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Abstract

As we allow more critical decisions to be made by software, it becomes increasingly
necessary to ensure the decisions made are correct. One approach is to monitor the software
for signs of an anomaly. The approach is an active area of research with many proposed
methods. For validating anomaly detection techniques, two popular approaches exist:
Using an existing data trace, such as Knowledge Discovery and Data (KDD) Cup 1999
data, or injecting attacks into a tool used in industry. Both approaches lack flexibility;
using existing traces constrain the validation to the way they are captured, while injecting
attacks into an industry tool may require prior knowledge or characterization of it. A
well-characterized platform that is built for trace generation would address the flexibility
problem. On the other hand, autonomous driving is a field that demonstrates the criticality
of decisions software discussed in the beginning. Specifically, cooperative autonomous
driving scenarios, due to interactions between cars, can generate complex traces that would
be of interest for researchers seeking to validate their anomaly detectors.

In this thesis, we propose a cyber-physical system for collecting traces for testing
anomaly detectors, based on cooperative autonomous driving. We provide the design
and implementation of the proposed system. The three-tier design of the system allows
researchers to generate different traces by extending the system on different levels, from
different control and estimation methods to new cooperative driving scenarios. It also
provides a suite of tools for introducing anomalies and collecting traces. A Failure Mode
Effects Analysis (FMEA) of the system is done to guide the creation of new anomalies.
Finally, traces generated by the proposed system is used on an existing anomaly detector
to verify its usefulness while the trace tools and anomaly injection tools are tested for its
interference with the main system.
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Chapter 1

Introduction

We are living in a world where many decisions are made for us by some form of software.
At the same time, the criticality of said decisions is increasing. Autonomous driving is one
example. As of October 2017, 67 cities worldwide are, or planning on, allowing companies
to test their autonomous driving technologies on public roads; further, 33 cities are actively
evaluating the impact of autonomous vehicles on the road [4]. Another recent example is
Food and Drug Administration (FDA) allowing software to make a screening decision for
diabetic retinopathy patients, whether or not they should see an eye care professional [10].
The stakes involved in such decisions are apparent, as making a wrong decision can cost
people’s health or even their lives.

Given the criticality of decisions modern software makes, it seems crucial to verify that
it is behaving correctly. There exist many proposed methods, but one widely adopted
by the industry is software testing. Test-driven methodologies do tend to improve code
quality [3]; however, proving their coverage remains an open problem [2]. Another approach
is model checking, where a finite software model representing the code is built, and then
checked against properties to enforce [7]. In this approach, managing the number of states
in a model, which can be enormous for real-world software, is an open problem that is an
active research topic. It seems that, despite the need to ensure the correctness of software,
there is no sure way to do so. The presence of third-party software that may potentially
be closed-sourced can further complicate the issue.

Another approach, then, is used to replace often or complement methods above, such
as Runtime monitoring. As its name implies, it is used to verify assumptions about the
system in real time. For example, a runtime monitor may be used in conjunction with
model checking to verify assumptions made in the model.
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An instance of runtime monitoring is anomaly detection. This approach examines the
data produced by the program, trying to verify that the data observed is as expected.
While anomaly detection algorithms tend to scale better, and generally does not require
access to the program’s source, it has its own set of challenges.

1.1 Validating Anomaly Detection Algorithms

Once researchers implement an anomaly detection algorithm, it must be verified. The
verification can happen in many ways. One technique is to utilize a previously collected
and annotated trace. Example datasets include the KDD Cup 99 data [23] used for verifying
unsupervised intrusion detection [9], or annotated electrocardiogram and sensor data used
for validating time series anomaly detection [15]. A problem with using such dataset is
that the definition of “normal” behavior may change over time, obsoleting the dataset [6].

Another method often used for validating an anomaly detection algorithm is to take
advantage of existing code. Some researchers have previously used Java Secure Sockets
Library (JSSL), as-is [13], while others inject known attacks into tools such as dhcpd.
Unfortunately, such methods require an in-depth, or prior characterization of the subject
code.

1.2 Motivation

As mentioned in Section 1.1, challenges in finding a useful data for validating anomaly
algorithm are as follows. A dataset may age and become obsolete. Some anomalies may
become less relevant as new ones are introduced. An already created dataset, by itself,
cannot accommodate such change over time. Further, the dataset may not be in a suitable
form for the anomaly detection algorithm of choice. Finally, the trace may turn out to not
represent the real-life anomaly scenario accurately.

The challenges above highlight an opportunity for a platform specifically designed and
built for validation of anomaly detection algorithms. Such platform would provide a flexible
data source that can adapt for changing definitions of “normal” over time while providing
a guide on adding new anomalies. Any issue with a dataset can be addressed by merely
generating a new dataset.

At the same time, the proposed system would ideally represent real-world scenarios,
connecting the anomaly detection algorithms to practical applications. In this regard,
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autonomous driving seems to be a suitable choice; a wrong decision by the software would
result in an accident that could claim people’s lives. Cooperative autonomous driving is
especially impressive, as the interaction between cars can generate complex traces. The
simulation would involve a cyber-physical component, introducing physical realism, and
an illustrative platform for real-time demonstrations.

1.3 Contributions

In this thesis, we describe a cyber-physical system that can be used to help validate anomaly
detection algorithms. It includes a platform for simulating autonomous cooperative driving
scenarios as a source for non-trivial traces. The platform has a three-tier architecture,
guiding researchers in introducing changes of different degrees, from changing the control
methodology to introducing a new cooperative driving scenario. The system also provides
a framework for injecting anomalies into the platform. It consists of a characterization
document for guiding the creation of anomalies, and a software suite to help implement
them. Finally, the system provides a dedicated set of tools for exploring and streaming
generated traces.

1.4 Organization of the Thesis

The thesis is organized as follows. Chapter 2 discusses the guiding requirements of the
system. Chapter 3 provides a system-level architecture overview. Chapter 4 provides
a brief design overview of the main platform, then delve into details that impacted the
system’s adherence to the requirements. Chapter 5 and 6 discuss designs of the trace tools
and the anomaly framework. Then, Chapter 7 validates the system through a case study
by using the trace generated by it to detect injected anomalies. Chapter 8 evaluates the
performance of the trace collection and injection infrastructure. Lastly, Chapter 9 discusses
future work that can improve the platform.
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Chapter 2

Requirements

As mentioned in Section 1.2, the primary goal of a candidate system is to accommodate for
anomalies injected into different cooperative driving scenarios, generating various traces
for use with the anomaly detection algorithms. This chapter describes the requirements
introduced to guide the design and implementation of the system towards the goal. The
requirements have two categories: Required properties, and functional requirements.

2.1 Required Properties

This section discusses properties required of the proposed system. These properties are
desired for a system that can generate traces useful for validating anomaly detection algo-
rithms.

2.1.1 Flexibility

If the system cannot handle new driving scenarios and anomalies, it does not confer any
advantage over existing methods for testing anomaly detection algorithms. Therefore, the
system must be modular enough for researchers to introduce new behaviors into the system
without changing many parts of it.
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2.1.2 Consistency

Most anomaly detection algorithms must first determine a baseline behavior that is consid-
ered normal. The algorithm’s classification of abnormal behavior depends on this baseline.
Subsequently, if the system shifted the baseline behavior over time, or over multiple runs, it
would cause false positives, rendering it useless. Presence of hardware components makes
it harder to guarantee such consistency, with manufacturing uncertainties and observation
noises.

2.1.3 Robustness

While the impact of a misbehaving system based on a pure software is limited, such is
not the case for a cyber-physical system; any misbehavior may cause damage to hardware
that may need replacing. Worse yet, the damaged hardware may behave differently, which
would have a negative impact on the system’s consistency.

2.1.4 Semblance to Reality

The implementation of the proposed system is a scaled simulation. Such nature allows
only a limited simulation of actual cooperative driving scenarios. However, the proposed
system must make best efforts to bear some resemblance to reality. A system that presents
a radical departure from reality is less attractive for researchers, especially compared to
using existing tools or libraries.

2.2 Functional Requirements

The properties above let the proposed system generate data suitable for anomaly detection
algorithms. However, the proposed system must also provide functions to access data and
introduce anomalies into the system.

