New
tags introduced in HTML5 would, at best, simply use the default set of rules and a default
degree of coherence value; to include the new tags would require a extending the algorithm
to recognize them and determining the appropriate way to process them—a significant
amount of work. Akpinar and Yesilada have provided an updated version of VIPS that
can handle new tags [2, 3]; the maintenance burden is not necessarily insurmountable,
but it can be significant, especially given the smaller community of developers working on
accessibility technology than on the core functionality of browsers like Google’s Chrome.
The problem of smaller user and developer communities is discussed in [119], which touches
on users’ impressions of the issue.

A purely image-based algorithm, on the other hand, has no interaction with the page
source code; only the appearance of the rendered web page affects its performance, so it
is not sensitive to implementation details. It would, therefore, require much less (if any)
modification to support new technology. As browsers are updated to properly render new
versions of HTML, CSS, or other implementation languages, the assistive interface could
make use of this work by simply capturing and analyzing the rendered page, thus reducing
maintenance requirements for the corresponding assistive interfaces.

17



2.4 Web Pages as a Computer Vision Dataset

In addition to the specific pragmatic reasons for studying vision-based parsing of web pages,
there are more general reasons to study this problem, and it has implications for computer
vision more generally.

Images of web pages are designed to take advantage of human perceptual cues. These
cues evolved in the context of natural scenes, but a web page looks very different from
a natural scene. Studying the similarities and differences between these classes of images
may offer important insights into what makes these cues fundamental, and what cues may
be culturally determined rather than innate. Furthermore, images of web pages are man-
made and designed to be simple to interpret, but are designed to take advantage of human
perceptual cues rather than the strengths of computer vision algorithms. We suggest,
therefore, that such images form a useful intermediate class between toy problems (where
the image class is designed or selected to play to the strengths of computer vision) and
natural images (where few simplifying assumptions can be made).

2.5 Computer Vision Segmentation and Classification

In this section we briefly describe some established computer vision solutions for image
segmentation and region classification, in an effort to situate our approach with respect
to the field. Chapters 3 and 4 present our solutions for segmentation and classification,
respectively, in detail.

2.5.1 Edge Detection

Edge detection is one of the key low-level problems in computer vision. Many higher-level
algorithms assume the existence of some form of edge detection or include an edge detection
method suitable to their needs in the algorithm. Snakes, active contours, and level set
methods are a good example of such algorithms, which perform higher-level detection of
semantic contours and segmentation based on low-level edge detection.

Perhaps the most famous paper in edge detection is Canny’s 1986 “A Computational
Approach to Edge Detection” [23], which systematically defined criteria for optimal filters
for detection of arbitrary edge types, focusing on the development of a step-edge detector.
Canny defined three principal criteria for a good edge detection algorithm:
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e Good detection requires that the edge detection method have a low probability of
false negatives and a low probability of false positives; a perfect edge detector would
report an edge if and only if an edge exists.

e Good localization requires that the detected edges correspond well in location to
the true location of the edge; a perfect edge detector would place each detection
exactly on the center of the edge in the image.

e Single detection requires that edges in the image do not produce multiple edge
detector responses; a perfect edge detector would detect each edge in the image
exactly once.

Adaptive thresholds for edge detection are critical to the performance of many algo-
rithms. Heath et al. [64], for example, demonstrated that selecting parameters for edge
detection algorithms on a per-image basis provides a significant improvement in perfor-
mance, as rated by human judges, for several common edge detectors.

The locally adaptive thresholding technique described by Rakesh et al. [100] uses
statistical methods. This covariance-based approach, like our method for estimating the
probability that an edge is locally significant, uses the local distribution of estimated
gradients to determine whether an edge is sufficiently strong relative to its neighbourhood
to be detected as an edge. There are a number of differences in details, such as the use of
a soft kernel-based neighbourhood by Rakesh et al., but the principal differences are that
our method uses Bayesian statistics to produce an estimate of the probability that an edge
is locally significant, rather than producing a score which is then thresholded, and that
our method uses a nonparametric estimate of the complete distribution of edge strengths
rather than using summary statistics such as the covariance matrix. We believe that the
use of a nonparametric representation of the distribution of edge strengths is advantageous,
especially in our domain where the distribution is very far from a Gaussian as shown in
Figure 2.1.

Statistical models of image properties can also be used in edge detection (e.g. [38]
and [13]). Our system uses a different approach to statistical edge detection. Rather than
comparing a pair of windows in the image, we compare a single measurement of preliminary
edge strength to a pair of adjacent neighbourhoods, using a nonparametric representation
of the distributions of preliminary edge strengths in these regions. Our approach is intended
specifically to find the edges of the texture elements (such as characters in a paragraph of
text) at the edges of texture regions; in the domain of rendered web pages, it is reasonable
to assume (due to the rendering process) that these edge segments will be very precisely
aligned.
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Figure 2.1: Histogram of gradients in a dataset of 100 web pages (gathered from the Alexa
list of top web pages in Canada). Note that the vertical axis is shown on a logarithmic
scale; most pixels in the dataset have zero gradient, and a linear scale would obscure the
structure of the rest of the distribution.

One example of edge detection by learning the appearance of edges is the system pro-
posed by Konishi et al. [78]. In this approach, images were processed with filter banks
to produce vectors of filter responses for each pixel. Like our approach to edge detection,
Konishi et al. used a nonparametric model to estimate edge probabilities. In the case of
our algorithm, however, this distribution is derived solely from the neighbourhood of the
pixel in question. This is an important difference. Our algorithm is also based on a prior:
assumptions about the properties of the domain, while the algorithm described by Konishi
et al. focuses entirely on learning from the data.

2.5.2 Image Segmentation

The problem of image segmentation is, put simply, the problem of partitioning an image
into semantically meaningful regions. It is a complex and ill-posed problem. In many
cases, multiple different segmentations can be considered “correct”. A remarkable range
of approaches have been taken to image segmentation

Our page segmentation method uses edges as the primary evidence for segmenting a
page. This approach to image segmentation has a long history in computer vision. It is
an intuitively appealing approach; it is reasonable to expect that semantically significant
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regions are likely to have a different appearance from their surroundings, and this will
often create strong edges along the border between regions. The borders of regions are one
way of defining a segmentation of the image, so edges are an appealing form of evidence
to examine.

A classic example of edge-based segmentation is the snake model proposed by Kass et al.
in 1988 [71]. Snakes are dynamic splines, moving under physically-inspired forces to nearby
semantically significant contours. Active contour methods are related to our approach in
that they produce segmentations supported by edges while imposing structural constraints
on region shapes. The structural assumptions made by our method are, however, very
different from those made by active contours. Because of the web page rendering process,
we assume that the relevant edges are straight and axis-parallel, while most active contour
methods penalize but allow strong curvature if it is supported by evidence in the image. Our
segmentation system is also inherently hierarchical, and incorporates a prior probability
distribution over segmentation trees.

Graph cut clustering has historically been a prominent technique in image segmentation.
Broadly speaking, graph cut clustering uses a graph representation of data in which nodes
in the graph represent data points (generally pixels or superpixels in the case of image
segmentation), and the weighted edges between nodes represent affinity between the data
points. The algorithm produces from this initial graph two or more disjoint clusters of data
points by cutting edges. The edges to be cut are chosen to optimize an objective function
based on their weights, possibly under other problem-specific hard or soft constraints.
Different objective functions and constraints produce different algorithms (e.g. Wu and
Leahy’s minimum cut algorithm [133] and Shi and Malik’s normalized cut algorithm [117]).

Methods based on segmenting an image into foreground and background regions can be
augmented with a shape prior for the foreground region, implemented by adding a shape
term to the objective function. One interesting example of this is the star shape prior
proposed by Veksler [126]. Strong results from this work demonstrate the utility of a shape
prior in segmenting natural images. Our page segmentation algorithm uses a shape prior in
which regions are required to be rectangular; in our case, the use of the shape prior reflects
the known properties of the domain and allows easier optimization of our probabilistic
objective function. Veksler’s approach also allows the sensitivity of the affinity of edges
to adapt to local changes in the prevalence of edges. Although implemented differently,
the objective is similar to our use of the local distributions of edge detector responses to
estimate the probability that a possible edge is locally significant (see Sections 3.2.2 and
3.3.1).

Another common method for Bayesian image segmentation is the use of Markov random
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field (MRF) models, which express spatially localized probabilistic relationships between
regions. Related to the MRF model is the conditional random field (CRF) model [31].
The objective of the CRF model is to explicitly model the joint conditional probability
distribution of a set of labels given a set of observations. In the case of image segmentation,
the labels are generally region assignments and the image data constitutes the observations.

Although MRF and CRF techniques are principled, Bayesian algorithms, they differ
significantly from the approach taken in our algorithms. Our approach explicitly finds the
probability that specific cues truly exist in specific places in the image (e.g., estimating
the probability that an edge is significant with respect to its local neighbourhood, or that
a semantically significant line exists between two points). The problem is divided into
a series of stages, with higher-level cues building upon lower-level cues to produce the
segmentation. Most segmentation algorithms based on random fields (e.g., [63]) estimate
the probability of an assignment of segmentation labels to the pixels (or superpixels) in
the image. Our approach of more gradual assembly fits well with the edge-based approach
(although edge-based potentials can certainly be implemented in random field models)
and with the intended prior probability distribution over segmentation trees, and is an
intuitively appealing approach to web page segmentation.

2.5.3 Region Classification

Region classification, in the sense used in this thesis, is the process of associating semantic
labels with regions in a segmentation of an image. This approach is not as common
in computer vision as simultaneous segmentation and classification (described in Section
7.1), or object detection. Object detection finds objects of a specific class or classes in
an image, but only provides a coarse localization through a bounding box. Although
not the largest area of research, there are computer vision algorithms that are designed
specifically to perform region classification. It is also worth noting that region classification
can be addressed using general classification methods from machine learning, with only the
features used to describe regions being derived from computer vision.

Our region classification approach represents a novel classification method well-suited
to the problem of classifying regions embedded in a hierarchical segmentation tree: intro-
ducing a hidden Markov tree (HMT), as described in Chapter 4. The use of an HMT with
a global structure corresponding to the global structure of the segmentation tree provides
a sophisticated and principled means of accounting for context without requiring context
features. It allows joint inference of the maximum a posteriori assignment of labels over
all regions in the image, while the guaranteed tree structure of the model allows efficient
inference.
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While our HMT-based approach to region classification is novel, hidden Markov trees
have been used in other ways in computer vision, especially when working in the wavelet
domain. Wavelets are a class of alternative representations of images; the wavelet transform
is broadly analogous to the Fourier transform in that it is a change of basis to an alternative
representation which is more appropriate for some types of analysis. The HMT of the form
proposed by Romberg et al. in [I11] has its statistical model explored in depth and many
aspects of the statistics of wavelets in natural images are examined.

While the structure of the HMT shown in this research appears superficially similar to
the structure of our own segmentation tree, there are important differences. Aside from
its size, the structure of the wavelet HMT is fixed, not only locally but globally. It is
not based upon a segmentation which adapts to the structure of the image, but rather on
fixed fields in the image. Rather than representing a high-level object or region class, the
hidden states in the wavelet HMT represent components of a mixture model from which
the wavelet coefficients are drawn. We do not claim that the wavelet HMT is inferior to
our own HMT classification model; it is a powerful model of the statistical structure of
an image with many applications. Our HMT for classification simply solves a different
problem, and so while it interesting to compare the two in terms of structure, the models
do not compete with each other.

In [110], Romberg et al. used an HMT to classify textures in an image. The sys-
tem simultaneously segments the page into regions of consistent texture and classifies the
textures. This classification algorithm works at the level of textures and uses a fixed tree
structure. Our classification algorithm uses much higher-level classes, and adapts its struc-
ture to an existing segmentation tree. Despite the superficial similarities, our system is
very different in its assumptions and its approach to the classification problem.
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Chapter 3

Web Page Segmentation

In this chapter we discuss the segmentation algorithms developed in the course of this
thesis. These algorithms form the foundation of the other experiments described in this
thesis; segmentation is the first stage in the segmentation-classification pipeline we examine
here. Section 3.1 describes the motivation for developing these segmentation algorithms
with respect to both applications and computer vision research more broadly. Section
3.2 describes the first algorithm developed, and Section 3.3 describes an improved version
developed based on the results of the first. In Section 3.4, we describe possible applications
of the segmentation algorithm in more detail. Note that in Chapter 7 we discuss how our
segmentation methods relate to computer vision in general.

3.1 Motivation

From an application perspective, our research into vision-based page segmentation is moti-
vated by assistive technology for the web. The objective of vision-based page segmentation,
in the sense used here, is to determine the hierarchical structure of a web page layout using
visual cues, without reference to the implementation of the web page. Our intention is
for this system to serve as a back-end system, supporting front-end systems that reformat
the web page for presentation to the user. Many such front-end systems, such as screen
readers, exist today. FExisting back-end systems for depicting web pages may use visual
cues, but extract them from visual attributes defined in the code. As code-based analysis
is brittle, we want to instead leverage the image of the rendered page. We believe that this
approach has three principal advantages:
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1. It does not depend on the quality or implementation language of the underlying code
(provided that the browser’s rendering engine can handle it).

2. It allows for semantically significant divisions within images, Flash objects, and other
entities that are treated monolithically in HTML or CSS code.

3. Perhaps most importantly, it analyses the web page’s structure using as evidence the
page designer’s view of the page (the appearance of the rendered web page)®.

Essentially, the advantage of an image-based analysis is that it depends not on the details of
how the visual structure of the page is produced, but rather on what the visual appearance
is. It uses exactly the information seen by users who do not require assistive technology
to make the same type of inference about the structure of the page contents. In this
chapter we present a robust, extensible Bayesian framework, grounded in a formal model
of web page appearance, for performing image-based segmentation of a web page, together
with a comparison between the results of such an analysis and more traditional code-based
techniques. As we shall see, assistive technology systems that rely on source code-based
segmentation algorithms face challenges when there are, for example, images or Flash
objects in the page. These algorithms would only be able to treat these objects atomically,
and would be unable to detect their internal structure. As a result, users who require
distracting content to be suppressed would not be able to select only parts of these objects
for display.

Concrete applications of a page segmentation system include magnification and declut-
tering. Magnification can be useful for users with impaired vision (much like large-print
books are). Decluttering can be helpful for users with cognitive impairments such as at-
tention deficits [5], or those who simply prefer less-cluttered pages and interfaces. The
latter class includes elderly users [92], who may also benefit from magnification. These
interfaces are discussed in greater detail in Section 3.4. Segmentation can also serve as the
first stage in a parsing system based on a segmentation-classification pipeline. Classifica-
tion can considerably extend the range of uses of the parsing system, and is discussed in
Chapter 4.

From the perspective of computer vision research in general, web page segmentation is
an interesting problem for several reasons. First, the domain of web pages allows the use
of valuable assumptions about region structure. With these assumptions the process of

!This is similar to the view of Saund and Moran, who argued (in the context of an image editor) that
is desirable to consider visual objects that reflect what users are likely to perceive and want to manipulate

[115].
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optimizing over segmentations can be simplified, and more sophisticated techniques that
would be too slow with more general region types can be evaluated. Second, the cues used
to indicate region structure in web pages can be subtle: long-range alignments between
objects, faint edges, and edges in highly textured regions can all be highly significant.
These cues can be difficult to detect and interpret; web pages are an interesting domain for
experimenting with methods for using these cues. Third, many web pages are very complex
and have many regions in a deep hierarchy. The latter two factors make the segmentation
problem challenging despite the structural assumptions that can be made about regions.

The use of a Bayesian model for the segmentation method is motivated by several fac-
tors. It allows the use of a sophisticated prior probability distribution over segmentations
based on the expected structure of a web page. Although the experiments shown in this
thesis achieve good results using relatively simple prior probability distributions, the pos-
sibility of learning a detailed model of web page structure is an important feature of the
Bayesian approach and we hope to investigate this further in the future (see Section 8.3.4
on image statistics). The structural assumptions that can be made about the shape of re-
gions make the domain of web pages ideal for experiments with a Bayesian approach, since
these assumptions simplify the problem relative to the much more complex region shapes
found in natural images. Finally, a Bayesian approach allows easy integration of different
types of evidence. This is important because a practical assistive interface has the poten-
tial to realize better performance by combining evidence from the DOM tree with evidence
from the image of the rendered page. With an arbitrary energy function, adding DOM
tree evidence would require extensive modification of the algorithm; in an explicitly prob-
abilistic Bayesian framework, multiple sources of evidence can be expressed in a common
probability measure and combined according to well-established principles. A Bayesian
approach requires the estimation of prior probabilities at each stage of the segmentation
process; we discuss these prior probability distributions as each becomes relevant.

3.2 Early Attempts

In this section we describe the first of two segmentation algorithms developed in the course
of my thesis research.

3.2.1 Ontology

In the first model we developed, a web page is represented by a tree of regions. The
root of the tree is a region consisting of the entire page, leaf nodes are “simple” regions
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Figure 3.1: Simplified example of a segmentation tree, showing the division into distinct
regions at different levels.

which needn’t be divided further, and internal nodes represent “complex” regions to be
subdivided or used as a whole, depending on the requirements of the application. The
locations of the divisions between sibling regions in the tree are determined by evidence
provided by the locations of edges in the image of the parent region. Figure 3.1 shows an
example of this type of segmentation tree for a simplified, abstract web page.

An edge in an image of a web page may be caused by a line across a background (a
ridge or trough edge), by a difference in two colours (a step edge), by an alignment of
objects (an alignment edge), or by the boundaries of the page image (a boundary edge)?.
The first three of these types are shown in Figure 3.2. Alignment edges are composed of
aligned ridge or step edge segments corresponding to the edges of the objects in alignment?.
Ridge or trough edges may be caused by the use of a line to divide sections with the same
background colour, as in the case of the <hr> (horizontal rule) HTML tag, or the lines
dividing cells in a table. Step edges may be caused by the use of different background

2Natural images may also contain roof edges, which are steps in the first derivative of the image intensity.
We do not consider these explicitly here, since they do not play a significant role in common web design
conventions as step and ridge edges do.

3t is also worth noting that alignment edges are similar to illusory contours [127], although an alignment
edge need not necessarily produce a perceived contour in the gaps between edge segments.
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Figure 3.2: Types of edges commonly found in web pages, illustrated with examples from
real web pages.

colours to set regions apart. An alignment edge may be caused by the organization of
objects into regions, as in the case of aligned lines of text. Each of these types may, of
course, have a less-significant cause. Finally, the edges or borders of the image of the page
must be considered significant—outside of the page is clearly semantically different from
inside the page. This is not the case for natural images, where the borders of the image
are not determined by the scene but by the limitations of the camera. In some specific
cases, such as artistic photographs, the photographer may deliberately align the image
boundaries with semantically significant features of the scene, but this is not the same as
the case of web pages, in which the image borders define the boundaries of the “scene”.

Edges in the page image provide evidence for the boundaries of regions. The mere
presence of an edge does not, however, guarantee the presence of a true boundary. Region
boundaries must also satisfy an additional set of criteria for validity:

1. A region boundary must be closed
2. A region boundary must be rectangular

3. A region boundary must be axis-aligned
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Figure 3.3: Valid and invalid regions under our definitions. The first region is valid, as it

is defined by a closed, axis-aligned, rectangular contour. The second is not rectangular;
the third is not rectangular and one edge is not axis-aligned; the fourth is not closed.

While these criteria would be far too limiting for image segmentation in general, they are
reasonable in the context of web pages. The elements of a web page are defined on an
axis-aligned grid, and it is unusual to encounter web page elements for which a rectangular
bounding box would be a poor representation. Regions described by axis-parallel bounding
boxes are convenient to implement, as the CSS box model [66], a key part of the ontology of
CSS and therefore critical to the process of designing web pages, operates on axis-parallel
rectangular boxes. The DOM tree itself, used in the page rendering process, represents
page elements as a tree of regions with axis-parallel rectangular bounding boxes. Figure
3.3 depicts regions that follow and violate these rules.

The page is modelled as a hierarchical tiling of regions. This tiling must obey the
following four rules:

1. Each region in the tiling must be a valid region as described above
2. Each region must have at most one parent region

3. Every region but the root (which occupies the entire page image) has exactly one
parent region

4. Every pixel in a parent region must be a member of exactly one child region

Examples of valid and invalid tilings are shown in Figure 3.4. These rules enforce a tree
structure on the segmentation of the page; thus, it is a hierarchical segmentation of the
page image.
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Figure 3.4: Valid and invalid tilings under our definitions. The first is valid, as it covers the
entire page without overlapping regions. The second is invalid because it does not cover
the entire region (uncovered regions are shown in grey); the third, because regions overlap
each other (overlapping regions are shown in grey).

3.2.2 Edge Detection

The first step in segmenting the page is edge detection. The segmentation algorithm uses
a Bayesian method to determine the probability of a locally significant edge in a specified
direction passing through a each pixel. The edge detection method finds both ridge and step
edges directly; alignment edges are not detected directly, but alignments are considered as
evidence in the construction of region boundaries. Our method is based on finding possible
edges that “stand out” from their surroundings in the map of Sobel edge strengths?; this
is intended to account for the presence in web pages of both highly textured regions such
as text blocks where strong edges are common but do not divide semantically significant
regions, and subtle but semantically significant edges such as a small change in background
colour. In other words, it is necessary to have a strong mechanism for adapting the estimate
of the probability that an edge is locally significant to local conditions in the page. Figure
3.5 shows the edge detection process, as described in this section®.

To determine if a potential edge pixel stands out from its surroundings, we must first
define what those surroundings are. The simplest neighbourhood (i.e. immediate surround-
ings) would include all of the pixels within a specified distance of the point in question.
This would, however, include points along the proposed line; if the line exists, these points
would paradoxically make the evidence for the existence of the line seem weaker by adding
more strong edges in the neighbourhood. Excluding these points prevents this problem.

4Sobel edge filters are local first derivative operators commonly used as a first step in edge detection

[25]

5Note that the edge strength distributions are shown as probability density functions, rather than
cumulative distribution functions, since this makes the presence or absence of small features clearer.
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Figure 3.5: An illustration of the process of calculating the probability of a vertical edge at
the central pixel. The two neighbourhoods on either side of the proposed line are outlined
in red and green, with the central pixel whose edge probability is being calculated outlined
in yellow. The first (leftmost) image shows a patch from the original page image. The sec-
ond shows preliminary Sobel edge strengths for the patch. The two stacked images in the
third column show the distributions of preliminary edge strengths in each neighbourhood.
The final image shows a map of edge probabilities; the central pixel is the edge probabil-
ity calculated, which is here shown with the probabilities of nearby pixels as well. The
edge strength distributions are obtained using kernel density estimation. Shaded regions
correspond to edge strengths less than that at the yellow-outlined pixel.
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Figure 3.6: Neighbourhood structure as currently implemented. The thick line shows the
location of a possible horizontal line and the large dot the point whose edge strength is
being evaluated. The shaded regions show the neighbourhoods on each side of the line.
The half-window width parameter w controls the size of the neighbourhood. For vertical
lines, this structure is rotated 90°.

For an edge between two textures, where one contains many short edges and the other
contains very few, the edge “stands out” more relative to the texture with few edges than
relative to the texture with many. It is therefore worth examining pixels on each side of
the proposed line separately (i.e. as two distinct neighbourhoods), and considering the
degree to which the edge “stands out” from either side to be the true degree to which it
stands out from its surroundings. To limit the degree to which the pixel in question can
stand out from the neighbourhood, we include each pixel in its own neighbourhood; this
has been found to give good results in practice and avoids numerical issues later. Figure
3.6 shows our neighbourhood structure.

Having defined the appropriate neighbourhoods around a possible edge, we must define
what it means for an edge to stand out from it. For a page image [ with three colour
channels, (Igr, Ig, and Ig), we define a map of the preliminary edge strength for each
direction. The map for horizontal edge strength is defined, in the continuous case, by:

o1

Sh(l',y) = ay

(xay)2+_y($ay>2+_(xay)2 (31)



The vertical preliminary edge strength S, is defined analogously®. When the same equation
applies to both the horizontal case and the vertical case, we use S(x,y) to indicate that
either edge strength may be used. In the discrete case, we use the vertical and horizontal
Sobel partial derivative kernels [25]. Because this is an initial processing step rather than
a single-shot detection of edges that will be used directly, a simple convolution-based edge
detection method, rather than a more sophisticated method such as [23] or [106], was
selected.

To determine if a possible edge “stands out” we must have a description of the sur-
roundings to compare it to. Since the objective is to determine if a potential edge pixel
is in fact on a locally significant edge, we compare its strength to the edge strengths at
all neighbouring pixels. We describe these strengths using a probability distribution P(e)
over edge strengths e in a neighbourhood N(z,y).

The null hypothesis is that the edge at a given pixel does not stand out from its sur-
roundings. It is important to note that this is not equivalent to a null hypothesis that
there is no edge at all; an edge can exist, but still not be locally significant because it is
surrounded by other strong edges. It is therefore not the absolute strength of the edge
that determines its significance, but its strength relative to edge pixels in its neighbour-
hood. We assume that if the null hypothesis holds, the edge strengths at the pixels in
the neighbourhood (including the pixel being examined) are independent and identically
distributed according to the distribution P. Figure 3.7 shows the distribution of gradi-
ents in pairs of adjacent pixels. In Section 8.3.2, we revisit the possibility of using more
sophisticated models which relax these independence assumptions. It is also worth noting
that the neighbourhood size should be selected such that edges should be separated by a
distance comparable to the window size in order to be considered locally significant. This
reduces the probability that the significance of an edge will be underestimated because of
another significant edge inside the window.

The simplest approach would be to assume a normal distribution for P(e) and de-
termine its parameters from the neighbourhood edge strengths, but the assumption of
normality produces poor results in practice due to the highly non-normal distributions
of edge strengths. Instead, we use a nonparametric estimate of the distribution of edge
strengths in the neighbourhood. Applying kernel density estimation (with a Gaussian
kernel) to the observed distribution of edge strengths in the neighbourhood, we obtain a

6The image is not blurred before estimating the local derivative because the web page rendering process
does not produce high-frequency noise in the image of the page, and the scale of the page as rendered is
its natural scale.
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Figure 3.7: Histogram of adjacent pairs of gradients in a dataset of 100 web pages. The
vertical and horizontal axes represent gradient values in the pair; colour represents the
number of observations, on a log scale. Note that the diagonal, representing instances of
equal adjacent gradients, is prominent relative to the surrounding area. By far the most
common case is equal gradients of zero, represented by the upper-right corner.
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probability density function

P(s) = Z Norm(s; S(z,y), o) (3.2)

1
INT,
z,y)EN
where Norm(x; 1, o) represents the probability density at = for a normal distribution with
a mean of p and a standard deviation of o. By using kernel density estimation, we obtain
a smoothed, continuous version of the histogram of Sobel edge detector responses in the
neighbourhood, suitable for use as a probability distribution. We assume that the Sobel
edge detector response at each pixel is independent, and drawn from the distribution P,
so that Pr(Sobel response at (z,y) = s) = P(s) for each pixel (z,y) in the neighbourhood.
With this probability distribution and these independence assumptions, we can define a
probability of observing a pixel with an edge strength of at least s = S(x, y) when no locally
significant edge is present given the neighbourhood in which it occurs. For brevity, let .S, ,
represent the event S(z,y) > s, E,, the event “the pixel at (z, y) is a locally significant edge
pixel”, and P represent the neighbourhood edge strength distribution defined in Equation
3.2. Then

Pr (S%y,s

E,,,P)=1-CDFp(s)=1- / P(t)dt (3.3)

where C'DF'p represents the cumulative distribution function of the distribution P. By
Bayes’ Theorem,

Pr(SﬂcyS|Ery7P>Pr(m| P)

Pr (E,y|Suys P) = i Pr (S, . o[P) ’ (3.4)
(1 =[5 P(t)dt) Pr (E,,| P)
Pr (S, P) (35)
_ ( ﬂsy‘P) (fo dt)Pr( x,y‘P)
B ( wyS|P) Pr( w,y,S|P) (3.6>

Every region has edges. Considering an arbitrary point in a region, without considering its
own preliminary edge strength, the distribution of edge strengths in its neighbourhood does
not inherently affect the probability that the point in question is an edge. We therefore
assume that Pr( xy‘ P = Pr (Eac y) (i.e., the probability that a given pixel in a region
is an edge pixel does not depend on the distribution of preliminary edge strengths in the
region, in the absence of evidence about the relationship between this distribution and the
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preliminary edge strength of the pixel in question). Thus

— ~ Pr(By,)  (Jy P()dt) Pr(EL,)
Pr (E,y|Suys P) = (5 P Br (5., P (3.7)

- % (1 —/OSP(t)dt) (3.8)

Further algebraic manipulation yields

Pr(E, ,|S P) = Pr(Egy) (1 + Pr (S%,y’S |m, P) —Pr(E,;,)Pr (Sxyyys |m7 P))
BV Pr(Byy) + Pr (Seyy,s |[Eay, P) — Pr(Eqpy) Pr (Suy [Evy, P)

(3.9)

This represents the probability of an edge at the image position (x,y), given the preliminary
edge strength and the statistical distribution of edge strengths in the immediate context of
(x,y). In this equation, the prior probability of an edge P(E, ,) is an important parameter,
which represents the expected density of edges. A high value of P(E,,) encourages the
belief that a given pixel has a locally significant edge.

Figure 3.8 shows the results of our edge detection algorithm compared to the original
Sobel edge detector responses. Note that while the text is full of strong edges in the Sobel
edge detector response, in the maps of the probability that each pixel contains a locally
significant edge, the edges of the text block are emphasized and the middle of the text
block is suppressed. This is even true for the large text of the headline. Note also that
the faint edge at the top of the photograph shows negligible edge strength in the original
edge detector responses, but is clearly visible in the edge probability map. This example
clearly shows that our method for estimating locally significant edge probablities from edge
detector responses is able to account for context.

3.2.3 Probability of a Line

A segmentation of a page is supported, in our model, by semantically significant lines
along the divisions between regions. In order to determine the probability that a proposed
segmentation is correct, it is therefore necessary to first define the probability that a
proposed line between two points in the image is semantically significant. In our model,
a line is considered to be semantically significant if and only if each pixel in that line
is a locally significant edge pixel. Assuming that the probabilities of local significance
are mutually independent for all pixels on the line, the probability that a semantically
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Figure 3.8: Comparison of original image, Sobel edge detector responses, and a map of the
probability of a locally significant edge.
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significant horizontal line exists between (x,y) and (z’,y) given the image data I is

fEl

Pr(L(X7Y):(X/7y)|I) = H (1 — Pr (m‘ St,y,s, N(t, y))) (310)

t=x

where N (t,y) represents the neighbourhood in I around the pixel (t,y). Vertical line
probabilities are defined analogously.

3.2.4 Probability of a Segmentation

We evaluate the quality of a proposed segmentation of a web page by estimating the
probability that the segmentation is supported by the visual appearance of the page. There
are two significant factors in the quality of a segmentation:

e There should be evidence supporting all divisions that are made

e There should be no evidence of additional divisions across the entire width or height
of the region

The overall probability that the evidence supports a given level of a segmentation is the
probability that semantically significant lines exist along all divisions present, and that
no such lines cross entire regions (as a line crossing a region in the absence of a division
in the segmentation would indicate that a division should have been placed along the
line). This does not fully account for the support given to the presence of a line by
the presence of other high-probability segments along the line, but it was found to be a
useful heuristic in practice. All lines are assumed to be independent. The algorithm for
calculating segmentation probabilities is shown in Algorithm SegmentationQuality.

3.2.5 Finding a Segmentation

Our first segmentation algorithm is shown in detail in Appendix A—we provide an overview
here. In order to find the most probable segmentation tree for an entire page, we recursively
divide each region. For each region that is to be divided into child regions, we optimize
locally over the segmentation quality ¢ found by Algorithm SegmentationQuality in order
to find the most probable segmentation of that region. Starting from a region consisting
of the entire image, we optimize recursively until either a predefined maximum tree depth
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Input: Vertical and horizontal edge probabilities £, and E}, (obtained from
Equation 3.7), set S of regions

Output: Probability-based quality measurement ¢ € [0, 1]

Probability of a false negative division py, < 1;

Probability of a false positive division py, < 1;

foreach R € S do
Let HE and V E represent the sets of the coordinates of pixels in the

horizontal and vertical edges of R, respectively;
Pfp <= Pfp X (1 - H(:v,y)eHE Ep(z,y) x H(z,y)GVE Ev(x,y));
P o < TL5E (1= TR, (1= Bu(ay)):
pro = ppo < TL%50, (L= I (L= Ea(a,y)
end

return ¢ = (1 — pp)(L = pygp)
Function SegmentationQuality (E},, E,): Algorithm for calculating the quality of a pro-
posed segmentation. R, and R, represent the minimum and maximum horizontal

positions of internal pixels in a region r; Ry, and Rym., are defined analogously.

Y

is reached or a region has no logical division points. The current implementation of the
system uses a simple but effective greedy approximate optimization method. First, a grid
of “candidate boundaries” is found, corresponding to rows or columns in the image with
particularly strong evidence for a division. Second, the optimization algorithm searches for
the segmentation best supported by the evidence from the image, subject to the constraints
that region boundaries must lie on candidate boundaries and the number of child regions
is not excessively large.

Candidate boundaries are detected by measuring the strength of the evidence for a
line crossing the image horizontally or vertically at each position. For a horizontal candi-
date boundary, C'B(y) = [}mase v (1 = Pr(E.y| Sty.s, N(t,y))), as described in Section
3.2.4. To account for near-alignments of edges, we convolve the sequence C'B(y) with a
discrete Gaussian kernel with a standard deviation of 1 pixel, truncated at £30. We use
outlier detection to find candidate boundaries. If C'B(y) is sufficiently large, it is an out-
lier, but the threshold for “sufficiently large” must depend on the distribution of candidate
boundary strengths in C'B. To account for variation in the average candidate boundary
strength, we subtract the mean of C'B, and to account for variation in the variance of C'B
we divide this difference by the standard deviation to find the distance of C'B(y) from

the mean in units equal to the standard deviation of C'B; that is, if %ﬁgfgfm > tes
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for some threshold of significance top, we assume that there is a candidate boundary at
position y. We use an initial value of tcp = 3, set as a reasonable value that performed
well on an older dataset of 30 images. Although we use the evidence for a line across the
full width or height of the image to find candidate boundaries, it is reasonable to expect
that lines that do not fully cross the region but have strong evidence for a significant length
will appear in this set as well.

The sets of vertical and horizontal candidate boundaries taken together form a candi-
date boundary grid, which is much coarser than the resolution of the image, dramatically
reducing the search space. If the candidate boundary grid is still too large to search (i.e.,
too many lines qualify as candidate boundaries), the threshold t-p used to detect peaks in
the strength of evidence for an edge is increased by J; (in our implementation a moderate
value of 0.5), progressively, until the candidate boundary grid is sufficiently small. Even for
candidate boundary grids at a reasonable size, an exhaustive search of all segmentations
is not feasible. Since it is also undesirable for a region to have a large number of child re-
gions, only solutions with a reasonable number of child regions are checked; this constraint
encourages solutions that correspond to a reasonable intuition about page structure” and
reduces the search space still further. Note that if the true number of semantic children is
larger than this child region threshold, some will simply be grouped together in the next
layer; they could then be separated in the next layer if there is sufficient evidence. Since
long list-like structures are common in web pages, we increase the permissible number of
child regions for candidate boundary grids that have a single row or column of cells. This
results in two sets of lists of possible segmentations:

e For x x y rectangular grids of cells such that z,y > 2 and z,y < 35, we find all
segmentations with a maximum of 8 child regions

e For 1 xnorn x 1 grids for n < 23, we find all segmentations with a maximum of n
child regions

Since the sets of tilings depend only on the size of the candidate boundary grid and not
on the contents or proportions of the cells, the sets can be pre-computed. This improves
performance, although the current testbed implementation is not, in general, highly opti-
mized.

"By avoiding a segmentation with a flattened hierarchy with little structure, which may be more difficult
for users to navigate.
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3.2.6 Evaluation Dataset

This segmentation algorithm was evaluated both qualitatively and quantitatively. Qualita-
tive results are shown first, followed by a quantitative comparison between segmentations
produced by our algorithm and segmentations produced by taking the bounding boxes of
the nodes of the DOM tree of the page. Before discussing the evaluation, however, it is
useful to discuss the dataset itself.

The test dataset used in the experiments described here consists of images of the top
50 web sites in Canada (as ranked by Alexa®). The images were taken of the main site,
possibly after clicking through an introductory page (such as selecting the English version
of Wikipedia) but not bypassing any login pages (because active accounts were not avail-
able for most web sites that requested the the user log in to continue). The images were
collected on October 9, 2015. The full list of web sites is shown below. The dataset is
diverse, including news, shopping, social networking, and business pages. Each page was
rendered in Firefox 18.0.1 for Ubuntu, and the page image captured using the extension
Screengrab (fix version) 0.98.09c. A window width of 1024 pixels is used for all images.
They were segmented using our method implemented as an offline testbed system run-
ning in MATLAB. The page images are approximately 1000 pixels wide and range from
approximately 600 pixels to over 10000 pixels in height.

