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Abstract

The biggest trade-off when proposing health care policies is about balancing the ef-

fectiveness and the practicality of the policies. The optimal policies providing benchmark

performances can be driven through using operations research tools; however, they usually

have complex structures that are necessary to sufficiently represent various aspects of the

system being modeled. There are also policies either proposed in guidelines or followed

in practice but they often vary with the system characteristics, i.e., preferences of the

clinicians, available resources of the clinics, etc. Therefore, standardized, simple yet effec-

tive policies are needed for many healthcare applications, including preventive medicine.

At this point, we study developing health care delivery policies that maximize the effect

of the preventive interventions, while providing applicable policy structures that can be

easily followed by health practitioners in practice. We focus on two applications of pre-

ventive medicine: childhood vaccine administration practices in developing countries; and

colorectal cancer screening and surveillance.

Vaccine administration practices in developing countries suffer from open-vial wastage.

Doses remaining from opened vials are disposed at the end of a day, due to lack of appro-

priate cold storage conditions. We propose administering vaccines from different sizes of

multi-dose vials to address the open-vial wastage problem. We utilize a Markov decision

process model to maximize the expected total number of doses administered via reducing

vaccine wastage. The model dynamically decides which size of a multi-dose vial to open

next, and when to terminate vaccination service for the day, given the time remaining in

the replenishment cycle and available vaccine stocks. We show that the optimal policies are

of control-limit type. Using data for routine pediatric vaccines, we show that the proposed

optimal policies could cost-effectively reduce open-vial wastage and significantly improve

the covered vaccine demand. We also analyze the initial vaccine inventory composition

that specifies how many vials of each size should be kept in stock. We show that the

optimal policy for the right vaccine inventory composition may improve the expected vac-

cine demand covered up to target levels without early termination of vaccination service

while realizing reasonably small or no additional cost. Although the number of system
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variables being tracked in our state space is manageable, the optimal policies still require

significant effort to be adopted in practice. That is especially challenging in developing

countries, where the resources, e.g., clinic staff, are limited. Therefore, we introduce simple

vaccine administration policies that are developed with the guidance of the insights from

our numerical and structural analyses. Our insights on the simple vaccine administration

policies show that these policies can provide promising performance, in terms of costs and

expected vaccine demand covered, compared to the optimal policies while requiring only a

single system variable, i.e., time of a decision, to be monitored.

Colonoscopy screening prevents, and early-detects colorectal cancer (CRC), one of the

most common and deadliest cancers in the world. Considering that the risk of developing

CRC significantly increases after age 50, and that the North American population is ag-

ing, the colonoscopy screening and follow-up policies employed by gastroenterologists play

a vital role in the well-being of the population. Existing clinical guidelines recommend

colonoscopy screening policies that are shown to be cost-effective in CRC prevention and

early detection. Nevertheless, almost half the practitioners do not follow these guidelines,

indicating controversy around the best CRC screening practices. Several studies analyze

alternative CRC screening policies using simulation and mathematical models. Especially,

dynamic alternative policies, derived by a stochastic dynamic programming approach, can

significantly increase health outcome improvements due to CRC screening and follow-up.

However, under dynamic policies, colonoscopy screening and surveillance intervals signif-

icantly vary in factors such as age, gender, and personal history, which are harder to

implement for clinicians. Our study on this second application aims at deriving efficient

and simpler-to-implement colonoscopy screening and follow-up policies, but that perform

closely to the optimal policies. We employ a patient-level discrete-event simulation model,

built and validated using real data, to mimic CRC progression in asymptomatic and higher-

risk individuals. We estimate the expected life-years, age-based risk of having CRC, CRC

mortality, costs associated with CRC screening, and the number of required colonoscopies

for a large set of screening policies. We evaluate the performances of all relevant simpler-to-

implement colonoscopy policies, including the periodic screening policies currently used by

practitioners, and all feasible periodic policies with n-period switch times (for n = 0, 1, 2).
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Our analysis identifies under the parameter settings under which alternative and simpler

policies are sufficient to provide close-to-optimal performance. These results provide in-

sights on the types of policies on which to focus in future studies, for researchers from both

medical and operational research fields.
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Chapter 1

Introduction

This thesis focuses on developing health care delivery policies maximizing the effects of

the preventive interventions while providing applicable policy structures that can be eas-

ily followed by health clinicians in practice. Specifically, two distinct application areas,

childhood vaccine administration and colorectal cancer screening, are studied. We employ

Markov Decision Process (MDP) models to derive the optimal policies for both problems.

While the optimal policies provide significant improvements in health outcomes, they may

sometimes be too complex to adopt in practice by health care professionals. Therefore,

this thesis also considers the applicability and practicality of the proposed optimal policies,

and aims at obtaining necessary insights from the problem analysis in order to use them

when investigating simpler-to-implement policies.

In this chapter, Chapter 1, we present a brief review of the recent operations research

and management sciences (OR/MS) applications in health care, and emphasize the impor-

tance of the preventive interventions that we study in this thesis.
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1.1 Preface

The health care industry has grown exponentially, in line with the aging population of

the world. Recent studies project that by 2050, the number of older persons in the world

will exceed the number of young for the first time. The proportion of elderly, estimated

to reach 21% by then, was around 10% in the early 2000s McNicoll (2002). Countries

spend a great proportion of their gross domestic product (GDP) to provide effective and

efficient health services. According to The World Bank, the health expenditure to cover the

preventive and curative health services, family planning activities, nutrition activities, and

emergency aid represented 17.1% and 10.4% of GDP in the US and Canada, respectively,

between 2011-2015 (The World Bank (2016)). As health care has been pointed out as one

of the biggest economic and social challenges, health care policy makers are expected to

effectively and efficiently design their processes to deal with such a challenge.

Operations Research (OR) has been promoted for many decades to tackle the challenges

in health care issues, since OR offers numerous methodologies and solution techniques.

Some of the optimization issues tackled are related to health care delivery (e.g., capacity

planning and resource scheduling, logistics, demand forecasting), health care finance (e.g.,

economic policy analysis, dynamic resource allocation), public policy analysis (e.g., disease

management, vaccination, bio-terrorism, health technology assessment, policy evaluation

and improvement), medical decision making (patient’s and/or policy maker’s action mod-

els), and pharmaceutical economics (e.g., economics of vaccine and drug development).

Although many of the problems in the health care operations research literature may have

similar analytic characteristics as the problems in other industries, measuring the perfor-

mances of health care policies in terms of lives and utilities of individuals makes those

problems unique. Health care OR problems mainly consider the possibilities of death or

quality of remaining life, quality and value of the health care systems outcomes, the shared

decisions among several decision makers (policy administrators such as governments and

insurance companies, physicians, nurses), the utilization of resources for diagnosis and

treatments, and the concept of health care access as a right of citizens in society (i.e.,

equity) Pierskalla and Brailer (1994). While considering those, both deterministic and

2



stochastic approaches have been commonly used in health care decision making. More

thorough reviews of the related literature (OR applications in health care) can be found

in Kahraman and Topcu (2018); Ayer et al. (2014); Dobrzykowski et al. (2014); Lakshmi

and Iyer (2013); Hulshof et al. (2012); Rais and Viana (2011); Zhang et al. (2011); Denton

et al. (2011); Brailsford et al. (2009); Gupta and Denton (2008); Cayirli and Veral (2003).

Mathematical Programming (linear programming, integer programming, etc.) is one of

the commonly used OR tools for dealing with health care problems. Examples of such prob-

lems generally originate from operational problems such as hospital admissions scheduling,

staff assignments, operations room scheduling, selection of service locations, budget alloca-

tion, and inventory management decisions (Burke et al., 2004; Cheang et al., 2003; Daskin

and Dean, 2005; Ernst et al., 2004; Nicholson et al., 2004). Providing effective and effi-

cient solutions to those problems significantly improves the quality of health care services,

while reducing the resulting costs. For example, according to standards in US, ambulances

should reach their destinations within ten minutes, 95% of the time. Although increas-

ing fleet sizes and locating ambulances at broader sites may provide a strategy satisfying

the service requirements, it is definitely not a cost-efficient solution. However, Repede

and Bernardo (1994) proposes a maximal-expected-coverage location model (integer pro-

gramming model), and integrates this model into a decision support system to relocate

ambulances in order to maximize the expected total demand that can be served within the

time limit without increasing fleet sizes. The challenges of such problems incorporate the

uncertainty of applications into decisions. That is, for the ambulance location model, the

demand pattern changes over time and the fleet size is not constant, since the dispatched

ambulances are not available for demands observed during the time that they are away

for service. Hence, utilizing OR tools in health care enables decision makers to derive

strategies that incorporate such uncertainties and propose more realistic solutions.

Queueing models have been also used in the OR health care literature to analyze patient

flows, waiting times, patient delays, utilization of resources, system design, and appoint-

ment systems. Review of related literature is presented in Fomundam and Herrmann

(2007); Lakshmi and Iyer (2013); Nosek and Wilson (2001); Preater (2002). The key com-

ponent of high-quality health care is to provide timely access to care with limited resources.
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However, patient delays are inevitable for many of the health care services, as capacities

and resources are limited. To illustrate, escalation of overcrowding in an emergency de-

partment (ED) may affect quality and access of health care. Green et al. (2006) studies the

effectiveness of ED provider staffing using queueing models (M/M/s) to reduce the fraction

of patients who leave the ED without being served. Using queueing models to analyze the

current system provides important insights, as queueing models identify the bottlenecks

of the current system and determine the areas for improvements. In this particular study,

the results show that the proportion of patients who left the ED without being served can

be decreased by 23% if the provider hours are increased 3.1% per week. This improvement

illustrates the effectiveness of queueing system in reducing waiting times and delays.

Using simulation models (discrete event simulation, Monte Carlo simulation, system

dynamics, and agent-based modeling) is a promising alternative for applications of OR in

health care, especially when queueing models are too complex to be theoretically analyzed

without simplifying assumptions. A review of applications of simulation in health care can

be found in Brailsford et al. (2009); Günal and Pidd (2010); Jun et al. (1999); Katsaliaki and

Mustafee (2011). In addition to providing a comprehensive analysis of the current system

similar to what queueing models provide, simulation models also visualize how particular

changes (decisions) may affect the whole system. However, simulation models require a

quality of data which is difficult to be obtained from such complex systems. Moreover,

the activities usually involve many different activities (e.g., physicians may serve several

patients at once). Thus, determining service times is also one challenge for such systems.

Markov Decision Processes (MDP) models are also used considerably in health care,

especially in medical decision making. Güneş and Örmeci (2018); Denton et al. (2011);

Schaefer et al. (2005) present a thorough review of the studies using MDP models in medical

decision making and a discussion to reveal the appropriate application areas of MDPs

within the health care context. The specific characteristics of problems in medical decision

making that need to be captured by MDP models are: the continuous risks associated

with decisions over the time (e.g., risk of post-treatment complications if the decision is

do treatment, or risk of disease progress if the decision is do nothing); the timing of events

(e.g., developing colorectal cancer at age 50 versus at age 80); the timing of decisions
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(e.g., scree every year versus every 5 years); the probability of observing the same event

more than once (Sonnenberg and Beck, 1993). Hence, such characteristics require making

sequential decisions under uncertainty, that can be properly modeled using MDPs. Since

the optimal policies in this thesis are derived using MDP models, Section 1.2 is devoted to

review MDP models in health care, specifically the models for treatment and prevention

of diseases.

1.2 Use of Markov Decision Processes Models in Dis-

ease Prevention

In this section, a brief introduction to MDP models is given. Additionally, a review of

health care problems using MDP models in disease prevention is presented. Although there

are many studies using MDP models in health care, providing a comprehensive review of

related literature is beyond the scope of this thesis. An extensive analysis of application of

OR in prevention, detection, and treatment of disease is presented in Güneş and Örmeci

(2018); Zhang et al. (2011).

Making decisions under uncertainty is a challenge in health care. Most of the time,

decision makers include physicians, patients, and third-party-payers. Each of them has

different constraints, objectives, and preferences that directly affect the decisions and the

policy performances. Moreover, availability of resources also affects decisions, in the ma-

jority of cases, limiting the performances of the policies. All those bring uncertainty to

the system; thus, decisions should be dynamically evaluated over the time to handle the

uncertainty. MDP is a strong methodology to evaluate such dynamic and complex deci-

sions. Stochastic modeling techniques such as discrete-event simulation or Markov models,

generally examine one particular policy at a time for a fully specified stochastic model

but they do not provide an optimal policy. On the other hand, MDP models implicitly

evaluate every feasible policy to provide the policy that optimizes a particular objective

(e.g., maximizing expected total reward) while assuming that decisions are made at var-

ious time epochs. Although, MDP is a strong methodology to analyze complex systems,
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it has also some drawbacks. The number of feasible solutions may rapidly increase with

the size of the problem, thus, solving MDPs exactly becomes challenging. Furthermore,

MDP models require quality data to better define system characteristics, specifically, to

estimate transition probabilities for the next epoch. However, in medical decision making,

collecting quality data is also challenging.

We now briefly describe a Markov decision process model. Puterman (2014) defines

an MDP model as a particular sequential decision model which consists of five elements:

decision epochs (t) from a set of either discrete or continuum time points, states (s) and ac-

tions (a) from finite or countably infinite sets (discrete), transition probabilities (pt(j|s, a))

determining the state at the next decision epoch, and a real valued function of rewards

(rt(s, a)). Suppose that a decision maker considers a probabilistic system which evolves

through time. After observing (or partially observing) the current state, the action is cho-

sen at the decision epoch, and a reward (or cost) is received. The actions chosen affect the

system and the state of the system may change in accordance with these actions.

The objective of MDP models is to choose a sequence of actions that optimizes some

predetermined criterion. MDP models have the Markovian property, that is; the state of

the system prior to any decision, the rewards, and the future transitions depend only on

the current decision (independent of the past). However, MDPs allow decision makers to

bind previous, current, and future system decisions by properly defining the system states

(Schaefer et al., 2005). We can categorize MDPs into many different groups based on the

system characteristics: finite-horizon; infinite-horizon; discrete-time; continuous-time; fully

observable; partially observable; semi-Markov decision processes. For a complete coverage

of MDPs, Bellman and Dreyfus (2015); Bertsekas et al. (1995); Puterman (2014) can be

referred.

The focus of our study is the use of MDP models in preventive medicine. The following

sections discuss the vaccination practices and the cancer screening as they are the most

prominent examples of preventive medicine applications in the OR literature.
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1.2.0.1 Vaccination Practices

Organization et al. (2008) estimated that the numbers of deaths among children under

5-year old, from diseases that are preventable by vaccination in 2008 are 199, 000 for HIB,

195, 000 for pertussis, 118, 000 for measles, 59, 000 for neonatal tetanus, 2, 000 for tetanus

(non-neonatal), 476, 000 for pneumococcal disease, and 453, 000 for rotavirus. Moreover,

seasonal epidemics, which can also be prevented via proper vaccination, cause a devastating

burden. That is, worldwide, annual epidemics result in approximately 3 to 5 million cases

of severe illness, and 250, 000 to 500, 000 deaths (Fauci, 2006). Therefore, vaccine practices

should be designed effectively and efficiently to decrease the burden of vaccine-preventable

diseases.

OR tools can be employed to tackle many of the challenges associated with the utiliza-

tion of vaccines that prevent a number of diseases. One challenge is to incorporate specific

requirements of vaccines into decisions, such as multi-dose vaccine formats must be ad-

ministered within a minimum or maximum time window. Another challenge is conflicting

vaccines: certain vaccines interact with others, thus, when decisions are made, vaccine

specifics should be considered. Moreover, recently new vaccines have been introduced that

are combinations of different vaccines (multi-valent) that can cover multiple diseases. De-

cisions on their administration should be evaluated separately. Also prior to introduction

of new vaccines, determining optimal design of vaccines is required. Decisions associated

with the vaccine supply chains are also quite challenging: yields are uncertain; demand

levels are difficult to estimate; designing logistics, determining storage location of vaccine

supplies, quantity of supplies and storage capacities (especially for the vaccine formats

requiring cold chains) reveal complex decisions.

There are many studies in the OR literature visiting the challenges listed above for child-

hood (pediatric) and influenza vaccinations as well as vaccination for bio-defense (Dalgıç

et al., 2017; Chick et al., 2008; Jacobson et al., 1999, 2003; Mamani et al., 2013; Medlock

and Galvani, 2009; Mofrad et al., 2014, 2016; Ozaltin et al., 2011; Yaesoubi and Cohen,

2011a). However, to the best of our knowledge, there are only three studies (Mofrad et al.,

2014, 2016; Yaesoubi and Cohen, 2011a) using MDP models to analyze vaccination prac-
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tices. Yaesoubi and Cohen (2011a) describes an epidemic influenza with an SIR model

and develops a MDP model that dynamically determines the optimal health policies max-

imizing the overall population’s health during the epidemic. The model provides adaptive

decisions as the system characteristics are updated, based on real-time data available dur-

ing the epidemic. Mofrad et al. (2014) and Mofrad et al. (2016) will be addressed in detail

in Chapter 2.

1.2.0.2 Cancer Screening

The American Cancer Society reports that the number of new cancer cases expected to be

diagnosed is approximately 1, 735, 350 and the number of people expected to die of cancer

is 609, 640 in the United States in 2018 (Siegel et al., 2016; ACS, 2018). The Canadian

Cancer Society estimates those numbers, respectively, as 206, 200 and 80, 800 for Canada

in 2015 (CCS, 2018). Cancer is the second most common cause of death, accounting for

nearly 25% of all deaths in the US and the leading cause of death in Canada, accounting for

nearly 30% of all deaths (CDC, 2018). The estimated direct medical costs of cancer (total

health care expenditures) were $74.8 billion (USD) in the US in 2013, and $3.8 billion

(USD) in Canada representing the 7th most costly illness or injury in 2008.

Screening is the primary method used to detect and/or to prevent cancers in the early

stages, when treatment is more likely to be successful. For colorectal and cervical can-

cers, screening also allows removal of precancerous lesions by detecting them. Therefore,

screening is suggested to be used to reduce mortality for several types of cancers including

breast, prostate, colon, rectum, and lung (ACS, 2018). Although, guidelines suggest that

individuals undergo screening at regular time intervals (e.g., every 5-year), screening of a

population is expensive; the screened population may experience disutility resulted from

screening (e.g., complication risks associated with the screening method, the false-positive

test results, etc.). To determine the screening policy that optimizes a particular objective

(e.g., minimizing expected costs, maximizing quality adjusted life years (QALYs), etc.)

MDP models are proposed in several existing studies in the literature.

Chhatwal et al. (2010) investigates the optimal breast biopsy decisions using a finite-
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horizon discrete-time MDP. This study considers the mammographic features, and demo-

graphic factors of patients to propose personalized screening policies that maximize QALYs.

A comparison of the current practices of radiologists and the proposed model, which takes

the patients’ ages into account, is presented. It is shown that the optimal policy of the

MDP model outperforms the current practice, based on the clinical data. Burnside et al.

(2012) also addresses breast biopsy decisions. An MDP model maximizing total QALYs

of a patient is proposed to determine the optimal threshold of breast cancer risk that re-

quires that the patient undergoes a breast biopsy. Alagoz et al. (2013) also incorporates

short interval follow up exams into an MDP model, and presents the optimal policies for

postmammography diagnostic decisions that maximize a patient’s QALYs. Cantor et al.

(1995) addresses an MDP model to determine prostate cancer screening decisions that op-

timize QALYs. In addition to determining the optimal policies for a particular screening

modality, Vijan et al. (2001) presents a comparison of screening costs, effectiveness and

compliance of different screening modalities. Comprehensive reviews of studies determin-

ing cancer screening policies using OR models can be found in Alagoz et al. (2011) and

Pierskalla and Brailer (1994).

1.3 Thesis Outline

This thesis includes two main studies, each focusing on different practices of preventive

medicine; childhood vaccine administration practices and colorectal cancer screening and

surveillance policies.

The first study examines operational decisions of health clinics that administer child-

hood vaccines during a clinic day in developing countries. We consider the practice setting

of holding the inventory in different sizes of multi-dose vials for a particular vaccine type,

and administering doses from those vials dynamically over time to cover the vaccine de-

mand. The objective is to dynamically decide which size of a vial to use next given the

available vaccine inventory and the number of remaining days until next inventory replen-

ishment to maximize the demand coverage. We develop a discrete-time finite horizon MDP
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model to evaluate administration policies and determine the one maximizing the demand

coverage. The optimal policies determine whether to terminate services for the remainder

of a clinic day (if applicable), or open a new vial of a particular size among various vial

size options. We perform a comprehensive numerical analysis to investigate the dynamics

of the optimal policies, along with the structural analysis. Using the insights from both

analyses, simple yet effective (i.e., providing policy performances close to the performances

of the optimal policies) vaccine administration policies that require tracking a single time

threshold for switching actions are derived. To further improve the performances of the

optimal policies, a Pareto-efficiency analysis on the expected total cost and the expected

demand coverage spectrum is presented to better design initial inventory replenishment

decisions.

The second study is on optimizing colorectal cancer screening and surveillance policies,

considering screening and treatment costs, and has two fold objectives. The first objective

is again to derive simple yet effective CRC screening policies that can be preferred by

health care practitioners over the optimal policies of a POMDP model. We conduct an

extensive numerical analysis by using a microsimulation model which mimics the CRC

progression of low- and high-risk individuals using clinical data. The numerical analysis

focuses on finding the Pareto-efficient simple policies designed by considering various factors

which may affect the performances of the policies. Using the insights from this analysis,

we then aim at deriving the optimal screening policies, to maximize expected QALYs and

minimize expected total cost or number of required colonoscopies, from the multi-objective

optimization point of view. We develop a bi-criteria constrained MDP model framework.

Our initial analyses indicate that there are screening policies that accrue most of the

QALYs improvements without increasing the expected total cost, but requiring slightly

more frequent colonoscopy screening than the guidelines.

Both studies aim to determine how to design a health policy to improve efficiency from

both the social and economic perspectives. Moreover, the health policies are aimed to

be simpler-to-implement in practice. We can put both studies under the same objective

umbrella of designing effective yet simple policies, using the insights from the optimal MDP

policies.
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In the remainder of the thesis, we devote one chapter for each application area, Chap-

ter 2 for the study analyzing childhood vaccine administration policies, and Chapter 3 for

colorectal cancer screening and surveillance policies. Each chapter presents the motivation,

related literature, and proposed model of the problems separately. For the vaccine admin-

istration problem, we study structural properties and design a comprehensive numerical

analysis of the problem. Together these both educate us when developing the simple poli-

cies for the problem. We also perform a Pareto-efficiency analysis to better design the

initial inventory replenishment decisions. On the other hand, we study more on numeri-

cal experiments for the CRC problem. Thus, Chapter 3 presents an extensive numerical

experiment on the simpler-to-implement policy derivation. We also provide an idea of an

analytic model, a bi-criteria constrained MDP model.

11



Chapter 2

Designing Effective Childhood

Vaccine Administration Practices

In this chapter, we introduce the problem of designing effective childhood vaccine admin-

istration practices. The proposed model introduces the concept of using different sizes of

multi-dose vials during a replenishment cycle, and aims to determine a vaccine administra-

tion policy that dynamically decides which vial-size to use next during a clinic-day. The

following sections present the motivation of this study, related literature review, proposed

MDP model, and the structural and numerical analysis. We also provide a heuristic pol-

icy that uses the intuition from the problem analysis, and develop vaccine administration

policies that are simple enough to follow in practice while achieving similar coverages as

the optimal policies. We then discuss our findings in detail at the end of Chapter 2.

2.1 Introduction

Infectious diseases are among the leading causes of death, i.e., approximately 20% of world-

wide deaths in 2012 were caused by infectious diseases (WHO, 2012). The burden of infec-

tious diseases is quite significant, especially in developing countries (Clemens et al., 2010).
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Although they are mostly preventable or treatable, each year diseases such as diarrhea,

lower respiratory infections of children, HIV/AIDS, hepatitis B, tuberculosis, malaria, and

measles cause more than 13.7 million deaths worldwide, accounting for nearly 90% of deaths

recorded in the poorest countries (Moxon et al., 2011).

Infectious diseases are especially devastating for children, with approximately 10 mil-

lion pediatric deaths per year (Clemens et al., 2010). Pediatric vaccination is the pri-

mary preventive measure against infectious diseases among children GAVI (2012); Ozawa

et al. (2011); Stack et al. (2011), and effectively reduces pediatric deaths (WHO et al.,

2015; Shefer et al., 1999). Therefore, the World Health Organization (WHO) runs the

Expanded Program on Immunization (EPI) and recommends routine pediatric vaccina-

tion with Bacille Calmette-Guérin (BCG), diphtheria-tetanus-pertussis (DTP3), polio, and

measles vaccines.

There are ongoing efforts towards improving routine childhood vaccination coverage;

EPI has increased coverage of these four pediatric vaccines from 5% to 84% since 1974.

In addition, the Global Vaccine Action Plan (GVAP) targets improving coverage rates

for all vaccines including DTP3 (a major performance indicator of national immunization

programs) to 90% in every country and 80% in every district (WHO et al., 2015). Recent

studies report that increasing the coverage of routine pediatric vaccines in the world’s

poorest countries to 90% between 2011-2020 (as GVAP targets) would avert 6.4 million

pediatric deaths, 63, 000 disabilities, and 426 million illnesses. This would save $6.2 billion

in disease treatment costs and $145 billion in productivity losses (Ozawa et al., 2011; Stack

et al., 2011).

Despite the benefits of vaccination, its full potential has not been achieved, as current

vaccination practices have failed in achieving the targeted coverage rates. The estimates of

WHO and the United Nations Children’s Fund (UNICEF) show that although the coverage

rate of DTP3 vaccine increased from 20% to 84% between 1980 and 2013, 21.8 million

eligible children could not complete DTP3 vaccine series in 2013 (UNICEF and WHO,

2014). Moreover, some developing countries are significantly below these global averages,

e.g., the DTP3 coverage is still less than 50% in 6 countries (UNICEF and WHO, 2014).
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Although it is desirable to improve vaccination coverage by increasing accessibility to

vaccination services around the world, this is hard to achieve because many countries have

less accessible regions lacking the necessary storage, transportation, and administration

conditions. Improving the accessibility in such countries may take years. Due to this and

other similar factors, global coverage rates did not improve between 2010-2013 (UNICEF

and WHO, 2014). Another way to increase vaccination coverage is improving efficiency of

vaccination practices via reducing vaccine wastage which is defined as “loss by use, decay,

erosion, or leakage or through wastefulness”. It is reported that vaccine wastage accounts

for 50% of vaccines distributed around the world in 2005 (WHO, 2005). Recently, countries

put more effort in reducing vaccine wastage due to increasing vaccine costs during the last

two years (WHO, 2005).

In this context, novel methods for efficient management and planning of vaccine ad-

ministration practices are needed to reduce vaccine wastage and further increase vaccine

coverages. There are basically two categories of vaccine wastage: i) wasting unopened

vials due to expiration (decay, erosion) or leakage, ii) wasting unused portion of opened

multi-dose vials due to ineffective vaccine administration strategies as well as inappropri-

ate handling practices and contamination (Setia et al., 2002). Because the latter category

contributes more to the total vaccine wastage and is associated with more variability com-

pared to the prior one, we focus on vaccine wastage in opened multi-dose vials (open-vial

wastage) in this study.

Although the use of preloaded single-dose syringes and availability of proper cold-

storage minimize vaccine wastage in North America, the practices in developing countries

suffer from open-vial wastage due to the use of multi-dose vials and lack of appropriate

storage/handling conditions. When multi-dose vaccine vials cannot be kept under ideal

storage conditions in clinics lacking proper equipment or during outreach vaccination ses-

sions, the remaining doses from the opened vials must be discarded at the end of the day

(WHO, 2014a). The high open-vial vaccine wastage rate in developing countries is one

of the main obstacles in achieving GVAP’s targets on global vaccine coverage rate (WHO

et al., 2015; UNICEF and WHO, 2014). The success of a pediatric vaccination program is

often associated with the strength of the vaccine delivery systems within a country (Mc-
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Coy et al., 2009). Therefore, developing countries recently put more effort in improving

their vaccine delivery systems and the effectiveness of their immunization programs (WHO,

2005). However, innovative short-term and long-term strategies are still needed to reduce

pediatric vaccine wastage and improve vaccine coverage (Moxon et al., 2011; Briss et al.,

2000). Administering pediatric vaccines from multi-dose vials of different sizes efficiently

has been promoted as a potential short-term solution to this problem Parmar et al. (2010);

Drain et al. (2003), while accessibility to remote districts and the availability of proper

cold storage are improved to solve this problem permanently in the long-run.

Using single-dose vials minimizes the open-vial wastage (and maximize demand cover-

age), it is a very costly practice. Recent studies show that single-dose vials may not be

cost-effective (if not infeasible) compared to using a multi-dose vial for routine pediatric

vaccination in particular developing countries (Lee et al., 2010, 2011; Assi et al., 2011).

Administration of the same-size multi-dose vaccine vials by dynamically deciding whether

to open a new vial or to terminate vaccination service for the current day has been ad-

dressed in the literature (Mofrad et al., 2014, 2016). The concern with this practice is that

vaccine wastage might still occur and a significant number of patients might be denied

service due to early termination of vaccination service. A promising direction to alleviate

these concerns is holding a vaccine inventory of multi-dose vials in different sizes, and dy-

namically using them to further reduce vaccine wastage and the number of patients denied

service.

In this context, we propose a novel discrete-time finite-horizon Markov decision process

model to determine i) which vial size should be used after the depletion of the previ-

ously opened vial and ii) when to terminate the vaccination service during a clinic day.

We take society’s perspective, and maximize the expected number of doses administered

(representing the benefit to the society) from the available pediatric vaccine inventory of

multi-dose vials in different sizes. We may use the number of doses administered and benefit

interchangeably hereafter. Our numerical analysis specifically focuses on measles, DTP-

HepB-Hib (Pentavalent), yellow fever (YF), and BCG vaccination in developing countries.

These vaccine types are included in most routine childhood vaccination programs; thus,

more data is available for these vaccines in the literature. In addition, these vaccine types
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are available in various vial sizes including 2-, 5-, 10-, and 20-dose vials in developing coun-

tries; therefore, this provides us ample problem instances to show the effect of vial sizes on

the performance of the proposed approach. We compile data about the routine pediatric

vaccination practices in developing countries from clinical literature. Details about these

vaccines are presented in Appendices B. In developing countries, vaccine administration

practices may be carried at drop-in clinics, i.e., fixed sites for vaccination (e.g., hospitals,

health clinics, etc.) or through outreach sessions providing mobile vaccination. Our study

focuses on the vaccination practices at drop-in clinics.

Using the proposed model, we show that the optimal policies are of control-limit type.

In addition, we numerically illustrate that vaccine coverage may be improved to desired

levels by keeping vaccine doses in two different vial sizes (i.e., small and large vials) and

administering them dynamically even without early termination of vaccination service.

Note that there is a trade-off between reducing open-vial wastage by using smaller vials

and facing higher total cost, which is important to consider for developing countries. The

proposed model also helps determining the best inventory levels for each vial size to balance

this trade-off. Our numerical results from a Pareto-frontier analysis based on the MDP

model indicate that vaccine administration practices can be improved to increase expected

demand covered cost-efficiently (i.e., without increasing the total cost significantly or at

all) by determining the ideal levels of the initial vaccine inventory held in small and large

vials.

2.2 Literature

Operations research (OR) applications in the vaccination literature primarily focus on (i)

effective allocation of vaccine resources to mitigate infectious diseases Dalgıç et al. (2017);

Yarmand et al. (2014); Medlock and Galvani (2009); Brandeau (2005); Weniger et al.

(1998); (ii) determining the optimal biological composition of vaccinesOzaltin et al. (2011);

Cho (2010); Kornish and Keeney (2008); Lim and Lee (2008); (iii) planning vaccine pro-

curement, pricing, and distribution mostly from the supply chain management perspective
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Dai et al. (2016); Robbins and Jacobson (2015); Ramirez-Nafarrate et al. (2015); Fleis-

chhacker et al. (2015); Proano et al. (2012); Robbins and Jacobson (2011); Jacobson et al.

(2006), (iv) pediatric vaccine coverage and wastage in developing countries and the impact

of vial size selection on them.

We position this study within a few studies in (iv), and yet differentiate our work from

them because this study: (1) proposes using several vial sizes interchangeably during a

clinic day; (2) presents an analytic model to determine the optimal vaccine administration

decisions; (3) suggests an alternative administration practice to improve the current vaccine

coverage through reducing open-vial wastage in developing countries; (4) finds initial vial

inventory levels for each vial size that improves the current practice, without significantly

increasing the total cost.

Most studies in (iv) analyze the effect of multi-dose vial size on open-vial wastage

and total cost by statistically estimating vaccine wastage rates using empirical data, or

explicitly modeling the demand arrival and vaccine wastage processes. Guichard et al.

(2010) estimate vaccine wastage rates in Bangladesh in 2004 by analyzing data from vaccine

distribution and stock registries with cluster sampling. They show that the average vaccine

wastage from opened vials is significantly larger than that from unopened vials for various

pediatric vaccines (e.g., 84.4% and 0.5% for BCG vaccine, respectively).

Parmar et al. (2010) use empirical data from WHO to estimate the ranges of pneumo-

coccal conjugate vaccine (PCV ) wastage rates (25th − 75th percentile) for 1-, 2-, 5- and

10-dose vials, and determine associated cold chain, vaccine procurement, and wastage costs

for several developing countries based on a set of hypothetical cost functions. They empir-

ically determine the best vial size option with the lowest average total cost per vaccinated

child for each country. Parmar et al. (2010) show that although multi-dose vials may be

the best for inexpensive vaccines such as BCG and DTP, higher wastage rates can negate

the savings realized from lower storage and purchasing costs per dose of multi-dose vials

for expensive vaccines such as PCV. Similar observations are made by others (e.g., Drain

et al. (2003)).

Lee et al. (2010) and Yang et al. (2014) analyze the cost-effectiveness of various multi-
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dose vial sizes for several pediatric vaccines with limited open-vial shelf-life by explicitly

modeling vaccine wastage. Lee et al. (2010) propose an spreadsheet model to estimate

the expected vaccine utilization and costs associated with vaccine wastage, vial disposal,

and vial storage for each vial size based on a Poisson arrival process representing vaccine

demand realization. Using this approach, Lee et al. (2010) determine the most cost-saving

vial size (among all feasible options) for different demand levels. Yang et al. (2014) )

analyze the session size data of WHO for four countries to derive the best-fit statistical

arrival processes for vaccine demand realization, and then use the approach proposed in

Lee et al. (2010) to compare 5-dose and 10-dose vial options for each country. They report

that using 5-dose vials reduces open-vial wastage while increasing the expected total cost.

Dhamodharan and Proano (2012) propose a binary integer programming model integrated

into a Monte Carlo simulation (specifying a sample of vaccine demand realizations) to

determine the vial size and inventory reordering level combinations that minimize the

total cost of vaccine procurement and wastage for specific vaccine types. They validate

their approach by comparing the optimal vial sizes they derive with those from (Lee et al.,

2010).

A few studies in (iv) also analyze the effect of vial size on the performance of a vac-

cination program while considering the capacity limitations in storage and transportation

of smaller dose vials. Lee et al. (2011) and Assi et al. (2011) study the effect of using

different vial sizes for a set of vaccines on the overall supply chain performance, open-vial

wastage, and costs, using dynamic discrete-event simulation models that keep track of

vaccine inventory levels and their daily utilization in facilities distributed over regions of

Niger and Thailand, respectively. Their numerical results illustrate that even though using

smaller vial sizes may result in lower open-vial wastage, they have larger per dose volumes

which may reduce the vaccine availability because of increased storage and transportation

capacity needs.

Although there are several papers analyzing the sizes of vials in a vaccine inventory,

to the best of our knowledge, there is only one analytic model in the literature, Mofrad

et al. (2014), that studies how vaccine doses from same-size vials should be administered

to maximize the demand coverage. Mofrad et al. (2014) determine the optimal time to
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terminate vaccination service in a clinic for the rest of the day, by using a finite-horizon

discrete-time Markov decision process (MDP) model with the objective of maximizing the

expected total number of doses administered, based on the available vaccine inventory

level, and the number of days until the next inventory replenishment. They state that

termination of vaccination service for the rest of the day, rather than opening a new vial

for the next patient, may help in avoiding open-vial wastage. Mofrad et al. (2014) prove

the existence of the optimal threshold-type policies for daily termination of vaccination

service. In a follow-up study, Mofrad et al. (2016) extend their numerical analyses to

provide guidance to practitioners about the best selection of vaccination clinic operating

hours and session frequency. Using a simulation model, they conduct sensitivity analyses

on model parameters and analyze the robustness of the decisions derived from their MDP

model to random vial yield.

