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Abstract

While quantum properties of light promise much-needed enhancements to metrology, further

development of quantum light sources and associated tools are needed to readily harness two-

photon interactions via energy-time correlations. This thesis will discuss the experimental devel-

opment of energy-time correlated photon pairs generated within the nonlinear material of bulk

periodically-poled lithium niobate toward photon pair up-conversion. Joint spatial-spectral char-

acterizations of this spontaneous parametric down-conversion source are modelled and measured

using a unique single-shot spatial-spectral method. In addition, another telecommunication-

wavelength entangled photon pair source is simulated and experimentally characterized through

dispersive time-of-flight measurements.

As required by the goal of biphoton frequency conversion, a prism compressor for enacting

biphoton dispersion cancellation was built and later characterized using wavelength-scanning in-

terferometry. With the amalgamation of these components and techniques, an experimental study

of biphoton frequency conversion is constructed and characterized to elucidate this femtosecond-

timescale quantum frequency conversion process.
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Chapter 1

Introduction

1.1 Motivation

Quantum properties of light promise much-needed enhancements to metrology, communication,

sensing, and imaging [1]. Such enhancements could provide sensing and imaging at resolutions

beyond what is capable with the most advanced classical techniques [1].

Single photons, or unit excitations of the electromagnetic field in a specified mode, can be

generated from the process of spontaneous parametric down-conversion (SPDC) [2]. These photon

pairs, generated within a nonlinear crystal by the parametric splitting of one pump laser photon

into two, have been the backbone of many fundamental single-photon experiments [3]. This

frequency conversion process, dictated by momentum and energy conservation, allows for these

resulting strong intra-pair photon correlations to be utilized for many foundational and applied

applications [2].

These properties have been utilized for spectroscopy by the unique large frequency anti-

correlation of SPDC [4–6]. However, using one of these photons, or even a pair of photons each

sent to separate subsystems, doesn’t inherently provide much spectroscopic benefit [1]. My goal

instead is to use such pairs of photons for investigating two-photon interactions, such as two-

photon absorption, probing two-photon transitions, or the like to allow for the harnessing of the

unique high temporal and frequency resolution dictated by this parametric process. It has been

shown such frequency anti-correlated photon pairs require a lower flux of incident light than

analogous classical excitations [7]. This opens the door for potential advantageous applications

such as sensitive two-photon microscopy.

Already, a wide array of two-photon experiments have demonstrated such properties in SPDC

in utilizing femtosecond-timescale temporal control over photon pair up-conversion [8–10]. These

two-photon properties have be applied to applications such as: higher-dimensional quantum in-

formation [11]; imaging [12]; and demonstrations of dispersion cancellation [13, 14]. Additionally,
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entangled two-photon absorption has been demonstrated with SPDC in rubidium vapor by Dayan

et al. [15].

This motivation here could have a direct application in practical entangled two-photon absorp-

tion for microscopy, imaging, and spectroscopy. The nonlinear process, two-photon absorption,

plays a pivotal role in field of fluorescence microscopy [16, 17]. Pulses from ultrafast lasers

provide two-photon imaging benefits of increased imaging depth and reduced out-of-focus noise

fluorescence over standard microscopy utilizing one-photon absorption. In order to wield the rich,

manipulatable properties of SPDC to apply and probe other complex physical systems, photon

pair sources and ultrashort pulse shaping coherent control is required. In this work, I seek to

elucidate the experimental requirements for achieving biphoton, or photon pair up-conversion in

second-order nonlinear media.

The following sections provide the mathematical background toward the underlying principals

of the key experimental pieces required for biphoton frequency conversion. Nonlinear frequency

conversion, both for photon pair generation and summation, is discussed as well the necessary

ultrafast optical tools and concepts. Additionally, background methodology behind relevant char-

acterization techniques is also shown.

1.2 Mathematical Description of Electric Fields

A pulse of light can be described by electromagnetic waves which can be mathematically described

as a spatially and temporally-dependent electric field [18, 19]. With such an electromagnetic

description, the basis for later interactions with dielectric material can later be described toward

our end goal of biphoton frequency conversion and manipulation.

The following electric field definitions, following closely with [18], by no means describe all

optical degrees of freedom, but provide a basis for which the frequency (and related energy) and

time degrees of freedom can be described and manipulated.

Beginning with a temporal description, independent of the spatial and polarization degrees of

freedom, let us first define a function representing the electric field as E(t), which exists initially

as a real-valued function. It is mathematically convenient for the frequency-domain description

to be defined as the Fourier transform

Ẽ(ω) =

∫ ∞
−∞

E(t)e−iωtdt (1.1)

Ẽ(t) =

∫ ∞
−∞

E(ω)eiωtdω. (1.2)

In addition it is practical to consider only positive frequencies:

Ẽ+(t) =
1

2π

∫ ∞
0

Ẽ(ω)eiωtdω (1.3)

2



for

Ẽ+(ω) = |Ẽ(ω)|eiφ(ω) =

{
Ẽ(ω) for ω ≥ 0

0 for ω < 0
(1.4)

where φ(ω) is the spectral phase, conceptually and literally expanded upon later. These physical,

positive frequency electric field definitions can be related back to the initial definitions by

E(t) = Ẽ+(t) + Ẽ−(t) (1.5)

Ẽ(ω) = Ẽ+(ω) + Ẽ−(ω) (1.6)

What will be a useful concept later, additionally E(t) can be related to Ẽ+(t) by

Ẽ+(t) = E(t) + iH{E(t)} (1.7)

where E′(t) is the Hilbert transform of E(t). That is, Ẽ+(t) is a complex analytic signal derived

from a real-valued E(t) and generated imaginary component, H{E(t)}. The Hilbert function is

further discussed in Section A.1.

Furthermore, the electric field can also be described as a real amplitude and phase

Ẽ+(t) =
1

2
E(t)ei[φ0+φ(t)+ωlt] (1.8)

where the phase in this representation can be decomposed into: a carrier to the envelope phase,

φ0, which can be neglected for the length of pulses here; a time-dependent phase, φ(t); and a

carrier or center frequency ωl. More practically, these complex field components can be absorbed

into a complex field amplitude Ẽ(t)eiωlt = Eeiφ0eiφ(t)eiωlt. It is often convenient to work in the

frequency domain with shifted frequency, Ω = ω − ωl.

1.3 Nonlinear Optical Frequency Conversion

With the advent of the laser in 1960 [20], suddenly large optical intensities with useful spatial

modes were now available. This opened up a vast range of observable nonlinear optical effects.

We now delve into what is considered the heart of this work: frequency conversion.

1.3.1 Three-wave mixing

To discuss nonlinear optical frequency conversion, we will need to investigate the electromag-

netic interaction in a dielectric media with Maxwell’s equations. Electric fields are coupled to

the medium through the nonlinear polarization, P (not to be confused with the other wave “po-

larization” for the geometric oscillation of light). For the purposes of clarity here, we will first

consider homogeneous isotropic media where P and E are always initially parallel thus individual
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components can be related [19]. The nonlinear crystal of later interest in this work is instead of

anisotropic geometry with symmetry about one crystal axis (uniaxial).

In Section 1.2, we introduced and manipulated only the temporal aspect of electric fields.

Now, as we venture into three-wave mixing, the other spatial degrees of freedom are necessary.

The wave propagation in a second-order nonlinear medium is governed by the wave equation

∇2Ẽ − ε(1)

c2

∂2Ẽ

∂t2
=

1

c2

∂2P̃NL

∂t2
(1.9)

where P̃NL = χ(2)Ẽ2 + χ(3)Ẽ3 + . . . and ε(1) = ε0(1 + χ(1)). Under these assumptions, χ(1) is a

scalar which is related to the medium’s index of refraction by n2
ω = ε(1)(ω). The χ(n) within P̃NL

are tensors containing nonlinearity information for all combinations of frequency mixings along

all directions. Since we are only interested in frequencies that are significantly smaller than the

crystal’s resonant frequencies, frequency dependence is effectively constant in the susceptibility

tensor for the lossless medium at hand. This scenario is called the Kleinman symmetry condition

[21]. As such, the tensor notation can be simplified to reflect the frequency independence by

dijk = 1
2χ

(2)
ijk where the indices are then contracted by jk → l. Since we are interested in a fixed

propagation and polarization (the wave geometric kind) direction, the nonlinear susceptibility

can be reduced (after calculation) to a constant, deff . Further discussion on deff and crystal

symmetries can be found in [21].

Now we assume propagation in the z-direction (as will be the assumption for the rest of this

work). To do this, we include a position-dependent phase to the electric field. The wave equation

of Eq. (1.9) can then be reduced according to ∇ → ∂2

∂z2
.

Rewriting the single electric field of Eq. (1.6) for the superposition of the three fields (n =

1, 2, 3) yields1

Ẽ(z, t) =
1

2

∑
n

(
Ẽneiωnt

)
eiknz. (1.10)

The second-order nonlinear polarization can similarly be written as

P̃NL(z, t) =
1

2

∑
n

PNL
n (z)e−iωnt + c.c. (1.11)

where c.c. is the complex conjugate of the previous expression. To continue, we will look at two

specific three-wave mixing combinations: sum-frequency conversion (SFG) and optical parametric

oscillation (OPO), as depicted in Fig. 1.1.

1Due to the electric field definitions of Section 1.2, the following definitions include factor of 1/2, as explained

in the footnote of Boyd [21, p. 7].
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Figure 1.1: Three-wave mixing energy/frequency combinations and definitions for frequency con-

version in this work.

Sum-frequency conversion

For the summation of two distinct frequencies ω1+ω2 = ω3 of Fig. 1.1a, the nonlinear polarization

is defined as

PNL
3 (z) = P3(z)e−iω3t (1.12)

for P3(z) = 4deff Ẽ1(z)Ẽ2(z)ei(k1+k2)z. Inserting Eq. (1.10) and Eq. (1.12) into the wave equation

and gathering terms with the same time-dependence yields a set of three coupled differential equa-

tions. By invoking the slowly-varying envelope approximation of |∂2Ẽ3
∂z2
| � |k3

∂Ẽ3
∂z | for amplitude

changes over a wavelength yields a simplified, first-order set of coupled differential equations

∂Ẽ3

∂z
=

2iω2
3deff

k3c2
Ẽ1Ẽ2e

i∆kz (1.13)

∂Ẽ1

∂z
=

2iω2
1deff

k1c2
Ẽ3Ẽ∗2e−i∆kz (1.14)

∂Ẽ2

∂z
=

2iω2
2deff

k2c2
Ẽ3Ẽ∗1e−i∆kz (1.15)

for wavevector phase mismatch of ∆k = k3 − k1 − k2 and ω1 + ω2 = ω3. These equations can be

solved given the appropriate assumptions [21] to yield an amplitude at the end of the nonlinear

medium of

Ẽ3(L) =
2iω3deff

k3c2
Ẽ1Ẽ2

[
ei∆kL − 1

i∆k

]
(1.16)

for field amplitudes constants of Ẽ1 and Ẽ2. Given that the medium’s nonlinearity deff is present in

the amplitude (squared in the intensity), material nonlinearity has a large influence on frequency

conversion efficiency.
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The irradiance (radiant flux [W/m2]) of the SFG light is defined as [21] Ii = 1
2ε0nic|Ei|

2,

which, after manipulation yields

I3 ∝ Imaxsinc2

[
1

2
∆kL

]
(1.17)

leading for maximal frequency conversion for ∆k = 0. The length over which the three waves can

efficiently mix before becoming out of phase is

Lcoh =
2

∆k
. (1.18)

This condition can be met for the three frequencies by strategic crystal parameter choices.

The momentum phasemaching condition, ω3
c n(ω3)− ω1

c n(ω1)− ω2
c n(ω2) = 0, rewritten in terms

of refractive indices, is not easily met due to frequency-dependence of the nonlinear medium. To

reach appreciable phasematching conditions, three techniques are commonly used (most often in

combination). First and most common, judicious tuning of birefringence, or the dependence of

the refractive index on the direction of polarization of optical radiation [21], can allow for the

phase mismatch to go to zero. Typically (though depending on the crystal structure) the highest

frequency is polarized in the direction yielding the lowest refractive index. Second, tempera-

ture tuning, can, for some nonlinear crystals such as lithium niobate, be an effective method of

minimizing the mismatch. Third, angle tuning of the crystal optic axis can sometimes provide

enough wavelength-dependent difference to meet the phasematching condition. However, this so-

lution can introduce problems as the three waves will “walk off” from each and lead to decreased

efficiency over the interaction length. Used in conjunction with birefringence tuning, strategic

cutting of the crystal with respect to its crystallographic optic axis, can allow for a phasematching

solution.