1. google.ca 11. kijiji.ca 21. ebay.ca

2. google.com 12. 1linkedin.com 22. apple.com

3. facebook.com 13. reddit.com 23. bing.com

4. youtube.com 14. netflix.com 24. td.com

5. yahoo.com 15. imgur.com 25. paypal.com

6. amazon.ca 16. msn.com 26. imdb.com

7. wikipedia.org 17. cbc.ca 27. ebay.ca

8. live.com 18. instagram.com 28. tumblr.com

9. twitter.com 19. royalbank.com 29. craigslist.ca
10. amazon.com 20. pinterest.com 30. wordpress.com

8www.alexa.com
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31. diply.com 38. kat.cr 45. gfycat.com

32. theweathernetwork.com 39. bestbuy.ca 46. stackoverflow.com
33. rbcroyalbank.com 40. theglobeandmail.com

47. aliexpress.com
34. cnn.com 41. scotiabank.com

48. dropbox.com
35. microsoft.com 42. go.com
36. bmo.com 43. vice.com 49. valmart.ca
37. cibc.com 44. indeed.com 50. wikia.com

For the following tests, the segmentation algorithm was run with a threshold for can-
didate edge significance tcp = 3 (for its initial value, with an update increment §, = 0.5),
an a priori probability of an edge Pr(E,,) = 0.01, a neighbourhood size of w = 15, and
a kernel width for kernel density estimation of edge strength distributions of ¢ = 0.1.
The maximum tree depth is set to 6 in the following experiments, except where otherwise
noted”.

3.2.7 Qualitative Evaluation

The qualitative results we present show selected examples of full and partial segmentations.
We show examples illustrating the advantages of our segmentation method and examples
showing cases that are difficult for our algorithm to handle.

Some example segmentations are shown in Figure 3.9, one from a news web site, one
from an entertainment website, and one from a banking website. It is clear that the
divisions are largely reasonable, especially for column divisions; even a grid structure is
detected fairly well despite the large number of nodes in it. These examples were all
generated using entire web pages, not just the area visible on the screen at any given time.
As width is typically fixed by the width of the browser window, but length is variable due
to vertical scrolling, the full web pages tend to be long and narrow. Figure 3.10 shows
details from the two images on the left at a higher resolution.

9The neighbourhood size w should be set to a moderate value, larger than the gap between two lines of
text in the same paragraph, but not so large as to cross major divisions; we chose 15 pixels for this value.
The maximum tree depth is set to a reasonable value to avoid excessively detailed segmentations. Good
values for other parameters were determined experimentally on an earlier dataset of 30 diverse web pages,
to avoid overfitting.
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(b) imgur.com
(a) yahoo.com

Figure 3.9: Our proposed method applied to three different web pages, showing the quality
of the resulting segmentation. The divisions are colour-coded to represent the levels in the
hierarchy; in order from top-level down, the colours are blue, green, red, yellow, and cyan.
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Figure 3.10: Detail images from Figures 3.9a and 3.9b, showing segmentations at a higher

resolution.
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(b) Imperfect detection of an overlay in the center of a background
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Figure 3.12: Examples of failure cases for our segmentation algorithm.

Figures 3.11a and 3.11b show successful detections of two difficult edges. In Figure
3.11a, the edge is a faint transition in background colour between light grey and white,
but it is detected correctly because it stands out from its immediate surroundings, which
contain no other edges. In Figure 3.11b, the edge is formed by the vertical alignment of
several regions of text. Although the text produces strong edges on one side of the edge,
the other side has no texture nearby, resulting in a correct detection despite gaps between
the blocks.

Figure 3.12a shows an example of a spurious division caused by a coincidental alignment
of the vertical line in the letter “K” and the vertical edge of a thumbnail. It is useful to
segment the thumbnail separately, but the coincidental alignment causes the division to
extend too far.

Figure 3.12b shows a flawed detection of an overlay on an image. Perfect detection of
overlays is not realistic, since they constitute a violation of the assumption that the regions
in the page are rectangular and non-overlapping. Extensions to our model may allow it
to handle such overlays correctly by admitting segmentations in which the child node or
nodes of a region do not fully cover their parent region.
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(a) Original image (b) DOM tree bounding boxes

Figure 3.13: Example of an extraneous edge in the DOM tree (the edge on the far left)
which is not supported by visual divisions in the original image. Images from diply.com.

While spurious edges can occur in our segmentations, a segmentation with boundaries
corresponding to the bounding boxes in the DOM tree can also produce edges without
visual support. An example is shown in Figure 3.13. The leftmost edge is not supported
by image data; it is produced by a functional region whose edges are not visually distinct
from its immediate surroundings.

3.2.8 Quantitative Evaluation

The purpose of the experiments described in this section is to compare our segmentation
tree to competitor algorithms. It is especially desirable to compare to a method based
purely on the DOM tree, to contrast with the image-based approach. One obvious choice
for such a competitor is the DOM tree itself. An initial study was performed using the
segmentations produced by all bounding boxes of elements in the DOM tree. Since the
DOM tree is generally not used in its “raw” state for page segmentation in practice, we also
compared our segmentation method quantitatively to two existing algorithms: a “control”
version of the visual segmentation algorithm which uses evidence from the DOM tree rather
than from the image of the page, and the well-known VIPS algorithm [22] (described in
Sections 2.2.1 and 7.3). The comparison with the control algorithm is useful for comparing
segmentations produced using evidence from the image to those produced using evidence
from the DOM tree, using the same optimization methods and tiling-based segmentation
model. The comparison with VIPS shows the relationship between our method and one of
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the most familiar web page segmentation algorithms.

If our algorithm produces better results, according to some reasonable metric, or even
comparable results (given the greater generality of our method), then we can demonstrate
that our proposed approach is valuable and thus offer an initial validation. In the experi-
ments described here, we use several methods of comparison, including evaluating segmen-
tation complexity and agreement with different segmentation algorithms. For determining
agreement, the “flat” segmentations produced by the leaf nodes are used. These measures
are intended to be used in combination with the qualitative results shown in Section 3.2.7.

The control algorithm is a variation on our segmentation algorithm which uses informa-
tion from the DOM tree (collected using a purpose-built Firefox extension) to perform the
segmentation, rather than information from the image. Specifically, we replace the edge
map with a “bounding box map”, where the probability that pixel z is a horizontal edge
is defined to be py, if it is on a horizontal edge of a bounding box, and p,.n otherwise
(peo and pronpy are parameters set to reflect uncertainty about the relationship between
the presence of a bounding box edge and the presence of a semantic boundary); vertical
edge probabilities are defined analogously. For our experiments, we use parameter values
ey = 0.9 and ppone = 0.01 to reflect the intuition that semantic boundaries are likely
but not certain to occur on or near DOM tree node bounding boxes, and possible but un-
likely to occur elsewhere. The use of this algorithm provides better experimental control
than using an existing competitor would; since the optimization method and segmentation
model are identical, any difference in the results must derive from the use of the DOM tree
bounding boxes in place of image data.

For our comparison with VIPS, we use the reference implementation found at
http://www.cad.zju.edu.cn/home/dengcai/VIPS/VIPS.html, and specifically the “Us-
ing VIPS” application (slightly modified to ensure that the rendering window is the same
size as used in Firefox to collect screen images). For compatibility reasons, we ran this
algorithm in a Windows XP Service Pack 3 virtual machine. The reference implementation
uses Internet Explorer to render the page and obtain the style and placement information
used by the VIPS algorithm; we use Internet Explorer 8, as it is the most recent ver-
sion compatible with Windows XP. Using this version, three web pages are not correctly
rendered; these are omitted from the comparison.

Earth Mover’s Distance

To generate data suitable for comparison across segmentation techniques, we create edge
maps including all edges across all levels of the segmentation trees. This flattens the
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(b) Two edge maps with a large EMD of 280

Figure 3.14: Examples of the earth mover’s distance (EMD) between small sections of
synthetic edge maps (where the horizontal plane in the graph represents a section of an
image plane, with the vertical axis representing an edge strength). In each case, the edge
map on the left is transformed into the edge map on the right by moving mass from one
part of the edge map to another (at a cost equal to the product of the amount of mass
moved and the distance it is moved) or by adding mass (at a fixed cost per unit of mass
set here to 20).

hierarchy, allowing us to avoid the need to compare the structure of trees with differing
numbers of nodes and other structural properties, while still preserving all edges between
regions.

To compare our segmentations with the segmentations based other methods, we use the
earth mover’s distance (EMD) between the two edge maps [101, 102]. The EMD describes
the total “work” or cost needed to transform one function to another, where work is defined
to be the amount of “mass” moved multiplied by the distance moved. Figure 3.14 shows
examples of functions that are “close” and “far” according to the EMD. Formally, given
two discrete functions f(x) and f/(x), the EMD between f and f’ is defined to be

d= min (Z Crmove (%, X' ) (x, X') + Z cnew|a(x)|> (3.11)

miex).ax) \ =
k)

where ¢pove represents the cost of moving one unit of mass from x to X/, ¢,ew represents the
cost of adding or removing one unit of mass at any given position, m(x,x’) the quantity
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Downsampling Size Number of samples
Large-scale | Factor-of-X Image-dependent 50
Small-scale | None 127 x 127 500

Table 3.1: Tabular summary of the parameters of the large-scale and small-scale compar-
isons of segmentation structures using the EMD.

of mass moved from x to x’, and a(x) the amount of mass added or removed at position
x. This is subject to the constraint that

F1(x) = f(x) +a(x)+ Y m,x) = > m(x,x). (3.12)

In this equation, f and f’ again represent the original and target functions. We define
m(x,x’) to be the Euclidean distance between x and x’. We use a cost of adding or
removing mass Cpey equal to the maximum Euclidean distance between two points in the
image, although a lesser cost is possible (we use a cost of 63, half of the patch width, for
a richer demonstration of the EMD in Figure 3.15, since this ensures that mass is both
added and moved).

Because the EMD is expensive to compute and the full edge maps are very large, we
perform two sets of tests. In the first, randomly-chosen 127 x 127-pixel patches!® of the
edge maps are compared to each other at full resolution; this is useful for comparison of
the small-scale structure of segmentations. We use 10 samples from each page for our
experiments. Figure 3.15 shows examples of two such pairs of patches, with different EMD
distances, including the components used to obtain the EMD. In the second comparison,
the full page edge maps are downsampled (by a factor of 50, so that the areas of large pages
are comparable to the area of the patches) while still maintaining the overall structure of the
edge maps, and compared to each other directly; this is used for a large-scale comparison
of segmentations. Because our visual segmentation algorithm and the DOM tree bounding
boxes may produce different numbers of edge pixels, we normalize the edge maps to have
the same total mass for each comparison. Table 3.1 compares the two uses of the EMD.

For our purposes, we normalize the EMD by dividing by the maximum cost possible
for the given distance function and new-mass cost; this allows easy comparison when, for
example, the image size or aspect ratio varies between two cases. We also normalize the

10This size was chosen because it is small enough to be practical for large numbers of tests but large
enough to encompass interesting features.
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) Two patches with an EMD of 90.5
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Visual seg. Mass sent Mass received Extra mass DOM-based seg.
(b) Two patches with an EMD of 143.7

Figure 3.15: Examples of pairs of patches from visual and DOM-based edge maps, showing
different levels of similarity. The edge maps are shown as binary images; intermediate stages
are shown using the log of the absolute value of mass to better depict structure. The EMD
was calculated using an extra mass cost (Cpew) of 63, half of the patch width.
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Figure 3.16: Normalized earth mover’s distance between the results of our proposed seg-
mentation method and the results of the control algorithm. The EMD value bins are shown
on the horizontal axis; number of occurences of EMD values in each bin are shown on the
vertical axis. The left histogram shows the comparison for 50 downsampled webpages; the
right shows the comparison for 500 randomly-chosen 127 x 127 patches. These figures were
generated with a new-mass cost ¢, equal to the largest distance between two points in
the image or patch.)

sum of mass in each edge image to 1 (or 0 if the image is uniformly zero) prior to calculating
the EMD. The range of the normalized EMD is [0,1]. If the normalized EMD is 0, the
two patches or images are identical; if it is small, they are similar; if it is large, they are
dissimilar; and if it is 1, they are entirely different (e.g. one patch has nonzero mass and
the other does not, or all of the mass is concentrated at opposite points in each patch).
These extremes often occur for small patches, especially for sparse segmentations.

Comparison with Control Algorithm

The control algorithm provides a useful point of comparison for our algorithm, since it
uses the same optimization methods with the same parameters, and only differs from our
method in the use of evidence from the DOM tree bounding boxes in place of edges in the
image of the rendered page. For this experiment, we use a maximum tree depth (including
the root node) of 6. Figure 3.16 shows the differences (expressed in terms of the normalized
EMD) between the segmentations produced by our algorithm and the control algorithm.

For downsampled full pages, the mean EMD (with a 95% confidence interval) between
the two solutions is 0.167 4+ 0.036, assuming a normal distribution, which is reasonable for
this data; for patches at full resolution, the mean EMD is 0.478 +0.032. This demonstrates
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that the two approaches give results that are distinct from each other'!, and more similar
at a large scale than at a small scale for & = 0.005 (using a t-test, t(548) = 3.05, p = 0.001).
This would be expected if both methods capture broad themes of organization, but treat
the details of the structure differently. Furthermore, even at a large scale the two are
significantly different. Note also the relatively high occurrence of the extreme values of
EMD for small patches, due largely to perfect agreement that an edge does not exist or
disagreement about whether or not an edge exists in the patch.

Comparison with VIPS

Our comparison with VIPS uses a slightly reduced dataset of 47 pages. Due to being in-
compatible with more modern web technologies, VIPS was unable to correctly render three
of the webpages; to make the most conservative comparison, we omitted what could not be
handled at all in VIPS. We used the default PDoC (permitted degree of coherence) value
of 5 to generate the VIPS segmentations; this resulted in a slightly coarser segmentation
than the 6-level segmentation trees used above, so we show comparisons with the upper 3
levels and upper 5 levels of our segmentation trees rather than the full depth of the tree.
As will be seen, these two tree depths give broadly similar results.

We show results for full webpages in Figure 3.17 and for patches in Figure 3.18. With
a tree depth of 3, the mean EMD between downsampled full pages is 0.303 4+ 0.032, and
the mean EMD between 127 x 127 patches is 0.449 £ 0.043'2. With a tree depth of 5, the
mean EMD between full pages is 0.308 + 0.030, and the mean EMD between patches is
0.633 & 0.040'3. The smaller tree depth results in better performance in terms of small
patches (significant for a = 0.005; using a t-test, £(938) = 3.13 and p = 0.0018), but is
not significantly different at a large scale (using a t-test, ¢(92) = 0.114, p = 0.45). Both
are significantly more different from our segmentations than the control algorithm for full
pages'?.

1For patches, the mean EMD is significantly different from zero for o = 0.001 (using a t-test, t(499) =
14.6, p < 0.0001). For downsampled complete pages, the mean EMD is significantly different from zero
for o = 0.001 (using a t-test, t(49) = 4.64, p < 0.0001)

12Both mean EMDs are significantly different from zero for a = 0.001 using a ¢-test. For downsampled
full segmentations, ¢(46) = 9.47, p < 0.0001; for patches, ¢(469) = 10.4, p < 0.0001

3Both mean EMD values are significantly different from zero; for downsampled full segmentations,
t(46) = 10.3 and p < 0.0001, and for patches, t(469) = 15.8 and p < 0.0001.

14Using t-tests, at a large scale the mean EMD between VIPS segmentations and our segmentations
(with a depth limit of 5) is significantly larger than the mean EMD between control segmentations and
our segmentations for « = 0.001 (¢(95) = 3.56, p = 0.0003); at a small scale, the difference is significant
for @ = 0.005 (¢(968) = 3.04, p = 0.0012)
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(a) Tree depth 3 (b) Tree depth 5

Figure 3.17: Normalized earth mover’s distance between the results of our proposed seg-
mentation method (for two different segmentation depths) and the results of VIPS, for 47
downsampled full webpages. Note that the histograms are similar; there is no statistically
significant difference in mean distance. These figures were generated with a new-mass cost
Cnew €qual to the largest distance between two points in the downsampled image.

Comparing Figure 3.18 with Figure 3.16b, we see that the mean EMD is significantly
different from the control algorithm for a tree depth of 5, but not for a tree depth of
3. Qualitatively, an EMD of 0 or 1 occurs much more frequently in the comparison of
patches with VIPS than in a comparison of patches with the control algorithm. This is
likely to be due at least in part to the relative sparsity of the VIPS segmentation; when
no edge appears in either patch, the normalized EMD is zero, and if one patch contains
an edge but the other does not, the normalized EMD is one. Because of the prevalence
of extreme values in Figures 3.18a and 3.18b, we show histograms of the central region
alone in Figures 3.18c and 3.18d, for better viewing of the results. These figures show that
while there is partial agreement between the two segmentations, our algorithm still tends
to produce results significantly different from VIPS. Demonstrating that our segmentation
algorithm produces distinct results does not in itself prove that our algorithm is effective;
an algorithm that provides very poor performance could also produce distinct results. The
results of our other qualitative and quantitative tests provide support for the quality of our
segmentations, and demonstrating that our segmentations are distinct from those produced
by VIPS shows that it is not simply a slower means of obtaining the same results.
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Figure 3.18: Normalized earth mover’s distance between the results of our proposed seg-
mentation method (for two different segmentation depths) and the results of VIPS, for 470
randomly-selected 127 x 127 patches. Minimum and maximum distance values frequently
occur due to agreement that no edge exists in the patch, and occurrence of edges in only one
algorithm’s segmentation of the patch, respectively. The central regions of the histograms
are shown below with rescaled axes. These figures were generated with a new-mass cost
Cnew €qual to the largest distance between two points in the patch.
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Figure 3.19: Normalized earth mover’s distance between the results of our proposed seg-
mentation method and the raw DOM tree. The EMD value bins are shown on the horizontal
axis; number of occurences of EMD values in each bin are shown on the vertical axis. The
left histogram shows the comparison for 50 downsampled webpages; the right shows the
comparison for 500 randomly-chosen 127 x 127 patches. These figures were generated with
a new-mass cost C,e, equal to the largest distance between two points in the image or
patch.

Comparison with Raw DOM Tree

We also performed preliminary tests by comparing our segmentations to segmentations
performed by the raw DOM tree (using all bounding boxes of DOM tree nodes as the
boundaries of regions) on the same dataset of 50 webpages. As expected, we found that
our results are substantially different, especially at a small scale. Figure 3.19 displays these
results. For downsampled pages, the distribution of EMD values peaks at approximately
0.2. For patches, the EMD distribution again has peaks at minimal and maximal values.
The central peak in this distribution is around 0.5. Especially for patches, these values
represent substantial differences.

Simplicity

To evaluate the simplicity of segmentations produced by our method, we compare our
method to the segmentation consisting of the bounding boxes of the DOM tree nodes and
also to the control algorithm. The former comparison demonstrates that we produce a
simpler segmentation than the raw DOM tree does, while the latter demonstrates that our
segmentation method does not sacrifice simplicity for versatility. We omit a comparison
with VIPS because, with the default PDoC value, it produces a coarser segmentation than
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either our method or the control algorithm, and thus the judgment of relative simplicity is
less well defined.

We use two measures of simplicity for our comparison: the total number of edge pixels
and the total number of basic or bottom-level regions. For our segmentation tree, the
bottom-level regions are simply the leaf nodes. The bounding boxes of regions in the
DOM tree, however, can overlap (if one box is defined to have a position that partially
overlaps another) and are not necessarily covered by their child nodes (whitespace between
boxes is possible). Accordingly, we define basic regions in the segmentation based on the
DOM tree to be connected regions of non-edge pixels contained by the same set of bounding
boxes.

Our segmentation algorithm produces simpler segmentations than the raw DOM tree.
In terms of both number of edge pixels and number of bottom-level regions, our method’s
segmentation is simpler in 49 of 50 cases. The null hypothesis—that the two segmentations
are equally likely to be the simpler—can be rejected at a significance threshold of o < 0.001
(exact binomial p = 4.5 x 107). Thus we can conclude that our segmentation algorithm
usually produces a simpler segmentation than the raw DOM tree.

Our segmentation and the control segmentation are approximately equally likely to
produce the simpler segmentation as measured by both the number of edge pixels and
the number of basic regions; there is no statistically significant difference in probability for
either measure. By the number of edge pixels, our segmentation is simpler than the control
algorithm’s for 24 of 50 web pages; by the number of basic regions, our segmentation is
simpler in 25 out of 50 web pages. The null hypothesis cannot be rejected in either case
(exact binomial p = 0.44 and p = 0.56, respectively). This result indicates that our method
does not sacrifice the simplicity of the segmentation for independence from implementation
details.

Taken together, the results described above indicate that our segmentations are related

to the competing segmentations in the following ways:

1. At a small scale, our segmentation produces distinct results from the control algo-
rithm and VIPS (as well as from the raw DOM tree competitor).

2. Our segmentations are more similar to the competing segmentations at a large scale
than at a small scale

3. Our segmentation is simpler than the raw DOM tree, in that it presents a coarser
display of regions, and is comparable in simplicity to the DOM-based control algo-
rithm
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Quantity Measurement Interpretation
Similarity between seg-
mentations
... At a large scale Normalized EMD between | Small EMD indicates high
downsampled large images | similarity
... At a small scale Normalized EMD between | Small EMD indicates high
randomly sampled patches | similarity
Simplicity of a segmen- | Number of basic regions Fewer regions indicate
tation greater simplicity
Number of edge pixels Fewer edge pixels indicate
greater simplicity

Table 3.2: Table showing the quantitative measurements used in our evaluation, with their
interpretation.

The first two points establish that our segmentations are distinct from but related to the
segmentations based on the DOM tree; our algorithm is not just a slower version of these
algorithms. The third point suggests advantages in terms of usability; a simpler tree should
be easier for users to navigate through or select regions from than a more complex one
(e.g. one with extraneous edges, per Figure 3.13).

First, our model is based on a principled derivation from intuitively plausible assump-
tions. Second, our qualitative results indicate that our model places region boundaries
in intuitively reasonable positions, and, combined with the quantitative validation, offers
evidence to support the usefulness of our model. Table 3.2 summarizes the primary perfor-
mance metrics that we have used in our validation, when judging the effectiveness of our
approach. We note as well that the simplicity offered with our particular approach aligns
with key desirable attributes outlined in [75], suggesting that having fewer nodes overall,
fewer paths to explore, and structure that minimizes disorientation, is of benefit when
users are confronted with hierarchical organization online. In summary, we have shown
that our segmentation method has implementation independence, that it produces distinct
results from its competitors in practice, that it produces qualitatively plausible segmenta-
tions, and that it achieves these desirable properties without sacrificing simplicity to use
the image of the rendered page.
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3.3 Improved Method

The qualitative tests of the first segmentation algorithm suggested many areas of potential
improvement. These improvements have resulted in a new, more sophisticated segmenta-
tion method. Like the original algorithm, it proceeds in three stages:

1. Calculation of the probability of a locally significant edge at each pixel

2. Calculation of the probability of a semantically significant line segment between two
points

3. Calculation of the most probable segmentation under specific structural assumptions

Each stage has been improved in our new segmentation algorithm, and each affects the
others. The method for estimating line probabilities, for example, is determined in part
by the requirements of the estimate of segmentation probability, and in turn determines
in part the method for estimating the probability of a locally significant edge. Our edge
detection method has been improved to use evidence at multiple scales. The calculation
of the strength of a line in the current version uses a recursive method to calculate the
probability that each segment of the line has a sufficient density of locally significant
edges. The calculation of the most probable segmentation now uses an X-Y tree structure
originally developed for OCR page segmentation [96]. This tree structure—in which regions
are alternately divided horizontally and vertically—and related structures derived from it
(e.g. [26]), have a long history in optical character recognition (OCR).

3.3.1 Locally Significant Edges

Detecting edges that are relevant to the segmentation is complicated by the presence of
very strong edges that make up characters in normal text. These edges are often maximally
strong (black on white or vice-versa), but most of these edges are irrelevant to the segmen-
tation. At the same time, faint lines or slight changes in background colour produce very
weak edge detector responses, but are often used to show divisions between regions that
must be captured by the segmentation. To address this problem, our algorithm estimates
the probability that a given pixel contains a locally significant edge. Our edge detec-
tion method was designed to meet the requirements of our application (e.g. axis-parallel
edges and strong responses to faint but locally important edges), but any edge detection
method that adapts to local texture and can be used to obtain an edge probability could
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be used—the method described by Rakesh et al. [106], for example, is a good candidate
to be adapted to this problem.

The new algorithm differs from our earlier algorithm in the use of multiscale edge
detection with a truncated Gaussian pyramid at the initial stage of Sobel partial derivative
operator convolution. The Sobel responses at different scales are added in quadrature to
obtain the preliminary edge strengths. This is an improvement since it allows locally
significant edges to be found for different neighbourhood sizes and for less-sharp edges.

3.3.2 Semantically Significant Lines

The detection of locally significant edges is not sufficient to define a complete segmentation;
these local edges must be “assembled” to produce the outlines of regions. We use an
intermediate stage in which the probabilities of extended lines are calculated, and it is
from these lines that the final segmentation is built.

The improved segmentation algorithm was designed around the same edge types used
for the earlier method and illustrated in Figure 3.2: ridge, step, and alignment edges, plus
the borders of the image. Ridge edges are often created by outlines of regions or by the
strokes of characters in text. Step edges are often created by changes in background colour
used to define regions in a page. Alignment edges consist of sections of edges of the other
two types, and commonly appear at the edges of text regions.

The probability that a line is semantically significant is defined recursively. This cal-
culation is shown formally in Algorithm LinePr. For sufficiently long lines (longer than
a threshold value t;), the probability that the line is significant is the probability that
both halves of the line are significant. For shorter lines, the probability that the line is
significant is the probability that sufficiently many pixels (a proportion greater than or
equal to a threshold t,) along the line have locally significant edges. This prevents broken
lines from being assigned an artificially low probability. Given a set of probabilities that
individual pixels contain a locally significant edge, the true number n of locally significant
edges on the proposed line follows a Poisson binomial distribution (i.e. the total number
of “successes” in a series of independent non-identically distributed Bernoulli trials). It is
possible to calculate this probability exactly (a number of methods are described in [65]),
but it has been found to be more efficient in practice to use Monte Carlo simulations to es-
timate it for the specific distributions, numbers of trials, and numbers of required successes
that are encountered by our segmentation algorithm. The use of explicit probability esti-
mation rather than a simple heuristic preserves the Bayesian nature of the method. Note
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that, because multiplication is associative, the recursive method is equivalent to taking the
product over a sequence of line segments, each with length % <1<t

Input: Vector L of individual-pixel edge probabilities along the specified line;
maximum segment length threshold ¢;; minimum edge proportion ¢,

Output: Probability P that the line L is present
[ < length(L);
if [ > ¢; then

\ P = LinePr(Ly.. 1), ti,1y) x LinePr(L 1
else
Let n represent the number of pixels in L that have significant edges;
P =Pr([1] = 1,);
end

return P
Function LinePr(L, ¢, t,): Algorithm for calculating the probability of a line.

41D tla tp)7

The recursive definition of the probability of a line has significant advantages over
the simple heuristic used in the original segmentation algorithm. The earlier definition
stated that the probability of a line was equal to the probability that each pixel has a
locally significant edge parallel to the proposed line. This does not directly account for the
possibility of significant but not continuous edges, such as those formed by alignment; the
resulting probability estimates would be higher as the proportion of high-probability local
edges increased, but not explicitly accounting for this common case made the probability
estimate much less valuable. The difficulty in accurately modelling alignment edges using
the earlier model was an important consideration in designing a new line probability model.
Additionally, a common difficulty in the earlier method was strong lines tended to result in
the algorithm “overshooting”, resulting in divisions extending past the region where there
was evidence for the line. This is shown in Figures 3.26a and to a lesser extent in 3.26e.
Overshooting occurred because the earlier definition of the probability did not account for
the distribution of locally significant edges along the length of a proposed line.

The new definition of the probability of the line is a generalization of the one described
in Section 3.2.4. When the edge proportion threshold ¢, = 1, the new method is equivalent
to the old; regardless of the segment length, the estimated probability that the line is
semantically significant is the product of the probabilities of locally significant edges at
each pixel. Similarly, if the segment length threshold t; = 1, [t, x 1] = 1 for any ¢, > 0,
resulting in an effective ¢, of 1, and equivalence to the older method. We can therefore
conclude that both parameters are significant (in that they have an effect on the behaviour
of the algorithm), and that the new method is a generalization of the old.
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Figure 3.20: Diagram of two proposed lines of length n, each with n — m edge and m
non-edge pixels but different semantic significance.

The effects of using a recursive method can be seen by comparing the performance of
the two line probability definitions on the proposed lines shown in Figure 3.20. In this
example, both proposed lines are the same length, and both have the same number of
edge and non-edge pixels, but L only has evidence to support part of its length, while L’
has gaps but is clearly semantically significant along its entire length. We have explored
the ability of our new method to distinguish between these two cases empirically. Using
synthetic example pairs of 2048 pixel partial lines (L) and broken lines (L’) with equal
overall densities of edge segments, we compared the estimated probabilities for each using
many combinations of parameters and local edge probabilities:

o t;=16iforie[l---§

o t,=1forie[l---8

e Probability of high-likelihood edges o =1 — ZJ%I forie[l---8]
e Probability of low-likelihood edges f =1 — 14%1 forie[1---§
e Proportion of high-probability edges ™= = 1 for i € [1--- 16]

This results in a total of 2! examples. Overall, Pr(L') > Pr(L) for 79.4% of examples,
Pr(L') = Pr(L) for 14.9% of examples, and Pr(L’) < Pr(L) for only 5.2% of examples.
Figure 3.21 shows histograms of the log likelihoods of L and L’ and of the log of the
likelihood ratio. The estimated probability of L’ is much more likely to be very close to
1 than the estimated probability of L is; in most cases, the log of the likelihood ratio is
slightly positive, but high ratios are not uncommon.

Another approach to improving the model of the structure of a line might be to explicitly
use the perceptual grouping techniques described by Lowe [35]; we return to this possibility
in Section 8.3.2.
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Figure 3.21: Histograms showing the relationships between estimated probabilities that
the lines L and L’ are semantically significant.

3.3.3 Segmentations

One important advantage in segmenting images of web pages is that, because of the ren-
dering process, the range of plausible segmentations is much smaller than it is for natural
images. We make the same assumptions in defining this segmentation as were used in the
earlier segmentation algorithm; in the interest of convenience and clarity we reiterate the
assumptions here. The image axes are significant, since they are guaranteed to correspond
to the horizontal and vertical axes in the rendering process. Furthermore, regions in a web

page are typically represented well by axis-parallel rectangles. We also make the following
assumptions:

e Each region is fully contained within its parent region
e Each region is fully covered by its child regions, if any
e No regions overlap unless one region contains the other

e The root of the segmentation tree is a region consisting of the entire page

With these restrictions, every region in a segmentation is tiled by non-overlapping child
regions, and all regions are axis-parallel rectangles. While not invariably accurate (some
web pages do use overlays or non-rectangular regions), these assumptions allow the use of
simple, relatively efficient algorithms to find high-quality segmentations for most pages.
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Line probabilities are used to calculate the probability of a division of a region into
subregions. In the current algorithm, as in the original, these subregions are assumed to be
non-overlapping, axis-parallel rectangular regions that completely cover the parent region.
For image segmentation in general, these restrictions would be impractical, but because of
the rendering process and design conventions for web pages they are reasonable in practice.
The ability to make such strong assumptions about segmentation structure dramatically
reduces the search space of segmentations. In the current segmentation algorithm, the
possible segmentations are additionally restricted by requiring that all subregion divisions
at a given level of the tree be either horizontal or vertical—that is, the segmentation tree
is an X-Y tree [06]. This has been found to produce plausible segmentations in practice.
In the Bayesian framework of the segmentation algorithm, this corresponds to a prior
probability distribution over segmentation trees that is uniform over X-Y trees and zero
for all other trees. It also makes the search for the most likely segmentation (in the sense
of maximum a posteriori likelihood) relatively efficient.

To find a segmentation, we use a recursive algorithm to divide each region, starting from
the root region consisting of the entire page. This algorithm finds the highest-probability
line across the region, either horizontally or vertically. This is selected as the division
line if its estimated probability is at least 0.5, otherwise the region is a leaf region; this
procedure is denoted (N,d) = SplitReg(n, H,V, Siin), where n is the node to be divided,
H and V are maps of locally significant edge probabilities, s, is a minimum size, N
is the set of resulting nodes, and d is the direction of division (see Algorithm SplitReg).
The complete segmentation algorithm is shown in Algorithm Segment. The segmentation
process consists of greedily dividing at the locally optimal points, one division at a time,
to produce a set of child regions by either horizontal or vertical division; the regions in this
child set are themselves divided until no further “sensible” divisions remain.

3.3.4 Evaluation

We use a number of different methods to evaluate the efficacy of our segmentation, and to
compare it to our previous method. We first show a series of examples of the performance
of our algorithm, including full pages (Figures 3.23 and 3.24) and a series of excerpts
demonstrating specific properties of the algorithm.

Figure 3.22 shows the relationship between estimated edge probabilities and the result-
ing segmentation for a small section of a web page. Note that the edge probabilities do
not correspond exactly to image gradients, but are context-dependent.

Figure 3.23 shows a full page segmented using our algorithm, with divisions outlined in
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Input: Node boundaries n = (n, ny, ny, n,.); horizontal and vertical locally
significant edge probabilities H and V'; region size threshold s,

Output: Set N of nodes; direction of division D

for i from n; + s, to Ny — Syin do

Py ; < LinePr(H (i,n; - - - n,), t,, t;) (Estimate probability of a horizontal line at
row 1);

end

for i from n; + s,,;, to n, — Sy do

Py,; < LinePr(H (n; - - -ny, 1), tp, ;) (Estimate probability of a vertical line at
column 7);

end
if max;(Ppy ;) > max(Py) A max(Py) > 0.5 then Best division is horizontal
i < argmax;( Py, ;);
N = {(ng,i,n4,n,.), (1, np, 1, 10) };
d < HORIZ;
nd
Ise if max;(Py,;) > 0.5 then Best division is vertical
i < argmax;(Py,;);
N = {(ng, np, ny, 1), (ng, np, i,m,) };
d < VERT;
nd
Ise Region should not be divided
N « 0;
d + LEAF;
end
Function SplitReg(n, H, V, spmn): Procedure for splitting a region into two sub-
regions (if it can be divided). Returns a set N of regions produced by dividing the
current region, and the direction d in which the current region was divided.

® O

o O
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Input: Node n; horizontal and vertical edge probabilities H and V'; minimum size
Smin
Output: Segmentation tree (N, E)
N+ {n}, E + 0;
Nenig  0;
(Ntemp, d) <— SplitReg(n, H, V, Spin) (Attempt to divide node);
foreach n; € Ny, do Attempt to divide each node produced
(N',d') < SplitReg(nt, H,V, Sypin) if d = d' then Current division is in the
same direction; replace with nodes produced by division
‘ Ntemp A (Ntemp - {nt}) U N/a
else Current division is in a different direction; add undivided node to child set
‘ Nenita <= Nenira U {nu };
end
nd
foreach n. € N.u;;q do Segment each child region
(N" E") < Segment(n., H,V, Symin);
N+ NUN";
E+ FUE"U{(n,n.)};
end
return (N, F)
Function Segment(n, H, V', $,,,): Algorithm for segmenting a page into an X-Y tree
by recursively dividing regions. Divisions are performed one at a time, and all nodes
produced by dividing in the same direction are grouped together to maintain the X-Y
tree properties. This is equivalent to producing a binary tree by dividing each node
that can be divided into two child nodes, then merging intermediate nodes that are
divided in the same direction into their parent node.
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Figure 3.22: Excerpts from rbc. com showing, from left to right, the original image, vertical,
and horizontal edge probabilities, with the segmentation divisions in red.
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1 .

Figure 3.23: Example of a web page segmented using our algorithm.

red. This image was generated using parameters ¢; = 256 and ¢, = 0.2. The segmentation
shows a plausible structure: major horizontal divisions are detected accurately, as is the
division between the form and the region of whitespace. The form is further divided
into fields, and whitespace regions are trimmed away. In the illustrations of phones, the
thumbnails are accurately separated. There are additional divisions in some of the natural
images (e.g. between bamboo stalks). Similar divisions have also been observed in other
natural images with strong vertical or horizontal edges; a second example can be seen in
the background of image in Figure 3.25a. In general, the ability to divide images is an
advantage over DOM tree-based methods, since objects such as diagrams or infographics
have semantically significant divisions that cannot be expressed in terms of the DOM tree.
Future versions of the segmentation algorithm may use statistical properties to distinguish
between natural images (for which edge detection may be suppressed) and infographics
(for which further segmentation is useful).

Figure 3.24 shows another example of a page segmented by our algorithm, in this
case showing the hierarchy of the segmentation tree by colour-coding the divisions. Note
that, because the segmentation is required to be an X-Y tree, all divisions at any given
level are in the same direction (either horizontal or vertical). Note also the complexity
of the segmentation; despite the complex hierarchy of regions and the large total number
of regions in the page, our segmentation algorithm has recovered a plausible semantic
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Figure 3.24: Example of a web page segmented using our algorithm. Division colours
indicate the level of the division in the hierarchy of the page (with blue at the highest
level, followed by green, cyan, red, and magenta).
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Figure 3.25: Examples of regions with properties that degrade segmentation performance

structure.

To demonstrate the improvement our new system represents relative to its predecessor,
we show (in Figure 3.26) several examples of cases where the older algorithm failed but the
new algorithm succeeds. These examples show the reduced tendency of our new algorithm
to “overshoot” as a result of the improved estimate of the probability that a line between
two points is semantically significant (Figures 3.26a and 3.26b), much better performance
on a form (Figures 3.26c and 3.26d), and improved performance on an overlay on a natural
image (Figures 3.26e and 3.26f). In a set of 42 images, we found many similar examples.