2.2.1 Characterization

The proposed system is designed to produce non-trivial traces; that is, traces that are
generated by interacting components. It follows, then, that the implementation of such
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system is non-trivial. Without any guidance, introducing new anomalies into the system
may require an in-depth analysis of the system; this defeats the perceived advantage of the
system over using existing traces or tools. Therefore, the system must provide some form
of documentation describing its behavior, especially under anomalous circumstances.

2.2.2 Annotated Anomaly Injection

Since the proposed system focuses on verifying anomaly detection algorithms, it must
provide facilities to inject anomalies. A dedicated facility would prevent ad-hoc changes,
which would affect the reliability of the system. Further, the generated trace must have
an annotation indicating if the anomaly is active, as many anomaly detection algorithms
use labeled data for training.

2.2.3 Trace Generation and Conversion

A complex cooperative driving scenario with injected anomalies would have little meaning
if users cannot collect data. To this end, the proposed system must provide tools to collect
data from the live system. Further, it must support conversion of the data for three different
use cases: Exploratory analysis, offline verification, and online verification. Extracting a
small set of CSV files from a large trace would be useful for exploratory analysis, where
being able to stream data real-time would be used for online verification.
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Chapter 3

System Architecture

ROS

Main
Platform Trace

Tools

Anomaly Framework

Figure 3.1: High-level overview of the system

The system utilizes ROS, a publish-subscribe framework designed for robotics [19].
ROS has multiple properties that ease the effort for satisfying the requirements. These
properties are discussed in Section 3.1. The proposed system consists of three parts: The
main platform, trace tools, and the anomaly injection framework. The structure is shown
in Figure 3.1. The main platform is the environment for running autonomous cooperative
driving scenarios. The trace tools allow researchers to collect and convert data as needed.
It also provides a tool to transform the collected data into a ROS-independent format.
Finally, the anomaly framework consists of two parts. The anomaly injection suite is a
toolset for introducing a shim into the main platform to introduce anomalies. The suite
also contains a characterization document to guide the creation of new anomalies.
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3.1 Robot Operating System (ROS)

ROS is a framework of tools and libraries for writing robot software [19]. At its core, ROS
allows users to implement a publish-subscribe infrastructure. A system implemented using
ROS consists of many processes (or threads), called nodes (or nodelets). The network
of nodes communicates by subscribing or publishing to a set of topics. For example, a
node that controls a car would subscribe to topics that provide current position, velocity,
and the goal, using them to publish appropriate throttle and steering values to a topic
that would be subscribed to by another node that interfaces with the car hardware. Such
design allows changing behavior by providing a new node that publishes and subscribes to
same sets of topics the node it is replacing. As well, ROS provides both C++ and Python
bindings, allowing researchers to use Python for fast prototyping.

All topics in ROS are public. Any node is free to publish or subscribe to any topic.
As long as the system is broken down into a smaller set of nodes implementing parts of
behavior, gathering insight into the system becomes the matter of examining the right
topics. Additionally, ROS provides a command line tool to record specified topics in a
binary format, called “bag.” However, researchers would need to install ROS to interact
with the file.

Finally, regarding anomaly injection, the publish-subscribe infrastructure shifts the
burden of analyzing the code to the topics, and how they interact. Anomaly injection,
then, concerns manipulating the messages from the topics, such as inducing a delay into
the car’s position data. Therefore, characterization of the system focuses on topics, not
code.

There are features of ROS that make it suitable for anomaly injection. First, as men-
tioned, all topics are public, and therefore eavesdropping and injecting messages are trivial.
Second, ROS establishes one TCP connection for each publisher-subscriber pair, enabling
the use of well-established network testing tools for anomaly injection. Finally, names of
topics a node publishes and subscribes to can be remapped into other names when the node
launches. Section 6.2 discusses how these features are exploited to provide the anomaly
injection framework.
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Chapter 4

Main Platform

(a): Conveyor with cars and obstacles (b): Top mounted equipments

Figure 4.1: Hardware overview

The main platform, hardware-wise, is actualized as a conveyor belt simulating an in-
finitely long highway. Modified off-the-shelf remote-controlled cars run on the conveyor,
with a top mounted camera tracking their positions. Finally, another camera tracks ob-
stacles on the conveyor. Figure 4.0(a) and 4.0(b) show the hardware setup. Most software
components reside within a high-performance PC.

The platform’s software stack has three layers: platform, model, and the apps layer.
The model layer provides the “world” that upper layers can observe and manipulate.
The platform layer contains the control and estimation components that provide a higher
level view into the world. Finally, the apps layer comprises high-level functionalities that
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control the overall behavior of the system, such as different driving scenarios, visualizers,
and monitors to prevent hardware damage.

4.1 Platform Layer

XBee Radio Camera

XBee I/F

Chassis AprilTag

Board

Firmware

... ...

Car I/Fs

IR
Emitter

Camera I/F

Tracker Occupancy

Car Platform

Conveyor Belt

Encoder
Controller

Encoder FW

Encoder I/F Conveyor I/F

Conveyor Platform

Webcam

Obstacles

Webcam I/F

Occupancy

Obstacles Platform

Software
Hardware

Figure 4.2: The platform layer

The platform layer provides the system with ways to observe and manipulate the world
at a low level. Changing the underlying hardware or implementing a simulation of the
hardware would require changes in this layer. It divides into three components, named
after the physical environment they observe and manipulate: Car, Conveyor, and Obstacle.
Block diagram for the layer is in Figure 4.2.
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Figure 4.3: Occupancy grid of obstacles, superimposed over frame data

4.1.1 Obstacle Platform

In the system, an obstacle is defined to be an object of the specified color. Color-based
obstacle classification is a departure from reality; however, the system’s purpose is not to
implement a sophisticated perception algorithm but to use this data for cooperative driving.
To this end, the realism tradeoff is deemed acceptable. The obstacle layer captures the
top-down view of the environment, then builds an occupancy grid based on it. Occupancy
grid is a 2D matrix of integers representing the environment, where each cell represents the
probability of the corresponding location being occupied. The occupancy grid is shown
superimposed over the camera frame data in Figure 4.3. By definition, obstacles are
outside of the system’s control and are not manipulable through the system, unlike car
and conveyor platforms.

4.1.2 Conveyor Platform

Manipulating the conveyor platform involves the conveyor assembly and the motor con-
troller. Both are standard, off-the-shelf industrial products. The motor controller allows
control of the conveyor through Ethernet. The software side then uses the Ethernet inter-
face to set the throttle, given in percent, provided by the upper layer.

The conveyor velocity is observed through a custom encoder assembly, connected to a
microprocessor platform to count the pulses from it. The microprocessor connects to the

11



PC, sending the pulse count periodically. The software interface uses the pulse count to
calculate unfiltered velocity values.

4.1.3 Car Platform

Manipulating and observing the cars involve two components: Tracking and communica-
tions.

The tracking component allows the upper layers to observe the cars by uniquely identi-
fying each car and providing its position and orientation, also known as the pose. AprilTag
[18] is mounted on each car for this purpose. However, the tracking works in the Near-
Infrared (NIR) light range; a camera, equipped with a NIR pass filter, and an IR emitter
are mounted close to each other at the top. This setup allows consistency over differing
light conditions. The IR emitter illuminates the scene. The tags are constructed with
retroreflective material, reflecting high-intensity light to the camera. The software layer
identifies these high-intensity regions as regions of interest. The AprilTag tracking algo-
rithm is applied to the regions to provide pose data of each car. Another node uses pose
data to build an occupancy grid for cars.

The communication component uses XBee, allowing the upper layers to control the car
by giving command values. Command values consist of throttle, in percent, and steering,
in radian. XBee is used for wireless communication, as its frequency hopping functionality
allows robust data exchange in a saturated environment. The commands are mapped to
integers understood by the lower-level firmware. XBee interface collects commands for all
cars and broadcasts them using the base station XBee. Then, the firmware on car’s custom
circuit board directly applies the given command value and replies with the battery voltage
level. The schematic for the circuit board exists in Appendix A. The reply is processed by
the XBee interface, which makes the voltage value available on ROS.

12



4.2 Model Layer
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Figure 4.4: The model layer

The model layer is implemented above the platform layer and is shown in Figure 4.4. It
serves two purposes: To refine the observations given by the platform layer and to provide
a high-level control to the upper layer by closing the loop. The model layer divides into
three parts: The conveyor model, car model, and the threat model. Changing this layer
would cause changes in the per-car driving behavior and perception.

