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Abstract

The transportation of hazardous materials (hazmat) has drawn significant attention

from various stakeholders due to the undesirable impacts on the environment and public

health. Focusing on the connection between the traffic and the risk associated with the

hazmat shipments, the present research aims to assist the regulator in designing a policy

of dual tolls, imposed on both hazmat and non-hazmat shipments, to mitigate the hazmat

risk in a road network.

A bi-objective bi-level programming formulation is constructed. To be specific, the

upper level model indicates the regulator’s decision problem, minimizing the maximum

link risk and the total network risk by imposing a dual-toll policy on any carrier. The lower

level jointly considers the decisions of multiple hazmat carriers and non-hazmat travelers,

minimizing the total transportation cost, including the toll cost. (By “non-hazmat traveler",

we mean both people who carry and do not carry products.)

Given the bi-level structure and the non-linear nature, a solution procedure with

two parts is designed. First, we develop two alternative linearization approaches. One

is piecewise linearization, transforming the non-linear terms into linear ones. The

other applies the Frank-Wolfe algorithm, an iterative first-order optimization algorithm.

Then a genetic-algorithm-based methodology will integrate both levels. Computational

experiments on different sizes of networks are performed to demonstrate the effectiveness

of the model. Various analyses, involving trade-offs, sensitivities, and examination of

convergence, are conducted to provide additional managerial insights. These can be used

to facilitate stakeholders’ decision making.
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Chapter 1

Introduction

The United States Department of Transportation [US DOT, 2012] defines a hazardous

material (hazmat) to be any substance ormaterial that is capable of causing harm to people,

property and environment. Hazardous materials play important roles in industrialized

societies.The United Nations [UN, 2001] sorts hazardous materials into nine categories:

“flammable and combustible liquids; flammable, combustible, and dangerous-when-wet

solids; oxidizers and organic peroxides; poisonous and infectious materials; radioactive

materials; corrosive materials (acidic or basic); and miscellaneous dangerous goods,

such as hazardous wastes.” In 2012, more than 98 percent of hazmat transportation was

carried by a single mode, including road, rail, water, air and pipeline [US DOT, 2012].

Trucks account for nearly 70 percent of total single-mode hazmat shipments, due to the

flexibility of this transportation mode.

Although the number of hazmat transportation accidents is fairly small compared

with non-hazmat transportation, the consequences of hazmat transportation incidents,

such as fatalities, injuries, accidents and property damage, can be catastrophic. In 2003,

hazmat shipments triggered only 3.2 percent of all traffic incidents; however, those led to
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15 deaths, 117 injuries and $ 48.6 million of property loss [US DOT, 2004a].

On July 1, 2009, a fiery crash between a car and a tanker truck in Southern New Jersey

caused the release of 13 gallons of gasoline and the death of the car driver. The property

damage was about $ 27,000, and Route 40 had to be closed for nearly 8 hours [National

Transportation Safety Board, 2009]. On July 6, 2013, a 74-car freight train carrying crude

oil derailed in Lac-Mégantic, Quebec, Canada, causing the explosion of multiple tanks.

This disaster resulted in 47 deaths, and nearly half of the town’s area was destroyed

[National Post, 2013].

Multiple parties, for example, the government, carriers and shippers are involved in

hazmat transportation. In each move of hazmats from origin to destination, different

players have distinct priorities. From the government’s perspective, the potential impacts

of hazmat transportation on both population and environment necessitate effective and

efficient ways to mitigate the associated risks. So, many governments have developed

explicit regulations for hazmat transportation. These include the Federal Hazardous

Materials Transportation Act in the United States, and the Federal Transportation of

Dangerous Goods Act in Canada.

Despite the concerns about hazmat risks, governments at various levels may each

have an individual focus. More specifically, the local government may want to ensure

equity on the spatial distribution of risk, whereas the regional government may pay

more attention to the total network risk [Bianco et al., 2013]. However, for transportation

carriers, i.e., trucking companies, the major concern is cost. In other words, a carrier is

more interested in finding routes with minimum transportation cost. Some paths are

shorter but require travel through densely populated zones; other paths may avoid the

populated area but have higher cost. Finally, some paths have minimum travel time

with the use of highways, but may lead to a greater accident rate. Hence, the hazmat
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transportation problem is a multiobjective problem with several players [Erkut et al.,

2007].

Normally, the government does not have the right to choose specific routes for hazmat

carriers. What they can do, however, is regulate the use of roads for hazmat carriers

through certain policies. Two types of policies are widely used nowadays. One is based

upon the Hazmat Transportation Network Design (HTND) Problem, and the other is

referred to as the Toll Setting (TS) policy. In the hazmat network design problem, the

authority closes certain segments of roads for hazmat carriers or sets an upper limit of

hazmat flow on certain links of such roads. A detailed review of this policy can be found

in Section 2.4.

Unlike the HTND problem, which puts certain restrictions on links of the network, a

toll setting policy imposes toll costs on particular links, so as to transfer more shipments

to less-populated links. Compared with the hazmat network design problem, carriers

have more flexibilities to respond to a toll setting policy. They are more willing to choose

less-risky routes based on their own decisions to reduce the total transportation cost.

Recently, a novel policy called dual toll pricin g was proposed by Wang et al. [2012].

As opposed to the single toll setting, this policy takes regular traffic into consideration,

in addition to hazmat, because the congestion posed by traffic overall may increase the

probability of an incident.

It is clear that the main concern of a government authority is to control the risk

induced by hazmat transportation on the population and the environment. Apart from

the minimization of total risk, the authority should also promote equit y in the spatial

distribution of risk. This becomes crucial when certain populated zones are exposed

to an intolerable level of risk, resulting from the carriers’ routing decisions. Properly

defined by Keeney [1980], risk equity diminishes the largest differences of risks among
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people. When applying hazmat transportation network design or a toll setting policy,

most researchers focus only on total risk, yet neglect the risk equity. Ignoring the latter

may cause more hazmat shipments in one specific area than in others, which leads to a

greater probability of exposure for the residents of the former area.This lack of equity is

one major reason that, recently, more and more people oppose hazmat transportation.

Realizing the impact of risk equity, in this thesis we investigate the tradeoff between total

risk and risk equity.

To address traffic congestion, this research proposes a dual toll policy, which can be

applied to both hazmat and non-hazmat shipments, to mitigate the risk associated with

the hazmat transportation. The contribution of this work is fourfold. Firstly, a bi-level

bi-objective non-linear programming model for hazmat transportation is developed and

tested. Specifically, in the upper level, the total risks and the risk equity are minimized

from the points of view of the regional and local governments, respectively. Then in the

lower level, the transportation costs for both regular travellers and hazmat carriers are

considered. To the best of our knowledge, the majority of previous research considers

only the relationships between a single level of government and one hazmat carrier.

Secondly, to more practically reflect the real-world situations, several carriers that

transport multiple hazmats are considered in our proposed model. As far as we know,

very few papers in the literature include multiple hazmats in their research. Thirdly,

we develop a genetic-algorithm-based solution procedure, integrated with a piecewise

linearization process or the Frank-Wolfe algorithm, to solve the mathematical model with

a satisfactory solution in a reasonable computational time. Finally, several numerical

instances with different network sizes are used to demonstrate the effectiveness of our

model. Various analyses, such as trade-off analysis, sensitivity analysis, and convergence

examination, are conducted to provide additional managerial insights, which can be
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used to facilitate decision making of the various stakeholders.

The remainder of this thesis is organized as follows. A literature review emphasising

hazmat transportation and bi-level models is provided in Chapter 2. In Chapter 3, we

propose our mathematical formulation for hazmat transporation that also considers

the regular traffic. Based on the model of Chapter 3, the solution procedure including

linearization, the Frank-Wolfe algorithm and a GA-based algorithm is outlined in Chapter

4. Moreover, several numerical experiments are conducted and discussed in Chapter 5.

Chapter 6 concludes the thesis and suggests future research directions.
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Chapter 2

Literature review

This chapter reviews several streams of research relevant to the present study: 1) risk

assessment in hazmat transportation, 2) risk equity consideration, 3) bi-level programming

models, 4) the applications of bi-level models in hazmat transportation and 5) dual toll

pricing.

2.1 Risk Assessment

The risk of an accident during the transport of hazardous materials makes the hazmat

transportation problem much more complicated than when non-hazardous goods are

moved. Therefore, great effort has beenmade to capture the risk in hazmat transportation.

Below are several risk evaluation models that are useful for this purpose.

Traditional Risk (TR) model The U.S. Department of Transportation (1989) defined

risk as the product of the probability and the consequence of an incident. Normally, the
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consequence can be quantified as the size of the affected population within a certain

distance of the incident site; the probability of the incident is associated with the nature

of substances shipped and the road type. Abkowitz and Cheng [1988] argued that the

incident probability is usually between 10−8 and 10−6 per mile travelled. To be specific,

TR(P) �
∑
(i, j)∈P

pi jCi j , (2.1)

where P is the path which contains arcs from node i to node j. pi j and Ci j are the

probability and the consequence for specific arc (i, j). The definitions of pi j and Ci j will

apply to all the models in this section.

Incident Probability (IP) model When we assume that the variance in population

density can be ignored, the TR model can be simplified to the IP model. First introduced

by Saccomanno and Chan [1985], the IP model is appropriate for hazmats whose impact

on the surrounding population is relatively small. For this model, the risk is evaluated as

IP(P) �
∑
(i, j)∈P

pi j . (2.2)

Note the difference between this equation and Eq. (2.1).

Population Exposure (PE) model The Population Exposure model was first proposed

by Batta and Chiu [1988], and then used by ReVelle et al. [1991] in a study commissioned

by the U.S. Department of Energy. This model considers only the consequence, i.e.,

the exposed population within the area surrounding an incident. The corresponding

equation for risk is then:
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PE(P) �
∑
(i, j)∈P

Ci j . (2.3)

Perceived Risk (PR) model Some researchers feel that the traditional risk model is not

appropriate because it assumes a risk-neutral attitude. However, the majority of people

have risk-averse attitudes toward hazmat transportation. This is because the consequence

of any hazmat-related accident can be high, despite the low probability. Inspired by

Saccomanno and Chan [1985], Abkowitz and Cheng [1988] suggested the perceived risk

(PR) model by adding a new element, the exponent q, to the traditional risk model:

PR(P) �
∑
(i, j)∈P

pi j(Ci j)q . (2.4)

When q > 1, this model represents a risk-averse attitude, while when q = 1, the model

reduces to the traditional risk model, Eq. (2.1).

Conditional Risk (CR) model Another disadvantage of the Traditional Risk model is

that it may not be accurate when multiple hazmat shipments occur on a specific path.

An underlying assumption of the TR model is that a path can be used as many times as

needed. However, if a catastrophic accident results in the exposure of certain hazardous

materials on a specific path, then other carriers should reevaluate their use of that path.

Sivakumar et al. (1993a, b; 1995) proposed a new model, called the Conditional Risk

model, to apply to such a situation.

CR(P) �
∑
(i, j)∈P pi jCi j∑
(i, j)∈P pi j

. (2.5)
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Unlike the first four models, the CR model is a two-attribute model. The first attribute is

traditional risk, and the second is incident probability.

Minimax Risk (MM) andMean-Variance (MV) models The Minimax Risk model and

the Mean-Variance model were introduced by Erkut and Ingolfsson [2000] as risk-averse

models to lessen the likelihood of the catastrophic consequences of hazmat transportation.

In the MMmodel, those authors minimized the maximum population exposure in the

event of an incident. In the MV model, the variance of the consequence of each path is

incorporated into the solution.

MM(P) � maxi, j∈P Ci j , (2.6)

MV(P) � ∑
(i, j)∈P(pi jCi j + kpi j(Ci j)2), (2.7)

where the number k is a given constant.

Disutility (DU) model Apart from the MM and MV models, Erkut and Ingolfsson

[2000] also proposed a Disutility model which used explicit utility theory to reflect a

risk-averse attitude toward hazmat transportation.

DU(P) �
∑
(i, j)∈P

pi j(exp(kCi j − 1)) (2.8)

where k, a measure of the aversion to catastrophe, is a positive constant. Higher values

of k represent greater degrees of risk.

A summary of the preceding popular risk measurements is shown in Table 2.1. The

model proposed in our research is based on the PE model, which concerns the worst
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case scenario of an incident. Moreover, we take the traffic congestion into consideration.

Travel time is an important factor in measuring risk: the longer the travel time, the greater

the risk. Hence, we integrate travel time with population in the PE model, to calculate

risk at the specific site of an incident. A detailed explanation can be found in Section 3.1.