Light polarized perpendicular to this optic axis (plane) is, by definition, the ordinary compo-

nent in which the propagation speed is independent of the angle it makes with the crystal axis.

Parallel light polarization to this optic axis is (perpendicular propagation to optic axis plane),

by definition, is labelled extraordinary. By solving for the angle θ between the optic axis and k

which yields a ne(θ), the phasematching condition of ∆k = 0 can sometimes be achieved.

Quasi-phasematching in periodically-poled media

A quick interlude in phasematching techniques before continuing with different three-wave mixing

frequency conversion. The nonlinear medium of interest in this work, lithium niobate (LiNbO3)

has a relatively high accessible nonlinearity of 28 pm/V in comparison to other nonlinear crystals

for frequency conversion from 532 nm→1064 nm+1064 nm. However, this high coefficient can only

be accessed in the d33 tensor from all fields polarized the same way, which without birefringence

phasematching, as previously mentioned, is inaccessible.
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In 1964 it was theorized by Armstrong et al. [22] that by sandwiching together alternating,

180◦ rotated slices of a nonlinear crystal cut along its optic axis, the relative phase of the three

waves could be corrected without requiring matching phase velocities (thus eliminating walk-off

from non-parallel Poynting and wavevector propagation). By flipping the domain every time

the polarization phase reaches a multiple of π, monotonic frequency conversion growth can be

attained over the nonlinear medium interaction length. This was first demonstrated by Yamada

et al. [23] in 1992 via a more feasible method of fabrication called periodic poling.

Fabrication is possible in such ferroelectric materials by patterning a periodic electrode on

the surface of the crystal with high voltages large enough to reverse the domains in those regions

[24].

Mathematically, this periodic modulation of spatial frequency Kg = 2π/Λ leads a Fourier

series d(z) =
∑

m dme
iKmz for different spatial harmonics Km = mKg. The square-wave mod-

ulation yields the Fourier coefficient dm = deff2 sin(πD)/mπ for duty cycle D. It can be seen

that lower order harmonics lead to larger effective material nonlinearities. The optimal domain

length, Λ, for these is the Lcoh of Eq. (1.18). This process effectively shifts the phasemismatch

∆k = 0→ ∆k = 2π
Λ to keep the three fields growing in phase over longer interaction lengths.

Optical parametric amplification

Another useful three-wave mixing configuration is optical parametric oscillation, as seen in

Fig. 1.1b. This process is the combination of difference-frequency generation (DFG) between

a strong ωp and a weak ωs to create the missing ωi inside an optical cavity. From here, optical

parametric amplification (OPA), takes the same strong ωp and newly generated ωi to amplify the

lower frequency ωs.

The coupled differential equations are

∂Ẽ1

∂z
=

2iω2
1deff

k1c2
Ẽ3Ẽ∗2ei∆kz (1.19)

∂Ẽ2

∂z
=

2iω2
2deff

k2c2
Ẽ3Ẽ∗1ei∆kz. (1.20)

Note the sign change in the wavevector mismatch phase. The gain of this process, in the presence

of cavity feedback, allows for oscillation of the ωs and ωi frequencies of Fig. 1.1b.

The final three-wave mixing process of interest is spontaneous parametric down-conversion,

also illustrated in Fig. 1.1b. Here, a strong, undepleted pump, ωp frequency down-converts to

similarly named signal and idler frequencies, in a comparable three-wave mixing process to OPA.

However, conversely to OPA frequency conversion, there is no, even weak, initial ωs. Looking

at Eq. (1.19) and Eq. (1.20), there exists no initial amplitudes Ẽ1 or Ẽ2 thus this mathematical

formalism breaks down. In the following section, we turn to a quantum optical description of this

frequency conversion phenomena.
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1.3.2 Quantum nonlinear optics - spontaneous parametric down-conversion

One of the key differences between the classical treatment of nonlinear optics and the quantum

description arises from the quantized representation of the electric field2. Although this quanti-

zation procedure will not be reproduced here (many great resources exist [26–29]), the multimode

quantized electric field (independent of polarization degrees of freedom) is [30]

Ê(−)(r, t) =

∫
d2qµdωµE ′µeik·r+iωµtâ(r, t) µ = s, i (1.21)

where â(r, t) and (â†(r, t)) are the lowering (and raising) mode operators of the quantum harmonic

oscillator [28, 31]. The transverse mode wavevectors, qµ = (kµx, kµy), and all quantization scaling

factors are pulled into E ′µ for signal and idler photons.

In the interaction picture, time evolution of a quantum system is determined by the Hamil-

tonian or total energy operator [32]. This electric field excitation of Eq. (1.21) and its hermitian

conjugate (h.c.), Ê(+)(r, t), make up the energy-conserving nonlinear interaction Hamiltonian of

ĤI(t) =
ε0χ

(2)

2

∫
V
d3rÊ(+)

p (r, t)Ê(−)
s (r, t)Ê

(−)
i (r, t) + h.c. (1.22)

The quantum state describing SPDC can be obtained from first-order perturbation theory of the

above Hamiltonian.

|Ψ〉 = eiĤI t/~|vac〉 (1.23)

= |vac〉+
iε0χ

(2)

2~

∫ t

0
dt′
∫
V
d3rE(+)

p (r, t)E(−)
s (r, t)E

(−)
i (r, t)|vac〉+ . . . (1.24)

Higher orders of terms represent double-pair, triple-pair etc. of spontaneous down-conversions.

The integrals can be solved, as seen in other works [26, 27].

The functional SPDC state can be simplified to the competing effects of the near-monochromatic

pump amplitude Ap(qp, ωs, ωi) = exp
[
−1

2q
2
pw

2
p

]
δ(ωp − ωs − ωi) and the crystal phasematching

S(ωs,qs;ωi,qi) = Lei∆kL/2sinc
(

∆kL
2

)
.

|Ψ(2)〉DC = N
∫
d2qsd

2qidωsdωiAp(qs + qi, ωs + ωi)S(ωs,qs;ωi,qi)â
†(qs, ωs)â

†(qi, ωi)|vac〉

(1.25)

The spectral and spatial properties of such photon pair generation will be discussed in detail in

the next chapter.

2Recently it has been suggested [25] that quantizing the electromagnetic displacement field D instead of electric

field E preserves Faraday’s law and affects the resulting amplitude weightings. Since the exact weightings for

three-wave mixing conversion efficiency is not of concern in this work, I will proceed using the more traditional

routes.
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1.3.3 Biphoton frequency conversion

It is evident from Eq. (1.25) that SPDC photon pair is dependent on both energy and momentum

conservation. In fact, these spectral and temporal properties are inseparable and unfactorable

from each. It has been suggested that such an inseparable photon pair state could be considered

as a biphoton [29].

It has been shown that such highly anti-correlated pair states allow for the two-photon in-

teractions to scale linearly rather than quadratically in intensity [7, 33–35]. Such a nonlinear

enhancement has been observed and manipulated at the single-photon level for both two-photon

absorption and SFG [15, 36], among others.

The dependencies and experimental sensitivities of such a biphoton up-conversion can be seen

through the following quantum frequency conversion.

Starting from Eq. (1.25), the up-converted photon state, |Ψ(2)〉UC, can be found through a

similar first-order perturbation of another Hamiltonian.

ĤUC(t) =
ε0χ

(2)

2

∫
V
d3rÊ(−)

u (r, t)Ê(+)
s (r, t)Ê

(+)
i (r, t) + h.c. (1.26)

where µ = u represents the up-converted mode.

|Ψ(2)〉UC = eiĤUCt/~|Ψ(2)〉DC (1.27)

= |Ψ(2)〉DC +
iε0χ

(2)

2~

∫ t

0
dt′
∫
V
d3rE(−)

u (r, t)E(+)
s (r, t)E

(+)
i (r, t)|Ψ(2)〉DC (1.28)

Through further integration containing many intermediate variables and delta functions later,

the final state, limited to first order, can be written as [9]

|Ψ(2)〉UC =

[∫
dωs

∫
d2qsS∗(ωs,qs;ωi,qi)

]
â†u(0, ωp)|vac〉. (1.29)

Here, the assumption has been made that phasematching properties between the two crystals are

identical.

If biphotons propagated through some dispersive medium on the way to the second crystal,

Eq. (1.29) would then contain an additional signal and idler dependent phase

|Ψ(2)〉UC =

[∫
dωs

∫
d2qsS∗(ωs,qs;ωi,qi)ei[φs(ωs)+φi(ωi))]

]
â†u(0, ωp)|vac〉 (1.30)

It is through this type of behaviour that biphotons have the ability to interfere with itself [37]

and share a joint phase which is dependent on ∆kL/2 [7, 38]. Because of energy conservation be-

tween signal and idler photons in the non-separable amplitude, the biphoton wavepacket behaves

similarly to that of an ultrafast pulse when propagating through dispersive media.
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Additionally, it is for this reason that coherent control can be imparted onto these biphotons

via standard ultrafast optics pulse shaping tools which affects the temporal width of the inten-

sity coherence properties[39]. Coherent control with biphotons has been demonstrated in pulse

shaping tools such as spatial light modulators [8], prisms [13], commercial pulse shapers [40]. For

this reason, the remaining sections of this chapter are dedicated to the study and manipulation of

chromatic dispersion. Experimentally, it has been shown that unmatched dispersion from bipho-

ton propagation prior to up-conversion through just over 1 mm of a PPLN crystal would reduced

the biphoton up-conversion coincidence peak by 55% [9]. The typical biphoton up-conversion

rates, despite optimal configurations, are still quite low at only 800-1000 counts/s. In addition

to these low rates, the wavelength for the up-converted biphoton is by definition, the same as the

powerful SPDC pump. This, as will be seen in a later chapter, leads to challenges in filtering out

stray background light.

It is worth pointing out that for this biphoton frequency conversion to occur, the signal and

idler photons from the same pair must both meet within the second nonlinear crystal. If one of the

photons from the pair is lost, it can only incoherently up-convert (at much lower probabilities) [7].

For this reason, dispersion compensation should allow the highest transmission of the biphotons

as possible. Choices for this will be discussed in further sections.

1.4 Chromatic Dispersion

A majority of this work relates to what happens when an electromagnetic wavepacket propagates

through a frequency-dependent material. In some contexts, this effect on the wavepacket is

nefarious and a problem to be solved, so tools will then be described as to solve it. In one

particular circumstance, its effect can be turned into a useful characterization tool of its own.

The remaining sections of this chapter mathematically draw clear the role of chromatic dispersion

as a key player in this work.

Imagine a pulse of light localized in time, composed of multiple frequencies, such as the “white”

light refracting through the prism in Fig. 1.2. As a whole, the pulse is slowed down to the speed

known as the group velocity, vg, when passing through a normally dispersive medium – that is,

“bluer” frequencies travel slower than “redder” frequencies. In this medium, light is slowed down

from its fastest unhindered speed in vacuum to a speed related to the dispersive properties of the

medium. When such a light pulse passes through some frequency-dependent medium of refractive

index n(ω), different frequencies will be delayed resulting in a longer, stretched pulse. This is due

to the frequency-dependence of the group velocity, and known as the group velocity dispersion

(GVD).

In the following sections we will mathematically expand upon these concepts, manifesting

both in freespace and optical fiber, and point to ramifications and work-a-rounds for these effects
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Figure 1.2: White light refracted through and reflected off of a prism.3

toward the main experimental goal of this work.

1.4.1 On slowing things down... – Group delay

The electromagnetic field passing through a dispersive medium acquires an optical phase related

to

φ(Ω) = k(Ω)L (1.31)

where k is the momentum wavevector and L is the length of medium. It is this wavevector,

k = (Ω−ωl)n(Ω−ωl)
c = 2πn(λ)

λ , which when Taylor expanded, yields the source of a few dispersive

medium effects.

k(Ω) = k(ωl) +
dk

dΩ

∣∣∣∣
ωl

(Ω− ωl) +
d2k

dΩ2

∣∣∣∣
ωl

(Ω− ωl)2 + . . . (1.32)

The first-order coefficient is defined as the inverse group velocity, which varies with the central

frequency.

vg =

(
dk

dΩ

∣∣∣∣
ωl

)−1

=

(
n0

c
− λ

c

dn

dλ

∣∣∣∣
λl

)−1

(1.33)

This decreased velocity in the medium (with respect to c, the speed of light in vacuum) can also

be represented as a group delay

τg =
L

vg
=

(
dk

dΩ

∣∣∣∣
ωl

)
L. (1.34)

3Dispersive Prism Illustration by Spigget.jpg: Spigget derivative work: Cepheiden (talk)

(https://commons.wikimedia.org/wiki/File:Dispersive Prism Illustration.jpg), “Dispersive Prism Illustration”,

https://creativecommons.org/licenses/by–sa/3.0/legalcode
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Frequency-dependent step-index optical fiber propagation

It is due to these frequency-dependent time-delay reasons that free-space propagation through air

will be mainly considered. However for some strategic reasons, as we will see later, these concepts

of group delay and group velocity dispersion will also be considered in optical fiber. We will only

consider single-mode, step-index optical fibers, where the wavelength- (or frequency-) dependent

delay of the envelope is not only dependent on the medium (germanium-doped silica glass), but

the confinement effects of the step-index waveguide.