4.2.1 Conveyor Model

The conveyor model smooths raw velocity values and uses it to implement a velocity control
loop. For smoothing the velocity, the system employs a simple, discrete moving average
filter:

vfiltered[n] = (1− α) ∗ vfiltered[n− 1] + α ∗ vunfiltered[n]

Where 0 < α ≤ 1 is the filtering coefficient. As α approaches zero, the smoothing
becomes more aggressive; however, it also makes the signal lag behind the actual value.
The lag is acceptable, as the conveyor velocity changes slowly.
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Figure 4.5: Control loop for the conveyor

The velocity loop uses values from the above filter to implement a Proportional-Integral-
Derivative controller, as shown in Figure 4.5. The PID controller calculates the error; that
is, the difference between the desired velocity, provided by the upper layer, and the actual
velocity. A portion of the error (Proportional), the rate of change of it (Derivative),
and the accumulation (Integral) of it are used to calculate the appropriate control signal.
PID controller, by itself, will eventually provide an appropriate control signal to track
the desired velocity; however, such design relies on the accumulation of the error, which
slows the response time. Therefore, a feedforward gain, kff , is introduced to decrease the
response time of the control loop.

4.2.2 Car Model

The car model works similarly to the conveyor model. Raw pose values are smoothed and
then used to implement a control loop.

Unlike the conveyor velocity, the car’s pose values can have a substantial change over
a short time. Therefore, the system uses a different filter, called One Euro Filter [5]. The
details are discussed in Section 4.4.4. The smoothed pose values are derived to obtain the
velocity values.
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Figure 4.6: Control loop for the longitudinal control of the car

The car’s longitudinal and lateral control are separate implementations. The longitu-
dinal controller commands the car’s throttle to move the car to the correct longitudinal
position. It is implemented by two cascaded PID controllers, as shown in Figure 4.6.

At first, only one controller was used to generate the throttle value from the position
error. However, this strategy led to a high throttle output when the longitudinal position
error was significant. This unrealistic, as drivers generally respect speed limits, regardless of
how far they are from the destination. Since the throttle is proportional to the acceleration,
there is no intuitive way to clamp it. Therefore, the control loop divides into two PID
controllers. The first PID controller uses the position error to calculate the velocity to
approach the goal point. Then, this value is clamped to a configurable range. Finally,
another PID controller calculates the throttle to achieve the desired velocity.

The lateral controller is a non-linear controller named Stanley controller [22]. The
implementation follows the implementation by Autonomoose [8], University of Waterloo’s
full-scale autonomous vehicle project. Stanley Controller is a kinematic controller. So, it
does not consider the dynamics in trying to keep the car on a defined path. The vehicle
is simplified to a bicycle, as shown in Figure 4.7. δ denotes the steering angle of the car.
Stanley controller attempts to drive two errors, eh and ec, to zero by commanding δ. By
driving eh, the heading error, towards zero, the vehicle heads parallel to the path. By
driving ec, the cross-track error, to zero, the vehicle goes on the path. Implementation
details and tradeoffs made are discussed in Section 4.4.3.
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Figure 4.7: Kinematic bicycle model for lateral control of the car

4.2.3 Threat Model

As-is, the platform layer provides a top-down view of obstacles and cars on the conveyor.
However, this is unrealistic as no car has such view. The virtual sensor provides a degree
of realism by transforming the top-down view. It combines the pose of the car and the
mounting position of the sensor to project scan lines in the occupancy grid, generating a
LIDAR-like scan, as shown in Figure 4.7(a). An arbitrary number of differently configured
virtual sensors can exist on a car. Blob detector combines readings from all virtual sensors,
generating a point cloud shown in Figure 4.7(b). Then, neighboring points are combined
to create a threat map around the car, providing the angle, size, and distance of each blob
around the car, as shown in Figure 4.7(c).
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(a): Virtual sensor (b): Point cloud (c): Threat map

Figure 4.8: Threat model

4.3 Apps Layer
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Figure 4.9: The apps layer

The apps layer utilizes the information to the two lower layers to dictate or demon-
strate the high-level system behavior. There are currently three significant components:
Visualizers, monitors, and scenarios. These components are shown in Figure 4.9. Change
in this layer would cause changes in the high-level behavior, such as driving strategies.
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Figure 4.10: Added visualization

The visualizers act to extend the visualization available in RViz, a graphical application
included with ROS. While low-level details, such as poses of each car, and obstacle and
car occupancy grids, can be visualized on RViz by default, details specific to the system,
such as each car’s bounding box and lane markers of the conveyor are not. The added
visualizations are shown in Figure 4.10.

The monitors check the system for unusual activities that may cause damage to the
system. Critical monitors check the system for error conditions that may cause a car to
fall off the conveyor or otherwise cause unrecoverable damage to the system. They report
to a watchdog, which has direct control over the platform layer. The watchdog expects
a periodic safety report from the critical monitors; if a report is missing, or an unsafe
condition is reported, the system is in a fault condition. Then, the watchdog issues an
overriding command to the platform layer, causing all hardware to go into the idle state.

An example of a critical monitor is the battery monitor. Overdischarging the battery
damages it irreversibly; therefore, voltage values produced by the platform layer ensures
that it is above a configurable threshold value. Missing voltage values will also cause a
fault. Other critical monitors verify the periodicity of data produced by hardware and the
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control signals.

The monitor that checks the periodicity of pose data produced is non-critical, as taking
a car off the conveyor is not a critical failure. The monitor sets the command values of the
car missing pose updates to idle, preventing the vehicle from moving outside the conveyor.

Finally, the scenario layer implements high-level driving scenarios. Two provided sce-
narios are platooning and obstacle avoidance.

The platooning scenario utilizes the threat model. It examines the threat map of the car
and chooses the object in front as a platooning target. The car aligns itself to the platooning
target laterally. The longitudinal distance is maintained by a non-linear controller, issuing
a highly aggressive backoff behavior in case the follow target slows down drastically. The
car at the front is the lead car and is controlled manually through a controller input. Three
cars in a platoon are shown in Figure 4.10(a). Because no car communicates directly with
the lead car, lateral and longitudinal changes are propagated with visible lag, as shown in
Figure 4.10(b).

(a): Default behavior
(b): Lag in lateral position propagation

Figure 4.11: Platooning

Another implemented scenario is obstacle avoidance. The implementation utilizes a
blob detector and implements a behavior like the potential field path planning method.
In this method, obstacles close to the vehicle exert a repulsive force. The implementation
picks the closest obstacle, and calculate forces that three vectors. The first two vectors
move perpendicularly to the obstacle. The last vector, on the other hand, points away.
Their magnitudes depend on the distance to the obstacle. The forces are shown in Figure
4.12. The perpendicular vectors are denoted as vperp,1 and vperp,2, and the away factor is
denoted as vaway. The perpendicular vectors and the away vector are added to generate
two candidate vectors, vcand,1 and vcand,2. Finally, the candidate vector that directs away
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from most other obstacles is selected. In Figure 4.12, this is vcand,1.

vaway

vperp,1

vperp,2

vcand,1

vcand,2

Figure 4.12: Obstacle avoidance calculation

A vehicle under this scenario can dodge some obstacles aimed at any car; however, the
performance of the algorithm is not as realistic as it could be. Obstacles do not track over
time, and therefore, the algorithm has no information over its motion. As a result, the
vehicle would try to move away from an obstacle that is rolling away from the car.

4.4 Notable Details

Some implementation details of the main system involve tradeoffs that put the limit on
how closely the system follow the requirements. We discuss such details in this chapter.
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4.4.1 Car Consistency

A major issue that occurred during prolonged testing is the car’s performance drift over
time. The issue was significant in the previous iteration of the car hardware. The previous
iteration, as shown in Figure 4.13, is a 1:28 scale car. It had two major issues. First, the
build quality was low. For example, its gearbox connecting the motor and the driveshaft
were open to the air, making it prone to debris ingestion. Second, the added weight of the
custom circuitry caused the motor to overheat. Upgrading the motor or the gear ratio was
impossible due to its non-standard components.

Figure 4.13: Previous iteration car

Combination of the two issues mentioned above resulted in the car drifting in its perfor-
mance, requiring different tuning parameters for each vehicle. Even then, the performance
of each car would drift over time and different runs. The drift makes it impossible to
establish what is considered normal in the system.