Table 2.1: Traditional Path Risk Evaluation Models ( Adapted from Erkut and Ingolfsson,
2005)

Approach Model Sample reference

Traditional Risk TR(P) � ∑
(i, j)∈P pi jCi j Alp [1995]

Incident Probability IP(P) � ∑
(i, j)∈P pi j Saccomanno and Chan [1985]

Population Exposure PE(P) � ∑
(i, j)∈P Ci j Batta and Chiu [1988], ReVelle et al. [1991]

Perceived Risk PR(P) � ∑
(i, j)∈P pi j(Ci j)q Abkowitz and Cheng [1988]

Conditional Risk CR(P) �
∑
(i, j)∈P pi j(Ci j)q∑
(i, j)∈P pi j

Sivakumar et al. [1993a, b; 1995]

Maximum Risk MM(P) � maxi, j∈P Ci j Erkut and Ingolfsson [2000]

Mean-Variance MV(P) � ∑
(i, j)∈P(pi jCi j + kpi j(Ci j)2) Erkut and Ingolfsson [2000]

Disutility DU(P) � ∑
(i, j)∈P pi j(exp(kCi j − 1)) Erkut and Ingolfsson [2000]

2.2 Risk Equity Consideration

The primary concern of the government is to control the risk triggered by hazmat

shipments over the surrounding area. Apart from the total network risk, the risk equity,

i.e., the spatial distribution of risk, should also be considered. Defined by Keeney

[1980], risk equity assesses and prunes the differences in the level of risk among a set of

individuals [Carotenuto et al., 2007a]. As noted earlier, the consideration of risk equity is

crucial because the hazmat carrier’s routing or a scheduling decision may cause certain
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population zones to be exposed to intolerable levels of risk [Erkut et al., 2007].

The issue of risk equity in hazmat transportation has been examined through different

approaches. One method is to limit the risk associated with a population zone or a link.

Gopalan et al. [1990] proposed an integer programming formulation to discover several

ideal routes that not only minimize the total risk, but also spread that risk equitably over

the region. To ensure risk equity, they partitioned the population area into different zones,

and limited the difference of risks between any two zones. Threshold constraints, with

bounded maximum risk on any link, were used to attain this. Carotenuto et al. [2007a]

also bounded each link in the embedded network with a threshold to guarantee the

equitable spreading of risk. Fang et al. [2017] introduced a mixed-integer programming

model to route and schedule hazmat shipments by rail when there were due dates. Risk

was expressed as an increasing function of speed. Limited by the risk threshold on each

service leg, the speed-dependent risk was ensured to be spread equitably in the railway

network.

Another approach that has been applied in the literature on risk equity is the minmax

method. Current and Ratick [1995] formulated amixed-integer program to locate facilities

to handle hazmats. In their paper, risk equity was ensured by minimizing the maximum

hazmat amounts respectively shipped past any individual person and any facility. Since

it is a multiobjective model, they used the weighting method for its solution. Bell [2006]

used the same minmax method to determine the safest set of routes, in the case of a

risk-averse attitude towards hazmat shipments.

Finding dissimilar paths is also regarded as an approach to guarantee the risk equity

[Carotenuto et al., 2007a]. Akgün et al. [2000] introduced two methods, the Iterative

Penalty Method (IPM) and the Gateway Shortest Paths (GSPs), to find dissimilar paths.

Based on the repetitive application on the shortest path algorithm, IPM imposes a different
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penalty coefficient on each selected link to prevent drivers from choosing the same path;

GSPs require that carriers go through specific nodes, called “gateways". However, finding

dissimilar paths cannot always be used to ensure risk equity. For example, if two selected

dissimilar paths have only a few links in common, but are very close to each other in

geography, then people living around the intersection of the exposure zones face greater

risks.

Kang et al. [2014] integrated the Value-at-Risk (VaR) framework in a model for the

routing of multiple hazmat types. The route was chosen based on the global VaR

calculation, and risk equity was met by setting a specific threshold for each zone. Romero

et al. [2016] developed a novel model, which applied the Gini coefficient, an index first

used to express the inequality in the wealth distribution of a nation’s residents. The

Gini-coefficient-based model seeks to attain risk equity in analysing hazmat facility

locations and routing decisions. With a given set of minimum risk routes and departure

times, Carotenuto et al. [2007b] proposed a model to minimize the total shipment delay,

while ensuring the risk equity. In that model, to achieve the latter goal, the authors

discouraged carriers from travelling too close to each other.

Despite the criticality of maintaining an equitable distribution of risk, risk equity

is a major concern for the government, but not the carrier. Therefore, it is usually

the government authority that poses the equity restrictions. The dominant power of

the authority over the carrier, and the interactions between the decisions of these two

parties, suggest the use of a bi-level programming model. That can actually reflect this

leader-follower situation. Details about the bi-level model and its application in the

hazmat transportation area (including the consideration of risk equity) are reviewed in

the following sections.
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2.3 Bi-level Programming Model

Rooted in the Stackelberg game [Von Stackelberg, 1934], a bi-level model can be used

to formulate the non-cooperative decision process of two decision makers. The leader

(upper level), the decision maker with the dominant power, is constrained by the behavior

of the follower, while the follower (lower level) can only find the best solution under the

feasible region defined by the leader. The general formulation of a bi-level programming

problem is:

min F(x, y), (2.9)

Subject to:

G(x, y) ≤ 0, (2.10)

x ∈ Rn1 , (2.11)

arg min
y

f (x, y), (2.12)

Subject to:

g(x, y) ≤ 0 (2.13)

y ∈ Rn2 . (2.14)

The variables of the above problem are classified as the upper level variables x ∈ Rn1

and the lower level variables y ∈ Rn2 . F : Rn1 × Rn2 → R and f : Rn1 × Rn2 → R are the

upper-level and lower-level objective functions, respectively. The vector-valued functions

G : Rn1 × Rn2 → Rm1 and g : Rn1 × Rn2 → Rm2 are respectively called the upper-level and

lower-level constraints. Rn1 is the feasible region of the upper level problem, and Rn2 is
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the feasible region of the lower level problem, given the upper level variables which have

already been worked out.

A bi-level model, even in a linear format, is hard to solve. Hansen et al. [1992] and

Vicente et al. [1996] have proved linear bi-level programs to be strongly NP-hard. Up to

now, several solution methods, such as extreme point approaches [Candler and Townsley,

1982], complementary pivoting [Bialas et al., 1980], KKT-based approaches [Kara and

Verter, 2004; Bianco et al., 2013], and duality-based methods [Marcotte et al., 2009], have

been developed to deal with linear bi-level models. Nevertheless, all these approaches

are not likely to work in our case, given the non-linear nature of our lower-level model.

Apart from the above methods, in the recent 20 years, a variety of metaheuristic

techniques have been proposed to solve bi-level models. Comparedwith other techniques,

the major strength of metaheuristics is that it can be applied to a model of any form.

For example, branch-and-bound and complementary pivoting can just solve linear

bi-level models. That is because only when the lower level is convex and regular, can

Karush-Kuhn-Tucker (KKT) conditions be applied to the lower level, and transform the

bi-level to a single-level model. Metaheuristics have no such limitations, and therefore

are a better choice for large and complex models.

Unlike exact methods, metaheuristics deal with problems by generating satisfactory

solutions in a reasonable time. Marinakis and Marinaki [2013] introduced a particle

swarm optimization algorithm for solving two supply chain management problems:

vehicle routing and location-routing problems. A tabu-search-based metaheuristic,

proposed by Aksen and Aras [2013], was used to deal with a facility location protection-

interdiction bi-level model. Arroyo and Fernández [2013] applied a genetic algorithm to

analyse the vulnerability of power systems under multiple contingencies.

In our research, a genetic-algorithm-based solution procedure is developed to search
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for the optimal solution to our bi-objective bi-level programmingmodel. Details regarding

this procedure are discussed in Chapter 4.

2.4 Bi-level Model Applications In Hazmat Transporta-

tion

In this section, we focus our review on the two most popular applications of bi-level

models in hazmat transportation, namely the network design (HTND) and toll setting

(TS) policies.

2.4.1 Hazmat Transportation Network Design (HTND)

Normally, the government does not have the authority to impose specific routes on

hazmat carriers. But it is possible for the government to close certain segments of roads

near highly-populated areas, so that the impact on the environment can be reduced. This

approach is called the network design policy.

Kara and Verter [2004] were the first to provide a bi-level programming formulation

for the hazmat transportation network design problem. Their approach differed from

previous papers because of its emphasis on the relationship between the government and

carriers in designing a road network for hazmat transportation. In the bi-level model,

the government chose the road segments to be closed to minimize the total risk, while

the carriers selected the path from the ’new’ network based on minimum cost. Kara and

Verter [2004] transformed the bi-level program into a single-level mixed integer program

by replacing the lower level problem with its KKT conditions. Erkut and Gzara [2008]

generalized themodel of Kara andVerter [2004] to the undirected case. Transport cost was
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added to analyse possible tradeoffs between risk and cost. This was the first bi-objective,

bi-level model in the network design literature. Bianco et al. [2009] introduced a linear

bi-level model with the regional government (leader) aiming to minimize the total risk,

while the local government (follower) wished to attain risk equity. Later, Gzara [2013]

provided a bi-level multi-commodity network flow model for hazmat transportation,

which was then solved by a cutting plane algorithm integrated with several valid cuts.

Although an HTND policy can effectively mitigate the system risk by preventing

hazmat shipments from passing through high-risk routes, several limitations make this

approach undesirable to hazmat carriers. First, HTND has been criticized as too rigid,

due to the ignorance of the carriers’ priorities. Second, road closure may cause a waste

of available infrastructure resources. Moreover, the policy may not lead to a rational

adjustment of the hazmat flows as planned [Marcotte et al., 2009]. Therefore, a more

advantageous policy, a toll setting policy, was proposed in the literature. Next we review

the studies in this domain.

2.4.2 Toll Pricing Control for Hazmats

The toll setting policy was originally used for the ordinary traffic control problem. Labbé

et al. [1998] proposed a bi-level model, where the government hoped to maximize their

profits gained by placing tolls on certain road segments, while the carriers wanted to

minimize their total transportation cost. Dial [1999] proposed a model for minimal-

revenue tolls in a network with a single origin. Then a fast algorithm was developed

to solve this model. Brotcorne et al. [2001] extended the work of Labbé et al. [1998]

to a multicommodity case, and a robust algorithm was proposed to solve toll setting

problems of significant size. Yildirim and Hearn [2005] introduced a general toll

pricing model, which could solve both elastic demand traffic assignment and combined
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distribution-assignment problems.

Although toll pricing has been well developed for regular traffic control, it is newly

proposed in the hazmat transportation field. The first toll setting policy (TS) for hazmat

was proposed by Marcotte et al. [2009] with a bi-level model. When tolls are imposed

on populated road segments, carriers are more willing to choose less-populated roads

based on economic considerations. In the upper level, an objective function is used to

integrate the population exposure with travel cost in deciding the toll policy.

Bianco et al. [2015] introduced a toll setting policy to mitigate the risk generated by

hazardousmaterial transportation. This bi-level model was amathematical programming

with equilibrium constraints (MPEC) problem, where the upper-level problem decided

the appropriate tolls to minimize both the total network risk and the maximum link

risk among the network links (i.e. ensuring risk equity). The lower level problem was

formulated as a Nash game among carriers to minimize the transportation cost (including

tolls).

The toll setting policy can also be used for other transportation modes. Assadipour

et al. [2016] proposed a bi-level bi-objective model to deter the hazmat carriers from

using certain terminals in a rail-truck intermodal network. A hybrid speed-constrained

multi-objective particle swarm metaheuristic was developed to solve this optimization

model.

Another group of studies within the toll-setting domain, dual toll pricing, considers

not only the hazmat shipments but also the congestion caused by the regular traffic, which

may result in a higher incident rate. Because of the direct connection to our research, we

provide a comprehensive review of this policy next.
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2.5 Dual Toll Pricing

Wang et al. [2012] introduced a single level dual toll pricing model with the motivation of

controlling both regular and hazmat traffic to mitigate the risk. Considering a duration-

population-frequency of hazmat exposure, their model incorporated a linear travel delay

function to measure risk. This new method can simultaneously control both regular and

hazmat flows. Esfandeh et al. [2016] formulated the dual toll problem as a bi-level model

with a non-linear travel delay function used by the U.S. Bureau of Public Roads. The

upper level minimized the total risk to find both regular and hazmat toll vectors, while

the lower level minimized the total cost of the regular vehicles and hazmat carriers. By

not ignoring carriersâĂŹ decisions, the bi-level structure made this model more realistic.

We consider our research problem to be an extension of the model proposed by

Esfandeh et al. [2016]. Major differences and improvements are addressed as follows.

First, at the upper level, apart from the total network risk, we also consider the risk equity

as another objective function. Thus, our model allows the local and regional governments

to work together and seek a more rational way of properly determining the values of tolls.

Second, at the lower level, rather than minimizing only the hazmat carriers’ cost, we

include the minimization of the transportation cost of the non-hazmat shipments as well.

That is because the regular carriers should also have the opportunity to decide their own

shipment flows according to the regular toll. Third, rather than only one hazmat carrier

with a single type of hazmat, our model allows multiple carriers who transport several

types of hazmat. Due to the distinct impacts on the environment, different toll values

can be computed through the proposed model. The details regarding our mathematical

model are presented in the next chapter.
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Chapter 3

Mathematical Model

This chapter contains a detailed description of the research problem (Section 3.1) and the

model structure (Section 3.2). Section 3.5 contains our mathematical formulation. This is

preceded by the model assumptions (Section 3.3) and a comprehensive list of notation

(Section 3.4).