The aforementioned studies generally agree that selection of the ideal vial size depends

on several factors including vaccine characteristics, wastage rates, required coverage levels,

targeted vaccination program efficiency, available storage/transportation capacities, costs,

and demand levels. As a result, while one study highlights that the savings from using

larger vials may not compensate for the increase in wastage cost Parmar et al. (2010),

another one reports that the extra procurement cost associated with smaller vials can

negate the savings from wastage cost (Yang et al., 2014). Such conflicting observations

in the literature illustrate the complexity of the best vaccine administration policy. More

comprehensive and innovative policies are still in need since the current practices suffer

from high open-vial wastage rates even with the actively promoted options in use (e.g.,

outreach sessions, scheduled appointments, etc.) (Guichard et al., 2010).

All of the studies mentioned above consider either keeping all vaccine stocks in smaller

same-size vials or dynamically terminating vaccine administration during a clinic day. Al-

though both approaches can increase vaccine coverage and reduce vaccine wastage, adopt-

ing the former alone is associated with higher vaccine procurement costs, whereas the latter

increases the number of patients denied service. Previous studies highlight the potential

of using a mixture of vial sizes in vaccine administration to further improve vaccination

practices (Parmar et al., 2010; Drain et al., 2003). A vaccine administration strategy that
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dynamically uses a mixture of vial sizes (e.g., small and large vials) may be less expen-

sive than always using small vials, and may terminate vaccine administration services as

infrequently as possible to improve service rate. The feasibility of keeping different sizes

of vaccine vials in inventory, and using them dynamically over time to cover the vaccine

demand is implied by the previous studies promoting it as an alternative to existing vacci-

nation practices Parmar et al. (2010); Drain et al. (2003), and reports of WHO stating that

pediatric vaccines such as measles, pentavalent, YF, and BCG vaccines may be available

in several vial sizes in developing countries (GAVI, 2015a). However, the benefits of such

pediatric vaccine administration policies are not evaluated in the literature.

In order to fill the preciding gap, our MDP model incorporates the option of keeping

vaccine doses in vials of different sizes, and analyzes the decisions of selecting the size of

the vial to open next and the time of service termination. We generalize the structural

results in Mofrad et al. (2014) to the case of non-homogeneous vial sizes, and provide new

analytical results specifying the effect of inventory level for each vial size on the optimal

solution. Through analytical and numeric results, we show the existence of the optimal

thresholds for switching from smaller to larger vials and terminating vaccination services,

which change monotonically in terms of time and inventory level. These dynamic optimal

policies may require managing a more complex inventory system, and cause variance in day-

to-day vaccination practices. Therefore, based on the monotone behaviour of the optimal

solutions to our MDP model, we derive easier-to-implement vaccine administration policies

to promote the applicability of our findings in practice.

Moreover, through a Pareto-frontier analysis, we identify a set of ideal initial inventory

levels for different vial sizes in the spectrum of expected demand covered and total cost.

We show that the expected demand covered can be increased to a desired level by keeping a

relatively small portion of the vaccines (e.g., < 18% for pentavalent) in small vials without

early termination of vaccination services. Thus, the proposed policies may improve the

pediatric vaccine coverage to the targeted levels in exchange for a reasonably small (if at

all) increase in cost compared to administering vaccines from large vials. The insights

reported in this thesis are unique contributions to the literature because Mofrad et al.

(2014) and Mofrad et al. (2016) do not consider the option of using different size vials,

20



and they provide a limited analysis of the effect of initial pediatric vaccine inventory on

demand coverage and total cost.

2.3 MDP Formulation

We determine the optimal vaccine administration policy using an MDP model that tracks

the number of available vials of each size and the time until the next inventory replenish-

ment. When a patient arrives to get vaccinated after the previously opened vial is depleted,

the MDP model considers two decisions; terminating the vaccination service for the rest of

the day, or continuing the service by selecting which size of vial to open next in order to

maximize the benefit to society. The main assumptions of our model are listed as below.

(A1) The daily vaccine demand follows a Poisson process.

(A2) The initial inventory level for each vial size is known and vaccine inventory is peri-

odically replenished to this level.

(A3) The unused doses from an open-vial are discarded at the end of each clinic day.

(A4) Any demand after service termination is lost.

While (A1), (A2), and (A3) are generally valid in the current vaccination practice,

(A4) may hold only for particular healthcare settings. (A1) is justifiable since several

studies show that a Poisson process may represent vaccine demand arrival in some of the

developing countries reasonably well (Yang et al., 2014; Rajgopal et al., 2011). Note that

this is a common assumption among the studies proposing efficient vaccine administration

practices (Mofrad et al., 2014; Yang et al., 2014; Rajgopal et al., 2011; Lee et al., 2010).

(A2) also complies with the current practice as many studies in the literature assume

periodic replenishment of vaccine inventory based on the information and data that they

collect from several developing countries Lee et al. (2011); Assi et al. (2011); Guichard et al.

(2010). In addition, considering that WHO recommends discarding unused vaccine doses
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6-8 hours after opening a vial in the absence of proper cold-chain storage facilities (WHO,

2016b), (A3) is in line with the current practice guidelines. Although there can be practices

for which (A4) is not valid, considering accessibility issues in developing countries, we can

assume that a significant portion of the denied patients may not visit the clinic the next

day. Furthermore, the proposed model aims at delaying early termination by using small

vials, which limits the expected number patients denied service.

Table 2.1 presents the notation used throughout the thesis. The time horizon, i.e.,

the time between two vaccine inventory replenishments, is divided into clinic days, each

consisting of η timeslots with equal length τ . We set τ (η) short (large) enough to en-

sure that the probability of having more than one demand in each timeslot is negligible.

Therefore, the Poisson demand arrival within a clinic day is approximated by a discrete-

time arrival process with independent and identically distributed (IID) geometric inter-

arrival times (p = µ/η). The probability that the next arrival occurs x timeslots later is

pX(x) = p(1− p)(x−1), x = {1, .., η}, and pX(η + 1) = (1− p)η.

We denote the state of our MDP model by s = (t,q, h), where t ∈ T, q ∈ Q, and h ∈ H
refer to the number of days until the next replenishment (including the current day), the

number of vials on-hand, and the current timeslot for a service decision, respectively. The

decisions are always made at the beginning of a timeslot. In other words, an action is

taken at timeslot h if an arrival occurs after the depletion of the previously opened vial.

While considering termination of vaccination service, we assume that either termination

is allowed at any time, starting from the beginning of each day (terminated service), or

no termination is allowed until the end of each day (continuous service). Let hc be the

earliest timeslot at which daily vaccination services can be terminated. Then, these service

scenarios are denoted by hc = 0 and hc = η + 1, respectively. Hence, the possible actions

for state s, As, include opening a type i vial (i) and termination of vaccination service (N)
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Table 2.1: List of notation

Notation Desciption

State indices and parameters
T The total number of days in a replenishment cycle
t ∈ T ≡ {1, .., T} The number of days remaining until the next inventory replenishment
i ∈ I ≡ {1, .., n} The vial type among n different size options
zi The number of doses per type i vial, ∀i ∈ I s.t. zi < zi+1.
Qi The initial inventory level for type i vials, ∀i ∈ I
Q = (Q1, Q2, .., Qn) The vector representing Qi values, ∀i ∈ I
qi ∈ Qi ≡ {0, 1, .., Qi} The number of type i vials on-hand, ∀i ∈ I
q = (q1, q2, .., qn) ∈ Q The vector representing qi values, ∀i ∈ I where Q ≡ Q1 × . . .×Qn

η The total number of timeslots in a day
τ The length of each timeslot, i.e., τ = 1/η day
h ∈ H ≡ {1, .., η} The timeslot of the first arrival after the previously opened vial is de-

pleted

Probability distributions and parameters
µ The daily demand rate for vaccination service
p = µ/η The probability that a demand for vaccination service arrives at the

beginning of a timeslot
pX(x) The probability that the next arrival occurs x timeslots later
Dh The binomial random variable denoting the total demand occurred be-

tween timeslots h and η
Y ih The negative binomial random variable referring to the timeslot at which

the first arrival occurs after depleting the type i vial opened at timeslot
h

Secondary performance metrics
Ni(t,q, h) The expected number of type i vials opened starting from state s until

the next replenishment under the optimal policy
Ni(t,q) The expected number of type i vials opened starting from the beginning

of day t until the next replenishment under the optimal policy
Wi(T,Q) The expected open-vial wastage from type i vials under the optimal

policy
W (T,Q) The expected open-vial wastage of the optimal policy during the replen-

ishment cycle
ωi(T,Q) The expected percentage of open-vial wastage from type i vials under

the optimal policy
ω(T,Q) The expected percentage of open-vial wastage under the optimal policy
φi(T,Q) The expected percentage of demand covered by the doses administered

from type i vials under the optimal policy
φ(T,Q) The expected percentage of demand covered under the optimal policy
π(T,Q) The expected total cost of the optimal policy within a replenishment

cycle
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List of notation continued

Notation Desciption

Model components and parameters
s = (t,q, h) ∈ S The current state of the system where S ≡ T×Q1 × ..×Qn ×H
As ∈ As ⊂ {1, 2, .., n,N} The action in state s
A∗s ∈ As The optimal action taken in state s
hc ∈ {0, η + 1} The earliest timeslot at which vaccination service can be terminated
Ihc ∈ {0, 1} The indicator function defining the service scenario, i.e., Ihc = 1 if it is

a terminated service, Ihc = 0 if it is a continuous service
V (t,q, h) The maximum expected number of doses administered until the next

replenishment starting from state s
ν(t,q) The expected number of doses administered starting from the beginning

of day t to the next replenishment given the inventory of q
gi(t,q, h) The expected number of doses administered until the next replenishment

when the decision is opening a type i vial in state s
ei The binary row vector showing whether a type i vial is opened, i.e.,

ei,j = 1 if j = i, ei,j = 0 otherwise, ∀i, j ∈ I, ∀s ∈ S
Vi(t,q, h) The expected number of doses administered from type i vials starting

from state s to the next replenishment cycle under the optimal policy
νi(t,q) The expected number of doses administered from type i starting from

the beginning of day t to the next replenishment vials under the optimal
policy

Iis The indicator function showing whether the optimal action in state s is
opening a type i vial

ks The index variable denoting the optimal action in state s, i.e., ks = i
when A∗s = i, ks = n+ 1 when A∗s = i

es The binary row vector showing the type of the vial opened in state s,
i.e., es,i = 1 if Iis = 1, es,i = 0 otherwise, ∀i ∈ I, ∀s ∈ S

h∗i (t,q) The timeslot when the optimal action is using a type i vial for the first
time on day t given the vaccine inventory of q

h∗N (t,q) The timeslot when the optimal action is terminating daily vaccination
services for the first time on day t given the vaccine inventory of q

αi The proportion of doses held in type i vials at the beginning of replen-
ishment cycle

Cost parameters
ci The procurement cost per dose of a type i vial, ∀i ∈ I
wi The weight of an empty type i vial , ∀i ∈ I
wd The weight per dose
wsyr The weight of an empty syringe
cd The cost per kg of medical waste disposed
vi The volume per dose of a type i vial, ∀i ∈ I
cs The unit storage cost
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as stated by the following definition.

As ∈ As ≡


{1, 2, .., n,N} \

⋃
{i: qi=0}

{i} , if hc = 0

{1, 2, .., n} \
⋃

{i: qi=0}
{i} , if hc = η + 1

Note that hc = η + 1 represents the traditional administration policy of providing full-

time service as long as vaccine stocks are available (as in Yang et al. (2014), Lee et al.

(2011), Lee et al. (2010)), and hc = 0 allows termination of vaccination service at any time

as in Mofrad et al. (2014). Indeed, any minimum working-hour constraint can be easily

incorporated into the model; however, we exclude this option for brevity of the analyses.

Early termination of vaccination services requires denying patients a vaccination, which

reduces access to medical resources and equity in resource allocation. We aim to derive

optimal policies with continuous service, whose performance is as good as those with service

termination, to eliminate the cost/burden of denying patients the service. That is, we use

optimal policies with service termination for benchmarking. Figure 2.1 visualizes the state

components and progress of time in our MDP model when two different vial sizes are

available. A detailed discussion of the model parameters and their specifics is presented.

𝒛𝟐doses

per vial

Type 2 vial

𝒛𝟐doses

per vial

Type 2 vial

𝒛𝟏doses

per vial

Type 1 vial

𝒛𝟏doses

per vial

Type 1 vial

Day 1

t=20

Day 2

t=19

Day 20

t=1

Replenishment cycle of T=20 days

Initial vaccine inventory 

level for each vial size

Q1 Q2

Discard any doses from opened vials (open-vial wastage)

Timeslot 1

Timeslot 2

h=Timeslot 4

Timeslot 479

Timeslot 480 (η)

Day 10

t=11

Time 0

Time 1

Time 479

Time 480

Day 11

t=10

Timeslot 1

Timeslot 2

Timeslot 479

Timeslot 480 (η)

expected 

daily 

demand

μ
State s=(t,q1 ,q2 ,h)

=(# of remaining days, # of type 1 vials, # of type 2 vials, timeslot of the decision)

=(11,8,2,4)

→ Patient asking for a vaccine dose, no opened vial available at the beginning of h

→ A decision occurs: (i) Open a type i vial, (N) terminate daily vaccination service*

*: Only when hc=0 (terminated service scenario)

𝜏

Figure 2.1: A representation of the MDP model
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The benefit of opening a new vial depends on the remaining service time on a given day,

i.e., (η − h). The total demand by the end of the clinic day, Dh, is binomially distributed

with parameters (η−h, p) as given in Equation 2.1. The possible values of Dh start from 1

due to the definition of h; i.e., the decision of opening a vial can occur only upon an arrival.

In addition, Y i
h refers to the timeslot of the first arrival after the depletion of a zi-dose vial

opened at timeslot h. Basically, Y i
h has a truncated negative binomial distribution with

parameters zi and p as stated in Equation 2.2.

pDh(d) =


(
η−h
d−1

)
p(d−1)(1− p)(η−h−(d−1)), d ∈ {1, .., η − h+ 1}, h ∈ H \ {η + 1}

0, otherwise

(2.1)

pY ih(y) =


0, y < h+ zi(
y−h−1
zi−1

)
pzi(1− p)(y−h−zi), y ∈ {h+ zi, .., η}, h ∈ H \ {η + 1}∑zi

k=1 pDh(k), y = η + 1

(2.2)

2.3.1 Optimality Equation

We denote the optimal value function of the MDP model by V (t,q, h), which refers to the

maximum expected number of doses administered until the next replenishment starting

from state s = (t,q, h) ∈ S. The following Bellman optimality equation characterizes

V (t,q, h) for both service scenarios with the use of an indicator function (Ihc), which is

equal to 1 and 0 if hc = 0 and hc = η+ 1, respectively. Hence, for all t ∈ T, q ∈ Q, q > 0,

h ∈ H, and i ∈ I:

V (t,q, h) = max

{
Ihcν(t− 1,q), max

i∈{1,..,n}
{gi(t,q, h)}

}
, (2.3)
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where

ν(t,q) =

η+1∑
h=1

V (t,q, h)pX(h), (2.4)

gi(t,q, h) =

η∑
y=h+zi

[
zi + V (t,q− ei, y)

]
pY ih(y) +

zi∑
d=1

[
d+ ν(t− 1,q− ei)

]
pDh(d), (2.5)

Ihc =

1, hc = 0

0, hc = η + 1
, and ei =

( 1 . . . i− 1 i i+ 1 . . . n

0 . . . 0 1 0 . . . 0

)

In Equation 2.4, ν(t,q) denotes the maximum expected number of doses administered

from the beginning of day t to the next inventory replenishment, given the current vaccine

inventory levels for each vial size q. In Equation 2.5, gi(t,q, h) represents the expected

number of doses administered after opening a type i vial in state (t,q, h) and following the

optimal vaccine administration policy afterwards. The first term in the equation incorpo-

rates the possibility of depleting the opened vial before the end of the day and observing

a demand, prompting a new decision between timeslots h + zi and η. The second term

represents the case where the vial opened at timeslot h is not completely depleted during

the rest of the clinic day t.

When the vaccination service scenario allows termination, Ihc = 1 in Equation 2.3. The

objective function of this scenario accrues ν(t,q) by terminating vaccination service for the

rest of the current clinic day if the maximum expected benefit of saving the current vaccine

inventory for the next day is greater than that of opening a new vial of any size at timeslot

h of day t, i.e., ν(t,q) > max
i∈{1,..,n}

{gi(t,q, h)}. On the other hand, in case of continuous

vaccination service scenario (i.e., hc = η + 1), the model only decides which vial size to

open based on the expected demand level during the remaining portion of the day. In this

formulation, we do not consider any terminal rewards; V (0,q, h) = 0, ∀ q ∈ Q, h ∈ H. In

addition, we define V (t,q, η + 1) as the number of doses that can be administered after

day t is over (h = η + 1 on day t). Since the clinic is closed starting from this time, i.e.,

timeslot η + 1 on day t, until the beginning of the next day, i.e., timeslot 1 on day t − 1,
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we assume V (t,q, η + 1) = ν(t − 1,q), ∀ t ∈ T, q ∈ Q. Lastly, we set V (t,0, h) = 0, for

all t ∈ T, h ∈ H where 0 refers to a vector of zeros.

The following equations define the expected number of doses administered from each

vial type under the optimal policy which is important to track for the derivation of sec-

ondary performance metrics. Let Vi(t,q, h) specify this amount for type i vial and A∗s ∈ As

be the optimal action taken in state s = (t,q, h). Hence, for all t ∈ T, q ∈ Q, h ∈ H, and

i ∈ I:

Vi(t,q, h) =

(
max

j∈{1,..,n}
Ijs

)[ η∑
y=h+zks

(
I iszi + Vi (t,q− es , y)

)
pY ksh

(y)

+

zks∑
d=1

(
I isd+ νi (t− 1,q− es )

)
pDh (d)

]
+

(
1− max

j∈{1,..,n}
Ijs

)
νi(t− 1,q),

νi(t,q) =

η+1∑
h=1

Vi(t,q, h)pX(h), where ∀s = (t,q, h) ∈ S

I is =

1, if A∗s = i

0, otherwise
, ks =

i, if A∗s = i

n+ 1, if A∗s = N
, es =

(
I1
s I2

s . . . Ins

)

2.3.2 Secondary Performance Metrics

Although we set the objective of the proposed MDP model as maximizing the expected

number of vaccine doses administered to represent a societal perspective, secondary perfor-

mance measures such as expected total cost, expected number of vials used, and expected

number of doses wasted are also important when evaluating the economic efficiency of pro-

posed policies. Assessing whether the proposed policies may cost-efficiently (not increasing

costs significantly or at all) improve the performance of pediatric vaccine administration

is crucial for developing countries due to scarcity of resources.

We define the expected total number of type i vials opened until the next inventory

replenishment under the optimal policy as Ni(t,q) given the vaccine inventory levels for

28



each vial size q = (q1, q2, .., qn) at the beginning of day t. We derive this metric as follows:

Ni(t,q) =

η+1∑
h=1

Ni(t,q, h)pX(h), ∀t ∈ T,∀q ∈ Q, ∀i ∈ I

where Ni(t,q, h) denotes the expected number of type i vials opened starting from state

(t,q, h) until the next inventory replenishment.

Ni(t,q, h) = ( max
j∈{1,..,n}

Ijs )

[
η∑

y=h+zks

(
I is +Ni (t,q− es , y)

)
pY ksh

(y)

+

zks∑
d=1

(
I is +Ni (t− 1,q− es )

)
pDh (d)

]

+

(
1− max

j∈{1,..,n}
Ijs

)
Ni(t− 1,q), ∀t ∈ T,∀q ∈ Q,∀h ∈ H,∀i ∈ I

If the optimal action is to open a new vial at timeslot h, then this vial and the expected

number of vials to be opened during the rest of day t are included in the calculation of

Ni(t,q, h). If the optimal action is to terminate vaccination service for the day (N ), then

the expected number of vials to be opened is calculated starting from the beginning of

the next day, i.e., Ni(t,q, h) = Ni(t − 1,q). Naturally, the following hold for each vial

type i, i ∈ I: Ni(t,0, h) = 0 ∀t ∈ T, h ∈ H; Ni(0,q, h) = 0 ∀q ∈ Q, h ∈ H; and

Ni(t,q, η + 1) = Ni(t− 1,q) ∀t ∈ T, q ∈ Q.

Let W (T,Q) be the expected open-vial wastage of the optimal policy during the re-

plenishment cycle and Wi(T,Q) be the expected open-vial wastage from type i vial for

a given (T,Q) pair. We calculate Wi(T,Q) as the difference between the expected total

number of doses in the opened type i vials and the expected number of doses administered

from type i vials.

W (T,Q) =
n∑
i=1

Wi(T,Q), where Wi(T,Q) = ziNi(T,Q)− νi(T,Q) ∀i ∈ I
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When we compare the optimal vaccine administration policies for different parameters,

we consider the expected percentage of demand covered, i.e., φ(T,Q), and the expected

percentage of open-vial wastage, i.e., ω(T,Q). The definitions of these two metrics are

similar to those in Mofrad et al. (2014). Let φi(T,Q) be the proportion of the expected

demand vaccinated via administering doses from type i vial over the expected total demand,

and ωi(T,Q) be the proportion of doses wasted from type i vial over the expected total

number of doses in the opened vials, respectively. Hence, for all i ∈ I, these metrics are

calculated as follows:

φ(T,Q) =
n∑
i=1

φi(T,Q), where φi(T,Q) =
νi(T,Q)

µT

ω(T,Q) =
n∑
i=1

ωi(T,Q), where ωi(T,Q) =
Wi(T,Q)

ν(T,Q) +W (T,Q)

We also calculate the expected total cost of the optimal policy within a replenishment

cycle based on Equation 2.6. The expected total cost (π(T,Q)) comprises the costs of (i)

administered and wasted doses; (ii) disposing empty vials, syringes and wasted doses; and

(iii) storage. While (i) captures the increased vaccine procurement cost and the reduced

cost of wastage, (ii) and (iii) reflect the increased expenditure for disposing of more empty

vials and needing more storage space, due to holding a portion of doses in smaller vials in

the initial vaccine inventory, Q. Having non-homogeneous-size vials in the inventory may

complicate both inventory handling and disposal processes, and increase the likelihood of

errors. Therefore, the actual cost of disposal and storage may be higher than our estimates,

which can be addressed with additional sensitivity analyses. One can also incorporate

the societal cost of vaccine wastage (resulting from delayed immunization and increased

susceptibility to infectious diseases), and/or the cost of denying services to patients due

to service termination decisions, into the total cost function. However, these costs are

not readily available in the literature, and require additional modeling to derive them.

Furthermore, considering these costs would only improve the performance of the proposed
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optimal policies with continuous service, and strengthen our conclusions.

π(T,Q) =
n∑
i=1

[[
(νi(T,Q) +Wi(T,Q))× ci

]
+
[
Ni(T,Q)× (wi + wsyr × (zi + 1))× cd

]
+
[
Wi(T,Q)× wd × cd

]
+
[1

2
×Qi × zi × vi × cs

]]
(2.6)

2.4 Structural Properties

We now present a set of structural properties of the optimal value function and the optimal

vaccine administration decisions in terms of time and vaccine inventory on-hand. We

assume that set I represents the order of vial sizes, i.e., zi < zi+1 ∀i ∈ I n. The proofs

of the structural properties are available in Appendices A. Note that, h∗i (t,q) ∀i ∈ I, and

h∗N(t,q) refer to the timeslots when the optimal action for a given t and q is using a type

i vial and terminating daily vaccination service for the first time on that day, respectively.

That is, h∗i (t,q) = min{h ∈ H : A∗(t,q,h) = i} and h∗N(t,q) = min{h ∈ H : A∗(t,q,h) = N}.
Naturally, h∗N(t,q) = η+ 1 when hc = η+ 1 for all q ∈ Q\0 and h∗N(t,0) = 1 for all t ∈ T.

Proposition 1 states that the optimal value function, V (t,q, h), is non-increasing in h

under the terminated vaccination service scenario (hc = 0). However, this property does

not hold for the continuous service scenario (hc = η + 1) because, when there are fewer

remaining timeslots in a day, the demand realization in the rest of the current day may

leave more vaccine vials to be used in the next day leading to an increase in V (t,q, h) (See

Example 1).

Proposition 1. When hc = 0, the maximum expected number of doses administered until

the next inventory replenishment for a given state s = (t, q, h) is non-increasing in h. That

is, if 1 ≤ h1 ≤ h2 ≤ η, then V (t, q, h1) ≥ V (t, q, h2) for all t ∈ T, q ∈ Q.

Example 1. Suppose hc = η + 1, n = 2, T = 20, Q1 = 14, z1 = 5, Q2 = 15, z2 = 10,

η = 480, and µ = 24 (i.e., p = 0.05). When t = 2, q1 = 1, and q2 = 1, V (t, q1, q2, h)

is increasing between timeslots h = 386 and h = 437, e.g., V (2, 1, 1, 386) = 10.6125, . . .,
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V (2, 1, 1, 437) = 12.5270. This example implies that V (t, q, h) may increase in h under the

continuous service scenario when p is large enough.

Proposition 1 is sufficient to show that the optimal policies are of control-limit type

in terms of service termination decisions. That is, when hc = 0, the optimal action is to

terminate vaccination service at and after a particular threshold timeslot h∗N(t,q), for each

combination of day t ∈ T and inventory level q ∈ Q as stated by Theorem 1. The existence

of the optimal control-limit type policies simplifies the solution process for the proposed

model, which could be very useful in solving the problem instances with large state space

or in infinite-horizon. We observe that the optimal service termination decisions are also of

control-limit type when hc = η+ 1 for all the problem instances in our extensive numerical

experiments. Our numerical results also illustrate that such optimal threshold timeslots

exist for switching from using larger vials to smaller vials, i.e., A∗(t,q,h) ∈ {1, . . . , i, N} for

all h ≥ h∗i (t,q) = min{h ∈ H : A∗(t,q,h) = i}.

Theorem 1. When hc = 0, the optimal decisions for terminating vaccination service

are of control-limit type in terms of timeslot h. That is; there exists a threshold timeslot

h∗N(t, q) ∈ H for each combination of t ∈ T and q ∈ Q s.t. A∗(t,q,h) = N for all h ≥ h∗N(t, q).

For simplicity, we assume that vial size i + 1 is divisible to vial size i ∀i ∈ I n (i.e.,

zi+1 = nizi for an integer ni) in the rest of the paper. Propositions 2 and 3.a state

that V (t,q, h) is a non-decreasing function of the number of remaining days until the

next inventory replenishment (t) and the vaccine inventory on-hand (q) for both service

scenarios, respectively. These properties provide justification for some trends we observe

in our numerical experiments. For instance, h∗N(t,q) is non-decreasing when t decreases

and q increases for all problem instances analyzed in Section 2.5. In addition, Proposition

3.b illustrates that the optimal value function is non-decreasing as the proportion of the

smaller vials in the inventory increases for a given total number of vaccine doses.

Proposition 2. V (t, q, h) is non-decreasing in t, i.e., V (t1, q, h) ≤ V (t2, q, h) when 1 ≤
t1 ≤ t2 ≤ T for any given q ∈ Q, and h ∈ H.
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Proposition 3. V (t, q, h) ≥ V (t, q− r, h) for all t ∈ T, q ∈ Q, h ∈ H, and r = (r1 . . . rn)

if one of the following conditions holds;

a) qi ≥ ri ≥ 0 ∀i ∈ I or,

b) Recall that zi
zj

is integer, then, r = ei − zi
zj
ej when n ≥ i ≥ j ≥ 1, qi > 0.

The structural properties and observations reported above imply that when policy

makers design alternative pediatric vaccine administration policies that administer doses

from non-homogeneous size vials, they should only specify time thresholds to switch from

using a smaller size vial to a larger size one, and when to terminate vaccination services for

each day and vaccine inventory level. These thresholds increase or decrease in monotone

patterns, generally in the form of smooth curves (See Section 2.5.1), depending on the

number of days remaining in the replenishment cycle and the available vaccine stocks.

On one hand, this smooth monotone behavior suggests that implementing the proposed

optimal policies may not cause extreme variations in day-to-day practice. On the other

hand, implementing the proposed dynamic optimal policies would still cause variation in

day-to-day practices, and thus could be challenging for medical practitioners to apply in

real time. However, using the insights mentioned above, policy makers can design partially

dynamic policies by categorizing the remaining days and available inventory levels into

subgroups and assigning monotone time thresholds to these subgroups. The feasibility of

deriving such more-stable and easier-to-implement alternatives to the optimal policies is

illustrated in Section 2.5.

2.5 Numerical Results

We solve Equations 2.3–2.5 to derive the optimal administration policies for a set of child-

hood vaccines: pentavalent, measles, YF, and BCG. For ease of presentation, we consider

only two vial sizes (n = 2) for each vaccine type. Table 2.2 presents the data on fea-

tures of the vaccines used in our numerical analyses. We design a base case scenario that

represents the pediatric vaccine administration practices in developing countries. These
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practices usually replenish the clinic inventory on a monthly basis and provide service on

each weekday in order to eliminate excessive missed demand (Lee et al., 2011; Assi et al.,

2011; Guichard et al., 2010). Thus, we set the number of clinic days between two replen-

ishments to T = 20. We divide each day into η = 480 timeslots so that τ = 1 minute

can satisfy Poisson arrival assumption (see Appendices C for justification). We set the

base case demand rate to 11 patients per day (µ = 11) which complies with the reported

demand rates at drop-in clinics in developing countries (Yang et al., 2014; Chinnakali et al.,

2012; Guichard et al., 2010). Considering the fact that the initial inventory levels are often

determined based on the previous month’s vaccine demand Assi et al. (2011), we fix the

total number of doses available at the beginning of the time horizon to the expected total

demand (Q = 11× 20 = 220 doses). Note that we use the same base case vaccine demand

arrival rate for all vaccine types in our analysis because they all are on the routine pedi-

atric immunization schedule recommended by Organization et al. (2017). The base-case

demand rate (11/day) is within the range of daily pediatric vaccine demand rate reported

in the literature for all considered vaccine types (Lee et al., 2010; Guichard et al., 2010).

The parameter values are consistent with those in Mofrad et al. (2014). We examine the

base case under both service scenarios (i.e., hc = η + 1 and hc = 0) and conduct detailed

sensitivity analyses measuring the effects of length of time horizon (T ), initial inventory

level (Q), and vial sizes (z1, z2) on the performance of the proposed optimal policies.

In order to analyze the effect of the initial vaccine inventory levels for each vial size on

the performance of the optimal policies, we define αi as the proportion of vaccine doses

held in type i vials on day 1 (t = T ) in Equation 2.7. Note that the vaccine administration

policy for α1 = 0%, hc = η+1 reflects the current medical practice of providing continuous

service using a single vial type while the optimal policies for α1 = 0%, hc = 0 are the same

as those proposed in Mofrad et al. (2014). On the other hand, the optimal policies for

α1 > 0% under both service scenarios represent the alternative practices proposed by our

analysis.

αi = 100%
number of type i vials× number of doses in a type i vial

total number of doses
= 100%

Qi × zi
Q

, ∀i ∈ I (2.7)
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2.5.1 Optimal Vaccine Administration Decisions

We analyze the structures of the optimal policies for the base case parameters (T = 20,

Q = 220, η = 480, and µ = 11) and verify the existence of the properties presented

in Section 2.4. Figure 2.2 shows the optimal actions during all timeslots on particular

days (t ∈ {5, 10, 15, 20}) for various inventory levels (q1, q2) and vaccine types under the

terminated service scenario. This figure confirms that the optimal timeslot thresholds for

switching vial type and terminating vaccination service exist for all numbers of remaining

days, inventory levels, and vaccine type combinations. That is, once the optimal decision

is to open a small vial at the beginning of a timeslot for the first time on a given day,

the optimal decision is either to open a small vial or to terminate vaccination service (if

hc = 0) for the remaining timeslots on that day. In all cases, vaccines are administered from

small vials before terminating vaccination service for the day. We have verified that these

observations hold for all parameter combinations in our numerical experiment setting.

Figure 2.2 also illustrates that the optimal timeslot thresholds typically increase as the

number of remaining days until the next replenishment decreases and the number of large

vials on-hand (q2) increases. The optimal policies administer doses less conservatively for

any given pair of (q1, q2) as t decreases by using large vials for a longer duration of time

and terminating vaccination service later. Similarly, the optimal thresholds h∗1(t,q) and

h∗N(t,q) increase as q2 increases for all pairs of (t, q1) in our numerical experiments. These

two observations are intuitive as the benefit of saving available vaccines for the next day

is smaller when there are more vaccines on-hand to cover the demand for fewer days.

In the majority of the cases, h∗1(t,q) decreases and h∗N(t,q) increases when q1 increases

for a given pair of (t, q2). This pattern is reasonable as having more vaccines on-hand allows

later service termination and having more small vials leads to less conservative use of them

to cover the demand. Counterintuitively, this pattern may not always hold. For example,

h∗1(15, 5, 14) = 130 and h∗1(15, 6, 14) = 131 for measles vaccine (Figure 2.2f). In this case,

the model starts using small vials later when an additional small vial is available to keep

more small vials for the next days and better control the vaccine wastage in the rest of the

replenishment cycle. Moreover, the optimal policies terminate vaccination service later on
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a day when either z1 or z2 (sizes of small and large vials) decrease due to the additional

flexibility provided by smaller vials.

The above observations on the monotonic behaviors of the threshold timeslots h∗1(t,q)

and h∗N(t,q) are important, as they provide insights to practitioners on how the current

vaccine administration practices can be adjusted to improve vaccine coverage. Note that

when the available inventory is significantly greater than the expected total demand in

the remaining t days, the optimal policy may become indifferent between next opening a

small or a large vial. Our MDP model selects opening small vials in such cases to minimize

open-vial wastage. Therefore, in Figure 2.2, h∗1(t,q) may drop to zero as q1 + q2 increases.

For example, when t = 5 and q2 = 12, g1(t, q1, q2, h) = g2(t, q1, q2, h) for all q1 ∈ Q1, h ∈ H
for pentavalent vaccine (See Figure 2.2d). Such cases do not violate the monotonicity of

the optimal thresholds, as both large and small vials can be used at any timeslot. Also note

that the optimal timeslot thresholds for switching to small vials follow similar monotonic

trends under the continuous service scenario (see Appendices D).