The solution was to utilize a bigger scale car of higher build quality, as used in the
current iteration. The current iteration car is shown in Figure 4.14. Not only is the
build quality better, by for example having a closed gearbox, it also uses the motor that
is considered standard. With the current iteration, all cars share the same set of tuning
parameters to achieve similar tracking performances. However, the current iteration car is
still off-the-shelf hardware, and the underlying issue of consistency persists. For example,
slack in the steering assembly causes the wheel to change its angle even when the steering
servo is locked. The slack causes lateral oscillation at the steady state.
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Figure 4.14: Current iteration car

4.4.2 Battery Depletion

Another issue involving the car is how the battery depletes. As the battery is discharged,
its voltage follows a non-linear curve [21], as shown in Figure 4.15. Vnom is the nominal
voltage the battery is advertised for, like 1.5 [V] for an AA battery. However, a fully
charged battery has a higher voltage, defined as Vmax. As the battery discharges, the
voltage decreases to around Vnom. Towards the end of the discharge, the voltage decreases
drastically. In the case of the LiPo battery, discharging the battery below Vmin permanently
damages it.

V
o
lt

a
g

e
 [

V
]

Discharge Time [s]

Vmin

Vmax

Vnom

Figure 4.15: Battery discharge curve
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As the battery voltage decreases nonlinearly, so does the voltage across the motor.
Assuming that the mechanical load on the motor does not change (A reasonable assumption
for a car at a steady state), the motor speed is proportional to the applied voltage. The
implication is that, as the battery discharges, the car’s speed given the same throttle value
changes. The closed-loop controller then issues a higher throttle value to keep the car on
the goal point. As a result, the nominal value for the vehicle at a steady state drifts.

The current mitigation is to provide a feedback path for the battery voltage, enabling
anomaly detection algorithms to take the changing battery voltage into account. Use of
larger car also allowed a larger capacity battery to be used, stretching the discharge curve
over an extended period.

To mitigate the drift, scaling of the throttle by the voltage is done, by taking a voltage
ratio, Vcurr/Vmax = Vcurr/8.4, scaling it around 1.0, and multiplying it to throttle values.
As seen in Figure 4.16, The normalized throttle value generally stays consistent over time.
However, during the first phase of the run, highlighted in blue, the throttle drifts more.
Moreover, the residual versus time plot during the phase is not consistent with other phases,
as seen in Figure 4.17.
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Figure 4.16: Naive and normalized throttle versus time
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Figure 4.17: Naive and normalized residual plotted versus time

The problem stems from the actual battery discharge curve. As seen in Figure 4.18,
the curve’s shape differs from the model seen in Figure 4.15. The discharge curve assumes
a constant current draw; it seems that this is not the case for the vehicle. The suspicion is
that the motor heating up to the equilibrium temperature and changing the current draw
is the likely cause.
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Figure 4.18: Battery voltage versus time

One of the possible mitigations is to let the motor preheat before running an experiment.
To verify this, we make the car run for 40 minutes, and then collect data after replacing
the battery with a fully charged one. Normalization of throttle values on this data is more
consistent, as shown in Figure 4.19. Reducing the heat level, such as installing a motor
heatsink, is another possible mitigation.
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Figure 4.19: Normalized values for a full battery after preheating

4.4.3 Car Dynamics

As mentioned in Section 4.2.2, the lateral controller for a car is a kinematic controller
named Stanley controller. Because the kinematic controller ignores dynamics, it makes
unrealistic predictions under some circumstances. For example, the kinematic model does
not consider a spinout caused by excessive steering for given velocity.

When the implementation from the original implementor of Stanley controller [22] is
used as-is, with the cars of previous iterations, cars exhibited severe lateral oscillation at
the steady state. Only after updating the controller with Autonomoose’s iteration, which
adds a damping term [8], the lateral oscillation disappeared.

With the current iteration of cars, removing the damping term does not cause the car
to oscillate noticeably at the steady state. Instead, creating both large lateral and forward
movements does cause the oscillation to manifest that does not manifest once reaching the
steady state. However, the oscillation does not occur with the same command when the
conveyor is slowed down.
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The oscillation seems to be caused by oversteer. Such inconsistency is from slip, where
the velocity vector generated do not match the vector that would be generated by a purely
rolling wheel [12]. Slip is demonstrated in Figure 4.20: vroll,f and vroll,r are velocity vectors
of wheels if they were purely rolling. These vectors are aligned perpendicularly to each
wheel’s rolling axis. However, the lateral force exerted on each tire may cause the actual
travel velocity of each tire to deviate, like vf and vr. The slip angles, αf and αr, quantify
the deviation between the pure rolling and the actual travel velocity vectors. When αf <
αr, the vehicle exhibits oversteer, where the actual turn radius is smaller than what is
suggested by the kinematic model. Oversteer causes a vehicle utilizing Stanley controller
to overcompensate and overshoot the desired heading, leading to oscillation observed in
the system.

vroll,f
vf

vroll,r

vrαf

αr

Figure 4.20: An oversteering bicycle model

Multiple factors lead to oversteer. Possible factors include Drivetrain configuration, low
vertical loads on tires, low friction between a tire and the road, and large steering, lateral
acceleration, or forward velocity.

Considering the tire size and overall weight of the previous iteration cars, it follows
that they would be more prone to oversteer. Additionally, they are also modified to be
rear-wheel drives to reduce mechanical load leading to overheating. Rear-wheel drive con-
figuration is known to worsen oversteer [14].

There are multiple possible mitigations. First is to prevent an excessive steering value
from being generated. Such damping is the solution used by Autonomoose and adapted
into the system for its simplicity. However, we note that Autonomoose also implements a
separate dynamic controller for aggressive emergency movements. Another approach is to
account for the deviation between the yaw angle and the path curvature. This approach
is what the original implementors of Stanley controller [24] uses. The mapping required
is non-linear and requires manual calibration. Finally, a dynamic controller accounting
for forces on the vehicle can be used, allowing extreme maneuvers without uncontrolled
oscillation. Liniger et al. employ this approach to control 1:48 scale cars for autonomous
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racing [16]. This approach requires hardware modification to measure accelerations on the
vehicle.

The current approach has two implications to the system. The primary impact is that
the upper layers should not order the car to perform extreme maneuvers, which may cause
secondary oscillations. Under collision avoidance scenarios, however, avoiding an imminent
collision may require such movements, ideally without leading to secondary crashes from
the oscillation. A broader implication is that the implicit assumption of using a kinematic
controller of low speed and acceleration may not hold in the system.

4.4.4 State Estimation

As discussed in Section 4.2.2, the moving average filter used for the conveyor velocity
filtering is unsuitable for car state estimation, due to its fast changing nature. At first,
consider a non-linear Kalman filter, an approach employed by full-sized autonomous cars,
such as the Stanley vehicle [24] and Autonomoose [8]. The family of non-linear Kalman
filters utilizes a known model to predict the state of the given system and updates the
predicted state with the observation from sensor values. Therefore, a Kalman filter’s
quality of estimation depends on the accuracy of the model. Given the inconsistency
discussed in Section 4.4.1, such approach is undesirable.

However, use of a moving average filter, as discussed in Section 4.2.2, is unsuitable
due to its inflexibility. Instead, we consider One Euro Filter [5]. It is an adaptive filter
utilizing two moving average filters, as shown in Figure 4.21. The rate of change of the
signal is filtered through a moving average filter of constant aggressiveness. This value is
used to adjust the aggressiveness of the other filter; if the rate of change of the signal is
high, the aggressiveness is scaled back to reduce the lag. Otherwise, the signal is smoothed
aggressively to achieve low noise.

d
dt

Unfiltered

MA Filter

MA Filter Filtered

Constant 
Aggressiveness

Adaptive 
Aggressiveness

Figure 4.21: One Euro filter
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Even if the state estimation does reflect methods used in reality, the current state does
provide a reasonable estimate for controlling the cars.
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Chapter 5

Trace Tools

As discussed in Chapter 2, the system must provide a facility for generating traces and
converting them to formats used by researchers. Since all topics in ROS are public, it is
trivial to query them for messages. In fact, ROS provides a tool for recording specified
topics into a binary file called a bag file. However, there is one problem using the tools
as-is; they are a part of ROS, and can only feed back into the ROS infrastructure. Third-
party conversion tools exist, such as CSV converters, but they still depend on ROS. For
researchers who merely wish to access the trace, a specific framework like ROS provides
little value.