3.1 Problem Definition

Consider a directed network G � (N, A), with a set of nodes N and a set of arcs A. Let

vi j be the regular traffic flow on arc (i, j), i.e., the number of vehicles running through

this arc. dw is the demand for O-D pair w in the set of O-D pairs for regular vehicles W ,

we have

vi j �
∑
w∈W

yw
i j , ∀(i, j) ∈ A,
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where ∑
j:(i, j)∈A

yw
i j −

∑
j:( j,i)∈A

yw
ji � bw

i , ∀i ∈ N ,∀(i, j) ∈ A;∀w ∈ W .

Note that bw
i � dw if node i is the origin of O-D pair w; bw

i � −dw if node i is the

destination of O-D pair w; and bw
i � 0, otherwise.

Let τi j be the toll charged to a regular vehicle on arc (i, j). We define the regular cost

as: ∑
(i, j)∈A

(αCi j(vi j)+ τi j)vi j ,

where Ci j is the travel time on arc (i, j), and α is the parameter converting time units

into transportation cost units as perceived by regular vehicles. According to Litman

[2012], who estimated the travel cost for a regular vehicle, α is $ 20.44/hr considering fuel,

maintenance and insurance cost. The travel time on each arc, given the flow, is defined

on the basis of the US Bureau of Public Roads (BPR) function, i.e.,

Ci j(vi j) � C0
i j

(
1+ 0.15

( vi j

li j

)4)
, (3.1)

where C0
i j and li j denote the free travel time and the capacity of arc (i, j), respectively.

Note that usually in a road network, the hazmat flow is relatively small compared to the

regular flow, and thus it is ignored in this function.

Similarly for the hazmat flow, let S(m, h) be the set of hazmat shipments of carrier m

with hazmat type h, ns the number of trucks for hazmat shipment s ∈ S(m, h). xs
i j is a

binary routing variable indicating whether the shipment s is on arc (i, j). We have∑
j:(i, j)∈A

xs
i j −

∑
j:( j,i)∈A

xs
ji � e s

i , ∀i ∈ N ,∀(i, j) ∈ A;∀s ∈ S(m, h),

20



where e s
i � 1 if node i is the origin of the O-D pair on which shipment s is transported;

e s
i � −1 if node i is the destination of that shipment; and e s

i � 0, otherwise.

Suppose ti j is the toll charged to a hazmat vehicle on arc (i, j). We define the

transportation cost for hazmat shipments as:∑
s∈S(m,h)

∑
(i, j)∈A

(
βCi j(vi j)+ ti j

)
ns xs

i j ,

where parameter β converts time units into transportation cost units of hazmat vehicles.

Park et al. [2014] estimate β to be $ 24.44/hr, assuming the same cost factors as Litman

[2012].

Now consider the risk on arc (i, j). From Table 2.1, as in Batta and Chiu [1988], that

can be formulated as: ∑
s∈S(m,h)

Ci j(vi j)ρh
i jx

s
i j n

s ,

where ρh
i j is the number of people exposed on arc (i, j)when a hazmat incident occurs.

To ensure the equity of the spatial distribution of risk, one of our objectives is to minimize

the maximum risk on any link. The upper level problem can be written as

minΛ,

subject to: ∑
s∈S(m,h)

Ci j(vi j)ρi jxs
i jn

s ≤ Λ, ∀(i, j) ∈ A.

It should be kept in mind that there are multiple valid tolls, hence we add another term

to the above objective function to choose the set of tolls with the minimum total value.
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Therefore, this objective function can be rewritten as:

min
ti j ,τi j
Λ+ η

∑
(i, j)∈A

(
ti j + τi j

)
,

where the constant η converts the total toll cost to the risk. Note that the value of this

constant should be small (0 ≤ η ≤ 1), such that the toll term does not overly impact the

final solution of the risk.

Similarly, considering all arcs on the network, the total risk is:∑
(i, j)∈A

∑
s∈S(m,h)

Ci j(vi j)ρh
i jx

s
i jn

s .

Taking into account the total toll value, the objective function for the total risk can be

expressed as:

min
ti j ,τi j

∑
(i, j)∈A

∑
s∈S(m,h)

Ci j(vi j)ρh
i jx

s
i jn

s
+ η

∑
(i, j)∈A

(
ti j + τi j

)
,

3.2 Model Structure

Figure 3.1 depicts the bi-level structure of the proposed model. As shown, three distinct

parties are considered: the regional/local government, the non-hazmat travelers and

the hazmat carriers (various carriers shipping multiple hazmats). Note that in the upper

level, we combine the two levels of government because they need to work with each

other to make the decision of setting the tolls, despite their differences in objectives.

(The trade-off between these two objectives is a major analysis in our research.) Then

in light of the tolls posed by the government, the non-hazmat travelers and hazmat

carriers determine their own corresponding shipping flows, aiming to minimize the total
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transportation cost. These flows, in turn, influence the government’s decisions.

Minimize the total transportation cost
Determining the hazmat flows 

based on 
the hazmat tolls

Hazmat Carriers

Minimize the total network risk / Minimize the maximum link risk
Determining the regular tolls and the hazmat tolls 

        based on 
the regular flows and the hazmat flows

Regional/Local Government

Minimize the total transportation cost
Determining the regular flows 

based on 
the regular tolls

Non-Hazmat Travelers 

Figure 3.1: Bi-level Structure

3.3 Assumptions

Three assumptions pertain to our model:

1) The flow of hazmat traffic is negligible compared to the number of regular vehicles.

As a result, we can say hazmat traffic has no influence on congestion;

2) We assume all involved parties have perfect information about the current status of

the network and the cost structure of other parties;

3) We consider a deterministic model, i.e. there is no uncertainty in the network

parameters, the travel cost and the behaviors of users;

4) The competition between different hazmat carriers is ignored.
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3.4 Notation

In this section, we introduce the notation employed in our research.

Sets

N : set of nodes, indexed by i and j.

A: set of arcs.

W : set of O-D pairs for regular vehicles, whose elements are indicated by w.

M: set of hazmat carriers, indicated by m ∈ M.

H: set of hazmat types, h ∈ H.

S(m, h): set of hazmat shipments for carrier m and hazmat type h, whose typical

element is s.

Variables

τi j : toll charged to regular vehicles on arc (i, j).
yw

i j : flow of regular vehicles on arc (i, j) for O-D pair w.

vi j : total traffic of regular vehicles on arc (i, j).
th

i j : toll charged to vehicles transporting hazmat type h on arc (i, j).
xs

i j : 1, if arc (i, j) is used for shipment s; 0, otherwise.

Parameters

dw : demand of regular vehicles for O-D pair w.

ns : number of trucks for hazmat shipment s.

Ci j : a nonnegative arc travel time for each arc (i, j) ∈ A.

ρh
i j : number of people exposed on arc (i, j) when an accident of hazmat type h

occurs.
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α: a parameter converting time units into transportation cost units perceived

by regular vehicles.

β: a parameter converting time units into transportation cost units perceived

by hazmat trucks.

η: coefficient of the overall sum of tolls.

%: maximum value of regular toll on any arc.

π: maximum value of hazmat toll on any arc.

3.5 Mathematical Formulation

The upper level model [UL] is:

min
th

i j ,τi j

∑
s∈S(m,h)

∑
(i, j)∈A

Ci j(vi j)ρh
i jx

s
i jn

s
+ η

∑
(i, j)∈A

( ∑
h∈H

th
i j + τi j

)
, (3.2)

min
th

i j ,τi j

Λ+ η
∑
(i, j)∈A

( ∑
h∈H

th
i j + τi j

)
(3.3)

Subject to: ∑
s∈S(m,h)

Ci j(vi j)ρh
i j x

s
i j n

s ≤ Λ,∀(i, j) ∈ A, (3.4)

τi j ≤ %,∀(i, j) ∈ A, (3.5)

th
i j ≤ π,∀(i, j) ∈ A,∀h ∈ H, (3.6)
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The lower level model [LL] is:

arg min
vi j ,xi j

∑
(i, j)∈A

(
αCi j(vi j)+ τi j

)
vi j +

∑
s∈S(m,h)

∑
(i, j)∈A

(
βCi j(vi j)+ th

i j

)
ns xs

i j (3.7)

Subject to:

vi j �
∑
w∈W

yw
i j , ∀(i, j) ∈ A, (3.8)

∑
j:(i, j)∈A

yw
i j −

∑
j:( j,i)∈A

yw
ji � bw

i , ∀i ∈ N ,∀(i, j) ∈ A;∀w ∈ W , (3.9)

∑
j:(i, j)∈A

xs
i j −

∑
j:( j,i)∈A

xs
ji � e s

i , ∀i ∈ N ,∀(i, j) ∈ A;∀s ∈ S(m, h), (3.10)

vi j inte ger, ∀(i, j) ∈ A, (3.11)

xs
i j ∈ 0, 1, ∀(i, j) ∈ A;∀s ∈ S(m, h). (3.12)

This is a bi-level model. In the upper level model [UL], two objective functions

are mentioned: Objective (3.2) minimizes the total network risks, and objective (3.3)

minimizes the maximum link risk. In other words, objective (3.3) ensures risk equity.

Note that an additional term, the total toll costs, is added to both objectives. Asmentioned,

there can be multiple valid tolls, and we want to choose tolls with minimum value. The

coefficient, η, is associated with the total-toll-cost terms. As explained in Section 3.1,

constraint (3.4) plus objective (3.3) enable proper calculation of risk equity.

In the lower level model [LL], objective (3.7) minimizes the total transportation

costs, including the costs for both regular and hazmat shipments. It will be important,
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later, to note that the second portion of the lower level objective (3.7), i.e., the hazmat

transportation cost, is non-convex. Constraints (3.8) to (3.10) ensure the flow balance of

the network.

Due to the non-linear and bi-level nature of this formulation, no pre-designed

optimization algorithm is workable. Therefore, we propose a solution procedure in the

next chapter based on a metaheuristic to resolve this issue.
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Chapter 4

Solution Methods

The major complications in solving our model lie in two aspects: 1) it is difficult to find

the optimal solution for a bi-level model, and 2) the lower level objective function contains

non-linear terms. Normally, it is hard to solve bi-level models because of the challenge in

calculating the upper level objective function and the interaction between the problems

at each level. In this research, we present a genetic-algorithm based solution procedure

to generate optimal solutions. Two different methods, a piecewise linearization approach

[Wang et al., 2012] and the Frank-Wolfe algorithm [Frank and Wolfe, 1956], will each be

applied to our lower level problem. These processes are discussed in detail next.

4.1 Genetic Algorithm (GA)

The genetic algorithm is a metaheuristic method motivated by the process of natural

selection. Based on the assumption that better parents usually generate better offspring,

candidate solutions, representedby chromosomes, evolve through crossover andmutation
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Algorithm 4.1 Genetic Algorithm for bi-level model
define chromosomes respectively for regular and hazmat shipments on each arc
calculate fitness value (upper-level objective function)

substitute the value of toll vectors into lower level
use linearization approach or the Frank-Wolfe algorithm to find regular and

hazmat flow
substitute network flow into upper level and calculate objective function

while (i ≤ Maximum Generation) and ( j ≤ Maximum consecutive times) do
use roulette wheel selection to select parents
two-point crossover
one-point mutation
calculate fitness value of resulting children with linearization approach or the
Frank-Wolfe algorithm
compare the fitness value of resulting children with the population pool, and the
inferior solutions are discarded.
return toll vectors for regular travelers and hazmat carriers

toward better solutions to an optimization model. Among all metaheuristics, GA is

regarded as a practical approach for three reasons. First, it is easy to understand and

apply to a model. Second, with an intrinsically parallel searching scheme, near-global

optimal solutions can be found in a reasonable time. Third, a genetic algorithm is more

likely to find a global optimal solution because of its large starting population and proper

selection mechanism. The flowchart in Figure 4.1 shows the general procedure of a GA,

and Algorithm 4.1 describes how GA is applied in our case. In the following sections, we

provide detailed explanations of the major steps in this algorithm.

4.1.1 Encoding and Decoding

In GA, a chromosome, consisting of a set of values, represents a feasible solution.

Considering the nature of our problem, we define the chromosomes respectively for the

regular and hazmat shipments on each arc (Figure 4.2). The value of each gene is the toll
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Figure 4.1: Genetic algorithm

value for the corresponding arc, and the length of the chromosome is the number of arcs

in the existing network.

Figure 4.2: Chromosomes
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4.1.2 Selection

Roulette wheel selection is implemented to choose parents for generating children. Each

chromosome is assigned to a slice of the wheel, and the size of that slice depends on

its fitness value. By doing so, a chromosome that is more fit has a greater chance to be

selected than one that is less fit. The procedure is presented as follows:

1. Calculate the total fitness value: sum the fitness values for all chromosomes in the

selected population, and let the total fitness value be T.

2. Calculate the cumulative probability: given that the probability of chromosome i is

equal to its fitness value divided by T, sum the first i probabilities for chromosome i.

3. Repeat N times (N is the number of chromosomes to be selected)

1). randomly generate a number r between 0 and 1.

2). compare r and the cumulative probability. Select that chromosome whose

cumulative probability is the first one larger than r.