A step-index optical fiber is a cylindrically symmetrical waveguide where a “core” of refractive

index n1 is surrounded by a “cladding” of index n2 for n1 > n2. Waveguide propagation is

maintained by total internal reflection if the angle of incidence at the core-cladding boundary

is greater than the critical angle θc = sin−1(n2/n1). Alternatively written, this condition is

maintained for ray propagation angle θ with respect to the fiber axis meets θ < π − θc [19].

The electromagnetic solutions for propagation in a cylindrical waveguide are known as modes.

Mathematically, they are solutions to the Helmholtz equation solved for cylindrical symmetry of

dielectric media of refractive index n(r) . This refractive index profile for a step-index fiber is

n(r) = n1 within the core (r < a) and n(r) = n2 in the cladding (r > a). Given these boundary

conditions, the solutions to the Helmholtz equation are Bessel functions of the first- (Jl(x)) and

second- (Kl(x)) kind for the core and cladding, respectively [41]. Under the assumptions that the

solutions are continuous and have continuous derivatives at r = a, single-mode propagation can

be found from solving the characteristic equation

κ
J1(κa)

J0(κa)
= γ

K1(κa)

K0(κa)
(1.35)

for transverse core propagation constant κ = (n2
1k

2
0 − β2)1/2 and cladding decay parameter γ =

(β2 − n2
2k

2
0)1/2 for k0 = 2π/λ [41]. This equation can be solved graphically by plotting left and

right sides and finding the intersections. Given these results, κ and thereby all other constants

can be determined.

Material dispersion arises out of the wavelength-dependent core and cladding refractive in-

dices. The group delay (per unit length) can be computed from [41]

τ̂g =
dβ

dω
= − λ2

2πc

dβ

dλ
. (1.36)

This result contains group delay influences from both material and waveguide. Group delay can

be related to group velocity by L/τ̂g.
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1.4.2 ...And stretching things out – Group velocity dispersion

The second-order coefficient of Eq. (1.32) represents the group velocity dispersion4.

k′′ =

(
d2k

dω2

)
ωl

=
λ3
l

2πc2

(
d2n

dλ2

)
λl

(1.37)

This parameter represents the medium’s ability to impart a frequency-dependent group delay

which leads to the pulse or wavepacket spreading in time. When this parameter is multiplied by

the length of medium L, the quantity then represents the group delay dispersion (GDD), k′′L.

This stretching in the time domain has no effect on the spectral domain in this work.

For k′′ > 0, the medium is said to have normal dispersion. For k′′ < 0, the medium has anoma-

lous dispersive properties. In terms of pulse stretching, both normal and anomalous dispersion

will temporally broaden a transform limited wavepacket after propagation through the medium.

However, in a normally dispersive medium, the “bluer” frequency components will lag behind the

“redder”. With anomalous dispersion, the opposite is true: “redder” frequency components will

lag behind the “bluer”.

Depending on which context GVD is used in, the units used to represent this quantity differ.

In optical fiber, due to the convenient low material loss window in silica bounded by Rayleigh

scattering and infrared absorption [19], telecommunication systems often operate in the bands

from approximately 1260 nm to 1660 nm which are consequently known as the “telecom bands”.

Since this loss is so low in telecom optical fiber, GVD is specified in units of [ps/km-nm]. A

majority of this work will use units of [fs2/µm] common to ultrafast optics.

Group velocity dispersion in optical fibers, similar to the discussion on group velocity, has both

material and waveguide dependencies. When core a is small, the index of refraction difference

between cladding n2 and core n1 has great effect [41]. Similar to the group delay arising from

single-mode propagation, the group velocity dispersion parameter can be obtained via derivative

with respect to wavelength

D =
dτ̂g
dλ

. (1.38)

Between the material and waveguide contributions, the material GVD sets the behaviour whereas

varying waveguide confinement shifts this curve in wavelength [19].

1.4.3 Tools for manipulating dispersion

Having the ability to manipulate dispersion can allow for properties of coherent ultrafast pulses to

be tuned and extracted. First, dispersion manipulation via a prism compressor, an essential tool

in ultrafast optics, will be discussed to tune and compensate the GDD that is acquired through

4One should always be clear on which definition they are using for group velocity dispersion. The group-velocity

dispersion parameter is also known as k′′ = d/dω(1/vg) and dvg/dω [42]
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optical elements in the setup. Then finally, the use of dispersion as a tool to deduce single-photon

spectral properties will also be discussed.

Prism compressor

To attain the largest temporal intensity or peak power, the optical pulse or wavepacket should

be transform-limited in time. Since almost every optical component induces material dispersion,

maintaining femtosecond-timescale pulses at the point of interest requires compensation for these

acquired spectral phases. The most common method of inducing negative GDD is through

continuous, frequency-dependent angular dispersion [18]. This idea was first implemented using

diffraction gratings [43] then later extended to pairs of prisms [44].

Since high throughput is of highest priority, angular dispersion implemented through prism

refraction is the better, low loss choice. There are many good resources for ray tracing the

generate geometric and material dispersion through a prism compressor [45, 46], though [18] will

be followed here.

Building off of the previous ideas of chromatic dispersion, we now model the spectral modifi-

cation of a wavepacket transmission through a linear optical element with the transfer function,

H̃ = R(Ω)ei(Φ(Ω)). An electric field passing through such an optical element, represented in polar

form, is

Ẽ(Ω) = R(Ω)e−iΦ(Ω)Ẽin(Ω) (1.39)

where for our interests, the optical element (optimized for the frequency range of interest) has

minimal effect on the amplitude, where R(Ω) ≈ 1.

A prism compressor can similarly be described by a linear transfer function which imparts a

tunable second-order phase “chirp” to the wavepacket in frequency. The phase of this transfer

function can be modelled as ΦPC(Ω) = Ω
cOPL(Ω) where, due to angular dispersion, the optical

path length, OPL(Ω), is frequency-dependent. Since we require maximal transmission, the prisms

are set up at Brewster’s angle of θB = tan−1
(
n2
n1

)
. If the electric field incident from one medium

to the other is transverse magnetic (“horizontally polarized” in the lab reference frame), the

reflection goes to zero5. Using this simplification of equal incident and outgoing beam angles for

all four prisms of a standard prism compressor (Fig. 1.3a), the resulting GDD imparted by a

prism compressor is [18]

d2ΦPC

dΩ2

∣∣∣∣
ωl

=
λ3
l

2πc2

Lg d2n

dλ2

∣∣∣∣
λl

−
(

4L+
Lg
n3

)(
dn

dλ

∣∣∣∣
λl

)2
 . (1.40)

5This condition is experimentally obtained by observing the reflection and rotating the prism until the reflect

spot is at the angle of minimum deviation with respect to the incident beam [47].
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L Apex-to-apex prism distance

Lg Optical path length through prism glass

h Prism insertion measured from prism apex

θB Brewster’s angle

=arctan[n(λ)]

α Prism apex angle

Table 1.1: Prism compressor parameters as defined in Fig. 1.3a.

α

θB

h
ωl

L

(a) Unfolded prism compressor

q

(b) Folded prism compressor

Figure 1.3: Prism compressor experimental design and variable definitions. Due to folding with

retroreflector, L = 2q + δRR with δRR being the constant internal retroreflector path length.

One of the downsides of prism compressors, in comparison to diffraction grating-based pulse

compressors, is the unwieldly large inter-prism distances L needed to achieve relatively small

amounts of chromatic dispersion. As such, it is common to reduce the optical table footprint of

the prism compressor by using a mirror at the half-way point and folding it back over the same

two prisms. It has been shown by Akturk et al. [48] that there are additional benefits to halving

yet again the two-prism prism compressor to that of a single prism, as seen in Fig. 1.3b. With

a quadruple-pass prism compressor, it is possible to reduce the potential pulse distortions (pulse

tilt/sheering/magnification [49]) of prism misalignment by having symmetry between incident

and exit angles.

The simulated dispersion sensitivities of a quadruple-pass prism compressor (Eq. (1.40)) for

different parameters are shown in Fig. 1.4. It is useful to note that prism insertion, h, can

tune large amounts of GDD with millimeters of translation (100 fs2/mm). As a comparison, the

practical inter-prism distance, q, (as defined q = 1/2(L+ δRR) for variables defined in Fig. 1.3a)

tunes GDD at about a fifth of h (-21 fs2/mm).
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Figure 1.4: Theoretical GDD dependencies on prism compressor parameters for the prism com-

pressor shown in Fig. 1.3b.

Fiber Spectrometer

Due to the frequency-dependent refractive index of fused silica-based optical fibers, pulses with

different central frequencies will travel at different group velocities. This results in a measurable,

frequency-dependent time-delay. Due to the high dispersion of very long optical fibers, differ-

ent monochromatic frequencies comprising the optical pulse will each experience a frequency-

dependent time delay resulting in a “stretched pulse”. This, in addition to frequency-dependent

waveguide confinement contributes to what is called the group velocity dispersion [19, 41].

If the fibers are long enough (such that it’s in the dispersion “far-field zone” [50]), with

detectors of high enough temporal resolution and detection efficiency, time-domain measurements

can yield frequency information about the pulses (or SPDC photons). This is made possible by

the propagation of pulses through chromatic dispersion to yield a Fourier transform from time

to frequency [19, 50]. Additionally, this fiber spectrometer method is particularly advantageous

for the single-photon telecom regime since optical fibers exhibit low loss. Furthermore, most

other InGaAs-based spectral characterization tools suffer quite low efficiencies resulting in time-

consuming tuning curve characterizations.

1.5 Measuring Dispersion Through Interferometry

Ultrafast optical tools are of limited use unless their performance is verified. We turn now to white

light interferometry to evaluate the affected spectral phase of an electric field. Interferometry has

to do with the addition of an electric field amplitudes with respect to a displaced portion (in one

form or another) of the same field. If, at the output of an interferometer, intensity fringes are

observed, then the light source is said to be coherent. In the present interferometry application,

we are interested in first-order coherence of electric field amplitudes rather than of intensities. A
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further discussion of first- and second-order coherence in relation to this work’s ultimate goal of

biphoton up-conversion can be found in [51].

BS
d

E(t)

D
(a) Michelson interferometer

BS

BS

E(t)

D2

D1

d

(b) Mach-Zehnder interferometer

Figure 1.5: Two common interferometer configurations where BS is 50:50 beamsplitter; D is a

detector; and d is a mirror translation.

Coherence can be observed in multiple forms. In Young’s double-slit experiment, spatial co-

herence of the electric field amplitude is observed in the form of fringes on a viewing screen.

Temporal coherence of a temporally delayed, though otherwise similar, electric field can be mea-

sured on a Michelson interferometer [42], as seen in Fig. 1.5a. A combination of spatial and

temporal displacements can be implemented in what is called a Mach-Zehnder interferometer,

displayed in Fig. 1.5b. Although only classical optics will be considered in this present application

of spectral phase extraction, interferometry can be a useful tool for measuring temporal coher-

ence single-photon wavepackets (using a Michelson interferometer) and photon pair wavepackets

(using a Mach-Zehnder interferometer) [52]. In this thesis, both these types of interferometers

are used, depending on different experimental constraints. An important experimental metric in

interferometry is visibility. This fringe sharpness metric is calculated by V = Imax−Imin
Imax+Imin

.