Three use cases exist for accessing trace: Exploratory analysis, offline validation, and
online validation. Utilization of the system starts with an exploratory analysis. In this
phase, all potentially relevant topics are collected, and then analyzed for their potential
application for anomaly detection. Due to the number of topics recorded, it is desired for
researchers to extract topics of interest selectively. At the end of the exploratory analysis,
researchers select a subset of topics recorded for exploratory analysis. The next step, offline
analysis, would involve collecting a trace of the specified topics in a format the anomaly
detection algorithm understands. For these two steps, CSV seems to be the desired format,
as it is easily readable by humans as well as a wide range of programming languages and
frameworks. The final step is online anomaly detection, where data streams to the anomaly
detection algorithm in real time.
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5.1 Implementation

The trace tools provided in the system provides a ROS-independent workflow for all use
cases considered above. The workflow requires the use of generic third-party libraries and
tools. One such library is MessagePack. It is a binary serialization specification that
allows the encoding of general data structures such as maps [11]. Another tool is Redis,
an in-memory database that supports the publish-subscribe infrastructure [1].

The binary generated by MessagePack has a close resemblance to the bag file. Both
contain a list of tuples, where each tuple consists of the timestamp received, topic name,
and the binary data. The bag file contains serialized data that can only be decoded by
importing the message type, making it ROS dependent. By converting each message to a
generic map, where a message’s member variables map to key-value pairs, the ROS coupling
breaks. The bag to MessagePack tool utilizes a custom library that takes advantage of
facilities provided by ROS and Python. ROS allows introspection of a message’s subfields.
The collected subfields are extracted from messages with the use of Python’s introspection
facilities.

For streaming ROS messages to Redis, a custom node is provided. The node subscribes
to topics specified by users. Then, each ROS topic maps to a Redis channel, an equivalent
concept. One problem encountered is that ROS messages are, in general, nested maps;
however, there is no equivalent concept in Redis. Therefore, it a JavaScript Object Notation
(JSON) string representation is instead published to Redis. The representation is suitable
because most languages support JSON parsing with reasonable performance. The custom
library discussed in the previous paragraph for converting ROS messages into dictionaries
is utilized, then Python’s JSON library, included with Python by default, is used to convert
dictionaries into JSON strings.
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5.2 Proposed Workflow
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Figure 5.1: Trace tools workflow

Using the tools discussed above, a ROS-independent workflow, as specified in Figure
5.1, is proposed. During the exploratory analysis, all topics of interest are collected into
a bag, then converted to a msgpack file. Researchers would use the msgpack to CSV
conversion tool to selectively analyze subsets of recorded messages. Once researchers select
the final set of topics, additional bag files can be collected, and the workflow used for the
exploratory analysis can be applied. If the researchers desire online verification, they will
interface with Redis, subscribing to appropriate channels and decoding the JSON strings.
The infrastructure can be tested by streaming the msgpack file. Once the researchers
verify the infrastructure, the system is launched with the Redis streaming node for live
verification.
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Chapter 6

Anomaly Injection Framework

The system described so far enables users to execute non-trivial cooperative driving sce-
narios, and collect and stream data from it. However, the system also needs to provide
a way for researchers to inject anomalies into the system. To this end, anomaly injection
framework is introduced, consisting of two components: A characterization document to
guide the creation of anomalies and a suite for implementing them.

6.1 Anomaly Characterization

The creation of characterization document follows an industry standard process, Failure
Mode Effects Analysis (FMEA). As the name implies, the document allows users to infer
effects of different failures in various parts of the system. It is a tabular document, where
each row is a combination of a system component and a failure mode. Relevant columns
not only give researchers an insight into the system without in-depth analysis but also
defines the thought process for any additional component and failure mode combination.
The first column indicates the function of the system under analysis. Since anomalies
are injected, as discussed in Section 3.1, into ROS topics, this column consists of ROS
topics. The failure mode column describes types of anomalies to introduced. Details of
the anomaly can be flexible, but in general, it falls under one of the following categories:
Intermittent loss, injection of nonsensical messages, a transformation of incoming messages,
and hardware failure. Effect of the failure is assessed in the next column. For the proposed
system, it divides into three parts: Effect to nodes that directly subscribes to the failing
topic, effects to nodes that subscribe to that node, and effects to the system as a whole.
Such breakdown is allowed as there are clear dependencies between nodes. Then, a score
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between 1 to 10 is assigned for severity. A score of 10 is the most severe, assumed to cause
behavior that may damage the hardware. A severity of 1 indicates an inconsequential
failure mode. The next column outlines potential causes for the given row. Analysis of
causes allows researchers to consider how realistic a given failure mode may be. A potential
cause can be in the context of the system as-is, or the simulated driving scenario. Overall,
the FMEA document provides not only a systematic breakdown of a failure mode but also
a template for performing it for new topics. An example of a row is shown in Table 6.1.
The full document is shown in Appendix B.

Topic Car Pose

Failure Mode Transformation - Constant offset of position

Effects
1. Controller believes the offset pose is true pose
2. Vehicle commands issued to compensate for perceived perturbation
3. Vehicle position offset, opposite to the offset

Severity 3-8, Depends on amount of offset

Causes
• Driving scenario: Spoofing attack
• System as-is: Mount position offset from config

Table 6.1: An example FMEA row, transposed to fit the page

Of note is that the monitors, discussed in Section 4.3, are implemented as a result of
this document, to handle severe failure modes. Such failures, mostly hardware failures, are
mitigated by the use of critical monitors.

6.2 Anomaly Injection Suite

The anomaly injection suite, as mentioned, provides a set of tools and libraries to im-
plement a new anomaly. The tools consider three anomaly scenarios: Message injection,
message delay and Man-in-the-Middle (MitM). Message injection is a trivial case, since,
as mentioned, ROS makes all topics available publically. The latter cases are not, so tools
are provided to ease the implementation.

The tool for inducing a delay into a specified topic achieves functionality by taking
advantage of the fact that ROS utilizes standard TCP sockets. As mentioned in Section
3.1, one pair of publisher and subscriber on a topic has one corresponding TCP connection.
Therefore, an established Linux traffic control tool, tc, and its subset utility, NetEm,
are utilized to inject the delay. They redirect the traffic between specified source and
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destination ports into a particular channel with an induced delay. The delay injection tool
ensures intuitiveness by using the ROS infrastructure to infer the ports used based on a
specified topic and subscriber name, instead of requiring the users to figure them out.

node 1

node 0

/foo

node 1

node 0
/foo

MITM

/bar

node 1

node 0

/foo

/bar

Figure 6.1: Injection of a Man-in-the-Middle node

As mentioned in Section 3.1, one can remap the names of topics a node looks for, at
the time the node is being launched. Using the remapping functionality, one should be
able to disrupt a publisher-subscriber relationship, and inject a middle node, as shown in
Figure 6.1. In this example, node0 publishes to foo and node1 subscribes to it. When
launching node1, researchers can specify any occurrence of foo to be replaced with bar,
causing node1 to subscribe to bar. At this point, a new node that subscribes to foo and
publishes to bar is injected, becoming a man in the middle. Such node can achieve many
anomaly scenarios involving drop or transformation of messages.

The above example, however, is a trivial case; nodes in the system are numerous and
are launched by a tree of launch files specifying information about nodes to launch. The
anomaly injection suite alleviates having to navigate through all launch files by providing a
custom launcher script. The script takes the root launch file and a remapping configuration
file. The remapping configuration file contains the names of nodes to perform remappings
to, and those remappings are. The launcher script then navigates the launch file tree,
automatically applying the specified remapping to each node.

Finally, the suite provides a library for annotating the anomaly. The annotation is
published as a topic, which then is recorded for exploratory analysis. A message from
the topic contains information such as the name, enable status, and configuration of the
anomaly. The configuration field is flexible and implementation-defined. For example, an
anomaly injector node that drops messages probabilistically may publish the annotation
containing information on how many messages are dropped so far.
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6.3 Example Implementations

Some example anomalies are provided in the system as a reference for using the anomaly
injection suite. Implemented anomalies are camera delay, unintended acceleration or de-
celeration, camera dead spot, and GPS spoofing.