4.1.3 Crossover

The crossover operator is used to generate offsprings from the selected parents. In our

model, we employ a two-point crossover. First, we randomly generate a number between

0 and 1. [That is, from the uniform distribution on the interval (0, 1).] If this random

number is smaller than the crossover rate γ, a crossover is performed; otherwise, we

keep the original genes of the parents. (The effect of different crossover rates is analyzed

in the next chapter. Based on that analysis, a crossover rate of 0.8 is used in the solution

procedure.)
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To actually conduct the crossover, an additional two random numbers are generated,

to indicate the starting and ending position of the crossover. (These discrete random

numbers are uniformly distributed over the interval (1, |A|), where |A| is the cardinality of

the set A of all arcs in the network.) Every gene between these two positions is swapped,

while all other genes stay the same. The resulting chromosomes are the offsprings. Figure

4.3 gives a sample illustration, where the discrete uniform random numbers were 4 and 6.

Figure 4.3: Crossovers

4.1.4 Mutation

Mutation is important in maintaining diversity from one generation to the next, and thus

is necessary to escape from local optima. In this research, we implement a one-point
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mutation with a mutation rate of ζ � 0.03. This value is tested in the next chapter.

A random number is generated between 0 and 1 for each chromosome. If this random

number is less than ζ, we perform mutation; otherwise, we do nothing. In the case

of mutation, the position of the mutated gene is also randomly generated; the value

after mutation can be a random integer within the feasible range of the tolls. A sample

mutation is given in Figure 4.4, for the simple case in which the tolls can range between 0

and 50.

Figure 4.4: Mutation

4.1.5 Fitness Value

In solving our bi-level model, the fitness value refers to the objective function value at

the upper level. Given the bi-objective nature of the proposed model, we employ the

weighted summethod to integrate the two objectives to a single objective. The application

of weights is the most commonly used approach in bi-objective optimization, due to the

simplicity in examining the trade-offs between the two objectives. Hence, the weights

corresponding to the total risk and the risk equity are varied later in the next chapter.

That will reveal the relationships between those two objectives, and how they impact the

network flows and the dual toll policy.
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In this research, the fitness evaluation connects the upper and lower levels. In

particular, the chromosomes containing toll information are treated as known parameters

and passed to the lower level model. Solution of the latter yields the optimal flows, for

both regular and hazmat shipments, on each arc. Those flows are then used to calculate

the weighted objective function for fitness evaluation.

Note that the non-linear terms in the lower level objective function cause additional

difficulty in optimization. We therefore adopt a piece-wise linearization method or the

Frank-Wolfe algorithm to resolve this complication.

4.1.6 Termination

Two stopping criteria are considered in our algorithm:

1) number of generations, and

2) number of iterations without convergence

These two rules are tested in the next chapter to show the impact on the rate of

convergence.

4.2 Piecewise Linearization (PL)

Recall that the hazmat transportation cost portion of Eq. (3.7) is a non-convex function.

This makes the lower level model a non-convex problem, and complicates its optimization.

In this section, we show in detail how the regular and hazmat cost functions can be

linearized. The linearization procedure is adapted fromWang and Lo [2010] with certain

modifications.
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4.2.1 Regular Flow

First, let us recall the cost to regular traffic users in the lower level model:

Πv �

∑
(i, j)∈A

(αCi j(vi j)+ τi j)vi j , (4.1)

where Ci j(vi j) � C0
i j

(
1+ 0.15

( vi j

li j

)4)
.

For illustrative purposes and notational simplicity, let Aa � C0
a and Ba � 0.15C0

a/(la)4

where a ∈ A denotes arc (i, j). We consider the BPR travel time function expressed as:

Ca(va) � Aa + Ba(va)4, (4.2)

where va denotes the traffic volume on each arc a ∈ A. va is the only decision variable.

Next, we represent this link travel time function as a piecewise-linear function.

Let the feasible domain of va (i.e. [0, va]) be partitioned into N segments. For each

arc a, we choose a series of values of Ka,n to partition the feasible domain of va into a

number of small regions, where 0 < Ka,n ≤ va < Ka,n+1 < va for n � 1, ..., N − 1. It is easy

to see that, the smaller the region, the more precise will be the results.

However, we also take computation time into consideration. If the region is too small,

the timewill bemuch longer. Letting Fa(va) � (αCa(va)+ τa)va � (α(Aa +Ba(va)4)+ τa)va ,

we can specify a linear function to approximate Fa(va)within a given region, i.e.,

Fa(va) ≈ µa
nva + ν

a
n , if Ka,n ≤ va < Ka,n+1, (4.3)

with µa
n and νa

n denoting the parameters of the linear function. To find those parameters,
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we use a first-order Taylor expansion of Fa(va). That is, when Ka,n ≤ va < Ka,n+1,

parameters µa
n and νa

n can be approximated by the partial derivatives of Fa(va) with

respect to va evaluated at Ka,n , as follows:

µa
n �

∂Fa

∂va

�����
Ka,n

� 5αBa(Ka,n)4 + (αAa + τa), and thus (4.4)

νa
n ≈ Fa(Ka,n) − Ka,n

∂Fa

∂va

�����
Ka,n

� −4αBa(Ka,n)5. (4.5)

It is easy to see that, once we fix the region in which va falls, µa
n and νa

n become known

parameters. Eq. (4.3) then becomes a linear function in va . Replacing Eq. (4.3) in Eq.

(4.1), the latter is now transformed to a linear form:∑
a∈A

(µa
n va + ν

a
n). (4.6)

To account for this linear approximation of Fa(va), and the preceding non-convexity, the

following constraints must be added to the original model.

Lδa,n ≤ va − Ka,n ≤ U(1− δa,n) − ε, ∀a,∀n, (4.7)

γa,n � δa,n+1 − δa,n , ∀a,∀n, (4.8)

L(1− γa,n) ≤ Fa − (µa
nva + ν

a
n) ≤ U(1− γa,n), ∀a,∀n, (4.9)

δa,n , γa,n ∈ {0, 1}, ∀a,∀n, (4.10)

Fa ≥ 0, ∀a, (4.11)

n � 1, ..., N , (4.12)

a ∈ A, (4.13)
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s ∈ S. (4.14)

In the above constraints, L and U represent very large negative and very large positive

constants, respectively, and ε is a very small positive constant. δa,n denotes a binary

variable indicating whether va is greater than Ka,n or not: va ∈ [Ka,n ,∞) if δa,n = 0; va ∈
[0, Ka,n) otherwise; this can be verified by Eq. (4.7). Another binary variable γa,n , defined

as the difference between δa,n and δa,n+1, determines whether va falls in the segment

[Ka,n , Ka,n+1) or not: in other words, γa,n expresses the two conditions wherein δa,n = 0

and δa,n+1 = 1, implying that va ∈ [Ka,n , Ka,n+1). For the other possible combinations of

δa,n andδa,n+1, we have γa,n which represents the situation va < [Ka,n , Ka,n+1].

Suppose va lies in the region [n]. Substituting γa,n � 1 into Eq. (4.9), we have:

0 ≤ Fa − (µa
n va + ν

a
n) ≤ 0⇔ Fa � (µa

n va + ν
a
n). (4.15)

Therefore, the optimization model for the regular flow can be linearized as:

minΠv �

∑
a∈A

Fa(va)

Subject to: v ∈ V , and Eqs. (4.3) to (4.5) and (4.7) to (4.14).

4.2.2 Hazmat Flow

The non-linear objective function for hazmat flow is:

Πx �

∑
s∈S(m,h)

∑
(i, j)∈A

(βCi j(vi j)+ th
i j)x

s
i j n

s . (4.16)
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The linearization approach consists of two steps. The first step is to linearize the traffic-

time function; that function and its linearization are exactly the same as for the regular

flow.

Let Ga(va) � βCi j(vi j)+ th
i j . Just as in Eq. (4.3) for the regular flow, we can specify a

linear function to approximate Ga(va)within each region. That is,

Ga(va) ≈ κa
n va + ω

a
n , (4.17)

if Ka,n ≤ va < Ka,n+1, where κa
n and ωa,h

n denote the parameters of that linear function.

Then, we have

κa
n �

∂Ga

∂va

�����
Ka,n

� 4βBa(Ka,n)3, and (4.18)

ωah
n � Ga(va) − Ka,n

∂Ga

∂va

�����
Ka,n

� (βAa + th
a ) − 3βBa(Ka,n)4. (4.19)

Substituting Eq. (4.17) in Eq. (4.16), the cost function to be minimized is transformed

to the following: ∑
s∈S(m,h)

∑
a∈A

(κa
nva + ω

ah
n )xs

a ns . (4.20)

In addition, let us introduce a new variable Ga(va , xs
a), for all arcs a ∈ A and shipments

s ∈ S(m, h). That new variable denotes the travel time on arc a, incorporating the

decisions of both types of traffic. Specifically:

Ga(va , xs
a) � κa

nva xs
a + ω

ah
n xs

a , if Ka,n ≤ va < Ka,n+1. (4.21)
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Note that Eq. (4.21) is the extended form of Ga(va , xs
a) � Ga(va)xs

a with Ga(va) replaced
by its linear-function approximation. When arc a is used by hazmat shipment s, i.e., xs

a

= 1, Ga(va , xs
a) equals the arc travel time, κa

n va + ωah
n ; otherwise, with xs

a = 0, and any

regular traffic flow va , Ga(va , xs
a) equals 0.

To account for this linear approximation of Ga(va), the following constraints must be

added to the original model.

Lδa,n ≤ va − Ka,n ≤ U(1− δa,n) − ε, ∀a,∀n, (4.22)

γa,n � δa,n+1 − δa,n , ∀a,∀n, (4.23)

L(1− γa,n) ≤ Ga − (κa
nva xs

a + ω
ah
n xs

a), ∀a, n, s, (4.24)

Ga − (κa
n va xs

a + ω
ah
n xs

a) ≤ U(1− γa,n), ∀a, n, s,

Ga ≥ 0, ∀a, (4.25)

In the above constraints, L, U, ε, δa,n and γ share the same meanings as in the regular

flow linearization.

When va is in the region [Ka,n , Ka,n+1), substituting γa,n � 1 into Eq. (4.24), we have:

0 ≤ Ga − (κa
n va xs

a + ω
ah
n xs

a) ≤ 0. (4.26)

which produces the required simultaneous results in Eq. (4.21). From Eq. (4.20), it

is easy to find that, although we have linearized the travel time function Ca(va), the
transformation of the objective function in Eq. (4.20) still contains bilinear terms, yielding

a mixed-integer bilinear program (BLP). Every bilinear term involves the product of a

nonnegative integer variable va and a binary variable xs
a .

For each arc a, we define a new integer variable ps
a , which is represented by the
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product of va and xs
a . It will replace the bilinear terms in Eq. (4.20), with the addition of

some constraints. Specifically:

{ps
a : ps

a � vaxs
a , va ≤ v̄a , xs

a ≤ 1, ∀a ∈ A,∀s ∈ S(m, h)}. (4.27)

The following constraints need to be added to the model.

ps
a ≤ v̄a xs

a , ∀s,∀a, (4.28)

ps
a ≤ va , ∀s,∀a, (4.29)

ps
a ≥ va + v̄a xs

a − v̄a , ∀s,∀a, (4.30)

ps
a ≥ 0, ∀s,∀a. (4.31)

Now, replacing the bilinear term in Eqs. (4.20) and (4.24) with its equivalent continuous

variable ps
a , the non-linearity of the problem is finally removed. The optimization model

for the hazmat flow is thus linearized as:

minΠx �

∑
a∈A

∑
s∈S(m,h)

nsGa(va , xs
a)

Subject to:

Eqs. (4.17) to (4.19), and (4.22) to (4.31).

4.3 Frank-Wolfe Algorithm (FW)

Although the above piecewise linearization approach can solve this non-convex lower

level problem, a longer computational time will be needed. For example, in a 15-node
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network, when the feasible domain is divided into 100 segements, the computation time

is 89,520 seconds. In a 24-node network, even though the partition scheme involves only

10 intervals, no optimal solution could be found within the time limit of 172,800 seconds.

(Details about the computation time in the case of piecewise linearization will be shown

in Section 5.4.) Therefore, it is unrealistic to apply piecewise linearization to a large-scale,

real-world situation. Thus, we suggest an alternative method, the Frank-Wolfe algorithm,

which was proposed by Frank and Wolfe [1956]. Detailed comparison of the piecewise

linearization approach and the Frank-Wolfe algorithm will be discussed in Section 5.4.

The Frank-Wolfe algorithm was presented in 1956 to apply to quadratic programming,

and then was extended to be used in many different areas. For example, Wang and

Qian [2016] used this algorithm to solve a biological network problem. Meng et al.

[2008] implemented the Frank-Wolfe algorithm for a traffic assignment problem. FW is a

popular method for large-scale network problems because of its simple implementation

and fast computation time.

Although the FrankWolfe algorithm canmagnificently improve our computation time,

there still exist two problems. First, we cannot guarantee that this algorithm can find the

global optimal solution for our problem because it is designed for convex optimization

problems. In other words, this iterative first-order optimization algorithm may not yield

the optimal solution for our non-convex problem. In Section 5.3, we will compare the

quality of solutions from the Frank-Wolfe algorithm and the piecewise linearization

approach, and show that the approximate solutionsweget from the Frank-Wolfe algorithm

are efficient for our lower level problem.