Figure 3.25 shows two examples of particularly difficult regions, with several factors
that degrade segmentation quality. First, the use of an overlay in Figure 3.25a conflicts
with the tiling model of a segmentation; naturally, the segmentation is more complex than
one that explicitly accommodates overlays. There is also a degree of oversegmentation,
due in part to coincidental alignments in the very large text. This could be reduced by
enlarging the neighbourhoods used in finding locally significant edges to account for the
larger font size, or by reducing the maximum segmentation depth. Figure 3.25b shows an
example of a coincidental alignment of edges, which produces a spurious division along
the left side of the large letter “I” leading up through the text above. A similar issue can
be observed in the interior of the large letter “G”. Note, however, the accurate vertical
segmentation of the large text. Parameter selection could be informed by a study of the
statistical properties of region boundaries.
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3.4 Applications

A web page segmentation algorithm has important applications in the field of assistive
technology. Used alone, this type of algorithm can support several transformations of the
page, and the segmentation tree can be used by a region classification algorithm to support
still more sophisticated assistive interfaces.

Some users have visual impairments that make it difficult to read web pages without
any assistive technology, but are not blind. For many of these users, it may be sufficient
to simply present regions at a larger scale. Individuals with certain types of cognitive
impairment can also benefit from larger text [107]. Simply enlarging the entire page may
obscure the large-scale organization of the page, however. Similarly, accessibility features
such as Windows Magnifier or the Picture-In-Picture Zoom on Mac OS X, which use a
fixed magnification boundary, may not allow the user to read an entire visually coherent
region at once. Explicitly segmenting the page into visually coherent regions allows the size
of the magnification window to adapt to the page content. A region in the segmentation
can be magnified and displayed as an overlay on the page or in a separate window or panel.
Allowing the user to reposition the overlay would assist in maintaining context in the page,
as the users could uncover nearby regions at will to select the next region they would like
to enlarge. Another avenue to explore would be to combine this approach with a “fisheye”
distortion around the enlarged areas (as discussed by Furnas [50]) so that the enlarged area
does not obscure any of the content; this, however, may prove confusing or distracting for
some users. The details of the user-facing front end are a complex challenge in designing
assistive interfaces; our focus in this section is necessarily the capabilities that the back-
end segmentation system can support, rather than the details of how the transformed page
would be presented to the user.

Using a vision-based page segmentation algorithm to simplify a page and eliminate
clutter has the potential to benefit many users. Individuals with attention deficits, includ-
ing age-related declines in divided attention, can find it difficult to filter out distractions
and to maintain focus. Such individuals can benefit from adaptations such as highlighting
or content isolation to help them to maintain activation on their area of focus [10]. Visu-
ospatial deficits can make it more difficult for users to process and remember the spatial
relationships among elements of a page [10], and users with these deficits can benefit from
adaptations that reinforce the layout and relationships among items on the page. As ag-
ing is associated with a diminished ability to learn and retain new information, and some
individuals may benefit from tools that provide cues on the structure or organization of
the page [33]. Page segmentation can be used to identify the spatial relationships between
regions for appropriate highlighting or simplification.
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Some work has also suggested that older adults browse differently from their younger
counterparts [17], although this difference appears to be due more to age-associated dif-

ferences in fluid intelligence than age itself [122]. Eye tracking research suggests older
adults attend longer to areas of the page than do younger users [123]. This is perhaps
advantageous if that time is spent in considering important content [57], but it can be a

disadvantage if it causes more time to be wasted on unimportant or irrelevant elements
of the page. An assistive interface that uses page segmentation to isolate visually and
semantically coherent regions could be used to display only a subset of these regions at
any given time, or to highlight a subset of regions relative to distractors in the page.

Chapter 5 describes a series of experiments aimed at evaluating the ability of our page
segmentation algorithm to support an assistive interface. The interface tested includes both
magnification and decluttering (implemented by highlighting the focus region). The exper-
iments described include a user study with older adults, and offline tests of the capabilities
of the interface. The latter tests allow a more thorough exploration of the performance of
the combination of the back-end segmentation system and the front-end assistive interface
than is feasible in a user study of reasonable size.

Thus far the focus of this discussion has been on assistive interfaces, but page seg-
mentation may also have applications for users with no assistive needs, especially with
respect to convenience features. Content-aware magnification may be useful in many cir-
cumstances, especially when a page includes photographs or diagrams that do not match
the rest of the text in scale. Highlighting regions may be useful for reducing distractions
even for users with no attention deficits, especially on pages that use links with very high
visual saliency (e.g., promoted links to other articles on the same site or affiliated sites).
Although not essential for web browsing, such convenience features have the potential to
make the browsing experience more enjoyable and reduce the annoyances caused by poor
design practices.

The algorithms for web page segmentation presented in this chapter were designed with
the following key motivation in mind: to provide a principled approach for parsing this
class of visual images. We realize that in order to deliver improved experiences for users
online, it will be important to also explicitly integrate into our solutions any additional
information that may be available (such as certain implementation details for the webpage),
and it may also be valuable to deliver support for specific users that is personalized to their
particular needs. We discuss the importance of incorporating these components during our
discussion of Future Work, in Sections 8.1, 8.3.1, 8.3.2, and 8.3.5. Indeed, working in
consort with experts in assistive technology and with input from that user community is
an ongoing interest of ours [31, 35] that will also drive new directions with our research.
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Our initial motivation for exploring this class of images in order to enable improvements
for the assistive needs community came from our study of the current state of screen readers
[32]. As we began joint research with an HCI expert who had particular interest in the
WebforAll (W4A) community [35], we were made aware of the possible value of our parsing
of web pages as visual images for the front end tasks of decluttering and zooming. Positive
reactions from mentors in the W4A community [31] provided additional reinforcement of
our particular approach as a valued one.
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Chapter 4

Region Classification

In this chapter we present a method for classifying regions in a web page using purely vision-
based methods. Our algorithm employs the novel approach of using a hidden Markov tree
(HMT) to represent the structure of a segmentation tree; the classification process, like
the segmentation process, is entirely Bayesian. The classification framework used in this
research is described in Section 4.2. Section 4.3 describes the results of the first series
of experiments carried out using this approach, and Section 4.4 describes a new set of
experiments designed to address issues with the ontology and labelling process uncovered
by our first set of experiments. In Section 4.5, we discuss the possible applications of region
classification.

4.1 Motivation

From the perspective of assistive technology, classification of web page regions is valuable
because it allows an assistive interface to interact with and modify the page in more
sophisticated ways and at a higher semantic level. This is especially important for screen
readers. As described in Chapter 2, complex web pages are often very difficult to navigate
using screen readers. Semantic labels of regions, such as ARIA labels [128], can help users
navigate through areas of the page by providing high-level semantic information about the
role of each region in the page. Unfortunately these labels are often not present, and this
can force the user to navigate through the DOM tree based on HTML tags and similar
implementation-level evidence. This leads to a complex navigation problem, and may be
intimidating for users who are unfamiliar with HTML. The automatic classification of web
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page regions into clear, semantically relevant categories such as those provided by ARIA
labels or the EMine ontology [3] can help to address these problems.

A tree of labelled regions will have many other applications outside of screen readers,
and even outside of assistive technology. Interfaces designed to prune away specific types
of content could be used to reduce distractions, in a more sophisticated version of the
segmentation-based decluttering interfaces described in Chapters 3 and 5. Such interfaces
could also be used to modify content for more appealing presentation (e.g., by removing
ads), for other devices (e.g., on the small screens of mobile devices), or to automatically
extract relevant content (e.g., for generating a printable version of a page). The high-level
labels provided by a classification algorithm, when coupled with a segmentation tree, allow
very high-level transformations of web pages for a wide variety of purposes.

From the perspective of computer vision, and the problem of object recognition in
general, web pages provide an interesting domain and an interesting set of challenges.
As pointed out in Chapter 3, web pages have very complex structures with very large
numbers of regions. Intuitively, it is easy to see that context is very important in web page
classification; a list of links in the footer of the page serves a different purpose from a list
of links in the header, and an image in the header is probably some sort of logo, while an
image in an article is probably an illustration. Both of these factors make the problem
challenging. The powerful assumptions that can be made about region structure and the
presence of a natural scale in the image also allow some problems in object recognition to
be abstracted away when designing features, which makes the domain a very useful one
for exploring techniques in a complex, highly contextual setting. For example, in natural
images (and other images formed by perspective projection), the scale of an object in the
image depends on its inherent size, distance from the camera, and the camera parameters,
producing examples with a continuous range of scaling factors for examples of a class. Web
page images, however, have a natural scale and are free of perspective effects, leaving only
the inherent size of regions variable.

4.2 Classification Algorithm

We view the problem of classifying regions in the image of a rendered web page to be the
problem of inferring a set of region labels from the observed properties of each region and
their relationships to other regions. This implies four sub-problems:

1. Obtaining a set of regions from the image of a rendered web page
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2. Observing the relationships between regions
3. Observing the properties or features of individual regions

4. Inferring the most likely (in the sense of maximum a posteriori probability) set of
labels for the set of regions as a whole

4.2.1 Segmentation

We address the first two sub-problems by assuming that our classification method takes
as input not the original page image, but a hierarchical segmentation of the page im-
age. Classification will then proceed, by design, independently of the segmentation al-
gorithm. (Other approaches perform segmentation and classification simultaneously; we
discuss these in Section 7.1.) It is, however, ideal to use a segmentation algorithm designed
specifically for segmenting web page images, such as one of the algorithms introduced in
Chapter 3. Briefly, our segmentation algorithms work as follows:

1. The algorithm starts with a “root” region corresponding to the entire page.

2. The region is searched for horizontal and vertical edges that “stand out” from nearby
edges.

3. “Candidate boundaries” are found where many of the strong edges found in step 2
are aligned.

4. These candidate boundaries are used to produce a tiling of non-overlapping sub-
regions completely covering their parent region, with every edge in the tiling corre-
sponding to a candidate boundary (although not every candidate boundary corre-
sponds to an edge in the tiling). The tiling is selected to have the best support from
the evidence in the image, subject to a maximum number of child regions (i.e., a
greedy search at each level).

5. Steps 2 through 4 are repeated for each child region (if multiple child regions are
found), until a maximum tree depth is reached.

This method produces a tree of regions in which the root corresponds to the entire page, and
leaves correspond to regions at the maximum depth or with insufficient evidence to support
further division. Every part of the page is contained in some leaf node, all descendants of
a given region are completely contained within it, and sibling nodes do not overlap.
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4.2.2 Feature Extraction

The third sub-problem is the problem of defining a feature vector to represent each region.
We prioritize simplicity and rapid calculation in selecting features. Intuitively, it is reason-
able to expect regions of specific types will be found in specific areas of the page; the main
content, for example, is likely to be found near the center of the page, and a sidebar is by
definition found on the side of the page. Similarly, the size and proportions of regions are
likely to be informative. Finally, the types of content found in a region are likely to prove
important. We use the following region features:

e Position of the region origin relative to the entire page and parent region, normalized
such that the width of the page or parent region is 1 (4 dimensions)

Area relative to the entire page and parent region (2 dimensions)

Logarithm of aspect ratio

Proportion of text in the region

Proportion of images in the region

e Proportion of other content in the region

These features are summarized in a ten-dimensional real-valued feature vector for each
region. Other features could also be chosen, but these were found to be effective in the
experiments described here.

We use the logarithm of the aspect ratio to describe the proportions of the rectangular
regions. Using the aspect ratio itself is initially appealing, but a problem arises in com-
paring aspect ratios. Consider a square region and a region with one dimension ten times
as long as the other. The aspect ratio of the square region is 1; if the elongated region’s
long edge is horizontal, its aspect ratio is 10, and if it is vertical its aspect ratio is 0.1.
Thus, using the simple aspect ratio, the distance between the two regions is 0.9 in one
orientation and 9 in the other. Using the logarithm (in base 10, for this example) of the
aspect ratio, the square region has a value of 0, and the elongated a value of either —1
or 1; the distance will be the same in each case. In general, the use of the logarithm of
the aspect ratio makes the absolute value of differences between two regions invariant with
respect to a right-angle rotation of the pair of regions.

Our method of calculating the proportions of text and images in a region uses a prepro-
cessing step to classify n x n-pixel blocks containing text and images in the region. As an
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Figure 4.1: “Eigenblocks” and corresponding indices found for representing 7 x 7 blocks
from web page images. These blocks are used to detect text and natural images.

8

initial step, we use an algorithm analogous to eigenfaces [121] to find a set of “eigenblocks”
that comprise a good basis for the distribution of blocks found in web pages (i.e, the prin-
cipal components of the set of blocks, considered as vectors of pixel values), based on a
large sample of blocks from a variety of web pages. Figure 4.1 shows a selection of these
blocks. We then express blocks in a training set of web pages (disjoint from the set of web
pages used for training or testing the classification of regions) in terms of this new basis;
we used all components rather than reducing the dimensionality of the problem by using
a subset of the eigenblocks, since this was found to help accuracy. Using classifications for
these blocks obtained from the DOM tree of the page as training data, we learn a linear
classifier for text blocks and a linear classifier for image blocks.

Note that although similar principal component representations to our eigenblocks have
been used in studying image statistics (see, e.g., [98] and [56]), our use here is limited to
classification of content types. In the future, we are interested in studying the statistics of
images of rendered web pages (see Section 8.3.4). In such a study, principal components
analysis, as used in [50], or related methods such as independent components analysis [13]
can be expected to play a prominent role as they have in the study of the statistics of
natural images.

Rather than hand-labelling images and text in the images of web pages, we use DOM
tree information to infer the positions of text and images in the image of the page. Image
detection simply uses the bounding boxes of <IMG>-tag nodes. Text detection uses the
bounding boxes of element nodes that contain only text nodes. Using 7 x 7 blocks (as
described above), a simple linear classifier trained on approximately 5.2 x 10° labelled
blocks achieves an accuracy of 96.1% (on a disjoint test set of similar size) for the detection
of text, and an accuracy of 98.9% for the detection of images. The block size was selected
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with the constraints that it should be small enough to be efficient to train and use, while
being large enough to include salient features for distinguishing text from natural images
(e.g., the hard, high-contrast edges found in text).

4.2.3 Inference

The fourth and final sub-problem is the problem of determining the jointly most likely set of
labels given both the structure of the segmentation of the page and the individual features
of each region. This is accomplished by defining a hidden Markov tree or HM'T—a general-
ization of a hidden Markov model from a sequence structure to a tree structure (described
in the context of wavelet analysis in [36])—based on the structure of the segmentation
tree, with hidden states representing the labels of regions and observations representing
the feature vectors describing each region. The HMT is produced from the segmentation
tree according to the following rules:

1. For each non-root node in the segmentation tree, there is a corresponding hidden
node representing the label of that region in the HMT

2. The root node in the segmentation tree corresponds to an observed node in the HMT
representing the known label (“fullpage”) of the root region

3. For each edge connecting a parent region to a child region in the segmentation tree,
there is a corresponding edge in the segmentation tree connecting the nodes repre-
senting the regions’ labels

4. Each label node in the HMT has an observed child node representing the feature
vector describing the corresponding region in the segmentation tree

Figure 4.2 shows an example of such a transformation for a simple segmentation tree. It is
worth noting that the HMT does not require an X-Y tree structure, only a tree structure
of some sort. As a result, modifying the assumptions made in the segmentation process
(e.g. by relaxing the X-Y tree prior to allow for overlays) will not invalidate the HMT
method.

To determine the most probable labels, we use the well-established belief propagation
algorithm [100]. Briefly, this algorithm represents the belief distribution about the value of
each node as the product of two factors, 7 and A, which are updated by messages passed
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from parent to child (in the case of the 7 distribution) or from child to parent (in the case
of the A distribution). The m-message passed from a parent p to a child ¢; is defined to be

Wp,ci = Oéﬂ-(p) H )\Cj,pa
J#i

where ¢; is also a child of p and a is a normalizing constant. The message sent from a
child ¢ to its parent p is defined to be

=D AM)Mp(p),

Values of ¢

A

where Mp(p is a matrix representing the probability distribution of values of P(c|p), such
that the value at row ¢ and column p is P(c|p) (for some indexing function converting
labels to row and column indices). The m-factor for each node i is updated according to
the equation (i) = Mpp) i, and the A-factor according to the equation A(i) = ch Aejin
where p is the parent of ¢ and each ¢; is a child of 7. Observed nodes have A\ equal to
zero except for the observed state (set to 1), and unobserved leaf nodes are initialized
with a uniform A. At each iteration, belief updating, top-down propagation, and bottom-
up propagation can be performed for each node in any order; iteration proceeds until
convergence. Finally, the belief Bel(i) = am(i)\(i), where « is a normalizing constant.

In our implementation, nodes are added to the tree starting from the root in an order
that ensures that all calculations have sufficient information to complete (i.e. all nodes
have an initial 7 and A from a previous iteration, are observed, or are unobserved leaf
nodes)!. The process is iterated to convergence with each set of nodes before new nodes
are added. Our implementation is derived from a detailed description of belief propagation
on tree-structured Bayesian networks in [100].

The large-scale structure of the HMT varies for each image with the structure of the
segmentation tree, but the small-scale structure is consistent. A hidden label node has
one parent (a label node corresponding to the label of the parent region), one observed
child node (representing the feature vector describing the region), and possibly one or more
hidden child nodes (representing the labels of child regions). This local structure is shown
in Figure 4.3. To calculate the messages to be passed by node 7, the following probability
distributions must be calculated:

e P(Label(i) = l;|Label(Par(i)) = ly)

IThat is, inference occurs as the HMT is constructed, in order to ensure that sufficient information is
available for message passing from each node.
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Figure 4.2: Example of a segmentation tree (left) and the corresponding HMT (right). For
each region in the segmentation tree (shown by rounded rectangles), there is a correspond-
ing label and observed feature vector in the HMT (one such transformation is shown in
dotted lines). All feature vectors are observed; all labels are hidden save for the label of
the root region, which is known to be the full page. In the HMT, ellipses represent hidden
nodes and rectangles represent observed nodes.

o P(Feat(i) = x|Label(i) = 1)

In these equations, Par(i) represents the parent node of i, Label(i) represents the label
assigned to the region i, and Feat(i) represents the feature vector describing region i.
Under the assumption that the same conditional probability distributions apply to every
label node in the tree, the same set of distributions suffices to calculate all messages passed
during the execution of the belief propagation algorithm, despite the varying large-scale
structure of the HMT.

These conditional distributions are defined by empirical distributions learned from the
class labels (in our first experiment, ARIA role labels) in the dataset of web pages. For
the discrete distributions over child labels given the parent’s label, this simply consists of
counting occurrences of label pairs that occur in a set of web pages used as training data.
We define this probability distribution to be

Pr(Label(i) = ly| Label((Par(i)) = l3) = % (4.1)
where
A={jeT: Label(j) = Iy A Label(Par(j)) = lo}| + € (4.2)
and
B =|{j € T: Label(Par(j)) = lo}| + ke (4.3)
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Figure 4.3: Local structure of the HMT used for classification. In this diagram, Par(7)
represents the parent of region i, and C'h(i, j) represents the j*® child of region i.

In these equations, T" represents the hand-labelled training set, k represents the number of
possible labels, and € is a small constant used to ensure that combinations of parent and
child not found in the training set can be predicted given strong enough evidence. The
probability distribution of feature vectors given a semantic region label is more complex,
since the feature vectors are continuous. To represent these distributions, we use kernel
density estimation with a Gaussian kernel. Thus, for any feature vector x describing a

region 1,
(Norm(x; Feat(j),a))
T3 '

Pr(Feat(i) = x|Label(i) = 1) = _

JET

In this equation, 7; represents the set of regions in the training set with the label [, and

Norm(x; p, o) represents the probability density at position x for a Gaussian with mean p
and standard deviation o; our experiments were performed with o = 0.005.

Summary

The value of our approach to classification may best be seen in the following way. We begin
with a segmentation tree representation of a webpage, which shows regions, but not labels.
We progressively learn what these labels should be, on the basis of feature vectors. But we
do not simply predict each region label separately. Instead, we take into consideration the
parent-child relationships from the segmentation tree and think in terms of the relevant
context within the page (since depending on that context, the labels will truly differ).
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In essence, for our classification solution, the context and the actual learned probability
distribution are considered together within the same graphical model.

4.3 Early Results

To demonstrate the efficacy of our classification method, we compare the classification
results with ground-truth data derived from ARIA landmark role labels. These labels are
designed for web accessibility, but are optional, and many web pages do not make use of
them. Our dataset includes the top 35 pages in Canada (according to Alexa?) which do use
ARIA roles®. This is a diverse set of pages; the content includes search, news, shopping,
and social network web sites, and the visual designs range from Google’s minimalist home
page to the busy multi-column layout of the CBC’s home page. Other, similarly-popular
pages without ARIA role labels were used to train the text and image classifiers for feature
extraction. Although the dataset contains relatively few pages, each page contains many
individually-labelled regions; at a region level, there are 4361 items in the dataset. We use

the full set of ARIA landmark role labels:

1. application 9. log
2. article 10. main
3. banner 11. navigation
4. complementary
12. note
5. contentinfo
6. directory 13. region
7. document 14. search
8. form 15. status

Additionally, we use several ARIA widget role labels:
16. button 18. gridcell 20. img
17. grid 19. heading 21. separator

Of these labels, only ten occur in our dataset. By their index in the list above, these
labels are 3, 4, 5, 10, 11, 14, 15, and 16. We augment this set of labels with two others:

2alexa.com

30f the top 50 pages in Canada, only these 35, or 70%, use ARIA labels; since they are not universal
even among the most prominent web sites, it is clear that they cannot be exclusively relied upon on the
Web as a whole.
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Label Count || Label Count
fullpage 35 navigation 148
banner 138 search 31
complementary 150 status 1
contentinfo 80 button 9
main 1161 unlabelled 2608

Table 4.1: Frequency of occurrence of each class in the dataset

fullpage (index 0), representing the complete web page at the root of the segmentation
tree, and unlabelled (index 22), for regions without an ARIA role label. Only these
labels are used in our experiments. The numbers of occurrences of each label are shown in
Table 4.1. Note that the classes are not balanced; this makes accurate classification more

difficult.

Each page in the dataset was segmented (as described in Section 3.2, running the
algorithm shown in Appendix A, as this experiment was performed before the improved
algorithm was available), and the resulting regions were matched with ARIA roles. Since
our segmentations do not necessarily correspond exactly to the bounding boxes of the
DOM tree elements labelled with the ARIA roles, we label each region in the segmentation
according to the predominant non-empty label of the region. When more than one label
applies to a region (e.g. a gridcell inside a grid), the label of a descendent overrides the
label of an ancestor. This process is illustrated in Figure 4.4.

There are several potential sources of noise in producing our training and testing data.
ARIA labels can only be applied by the page designer to whole DOM tree nodes, and
cannot distinguish between regions of black-box objects such as areas within images. The
translation between the DOM tree nodes and the nodes of our segmentation tree, as shown
in Figure 4.4, may also occasionally introduce noise where the two segmentations are not
aligned. To overcome these potential problems, we use a training set with a large number
of nodes (a total of 4361); because ARIA role labels are included in the page source code,
a large dataset of regions can be built more quickly than by using manual labelling.

To make optimal use of the dataset, we use leave-one-out cross-validation. Thus, in our
set of 35 web pages, we run 35 rounds in which we train the algorithm on 34 pages and
test on the remaining page.

Table 4.2 shows the confusion matrix for role labels. This shows not only overall ac-
curacy, but the frequency with which the classification algorithm confuses each pair of
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banner

Figure 4.4: Association between labels in the DOM tree (solid colours) and regions in the
segmentation tree (bold outlines). Using the predominant DOM tree node label for each
segmentation tree region, regions 2 and 4 have no label, region 1 has the label “banner”,
region 3 has the label “navigation”, and region 5 has the label “article”.

0O | 3] 4 5 10 | 11 | 14 | 15| 16 | 22 | Total
0 3B [ 0] 0 0 0 0 0 0 0 0 35
3 41 |12 ] 2 0 3 11 | 12 | 22 | 19 16 138
4 2 10| 6 3 1 13 1 0 0 120 150
5 0 |1 0] 3 | 32 1 2 0 0 0 42 80
10 15 | 5| 46 | 20 | 545 | 8 | 46 | 3 4 | 469 | 1161
11 43 |11 ] 2 1 7 20 1 21 | 3 | 24 16 148
14 2 1210 0 1 14 | 8 0 1 3 31
15 0 10| 0 0 1 0 0 0 0 0 1
16 1 01 0 0 0 0 0 0 8 0 9
22 102 | 49 | 163 | 114 | 462 | 57 | 138 | 27 | 123 | 1373 | 2608
Total | 241 | 79 | 222 | 170 | 1025 | 113 | 238 | 55 | 179 | 2039 | 4361

Table 4.2: Confusion matrix showing ground truth labels in rows and predicted labels in
columns. Each cell shows the number of occurrences of that pair of true and predicted
labels. The indices of each label are taken from the list of role labels above.
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Class 0 3 4 5 10 11 14 15 16 22

TP 35 12 6 32 545 20 8 0 8 1373
FP 206 67 216 138 480 93 230 55 171 666
TN 4120 4156 3995 4143 2720 4120 4100 4305 4181 1087
FN 0 126 144 48 616 128 23 1 1 1235

Precision | 0.15 0.15 0.03 0.19 0.53 0.18 0.03 0.00 0.04 0.67
Recall 1.00 0.09 0.04 040 047 0.14 0.26 0.00 0.89 0.53
Accuracy | 095 096 092 096 0.75 095 094 099 096 0.56

Table 4.3: Table showing several performance measurements for each class.

labels. In the confusion matrix, M, M,. is the total number of times a region of class r
was classified as a region of class ¢. Diagonal elements represent correct classifications, and
off-diagonal elements represent incorrect classifications. The overall accuracy of 46.8% is
far better than the chance accuracy of 10% for a ten-class classification problem. Table 4.3
shows performance measurements for each class, including true positives (T'P), false posi-
tives (F'P), true negatives (T'N), false negatives (FN), precision (7p5p), recall (77557 ),
and overall accuracy (75 +Z£j:%\\; —~)- 1t is clear that performance for the dominant classes
(in terms of the number of examples) is good, although performance for rarely-encountered

classes suffers by comparison.

There are a number of ARIA roles that distinguish on semantic grounds types of content
that are likely to be visually similar. The labels main (the main content of the page, index
10) and complementary (content that is complementary to the main content, index 4), for
example, both refer to content rather than navigation or interactive widgets, and are likely
to be similar in appearance since they differ primarily in the relationships of the meaning
of the content. If these are combined, the resulting class is classified with a precision of
0.48 and a recall of 0.46, both slightly less than the larger class main alone, but a dramatic
improvement on the values for the smaller class complementary.

The most common errors are classification of a labelled region as unlabelled (index
22) and classification of an unlabelled region with a role label. The distribution of ground
truth labels in the dataset suggests that this may be due to incomplete labelling of many
web pages with role labels when they are present. While there are no img labels in the
dataset, for example, there are many images in the web pages. For regions where neither
the ground truth label nor the predicted label is unlabelled, the predicted label matches
the ground truth label exactly in 61.3% of cases.

Because the ARIA labels are originally associated with DOM tree nodes, and our visual

85



segmentation’s boundaries are not necessarily identical to the boundaries of the DOM tree
nodes, the association of labels with nodes in our segmentation tree may introduce noise
in the training data. To check for this, we also test the classification algorithm using a
segmentation generated using the bounding boxes of DOM tree nodes as the boundaries
of segments. Essentially, this is equivalent to a hand-labelled segmentation produced by
the page designers. Although this segmentation is not generated from purely visual data,
it does eliminate a source of noise in the training data, and the classification is done
using the same visual features. For our tests, we use 29 pages, omitting 6 for which the
DOM tree structure was not appropriate for processing and feature extraction. Because
of the prevalence of unlabelled nodes in the DOM tree, we set the label of each node
whose children all share the same label to that shared label; even with this measure,
however, 29857 of 30210 DOM tree nodes (98.8%) are still unlabelled, much more than
in our visual segmentation. The overall accuracy is lower at 37.9%. Most of the errors
are due to unlabelled regions being assigned a label; like the similar errors produced when
classifying regions in the visual segmentation, this may simply be due to the page designers
not assigning labels to regions where they would be appropriate. Considering only regions
with ground-truth or predicted classes of unlabelled, the accuracy is slightly lower still at
35.3%. These results do not indicate that the process of associating DOM tree ARIA labels
with regions in the visual segmentation is generating problematic noise in the training data.

Unlabelled regions are a problem which could be approached in several ways. One
approach would be to examine methods for distinguishing regions which are unlabelled
because the page designer neglected to assign a label from regions to which no label is
applicable (i.e. to distinguish between training examples that have no label attached, and
training examples with an implicit label of “other”, such as a whitespace region). With
this distinction, it would be possible to use a semi-supervised learning method to estimate
the probability distributions to be learned, or simply prune the training set, allowing us to
overcome the problem of unlabelled regions. This approach has some appealing aspects,
but is labour-intensive to implement and may require a very large dataset to learn to
distinguish between different types of unlabelled regions. Instead, we turn to manual la-
belling. Although also somewhat labour-intensive, manual labels can be assumed to reflect
the beliefs of the labeller about the ground truth labels of regions, and as a result manual
labelling avoids the possibility of a semi-supervised learning method producing incorrect
results due to an insufficient dataset or incorrect assumptions about the distributions of
labelled and unlabelled regions of different classes.
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4.4 Improved Experiments

The ARIA labels used in the first experiment are not always sufficient to label all re-
gions in a page; some regions were not accurately described by any ARIA label and were
therefore unlabelled. There were also many regions for which an applicable label was not
assigned by the page developers. These two issues combined to produce a noisy dataset
with large numbers of unlabelled regions for use in training and testing; it is therefore
not surprising that the classification algorithm struggled to achieve high performance in
these experiments. In the experiments described in this section, we have worked to address
these problems: the issue of regions not having an applicable label has been addressed by
using a new ontology; the issue of incomplete labelling by page developers has been ad-
dressed by using manually-labelled pages. By the time these experiments were conducted,
the improved segmentation algorithm described in Section 3.3 was available; we used this
algorithm in these experiments.

4.4.1 Ontology Selection

Ontology selection is, in general, a very difficult problem. It is important, when classifying
regions, to select a set of labels that is both comparable in granularity to the segmentation
and relevant to the task at hand. For an extreme case of granularity mismatch, consider
an algorithm that produces a high-quality segmentation at the level of large regions (such
as articles and headers), and a set of labels corresponding to individual characters. Re-
gardless of the algorithm used to assign labels to regions, the results will inevitably be
uninformative. The same set of labels could, however, be used effectively with a character-
level segmentation. A page that is over-segmented with respect to one ontology may be
under-segmented with respect to another and perfectly segmented with respect to a third.
Relevance is equally important, and depends to a large extent upon the intended appli-
cation. Continuing with the example, character-level labels are highly relevant to optical
character recognition (OCR), but are almost completely irrelevant to the problem of rear-
ranging major page elements to suit a small screen. In the domain of assistive technology
this is an especially complex problem [125].

Work by Akpinar and Yesilada [3] presents an ontology-based heuristic approach for
identifying visual elements of web pages and their roles, implemented by extending and
modernizing the well-known VIPS algorithm [22]. Like VIPS and its many other descen-
dants, the approach described by Akpinar and Yesilada relies upon the DOM tree. The
objectives of this algorithm were to improve accessibility and the presentation of pages
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on small screens (e.g., on a cell phone). Their algorithm is, however, designed to assign
roles to visual elements using a probabilistic approach, as ours is. An online survey was
conducted for user evaluation and 80% of the users were receptive to the interpretations
produced, although some differences in user points of view were also noted [3]. We employ
the set of classes selected by Akpinar and Yesilada for the eMine ontology [3], on the basis
that it is designed to be relevant to assistive technology and experiments with users have
confirmed that it can provide plausible descriptions of web pages. The use of an existing
ontology also helps to avoid creating bias by selecting labels that play to the strengths of
our classification algorithm.

Akpinar and Yesilada’s eMine ontology is a descendent of the WAfA ontology [137].
In some respects eMine is coarser-grained, in that some roles with no clear distinguishing
features are combined; in other respects, eMine extends the WAfA ontology by providing
additional roles. Additional roles were selected based upon the ontologies underlying ARIA
labels [129] and HTML5 roles [17]. This effort to move beyond ARIA labels is well suited for
our purposes; it resonates with discussions we had at the 2016 Web4 All conference [31] with
assistive technology experts, some of whom had assistive needs themselves. The observation
was that ARIA labels alone are not sufficient to support screen readers, but were intended to
supplement tag information. A more comprehensive set of classes represents an important
advantage from the perspective of supporting screen reader navigation. The complete
eMine ontology includes not only a set of classes but also a set of heuristic rules defining
their characteristics.

Our dataset includes regions with the following labels from classes in Akpinar and
Yesilada’s eMine ontology:

e Page e Figure e Menu

e Article e Footer e Menultem

e Body e Header e Nothing

e BreadCrumbTrail e Icon e Separator

e Caption e Link e Sidebar

e ComplementaryContent e List e SpecialGraphic
e Container e Logo e Title

e Copyright e Margin e TitleBanner
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To this set we added an Empty class for whitespace segments detected by our segmenta-
tion algorithm. We only included roles in our classification experiments if they were found
in our dataset at least once. These roles are similar in semantic level to the ARIA labels
and HTML tags commonly used for screen reader navigation today.

4.4.2 Manual Labelling

The second key difference between the experiments described here and those described in
Section 4.3 is that the ground truth used for training and evaluation is manually (rather
than automatically) generated. In order to manually classify a large number of regions,
we developed a simple graphical interface to allow a human classifier to select and label
regions in the page. The regions were labelled one level of the tree at a time; since regions
at the same level cannot overlap in the segmentations produced by the algorithm used here,
this simplifies the interface by removing ambiguity in selection. In order to efficiently label
areas where many region shared the same label (a common occurrence, since web pages
often contain many instances of the same type of content, such as article blurbs in a news
site home page or image thumbnails in a gallery page), the interface included the ability
to simultaneously select multiple regions and apply the same label to all. Figure 4.5 shows
a screenshot of the interface in use.

The principal difficulty encountered in manual segmentation was the scale of the task.
The segmentation tree of a web page often has 50-60 layers of regions, and in each layer
there could be hundreds of regions to be labelled; as a result, the labelling process was
labour-intensive. Oversegmented and undersegmented regions in the segmentation tree
were also challenging to label accurately and descriptively.

To ensure consistency in labelling, a single researcher labelled all pages in the dataset.
As a result, the model learned reflects the perception of one researcher. With a larger
dataset, it may be feasible to investigate the differences in perception between different
users. If agreement between labellers is high, this suggests that labels can be confidently
assigned to regions and that evaluation with a single ground truth classification should
provide accurate results. If opinions on the correct labels differ between users, a single
ground truth classification will not capture the range of perceived classifications, and a
“one-size-fits-all” classification method will not be able to satisfy all users without person-
alization. Using a single labeller, we do not need to account for between-labeller variations,
but we cannot answer the question of consistency. We discuss this issue further in Section
8.3.5. The issue of individual differences in perception will be addressed with respect to
ground truth segmentations in Chapter 6.
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Manual labelling not only avoids the problem of missing labels, but also associates
labels directly with regions in the segmentation used. In Section 4.3, the ARIA labels were
associated with regions in the DOM tree, which were then associated with the regions in
the visual segmentation tree. In testing the visual segmentation algorithm, we have already
demonstrated that the visual segmentation tree differs substantially from the DOM tree;
as a result, the process of automatically associating ground truth labels with regions is
another potential source of noise in the training and evaluation data used in the original
classification experiments.

4.4.3 Dataset

For this series of experiments, we have selected a set of nine news web pages: three each
from BBC News, CBC News, and the New York Times. News pages are useful for this
type of research because they are very complex, with a large number of regions and a large
number of types of regions. At the same time, news web pages are sufficiently similar
in structure that a model can be learned from a relatively small number of pages. For
segmenting these pages, we used our improved segmentation algorithm, as described in
Section 3.3.

It is important to note that while the total number of pages is relatively small, the
number of regions is very large—over 15000 in our dataset. The model predicts labels at
a region level, and the empirical distributions learned by the model are defined in terms of
individual regions and parent-child pairs. Thus the dataset is much larger than the number
of pages suggests.

The distribution of labels in the dataset is highly skewed, as shown in Figure 4.6. This
creates significant challenges in learning to classify regions. This is hardly surprising; a
single page will only have one node in the Page class, but any given page may have dozens
or hundreds of links; imbalance in classes, and the associated difficulties in classification,
is an inherent aspect of the problem, rather than a matter specific to our dataset.