Camera delay simulates an anomalous scenario where the data channel used by the
tracker camera is saturated, delaying frame data from being transmitted. Ultimately, the
system would be working with delayed information on vehicles’ poses. As a result, the
control loops for cars become less stable.

Unintended acceleration or deceleration is inspired by a real-life case where hackers were
able to wirelessly cut the transmission of a car driving on a highway [17]. An injection
node periodically publishing the car command data with a scaled throttle value simulates
such behavior. Depending on the scaling, the car periodically jolts forward or backward,
with the amount depending on how much the injected messages flood and overwhelm the
legitimate messages.

Figure 6.2: Dead spot

Camera dead spot stems from a real scenario experienced in the earlier iteration of the
system. At that point, the system used the visible, instead of Near IR, light for tracking
cars. This approach was sensitive to changes in ambient light conditions. A spotlight
that shines on the conveyor surface, for example, would degrade the tracking reliability
over the highlighted region. The phenomenon is shown in Figure 6.2. The vehicle on
the left side of the image is outside the spotlight and is detected, as indicated by the
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superimposed tracking information. On the other hand, the car on the right, which rests
over the spotlight, is not detected. Any car within such dead spot is uncontrollable until
the car exits the dead spot. The scenario is now simulated by probabilistically dropping
pose data of a car within the specified region.

GPS spoofing is a more involved application of the MitM attack, where an offset into
the car’s pose data is introduced. The implication is already discussed in Table 6.1. The
injector extends the injection functionality by enabling users to specify the desired position
to send the car to. Additionally, the offset values are introduced gradually, to avoid trivial
detection caused by a sudden jump in the pose.
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Chapter 7

Case Study

In this section, we discuss the validation of the system by running an existing anomaly
detection algorithm on a trace generated by the system and ensuring that any instance of
injected anomaly is detected. The case study uses inter-arrival curves based anomaly detec-
tion [20] to detect unintended acceleration of a car. This section discusses the background
of the anomaly detection algorithm, scenario setup, and the results.

7.1 Inter-Arrival Curves Based Anomaly Detection

An inter-arrival curve builds from a trace of discrete events. Two parameters are required:
The event of interest and the maximum sliding window to apply. The curve consists of
discrete points, with each point showing the number of the specified event’s inter-arrival
count for given window size. The inter-arrival count for a given window size is counted
by finding the specified event and counting the occurrence of that event within the sliding
window starting from it. An example arrival count for event c, with selected window sizes
are shown in Table 7.1.

Event a a b c a a b b c a a a b b a c c c a a a...

IA(c, 4) - - - 1 - - - - 1 - - - - - - 3 2 1 - - -...

IA(c, 6) - - - 2 - - - - 1 - - - - - - 3 2 1 - - -...

IA(c, 10) - - - 2 - - - - 4 - - - - - - 3 2 1 - - -...

Table 7.1: An example of counting inter-arrival for event c
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A pair of inter-arrival curves is plotted to characterize a program trace. One curve
counts the maximum number of inter-arrivals for given sliding window sizes. The other
curve tracks the minimum. For the three inter-arrival counts in Table 7.1, IAmin(c,N) =
1, N ∈ {4, 6, 10}, where IAmax(c, 4) = IAmax(c, 6) = 3, and IAmax(c, 10) = 4. For a
given program, at a steady state, an event trace generated would follow a pattern, which
is encoded into the min-max inter-arrival curves. An anomalous behavior would break
the pattern, and change the shape of the curves. As such, the anomaly detector based
on it works as follows. First, a model pair of inter-arrival curves is built from nominal
traces generated by the specified program. Then, a runtime pair of inter-arrival curves
is calculated during the program runtime. If shapes of the two curves classify as a close
match, the program is running nominally.

7.2 Setup

The scenario chosen for inter-arrival curves anomaly detection is an unintended acceleration
scenario under a cruise condition. Nominally, two cars are running on the conveyor, both
tracking to static goal points. The specified goal points are front to back, with some space
between them. An anomaly is introduced into the car at the back, by inducing unintended
accelerations. The acceleration causes the rear vehicle to jolt forward, possibly colliding
into the front car.

The topic monitored is the command value for the rear car. Nominally, the throttle
should be relatively stable, with small amounts of drift caused by factors such as uneven
conveyor surface and tracking noise. The values are binned into a histogram. Under
nominal scenarios, one bin would have a dominating count. Bins adjacent to it would
have lower counts. For the anomaly detector used, each bin is one discrete event, with the
main bin being the event of interest. Unintended acceleration would be classified into a
completely different bin, therefore changing the pattern of event traces.

7.3 Result

Given the adequate amount of nominal traces, we were able to build a suitable inter-arrival
curves model that classified unintended accelerations correctly. The first experiment was
carried out with the earlier iteration cars, where battery feedback was unavailable. As
discussed in Section 4.4.2, this caused the throttle value to drift over time. The drift
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would result in the throttle histogram shifting, leading to false positives. The scaling
carried out in Section 4.4.2 should mitigate the issue.
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Chapter 8

Evaluation

In this section, we evaluate the trace tools and the anomaly injection suite by assessing their
latencies and resource usages. Because calculation of latency would require timestamping
the messages, purpose-built ROS nodes are used instead of the main system.

8.1 Objectives

All components discussed below run alongside the main system; therefore, their CPU and
memory usage should not be excessive as not to interfere.

8.1.1 Trace Tools

The conversion segment of the trace tools already has automated tests to verify correctness.
The experiment focuses on the ROS to Redis streaming capability. The primary concern is
latency, which breaks down into two components. Since the Redis streaming functionality
enables online verification, it should not incur excessive latency. Moreover, it should not
slow down other subscribers depending on the topics streamed.

8.1.2 Anomaly Injection Suite

As discussed in Section 6.2, three approaches exist for injecting anomalies: Injection, delay,
and Man-in-the-Middle. The injection suite provides specific procedures for the latter two
to be verified.
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Like the Redis streaming tool, both injection approaches run alongside the system, so
it should not consume excessive computational resources.

Specifically for delay injection, the correctness should be verified by ensuring that the
latency increases as specified. For the Man-in-the-Middle remapping approach, we must
ensure that remapping does not induce excessive latency that would render the system
unstable.

8.2 Experimental Setup

8.2.1 Baseline

The experiment features publisher-subscriber pairs. Publishers generate data that the
timestamp at that time. When subscribers receive a message, it calculates and records
the difference between the timestamp in the message and the current time. This value is
latency.

The publishers subscribe to a node akin to a clock generating a set number of ticks.
The publishers will only publish one message per one tick message. Ticks simulate the
actual system, where most messages depend on data related to cars, which rely on the car
tracking camera. The camera runs at 30 frames per second, so the clock node generates
30 ticks per second.

There are two types of messages exchanged in the experiment. Both are one of ROS’
default message types: Time and PoseStamped. Time represents the smallest size message
while being able to calculate latency. PoseStamped, on the other hand, contains many 64-
bit floating point values and is considered a large message in the main system. There are
larger data published in the system; however, such data is large because it is unprocessed,
like the camera frame data. We assume that users will opt to work with smaller messages
produced by processing such data.

The overall memory and CPU usage of the system is measured while any experiment
is running, using Linux commands free and mpstat. All scenarios discussed below will also
record the resource usage to compare with the baseline.

To establish a baseline, we run the setup above with a different number of publisher-
subscriber pairs N ∈ 1, 5, 10, 20, 30. For all experiments, 900 pulses are generated, which
would cause each publisher-subscriber pair to create 900 messages. The experiment runs
on the PC used for the main system, with Intel Xeon 6-core 2.40 GHz CPU and 256 GiB
RAM.
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8.2.2 Trace Tools: Redis Streaming

In addition to the setup discussed in the previous section, Redis streaming is enabled, for all
messages between each publisher-subscriber pair. Latency values calculated by subscribers
are recorded as usual. These values are compared against the baseline to measure the
impact of the streaming on the system.

Additionally, a single Python script queries Redis for streamed data and calculates
latency by extracting the timestamp from each message. Because many messages generated
from multiple processes funnels into one script, latency values would be more significant.
Excessive latency here would cause a delay in anomaly detection.

8.2.3 Trace Tools: Delay

This scenario involves two publisher-subscriber pairs. One pair has delays induced of
different values. Latency values in the affected pair should follow the delay specification,
while ones in the unaffected pair should match the latency values in the baseline scenario.