1.5.1 There and back again: optical phase and interference

To see how the GDD parameter from previous sections can be measured with interferometry, we

now mathematically describe such a white light interferometer [42]. For simplicity, let us consider

a Michelson interferometer, as seen in Fig. 1.5a, with the following three electric fields before and

after the beamsplitter: initial Ẽ(t); delayed Ẽ1(t − τ); and undelayed Ẽ2(t). For simplicity, we

will work with the shifted frequency variable Ω = ω − ωl with the electric fields

2Ẽ(Ω + ωl) = Ẽ(Ω) =

∫ ∞
−∞
Ẽ(t)e−iΩtdt (1.41)

Ẽ(t) =
1

2π

∫ ∞
−∞
Ẽ(Ω)eiΩtdΩ. (1.42)
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Upon recombination at the beamsplitter, the intensity output of the Michelson interferometer

is

I(τ) ∝ 〈Ẽ2
1 (t− τ)〉+ 〈Ẽ2

2 (t)〉+ 〈Ẽ1(t− τ)Ẽ∗2 (t)〉e−iωlτ + 〈Ẽ∗1 (t− τ)Ẽ2(t)〉eiωlτ (1.43)

where the angled brackets denote time averaging. Of particular interest are the third and fourth

terms of Eq. (1.43) which contain electric field envelopes from both interferometer arms. These

we will define as the first-order cross correlations6

Ã1(τ) = 〈Ẽ∗1 (t− τ)Ẽ2(t)〉eiωlt

= A+
1 (τ)eiωlτ (1.44)

with Ã2(τ) being similarly defined. The correlation terms from each interferometer output provide

complementary information. For that reason, we’ll pursue only positive spectral components

(eiωlτ ) as the negative spectral components (e−iωlτ ) contain no new information.

Utilizing cross correlation properties of the Fourier transform and other embedded definitions,

the field correlation can be reduced to

Ã+
1 (Ω) =

∫ ∞
−∞

Ã+
1 (τ)e−iωτdτ

= Ẽ∗1(ω)Ẽ2(ω) (1.45)

or, more conveniently in shifted frequency,

A+
1 (Ω) = Ẽ∗1 (Ω)Ẽ2(Ω)

= |Ẽ(Ω)|2 (1.46)

That pleasant jaunt through electric field and embedded Fourier transform definitions is not

without cause. If each interferometer arm is perfectly balanced with Ẽ1(Ω) = Ẽ2(Ω), and with

τ = 0 time difference between the two arms, then the resulting cross correlation is the spectral

intensity, |Ẽ(Ω)|2. This result is known as a Fourier spectrometer, and it is both an interesting

and a useful tool.

Now, let some sample of glass be placed in one of the interferometer arms. This piece of glass

affects the electric fields by some amplitude and phase modification, mathematically described

by an optical transfer function T (Ω)eik(Ω). The amplitude modification for optically transparent

glass samples is assumed to be T (Ω) ≈ 1. The spectral phase, which will be of interest later,

arising from the sample of thickness d/2 is defined as kl = 2πn(λl)
λl

= ωln(ωl)
c . If this sample was

placed in arm 2, then the resulting electric field envelope would be

Ẽ2(Ω) = T (Ω)Ẽ1(Ω) exp

[
−id

(
k(Ω)− Ω + ωl

c

)]
(1.47)

6The modulus of this “mutual coherence” term is an alternative definition to the fringe visibility.
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where the term − (Ω+ωl)nair

c , for nair ≈ 1, is the term that enforces the phase due to traversing

there and back through air is not double-counted over the sample’s thickness d/2.

We turn now to the first-order cross-correlations from the interferometer outputs. In total,

with the sample and realistic amplitude losses, the other cross-correlation term, Ã+
2 (Ω) is

A+
2 (Ω) = r̃12(Ω)|Ẽ(Ω)|2T (Ω) exp

[
−id

(
k(Ω)− Ω + ωl

c

)]
. (1.48)

Now by conveniently dividing Eq. (1.48) by Eq. (1.46), additionally multiplied by a complex,

frequency-dependent function r̃12(Ω) representing amplitude losses and any unbalanced phase

shifts in the two arms of the interferometer, yields an isolated spectral phase in the interference

fringes. Taylor expansion of k(Ω), as we will utilize later, allows for GDD=k′′L of Eq. (1.37) to

be extracted from a polynomial fitting of this unwrapped spectral phase.
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Chapter 2

Source of Energy-Time Correlated Photon

Pairs

2.1 Energy-Time Entangled Photon Pair Source

Sources of energy-time correlated photon pairs need to be developed and characterized in order to

utilize quantum correlations in advanced metrology and spectroscopy techniques. These photon

pairs, generated from spontaneous parametric down-conversion (SPDC), maintain strict, non-

separable conservation of energy and conservation of momentum, which has been demonstrated

to be advantageous for applications in quantum metrology and spectroscopy [7]. Additionally,

these SPDC photon pair sources inherently show some sort of correlation in frequency. This

correlation can be adjusted by strategic engineering of the phasematching function, S(ωs, ωi), for

applications such as quantum computing [53] and quantum communication [54]. For example,

by clever poling period design [55, 56] or material dispersion matching [57], the signal and idler

frequency correlation can be tuned to near frequency uncorrelation which is highly sought after

when working with other high-purity photonic degrees of freedom. Since we are interested in

two-photon quantum frequency conversion, most attention will be to this particular energy-time

degree of freedom.

Strong biphoton frequency anti-correlations arise from a spectrally narrowband pump ampli-

tude, E(ωp). This effectively bounds the up-converted spectral bandwidth or resolution of which

the signal and idler photons could combine into [7]. As long as the pump spectral bandwidth is

within that of the acceptance bandwidth of the up-conversion crystal phasematching or absorp-

tion band, the pump laser choice is adequate. Additionally, the pump laser choice has temporal

consequences. Narrowband continuous wave (cw) lasers pumping SPDC create biphotons which

coherently behave as ultrashort pulses [7, 38] which is beneficial for nonlinear two-photon pro-

cesses. The pulse-like behaviours from these cw-pumped biphotons will later require the utiliza-

tion of ultrafast optical dispersion compensation tools to remain transform-limited for two-photon
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quantum frequency conversion goal, as discussed in later chapters.

In addition to these physical photon pair source requirements, I chose the SPDC wavelength

conversion of 532 nm→1064 nm+1064 nm, from the availability of a <5 MHz linewidth cw

Nd:YAG laser [Coherent Verdi V-18] and for the potential application of the photon pair source

with commonly used two-photon fluorophores in the NIR. Additionally, this laser offered the

availability of very high optical powers and excellent beam quality due to the original laboratory

purpose of pumping (up to two) Ti:Sapphire laser oscillators. This was a very important feature

as even with the more nonlinear crystal of PPLN, frequency conversion rates are still low, let alone

back-to-back frequency conversions. To combat the low frequency conversion rates, high pump

laser power (1 W) was employed which resulted in ≈ 100 nW of down-conversion photon pairs.

This macroscopically measurable flux is still considered “single-photon-level” as the frequency

modes contained within the 60 nm spectral bandwidth exceeds that of the generated photon flux,

or less than one photon per frequency mode. This condition bounds the maximal photon flux at

Φmax = ∆ω = 1014 photons/s (18 µW) [8]. Additionally, as previously discussed, the temporal

coherence of these biphotons are on the 10s of fs – inversely proportional to the spectral bandwidth

[8] – which requires the rate of photon pair emission to exceed this to eliminate chance of overlap

(corresponding to > 6 µW of photon flux). This crystal and laser choice has been demonstrated

for biphoton frequency conversion by [9, 13].

However, there are some physical consequences to such high pump powers. Lithium niobate

is known for its lower damage threshold (compared to PPKTP) against photorefractive damage

[24, 58], although with the 5% doping of MgO this has been shown to be reduced [59]. In

particular, this wavelength combination of 532 nm and 1064 nm is especially detrimental due to

green-induced infrared absorption (GRIIRA) [24, 60] however this can be somewhat reduced by

high (> 100◦C) crystal operating temperatures [59, 61]. Additionally, increasing the pump waist

size in the crystal can lower the power density (at the cost of conversion efficiency), though, as

discussed later, this may result in some beneficial spatial down-conversion properties.

2.2 Type-0 SPDC in Bulk PPLN

We turn now to spatially and spectrally characterizing Type-01 SPDC. First, a theoretical model

is outlined with a practical thought of simulating experimental data. Next, experimental char-

acterizations are compared with the simulated theory. Finally, a simple, novel method for joint

spectral and spatial SPDC characterization is proposed, demonstrated, and compared with sim-

ulated theory.

1Type-0 refers to the polarization orientation of the three waves in the frequency conversion process where the

pump, signal, and idler waves are extraordinarily polarized with respect to the crystal’s optical axis (eee), as defined

in Section 1.3.1.
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2.2.1 Theoretical models

Following from the discussion SPDC in Section 1.3.1, the spatial and spectral emission properties

can be simulated by appropriate integration of the restricting functions representing the crystal’s

phasematching function, S(ωs,qs;ωi,qi), and the pump amplitude, Ap(qp, ωp). In this work, the

vector q = (kx, ky) is taken to distinguish the biphoton wavevector components which are in the

plane perpendicular to propagation, as seen in Fig. 2.1b.

As stated previously, the crystal phasematching function is dependent on the wavevector

mismatch, ∆k, between the three electric fields and the crystal’s periodic poling, Λ.

S(ωs,qs;ωi,qi) = N
√
ωsωisinc

(
∆kL

2

)
(2.1)

∆k = kp − ks − ki −
2π

Λ
(2.2)

where kp = (qp, kpz) and N is a normalization coefficient containing the nonlinear electric sus-

ceptibility of the three-wave mixing interaction [62]. Due to the spectrally broadband nature of

the down-conversion photon pair emission, the dispersive nature of the lithium niobate crystal

for the noncollinear wavevectors, q = (kx, ky), must be taken into account [63]:

kz(q, ω) = no(ω)

√
ω2

0

c2
− q2

ne(ω)2
. (2.3)

For simulating these quantities, a temperature- and wavelength-dependent refractive index is

required. In this work, the Sellmeier equation representing the refractive index of MgO:PPLN was

that provided by Gayer et al. [64] though recent studies have produced this new, high temperature

Sellmeier equation [65]. Other important temperature dependent quantities useful for simulation

include the poling period, Λ(T ), and crystal length, L(T ) [66].

The final factor shaping the down-conversion emission is from the pump amplitude, Ap(qp, ωp),
which, due to the near-monochromatic nature of the SPDC investigated here, enacts the condition

of energy conservation through that of a delta function in frequency,

Ap(qp, ωs, ωi) = exp

[
−1

2
q2
pw

2
p

]
δ(ωp − ωs − ωi) (2.4)

and a Gaussian in the pump field’s spatial distribution, dependent on pump waist wp. This can

be combined into the spectral density as

Ψ(ωs,qs;ωi,qi) = Ap(qs + qi, ωs + ωi)S(ωs,qs;ωi,qi). (2.5)

Using these definitions, the measured intensity can be calculated through integration over the

relevant spatial and spectral ranges. The spectral emission, as measured by an optical spectrum

analyzer, can be obtained via

I(ωs) ∝
∫
dωi

∫ |qlens|

−|qlens|
dqsdqi|Feff(ωi)Ψ(ωs,qs;ωi,qi)|2, (2.6)
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where the spatial integration is bounded by the perpendicular wavevector obtained by the limiting

numerical aperture of the collection optics. Further discussion on choosing parameters to simulate

experimental data can be found in Appendix B.2.2.

The spatial intensity distribution, as measured by a spatially-resolved detector or camera, can

be computed by the following integral:

I(qs) ∝
∫ +|qw|

−|qw|
dq

∫
dωsdωi|Feff(ωs, ωi)Fbp(ωs, ωi)Ψ(ωs,qs;ωi,qi)|2. (2.7)

where the bounds of the integration in momentum-space is up to |qw| of the pump waist divergence

angle in the nonlinear crystal and the frequency bounds over silicon’s absorption efficiency range,

represented by the function, Feff(ω). Because, in the case of implementation here, the wavelength-

dependent detection efficiency dropped so significantly over the spectral region of interest, spectral

discrimination was limited by a spectral bandpass filter, Fbp(ω).

2.2.2 Spectral and spatial source characterization

Moving from theory to practice, I now present the spatial and spectral characterization results

of a 5 mm crystal of MgO:PPLN for 532 nm→1064 nm+1064 nm SPDC.

Given the pre-existing knowledge of the noncollinear emission behaviour of the collinearly

phasematched SPDC source, I chose a short, 11 mm focal length aspheric lens to capture photon

pair emission up to a large opening angle and to facilitate uniformity between spatial and spectral

characterizations, as seen in Fig. 2.1a.

Spectral

The photon pairs to be measured were created from pumping a 5 mm PPLN crystal with 1 W of

continuous wave light, as seen in Fig. 2.1a. Spectral filtering removed the strong pump and allowed

the remaining photon pairs to be fiber coupled into a multimode optical fiber and measured on

an optical spectrum analyzer [Anritsu MS9710B].