Second, our model involves both integer and binary variables, and it is difficult for the

Frank-Wolfe algorithm to deal with both types of variables at the same time. Therefore,

we initially relax the binary constraints, and get an approximate solution to our lower
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level problem with the Frank-Wolfe algorithm. Then, a post iteration is applied to this

approximate solution. Details will be discussed in the following.

Now recall the objective function of our lower level problem (3.7):

min
v∈V ,x∈X

z(v, x) �
∑
(i, j)∈A

(
αCi j(vi j)+ τi j

)
vi j +

∑
s∈S(m,h)

∑
(i, j)∈A

(
βCi j(vi j)+ th

i j

)
ns xs

i j ,

where Ci j(vi j) � Ai j + Bi j(vi j)4.

The objective function (3.7) can be replaced by its first-order Taylor-series approxima-

tion at any random point(v̂, x̂) (a feasible solution of problem (3.7)):

z(v, x) ≈ z(v̂, x̂)+ ∂z
∂v
(v̂, x̂)(v − v̂)+ ∂z

∂x
(v̂, x̂)(x − x̂)+ . . . ,

Since z(v̂, x̂), ∂z
∂v (v̂, x̂)v̂ and ∂z

∂x (v̂, x̂)x̂ are constant terms, we can ignore them when

minimizing the objective function. vi j is subject to constraints (3.8), (3.9), and its

objective function is min
v∈V

vT ∂z(vk , xk)
∂v

, while xs
i j is subject to constraints (3.10), and the

corresponding objective function is min
x∈X

xT ∂z(vk , xk)
∂x

. Hence, this minimization problem

for the Frank-Wolfe algorithm can be rewritten as two separate linear problems, for

regular flow and hazmat flow.

For the regular flow (vi j) part of the lower level model [LL], we have:

min
v∈V

∑
(i, j)∈A

(αAi j + τi j + 5αBi j(vk
i j)

4)vi j +
∑

s∈S(m,h)

∑
(i, j)∈A

4βBi j xsk
i j (v

k
i j)

3vi j , (4.32)

Subject to:

Eqs. (3.8) and (3.9).
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For the hazmat flow (xs
i j) portion of [LL], we must solve:

min
x∈X

∑
s∈S(m,h)

∑
(i, j)∈A

(
βAi j + th

i j + βBi j(vk
i j)

4ns xs
i j), (4.33)

Subject to:

Eqs. (3.10),

where (vk , xk) denotes the solution of z(v, x) at iteration k.

Now, we state the steps of the Frank-Wolfe algorithm for solution of the nonlinear

model [LL].

Step 0: Begin with a feasible solution of problem (3.7). Here (vk , xk) represents our
starting point, and set k to 0 at first;

Step 1: Let mk and nk denote the solutions to problem (4.32) and problem (4.33),

respectively;

Step 2: Search directions: for regular flow, dk
v � mk − vk ; for hazmat flow, dk

x � nk − xk ;

Step 3: Substitute (vk + ωk dk
v , xk + ωk dk

x) into problem (3.7) to obtain the step size ωk .

Since this is a one-dimensional problem, a search algorithm, such as the golden section,

can be used to solve it.

min z(vk
+ ωk dk

v , xk
+ ωk dk

x)

Subject to:

0 ≤ ωk ≤ 1.

Then we set,

vk+1
� vk

+ ωk dk
v ,

xk+1
� xk

+ ωk dk
x .
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Step 4: Terminate if

��z(vk+1, xk+1) − z(vk , xk)
�� /z(vk , xk) ≤ χ,

where χ is set to be 0.0001 in our model. Otherwise, increase k by one. Replace (vk , xk)
with the new solution (vk+1, xk+1), and go to Step 1.

We set ṽ ∈ V and x̃ ∈ X to denote the approximate solution to [LL] after using the

Frank-Wolfe algorithm. Then we apply the post-iteration to (ṽ, x̃), as follows:

ṽ l+1
� ar g min

v∈V
z(v, x̃ l), (4.34)

x̃ l+1
� ar g min

x∈X
z(ṽ l+1, x). (4.35)

This continues until convergence. We begin with an initial solution x̃ l � x̃ when l � 0,

and the objective function for regular flow problem (4.34) is:

min
v∈V

∑
(i, j)∈A

(αAi j + αBi j(vi j)4 + τi j)vi j +
∑

s∈S(m,h)

∑
(i, j)∈A

βBi j(vi j)4ns x̃s
i j . (4.36)

Obviously, this is a typical convex traffic assignment problem with only regular flow

variables, which can be easily solved by the Frank-Wolfe algorithm. Detailed procedures

are now stated:

First, we solve problem (4.36) to get the regular flow.

Step 0: Select ṽ l as the starting feasible solution for (4.36). l denotes the number of the

iteration, and when l � 0, ṽ l � ṽ ;
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Step 1: For the regular flow, the first-order Taylor approximation at ṽ l would be:

min
v∈V

r(v) � min
v∈V

∑
(i, j)∈A

(αAi j +5αBi j(ṽ l)4 + τi j)vi j +
∑

s∈S(m,h)

∑
(i, j)∈A

4βBi j(ṽ l)3ns x̃s
i jvi j . (4.37)

Let p̃ l denote the solution to problem (4.37);

Step 2: Search direction:

d l
� p̃ l − ṽ l ;

Step 3: Step size λl is obtained by solving the following one dimensional problem at

each iteration.

min r(ṽ l
+ λld l)

Subject to:

0 ≤ λl ≤ 1.

Then we set,

ṽ l+1
� ṽ l

+ λl d l ;

After the first three steps, we find the regular flow, then we substitute ṽ l+1 into Eq.

(4.35) to get the hazmat flow.

Step 4: Now, 4.35 can be rewritten as:

min
x∈X

∑
s∈S(m,h)

∑
(i, j)∈A

βBi j(ṽ l+1
i j )

4ns xs
i j . (4.38)

This is a shortest path problem, and can be easily solved by the Dĳkstra algorithm. Let

x̃(l+1) denote the solution;
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Step 5: Terminate, if

��z(ṽ l+1, x̃ l+1 − z(ṽ l , x̃ l)
�� /z(ṽ l , x̃ l) ≤ χ, (4.39)

where χ is set to 0.0001 as before. Otherwise, increase l by one and choose (ṽ l+1, x̃ l+1) as
the starting point. Return to Step 1.
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Chapter 5

Computational Results

The performance of the proposed solution methods is now evaluated. The suggested

algorithms are coded in Python 2.7, and tested on a computer with an i-5 Quad Core

processor running at 2.6 GHz and 8 GB of memory. The analyses are organized into five

sections: performance illustration, partition scheme analysis, variation of the maximum

toll value, trade-off analysis and convergence analysis. Several cases (Table 5.1), based

on three networks, with 8 nodes, 15 nodes and 24 nodes, are carried out in this chapter.

Both the 8-node and 15-node examples are exactly the same networks used by Esfandeh

et al. [2016]. The 24-node network, proposed by Suwansirikul et al. [1987], is based

on the roads of the city of Sioux Fall, South Dakota. The same network parameters,

such as the link capacity and free-flow travel time, are used as input parameters for the

BPR travel time function. The regular demands for each origin and destination (OD)

pair are also taken into consideration, as displayed by Suwansirikul et al. [1987] and

Esfandeh et al. [2016]. There is no reliable record about multi-hazmat-type shipments for

the proposed network models. Thus, inspired by Esfandeh et al. [2016], we randomly

generate the origin and destination nodes and the demands for each hazmat shipment.
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The population exposure to different hazmats along each link (i, j) is generated based on

the data from the respective Census site. Further details on those 8-node, 15-node and

24-node networks can be found in Appendix A.

For the 8-node and 15-node instances, we solve the lower level problemwith piecewise

linearization. Recall that this approach guarantees the global optimum, and here the

computing time is reasonable. For the 24-node network, however, the Frank-Wolfe

algorithm is used because of its higher efficiency in calculation.

Table 5.1: List of Cases
Case

Number # Nodes # Arcs # regular
demands

Hazmat Shipments
#

hazmat
demands

#
hazmat
types

#
carrier
types

8-1 8 13 6 2 1 1
8-2 12 4 2 1
8-3 27 6 2 2
8-4 27 15 2 2
15-1 15 28 6 2 1 1
15-2 12 4 2 1
15-3 27 6 2 2
15-4 54 6 2 2
24-1 24 76 5 2 1 1
24-2 10 4 2 1
24-3 25 6 2 2
24-4 50 8 2 2
24-5 100 10 2 2
24-6 200 12 2 2
24-7 552 20 3 2
In this table, the notation N-b indicates case b of an N-node network.
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5.1 Performance Illustration

In order to analyze the effectiveness of the dual-toll policy, we calculate the total risk,

equity, regular travel and hazmat travel delay time for the no-toll case. Let vno−toll
i j and

xs(m,h)no−toll
i j denote the regular and hazmat flow under the no-toll case. First, we solve

the following problem:

min
vi j ,xi j

∑
(i, j)∈A

αCi j(vi j)vi j +
∑

s(m,h)∈S(m,h)

∑
(i, j)∈A

βCi j(vi j)ns(m,h)xs(m,h)
i j ,

with piecewise linearization or the Frank-Wolfe algorithm, to get vno−toll
i j and xs(m,h)no−toll

i j .

Hence, under the no-toll scenario, the performance of the network is indicated by the

following metrics:

r(vno−toll , xno−toll) �
∑

s(m,h)∈S(m,h)

∑
(i, j)∈A

Ci j(vno−toll
i j )ρh

i jx
s(m,h)no−toll
i j ns(m,h), (5.1)

e(vno−toll , xno−toll) � max
(i, j)∈A

∑
s(m,h)∈S(m,h)

Ci j(vno−toll
i j )ρh

i j x
s(m,h)no−toll
i j ns(m,h), (5.2)

Dr(vno−toll) �
∑
(i, j)∈A

Ci j(vno−toll
i j )(vno−toll

i j ), (5.3)

Dh(vno−toll , xno−toll) �
∑

s(m,h)∈S(m,h)

∑
(i, j)∈A

Ci j(vno−toll
i j )ns(m,h)xs(m,h)no−toll

i j , (5.4)

where r, e, Dr and Dh represent the total risk, equity, regular traffic delay and hazmat

traffic delay.

Let (v∗, x∗) denote the optimum flow under the dual toll case; its corresponding best

toll vectors (τ∗, t∗) are obtained from the genetic algorithm. To compare the dual-tolled

network with one without tolls, the changes in equity, risk, regular traffic delay and
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hazmat traffic delay are calculated by the following procedures:

% Change in Equity = e(v∗, x∗) − e(vno−toll , xno−toll)
e(vno−toll , xno−toll)

× 100,

% Change in Total Risk = r(v∗, x∗) − r(vno−toll , xno−toll)
r(vno−toll , xno−toll)

× 100,

% Change in Regular Traffic Delay = Dr(v∗) −Dr(vno−toll)
Dr(vno−toll)

× 100,

% Change in Hazmat Shipment Delay = Dh(v∗, x∗) −Dh(vno−toll , xno−toll)
Dh(vno−toll , xno−toll)

× 100.

In addition, for the dual toll case, the average toll costs for both regular drivers and

hazmat carriers are also calculated:

Average Toll Cost (regular) =

∑
(i, j)∈A τ

∗
i j v
∗
i j∑

w∈W dw ,

Average Toll Cost (hazmat) =

∑
s(m,h)∈S(m,h)

∑
(i, j)∈A ns t∗i j x

s(m,h)∗
i j∑

s(m,h)∈S(m,h) ns .

Results of the comparison between the dual-toll and no-toll networks for Cases 8-1

to 24-7 are summarized in Table 5.2. Please note that some average toll costs are larger

than the pre-determined maximum toll value for each arc ($200). This is because the

averaging over toll cost is done in terms of demand, rather than over the arcs. As most

demand may pass through more than one arc, the corresponding toll payment may thus

exceed the maximum arc toll value. For example, in Case 8-3, the total regular flow vector

under the toll policy is 8,039, while the total demand is only 3,450. Hence the computed

average toll cost for the regular flow is $204.57, slightly higher than $200.