4.4.4 Results

The initial results of our improved experiments were unimpressive in terms of absolute ac-
curacy. An overall accuracy of approximately 17% was achieved; in a 28-class classification
problem, this is well above chance, but it is not a practical level of accuracy and is lower
in absolute terms than the accuracy obtained in our earlier experiments (see Section 4.3).
Some promising indications were, however, observed. Since the results were well above
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Figure 4.6: Class imbalance in the new web page dataset with manual labels. Note that
the vertical axis uses a log scale; the degree of imbalance is very high.
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Figure 4.7: Graph of the accuracy of our classification algorithm as the parameter e. Higher
values of € force a more uniform distribution over parent-child label pairs.

chance, this suggests that the learning algorithm is in fact learning even if the results are
not reliable. As the value of € (the parameter from Equation 4.2, Section 4.2.3 which raises
the estimated probability of unobserved or rarely-observed parent-child combinations) was
increased, raising the probability associated with rare parent-child label combinations, the
accuracy initially rose, then fell gradually, as shown in Figure 4.7. This indicates the
existence of an optimal value of €, which is readily explained if we assume that these
hierarchical relationships and features of regions both provide useful but not complete in-
formation in the classification process. Under this assumption, a very small € will force
the solution strongly toward common parent-child combinations, since rare combinations
or those not seen in the training set have a very low probability in the learned distribution
of parent-child combinations; the features of a region may not be able to overcome this low
probability. Similarly, if the hierarchy is useful to the classification algorithm, a very large
e weakens the influence of the hierarchy by making the learned distribution more uniform;
in the limiting case of a completely uniform distribution, the classification is based solely
on the feature vectors describing individual regions. Thus, these results are not inconsis-
tent with an algorithm that is learning some useful information about both the features of
regions and their hierarchy.

Over-segmentation or under-segmentation of the page (with respect to the ontology
being used) is a potential cause of poor performance in the classification algorithm, and
can affect both the learned conditional distribution of feature vectors and of parent-child

93



combinations. It is simplest to examine the effects by dividing poor segmentations into
several cases:

e When an under-segmented region is accurately segmented at its own level but not
divided into smaller regions as it should have been, examples of feature combinations
and relationships that should have been present in the training set will not be. If
such under-segmentation is common in the segmentations available for the training
set, classes that tend to occur at the lower levels of the hierarchy can be greatly
under-represented in the training set.

e When an over-segmented region is accurately segmented at its own level but is di-
vided into child regions when it should not have been, many features of its descen-
dants can be distorted. The shapes and sizes of the child regions are not identical to
the shape and size of the parent region, causing the proliferation of noisy features.
Similarly, the proportions of different types of content can be differ from the propor-
tions in correctly-segmented regions of the same class. Because the descendants of
an over-segmented region will share its label, over-segmentation will also lead to a
proliferation of instances of parent and child pairs sharing the same label, distorting
the distribution of parent-child combinations.

e When a poorly-segmented region includes regions or parts of regions that should not
have been grouped together, the ground truth label assigned to it does not accurately
reflect all of its contents. As a result, the estimated features are distorted, by the
different size, shape, and position of the composite region and by the different pro-
portions of content types in the region. The distribution of parent-child combinations
can also be distorted, since the poorly-segmented region may have child regions of a
type that should not have been children of a region of its class.

Over-segmentation in particular can cause very large numbers of problematic child regions,
since the node that should have been the leaf node can have a very large number of
descendants.

The problems associated with learning reliable region features when the underlying
segmentation is unreliable could, in principle, be addressed by selecting different sets of
features. Features that describe the appearance of the entire region, not just its outline,
would be more robust to segmentation errors than shape and size features if the appearance
of a region is reasonably uniform. This approach has several important drawbacks:

e It cannot address the third type of poor segmentation listed above, since that type
combines features from multiple classes that should not occur together.
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e It only addresses the effects of unreliable segmentations on the conditional distribu-
tion of feature vectors; the distribution of parent-child combinations is still vulnerable
to distortion.

e The features described in Section 4.2.2 were selected to reflect intuitively plausible
features for distinguishing between different types of regions in a web page. It is
reasonable to believe, for example, that a header is likely to be much wider than it
is tall, while the opposite can be expected for a sidebar. Changing the features used
could compromise performance by resulting in a set of features that is less informative
even when regions are segmented accurately.

For these reasons, we turn instead to the structure of the segmentation tree to investigate
possible solutions to the problem of low classification accuracy.

The segmentations produced for our classification experiments were produced using the
same parameters as those used in concert with an assistive interface in the user study and
corresponding offline experiments described in Chapter 5. Qualitatively, our segmentation
divides regions quite aggressively with these parameters. Due to the nature of the assistive
interface tested in Chapter 5, it was desirable to err on the side of over-segmentation, and
aggressive segmentation was entirely appropriate. The requirements of the classification
algorithm differ in that over-segmentation can be a cause of poor performance. To reduce
the chances of over-segmentation, we used “pruned” segmentation trees, in which small re-
gions were removed, to construct the HMT. Another means of reducing the aggressiveness
of the segmentation algorithm would be to increase the minimum probability for introduc-
ing a new division from the default value of 0.5. From a probabilistic perspective, this is
entirely appropriate; if the cost of a false negative is less than the cost of a false positive in a
given scenario (such as producing a segmentation tree for later classification), the threshold
should be correspondingly higher. For the purposes of this experiment, however, pruning
has the advantage that the regions in the pruned segmentation tree are guaranteed to be a
subset of the regions in the original segmentation tree; this avoids either time-consuming
relabelling of regions or potentially error-prone association of labels between different seg-
mentations. This is not the case for resegmenting with a higher probability threshold.

Figure 4.8 shows the effect of pruning the segmentation trees to remove nodes with a
small area. The graph shows the accuracy of the classification process when the optimal
value of € (out of the values tested) is used. For the pruning process, we used eight
region size thresholds: five, ten, twenty, thirty, forty, fifty, seventy five, and one hundred
thousand pixels. Note that although one hundred thousand pixels seems to be a very
large area, a 500 x 200-pixel region has this area and is a reasonable size for a mid-level
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Figure 4.8: Graph of the accuracy of classification at the optimal value of € (of those values
that were sampled) as a function of area threshold value.

region in the segmentation tree. As the segmentation tree was pruned more aggressively,
the classification performance improved. With the least aggressive pruning, removing only
those regions with an area less than 5000 pixels, accuracy reached 21% with the optimal e
value, a modest improvement over the accuracy of classification algorithm on the unpruned
segmentation tree. The accuracy with the optimal value of € increased monotonically as
pruning became more aggressive, as shown in Figure 4.8. For the highest area threshold,
1 x 10° pixels, the accuracy of the segmentation process reached approximately 61%, an
impressive value for a multi-class classification problem with 28 highly imbalanced classes.
As the accuracy had not yet ceased to increase at a threshold of 1 x 10° pixels, it is
likely that higher accuracy could be achieved by further increasing the threshold, but at
higher values the utility of the classification algorithm could be compromised as important
mid-level features of the page are pruned away.

Figure 4.9 is analogous to Figure 4.7, and shows the effect of the ¢ parameter at each
level of pruning. Regardless of how aggressively the segmentation tree is pruned, the
accuracy is low for very low values of € and rises (quickly, in most cases) until an optimal €
value; for values of € above this optimum, the accuracy gradually decreases. Although the
optimal value of € varies somewhat with the degree of pruning, the qualitative consistency
in the effects of this parameter is quite striking.
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Figure 4.9: Graph of the accuracy of our classification algorithm as the parameter e. Higher
values of € force a more uniform distribution over parent-child label pairs.

4.5 Applications

One of the most fundamental tasks users perform when browsing the web is locating
information in the page that is relevant to their current needs and interests. When using a
weather forecast page, for example, the desired information is probably the local forecast,
either for the day or for the week. Other content on the page, such as features on weather
events elsewhere in the country, is of secondary interest at best, and some content such as
the copyright information in the footer is irrelevant to almost all users. Sighted users can
perceive a large area of the page at once, organized in two dimensions, to quickly locate
large, high-level content areas to skim for the relevant information. Although users with
visual impairments severe enough that they must use a screen reader to access the page
do not have this immediate access to the two-dimensional layout of the page, they too are
generally not interested in all content on the page, but will want to skim or skip various
parts of the page [109]. Screen reader users have a much more difficult time making these
macro-level assessments [130].

To mitigate this challenge, screen readers typically include features enabling the user
to navigate (i) from heading-to-heading or paragraph-to-paragraph; (ii) through each item
in a list with advance notification of the length; (iii) through data tables, cell-by-cell, with
headings; (iv) alphabetically through all the links on a page. These features enable the user
to hear an outline of the page’s main ideas and then focus on the most relevant parts. If one
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examines sample transcripts from screen readers?, there are examples of rather complicated
navigation methods presented to users.

Aside from the complexity of the DOM tree-based navigation interfaces, the efficacy of
this approach depends heavily on the quality of the underlying code. Even though elements
might look appropriately formatted to a sighted user, if they are not properly defined in
the HTML, they will not be available to the screen reader. Moreover, if a page uses the
same style for a mix of elements on the page (for example, if a heading tag is used both for
the headings in the main content and for navigation elements), the screen reader will not
be able to differentiate. HTML5 sections and ARIA landmarks can address this problem
by clearly demarcating different sections of the web page (e.g., headers, navigation, main
content, etc.) but unfortunately these markers are often absent, and even when present
they may not be correctly or consistently used. Using computer vision to automatically
classify regions in a web page according to their role can help to address the poor support for
screen readers by making high-level semantic labels available® without relying on developer
support and independently from the implementation of the page.

For some sighted users, the ability to see a large amount of information on the page
simultaneously can be a drawback. Older users [11] and users with cognitive or attention
deficits [85] may find the complex, busy layouts of many modern web pages distracting.
This can interfere with effective use of web pages. Segmentation alone can support some
types of assistive interface to reduce distractions. As shown in Chapters 3 and 5, the
segmentation tree can be used to highlight a focus region relative to the surrounding areas of
the page in order to make the focus region more salient than potentially distracting regions.
When combined with classification, more sophisticated approaches are possible. Prediction
of the most relevant regions based upon the labels could allow irrelevant, distracting regions
to be automatically suppressed. This would be advantageous, since the user would have
less need to manually indicate a focus region, and the entire page would be simplified.

4e.g. NVDA, found at nvaccess.org [)7]
5Available directly to the screen reader and potentially indirectly to the user through their use as
navigation landmarks
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Chapter 5

Assistive Interface User Study

This chapter describes an experiment aimed at validation of the practical utility of the page
segmentation method described in Chapter 3 as a back-end parsing system to support
a front-end assistive interface. This technique was developed in order to leverage Al,
and in particular computer vision algorithms, as part of an effort to provide assistive
technology for online users who may have visual or cognitive impairments. It is of interest
because the use of images of web pages rather than the DOM tree or page source code
provides complete implementation independence, and does not rely on inconsistently-used
accessibility frameworks.

The tests of our segmentation algorithms presented in Chapter 3 focused on two pri-
mary types of experiment. Quantitative evaluation of the approach, in comparison with
a competitor tied to DOM-tree evidence [22] and with a DOM tree-based control algo-
rithm, demonstrated that the vision-based segmentations are similar to DOM tree-based
segmentations at a large scale but offer important differences at a small scale. In these
experiments, an earth-mover’s distance metric (see, e.g., [I11]) was used to compare the
leaf-level segmentations. Qualitative evaluation of segmentation quality established that
the vision-based segmentations captured important features of the pages on which they
were tested, and that the overall segmentation quality appeared good.

In this chapter, we focus on the challenge of validating the performance of our visual
segmentation method in a system complete with an assistive interface through a user study
with participants from a population likely to require assistive technology and through
offline experiments with the capabilities of the interface. This study was approved by the
University of Waterloo Office of Research Ethics. We discuss in detail the design of this user
study: the tasks presented to users, the data set used, the metrics tracked, the participant
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responses elicited, and the interface design. Lessons learned reveal directions for further
experimental design. This research therefore provides insights for other researchers on how
to bridge the gap between the many plausible computer vision algorithms and their practical
value to actual users of the algorithms. It also discusses the particular challenges which
must be addressed when these users have assistive needs. We note that user study results
are lacking for the broadly similar vision-based page segmentation algorithms described by
Barkol et al. [12] and Cao et al. [21]. The discussion we include in Section 5.3 sheds light
on the difficulties that arise when designing interfaces for a study of this type, and will
also reveal a role that can be played by offline testing of the proposed designs.

5.1 Experiment Design

Testing the effect of the back-end system used for parsing web pages on the performance of
assistive technology requires particularly careful experimental design, due to the presence
of the front-end interface between the back-end visual parsing system and the user. We
use two related experiments to address the problem: one in which users perform a simple
visual search task, and an offline test of the capabilities of the system. Visual search (i.e.,
the user looking for a target in the page) is a sub-task common to many web browsing
tasks (and therefore should prove informative about overall benefits), but it is sufficiently
concrete and quantifiable to allow good experimental control and reduce the complexity of
the interface required for the task.

In the user study, the participants complete a series of tasks in which they are presented
with a news web page and a description of a target article to find using either a “vanilla”
non-assistive interface or an assistive interface. The assistive interface allows users to
magnify and highlight a user-specified target region (in order to accomplish zooming and
decluttering) and can be customized by the participant in a separate configuration step.
Magnification and highlighting are implemented through image editing operations on an
image of the page. Figure 5.2 shows an example of the interface in use. The performance
of participants is measured in terms of speed and accuracy in finding the target article, and
data about participants’ subjective evaluation of the assistive interface is collected using
brief questionnaires at various stages during the experiment.

For the purpose of this experiment, the assistive interface presented to users needed to
be tied to the output of our segmentation system. In so doing, we would be able to deter-
mine whether our framework properly supports assistive features. Since our segmentation
algorithm produces a segmentation tree identifying the regions of a web page, we designed
the study in order to try to represent what users interpreted as a region of interest on
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the page. In brief, we chose to use an interface that allows the page to be displayed with
selected regions magnified and highlighted, using the segmentation tree to ensure that the
regions correspond to semantically significant, visually coherent regions of the page. Mag-
nification and highlighting were chosen because they had been noted to be appropriate for
use with a segmentation alone [35].

In the offline tests, we used simulated “noisy” user input to evaluate the accuracy of
the estimated region of interest. Offline testing uses simulated user input as a stand-in
for real participants; it allows the theoretical capabilities of the system to be thoroughly

explored, and is unaffected by any user experience issues that may occur in a simple test
GUL

5.1.1 Interface Design for Visual Search Study

As indicated earlier, this experiment is concerned with identifying a user’s true region of
interest, based on a rough selection, as the user searches the page for a target article.
Given a segmentation tree expressed as a graph (S, E) (where S is the set of regions in
the segmentation and £ C S x S is the set of directed edges from parent to child regions)
and a user-selected approximate region of interest R, the interface estimates an intended
region of interest R’ consistent with the segmentation tree by optimizing over some measure
of accuracy. This measure of accuracy should be reduced by both false positives (pixels
outside of the user’s selection that are included in the estimated region) and false negatives
(pixels inside the selected region that are not included in the estimated region).

In our experiment, we defined the estimated region to be R’ = [ J, .4 s for some S" C S;
the set S’ is chosen such that S’ = argmins,}g—ggi, subject to the condition that Vs;, s; € S,
depth(s;) = depth(s;). In other words, R’ is the best approximation (in terms of the
accuracy function described) of the user-selected region of interest produced from a set of
sibling nodes in the segmentation tree. Alternative formulations could include using an
F-score measure of accuracy or relaxing the requirement that all nodes used to build the
selected region be siblings; these may be worth evaluating in future experiments.

The segmentation tree allows the system to display a visually coherent region of interest
even when the user’s selection did not correspond well to his or her intended focus region.
Such an imprecise selection could occur for a number of reasons: because the user has
difficulty with using the input device (e.g. a user who has difficulty using a mouse due to
hand tremor), because the user requires an assistive input device with low resolution, or
simply because the user is in a hurry. Evidence from a study conducted during a computer
class for older adults by Dickinson et al. [10] shows that using the mouse (especially
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for more complex tasks like clicking and dragging) can be challenging for older users,
particularly those with specific challenges in fine motor control. Although these difficulties
can often be overcome with practice, they are a source of frustration for novice users [10].
Inferring the intended region, rather than simply using the selection made by the user
unquestioningly, may help to address these problems.

5.1.2 Participants

Older adults—generally considered to be 60 and older—can potentially benefit greatly from
the web and the internet, but the needs of these users are often not well served by current
designs [92]. Existing research indicates that older users browse differently from younger
users [11, 17, |. Older adults can have complex assistive needs as well as different meth-
ods of processing a web page from younger users, and represent a growing segment of the
population [62]. For users with specific assistive needs, many frameworks and standards
have been developed (e.g. WAI-ARIA [128]), and aspects of these frameworks are appli-
cable to designing for older users [J]; unfortunately, these are not reliably used even on
popular web sites [33]. We show that using computer vision to interpret web page structure
is a promising approach, and the experiments presented here are intended to test a specific
case of this more general hypothesis.

For our user study, we recruited a total of 16 participants, all older adults. All of the
participants lived in the community; their degree of independence helped with logistical
and ethical issues in conducting the experiment, but may also have resulted in users with
less need for an assistive interface. The first three participants used an earlier version of the
assistive interface in a pilot study; the results of the pilot study suggested user experience
problems with the front-end interface, which the redesigned graphical interface used in
later experiments was intended to address.

5.1.3 User Study Protocol

In our experiment, participants were asked to locate a specific article in a cluttered news
page as quickly as possible, based on a description of the article slightly paraphrased from
the headline and description occurring on the original page. News web pages were chosen
because they are a popular class of web pages, with content that is updated frequently
(thus facilitating the generation of a large dataset of unique, but related, pages). The
example pages used were collected well before the users participated in the experiment,
to prevent users from remembering where to find a specific article; similarly, no page was
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shown more than once during the course of the experiment. Web pages were chosen from
BBC News, CBC News, and New York Times web sites, and the dataset included examples
of the home page and of high-level sections such as “World” and “Business”. Although the
task shown here uses news web pages, similar visual search tasks are found when finding
a post about a specific topic in a social media page or finding a product of interest on a
shopping web site.

Our participants were recruited through word-of-mouth and through a participant pool
of older adults affiliated with the University of Waterloo. Each participant saw a total of 30
images over the course of a one-hour session; a mechanism was included in the test to end
the experiment with fewer pages if the total time exceeds a preset limit, but this was never
necessary. On occasion, an example would be skipped due to participant frustration. The
images were divided into two equal sets, and for each user one set of was to be viewed with
the option to use assistive features and one to be viewed without. Order of presentation of
the assistive and non-assistive interfaces was counterbalanced (i.e. which one to be shown
first to each user) to mitigate learning and fatigue effects.

Articles were selected such that each had at least two of the following characteristics:
1. A headline or title, 2. A graphic (or placeholder), and 3. A description of the arti-
cle. Additionally, articles were chosen such that they appeared only once in a given page
to ensure that the target was unique. For each article, the corresponding ground truth
bounding box was manually labelled'. The ground truth bounding box was not selected to
correspond to a region or group of regions in the segmentation tree of the page produced
by our algorithm, since if a region was segmented poorly, the resulting bounding box could
falsely accept or falsely reject some responses from the user, and if only very accurately
segmented targets were used, the results would be biased. In selecting targets and drawing
target bounding boxes to establish ground truth, we did not consult the segmentations at
all, in order to avoid biasing the set of target regions. Figure 5.1 shows examples of the
target articles used and their descriptions. We selected articles from a variety of regions
of the page (including different columns and vertical positions) and in a variety of sizes
to ensure that the sample was reasonably representative. Similarly, the dataset contains
pages from several different web sites, with different lengths and numbers of columns. To
ensure similarity between the sets of pages used in each condition for each user, the pages
were divided such that distributions of article positions along the length of the page were
similar. The height of target regions ranged from 111 to 411 pixels, with a mean of 228.7,
and the width ranged from 196 to 666 pixels with a mean of 342.8. All participants used
the same computer and monitor in the test; the 22-inch monitor had a 1680 x 1050-pixel

'We knew where on the page the target article was located; we identified this in order to determine
whether users successfully located the target or not.
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Figure 5.1: Example targets and the corresponding descriptions provided to the users as
prompts, from our experiment. Both examples are taken from BBC News pages.

resolution, and the viewable area of the page was 1024 x 768 pixels.

We selected older adults for our target population based on existing research that sug-
gests that an interface of the type tested could be of use to this population [35]. Aside from
the obvious applications of magnification (equivalent to large-print books), there is evidence
to support the utility of some mechanism for decluttering. Eye-tracking research has shown
that older adults attend to areas on the page longer than younger users do [123], and that
they are more sensitive to clutter and distracting elements [11]; as a result, distractions
from irrelevant elements of the page may waste more time for this group. Highlighting a
focus region relative to the rest of the page may help users to avoid distractions.

For testing purposes, we implemented an instrumented version of the interface described
above in a dedicated system. This version of the interface, depicted in Figure 5.2, includes
experiment-specific controls and logs all interactions for later analysis as well as collecting
speed and accuracy data. The web pages used in the testing procedure were rendered
as images, because interactivity was neither required nor beneficial and because image
processing operations could be used to easily implement the interface operations. In the
interest of ensuring that all controls and instructions are legible to users who may have
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Figure 5.2: The assistive interface being tested, shown here with the correct article se-
lected as the focus region. This interface shows the default levels of magnification and
highlighting.

some degree of visual impairment, all interfaces were designed to use large font sizes.
This interface consists of two parts: first, a configuration utility in which users set the
degree of magnification and highlighting to be used for the rest of the experiment?; and
second, a simpler interface with fixed magnification and highlighting in which the user
actually completes the tasks. For comparison purposes, we also implemented a “vanilla”
interface with no assistive features in the same framework. This was chosen as the point
of comparison because our objective is to determine whether or not a purely vision-based
framework can support a useful assistive interface. At the present stage of development,
it is more informative to compare against a control with no assistive features than against
a state-of-the-art DOM tree-based method, since those methods have had a considerable
period of iterative refinement, while vision-based methods have not.

In addition to logging activity and measuring visual search performance, we collected
data about participants’ subjective impressions of the interface and their familiarity with
the web. Before beginning the visual search tasks, the users were presented with a brief
questionnaire about preferences and background, including the following questions:

2This also provided an opportunity to demonstrate the capabilities of the interface to the users and for
users to practice using the interface.
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1. Tuse the Internet regularly (rated on a five-point Likert scale from “Strongly disagree”
to “Strongly agree”)

2. I find it frustrating to use the Internet (rated on a five-point Likert scale from
“Strongly disagree” to “Strongly agree”)

3. Select the text size you would prefer to read (options show a range of font sizes)

After each interface, the users are presented with a standard NASA TLX workload evalu-
ation questionnaire® [59] to allow comparison of perceived workload between the assistive
and vanilla interfaces. Finally, users are presented with a brief questionnaire to elicit in-
formation about preferences between the two interfaces (vanilla and assistive) tested. This
consists of the following questions:

1. Which interface was easiest to use?
2. Which interface was most frustrating to use?

3. Which interface would you prefer to use?

Collecting separate information about efficiency (time to find the target), effectiveness
(error rate), and subjective preferences is important; since the study is intended to detect
any positive effect produced by an interface using the vision-based segmentation system,
an improvement in any aspect of usability would be considered a positive result. In a meta-
analysis conducted by Hornbaek and Law [69], these aspects were found to be positively
correlated in most studies, but only to a low or moderate degree. This indicates that
separate measurements are valuable for our purposes.

5.2 Results

In this section we present the results of a series of experiments based on the design described
above. In Section 5.2.4, we also discuss offline experiments performed using our interface
without user involvement.

A small pilot study with three participants helped to inform the design of the inter-
face used in the study proper; the feedback from these participants helped to refine the
interface design and eliminate inconvenient or unintuitive aspects of the control scheme.

3Shown in Appendix B.
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The modified interface was tested with eight participants; based on the results, a new set
of tasks was created and a further five participants recruited for a second phase. Offline
testing was also performed to more fully explore the capabilities of the interface. Of these
experiments, the offline tests proved to be the most informative about the combination of
the segmentation algorithm and the assistive interface.

5.2.1 Interface Design Iterations

The initial design for the interface used a single click to control the position of the area of
interest and a slider to determine its size, rather than the click-and-drag selection method
used in the final version of the interface. Although researchers were able to use the system
efficiently, and participants were given a tutorial on using the interface, users tended not to
use the size control, even though one commented informally that the region was too small.
We also observed a tendency to ignore the assistive features; including the necessary click
on the target region, 26 out of a total of 41 completed examples involved two or fewer clicks.
From this, we concluded that the interface was not sufficiently intuitive or convenient to
be useful for the purposes of this study. The interface was then modified to use the region
selection method described in Section 5.1.1.

5.2.2 Results from Vanilla Interface

Since the vanilla interface functioned identically in the pilot study and in the final de-
sign, it is possible to combine the data from both stages to verify that the visual search
time for each instance is consistent with reasonable assumptions about the methods that
participants would use to find the target. Figure 5.3 shows the relationship between the
vertical positions of targets in the page and the time taken for participants to find the
target region. Beyond the area of the page visible on the first screen, the data shows an
upward trend in the minimum search time to find an article. A more formal analysis using
linear regression gives a slope of 0.037 s/pixel, or 27 s per screen-height, and an intercept
of 6.3 s; the slope of the relationship between position and time is statistically significant
for « = 0.001. This supports the assumption that participants would search the page from
top to bottom. The maximum time shows no clear trend, which can be attributed to the
fact that articles that take a long time to locate were often missed when scrolling down
the first time.
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Figure 5.3: Time to locate target regions as a function of their vertical position (measured
from the top of the page to the top of the target) in the first phase of the user study.
Note that the minimum time to find articles shows an upward trend as more scrolling is
required, as expected. The horizontal axis is divided into sections the size of one window.

5.2.3 Main User Study Results

Our user study provided results which, although not conclusive with respect to the efficacy
of the interface itself, are of considerable interest. In terms of search time, there was no
significant difference between performance with the assistive interface and performance
without it. Because the search times for different pages are not directly comparable, we
compare the average times for each page with and without the assistive interface; over the
set of 30 web pages, the average time improved with the assistive interface for exactly fifteen
pages; on average, the search time was 1.93 seconds longer with the assistive interface than
without, with a large standard deviation of 30.3 seconds. Neither represents a statistically
significant change (using a t-test, ¢(29) = 0.349, p = 0.73). This is not surprising, as
participants made relatively little use of the assistive features: in 78% of examples using
the assistive interface the only interaction with the page was a single click on the target.

The results from the surveys also do not show an improvement with the assistive fea-
tures. Table 5.1 shows the results for subjective preferences between the two interfaces.
The responses for each dimension of the TLX survey (Table 5.2) are more mixed. There
is a general tendency to prefer the vanilla interface, but given that the assistive interface
functions identically unless assistive features are specifically invoked this could be a matter
of unfamiliarity.
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Vanilla Assistive Neither
Easiest 6 1 1
Most frustrating 1 4 3
Preferred 6 0 2

Table 5.1: Summary of subjective preferences from first-phase tests.

Vanilla Assistive Neither

Mental demand 4 2 2
Physical demand 4 2 2
Temporal demand 2 4 2
Performance 2 4 2
Effort 5 2 1
Frustration 6 2 0

Table 5.2: Table showing the number of users for which the assistive or vanilla interfaces
were better according to each dimension of the TLX questionnaire.

Because the results from the first round of participants were inconclusive, we also
produced a second, more difficult set of tasks. For these tasks, the main considerations
were that neither headlines nor images should allow the user to guess the target without
reading smaller print. The idea was to make the task of locating the specified article more
challenging, with the thought that some users might then have greater motivation to use
the assistive features. As the tasks were made more difficult, the total number of examples
was reduced from 30 to 20. We also added minor convenience features, such as a button
to clear the magnified and highlighted region. The results here were similarly inconclusive;
of 45 completed tasks using the assistive interface, 53.3% involved only a single click and
73.3% involved no more than two clicks; given the close proximity of many clicks, not all
necessarily represent a deliberate click-and-drag action. Due to low engagement with the
assistive features, this phase was cut short in order to focus on offline tests.

We believe that there are several key problems in obtaining conclusive data. If a
potential participant has assistive needs that make a computer difficult to use with existing
assistive technology, he or she may be disinclined to participate in any computer-based
study at all. If he or she does decide to participate, inexperience with using a computer
may cause the participant to struggle with any interface in the course of a sixty-to-ninety-
minute experiment. One user made informal comments to this effect. On the other hand,
users who can use a computer effectively without assistive technology are likely to be
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very open to the idea of participating in a computer-based study, but would not benefit
significantly from the assistive interface; in our recruitment pool the records of participants’
histories were not sufficiently detailed to determine which potential participants would need
an assistive interface. The recruitment process may introduce a participation bias even if
the population contacted is representative of older adults in general.

Information gathered through the background survey (described in Section 5.1.3) about
computer use experience supports the hypothesis that the recruiting process was biased
toward those who did not need the assistive interface: of the 13 participants after the pilot
study, only 1 disagreed with the statement “I use the Internet frequently”, and only 4
agreed with the statement “I find it frustrating to use the Internet”.

If users had employed our assistive features more extensively and had responded that
they found this to be a less frustrating solution, maybe even with better completion times
for locating articles, we could have concluded first that our framework is supporting as-
sistive features well (zooming and decluttering), and second that the regions generated
by our segmentation algorithm were generally helpful in support of such an interface and
therefore the methods employed here were well designed.

Because this did not happen, we opted to proceed to a phase of offline testing. For this
experiment, there are different metrics involved in order to reach conclusions about the
value of our framework.

5.2.4 Segmentation Quality

To fully explore the capabilities of the combined segmentation and classification system, we
made use of simulated input in a series of offline tests. In essence, we created simple “virtual
users” to simulate input to the interface in order to exercise its capabilities. This allows
a more comprehensive test of the theoretical performance of an assistive interface, while
providing independence from user experience concerns with the interface itself, and avoiding
the need to obtain enough participants who require an assistive interface to thoroughly
test the performance of our segmentation method and its interpretation by the front-end
interface.

Our approach to offline performance evaluation is, necessarily, different from the ap-
proach taken with human participants. It is, to say the least, infeasible to create a virtual
user capable of accurately simulating the behaviour of a human participant searching for
a target article in a news page. Fortunately, this is not necessary. In order to evaluate
the ability of our page segmentation algorithm to support the type of assistive interface
in question, we need only evaluate the ability of the segmentation to support inference
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Figure 5.4: Examples of target regions and corresponding automated estimates of intended
regions of interest. The left three show the best matches; the right two examples show cases
with approximately the median match quality (as there were an even number of examples,
the median quality does not correspond to a single image). The target region is shown in
blue and the estimated region of interest is shown in red.

of the true region of interest from the user’s rough selection; all of the influence of the
segmentation upon the performance of the front-end interface is mediated by this step. To
assess the performance of our method in this sense, we use ground truth regions of interest
corresponding to articles in the example pages; these are plausible regions of interest for a
real user. The virtual user’s input is produced by adding noise to the bounding box of the
ground truth region of interest to simulate a rough selection.

Support for the quality of the segmentation produced by our back-end system can be
seen from an analysis of the accuracy with which the ground truth region of interest can be
isolated in the segmentation tree. To test the level of performance possible for our segmen-
tation algorithm (as shown in Section 3.3) on the dataset shown to users, we applied the
region of interest estimation procedure to a hypothetical selection corresponding exactly to
the target region (i.e., the virtual user selects the region of interest with perfect accuracy).
The resulting estimated regions of interest show good performance for the region of interest
estimation procedure, especially for the most accurate cases. Figure 5.4 shows example
comparisons between the target region (blue) and the estimated region (red). Note that
the best results show regions segmented almost exactly, and the median results show ma-
jor parts of the target region accurately segmented. These results strongly suggest that
our algorithm does produce high-quality visual segmentations, because the true regions of
interest correspond well to their closest approximation in these segmentations.
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Our virtual user can simulate inaccurate selections just as easily as accurate selections.
Since the advantage to combining click-and-drag region selection with the segmentation
tree lies in the ability to overcome poor selection accuracy, this is an important aspect
of evaluating the performance of the back-end system. To simulate a noisy or inaccurate
selection, we perturb the boundaries of the true region of interest by adding normally-
distributed noise to the positions of the boundaries. The standard deviation o of this
distribution is the only parameter in the noise (for the sake of simplicity, we use identical
distributions for all four sides). Note that this is a simple model, but it allows the generation
of a wide range of potential inputs to thoroughly exercise the capabilities of the interface.
By adjusting o, we can control the accuracy of the simulated input.

If our system always produced the true region of interest, regardless of how noisy
the input was, this would mean that our system would be performing perfectly, inferring
exactly what the user’s region of interest was, even from only a vague hint of what it was.
Since it is not realistic to expect perfect accuracy regardless of the level of noise, we wish
to determine how close we can get to the true region of interest, and how gracefully the
performance degrades as noise increases. In particular, if the quality of our estimated ROI
degrades more gracefully than the quality of the noisy segmentation, then our framework
will ameliorate the effects of poor selection accuracy on the performance of the interface.

We tested the quality of estimated regions of interest produced using normally-distributed
random perturbations of the target region boundaries as hypothetical selections. The qual-
ity of these estimated regions of interest was measured using the intersection-over-union
measurement of agreement with respect to the ground truth and estimated regions of in-
terest. For each of the 120 targets, 30 perturbed selections were tested for each o value for
the perturbations of the boundaries of the simulated selection. These simulated selections
were evaluated for agreement with the ground truth region of interest, just as the estimated
regions of interest were.

Figure 5.6 shows the quality of the estimated regions of interest and the simulated
noisy selections (on the vertical axis) as a function of the standard deviation o of boundary
position error. This graph clearly shows that over the range of o values considered, the
quality of the estimated region of interest is nearly flat; this indicates steady or gracefully
degrading performance. As the noise in selection position increases, the quality of the noisy
selection drops much more rapidly and quickly becomes comparable to the quality of the
estimated region of interest at most levels of accuracy. The best results from the interface
quickly exceed the best noisy selections (see, for example, the 90 percentile curves, which
intersect at o ~ 25).

An additional consideration is whether or not these simple measurements of accuracy
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Figure 5.5: Comparison of two estimated regions of interest: on the left, a noisy selection
of the type used for offline evaluation, and on the right an estimated ROI based on the
segmentation. The two examples have approximately the same accuracy score (0.42 and
0.41). Note that the segmentation accurately isolates part of the region of interest, while
the noisy selection is inaccurate for all parts of the region.

accurately convey the semantic differences in quality; Figure 5.5 contrasts the types of error
encountered with the estimated ROI and the noisy selection in cases with approximately
equal quality. The estimated region of interest is visually coherent but at a different level
of organization than the true region, while the noisy region does not accurately reflect any
aspect of the region of interest.

Our procedure for estimating the true region of interest based upon a segmentation
tree and a noisy selection requires a high-quality segmentation tree in order to accurately
reconstruct the true region of interest. The quality of the estimated region of interest
cannot exceed the quality of the closest match to the true region of interest found in
the segmentation tree. Furthermore, the closest match in the segmentation tree to the
noisy selection must be similar to the true region of interest. This prevents a trivial
segmentation in which the page is divided into single-pixel regions from producing results
better than the noisy selection. Our results show that the estimated region of interest
improves upon the quality of the noisy selection; as a result, we can conclude that the
segmentation tree corresponds sufficiently well to the structure of the page to be useful
for our example interface, especially for the most accurately segmented regions. At lower
quality levels (for example, the 25th™ percentile and below), the performance of the region
of interest estimation method is noticeably lower in absolute terms. Improving the worst-
case performance of the segmentation algorithm is, therefore, an appealing direction of
research, while the best-case performance appears to be very good in its current state. One
approach to improving worst-case accuracy may be to use a more sophisticated structural
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prior; although effective, the X-Y tree segmentation prior only reflects a limited view
of “web page-like” structures, and improvements here could address errors caused by a
mismatch in granularity as shown in Figure 5.5.

5.3 Discussion

One of the key challenges in our experiment is recruiting suitable participants. Because
of the requirements for describing the experiment in recruiting materials, potential partic-
ipants are aware that the experiment is computer-based. The users who are most likely
to benefit from an assistive interface of the type being tested may, however, experience
frustration with using computers and therefore be less likely to respond or consent to a
computer-based study. This could result in the introduction of participation bias toward a
negative result even if the potential participants contacted represent an unbiased sample
from the population of older adults. Strengthening recruitment criteria may reduce the
number of participants who do not require any form of assistive interface, but could exclude
participants who would benefit for reasons of preference rather than of need. It may be
useful to recruit even older participants (e.g. 80+); there are indications that the types
of challenges for which assistive interfaces may be useful could be more common in an
older group (see, for example, the discussion of the effects of aging in [62]). Although we
recruited participants through a combination of word-of-mouth, email contact, and phone
contact, most had email addresses and were familiar with computer use.

Although this test is focused on assistive interfaces for older adults, we hope that sim-
ilar methods might be of use to other users. Even users with no assistive needs may
derive benefits from similar technologies through better methods for altering the presen-
tation of pages to be more convenient to use. This is an area that merits further study.
Also of interest is the possibility of using vision-based parsing (especially in a complete
segmentation-classification pipeline) to improve within-page navigation models for screen-
readers such as NVDA [97]. This is likely to require more extensive experiments than the
proof-of-concept study presented here, since it would require combining the visual pars-
ing system with an appropriate navigation model and evaluating the complete system in
real-world conditions.

There has been extensive research into the design of assistive interfaces and the various
transformations of the screen contents that can be used to provide an appropriate interface
to users with assistive needs. In the more restricted domain of appropriate modifications for
older users, we have cited several papers in reference to the design of our interface. Also of
note is a paper by Hwang et al. [71], which presents a comparison between the performance
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of older adults and younger users with using interfaces that dynamically magnify targets
under different conditions (e.g. targets that are magnified when the cursor approaches
the target and targets that are magnified only when the cursor enters the target region).
Moving forward, it may be of interest to test interfaces using such variations on the basic
concept of a magnifying interface in our experimental setting and compare the results.
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Chapter 6

Segmentation Study

The examination of web pages as visual images, in order to support tasks such as de-
cluttering or zooming of information on these pages, has attracted increasing attention in
recent years. These tasks are of particular value for users with cognitive or visual assistive
needs. One of the key sub-problems in this area is web page segmentation: the problem of
dividing a page into coherent, semantically meaningful regions.