8.2.4 Trace Tools: Man-in-the-Middle

The Man-in-the-Middle scenario uses one publisher-subscriber pair. The pair uses the
remapping to allow a man-in-the-middle node. This node directly passes the message to
the subscriber. The subscriber’s latency values are recorded. Because the man-in-the-
middle node is a pass-through, the latency value, when compared against the baseline
values, represent the minimum latency incurred by the remapping strategy.

8.3 Results

8.3.1 Baseline

The baseline latency result is shown in Table 8.1, as 3σ confidence intervals. The maximum
latency at N = 20 with large messages is under 1 [ms], less than 3 [%] of the 30 [Hz] interval.
No conclusion can be made if there are significant differences between latency values, as
their confidence intervals all overlap.
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N
Latency (µ± 3σ) [µs]

Small Message Large Message

1 332 ± 46.5 385 ± 77.2

2 309 ± 82.0 375 ± 92.8

5 310 ± 120 373 ± 127

10 316 ± 138 391 ± 161

20 318 ± 159 396 ± 198

30 324 ± 197 407 ± 245

Table 8.1: Baseline latency values

CPU and memory usages, as shown in Table 8.2, do increase as N increases.

N
CPU Usage (µ± 3σ) [%] Memory Usage (µ± 3σ) [KiB]

Small Message Large Message Small Message Large Message

1 0.387 ± 0.102 0.389 ± 0.133 1300 ± 3.75 1300 ± 3

2 0.376 ± 0.086 0.512 ± 0.229 1460 ± 6.09 1470 ± 7.41

5 0.345 ± 0.148 1.21 ± 0.216 1770 ± 5.55 1770 ± 5.22

10 1.31 ± 0.157 1.24 ± 0.18 2350 ± 6.45 2350 ± 8.22

20 1.97 ± 1.488 2.35 ± 0.96 3520 ± 5.79 3530 ± 10.6

30 3.17 ± 3.21 3.67 ± 2.409 4690 ± 6.15 4700 ± 11.2

Table 8.2: Baseline resource usage

8.3.2 Trace Tools: Redis Streaming

Latency values for the latency on the Redis side is shown in Table 8.3. At N = 1,
latency confidence intervals for both small and large messages do not overlap with the
baseline confidence intervals. Therefore, we conclude that messages streamed through
Redis does incur a latency penalty; however, it is still around 1 [ms]. As N increases,
latency means and standard deviations rapidly increase. The increase in standard deviation
values makes sense, as messages from multiple processes direct into one Python script. The
script becomes a bottleneck, where some messages may get processed promptly, but not
others.
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N
Latency (µ± 3σ) [µs]

Small Message Large Message

1 776 ± 244 999 ± 182

5 1290 ± 1449 1910 ± 3270

10 1980 ± 2949 3070 ± 4800

20 3190 ± 6240 5220 ± 9450

30 4430 ± 8730 7110 ± 13470

Table 8.3: Redis latency values

Table 8.4 shows the overhead induced by running the Redis streaming script to the
subscribers. The confidence intervals overlap with baseline, so no significant conclusion
about the latency increase can be made.

N
Latency (µ± 3σ) [µs]

Small Message Large Message

1 360 ± 108 422 ± 122

5 391 ± 230 462 ± 252

10 407 ± 280 469 ± 318

20 392 ± 257 455 ± 288

30 390 ± 279 467 ± 324

Table 8.4: Redis overhead values

The resource usage is shown in Table 8.5. As N increases, there are significant differ-
ences CPU and memory usages when Redis streaming is enabled; however, the maximum
CPU and memory utilization are less than 15 [%] and 5 [MiB].
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N
CPU Usage (µ± 3σ) [%] Memory Usage (µ± 3σ) [KiB]

Small Message Large Message Small Message Large Message

1 0.398 ± 0.157 0.421 ± 0.189 1360 ± 7.89 1360 ± 11.1

5 0.805 ± 0.131 1.85 ± 0.18 1820 ± 5.31 1830 ± 5.43

10 2.29 ± 0.201 2.6 ± 0.208 2410 ± 7.89 2420 ± 6.87

20 4.58 ± 1.2 5.32 ± 1.11 3590 ± 7.77 3590 ± 7.59

30 6.54 ± 2.95 8.34 ± 3.21 4770 ± 17.6 4770 ± 12

Table 8.5: Redis resource usage

8.3.3 Trace Tools: Delay

Table 8.6 shows the latency values of messages both affected and unaffected by the induced
delay. As seen, the latency values of unaffected messages do not seem to change between
different delays. On the other hand, latency values of the affected messages do seem to
follow specified delay values.

Delay (µ± 3σ) [ms]
Unaffected Latency (µ± 3σ) [µs] Affected Latency (µ± 3σ) [µs]

Small Message Large Message Small Message Large Message

5 ± 0 319 ± 130 383 ± 183 5330 ± 139 5400 ± 162

5 ± 6 314 ± 88.5 372 ± 74.4 5360 ± 6000 5390 ± 5910

15 ± 0 311 ± 83.1 389 ± 154 15300 ± 113 15400 ± 101

15 ± 15 316 ± 142 374 ± 133 15400 ± 15060 15400 ± 15090

Table 8.6: Delay latency values (N = 2)

As shown in Table 8.7, no conclusion can is made about the resource usage compared
to the baseline.
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Delay (µ± 3σ) [ms]
CPU Usage (µ± 3σ) [%] Memory Usage (µ± 3σ) [KiB]

Small Message Large Message Small Message Large Message

5 ± 0 0.221 ± 0.176 0.663 ± 0.363 1430 ± 29.6 1430 ± 28.9

5 ± 2 0.715 ± 1.94 0.721 ± 0.318 1430 ± 47.4 1430 ± 31.5

15 ± 0 0.4 ± 0.235 0.599 ± 0.262 1430 ± 30 1430 ± 29.7

15 ± 5 0.41 ± 0.223 0.576 ± 0.315 1430 ± 30.3 1430 ± 30

Table 8.7: Delay resource usage (N = 2)

8.3.4 Trace Tools: Man-in-the-Middle

No conclusion can be made about the latency introduced by using the remapping strategy
for man-in-the-middle anomalies, compared to the baseline. The result is shown in Table
8.8.

Small Message Large Message

Latency (µ± 3σ) [µs] 346 ± 113 385 ± 137

Table 8.8: MitM latency values (N = 1)

Table 8.9 shows that while no conclusion about the CPU usage can be made, there is a
difference in the memory usage between the baseline scenario and the man-in-the-middle
scenario.

Small Message Large Message

CPU Usage (µ± 3σ) [%] 0.373 ± 0.3 0.407 ± 0.23

Memory Usage (µ± 3σ) [KiB] 1360 ± 7.23 1360 ± 9

Table 8.9: MitM resource usage (N = 1)
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Chapter 9

Future Work and Conclusion

This chapter outlines future work to be done to the system, followed by remarks on the
current state of the work.

9.1 Future Work

Several factors limit the consistency and flexibility of the system. In this section, we discuss
each issue and propose possible improvements.

9.1.1 Dedicated Car Hardware

As mentioned in Section 4.4.1, even the latest iteration of cars utilize a hobbyist-grade
commodity product. Tolerances involved in components of the vehicle seem high, inducing
play. The issue has a significant impact on the steering assembly, with the front wheel
having enough mechanical slack to cause wobbling. The wobbling results in a slow, but
noticeable oscillation.

Some design choices made for the product also do not make sense for the system. The
products are designed to maximize excitement, with the powertrain geared for a higher
speed. Such configuration causes more motor heat and shorter runtime.

Building dedicated car hardware would allow for a tighter tolerance, and complete
control over design choices, resulting in improved consistency.
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9.1.2 Improved Car Control

As discussed in Section 4.4.3, a purely kinematic controller used by the system limits the
stability of large maneuvers. The limitation is especially disadvantageous for emergency
maneuvers. Mitigating the issue would improve the flexibility of the system. There are
two approaches: Augmenting the existing kinematic controller or adapting a dynamic
controller.

The augmentation follows what the original implementors of Stanley controller did,
providing a mapping to account for the dynamic behavior of cars [24]. However, this
requires the cars’ consistency to be improved to be effective.