2.5.2 Base Case Performance of the Optimal Policies

Figure 2.3 illustrates the expected base case performance of the optimal policies for all

vaccine types under various service and α1 value (the proportion of doses held in small

vials) scenarios. As α1 increases, the expected base case system performance improves in

terms of expected percentage demand covered (φ(T,Q)) and open-vial wastage (ω(T,Q))

in expense of increased expected total cost (π(T,Q)). The optimal policies using only small

vials (α1 = 100%) significantly reduce ω(T,Q) compared to those using only large vials

(α1 = 0%) for all vaccine types. However, most of the performance improvements can be

achieved by only keeping a portion of vaccine stocks in small vials which costs significantly

less than using only small vials. For example, when hc = η + 1, the optimal policy for

pentavalent vaccine with α1 = 100% reduces ω(T,Q) from 28% to 4% while increasing the

expected cost by 75% compared to having α1 = 0%. The reduction in expected vaccine

wastage is from 12% to 4% for the same additional cost when hc = 0. On the other hand,

setting α1 = 18% reduces ω(T,Q) to 10% and 7% compared to α1 = 0% under continuous
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Table 2.2: Input data

Mean Low High Source

Weight per dose (wd), g UNICEF (2015)
Pentavalent vaccine 2.840 1.120 4.827
Measles vaccine 1.314 1.1478 1.481
YF vaccine 1.340 0.448 2.610
BCG vaccine 0.104 0.096 0.112

Weight of vaccine vial disposals (wi), g Lee et al. (2010)
2-dose vial 1.914 1.723 2.106
5-dose vial∗ 2.612 2.391 2.833
10-dose vial 3.522 3.169 3.874
20-dose vial 5.531 5.431 5.631

Weight of reconstitution syringe disposal (wsyr), g 6.625 5.967 7.293 Lee et al. (2010)

Cost of medical waste disposal per kg (cd), $ 5.737 1.730 9.070 Lee et al. (2010)

Cost of vaccine storage per cm3 (cs), $ 0.030 0.027 0.033 Lee et al. (2010)

Volume per dose (vi), cm
3 Lee et al. (2010)

Pentavalent vaccine
2-dose vial 11.000 9.900 12.100
10-dose vial 4.400 3.960 4.840

Measles vaccine
5-dose vial 6.720 6.050 7.390
10-dose vial 3.500 3.150 3.850

YF vaccine
5-dose vial 6.500 5.850 7.150
20-dose vial 1.500 1.350 1.650

BCG vaccine
10-dose vial 2.200 1.980 2.420
20-dose vial 1.200 1.080 1.320

Cost per dose (ci), $ Lee et al. (2010)
Pentavalent vaccine
2-dose vial 3.500 3.250 3.750
10-dose vial 2.000 1.800 2.200

Measles vaccine
5-dose vial∗ 0.633 0.570 0.696
10-dose vial 0.246 0.221 0.271

YF vaccine
5-dose vial 0.728 0.655 0.801
20-dose vial 0.645 0.581 0.710

BCG vaccine
10-dose vial 0.191 0.172 0.211
20-dose vial 0.104 0.094 0.114

Low and high parameter values provide a range for the input data. Our numerical analyses in Section 2.5
are performed with mean values while low and high values are used for sensitivity analyses (see Online
Supplement H). The values obtained from interpolation are referred by ∗.
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and terminated service scenarios, respectively, in the expense of 14% increase in expected

total cost.

We define ᾱ1 as the minimum α1 value for which the optimal policy can attain more

than 95% of the improvement in φ(T,Q) achieved by the optimal policy with α1 = 100%.

The required ᾱ1 values are 18%, 18%, 82%, 82% respectively for pentavalent, measles, YF,

and BCG vaccines (see Appendix E for details). Note that when the size of large vials

decreases, the corresponding ᾱ1 value also decreases, e.g. ᾱ1 is 18% for measles vaccines

held in 5-dose and 10-dose vials; whereas, ᾱ1 is 82% for YF vaccines held in 5-dose and

20-dose vials under the base case scenario.

Figure 2.3 also shows that when the sizes of both vial types are lower than the daily

demand rate (e.g., for pentavalent and measles vaccines z1, z2 ≤ 11/day), the number of

doses administered increases and open-vial wastage decreases very rapidly as α1 increases.

Thus, the room for improvement diminishes before α1 reaches 100%. Additionally, when

α1 ≥ ᾱ1, the optimal policies with continuous service (hc = η + 1) perform close to those

with terminated service (hc = 0) when z1 is small enough. This is because vaccine wastage

decreases as z1 decreases, and greater vaccine availability may limit the additional benefits

of terminating vaccination service. However, when the size of large vials is greater than

the daily demand rate (e.g., z2 ≥ 11/day for YF or BCG), opening a large vial even at

the beginning of the day is associated with high risk of open-vial wastage. That is, when

µ = 11, the likelihood of having daily YF or BCG vaccine demand less than z2 = 20 is

around 0.98. Therefore, the marginal effect of α1 on performance metrics may not diminish

fast when z2 ≥ µ as seen in Figures 2.3c and 2.3d.

In Figure 2.3, the difference between the expected total costs of the optimal policies for

continuous (hc = η + 1) and terminated (hc = 0) service is not very high because almost

all available vials in inventory are opened due to having limited number of doses available

in the base case, e.g., Q = µ× T . It is also interesting that the expected total costs of the

optimal policies for YF vaccine do not vary much as α1 increases, e.g., the expected total

cost is $157 when α1 = 0% and $192 when α1 = 100% for hc = 0 scenario. This result

shows that, in some cases, the cost saved due to reduced vaccine wastage by using small
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Figure 2.3: Base case performance of the optimal policies with continuous and terminated service
scenarios

vials may compensate for the increase in vaccine procurement cost.

Our base case analysis shows that administering available vaccines by using only large

vials and allowing early termination of vaccination service, as proposed in Mofrad et al.

(2014), i.e., α1 = 0%, hc = 0, performs well in terms of expected demand covered for

measles vaccine (See Figure 2.3b). However, alternative policies using both small and

large vials under each service scenario (e.g., the optimal policies for α1 = ᾱ1, hc = 0 and

α1 = ᾱ1, hc = η + 1) outperform the current practice and the optimal policies proposed

in Mofrad et al. (2014) for the other three vaccine types. In case of pentavalent vaccine,

the optimal policy for α1 = ᾱ1 (18%), hc = η + 1 covers more expected vaccine demand
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than the optimal policy in Mofrad et al. (2014) without early termination of vaccination

service. This observation verifies that practitioners can improve vaccine coverage and avoid

negative effects of early service termination by keeping vaccine stocks in multi-dose vials

of different sizes, while incurring a reasonably small increase in total cost.

2.5.3 Sensitivity Analysis

Factors such as demand for vaccination service (µ), size of the initial vaccine inventory (Q),

number of clinic days between inventory replenishments (T ) may vary among healthcare

centers. Therefore, we conduct sensitivity analyses measuring the effect of Q and T on the

performance of the optimal vaccine administration policies. The sensitivity analysis on T

also examines the effect of demand rate (µ) on the results.

2.5.3.1 Sensitivity Analysis on Initial Inventory Level (Q)

Figure 2.4 compares the performances of the optimal policies with different Q values under

various service and α1 value scenarios for all vaccine types given the base case µ, T , and

η values. In these comparisons, we set α1 equal to ᾱ1 to represent the scenarios using

both small and large vials (α1 > 0%). Figure 2.4 provides important insights about the

combined effect of Q, hc, α1, and vial size combination (z1, z2) on the expected percentage

demand covered and open-vial wastage.

The expected percentage demand covered (φ(T,Q)) is always non-decreasing in Q for

all service and α1 scenarios. On the other hand, the expected percentage of vaccine wastage

(ω(T,Q)) shows varying patterns. When vial sizes are smaller than the expected daily de-

mand (z2 < µ), ω(T,Q) is non-decreasing in Q (See Figures 2.4a, 2.4b). This is reasonable

because, as there are more vaccine vials in the stock, the optimal policies may use them

less conservatively and waste more doses. However, ω(T,Q) may decrease as Q increases

when z2 > µ (See Figures 2.4c, 2.4d). This is mainly because, increasing Q means more

small vials in the stock and the marginal benefit of an additional small vial in reducing

vaccine wastage does not decrease fast when z2 > µ (see Figures 2.3c and 2.3d).
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(b) Measles - 5-dose and 10-dose vials
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(c) YF - 5-dose and 20-dose vials

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110 220 330 440

E
x
p
ec

te
d
 p

er
ce

n
ta

g
e 

o
f 

d
o
se

s

The initial vaccine inventory, i.e., 𝑄 (doses)

(d) BCG - 10-dose and 20-dose vials0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 10 15 20 25 30 40 80

The total number of clinic-days during a replenishment cycle, i.e., T

𝜙(𝑇, 𝑸)

ℎ𝑐 = 0, 𝛼1 =  𝛼1 ℎ𝑐 = 𝜂 + 1, 𝛼1 =  𝛼1 ℎ𝑐 = 𝜂 + 1, 𝛼1 = 0%ℎ𝑐 = 0, 𝛼1 = 0%

dsvv

𝜔(𝑇,𝑸)

Figure 2.4: Expected percentage of demand covered and vaccine wastage corresponding to the
optimal vaccine administration policies for various Q levels given the base case µ, T , and η values

The relative performances of the optimal policies with different service and α1 scenarios

merit a detailed discussion. Figure 2.4 demonstrates that, when the initial vaccine inven-

tory is sufficiently large (e.g., Q > 220), the optimal policies utilizing both small and large

vials with α1 = ᾱ1 under both service scenarios perform better than the current practice

(α1 = 0%, hc = η + 1) and the policy proposed in Mofrad et al. (2014) (α1 = 0%, hc = 0).

The performance gaps between the models utilizing both vial types and those utilizing

only large vials are more significant for YF and BCG, vaccines as the absolute differences

between the vial sizes are greater in these cases.
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The good performance of the optimal policies using only large vials and allowing ter-

mination, as proposed in Mofrad et al. (2014) for measles and pentavalent vaccines, is also

noteworthy. The optimal policies for α1 = 0%, hc = 0 perform close to α1 = ᾱ1, hc = 0 and

attain most of the achievable performance improvements when there are limited measles

and pentavalent vaccines in stock (e.g., Q ≤ 220). This is because when vaccine stocks are

insufficient to cover the mean demand and z2 < µ, the size of stocks matters more than the

levels of inventory for each vial size. This observation is important. The optimal policies

for α1 = 0%, hc = 0 may be easier to implement, as they do not require specifying when

to switch from using large to small vials.

Finally, Figure 2.4 shows that the optimal policies using both vial sizes with continuous

service (α1 = ᾱ1, hc = η+ 1) perform better than or as well as those using only large vials

with terminated service (α1 = 0%, hc = 0) when vaccine stocks are sufficiently large. For

instance, the performance improvements achieved by administering vaccines as proposed in

Mofrad et al. (2014), by using only large vials and allowing early termination of vaccination

service, can also be attained by using both small and large vials without any termination

when Q is equal to or larger than the mean total demand (220 doses) for measles and

pentavalent vaccines. This is one of the most important results in our study because the

optimal policies for α1 = ᾱ1, hc = η + 1 may be desirable alternatives for practitioners

preferring continuous vaccination service. Policy makers may prefer avoid early termination

of vaccine services, as patients denied service may not be able to revisit the clinic later,

due to accessibility issues in developing countries.

Given the above result and the higher procurement cost of smaller vaccine vials, it is

desirable to determine the minimum α1 value for which the performance of the optimal

policies with α1 > 0%, hc = η + 1 match the performance of those with α1 = 0%, hc = 0.

We refer to this threshold α1 value as α∗1. Table 2.3 presents α∗1 for various Q values in

the cases of measles and pentavalent vaccines. As Q increases, the required α∗1 decreases.

In some cases, α∗1 can be very small, e.g., practitioners can avoid early termination of

vaccination service by keeping only 8% of the pentavalent vaccine doses in small vials

while still improving the the expected vaccine demand covered when Q = 240. Such a

policy would cost slightly higher than keeping all pentavalent vaccines in large vials.
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Figure 2.4 and Table 2.3 imply that the performance of the optimal policies depends on

Q and α1 selection in terms of expected demand covered, wastage, and total cost. Thus,

the optimal initial vaccine inventory level for each vial size is an important design problem,

which we address in Section 2.5.4.

Table 2.3: The minimum α1 values (α∗1) for which the expected demand covered under
the optimal policy with α1 = α∗1, hc = η + 1 matches that under the optimal policy with
α1 = 0%, hc = 0

Terminated Service (hc = 0) Continuous Service (hc = η + 1)

Q
Measles & Pentavalent Measles Pentavalent

α1 (Q1, Q2) ω(T,Q) φ(T,Q) α∗1 (Q1, Q2) ω(T,Q) α∗1 (Q1, Q2) ω(T,Q)
110 0% (0,11) 6.17% 47% NA NA NA 36% (20,17) 7.46%
200 0% (0,20) 8.19% 83% NA NA NA 25% (25,15) 8.55%
220 0% (0,22) 11.83% 88% NA NA NA 14% (15,19) 12.11%
240 0% (0,24) 15.55% 92% 33% (16,16) 15.93% 8% (10,22) 16.14%
250 0% (0,25) 17.40% 93% 20% (10,20) 17.75% 8% (10,23) 16.60%
260 0% (0,26) 19.22% 95% 15% (8,22) 19.47% 8% (10,24) 17.12%
270 0% (0,27) 20.99% 96% 11% (6,24) 21.52% 4% (5,26) 21.59%
280 0% (0,28) 22.68% 97% 11% (6,25) 21.90% 4% (5,27) 21.95%
300 0% (0,30) 25.74% 99% 7% (4,28) 24.33% 3% (5,29) 22.75%
330 0% (0,33) 28.41% 100% 0% (0,33) 28.75% 0% (0,33) 28.75%
440 0% (0,44) 28.83% 100% 0% (0,44) 28.83% 0% (0,33) 28.83%

When α1 = 0%, measles and pentavalent vaccines are administered from only 10-dose vials. Thus, the resulting ω(T,Q) and
φ(T,Q) are the same for both vaccine types. When Q ≤ 220, the optimal policies with continuous service may not outperform
those with terminated service for any α1 value for measles vaccine.

2.5.3.2 Sensitivity Analysis on the Total Number of Clinic Days During a

Replenishment Cycle (T )

We know that the expected demand covered monotonically decreases as T increases for

given µ and Q values (Proposition 2). In addition, our initial experiments show that the

patterns observed as µ increases for fixed T and Q are very similar to those observed

when Q decreases for given µ and T values (as depicted in Figure 2.4). Therefore, we

omit these one-way sensitivity analyses, and focus on varying T and µ simultaneously so

that the expected total demand during the replenishment cycle remains the same (i.e.,

µ × T = 220). This way, we investigate the effects of providing vaccination service on a

limited number of clinic days over the time horizon, and pooling the demand on these days.

Announcing a number of specific days for vaccine administration service to pool the demand
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is a medical practice applied in developing countries. We observe that, as T decreases, the

expected percentage of demand covered increases and the expected percentage of vaccine

wastage decreases, due to the effect of pooling demand on fewer days. When T increases,

the number of days with wastage also increases; therefore, it becomes more difficult to

control the expected open-vial wastage without using small vials in addition to large vials.

Especially, when z1 ≥ µ, a significant amount of doses is wasted for both the hc = η+1 and

hc = 0 scenarios when α1 = 0%, compared to α1 = ᾱ1. Figure 2.5 also implies that if the

demand can be pooled to provide vaccination service on a few clinic days, vaccine demand

coverage and wastage can be improved almost to the full extent by using only large vials

and allowing service termination as recommended in Mofrad et al. (2014). However, if T

is higher than a particular value, system performance can be further improved by using

both vial sizes. In particular cases like pentavalent vaccine, both vials sizes can be used

with continuous service without losing significant potential improvement in the expected

demand covered. These results show the potential improvements that can be achieved by

administering vaccines from both small and large vials in the setting of outreach vaccination

sessions. A more accurate analysis requires an extension of our model and additional data;

thus, left for future research.

2.5.3.3 Performance of the Optimal Policies under Different Cost Scenarios

Table 2.2 presents the input data used in total cost calculations for our numerical analyses.

The numerical results in Section 2.5 are conducted using the mean values of these cost re-

lated parameters. We analyze the effect of the cost related parameters on the performances

of the optimal policies by repeating some of the analyses in Section 2.5 with low and high

values of these input parameters. We observe that the numerical results for the low and

high cost parameters follow the same trends as those for the mean cost parameters.

Figure 2.6 shows the expected total cost of the optimal policies for the base-case T ,

µ, and Q under low, mean, and high cost-related parameter scenarios. As α1 increases,

the expected total costs of the optimal policies increase in similar fashions under all cost

scenarios. Therefore, the percentage increases in the expected total costs associated with
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(c) YF - 5-dose and 20-dose vials
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Figure 2.5: Expected percentage of demand covered and vaccine wastage corresponding to the
optimal vaccine administration policies for various T levels given the base case µ, Q, and η values

ᾱ1 under low and high cost scenarios (defined in Section 5.2) are similar to those under

mean cost scenario.

2.5.4 Implications on Vaccine Inventory Management

Section 2.5.3 implies that initial vaccine stock levels significantly affect performances of

the immunization programs. The use of consumption data is promoted as a simple and

effective method to find efficient stock levels (PATH, 2012). However, the number of

vaccines consumed is highly correlated with the vaccine administration policy adopted by
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Figure 2.6: The expected total costs of the optimal policies for low, mean, and high cost-related
parameter values under various service and α1 value scenarios

the immunization programs. Due to the recursive relationship between them, the optimal

vaccine administration decisions and effective vaccine stock levels should be determined

together.

For this purpose, we use our MDP model to determine the effective vaccine stock level

parameters, α1 and Q. We derive the set of Pareto-efficient (α1, Q) pairs that improve

the vaccine administration practices with respect to expected percentage demand covered

and total cost. We assume that each initial vaccine stock level (α1, Q) considered is used

to maximize the expected number of doses administered. In order to derive the Pareto-
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efficient (α1, Q) pairs and the corresponding optimal vaccine administration policies, we

solve our MDP model for a large set of Q1 and Q2 combinations until reaching a sufficiently

large Q = Q1 +Q2, for which having an additional vial does not increase expected demand

covered. This approach is reasonable since the optimal vaccine demand covered is non-

decreasing in Q and α1 (Proposition 3). Then, we calculate the expected total costs using

Equation 2.6, and eliminate dominated (α1, Q) pairs. Note that we do not follow a complete

multi-criteria optimization approach in this analysis, as the MDP model does not consider

the associated total cost when deriving the optimal vaccine administration policies.

Figure 2.7 illustrates the performances of the optimal pentavalent and measles vaccine

administration policies for the Pareto-frontier (α1, Q) pairs under both service scenarios

with the base case parameters. Note that the number of Pareto-efficient pairs is quite

limited compared to the number of feasible (α1, Q) pairs for each vaccine type (see Appen-

dices F). The performances of the base case optimal policies with α1 = 0%, α1 = ᾱ1, and

α1 = 100% are also highlighted in the figure for comparison.

In Figure 2.7a, there are 234 (289) Pareto-efficient initial inventory levels for pentava-

lent vaccine, and 87% (96%) of them utilize both small and large vials under terminated

(continuous) service scenario. On the other hand, there are 62 Pareto-efficient (α1, Q)

pairs in Figure 2.7b for measles vaccine, and the majority of them (78%) uses only large

vials under both service scenarios. The (α1, Q) pairs utilizing small vials lie on the far

right of the Pareto-frontier in Figure 2.7b; therefore, they are associated with incremental

improvements towards 100% expected demand covered. These differences are possibly be-

cause the ratio of z2/z1 and that between procurement costs of small and large vials (c1/c2)

are lower for pentavalent vaccine compared to measles vaccine. This result confirms that

Mofrad et al. (2014)’s approach is sufficient to develop better vaccine administration prac-

tices for particular vaccine types (e.g., measles); however, the approach proposed in this

paper can help further improve vaccine administration practices for other vaccine types

such as pentavalent vaccine.

Although they may perform close to the Pareto-frontier, the optimal base case policies

do not appear on the Pareto-frontier curves in most cases. That is, policy makers can
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(a) Pentavalent - 2-dose and 10-dose vials

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200

E
xp

ec
te

d 
pe

rc
en

ta
ge

 o
f 

de
m

an
d 

co
ve

re
d

Expected total cost

(b) Measles - 5-dose and 10-dose vials
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Figure 2.7: The performance of the optimal vaccine administration policies for the Pareto-frontier
(α1, Q) pairs compared to the optimal base case vaccine administration policies with α1 = 100%,
α1 = ᾱ1, and α1 = 0% under both terminated and continuous service scenarios given the base
case values of T , µ, and η

improve vaccine coverage in a cost-effective, if not a cost-saving, way by smartly selecting

the initial vaccine inventory levels for each vial size. To clarify this notion, Figure 2.8 shows

the efficient (α1, Q) pairs for pentavalent vaccine on the Pareto-frontier in more detail, and

highlights some of the promising pairs. For instance, administering pentavalent vaccines

using 22 large vials (220 doses) under continuous service (i.e., α1 = 0%, hc = η+ 1), which

reflects the current medical practice, is associated with 72% expected demand covered

and $465 expected cost per inventory replenishment cycle. Policy makers can improve the

covered expected demand to 80% without additional cost by using only 208 doses, 9%

of which are kept in small vials (see inventory Solution A), under the continuous service

scenario. However, at this cost level, policy makers still have a significant incentive to

allow early termination, and further improve expected demand covered to 88% using 216

doses with 3% vaccines kept in small vials (see Solution B).

The incentive to allow early termination of vaccination service decreases as the desired

level of expected demand covered or/and total cost increase on the Pareto-frontier curves.
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Figure 2.8: The detailed view of Pareto-frontier (α1, Q) pairs for pentavalent vaccine under both
terminated and continuous service scenarios given the base case values of T , µ, η

Therefore, if the policy makers can afford a reasonably small increase in cost, they can use

alternative vaccine stock levels that are associated with higher expected demand covered,

and thus a lower incentive to allow early termination of vaccination service. For example,

Solutions C and E cost only 14% and 20% more than the current practice and increase

the expected demand covered to 91% and 95% levels, respectively. At these solutions,

policy makers can increase the expected demand covered to 95% and 97%, respectively,

by switching to another vaccine inventory level with the same cost (i.e., Solutions D and

F) and allowing early termination. Also, note that Solutions E and D achieve almost the

same level of expected demand covered, but cost much less than keeping all vaccines in

small vials with a base case vaccine supply (i.e., 220 doses in 110 small vials).
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This Pareto-frontier analysis is also useful in specifying how the current vaccine ad-

ministration practices and initial vaccine inventory levels can be improved cost-effectively

to achieve target levels of expected demand covered. Such an analysis is relevant for or-

ganizations like the WHO and Global Alliance for Vaccines and Immunization (GAVI),

which continuously strive to improve vaccine coverage beyond targeted levels in develop-

ing countries with a limited budget. Table 2.4 presents the (α1, Q) pairs for which the

optimal policies with α1 = 0%, hc = η + 1; α1 = 0%, hc = 0; α1 > 0%, hc = η + 1; and

α1 > 0%, hc = 0 achieve 90%, 95% and 99% expected demand covered.

Table 2.4: The initial vaccine inventory levels that achieve the targeted levels of expected
demand covered with minimal cost given the base case values of T , µ, and η

(α1, Q), π(T,Q)

Target De-
mand

α1 = 0%, hc = η+
1

α1 = 0%, hc = 0 α1 > 0%, hc = η+
1

α1 > 0%, hc = 0

90% (0,28), $590 (0,23), $484 (11,21), $525 (2,22), $478
95% (0,30), $624 (0,26), $544 (18,20), $553 (11,21), $524
99% (0,32), $645 (0,30), $617 (18,22), $582 (16,22), $573

The Pareto-efficient initial vaccine levels are highlighted with bold font.

Table 2.4 shows that, by using the proposed policies utilizing both small and large

vials with the right vaccine stock level, the target levels of expected demand covered can

be achieved with significantly less cost than using only large vials with (as in Mofrad

et al. (2014)) or without (as in the current practice) early termination of vaccination

service. Table 2.4 also illustrates that the proposed optimal vaccine allocation policies using

both vial types under continuous service can achieve the target levels of expected demand

covered with minimal or no cost incentive to allow termination (compare the columns for

α1 = 0%, hc = 0 and α1 > 0%, hc = η + 1 in Table 2.4). That is, by using both small

and large vials with the right inventory level, policy makers can avoid early termination of

vaccination service and incur either negligible or no additional cost to improve the expected

demand covered beyond 90%.

Global policy makers such as WHO and GAVI may benefit from the proposed model
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and the results provided in this section to update their future improvement targets for

vaccine coverage, and to improve vaccination practices and guidelines. Using the proposed

model, policy makers can determine to what level vaccine coverage may be improved by

using multi-dose vials of different sizes, given limited vaccination resources. For instance,

Table 2.4 shows whether the proportion of the expected demand covered can be increased

to the 90-99% level in clinics for pentavalent vaccine using both small and large vials for

a small increase in cost. Depending on the feasibility of the associated costs in Table 2.4

compared to the cost of current practices, WHO and GAVI may decide to update their

current and future improvement targets for vaccine coverage levels.

Policy makers may also use the results of the proposed model to update their recom-

mendations or develop alternative guidelines for effective vaccine administration as well as

efficient selection of multi-dose vial-sizes and periodic vaccine stock levels. For instance,

WHO recommends developing countries to monthly replenish pentavalent vaccine invento-

ries, held in 10-dose vials, to the level of 1.25 times the expected total demand (e.g., 25%

buffer stock) (WHO, 2002, 2013). In our base case, this recommendation requires keeping

28 10-dose vials whose performance is presented in the first column and the first row of

Table 2.4. The third column of the same table (see rows 1 and 2) shows that holding a

buffer stock of 5-8% of the expected demand may achieve a higher expected demand cov-

ered for less cost given that 9-15% of the pentavalent vaccine stocks are held in 2-dose vials

and the rest in 10-dose vials. Such alternative recommendations may also help reducing

vaccine buffer stocks which is a desirable outcome as reported in the literature (Zaffran

et al., 2013).

In order to achieve the potential performance improvements associated them, such

alternative vaccine stock level recommendations should be supported with implementable

guidelines specifying when to switch from using large vials to small vials. This brings us

to the final set of results we provide in Section 2.5.
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2.5.4.1 Pareto-efficient Initial Vaccine Inventory Levels for Each Vial Size

under Different Cost Scenarios

Figures 2.9a and 2.9b show the Pareto-efficient (α1, Q) pairs derived using the low and high

cost-related parameter values, respectively, for pentavalent vaccine, and highlight some of

the promising pairs. Recall that the promising Pareto-frontier (α1, Q) pairs for mean

cost-related parameter values (see Figure F.1a of Section 2.5.4) are Solutions A=(9, 208),

B=(3, 216), C=(10, 234), D=(10, 234), E=(16, 238), and F=(13, 242). The promising in-

ventory solutions under terminated service scenario, i.e., Solutions B, D, and F, in Figure

F.1a are the same as those in Figures 2.9a and 2.9b. However, the promising solutions for

low and high cost scenarios are slightly different than those for mean cost scenario under

continuous service. This implies that the performances of initial vaccine inventory levels for

each vial size are more sensitive to variations in cost parameters under continuous service

scenario.
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(a) Low Cost Scenario
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(b) High Cost Scenario
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Figure 2.9: The detailed view of Pareto-frontier (α1, Q) pairs for pentavalent vaccine under both
terminated and continuous service scenarios given the base case values of T , µ, η

Table 2.5 presents the (α1, Q) pairs attaining 90%, 95% and 99% expected demand

covered under various service and α1 scenarios with low and high cost-related parameter
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values. The initial inventory levels for each vial size presented in this table are the same

as those presented in Table 2.4 of Section 2.5.4.

Table 2.5: The initial vaccine inventory levels for each vial size that achieve the targeted
levels of expected demand covered with minimal cost given the base case values of T , µ,
and η

(α1, Q), π(T,Q)

Target Demand α1 = 0%, hc = η + 1 α1 = 0%, hc = 0 α1 > 0%, hc = η + 1 α1 > 0%, hc = 0

90% (0,28), $521∗, $661∗∗ (0,23), $428∗, $542∗∗ (11,21), $466∗, $585∗∗ (2,22), $423∗, $535∗∗

95% (0,30), $551∗, $699∗∗ (0,26), $481∗, $609∗∗ (18,20), $493∗, $615∗∗ (11,21), $465∗, $584∗∗

99% (0,32), $569∗, $723∗∗ (0,30), $545∗, $691∗∗ (18,22), $518∗, $647∗∗ (16,22), $518∗, $637∗∗

The Pareto-efficient initial vaccine inventory levels are highlighted with bold font. The expected total costs for low and high
cost scenarios are denoted with ∗ and ∗∗, respectively.

2.5.5 Simple Vaccine Administration Policies

In order to achieve the high expected demand coverage rates discussed in the previous

section, the compliance of the healthcare practitioners to the proposed vaccine adminis-

tration policies is critical. However, it may not be practical for healthcare practitioners to

keep track of the optimal actions which depend on the number of days remaining until the

next vaccine inventory replenishment, the number of vials on-hand, and the timeslot of the

day. Nevertheless, the complexities regarding the practical implications of the proposed

policies can be significantly reduced by deriving easier-to-implement policies based on the

information and patterns provided by the optimal solution of the MDP model.

In this section, we show that such easier-to-implement policies with good performances,

hereafter called as the simple policies, can be derived using our modeling framework. For

this purpose, we focus on the pentavalent vaccine case and derive the simple vaccine admin-

istration policies using two different vial sizes (i.e., z1 = 2, z2 = 10) under the continuous

service scenario (i.e., α1 > 0%, hc = µ + 1). We divide the replenishment cycle into

sub-horizons of equal length and determine a single switching timeslot threshold for each

sub-horizon which is independent of the inventory level on-hand. The simple policy ba-

sically recommends practitioners to switch from using large vials to small vials after the
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same timeslot on each day of a sub-horizon. We refer readers to Appendices G for the

details about the derivation process of the simple policy.

We evaluate the performance of the simple policy by slightly adjusting the proposed

model. Let j denote the number of sub-horizons remaining until next replenishment and hj

be the switching timeslot threshold for sub-horizon j where j ∈ {1, . . . , J}. The expected

number of vaccines administered under the simple policy can be obtained using Equations

2.8-2.11.

Ṽ (t, q1, q2, h) =

g̃1(t, q1, q2, h), h ≥ hj
g̃2(t, q1, q2, h), h < hj

,∀j ∈ {1, . . . , J}, t ∈ [(j − 1)(T/J), j(T/J)],q ∈ Q, h ∈ H,

(2.8)

where ν̃(t, q1, q2) =

η+1∑
h=1

Ṽ (t, q1, q2, h)pX(h), (2.9)

g̃1(t, q1, q2, h) =

η∑
y=h+z1

[
z1 + Ṽ (t, q1 − 1, q2, y)

]
pY 1

h
(y) +

z1∑
d=1

[
d+ ν̃(t− 1, q1 − 1, q2)

]
pDh(d), (2.10)

g̃2(t, q1, q2, h) =

η∑
y=h+z2

[
z2 + Ṽ (t, q1, q2 − 1, y)

]
pY 2

h
(y) +

z2∑
d=1

[
d+ ν̃(t− 1, q1, q2 − 1)

]
pDh(d), (2.11)

We use our base-case scenario parameters (T = 20 days, µ = 11 patients/day, Q =

220 doses, η = 480) for pentavalent vaccine (z1 = 2-dose, z2 = 10-dose) and assume

α1 = ᾱ1 = 18% to illustrate the performance of the proposed simple policies. We divide

the monthly replenishment cycle of the base case (i.e., 20 days) into 5-day periods (i.e.,

J = 4) corresponding to one-week-long sub-horizons. We derived the switching timeslots

as h4 = 108, h3 = 286, h2 = 292, and h1 = 317 using the simple policy development

procedure in Appendices G. Table 2.6 shows that the simple policy performs almost as

well as the optimal policy with α1 = 18%, hc = η + 1 (i.e., no early service termination,

18% of vaccines held in small vials) in terms of the expected percentage demand covered

and total cost. The performance of such simple policies could be further improved by

incorporating weekly-specified service termination times; however, the magnitude of these

improvements would probably be minor (See the first and last columns of Table 2.6).
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Table 2.6: The performance of the simple policy compared to the optimal policies for the
base case pentavalent vaccine scenario

The Simple Policy The Optimal Policies

hc = η + 1 hc = η + 1 hc = 0
α1 = 18% α1 = 0% α1 = 18% α1 = 0% α1 = 18%

φ(T,Q) 89.54% 71.77% 89.91% 87.99% 92.71%
ω(T,Q) 10.42% 28.23% 10.04% 11.83% 7.19%
π(T,Q) $528.88 $465.17 $528.81 $463.65 $528.55

2.6 Discussion and Conclusion

Our analysis provides particular key insights that may help policy makers design more

effective pediatric vaccine administration practices. Using an MDP model, we show that

expected percentage of demand covered can be significantly improved by holding pediatric

vaccine stocks in multidose-vials of different sizes and dynamically switching from using

large vials to small vials when administering pediatric vaccines in a given clinic day. We

also show that, by smartly selecting an initial pediatric vaccine stock level, target demand

coverage levels can be achieved with no or limited additional costs and without early

terminating vaccination services.

These results suggest that vaccine administration and inventory management decisions

for routine pediatric vaccines should be considered simultaneously to improve performance

of the immunization programs in a cost-effective way. The landscapes of national immu-

nization programs change due to the introduction of many new and expensive vaccines,

and changing population dynamics. Thus, the immunization supply chain and logistics

systems that were designed in the 1980s may not be effective anymore (WHO, 2014b).

A recent study reports that more than 75% of 57 GAVI-eligible countries operated below

the standards for the vaccine supply chain management practices including vaccine stock

management and distribution Colrain (2013) which may result in stock-outs and avoid-

able wastage. The proposed model may help policy makers design integrated pediatric

vaccine administration and vaccine stock management policies to reduce wastage further.
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We derive the Pareto-efficient initial vaccine inventory levels and the associated optimal

vaccine administration policies in the trade-off spectrum between expected demand cov-

ered and cost. This way we show that, by choosing the right initial inventory level on

the Pareto-frontier, 1) the performance of the optimal policies can be further improved

(cost-effectively) and 2) the optimal policies using both vial types with continuous service

can achieve desired level of expected demand covered (e.g., > 90%) with no additional cost

compared to the current practice and with minimal incentive to allow early termination.

The good performance of policies with two vial sizes and continuous service in our

numerical experiments is noteworthy because: i) these policies are simpler to follow in

real-life practice compared to those allowing both service termination and utilization of

small and large vials; ii) providing an uninterrupted vaccination service could be desirable

for policy makers since it increases patient convenience and access to vaccination services

which are shown to improve vaccine coverage significantly in different health care provision

settings (Bach and Goad, 2015; Papastergiou et al., 2014). This is especially important for

developing countries where accessibility to medical resources is a major problem: patients

denied vaccination service due to an early service termination may not be able to revisit a

clinic soon or at all (Heaton et al., 2017; Torun and Bakırcı, 2006) and are therefore, in the

meantime, exposed to higher risk of infection (Akmatov et al., 2008). In addition, early

termination of vaccination service may also cause equity/fairness problems as it may limit

accessibility to vaccination service for many patients who need to visit clinics towards the

end of the day (e.g., full-time working parents) (Degli-Atti et al., 2004; Goad et al., 2013).

The limitations of our analysis should be understood well to appreciate its practical

importance. Although our results suggest that the optimal threshold timeslots for switch-

ing to small vials and terminating vaccination service follows monotone patterns, these

thresholds vary significantly depending on the remaining days in the replenishment cycle

and available vaccine stocks. Therefore, following the optimal vaccine administration poli-

cies may lead to significant variation in day-to-day practices which could be challenging

for medical practitioners. However, we show that we can derived more stable and easier-

to-implement policies with very good performance, by using the optimal policies and their

structural properties.
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Our results on vaccine stock management should be also viewed cautiously. We only

focus on improving the performance of the vaccine inventory and administration in the

practice setting component of the vaccine supply and delivery chain. For a more accurate

analysis, which is beyond the scope of our work, the overall supply chain performance

needs to be optimized by considering the decisions in other echelons of the chain including

selection of suppliers and national order quantities based on discount schemes, transporta-

tion/distribution costs, and lead times. Furthermore, the proposed policies, which admin-

ister pediatric vaccines from vials of different sizes, may cause complexities in inventory

handling and waste disposal. For example, the proposed optimal policies may require more

storage space and disposal of more medical waste. However, the proposed policies keeps

only a small portion of vaccines in small vials; therefore, they are still feasible in terms of

facility capacities reported in the literature (Lee et al., 2011). Our preliminary sensitivity

analysis on storage and disposal costs shows that the effects of such complexities on the

cost performance of the optimal policies are limited. Moreover, we assume that vaccine

doses in opened vials expire at the end of a clinic day, which is reasonable for many clinics

and vaccine types. Although one could still incorporate expiration of the open-vials before

the end of a day into our model, this would only increase the vaccine wastage under each

policy and magnify the effect of using vials of different sizes.