Interpreting web pages as images enables implementation independence, in contrast
with approaches to web page segmentation that rely on the DOM tree!. Chapter 3 de-
scribed our promising approach to this segmentation problem, which adopts a Bayesian
solution to producing a segmentation tree, based on successive detection of locally signifi-
cant edges, semantically significant lines, and ultimately visually coherent regions.

The initial validation for the vision-based page segmentation methods in Chapter 3
focused on qualitative evaluation for the overall quality of segmentations; quantitative
measures were restricted to checking for agreement between algorithms (see Section 3.2)
and tests of the accuracy with respect to small numbers of target regions in a practical
context (see Chapter 5). These evaluation methods were useful and provided important
information used in developing the later version of the segmentation algorithm. Ultimately,
however, it was decided that a ground truth segmentation dataset would be of value, since
it could be used to provide more definitive, measurable evaluation of overall segmentation
quality. This chapter describes how these ground truth segmentations were acquired, in a
user study where participants were asked to manually draw and edit web page segmentation
trees, and the properties of the ground truth dataset obtained. This study was approved
by the University of Waterloo Office of Research Ethics.

! An intermediate representation of the page produced by the browser in the rendering process.
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Our exploration of ground truth segmentation for this particular domain leads to more
general insights of value for the computer vision community. In particular, we explore the
best methods for eliciting ground truth and what the characteristics of those ground truth
segmentations are. Our approach contrasts with the methods used to build the well-known
Berkeley segmentation dataset (BSDS) [90], first published in 2001 and widely used even
today to test segmentation algorithms designed for natural images. In particular, we aim
to have a larger base of users per image though we also make use of a smaller set of images;
this is done in order to gain greater insights into agreements (and disagreements) between
users for a given image, which allows us to estimate the ceiling on the performance of a
one-size-fits-all solution, as well as to determine the most efficient way to gather a large
dataset of segmentations (e.g., how many users should segment each page to get a good
sample of segmentations while avoiding unnecessary duplicated effort).

To accomplish our objectives for this study, we designed a segmentation editing tool
which allows users to both specify their perceived segmentations from scratch and edit
an existing segmentation; this tool allows us to investigate whether users differ in their
interpretations when grounded in the same specific starting point, and to what degree the
starting point affects the perceived ground truth segmentation.

Users annotate web pages to indicate where they perceive bounding boxes or regions;
from these, we are able to build a representation of that user’s view of the web page which
specifies various structural properties. Nested bounding boxes implicitly define a hierarchy
where the containing region is the parent of the contained region. This interpretation
allows us to draw conclusions about the structural properties of the page, as viewed by
this user, and to compare these interpretations across users as well. In so doing, we are able
to have the basis for imposing a prior probability distribution on segmentations, providing
important directions for the design of segmentation algorithms in this domain. We note
that for the domain of segmenting web pages, it is possible to start with some constraints
on regions. Specifically, it is reasonable to assume that regions are axis-parallel rectangles.

In the sections that follow, we provide some important background on both segmenta-
tion research and on efforts to interpret web pages in particular. We then describe in detail
the user study that we performed, the editing tool we designed, and the design decisions
we made about what tasks to give to users and how to analyze the results. This includes
some explicit examinations of similarities and differences between users. Included here are
valuable methods for overlaying alternative interpretations of segmentations, in order to
facilitate the comparisons. From here we reflect on the value of this effort to derive ground
truth and the potential applications of these results for the future.
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6.1 Study Design

This study is based on the collection of segmentations produced manually by a significant
number of participants (a total of 29 participants?). In some cases the participants be-
gan “from scratch”, starting with an empty segmentation; in other cases, the participants
edited an existing segmentation® produced by an algorithm®*. Each participant was asked
to segment the page according to their own interpretation of the page structure and at the
“natural” level of detail; one of the most interesting aspects of this study is determining
what the natural structure and level of detail are, and whether different participants per-
ceive these differently. There were considerable differences in the time taken to complete
each segmentation; as a result, not all participants were able to segment all pages in a
session of approximately 75 minutes.

We developed a customized tool for participants to use to create and edit page segmen-
tation trees. Based on the properties of the domain, as described in Chapter 2, we designed
the interface to be based on axis-parallel, rectangular regions. This considerably simpli-
fied the required editing operations relative to a tool capable of editing general connected
regions, and made the tool easier for participants to learn to use. The available operations
were as follows: Create a new region; Select an existing region; Delete the selected
region; Resize the selected region; Move the selected region; and Zoom in or out on the
page. Figure 6.1 shows a partial screenshot of the interface, depicting the toolbar (to the
right of the page) and a partially segmented page. To allow flexibility in deployment, the
segmentation tool was designed to run in a web browser.

All editing operations included snapping to nearby edges, helpful in allowing users to
produce a dense segmentation of abutting regions without requiring pixel-accurate posi-
tioning. (If, after an editing operation, a vertical edge of the edited region was within
10 pixels horizontally of a snap line, the edge was moved to coincide with the snap line;
horizontal edges were treated analogously. Each image boundary was considered a snap
line, and snap lines were created for each edge of a region, extending 20 pixels beyond the
region itself to allow for alignment between regions that have whitespace between them.)
The hierarchy of the segmentation tree was automatically inferred from containment rela-
tionships: a region was a descendent of every region that contained it, and a child of the

2This included undergraduate and graduate students at the University of Waterloo, as well as others
obtained by word of mouth.

3Figure 6.1 shows several regions (outlined with blue horizontal lines and green vertical lines) as they
would be seen by the participant if this was the initial segmentation.

4The algorithm used for this purpose was the improved segmentation algorithm described in Section
3.3
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Figure 6.1: Screenshot (cropped to save space) of the segmentation editing tool used in
this study. The toolbar is show to the right of the page, and several regions have been
created. In this example, the server is being run locally.

smallest such region. When two regions overlapped without a containment relationship, the
overlapping area was highlighted; if the user attempted to submit without resolving this,
an error was raised. The hierarchical structure of the segmentation tree was represented
to the user by colouring the outlines of regions according to their depth in the hierarchy;
this helped to clarify ambiguous cases where region edges met.

Page selection was an important consideration. Because the objective of the study was
to produce large numbers of segmentations for each page in order to study segmentation
properties across a range of users, it was necessary to restrict the number of pages used to
five. The pages chosen were: (1) bbc_arts, the arts page of BBC News; (2) bbc_health,
the health page of BBC news; (3) bbc_main, the front page of BBC News; (4) cbc_main, the
front page of CBC News; and (5) nyt_politics, the politics page of the New York Times.
News web pages were chosen because they are complex enough to produce interesting
segmentations, popular enough to represent a major area of web browsing, and similar
but not identical in structure, to allow useful comparisons across pages in a small dataset.
These examples were selected from a larger dataset used in qualitative evaluation of a
segmentation algorithm [34].

Had we used a larger set of pages, it would have been necessary to reduce the number
of participants segmenting each page. This, however, would have compromised our ability
to draw conclusions about the degree of consistency between users’ segmentations. By
studying a small number of pages but obtaining more segmentations of each, we are able
to draw conclusions about consistency between different users’ segmentations of a given
page and about common trends in segmentations across a user’s segmentations of different
pages. This, in turn, provides insight into the appropriate methods for collecting segmen-
tations, the number of segmentations required for each page in a larger dataset, and the
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interpretation of segmentation quality results obtained from a single ground truth segmen-
tation (especially what level of disagreement can be expected between human users, whose
segmentations must be assumed to be equally good).

To produce a large dataset for standardized evaluation of page segmentation algorithms,
it will be necessary to change the methodology to obtain as few segmentations of each
page as is consistent with the required quality of ground truth data, in order to maximize
the number of distinct pages in the dataset; the requirements are different from those of
the study presented here because the scientific objectives are different. One approach to
simplifying the logistics of gathering a larger dataset would be to use a crowdsourcing
platform such as Amazon Mechanical Turk (AMT) to obtain segmentations, rather than
meeting with participants in person. We discuss this possibility further in Section 8.3.1.

The results reported here are based on 29 participants, who completed between one and
five segmentations each, all required to do at least one “from scratch”. Sixteen performed
all segmentations starting from scratch; the other 13 performed at least one segmentation
by editing an existing segmentation. Each of the five pages was segmented from 12 to 21
times. This represents a substantial dataset in terms of the number of segmentations.

6.2 Results

The analysis of our results can be conveniently divided into three areas: the structural
properties of segmentations, the relationships between segmentations, and the relationships
between participants.

6.2.1 Segmentation Structure

It is possible to quantitatively analyse important features of the segmentations produced by
users. Of particular interest is the complexity of segmentations and the level of granularity.
Here we examine the number of levels, number of nodes, node sizes, and numbers of child
nodes to obtain a composite view of the structures of ground truth segmentation trees
produced by different users. Such a view can be used as a prior probability distribution over
segmentation structures. This is particularly useful in the case of a Bayesian segmentation
algorithm such as those described in Chapter 3, in which an explicit prior probability
distribution can be readily included.

Table 6.1 summarizes descriptive statistics for three key region-level features of a seg-
mentation: height, width, and number of child nodes. To produce these values, we com-
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Normal? Log-Normal? Mean Variance Skew Kurtosis
Region height No (@ =0.001) No (a=0.001) 120.7 5.976 x 10* 12.06 201.6
Region width No (@ =0.001) No (a=0.001) 329.7 7.136 x 10* 1.478 4.174
# of child regions | No (a = 0.001) N/A 0.8645 4277 4.345 31.95

Table 6.1: Table of descriptive statistics for key structural features of ground truth seg-
mentations drawn from scratch by users. Tests of normality and log-normality use the
Lilliefors test [37].

bined data across all users and all pages for those segmentations produced from scratch,
rather than by editing an initial segmentation. The tests of normality and log-normality
used the Lilliefors test [37], because the parameters of the best-fit distributions are not
known a prioiri. Even these summary statistics represent useful information about the
expected structural properties of a segmentation that could be used in segmentation algo-
rithms.

Figures 6.2 and 6.3 show the empirical distributions of these structural parameters as
histograms. Several interesting qualitative features are visible in these graphs. The dis-
tributions of heights and widths obviously differ; small heights (e.g. under 100 pixels) are
much more common than large heights, while the distribution of widths has a mode around
250 pixels and a second, smaller mode around 1000 pixels. The smaller peak in widths
corresponds to the width of the page, and is probably associated with the tendency for
headers and their major divisions to cross the full width of the page. The distribution of
child regions also has interesting features. Most regions (8113 of 10843) are leaves, with
no children. This is reflected in the small average number of children shown in Table 6.1.
Of the regions that do have children, the distribution is skewed towards small numbers of
child regions (i.e., regions that do have children tend to have only a few). These qualita-
tive features could be incorporated into a segmentation algorithm in the form of tunable
parameters, or as empirical distributions, represented parametrically or nonparametrically.
This general approach can be readily applied in other domains, especially domains in which
restrictive assumptions about region structures can be made (as is the case here, where re-
gions are constrained to be axis-parallel rectangles). We return to the discussion of possible
extension of our work to other domains in Section 8.3.3.

The average segmentation tree, over all pages, has 197 nodes, with a minimum of 11
and a maximum of 596. In the 500-image Berkeley Segmentation Dataset (BSDS500) [3])
used for natural images, the average number of nodes per segmentation is only 20.9, with
a minimum of 2 and a maximum of 208; our web page segmentations tend to be much
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Figure 6.2: Heights and widths of regions, across all pages and all segmentations produced
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Figure 6.3: Numbers of children for all non-leaf regions, across all pages and all segmen-
tations produced from scratch. The total number of leaf regions (with 0 children) is 8113,
much larger than any other number of child regions; this bar is omitted here for clarity.
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more complex, but we are able to operate well in this environment. We also use more
participants per page, an average of 15.4 as opposed to 5.39, which increases the chance
that we are working with a representative sample of segmentations®.

Comparing the structures of the segmentation trees produced from scratch to those
produced by editing an existing segmentation produces informative results. Figures 6.4
and 6.5 show the cumulative distribution functions of the numbers of nodes and numbers
of layers, including all pages. In both cases, the differences between the two distributions
are statistically significant, for &« = 0.01 in the first case and for o = 0.001 in the sec-
ond, using the two-sample Kolmogorov-Smirnov test. The proportions of examples from
each page are unfortunately not identical between the two conditions (due to the different
numbers of pages segmented by different users), but there are no statistically significant
differences between the distributions for different pages, as shown above, and for tree depth
in particular the results show a very strong difference. Taking individual pairs of pages,
the two conditions produce statistically significant results for bbc_arts with respect to
the total number of nodes (o = 0.05) and the tree depth (o = 0.01); without combining
pages, it is impossible to draw a statistically significant conclusion for bbc_main at the
a = 0.05 significance level, and all other pages have much higher significance thresholds
than bbc_arts. Although limited by the small number of pages segmented by editing,
these results indicate that the segmentations produced from scratch and from an initial
segmentation differ in structural features for at least some pages. The difference in the
way participants report their perception of the organization of the page raises an important
question: what starting point produces the “most useful” segmentations? The answer may
depend upon the intended use of the ground truth segmentation, but the question must
be considered.

6.2.2 Comparison of Segmentations

The results of our experiments suggest a broad qualitative consistency between segmen-
tations produced by different users and with different starting points. Figure 6.6 shows
an example page (specifically bbc_arts) in greyscale, with outlines of all regions from all
segmentations overlaid on it. Note that, at a large scale, the structures are quite consistent.
Even in areas of agreement, individual users rarely agree down to the pixel; placement of
regions and the amount of whitespace border included in a given region vary from one
user to another. At smaller scales, additional interesting differences can be seen. Note, in

5The average number of participants per page is less than the total number of participants because not
every participant completed all five pages in the time available.
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Figure 6.4: Total number of nodes per segmentation (cumulative distribution function)
over all pages.

Number of layers (all pages)
1.2

CDF (Scratch)

Cumulative probability

Poayd 2 RP DR H

Layers

Figure 6.5: Total number of layers per segmentation (cumulative distribution function)
over all pages.

125



Sign in New: Sport eather| Shop arth avel More - Search Q

niertainmen S

ADVERTISEMENT

joman, while Drake continues his
ign at the top of the singles chart.

OUr ago | gnterammen s

he 1975 score second number one

lbum
sic News | |
und-up: The
rokes' new EP|
© 27 May 2016
erican Psycho t tertainment 500 words
ose on Broadwa || [round-up: Talent winners
roadway musical American finalist 'copied’ announced b
Psycho, about an investment YouTuber hris Evans
anker turned serial killer, is to =

ritain’s Got Talent viewers D 8 hours ago
accuse finalist Craig Ball of ntertainment & Arts|
D) 7 hours ago copying a viral YouTube video,
[[Entertainment & Aris | } Groundhog Day actress dies an

'wis lakes uj
WHEEES herzinger's
Entertainment & Art
| T
1 atch/Listen
|| [Entertainment & Arts)
om esfon's gift o
|an education
] | BEA i 5
© 26 May 2016 || Atrica 9ig Lerannen =
C Home]|
||| Ticket sites ‘must fight touts1] > —
D 26 May 2016 [ Entertainment & Arts || | © 25 May 2015|| |Entertainment & Aris
I 1
au [Bataclan survivor hits out at | lJohnny Depp and Amber Heard to divorce
ath Metal ® 26 May 2016|| Jus & canada >
D 26 May 2014/|[Hom © 2 hours ago
| |Entertainment & Arts

e this year's

Figure 6.6: Excerpt from the page bbc_arts, showing all participants’ segmentations in
the same image. Segmentations produced from scratch are shown in blue; those produced
by editing an initial segmentation are shown in green.
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Figure 6.7: Detail view of a small area of Figure 6.6, showing differences between segmen-
tations.

Figure 6.7, that users differ in the compromise they make between matching the edge of the
headline and matching the thumbnail above it. The results here demonstrate that there is
a ceiling on the performance (measured by agreement with a ground truth segmentation)
of any single segmentation algorithm; perfect agreement with one person’s segmentation
implies some disagreement with others, all of which are equally correct. For minor differ-
ences this is not significant; for more significant structural differences, it may be necessary
to personalize segmentation algorithms to suit individual users (e.g. for assistive needs).

These qualitative results suggest that there is a performance ceiling for segmentation
algorithms when using a simple measurement of agreement with any single ground truth
segmentation. Because human participants do not agree perfectly, it is impossible to define
a unique “perfect” segmentation. These same results do, however, suggest that “good”
segmentations could agree well with segmentations provided by many users at a large
scale; an algorithm that produces such a segmentation could be considered a compromise
between the needs of many different users. It may also be possible to adapt a compromise
algorithm to the preferences of a group of users or even a of a single user, in order to more
closely match their preferences in the details of segmentations. We return to this idea in
Section 6.2.3.

In order to quantitatively compare segmentations, it is necessary to define a measure-
ment of similarity. In Section 3.2.8 the earth mover’s distance [101, 102] between the
outlines of a pair of segmentations was used to compute their similarity. In this method,
the distance is defined to be the “effort” required to transform one distribution into another,
considering both the amount of “mass” transferred between variables and the distance it
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is moved. This approach has many useful properties, but it is slow to compute (requiring
downsampling of the segmentations to be feasible) and the pixel-level granularity does not
enforce one-to-one associations between nodes in the two segmentations. For the exper-
iments described here, we use a node-level edit distance to define similarity; as a result,
we are able to explicitly associate between optimal pairs of nodes, and compute exact edit
distances between complete segmentations at full scale.

For any two sets P and @ of regions such that |P| = |@Q|, we define the edit distance
between the two sets to be

Dset(Pa Q) = mfin (Z Dnode(pi7 f(pz))) (61)

piEP

for some association f : P — () between the two sets. In other words, it is the cost of the
minimum weighted bipartite graph match between P and @), with the weights defined by
a distance function D,,.4., which represents the edit distance between a pair of individual
nodes. In general, of course, the number of regions in a pair of segmentations is not
necessarily equal, and not every node in one segmentation will have an equivalent in the
other. To account for this, we augment the sets of regions with placeholder nodes. Thus,
for two segmentations S; = (P, Ep) and Sy = (Q, Eg), the edit distance between the
two segmentations is Dieq(S1,592) = Dget(P U R1,Q U Ry), where Ry = {r11---7r1g|} and
Ry ={roq--- T p|} are sets of placeholder nodes. We define the edit distance between two

nodes to be
Zse{l,r,t,b} Ps — Qs P, q regions;
width(p) + height(p) p a region,

q a placeholder;

Dnoe(p:q) = width(q) + height(q) p a placeholder, (6-2)
q a region;
0 p, q placeholders

where p;, p., pi, and p, are the positions of the left, right, top, and bottom sides of
p, respectively. This reflects the difference between two regions and the size of regions
“created” by matching with a placeholder; unused placeholders do not affect the edit
distance between two segmentations®.

Using this definition of similarity between regions, we computed pairwise similarity for
each pair of segmentations produced from scratch for each page. Figure 6.8 shows the
cumulative distribution functions of edit distances over all pages for the distances between
pairs of segmentations of a page performed from scratch, pairs of segmentations performed

6The placeholders are only used to allow non-matching regions with a fixed problem size; matching
between two placeholders “discards” both with zero cost
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Pairwise edit distance distributions (all pages)
12

0.8

—_— Seratch
— PSS
InitSeg

0.6

0.4

Cumulative probability

0.2

0 200000 400000 600000 800000 1000000 1200000 1400000
Editdistance

Figure 6.8: Cumulative distribution functions of edit distances across pairs of segmenta-
tions of the same image. Scratch means both segmentations produced from scratch; InitSeg
means both segmentations produced by editing an initial segmentation; Cross means one
segmentation produced by each method.

by editing, and pairs of segmentations produced by different methods. Data from all
pages has been combined to produce the distributions shown. Figure 6.9 shows the same
measurement considering only the top 3 levels of the segmentation tree. In each case, the
difference between pairs of distributions is statistically significant for at least o = 0.05 by
the Kolmogorov-Smirnov two-sample test. Note the high degree of agreement in the first
three levels of the tree when the segmentations were produced by editing; a significant
number of these segmentations are identical or nearly so. For complete segmentations,
the level of agreement is highest for segmentations produced from scratch, possibly due to
differences in how closely the users stick to the starting segmentation.

6.2.3 Comparison of Participants

To compare participants and determine how similar different participants’ segmentation
structures were, we examined the distributions of structural features examined in Section
6.2.1 (region height, region width, and number of child regions) and compared them for
statistically significant differences using the two-sample Kolmogorov-Smirnov test. Figure
6.10 shows matrices representing pairs of participants whose distributions are not statisti-
cally different for each feature. Most participants are indistinguishable from some others
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Pairwise edit distance distributions (all pages, top 3 levels)
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Figure 6.9: Cumulative distribution functions of edit distances across pairs of segmenta-
tions of the same image. Data series defined as in Figure 6.8.
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Figure 6.10: Matrices showing users with statistically indistinguishable distributions for
each of the shown structural characteristics (“all” means none of the three distributions are
individually statistically distinguishable). White indicates a match between participants;
note that this does occur in “All”.
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in one respect or another, and 25 of 29 participants match at least one other participant
in at least one respect. This suggests that despite significant differences there are also
significant similarities between users.

6.3 Discussion

Our results demonstrate that there is value in studying many segmentations of each image
in a small dataset, since we have thereby obtained valuable insights into the segmentation
problem for images of web pages. Additionally, we establish valuable structural character-
istics for a prior probability distribution over segmentations in our domain (images of web
pages). We have also introduced a method for eliciting ground truth by editing existing
segmentations using our editing tool, and demonstrated the capabilities and limitations of
this approach.

Our results suggest that there is a ceiling for the performance of “one-size-fits-all”
segmentation algorithms when compared with individual or even consensus ground truth
segmentations in this domain due to disagreements between participants about what consti-
tutes a “correct” segmentation. One important avenue for further research is the possibility
of adapting segmentation algorithms to individual user preferences. The same statistical
properties of segmentation studied in Section 6.2.1 to produce a prior over web page seg-
mentation trees can be studied for individual users, as in Section 6.2.3, thus providing
individualized segmentation priors. The same principle could be applied to other com-
puter vision systems, raising the exciting possibility of personalized output for users. We
plan to continue to examine these possibilities in future work (see Section 8.3.5).

Perhaps the most significant generalizable contribution from our work is the analysis of
the role of the initialization of the segmentation when eliciting ground truth segmentations
from participants. An empty initial segmentation (i.e. “starting from scratch”) is an
obvious choice, but non-empty initializations may prove useful in some circumstances,
including in evaluating the algorithm used to create the initial segmentation. Our results
clearly show that the resulting segmentations can differ; they leave open the question of
what initialization method should be preferred as one for consideration in the design of
each user study. In all, we provide new directions for eliciting ground truth segmentations
in computer vision.
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6.3.1 Evaluating Segmentation Quality

One of the primary motivations for conducting this study was to generate ground truth
for use in evaluating our segmentation algorithm (Segment) from Chapter 3. The idea was
that we would run our segmentation algorithm on the same dataset as the one employed
in the user study. We could then compare the segmentations produced by our algorithm
to the ground truth segmentations produced by participants on the basis of edit distance.
A small edit distance suggests a high degree of agreement between our algorithm and the
ground truth segmentations, which in turn indicates that our algorithm is performing well.

In Table 6.2, we show for each page the mean edit distance between our automatic
segmentation and each ground truth segmentation produced by the study participants,
as well as the average edit distance for all pages combined, distinguished by the starting
point (i.e., whether or not the participants used an automatic segmentation as a starting
point). These edit distances are higher than those observed between ground truth seg-
mentations produced from scratch, but are roughly comparable to those between ground
truth segmentations produced starting from an initial segmentation that was produced by
our algorithm (see Figure 6.8). This is a very promising indication of the quality of our
segmentations, especially since the ground truth segmentations tend to be flatter than our
automatic segmentations.

To explain in more detail, the mean edit distances for initialized segmentations (Init-
Seg in Table 6.2) turn out to be comparable to the typical distances observed between
users. It is important to note that all of the ground truth segmentations are in some
sense correct, since they were provided by human participants as their own interpretation
of the page structure. The ground truth segmentations can be considered as points in a
cloud in a high-dimensional space or manifold with distances defined by the edit distance
between them; the average distance from our segmentation to points in this cloud then
turns out to be roughly comparable to the median distance between points in this cloud.
For segmentations produced from scratch, the cloud is more compact, and the mean edit
distance to points in this cloud is rather larger than the cloud itself; examining Figure
6.5, we can see that these segmentations have fewer layers than those produced by editing,
which may explain the greater absolute and relative distance in this case. Overall, these
results indicate that our segmentation algorithm performs well on this dataset, producing
good-quality segmentations which agree well with those produced as ground truth segmen-
tations by participants. In particular, the difference between our automatic segmentation
and those produced by participants as ground truth segmentations is comparable to the
difference between different ground truth segmentations when the participants started with
an automatic segmentation. For segmentations produced from scratch, the average edit
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bbc_main bbc_arts bbc_health cbcmain nyt_politics Total
Scratch | 6.61 £0.08 3.73+£0.11 4.01£0.09 4.49+£0.10 6.62+£0.07 5.52+0.17
InitSeg | 5.97+£0.19 2.55+£0.19 3.17+0.58 2.94+0.71 6.20:0.51 3.35%+0.33

Table 6.2: Mean edit distances between our segmentation and each ground truth segmen-
tation for each page and for all pages combined. All values x10°.

distance to our automatic segmentation is slightly higher, and the edit distances between
participants are smaller. The performance of our segmentation algorithm against both
parts of the dataset suggests performance approaching that which would be observed if
one person produced segmentations manually for evaluation by others.

It is also interesting to note that the mean edit distance between our automatic seg-
mentation and ground truth segmentations produced by editing an automatic segmenta-
tion (InitSeg) is smaller than that between our automatic segmentation and ground truth
segmentations produced from scratch; this difference is significant for a = 0.001. This
demonstrates that the starting point for segmentation editing does influence the outcome
of the evaluation process, and therefore supports our assertion that the starting point is
an important consideration for eliciting segmentations for a test dataset.
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Chapter 7

Discussion and Related Work

In this chapter we describe related work in the key areas that our research touches upon.
We contrast the computer vision techniques used in our segmentation-classification pipeline
with related techniques from the corresponding areas in computer vision to illustrate the
contributions made to computer vision in the course of this research. We also contrast
our approach to vision-based web page parsing with other methods of web page parsing
to demonstrate the novelty of our solution and its advantages in this application domain.
Finally, we discuss the state of assistive technology on the web, to demonstrate the need
for a vision-based web page parsing system such as ours.

We have already drawn out primary comparisons with related work in computer vision
in Section 2.5. Appendix C provides a deeper exposition of that related work.

7.1 Simultaneous Segmentation and Classification

Segmentation-classification pipelines are one approach to the problem of parsing an image.
As noted in Section C.3, this is a rather popular approach for depth images and three-
dimensional point clouds. Another approach is to perform segmentation and classification
simultaneously. This approach is very commonly used in parsing natural images. Simul-
taneous segmentation and classification allows the system to leverage class-specific cues
about objects in the image to aid in the segmentation process. An important disadvantage
is that only objects with known characteristics can take advantage of the combination of
segmentation and classification. In many cases, a generic “background” region is included
to encompass all unrecognized areas in the image. This region can combine multiple se-
mantically and visually different regions, resulting in a segmentation that is in some sense
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(a) Semantic segmentation (b) Instance segmentation

Figure 7.1: Examples of semantic and instance segmentation, performed manually, on a
natural image. Semantic segmentation, left, produces two foreground regions (a “book”
class in blue and a “moulding plane” class in red). Instance segmentation divides separate
instances of the instance class, resulting in four segments, three of which area classified as
“moulding planes”.

incomplete; for many applications, however, the details of the background are irrelevant,
and it is only specific foreground objects (such as cars, pedestrians, and street signs) that
are of interest. Algorithms that combine segmentation and classification into a single step
can be divided into two classes: semantic segmentation, which creates a single (possibly
non-contiguous) region for each class, and instance segmentation, which creates separate
regions for each object in each class.

Figure 7.1 shows an example of manual segmentation of a photograph following both the
semantic segmentation (7.1a) and instance segmentation (7.1b) models. In both cases, the
tools (a group of three antique moulding planes) are separated from the book, the table, and
the background. For semantic segmentation, however, the three planes form a single region,
while for instance segmentation they are separated into three examples. Distinguishing
between instances is often important; continuing from this example, a system intended
to assist in finding a rare plane worth two thousand dollars among hundreds of common
twenty-dollar planes must accurately distinguish between instances in order to identify
stylistic cues to the age and origin of each plane.
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7.1.1 Semantic Segmentation

Semantic segmentation is the process of classifying pixels in the image to produce a map
of semantic classes [01]. For an image of a street scene, for example, each pixel may be
classified as “building”, “road”, “vehicle”, “pedestrian”, “tree”, or “background”. This
map implies a segmentation with one region for each class. The problem of semantic
segmentation is distinct from the problem of object detection; an object detector is designed
to find the bounding boxes of instances of a specific class of object in the image. It uses
a single class (although the class may be quite general and the output from multiple
object detectors can be combined), and the output is only a bounding box, not the exact
boundaries of the object. It is important to note that semantic segmentation is not an
appropriate method for the intended applications of our web page parsing system because
it does not differentiate between instances of a class; instance segmentation, described
below, is required for this. As such, we discuss semantic segmentation only briefly here,
although it is a common technique in the domain of natural images.

The problem of semantic segmentation has been approached in many different ways.
One paradigm that has seen extensive use is conditional random field (CRF) models' of
various types. An illustrative example of the use of CRFs in a semantic segmentation is
the multiscale CRF model proposed by He et al. [63]. This approach uses unary potentials
proportional to the probability of a specific label at a given pixel given the image data,
pairwise potentials proportional to the probability of a pair of pixels given the image data,
and higher-order “label feature” potentials proportional to the probability of a labelling of
a larger set of pixels given the image data. These higher-order label features are defined
at multiple scales (hence the term “multiscale CREF”), including a global scale which takes
advantage of properties of image composition, as the eigenregion model of Fredembach et
al. did [19]. This model allowed the enforcement of spatial coherence as well as large-scale
constraints on plausible image interpretations.

Another approach to semantic segmentation—one which is currently very common—is
the use of convolutional neural networks and other deep learning methods. A remarkable
range of architectures have been proposed for this area. It is beyond the scope of this
chapter to provide a detailed survey of the techniques used in this area, since our work
uses neither semantic segmentation nor a convolutional neural network architecture. A
2017 review article by Garcia-Garcia et al. [51] describes major deep learning methods
for semantic segmentation, including the use of CRF-based postprocessing algorithms to
improve spatial resolution.

LCRFs are discussed in Section C.2.3 of this thesis.
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7.1.2 Instance Segmentation

Unlike semantic segmentation, which can be viewed as per-pixel classification, the objective
of instance segmentation is to separate not only pixels of different classes, but also pixels
in different instances of the same class. Distinguishing between instances of a given class
is very important for many areas. A traffic camera being used to measure traffic levels, for
example, must count instances, and many instances may be in the field of view at once;
obviously it is impossible to count instances accurately if the instances cannot be separated
from each other. If the image is a rendered web page, it is likely that similar regions (such
as article blurbs) will be adjacent to each other. With a semantic segmentation algorithm,
a column consisting of article blurbs will not be divided; with instance segmentation, the
column will be divided into individual blurbs which can then be individually processed.

Instance segmentation is in some respects more challenging than semantic segmentation.
Not only must the type of object be accurately recognized for each pixel, the boundaries
between objects of the same type must be accurately located. On the other hand, as
pointed out by Yang et al. [135], template-based models of an object can be of more use
for a single object instance than for a region consisting of multiple objects. A wide variety
of methods have been proposed for instance segmentation. As with semantic segmentation,
many modern methods are implemented using deep learning methods, but other approaches
also exist.

A common method for instance segmentation is to refine the bounding boxes produced
by an object detection algorithm to produce exact boundaries of classified objects. Arnab
et al., for example, used a combination of cues, including object detection bounding boxes
and a semantic segmentation, and combined them using a CRF [10]. Li et al. proposed
an algorithm that begins with a bounding box from a detector and uses a convolutional
neural network to iteratively refine the object boundaries; Li et al. argued that repeated
local corrections to the segmentation are easier to model than global corrections [30].

Yang et al. proposed in 2012 an interesting Bayesian instance segmentation method
[135]. This segmentation algorithm uses initial region proposals provided by object detec-
tion and refines these detections to produce an instance segmentation, accounting for depth
ordering and object shape. These elements are modelled in a common Bayesian framework,
and the system combines top-down and bottom-up cues. Because this algorithm takes a
probabilistic approach broadly similar to our own, it is worth considering in detail. While
our algorithms were defined in Sections 3.2 and 3.3 in bottom-up order, beginning with the
definition of the probability of that there is a locally significant edge at a given pixel and
finishing with the definition of the probability of an entire segmentation, we will follow the
top-down order used in [135] in describing Yang et al.’s algorithm.
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In order to discuss the mathematical details of the segmentation algorithm in question,
it is necessary to first define some notation. The notation in the following discussion
is based closely on the definition of the algorithm in [135] with slight modifications to
ensure clarity in this brief discussion without derivations, and to avoid conflicts with other
notation in this thesis. Let d,,, for n € {1--- N}, represent the n'® detection, including its
class, position, and score. Each detection corresponds to exactly one depth level, and vice-
versa. The layers are ordered according to a permutation 7; dr(ny is the front detection,
and dr () is the back detection; d() represents a “background” region, corresponding to a
“detection” of the entire image. Each layer has a corresponding set of parameters for the
appearance model, denoted 6, for the 7(n)™ detection. Each region has a corresponding
segmentation mask which refines the bounding box to the outline of the object; b;,, is a
binary variable such that b;,, = 1 if and only if the pixel 7 is part of the object detected
in layer m. The feature value at pixel ¢ is denoted x;. The final label of pixel i is denoted
x;, where z; € {0--- N}; due to occlusion, each pixel is labelled with exactly one layer,
although it may be part of many occluded objects.

The labels and features of different pixels are assumed to be independent, so the prob-
ability of the feature values  and an assignment z of labels to all pixels, given by the
appearance parameters 6, detections d, and depth ordering 7 is defined to be

N
Pr(z,20,d) = | [ Pr(z:, 2:l0, dx) (7.1)

i=1

Because the probability of a label is dependent only on the labelling and the probability
of a feature value is dependent only upon the appearance model, this equation can be
factored again:

N
Pr(z,z|0,d,) = HPr(zi\d,,)Pr(xilezi) (7.2)
i=1
The probability Pr(x;|6.,) allows the algorithm to model specific instances of a class; ignor-
ing this term was found to significantly reduce performance. The probability Pr(z; = m|d,)
requires further analysis to provide a satisfactory definition. Considering the physical in-
terpretation of this probability is helpful. In effect, this is the probability that layer m
is the furthest-forward layer with a segmentation mask including the pixel 7. It can be
shown, then, that this probability is equal to

N

Pr(z = mldy) = Bim ] (1= Bin) (7.3)

n=m+1
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where f;, = Pr(bi, = 1|dz@n)). The value of 8;, depends upon the class-specific shape
model for layer n. In its simplest form, the shape model can be represented by a mask «
for each class c. If the mask is a single model, 3;, = o .,, where ¢, is the class of layer n
and 7’ is the position of the pixel 7 in mask coordinates. Yang et al. also discuss the use
of more sophisticated mixture- and part-based shape models; these are treated similarly,
but have more ability to adapt to the image data. Using a mixture-of-deformable-parts
model was found to help the performance of the model. In [135], the authors also discuss
the use of superpixels to incorporate bottom-up grouping into the segmentation process;
in the interest of brevity, we omit a detailed discussion of this aspect here, but it is worth
noting that these bottom-up cues did help the overall performance of the algorithm.

The probability of a given pixel belonging to a given region depends upon the depth
ordering of regions. One possible way to incorporate this is to simply assume a uniform
probability distribution over all orderings. Yang et al. also present a method for estimating
the probability of a given ordering based on the properties of the detections. Vertical
position is useful in estimating the depth of objects that can be expected to lie on a
common ground plane, height gives an indication of distance due to perspective effects,
and objects that are partially occluded are likely to have a lower detection score than fully
visible objects. The probability of an ordering 7 given a set d of detections is given by the
conditional MRF distribution

Pr(rla) = 5 [T exp(=0" o = frco) (7.4

m<n

where fr(,) represents a feature vector describing a detection, w is a learned model of
depth cues, and Z(d) is simply a normalizing constant. Layering was found to have only
a slight impact in tests using the PASCAL VOC 2009 [11] and 2010 [15] segmentation
datasets; Yang et al. suggest that this is due to the relatively sparse labelling present in
this dataset leading to relatively few occlusions. The layering model is used to account
for occlusions, and is therefore of little consequence if occlusions are rare. The impact of
ordering was found to be greater on a subset with overlapping true positive detections.