Adapting a dynamic controller can be done in two ways. The existing kinematic con-
troller can be entirely replaced, as with the system built by Liniger et al. [16]. On the
other hand, the kinematic controller can is still suitable for normal driving scenarios, the
dynamic controller for emergency maneuvers. Autonomoose [8] implements this strategy.
The prerequisite to either approach is that the dynamic states of the car must be collected,
by for example adding an Inertial Measurement Unit (IMU) to each car to measure the
acceleration values.

9.1.3 Obstacle State Estimation

The currently implemented obstacle avoidance scenario, unfortunately, is not useful, as
discussed in Section 4.3. The behavior of cars running the scenario is unrealistic, as vehicles
would try to move away from obstacles not heading towards them. Such behavior is because
the threat model discussed in Section 4.2.3 does not uniquely identify each obstacle. Lack
of unique identification prevents the estimation of obstacles’ trajectories. Unfortunately,
uniquely identifying obstacles is a non-trivial problem, especially when obstacles can collide
with each other and become a single blob from the perspective of the threat model. It is
possible that the definition of obstacles in the system may need to change.

Enabling obstacle state estimation would allow for a more realistic behavior from cars.
Also, it introduces a new possible venue for anomaly injection: Incorrect estimation of
obstacle trajectories.
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9.2 Conclusion

In this thesis, we discussed the implementation of the system dedicated to generating traces
that can be used to verify anomaly detection algorithms. The implemented system not
only provides a non-trivial simulation for cooperative driving scenarios, but also facilities
for collecting traces, and creating and injecting anomalies. The system’s purpose is also
verified through a case study with a known anomaly detection algorithm, and a collection
of latency and resource usage of trace tools and anomaly injection tools.

The system is still at its early stages of implementation, with many potential improve-
ments. However, we hope that, over time, the system proves useful to researchers working
on anomaly detection algorithms.
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[5] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 1 filter: a simple speed-based low-pass
filter for noisy input in interactive systems. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2012.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Comput. Surv., 41(3):15:1–15:58, 2009.
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Appendix A

Car Circuit Board Schematic
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# Component
Potential Failure

Mode

Potential Effect(s)
of Failure
(1. Local

2. Next Level Up
3. System Level)

SEV
MIN SEV

Potential Cause(s)
of Failure OCC DET RPN

1 Car Tracker Camera Hardware Failure
1. No frame available
2. Loss of tag (car) positions
3. Loss of car control

10
1. Broken camera
2. USB cable disconnected
3. Misconfigured focal length

5 6 21

2 Obstacle Tracker Camera Hardware Failure
1. No frame available
2. Loss of obstacle positions
3. No obstacle-based behavior, such as avoidance

7 1. Broken camera
2. USB cable disconnected 3 6 16

3 IR Emitter Hardware Failure
1. Scene not illuminator
2. Camera unable to detect tags
3. Loss of car control

10 1. Broken IR Emitter
2. Disconnected power cable 1 7 18

4 Base Radio Hardware Failure
1. No radio link to cars
2. Car commands ignored
3. Loss of car control

10
1. XBee unplugged
2. Broken XBee board
3. USB cable disconnected

5 7 22

5 Encoder Hardware Failure
1. No encoder pulses available
2. Loss of conveyor velocity
3. Degraded car control - steady state error

7

1. Broken encoder
2. Broken arduino board
3. Disconnected encoder-Arduino cable
4. Disconnected USB cable

1 8 16

6 Car Pose (/car/N/pose) Intermittent Loss
1. Missing pose values
2. Missing command values
3. Degraded car control - jolt

5 9 Driving scenario: GPS signal jamming, poor signal, degraded GPS 1 1 11

7 Car Pose (/car/N/pose) Nonsensical Data - Noise
1. Degraded estimation of car pose
2. Command values fluctuate even at steady state
3. Degraded car control - jolt and steady state error

5 7 Driving scenario: Poor GPS signal, degraded GPS
System: Poor camera, filter calibration 1 8 16

8 Car Pose (/car/N/pose) Transformation - Offset
1. Controller believes offset pose is actual pose
2. Command values compensate for perceived perturbation
3. Degraded car control - steady state error

5 10 Driving scenario: GPS spoofing attack
System: Camera mount position offset 1 8 19

9 Car Velocity (/car/N/twist) Intermittent Loss
1. Missing velocity values
2. Missing command values
3. Degraded car control - drift then jolt

5 9 Driving scenario: Degraded velocity sensor
System: Poor camera, filter calibration 1 8 18

10 Car Velocity (/car/N/twist) Nonsensical Data - Noise
1. Degraded estimation of car velocity
2. Nonsensical command values
3. Degraded car control - jolt and steady state error

5 7 Driving scenario: Degraded velocity sensor
System: Poor camera or filter calibration, resolution too low 1 8 16

11 Car Velocity (/car/N/twist) Transformation - Offset
1. Controller believes offset velocity is actual velocity
2. Command values compensate for perceived perturbation
3. Degraded car control - unbounded steady state error

5 10 Driving scenario: Attack on state estimator
System: Poor camera or filter calibration 1 8 19

12 Car Control Urgency
(/car/N/urgency) Nonsensical Data - Injection

1. Controller believes emergency maneuvers need to be made
2. Aggressive command values
3. Degraded car control - overshoot or oscillation

7 8 Driving scenario: Fool system into evasion mode 1 1 10

13
Car Command
(/car/N/command,
/car/N/command_value)

Intermittent Loss
1. Missing command values
2. No command sent to car
3. Degraded car control - drift then jolt

5 9 Driving scenario: Faulty ECU 1 1 11

14
Car Command
(/car/N/command,
/car/N/command_value)

Transformation - Throttle Spike
1. Sudden increase in command values
2. Car surges forward or stops
3. Degraded car control - jolt

5 10 Driving scenario: CAN bus injection attack 1 1 12

15 Car Timeout Reset
(/car/N/reset) Nonsensical Data - Injection

1. Car controller gets reset
2. Car controller I term cannot accumulate
3. Degraded car control - steady state error

5 6 System: Misconfigured timeout interval 1 8 15

16 Car Threat Map
(/car/N/cars/blobs) Intermittent Loss

1. Missing car threat assessment
2. Car cannot react to fast moving surrounding cars
3. Potential collision with other cars

7 Driving scenario: Degraded sensor, poor conditions for sensor 1 1 9

17 Car Threat Map
(/car/N/cars/blobs) Transformation - Angle Offset

1. Car believes other cars are in wrong directions
2. Car reacts suboptimally to surrounding cars
3. Potential collision with other cars

7 Driving scenario: Mismounted or degraded sensor 1 1 9
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18 Car Threat Map
(/car/N/cars/blobs) Transformation - Distance Offset

1. Car believes other cars are further away than they are
2. Car reacts suboptimally to surrounding cars
3. Potential collision with other cars

7 Driving scenario: Mismounted or degraded sensor 1 1 9

19 Obstacle Threat Map
(/car/N/obstacles/blobs) Intermittent Loss

1. Missing obstacle threat assessment
2. Car cannot react to fast obstacles
3. Potential collision with other obstacles

7 Driving scenario: Degraded sensor, poor conditions for sensor
System: Poorly calibrated obstacle camera 1 8 16

20 Obstacle Threat Map
(/car/N/obstacles/blobs) Transformation - Angle Offset

1. Car believes obstacles are in wrong directions
2. Car reacts suboptimally to obstacles
3. Potential collision with other obstacles

7 Driving scenario: Mismounted or degraded sensor
System: Poorly mounted obstacle camera 1 8 16

21 Obstacle Threat Map
(/car/N/obstacles/blobs) Transformation - Distance Offset

1. Car believes obstacles are further away than they are
2. Car reacts suboptimally to obstacles
3. Potential collision with other obstacles

7 Driving scenario: Mismounted or degraded sensor
System: Poorly mounted obstacle camera 1 8 16

22 Conveyor Speed
(/treadmill/velocity) Intermittent Loss

1. Car controller acts on previous known conveyor speed
2. Car cannot react to changing conveyor speed
4. Degraded car control - Steady state error

5 6 System: Degraded encoder 1 8 15

23 Conveyor Speed
(/treadmill/velocity) Nonsensical Data - Noise

1. Car controller acts on degraded conveyor speed
2. Car controller applies unsuitable feedforward
4. Degraded car control - jolt, steady state error

5 6 System: Degraded or misconfigured encoder 1 8 15
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