Our analysis and results focus on pediatric vaccination in walk-in clinics in developing

countries. However, the proposed approach and main findings may be applicable to the

administration of other vaccine types (such as flu vaccines) and setting of developed coun-

tries. Concerns regarding vaccine wastage have also been raised in developed countries

as well. As immunization authority expands to include additional healthcare providers,

vaccine has now started to be distributed through non-traditional channels such as com-

munity pharmacies (PIWG, 2015). Although this provides a convenient alternative for

immunizing patients, estimating quantities and predicting demand in the retail setting can

be complicated. Thus, strategies to combat vaccine stockpiling and wastage of publicly

funded vaccine have been discussed (HPPA, 2016). Moreover, our modeling approach may

be applied to high-priced and slow-moving multi-dose pharmaceutical products with lim-

ited shelf-life such as oral agents used to treat HIV, hepatitis, and cancer. When patients
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present a prescription for unusual quantities of these types of drugs, pharmacists may either

dispense the requested amount and risk having the remaining stock expire or dispense the

entire vial/bottle. Ultimately, the patient or a third party payer will incur the cost of the

unused medication. Note that, for these applications, one may need to extend our MDP

model to incorporate a non-stationary arrival process into (e.g., vaccine demand fluctuates

during the flu season). Finally, conducting a comprehensive cost-effectiveness analysis to

evaluate the actual performance of the proposed policies for a given country is desirable.

However, for brevity, we left such an analysis for future studies.
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Chapter 3

Deriving Effective and

Simpler-to-implement Colonoscopy

Screening Policies for Preventive and

Follow-up CRC Screenings

In this chapter, we present our two-fold work on deriving effective and simpler-to-implement

colonoscopy screening policies. The main motivation of this research is driven from the

findings of Erenay et al. (2014). That is, the performances of colonoscopy screening policies

suggested by guidelines can be significantly improved by making personalized screening

decisions; however, the optimal policies are complex to be followed in practice which may

hinder the potential of the optimal policies. Using a microsimulation model, we evaluate

all relative alternative periodic policies under different scenario settings that also takes

risk-level, age, and gender into account like the optimal POMDP policies but in a much

simpler manner. The following sections present the motivation, the literature review, the

simulation model and a detailed numerical experiments on the alternative policies based

on a Pareto-efficiency analysis. We also present the idea of a novel bi-criteria constrained

MDP model which can be solved to obtain the true Pareto-frontier that may further help

60



improving the performances of the alternative policies.

3.1 Introduction

Malignant neoplasm or commonly known as cancer is one of the most important diseases

that the world is experiencing for the last decades. The American Cancer Society expects,

approximately, 1, 735, 350 new cancer cases and 609, 640 cancer deaths in the US in 2018

(Siegel et al., 2016; ACS, 2018). Similarly, Canadian Cancer Society reports 206, 200

expected new cancer cases and 80, 800 expected deaths from cancer for Canada in 2017

(CCS, 2018). Cancer is the second most common cause of death accounting for nearly 25%

of all deaths in the US and the leading cause of death in Canada accounting for nearly

30% of all deaths (CDC, 2018).

The relative survival rate can be used as a criterion for measuring the improvements in

diagnosis and treatment of cancers. This rate is to determine the likelihood of surviving for

a designated duration of time (e.g., 5 years) after being diagnosed with a cancer compared

to the survival of comparable people without any cancers based on normal life expectancy.

The 5-year relative survival rate is estimated 70% during 2007-2013 in the US (ACS,

2018). In Canada, it is 63% during 2006-2008 based on the Canadian Cancer Statistics

published in 2017 (CCS, 2018). Recent incentives and improvements in preventing and

treating cancers help increasing the survival rate; however, the economic burden of cancer

is still devastating. The estimated direct medical costs of cancer (total of health care

expenditures) were $74.8 billion in the US in 2013 and $3.8 billion in Canada representing

the 7th most costly illness or injury in 2008. The most commonly diagnosed cancer in both

men and women is lung and bronchus cancer followed by breast and colon and rectum

(colorectal) cancers in the US (ACS, 2018). However, when sexes are considered separately

the most frequently diagnosed cancers are breast and prostate cancers in women and men,

respectively. Since the focus of this study is colorectal cancer, for further reading of cancer

facts we refer readers to Cancer Facts and Figures in the US in 2018 presented by ACS

(2018).
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Colorectal cancer (CRC) is the third and second most commonly diagnosed cancer in

both men and women that is expected to results in approximately 140, 250 and 26, 800

new cases; and 50, 630 and 9, 400 moralities, respectively, in 2018 in the US and in 2017 in

Canada (ACS, 2018; CCS, 2018; Siegel et al., 2017). The incidence and mortality rates for

CRC have been declining since mid-1980s in both the US and Canada (American Cancer

Society, 2018; CCS, 2018). This declining trend is the indicator of how CRC screenings

may help detection and/or prevention of CRC at early stages when treatment is more likely

to be successful. Besides its benefits, there are also harms associated with CRC screening

such as economic costs and screening disutility. Yabroff et al. (2008) estimate that the

total health expenditures associated with CRC in the US will increase from $7.5 billion to

$14 billion between 2000-2020. Therefore, optimally designing CRC screening policies is

still a challenge that should be addressed.

Colorectal cancer is the development of a malignant tumor from the inner lining of the

colon or the rectum which are parts of large intestine. Most cancerous tumors start as a

noncancerous growth often referred as benign tumor or precancerous lesion in the form of

a polyp. Adenomatous polyps (adenomas) are the most common type of polyps which are

usually considered as the first sign of CRC development. The development from adenomas

to invasive cancer may take time, e.g., in average more than 10 years. This slow course of

development provides the opportunity for prevention and early detection of CRC through

screening. CRC screening differs from the screening tests for other cancers by allowing

removal of polyps at the same time when they are detected. Therefore, screening is very

important to prevent CRC before its development as well as detecting cancer at early

stages when it is more likely to be cured via less extensive treatments and recovery after

treatment is faster. For more information about CRC, its development, and the facts and

statistics, readers can refer to the annual reports of American Cancer Society (2018) and

CCS (2018).

Table 3.1 presents several CRC screening tests, the associated accuracy levels, complex-

ity (involving patient preparation, facilities and equipment needed, and inconvenience),

false negative rates, and disutility. Among CRC screening tests, colonoscopy provides the

highest accuracy since the entire colon can be examined. It also can biopsy and remove
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polyps before becoming malignant. However, it requires the highest complexity (i.e., full

bowel preparation, and sedation) and incurs the highest disutility (i.e., highest risk of bowel

tears or infections compared with other tests). Sigmoidoscopy has a high performance as

well but only for rectum and lower one-third of the colon. Its complexity is intermediate,

it requires only minimal bowel preparation and no sedation or no specialist. Since sigmoi-

doscopy cannot remove large polyps, in case of detecting any abnormalities colonoscopy

is needed. CT (computed tomographic) colonography provides a high performance when

polyps are large. The entire colon can be examined by CT colonography, however; polyps

cannot be biopsied or be removed. Thus, it is required to perform colonoscopy if abnormal-

ities are detected. Its complexity is intermediate, however; a full bowel preparation is still

needed. Barium enema is another effective screening test to detect large polyps, however,

its accuracy is relatively low, i.e., it may produce false positive test results. Although, the

disutility and complexity associated with Stool DNA test and Fecal Occult Blood test are

very low, polyps are missed most of the time when those tests are performed. However,

they may provide a better performance (still intermediate) only in case of having cancer.

In this study, we mainly focus on colonoscopy screening as it is the most commonly recom-

mended screening and follow-up test (Krist et al., 2007; Winawer, 2007; Zapka et al., 2012).

A thorough analyses and comparison of CRC screening tests can be found in American

Cancer Society (2018).

Table 3.1: CRC screening tests

Screening Test Test Type Accuracy Complexity

False
Positive
Rate Disutility

Colonoscopy Invasive/Optical Highest Highest None Highest
Sigmoidoscopy Invasive/Optical High Intermediate Low High
CT Colonography X-ray High Intermediate Low Low
Barium Enema X-ray Low High High Low
Stool DNA Test Stool Intermediate Low Intermediate Lower
Fecal Occult Blood Test Stool Lower Low High Lower

Source: American Cancer Society (2018); Erenay et al. (2014); NCI (2014)

The American Cancer Society, the American College of Radiology and the US Multi-

63



Society Task Force on Colorectal Cancer (a consortium representing the American College

of Gastroenterology, the American Society of Gastrointestinal Endoscopy, the American

Gastroenterological Association, and representation from the American College of Physi-

cians) were collaborated to publish the most recent CRC screening guideline in 2008. Table

3.2 presents the recommendations of the most recent CRC screening guidelines for low-risk

asymptomatic people. The recommendations for people with increased or high risk of CRC

based on specific risk factors (history of adenomatous polyp and its size, personal history

of CRC, and family history of CRC or polyps) differ from the ones presented in Table 3.2

and can be found in American Cancer Society (2018); Winawer et al. (2003). The rec-

ommendations are usually more intensive for increased or high risk people. For example,

high-risk people with adenomatous polyp are suggested to undergo follow-up colonoscopy

three years after the removal of the polyp (Winawer et al., 2003).

Table 3.2: The most recent screening guideline for the early detection of CRC in low-risk
asymptomatic people, American Cancer Society - 2008

Screening Test Frequency Recommendation1

Fecal occult blood test

(FOBT) with at least

50% test sensitivity, or

fecal immunochemical

test (FIT) with at

least 50% test sensitiv-

ity,

Every year Starting at age 50. Collection techniques and number of sam-

ples required is recommended by clinicians. FOBT with the

single stool sample during a clinician office visit is not recom-

mended. Guaiac-based toilet bowl FOBT tests are not rec-

ommended. Immunochemical tests are usually chosen over

guaiac-based tests since they are more patient-friendly while

providing equal or better sensitivity and specificity. There is

no justification for repeating FOBT in response to an initial

positive finding.
Stool DNA test Every 3 years Starting at age 50.
Flexible sigmoidoscopy

(FSIG)3
Every 5 years Starting at age 50. FSIG can be performed alone, or with a

highly sensitive gFOBT or FIT performed annually.
Double-contrast bar-

ium enema (DCBE)

Every 5 years Starting at age 50.

Colonoscopy Every 10 years, Starting at age 50.
CT Colonography 3 Every 5 years, Starting at age 50.

Source: ACS (2018)
1 All positive tests (other than colonoscopy) should be followed up with colonoscopy.
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The reduction in CRC incidence rates and mortality rates due to the CRC screening

guideline is an indicator showing that regular screening can prevent developing CRC or

deaths from CRC. Regular flexible sigmoidoscopy results in 21% and 26% reduction in

CRC incidence and mortality, respectively (Schoen et al., 2012). Zauber et al. (2012)

shows that patients with the history of adenomatous polyp removed during colonoscopy

are 53% less likely to die from CRC compared to general population. Regular FOBT

screening reduces the risk of death from CRC by 32% after 30 years of follow-up (Shaukat

et al., 2013). Moreover, FOBT decreases CRC incidence rate by 20% through detecting

large adenomatous polyps (Mandel et al., 2000). The cost-effectiveness of CRC screening

methods is also important when designing screening guidelines. Economic evaluation of

several CRC screening methods can be found in Cruzado et al. (2013).

In spite of the benefits of regular screening, American Cancer Society reports that

only 59% of the US population older than 49-year old follow the recommended screening.

The prevalence of absence from recommended screening is especially higher among adults

younger than 65-year old (American Cancer Society, 2018). Also it is reported that there

is a significant difference between screening frequencies suggested by the guideline and

by clinicians (Boolchand et al., 2006; Klabunde et al., 2009; Nodora et al., 2011; Yabroff

et al., 2011b). As presented in Table 3.2, current guidelines recommend asymptomatic

low-risk patients undergoing colonoscopy every 10 years for CRC prevention and early

detection (USPSTF, 2008). In addition, guidelines recommend high-risk patients with

history of adenomatous polyp undergoing follow-up colonoscopy 3 years after the polyp

removal (Winawer et al., 2003). If first follow-up colonoscopy finds no abnormality, later

follow-ups are done in every 5 years. Two independent surveys report that around 43%

of the clinicians do not comply with colonoscopy screening guidelines by recommending

asymptomatic low-risk patients to follow alternative screening policies such as preventive

colonoscopy screening of every 1-2, 2-4, 3, 4, 5, or 6-9 years rather than every 10 years

(Klabunde et al., 2009; Nodora et al., 2011). Similarly, some other surveys report that

more than half of the clinicians recommend alternative policies such as undergoing a follow-

up colonoscopy every 3 years or sooner after a polypectomy rather than every 3-5 years

(Mysliwiec et al., 2004; Boolchand et al., 2006). In addition, colonoscopy screening is
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recommended more frequently than the US guidelines in some countries including Germany

and Greece (Haidinger et al., 2008). We refer these practiced alternative policies not

complying to current guidelines as practiced static policies.

The incompatibility of clinical practices with the CRC screening guidelines reveals that

designing effective colonoscopy screening policies to balance the benefits and harms of

colonoscopy is still an important question that should be addressed. The main driver of

this incompatibility is projected as the difference between the number of CRC screening

that the guidelines and the practitioners suggest. This results also in a difference between

the costs associated with the suggested CRC screening policies as well as between the

other performance metrics of them (risk of CRC, mortality, etc). Although one way to

resolve the controversy on the best colonoscopy screening practice is to derive the optimal

policies utilizing a POMDP model as discussed in Erenay et al. (2014), the optimal policies

proposed in Erenay et al. (2014) are dynamic in time and may be hard to implement in

real-life.

In this context, the first part of this chapter, namely, the first fold, addresses i) whether

the gap between current colonoscopy screening practices and the guidelines are justifiable

in terms of health improvements achieved by the practiced static policies compared to

guidelines, and ii) if the gap is justifiable, how to improve current guidelines practically to

close this gap. For (ii), we evaluate performances of all simpler-to-implement colonoscopy

screening policies, i.e., a large set of static-periodic and age-dependent dynamic periodic

policies, described in detail in Section 3.4, using a discrete-event patient-level microsimu-

lation model.

Our simulation model mimics the progression of CRC in asymptomatic low-risk, high-

risk, and post-CRC patients. Note that, the CRC progression in the proposed simulation

model is equivalent to the progression defined in the POMDP model of Erenay et al.

(2014). The considered performance measures in this simulation analysis include the ex-

pected total life-years, total quality adjusted life-years (TQALYs: the difference between

expected lifetime and disutility), age-based CRC risk and mortality, total costs, average

screening interval, and the number of required colonoscopies. Our results illustrate that if
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the colonoscopy disutility is not extremely higher than our estimates, some of the incom-

pliant colonoscopy policies (i.e., practiced static policies) with shorter screening intervals

than the guidelines may outperform the guidelines in terms of health outcomes as well

as being cost-effective. Moreover, our analysis with the simpler-to-implement policies il-

lustrates that the some of the age-dependent dynamic periodic policies may perform very

close to optimal policies under certain parameter conditions. The simulation is the first

one developed using clinical data for detailed performance evaluation of alternative poli-

cies compared to the optimal CRC screening protocols derived from an analytical model

by Erenay et al. (2014). We utilize the simulation method because it is hard to estimate

some of the statistics (e.g., average screening interval) from the analytical model without

significant modification.

In the second fold, we introduce an idea for a modeling framework that can be used to

optimize multiple objectives. We propose the idea of a bi-criteria constraint POMDP model

optimizing the objective under resource constraints such as number of colonoscopies per-

formed or total cost. Although it is noted in the literature that solving a constraint POMDP

model exactly is quite challenging and utilizing approximate approaches are praiseworthy

(Cevik et al., 2018), the specific nature of colonoscopy screening allows us to reduce this

constraint POMDP model to a constraint MDP. That is, since the colonoscopy screening

not only diagnoses the abnormal lesions but also removes and biopsies them, the risk of

developing a cancerous lesion is reset after every polypectomy. Therefore, keeping only a

partial history of events in track is sufficient to perform this reduction from POMDP to

MDP. We believe that this approach can provide screening policies that accrue most of

TQALYs improvements without increasing the expected total cost and requiring slightly

more frequent colonoscopy screening than the guidelines.

3.2 Literature Review

Cancer screening has been noticeably addressed using OR techniques in the literature

(Güneş and Örmeci, 2018; Saville et al., 2018; Alagoz et al., 2011; Ivy, 2009; Heidenberger,
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1996; Pierskalla and Brailer, 1994; Stevenson, 1995). Many of the studies in this literature

use discrete-event simulation and Markov modeling techniques as they provide practical

modeling of uncertainty and complexity associated with the cancer screening practices

under fewer simplifying assumptions that can be validated (Alagoz, 2011; Roberts, 2011;

Knudsen et al., 2007; Schaefer et al., 2005). In the cancer screening domain, there are

several studies specifically focusing on colorectal cancer screening. Using natural history

models that represent the progression of CRC, screening decisions are analyzed under dif-

ferent assumptions about patient characteristics (e.g., risk-level, gender, age, etc.) and

screening frequencies (every 5-, 10-year, etc.) to improve the healthoutcomes for individ-

uals or society (Meester et al., 2015; Schreuders et al., 2015; USPSTF, 2008). As noted

before, Chapter 3 proposes a discrete-event simulation model and introduce an idea of a

constrained MDP model. Therefore, this section reviews the most relevant studies from

the CRC literature that also use either of the approaches in their analysis.

3.2.1 Discrete-Event Simulation

The studies using discrete-event simulation as a tool aims at informing the policy mak-

ers for effective CRC screening by facilitating analysis of CRC progression and perfor-

mance evaluation of alternative screening protocols for cost-effectiveness analyses (van

Ballegooijen et al., 2011). Among the several simulation models proposed to mimic CRC

progression and test different screening strategies in the literature (Neilson and Whynes,

1995; Roberts et al., 2007; Subramanian et al., 2009; Campbell et al., 2017), there are

three micro-simulation models developed by interdisciplinary research teams: (1) Cancer

Intervention and Surveillance Modeling Network (CISNET) consortium: Micro-simulation

Screening Analysis (MISCAN) (Loeve et al., 1999), (2) Simulation Model of Colorectal Can-

cer (SimCRC) (CISNET, 2012), and (3) Colorectal Cancer Simulated Population model

for Incidence and Natural History (CRC-SPIN) (Rutter and Savarino, 2010). These micro-

simulations mimic CRC incidences and mortalities in a particular population by explicitly

incorporating the CRC progression for each individual. They are clinically-validated and

very detailed models with extensive state space definitions covering all clinically relevant
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conditions. The models use different data sources and assumptions to model the CRC

progression. Detailed comparison of these micro-simulations is available in Kuntz et al.

(2011) and van Ballegooijen et al. (2011).

Clinical researchers have been using these micro-simulation models to address several

controversial issues. For example, using MISCAN Simulation, Loeve et al. (2000) show

that the savings from prevented and early detected CRC cases through CRC screening

may compensate the associated costs under particular conditions. Vogelaar et al. (2006)

also use MISCAN Simulation model to estimate the extend of reduction in CRC mortality

associated with a set of CRC screening strategies under different scenarios of risk factors,

compliance rates, and treatment options. Using CISNET micro-simulation models, several

studies evaluate the cost-effectiveness of new screening modalities such as DNA in stool and

CT Colonography, and the conditions under which these new screening methods can replace

the existing screening modalities such as colonoscopy (Ahlquist et al., 2008; Lansdorp-

Vogelaar et al., 2009a; Knudsen et al., 2010). Lansdorp-Vogelaar et al. (2009b) analyze

the effect of individualizing the CRC screening according to patient’s age and gender

by evaluating performances of a small set of different screening frequency and screening

modality combinations using MISCAN. In another study, Lansdorp-Vogelaar et al. (2009c)

use MISCAN model to analyze the effect of several factors such as increasing chemotherapy

costs on the cost-saving behavior of CRC screening.

Ramsey et al. (2010) also use MISCAN model to evaluate the cost-effectiveness of cur-

rent CRC screening guidelines for the patients with different family history while Wilschut

et al. (2011c) evaluate a set of different periodic colonoscopy screening policies to deter-

mine how frequently the patients with different family history should undergo colonoscopy.

Wilschut et al. (2011a) also use MISCAN model to determine how FOBT screening should

be adopted in order to comply with the capacity limits for colonoscopy surveillance after

a positive FOBT result. In addition, Wilschut et al. (2011b) and Goede et al. (2012)

compare the performances of different types of FOBT tests for different screening intervals

and screening age ranges using MISCAN model. Vanness et al. (2011) use all of the three

CISNET CRC micro-simulations in order to compare the heath outcomes associated with

every 5- and 10-year CT Colonography with some of the screening strategies recommended
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by the guidelines such as every 10-year colonoscopy for asymptomatic low-risk patients.

Rutter et al. (2011) evaluate the assumptions about the potential effects of risk factors

on the natural history of CRC using CRC-SPIN model. Finally, Haug et al. (2012) use

SimCRC model to determine the best screening protocol followed for an individual with

prior false-positive FOBT result.

Among the applications of CISNET CRC micro-simulations, that of Zauber et al. (2008)

is praiseworthy for showing the resourcefulness of discrete-event simulation in informing

policy makers. Zauber et al. (2008) use MISCAN and SimCRC to evaluate different CRC

screening termination ages to determine when to stop CRC screening for elderly patients.

Recent US Preventive Services Task Force (USPSTF) guidelines promote their findings as

evidence based on which USPSTF now recommends stopping CRC screening after age-75

for asymptomatic low-risk patients (USPSTF, 2008).

Recently, MISCAN model is adjusted to capture the effect of some factors on the screen-

ing performances and the guideline policies are re-evaluated using this adjusted MISCAN

model to inform the 2018 American Cancer Society CRC screening guideline. Peterse et al.

(2018) consider the fact that the number of young adults has been consistently increas-

ing when adjusting the MISCAN model. Their adjusted simulation model evaluates the

alternative policies that are designed using different screening start ages (e.g., 40, 45, 50),

stopping ages (e.g., 75, 80, 85), and intervals (e.g., 5-, 10-, 15-year for colonoscopy, 1-,

2-, 3-year for stool-based tests, etc.) for several screening modalities (e.g., colonoscopy,

FOBT, CT colonography, etc.) for a total number of strategies evaluated of 145. Using

clinical data, they determine the efficient and near-efficient screening strategies from a

Pareto-efficiency analysis. On the other hand, Meester et al. (2018) takes race and sex

into account with different assumptions on CRC risk trend over time when conducting

very similar analysis to Peterse et al. (2018). They use the same policy alternative set

of 145 and evaluate them using two discrete-event simulation models, MISCAN and Sim-

CRC. Pareto-efficiency analysis is utilized when generating the efficient and near-efficient

screening strategies. Note that these very recent updates support our claim that the guide-

line policies can be significantly improved by considering several factors when determining

screening frequencies (Knudsen et al., 2016; Van Hees et al., 2015).
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Besides CISNET, several other clinical groups also develop discrete-event simulation

models to address challenges in CRC screening. Ness et al. (2000) develop a discrete-

event simulation model and use it to analyze the costs and utility associated with one-time

colonoscopy screening at different age intervals. Subramanian et al. (2009) develop an

agent-based simulation model to measure the effect of the compliance on the performance of

CRC screening. Later, they use their model to compare the performances of CRC screening

using colonoscopy and FOBT tests under budget constraints (Subramanian et al., 2010).

There are also CRC discrete-event simulation models developed within the OR com-

munity. For example, Roberts et al. (2007) develop a detailed discrete-event simulation

model that mimics the progression of CRC. Using this simulation model, Tafazzoli et al.

(2009) compare the cost-effectiveness of some selected CRC screening policies proposed by

the existing guidelines. Moreover, Yaesoubi and Roberts also use this simulation model

in order to measure the willingness-to-pay for CRC screening in both insurer’s (Yaesoubi

and Roberts, 2008) and patient’s (Yaesoubi and Roberts, 2010) perspectives. In addition,

Pilgrim et al. (2008) develop a discrete-event simulation model that mimics the complete

pathways of CRC patients including screening, diagnosis, referral, treatment, metastasis,

and end-of-life care. They use this simulation model to analyze the costs and benefits of

several development options across CRC pathway in England. They also use this model

for estimating the direct cost of CRC care services provided by National Heath Services

in England (Bending et al., 2010). Finally, Erenay et al. (2011) develop a discrete-event

simulation model to analyze the progression of metachronous CRC among CRC survivors.

They use this simulation model to estimate the unknown parameters of metachronous CRC

progression using an inverse estimation approach.

Our proposed simulation model is different than the models reviewed above due to the

following reasons.

1) Many of the simulation applications are very detail-oriented and require a signifi-

cant amount of computational resources to evaluate large sets of screening policies.

Our model is more compact than the existing simulation models and requires less

computational efforts. However, it can still estimate the key performance measures
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with sufficient accuracy. Thus proposed framework is appropriate for simulation op-

timization purposes and assessing the optimal policies from analytic models which

requires large number of simulation replication as such models consider all possible

action and screening result pathways. This way we analyze a large set of alternative

policies without limiting our analysis to only periodic policies considered in previous

studies in the literature.

2) The existing simulation models generally focus on only asymptomatic low-risk pa-

tients while our model proposes a holistic approach and allows patients to change

their risk-level during the simulation based on their screening results (e.g., low-risk

to high-risk after a polyp is found).

3) Unlike many of the simulation studies, we use clinical data for our numerical exper-

iments rather than completely relying on published data in clinical literature.

4) Using the proposed simulation model, we shed light to some questions which have

not been addressed in the literature before.

– “Are the practices of clinicians in-compliant to current guidelines justifiable?”

– “What form of easier-to-implement and dynamic periodic policy would perform

close to the benchmark policy?”

– “ To what extent, can the current practice be improved without significantly

increasing the number of colonoscopies recommended?”

3.2.2 Markov Decision Process Models

Although the discrete-event simulation is employed more by the studies in this literature,

Markov models and fully or partially observable MDPs are also utilized to model and

analyze CRC progression. Leshno et al. (2003) develop a Hidden Markov Model to evaluate

the cost-effectiveness of several CRC screening policies including one-time colonoscopy

screening, colonoscopy followed by a 10-year interval of follow-up, annual FOBT, annual
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FOBT and sigmoidoscopy in a 5-year interval, and annual DNA stool test for the patients

with average risk of CRC. The model mimics the progression of CRC from non-cancerous

lesions to adenomatous polyps to cancerous lesions. Patients are categorized into seven

different states representing their health states based on the size of polyp, the stage of

cancer, and death. Moreover, Wu et al. (2006) focus on analyzing the cost-effectiveness

of DNA stool test and provide a comparison with several CRC screening tests (FOBT,

flexible sigmoidoscopy, and colonoscopy). The comparison is derived from a Markov model

which depicts the natural progression of CRC by representing health states as in Leshno

et al. (2003). He et al. (2017) also utilize a Markov model to improve the colonoscopy

screening practices by determining the bottlenecks. Moreover, determining the capacity

of colonoscopy services is addressed in Güneş et al. (2015) to minimize CRC mortality

through solving a dynamic compartmental model. Örmeci et al. (2015) utilize MDPs in

queueing control systems and develop an event-based dynamic programming approach to

model the endogenous relationship between colonoscopy screening and diagnostic services

that arises from the shared utilization of the capacity. Erenay et al. (2014) also develop a

POMDP model that determines colonoscopy screening decisions maximizing QALYs.

To the best of our knowledge, there is no study addressing CRC screening and surveil-

lance practices using a constraint MDP or POMDP model in the literature. However,

there are two studies using constraint MDP and POMDP modeling approach for breast

cancer screening, respectively, Ayvaci et al. (2012) and Cevik et al. (2018). Ayvaci et al.

(2012) introduce a finite-horizon discrete-time constraint MDP model to maximize the

TQALYs through optimizing the diagnostic decisions after mammography under budgetary

restrictions. The proposed idea for a constraint POMDP model will refer to an equivalent

colonoscopy history-baed MDP model which can be modeled as mixed-integer program

(MIP) and solved under additional to budget constraints. The proposed model of (Ayvaci

et al., 2012) is similar to our idea given in Section 3.5 in the sense that the optimal solu-

tion is derived considering a resource constraint. We also aim at providing policies that

optimize health outcomes and utilized resources (e.g., number of colonoscopies performed,

expected costs, etc.) simultaneously. However, these models are still different since the

states in Ayvaci et al. (2012) are completely observable whereas we still incorporate the
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partially observable states into our decision process. Cevik et al. (2018), on the other

hand, develop a constraint POMDP model that maximizes TQALYs under a constraint

on the number of mammography screenings performed. This study is similar to our study

by assuming that the health states are not completely observable as they depend on the

screening results which may not be completely accurate (i.e., sensitivities of both mam-

mography and colonoscopy are not 100%). The constraint POMDP model in our study

is aimed to be solved exactly whereas the model in Cevik et al. (2018) is solved using

an approximate method. Therefore, the solution procedure for these studies are different.

Last but not least, the modeling idea given in this study also differs from others by in-

corporating not only specific measures into the objective function but many of them, e.g.,

number of colonoscopy screenings performed vs. TQALYS, costs vs. TQALYs, costs vs.

CRC risks.

3.3 Simulation Model

In this section, we first describe the CRC progression and discuss the effects of colonoscopy

screening on the progression in order to better explain how the simulation model works. We

then introduce our simulation model and give the details about the assumptions, run set-

tings, and input parameters. After briefly describing how the simulation outputs, namely,

the policy performances, calculated, we explain the simulation calibration process.

3.3.1 CRC Progression and Colonoscopy Screening

Developing an adenomatous polyp, i.e., a noncancerous growth often referred as benign

tumor or precancerous lesion, is the fist sign of CRC development. As commonly as-

sumed in the literature (Loeve et al., 1999; Frazier et al., 2000; Roberts et al., 2007),

we assume that CRC progression starts with developing an adenomatous polyp which

then turns into adenocarcinoma, cancerous lesion. In other words, the progression follows

polyp-to-adenocarcinoma sequence for each patient-type (e.g., low-risk). Figure 3.1 illus-

trates the annual CRC progression in all risk-levels. We assume no colonoscopy screening,
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colonoscopy screening with diagnosis of a polyp, and colonoscopy screening with diagnosis

of a cancer in Figures 3.1a, 3.1b, and 3.1c, respectively. The pointed arrows show the

annual health state transitions. We define three pre-clinical (undiagnosed) states for each

patient group in our model: “No lesion”, “Polyp” and “CRC ”. We also define a death

(D) and under cancer treatment (UCT ) states. To make the Figure 3.1 tractable for the

readers, we give the list of notation in the figure by Table 3.3.

Table 3.3: Reference table for Figure 3.1

Notation Description

ponset The adenomatous polyp onset probability
pP−C The probability of adenomatous polyp-to-CRC progression
pdi The probability of mortality, respectively, in the No lesion, Polyp,

and CRC states for i ∈ {0, 1, 2} before developing any CRC
pP−P The probability of developing a new polyp after a polypectomy developed

at the beginning of the same year
pdCo The probability of mortality immediately after a colonoscopy with

polypectomy due to fatal complications
p̄C−N The probability of developing no lesion after immediate treatment
p̄C−P The probability of developing a polyp after immediate treatment
p̄C−C The probability of local recurrence of CRC
pUCT−N The probability of developing no lesion after continuous treatment
pUCT−P The probability of developing a polyp after continuous treatment
pUCT−C The probability of developing CRC after continuous treatment
pUCT−UCT The probability that the continuous treatment fails
p̄di The probability of mortality, respectively, in the No lesion, Polyp,

and CRC states for i ∈ {0, 1, 2} after developing CRC
pSD The probability of self-diagnosing of CRC
pST The probability of successfully completing the immediate treatment

Immediate treatment refers to the first treatment after detecting CRC which takes less than a year

Continuous treatment refers to the treatment following the immediate treatment

Without preventive screening or self-diagnosis, colorectal cancer lesions randomly progress

towards the next stage as shown in Figure 3.1a for all patient-types. The progression as-

sumes that if a patient has no lesion at the beginning of year t, s/he may either develop an
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adenomatous polyp with probability ponset during the year and transit into the Polyp state

at the beginning of next year, t+ 1, or may develop no polyp and stay in the “No Lesion”

state with probability 1 − ponset given that s/he survives during year t with probability

1−pd0 . Similarly, if a patient with existing adenomatous polyp survives during year t with

probability 1 − pd1 , the adenomatous polyp may either progress to CRC with probability

pP−C or remain as an adenomatous polyp. Therefore, the patient who is in Polyp state in

year t can be in the Polyp or CRC states in year t+ 1. If a patient has CRC and it is not

self-diagnosed in year t, then s/he may either die from CRC or other natural causes during

the year with probability pd2 or continue to the next year with an undiagnosed CRC.

The progression illustrated in Figure 3.1a usually takes time, e.g., adenomatous polyps

turn into invasive cancer in more than 10 years on average. This slow course of progression

provides the opportunity for prevention and early detection of CRC through screening. Un-

dergoing preventive or diagnostic CRC screening breaks down the polyp-to-adenocarcinoma

sequence leading to different progression paths based on the screening result as in Figures

3.1b and 3.1c. Figure 3.1b mimics the CRC progression after a positive result for an ade-
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(c) CRC Progression After
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Figure 3.1: CRC progression flow-charts: The probabilities on these figures vary by age. The
probabilities on Figure 3.1 vary by patient-type
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nomatous polyp from preventive colonoscopy screening. If a patient is diagnosed with an

adenomatous polyp at the beginning of year t and survives during the year, he may develop

a new adenomatous polyp with probability pP−P and be in the “Polyp” state in year t+ 1

as a high-risk patient. The other possibility is staying polyp-free during year t, thus, being

in the “No Lesion” state at the beginning of year t + 1 as a high-risk level patient. Note

that, in both cases, the CRC progression in the later years takes place according to Figure

3.1a with the progression parameters of high-risk patients until the next polyp or CRC

diagnosis due to having history of adenomatous polyp.

Figure 3.1c illustrates the progression after CRC diagnosis. Whenever a patient is

diagnosed with CRC s/he undergoes CRC treatment. In this study, we consider two

different CRC treatment types based on the treatment success. The immediate treatment

is the treatment that patients undergo right after the diagnosis of CRC and recovers from

CRC in less than a year. On the other hand, the continuous treatment is followed if the

treatment fails at the first attempt (i.e., unsuccessful immediate treatment) and the patient

needs to continue undergoing treatment during the following year. If a patient survives an

immediate CRC treatment at year t with probability 1−pd2 , the cancer can be successfully

treated with probability pST . In that case, the patient becomes a post-CRC patient in No

Lesion, Polyp, or CRC states in the next year with probabilities p̄C−N , p̄C−P , and p̄C−C ,

respectively. On the other hand, if the immediate treatment fails and the patient survives

during year t, her/his treatment continues during year t as continuous treatment and the

patient stays in the ”UCT ” state in year t + 1. If a patient is in the UCT state, then

the treatment may fail and the patient may die (with probability pdUCT ) or be in the UCT

state in the next year (with probability pUCT−UCT ). If the treatment is successful, then

the patient becomes a post-CRC patient in No Lesion, Polyp, or CRC states in the next

year with probabilities pUCT−N , pUCT−P , and pUCT−C , respectively. Note that, regardless

of the treatment type reqired, transition to CRC state refers to the local recurrence of

cancer. We refer the readers to the state transition matrices in Erenay et al. (2014) for

more details about the CRC progression probabilities in the proposed simulation model.

Colonoscopy screening, the screening mode considered in this study, differs from the

screening tests for other cancers by allowing removal of polyps at the same time when
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they are detected. Therefore, colonoscopy screening is very effective to prevent CRC be-

fore its development as well as detecting cancer at early stages when it is more likely to

be cured via less extensive treatments and recovery after treatment is faster (American

Cancer Society, 2018). Colonoscopy screening may diagnose the existing lesions with a

probability equal to the test sensitivity, i.e., probability of true positive, when a patient

undergoes screening and survives against any colonoscopic complications. The sensitivity

of colonoscopy for adenomatous polyps and CRC are reported to be around 80-90% and

85-95%, respectively (Frazier et al., 2000; Vijan et al., 2001). During colonoscopy, other

abnormalities that are not associated with CRC (hyperplastic polyps, inflamation, etc.)

can be also detected (Lieberman et al., 2000). Because all detected abnormalities are re-

moved and sent to pathology which reveals their true nature, the specificity of colonoscopy

(probability of true negative) is 100%. However, we consider the possibility of detecting

non-CRC related abnormalities in calculating pdCo because biopsy of such abnormalities

increases the likelihood of fatal colonoscopy complications. Figure 3.2 illustrates how the

screening results affect future CRC progression where τ1 and τ2 refer to colonoscopy sen-

sitivity for adenomatous polyps and cancer, respectively. If a patient has no lesion, then

the screening result is negative with probability 1 because the specificity of colonoscopy is

100%. On the other hand, if a patient has a polyp then the colonoscopy screening may

detect and remove the polyp with the probability that equals the sensitivity of colonoscopy

for polyps, τ1, or miss the polyp (with 1−τ1 probability). In case of having CRC, either the

colonoscopy screening may detect the cancerous lesions with probability τ2, or patients may

self-detect the cancer if it is not detected by the colonoscopy (with probability (1−τ2)pSD).