The model described by Yang et al. for natural images is related to but distinct
from our method for web page image segmentation. Both take a Bayesian approach to
the segmentation problem, and incorporate specific constraints from the expected image
formation process. In Yang et al.’s algorithm, these constraints assume an image formed
by perspective projection from occluding opaque objects, ordered in depth. The rendering
process by which an image of a web page is generated is much different, and as a result
our assumptions differ from those of Yang et al. Our segmentation algorithm assumes
hierarchically tiled regions in the form of axis-parallel rectangles. Occlusion is uncommon
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in web pages (though it can occur if one region is overlaid on another), and is not modelled
in our algorithm; similarly, perspective projection does not occur in the web page rendering
process.

In addition to the differences in assumptions resulting from differences between the
intended application areas, there are important conceptual differences between the two
algorithms. The algorithm proposed by Yang et al. performs segmentation and classifica-
tion simultaneously, and relies upon models of specific object classes in the segmentation
process; this adds an important top-down component to the segmentation algorithm. Our
algorithm, in contrast, is purely bottom-up as described in this work. All of the assump-
tions are derived directly from the image formation process, and class-specific models are
not necessary. Similarly, our algorithm is designed to provide a complete segmentation of
the page rather than a segmentation of specific foreground object instances, and does not
use a generic “background” region for unknown objects. Our algorithm also performs only
segmentation; we perform classification as a separate step.

7.1.3 Separate or Simultaneous?

In our work, we used separate segmentation and classification steps, rather than perform-
ing segmentation and classification simultaneously as in the case of semantic or instance
segmentation. There are several reasons for taking this approach, in both theoretical and
applied aspects of our work.

In our application domain, segmentation and classification have distinct uses. As shown
in Section 3.4 and Chapter 5, a segmentation tree, without classification of regions, can
support many important assistive features, including magnification and highlighting. For
these applications, detecting visually coherent regions and their hierarchical relationships
is often sufficient for practical purposes. A separate segmentation step allows these tasks
to be disentangled from the challenges of classification. Furthermore, the classification
problem, in our case, is extremely context-sensitive. Consider, for example, an image in
the form of a line drawing. If it appears in the header of the page, it is probably a logo
for the site or page; if, on the other hand, the same image appears embedded in the main
article on the page, it is probably an illustration. Even if it is an illustration of a logo, it
serves a different role in the page than the page logo does. By separating segmentation and
classification, we can simultaneously optimize over all region labels in a fixed segmentation
using a hidden Markov tree, allowing the context in which a region occurs to play a strong
role in the classification process.

From a more theoretical perspective, separately studying segmentation and classifi-
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cation methods is useful in elucidating the specific requirements for each of these tasks.
Simultaneous segmentation and classification could compromise experimental control by
combining two tasks with, possibly, very different requirements. While effective simulta-
neous segmentation and classification would demonstrate the efficacy of the vision-based
approach, separating the two tasks facilitates a finer-grained analysis of the performance
of the algorithms. There is, therefore, also a scientific reason to separate our classification
and segmentation algorithms.

Having described the reasons why separate simultaneous segmentation and classification
were appropriate for the purposes of this thesis, it is also worth noting that a simultane-
ous or iterative approach may have merit in this domain. Because we have studied the
properties of the two aspects of the page parsing problem separately and arrived at an
understanding of these problems’ individual requirements, it becomes possible to take a
principled approach to combining the two. One possible method for combining segmenta-
tion and classification would be to consider not only the probability of the segmentation
tree when optimizing over segmentations, but also optimizing the probability of the optimal
assignment of region labels to the segmentation tree. Although probably more complex to
optimize, this would provide richer information to the segmentation optimization process,
and would ensure that the segmentation tree is “compatible” with the classification model.

7.2 Document Segmentation

One common case of document structure analysis occurs in optical character recognition
(OCR) technology. It is necessary for OCR to find the regions of text in the image. In
this case, the objective is to find blocks of texts to be read by other parts of the system.
Note that our objective is to produce semantically significant groups, whether of text,
photographs, icons, or other items. Segmentation into very fine units, such as lines of text
in a paragraph, is neither necessary nor desirable for our purposes.

It is important to note that our design was inspired by certain existing research on
segmentation and classification for information retrieval and optical character recognition,
though there are as well some fundamental differences. Page segmentation methods in
OCR~—as in the system proposed by Cesarini et al. [26]—are designed to divide the page
into regions suitable as input for the OCR algorithm, not input suitable for a human navi-
gating the page. These segmentation algorithms do not need to label regions. Information
retrieval methods (such as the system described by Chen, Zhong, and Cook [25] based on a
generalized hidden Markov model), in contrast, produce very fined-grained segmentations
and classifications which isolate specific fields and values (such as phone numbers or prices)
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for an automated system. The goal of web page segmentation for human users is distinct;
unlike segmentation for OCR, regions must be labelled, and the desired labelled regions
are coarser and at a higher level than for IR methods.

Early OCR segmentation work generally used binary images with rules for building up
blocks of text or image from groups of pixels. Shih et al., for example, use a method based
on bridging small horizontal and vertical gaps, then finding connected components [115].
Zlatopolsky described a more complex segmentation system which used different heuristics
for different types of merging and different types of object (e.g. line segments and text
blocks) [142].

A recent survey of document segmentation (for OCR and other applications) [70] clas-
sifies work in this area into methods based on projection, on smearing, on connected com-
ponents, and on analysis of the background. In projection, pixels are summed along a line
of sight (generally horizontally or vertically relative to the document axes). Anomalous
peaks or troughs in the resulting one-dimensional projections are presumed to be caused by
components in the document [76]. Smearing methods attempt to expand the foreground
to fill each component. Methods based on morphological operations are a generalization of
smearing methods [76]. One notable method using connected components is the construc-
tion of a graph of connected components with edges weighted by the Euclidean distance
between component centroids; subtrees of the minimum spanning tree of this graph are
considered to be page regions [76]. Methods using the background to define components
rather than the foreground include the white tiles method, which finds areas of whitespace,
the edges of which are used as separators [0]. All of these methods are distinct from our
segmentation method, which is based on probabilistically finding edges and alignments of
edges.

Document segmentation can also refer to the process of segmenting electronic docu-
ments (rather than scans of physical documents), especially when using a method which is
applicable to multiple document types. Such a system was proposed by Burget [21], and
later refined for web documents by Burget and Rudolfova [20]. This method is based on
boxes and common visual properties that are applicable to a range of documents, including
PDF, RTF, and OpenDocument formats as well as HTML.

The method proposed in [21] uses a two-stage process to produce its interpretation of
the page. Page segmentation consists of the process of producing a tree of basic regions
using a bottom-up algorithm. First, a tree consisting of all boxes in the representation of
the document, plus a “virtual” box consisting of the entire page, is produced; containment
relationships define the hierarchy (as in our work in Chapter 6), and when regions overlap
the box that is “further back” is assumed to be the containing box. Boxes which do not
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contain text and are not otherwise distinguished from their neighbours are pruned from
the tree, and contiguous areas of boxes which are not visually distinct are merged. The
segmentation tree is completed by finding maximal bounding boxes which do not cross
visual separators. The second step is the detection of logical structure using font and
punctuation evidence. A series of heuristic rules are used to estimate the level in the
logical hierarchy of each image. This allows sibling nodes in the initial segmentation tree
to be placed in different levels in the logical structure of the document.

Cesarini et al. described a tree structure designed to represent the series of horizontal
and vertical divisions found in a typical document; they call this structure the modified X-Y
tree [20]. A standard X-Y tree is built from the top down by recursively dividing detected
regions; regions are divided through whitespace or lines, and the direction of division
(horizontal or vertical) alternates at successive levels in the tree (a node with exactly one
child can be used to represent consecutive divisions along the same axis). Thresholds on
the dimensions of lines and whitespace regions are used to avoid dividing at meaningless
positions. In a modified X-Y tree, each node is associated with features describing its type
and coordinates in the document image, and additional edges between nodes in the tree
are used to represent adjacency relationships. This is a richer model, although like the
standard X-Y tree [90] it requires that separators (i.e., the lines that divide regions in the
segmentation) extend across an entire node. Both the modified X-Y tree and the standard
X-Y tree used in our work reflect assumptions about document structure that are common
to a range of domains, including printed material and web pages.

7.3 Web Page Segmentation

Visual features have been used to segment web pages for over a decade. A useful overview
of some of the different efforts in doing so is offered in [(1], which clarifies that vision-based
approaches segment the web page from the browser-side perspective as it is rendered. Most
of the existing web oriented segmentation methods use some combination of code features
such as HTML tags and visual features derived from the source code or DOM tree such
as background colour and font size. Our image-based approach does not use source code
derived features directly, but only through their effect on an image of the rendered page.
A large group of methods use some kind of vector representation of the rendered page;
although they work with the rendered content elements and their visual features, they
obtain these features from the DOM tree rather than from an image of the resulting page.

In 2003, Cai et al. proposed the Visual Page Segmentation (VIPS) algorithm [22],
which uses cues obtained from the DOM tree to segment regions in the page. Like our

143



segmentation algorithm, VIPS takes a top-down approach, segmenting first the entire page
and then recursively segmenting the resulting regions into smaller regions. The VIPS
algorithm segments a region in three stages: extraction of blocks, detection of separators
between blocks, and structure extraction. Block extraction and separator detection is a
splitting process; the extraction of the structure of the region is a merging process.

VIPS divides DOM tree nodes into several categories according to their roles in defining
the page. One important dichotomy, based on the HTML 4.01 specification, is the division
into inline nodes, which can be applied to text without causing a line break, and line-break
nodes, which always introduce a line break. VIPS also defines additional classes of nodes,
which may overlap. A walid node is a node that is visible in the page, with nonzero height
and width. A text node is any node in the DOM tree corresponding to text; these nodes do
not have an HTML tag, although their parent node might. A wvirtual text node is any inline
node with only text node children, or with only text node and virtual text node children.

A block, in the terminology of Cai et al., consists of a set of nodes in the DOM tree. Each
block is assigned a degree of coherence (DoC) score, based on a series of heuristic rules. To
divide a parent block into its child blocks, the children of the DOM tree nodes corresponding
to the parent block are examined to determine if they are sufficiently coherent to represent
a single block or if they should be divided. When identifying blocks at this stage, a total
of thirteen heuristic rules are used; these rules include “If the DOM node is not a text
node and it has no valid children, then this node cannot be divided and will be cut”, “If
one of the child nodes of the DOM node is line-break node, then divide this DOM node”,
and “If one of the child nodes of this DOM node has HTML tag <HR>, then divide this
DOM node” (rules quoted verbatim from [22]). Other rules set a DoC value, rather than
requiring a node to be divided or not divided. Child nodes of dividable nodes in the DOM
tree are recursively examined until a set of child blocks each corresponding to a single node
in the DOM tree has been obtained.

Once a set of child blocks has been obtained, separators between these blocks are
found. A separator, in the sense of [22], is a horizontal or vertical line across a region
which does not cross any of the blocks in the page. Separators are characterized by their
adjacent blocks and by their width. The weight of a separator is set according to a series
of heuristic rules:

e Wider separators have a higher weight than narrow separators
e If the separator includes an HTML tag such as <HR>, its weight is increased

e It the separator divides blocks with different background colours, its weight is in-
creased
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e A difference in font size across a horizontal separator increases its weight, especially
if the font size is larger above

e Similar block structures on either side of a horizontal separator result in a reduced
weight

Having extracted a set of blocks corresponding to single DOM tree nodes, and deter-
mined the weights of the spacers between these blocks, the VIPS algorithm constructs the
final set of child blocks according to the structure of the page. Pairs of blocks divided
by a separator with a weight less than a threshold value are merged into larger blocks.
The resulting block is assigned a DoC based on the highest-weighted separator inside the
block. The segmentation process is repeated on these final child blocks until no further
divisions are necessary; this is typically determined by checking the DoC of each leaf block
in the segmentation tree to determine if any are less than the minimum permitted degree
of coherence (PDoC).

VIPS provides an interesting and illustrative point of comparison with our approach
to the problem of web page parsing. VIPS uses many visual features, such as the relative
positions of DOM tree nodes in the rendered page, background colour, and font sizes.
Unlike in our algorithm, however, these features are extracted from the DOM tree, rather
than from an image of the rendered page. This approach results in strong implementation
dependence. It is incapable of dividing a page beyond the level of a single DOM tree node,
so embedded content such as graphics cannot be parsed. The heuristics chosen are also
dependent upon specific tags, which ties the VIPS algorithm strongly to HTML 4.01. The
rules used to divide a block into child blocks prior to separator extraction are applied in
special ways to <TABLE>, <TR>, <TD>, and <P> tags, and to inline text nodes; all other nodes
are grouped together and treated identically. As a result, a page implemented in HTML5
that uses the many features and tags introduced in the HTML5 standard would have many
nodes with tags that provide potentially valuable semantic information lumped together
in a generic group. Our algorithm avoids implementation-dependence by avoiding the use
of the implementation as evidence, instead using the rendered page as it was intended to
be viewed by the designer. Furthermore, because the heuristic rules are hand-coded with
hand-tuned thresholds and scores, rather than learned from data, updating VIPS is labour-
intensive and prone to poor choices of parameters. Our Bayesian approach, in contrast, is
nonparametric wherever this is feasible, uses no hand-coded heuristics, and has minimal
parameters and thresholds requiring tuning. As a result, training is simple and principled,
and our system can be easily re-trained if, despite its implementation independence, design
patterns in the visual appearance of the page change sufficiently to require modification of
the parsing method.
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Many other projects have used the VIPS algorithm as a starting point, including work
by Petasis et al. [103] and by Song et al. [120]. This work recognizes the importance of the
visual properties of page regions in determining their position in the page structure, but it
relies entirely on the DOM tree to produce a segmentation (along with heuristics in order
to decide which elements actually create a visual segment). One important descendant of
VIPS is the recent modernization described by Akpinar and Yesilada [2, 3]. Akpinar and
Yesilada note that VIPS as proposed by Cai et al. cannot make use of HTML5 elements,
which were created after the original VIPS algorithm, or dynamic content, which can cause
“invalid” (invisible) nodes to become valid. Additionally, they point to deficiencies in the
set of heuristic rules, due to lack of detail and insufficient use of certain style attributes
such as margin and padding widths.

One important contribution of [3] is a modern, portable reference implementation of
the modernized VIPS algorithm. The original VIPS algorithm required integration with
an obsolete version of Internet Explorer, which is unable to correctly render many modern
pages, and has compatibility problems with many modern systems. To obtain segmenta-
tions from VIPS for comparison with those produced by our algorithm (see Chapter 3),
it was necessary to use a Windows XP SP3 virtual machine to run the VIPS reference
implementation.

The quality of segmentations was evaluated by having participants rate the quality of
segementations. Akpinar and Yesilada also studied segmentation preferences by rating the
performance of five different levels of complexity [3]. The results suggest a statistically sig-
nificant difference in preferred complexity between different demographic groups. Notably,
the age and education level of participants affected complexity preferences, as did experi-
ence in web design. Over the entire group of participants, the highest level of complexity
was preferred, and this remained consistent across pages with different levels of inherent
complexity. The overall results indicated reasonably good segmentation performance; when
comparing all five levels of complexity, the mean score was 3.64, treating a Likert scale as
interval values between 1 and 5. Our tests of segmentation accuracy are not directly com-
parable, as we used ground truth segmentations. The use of ground truth segmentations
allows a quantitative comparison with a known-good segmentation and allows much more
detailed evaluation. Similarly, our experiments with segmentation preferences are consider-
ably more fine-grained than those described in [3], since we compare manual segmentations
rather than ratings of a small number of prepared segmentations. These labour-intensive
methods did, however, require the use of somewhat smaller datasets; Akpinar and Yesilada
used a 29-page dataset, while our ground truth dataset consisted of five pages, although
with a large number of segmentations of each.

In 2017, Zeleny et al. described Box Clustering Segmentation (BCS), an interesting

146



segmentation algorithm based upon the visual properties of boxes produced by a rendering
engine [139]. This algorithm produces a flat segmentation rather than a segmentation tree,
as in many applications the leaf nodes are more important than the internal nodes. A set
of nodes is extracted from the segmentation tree such that all text and image nodes are
included, no other leaf nodes are included, and no boxes contain any others. In this set of
boxes, those whose projections onto the x or y axis overlap are said to be semi-aligned.

In order to proceed with a description of BCS, it is necessary to define some terminology.
The mutual position of a pair of boxes is defined to be “above” if and only if the two boxes
are semi-aligned in the horizontal direction and one is above the other; “below”, “left”, and
“right” are defined analogously, and if none of these conditions apply the two boxes have
a mutual position of “other”. The “absolute distance” between a pair of boxes is defined
to be the distance between the two closest edges if the boxes are semi-aligned, and infinite
otherwise. The direct neighbourhood of a box is the set of boxes which have a mutual
position (which is not “other”), and are the closest box in that direction (as a result, the
direct neighbourhood contains at most four boxes). The direct neighbourhood of a box is
used to calculate the “relative distance” between two nodes, which is the arithmetic mean
of the absolute distance between the nodes divided by the maximum distance in the direct
neighbourhood of each.

In BCS, boxes can be grouped together into clusters based on similarity. The similarity
measure between two nodes is calculated on the basis of relative distance, area, aspect
ratio, and colour features. The similarity between a cluster and a box or between clusters
is defined to be the mean similarity between boxes. In segmenting the page, similar regions
are grouped together such that the similarity between two entities proposed for grouping
is at least as high as a threshold similarity. This clustering threshold is a parameter which
must be set carefully, and which has a significant impact on the quality and characteristics
of the resulting segmentation. Each new candidate cluster is tested to ensure that it
does not overlap with any other cluster or box; if a candidate cluster overlaps a box, it
is still valid if all boxes which it overlaps can be added to the cluster. If a candidate
cluster passes this test, it is accepted. The process of proposing and testing clusters then
continues, ultimately producing a flat set of clusters which constitutes the segmentation.

BCS was evaluated using a dataset of 800 pages (100 in each of eight categories), each
with three ground truth segmentations. These ground truth segmentations were prepared
at the level of granularity of the DOM tree. Volunteers prepared one ground truth seg-
mentation, and by associating the DOM tree nodes in that page with nodes in each other
page in that category automatic segmentations are produced for these pages. The volun-
teers then had the opportunity to review the remaining segmentations. In experiments,
the accuracy of BCS with respect to this dataset was found to be slightly lower than that
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of VIPS, but the BCS algorithm was considerably faster.

For our purposes, the main interesting points about BCS are its use of a flat segmenta-
tion rather than a hierarchical one, and the dataset used for evaluation. Although common
in natural image segmentation, a flat segmentation is unusual in segmenting web pages,
for which a hierarchical segmentation seems natural. Nonetheless, Zeleny et al. argue
persuasively that for some applications the leaf nodes are far more important than the
internal nodes. While a segmentation tree is preferable for the assistive interfaces we have
considered here, since it allows the hierarchical structure to be leveraged in the interface,
a flat segmentation may be a valuable tool for other areas. The method by which ground
truth segmentations were elicited is interesting as a means of quickly producing ground
truth segmentations for a large dataset by leveraging the implementation structure of web
pages. It does, however, carry the limitations in expressivity inherent in the use of the
DOM tree rather than an image of the page; infographics, for example, would be forced to
be leaf nodes in these segmentations. As the method uses blocks produced from DOM tree
nodes by the rendering engine, the same limitations apply to BCS (and to VIPS, which was
used as a point of comparison), so the ground truth is accurate within the limitations of
the algorithms being tested, but the approach would not be suitable for generating ground
truth for an image-based segmentation algorithm.

There have been a few prior attempts to use images of rendered pages in web page
segmentation. In 2009, Barkol et al. proposed a system based on heuristic rules to find
pairs of long lines in the image which can be used to define regions, combined with text
detection techniques from OCR [12]. This system was intended to be used as a generic
GUI parsing system, but the focus in evaluating it was on web pages. Many common
elements exist in web pages and program GUIs, especially in forms, and similar design
cues are used in both domains. By convolving the image of the page with edge detection
kernels for horizontal and vertical lines, a continuous edge map is produced, and from this
map line segments are extracted. Using the expected size range of objects in the web page
to define thresholds for the lengths of significant lines, pairs of horizontal lines and pairs
of vertical lines can be assembled into rectangular regions. The procedure is most effective
for objects with a rectangular outline in the edge image. Because text contains many
sharp edges, a separate text detector based on techniques from OCR is used to extract
the text regions. Foreground and background colour consistency requirements are used to
refine the segmentation. This process is repeated hierarchically to produce a segmentation
tree. While at the lowest level this is similar to our approach, the edges are assembled
heuristically, and used to produce boxes directly rather than to locate divisions. The
method proposed by Barkol et al. is a heuristic, rule-based approach, as opposed to our
Bayesian approach.
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To refine the segmentation tree, Barkol et al. used a combination of a graph grammar
(a generalization of the formal grammars used to define formal languages) and recognition
of low-level GUI elements to produce a more semantically-aware classified segmentation
tree, which may include additional nodes representing semantic groups. Common design
patterns composed of GUI elements are recognized by the roles that they play in the
graph grammar. Because, as Barkol et al. acknowledge, no grammar can fully capture the
structure of all graphical interfaces, this grammatical interpretation of the page structure
proceeds from the leaves of the segmentation tree upward until no production rules can be
applied. The classification tree is, therefore, not necessarily complete. The grammar used
to test the algorithm is relatively small, consisting of eighteen symbols (eight terminal and
ten non-terminal) and approximately twenty production rules. Barkol et al. presented an
example parsing of a specific airline reservation page to demonstrate the capabilities of
their segmentation and classification algorithm.

Our work is distinct from that of Barkol et al. in a number of important ways. Our
segmentation algorithm is more integrated. We use the same Bayesian edge detection
method to find the edges of text regions and to detect other significant edges such as
changes in background colour. Thanks to our Bayesian approach to adapting to local
image characteristics, this method is effective in highly-textured, edge-dense text regions
as well as in areas where two empty areas of slightly different background colours meet. The
segmentation tree is constructed in the same probabilistic framework, and incorporates a
prior probability distribution over segmentation tree structures. Our classification method
also uses a very different structure. Our model is based on a probabilistic graphical model,
and by inferring the most likely joint labelling of regions we avoid entirely the problem of
encountering situations not anticipated in the hand-tuned graph grammar. As a result,
our parsing system has a much more robust and principled architecture, since it produces a
full labelling in each case and all classification rules are learned form the data rather than
hand-coded. Additionally, our evaluation methods are far more comprehensive. Rather
than a qualitative test on a single page, we show a series of qualitative and quantitative
experiments on pages from a range of types, and evaluate the performance of our web page
parsing system in a range of contexts. Because our evaluation was more thorough, our
work establishes much stronger evidence both for the efficacy of our method and for the
efficacy of vision-based parsing of screen images as a strategy.

Cao et al. proposed a system based on finding minimal bounding boxes around edges
detected in an image of the page. This system was intended to support the identification of
“phishing” web pages? by supporting comparison between the visual structures of different

2Phishing web pages impersonate legitimate sites in order to collect sensitive information from victims.
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web pages. The algorithm proposed by Cao et al. is based on two fundamental assump-
tions: first, that web pages are composed of rectangular regions (implicitly, axis-parallel
rectangular regions), as we assume in our work; second, that regions in a web page are
separated by empty background regions. Once an image of a page has been obtained, it
is processed using the Canny edge detector [23] to produce a binary edge map. Cao et
al. define a sub-image as an axis-parallel rectangular region of an image, represented as a
tuple containing an origin in image coordinates, region width and height, and image data
in sub-image coordinates. Sub-images can be defined for other sub-images. A “real” sub-
image ¢’ is the minimal sub-image of a sub-image g which contains all nonzero pixels in g.
The real sub-image is produced from a sub-image by a shrinking process. The “leftover”
empty rectangular regions are termed “dividing zones”. It is necessary to detect not only
a single real sub-image, but a hierachy of sub-images. In order to accomplish this, dividing
zones are detected by finding region-crossing lines without edges. This is in some sense the
opposite of our approach of finding region-crossing lines composed of edges. Divisions are
prioritized based on heuristics when multiple divisions are possible. The resulting segmen-
tation trees were compared using a variation on the earth mover’s distance to flag possible
phishing pages.

In order to establish the efficacy of their page segmentation algorithm as a segmentation
algorithm, Cao et al. performed qualitative testing on a dataset of “[m]ore than 20 web
pages” [24]. Tt was also tested in the context of phishing page detection, its intended use,
and was found to allow more robust detection in this setting.

Unlike our parsing system, the segmentation algorithm described by Cao et al. does not
perform classification. It also does not use a Bayesian approach to the page segmentation
problem, as ours does. That being said, the performance advantage over a competing
method in the area of phishing page detection shows the potential utility of the approach
in this domain, and the simpler method may provide a performance advantage in offline
processing of large numbers of pages, as would be done when attempting to identify all
phishing pages in a large quantity of possible spam email. As it is motivated by assistive
interfaces, our system must produce a more sophisticated parse tree of the page, but batch
processing of very large datasets is less of a concern. Like Cao et al., we use qualitative
evaluation of our segmentation algorithm as a segmentation algorithm, and quantitative
evaluation in context; due to the differences in the intended application domains, however,
these experiments are very different. We also study the characteristics of ground truth
segmentations, quantitatively evaluate segmentation quality, and quantitatively compare
our segmentations to DOM tree-based segmentations.

More recently, in 2015, Wei et al. proposed an interesting combination of VIPS with
vision-based segmentation called HoughVIPS [132]. It makes use of a variation on the
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Hough transform (commonly used in computer vision) called the progressive probabilistic
Hough transform. The classical Hough transform [70] exhaustively searches an image for
features, and for each feature found increments an accumulator at each hypothesis that
could explain the presence of a feature. The features may, for example, be edge pixels, and
the hypotheses may be lines in the image. The progressive probabilistic Hough transform
(PPHT) [91] is a variant which prioritizes the examination of features and hypothesis in
order to allow the algorithm to be terminated at any time and provide results from the
accumulator. In HoughVIPS, PPHT is used on an edge map produced by the Canny edge
detector to detect additional separators not found by VIPS. The results were evaluated by
four volunteers rating the quality of segmentations; HoughVIPS achieved slightly higher
performance than VIPS.

HoughVIPS is an interesting combination of image-based and DOM tree-based tech-
niques. It attempts to address the shortcomings of the DOM tree-based VIPS algorithm by
incorporating a simple image-based method. Our method, in contrast, uses a completely
vision-based approach, integrating all phases of the image segmentation process in a single
probabilistic framework. The approach to evaluation taken by Wei et al. is advantageous
in that it does not require explicit creation of ground truth segmentations. It is, however,
inherently subjective, and is likely to be less sensitive to details than a more standard
ground truth-based evaluation method such as ours.

In contrast to these previous attempts to use page images in page segmentation, with
our proposed vision based system, we aim to produce a comprehensive framework, sup-
ported by thorough evaluation. We also adopt a principled Bayesian approach to the entire
parsing problem, including segmentation.

7.4 Web Page Region Classification

Chen, Zhong, and Cook describe a method for using a generalized hidden Markov model
(GHMM) for classifying regions in a web page [28]. An ordinary HMM is a probabilistic
graphical model in which there is an underlying state and an observation at each discrete
time step in an evolving system; the observation and next state depend probabilistically
on the current state. In a GHMM, the single observation of an HMM is replaced by a
set of observations, allowing a set of features to be used rather than a single feature. The
states represent the types of regions in the web page, and the observations represent the
relevant features of the regions. The problem of classifying these regions can be viewed as
the problem of finding the sequence of states which is most likely, given the observations
of visual properties of regions and the dependency of each state on the previous one. A
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significant problem that Chen et al. needed to overcome in creating a GHMM of web page
organization is that a web page has a two-dimensional layout whereas a GHMM assumes
a one-dimensional sequence of states. The authors used a depth-first traversal of the tree
of regions to create such a sequence of states.

Our system uses a Markovian classification system, but rather than the GHMM of
Chen et al. it uses a hidden Markov tree (HMT). The hierarchical nature of the HMT
directly reflects the hierarchical nature of a web page, unlike the sequence structure used
in the GHMM. With a depth-first traversal of the segmentation tree, the successor of
each internal node will be one of its children, as expected. The successor of a leaf node,
however, cannot be its child, since leaf nodes by definition have no children. As a result,
the sequence structure has many transitions which do not properly reflect the hierarchy
of the segmentation. Worse, it is likely that the distribution of labels in leaf nodes will
be different from the distribution in internal nodes. More formally, for a segmentation
tree with n nodes, including n; internal nodes and n; leaf nodes, there will be n; — 1
transitions which do not reflect the segmentation tree and n; which do. Trees in general
include a sequence structure with a single leaf and no incorrect transitions, but this is not
a plausible model for a segmentation tree; with our X-Y tree prior, it is impossible for
any internal node to have fewer than two children, which rules out a linear tree entirely.
In the experiments described in Chapter 6, we observed trees with many leaf nodes, such
that n; < ny; for these realistic trees, transitions in a sequence model which reflect the
tree structure (i.e., transitions from internal nodes) are the exception rather than the rule,
while transitions in our HMT model always reflect the segmentation tree structure.

A recent rule-based classification proposed by Akpinar and Yesilada [2] uses the eMine
ontology to define both a set of labels and a set of rules. These rules are based on a range
of features of regions in the page, including

HTML tags (including tags introduced in HTML5)

Parent and child regions in the DOM tree

Position and size

Functional attributes such as onclick

Style and visual appearance, such as background colour and font size

Keyword cues found in surrounding text and in attributes such as class
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These cues allow evidence from visual features and from the implementation to contribute
to the classification of a regions, although these are of course derived from the DOM
tree rather than from an image of the page. A large set of sophisticated heuristic rules
is used to infer labels for each region. For each region, a likelihood score is tracked for
each label; this score is determined by the heuristic rules and region characteristics. The
performance of this region classification approach was tested by manually-labelled ground
truth produced by participants using a web-based interface. The results were promising,
showing an agreement of approximately 71% with participant ratings if equivalent terms
were accepted as correct.

Our classification system uses an HMT to infer class labels, rather than a hand-crafted
ontology. In one series of experiments (Section 4.4), we used the labels from the eMine
ontology to produce manual ground truth labellings for a dataset of segmented pages.
Our algorithm achieved approximately 61% accuracy, approaching the performance of the
sophisticated heuristics used by Akpinar and Yesilada using only learned information and
simpler features; the results we obtained also suggest that higher performance may be
achievable by more carefully matching segmentation parameters to the inherent granularity
of the ontology. A learning-based system like ours has the additional advantage of easier
modification than hand-tuned heuristics.

Kovacevic et al. proposed a heuristic method using visual properties obtained from the
HTML source code to classify regions as “header”, “footer”, “right menu”, “left menu”
and “center”, with the objective of improving the classification of entire web pages on the
basis of content [79]. By classifying regions, it is possible to focus on the text occurring in
central regions that are likely to contain key content, and assign less importance to text
in areas such as the footer of the page. This system uses a simplified rendering engine to
extract a tree of HT'ML tags with positions and attributes. The rendering engine does not
support CSS; this would have been less of a disadvantage in 2002, when the method was
published. The heuristics are based largely on tag type and position; due to the selection of
classes, absolute position in the page can be used rather than position relative to a parent
region. This method was found to be advantageous in page classification, although the
limited selection of classes would correspondingly limit its use in assistive applications.

Ahmadi and Kong proposed [!] a method for detecting major regions of the page based
upon position in the page, in order to support browsing on small screens (such as cell
phones and other mobile devices). Especially at the time when mobile web browsing was
initially becoming popular, web pages often did not support small screens, making auto-
matic adaptation an appealing option; this is similar to the ongoing status of accessibility
support on the web. Ahmadi and Kong proposed their classification algorithm as a means
of identifying closely-related regions in the page so that these regions can be kept together
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while content is rearranged for a smaller screen. This method uses a combination of source
code structure and layout structure. The first step is to detect a small set of regions,
consisting of those used by Kovacevic et al. plus a “clutter” class which includes adver-
tisements. The second step is to divide the main content into sections containing related
content. Separate heuristic rules, considering HTML tags, position, and attributes such as
background colour and font size, are used in each step.

A method described by Burget and Rudolfova [20] for information retrieval uses a
particularly rich set of features in classifying regions. Starting from a segmentation tree
produced using visual features of the DOM tree, this algorithm classifies regions using
features including average font size (relative to the average font size across the entire
page), position relative to its sibling regions, and contrast. In addition to these visual
features, five text features are used: text length, number of spaces, numbers of upper-case
and lower-case letters, and number of digits. A learned decision-tree classifier is used to
classify regions into one of ten classes. Nine of these classes are related to article features
such as headings and paragraphs; the remaining class is a catch-all for regions that are not
part of the main article.

The earlier heuristic approaches of [1] and [79] share the limitations fundamental to
the heuristic approach as described in the context of the eMine ontology. These systems,
and a number of closely related ones, also tend to use a small number of classes. This
reduces the number of heuristics required and simplifies the process of testing the heuristics,
but also limits the expressiveness of the classes. Burget and Rudolfova’s approach uses
machine learning to perform the classification, rather than hand-tuned heuristics. This
alleviates some of the problems with writing heuristics manually, although it does require
a substantial labelled dataset. One limitation of the approach described in [20] is that
although it uses hierarchy in that the position of each node relative to its siblings provides
evidence for its label, parent-child relationships are not used. This may be a result of
the classes in the ontology; they pick out different parts of an article at roughly the same
level of abstraction. Our approach also uses machine learning, but uses a larger and more
general set of classes, and models the complete hierarchy of the page using the HMT in
order to require consistency between parent and child labels.

Although not specifically designed for web pages, the “Prefab” GUI analysis system
described by Dixon and Fogarty is related to this area [11]. Prefab uses object recognition
techniques to identify common GUI elements in a screen image. Barkol et al. also used
the recognition of GUI elements such as radio buttons to refine their segmentations [12].
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7.5 Assistive Technology for the Web

The accessibility research community (including, for example, the Web4All community) has
produced a wide range of methods for ensuring accessibility on the web and in “the real
world”. This research has including accessibility standards, appropriate types of interfaces
for different requirements, and usability considerations. In this section we present only a
sampling of work in web accessibility that is of particular relevance to our research. Our
work is complementary to existing research in assistive technology for the web; rather
than presenting a new type of front-end interface, our work provides a new back-end for
interpreting content structure in order to provide a better and more robust interpretation
of the content to an assistive interface which can then present the content in accordance
with current best practices.

Most work to date has focused on improving accessibility for visually impaired users
accessing the web via screen readers, although there is much potential for leveraging these
same core ideas in other domains. Asakawa and Takagi [11] developed a system that
transcodes existing Web pages with manual annotations to add structure that can be used
for reordering visually fragmented grouping according to performance. As manually an-
notating pages is labour intensive, follow-on work focused on automatically annotating
similarly structured pages across multi-page websites [121]. Yesilada et al. [130] use a
structured ontology to identify visual segments in a web page and re-engineer pages to
facilitate navigation using a screen reader. Mahmud, Borodin, and Ramakrishnan [39]
introduced CSurf, a system that uses web page partitioning techniques from natural lan-
guage processing and machine learning to capture the context of a link to enable the screen
reader to start reading the next page starting from the most relevant section. HearSay [1 ]
extends this approach to additionally facilitate movement between the segments of a page.
Our approach is different in that it is entirely automatic, and focuses on purely visual cues
in the rendered page when identifying relevant regions, in order to obtain implementation
independence.

Screen reader navigation is often difficult. Appendix D shows an example of a transcript
of browsing a complex web page using the NVDA 18.02 screen reader. In this relatively
simple task—finding the seven-day forecast in a page from The Weather Network—only a
small number of the features of the system were used. Nonetheless, the process is complex,
involving navigating by element type as well as moving from one line to the next, and
using the default verbosity settings a great deal of information is supplied to the user. It
should be noted that this transcript was produced by a sighted novice user of the NVDA
program, and as such may not reflect exactly the experience of visually impaired users,
but should serve to illustrate the complexity of even apparently simple tasks when using a
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modern screen reader.

Some work has been done in using visual properties of web page elements (obtained
from the source code of the page) to improve screenreader performance. Kriipl-Sypien et
al. describe a bottom-up, rule-based system which represents a web page using a layered
model, similar to the layered model of a network stack [21]. At the lowest level is the
page source code; progressively higher levels contain discrete objects such as words or
images, collections of objects, and logical divisions of the page. The top layer provides a
model for navigating through the page on multiple “axes” of logical relationships between
objects. This model has been applied to screen readers as a part of the Vienna University
of Technology’s Project ABBA (Advanced Barrier-free Browser Accessibility) [125]. Our
proposed approach differs in that it is intended to be independent of the implementation
of the web page, using only the rendered web page and not the source code, and to avoid
the use of rigid, hand-coded rules in favour of learned characteristics and classifiers.

Some researchers have emphasized the value of addressing clutter in web pages [113, 85].
Some strategies proposed include directing users to make use of buttons in order to bring
content located in the core region of the page into focus. Users can also ask for certain
parts of the page to be read aloud. With the segmentation algorithms developed in this
thesis, it is possible to automatically associate content into visually coherent blocks, which
can readily be treated as a unit. Our decluttering method is focused on highlighting a
region of interest to reduce the distraction from all other content on the page. Because
our approach to decluttering makes use of our interpretation of the visual rendering of the
page, this allows for more extensive options for the user. Magnification can also play a role
in emphasizing the focus area; since our segmentation allows “smart” magnification that
adapts to visually coherent regions in the page, the possibility of increasing distraction by
requiring adjustment of the magnification window or moving a fixed window around the
area of interest is greatly reduced. Our classification method may also allow content to
be suppressed based on its semantic role in the page, further automating the decluttering
process. For example, a user might ask for the header and footer to be removed for all
pages, and while reading an article may ask for the navigation links in the sidebar to be
removed.