These experimental results are used to determine more exact parameter choices for the sim-

ulated phasematching curves. A method for parameter choice in matching theory to experiment

is found in Appendix B.2.2. Given the resulting phasematching parameters, shown in Table 2.1,

integration of Eq. (2.6) over each experimental crystal temperature resulted in well-agreeing sim-

ulated spectra. Fig. 2.2 shows the simulated spectral FWHM bandwidths (as light-colored bars)

and central daughter photon frequencies overlaid the experimental phasematching (density plot).
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(a) Spatial and spectral characterization setups
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(b) Spatial wavevector definitions

Figure 2.1: PPLN characterization setups for spatial and spectral down-conversion properties.

Spatial

The spatial characterization, conceptualized in Fig. 2.1b, was performed for temperatures beneath

the degenerate temperature of Fig. 2.2. This reasoning becomes evident when compared with the

raw beam profiler images of Fig. 2.3. Here, since the CCD beam profiling provides no spectral

discrimination beyond the it’s nonuniform detection efficiency, I imparted spectral information

onto the spatial measurement with a 10 nm FWHM bandpass filter. This allowed me to investigate

the temperature-dependent spatial behaviour of the central down-conversion wavelength.

To reiterate, the noncollinear photon pair spatial properties beneath degenerate, collinear

frequency conversion configuration are investigated. This took the form of spatial “donuts” or

“cones” comprised of a specific Gaussian spectral distribution of radius r, or, as converted to
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Figure 2.2: Measured phasematching spectrum of experiment (density plot) and simulation (light-

colored bars, full-width half-maximum)

Λ 6.764 µm

wPPLN 38.7 µm

q 0.0760 rad/µm

Tdegen 132.4◦C

L 5 mm

feff 11.190 mm

Table 2.1: Simulation parameters for modelling PPLN photon pair source.

momentum-space, a perpendicular wavevector q. This was fitted to a two-dimensional Gaussian

offset by some radius r, presented in Appendix B.2.3. Spatial variances from the x- and y-

directions were extracted and averaged to display FWHM in error-bar form, as presented in

Fig. 2.4. Additionally, the effect of refraction from the large refractive index lithium niobate

to air was calculated for radii via paraxial Gaussian ABCD matrix propagation (described in

Appendix B.2.4) before these Cartesian spatial results were converted to momentum-space.

The temperature-dependent radii results showed the transition of a single wavelength (1064 nm)

from a noncollinear component wavevector (q) to the collinear, single-Gaussian spatial distri-

bution of macroscopic spectral intensity shown in Fig. 2.2. Additionally, these perpendicular

wavevectors q can be converted to opening half-angles via q
|k| = sin θ.
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(a) T = 120.3◦C (b) T = 131.9◦C (c) T = 137.7◦C

Figure 2.3: Measured SPDC spatial profiles as seen on the beam profiler camera. Noncollinear

emission within the 10 nm bandpass filter is only present for temperatures beneath the degenerate

collinear temperature of T=132.4◦C.

Experiment

Theory

Figure 2.4: Beam profiler spatial data and fit for T = 123.1◦C “cone”
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2.3 X-Spectrum: Spatial-Spectral Properties

Combining both the spectral and spatial information of SPDC emission yields a position-dependent

spectrum of an unusual structure. This arises out of a joint coherence between space and time

[67] due to symmetry enacted under the momentum and conservation laws in phasematching.

This has been demonstrated to exist in quadratic χ(2) nonlinear frequency conversion such as

SHG [68] and SPDC [69].

Spatial-spectral representations of this result in a hyperbolic structure commonly described

in the literature as “X-spectrum” or “X-wave”, as simulated in Fig. 2.5. For reference, the

degenerate, collinear SPDC configuration of interest is close to that of Fig. 2.5b. For temperatures

greater than T = 132.4◦C, the frequencies separate and become non-degenerate with continued

collinearity, as depicted in Fig. 2.5c.

The ramification of this property is an unfactorability between space and time [69] which can

result in extreme (femtosecond/micrometer) spatiotemporal localization [70]. It is this property

we are interested in utilizing and confirming for frequency conversion later on.

(a) T = 129.1◦C (b) T = 132.4◦C (c) T = 136.5◦C

Figure 2.5: Simulated X-spectra of Type-0 SPDC in PPLN for temperatures below and above

degenerate temperature.

These X-spectra are dependent on various crystal and pump parameters, as characterized by

Lerch et al. [71]. Poling period, Λ, tuning behaves similar to temperature tuning of Fig. 2.5 by

shifting around temperatures for degenerate collinear (near q = 0) configuration.

2.3.1 “X-blobs”: A single-shot measurement method for spatial-spectral characterization

X-spectra is typically acquired by micrometer-level raster-scanning (x,y meandering) of an optical

fiber over some down-conversion imaging plane and measuring the spectrum with a fibercoupled
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optical spectrum analyzer. This is a time-consuming measurement, especially with low-rate

photon pair sources or inefficient detection.

Given the measurements described in Section 2.2.2, I formulated the following simple method

for extracting spatial-spectral X-spectrum information. From these SPDC “cone” images of

Fig. 2.4, perpendicular wavevector parameters can be extracted and combined with spectral filter

parameters to yield spatial-spectral “X-blobs”. These Gaussian approximations of X-spectra for

a given wavelength band are made possible by using a spatially discriminating detector (CCD

camera) and spectral filters. This advantageously allows for spatial-spectral information to be

extracted at each crystal temperature from single-shot measurements.

The mean radius values (converted to perpendicular wavevector, q0) and extracted variance

(σq) results of the spatial “cone” Gaussian of Appendix B.2.3 (as displayed in Fig. 2.4) can be

combined with the spectral bandpass filter information (ω0, σω) into a two-dimensional Gaussian.

These “X-blobs” are defined in Eq. (2.8).

Fxblob(ω, q) = bkg +N exp

[
− 1

2(1− ρ2)

(
(ω − ω0)2

2σω
+

(|q| − q0)2

2σq
− 2ρ(ω − ω0)(|q| − q0)

2σωσq

)]
(2.8)

Accurate conversion from Cartesian coordinates to wavevector is achieved via ABCD matrix

Gaussian beam propagation, as discussed in Appendix B.2.4.

This, of course, is not a full X-spectrum measurement as its spectral information is artificially

bound by transmission of the bandpass filter. However, since most down-conversion sources are

designed for use at a single, particular wavelength, the use of an appropriate bandpass filter in

this method will provide all the useful spatial information.

(a) T = 123.1◦C (b) T = 126.1◦C

0

(c) T = 131.9◦C

Figure 2.6: Density plots=theory, contours=experiment for lens f=175 mm

The extracted X-blobs and simulated X-spectra for various temperatures beneath degenerate

configuration show good agreement, as seen in Fig. 2.6.
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2.3.2 Discussion

When any new entangled photon source is built, its spectral properties, among others, are char-

acterized. Most often with SPDC sources, the multimode spatial properties are disregarded when

projected onto a single-mode optical fiber for more convenient quantum optical manipulation [30].

This is all well and good until mixed spectral components reduce necessary photon state purity

or Hong-Ou-Mandel interference visibilities [72]. In the literature this has been addressed by

Guerreiro et al. [73] among others for strategic optical design to limit the collection of unwanted

frequencies without resorting to spectral filtering which lowers count rates. What this X-blob

method offers is simple, quick technique for measuring the spatial distribution for the wavelength

of interest.

The limitations of this method stem from the competing factors of the precision or variances of

these X-blobs. First, in the frequency dimension, the bandpass filter widths dictate σω regardless

of spatial distribution. Similarly, the bandpass filter affects the amount of counts incident on

the camera which, dependent of camera noise properties, affects the signal-to-noise ratios of

the measurement. Additionally, this method can only measure noncollinear phasematching of

the wavelength(s) of interest. For this particular example, this resulted in X-blobs beneath

degenerate collinear phasematching temperature where frequency conversion is weak (see Fig. 2.2

for relative temperature-dependent intensities). Thus, due to noise, no accurate pump waist-

dependent variance could be extracted. However, depending on the camera detection efficiency

or SPDC photon pair flux, this may be possible [74], thus providing estimates of spatial-spectral

entanglement [75].

To conclude, in this chapter I characterized and simulated the spatial and spectral properties

of Type-0 SPDC generated from bulk PPLN. This showed good agreement and appropriate

suitability for a biphoton up-conversion experiment in comparison to the literature. Additionally,

I proposed and demonstrated a new, simple method for characterizing the coupled spatial-spectral

properties of SPDC through an relevant estimate of the X-spectrum.
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Chapter 3

White Light Interferometry for Dispersion

Characterization

Biphoton quantum frequency conversion requires dispersion cancellation for the femtosecond-

resolution photons to efficiently meet and convert in a nonlinear medium. Here, I present a

characterization of a necessary building block for quantum frequency conversion, namely disper-

sion manipulation via a low loss prism compressor. This tool is characterized using white light

interferometry from a wavelength-scanning laser. The methodology is based closely off of the

well-established field of optical coherence tomography (OCT) and the concepts of interferometry

introduced in Section 1.5.

3.1 Inspiration: Spectral Interferometry By Way of Optical Coherence Tomog-

raphy

There is a large established body of research on optical coherence tomography who study the

internal structure of samples such as living eyes or other objects [42, 76, 77], with many different

types of interferometers. Reflections off of different structures in the sample can be extracted from

the interference fringes then Fourier-transformed to relevant spatial units. The interferometer

stability and quality of fringe data to accurately extract the spectral phase is similar in this

present application to that for OCT prior to the extraction of the desired point spread function

[78]. In order for spatial structures of samples to be most precisely extracted from interference

fringes, group delay dispersion and other orders of phase must be compensated [79]. This can

either be achieved via data post-processing [80] or by precisely compensating dispersion with

glass in the reference arm of the interferometer (babinet prism) [81].

There are several methods in the OCT literature to extract the spectral phase. Due to

the availability of a high speed swept-source laser at the central wavelength and bandwidth of
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interest, I chose to design a white-light interferometer similar to those used in swept-source OCT

[77, 80, 81].

The experimental technique demonstrated here may be useful for interferometry with high-

speed swept lasers, but the data analysis can be extended to any sort of spectral domain inter-

ferometry. In addition, the technical data manipulation for phase retrieval from a real signal is

useful for a large variety of applications which require data transformations such as a Fourier

transform.

3.2 Dispersion Characterization Experiment

3.2.1 Swept-source laser

High-speed swept-source lasers are typically made from broadband semiconductor optical ampli-

fiers illuminating a quickly rotating hexagonal grating, allowing for a rapid sweeping of narrow

spectral line from short to long wavelength to be coupled into optical fiber [82, 83]. This frequency

sweep is inherently fairly linear in time(up to 99%) [84], however calibration of this frequency

sweep is often needed for precise phase or reflectometry extraction, as will be discussed in Sec-

tion 3.2.3.

The swept-source laser used in this work is the Santec HSL-1000 which is centered at 1064 nm

and continuously swept 74 nm over 21 µs at 28 kHz sweep rate. Similar to other OCT experiments

using this laser [81], the sweep signal is triggered off of a portion of a bandpass-filtered beam.

3.2.2 Swept-source white light interferometer

Since this is a frequency-sweeping interferometer, the displacements of the reference and the

sample arms remain constant over the recording of the interference fringe. Because of this, no

parallel calibration of path difference was required [81, 85]. Interference fringes were taken at five

different reference arm displacements demonstrating reliability in the spectral phase extraction

method.

High interference stability is needed for accurate extraction of the spectral phase. As such,

the visibility of the fringe is maximized by optimizing the polarization with a half-wave plate

prior to entering the interferometer. This is also important in OCT applications as polarization

and chromatic aberrations from dispersion affect the longitudinal resolution within the sample

[81].

Similar to other OCT and white light interferometry experiments, a balanced detection scheme

was employed to increase the photodiode sensitivity and to reduce power fluctuations [81, 86].

Additionally, subtraction between each interferometer output allows for the constant intensity

background terms 〈Ẽ2
1 (t− τ)〉 and 〈Ẽ2

2 (t)〉 from Eq. (1.43) to be removed.
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To allow for live manipulation and control of interferometer fringe data, I designed a LabVIEW

program. This controlled and saved each photodiode electrical signal from the oscilloscope to

apply background subtraction and normalization by D1−D2
D1+D2 in addition to individual detector DC

voltage offset adjustments. In addition, the LabVIEW program displayed the real-time magnitude

of Fourier-transformed normalized fringe signal for more accurate path length displacements.