The CRC progression follows the path in (i) Figure 3.1a if no lesion is detected, (ii) Figure

3.1b if an adenomatous polyp is detected, (iii) Figure 3.1c if a cancer is detected through

the colonoscopy screening or self-detection (only in case of CRC).

3.3.2 Simulation Flow and Run Settings

The simulation model mimics the CRC progression at individual level for a particular

population and synthesizes the individual outcomes to determine the health outcomes
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Figure 3.2: Screening results for particular health states.

for the population. For example, in order to estimate the heath outcomes of a particular

colonoscopy screening policy among low-risk males with ages in 50-60, our model generates

individuals in this risk-level one-by-one at random ages between 50 and 60 according to

2010 US Census population data (USCB, 2012). Figure 3.3 illustrates the simulation

process flow. After initializing the input parameters (see Section 3.3.3 for the details), we

generate the run scenario which specifies the population characteristics and the screening

policies being evaluated. The population characteristics are risk level (e.g., high-risk),

existing colorectal lesion (e.g., undetected polyp), gender (e.g., females), and age (e.g.,

aged between 50-65) of the patients according to their distributions among the size of

the population that is given at parameter initializing step (e.g., 100,000 patients). The

screening policies that are considered in this study are AGA guideline policies, the optimal

POMDP policies of Erenay et al. (2014), the practice policies commonly followed by the

clinicians, the alternative policies that we propose. The details of these policies are given

in Section 2.5.

We consider three dynamic risk-levels, i.e., low-risk, high-risk, and post-CRC, and two

lesion types, i.e., adenomatous polyp and CRC lesion. After patient generation, each year,

the model determines whether a patient should undergo colonoscopy screening according to

the screening policy being evaluated. For the simplicity, we assume that colonoscopy screen-

ing takes place at the beginning of the year. Based on the screening decision (i.e., being

performed in that year or not), the simulation model follows the CRC progression described

in Section 3.3.1 until the patients are 100 years old. If performed that year, colonoscopy
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screening detects the existing colorectal lesions (CRC, adenomatous polyp, or others) with

a probability equal to the sensitivity of colonoscopy. When the colonoscopy finds a lesion,

the lesion is removed or treated. A patient may die from fatal colonoscopy complications

such as perforation during colonoscopy with a particular probability. Polypectomy and

biopsy of non-CRC related lesions increases the fatal complication probability. Note that,

a patient with undiagnosed CRC may experience severe symptoms and undergo a diagnos-

tic colonoscopy which reveals her/his cancer. We refer to this event as self-diagnosis and

assumed that CRC self-diagnosis may happen if the simulated patient do not undergo a

colonoscopy during the corresponding year.

Following the screening or self-diagnosis, the statistics about the screening results are

updated and if a lesion is found then the risk-level of the simulated patient may change

accordingly. After updating the statistics, the next screening age is determined. The

patient moves to the lesion progression module where s/he ages one year during which

either new lesions may develop, or existing lesions may progress to the next stage, or

the patient may die from natural reasons, undetected CRC, or CRC treatment. When

the lesion progression is completed, the statistics about the existing lesions and age are

updated. The patient continues aging in the same manner until the simulation excludes

her/him in the analysis because either s/he is 100-year-old or dead. When a patient is

excluded, all of the statistics about him/her are recorded and another patient is generated.

When simulation of a scenario is complete (Np >Population size), the simulation continues

with the next one until all scenarios are evaluated.

The simulation model is coded in Java as a microsimulation model. We run the simu-

lation for 100, 000 patients for each gender, risk-level, and age-group (when applicable) for

50 years. The consistency in calculations are ensured by using the same seed in each run

(16807).

3.3.3 Input Parameters and Validation

Table 3.4 presents the input parameters used for the numerical experiments. The parame-

ter values are mainly based on the estimations of Erenay (2010); Erenay et al. (2011) and
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Figure 3.3: CRC simulation flow chart

Np refers to the number of patients generated.
Cause-I death refers to all-cause deaths during a given year including death from undiagnosed CRC and
cancer treatment.
Cause-II and Cause-III deaths refer to deaths due to colonoscopy complications without and with
polypectomy.

several clinical studies mimicking the progression of CRC in the recent literature. Although

there are updates on some data in the recent literature (e.g., compliance rates), we use

the data estimations of Erenay (2010) to be able to provide a complete comparison. The

parameter estimation in Erenay (2010) is performed using a metachronous CRC natural

history (MCRC-NH) simulation model with clinical data from MAYO Clinic, Rochester.

This estimation along with the data from SEER database provides the transition probabil-
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ities for the patients whose CRC lesions have been removed through colonoscopy screening

(i.e., post-CRC patients). On the other hand, we obtain the polyp-onset probabilities

for low-risk and high-risk patients from the National Polyp Study (Loeve et al., 2004).

Mortality probabilities for CRC-free patients and patients with clinical CRC are based on

Erenay (2010)’s estimates which are from US life tables (Arias, 2007) and SEER database

(Howlader et al., 2012). The input parameters such as characteristics of colonoscopy screen-

ing and discount factors are derived directly from clinical literature whereas some of the

other input parameter such as disutility of colonoscopy and expected TQALYs after age-

100 are directly from Erenay (2010)’s meta-analyses. There is limited data for reliable

estimation of annual probability of polyp-to-CRC progression and mortality from unde-

tected CRC because detected polyps and CRC cases are immediately removed or treated.

Therefore, we again refer to Erenay (2010) for estimates of these probabilities which they

obtain through calibrating their model to replicate the cumulative age-based CRC risk and

CRC mortality from SEER data for general population (see Figures 3.4a and 3.4b). We

derive most of the cost components from Lansdorp-Vogelaar et al. (2009a) because theirs

is the only study that estimated CRC treatment and continuing care costs separately. The

details of the meta-analyses and calibration process are available in Erenay (2010) and the

online supplement of Erenay et al. (2014).

We assume a simulation environment where at age-50 1% of the population have per-

sonal or family history of CRC, i.e., high-risk patients, and 0.94% of the population have

only asymptomatic risk towards developing CRC, i.e., low-risk patients. These patients

are assumed to undergo colonoscopy screening with 100% compliance starting at age-50

until age-75 and -85, respectively, for low- and high-risk levels, and the simulation runs to

calculate performances either they die or reach age-100 (i.e., decision horizon of 50 years).

3.3.4 Simulation Outputs: The Performance Measures

We use the proposed simulation model to estimate several performance measures reflecting

the harms and benefits of colonoscopy screening. The harms include increased compli-

cation risk, disutility associated with undergoing colonoscopy, and clinical resource con-
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(a) Female

(b) Male

Figure 3.4: Comparison of age-based CRC risk and CRC mortality from SEER database and
calibrated simulation model of Erenay et al. (2014) (Source: Erenay (2010))
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Parameter

Annual colorectal lesion progression parameters (A.S.w.M1)
Low-risk High-risk Post-CRC

Polyp-onset probability 0.021 0.052 0.12
Polyp-to-CRC progression probability 0.01
Polyp-to-MCRC progression probability 0.348
Probability of local CRC recurrence after treatment 0.038
Probability of metastatic recurrence of CRC after treatment 0.061

Colonoscopy Screening Characteristics (S2, R3)
Low Base High

Sensitivity for polypsS,R 0.80 0.85 0.90
Sensitivity for cancerS,R 0.85 0.90 0.95
Specificity - 1 -
Probability of self-detection of CRC - 0.49 -
Probability of major complication with polypectomy/biopsy 1 2 3
Probability of major complication without polypectomy/biopsy 1 2 3

Mortality related Probabilities4 (A.S.w.M)
Mortality with polypectomy/biopsy 1.635×10−4

Mortality without polypectomy/biopsy 0.892×10−4

Mortality after complete CRC treatment 0.256
Mortality after incomplete CRC treatment 0.602
Mortality from undetected CRC 0.356
Mortality from other causes 0.070

Disutility (S, R)
Low Base High

Colonoscopy ScreeningS,R (in weeks) 1 2 3
Undetected CRC (in months) 1 1.5 2, 3
CRC treatment (in months) 4 4.5 5

Costs, $ (R)
Low Base High

Colonoscopy screening 370 740 1,110
Polypectomy 200 400 600
Removing a non-CRC lesion 200 400 600
Complications 2,900 5,800 8,700
CRC/MCRC Treatment 24,550 49,100 73,650
Life after CRC treatment 31,640 63,280 94,920
End of life 9,925 19,850 29,775
1: Age Specific with Mean. The given values are used to obtain the age specific values.
2: The parameters with low- and high-values considered in our sensitivity analysis.
3: The parameters with low- and high-values considered in our robustness analysis.
4: These probabilities differ based on the patients’ health transitions. The given values represent the base
values that are used to calculate the case-specific probabilities.

Table 3.4: Simulation input parameters
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sumption and they are captured by number of required colonoscopies (NC) and average

screening/follow-up interval (L). On the other hand, the increase in life-years (LY ) and

TQALYs (QY ), and reduction in cumulative CRC risk (CT ) and all-cause mortality (MT )

reflect the benefits of the considered policies. Total cost partially reflects both the harms

and benefits, e.g., total cost includes the increasing cost of colonoscopy tests and decreasing

cost of CRC treatment when frequency of colonoscopy screening increases. The disutility

of colonoscopy and complication risks are also considered in calculation of TQALYs.

The following equations represent the derivation of the aforementioned performance

measures from the simulation results while Table 3.5 lists the notation we use for the

formulation below.

NC =
N∑
n=1

NCn

N
, where (3.1)

NCn =
T∑
t=1

Int , and Int =

1, if nth patient had a colonoscopy in year t

0, otherwise

L =

∑N
n=1 Ln∑N

n=1 IE(n)
where IE(n) =

1, if NCn > 1, n ∈ {1, 2, . . . N}

0, otherwise
(3.2)

Ln =


∑NCn−1
i=1 CoTni+1−CoTni

NCn−1
, if NCn > 1, n ∈ {1, 2, . . . N}, given that

CoT n1 = 0, CoT ni = min
(
t : Int = 1, t > CoT ni−1

)
for i > 2

0, othewise

(3.3)

(3.4)
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Notation Description

t ∈ {0, 1, . . . , T} The set of years after age of 50 years
n ∈ {0, 1, . . . , N} The set of patient identifiers
s ∈ S Current state where S consists of the health states
a ∈ A ≡ {Co,DN} Current action (undergo colonoscopy or do nothing)
o ∈ O ≡ {T−, P+, C+, SD} Current test results (Test negative, a polyp is found, CRC is found,

and CRC is self-diagnosed, respectively)
LRi, HRi, PCi, i ∈ {0, 1, 2} Health states for low-risk, high-risk, and post-CRC patients where

i = 0, 1, and 2 refers to without lesion, polyp and CRC states,
respectively.

NCn The number of colonocopies the nth patient underwent during the
simulation

Ln The average colonoscopy interval for the nth patient
Int Indicator function showing whether the nth patient underwent a

colonoscopy at the beginning of year t
IE(n) A function indicating whether the nth patient undergoes more than

one colonoscopy
CoT ni The year of the ith colonoscopy for the nth patient
CRt and MRt Cancer and mortality risk between age 50 and 50 + t
CRn

t and MRn
t Indicator functions specifying whether the nth patient develops

CRC or dies at age 50 + t, respectively
l(s, s′) The expected life years for a patient who moves from state s to

state s′ at year t
qt(s, a, o, s

′) The expected QALYs at year t for a patient who moves from state
s to state s′ given action a and test result o

cnt (s, a, o, s′) The expected cost if the nth patient moves from state s to state s′

at year t given action a and test result o
cCo, cP/B Cost of colonoscopy and polypectomy/biopsy, respectively
ccmp,cccc Costs of treatment for colonoscopy complications and continuing

cancer care, respectively
cMCT , cct Cost of metastatic CRC and CRC treatment, respectively
ctc, ctcc Cost of terminal care for a patient without and with CRC, respec-

tively
λh, λc Discount factors for health outcomes and costs, respectively.

Table 3.5: Model notation
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CT =
N∑
n=1

max0<t′<T (Cn
t′)

N
, and Cn

t =

1, if the nth patient has CRC in year t

0, otherwise
(3.5)

MT =
N∑
n=1

max0<t′<T (Mn
t′ )

N
, and Mn

t =

1, if the nth patient dies in year t

0, otherwise
(3.6)

Let Int (s, s′) and Int (s, a, o, s′) be the indicator functions that, respectively, show whether

the nth patient was in state s in year t, moved to state s′ in the next year and did not die

at the beginning of year t due to colonoscopy complication or CRC treatment and the nth

patient was in state s in year t, moved to state s′ in the next year after action a is taken

and test result o is observed. Then;

LY =
N∑
n=1

(
T∑
t=0

∑
s′∈S

∑
s∈S

(λh)
tl(s, s′)× Int (s, s′)

N

)
, lt(s, s

′) =


1, ifs, s′ ∈ S\D

0.5, ifs ∈ S\D and s′ = D

0, otherwise

(3.7)

QY =
N∑
n=1

(
T∑
t=0

∑
s′∈S

∑
s∈S

∑
a∈A

∑
o∈O

(λh)
tqt(s, a, o, s

′)Int (s, a, o, s′)

N

)
(3.8)

TC =
N∑
n=1

(
T∑
t=0

∑
s′∈S

∑
s∈S

∑
a∈A

∑
o∈O

(λc)
tcnt (s, a, o, s′)Int (s, a, o, s′)

N

)
(3.9)
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cnt (s, a, o, s′) =



Int cCo +Bnt cP/B + Icmnt ccmp, a ∈ A, o = T−, s ∈ S\{PC0, PC1, PC2, UCT,D},

s′ ∈ S\{UCT,D},

Int cCo +Bnt cP/B + Icmnt ccmp + cccc a ∈ A, o = T−, s, s′ ∈ {PC0, PC1, PC2},

cCo + cP/B + Icmnt ccmp a = Co, o = P+, s ∈ {LR1, HR1}, s′ ∈ {HR0, HR1},

cCo + cP/B + Icmnt ccmp + cccc a = Co, o = P+, s ∈ {PC1}, s′ ∈ {PC0, PC1},

cMCT o = T− , s = UCT, s′ ∈ S\D, a = DN,

cCo + cP/B + Icmnt ccmp + cct o ∈ {C+, SD}, s ∈ {LR2, HR2, PC2}, s′ ∈ S\D, a ∈ A,

Int cCo +Bnt cP/B + Icmnt ccmp + ctc a ∈ A, o = T−, s ∈ S\{LR2, HR2, PC2, UCT,D}, s′ = D,

cCo + cP/B + Icmnt ccmp + ctc o = P+, s ∈ {LR1, HR1, PC1}, s′ = D, a = Co,

Int cCo +Bnt cP/B + Icmnt ccmp + ctcc o = T−, s ∈ {LR2, HR2, PC2}, s′ = D, a ∈ A,

cMCT + ctcc o = T−, s = UCT, s′ = D, a = DN,

cCo + cP/B + Icmnt ccmp + cct + ctcc o ∈ {C+, SD}, s ∈ {LR2, HR2, PC2}, s′ = D, a ∈ A,

0 otherwise

(3.10)

In the formulation of QY , qt(s, a, o, s
′) refers to the difference between expected life years

(l(s, s′)) and expected disutility which is a combination of disutilities of colonoscopy, com-

plications, CRC treatment, and undiagnosed CRC. The formulation of qt(s, a, o, s
′) is avail-

able in Erenay et al. (2014). The detailed definition of cnt (s, a, o, s′) is as follows where

Bn
t and Icmn

t are binary variables representing whether the nth patient has a polypec-

tomy/biopsy and serious complication at age 50 + t, respectively. Note that, cost of

complication treatment refers to the costs associated with hospitalization due to serious

colonoscopy complications, while, cost of continuing care denotes the costs associated with

medication after the initial CRC treatment for post-CRC patients. Unless it is metasta-

sized, CRC treatments are completed within a year, thus, cost of being in the UCT state

(cMCT ) is taken as the cost of metastatic CRC treatment.

3.4 Numerical Experiments

This section presents extensive numerical experiments for evaluating the performances of

the periodic colonoscopy screening policies recommended by practitioners and all feasible
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simpler-to-implement colonoscopy screening policies. The insights derived from our nu-

merical results are then used to determine the characteristics of the promising alternative

screening policies that can provide close-to-optimal performances compared to the opti-

mal personalized screening policies found by the POMDP model proposed in Erenay et al.

(2014).

Simpler-to-implement policies include static periodic policies and dynamic periodic poli-

cies with n period switch times (n = 1, 2) at the beginning of given ages. A brief repre-

sentation of simpler-to-implement policies for low-risk patients is given in Figure 3.5. The

static-periodic policy follows a single screening frequency of every 10-year and starting from

age-50, the colonoscopy screenings are performed in every 10-year until the stopping age

of age-80 for low-risk patients. The age-dependent periodic policy with n = 1, considers

different screening frequencies over each of two age intervals, every 8-year screening in the

age interval 50-60, and every 5-year screening age-60 onward. When there are three age

intervals, equivalently 2 switch times, the screening policy with n = 2 suggests screening

patients in every 8-, 5-, and 7-year, respectively, in the age intervals 50-60, 60-70, 70-80.

This scheme is different for hig-risk patients since the test result affects the screening de-

cisions for them, e.g., every 3-year screening after polypectomy and 5-year screening after

no positive finding. Details are discussed in the remainder of Section 3.4.

3.4.1 The Rationale Behind the Proposed Policy Structures

In our numerical analysis, we focus on two different policy structures to define the simpler-

to-implement policies; static-periodic, and age-dependent dynamic-periodic colonoscopy

screening policies, which are referred to as dynamic-periodic policies hereafter. A static-

periodic screening policy recommends patients undergo colonoscopy screening periodically

with a single frequency depending on the risk-level and gender. On the other hand, an age-

dependent dynamic-periodic screening policy recommends undergoing periodic screening

with distinct frequencies in particular predefined age intervals.

We consider static-periodic policies because i) they are the simplest form of screening

policies; and ii) current CRC screening guidelines follow this structure (USPSTF, 2008),
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Figure 3.5: A representation of the simpler-to-implement policies for low-risk patients

e.g., every 10-year colonoscopy from age 50 to 75 for low-risk patients, and screening in

the third year after a polypectomy and every 5-year screening thereafter until a positive

colonoscopy for high-risk patients. We consider dynamic-periodic policies to further im-

prove the performances of the proposed simpler-to-implement colonoscopy screening poli-

cies. Note that age-dependent dynamic-periodic policies are practiced for mammographic

breast cancer screening based on the guidelines of American Cancer Society (Oeffinger

et al., 2015).

Several studies reports that slightly more than half of the clinicians follow the CRC

screening guidelines (Yabroff et al., 2011a; Klabunde et al., 2009, 2005; Cabana et al.,

1999). Those who do not follow them recommend more frequent colonoscopy screening

than the current guidelines again in the form of periodic screening for low-risk and high-

risk patients. Mysliwiec et al. (2004), Yabroff et al. (2011a), and Wilschut et al. (2011c)

report the use of the more frequent static-periodic policies listed in Table 3.6. As a result,

existing clinical studies primarily focus on analyzing the cost-effectiveness of the static-

periodic policies [reference]. These observations from CRC literature imply that clinicians
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would be more likely to adopt static-periodic policies compared to dynamic policies, such

as dynamic-periodic policies or those derived by POMDP models.

In the cases, for which static-periodic policies may not satisfactorily close the perfor-

mance gap between the current colonoscopy screening guidelines and the optimal policies

from the POMDP model, we aim to identify ideal simpler-to-implement policies among the

dynamic-periodic policies. By considering dynamic-periodic policies, we seek to establish

an interaction between the patients’ ages and recommended screening intervals. This is

important as i) many parameters depend on the age including the probability of colorec-

tal lesion, and probability of mortality, ii) capturing this interaction is likely to improve

CRC screening performance since the screening frequencies of the optimal policies from

the POMDP model vary significantly in age. To tackle integration of age factor into the

simple policies, we propose dividing the age range into n sub-intervals of varying lengths

(n-1 frequency switches), and assigning a different screening frequency to each of these

intervals (see Table 3.9).

Although there is a general consensus on initiating CRC screening at age 50 (USPSTF,

2008), determining the optimal screening stopping age, beyond which periodic screening is

terminated except for colonoscopies prompted by self-detection of CRC, is a controversial

issue. It is reasonable to terminate CRC screening at an age, beyond which the savings

in TQALYs from early-detecting or removing a colorectal lesion may not compensate the

disutility due to an invasive colonoscopy operation. Guidelines recently propose a stopping

age for colonoscopy screening based on the results of recent studies which analyze the

effects of stopping ages in the ranges of age 75 to 80 (Long and Sands, 2018; Knudsen

et al., 2016; Wilson, 2010; Zauber et al., 2009, 2008; Maheshwari et al., 2008; Stevens and

Burke, 2003). Therefore, in our numerical experiments on both static and age-dependent

periodic screening policies, we investigate the effect of stopping age within this age interval,

i.e., we consider stopping age options of 75, 80, and 85 for low-risk patients and 80, 85,

and 90 for the high-risk patients.

For our numerical experiments, we first run the simulation for the current CRC guide-

lines and the other static-periodic policies recommended by the clinicians with different
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parameter settings (See Table 3.6). We compare these policies with the optimal policy

from the POMDP model proposed in Erenay et al. (2014) in order to see whether the

currently practiced static-periodic policies may perform close to optimal under any param-

eter setting. We conduct this analysis because no study reports a performance comparison

specifically between the guidelines and the other practiced static-periodic policies; there-

fore, how closely these practiced static-periodic policies may perform to the best possible

practice is important to reveal. Next, we evaluate all possible static policies for both

for low-risk and high-risk patients, determine the static policies performing closest to the

optimal POMDP policy for each gender. Finally, in order to find simpler-to-implement

policies with further reduced optimality gap, we run our simulation model for all possible

dynamic-periodic policies with n − 1 frequency switches given the reasonable n-interval

partitions of the age range, n = 2, 3 ,for colonoscopy screening. Given a set of parameters,

we derive promising simpler-to-implement policies (i.e., performing close to the optimal

policies) for each gender, as earlier studies indicate gender as a factor to consider when an-

alyzing CRC progression and determining the best colonoscopy screening practices (Erenay

et al., 2014, 2011). We then perform sensitivity analysis on several parameters to see how

those parameters may affect the policy performances and the selection of the promising

simple-to-implement policies.

Recall that the main objective of this study is to improve the CRC screening guidelines

proposing simpler-to-implement policies that are convenient to be adopted by clinicians in

practice. Therefore, it is also important to propose limited number of alternative policies

to the clinicians while conducting a comprehensive policy analysis. To present a concise

evaluation, we perform a Pareto-efficiency analysis on the cost and TQALYs spectrum.

That is, we enumerate all reasonable policies but only present the ones that cannot be

dominated by another policy in terms of TQALY and cost measures. Furthermore, among

the Pareto-frontier simpler-to-implement policies, we only highlight the promising ones

that i) perform close to the optimal policies, 2) do not increase required number of colono-

scopies significantly, and have favorable incremental cost-effectiveness ratios (ICER) given

in Equation 3.11, i.e., ICER< $50, 000 or $100, 000. We then perform robustness analyses

on the selected promising simple-to-implement policies for low- and high-risk patients to
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see how their performances change under different input parameter scenarios.

ICER =
C1 − C0

TQALYs1 − TQALYs0

, (3.11)

where 0 is the reference policy, 1 is the candidate policy, and Ci and TQALYs0 denote

the cost and expected TQALYs associated with a policy.

3.4.2 Commonly Practiced Policies

Klabunde et al. (2009) provide information about a survey analyzing the screening rec-

ommendations of clinicians in 2006 and 2007 that are commonly used for low-risk (i.e.,

asymptomatic average risk) patients in the practice. The screening intervals are given for

several CRC screening modalities, and every 3-, 4-, 5-year and a randomized screening in-

terval between 6 to 9 years (6:9-year) are highlighted for colonoscopy screening. Figure 3.6

presents the performances of these screening frequencies which are referred as commonly

practiced policies, henceforth.

The policy suggested by AGA guidelines, every 10-year, performs the worst followed

by the policies suggesting every 6:9-year and 3-year screening, for both genders. The best

performing commonly practiced policy is every 5-year screening for females and every 4-

year screening for males as seen in Figures 3.6a and 3.6b, respectively. We have observed

that the best performing commonly practiced policy for males is associated with higher

screening frequency than that for females. This is because females develop CRC lesions

with a slightly lower rates than males do.

Moreover, the gap between the best commonly practiced policy and the optimal POMDP

solution is greater for females than males in terms of TQALYs; however, the policy for fe-

males perform better than the one for males in terms of total costs, i.e., 0.04% vs. 0.03%

gap between the corresponding POMDP in TQALYs and 2.08% vs. 1.26% less costs than

the corresponding POMDP, respectively, for females and males. More frequent screenings
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considerably work better for males than they work for females as every 3-year also per-

forms closer to the optimal POMDP for males than that does for females. This observation

reveals the subtle effect of total expected life years remaining between females and males.

Since females have longer life expectancy, every 3-year screening results in greater number

of colonoscopies scheduled in total (8.42 vs. 7.91), thus, resulting higher disutility, namely,

lower TQALYs, and greater costs.

Our insights from the evaluation of commonly practiced policies strongly indicate that

there is opportunity to improve the performance of the current guideline screening policy

suggesting every 10-year screening even following the clinicians uneducated proposals on

the screening frequencies. Therefore, we analyze a greater set of periodic frequencies under

the assumptions that screening decisions are made with and without the consideration of

patient’s age.

3.4.3 Static-periodic Policies

In this section, we evaluate the performances of the static-periodic colonoscopy screening

policies, interchangeably referred as static policies hereafter, to find the best performing

simpler-to-implement static-periodic policy among the Pareto-efficient policies while tak-

ing gender and risk-level of the patients into account. The effect of stopping age is also

incorporated in our evaluation by comparing the policy performances for the stopping ages

of 75, 80, 85 for low-risk patients and 80, 85, 90 for high-risk patients. The screening

frequencies that we consider in our analysis for static policies are given in Table 3.6. The

screening frequency is every-f year for low-risk patients whereas it is every-f 1 years after

the polypectomy, and every-f 2 years afterwards when there is nothing significant found in

the screening for high-risk patients. Note that we omit including the randomized policy of

screen every 6:9-year policy into the proposed policies since our analysis is to inform the

guidelines with a one-type screening policy which is followed by all clinicians based on the

patients’ characteristics.

Besides analyzing the static policies with base-case parameters, we also show how the

changes in some of the system parameters affect their performances through presenting a
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Figure 3.6: Commonly practiced policies reported in Klabunde et al. (2009) with base-case
parameters for low-risk patients

95



Table 3.6: The screening frequencies for static policies

Low-risk patients f ∈ {3, 4, 5, 6, 7, 8, 9, 10}
High-risk patients f 1, f 2 ∈ {1, 2, 3, 4, 5} ⊗ {1, 2, 3, 4, 5}, s.t. f 1 ≤ f 2

comparison with the guideline and the optimal POMDP policies, in Sections 3.4.3.1 and

3.4.3.2, respectively, for low- and high-risk patients.

3.4.3.1 The Best Performing Static Policies for Low-Risk Patients

Figure 3.7 shows the performances (i.e., TQALYs and costs) of the static policies with

base-case parameters for low-risk patients given stopping ages of 75, 80, 85. The number

of different screening policies analyzed is 27, i.e., 9 different screening policies for each

stopping age. Note that the figures in this section have a generic format to provide tractable

representation, that is, the screening frequency increases when the color of the markers gets

darker, and the stopping age changes with the shape of the marker, as shown in the legend

of Figure 3.7.

The performances of the static policies are in a similar fashion for both female and

male patients as shown in Figures 3.7a and 3.7b. TQALYs increase with the screening

frequency for the policies that suggest performing colonoscopy screening at most in every

5-year for females and in every 4-year for males and decrease for more frequent screenings

than those. We also observe that TQALYs further decrease for these undesirably frequent

screenings when the stopping age increases. These are mainly because of the fact that

colonoscopy procedure is associated with some disutility; thus, any additional colonoscopy

screening performed results in more harms than the prevention benefits after a particular

screening frequency.

The policy that improves the current guideline’s TQALYs significantly with a reason-

ably small costs while realizing an ICER less than $50, 000 suggests every 8-year screening

for both genders with a stopping age of either 75 or 80. The best-performing static pol-

icy under the base-case scenario, π, suggests every 5-year screening with a stopping age
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Figure 3.7: Static screening policies with base-case parameters for low-risk patients given stop-
ping ages of 75, 80, 85
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of 80 for females and every 4-year screening with a stopping age of 75 for males. These

two policies perform closely to the optimal POMDP while requiring slightly less cost. We

can further improve TQALYs for males by following the same static policy as for females

(i.e., every 5-year screening); however, this requires slightly more cost than the optimal

POMDP. Note that the average cost in this study only includes the costs of screening and

treatment. If the cost of implementing a policy in practice is also included in the analysis,

it is likely that following the same policy for both genders would be more favorable by the

clinicians. However, this kind of cost is difficult to calculate due to lack of data.

Table 3.7 presents a comparison among the guideline policy of every 10-year, the policies

suggesting every 8- (π1), 6-(π2), and 5- year, the best performing static-periodic policy (π3),

the static-periodic policies suggesting one and two additional colonoscopy screenings than

the guideline, and the optimal POMDP policy of Erenay et al. (2014). The stopping age

is assumed to be 75 for the guideline policy as suggested in USPSTF (2008). The static

policies with one additional colonoscopy than the guidelines suggest every 8-year screening

with the stopping age of 85. The ones suggesting two additional colonoscopy than the

guidelines adopt every 5-year screening with a stopping age of 75. The stopping age for

the guideline policies and every 8-, 6-, and 5-year screening policies is assumed to be 75

following the recommendations in USPSTF (2008).

The performances of the static policies in Table 3.7 are promising as we can achieve

almost half of the improvement in TQALYs that the optimal POMDP attains with a rea-

sonably small cost by following a considerably less complex policy structure. Although the

static policies start performing closely in terms of TQALYs when the screening frequency

increases, the improvement in terms of CRC risk and mortality continues improving by

increasing frequency. This is noteworthy as these measures are also important while quan-

tifying the effectiveness of a screening policy. Increasing the screening frequency alone is

not a sufficient strategy as there is still a gap between the best performing static-periodic

policies, π, and the corresponding POMDP policies for both genders. Therefore, we con-

duct further analysis considering the relationship between the screening age and frequency

to fill this gap without compromising the simple structures of periodic policies. We aim to

inform the current guidelines for a potential update using the insights from our analysis.
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Note that the analysis in this section strongly indicates the need for updating the current

guidelines as even the practice policies suggesting every 5-year screening only require two

additional colonoscopy screenings with the same stopping age of 75 and perform very close

to the optimal POMDP.

Table 3.7: Comparison of the US guidelines, the optimal POMDP policies of Erenay
et al. (2014), and the promising static-periodic policies (i.e., π1, π2, π3) for low-risk
patients

Guideline π1 π2 5-year π3 +1 Col +2 Col POMDP∗

Females

Total QALYs 32.353 32.372 32.381 32.384 32.385 32.373 32.396

No. of colonoscopies 4.00 4.78 5.56 6.23 6.58 5.12 7.05

Lifetime CRC risk 3.16% 2.68% 2.44% 2.26% 2.08% 2.45% 5-year 1.95%

CRC mortality 1.24% 1.02% 0.93% 0.86% 0.76% 0.87% 0.65%

Total Cost ($) 25,338 25,558 25,926 26,292 26,467 25,703 26,627

Screening Interval 8.37 6.87 5.46 4.75 4.74 6.83 4.52

Males

Total QALYs 28.502 28.521 28.533 28.537 28.538 28.522 28.547

No. of colonoscopies 3.72 4.42 5.17 5.80 6.57 4.68 6.96

Lifetime CRC risk 3.41% 2.91% 2.61% 2.40% 2.27% 2.71% 5-year 2.01%

CRC mortality 1.24% 1.01% 0.92% 0.84% 0.81% 0.86% 0.67%

Total Cost ($) 25,949 26,109 26,428 26,751 27,231 26,204 27,319

Screening Interval 8.45 6.94 5.49 4.76 4.02 6.90 4.12

∗ Source: Erenay et al. (2014)

Note that the guideline policies assume the stopping age of 75 whereas the stopping age may vary for the other

policies.

3.4.3.2 The Best Performing Static Policies for High-Risk Patients

The performance evaluation of the static policies with base-case parameters for high-risk

patients is presented in Figure 3.8 for the stopping ages of 80, 85, and 90. We consider 15

different screening policy for each stopping age, thus, analyze 45 screening policy in total.

The screening frequency sets for these policies is given in Table 3.6. We again design easily

tractable representation, that is, the screening frequency after getting negative result, f 2,

increases when the color of the markers gets darker, and the fill type of marker changes with
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the screening frequency after polypectomy, f 1, for each f 2. Similar to all other graphs in

this thesis, the stopping age changes with the shape of the marker, as shown in the legend

of Figure 3.8.

Although the behaviors of the static policies are not noticeably different for low-risk

female and male patients (see Figures 3.7a and 3.7b), the policies plot in a different fashion

for both genders of high-risk patients and differences in the performances become signif-

icant (see Figures 3.8a and 3.8b). Firstly, the TQALYs vary significantly based on f 1,

the screening frequency after polypectomy, for female patients whereas they perform very

closely independent from their f 1 for male patients for a given f 2, the screening frequency

after a negative result. This observation especially becomes noticeable for lower screening

frequencies (e.g., the points are closer for all f 1 values when f 2 = 5 than f 2 = 4). On the

other hand, the effect of f 1 is more prominent for male patients, e.g., the best performing

policy suggests every 2-, 3-year screening for males whereas it is every 3-, 3-year screening

for females. This is mainly because male patients develop more CRC lesions than females,

thus, undergoing colonoscopy screening frequently after polypectomy is very important for

early detection and prevention of CRC. Moreover, the proportion of patients having CRC

among male patients is greater than that among female patients in simulation. Therefore,

the changes in f 1 is more pronounced when calculating the average TQALYs as a simula-

tion output. Secondly, increasing the screening frequency after a negative test result, f 1,

too much decreases TQALYs more for females than that does for males (f 1 < 3). This is

due to longer life expectancy of females, in other words, having more colonoscopy screen-

ings scheduled for female patients over a longer horizon. Lastly, the greatest attainable

improvement in TQALYs is more for female patients; the best-performing policy results in

a similar TQALYs as the optimal POMDP with less costs. This observation is consistent

with the findings of Erenay et al. (2014) that the improvements in TQALYs for female

patients is more pronounced due to longer life expectancy.

Table 3.8 lists the performances of the guideline policy of every 3-, 5-year screening, the

guideline policy with the stopping ages of 90 and 80, respectively, for females and males,

the promising static-periodic policies (π1, π2, π3), the static-periodic policies suggesting one

and two additional colonoscopy screenings than the guideline, and the optimal POMDP
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Figure 3.8: Static screening policies with base-case parameters for high-risk patients given stop-
ping ages of 80, 85, 90
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policy of Erenay et al. (2014). Note that we assume a stopping age of 85 for the guideline

policy as in USPSTF (2008). We consider different stopping ages for the guideline policy

of every 3-, 5-year screening in our analysis motivated by our findings from Section 3.4.3.1.

That is, females have longer life expectancy, thus, screenings may continue further in age

for them (e.g. until age-90) whereas males may get affected more by terminating screening

at a younger age (e.g. at age-80).

We see that the guideline policy performs slightly better if the screening is terminated at

age-90 rather than 85 for female patients and the stopping age-85 is the age that the guide-

line policy performs the best for males. The static policy suggesting one more colonoscopy

screening than the guideline is among the promising points that we select, π2, for both

genders and performs reasonably well at a very similar costs as the guideline policy. This

finding is very important as it shows the potential that following a simpler-to-implement

policy for both genders may improve the TQALYs significantly with a reasonably small in-

crease in costs. The static policy suggesting two additional colonoscopy than the guidelines

is every 2-, 3-year screening with the stopping age of 80 for both females and males. The

static policies perform reasonably well compared to the guideline for males and perform

very closely to the optimal POMDP for females. However, there is still room for improving

the static-periodic policy for male patients. Therefore, we analyze age-dependent policies

also for high-risk patients in order to fill this gap for males and observe the changes for

females in Section 3.4.4.