Research has also shown that older adults may benefit from personalized solutions, when
presenting web pages [83]. Our methods are designed to enable individualized solutions.
As shown by the interface described in Chapter 5, users can have a wide range of options
for specifying their preferences for interactive zooming and decluttering. In addition, our
parse tree of the page represents the visual structure and the high-level semantic structure
of the page, and can support complex, high-level modifications of the page by providing a
high-quality interpretation of the page structure to a customizable interface. Because our
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method is based on Bayesian machine learning, online learning techniques can be applied
to allow even the low-level features of the parse tree to adapt to user preferences (e.g., to
err on the side of oversegmentation or undersegmentation), and a high-level interface could
similarly use online learning to adapt to user preferences. We have begun to explore the
user base of older adults (Chapter 5) and have plans for expanding our efforts with this
group of participants, as outlined in Section 8.3.1.

Also relevant to the problem of assistive technology for the web is an established field
of research on depiction of web pages for mobile devices (e.g. [29, 30, 138]). Although
improvements to mobile hardware such as smart phones and increasing awareness of the
need to design and implement web pages with mobile devices in mind (due to the increasing
prevalence of these devices) have reduced the need for client-side page transformation in
this area, work in the area of adapting pages to mobile devices is relevant to the challenges
we are trying to address in web accessibility. A mobile device with a small screen requires
an alternative presentation of the page or an intelligently-selected subset thereof if the
user is to browse the page effectively and with minimal frustration. This is related to
the problem of presenting a page to a user with limited vision, for whom even a desktop
monitor may only be able to show as much content legibly as a mobile screen can for a
user with sharper eyesight, or to a user with attention deficits who would struggle to focus
on an area of interest if all the content is displayed simultaneously. Exploring the context
of mobile web pages is an interesting avenue for future work.
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Chapter 8

Contributions and Future Work

The research carried out in the course of this thesis maintained the applied and theoretical
tracks described in the introduction. The applied track is focused on the application
of computer vision techniques to page parsing for web accessibility, and the theoretical
track is focused on the broader implications of our research in computer vision. Our key
contributions can be similarly divided into contributions to assistive technology (Section
8.1) and contributions to computer vision (Section 8.2). In this chapter we also discuss
plans for future work resulting from the research described in this thesis, in both the
theoretical and applied tracks.

8.1 Contributions to Assistive Technology

From the perspective of assistive technology, our key contributions relate to the develop-
ment of our page parsing system. The system we developed in the course of this research
is capable of supporting assistive interfaces by providing a rich parse tree of the semantic
structure of a web page. Because it uses only an image of the page to interpret the page
structure, it is implementation-independent, and uses exactly the evidence that a human
user without assistive needs would use to parse the page.

At a high level, our user study (described in Chapter 5) provides interesting insights
into the process of running an experiment to test an assistive interface intended for users
with challenges related to specific tasks but who are not fully disabled with respect to those
tasks. In our case, our assistive interface was designed to be of use to (among others) users
with poor vision who were not blind. We experienced difficulties in recruiting users in this
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category, as it was difficult to fully and clearly specify the level of disability we intended
to address in our recruiting materials. Although assistive needs are a spectrum, rather
than something a person has or does not have, experiments aimed at the middle of the
spectrum rather than the extremes have unique challenges, as our experiences show. On
the other hand, it was possible to design our magnifying and decluttering interface with a
very simple interface because of the abilities of our target audience, thus allowing greater
experimental control over user experience factors related to the front-end interface while
testing the efficacy of our back-end segmentation algorithm in this domain. When designing
an experiment, we have learned that it is worth considering which users in the spectrum
of assistive needs should be targeted in order to best achieve the experiment’s objectives.
In addition, it is important not to neglect users in the middle of the spectrum of assistive
needs when designing assistive interfaces, since the appropriate assistive technology is not
necessarily the same as for users at the extremes of the spectrum.

Our use of offline testing in evaluating the interface described in Chapter 5 is also rel-
evant to the process of conducting user studies. By applying an evaluation method based
on simulated input, we were able to evaluate the degree to which the combined system
performs as designed. This experiment was far simpler than a complex user study. The
aim was to offer a replacement for real user input, with a view that provided the simulated
input generates a superset of true patterns of usage, this approach will be effective. Based
on our experiences, we recommend the use of offline testing as a component of an experi-
mental evaluation strategy for assistive technology, since it allows thorough testing of key
functionality and the theoretical capabilities of a proposed interface before experiments
with users are conducted to establish hands-on usability.

Our segmentation algorithm provides a high-quality hierarchical segmentation of a web
page into visually and semantically coherent regions. This segmentation can be used di-
rectly to support a number of assistive interfaces, depending on the specific requirements
of the users. A blind user, for example, would require an audio presentation of the page
contents, while a user with some vision might prefer an interface based on magnification
or increased contrast. As demonstrated in Section 3.4 and Chapter 5, intelligent, content-
sensitive magnification and highlighting can both be accomplished with a segmentation
tree of sufficient quality. Using a segmentation tree allows the area of interest to adapt
to the page, rather than using a fixed-size window (which may be either too small or too
large for the true area of interest) or a manually-adjusted window (which adds to users’
cognitive burden and slows down browsing). For these reasons, our segmentation algorithm
represents an important advance in web page segmentation.

Our hidden Markov tree (HMT)-based classification algorithm also represents a signif-
icant contribution. Although Chen et al. [23] used a related generalized hidden Markov
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model, the sequence structure of this model does not accurately reflect the inherent tree
structure of web pages. By allowing the structure of the HMT to adapt to the structure of
the segmentation tree, our classification algorithm allows the structure of the probabilistic
graphical model used to perform inference to match the inherent structure of the domain.
Our results (in Chapter 4) demonstrate the promise of this method despite the challenging
nature of the problem of classifying regions in a web page according to high-level semantic
roles.

As it is based on a Bayesian framework, our page parsing system can be readily ex-
tended to incorporate forms of evidence other than the visual structure of the page, in the
common framework of conditional probabilities. Unlike a heuristic-based system such as
VIPS [22], it can be readily extended to use both evidence from the DOM tree, including
assistive features where they are available, and visual evidence from the rendered page.
This represents a substantial advantage, since a complete assistive interface designed for
use in practice should use all of the available information to provide the best possible per-
formance for users. In the research presented here, we have used vision exclusively, since
new developments in vision-based page parsing are the main focus of our work.

Compared to the few other proposed systems that make use of computer vision tech-
niques in understanding web page structure, our page parsing system represents a signifi-
cant advance. It is more complete, incorporating both segmentation and classification. It
is more principled, using a Bayesian approach constrained by fundamental features of the
domain rather than heuristic rules. It is also more comprehensively tested, with extensive
quantitative and qualitative tests of a wide range of aspects of the system’s performance.
These tests include individual tests of the segmentation and classification components of
the system in isolation, as well as tests of an assistive interface based upon the segmenta-
tion tree produced by our system. This system, therefore, represents a new standard for
the development of these systems with promise for practical use.

By supporting improved assistive technology for the web, we hope to make using the
web easier and more enjoyable for users with assistive needs. As the web becomes more
and more integrated into daily life and as the population ages, the problem of web acces-
sibility is becoming increasingly important. At the same time, although standards, design
guidelines, and technologies exist for creating accessible web pages, accessible web page
development requires additional effort and expertise; as a result, these frameworks are not
consistently and reliably used. Client-side frameworks that can interpret web pages that are
not designed with accessibility do not rely upon accessibility support being built into the
design or implementation of web pages, and therefore avoid this problem. Our vision-based
parsing system is designed to support such client-side assistive technology by supplying so-
phisticated, implementation-independent analysis of the semantic structure of the page to
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an assistive interface, which can then modify the presentation of the page according to a
user’s needs. Our work provides an innovative back-end page parsing system, with a focus
on ensuring that this system is functional, in order to then provide a better basis for the
front-end interfaces designed by HCI researchers to present the content of a page to users.
Our work is therefore complementary to the extensive work done on the proper methods
for adapting interfaces for users with assistive needs. While we do not claim to solve the
problem of web accessibility, our research represents a considerable advance in the area of
vision-based page parsing, and contributes to the overall goal of a web accessible to all.
We note that our architecture, with its Bayesian approach, encourages interpretability and
makes the use of intermediate results (such as the unclassified segmentation tree) simple
and convenient. Interpretability may be especially advantageous when working with the
developers of complementary front-end interfaces.

8.2 Contributions to Computer Vision

Although our initial motivation for research is in the application area of assistive technology,
our primary scientific objectives are in the field of computer vision. At a high level, we
have contributed to the field of computer vision by providing a systematic investigation
of rendered web pages as a dataset for computer vision research and as a distinct class
of images. We have labelled our study as one of man-made images and return in Section
8.3.3 to discuss some extensions to this investigation. Our experiments show that images
of web pages are a rich class of images for research. Many useful assumptions can be made:
due to the rendering process, perspective effects and blurring do not occur; regions in the
segmentation tree can be assumed to be axis-parallel rectangles; the segmentation tree
can be approximated by an X-Y tree. On the other hand, there are important challenges
in parsing these images. High-level cues such as long-range alignments are important in
inferring the structure of the page. Major cues such as edges are highly context-dependent;
edge strength, for example, is a poor guide to the significance of an edge due to the use of
slight changes in background colour and faint dividing lines to convey high-level structure
in the page. The combination of useful structural assumptions and subtle cues to the true
structure of the page make these images an appealing domain for vision research.

Our research into the elicitation of ground truth segmentations, described in Chapter
6, provides insights in two key ways. In the specific area of perception of web page or-
ganization, our results help to determine the number of participants required to segment
each page by showing the degree of difference between users; as a result, “mass produc-
tion” ground truth generation can be performed efficiently. The results from this study
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also demonstrate the existence of a performance ceiling on any “one-size-fits-all” segmen-
tation algorithm, which is useful for the evaluation of segmentation algorithms and for
the determining whether such a one-size-fits-all method will be satisfactory to all users.
More broadly, this study provides valuable insights into methods for eliciting ground truth
segmentations. In the process of designing our experiments, we were forced to consider the
best approach to segmentation elicitation given constrained resources and a specialized do-
main. Our approach of performing a study of a small number of instances, each segmented
many times, to assess the properties of segmentations and the degree of between-user differ-
ences prior to large-scale work proved successful, and should be applicable to improving the
efficiency of segmentation elicitation in other domains. Efficient elicitation of ground truth
segmentations is important due to the high cost of ground truth data for segmentation
algorithms, and is especially relevant for specialized domains in which large-scale projects
are less practical than in more common domains such as natural scenes or medical images
due to lack of resources. Our study also raises the question of which starting point is best
when eliciting segmentations. The “empty” segmentation provided when users “start from
scratch” is, after all, a segmentation itself, consisting of a single region encompassing the
entire image; it is entirely possible that a different segmentation, perhaps produced by a
segmentation algorithm, would be a more appropriate starting point for users to produce
ground truth segmentations from. The answer to this question is likely to depend upon
the domain of images and perhaps the intended use of the ground truth segmentations.

Our classification algorithm represents a novel model for the classification of regions in
a web page. Using a hidden Markov tree (HMT) with a structure corresponding to the
structure of the segmentation tree, in which hidden states represent object classes, we have
achieved good performance in a very challenging classification problem. In our classification
method, the structure of the segmentation tree is represented not by structural features in
the feature vectors describing regions, but in the structure of the graphical model used to
infer the most probable assignment of labels. By requiring that all nodes share the same
probability distributions, a single set of distributions can be learned from segmentations
of varying structures and applied to inference for segmentations of varying structures.
Although designed for the problem of classifying regions of a web page, our classification
algorithm could be readily adapted to other domains by using alternative features (such
as shape and texture) suited to the domain. The classification algorithm requires only a
segmentation tree and a set of features defined on regions in the tree; this is obtainable
for many domains, not just for web pages. As a result, this algorithm represents a key
contribution to computer vision as a field.

Our parsing system as a whole is an explicitly Bayesian system for segmentation and
classification. Furthermore, the estimated probabilities are normalized, and treating these

162



values as genuine probability values when, for example, setting thresholds, produces good
results. This strongly suggests that these estimates are reasonably accurate. Our parsing
system is therefore well-suited to performing computer vision experiments with explicitly
probabilistic methods in a restricted but nontrivial domain. Studying the effects of different
prior probability distributions over segmentations, for example, is quite feasible using our
system, while in other domains it is extremely difficult to specify any but the simplest
distributions. As discussed in Section 2.5 and Appendix C, Bayesian methods are used
in computer vision; these methods, however, often produce unnormalized probabilities,
which act as an energy function consistent with probabilities but cannot be directly used
as probabilities in setting thresholds and are more difficult to combine across domains.

8.3 Further Research

The research described in this thesis has raised further questions to be examined in future
work. Our plans for future work include follow-up experiments based on our user studies,
further development of our page parsing system, and further research into the connections
between our work and other areas of computer vision.

8.3.1 Follow-up Studies

Using the data obtained from Chapter 6’s experiments in segmentation elicitation for web
pages, we would like to gather a much larger dataset suitable for broader dissemination as
a standard dataset of web page segmentations. This would be valuable for evaluating web
page segmentation algorithms in general-—including DOM tree-based methods as well as
vision-based methods—and for studying segmentation characteristics in detail with a larger
dataset. Crowdsourcing, through platforms such as Amazon Mechanical Turk (AMT), is
one possible method for obtaining large numbers of ground truth segmentations. By lever-
aging large numbers of participants, each performing a single segmentation, a large number
of individual segmentations can be readily obtained; since the participants work remotely,
carrying out segmentations online, the logistical requirements are dramatically reduced
compared to a local method in which participants come to a central location supervised
by researchers. In this model, the participants may only complete a single segmentation
each; because we performed the study described in this thesis using a small set of images
segmented by larger numbers of images, we have less need for multiple segmentations from
each user. The crowdsourcing approach does require a segmentation tool which can be
run in a web browser. During the implementation process of the segmentation system
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used here, we considered the possibility of using AMT or a similar service, and accordingly
implemented the front-end interface in Javascript. This will allow rapid conversion from a
system running on a local machine for sessions held in a lab to a system running on a central
server for users to access from their own systems. We performed our experiments in person
in order to ensure that the segmentation interface is usable (and provide further instruc-
tions if participants encountered any difficulties), and to obtain multiple segmentations
from each user for comparison between users. With a crowdsourcing method, participants
may only complete one example, take their payment, and move on to another task. Having
verified the usability of our interface and obtained a dataset with multiple segmentations
for each participant, it is now appropriate to use crowdsourcing to obtain a larger-scale
dataset. Researchers including Rosenfeld et al. [112] in fact point out the importance of
using a combination of in-lab and AMT tests.

It would also be valuable to deepen our understanding of the results of the user study
that we already conducted and described in Chapter 6. We are interested here in pursuing
further study of the similarities between participants’ ground truth segmentations by ap-
plying more sophisticated clustering techniques to identify structure in these relationships.

The user study described in Chapter 5 is another area where expanded follow-up exper-
iments are desirable. In particular, using a larger group of users, screened more carefully
to eliminate users who do not need the assistive technology being tested, should provide
stronger results about the performance of our back-end parsing system in a practical as-
sistive interface. For those users employing the assistive interface, it may also be valuable
to expand data collected to also track gaze, though a careful choice of equipment would be
needed, especially if working with older adult participants.

Another possible approach to the follow-up user study would be to test a screen reader,
rather than a magnifying-and-decluttering interface; this would allow more stringent and
specific criteria for participant selection and would reduce or eliminate the problem of
users accomplishing the task without using assistive features. Testing a screen reader as the
assistive interface rather than a magnifying and decluttering interface would require a much
more complex testing system. The back-end parsing system would require classification
as well as segmentation, so the aim of the experiment would be to establish the utility
of the entire segmentation-classification pipeline in the context of assistive technology.
The interface itself would also be much more complex, and would require a sophisticated
navigation model that would not be confusing for users with experience using commonly
deployed screen reader programs such as NVDA. Although these challenges are significant,
they are not insurmountable, and such an experiment would be of considerable value in
exploring how to best use visual parsing in assistive technology.
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We are especially interested in exploring further how to improve the experiences of
users with online social media, such as Facebook. The pages displayed here are at times
excessively cluttered, posing challenges for certain users, including older adults. Research
has in fact shown that senior citizens are increasingly invested in becoming Facebook users
[73], so that it would be valuable to determine whether decluttering in this particular
context is especially beneficial.

In general, continuing to study older adults as a possible user base for our methods
should be of value. As indicated by Dickinson [10], when these users struggle with computer
use, they may simply abandon the attempt and our aim would be offer improved online
experiences. A variety of efforts to improve the interface experiences of older adults,
from using digital pen and paper email systems [101], to enabling better connections to
family [18, 93], provide some evidence that participants from this community will still be
interested in learning of novel opportunities to engage with computer technology. To date,
we have benefitted from collaboration with HCI researchers (including those with expertise
in assistive technology). For the future directions outlined here, we would plan to continue
such collaborations.

With respect to offline testing, learning actual user behaviour by studying a set of
real users may help to suggest improvements to our simulations. For example, the noise
that is added in order to simulate user behaviour could potentially be modelled on actual
deviations observed. Doing so would assist in drawing out the practical benefit of the
functions provided in the interface.

8.3.2 Algorithm Improvements

We are very interested in extending and improving our proposed segmentation and clas-
sification algorithms. The results obtained in our offline tests of the prototype interface
(see Chapter 5), combined with qualitative examination of the results, suggest that the
segmentation algorithm succeeds very well in many regions, but fails in other (i.e., the
segmentation errors are not evenly distributed across regions). Often, these errors result
in segmentations with an implausible structure. We may be able to improve performance
by using a more sophisticated prior probability distribution over web page structures. The
current prior is uniformly nonzero for X-Y trees and uniformly zero for all other segmen-
tations; a more sophisticated version would allocate higher probability to “web page-like”
X-Y trees than to segmentation trees that have a less plausible structure (see Figure 8.1).
One approach to improving the prior probability distribution would be to use the ground
truth segmentations produced by the experiments described in Chapter 6 to learn the distri-
butions of structural features in ground truth segmentations. The work already described
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(a) Plausible (b) Implausible

Figure 8.1: Plausible and implausible X-Y trees for web page structures. With the current
prior probability distribution over web page segmentation trees, the two are considered
equally likely; a more sophisticated prior could allow the plausible structure on the left to
be assigned a higher probability than the implausible structure on the right.

in Chapter 6 on analysing these distributions to learn about users’ segmentations also
represents a first step toward using ground truth segmentations to improve the structural
prior.

Another area of interest for future work is improving our model of individual lines.
Lowe, for example, researched perceptual grouping, developing Bayesian methods for de-
termining whether features in the image occur accidentally or are significant in the real
scene [33]. Lowe’s methods allow tentative conclusions about small structures to be rein-
forced by observations about the embedding of small structures in larger ones. Although
Lowe was focused on images of three-dimensional scenes, accidental alignments can also
occur in a web page. Systematic grouping of areas where edges are highly probable could
be a useful intermediate stage between calculating the probability of an edge at an in-
dividual pixel and the construction of region boundaries, especially for bridging gaps in
an alignment edge. Related work by Jepson and Mann analysed similar types of features
in terms of qualitative probability [72]. Other possible modifications to the line model
may include applying the minimum proportion of lines recursively (so that larger gaps are
permitted for larger scale lines). This would require attention to ensuring that the lines
are not allowed to continue across other features, but may be useful in ensuring that gaps
can be bridged given sufficient evidence of long-range alignment.

At the lowest level, it may be worth exploring the possibility of relaxing the assumption
of independence between the edge detector responses at pixels within a given neighbour-
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hood. A more sophisticated model, such as a conditional random field (CRF) or Markov
random field (MRF) model, would allow the system to account for statistical dependence
between nearby edge detector responses, because these models incorporate explicit models
of dependencies between pixels in a region, resulting in a probability model which captures
the true local structure of real web pages more accurately.

Further research in classification is also of great interest. Our results in Chapter 4
indicate that our classification method is capable of achieving impressive performance
despite the difficulties inherent in the problem of classifying regions in a web page, but
further improvements to its accuracy would substantially increase its practical utility. We
are interested in pursuing further research into improving the training dataset, both by
expanding it and by using segmentation trees better matched in terms of granularity to the
ontology (i.e., using stopping or pruning conditions that result in leaf regions comparable
in size to the leaf regions of the ontology). This research would help to establish the
upper bounds for the performance of our HMT-based approach. We are also interested in
applying the classification method in other domains, including natural images, to further
explore its capabilities. Depending upon the results of these experiments, it may be worth
experimenting with variations on the HMT structure, such as using a tree-structured but
undirected probabilistic graphical model.

Another interesting area for future research is the generalization of our method to
dynamic pages. Moving and dynamically loaded content are common in modern web
pages, and present challenges for segmentation and classification. These features also
present opportunities. Common movement or appearance properties of regions could be
a valuable grouping cue. Similarly, the dynamic properties of regions could be useful in
classification; menus, for example, often appear in response to user interaction. Extending
our work to this domain would provide an opportunity to work with a new set of visual
features and cues, suggesting extensions to our current methods.

It may also be interesting to expand our solutions to consider new efforts to augment the
representation of web pages for accessibility. One interesting approach to web accessibility
is crowdsourcing the process of providing annotations or transcoding web pages. The
WeblInSight framework proposed by Bigham et al.[l6] uses several methods to provide
alternative text representations of images, including accessing a manual labelling service
as a fallback option. The two primary techniques in this area are applying OCR to an
image with text, and using title and heading information from the page linked to by the
image (assuming that the image is a link). The AccessMonkey framework proposed by
Bigham and Ladner [15] allows users and web developers to collaboratively produce a
library of Javascript scripts for performing transcoding operations. Bigham and Ladner
provided, among other scripts, an implementation of the WebInSight algorithm. The aim
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of the authors was to address current shortcomings with web page designs, where sufficient
attention to accessibility may be absent. With our framework, we aim to provide assistance
to users with accessibility needs, regardless of the effort made by web designers. We are
interested in pursuing possible methods for leveraging additional information provided
by web designers or, as in the case of the work of Bigham et al., by other users in a
crowdsourcing framework, to improve the performance of our parsing algorithms.

Efficiency is also an area of potential improvement. It is worth noting that our seg-
mentation algorithms were implemented as instrumented testbed programs, and used in
batch processing rather than real-time applications. As such, they have not been opti-
mized beyond the level of performance required for convenient offline testing, and require
a considerable time to perform a complete segmentation of a page. For many applications,
optimization would be desirable to achieve real-time performance. One area with the po-
tential to improve performance is the calculation of the probabilities that line segments
are semantically significant. The Monte Carlo simulation, which allows us to avoid combi-
natorial explosion from exhaustively considering all combinations, is still computationally
expensive, but could, in many cases, be cut short after it becomes clear that the probability
of a semantically significant line is very low. This could substantially reduce the cost of this
step, and similar measures could be applied to other cases of very low probabilities. As is
the case with our segmentation method, our classification method has not been optimized
for real-time use. Fortunately, belief propagation is relatively efficient for a tree-structured
model such as our HMT. Possible areas for future work on optimization include limiting the
number of samples used in kernel density estimation and conventional code optimization.

Exploring how to supplement the visual evidence of the web page with evidence from
the implementation of the page is also worth considering as an avenue for future work. The
research described in this thesis has been focused on studying how to build a web page
parsing system for this class of visual image, with complete implementation independence.
If we move on to examine the practical applicability of the system, we would be interested
in seeing where performance can improve if implementation evidence can, for instance,
clarify cases where the visual evidence is ambiguous.

It might also be instructive to make use of big data in order to fine tune our algorithms.
One interesting avenue for future research is to use convolutional neural network (CNN)
models to extract the data from massive sets of current web pages (covering a wide variety
of types of web pages). This kind of processing may be helpful in recognizing all locally
significant edges or in estimating the probability that lines are semantically significant
by leveraging the ability of these models to learn sophisticated representations of image
features. Extensive crowdsourcing could also be employed in order to recover ARIA labels
that have been excluded from some web page implementations.
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A final direction for expanding our algorithms would be examining possible adjustments
if electing to operate with higher-level classes for the region labelling, ones that are sensitive
to the meaning of the actual textual content of the page. Selecting these classes should
ideally make use of extensive studies of the target user group to determine what high-level
labels are most relevant. This is yet another way in which greater engagement of our user
community may become valuable.

8.3.3 Extension to Other Applications and Images

One possible thread for future research is providing greater insights to web page designers.
For example, the parse tree produced by our web page parsing system could be used
by designers as a tool in adding assistive features to the implementation and ensuring
that these features align with their intended visual appearance. Combined with realistic
prior probability distributions over web page structures (discussed as a direction for future
research in Section 8.3.4), our pipeline could also assist in determining quantitatively how
closely a given design resembles other pages on the web, in order to assess objectively how
“surprising” the design can be expected to be for users.

Our work thus far has been primarily focused on web pages as viewed on desktops.
Mobile pages, although related, must be designed for legibility on a smaller screen. Study-
ing these pages could reveal more information about the cues used in web pages of various
types, and the importance of mobile browsing makes this an attractive area of research. A
comparison between the appearance of the same page in its mobile and desktop versions
could provide interesting insights into the similarities and differences in these domains.
This comparison could also provide valuable evidence for semantic grouping in the page:
objects that remain connected or in close proximity in both versions are more likely to
be related than regions which move separately. We suspect that many of the assumptions
that we make about web page design would be especially relevant when these pages are
depicted on mobile devices; in this respect, this context for studying our models may be
particularly valuable.

Another area of interest is generalizing the methods developed for web pages to other
types of screen images and complex documents. Windowing systems and program GUIs are
especially interesting in this context. The prior over segmentation structures would need to
be altered due to the ability of windows to overlap and occlude each other. Additional cues
would be available for segmentation, however, including recognition of GUI elements such
as buttons and window borders. This suggests that low-level object recognition should
be carried out simultaneously with segmentation. The techniques developed for the Pre-
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fab GUI analysis system [11] would be applicable for this class of images. Higher-level
recognition may still be better performed after segmentation as a separate step.

Within a single application, a GUI parsing system could allow assistive interfaces to
work with a program in the absence of API support provided by the designers. Similarly,
it could be used to support task automation in applications with no scripting language
support. A system capable of parsing screen images in general would open new possibilities
for assistive interfaces. Conceivably, a stand-alone assistive “monitor” could be developed
to plug into a standard monitor port, parse the screen data sent by the main computer,
and output an alternative presentation of the screen suitable for the user. Obviously such
a system would have significant limitations in the absence of a fully general solution to
computer vision; describing natural images, for example, is an entirely separate problem,
although caption generation is an active area of research and has produced promising results
(see, e.g., [131]). Even with limitations, however, a stand-alone screen reader device that
can plug in to any system without requiring local software, and make basic applications
accessible without API support, would be very valuable for visually impaired users.

Generalizing our work to other image classes may require other extensions to our image
model. Although ridge and step edges are sufficient to model typical semantically signifi-
cant edges in web pages, in other image classes it may be necessary to include roof edges.
These occur in natural images, and may occur in other man-made images as well.

Moving away from screen images, there are many other interesting types of man-made
images that may be worth studying. By studying image and text organization from a
variety of cultures and time periods, in art and documents intended for a variety of pur-
poses, such as Egyptian papyri and early modern printed material, we may be able to
identify common features that are fundamental to visual organization, and features that
are culturally determined, from the perspective of computer vision rather than from the
perspective of art history. In such a study it may be necessary to isolate the man-made
visual features from the natural visual features of the substrate (e.g., removing papyrus
fibres from a scanned image of an Egyptian heiroglyphic text, or removing foxing and
stains from a scan of a seventeenth-century broadsheet) in order to study the man-made
features alone. Deep learning and convolutional neural networks may prove valuable here
for analysing these naturally-occurring textures due to their proven ability to date to learn
domain-specific features.
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8.3.4 Image Statistics

As for more “pure” computer vision research, we are interested in a more detailed study of
the statistical properties of images of web pages, and a comparison with the known statis-
tical properties of natural images. Intuitively, it is reasonable to expect that a randomly
generated array of gray levels will not look like a natural image or like a web page. In other
words, n X m natural images and web page images are a small subsets of R"" [51]. We are
interested in characterizing the statistical properties of images falling into these classes;
in particular we are interested in characterizing web page images, since the statistics of
natural images have been well studied. This research will provide more specific insights
into the similarities between natural images and man-made images despite their different
appearances.

One of the most important statistical properties of natural image is scale invariance:
natural images show similar statistics at a range of scales. This underlies the usefulness of
computer vision techniques such as the image pyramid (in which the image is repeatedly
downsampled to produce representations where larger and larger features are represented
by the same number of pixels) [91]. If an image is scale invariant, it is reasonable to apply
the same algorithm at multiple scales; if not, it is likely to be more appropriate to adapt
the algorithm separately for each scale. In practice, scale invariance holds approximately
for natural images [1]. Whether the assumption of scale invariance is appropriate for
rendered web pages is an open question. This would affect both the design of purpose-
built algorithms for web pages and the process of transferring algorithms designed for
natural images to the domain of web pages.

Another area of image statistics is identifying components which can be linearly com-
bined to produce images in a given class, or identifying filters that respond to these com-
ponents. There are a range of techniques which can be used in this context. Principal
components analysis (PCA) is perhaps the simplest technique, although it tends to pro-
duce many simple components in the form of gratings or checkerboards on datasets of
natural images. Other approaches to identifying components produce other results. Ap-
plying independent components analysis (ICA) to natural images can produce localized,
oriented filters similar to receptive fields in mammalian visual systems [9%, 13]. Identifying
the fundamental components of images of web pages would be useful for several reasons.
The properties of these components could indicate similarities (and differences) between
natural images and web pages at the level of receptive fields in the visual system, and could
therefore provide insight into human perception. These components could also be used to
produce high-quality, low-dimensional features to represent the appearance of a region in
the web page in order to improve the accuracy of our classification process by using more
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informative features.

We are also interested in studying models of plausible web page structures, and what
arrangements of regions in a segmentation tree “look like” web pages. Currently, our most
advanced segmentation algorithm (Section 3.3) uses an X-Y tree prior to represent the
structure of web page images. This is largely consistent with web page structures, al-
though it does not include overlays, and represents an advance over the ad hoc prior used
in our initial segmentation algorithm (Section 3.2). It is, however, a very general prior,
and does not differentiate between more-plausible and less-plausible X-Y tree structures.
A more comprehensive and detailed model has the potential to improve the performance of
the segmentation algorithm by eliminating implausible structures from consideration. Our
studies of classification of web page regions indicate that a detailed model of region label
hierarchy is useful in the classification process (see Section 4.4); we are very interested in
studying the effect of similar modelling at the level of segmentations. Extended explo-
ration of image statistics would also be helpful in quantifying the prevalence of the various
assumptions made about web page design used in constructing our Bayesian models for
segmentation.

8.3.5 Personalization in Computer Vision

Finally, we would like to examine in greater depth the possibility of individualized computer
vision solutions. Our examination of the differences between the ground truth segmenta-
tions produced by different users in Chapter 6 indicates that there is a ceiling on the
performance of a “one-size-fits-all” segmentation algorithm. Personalization could allow
an algorithm to produce results that more closely match each individual user’s perception
of the organization of the page. Similarly, user preferences about error characteristics may
vary. One user may prefer oversegmentation to undersegmentation, while another has the
opposite preference; for classification, different users may put a higher priority on recall
rather than precision for specific classes, based on their own browsing style.

Personalization could also play a role in classification. Even using a standardized on-
tology across all users, it is likely that there will be some borderline examples which could
plausibly be considered examples of more than one of the available classes, whether due
to a segmentation error, an unusual website design, or inherent ambiguity in the ontology
itself. By studying users’ perceptions of appropriate labels, it will be possible to determine
how commonly different users assign different labels to such regions. A parsing system
that uses reinforcement learning to adapt to users’ preferences in the handling of these
edge cases would allow the system to consistently provide results that fit each user’s ex-
pectations, rather than requiring users to adapt to the way the algorithm handles edge
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cases. For example, when distinguishing complementary content from the main content,
one user may prefer the system to err on the side of classifying a region as complemen-
tary, while another may prefer that the system err on the side of classifying a region as
main content (perhaps because he or she usually skips complementary content and does
not want to miss anything important). If users disagree frequently, the ability to adapt
to individual preferences has the potential to significantly improve user experiences with
systems that rely upon the page parsing system as a back-end. This may also enable a
valuable connection to the Al subfield of user modelling [77].

Because our parsing system is intended to support interactive user interfaces rather
than autonomous action (as would be the case in, for example, a robot vision system),
user preferences play an important role in the perceived performance of the system and
therefore in the practical performance of the system. Personalization has great potential
to improve the practical utility of our system. Research in this area would also align with
the current interest in human-in-the-loop AI systems [(7], and could provide insights into
how to best adapt computer vision techniques to these systems.

8.4 Conclusion

This thesis has presented an approach for using computer vision to understand web pages.
There are two primary contributions: providing improved experiences for the users of
web pages (including users with assistive needs), and offering insights for computer vision
researchers for understanding semantic cues in images. We have labelled our work as a
study of man-made images and reflected briefly on how the solutions developed here may
be of use for contexts other than web pages.

Various design decisions have led to the successful outcomes of the thesis. The domain
of web pages has allowed examination of a principled analysis of properties of a class of
images which goes beyond toy problems and has the potential to inform the study of
natural images as well. The Bayesian approach adopted for the modelling enables the
segmentations performed to be based on plausible probabilistic reasoning. Our methods
encompass edge detection, determining locally significant edges, progressing to semantically
significant lines, producing the underlying segmentation tree. The segmentation solution
feeds forward to a classification algorithm in a pipelined fashion, enabling various ultimate
back-end applications, such as supporting assistive technology.

Novel elements integrated into the models we developed, as we progressed to the final
framework included: (i) the use of the earth mover’s distance in order to examine validation
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of our methods; (i) the introduction of the X-Y tree into the segmentation process in
order to refine the segmentation process and to leverage a reasonable set of assumptions
about this restricted class of image; (i) the integration of an HMT model to support the
reasoning for classification; and (iv) inclusion of various user studies in order to provide
greater insights into the circumstances under which our model is most effective in delivering
benefit to users.

We acknowledge that rendered web pages, as a class of images, have the advantage
of supporting various limiting assumptions. One of the most important assumptions is
that the semantically significant regions in the page are axis-parallel rectangles. This
dramatically reduces the search space for segmentations. We also assume that regions are
supported by edges, including both continuous and broken step and ridge edges, although
many edges occur that do not indicate a region division. Other useful assumptions include
the absence of perspective and blurring effects, and that regions do not overlap without
containment relationships. The last of these is not invariably satisfied in all pages, but has
been found to be a useful assumption in practice.

There was a valuable progression from our first segmentation algorithm, described in
Section 3.2, to the one we ultimately settled on using, described in Section 3.3 (and lever-
aged in our two user studies). These improvements included multiscale edge detection, an
improved recursive model of the probability of semantically significant lines, and an im-
proved X-Y tree prior over segmentation trees. The primary practical benefit derived from
this revised segmentation solution was improved performance and the ability to address
several common segmentation errors such as “overshooting” true boundaries. There was a
useful progression as well between our first attempt to validate our classification algorithm
and the decisions we ultimately made with respect to the ontology and the source of ground
truth data, although we found that the same features and algorithm performed well given
proper training and evaluation data.

The various methods used as part of our validation efforts may shed light on how to
make this process manageable for any computer vision project, including the value of prun-
ing, the potential for personalization and some insights into how to establish ground truth,
especially in the difficult area of obtaining ground truth segmentations. Our dataset of
ground truth segmentations (Chapter 6) is also a valuable contribution, both for evaluating
segmentation algorithms on web pages and for studying the characteristics of ground truth
segmentations in this domain.

We also see noticeable advances simply for the study of web pages, as outlined in several
of our discussions in this thesis: the relative advantages of not being tied to the web page
implementation, and potential improved opportunities for users with visual or cognitive
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deficits.

In all, we present a parsing system for interpreting web page structure based purely
on an image of the page, with corresponding advances in computer vision. Our work
relates to and ties together many areas, including image segmentation, classification, and
assistive interfaces, and requires innovative solutions to problems in each as a result of
the characteristics of the domain. Per the discussion in Chapter 7, our methods align
well with established strategies adopted by other researchers in the past, but integrate
clearly original and distinct approaches. Our work represents an important advance in an
application area with significant social implications, and contributes to the understanding
of image parsing in unconventional domains.
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Appendix A

Segmentation Algorithm

Algorithm SegmentRegion shows our original segmentation algorithm, including the opti-
mization process, as described in Section 3.2. It produces a tree, with the key of each node
providing the necessary information about the division into child regions; this is represented
by a tuple of the form (K, C), where K is the key and C' is the set of children. Parameters
of the segmentation algorithm which are not generally altered are the maximum segmen-
tation depth d,qr, the maximum number of candidate boundaries (either horizontal or
vertical) 7,,4., the threshold of significance update increment §;, and the initial threshold
of significance t;,;;. These parameters are set based on performance considerations . The
“current depth” parameter d represents the depth of the tree if generation stops at the
current iteration; in calling the function, it is set to 1, and it is updated automatically for
recursive calls.