From Table 5.2, it is clear that, under the dual toll policy, both the maximum arc

risk and total risk have been substantially improved. For example, in Case 8-3, the

maximum risk equity can be enhanced by up to 56.58%, and total risk decreased by

22.75%. However, the improvements in both total risk and risk equity are achieved at the
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Table 5.2: Comparison between dual-tolled and no-tolled network performance
Case
No. % Change of

total risk % Change of
risk equity % Change of Delay Avg. tolls

regular hazmat regular hazmat
8-1 -22.71 -58.76 -1.37 2.42 191.23 104.11
8-2 -38.11 -48.15 -0.46 1.26 109.65 175.07
8-3 -22.75 -55.68 -0.08 1.58 204.57 253.73
8-4 -27.17 -53.53 -0.06 2.54 269.16 283.16
15-1 -37.87 -43.13 -0.01 0.59 152.69 256.22
15-2 -32.68 -56.44 -0.04 1.05 106.55 286.59
15-3 -30.51 -46.82 -0.04 1.38 142.88 206.12
15-4 -35.22 -47.26 -0.02 0.76 277.37 217.84
24-1 -40.00 -11.57 0.00 0.48 197.29 60.00
24-2 -27.89 -31.78 -0.08 0.74 180.32 69.95
24-3 -24.81 -27.93 -0.64 1.65 197.27 132.62
24-4 -38.49 -28.78 -0.51 0.03 134.15 119.47
24-5 -31.60 -44.78 -0.11 0.03 124.64 144.28
24-6 -33.20 -48.26 -0.12 0.01 138.22 136.97
24-7 -48.06 -58.94 -0.24 0.04 149.53 126.11
A weighted sum method is employed to solve the upper level model. Both total risk and
maximum link risk have a coefficient of 0.5.

expense of increasing the travel time of hazmat carriers, whereas the regular travel time

slightly decreases compared to the no toll case. Various toll fees are paid by each regular

driver, enabling him/her to be directed to less risky and congested routes, so as to reduce

their travel time. However, for hazmat drivers, the dual toll policy causes them to detour

into longer paths not used by regular drivers, thus reducing the possibility of accidents

caused by congestion. This explains why hazmat carriers spend more time compared

to the no-toll scenario. Besides, the dual toll policy also encourages hazmat carriers to

choose that path which can equalize the spatial distribution of risk. As we can see from

Table 5.2, the risk equity has improved greatly with the dual toll policy.
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Another thing to notice is that, the improvement in risk equity and the reduction in

total risk are achieved by collecting tolls from both types of traffic. In the real world,

knowing the high risk induced by their hazmat transportation, the companies involved

maybe find it appropriate to pay certain amounts of money(tolls) to mitigate that risk.

However, the regular drivers may find that unacceptable because their tolls are sometimes

more than those of the hazmat carriers. Therefore, to make regular drivers more in favour

of this dual toll policy, a larger coefficient may be placed on the total regular toll cost

terms for the minimization objective functions in the upper level.

In conclusion, the dual toll policy mitigates the total risk and enhances risk equity by

collecting different toll fees on each arc, to direct carriers onto different routes. Hence,

this policy provides attractive solutions to the government. For regular drivers, though

they need to pay some money, they can reduce their travel delay, and increase the safety

of their trips.

A detailed solution based on Case 8-3 is shown in Table 5.3. The risk equity has been

enhanced by more than 50 %, and the total risk is improved by 22.75 %. Regular travel

time also slightly decreases from 724,069 to 723,491 hours. All these improvements are

achieved at the expense of increasing the hazmat carriers’ travel time. However, as we

can see, not all carriers increase their driving time. For carriers of type one that carry

hazmat type one, their transportation times nearly stay the same, both before and after

the toll-setting policy, because their flow vectors do not change.
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Table 5.3: Detailed solutions of Case 8-3
Before Toll After Toll Change %

Regular

Toll - [150,80,150,160,190,80,
Vectors 30,60,130,40,0,80,120]
Total
toll

0 773,640

Average
toll

0 224

Flow [679,471,100,780,419,1011,390, [671,479,100,780,411,1019,390,
Vectors 780,1080,720, 369,1031,209] 780,1080,720,369,1031,209]
Travel

Time (h)
724,069 723,491 -0.08 %

Carrier 1
Hazmat 1

Toll - [50,150,190,70,40,20,
Vectors 0,0,60,140,20,10,160]
Total
Toll

0 480

Average
Toll

0 120

Flow
Vectors S1

[1,0,0,1,0,0,0,0,0,0,0,0,0] [1,0,0,1,0,0,0,0,0,0,0,0,0]

Travel
Time (h)

739 739 0.00

Carrier 1
Hazmat 2

Toll - [180,80,150,170,40,70,
Vectors 110,30, 40,10,90,120,60]
Total
Toll

0 730

Average
Toll

0 146

Flow
Vectors S2

[0,1,0,0,0,1,0,0,1,0,0,0,0] [0,1,0,0,0,1,0,0,1,0,0,0,0]

Flow
Vectors S3

[0,0,1,0,0,1,0,0,1,0,0,0,0] [0,0,0,0,1,0,0,0,1,0,0,0,0]

Travel
Time (h)

1111 1136 2.26

Carrier 2
Hazmat 1

Toll - [50,150,190,70,40,20,
Vectors 0,0,60,140, 20,10,160]
Total
Toll

0 2160

Average
Toll

0 240

Flow
Vectors S4

[0,0,1,0,0,1,0,0,1,0,1,0,1] [0,0,0,0,1,0,0,0,1,0,1,0,1]

Flow
Vectors S5

[0,0,0,0,0,1,0,0,1,0,1,0,0] [0,0,0,0,0,1,0,0,1,0,1,0,0]

Travel
Time (h)

2245 2289 1.93

Carrier 2
Hazmat 2

Toll - [180,80,150,170,40,70,
Vectors 110,30,40,10,90,120,60]
Total
Toll

0 10

Average
Toll

0 10

Flow
Vectors S6

[0,0,0,0,0,0,0,0,1,0,1,0,0] [0,0,0,0,0,0,0,0,0,1,0,0,0]

Travel
Time (h)

65.38 67.92 3.88

Risk
Maximum
Arc Risk

2,499,955 1,085,507 -56.58

Total
Risk

4,766,543 3,682,296 -22.75

Travel time (total for the network) are in hours. See caption to Figure A-1 in Appendix, for explanation of the
flow-vector notation.
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5.2 Trade-off analysis

For the purpose of this trade-off analysis, we do not consider the toll cost term in the

upper level model because it may overly influence our results. In the upper level, we

have a two-objective problem. Hence a weighted sum method is employed to transform

the two objectives into a single objective. The importance of one objective over another

can be represented by applying a larger coefficient. In this section, 11 tests with different

coefficients are run to see whether the improvement in total risk (risk equity) will have

the opposite effect on risk equity (risk). The weights 1 and 2 in the second and third

columns are coefficients of total risk and risk equity, respectively. For us, both coefficients

are 0.5 in the base case.

Table 5.4: Trade-offs between the Total Risk and Risk Equity
Case No. Weight 1 Weight 2 Total Risk(000) Risk Equity(000)

T1 0 1 9,888 1,864
T2 0.1 0.9 9,210 2,006
T3 0.2 0.8 8,982 2,097
T4 0.3 0.7 8,723 2,145
T5 0.4 0.6 8,589 2,188
T6 0.5 0.5 8,462 2,218
T7 0.6 0.4 8,333 2,238
T8 0.7 0.3 8,193 2,302
T9 0.8 0.9 7,901 2,435
T10 0.9 0.1 7,760 2,518
T11 1 0 7,533 2,895

Our trade-off experiments are based on Case 8-4, with 27 regular demands and 15

hazmat demands. Results of the trade-offs between the total risk and risk equity are

given in Table 5.4. A scatter diagram (Figure 5.1) is also drawn to show the relationship

between these attributes. Both “Total Risk" and “Risk Equity" are mentioned as the
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number of people exposed to a hazmat incident. Thus, a smaller value is preferable for

each.

As we can see, Case T1 has the minimum risk equity, while Case T11 has the smallest

total risk. These are the two extreme cases in our experiments. When comparing T1 with

T6 ( base case), the risk equity improves by 20 %, whereas total risk increases by 17 %.

The enhancement in risk equity is primarily due to forcing carriers to use roads which

are not used by others, in order to spread the risk. On the other hand, the min-total-risk

case obtains solutions with smallest total risk because carriers choose less risky roads,

regardless of risk equity.

Figure 5.1: Trade-offs between Total Risk and Risk equity

From Figure 5.1, it is clear that with decreasing total risk, the risk equity is increasing.

Hence, the improved total risk can be achieved at the expense of worsening risk equity.

In addition, from T1 to T10, total risk changes more rapidly than risk equity. As a result,

in these cases, total risk dominates risk equity. However, in going from T10 to T11, the

increase in risk equity is larger than the decrease in total risk.

From Table 5.4, we see that T1 has a total risk of 9.89 million and risk equity of 1.76
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million, whereas T11 has the lowest total risk but an extremely unfavourable value of

risk equity. Since each of these is associated with a different safety issue during the

transportation process, in our case, we consider both total equity and risk equity. Besides,

results for the weights of Cases T5 and T7 are very similar to the results of T6. Therefore,

it is appropriate for us to give these two kinds of risk an equal coefficient, which is 0.5,

like Case T6 in our problem.

5.3 Variation of the Maximum Toll Value

To investigate the effect of the maximum toll cost, which was set at $200 in our base case,

two additional settings are considered: maximum toll of $100, and maximum toll of $400.

The detailed comparison of these three cases is provided in Table 5.5. Note that these

results are the avera ge of ten experiments based on Case 8-3. Both regular and hazmat

travel times are measured in hours.

Table 5.5: Impact of Maximum Toll Value
Max Toll ($) 100 200 400

Total Risk (000) 3,862 3,769 3,645
Maximum Link Risk (000) 1,147 1,037 1,000
Regular Travel Time (000) 708 711 710
Hazmat Travel Time (000) 4.6 4.5 4.3

Regular Cost (000) 14,479 14,918 15,724
Hazmat Cost (000) 110 112 113
Avg. Regular Toll 106 205 420
Avg. Hazmat Toll 110 254 422

Both regular and hazmat cost refer to the total transportation cost, including toll cost.

As the value of the maximum toll increases, both total risk and risk equity have been
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improved. Comparing the cases (Max Toll $200 and Max Toll $400), total risk is reduced

in the latter by 3.3%; at the same time, risk equity of that case is enhanced by 3.6%. The

main reason behind this phenomenon is that, when the maximum toll increases, it has

more power to direct both the regular and hazmat carriers into less risky routes. Thus,

the enhancement in total risk and risk equity can be achieved at the expense of a higher

maximum toll.

The increases in both regular and hazmat cost are largely due to the average toll

cost. The changes in regular and hazmat travel times are rather small. Therefore, the

maximum toll value does not have a great influence on these two kinds of travel time. In

addition, we also did experiments when the maximum toll is set to $800. However, the

total risk and risk equity did not improve any more. Hence, when the maximum toll is

below a certain value, the total risk and risk equity have positive relationships to the toll.

However, when the maximum toll is above this value, it may not improve the risk.

5.4 Partition Scheme and PL-FW Comparisons

Table 5.6 summarizes linearization results,with different partition schemes, for the lower-

level problem in our model. These are based on Cases 8-3, 15-4 and 24-7. Note that

entries in the second column (partition scheme) denote the number of segments into

which the feasible domain of va (i.e., [0, v̄a]) has been partitioned. The run times in the

fifth and seventh columns are the avera ge times of the 10 experiments we did for each

situation; values of the lower level objective function are written in thousands. The case

with computational time > 7200 implies that the optimality gap does not reach zero

within two hours, hence the data recorded corresponds to the case of 2 hours.The last

column, % Difference between PL and FW, is calculated by (FW Results - PL Results)/ PL
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Results ×100%.

Table 5.6: Results for Piecewise Linearization Approach under Different Partition
Schemes
Case Partition PL Opt. Run FW Run % Difference
No. Scheme Results Gap Time(s) Results Time(s) between

(# intervals) (%) PL and FW

8-3

20 2,841 0 10

2,755 1

-2.82
50 2,801 0 21 -1.62
100 2,750 0 86 0.21
200 2,738 0 1,913 0.58

15-4

50 6,222 0 6,509

6,042 5

-2.89
100 6,074 45 >7,200 -0.52
150 6,053 77 >7,200 -0.12
200 6,015 96 >7,200 0.44

24-7

5

- 100 >7,200 1,754 148 -10
20
40

In this table, the total demand for 8-node, 15-node and 24-node networks is 3450, 4115 and 376.53,
respectively. Therefore, the FW result of 24-node case is much smaller than for the case of 8
nodes or 15 nodes. Detailed information on the demand matrix is provided in Appendix A.

It is easy to conclude that a finer scheme, which partitions the feasible region into a

greater number of smaller zones, requires longer computation time, but generates better

solutions. For example, in Case 8.3, when the partition scheme increases from 100 to

200 sub-intervals, the lower-level objective decreases from 2.75 billion to 2.74 billion, a

reduction of 0.37%. However, the computation time changes from 86 seconds to 1913

seconds, i.e. 21 times as long as before. Therefore, to find an appropriate partition

scheme, it is important for us to trade off between better values of objective functions and

computational time.

In addition, the size of the network and the demands of regular drivers also have
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an effect on the computation time of the linearization approach. Comparing Case 8-1

(6 regular demands, 2 hazmat demands) to Case 8-3 (27 regular demands, 6 hazmat

demands) when the number of intervals is 200, the computational time of the former is

972s, versus 1913s for the latter. This is because in Case 8-3, the greater demands can

make the network a little more complicated. We also compare Case 8-3 with Case 15-3

(27 regular demands, 6 hazmat demands) when the feasible region is divided into 100

intervals. Although both cases have the same regular and hazmat demands, the running

time for the latter (4005s) is nearly 50 times as large as the former (86s). The network

of Case 15-3 is more complicated than that of Case 8-3, making the computational time

longer.