102



Table 3.8: Comparison of the US guidelines, the optimal POMDP policies of Erenay
et al. (2014), and the promising static-periodic policies (π1, π2, π3) for high-risk patients

Guideline π1 π2 3-, 5-year1 π3 +1 Col +2 Col POMDP∗

Females

Total QALYs 32.191 32.210 32.217 32.200 32.237 32.233 32.239

No. of colonoscopies 7.00 7.11 7.99 7.38 9.41 9.05 10.18

Lifetime CRC risk 3.56% 3.67% 3.13% 3.35% 2.78% π2 3.09% 2.66%

CRC mortality 1.16% 1.27% 0.97% 0.99% 0.85% 1.08% 0.76%

Total Cost ($) 29,198 29,166 29,492 29,342 30,253 30,091 30,589

Screening Interval 4.50 4.01 3.91 4.51 3.28 3.16 2.97

Males

High-risk patients

Total QALYs 28.348 28.362 28.368 28.338 28.387 28.385 28.403

No. of colonoscopies 6.43 6.66 7.51 6.03 9.02 8.48 10.58

Lifetime CRC risk 3.93% 3.84% 3.34% 4.18% 2.81% π4 3.20 2.59%

CRC mortality 1.17% 1.28% 1.00% 1.37% 0.83% 1.06% 0.75%

Total Cost ($) 29,513 29,439 29,797 29,282 30,456 30,261 31,397

Screening Interval 4.50 4.00 3.78 4.49 3.16 3.13 2.54

∗ Source: Erenay et al. (2014)
1 Stopping ages are 90 for females and 80 for males.

3.4.3.3 Sensitivity Analysis for Static Policies

Sensitivity on Disutility of Colonoscopy

The first sensitivity analysis that we conduct to understand the behaviors of the static-

periodic policies is on the disutility of colonoscopy. We assume 2-week of colonoscopy

disutility for the base-case and consider ±50% more disutility (i.e., 1- and 3-week) for

the sensitivity analysis. As Figures 3.9 and 3.10 mimic, when the disutility of colonoscopy

increases, TQALYs of all policies (i.e., the static, guideline, and optimal POMDP) decrease

for both genders, as expected. The gap between the optimal POMDP policy and the best

performing static-policy also closes when the disutility increases. This is mainly because,

the optimal POMDP policy determines the actions (do nothing or undergo colonoscopy

screening) to maximize the TQALYs, thus, scheduling fewer colonoscopy screenings at

higher disutility levels is the strategy that the optimal policy follows. When the decision is

103



do nothing for most of the ages, the personalized screening policy does not provide as much

improvement as it does with the base-case parameters. Moreover, the gap closes faster for

male patients than female patients. This finding is in line with the findings of Erenay et al.

(2014) that the optimal policy provides greater improvements over the guidelines for male

patients, namely, following a personalized screening is more important for male patients in

terms of improving TQALYs. Therefore, lack of personalized screening helps closing the

gap faster for male patients.

Sensitivity on Colonoscopy Sensitivity for Polyps and Cancer

We also conduct sensitivity analysis to see how the performances change with colonoscopy

sensitivity for polyps and cancer as the screening decisions are prompt to change based on

the effectiveness of the screening method. Figures 3.13-3.16 imply that the performances

of the static policies and the gap are more sensitive to the changes in sensitivity of polyps

than sensitivity of cancer. Moreover, the gap decreases more significantly for high-risk

patients when the sensitivity of colonoscopy increases, as expected. It is also important

to note that the order of the alternative policies in terms of TQALYs does not noticeably

change with the change of either of the sensitivities. This stability in the order shows that

the effects of the stopping age and the screening frequency on the performance measures

are independent from the screening sensitivity. This is a strong conclusion that says deter-

mining the best-performing periodic policy with a given colonospocy sensitivity is sufficient

to inform guidelines without further analysis with respect to any updates on the sensitivity

of colonoscopy screening.

Sensitivity on Discount Rates for TQALYs and Costs

Our analysis on discount rates show how the performances change when the effects of

costs and TQALYs change. Note that this change has a significant effect on the POMDP

policy structure since the optimal policy determines the actions to maximize TQALYs.

As Figures 3.17a-3.20e mimic, when the discount on TQALYs increases, the policies vary

more in terms of their TQALYs, namely, TQALYs become more sensitive to the effects

of screening frequency. On the other hand, when the discount on the costs increases the

policies do not scatter noticeably different on the Pareto spectrum, because the effect of

screening frequency on costs is proportional.
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Figure 3.9: Static screening policies with varying disutility levels of colonoscopy screening for
low-risk female patients given stopping ages of 75, 80, 85
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Figure 3.10: Static screening policies with varying disutility levels of colonoscopy screening for
low-risk male patients given stopping ages of 75, 80, 85
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Figure 3.11: Static screening policies with varying disutility levels of colonoscopy screening for
high-risk female patients given stopping ages of 75, 80, 85
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Figure 3.12: Static screening policies with varying disutility levels of colonoscopy screening for
high-risk male patients given stopping ages of 75, 80, 85
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Figure 3.13: Static screening policies with varying colonoscopy screening sensitivities for adeno-
matous polyps and cancer for low-risk female patients given stopping ages of 75, 80, 85
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Figure 3.14: Static screening policies with varying colonoscopy screening sensitivities for adeno-
matous polyps and cancer for low-risk male patients given stopping ages of 75, 80, 85
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Figure 3.15: Static screening policies with varying colonoscopy screening sensitivities for adeno-
matous polyps and cancer for high-risk female patients given stopping ages of 75, 80, 85
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Figure 3.16: Static screening policies with varying colonoscopy screening sensitivities for adeno-
matous polyps and cancer for high-risk male patients given stopping ages of 75, 80, 85
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Figure 3.17: Static screening policies with varying discount rates for TQALYs and costs for
low-risk female patients given stopping ages of 75, 80, 85
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Figure 3.18: Static screening policies with varying discount rates for TQALYs and costs for
low-risk male patients given stopping ages of 75, 80, 85
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Figure 3.19: Static screening policies with varying discount rates for TQALYs and costs for
high-risk female patients given stopping ages of 80, 85, 90
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Figure 3.20: Static screening policies with varying discount rates for TQALYs and costs for
high-risk male patients given stopping ages of 80, 85, 90
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3.4.4 Age-dependent Periodic Policies

In this section, we analyze dynamic-periodic colonoscopy screening policies which recom-

mend patients undergoing periodic colonoscopy screening at age-group- and gender-specific

frequencies for low-risk and high-risk patients. We establish the alternative dynamic-

periodic policies by dividing the age range between age-50 and the stopping age into two

and three sub-intervals; i.e., 2 and 3 age-groups for 1-switch and 2-switch policies, respec-

tively.

For dynamic-periodic policy type, we analyze all possible ways to divide the time hori-

zon into sub-intervals of length 5-year or multiples thereof because (i) dividing decision

horizon in the order of 5-year intervals is a common practice in the CRC prevention and

surveillance literature (Zauber et al., 2009; Lieberman et al., 2000), (ii) division of the

intervals into shorter intervals seems clinically impractical. The complete list of age inter-

vals is given in Table 3.9. For each division option in Table 3.9, we consider all possible

combinations of dynamic-periodic policies in the form of the current guidelines. That is,

1) we consider all possible ways of selecting a single screening frequency for each sub-

interval from the set of {3, 4, . . . , 10} for low-risk patients; 2) we consider all possible ways

of selecting two screening frequencies, i.e., f1 after a polypectomy and f2 after a negative

colonoscopy; f1 ≤ f2 and f1, f2 ∈ {1, 2, . . . , 6} for high-risk patients.

Table 3.9: Age-dependent periodic policy list

2-age-group 50-60 50-65 50-70 50-75 50-80
(1-switch)
3-age-group 50-60-70 50-60-75 50-60-80 50-65-70 50-65-75 50-65-80 50-70-80
(2-switch)

Sections 3.4.4.1 and 3.4.4.2 present our findings about the best-performing age-dependent

periodic policies for high- and low-risk patients, respectively. In order to help readers follow

the figures presented in these sections easily, we provide a reference list here explaining the

key elements of the figure formatting and notation.

• Marker type defines the age group scenario:
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– Square: 2-age group

– Diamond: 3-age group

– Circle: Guideline (dashed filled) and Optimal POMDP policy (gingham filled)

• Marker color defines at what age to switch the screening frequency after age-50

(i.e., the first switch age).

– the color gets lighter when the switch age increases, e.g., black at age-60, dark

gray at age-65, etc.

• Marker fill type defines at what age to switch the screening frequency after the

first switch age (i.e., the second switch age).

• Labeled policies, i.e., πi, i = {1, 2, 3, 4} represent the Pareto-frontier policies

that are cost-effective compared to a reference point which, in our analysis, is the

previous cost-effective Pareto-frontier solution starting from the guideline policy. The

cost-effectiveness is determined using the incremental cost-effectiveness ratio (ICER)

given in Equation 3.11.

• The best-performing policy, i.e., π4, is the Pareto-frontier policy that performs

closest to the optimal POMDP policy in terms of TQALYs regardless of its ICER

value.

• Screening frequencies associated with Policy πi are given in parenthesis and

ordered with respect to age intervals with commas in between. For high-risk patients,

hyper is used between the screening frequencies after a polypectomy and after a

negative result. E.g., πi(3, 4, 5) denotes the screening policy that suggests every 3-,

4-, and 5-year screening for the low-risk patients at the ages in age intervals 1, 2,

and 3, respectively; whereas πi(3-6,4-5) denotes the screening policy that suggests

every 3-, and 4-year screening after polypectomy and 6- and 5-year screening after

a negative result for the high-risk patients at the ages in age intervals 1, and 2,

respectively.
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3.4.4.1 The Best Performing Age-dependent Periodic Policies for High-Risk

Patients

High-risk patients are those who have previously developed at least one adenomatous polyp

(Winawer et al., 2003). The screening frequency recommended by the guidelines for high-

risk patients is every 3-year after a polypectomy and every 5-year thereafter until another

positive finding (Siegel et al., 2017). Let colonoscopy every f i1-year be the screening fre-

quency after a polypectomy for high-risk patients in age-group i, and every f i2-year be the

frequency followed after a negative test result from the previous colonoscopy. The structure

of the guidelines motivates us to consider dynamic-periodic policies with decreasing screen-

ing intervals after negative colonoscopy results, i.e., f i1 ≤ f i2. Moreover, it is intuitive to

consider decreasing screening frequencies as patients age especially for high-risk patients,

because the expected benefit from preventing CRC through colonoscopy screening decreases

in age due to reduced expected remaining lifetime. Thus, we assume f ij/leqf
(i+ 1)j.

Although these assumptions allow us to reduce the number of different screening fre-

quency combinations simulated, we still have 1176 different combinations generated from

the frequency sets of ij ∈ {1, 2, · · · , 6}, ∀i ∈ {1, 2, 3} and ∀j ∈ {1, 2} under two gender, 12

different age intervals (given in Table 3.9) and 3 different stopping age (80, 85, 90) options

for the base case parameters. For each dynamic-periodic policy combination and patient

setting, the simulation is run for 100, 000 patients. Because we have conducted a compre-

hensive and computationally expensive numerical analysis, in this section, we only present

the performances of the Pareto-efficient policies in the spectrum of total expected cost and

expected TQALYs.

Figures 3.21 and 3.22 present the performances of the 1-switch dynamic-periodic policies

on the Pareto-efficiency spectrum which perform better than the AGA guideline in terms

of TQALYs for high-risk female and male patients, respectively. Figures 3.21 and 3.22

show that the number of Pareto-efficient solutions are quite few compared to the number

of all policies evaluated. That is, there are 25 (30), 36 (22), and 26 (21) Pareto-efficient

solutions for female (male) patients given stopping ages of 80, 85, and 90, respectively. This

observation is important since we also want to simplify the policy evaluation process for
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the clinicians.

As Figures 3.21 and 3.22 show, the 1-switch periodic screening policies provide greater

improvement in TQALYs both for female and male patients over the guideline perfor-

mances. Note that π1 policies perform at a lower cost than the guidelines while providing

significant improvements in terms of TQALYs for both genders and all stopping ages.

Policy π1 for each age-group and gender is important because it requires less aggressive

screening than the guideline, e.g., 6.34, 6.6, and 6.95 colonoscopies on average for the stop-

ping ages 80, 85, and 90 for female patients compared to 7 colonoscopies on average by the

guideline, they still increase the TQALYs. Specifically, considering only 1-switch policies,

Figures 3.21 and 3.22 suggest that clinicians can achieve TQALYs improvements without

any additional costs by adopting every 4-5 year screening in the first age interval for all

stopping ages and 5-5 year screening for the stopping ages 80, 85 and 6-6 year screening for

the stopping age 90 in the second age interval as opposed to 3-5 year screening suggested

by guidelines. Although there may be other policies with better TQALYs compared to the

guidelines with no additional cost, they may not achieve this under all gender and stopping

age combinations.

The above finding indicates that the performance of a screening policy depends not only

how many colonoscopy screening is performed but also when those colonoscopy screenings

are performed. That is, if clinicians follow an age-dependent screening frequency after the

first polypectomy while using the same frequency with the guideline after a negative test

result, we can achieve a significant improvement in terms of both TQALYs and average

cost. Moreover, scheduling fewer colonoscopy screening can also improve the utilization of

existing resources which may indirectly further improve the performances of the screening

policies.

Similar observations are also made for male patients in Figure 3.22. Note that the

policies, which improve the guideline with less or no cost for male patients, perform very

closely to each other, thus, we select the policies with the highest TQALYs among them as

π1 policies. Although the TQALY improvements achieved by π1 policies for male patients

are more significant than those for female patients, the number of colonoscopies scheduled
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for male patients is still not greater than the guideline.

Figures 3.21 and 3.22 also imply that the stopping age for colonoscopy screening sig-

nificantly affects the policy structure in terms of age-grouping. This is intuitive because

when the stopping age increases there are more years that we can schedule colonoscopy

screenings. The possibility of scheduling additional screening decreases the importance of

variability in the policy structure regarding to the age threshold of screening frequency

switches. More specifically, 32% (23%), 44% (43%), and 24% (34%) of the Pareto-efficient

policies switch to a different screening frequency at age 60, 65, and 70 when the stopping

age is 80 whereas 27% (23%), 25% (36%), 30% (36%), 10% (5%), and 5% (0%) of the

Pareto-efficient policies switch to a different screening frequency at age 60, 65, 70, 75 and

80 when the stopping age is 85.

The 2-age group Pareto-efficiency analysis provides a strong evidence of improvements

which is more pronounced for high-risk females than male patients. That is, the Pareto-

efficient solutions are scattered smoothly in Figure 3.21 than the ones in Figure 3.22.

Moreover, the gap between the optimal POMDP and the Pareto-efficient 2-age group

policy is larger for male patients. This is mainly because the survival rate is greater for

high-risk females, therefore, the benefits of colonoscopy screening is more pronounced for

female patients.

Another important observation from Figures 3.21 and 3.22 is about to what extend 1-

switch policies may close the optimality gap between the simple-to-implement and optimal

POMDP policies. Policies denoted as π4 are the most cost-effective policies in closing the

optimality gap. They suggest every 3-3 (2-2) years screening in the first age interval and

4-4 (2-3) years screening in the second age interval with a switch age of 70 (65), 60 (65), and

70 (65) for female patients (male) given the stopping ages of 80, 85, and 90, respectively.

They provide significant improvements over the guideline and perform very closely to the

optimal POMDP policy. When we compare their complexity and the performances with

the guideline, we observe that the combined effect of the screening age and the frequency

on the performance is more important than following different screening frequencies after

polypectomy and the negative test result, i.e, f ij , i, j ∈ {1, 2} values are equal or at most
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Figure 3.21: Pareto-frontier age-dependent periodic screening policies under 2-age group scenar-
ios for high-risk female patient given stopping ages of 80, 85, and 90
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Figure 3.22: Pareto-frontier age-dependent periodic screening policies under 2-age group sce-
narios for high-risk male patient given stopping ages of 80, 85, 90
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one year apart for π4 policies for high-risk patients.

Our analysis of 1-switch periodic-dynamic policies shows that there is still room for

improvement in terms of TQALYs both for female and male patients. Thus, we next

divide the age interval after age-50 into three sub-intervals. Figures 3.23 and 3.24 present

our analysis on 3-age-group screening policies respectively for female and male patients. We

observe that π1 policies of 3-age group outperform the performances of both the guideline

and the 2-age group π1 policies with no or very small additional cost for female patients

except for the stopping age 80. When the stopping age is 80, π1 policy of 2-age group,

(4-5, 5-5) with the switch age of 65, provides greater improvement than that of 3-age,

(4-5, 5-5, 6-6) with the switch ages of 65, 75, at a smaller cost. This finding implies that

following a simpler policy can sometimes provide better performance than a complex one

depending on the stopping age.

For the stopping ages 85 and 90, the π1 policies for 2- and 3-age-groups require approxi-

mately the same number of colonoscopy screenings; however, later group can achieve better

TQALYs by changing the screening frequency from 4-5 years to 5-5 years between the ages

65 and 80 and following the same frequency of 6-6 years after age-80. That is, for 2-age

group π1 policies are (4-5, 5-5) with the switch age of 70 whereas they are (4-5, 5-5, 6-6)

with the switch ages of 65 and 80 for 3-age group. This observation supports our claim

that considering the combined effect of age and screening frequency in policy develop-

ment, we can achieve better performances without increasing the number of colonoscopies

performed.

Our observations about 3-age group π1 policies for male patients are similar to those

for female patients with slight differences. The 3-age group policy for male patients sug-

gests (4-4, 5-5, 5-6) with the switch ages (60, 75) and (60, 80) given the stopping ages 80

and 85, 90, respectively. The π1 policy with the stopping age of 85 provide the greatest

improvement over the guideline among all stopping ages followed by the stopping ages 90,

and 80. For male patients, we realize the larger effect of the stopping age on screening

policy performances because the survival rates are lower for male patients.

Similar to the 2-age group policies, the improvements are more significant for high-risk
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female patients than male patients. Although the Pareto-efficiency curve is steeper for

male patients than for female patients, the gap between the optimal POMDP and the best

performing Pareto-efficient 3-age group policy is larger for male patients. We again see the

effect of survival probability on the performances; however, dividing the age interval into

three rather than two sub-intervals still increases the TQALYs achieved by the periodic

policies for both females and males significantly.

π4 policies suggest every 3-3 years screening in the first age interval, 4-4 years screening

in the second age interval and 5-5 years screening in the third age interval with the first

switch age of 65 for all stopping ages, and the second switch ages of 75 and 80 for the

stopping ages 80, and 85, 90, respectively, for the female patients. On the other hand,

π4 policies suggest male patients undergo colonoscopy screening with one year shorter

screening intervals, i.e, every 2-2 ,3-3, and 4-4 years screening, respectively, in the first,

second, and third age intervals with the switch ages of 65 and 75 for all stopping ages.

Figures 3.23 and 3.24 show that there are age-dependent periodic policies that perform

very closely and yet less costly than the optimal POMDP policy in some cases, e.g., Figure

3.23b π4 = (3−3, 4−4, 5−5) achieve 99.99% TQALYs that the optimal POMDP achieves

with 3% less expected cost for female patients given the stopping age of 85. Although the

gap seems larger for the male patients the percentage TQALYs achieved is still greater

than 99% of the optimal POMDP.

We present the Pareto-efficient dynamic-periodic policies considering both one- and

two-switch policies under all possible considered stopping age and switch age combination

in Figure 3.25 for high-risk patients. In this figure, there are a greater number of 3-

age-group Pareto-efficient policies than that of 2-age-group for both genders on the final

Pareto curve. This is mainly because by dividing the age interval into three, we provide

a higher variety of age-dependent policies that can schedule the colonoscopy screenings

over the intervals more flexibly. Figures 3.25a and 3.25b show that the greater proportion

of Pareto-efficient policies stop screening at age-80 and age-85 respectively for female and

male patients. There is no Pareto-efficient policy that terminates colonoscopy screenings

at age-90 for any of the genders. This is intuitive when we consider the life expectancy
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Figure 3.23: Pareto-frontier age-dependent periodic screening policies under 3-age group sce-
narios for high-risk female patient given stopping ages of 80, 85, 90
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Figure 3.24: Pareto-frontier age-dependent periodic screening policies under 3-age group sce-
narios for high-risk male patient given stopping ages of 80, 85, 90
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after ages 80 and 85, and the disutility of colonoscopy screening. For both genders, the

most observed switch ages are 60 and 70 respectively for the first and second switch ages.

This is also reasonable when one think about the probabilities of developing polyp and

CRC. Note that the policy structures are quite similar for all πi, i = 1, · · · , 4 in Figures

3.25a and 3.25b. That is, the screening frequency for high-risk patients is usually around

3-5 years. Although these intervals are consistent with those suggested by the current

guidelines, the policies proposed in our analysis smartly using these intervals in a partially

dynamic manner to further improve health outcomes compared to those in the literature.

We give the details of promising Pareto-efficient policies and the periodic policies sug-

gesting 1 or 2 more colonoscopy screenings than the guidelines in Table 3.10. We choose the

promising Pareto-efficient policies based on their ICER values (< $50, 000 is accaptable)

among the Pareto-efficient policies that suggest at most 2 more colonoscopy on average

than the guidelines. When the alternatives satisfying the aforementioned condition per-

form closely to each other, we choose the policy with 2-age group (if any) to reduce the

complexity in practice.

For female and male patients, the promising Pareto-efficient policies outperform the

guidelines in terms of TQALYs yet result in reasonable or no additional expected costs.

When we compare the periodic policies and the optimal POMDP, we see that the promising

periodic-static policies can attains most of the TQALYs improvements achieved by the

optimal policies with less expected costs. If we also consider the additional cost of adopting

the optimal policy in practice, i.e., the cost of complications and mistakes due to applying

a completely dynamic policy based on every-changing risk-thresholds, we can conclude

that the proposed promising policies can be preferred over the optimal POMDP policies in

terms of their costs. However, the optimal POMDP policies’ benefits should be reviewed

carefully. They provide improvements in terms of not only TQALYs but also CRC risk

and mortality. When we consider these metrics for the promising policies, we observe that

they perform a little shy of the optimal POMDP. Therefore, the optimal POMDP policies

are still the benchmark that we should aim at achieving their performances from all other

perspectives including CRC risk and mortality. Therefore, we conclude that promising

dynamic-periodic policies with 2-switch points may be sufficient to close the optimality
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gap in TQALYs, we still need more flexible simpler-to-implement policy structures to close

the gap with optimal POMDP policy in terms of other secondary metrics such as CRC

risk and CRC mortality.
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Figure 3.25: Pareto-frontier age-dependent periodic screening policies for high-risk patients
given stopping ages of 80, 85, 90
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Table 3.10: Comparison of the US guidelines, POMDP policies derived in Erenay
et al. (2014), and Pareto-efficient Dynamic Periodic Policies for high-risk patients

Guideline π1 π2 π3 π4 +1 Col +2 Col POMDP∗

Males

Total QALYs 28.348 28.360 28.371 28.381 28.390 28.375 28.403

No. of colonoscopies 6.43 6.56 7.02 7.87 8.47 7.43 10.58

Lifetime CRC risk 3.93% 3.76% 3.81% 3.27% 2.99% 3.45% π4 2.59%

CRC mortality 1.17% 1.15% 1.31% 1.05% 0.90% 1.09% 0.75%

Total Cost ($) 29,513 29,380 29,596 29,877 30,145 29,707 31,397

Screening Interval 4.50 4.36 3.71 3.48 3.29 3.73 2.54

Females

Total QALYs 32.191 32.192 32.215 32.224 32.238 32.233 32.239

No. of colonoscopies 7.00 6.05 7.13 7.65 8.58 8 10.18

Lifetime CRC risk 3.56% 4.17% 3.62% 3.62% 3.01% 3.46% NA 2.66%

CRC mortality 1.16% 1.47% 1.25% 1.29% 0.96% 1.23% 0.76%

Total Cost ($) 29,198 28,788 29,111 29,428 29,748 29,552 30,589

Screening Interval 4.50 4.77 4.02 3.63 3.52 3.44 2.97

∗ Source: Erenay et al. (2014)

NA refers to the case that no Pareto-efficient solution satisfies the definition of the policy.

3.4.4.2 The Best Performing Age-dependent Periodic Policies for Low-Risk

Patients

In this section, we analyze the age-dependent periodic policies for low-risk patients. Re-

call that a low-risk patient is an asymptomatic average-risk patient with no personal or

family history of CRC (Winawer et al., 2003). Guidelines recommend that low-risk pa-

tients undergo colonoscopy screening in every 10 years starting from age-50 (USPSTF,

2008). Erenay et al. (2014) show that the guideline’s performance for low-risk patients

can be improved by following a personalized colonoscopy screening policy, which schedules

colonoscopies with dynamically varying intervals based on age and other factors such as

gender and previous screening findings. Therefore, like we do for high-risk patients in

Section 3.4.4.1, we perform a similar Pareto-efficiency analysis on age-dependent periodic

policies for low-risk patients.
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Let the screening frequencies that define age-dependent periodic policies for low-risk

patients be denoted by fi for the age intervals i = 1, 2, 3. We assume that fi, ∀i can

take any value from the set that {3, 4, · · · , 10}. These frequencies are determined because

there is no need to follow (i) a more aggressive screening policy for low-risk patients than

that is suggested by the guidelines for high-risk patients, or (ii) a less aggressive screening

policy than the policy suggested by the guidelines for low-risk patients (USPSTF, 2008).

We also assume that the screening frequencies are not necessarily in an increasing order

based on their corresponding screening intervals as for high-risk patients, e.g., both (3, 5, 7)

and (7, 3, 5) can be followed for low-risk patients. We make this assumption because we

want to observe the true relationship between the age, or equivalently risk of polyp and

CRC development, and screening frequency for low-risk patients. Although this increases

the number of screening frequency combinations that we need to evaluate for low-risk

patients, the number of combinations for low-risk patients is still less than that for high-

risk patients. This is because, in the case of high-risk patients, the screening policies for

each age-group specify two screening intervals (after a polypectomy v.s. after a negative

colonoscopy), while the policies for low-risk patients specify a single screening interval for

each age-group. Note that, for low-risk patients, the screening frequency also changes after

detection of a polyp or a cancer and the patient moves to the high-risk or post-cancer

patient group.

As noted, a low-risk patient can develop a polyp and become a high-risk patient. In this

case, the screening policy followed in the high-risk level for this formerly low-risk patient is

also important on the aforementioned policies’ performances in expected TQALYs, costs,

lifetime CRC risk, etc. In our simulation analysis, we assume when a low-risk patient turns

into a high-risk patient after a polyp detection/removal, the promising age-dependent

screening policy, that is shown perform closest to the optimal one in Section 3.4.4.1, is

followed afterwards. That is, the screening policy for high-risk level is (3-3, 4-4, 5-5) with

the switch ages of 65 and 75 if the formerly low-risk patient is female, and (2-3, 3-3, 4-4)

with the switch ages of 60 and 70 if the formerly low-risk patient is male (refer to the π4

policies in Figure 3.25).

The performances of the Pareto-efficient 2-age-group (one-switch) dynamic-periodic
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policies performing better than the guidelines in terms of TQALYs for low-risk female and

male patients are shown in Figures 3.26 and 3.27, respectively. The improvements over the

guideline performances achieved by the 2-age-group dynamic-periodic screening policies

are significant in both figures. π1 policies have similar structures for each gender with all

stopping ages. That is, they suggest every 9-year screening before ages 70, 60, and 75,

respectively, with the stopping ages 75, 80, and 85, and 10-year screening afterwards for

female patients whereas it is every 10-year until age 60 and 7-year afterwards for male

patients regardless of the stopping age. As these policies show, the screening frequency is

higher for male patients than female patients because the probability of developing CRC

is smaller for female patients in both low- and high-risk levels than for male patients

(Howlader et al., 2012). Although the screening frequency is higher for female patients,

the average number of colonoscopy screenings performed is very similar for both genders

with all stopping ages (i.e., it is around 4.7 colonoscopies). This is also expected since

the life expectancy for female patients is higher than that for male patients which results

in a longer time period over which colonoscopy screenings are scheduled. The difference

in life expectancy for males and females also affects the change in the switch ages with

the stopping ages. The switch age is 60 for male patients regardless of the stopping age

because the average life expectancy is not significantly different beyond ages 75, 80, and

85. However, it changes with the stopping age for female patients as 70, 60, and 75,

respectively, with respect to the stopping ages of 75, 80, and 85, which follows the trend

in the ratio between the life expectancy and the cumulative probability of developing a

polyp/CRC. That is, the increase in the cumulative probability of developing a polyp or

CRC is more effective in screening decisions when the life expectancy is higher.

Remember that the π1 policies for high-risk patients improve the guidelines with no cost

for both genders and almost all stopping ages; however, there is no π1 policy for low-risk

patients that improve the guideline with no or negligibly small cost. We believe that this

results from the trade-off between the benefit and cost of scheduling additional colonoscopy

screenings. The dynamic-periodic policies for both genders schedule approximately one

more colonoscopy screenings than the guideline; however, the benefit of this one additional

screening is not pronounced enough to be observed in the expected costs. This observation
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Figure 3.26: Pareto-frontier age-dependent dynamic periodic screening policies under 2-age group
scenarios for low-risk female patient given stopping ages of 75, 80, 85
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Figure 3.27: Pareto-frontier age-dependent dynamic periodic screening policies under 2-age group
scenarios for low-risk male patient given stopping ages of 75, 80, 85
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is also in line with the findings of Erenay et al. (2014) that the optimal POMDP policies

provide greater improvements for high-risk patients than low-risk patients in expense of

lower costs. This is mainly because of the fact that the high-risk patients are more prone to

develop a polyp or cancer later on their life than the low-risk patients, thus, the benefit of

colonoscopy screening is more pronounced for them. Additionally, the screening frequencies

in the first and second age intervals are not quite different (i.e., 9 vs. 10 for females and

10 vs. 7 for males). This can be also another reason why we do not see the effect of

considering different age groups enough on the performance improvements.

π4 policies suggest every 5-year screening in the first age interval and 4-year screening

in the second age interval with a switch age of 65 for female patients and 60 for male

patients given the stopping ages of 75 and 80, respectively. When the stopping age is

85, the π4 policies are screen every 7- and 5-year, every 4- and 8-year with the switch

ages of 60 and 75, respectively for female and male patients. Although π4 policies achieve

significant improvements over the guideline, their performances are not close enough to the

performances of the optimal POMDP policies. For female patients they perform closer to

the optimal POMDP policies than the policies for male patient do; however, the gap is still

significant. Therefore, we proceed with analyzing 3-age group dynamic-periodic policies to

fill this gap for low-risk patients.

Figures 3.28 and 3.29 present the performances of the 3-age group dynamic-periodic

screening policies, respectively, for low-risk female and male patients. The performances

of the selected 3-age group Pareto-efficient policies are very similar to those of 2-age group

policies. The π1 policies suggest every 10-year screening between the ages 50-60 for both

female and male patients and 9-year and 7-year screenings between the ages 60-70, re-

spectively, for female and male patients regardless of the stopping age. The screening

frequencies from the second switch age until the stopping age are 3, 7, and 8, respectively,

with the stopping ages 75, 80, and 85 for female patients, and 9 for male patients with all

stopping ages. Although the screening policy is the same with all stopping ages for male

patients, the performance is better for stopping age 85 since more colonoscopy screenings

can be performed over a longer time horizon (i.e., 4.68 for the stopping ages 75 and 80

whereas it is 4.91 for 85). Here recall that the screening policy remains the same with
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all stopping ages for male patients due to the low life expectancy for male patients as

explained before. π1 policies suggest increasing the screening frequency in the last age

interval until the stopping age for the female patients and keeping it at every 9-year for the

male patients. However, they actually suggest not performing any screening after age-78

by forcing the policy to postpone the screenings in the last interval after the stopping age.

This is an interesting result because although our analysis enable policies to consider 3

different age interval and schedule aggressive colonoscopy screenings in these intervals, the

Pareto-efficiency analysis shows if we want a policy that operates at a similar cost as the

guidelines, then, considering only 2 age groups can be enough.

π4 policies recommend patients undergo colonoscopy screening every 7- (5-), 5- (4-),

and 7-year (3-year), respectively, in the first, second and third age intervals for female

(male) patients when the screenings are terminated at age-75. Whereas the dynamic-

periodic screening frequencies are 5, 4, and 5 for both genders with the stopping age of 80.

Although this remains the same for male patients when the stopping age increases to 85,

the screening frequency increases to 9 years in the last age interval for the female patients.

This may seem conflicting with the fact that the decision on the screening frequency is

mainly based on the risk of developing CRC (i.e., the screenings are more frequent in

the age interval if the risk of developing CRC is higher). However, this change from the

screening policy 5-4-5 to 5-4-9 is to prevent any additional disutility by keeping the number

of colonoscopy screening scheduled the same, e.g., it is around 6.842 for both policies with

the stopping ages 80 and 85. The switch ages are 60 and 70 for males at all stopping ages.

However, it is 65 and 75 at stopping ages 75 and 80, and 60 and 75 at stopping age 85

for female patients. Figures 3.28 and 3.29 show that π4 policies significantly outperform

the guideline policies and provide most of the TQALYs that the optimal POMDP policies

attain at a lower cost.

The Pareto-efficient dynamic-periodic policies for low-risk patients provide promising

performances and have very simple screening patterns compared to the optimal POMDP

policies. Moreover, the performance difference in the TQALYs achieved by the dynamic-

periodic policies for low-risk patients are not significant between female and male patients

compared to the difference between high-risk female and male patients. These all together
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imply that the dynamic-periodic policies have important potential to be followed in practice

by the clinicians which is one major objective of this study.

To sum up our findings for low-risk patients, we provide Figure 3.30 that presents

Pareto-efficient age-dependent Dynamic-periodic policies with the stopping ages of 75, 80,

and 85 for low-risk patients. The π4 policies in Figures 3.30a and 3.30b provide noticeably

high performances in terms of TQALYs compared to the guideline policies for low-risk

female and male patients, respectively. These policies suggest more frequent screening

between ages 60 and 70 (i.e., (5,4,6) vs. (7,5,10)) than the frequencies at other ages.

The screening frequencies are higher for male patients than female patients because of

their higher risk of developing CRC. On the other hand, the stopping age to terminate

colonoscopy screenings is higher for female patients because of their higher life expectancy

(i.e., 90 vs. 85). Although the TQALYs of π4 policy is closer to that of the optimal

POMDP for female patients than male patients, the π4 policy for male patients performs

very close to the optimal POMDP in other performance measures, e.g., life time CRC risks

are 2.02% with the π4 and 2.01% with the POMDP for male patients where these values are,

respectively, 2.17% and 1.95% for female patients. This is because the π4 policy suggests

more frequent screening for male patients than females compared to the guidelines (note

that they both are less frequent than the optimal POMDP); however, the improvements

in TQALYs is not that close to the optimal solution for male patients as opposed to the

improvements in other performance metrics such as CRC risk. This is again because the

fact that the benefit of more frequent screening in terms of TQALYs is not pronounced

enough due to the lower life expectancy of male patient, i.e., the TQALYs improvement via

reducing CRC risk to below 2.02% with periodic screening does not worth the additional

colonoscopy disutility, which should can be further reduced by more dynamic colonoscopy

scheduling. The majority of Pareto-efficient policies suggest dividing the age interval after

age-50 into three age groups with the switch ages of 60 and 70 in Figures 3.30a and 3.30b.