-
Trigger

Balanced
Detection

PBSBS

d
D1 D2 Half-wave plate

Photodiode

(Polarizing) 
BeamSplitter

Bandpass filter

Polarizer

Pick-off mirror

Fiber coupler

Retroreflector

Figure 3.1: Reference swept-source white light interferometer for sweep linearization in an offset

Michelson configuration.

3.2.3 Data processing: Sweep manipulation

As is the case with other Fourier domain interferometry experiments, special care needs to be

taken to make sure that the wavelength sweep is linear in time, or that it is being sampled equally

in time [87].

Many experimental and computational techniques have been developed to linearize the fre-

quency sampling, for either swept-source or spectral domain interferometry. For example, Ahn

and Kim [88] built an empty auxiliary interferometer and determined the swept-laser’s instanta-

neous frequency from its extracted spectral phase and used this to resample the signal. Other

techniques include implementation of an auxiliary Fabry-Perot cavity to give a tight frequency-

time reference [89]. In addition, fringe counting of the signal from an additional unbalanced

interferometer can be used [90].

Contrary to other spectral-domain OCT (SD-OCT) implementations, my application of white

light interferometry for a single device characterization has no need for fast calibration and

computation rates, which is a serious motivator of different calibration and rescaling methods

in the literature. Here, a variant of linearizing with an instantaneous frequency was employed.

From an empty, unbalanced interferometer signal, the phase, φ(t) was obtained via the argument

of a Hilbert-transformed complex analytic interference fringe signal (see Section 3.3.2). Since

φ(t) = k(ω(t))(d) = ω(t)τ = ω(t) cd , the abscissa, or x-axis, can be replaced with an extracted

time-dependent angular frequency

ω(t) = φ(t)
c

d
. (3.1)
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Figure 3.2: Comparison of measured phase extracted from linearized vs unlinearized ω(t) as taken

in the experimental setup of Fig. 3.1.

A downside to this technique is that the frequency instabilities of individual wavelength sweeps

are not observed. However, the results of this linearization are within experimental error. More-

over, this application of swept-wavelength interferometry does not require the same level of phase

stability as no Fourier transform nor multidimensional scans (image generation from B-scan1) are

needed.

In addition to linearization, other sweep manipulations in post-processing are needed, such

as transforming wavelength (λ(t)) to angular frequency (ω(t)) to shifted frequency (Ω(t)). The

rescaled interference fringe then is processed in Mathematica with a Wiener filter [91, 92] to

reduce the Gaussian noise on the signal prior applying mathematical transforms. It has also

been shown [82] that this additional data smoothing processing step can increase the resolution

of OCT and phase reconstruction accuracy [85].

Since this linearization method is based on physical mirror displacements, the uncertainty

resulting from different mirror displacements between the characterization sweep and the sample

sweep were investigated. It was hypothesized that this uncertainty should be small, as this is a

first-order, non-frequency-dependent shift. To test this, I generated theoretical dispersed fringes

of {Air,+glass} with the frequency abscissa generated from imperfect theoretical interference

fringes offset by the maximum positional time-delay micrometer offset. This yielded a 4 fs2

uncertainty, discussed in Appendix A.4.

3.3 Spectral Phase Extraction

Using white light interferometers, extraction of the spectral phase can be useful for measuring

the group velocity dispersion of samples, such as water [93] or the sample’s index of refraction

[94].

1A-scan is defined in OCT as a one-dimensional depth scan. A common benchmark often cited in the literature

is a B-scan rate, or a two-dimensional image rate for OCT systems [83]

33



To validate the characterization results, two methods were taken to extract the spectral phase

from the resulting interferometer fringes. First method is derived from [80] and is a variant

of extracting the phase via φ = arctan
(

Re[signal]
Im[signal]

)
. The second method is based on another

conceptually simple idea of fringe counting. If every time a fringe goes through zero, a π phase

shift occurs, then spectral fringes should yield a spectrally-dependent zero spacing or chirp over

the spectral fringe. Thus, by recording the frequency of a phase zero crossing, the spectral phase,

φ = nπ where n is an integer, can be extracted.

These two methods were used to verify the group delay dispersion imparted by an experimental

implementation of a prism compressor.

3.3.1 Fringe counting

Following from the interferometry background of Section 1.5.1, the spectral phase imparted onto

the electric field from the sample is of the form:

Ẽ2(Ω) ≈ T (Ω)Ẽ1(Ω) exp

[
−id

(
kl + k′lΩ +

kl
′′

2
Ω2 +

kl
′′′

6
Ω3 + . . .

)
+ id

(
Ω + ωl
c

)]
. (3.2)

The GVD coefficient, k′′l , can be determined from a polynomial fit of this frequency-dependent

phase, extracted via fringe zero-crossings. Then, from multiplication of known sample thickness,

d, the GDD can be calculated.

This fringe counting method can be visually demonstrated in Fig. 3.3 from interference fringes

modified by 24 cm of NFK51A glass (GDD=8100 fs2). The phase is extracted from counting zero-

crossings of the spectral fringes by a Mathematica function2 and multiplying by a factor of π.

3.3.2 Hilbert method

Hilbert transform is seen as a more useful tool in OCT for determining dispersion in a sample

over that of the Fourier transform as the multiple reflections resulting in a complicated phase

dependence in addition to chromatic dispersion [80].

As previously alluded to, the Hilbert transform (discussed in more detail in Appendix A.1)

takes a real-valued signal and generates the imaginary part of a complex analytic signal. With

this now complex analytic signal, the phase can be extracted from a general time-dependent

signal via

φ(t) = arctan (y(t)/H{y(t)}) , (3.3)

2Zero-crossing Mathematica function modified from http://mathematica.stackexchange.com/questions/10640/find-

zero-crossing-in-a-list modified and reproduced in Appendix B.1
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Figure 3.3: Fringe counting method demonstrated by an interferometer with 24 cm of NFK51A

glass over the relevant spectral bandwidth.

As is the case here, the time-series data obtained from the oscilloscope is mapped to shifted

frequency to obtain φ(Ω). Similar to the previous method, a third-order polynomial can be fit to

the unwrapped spectral phase and the GDD can be related directly from fitting coefficient, b.

φ(Ω) = φ0 + aΩ +
1

2
bΩ2 +

1

6
cΩ3 (3.4)

3.4 Interferometric Characterization of a Prism Compressor

The prism compressor, as discussed in Section 1.4.3, is an integral tool in ultrafast optics for tuning

the chirp, or related GDD, of ultrashort pulses. Characterization of such a prism compressor in

the experimental setup was a priority for the ultimate goal of photon pair quantum frequency

conversion where low-loss dispersion compensation is necessary. Beyond verifying the accuracy

of theoretical prism compressor equations [18], practically measuring both zero and calculated

dispersion of up-conversion of down-conversion setup were of interest.

Characterizing prism compressors within white light interferometers is not unheard of. Na-

ganuma et al. [85] demonstrated white light interferometry characterization of a prism pair within

a laser cavity. Here, using an interesting combination of swept-source white light interferometry

and two spectral phase extraction techniques, I present the results of a series of interferometer

measurements. Such results verify the dispersion imparted by a doubly-folded prism compres-

sor set for three different positions with two additional known sample comparisons, inspired by

[81]. Additionally, two phase extraction methods – the Hilbert transform method and the fringe

counting method – are implemented on experimental and theoretical data, as previous discussed

with extracted spectral phase results within experimental error
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Figure 3.4: Michelson interferometer built around existing prism compressor for phase extrac-

tion. Glass sample placed in either interferometer arm according data set of interest. Balanced

detection is obtained from subtraction between detectors D1 and D2. Depending on the data set

at hand, the glass block was placed in either the prism compressor or empty interferometer arm.

3.4.1 Measurement test design: data sets

Verifying prism compressor’s accuracy when set to the calculated biphoton up-conversion setup

dispersion was of prime interest. Since it was not possible to include the entire biphoton por-

tion of the setup in the interferometer due to focusing difficulty of crystal to crystal, the net

Mach-Zehnder interferometer phase measured was that of one arm: prism compressor, set to

the calculated negative “setup” dispersion (designated {Air,-setup} in contracted experiment

notation defined in Fig. 3.5).

-setup

{Air, -setup} {Air, -glass} {Air, +glass} {Glass, +glass} {Air,Glass -glass}

-glass +glass +glass -glass

Figure 3.5: Prism compressor characterization dispersion scenarios and data set notation. Here

the green blocks refer to the prism compressor and it’s dispersion setting whereas the orange

block is the BK7 block of glass.
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Since prism compressors can produce positive GDD in addition to negative GDD, it was

desirable to find that zero dispersion point. Given the availability of a 0.961 cm BK7 glass

block3, two other prism compressor positions were chosen to equal positive and negative GDD

values of this glass. The dispersion from these prism compressor positions were also measured

alone, as seen in Fig. 3.5.

Under the premise that equal phase in both arms of an interferometer will cancel, two in-

terferometer configurations of “zero dispersion” were measured for prism compressor settings of

“+glass” and “-glass”. For each of these five interferometer dispersion configurations (Fig. 3.5),
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Figure 3.6: Example interference fringes from “{Air,+glass}” prism compressor dispersion and

interferometer setting with five different displacements.

five interferometer displacements were chosen, qualitatively described as “lots of fringes” and

“some fringes”, on both sides of zero path difference (single fringe). The shorthand for dispersion

in each interferometer arm making up these characterization scenarios are depicted in Fig. 3.5.

For consistency’s sake, the relative interferometer arm displacement was set relative to the same

Fourier transform frequency displayed live on the LabVIEW program. Using this method, it was

found that position uncertainty of all measurements was within 9 µm. An example data set,

normalized to total power from both interferometer outputs, is seen in Fig. 3.6.

Using the two phase extraction procedures described in Section 3.3, the quadratic fitting

coefficients of Eq. (3.4) were extracted for each interferometer displacement position at each

dispersion scenario. Example fitting results are located in Appendix. A.3.

For the sweep linearization, interference fringes from an empty, “dispersion sample-free” inter-

ferometer are needed. Since the quadruple-pass prism compressor of test displaces beam height,

it was not possible to simply “remove” the prism compressor to measure the empty interferome-

ter. Because of this, a second empty interferometer was built for fringe measurement at the five

relative displacements, as seen in Fig. 3.1. The phase extracted from these empty fringes were

used to generate a linearized abscissae for subsequent measurements, as per the method described

in Section 3.2.3.

3I would like to thank Dr. Kevin Resch for allowing me to near-indefinitely borrow this optical component.
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3.4.2 Prism compressor characterization results

For each interferometer net dispersion scenario, the phase of mirror Positions 1, 2, 4, and 5 were

extracted. For the Hilbert transform method, this reduced the phase variations/uncertainty from

the zero-path delay single fringe of Position 3, as noted in the literature. This also allowed for

more direct comparison with the fringe counting method, which required multiple fringes or zero-

crossings to extract the spectral phase. Fitting results for {Air, -setup} are shown in Table A.1.

It is interesting to note that the sign change is conserved moving across zero-path delay. Recall

that the quadratic fitting coefficient, b, is related to GDD by b = −k′′l d
2 = −GDD

2 .
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Figure 3.7: GDD measurements from prism compressor via WLI.

The dispersion of the prism compressor for different dispersion scenarios were adjusted via

the prism-retroflector distance, q, which is related to the interprism length, L. Upon further

inspection, the prism insertion, h, was not in the position assumed in calculating appropriate q

values for test within the interferometer. This resulted in a constant GDD offset of -526 fs2.

The extracted interferometric GDD results from the prism compressor, shown in Table A.2,

can be viewed in two ways. First, by the stand-alone, q-dependent prism compressor-imparted

dispersion results, as seen in Fig. 3.7. Second, to validate measurements with a known glass

sample, the prism compressor is set to compensate by the same amount, as seen in Fig. 3.8.

3.4.3 Discussion

In this chapter, I presented the characterization of a doubly-folded prism compressor using white

light interferometry. The techniques utilized here were inspired by the field of optical coher-

ence tomography, and specifically, swept-source optical coherence tomography. Based on this, I

developed a white light interferometer using a frequency-swept laser and extracted the spectral

phase of three different prism compressor GDD positions via two methods: Hilbert transform

and fringe counting. By characterizing and correcting systematic errors such as the laser sweep
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Figure 3.8: Mach-Zehnder interferometer dispersion measurements with “cancellation” from a

0.961 cm BK7 block as a function of prism-retroreflector distance, q.

linearity and the prism insertion, final results yield GDD tunability from simulated values of

+560 fs2 to -1973 fs2 with separate experimental phase extraction method results nearly within

experimental uncertainty of these results. From just the values measured here, the dispersion

cancellation requirements for the proposed biphoton up-conversion experiment can be fulfilled by

this ultrafast optical device. Additionally, the data processing and experimental techniques were

validated by successful interferometer “cancellation” of prism compressor dispersion by a known

sample of BK7 glass.