Notice that, in all cases, the piecewise linearization approach can quickly develop

“quality solutions" [same values as what we show in the third column (PL Results) of

Table 5.6], but then this approach may require much more time to decrease the optimality

gap. For instance, in Case 8-3, when the partition scheme involves 200 intervals, we reach

the reported PL result (2,738) in 945 sec, with an optimality gap of 35%. Afterwards, the

incumbent solution stays the same, but the optimality gap continues to decrease. Then,

after almost another 1000 sec of computation time, the PW still shows the same solution

but with 0 optimality gap. The reason behind this is that, although the solutions do

not change, the best lower bound improves. Thus, the optimality gap greatly decreases.

Another interesting finding is that when the feasible region is divided intomore segments,

within the same run time, the optimality gap becomes larger. For example, in Case 15-4,

the optimality gaps for 100, 150 and 200 intervals are 45, 77 and 96%, respectively, when

the computation time is restricted to 2 hours.

With the same partition scheme, and lower bound and upper bound, the running

time can vary for each test because of a different initial solution. Consider Case 8-3 as an
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example. When the partition scheme contains 100 intervals, the run times are between

71.55 and 108.42 sec. The reason is that the piecewise linearization approach chooses the

initial solution randoml y. Hence, the test whose starting solution turns out to be better

can reach optimality in a shorter time.

Moreover, in Table 5.6, when we compare the two methods, we find that the computa-

tion time has been greatly improved by the Frank-Wolfe algorithm. For example, in Case

15-4, even when the number of intervals is only 50, the piecewise-linear computation

time is 6,509 sec. However, the Frank-Wolfe algorithm takes only 5 sec to attain its results.

As for the 24-node example, we cannot find an optimal solution with the piecewise

linearization approach because of the huge computational requirements. However, the

difference in results between these two methods is within 3% in Table 5.6.

Thus, the Frank-Wolfe algorithm is good enough to reasonably approximate the global

optimum for this problem. In conclusion, the piecewise linearization approach is used

for the 8-node and 15-node networks because of its accuracy and acceptable computation

time. However, for the 24-node network, considering its complexity, we chose to use the

Frank-Wolfe algorithm.

5.5 Convergence Analysis

A genetic algorithm is a multiple-direction searching method. It selects the best popula-

tion, then applies the crossover and mutation operators within this population. Finally, it

produces a new generation in each iteration. When the results do not improve for a certain

number of generations, implying convergence, one halts the genetic algorithm. Ten

tests are done in each subsection to see the effect on convergence speed of the crossover,

mutation rate, population size and the number of generations. The mean number of
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generations required for convergence and the objective function values will be recorded.

During the first two subsections, the population size and number of generations are both

constant at 40.

5.5.1 Crossover Rate

In this test, three values of the crossover rate are chosen: 0.7, 0.8 and 0.9. The mutation

rate stays at 0.03 for all experiments. Detailed experimental results with these crossover

rates are shown in Table 5.7.

Table 5.7: Results of GA Performance under Different Crossover Rates
Crossover Rate 0.7 0.8 0.9

# of Generations for Convergence 7 8 27
Obj. Function Value 14,443 13,433 13,172

The table indicates that the 0.7 crossover rate has the fastest speed, and 0.9 the slowest.

However, results of the objective values are the opposite. 0.9 achieves the best, whereas

0.7 gets the worst objective function value. The reason this happens is that, when the

crossover rate is a little lower, there is decreased chance explore the solution space.

The result is therefore much more likely to be a local optimum. However, when the

crossover rate is as high as 0.9, we can often find good results, but usually with too much

computation time. Therefore, a crossover rate of 0.8 was chosen in our experiments

because it gives us a good solution and enables a more rapid convergence.

5.5.2 Mutation Rate

In this subsection, three different mutation rates are chosen to explore their effect on

convergence speed and performance of the genetic algorithm. Details are shown in Table
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5.8.

Table 5.8: Results of GA Performance under Different Mutation Rates
Mutation Rate 0.01 0.03 0.05

# of Generations for Convergence 3 8 17
Obj. Function Value 13,945 13,433 12,412

The 0.05mutation rate gets the best objective value but with the longest time. However,

0.01 has the fastest convergence speed, but its objective function value is not satisfactory.

The reason behind this phenomenon is that, when the mutation rate is low, the solution

set lacks diversity, and may be trapped in a local optimum. However, when the mutation

rate is high, there is greater possibility of losing good solutions and more time is used.

To minimize the possibility of losing good solutions, elit ist se lection is applied after

the mutation process. In elitist selection, we compare the new and the old solutions, and

choose the better one. To trade off time and performance, a mutation rate of 0.03 has

been used in our genetic algorithm solution.

5.5.3 Population Size

Population size also has great influence on the performance of the genetic algorithm.

Normally, the larger the population size, the better results we will obtain. That is because

a smaller population is going to lose diversity, and be trapped in a local optimum. In this

subsection, we consider three population sizes, i.e. 20, 40 and 60. Details are summarized

in Table 5.9.

In each experiment, the crossover rate and mutation rate remain at 0.8 and 0.03,

respectively. In this table, as the population size grows from 20 to 60, the objective
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Table 5.9: Results of GA Performance under Different Population Sizes
Population Size 20 40 60

# of Generations for Convergence 4 8 18
Obj. Function Value 15,083 13,433 11,441

function decreases from 15,083 to 11,441. This finding is consistent with our precious

remarks on diversity. Although a population size of 60 gives the best solution to our

model, we still need to trade off between convergence speed and objective function value.

Therefore, a population size of 40 was chosen for our genetic algorithm calculations.

5.5.4 Number of Generations

The number of generation is an important stopping criterion in our genetic algorithm,

affecting the performance. It is universally acknowledged that as the number of genera-

tions grows, results will improve. However, a great number of generations also means

longer computing time. Therefore, it is important to trade off between that time and

algorithm performance. The crossover and mutation rates stay at 0.8 and 0.03 during

all the tests. The avera ge number of generations until convergence, and the objective

function values, are given in Table 5.10.

Table 5.10: Results of GA Performance under Different Numbers of Generations
Numbers of Generation 20 40 60

# of Generations for Convergence 6 8 15
Obj. Function Value 14,668 13,434 12,887

Naturally, the largest number of generations, 60, achieves the best performance

of the genetic algorithm. However, for 60 generations, nine out of ten experiments

converged within the first 30 generations. Thus, to consider both convergence speed and

performance, we chose 40 generations for our experiments in this chapter.
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Chapter 6

Conclusions and Future Research

The dual toll pricing policy is a relatively new research area for hazmat transportation.

Only a few researchers take regular traffic congestion into consideration when studying

hazmat flows. In this thesis, a bi-level model based on a dual toll policy is developed.

The upper level represents the government, attempting to minimize both the total risk

and the maximum link risk. In addition, both upper level objective functions include the

the total toll value, to ensure that the tolls set by the government are acceptable to each

of regular traffic and hazmat carriers. The lower level problem represents the network

users, including both regular and hazmat drivers; the priority concern for each of these

groups is total transportation cost. In this bi-level model, the tolls are decided by the

government. Once the tolls are given, both regular drivers and hazmat carriers can find

their minimum cost path.

The bi-level model we applied in this thesis is a non-linear one; we know of no existing

algorithm that can obtain a provably optimal solution to it. A solution method based on

a genetic algorithm is proposed to deal with this model. Since the lower level consists of

several non-linear terms, we first introduce a piecewise linearization to the lower level
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in Section 4.2. Several findings are then developed in Chapter 5. First, the greater the

number of segments, the longer the computation time required, but finer solutions can be

obtained. Second, with a complicated network and heavy demands, the computational

time increases. Third, the piecewise linearization approach can reach “quality solutions"

quickly, but then additional time is used to diminish the gap between the incumbent

solution and the best bound.

Considering of the long computation time of the piecewise linearization approach,

we then introduced the Frank-Wolfe algorithm (Section 4.3) to solve our lower level

problem. Although the Frank-Wolfe algorithm is not designed for a non-convex problem,

we demonstrated its accuracy and efficiency for our problem.

The crossover rate, mutation rate and population size are three important parameters

for a genetic algorithm. Therefore, to observe the relationship between these three

parameters and convergence of the algorithm, an analysis is conducted in Section 5.4.

From all these tests, we find that the rate of convergence has an important impact on the

objective function values. Better solutions take more time. In our genetic algorithm, it

is important for us to trade off between time and solution quality. Hence, we chose 0.8,

0.03, 40 to be our crossover rate, mutation rate and population size, respectively.

The fitness value is also an important part of a genetic algorithm, because the parents

are selected based on their fitness to generate the children. In our model, the upper level

objective functions are our fitness values. As we have seen, our upper level problem is a

bi-objective model. Thus, a weighted summethod, with the coefficients of both functions

set to 0.5, is used to find the fitness value. However, in an actual application, different

coefficients can be used. A detailed study on the impact of these coefficients is presented

in Section 5.2. We find that decreasing the risk equity increases the total risk. Hence, if

authorities pay more attention to risk equity, a larger coefficient should be associated
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with the risk equity term. By doing this, total risk is sacrificed for risk equity.

From the comparison of results before and after tolls (Table 5.2), it is easy to see that

both total risk and maximum link risk are greatly improved, which is good news for the

government.

To the best of our knowledge, very few papers combine a dual toll policy with several

carriers and multiple hazmats. Moreover, we jointly consider the total risk, risk equity

and transportation cost; other studies commonly consider only two of these three.

Several directions of research can be explored in the future. First, we found in

Sec.5.4 that the random initial solution had a impact on the required computation time.

Additional effort could be spent in the development of a heuristic to obtain a more

consistent initial solution.

Second, although the genetic algorithm is an easy methodology to apply, it takes

much calculation time. Therefore, different methods may be introduced to our model.

One example is the modified Equilibrium-Decomposed Optimization heuristic proposed

by Esfandeh et al. [2016]. They divided their whole problem into several subproblems

corresponding to each arc, and then used a one-dimensional search routine to reduce

approximate error.

Third, in our model, we assume all links can be tolled. However, due to technological

restraints and traffic spill over, some links cannot be tolled. This kind of problem is

normally referred to as ’second best’. [Johansson-Stenman and Sterner, 1998]. Such a

problem has been addressed by Bard [2006]. With certain modifications, our model can

also be extended to solve this ’second best’ problem. For example, give these untolled

arcs huge cost coefficients. A comparison between these two models can also be made.

Forth, as we saw, one major shortcoming of our policy is that for users in the network,
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the benefits of the dual toll policy are unequal. For example, even carriers that have the

same type of product may have unequal toll costs because different paths may have been

chosen. Therefore, to improve the acceptability, cost equit y needs to be carefully defined

and considered in future decision-making process.

Fifth, one of our major assumptions is that the flow of hazmat traffic is negligible when

compared with regular flow. Although this assumption is true under most circumstances,

there could be extreme situations where congestion can also be caused by hazmat carriers.

This should be considered in the future.

Sixth, for hazmat carriers, we assume they cooperate with each other. However,

in reality, the relationship between most carriers is competitive. Bianco et al. [2015]

considered this aspect in their paper via a Nash equilibrium problem. In the future,

maybe we can also use this method to analyse competition between carriers.
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Appendix A

AppendixAprovides further information about several exampleswe introduce inChapter

5. Table A.1 includes the network topology and arc attributes for the 8-node network.

Table A.2 develops the OD demand information for regular traffic, whereas shipments

information about hazmat carriers are summarized in Table A.3. Similarly, the equivalent

information about the 15-node network can be obtained from Tables A.4, A.5 and A.6.

Tables A.7, A.8 and A.9 provide detailed information about the 24-node network. Figures

A-1, A-2 and A-3 provide the network graphs for the cases of 8 nodes, 15 nodes and 24

nodes, separately.

76



Table A.1 Arc Attributes for the 8-node Network
Arc a Aa la ρa0 for hazmat 1 ρa1 for hazmat 2start end
1 2 6 900 701 1402
1 3 4 400 193 386
2 3 6 700 701 1402
2 4 5 200 1039 2078
2 5 4 100 193 386
3 5 4 250 800 1600
4 5 4 100 1295 2590
4 6 4 200 800 1600
5 6 2 300 1036 2072
5 7 6 250 1030 2060
6 7 2 150 1036 2072
6 8 4 350 1423 2846
7 8 5 100 1236 2472
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Table A.2 Regular Travel Demand Matrix for 8-node Network
1 2 3 4 5 6 7 8

1 70 50 50 90 290 300 300
2 100 80 40 100 70 300
3 10 25 150 400
4 150 120 200 50
5 100 90 80
6 120 60
7 50

Figure A-1: 8-node network

Convention for Flow Vectors. See Table 5.3 (Regular, Before Toll): (v12, v13, v23, · · · , v68, v78) = (679, 741,
100, 780,419, 1011, 390, 780, 1080,720, 369,1031,209).