For female patients, there are more policies with the stopping age 85 in the Pareto-frontier;

whereas, the stopping age 90 appears more frequently among the Pareto-efficient policies

for males compared to females. The number of 3-age group policies are greater than that

of 2-age group for both genders.
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Figure 3.28: Pareto-frontier age-dependent dynamic periodic screening policies under 3-age group
scenarios for low-risk female patient given stopping ages of 75, 80, 85
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Figure 3.29: Pareto-frontier age-dependent dynamic periodic screening policies under 3-age group
scenarios for low-risk male patient given stopping ages of 75, 80, 85
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When determining the best performing age-dependent Dynamic-periodic policy for low-

risk patients, we consider π4 policies in Figures 3.30a and 3.30b and the Pareto-efficient

policies suggesting one and two more colonoscopy screenings than the guidelines in Table

3.12. As for high-risk patients, we limit the number of additional colonoscopy screenings

performed by the dynamic-periodic policies compared to the guidelines with at most 2 ad-

ditional screenings. The best performing Pareto-efficient policy is defined as the policy that

provides the highest TQALYs while satisfying the condition on the number of colonoscopy

screenings. Note that π4 policies provide the highest TQALYs for both genders; however,

the π4 policy for male patients schedule 2.68 more colonoscopy screenings than the guide-

lines on average. That’s why we suggest clinicians to follow the π4 policy for low-risk female

patients and the Pareto-efficient policy that suggest two additional colonoscopy (+2 Col,

(7, 5, 8)) for low-risk male patients.

Based on our analysis in Sections 3.4.4.1 and 3.4.4.2, we determine the best performing

age-dependent periodic policies for low- and high-risk patients as given in Table 3.11. The

policies are (7,5,10) and (5,4,6) for low-risk females and males with the stopping ages of

85 and 80 and the age interval of 50-60-70, respectively (see Figure 3.30). We follow the

screening policies (3-3,4-4,5-5) and (2-3,3-3,4-4) for high-risk females and males with the

stopping age of 85 and the age intervals of 50-65-75 and 50-60-70, respectively, as in Figure

3.25.

Table 3.11: The best performing age-dependent policies for low- and high-risk patients

Policy, Stopping Age, Age intervals
Females Males

Low-risk patients (7,5,10), 85, 50-60-70 (5,4,6), 80, 50-60-70
High-risk patients (3-3,4-4,5-5), 85, 50-65-75 (2-3,3-3,4-4), 85, 50-60-70
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Table 3.12: Comparison of the US guidelines, POMDP policies derived in Erenay
et al. (2014), and Pareto-efficient Dynamic-Periodic Policies for low-risk patients

Guideline π1 π2 π3 π4 +1 Col +2 Col POMDP∗

Males

Low-risk patients

Total QALYs 28.502 28.521 28.527 28.533 28.536 28.509 28.529 28.547

No. of colonoscopies 3.72 4.90 5.31 6.18 6.68 4.74 5.69 6.96

Lifetime CRC risk 3.41% 2.74% 2.41% 2.19% 2.02% 2.76% 2.25% 2.01%

CRC mortality 1.24% 0.97% 0.78% 0.73% 0.69% 0.95% 0.73% 0.67%

Total Cost ($) 25,949 26,330 26,446 26,905 27,153 26,278 26,638 27,319

Screening Interval 8.45 6.06 5.93 4.71 4.33 6.75 5.6 4.12

High-risk patients

Females

Low-risk patients

Total QALYs 32.353 32.358 32.377 32.389 32.391 32.381 32.396

No. of colonoscopies 4.00 4.14 4.76 5.57 5.87 5.22 7.05

Lifetime CRC risk 3.16% 3.12% 2.66% 2.38% 2.17% 2.44% π4 1.95%

CRC mortality 1.24% 1.23% 0.99% 0.88% 0.75% 0.87% 0.65%

Total Cost ($) 25,338 25,363 25,529 25,891 26,013 25,717 26,627

Screening Interval 8.37 8.11 7.13 5.65 5.85 6.84 4.52

High-risk patients

∗ Source: Erenay et al. (2014)

149



π3=(7,5)

π4=(7,5,10)

π1=(10,9)

π2=(9,6)

$25,200

$25,800

$26,400

$27,000

32.350 32.355 32.360 32.365 32.370 32.375 32.380 32.385 32.390 32.395 32.400

A
v

er
ag

e 
T

o
ta

l 
C

o
st

Average TQALYs
(a) Low-risk Female Patients

π4=(5,4,6)

π2=(7,6,8)
π1=(7,9)

π3=(5,7)

$25,800

$26,000

$26,200

$26,400

$26,600

$26,800

$27,000

$27,200

$27,400

28.500 28.505 28.510 28.515 28.520 28.525 28.530 28.535 28.540 28.545 28.550

A
v

er
ag

e 
T

o
ta

l 
C

o
st

Average TQALYs

(b) Low-risk Male Patients

π3=(7,5)

π1=(10,9)
π2=(9,6)

π4=(5,4,5)

$25,200

$25,800

$26,400

$27,000

32.350 32.355 32.360 32.365 32.370 32.375 32.380 32.385 32.390 32.395 32.400

50-60 50-65 50-70 50-75 50-80

50-60-70 50-60-75 50-60-80 50-65-75 50-65-80

50-70-80 Guideline Optimal POMDP Stopping Age=80 Stopping Age=85

Figure 3.30: Pareto-frontier age-dependent dynamic periodic screening policies for low-risk pa-
tients given stopping ages of 75, 80, 85

3.4.5 Robustness of The Periodic Policies

We conduct a robustness analysis with varying (i) costs, (ii) sensitivity of colonoscopy

screening, and (iii) discount rates to see how the selected best performing periodic policies

in Table 3.11 perform under different scenario settings.
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Table 3.13 presents the average costs and the ICER values of the best performing

periodic policies under low-, base-, high-cost scenario settings, respectively denoted by

cost multipliers of 1, 2, and 3. In our ICER calculation, we assume the guideline policy

as a base, thus, the cost-effectiveness discussed in this section is in comparison with the

guideline policies. The best performing policies are cost-effective under all scenario settings

and for both female and male patients with one exception. The best performing policy

does not remain cost-effective when we assume high-cost for low-risk male patients. This

observation is very important because it shows that the best performing periodic policy

may result in a performance which is not as good as its performance with the base case

parameters. Therefore, the periodic policies should be cautiously selected considering the

system characteristic when adopting them in practice.

Table 3.13: Robustness analysis with cost parameters for low- and high-risk patients

Cost 

Multiplier

Avg. 

Treatment 

Cost

Avg. 

Screening 

Cost

Avg. Total 

Cost ICER

1.00 $9,964 $1,297 $10,744 $5,577

2.00 $20,880 $5,100 $26,013 $20,186

3.00 $32,747 $11,410 $45,113 $43,376

1.00 $10,122 $1,459 $11,474 $6,820

2.00 $21,055 $5,740 $27,153 $24,786

3.00 $32,801 $12,845 $46,779 $53,696

Female

Male

(a) Low-risk Patients

Cost 

Multiplier

Avg. 

Treatment 

Cost

Avg. 

Screening 

Cost

Avg. Total 

Cost ICER

1.00 $10,224 $1,938 $11,682 $4,137

2.00 $21,968 $7,613 $29,748 $15,498

3.00 $35,232 $17,023 $53,511 $33,923

1.00 $10,384 $1,904 $12,221 $4,322

2.00 $22,159 $7,481 $30,145 $15,877

3.00 $35,325 $16,731 $53,518 $34,559

Female

Male

(b) High-risk Patients

Our findings from the robustness analysis with sensitivity of colonoscopy screening are
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presented in Table 3.14. When the colonoscopy screening increases either for polyps or

cancer, the best performing policies perform greater number of screenings for both risk

levels and genders. The increase in the number of colonoscopies performed is greater (i)

for low-risk patients than high-risk patients and (ii) for females than males. (i) is because

the best performing policies do not perform close to the optimal for low-risk patients, thus,

there is still room for improvement by utilizing the colonoscopy screenings further. That

is, when the screening sensitivity is high, the effect of disutility that prevents having more

aggressive periodic policies on the Pareto-efficiency set for low-risk patients decreases. On

the other hand, (ii) is due to females being more prompt to developing CRC.

Table 3.14: Robustness analysis with sensitivity of colonoscopy for low- and high-risk
patients

Sensitivity of 

Colonoscopy

Avg. 

TQALYs

Avg. Number 

of Screening

CRC 

Risk

CRC 

Mortality

Avg. 

Lifetime

Avg. 

Screening 

Interval

Avg. 

Treatment 

Cost

Avg. 

Screening 

Cost

Avg. Total 

Cost

80,85 32.3769 5.8442 0.0233 0.0084 32.4129 5.8698 $20,936 $5,070 $26,138

80,90 32.3793 5.8451 0.0233 0.0082 32.4153 5.8691 $20,978 $5,071 $26,158

85,90 32.3905 5.8677 0.0217 0.0075 32.4268 5.8522 $20,880 $5,100 $26,013

85,95 32.3913 5.8686 0.0217 0.0073 32.4275 5.8513 $20,914 $5,101 $26,021

90,95 32.4022 5.8890 0.0202 0.0068 32.4384 5.8365 $20,817 $5,127 $25,877

80,85 28.5203 6.6619 0.0220 0.0077 28.6280 4.3328 $21,115 $5,716 $27,296

80,90 28.5222 6.6626 0.0220 0.0075 28.6298 4.3324 $21,153 $5,717 $27,310

85,90 28.5357 6.6810 0.0202 0.0069 28.6435 4.3250 $21,055 $5,740 $27,153

85,95 28.5363 6.6816 0.0202 0.0068 28.6441 4.3246 $21,094 $5,741 $27,171

90,95 28.5498 6.6985 0.0185 0.0062 28.6574 4.3182 $20,971 $5,762 $27,006

Female

Male

(a) Low-risk Patients

Sensitivity of 

Colonoscopy

Avg. 

TQALYs

Avg. Number 

of Screening

CRC 

Risk

CRC 

Mortality

Avg. 

Lifetime

Avg. 

Screening 

Interval

Avg. 

Treatment 

Cost

Avg. 

Screening 

Cost

Avg. 

Total 

Cost

80,85 32.2160 8.5737 0.0325 0.0104 32.3272 3.5218 $22,103 $7,595 $30,005

80,90 32.2194 8.5751 0.0325 0.0102 32.3306 3.5215 $22,166 $7,596 $30,036

85,90 32.2384 8.5784 0.0301 0.0096 32.3490 3.5234 $21,968 $7,613 $29,748

85,95 32.2398 8.5794 0.0301 0.0095 32.3504 3.5230 $22,024 $7,614 $29,764

90,95 32.2539 8.5812 0.0280 0.0087 32.3641 3.5249 $21,872 $7,628 $29,547

80,85 28.3642 8.4597 0.0327 0.0102 28.5307 3.2867 $22,270 $7,464 $30,401

80,90 28.3675 8.4612 0.0327 0.0099 28.5339 3.2862 $22,353 $7,465 $30,437

85,90 28.3885 8.4646 0.0299 0.0090 28.5546 3.2878 $22,159 $7,481 $30,145

85,95 28.3892 8.4654 0.0299 0.0088 28.5552 3.2874 $22,210 $7,482 $30,163

90,95 28.4076 8.4688 0.0274 0.0081 28.5734 3.2887 $22,029 $7,497 $29,913

Female

Male

(b) High-risk Patients

The robustness analysis on the discount rates can also be used to analyze how ICER
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changes; however, since the change is proportional the best performing policies remain

cost-effective compared to the guidelines. However, changes in discount rates may result

in a change in the structure of the best performing policies similar to the change that is

observed in our sensitivity analysis for static periodic policies (see Figures 3.17-3.20).

Table 3.15: Robustness analysis with discount rates on TQALYs and costs for low- and
high-risk patients

Discount 

Rate

Avg. 

TQALYs

Avg. 

Lifetime

Avg. 

Treatment 

Cost

Avg. 

Screening 

Cost

Avg. Total 

Cost

1,1 32.3905 32.4268 $20,880 $5,100 $26,013

1,0.97 32.3905 32.4268 $8,877 $3,334 $12,440

0.99,0.97 27.2721 27.3274 $8,877 $3,334 $12,440

0.98,0.97 23.2398 23.3026 $8,877 $3,334 $12,440

0.98,0.95 23.2398 23.3026 $5,375 $2,636 $8,218

0.97,0.95 20.0321 20.0961 $5,375 $2,636 $8,218

1,1 28.5357 28.6435 $21,055 $5,740 $27,153

1,0.97 28.5357 28.6435 $9,828 $3,917 $13,999

0.99,0.97 24.4004 24.5023 $9,828 $3,917 $13,999

0.98,0.97 21.0814 21.1758 $9,828 $3,917 $13,999

0.98,0.95 21.0814 21.1758 $6,305 $3,155 $9,651

0.97,0.95 18.3945 18.4810 $6,305 $3,155 $9,651

Female

Male

(a) Low-risk Patients

Discount 

Rate

Avg. 

TQALYs

Avg. 

Lifetime

Avg. 

Treatment 

Cost

Avg. 

Screening 

Cost

Avg. 

Total 

Cost

1,1 32.2384 32.3490 $21,968 $7,613 $29,748

1,0.97 32.2384 32.3490 $9,694 $5,267 $15,231

0.99,0.97 27.1448 27.2676 $9,694 $5,267 $15,231

0.98,0.97 23.1316 23.2561 $9,694 $5,267 $15,231

0.98,0.95 23.1316 23.2561 $6,075 $4,285 $10,584

0.97,0.95 19.9387 20.0594 $6,075 $4,285 $10,584

1,1 28.3885 28.5546 $22,159 $7,481 $30,145

1,0.97 28.3885 28.5546 $10,641 $5,251 $16,230

0.99,0.97 24.2779 24.4327 $10,641 $5,251 $16,230

0.98,0.97 20.9780 21.1207 $10,641 $5,251 $16,230

0.98,0.95 20.9780 21.1207 $6,991 $4,303 $11,545

0.97,0.95 18.3060 18.4369 $6,991 $4,303 $11,545

Female

Male

(b) High-risk Patients
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3.5 Bi-criteria Constrained MDP Model

As we discuss in Section 3.1, colonoscopy screening is an effective tool to reduce colorectal

cancer incidence and death rates remarkably due to its specific nature of removing the

lesions simultaneously with their detection. Recent statistics show that early detection

of the cancer is especially important for colorectal cancer considering that 5-year survival

rate is 91% if the cancer is detected in the early stage, however it decreases to 11% for

the patients with the cancer detected in the late stage. With this motivation oftentimes

clinicians may perform unnecessarily frequent screenings which is in a conflict with the

guidelines. Although colonoscopy, the most-accurate screening method, reduces the col-

orectal cancer occurrence risk thus the mortality rates significantly, there are costs and

disutility associated with it. The number of colonoscopy screenings that a patient under-

goes has a direct effect on the costs and disutility, yet, on the risk of colorectal cancer and

mortality. Conventionally, the cost of colonoscopy and TQALY’s are the main considera-

tions when determining a screening schedule, especially from the perspective of third-party

healthcare payers. Too frequent screenings were discouraged in US before the health care

reform legislation, however now, all health insurance plans are required to provide colorec-

tal cancer screening tests (at no cost except when a polyp is removed) for adults starting

from age 50 and continuing until age 75. On the other hand, the disutility of undergoing

colonoscopy screenings remains same. Therefore, determining screening policies is still an

open question from the multi-objective research point of view. In this section, we aim to

answer the question that “What is the optimal screening policy that maximizes TQALY’s

while requiring less frequent colonoscopy screening and resulting in less costs or?”

We propose a conceptual idea of a bi-criteria constraint MDP (BCC-MDP) model that

can be utilized to achieve the objective of maximizing TQALYs with less costs, or with

a constraint on the maximum number of colonoscopy screenings performed. This model

is actually very similar to the model developed in Erenay et al. (2014) in terms of how

the CRC progression is modeled. It is very different from Erenay et al. (2014)’s model at

the same time because of the limit on the number of colonoscopy screenings performed.

That is, Erenay et al. (2014) assume that performing a colonoscopy screening is an option
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at the beginning of each year, thus, the decisions are evaluated using the POMDP model

each year and ours also evaluates the decisions at the beginning of each year. However,

in order to eliminate the partially observable states by recording the past history, ours

only keeps the history during the years from the last positive screening while knowing that

there are a few of them because of the constraint on the maximum number of colonoscopy

screenings. Note that without this constraint, it is not computationally efficient, even

possible for larger problem instances, to enumerate all possible combinations of the ages

when a positive screening result was observed last. Therefore, limiting the number of

colonoscopies together with the specific nature of colonoscopy that allows removing the

lesions simulatanously provides a unique opportunity to reduce a POMDP model to an

MDP which also allows us to find the optimal solution as opposed to finding an approximate

solution as discussed in Section 3.2.2.

When modeling BCC-MDP, we utilize the definitions of Erenay et al. (2014) for the

immediate rewards and belief states since they only depend on how the natural progression

of CRC is assumed. In addition to the health states, we define a state set that includes the

past history keeping track of the test results. Let Ht denote this set at time t, then, Ht =

{H1
t , H

2
t , . . . , H

NC
t } where NC denotes the maximum number of colonoscopy screenings

allowed. We derive the transition probabilities following the definition of this set and thus

reduce the POMDP to MPD.

3.6 Conclusion

Colonoscopy screening prevents and early detects CRC, one of the most common and

deadliest cancers in the world. Considering that the risk of developing CRC significantly

increases after age 50, and North American population is aging, the colonoscopy screening

and follow-up policies employed by the gastroenteritis play a vital role in the well-being of

this aging population. Existing clinical guidelines recommend colonoscopy screening pro-

tocols that are shown to be cost-effective in CRC prevention and early detection; however,

almost half of the practitioners do not follow these guidelines, indicating the controversy
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around the best CRC screening practices. Several studies analyze alternative CRC screen-

ing protocols using simulation and mathematical models. Especially, dynamic alternative

protocols can significantly increase health outcomes improvements due to CRC screening

and follow-up. However, under dynamic policies, colonoscopy screening and surveillance

intervals significantly vary in factors such as age, gender, and personal history, which

are harder to implement for clinicians. In this chapter, we propose a set of simpler-

to-implement colorectal cancer (CRC) screening policies and present a detailed analysis

showing how these policies perform under different scenario settings.

We employ a patient-level discrete-event simulation model, built and validated using

real data, to mimic CRC progression in asymptomatic low-risk and high-risk individu-

als, and estimate the expected life-years, age-based risk of having CRC, CRC mortality,

costs associated with CRC screening, and the number of required colonoscopies for each

screening protocol. We evaluate the performances of all relevant simpler-to-implement

colonoscopy protocols, including the periodic screening protocols currently used by practi-

tioners, all feasible periodic policies with n period switch times (for n=1,2). Our analysis

also identifies under what parameter setting which alternative simpler policies are suffi-

cient to provide close-to-optimal performance. We use the performances of the optimal

POMDP policies derived in Erenay et al. (2014) for benchmarking. The optimal POMDP

policies take age, gender, and risk-level into account and optimize the screening decisions

that maximize the TQALYs. These policies improve the guidelines significantly in terms

of all performance measures including risk of CRC and mortality, and extend the benefits

of colonoscopy screenings for all patients. However, their structure is noticeably complex

since the POMDP model captures many aspects of the problem and make decisions accord-

ingly. Therefore, we determine the simpler-to-implement policies that perform closely to

the corresponding optimal POMDP policies while following a very simple policy structure

at most with two periodic screening frequencies.

The simpler-to-implement policies that are promoted in this study improve the guide-

line significantly for both genders and risk-levels. The improvement is more prominent

for female patients than male patients and for high-risk patients than low-risk patients

especially when their performances are compared to the corresponding optimal POMDP
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policies for the majority of the cases. The policies using a single screening frequency that

is independent from patients’ age, static-periodic policies, provide very similar TQALYs to

that of the optimal POMDP for high-risk female patients at a lower costs; however, the gap

between the best performing static-policy and the optimal POMDP is significant for oth-

ers. This finding shows that considering the patients’ age when making screening decisions

is necessary if we aim at providing close-to-optimal performances. The performances of

the policies dividing the age interval into two sub-intervals, 2-age group dynamic-periodic

policies, also perform very closely to the optimal POMDP with reasonable increase in cost.

The gap is negligible for high-risk patients, especially for high-risk females, whereas the

findings indicate there is still room for improvement for the male patients. The policies

with 3-age group, the ones following 3 different screening frequencies in 3 sub-age-intervals,

fill this gap considerably with reasonably small costs; however, the improvement is still not

satisfying for male patients. This finding is consistent with the fact that CRC progression is

more aggressive for male patients whereas the benefits of colonoscopy screening can only be

achieved by following very personalized screening decisions as the optimal POMDP model

does due to lower life expactancy of males. In other words, it is really important for males

to catch any CRC related lesions on time while minimizing the disutility of colonoscopy

so the relatively shorter life period can be utilized as much as possible. This, however,

may seem in conflict, which is indeed true. To handle this kind of conflicting objectives,

we propose using a bi-criteria constraint MDP formulation that can maximize the bene-

fits of colonoscopy screening while restricting the number of colonoscopies performed, for

example. Therefore, we strongly suggest policy makers to utilize the modeling framework

proposed in this study when informing the guidelines.
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Murat M Günal and Michael Pidd. Discrete event simulation for performance modelling

in health care: a review of the literature. Journal of Simulation, 4(1):42–51, 2010.
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Ernst J Kuipers, Thomas Rösch, and Michael Bretthauer. Colorectal cancer screen-

ing—optimizing current strategies and new directions. Nature reviews Clinical oncology,

10(3):130, 2013.

Karen M Kuntz, Iris Lansdorp-Vogelaar, Carolyn M Rutter, Amy B Knudsen, Marjolein

Van Ballegooijen, James E Savarino, Eric J Feuer, and Ann G Zauber. A systematic

comparison of microsimulation models of colorectal cancer: the role of assumptions about

adenoma progression. Medical Decision Making, 31(4):530–539, 2011.

C Lakshmi and Sivakumar Appa Iyer. Application of queueing theory in health care: A

literature review. Operations Research for Health Care, 2(1):25–39, 2013.

I. Lansdorp-Vogelaar, M. van Ballegooijen, A.G. Zauber, R. Boer, J. Wilschut, and J.D.F.

Habbema. At what costs will screening with CT colonography be competitive? A cost-

effectiveness approach. International Journal of Cancer, 124(5):1161–1168, 2009a.

I. Lansdorp-Vogelaar, M. van Ballegooijen, A.G. Zauber, R. Boer, J. Wilschut, S.J.

Winawer, and J.D.F. Habbema. Individualizing colonoscopy screening by sex and race.

Gastrointestinal Endoscopy, 70(1):96–108, 2009b.

Iris Lansdorp-Vogelaar, Marjolein Van Ballegooijen, Ann G Zauber, J Dik F Habbema, and

Ernst J Kuipers. Effect of rising chemotherapy costs on the cost savings of colorectal

cancer screening. JNCI: Journal of the National Cancer Institute, 101(20):1412–1422,

2009c.

B.Y. Lee, B.A. Norman, T.M. Assi, S.I. Chen, R.R. Bailey, J. Rajgopal, S.T. Brown,

A.E. Wiringa, and D.S. Burke. Single versus multi-dose vaccine vials: An economic

computational model. Vaccine, 28(32):5292–5300, 2010.

B.Y. Lee, T.M. Assi, K. Rookkapan, D.L. Connor, J. Rajgopal, V. Sornsrivichai, S.T.

Brown, J.S. Welling, B.A. Norman, S.I. Chen, et al. Replacing the measles ten-dose

vaccine presentation with the single-dose presentation in Thailand. Vaccine, 29(21):

3811–3817, 2011.

170



M. Leshno, Z. Halpern, and N. Arber. Cost-effectiveness of colorectal cancer screening in

the average risk population. Health Care Management Science, 6(3):165–174, 2003.

David A Lieberman, David G Weiss, John H Bond, Dennis J Ahnen, Harinder Garewal,

William V Harford, Dawn Provenzale, Steve Sontag, Tom Schnell, Theodore E Durbin,

et al. Use of colonoscopy to screen asymptomatic adults for colorectal cancer. New

England Journal of Medicine, 343(3):162–168, 2000.

G.J. Lim and E.K. Lee. Optimization in medicine and biology, volume 3. CRC Press, 2008.

F. Loeve, R. Boer, GJ Van Oortmarssen, M. Van Ballegooijen, and JDF Habbema. The

miscan-colon simulation model for the evaluation of colorectal cancer screening. Com-

puters and Biomedical Research, 32(1):13–33, 1999.

F. Loeve, M.L. Brown, R. Boer, M. van Ballegooijen, and G.J. van Oortmarssen. En-

doscopic colorectal cancer screening: A cost-saving analysis. Journal of the National

Cancer Institute, 92(7):557–563, 2000.

Franka Loeve, Rob Boer, Ann G Zauber, Marjolein van Ballegooijen, Gerrit J van Oort-

marssen, Sidney J Winawer, and J Dik F Habbema. National polyp study data: evidence

for regression of adenomas. International journal of cancer, 111(4):633–639, 2004.

Millie D Long and Bruce E Sands. When do you start and when do you stop screening for

colon cancer in inflammatory bowel disease? Clinical Gastroenterology and Hepatology,

16(5):621–623, 2018.

Walter E Longo, Katherine S Virgo, Frank E Johnson, Charles A Oprian, Anthony M

Vernava, Terence P Wade, Maureen A Phelan, William G Henderson, Jennifer Daley,

and Shukri F Khuri. Risk factors for morbidity and mortality after colectomy for colon

cancer. Diseases of the colon & rectum, 43(1):83–91, 2000.

Shail Maheshwari, Tushar Patel, and Parita Patel. Screening for colorectal cancer in elderly

persons: who should we screen and when can we stop? Journal of aging and health, 20

(1):126–139, 2008.

171



Hamed Mamani, Stephen E Chick, and David Simchi-Levi. A game-theoretic model of

international influenza vaccination coordination. Management Science, 59(7):1650–1670,

2013.

Jack S Mandel, Timothy R Church, John H Bond, Fred Ederer, Mindy S Geisser, Steven J

Mongin, Dale C Snover, and Leonard M Schuman. The effect of fecal occult-blood

screening on the incidence of colorectal cancer. New England Journal of Medicine, 343

(22):1603–1607, 2000.

David McCoy, Gayatri Kembhavi, Jinesh Patel, and Akish Luintel. The bill & melinda

gates foundation’s grant-making programme for global health. The Lancet, 373(9675):

1645–1653, 2009.

Geoffrey McNicoll. World population ageing 1950-2050. Population and Development

Review, 28(4):814–816, 2002.

J. Medlock and A.P. Galvani. Optimizing influenza vaccine distribution. Science, 325

(5948):1705–1708, 2009.

Reinier GS Meester, Chyke A Doubeni, Ann G Zauber, S Luuk Goede, Theodore R Levin,

Douglas A Corley, Ahmedin Jemal, and Iris Lansdorp-Vogelaar. Public health impact

of achieving 80% colorectal cancer screening rates in the united states by 2018. Cancer,

121(13):2281–2285, 2015.

Reinier GS Meester, Elisabeth FP Peterse, Amy B Knudsen, Anne C de Weerdt, Jennifer C

Chen, Anna P Lietz, Andrea Dwyer, Dennis J Ahnen, Rebecca L Siegel, Robert A Smith,

et al. Optimizing colorectal cancer screening by race and sex: Microsimulation analysis

ii to inform the american cancer society colorectal cancer screening guideline. Cancer,

2018.

M.H. Mofrad, L.M. Maillart, B.A. Norman, and J. Rajgopal. Dynamically optimizing the

administration of vaccines from multi-dose vials. IIE Transactions, 46(7):623–635, 2014.

172



M.H. Mofrad, G.G.P. Garcia, L.M. Maillart, B.A. Norman, and J. Rajgopal. Customizing

immunization clinic operations to minimize open vial waste. Socio-Economic Planning

Sciences, 54:1–17, 2016.

E.R. Moxon, P. Das, B. Greenwood, D.L. Heymann, R. Horton, O.S. Levine, S. Plotkin,

and G. Nossal. A call to action for the new decade of vaccines. The Lancet, 378(9788):

298–302, 2011.

Pauline A Mysliwiec, Martin L Brown, Carrie N Klabunde, and David F Ransohoff. Are

physicians doing too much colonoscopy? a national survey of colorectal surveillance after

polypectomy. Annals of Internal Medicine, 141(4):264–271, 2004.

S. Nahmias. Perishable inventory theory: A review. Operations Research, 30(4):680–708,

1982.

NCI. National Cancer Institute. http://www.cancer.gov/types/colorectal/

screening-fact-sheet, 2014. [Online; accessed 13-Oct-2015].

Aileen R Neilson and David K Whynes. Cost-effectiveness of screening for colorectal cancer:

a simulation model. Mathematical Medicine and Biology: A Journal of the IMA, 12(3-4):

355–367, 1995.

R.M. Ness, A.M. Holmes, R. Klein, and R. Dittus. Cost-utility of one-time colonoscopic

screening for colorectal cancer at various ages. The American Journal of Gastroenterol-

ogy, 95(7):1800–1811, 2000.

Lawrence Nicholson, Asoo J Vakharia, and S Selcuk Erenguc. Outsourcing inventory

management decisions in healthcare: Models and application. European Journal of

Operational Research, 154(1):271–290, 2004.

Jesse N Nodora, William D Martz, Erin L Ashbeck, Elizabeth T Jacobs, Patricia A Thomp-
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E. Tekin, Ü. Gürler, and E. Berk. Age-based vs. stock level control policies for a perishable

inventory system. European Journal of Operational Research, 134(2):309–329, 2001.

S. D. Torun and N. Bakırcı. Vaccination coverage and reasons for non-vaccination in a

district of Istanbul. BMC Public Health, 6(1):1, 2006.

S. Tunc, O. Alagoz, and E. Burnside. Opportunities for operations research in medical

decision making. IEEE Intelligent Systems, 29(3):59, 2014.

UNICEF. Cold chain weight and volume calculator. https://www.unicef.org/supply/

index_51098.html, 2015. [Online; accessed 2016-10-10].

UNICEF and WHO. Immunization summary: A statistical reference containing

data through 2013. http://www.who.int/immunization/monitoring_surveillance/

routine/coverage/en/index4.html, 2014. [Online; accessed 2015-07-10].

USCB. US Census Bureau population estimates: National characteristics.

http://www.census.gov/popest/data/intercensal /national/nat2010.html, April 5 2012.

USPSTF. Screening for colorectal cancer: Us preventive services task force recommenda-

tion statement, us preventive services task force and others. Annals of internal medicine,

149(9):627, 2008.

M. van Ballegooijen, C.M. Rutter, A.B. Knudsen, A.G. Zauber, J.E. Savarino, I. Lansdorp-

Vogelaar, R. Boer, E.J. Feuer, J.D.F. Habbema, and K.M. Kuntz. Clarifying differences

in natural history between models of screening the case of colorectal cancer. Medical

Decision Making, 31(4):540–549, 2011.

Frank Van Hees, Sameer D Saini, Iris Lansdorp-Vogelaar, Sandeep Vijan, Reinier GS

Meester, Harry J de Koning, Ann G Zauber, and Marjolein van Ballegooijen. Person-

alizing colonoscopy screening for elderly individuals based on screening history, cancer

risk, and comorbidity status could increase cost effectiveness. Gastroenterology, 149(6):

1425–1437, 2015.

180

https://www.unicef.org/supply/index_51098.html
https://www.unicef.org/supply/index_51098.html
http://www.who.int/immunization/monitoring_surveillance/routine/coverage/en/index4.html
http://www.who.int/immunization/monitoring_surveillance/routine/coverage/en/index4.html


David J Vanness, Amy B Knudsen, Iris Lansdorp-Vogelaar, Carolyn M Rutter, Ilana F

Gareen, Benjamin A Herman, Karen M Kuntz, Ann G Zauber, Marjolein Van Balle-

gooijen, Eric J Feuer, et al. Comparative economic evaluation of data from the acrin

national ct colonography trial with three cancer intervention and surveillance modeling

network microsimulations. Radiology, 261(2):487–498, 2011.

Sandeep Vijan, Erica W Hwang, Timothy P Hofer, and Rodney A Hayward. Which

colon cancer screening test? a comparison of costs, effectiveness, and compliance. The

American journal of medicine, 111(8):593–601, 2001.

Sandeep Vijan, Inku Hwang, John Inadomi, Roy KH Wong, J Richard Choi, John

Napierkowski, Jonathan M Koff, and Perry J Pickhardt. The cost-effectiveness of ct

colonography in screening for colorectal neoplasia. The American journal of gastroen-

terology, 102(2):380, 2007.

I. Vogelaar, M. Van Ballegooijen, D. Schrag, R. Boer, S.J. Winawer, J.D.F. Habbema, and

A.G. Zauber. How much can current interventions reduce colorectal cancer mortality in

the US? Cancer, 107(7):1624–1633, 2006.

D.G. Walker, R. Hutubessy, and P. Beutels. Who guide for standardisation of economic

evaluations of immunization programmes. Vaccine, 28(11):2356–2359, 2010.

B.G. Weniger, R.T. Chen, S.H. Jacobson, E.C. Sewell, R. Deuson, J.R. Livengood, and

W.A. Orenstein. Addressing the challenges to immunization practice with an economic

algorithm for vaccine selection. Vaccine, 16(19):1885–1897, 1998.

WHO. Guidelines for estimating costs of introducing new vaccines into the national

immunization system. http://apps.who.int/iris/bitstream/10665/67342/1/WHO_

V-B_02.11_eng.pdf, 2002.

WHO. Monitoring vaccine wastage at country level: Guidelines for programme man-

agers. http://apps.who.int/iris/bitstream/10665/68463/1/WHO_VB_03.18.Rev.

1_eng.pdf, 2005. [Online; accessed 2015-07-10].

181

http://apps.who.int/iris/bitstream/10665/67342/1/WHO_V-B_02.11_eng.pdf
http://apps.who.int/iris/bitstream/10665/67342/1/WHO_V-B_02.11_eng.pdf
http://apps.who.int/iris/bitstream/10665/68463/1/WHO_VB_03.18.Rev.1_eng.pdf
http://apps.who.int/iris/bitstream/10665/68463/1/WHO_VB_03.18.Rev.1_eng.pdf


WHO. World health organization, fact sheets, the top 10 causes of death. http://www.

who.int/mediacentre/factsheets/fs310/en/index2.html, 2012. [Online; accessed

2015-07-07].

WHO. Operational guidelines. http://www.searo.who.int/india/topics/routine_

immunization/Operational_Guidelines_for_introduction_Hib_as_Pentavalent_

vaccine_2013.pdf, 2013.

WHO. WHO policy statement: Multi-dose vial policy (MDVP), handling of multi-dose

vaccine vials after opening. http://apps.who.int/iris/bitstream/10665/135972/1/

WHO_IVB_14.07_eng.pdf, 2014a. [Online; accessed 2015-07-10].

WHO. Immunization supply chain and logistics. http://www.who.int/immunization/

programmes_systems/supply_chain/en, 2014b. [Online; accessed 2016-06-10].

WHO. Who vaccine preventable disease monitoring system, 2016 global summary. Tech-

nical report, WHO, 2016a.

WHO. WHO prequalified vaccines. https://extranet.who.int/gavi/PQ_Web/, 2016b.

[Online; accessed 2016-09-12].

WHO. World health organization, who recommendations for routine immunization - sum-

mary tables. http://www.who.int/immunization/policy/immunization_tables/

en/, 2017. [Online; accessed 2017-07-18].

WHO, GAVI, UNICEF, and Bill & Melinda Gates Foundations. Global vaccine action

plan 2011-2020. http://www.who.int/immunization/global_vaccine_action_plan/

GVAP_doc_2011_2020/en/, 2015. [Online; accessed 2015-07-10].

UNICEF WHO. Global immunization data 2014. Technical report, WHO UNICEF Re-

ports, 2015.

J.A. Wilschut, J.D.F. Habbema, M.E. van Leerdam, L. Hol, I. Lansdorp-Vogelaar, E.J.

Kuipers, and M. van Ballegooijen. Fecal occult blood testing when colonoscopy capacity

is limited. Journal of the National Cancer Institute, 103(23):1741–1751, 2011a.