In our implementation, d,,qe = 6, ; = 0.5, and t;,;; = 3. We pre-computed sets of tilings for candidate
boundary grids of different sizes for efficiency reasons; rather than a fixed n,4., the maximum number
of grid cells formed by the candidate boundaries was 35, except for single columns or rows, where it was
somewhat lower at 23. The algorithm shown is slightly idealized, using the simpler (but possibly slower)
fixed maximum.
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Input: Region image I, current depth d
Output: Segmentation tree or subtree
Calculate pixel-wise horizontal and vertical edge probabilities Fj, E, (Equation
3.7);
Let t < t;,;; be the significance threshold for peak detection;
foreach row i do H; « []; En(i, j);
foreach column j do V; <[], E,(i, j);
repeat
HPeaks < {r : Ey(r) > mean(FE}y) + tstddev(Ep)};
V Peaks < {c: E,(c) > mean(E,) + tstddev(E,)};
t < t+ 0y
until |V Peaks| < Nyar N |H Peaks| < npaq;
if (HPeaks == 0 AV Peaks =0)V d > dp4. then return (0, 0);
q* <+ 0,5 + 0
Let T represent the search space of tilings with divisions in H Peaks and V Peaks;
foreach tiling S € T' do
q < SegmentationQuality (S, Ey, E,);
if ¢ > ¢* then ¢* < ¢, 5" <+ S5,
end
foreach region R € S* do Cg = SegmentRegion(Image(R),d + 1);
return (S*, {Cr: R € S*})
Function SegmentRegion (7, d): Recursive segmentation algorithm, including optimiz-
ing over possible segmentations of each region.
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Appendix B

User Study Materials

In this appendix we show, for reference, the materials shown to participants in the user
study in Chapter 5. In Section B.1, we show an example script for explaining the procedures
of the experiment to a participant. In Section B.2, we show the surveys presented to users
to elicit their subjective impressions of the assistive and “vanilla” interfaces.

In this study, the participants viewed these interfaces on a 22-inch monitor with a
resolution of 1680 x 1050. The viewable area of the page was 1024 x 768 pixels in size.
The experiment took place in a well-lit room. The participants sat in an unmodified office
chair at an unmodified desk, and were free to sit in a comfortable position.

B.1 Introduction Script

The following script was the basis of the introduction given to participants to the procedures
of the experiment. In many cases the script was modified to respond to participants’
questions.

Good morning/afternoon, [participant]. In this experiment, assuming you
choose to participate, you will be browsing through a web page to find a specific
article. The web pages will be presented in two different ways: one “plain”,
as it would usually be presented, and another with features to highlight and
magnify selected regions of the page.

The first step in the experiment is to fill in a very brief background survey
about your web experience and preferences. This is followed by an opportu-
nity to practice with and configure the interface that highlights and magnifies
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regions. Clicking on a part of the web page moves the highlighted region to
the place you clicked. The size of the region can be controlled by the slider on
the right. At this point you will be able to set the degree of magnification and
highlighting that you will use in the remainder of the experiment, also using
the sliders on the right.

After these preliminary steps, you will begin the main part of the experi-
ment. This is divided into two stages, one for each type of interface. In each of
these stages, you will perform a series of tasks in which the objective is to find
an article (which will be described on the screen) in an example of a news web
page as quickly as possible. Once you've found the target article, click some-
where on the article or description, then click th Done button on the right.
After completing each stage, you will be presented with a brief questionaire
about your experience using the interface.

Do you have any questions?

Please review these two documents and, if you decide that you would like
to participate, sign the consent form.

B.2 Surveys

In this section we show the surveys administered to participants in the course of the
experiment. We use screenshots to depict them as the participants saw them, including all
options.
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File Edit  View |Insert Tools Desktop Window Help L

Figure B.1: Background questionnaire administered to participants prior to beginning the
main tasks of the experiment. This survey is used to establish participants’ computer expe-
rience and preferences for text size, which may influence the desired level of magnification.
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File Edit View |Insert Tools Desktop Window Help El

Figure B.2: NASA TLX survey administered to participants after completing each series
of tasks. One series of tasks is performed using the assistive interface, and one is performed
using the “vanilla” interface without assistive features. The results of this survey are used
to determine which interface is preferable on each measure.
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File Edit View |Insert Tools Desktop Window Help L

Figure B.3: Preference questionnaire administered to participants after completing all tasks
with both the assistive and vanilla interfaces to determine which interface was subjectively
preferable.
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Appendix C

Extended Computer Vision
Discussion

This appendix returns to the related work on computer vision segmentation and classifi-
cation covered in Section 2.5, a section which also included important contrast with our
own approach. We now present that material in greater detail and introduce additional
references. This provides a deeper discussion of the literature, leading to greater insights
into how we situate with respect to the field.

C.1 Edge Detection

Edge detection is one of the key low-level problems in computer vision. Many higher-level
algorithms assume the existence of some form of edge detection or include an edge detection
method suitable to their needs in the algorithm. Snakes, active contours, and level set
methods are a good example of such algorithms, which perform higher-level detection of
semantic contours and segmentation based on low-level edge detection (see Section C.2.1).

Perhaps the most famous paper in edge detection is Canny’s 1986 “A Computational
Approach to Edge Detection” [23], which systematically defined criteria for optimal filters
for detection of arbitrary edge types, focusing on the development of a step-edge detector.
Canny defined three principal criteria for a good edge detection algorithm:

e Good detection requires that the edge detection method have a low probability of
false negatives and a low probability of false positives; a perfect edge detector would
report an edge if and only if an edge exists.
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e Good localization requires that the detected edges correspond well in location to
the true location of the edge; a perfect edge detector would place each detection
exactly on the center of the edge in the image.

e Single detection requires that edges in the image do not produce multiple edge
detector responses; a perfect edge detector would detect each edge in the image
exactly once.

These qualitative criteria were then formulated mathematically for one-dimensional signals.
Canny used these definitions to implicitly define an optimal filter for step edges. Although
analytical solution was not feasible, numerical solutions were found. The first derivative of
a Gaussian, which is much more tractable in practice that the optimal numerical solution,
was found to be nearly optimal.

In order to produce hard edge detections from the continuous filter response, thresh-
olding is necessary. Using a single global threshold tends to produce broken edges due to
noise intermittently bringing the response below the threshold along the length of an edge
in the image. Instead, Canny recommended using hysteresis: points where the detector
response is above a high threshold are accepted immediately, as are connected points above
a low threshold. Filter width was also considered, and found to involve a tradeoff between
reliability of detection and accuracy of localization. In addition to the development of opti-
mal one-dimensional filters, Canny discussed directional filters for two-dimensional images
and showed there usefulness in improving performance [23]. The Canny edge detector has
remained a mainstay of edge detection to this day.

Adaptive thresholds for edge detection are critical to the performance of many algo-
rithms. Heath et al. [64], for example, demonstrated that selecting parameters for edge
detection algorithms on a per-image basis provides a significant improvement in perfor-
mance, as rated by human judges, for several common edge detectors. Even this, however,
is not sufficient; as pointed out by Kundu and Pal [$2], from the perspective of human
psychophysical contraints, and by Rakesh et al. [100], from the perspective of statistical
considerations (among others), local adaptation of thresholds is required. In our own work,
we use the empirical distributions of edge strength on either side of a proposed line to adapt
to local image properties (see Sections 3.2.2 and 3.3.1).

The locally adaptive thresholding technique described by Rakesh et al. [106] also uses
statistical methods. More specifically, this method calculates a test statistic S(z,y) for
each pixel (z,y) and thresholds the test statistic using hysteresis with upper and lower
thresholds. The test statistic is based upon the partial derivatives of a version of the image
smoothed by a Priestley-Chao kernel smoother [105]. For an m x n-pixel image Z, the
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smoothed image f is defined by
1 e T — i y—j -
e E E K K Z 1
f(xvy) 27Tmnh2 = < h > ( h ) (Zaj) (C )

where h is a smoothing parameter and K is a kernel function. The partial derivative of f
with respect to x is

n
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where a;, = K(%). The definition of f,(z,y) is analogous. For each pixel (z,y), there is
a covariance matrix for the two components of the gradient, defined to be

. ou(z,y) ow(r,y)
E($7y) = [ 012($’y) 022(113,?/) ] (CB)

The test statistic S(z,y) is defined in terms of this covariance matrix:

S(QZ, y) = [fx<x7 y)> fy(x; y)]zil(l’a y)[f:r(x7 y)7 fy<x7 y)]T (C4>
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The covariance-based approach, like our method for estimating the probability that an edge
is locally significant, uses the local distribution of estimated gradients to determine whether
an edge is sufficiently strong relative to its neighbourhood to be detected as an edge. There
are a number of differences in details, such as the use of a soft kernel-based neighbourhood
by Rakesh et al., but the principal differences are that our method uses Bayesian statistics
to produce an estimate of the probability that an edge is locally significant, rather than
producing a score which is then thresholded, and that our method uses a nonparametric
estimate of the complete distribution of edge strengths rather than using summary statistics
such as the covariance matrix. We believe that the use of a nonparametric representation
of the distribution of edge strengths is advantageous, especially in our domain where the
distribution is very far from a Gaussian.

Statistical models of image properties can also be used in edge detection. Elder and
Zucker proposed [13] a model for determining the minimum local scale at which a gradient
detection can be assumed (with a specified level of confidence) to result from an edge in
the image, rather than from sensor noise, based on a parametric model of the noise of a
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given camera. An early example of statistical modelling of regions as a strategy for edge
detection appears in a paper [38] by deSouza. This paper considers a one-dimensional
profile, taken as a slice from an image, and estimates the edge strength by applying a
statistical test to determine if there is a significant difference between two halves of a
sliding window. If the two halves are statistically different, this indicates the presence of
an edge at the center of the window. To account for the possibility that the two regions
are nonuniform, deSouza’s algorithm parametrically models the two halves of the window
using second-order polynomial regression and performs the test based upon the constant
terms. For textured regions, deSouza proposed using the ratio of the variances of the two
halves of the window, or using a x? test on autoregressive models of the two halves of the
window. DeSouza warns, however, that while the results of the statistical test can be used
to indicate edge strength, it cannot necessarily be taken as a valid hypothesis test, since
the assumptions made by the procedure are not always satisfied in this domain.

Our system uses a different approach to statistical edge detection. Rather than compar-
ing a pair of windows in the image, we compare a single measurement of preliminary edge
strength to a pair of adjacent neighbourhoods, using a nonparametric representation of
the distributions of preliminary edge strengths in these regions. Our approach is intended
specifically to find the edges of the texture elements (such as characters in a paragraph of
text) at the edges of texture regions; in the domain of rendered web pages, it is reasonable
to assume (due to the rendering process) that these edge segments will be very precisely
aligned.

A Bayesian approach to edge detection was described by Hebert and Malagre in [65],
using a Gibbs distribution (see Section C.2.3) to represent a priori intuitions about the
plausible structure of an edge image. A plausible line image is assumed to consist of con-
tinuous lines one pixel in width, with no isolated edge pixels and a minimum separation of
two pixels between parallel edges. The prior probability distribution over small edge image
patches is uniformly zero for those which do not satisfy these constraints, and uniformly
positive for those which do. Incorporating evidence for a simple edge detector (such as a
gradient filter) allows the calculation of a posterior probability for each patch; optimizing
over these allows the calculation of a maximum a posterior: estimate of the true edge
image.

One example of edge detection by learning the appearance of edges is the system pro-
posed by Konishi et al. [78]. In this approach, images were processed with filter banks
to produce vectors of filter responses for each pixel. Using ground truth labels, the joint
distributions of filter responses for edge and non-edge pixels were learned. The filter banks
included conventional filters such as the Laplacian operator, and filters such as the Gabor
filter which are inspired by the human visual system. The joint distributions were repre-
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sented nonparametrically, using histograms. To reduce the sizes of these high-dimensional
histograms, the bins were allowed to adapt to the data. Using these joint distributions, it
was possible to predict the log-likelihood ratio

Pr(¢(I(z))|x is on an edge)
Pr(¢(I(x))|x is not on an edge)

log (C.6)

where x is a pixel in the image [ and ¢ represents the filter bank. The log-likelihood
ratio can simply be thresholded to produce an edge map; alternatively, better performance
can be obtained by using learned spatial cues. These cues were determined by applying
a filter bank to a map of the posterior probability of the presence of an edge. Using
this procedure, properties such as non-maximum suppression and hysteresis emerged from
the data. Interestingly, using spatial cues produced a small quantitative improvement n
performance, but a large qualitative improvement.

Like our approach to edge detection, Konishi et al. used a nonparametric model to
estimate edge probabilities. In the case of our algorithm, however, this distribution was
derived solely from the neighbourhood of the pixel in question, rather than being learned
from ground truth data as in [78]. This is an important difference; our algorithm is based
on a priori assumptions about the properties of the domain, while the algorithm described
by Konishi et al. focuses entirely on learning from the data. Our assumptions proved
effective in our domain, although it may be interesting to test a learning-based approach
similar to those in [12] or [78] in the domain of web pages (see Section 8.3.2).

As shown by these examples from the literature, our approach to statistical edge detec-
tion is part of a group of related statistical approaches to the problem of edge detection.
Our algorithm is specifically designed to address the expected characteristics of semanti-
cally significant edges in the domain of rendered web pages. As such it differs in details
from the related statistical approaches, but shares a common emphasis of using local im-
age statistics to adapt to spatially varying characteristics of the image in order to produce
reliable edge information even when the image is cluttered or otherwise challenging.

C.2 Image Segmentation

The problem of image segmentation is, put simply, the problem of partitioning an image
into semantically meaningful regions. It is a complex and ill-posed problem. In many
cases, multiple different segmentations can be considered “correct”. A remarkable range of
approaches have been taken to image segmentation; a complete survey of the development

201



of the field would require an entire book. Here we present a discussion of selected work
in this area, including papers of particular relevance to the developments presented in this
thesis.

C.2.1 Edges and Active Contours

Our page segmentation method uses edges as the primary evidence for segmenting a page.
This approach to image segmentation has a long history in computer vision. It is an
intuitively appealing approach; it is reasonable to expect that semantically significant
regions are likely to have a different appearance from their surroundings, and this will
often create strong edges along the border between regions. The borders of regions are one
way of defining a segmentation of the image, so edges are an appealing form of evidence
to examine.

A classic example of edge-based segmentation is the snake model proposed by Kass
et al. in 1988 [71]. Snakes are dynamic splines, moving under physically-inspired forces
to nearby semantically significant contours. They are not fully autonomous, but require
initialization, either manually or by some other algorithm. There are three causes of these
forces: first, internal forces representing the rigidity and resistance to bending of the spline;
second, forces upon the spline imposed by the image; and third, forces imposed by external
constraints provided by a user or by another algorithm. Formally, the energy of a snake is
defined by the equation

o /0 (By(0(s)) + Er(v(s)) + Ec(v(s))) ds (.7)

where v(s) = (z(s),y(s)) is a parametric representation of the spline, £, represents the
internal energy of v, E; represents the energy due to features in the image I, and E¢
represents the energy due to external constraints. The internal energy, as defined by Kass

et al., is
« d 5] d?
Y (28) (|dz|2> (28) (|d512)|2) (C8)

where a and 3 control the local importance of the first- and second-order terms, respec-
tively. In a physical sense, the first-order term produces membrane-like behaviour, and
the second-order term produces thin plate-like behaviour. In both cases, the rigidity of
the spline has a regularizing effect. The external constraints, represented by Eo, take the
form of spring-like attraction between a point on the spline and an arbitrary point, and r%
repulsion from a point. The key feature of snakes that makes them a computer vision tool,
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rather than a (probably rather amusing) physics toy, is the image term, F;. In [71], the
image term is the sum of three components, representing attraction to light or dark lines,
attraction to edges, and attraction to line terminations and corners. The first of these
components uses the value of the image at a position, the second uses the gradient of the
image (or some other edge detector), and the third uses the curvature of level set lines.
Snakes can be used to find open contours, acting as an edge detector, or closed contours,
acting as a segmentation method.

Although the physical interpretation of snakes is a valuable property, the parametric
nature of the spline also leads to some important limitations. One key limitation is that,
barring a separate reparameterization step, the topology of the curve cannot change. This
is very important in images where there are multiple foreground objects; the topology
of an initial single contour must change to produce multiple separate regions. Similarly,
regions with holes require topological changes if the initial contour does not have holes.
To address this, some researchers turned to a technique proposed by Osher and Sethian
[99] in the context of physical simulations. This technique, called the level set method,
represents the region boundary implicitly, as the level set where a Lipschitz function on the
image domain is equal to zero [99]. An image segmentation algorithm using the level set
method simulates the evolution of this function rather than the evolution of the contour
itself; topological changes occur naturally as the function drops below or rises above zero.
This approach is naturally suited to active contour models, since it was originally designed
to simulate boundaries whose local rate of propagation depends upon their curvature [99].
In image segmentation, the evolution of the function is designed to converge to the borders
of objects. Broadly speaking, level set methods can be divided into those which use edges
to define the borders of objects, and those which use the properties of areas inside and
outside the boundary.

A level set approach to image segmentation, based upon region properties rather than
edges, was proposed by Chan and Vese [27]. Although not an edge-based method (and
therefore outside of the principal focus of this section), it is worth briefly discussing it
as an example of area-based level set segmentation. Chan and Vese’s model is based on
a special case of the Mumford-Shah functional [95], in which the image is modelled as a
piecewise-constant function, with one constant inside the boundary and another outside
it. In the more general case of the Mumford-Shah functional, the image is modelled by
piecewise smooth functions. Chan and Vese describe a method for finding a boundary (and
corresponding constant values) that optimizes a piecewise constant fit to the image. The
resulting energy function is nonconvex, but the authors describe techniques for finding
a globally optimal solution regardless of the initial contour. One key advantage of this
approach over those that use the image gradient to stop the evolution of the curve is that
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it is not vulnerable to the contour moving through gaps in the edges around an object [27].

The active contour methods described here are related to our approach in that they
produce segmentations supported by edges while imposing structural constraints on region
shapes. The structural assumptions made by our method are, however, very different from
those made by active contours. Because of the web page rendering process, we assume
that the relevant edges are straight and axis-parallel, while most active contour methods
penalize but allow strong curvature if it is supported by evidence in the image. Our
segmentation system is also inherently hierarchical, and incorporates a prior probability
distribution over segmentation trees.

C.2.2 Graph Cut Clustering

Graph cut clustering has historically been a prominent technique in image segmentation.
Broadly speaking, graph cut clustering uses a graph representation of data in which nodes
in the graph represent data points (generally pixels or superpixels in the case of image
segmentation), and the weighted edges between nodes represent affinity between the data
points. The algorithm produces from this initial graph two or more disjoint clusters of data
points by cutting edges. The edges to be cut are chosen to optimize an objective function
based on their weights, possibly under other problem-specific hard or soft constraints.
Different objective functions and constraints produce different algorithms.

Methods based on segmenting an image into foreground and background regions can be
augmented with a shape prior for the foreground region, implemented by adding a shape
term to the objective function. One interesting example of this is the star shape prior
proposed by Veksler [126]. A region is considered to be star-shaped with respect to a
centre c if and only if for each point p on the border of the region, every point ¢ on a line
between ¢ and p is inside the region. The centre is not necessarily unique, and often many
choices of ¢ will satisfy these properties. It is clear that any convex shape is also a star
shape. Many other common shapes are as well; a star, a heart shape, and a chevron shape
can all be star-shaped even though they are not convex. For interactive segmentation, the
centre ¢ € V of the foreground region is specified by the user.

The star shape prior can be implemented using pairwise shape constraints. For each

pair of pixels i, 7 € V such that j lies on a line between ¢ and ¢, the cost function

0 4,5€ RpgVi,jE€ Rpc
Sij = o0 1t € Rpa Nj€E Rpo (Cg)
B 1€ Rpa/NjE Rrg
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where Rpg and Rpg represent the foreground and background sets, respectively. Note
that the cost of violating the star shape prior (the second line of the equation) is infinite;
as a result, this imposes a hard constraint that the foreground region be a star shape. The
constant (8 is used to counteract the bias of minimum cut segmentation algorithms toward
short boundaries and therefore small regions; in the experiments described by Veksler, it is
set for each instance to the minimum required to result in a region of at least a minimum
size. Using a shape term consisting of the sum over all s;;, the minimum cut solution
can be found efficiently [126]. The strong results demonstrate the utility of a shape prior
in segmenting natural images. Our page segmentation algorithm uses a shape prior in
which regions are required to be rectangular; in our case, the use of the shape prior reflects
the known properties of the domain and allows easier optimization of our probabilistic
objective function.

Veksler’s paper [120] has an additional interesting feature relevant to this review. The
similarity measure adapts to the local distribution of pixel intensities in a window around
the pixel pair. More specifically, the parameter o in the equation w;; = exp(—(IiQ_U 12]-)2)’
which defines a similarity-based pairwise affinity between pixels, is set to the mean of the
absolute intensity differences in a 20 x 20 pixel neighbourhood around the pixels ¢ and j.
This allows the sensitivity of the affinity to edges to adapt to local changes in the prevalence
of edges. Although implemented differently, the objective is similar to our use of the local
distributions of edge detector responses to estimate the probability that a possible edge is

locally significant (see Sections 3.2.2 and 3.3.1).

C.2.3 Random Fields

One common method for Bayesian image segmentation is the use of Markov random field
(MRF) models, which express spatially localized probabilistic relationships between re-
gions. These models are defined for an undirected graph G = (S, E), where E represents
a set of edges and S represents a set of nodes or sites. Let X represent a set of random
variables X;, where X represents the label or value of the site s;. When writing proba-
bilities, we abbreviate the event “X; = x;” as simply “z;” when this does not result in
ambiguity, in the interest of brevity. The set of labels is denoted L. The graph represents
the statistical dependence relationships between nodes. This model is a Markov random
field provided that the following conditions hold:

o Pr(zi|{z;|i # j}) = Pr(zi|{z;|(si,s;) € E})
° Pr(:l:l)>OVxZ€L
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In the context of computer vision, sites are generally pixels or superpixels. For a pair of
sites s; and s;, there is an edge (s;, s;) € E if and only if s; and s; are adjacent according to
some neighbourhood system. In the specific problem of image segmentation, the objective
is generally to determine which sites have the same label and therefore belong to the same
cluster.

The Hammersley-Clifford theorem [55] shows that there is an equivalent energy-based
formulation of the MRF as a Gibbs distribution. Let x represent an assignment of labels

to all X; € X. Then
U(s) = > _Vils) (C.10)
ceC

where C' is the set of all ordered cliques in G and V, represents the potential function for
the clique c. The probability can be defined in terms of this energy as follows:

P(s) = %exp (%U(S)) (C.11)
where T represents a temperature (assumed to be 1 unless specified otherwise) which
controls the relationship between energy and probability (higher-energy configurations are
less probable at low temperatures), and Z represents the partition function, acts as a
normalizing constant. In practice, it is usually necessary to use an approximation of Z due
to the difficulty of computing it exactly for models of a useful size (see, e.g., [130]).

It is often simpler to use the Gibbs formulation of the problem in computer vision.
Useful constraints in this domain, such as “adjacent sites tend to have the same label”
are easily specified as potential functions on cliques. These potential functions may also
depend on image data. The Hammersley-Clifford theorem is, therefore, very useful in the
application of MRF models to computer vision problems.

D’Elia et al. proposed the use of an MRF model embedded in a binary tree for seg-
menting images with an unknown number of regions [39]. This model uses a recursive
top-down approach to segment regions in a principled Bayesian framework. Each node
t in the tree T' contains a set S* C S of nodes, representing a region. Each node has a
corresponding MRF X' defined over S?, a set of parameters 6" to specify the the potentials
of the corresponding Gibbs distribution, and potential functions V. If the node ¢ has
children, these are denoted I(t) and r(t) [39]. Let p(t) represent the parent of ¢ (for the
root node, p(t) = 0)). The definitions given in [39] imply that child nodes cover their parent
(SMOUST® = S and are disjoint (S0 N.S™® = @); this is similar to our tiling constraints
in the problem of web page segmentation, although the framework described by D’Elia et
al. does not require that the regions be axis-parallel, rectangular, or even connected. For
each node t € T', L' is a set of two labels, one for regions in [(¢) and one for regions in 7(t).
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With these definitions in mind, a binary segmentation tree can be found be recursively
optimizing (with respect to MAP) over Pr(x![x?¥)). The stopping condition is based on
comparing two trees as hypotheses.

Related to the MRF model is the conditional random field (CRF) model [84]. The
objective of the CRF model is to explicitly model the joint conditional probability distri-
bution of a set of labels given a set of observations. In the case of image segmentation, the
labels are generally region assignments and the image data constitutes the observations.
The Hammersley-Clifford theorem [55] applies to CRF models [31] as well as to MRF
models. In a CRF,

Pr(s|d) o exp (Z v;(s)> (C.12)
ceC

using the same notation as was used above to define an MRF. Note that, unlike in Equation

C.11, the left hand side of the equation is a conditional probability.

In 2011, Krahenbiihl and Koltun showed that efficient inference is possible in a fully
connected CRF with Gaussian pairwise potentials for all pairs of pixels in the image [30].
Prior to this work, CRF's were limited to pixel-level local connectivity or superpixel-level
full connectivity due to the computational complexity of optimizing over a number of
pairwise edge potentials that was quadratic in the number of sites. Krahenbiihl and Koltun
demonstrated a method for using Gaussian filtering to perform the message-passing step
in optimizing a mean-field approximation to the true underlying CRF distribution. As
our own work does not use a CRF-based model, the details of this efficient optimization
algorithm need not be discussed here; it is important, however, to note at least the existence
of this algorithm in any discussion of modern CRF models in computer vision. In 2015,
Zheng et al. demonstrated that the CRF model can be incorporated into recurrent neural
networks to produce a hybrid structure, taking advantage of the capabilities of modern
deep learning alongside probabilistic graphical models [140]. The method described by
Zheng et al. implements steps of Krahenbiihl and Koltun’s filter-based mean-field iteration
algorithm as CNN layers. This CNN layer formulation can be used in a recurrent neural
network formulation.

Unlike MRF models, CRF models are not generative; a CRF (in the domain of image
segmentation or semantic segmentation) is designed specifically to predict labels given
image data, while an MRF model must learn the joint distribution over images and labels.
This gives CRF models an advantage in the learning process; the smaller scope of learning
in a CRF reduces the quantity of training data required [63].

Although MRF and CRF techniques are principled, Bayesian algorithms, they differ
significantly from the approach taken in our algorithms. Our approach explicitly finds the
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probability that specific cues truly exist in specific places in the image (e.g., estimating
the probability that an edge is significant with respect to its local neighbourhood, or
that a semantically significant line exists between two points). The problem is divided
into a series of stages, with higher-level cues building upon lower-level cues to produce
the segmentation. Most segmentation algorithms based on random fields estimate the
probability of an assignment of segmentation labels to the pixels (or superpixels) in the
image. Our approach of more gradual assembly fits well with the edge-based approach
(although edge-based potentials can certainly be implemented in random field models)
and with the intended prior probability distribution over segmentation trees, and is an
intuitively appealing approach to web page segmentation.

C.3 Region Classification

Region classification, in the sense used in this thesis, is the process of associating semantic
labels with regions in a segmentation of an image. This approach is not as common
in computer vision as simultaneous segmentation and classification (described in Section
7.1), or object detection. Object detection finds objects of a specific class or classes in
an image, but only provides a coarse localization through a bounding box. Although
not the largest area of research, there are computer vision algorithms that are designed
specifically to perform region classification. It is also worth noting that region classification
can be addressed using general classification methods from machine learning, with only the
features used to describe regions being derived from computer vision.

One area in which region classification is especially popular is the analysis of three-
dimensional data. Zhu et al. described [111] a segmentation-classification pipeline for
range images, where the value at a given pixel is a function of the distance from the
sensor to the nearest object along the corresponding line of sight, rather than of the
light hitting the corresponding pixel in the camera sensor. In this pipeline, the depth
image is segmented using a graph-based technique, and the regions are classified by a
support vector machine (SVM), based on statistical features of the set of points in space
corresponding to the region. Sérna and Macrotegui described [ 10] a pipeline for elevation
images formed by projecting a three-dimensional point cloud to a horizontal plane. This
pipeline begins with the separation of the ground, followed by segmentation of connected
object using a morphological method, and classification using geometrical features, the
number of adjacent objects, and colour features if they are available. Sérna and Macrotequi
also provide a good overview of similar algorithms in this domain.

The use of separate segmentation and classification steps for point clouds, depth images,
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and elevation images is a good example of selecting a vision pipeline to suit a domain. In
these images, the depth information provides rich three-dimensional information about ob-
ject contiguity which can be used in the segmentation process. Similarly, web page images
offer important division cues such as whitespace borders, background colour transitions,
and aligned edges that provide evidence for divisions between objects in the absence of
specific knowledge about the labels of regions.

Although common in the domain of three-dimensional data, separate classification of
a segmented image is not restricted to this setting. An interesting method proposed by
Fredembach et al. [19] takes a particularly interesting approach. In most cases, the image
axes and borders in a natural image are assumed to be arbitrary. The approach taken in
[19], however, takes advantage of the expected patterns of composition in photographs—the
sky, for example, can be expected to be in the upper part of the image. The “eigenregion”
approach combined shape and position modelling, and with fairly broad classes for regions
was found to have advantages for image classification.

Our region classification approach represents a novel classification method well-suited
to the problem of classifying regions embedded in a hierarchical segmentation tree. The
use of an HMT with a global structure corresponding to the global structure of the seg-
mentation tree provides a sophisticated and principled means of accounting for context
without requiring context features. It allows joint inference of the maximum a posteriori
assignment of labels over all regions in the image, while the guaranteed tree structure of
the model allows efficient inference. By maintaining consistent local structures, we ensure
that a single set of conditional probability distributions—which can be readily learned
from labelled data—is sufficient to define the model for any segmentation tree despite the
resulting changes in the global structure of the HMT. Although designed for the domain
of web pages, we believe that our algorithm has potential for generalization to other do-
mains; this is an area that we hope to investigate further in the future (see Section 8.3.3).
Because of its principled design and flexibility in representing contextual information, our
region classification algorithm represents an important contribution in computer vision
more generally.

While our HMT-based approach to region classification is novel, hidden Markov trees
have been used in other ways in computer vision, especially when working in the wavelet
domain. Although wavelets are a large and interesting area of computer vision, our dis-
cussion will be restricted to a high-level description of the key features for contrasting
our use of the HMT model with its use in the wavelet domain. Wavelets are a class of
alternative representations of images; the wavelet transform is broadly analogous to the
Fourier transform in that it is a change of basis to an alternative representation which
is more appropriate for some types of analysis. The spatial-domain representation of the
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(a) Diagram of wavelet scales, showing (b) Diagram of an HMT corresponding to

quadtree structure. Grey circles represent the wavelets shown at the left. White cir-
wavelets, with lines connecting the parent cles represent hidden states, and black cir-
wavelets to their children. cles represent wavelet coeflicients.

Figure C.1: Diagrams of wavelet structure and a corresponding HMT, based on diagrams
from [111]. Each diagram represents a single subband.

original image uses basis functions (single-pixel impulses) which are localized in space but
not in frequency, and the frequency-domain representation provided by the Fourier trans-
form uses basis functions which are localized in frequency but not in space; the wavelet
domain uses basis functions (the wavelets) which are localized in frequency and in space.
The wavelet domain uses repetition of the same functions at multiple scales to form an
orthonormal basis for the space of greyscale images; large wavelets cover the same area as
a 2 x 2 grid of child wavelets. Figure C.1la shows this hierarchy. Many functions can be
used as the basis of a wavelet transform.

The quadtree structure of the wavelet domain makes a tree-structured probabilistic
graphical model a natural approach to the problem. Additional features of the wavelet
domain make an HMT structure especially attractive. Romberg et al. described [111] an
HMT model based on the statistical properties of the wavelet domain in natural images.
Wavelet coefficients have been observed to be large at edges and small elsewhere; this not
only makes them potentially useful as edge detectors, it also means that they are produced
by a mixture of an edge-containing distribution which favours large coefficients and a non-
edge-containing distribution which favours small coefficients. In an HMT model of natural
images, it is therefore reasonable to provide a hidden state which indicates whether the
corresponding coefficient is expected to be large or small. Another observed feature of the
properties of wavelets in natural images is that coefficient magnitude tends to persist across
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scales (i.e., the child wavelets of a parent wavelet with a large coefficient also tend to have
large coefficients). It is, therefore, reasonable for the hidden state of a parent to influence
the hidden states of its children. Figure C.1b shows a schematic of an HMT of the form
proposed by Romberg et al. In [111], the statistical model is explored in much greater
depth and many aspects of the statistics of wavelets in natural images are examined; here,
however, it is only necessary to discuss the most important aspects for determining the
structure of the HMT.

While the structure of the HMT shown in Figure C.1b appears superficially similar to
the structure of our own segmentation tree, there are important differences. Aside from
its size, the structure of the wavelet HMT is fixed, not only locally but globally. It is
not based upon a segmentation which adapts to the structure of the image, but rather on
fixed fields in the image. Rather than representing a high-level object or region class, the
hidden states in the wavelet HMT represent components of a mixture model from which
the wavelet coefficients are drawn. We do not claim that the wavelet HMT is inferior to
our own HMT classification model; it is a powerful model of the statistical structure of
an image with many applications. Our HMT for classification simply solves a different
problem, and so while it interesting to compare the two in terms of structure, the models
do not compete with each other.

In [110], Romberg et al. used an HMT to classify textures in an image. The sys-
tem simultaneously segments the page into regions of consistent texture and classifies the
textures. This classification algorithm works at the level of textures and uses a fixed tree
structure. Our classification algorithm uses much higher-level classes, and adapts its struc-
ture to an existing segmentation tree. Despite the superficial similarities, our system is
very different in its assumptions and its approach to the classification problem.
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Appendix D

Example Screen Reader Transcript

In this section we present an example transcript from the NVDA 2018.2 screen reader
program, as a sighted novice user browses the Weather Network forecast page for the town
of Sackville, New Brunswick. This page was collected on July 8, 2018, and the transcript
represents an ultimately successful but time-consuming attempt to find the seven-day fore-
cast. For the purposes of this example, default settings were used, including for verbosity
settings. The original page is shown in Figure D.1, with the seven-day forecast (where
the transcript stops) circled. Note in the transcript that a great many structural features
are read out, including heading levels and the presence of links. Browsing features used
included straightforward linear browsing and jumping to the next (or previous) occurrence
of a specified type of element, such as a heading, a link, or an image.

Sackville, New Brunswick 7 Day Weather Forecast - The Weather Network document
Your weather when it really mattersTM
Sackville, New Brunswick Weather
heading 1level 1

SHORT TERM FORECAST

heading 1level 4

WATCH TRENDING VIDEOS

heading level 4

SHORT TERM FORECAST

heading level 4

link

This Afternoon 12pm 6pm 25C

link
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Figure D.1: Original page, showing the circled seven-day forecast.

213



Sunny in the afternoon.
link

Tonight 6pm 6am 15C
link

Mainly sunny in the evening remaining clear overnight.
link

VIEW MORE DETAILS

link

UPDATED

link

RESCUE UNDERWAY

link

Several boys rescued from Thai cave; attempt resumes Monday
graphic

Several boys rescued from Thai cave; attempt resumes Monday

link
YOUR WEATHER

link

Heat warnings resume for Maritimes as humidity returns
graphic

Heat warnings resume for Maritimes as humidity returns

WATCH TRENDING VIDEOQS

heading level 4

3-DAY SEVERE WEATHER OUTLOOK

heading level 2

Gallery

heading level 2

Coffee Break

heading level 4
content info landmark

TV and News

heading level 3
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Weather Apps
heading level 3
Social

heading 1level 3
Weather Feeds
heading 1level 3
Support

heading level 3

no next heading

no next heading

no next heading
Weather Feeds
heading level 3
Social

heading 1level 3
Weather Apps
heading 1level 3

TV and News

heading 1level 3
Coffee Break
heading 1level 4
Gallery

heading level 2
3-DAY SEVERE WEATHER OUTLOOK
heading level 2
WATCH TRENDING VIDEOS
heading level 4
SHORT TERM FORECAST
heading level 4
Sackville, New Brunswick Weather
heading 1level 1

no previous heading
no next table

list with 5 items

Work radio button not checked

clickable
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Work
content info landmark
list with 2 items
On TV
link
list with 5 items
Mobile Apps
link
Weather Apps
heading 1level 3
TV and News
heading level 3
Coffee Break
heading level 4
Gallery
heading 1level 2
3-DAY SEVERE WEATHER OUTLOOK
heading level 2
WATCH TRENDING VIDEOS
heading 1level 4
SHORT TERM FORECAST
heading 1level 4
Sackville, New Brunswick Weather
heading 1level 1
A few clouds
graphic
Several boys rescued from Thai cave; attempt resumes Monday
graphic
Heat warnings resume for Maritimes as humidity returns
graphic
Hurricane centre statement; TS Chris targets Maritimes
graphic
’I should have been dead,’ Albertans fend off 3 grizzlies
graphic
Storm threat, sweltering temperatures ahead for Prairies
graphic
Canadian firefighter dead after falling from K2 mountain
graphic
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Montreal’s death toll climbs to 33, heat warnings end
graphic

Dozens dead, more than a million evacuated in Japan flooding
graphic

Sunny

graphic

Sunny

07/09

Mon

24 Hr Rain

Hrs Of Sun

Wind gust (km/h)

Wind (km/h)

POP

Feels like

Night

clickable
Show/Hide

Next 7 Days
link

SEE ALL NEWS
Next 7 Days

clickable
Show/Hide

Night

Feels like

POP

Wind (km/h)

Wind gust (km/h)
Hrs Of Sun

24 Hr Rain

Mon

07/09

Sunny
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Sunny
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