Table A.3 Hazmat Carriers Demand Matrix for 8-node Network
Hazmat Type Hazmat 1 Hazmat 2
Carrier Type Carrier 1 Carrier 2 Carrier 1 Carrier 2
Shipment S1 S2 S3 S4 S5 S6
O-D pair 1-4 1-6 2-6 2-8 3-7 5-7

ns 4 3 2 7 2 1
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Table A.4 Arc Attributes for the 15-node Network
Arc a Aa la ρa0 for hazmat 1 ρa1 for hazmat 2start end
1 2 11 500 431 862
1 3 12 700 821 1642
2 3 3 300 808 1616
2 4 5 300 1171 2342
3 2 5 200 828 1656
3 4 4 400 778 1556
3 5 1 400 1278 2556
4 5 6 100 2196 4392
4 6 4 500 1004 2008
4 7 8 450 1255 2510
5 6 1 50 4576 9152
6 7 3 150 4576 9152
6 8 5 350 1074 2148
6 9 3 250 967 1934
6 11 10 800 1026 2052
7 8 1 600 4576 9152
8 9 3 450 1163 2326
9 10 5 200 492 984
9 11 7 350 978 1956
9 12 12 150 947 1894
10 12 5 250 205 410
10 13 2 100 890 1780
10 15 8 50 1082 2164
11 12 1 300 205 410
12 13 3 500 813 1626
13 14 5 300 85 170
14 15 1 250 85 170
15 14 3 300 957 1914
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Figure A-2: 15-node network

Table A.5 Regular Travel Demand Matrix for 15-node Network
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 100 40 20 10 140 110 90 80 170 50 20 120 300 300
2 60 50 100 90 40 150 120 60 20 100 300 250 240
3 50 50 60 80 400 100 200 45 35 50 30 100
4 85 40 10 60 50 100 30 10 300 60 100
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Table A.6 Hazmat Carriers Demand Matrix for 15-node Network
Hazmat Type Hazmat 1 Hazmat 2
Carrier Type Carrier 1 Carrier 2 Carrier 1 Carrier 2
Shipment S1 S2 S3 S4 S5 S6
O-D pair 4-9 1-14 2-13 1-12 8-11 3-15

ns 3 3 7 7 2 4

Figure A-3: 24-node network
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Table A.7 Arc Attributes for the 24-node Network
Arc a Aa la ρa0 for hazmat 1 ρa1 for hazmat 2 ρa2 for hazmat 3start end
1 2 0.06 25.90 6327 12654 9490.5
1 3 0.04 23.40 4218 8436 6327
2 1 0.06 25.90 6327 12654 9490.5
2 6 0.05 4.95 5273 10546 7909.5
3 1 0.04 23.40 4218 8436 6327
3 4 0.04 17.11 4218 8436 6327
3 12 0.04 23.40 4218 8436 6327
4 3 0.04 17.11 4218 8436 6327
4 5 0.02 17.78 2109 4218 3163.5
4 11 0.06 4.90 6327 12654 9490.5
5 4 0.02 17.78 2109 4218 3163.5
5 6 0.04 4.94 4218 8436 6327
5 9 0.05 10.00 5273 10546 7909.5
6 2 0.05 4.95 5273 10546 7909.5
6 5 0.04 4.94 4218 8436 6327
6 8 0.02 4.89 2109 4218 3163.5
7 17 0.03 7.84 3164 6328 4746
7 18 0.02 23.40 2109 4218 3163.5
8 6 0.02 4.89 2109 4218 3163.5
8 7 0.03 7.84 3164 6328 4746
8 9 0.1 5.05 10545 21090 15817.5
8 16 0.05 5.04 5273 10546 7909.5
9 5 0.05 10.00 5273 10546 7909.5
9 8 0.1 5.05 10545 21090 15817.5
9 10 0.03 13.91 3164 6328 4746
10 9 0.03 13.91 3164 6328 4746
10 11 0.05 10 .00 5273 10546 7909.5
10 15 0.06 13.51 6327 12654 9490.5
10 16 0.04 4.85 4218 8436 6327
10 17 0.08 4.99 8436 16872 12654
11 4 0.06 4.90 6327 12654 9490.5
11 10 0.05 10.00 5273 10546 7909.5
11 12 0.06 4.90 6327 12654 9490.5
11 14 0.04 4.87 4218 8436 6327
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Table A.7 continued from previous page
Arc a Aa la ρa0 for hazmat 1 ρa1 for hazmat 2 ρa2 for hazmat 3start end

12 3 0.04 23.40 4218 8436 6327
12 11 0.06 4.90 6327 12654 9490.5
12 13 0.03 25.90 3164 6328 4746
13 12 0.03 25.90 3164 6328 4746
13 24 0.04 5.09 4218 8436 6327
14 11 0.04 4.87 4218 8436 6327
14 15 0.05 5.12 5273 10546 7909.5
14 23 0.04 4.92 4218 8436 6327
15 10 0.06 13.51 6327 12654 9490.5
15 14 0.05 5.12 5274 10548 7911
15 19 0.03 14.56 3164 6328 4746
15 22 0.03 9.59 3164 6328 4746
16 8 0.05 5.04 5274 10548 7911
16 10 0.04 4.85 4218 8436 6327
16 17 0.02 5.22 2109 4218 3163.5
16 18 0.03 19.67 3164 6328 4746
17 10 0.08 4.99 8436 16872 12654
17 16 0.02 5.22 2109 4218 3163.5
17 19 0.02 4.82 2109 4218 3163.5
18 7 0.02 23.40 2109 4218 3163.5
18 16 0.03 19.67 3164 6328 4746
18 20 0.04 23.40 4218 8436 6327
19 15 0.03 14.56 3164 6328 4746
19 17 0.02 4.82 2109 4218 3163.5
19 20 0.04 5.00 4218 8436 6327
20 18 0.04 23.40 4218 8436 6327
20 19 0.04 5.00 4218 8436 6327
20 21 0.06 5.05 6327 12654 9490.5
20 22 0.05 5.07 5274 10548 7911
21 20 0.06 5.05 6327 12654 9490.5
21 22 0.02 5.22 2109 4218 3163.5
21 24 0.03 4.88 3164 6328 4746
22 15 0.03 9.59 3164 6328 4746
22 20 0.05 5.07 5274 10548 7911
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Table A.7 continued from previous page
Arc a Aa la ρa0 for hazmat 1 ρa1 for hazmat 2 ρa2 for hazmat 3start end

22 21 0.02 5.22 2109 4218 3163.5
22 23 0.04 5.00 4218 8436 6327
23 14 0.04 4.92 4218 8436 6327
23 22 0.04 5.00 4218 8436 6327
23 24 0.02 5.07 2109 4218 3163.5
24 13 0.04 5.09 4218 8436 6327
24 21 0.03 4.88 3164 6328 4746
24 23 0.02 5.07 2109 4218 3163.5

Table A.8 Regular Travel Demand Matrix for 24-node Network
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 0.11 0.11 0.55 0.22 0.33 0.55 0.88 0.55 1.43 0.55 0.22 0.55 0.33 0.55 0.55 0.44 0.11 0.33 0.33 0.11 0.44 0.33 0.11
2 0.22 0 0.22 0.22 0.11 0.44 0.22 0.44 0.22 0.66 0.22 0.11 0.33 0.11 0.11 0.44 0.22 0 0.11 0.11 0 0.11 0 0
3 0.11 0.22 0 0.22 0.11 0.33 0.11 0.22 0.11 0.33 0.33 0.22 0.11 0.11 0.11 0.22 0.11 0 0 0 0 0.11 0.11 0
4 0.77 0.66 0.55 0 0.55 0.44 0.44 0.77 0.77 1.32 1.54 0.66 0.66 0.55 0.55 0.88 0.55 0.11 0.22 0.33 0.22 0.44 0.55 0.22
5 0.88 0.22 0.22 0.55 0 0 0.22 0.55 0.88 1.1 0.55 0.22 0.22 0.11 0.22 0.55 0.22 0 0.11 0.11 0.11 0.22 0.11 0
6 0.44 0.22 0.55 0.44 0.22 0 0.44 0.88 0.44 0.88 0.44 0.22 0.22 0.11 0.22 0.99 0.55 0.11 0.22 0.33 0.11 0.22 0.11 0.11
7 0.66 0.77 1.1 0.44 0.22 0.44 0 1.1 0.66 2.09 0.55 0.77 0.44 0.22 0.55 1.54 1.1 0.22 0.44 0.55 0.22 0.55 0.22 0.11
8 0.88 0.66 1.54 0.77 0.55 0.88 1.1 0 0.88 1.76 0.88 0.66 0.66 0.44 0.66 2.42 1.54 0.33 0.77 0.99 0.44 0.55 0.33 0.22
9 0.22 0.66 0.99 0.77 0.88 0.44 0.66 0.88 0 3.08 1.54 0.66 0.66 0.66 0.99 1.54 0.99 0.22 0.44 0.66 0.33 0.77 0.55 0.22
10 3.08 2.2 4.29 1.32 1.1 0.88 2.09 1.76 3.08 0 4.4 2.2 2.09 2.31 4.4 4.84 4.29 0.77 1.98 2.75 1.32 2.86 1.98 0.88
11 1.54 1.54 1.1 1.65 0.55 0.44 0.55 0.88 1.54 4.29 0 1.54 1.1 1.76 1.54 1.54 1.1 0.11 0.44 0.66 0.44 1.21 1.43 0.66
12 0.66 0.22 0.66 0.66 0.22 0.66 0.77 0.66 0.66 2.2 1.54 0 1.43 0.77 0.77 0.77 0.66 0.22 0.33 0.44 0.33 0.77 0.77 0.55
13 0.66 1.43 0.55 0.66 0.22 0.55 0.44 0.66 0.66 2.09 1.1 1.43 0 0.66 0.77 0.66 0.55 0.11 0.33 0.66 0.66 1.43 0.88 0.88
14 0.66 0.77 0.77 0.55 0.11 0.55 0.22 0.44 0.66 2.31 1.76 0.77 0.66 0 1.43 0.77 0.77 0.11 0.33 0.55 0.44 1.32 1.21 0.44
15 1.1 0.77 1.65 0.55 0.22 0.88 0.55 0.66 1.1 4.4 1.54 0.77 0.77 1.43 0 1.32 1.65 0.22 0.88 1.21 0.88 2.86 1.1 0.44
16 1.54 0.77 3.08 0.88 0.55 0.99 1.54 2.42 1.54 4.84 1.54 0.77 0.66 0.77 1.32 0 3.08 0.55 1.43 1.76 0.66 1.32 0.55 0.33
17 0.99 0.66 0 0.55 0.22 0.55 1.1 1.54 0.99 4.29 1.1 0.66 0.55 0.77 1.65 3.08 0 0.66 1.87 1.87 0.66 1.87 0.66 0.33
18 0.22 0.22 0.66 0.11 0 0.22 0.22 0.33 0.22 0.77 0.22 0.22 0.11 0.11 0.22 0.55 0.66 0 0.33 0.44 0.11 0.33 0.11 0
19 0.44 0.33 1.87 0.22 0.11 0.33 0.44 0.77 0.44 1.98 0.44 0.33 0.33 0.33 0.88 1.43 1.87 0.33 0 1.32 0.44 1.32 0.33 0.11
20 0.66 0.55 1.87 0.33 0.11 0.55 0.55 0.99 0.66 2.75 0.66 0.55 0.66 0.55 1.21 1.76 1.87 0.44 1.32 0 1.32 2.64 0.77 0.44
21 0.33 0.33 0.66 0.22 0.11 0.33 0.22 0.44 0.33 1.32 0.44 0.33 0.66 0.44 0.88 0.66 0.66 0.11 0.44 1.32 0 1.98 0.77 0.55
22 0.77 0.77 1.87 0.44 0.22 0.77 0.55 0.55 0.77 2.86 1.21 0.77 1.43 1.32 2.86 1.32 1.87 0.33 1.32 2.64 1.98 0 2.31 1.21
23 0.55 0.77 0.66 0.55 0.11 0.77 0 0.33 0.55 1.98 1.43 0.77 0.88 1.21 1.1 0.55 0.66 0.11 0.33 0.77 0.77 2.31 0 0.77
24 0.11 0.55 0.33 0.22 0 0.55 0 0 0 0.88 0.66 0.55 0.77 0.44 0.44 0.33 0.33 0 0.11 0.44 0.55 1.21 0.77 0
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Table A.9 Hazmat Carriers Demand Matrix for 24-node Network
Hazmat Type Carrier Type Shipment O-D pair ns

Hazmat 1

Carrier 1
S1 10-11 0.02
S2 10-12 0.03
S3 11-17 0.01

Carrier 2
S4 9-15 0.01
S5 12-13 0.02
S6 15-22 0.04

Hazmat 2

Carrier 1
S7 1-10 0.02
S8 8-7 0.01
S9 10-16 0.05

Carrier 2
S10 11-14 0.03
S11 17-20 0.03
S12 22-16 0.05

Hazmat 3

Carrier 1

S13 8-16 0.02
S14 10-19 0.01
S15 15-17 0.02
S16 16-17 0.03

Carrier 2

S17 10-20 0.05
S18 12-21 0.01
S19 22-21 0.03
S20 23-22 0.03
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