182

http://www.who.int/mediacentre/factsheets/fs310/en/index2.html
http://www.who.int/mediacentre/factsheets/fs310/en/index2.html
http://www.searo.who.int/india/topics/routine_immunization/Operational_Guidelines_for_introduction_Hib_as_Pentavalent_vaccine_2013.pdf
http://www.searo.who.int/india/topics/routine_immunization/Operational_Guidelines_for_introduction_Hib_as_Pentavalent_vaccine_2013.pdf
http://www.searo.who.int/india/topics/routine_immunization/Operational_Guidelines_for_introduction_Hib_as_Pentavalent_vaccine_2013.pdf
http://apps.who.int/iris/bitstream/10665/135972/1/WHO_IVB_14.07_eng.pdf
http://apps.who.int/iris/bitstream/10665/135972/1/WHO_IVB_14.07_eng.pdf
http://www.who.int/immunization/programmes_systems/supply_chain/en
http://www.who.int/immunization/programmes_systems/supply_chain/en
https://extranet.who.int/gavi/PQ_Web/
http://www.who.int/immunization/policy/immunization_tables/en/
http://www.who.int/immunization/policy/immunization_tables/en/
http://www.who.int/immunization/global_vaccine_action_plan/GVAP_doc_2011_2020/en/
http://www.who.int/immunization/global_vaccine_action_plan/GVAP_doc_2011_2020/en/


Janneke A Wilschut, Lieke Hol, Evelien Dekker, Jan B Jansen, Monique E van Leerdam,

Iris Lansdorp-Vogelaar, Ernst J Kuipers, J Dik F Habbema, and Marjolein van Balle-

gooijen. Cost-effectiveness analysis of a quantitative immunochemical test for colorectal

cancer screening. Gastroenterology, 141(5):1648–1655, 2011b.

Janneke A Wilschut, Ewout W Steyerberg, Monique E van Leerdam, Iris Lansdorp-

Vogelaar, J Dik F Habbema, and Marjolein van Ballegooijen. How much colonoscopy

screening should be recommended to individuals with various degrees of family history

of colorectal cancer? Cancer, 117(18):4166–4174, 2011c.

Joanne AP Wilson. Colon cancer screening in the elderly: when do we stop? Transactions

of the American Clinical and Climatological Association, 121:94, 2010.

Sidney Winawer, Robert Fletcher, Douglas Rex, John Bond, Randall Burt, Joseph Ferrucci,

Theodore Ganiats, Theodore Levin, Steven Woolf, David Johnson, et al. Colorectal

cancer screening and surveillance: clinical guidelines and rationale—update based on

new evidence. Gastroenterology, 124(2):544–560, 2003.

Sidney J Winawer. Colorectal cancer screening. Best Practice & Research Clinical Gas-

troenterology, 21(6):1031–1048, 2007.

Grace Hui-Min Wu, Yi-Ming Wang, Amy Ming-Fang Yen, Jau-Min Wong, Hsin-Chih Lai,

Jane Warwick, and Tony Hsiu-Hsi Chen. Cost-effectiveness analysis of colorectal cancer

screening with stool dna testing in intermediate-incidence countries. BMC cancer, 6(1):

1, 2006.

K Robin Yabroff, Angela B Mariotto, Eric Feuer, and Martin L Brown. Projections of

the costs associated with colorectal cancer care in the united states, 2000–2020. Health

economics, 17(8):947–959, 2008.

K Robin Yabroff, Carrie N Klabunde, Gigi Yuan, Timothy S McNeel, Martin L Brown,

Dana Casciotti, Dennis W Buckman, and Stephen Taplin. Are physicians’ recommen-

dations for colorectal cancer screening guideline-consistent? Journal of general internal

medicine, 26(2):177–184, 2011a.

183



K Robin Yabroff, Jennifer Lund, Deanna Kepka, and Angela Mariotto. Economic burden

of cancer in the united states: estimates, projections, and future research. Cancer

Epidemiology Biomarkers & Prevention, 20(10):2006–2014, 2011b.

R. Yaesoubi and T. Cohen. Dynamic health policies for controlling the spread of emerging

infections: Influenza as an example. 2011a.

R. Yaesoubi and T. Cohen. Generalized markov models of infectious disease spread: A

novel framework for developing dynamic health policies. European Journal of Operational

Research, 215(3):679–687, 2011b.

R. Yaesoubi and S.D. Roberts. How much is a health insurer willing to pay for Colorectal

Cancer screening tests? In Simulation Conference, 2008. WSC 2008. Winter, pages

1624–1631. IEEE, 2008.

R. Yaesoubi and S.D. Roberts. A game-theoretic framework for estimating a health pur-

chaser’s willingness-to-pay for health and for expansion. Health Care Management Sci-

ence, 13(4):358–377, 2010.

W. Yang, M. Parisi, B.J. Lahue, M.J. Uddin, and D. Bishai. The budget impact of con-

trolling wastage with smaller vials: A data driven model of session sizes in Bangladesh,

India (Uttar Pradesh), Mozambique, and Uganda. Vaccine, 32(49):6643–6648, 2014.

H. Yarmand, J.S. Ivy, B. Denton, and A.L. Lloyd. Optimal two-phase vaccine allocation

to geographically different regions under uncertainty. European Journal of Operational

Research, 233(1):208–219, 2014.

HR Yun, LJ Lee, JH Park, YK Cho, YB Cho, WY Lee, HC Kim, HK Chun, and SH Yun.

Local recurrence after curative resection in patients with colon and rectal cancers. In-

ternational journal of colorectal disease, 23(11):1081–1087, 2008.

Michel Zaffran, Jos Vandelaer, Debra Kristensen, Bjørn Melgaard, Prashant Yadav,

KO Antwi-Agyei, and Heidi Lasher. The imperative for stronger vaccine supply and

logistics systems. Vaccine, 31:B73–B80, 2013.

184



Jane Zapka, Carrie N Klabunde, Stephen Taplin, Gigi Yuan, David Ransohoff, and Sarah

Kobrin. Screening colonoscopy in the us: attitudes and practices of primary care physi-

cians. Journal of general internal medicine, 27(9):1150–1158, 2012.

Ann G Zauber, Iris Lansdorp-Vogelaar, Amy B Knudsen, Janneke Wilschut, Marjolein

van Ballegooijen, and Karen M Kuntz. Evaluating test strategies for colorectal cancer

screening: a decision analysis for the us preventive services task force. Annals of internal

medicine, 149(9):659–669, 2008.

Ann G Zauber, Iris Lansdorp-Vogelaar, Amy B Knudsen, Janneke Wilschut, Marjolein

van Ballegooijen, and Karen M Kuntz. Evaluating test strategies for colorectal cancer

screening—age to begin, age to stop, and timing of screening intervals. 2009.

Ann G Zauber, Sidney J Winawer, Michael J O’Brien, Iris Lansdorp-Vogelaar, Marjolein

van Ballegooijen, Benjamin F Hankey, Weiji Shi, John H Bond, Melvin Schapiro, Joel F

Panish, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer

deaths. New England Journal of Medicine, 366(8):687–696, 2012.

Jingyu Zhang, Jennifer E Mason, Brian T Denton, and William P Pierskalla. Applications

of operations research to the prevention, detection, and treatment of disease. Encyclo-

pedia of Operations Research and Management, Wiley, 2011.

185



APPENDICES

186



Appendix A

Proofs of Structural Properties

Recall that V (t,q, h) = max {g1(t,q, h), · · · , gn(t,q, h), Ihcν(t− 1,q)}. The property given

in Equation A.1 guarantees that proving the monotonicity of gi(t,q, h), ∀ i ∈ I is sufficient

to prove that V (t,q, h) is monotone.

max (a′, b′) ≤ max (a, b′) ≤ max (a, b) if a ≥ a′, b ≥ b′ (A.1)

A.1 Proof of Proposition 1

As ν(t,q) is independent of h, showing that gi(t,q, h) is non-increasing in h for all h ∈ H
is sufficient to prove that the optimal value function V (t,q, h) is non-increasing in h.

Proof by induction: We start the proof with a preliminary property. Suppose that

a type i vial is opened at timeslot h due to the arrival of a new vaccine demand. Then

either there will be less than or equal to zi vaccine demands at and after timeslot h, or the

opened vial will be depleted before the end of the day and a new vaccine demand arrival
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will occur. Therefore, the following relation holds for any given i ∈ I and h ∈ H:

zi∑
d=1

pDh(d) +

η∑
y=h+zi

pY ih(y) = 1 ⇒
η∑

y=h+zi

pY ih(y) = 1−
zi∑
d=1

pDh(d) =

η−h+1∑
d=zi+1

pDh(d).

(A.2)

Step 1: First, we show that gi(t,q, h) is non-increasing in h for any t ∈ T, q ∈ Q, i ∈ I
where

∑n
i=1 qi ≤ 1. Note that if qi = 0, gi(t,q, h) = 0 for all h ∈ H, thus, the monotonicity

holds for all t ∈ T. If qi = 1, then;

gi(t,q, h+ 1) =

η∑
y=h+zi+1

(zi + V (t,q− ei, y))pY ih+1
(y) +

zi∑
d=1

(d+ ν(t− 1,q− ei))pDh+1
(d)

=

η∑
y=h+zi+1

zipY ih+1
(y) +

zi∑
d=1

dpDh+1
(d)

=

η−h∑
y=zi+1

zipDh+1
(y) +

zi∑
d=1

dpDh+1
(d) (A.3)

≤
η−h+1∑
y=zi+1

zipDh(y) +

zi∑
d=1

dpDh(d) (A.4)

=gi(t,q, h)

Equation A.3 follows the relation shown in Equation A.2. Note that the right-hand

sides of Equation A.3 and Inequality A.4 are equal to the expected value of two truncated

binomial distributions. Inequality A.4 holds due to a property of truncated binomial

distribution: let X1 and X2 be two independent truncated binomial random variables with

the same truncation level and parameters (n1, p) and (n2, p), respectively, then E(X1) ≤
E(X2) when n1 ≤ n2 (Klenke et al., 2010).

Step n: Suppose V (t,q, h) is non-increasing in h for all t ∈ T and q ∈ Q such that∑n
i=1 qi ≤ n−1 (the induction assumption). We now show that gi(t, q̂, h) is non-increasing
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in h for any t ∈ T, q̂ ∈ Q, i ∈ I where
∑n

i=1 q̂i = n.

The following preliminaries are required to prove monotonicity in Step n.

PY ih+1
(η + 1) = 1−

η∑
y=h+1+zi

PY ih+1
(y)

= 1−
η∑

y=h+1+zi

PY ih(y − 1) + (PY ih(η)− PY ih(η))

(A.5)

= PY ih(η + 1) + PY ih(η), for all h ∈ H, i ∈ I
(A.6)

ν(t− 1,q) ≤ V (t,q, η), for all t ∈ T, q ∈ Q s.t.
n∑
i=1

qi ≤ n− 1 (A.7)

Equation A.5 is due to the fact that PY ih+1
(y + 1) = PY ih(y). Moreover, ν(t − 1,q) ≤

V (t,q, η) because we assume that the last patient may arrive at the beginning of timeslot

η, thus, this inequality holds. Note that if q̂i = 0, gi(t, q̂, h) = 0 for all h ∈ H, thus, the

monotonicity holds. If q̂i > 0, then;
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gi(t, q̂, h+ 1) =

η∑
y=h+zi+1

(zi + V (t, q̂− ei, y))pY ih+1
(y) +

zi∑
d=1

(d+ ν(t− 1, q̂− ei))pDh+1
(d)

=

η∑
y=h+zi+1

zipY ih+1
(y) +

zi∑
d=1

dpDh+1
(d) +

η∑
y=h+zi+1

V (t, q̂− ei, y)pY ih+1
(y)

+

zi∑
d=1

ν(t− 1, q̂− ei)pDh+1
(d)

=

η−h∑
y=zi+1

zipDh+1
(y) +

zi∑
d=1

dpDh+1
(d) +

η−1∑
y=h+zi

V (t, q̂− ei, y + 1)pY ih(y)

+ ν(t− 1, q̂− ei)pY ih+1
(η + 1) (A.8)

≤
η−h+1∑
y=zi+1

zipDh(y) +

zi∑
d=1

dpDh(d) +

η−1∑
y=h+zi

V (t, q̂− ei, y)pY ih(y)

+ ν(t− 1, q̂− ei)[pY ih(η) + pY ih(η + 1)] (A.9)

≤
η−h+1∑
y=zi+1

zipDh(y) +

zi∑
d=1

dpDh(d) +

η∑
y=h+zi

V (t, q̂− ei, y)pY ih(y)

+ ν(t− 1, q̂− ei)pY ih(η + 1) (A.10)

=

η∑
y=h+zi

(zi + V (t, q̂− ei, y))pY ih(y) +

zi∑
d=1

(d+ ν(t− 1, q̂− ei))pDh(d)

=gi(t, q̂, h)

As in Step 1, Equation A.8 follows the relation shown in Equation A.2 and PY ih+1
(y+1) =

PY ih(y). The transition between Equations A.8 and A.9 is obtained from the property de-

rived in Equation A.6 and the property of truncated binomial distribution used in Inequal-

ity A.4. Note that V (t, q̂ − ei, y + 1) in Equation A.8 is replaced with V (t, q̂ − ei, y) in

Equation A.9 following the induction assumption that V (t, q̂− ei, h+ 1) ≤ V (t, q̂− ei, h),

∀q ∈ Q s.t. q = q̂ − ei, ∀i ∈ I, and thus,
∑n

i=1 qi = n − 1. Moreover, the transition to

Equation A.10 follows Equation A.7. Hence, Proposition 1 holds for all t ∈ T, q ∈ Q. �
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A.2 Proof of Theorem 1

Proposition 1 shows that if 1 ≤ h1 ≤ h2 ≤ η and hc = 0, then gi(t,q, h1) ≥ gi(t,q, h2) for

all i ∈ I, t ∈ T, q ∈ Q. Following this, once ν(t − 1,q) ≥ gi(t,q, h) at any h ∈ H, then;

ν(t − 1,q) ≥ gi(t,q, ĥ) for all i ∈ I, t ∈ H, q ∈ Q, ĥ ∈ H such that ĥ ≥ h. Thus, for

any h ≥ h∗N(t,q) = min
h

{
ν(t− 1,q) ≥ max

i∈I
{gi(t,q,h)}

}
, A∗(t,q,h) = N must hold because

ν(t − 1,q) is guaranteed to be greater than or equal to gi(t,q, h) for those h values by

Proposition 1. �

A.3 Proof of Proposition 2

A.3.1 Continuous Service Scenario

Step 1: We first show that V (t,q, h) is non-decreasing in t for all h ∈ H and q ∈ Q
such that

∑n
i=1 qi = 1. Recall that V (t,0, h) = 0 for all t ∈ T and h ∈ H regardless of the

service scenario and gi(t,q, h) = 0 for all t ∈ T, h ∈ H, i ∈ I, and q ∈ Q s.t. qi = 0 and∑n
i=1 qi = 1. When hc = 0 and

∑n
i=1 qi = 1, V (t,q, h) is independent from t for all t ∈ T,

h ∈ H as shown in Equations A.11 and A.12.

V (t,q, h) = max{g1(t,q, h), · · · , gn(t,q, h)} = gi(t,q, h), if qi = 1, qj = 0 ∀j 6= i, i, j ∈ I

(A.11)

gi(t,q, h) =

η∑
y=h+zi

(zi + V (t,0, y))pY ih(y) +

zi∑
d=1

(d+ ν(t− 1,0))pDh(d)

=

η∑
y=h+zi

zipY ih(y) +

zi∑
d=1

dpDh(d), (A.12)

Since Equation A.12 is independent of t, Proposition 2 holds when hc = 0 and
∑n

i=1 qi = 1.

Step n: Suppose V (t,q, h) is non-decreasing in t for all h ∈ H and q ∈ Q such that
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∑n
i=1 qi ≤ n− 1 (the induction assumption). We now show that V (t+ 1,q, h) ≥ V (t,q, h)

for all t ∈ T, h ∈ H and q ∈ Q such that
∑n

i=1 qi = n.

gi(t+ 1,q, h) =

η∑
y=h+zi

(zi + V (t+ 1,q− ei, y))pY ih(y) +

zi∑
d=1

(d+ ν(t,q− ei))pDh(d),

≥
η∑

y=h+zi

(zi + V (t,q− ei, y))pY ih(y) +

zi∑
d=1

(d+ ν(t− 1,q− ei))pDh(d),

(A.13)

≥gi(t,q, h)

Considering the induction assumption, the transition to Equation A.13 holds as V (t +

1,q− ei, h) ≥ V (t,q− ei, h) for all h ∈ H, q ∈ Q, i ∈ I.

Hence, V (t+1,q, h) = max{g1(t+1,q, h), · · · , gn(t+1,q, h)} ≥ max{g1(t,q, h), · · · , gn(t,q, h)} =

V (t,q, h) for all t ∈ T, h ∈ H and q ∈ Q such that
∑n

i=1 qi = n. �

A.3.2 Terminated Service Scenario

Let P∗t̄ be the optimal policy that specifies the optimal actions from t̄ to the end of the cur-

rent replenishment cycle when hc = 0, i.e., P∗t̄ = {A∗s ∈ As : s = (t,q, h) ∈ S, t̄ ≥ t ≥ 1}.
Because termination of vaccination service is allowed, we can use the optimal policy for

t = t̄ (i.e., P∗t̄ ) to generate a feasible policy for any t′ such that T ≥ t′ ≥ t̄. We refer to

this feasible policy as Pft′ and define it for all s = (t,q, h) ∈ S as follows:

Pft′(s) =

P∗t̄ (s) = A∗s if 1 ≤ t ≤ t̄

N, if t̄ < t < t′
(A.14)

Let V P
f

t′ (t′,q, h) refer to the expected total number of vaccine doses administered under

policy Pft′ . Since the performance of the Pft′ in expected demand covered matches to that
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of P∗t̄ , the monotonicity of the optimal value function in t holds. That is:

V (t̄,q, h) = V P
f

t′ (t′,q, h) ≤ V (t′,q, h) (A.15)

The last inequality above holds because the value function of any feasible policy is smaller

than that of the optimal policy in a maximization problem. �

A.4 Proof of Proposition 3

Because the proofs of Propositions 3.a and 3.b are very similar, we provide the proof of

Proposition 3.a. and omit the other one for brevity.

A.4.1 Continuous Service Scenario

This proof adopts the proof by induction method for which we consider that there are

T × η decision epochs (steps) in a replenishment cycle. Therefore, Step n refers to the

number of decision epochs starting from state s = (t,q, h) until the next replenishment

cycle, i.e., n = (t× η) + (η − h).

Step 1: We start with showing that V (1,q, h) ≥ V (1,q − r, h) for all q ∈ Q, r =

(r1 · · · rn) such that
∑n

i=1 ri ≥ 0 and ri ≤ qi ∀i ∈ I, h ∈ H. Note that in the last day

of replenishment cycle, the expected number of vaccine doses administered starting from

timeslot h to the beginning of next replenishment cycle is the same regardless of what size

of a vial is opened at timeslot h for all h ∈ H. Since no terminal reward assigned to the

ending inventory in a replenishment cycle, any size of a vial can be opened when demand is

observed. Thus, V (1,q, h) is equal to the expectation of a truncated binomial distribution.

Let Lq be the total number of doses on-hand at the beginning of timeslot h when the
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available inventory is q, i.e., Lq =
∑n

i=1 ziqi. Then;

V (1,q, h) =
Lq∑
d=1

dpDh(d) +

η−h∑
d=Lq+1

LqdpDh(d)

=
Lq−r∑
d=1

dpDh(d) +
Lq∑

d=Lq−r+1

dpDh(d) +

η−h∑
d=Lq+1

LqpDh(d) (A.16)

≥
Lq−r∑
d=1

dpDh(d) +
Lq∑

d=Lq−r+1

Lq−rpDh(d) +

η−h∑
d=Lq+1

Lq−rpDh(d) (A.17)

=
Lq−r∑
d=1

dpDh(d) +

η−h∑
d=Lq−r+1

Lq−rpDh(d) (A.18)

=V (1,q− r, h)

Note that the transition between Equations A.16 and A.17 is due to the fact that Lq =∑n
i=1 ziqi ≥

∑n
i=1 zi(qi − ri) = Lq−r. Hence, the proposition holds when t = 1.

Step n: Suppose that V (t,q, h) ≥ V (t,q − r, h) for all t ∈ T, h ∈ H such that

(t × η) + (η − h) < (t̂ × η) + (η − ĥ) (the induction assumption). We now show that

V (t̂,q, ĥ) ≥ V (t̂,q − r, ĥ) for all q ∈ Q, r = (r1 · · · rn) such that
∑n

i=1 ri ≥ 0 and ri ≤ qi

for all i ∈ I in Step n (i.e., n = (t̂× η) + (η − ĥ)). Let V (t̂,q, ĥ) = gi(t̂,q, ĥ), i ∈ I.

gi(t̂,q, ĥ) =

η∑
y=h+zi

(zi + V (t̂,q− ei, y))pY ih(y) +

zi∑
d=1

(d+ ν(t̂− 1,q− ei))pDh(d) (A.19)

≥
η∑

y=h+zi

(zi + V (t̂,q− r− ei, y))pY ih(y) +

zi∑
d=1

(d+ ν(t̂− 1,q− r− ei))pDh(d),

(A.20)

=gi(t̂,q− r, ĥ)

Note that the transition from Equation A.19 to A.20 is due to the induction assumption

guaranteeing that (i) V (t̂,q−ei, y) ≥ V (t̂,q−r−ei, y) for all y ≥ ĥ and (ii) ν(t̂−1,q−ei) =
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∑η+1
h=1 V (t̂− 1,q− ei, h)pX(h) ≥

∑η+1
h=1 V (t̂− 1,q− r− ei, h)pX(h) = ν(t̂− 1,q− r− ei).

Hence, Proposition 3 holds when hc = η + 1. �

A.4.2 Terminated Service Scenario

We follow a similar proof structure as the one in Section A.3.2. Let P∗q−r denote the

optimal policy under the terminated service scenario that specifies the optimal actions

from state s to the end of the replenishment cycle when the inventory on-hand in state

s = (t,q− r, h) is q− r and r = (r1 · · · rn) such that
∑n

i=1 ri ≥ 0, ri ≤ qi ∀ i ∈ I. Suppose

Pfq is the feasible policy given in Equation A.21 when the inventory on-hand in state s is

q.

Pfq(s
′
) =

P∗q−r(s
′
) = A∗

s′
if q

′
i ≤ qi − ri, t

′ ≤ t, (t× η) + (η − h) ≤ (t
′ × η) + (η − h′)

N, otherwise
∀s′ ∈ S

(A.21)

Let V P
∗
q−r(t,q−r, h) refer to the expected total number of vaccine doses administered under

policy P∗q−r. Since the performance of the P∗q−r in expected demand covered matches to

that of Pfq , the monotonicity of the optimal value function in q holds. That is:

V (t,q− r, h) = V P
∗
q−r(t,q− r, h) = V P

f
q (t,q, h) ≤ V (t,q, h) (A.22)

Above the last inequality holds because the value function of any feasible policy is smaller

than that of the optimal policy in a maximization problem. �
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Appendix B

The Specifics of The Pediatric

Vaccines

We conduct our numerical analysis using data about four routine pediatric vaccines:

measles, DTP-HepB-Hib (Pentavalent), yellow fever (YF), and BCG vaccines. Table B.1

presents some of the specifics of these vaccines (GAVI, 2017). Note that the information in

Table B.1 combines the information from both GAVI (2017) and WHO (2017). This com-

bined information is for a general vaccine administration setting and may differ based on

country’s and/or patient’s risk profile, manufacturer of the vaccines, etc. Open shelf-lives

are reported as six to eight hours for the vaccines not containing an effective preservative.

Opened multi-dose vaccine vials should be discarded at the end of the immunization ses-

sion which takes six hours on average. If the storage conditions satisfy the requirements

listed in WHO (2014a), pentavalent vaccine can be used for the subsequent immunization

session up to a maximum of 28 days based on the assumption that stock is replenished

once a month. However, the maximum performance of the preservative is not guaranteed.

Considering that our study specifically focuses on the vaccine administration settings in

developing countries where lack of appropriate storage conditions is presence, we assume

that the open shelf-life is 6-8 hours for pentavalent vaccine as well. The column showing

the stability of the vaccines refers to the vaccine’s durability against heat exposure.
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Table B.1: The pediatric vaccine specifics

Vaccine type
Presentation

(doses)

WHO recommended schedule†
Shelf-life
(months)

Open

shelf-life‡
Stability

Dose
Age (months)

Routine Campaign

Measles 1o, 2o, 5o, 10, 20o 2 9-18 9-60 24, 2-8 0C 6-8 hrs Med
Pentavalent 1, 2, 5, 10 3 1.5 NA 36, 2-8 0C 28 days Med
BCG 10o, 20o 1 > 0 NA 24, 2-8 0C 6-8 hrs Med, High
YF 2o, 5, 10, 20 1 9-12 NA 24, 2-8 0C 6-8 hrs Med

†: only provides number of doses in primary series and age interval for the vaccine.
‡: See WHO (2014a) for the details of multi-dose vial policy of WHO.
NA stands for not available.
> 0 stands for as soon as after birth.
o: vial presentations that are not on the GAVI’s menu for vaccines. The vaccines on the GAVI’s menu
are offered by GAVI and listed in the country’s application portal as well as in the WHO’s
pre-qualified vaccine list.
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Appendix C

Determining the Total Number of

Timeslots in a Clinic Day (η)

We validate the Poisson arrival assumption by setting the number of timeslots in a clinic day

to a sufficiently large value such that the probability that more than one arrival occurs in a

timeslot is negligible. We estimate the performance measures, φ(T,Q) and ω(T,Q) under

the optimal policies for various η values, i.e., η ∈ {32, 96, 480, 960, 1920} in an 8−hour

clinic day. The probability that an arrival occurs in a timeslot, p, also varies with η for a

given daily demand rate as p = µ/η. Table C.1 shows that the performance improvement

achieved by increasing η is negligible when η ≥ 480. Hence, we can conclude that η = 480

is sufficiently large for our analyses under the Poisson arrival assumption.
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Table C.1: Performances of the optimal policies with various η values and base case T , Q,
and µ

η = 32 η = 96 η = 480 η = 960 η = 1920

Pentavalent
Vaccine

Terminated
service

α1 = 18% φ(T,Q) 94.21 93.12 92.71 92.66 92.64
ω(T,Q) 5.72 6.79 7.19 7.24 7.26

α1 = 0% φ(T,Q) 89.24 88.34 87.99 87.95 87.92
ω(T,Q) 10.59 11.49 11.83 11.87 11.89

Continuous
service

α1 = 18% φ(T,Q) 91.68 90.37 89.91 89.86 89.83
ω(T,Q) 8.28 9.58 10.04 10.09 10.12

α1 = 0% φ(T,Q) 70.91 71.59 71.77 71.79 71.80
ω(T,Q) 29.09 28.41 28.23 28.21 28.20

Measles
Vaccine

Terminated
service

α1 = 18% φ(T,Q) 92.02 91.11 90.76 90.71 90.69
ω(T,Q) 7.91 8.80 9.15 9.19 9.21

α1 = 0% φ(T,Q) 89.24 88.34 87.99 87.95 87.92
ω(T,Q) 10.59 11.49 11.83 11.87 11.89

Continuous
service

α1 = 18% φ(T,Q) 82.10 81.92 81.79 81.78 81.77
ω(T,Q) 17.90 18.08 18.21 18.22 18.23

α1 = 0% φ(T,Q) 70.91 71.59 71.77 71.79 71.80
ω(T,Q) 29.09 28.41 28.23 28.21 28.20

YF
Vaccine

Terminated
service

α1 = 82% φ(T,Q) 88.43 87.97 87.80 87.78 87.77
ω(T,Q) 11.44 11.85 12.01 12.03 12.03

α1 = 0% φ(T,Q) 57.33 57.68 57.79 57.80 57.81
ω(T,Q) 42.67 42.32 42.21 42.20 42.19

Continuous
service

α1 = 82% φ(T,Q) 80.06 80.15 80.16 80.16 80.16
ω(T,Q) 19.94 19.85 19.84 19.84 19.84

α1 = 0% φ(T,Q) 54.98 54.87 54.79 54.78 54.77
ω(T,Q) 45.02 45.13 45.21 45.22 45.23

BCG
Vaccine

Terminated
service

α1 = 82% φ(T,Q) 87.07 85.90 85.45 85.40 85.37
ω(T,Q) 12.93 14.10 14.54 14.60 14.63

α1 = 0% φ(T,Q) 57.33 57.68 57.79 57.80 57.81
ω(T,Q) 42.67 42.32 42.21 42.20 42.19

Continuous
service

α1 = 82% φ(T,Q) 68.74 69.31 69.45 69.47 69.47
ω(T,Q) 31.26 30.69 30.55 30.53 30.53

α1 = 0% φ(T,Q) 54.98 54.87 54.79 54.78 54.77
ω(T,Q) 45.02 45.13 45.21 45.22 45.23
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Appendix D

Optimal Vaccine Administration

Decisions with Continuous Service

Figure D.1 shows the optimal actions at all timeslots on particular days (t ∈ {5, 10, 15, 20})
for various inventory levels (q1, q2) and vaccine types under the base case continuous

service scenario (T = 20, Q = 220, η = 480, and µ = 11). The optimal policies generally

follow a monotonic pattern in terms of timeslot thresholds for switching to small vials,

and administer doses more conservatively when the total number of doses on-hand is not

sufficiently large compared to the total expected demand until the next replenishment

cycle.
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Appendix E

Base Case Performance of the

Optimal Policies

Recall that ᾱ1 is the minimum α1 value for which the optimal policy can attain more than

95% of the improvement in φ(T,Q) achieved by the optimal policy with α1 = 100%. We

present the required ᾱ1 values and their performances for all vaccine types in Table E.1.

Note that π(T,Q)α, φ(T,Q)α, and ω(T,Q)α refer to the expected total cost, percentage

demand covered, and percentage open-vial wastage associated with the optimal policy with

ᾱ1 = α1. Table E.1 shows that when the size of large vials decreases, the corresponding ᾱ1

value also decreases, e.g. ᾱ1 is 18% for measles vaccines held in 5-dose and 10-dose vials;

whereas, ᾱ1 is 82% for YF vaccines held in 5-dose and 20-dose vials under the base case

scenario.
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Table E.1: Comparison of the optimal policies for single and multiple vial size cases in
terms of relative performance differences in π(T,Q), φ(T,Q), and ω(T,Q)

Relative difference between
α1 = 0% and α1 = ᾱ1

Relative difference between
α1 = 0% and α1 = 100%

ᾱ1 π(T,Q)1 φ(T,Q)1 ω(T,Q)1 π(T,Q)2 φ(T,Q)2 ω(T,Q)2

Pentavalent
hc = η + 1

18%
14% 18% −18% 75% 23% −24%

hc = 0 14% 5% −5% 75% 8% −9%

Measles
hc = η + 1

18%
23% 10% −10% 127% 13% −13%

hc = 0 23% 3% −3% 128% 4% −4%

YF
hc = η + 1

82%
19% 26% −26% 23% 30% −30%

hc = 0 18% 30% −30% 22% 34% −34%

BCG
hc = η + 1

82%
52% 15% −15% 64% 17% −17%

hc = 0 52% 30% −30% 63% 30% −30%

π(T,Q)1 =
π(T,Q)ᾱ1

−π(T,Q)0%
π(T,Q)0%

× 100%, π(T,Q)2 =
π(T,Q)100%−π(T,Q)0%

π(T,Q)0%
× 100%, φ(T,Q)1 = φ(T,Q)ᾱ1

− φ(T,Q)0%

φ(T,Q)2 = φ(T,Q)100% − φ(T,Q)0%, ω(T,Q)1 = ω(T,Q)ᾱ1
− ω(T,Q)0%, ω(T,Q)2 = ω(T,Q)100% − ω(T,Q)0%.
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Appendix F

The Performances of the Optimal

Vaccine Administration Policies for

Possible (α1, Q) Pairs

Figures F.1 and F.2 show the performances of the optimal policies for possible (α1, Q) pairs

where 1 ≤ Q ≤ 200 × z1 + 100 × z2 under the terminated (hc = 0) and and continuous

(hc = η+1) service scenarios, respectively. The Pareto-efficient (α1, Q) pairs are highlighted

with bold symbols. The number of Pareto-efficient pairs is quite limited compared to

the number of feasible (α1, Q) pairs. Therefore, policy makers may better view their

alternatives for vaccine stock management by focusing on the reasonable sections of these

Pareto-frontiers. The numbers of feasible (α1, Q) combinations with continuous service are

similar to those with terminated service. However, the pairs scatter along a larger area

under the continuous service scenario.
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(a) Pentavalent - 2-dose and 10-dose vials
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(b) Measles - 5-dose and 10-dose vials
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(c) YF - 5-dose and 20-dose vials
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(d) BCG - 10-dose and 20-dose vials

Figure F.1: The performances of the optimal vaccine administration policies for possible (α1, Q)
pairs in terms of expected percentage demand covered and total cost given the base case values
of T , µ, and η with terminated service
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(a) Pentavalent - 2-dose and 10-dose vials
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(b) Measles - 5-dose and 10-dose vials
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(c) YF - 5-dose and 20-dose vials
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(d) BCG - 10-dose and 20-dose vials

Figure F.2: The performances of the optimal vaccine administration policies for possible (α1, Q)
pairs in terms of expected percentage demand covered and total cost given the base case values
of T , µ, and η with continuous service
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Appendix G

Heuristic Policy Development

Procedure

In order to achieve the coverage rates that the proposed policies provide, cooperation of

healthcare practitioners is very important. However, it may not be practical for healthcare

practitioners to keep track of the optimal actions which depend on the number of days

remaining until the next replenishment, the number of vials on-hand, and the timeslot of

the day. To reduce the complexities regarding the practical implications of the proposed

policies, we derive simple vaccine administration policies using two different vial sizes with

a continuous service scenario, i.e., α1 > 0%, hc = η + 1. The simple policies suggest

using a single switching timeslot threshold for any q = (q1, q2) during each sub-horizon

of equal length that together constitute a replenishment cycle. We determine the number

of sub-horizons such that the length of a sub-horizon has a practical representation, e.g.,

a 20-day replenishment cycle which denotes a monthly vaccine administration service can

be divided into 4 sub-horizons so that each sub-horizon corresponds to a week in practice.

Simple vaccine administration policies assume continuous service. We first determine a

list of candidate switching timeslots for each sub-horizon from the optimal timeslots of

the first day of the sub-horizon. The motivation for considering only the first day of a

sub-horizon to approximate a single switching timeslot for that sub-horizon is based on
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Proposition 2 and the numerical observation implying that the optimal policies administer

doses conservatively. Since the policies use large vials for a shorter duration of time on

each day when there are fewer days left until the next replenishment the doses wasted

during each sub-horizon is at its minimum level which may help administering more doses

during the overall horizon. Although focusing only on each sub-horizon’s first day helps

reducing the number of switching timeslots to consider, there can still be q1q2 different

switching timeslots for each sub-horizon. To limit this number, we select the candidates

among the optimal switching timeslots of each sub-horizon’s first day for the inventory

levels that are greater than a most likely minimum inventory level for the sub-horizon, i.e.,

q1z1 + q2z2 > Qi for sub-horizon i. We calculate Qi using the equation Qi = Q−
∑i−1

j=1(1 +

ωCP (T,Q)µT j) where µT j is the expected demand satisfied during the sub-horizon j of Tj

days and ωCP (T,Q)µT j is an approximate upper bound for the expected number of doses

wasted during sub-horizon j. We use ωCP (T,Q) which denotes the wastage rate of the

current practice using only large vials with a continuous service (α1 = 0%, hc = η + 1) to

calculate an approximate upper bound for the wastage because the highest wastage rate is

observed from the current practice in our numerical analyses. We further eliminate some

of these timeslots satisfying q1z1 + q2z2 > Qi,when determining the simple policy. This

elimination is performed based on Proposition 3 and the numerical observation stating

that the switching timeslots increase as q2 increases. Therefore, we only consider the

median of the optimal switching timeslots of q1 values for each candidate q2 value (e.g.,

for t = 20, q2 = 10, we consider the median of h∗1(20, 10, q1), q1 = 1, · · · , Q1). By this, we

can reduce the number of candidates for each week to the number of q2 values that satisfy

q1z1 + q2z2 > Qi. Among all possible combinations of the candidate switching timeslots for

each sub-horizon, we only consider the combinations that satisfy the numerical observation

that the switching timeslots increase as t decreases (i.e., switching timeslot of sub-horizon

i ≤ that of sub-horizon i+1 ). Lastly, we calculate the expected demand covered during a

replenishment cycle for the simple policies considered and select the policy with the highest

coverage as the best simple policy.
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