An advantage for this technique over others from the availability of a light source with the

correct central wavelength and bandwidth for the intended quantum light source use. Many other

characterization techniques exist for characterizing prism compressors, such as autocorrelators or,

as in the case of the identically designed doubly folded prism compressor of [48], an implementa-

tion of frequency-resolved optical gating. It is additionally possible for spectral fringe and phase

extraction from such a light source on a spectrometer, similar to spectral-domain OCT. This

option was somewhat limited by availability of an appropriate spectrometer. The 1060 nm range

is often problematic for detector sensitivity as it falls near the detection efficiency edges of both

Si-based and InGaAs-based spectrometers. This spectral domain-based method would have also

required a critical pixel-to-frequency calibration for accuracy.

Finally, white light interferometry and the techniques discussed here offer tantalizing experi-

ment opportunities for translation from classical to quantum. Crossover works such as [4–6, 95]

among many others have demonstrated interesting quantum optical white light interferometry.

Given the mostly non-interacting nature of the quantum optics subdiscipline with the optical

coherence tomography subdiscipline, this work presents some of the key concepts and important

data extraction techniques of OCT for the quantum optics reader.
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Chapter 4

Dispersed Time-of-Flight Characterization of a

Telecom Photon Pair Source

Chromatic dispersion has been the main antagonist against the quest for quantum frequency

conversion of SPDC photon pairs presented thus far in this thesis. However, for applications

outside of this goal, dispersion can be a useful tool for the study and characterization of SPDC

photon pairs. This chapter discusses collaborative work I participated in toward the theoretical

and experimental characterization of a similar PPLN-based photon pair source at the telecom

wavelength band where dispersion played a pivotal role in the method.

Entangled photon pairs suited for telecommunications [50, 71, 96, 97] infrastructure around

1550 nm provide an interesting test bed for quantum communication and quantum information

protocols [54]. While telecom single-photon level detection tools have had poor sensitivity until

recently, the development of spectrally broadband, high detection efficiency superconducting

nanowire single-photon detectors (SSPDs or SNSPDs) [98] has made new methods of entangled

photon sources characterization possible.

By utilizing chromatic dispersion from long, low loss Corning SMF28e+ single-mode optical

fibers, introduced in Section 1.4.3, the SPDC phasematching tuning curves of Type-0 PPLN can

be extracted from time-of-flight measurements between each photon of the pair.

Fiber spectrometers have previously been used to measure various spectral properties of pho-

tons pairs [50, 99–101]. Here I present a method for extracting the spectral phasematching

tuning curves of entangled photon pairs generated from the process of Type-0 SPDC based on

time-resolved measurements in a telecom fiber spectrometer.
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4.1 Characterizing a Telecom Photon Pair Source

The photon pair source of interest is a 10 mm bulk PPLN crystal phasematched for Type-0 down-

conversion at a given crystal temperature T , as seen in Fig. 4.1. The 780.2 nm cw pump laser

is removed from the photon pairs by means of a dichroic mirror and two longpass filters and the

photon pairs are split into two paths for spectral analysis. Since these photon pairs are both of

CW LASER L1 L2 HWP PBS

SSPD

DMPPLN

FC

T
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Δt

1
2

12

2xLP M

SMF M FC

SSPD SMF

OSCILLOSCOPE
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Figure 4.1: Setup used in the experiment. HWP: half-wave plate, T: temperature controller, L:

lens (L1- F=125.0 mm, L2- F=75.0 mm), BB: beam blocker, DM: dichroic mirror, LP: longpass

filter, PBS: polarization beam splitter, M: mirror, FC: fiber couple (F=8.0 mm, A240TM-C),

SMF: single-mode fiber, SNSPD: superconducting nanowire single-photon detector.

the same polarization, a half-wave plate set to 22.5◦ rotates the polarization as to split the signal

and idler photons equally on a polarizing beamsplitter. Photons from each of the separate paths

are coupled to single-mode optical fiber and, after propagating through varying lengths of fiber,

are each detected by SSPDs. The resulting electrical signals are analyzed on a fast oscilloscope

to extract time delays between the two paths which are dependent on the signal and idler photon

group delays through the fibers.

4.2 Dispersion Characterizations of Optical Fibers

As discussed in Section 1.4.3, long optical fibers can be used as a fiber spectrometer. This is

an especially advantageous measurement technique in the telecom spectral range as absorption

losses are quite low allowing for still appreciable photon transmission and detection in long optical

fibers.

The chromatic dispersion in a single-mode optical fiber, as discussed in Section 1.4.2, is a

temperature-dependent combination of frequency-dependent material dispersion and frequency-

and waveguide-dependent waveguide dispersion [41]. This can be simulated given the appropriate

silica Sellmeier equation and fiber parameters. However, due to the long lengths of optical
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fiber needed to perform the time → frequency Fourier transform, the existence of temperature

fluctuations, material inhomogeneities, and other systematic experimental uncertainties can affect

the accuracy of such spectral measurements.

4.2.1 OPO measurements

Previous works [100, 101] from our group have calibrated the fiber spectrometer with a known

light source at one or two frequencies. In this work, due to availability of a tuneable OPO pulsed

light source, group delays were measured over the range of 1310 nm to 1660 nm, the entire spectral

range of the idler photon.

In order to accurately calibrate the long optical fiber of the fiber spectrometer, 16 wavelengths

from an OPO were used to obtain wavelength-dependent group delay information. These pulses,

ranging between 1310 nm and 1660 nm in approximate 20 nm increments, were coupled into

optical fiber and split using a polarizing fiber beamsplitter with one portion going to a triggering

fast photodiode, and the other pulse portion to a long fiber sample with a second fast photodiode.

Care was taken to equalize OPO pulse optical power to keep nonlinear Raman broadening to a

minimum and also to maintain uniform, precise electrical signal measurements.
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Figure 4.2: Measured and interpolated OPO relative time delay over a 80 m single-mode optical

fiber.

Using a fast oscilloscope1, histograms were constructed from the time delay information be-

tween the long fiber sample and the triggering arm for each wavelength. By analyzing the mean

value of the timing delay histogram for different OPO wavelengths, the relative group delay

could be extracted, as seen in Fig. 4.2. These measurements resulted in a list of OPO wave-

lengths and associated time delays (measured modulo the subsequent OPO pulse delay). This

relative time delay exhibits a near quadratic behaviour in the telecom wavelength band resulting

1I would like to thank Dr. Vadim Makarov for lending me this beautiful, 20 GHz bandwidth, 80 GS/s oscilloscope

and fast photodiodes.
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from the interplay of material resonances in the UV and IR [41]. The fiber spectrometer calibra-

tion was completed by fifth-order interpolation over these results. These fiber properties, used

in conjunction to the experiment calibration of the next section, allow for the unknown SPDC

phasematching tuning curves could then be accurately determined from single-photon time-delay

information.

4.2.2 Calibrating experimental time delays

1
BP

2 F

SMF

SMF

3

(a) Configuration # 1

1
BP

2 F

SMF

SMF

3

(b) Configuration #2

Figure 4.3: Optical element configurations inserted into the dotted boxes of Fig 4.1 to determine

zero delay for a given single-photon wavelength. BP: bandpass filter, SMF: single-mode fiber, F:

longpass filter.

With frequency-dependent time delays obtained for both 80 m spectrometer fibers, we then

sought to reconcile the fiber characterization results with that of the photon pair experiment. If

the 80 m spectrometer fiber was the only length used in the experiment, the wavelengths from

frequency-dependent delays would be easy to extract. However optical fiber is used in multiple

areas of the experimental setup for light transportation, including down into the cryogenic su-

perconducting nanowire single-photon detectors (SSPDs). These additional lengths need to be

taken into account for their role in stretching the pulses.

The following scheme was devised by my collaborators to determine the true “zero delay” of the

photon pair experiment so only the dispersion from only the spectrometer fibers could contribute

to the resulting spectral measurements. This method was based on the effective simultaneity

of SPDC photon pair generation time to determine the systematic time delay between signal

and idler. The SPDC generated from 66.9◦C crystal phasematching is limited by a 1560 nm

bandpass filter (10.75 nm FWHM) then equally split via a halfwave plate-polarizing beamsplitter

combination, as described in the previous section. One of the paths is additionally filtered by
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a 1500 nm longpass spectral filter. This filter configuration remains constant throughout the

time delay calibration tests. This scheme is depicted in Fig. 4.3. First, time delays are recorded

on a fast oscilloscope for two short single-mode optical fiber patch cables. This configuration

should provide the least (though still noticeable) pulse spreading between the degenerate photons.

Finally, a combination of the long 80 m spectrometer and short fiber is performed: time delays

between a short and long fiber are measured.

These time delay results are subtracted from the variable phasematching temperature photon

pair results to obtain a full system “short” time delay ∆tshort (Eq. (4.1)) and “long” time delay

∆tlong (Eq. (4.2))

∆tshort = tsh,T − tcal,sh (4.1)

∆tlong = tl,T − tcal,l. (4.2)

These are then combined to form the final time delay, ∆t of Eq. (4.3) which is comparable to the

interpolated OPO fiber measurements.

∆t = ∆tsh,T −∆tl,T (4.3)

Using this new ∆t, derived from the 1560 nm calibration reference, the wavelength of the photons

from a different crystal temperatures can attainted from the OPO time-delay interpolation of

Fig. 4.2.

4.3 Photon Source Characterization Results

After each photon is detected on cryogenic SSPDs, the electrical signals are analyzed into his-

tograms on a fast oscilloscope. This yielding traces visibly similar to those taken on an optical

spectrum analyzer. However, the time-delay-to-wavelength conversion requires careful fiber dis-

persion analysis.

The central wavelengths can be extracted directly for time delays within the OPO fiber

calibration. This corresponds to the lower wavelength photon of the pair. Utilizing the energy

conservation condition, the central wavelength of other photon from the pair can determined.

The resulting central wavelengths are plotted (dots) in Fig. 4.4a.

The photon spectral bandwidths can additionally be extracted from the central wavelength

measurement interpolation by use of Eq. (4.5)

∆t =
d

dλ
t(λ)∆λ (4.4)

which, when rearranged, yields

∆λ =
∆t
d
dλ t(λ)

(4.5)

The experimentally extracted photon bandwidths are shown (red) in Fig. 4.4b.
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4.3.1 Modelling a telecom SPDC source in PPLN
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Figure 4.4: Simulated PPLN tuning curves (density plot) with fiber spectrometer central wave-

length results (points).

Using the experiment-to-simulation matching procedure mentioned in Appendix B.2.2, I chose

a poling period, Λ, based on the solution to ∆k = 0 of Eq. (2.2). Given the perpendicular wavevec-

tor (q) determined from the beam waist in the PPLN crystal and the degeneracy temperature

of the tuning curve, the simulation parameters of Table 4.1. Simulation results of this SPDC

Λ 19.473 µm

wPPLN 39 µm

q 0.0720 rad/µm

Tdegen 71.9◦C

L 10 mm

Table 4.1: Simulation parameters for modelling telecom PPLN photon pair source from fiber

spectrometer measurements.

source were obtained spectrally and spatially integrating the functions defined in Section 2.2.1

(and Mathematica code modelled in Appendix B.1) to good experimental agreement, as seen

in Fig. 4.4. Bandwidths of these computed spectral intensities were fitted with Gaussians to

determine FWHM results.

4.3.2 Discussion

When paired with high detection efficiency SSPDs, long single-mode optical fibers provide a pow-

erful tool in the arsenal of telecommunication-band quantum optical physicist. Such broadband

single-photon sensitive spectral characterization tools in this wavelength regime are requisite for
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SPDC source development for quantum communication. This method, however, due to material

absorption losses, is limiting in its application for the NIR as absorption for 800 nm is 5 dB/km

[102] compared with the pleasantly low 0.20 dB/km of 1550 nm [103] although single-photon

detection efficiencies at 800 nm are not near as demanding (necessary cryostat for SSPDs) nor

low.

Overall, this experimental characterization method shows good agreement theoretical simu-

lations. It is evident that at the largely non-degenerate wavelengths of Fig. 4.4a, the uncertainty

of the fiber spectrometer begins to increase. This is due to the GVD from the material proper-

ties of the fiber in the wavelength range of interest. In this experiment, the system calibration

was completed at 1560 nm, which has an anomalous GVD parameter of Dλ ≈ +17 ps/km-nm.

Given a system maximum of δt = 25 ps, this results in a FWHM measurement uncertainty of

∆λ = δt
|Dλ|L × (2

√
2 ln 2) = 43 nm. The resolution of the fiber spectrometer can be calculated

from δλ = cδt
dnL , which with the current system jitter is estimated to be 8 nm.

From my own exploration of the phasematching parameter space, I’ve observed that there

exists no method to “squeeze” or “compress” the tuning curves of Type-0 cw SPDC, only shift

in temperature. At the far, most non-degenerate wavelengths of Fig. 4.4a, the maximal central

wavelength discrepancy is 42 nm (though still within uncertainty), although this should be noted

that this is up to 215 nm away from SPDC degeneracy at 1560 nm – quite a large characterization

range.

This particular implementation of the OPO fiber characterization was disadvantageous in

that it didn’t allow for an absolute time delay reference with known wavelength to compare the

OPO characterization directly to photon pair measurements. This made extraction of the group

velocity and GVD parameter from measurements much more difficult, especially to analyze over

such a short 80 m length of optical fiber. Given the large spectral bandwidths of the photon pairs

(Fig. 4.4b), any longer of a spectrometer fiber and the temporal spreading would have been too

much to handle. However, the experimental setup calibration explained and implemented here

could extend application of this technique to other time-delay measurement scenarios.

In the fiber calibration, since the OPO pulsed at a rate of 76 MHz, this resulted in a pulse

period of 13.6 ns. However, due to the long length of the spectrometer fiber, multiple pulses

existed in the fiber at a given time. This meant that the wavelength-dependent time delays

were measured with respect to different pulses rather than the same pulse split two ways. Ad-

ditionally, the repetition rate of the pulsed Ti:Sapphire laser which pumped the OPO was not

perfectly stable, causing additional delay uncertainty. In the photon pair source characterization,

the temporal resolution of the photon pair measurements are limited by the SSPDs with at an

estimated 25 ps timing jitter. However, such long, 80 m fiber lengths did not exhibit a noticeable

temperature-dependent phase or stress drift, even as the wavelength calibration was performed

over two days, pointing to more practical use of such fiber lengths.
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Chapter 5

Biphoton Up-Conversion

We now arrive at the natural culmination of the preceding chapters: up-conversion of down-

conversion, the ultimate test of energy-time entanglement. We saw the development of the energy-

time entangled photon pair source in Chapter 2 and the subsequent characterization of a chromatic

dispersion-tuning prism compressor in Chapter 3. Here I bring it all together, an experiment to

combine transform-limited biphoton wavepackets within a second nonlinear crystal to perform

ultrafast coincidence as a first step toward entangled two-photon absorption. Additionally, from

the process of “photon hunting” for such weak up-conversion signals, I also present a set of tools

and measurement techniques for manipulating light in the ray-optic limit and probing properties

of crystal phasematching.

Motivation for such an experiment has been discussed throughout this work. From the litera-

ture, others who have exerted such ultrashort temporal control over biphoton up-conversion have

applied such properties to spatiotemporal study of SPDC [8–10]; higher-dimensional quantum

information [11]; demonstrations of dispersion cancellation [13, 14]; and entanglement-enhanced

two-photon absorption [15], as outlined in Table 5.1. With this level of biphoton spatiotempo-

ral control, it is possible to apply such a quantum light source toward two-photon fluorescence

detection with applications to microscopy and spectroscopy.

The following chapter presents a negative result. Here are characterizations of an experimen-

tal setup designed to efficiently measure femtosecond timescale, entanglement-assisted photon

coincidences. Properties of major setup components will be presented followed by a discussion on

the experimental design decisions, compared to the literature, on displaying the physical effect of

interest.
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Reference Method Purpose

Crystal Coherent control

O’Donnell and U’Ren [9] PPLN Prism compressor Time-resolved up-conversion

Pe’er et al. [8] PPKTP Spatial light modulator Biphoton phase coherent control

Dayan et al. [36] PPKTP Prism compressor Nonclassical power dependence

Jedrkiewicz et al. [10] BBO None, achromatic optics Few fs time-resolved up-conversion

Schwarz et al. [11] PPKTP Spatial light modulator d-dimensional qudit Bell state violation

O’Donnell [13] PPLN Separate prism compressors Dispersion cancellation

Lerch et al. [14] PPKTP Spatial light modulator Biphoton entanglement measurement

Dayan et al. [15] PPTKP Spatial light modulator Entangled two-photon absorption in Rb vapour

Table 5.1: Selective literature for biphoton up-conversion.

5.1 Biphoton Up-Conversion: A Test of Ultrafast Coincidence Detection

Quantum frequency conversion (defined more precisely as frequency conversion retaining the

quantum optical properties of the input [104]) has been demonstrated many times over in the

last twenty years. Typically, the process is desirable for transforming photons to more convenient

wavelengths for either detection [105]; quantum memory accessibility [106]; coherence tomography

and sensing; [95, 107]; and telecommunication [108].

Most of the previously mentioned applications arise from a single-photon (typically detection

heralded from its SPDC pair) combined in a nonlinear medium with a strong escort pulse, as seen

in [109, 110] (among others). However what is of interest here is whole biphoton up-conversion

where both the signal and idler photons from the same pair, sum together in frequency [9].

The experiment, a demonstration of extreme spatiotemporal localization from broadband

SPDC, consists of three main sections:

1. a highly spatiotemporally (10s of fs, 100s of µm) localized SPDC source;

2. a low loss dispersion compensator (prism compressor) capable of correcting 1797 fs2 to allow

all biphoton frequency components to arrive within the ultrashort coherence time;

3. and an ultrafast nonlinear coincidence detector consisting of the second nonlinear crystal

and low dark count, visible light single-photon detector,

as was implemented in Fig. 5.1.

Lens: L1 L2 L3 L4 L5 OAP mirrors

Units [mm] 175 200 175 40 25.4 15

Table 5.2: Experiment focal lengths for up-conversion of down-conversion.
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Figure 5.1: Designed and implemented experimental setup for up-conversion of down-conversion.

Data collection was automated linear actuators in translation stages for h, x, y with manual

translation, z. Lens focal lengths displayed in Table 5.2.
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5.1.1 Experimental requirements

There are a number of inherent challenges to overcome when designing such an ultrafast coinci-

dence detection experiment in a nonlinear crystal. First, both crystals must be phasematched to

allow optimal frequency conversion of a single wavelength, λp = λSFG. Second, chromatic disper-

sion accumulates through biphoton propagation through dispersive material, most substantially,

the PPLN crystals. The calculated setup dispersion from Fig. 5.1 is 1797 fs2, as calculated from

Table ??. According to [9], a 3790 fs2 GDD brings biphoton quantum frequency conversion prob-

ability to zero. A mere 198 fs2 dispersion (12 mm of fused silica glass) in that experiment reduced

the biphoton up-conversion coincidence peak by 55%. Third, the spatial mode of the SPDC must

be controlled to enable a tight beam waist in the second crystal in addition to the spatial-spectral

SPDC distribution controlled to allow propagation for both correlated signal and idler photons

of a pair. What follows are strategies and solutions for mitigating these physical challenges and

requirements.

As characterized in Chapter 2, the cw-pumped, spectrally broadband SPDC photon pair

source is highly correlated in frequency and momentum with photon pairs being generated at

angles beyond the collinear configuration. Since these up-conversion of down-conversion experi-

ments result in very low, unheralded single-photon count rates (800-1000 counts/s), I chose high

numerical aperture, gold off-axis parabolic (OAP) mirrors with a short effective focal length

(15 mm) to collect the most photon pairs possible and thus, aim to increase the total frequency

conversion efficiency. Jedrkiewicz et al. [10] demonstrated in 2012 that parabolic mirrors without

dispersion compensation can be used to directly UCDC. In addition, due to the inherent symme-

try of the overall process (532 nm → 1064 nm+1064 nm → 532 nm), I chose the focusing lens of

the second crystal be the same as the output “collimation lens” (OAP mirror) of the first crystal.

Alignment of such OAP mirrors requires utmost care as photon pair momentum distributions

should be preserved for later pair SFG. After consulting the literature, I settled upon the “dual

beam” method [111] for OAP mirror alignment1.

Given the combinations of Rayleigh length, collimating lens focal length, and total optical

path length from crystal to crystal, the SPDC beam propagation exists in the ray-optics limit

(z − f)� z0 [19], we see
1

f
≈ 1

z
+

1

z′
, (5.1)

where z is the distance from the beam waist to lens of focal length f and z′ is the distance from

this lens to the new beam waist. This important as in this limit, “collimation” is not possible

thus beam expansion will occur with propagation. This is detrimental as both photons of the

photon pair must arrive at the second crystal, unshifted in time or space, for quantum frequency

conversion to occur – they must not be clipped by the effective aperture of the optical setup.

1Other OAP mirror alignment methods I considered are [112] and [113]
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A way to mitigate the constant biphoton beam expansion through the 250 cm optical path

length to the second crystal is by implementing a beam relay. Due to space constraints from the

vertically stacked, doubly-folded prism compressor (Section 1.4.3), the beam relay was asymmet-

rically imaged to an intermediate beam waist, as seen in Fig. 5.1. The lens relay was characterized

for both down-conversion and an infrared laser by examining beam profiles (via CCD beam profile

camera and knife edge measurements [114] and predictive modelling. The resulting lens system,

optimized for down-conversion transmission, allowed a maximal setup throughput (66.5%) and

minimal beam waist/spot size at the second crystal location (65 µm).

Optical component GDD [fs2]

PPLN crystals 1364

Roof prism 201

Half waveplates 84

Spectral filter 22

(assumed 1 mm NBK7)

Relay lenses 125

Total 1797

Table 5.3: Estimated group delay dispersion calculated at 1064 nm from optics within biphoton

portion of the experimental setup displayed in Fig. 5.1.

5.1.2 Experimental success metrics

Now that we’ve introduced the main experimental components of this biphoton up-conversion

setup, let us now discuss physical tests for success. First, as mentioned previously, the fre-

quency conversion in nonlinear crystals exhibits temperature dependence on its phasematching

conditions. O’Donnell and U’Ren [9] demonstrated a complete loss of phasematching for +20◦C

change in PPLN2 temperature.

Second, the SHG is polarization-dependent. The frequency-conversion process can be “turned

off” by linear polarization rotation2.

Third, the biphoton up-conversion is sensitive to dispersion. This parameter can be continu-

ously tuned via prism compressor adjustment.

Fourth and most practically, signal blocking by spectral filtering and beam blocking provides

a useful sanity check. Installed prior to the detection portion of the setup, additional longpass

(“green killing”) and shortpass/bandpass (“IR killing”) filter combinations are flipped in and out

2An important thing to consider when using polarization as an up-conversion test compared to unaffected down-

conversion is to first verify if optical coatings and elements in the setup optimized for the visible up-conversion are

not polarization-dependent for the infrared down-conversion.
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of the optical path to infer the approximate wavelength of the single-photon detection counts.

Counts that appear to be visible, not infrared, are then confirmed by fully blocking the down-

conversion signal before the second crystal to verify if the signal appropriately disappears or is

stray pump laser light.

Fifth, as predicted in [7] and demonstrated in [36], entangled photon pairs exhibit a linear

power dependence on two-photon interactions such as two-photon absorption and SFG. However,

since both photons of the same pair are required in frequency conversion, losses affect fluorescence

or SFG quadratically. This can be used as test of success as stray pump single-photons should

not follow both of these behaviours.

Finally, although it was not possible to manipulate in this experimental implementation, the

inter-beam g(2)(τ), or coincidence rate (as opposed to the intrabeam g
(2)
s,s (τ) or g

(2)
i,i (τ), commonly

used as a metric for single-photon sources illuminating its multi-photon emission rate in a given

mode [3]) between the signal and idler photon leads to a dramatic peak when τ = 0.

The up-conversion portion of the experimental setup continued the beam relay, imaging the

second PPLN crystal waist to that of the free-space single-photon detector [MPD PDM50CTC].

More detailed exploration and characterizations of this frequency conversion and detection are

explored in the following section.

5.2 Selected “Ultrafast Coincidence Detector” Properties

As previously described, the second nonlinear crystal in the photon pair up-conversion experiment

acts here as an “ultrafast coincidence detector”. This nonlinear process of SFG has been described

classically in Section 1.3.1.

In this experiment, the labelled “pump” frequency is fixed: whatever frequency pumps the

SPDC is the frequency which the broadband down-conversion will precisely add up to. Thus, the

second PPLN crystal must be optimal for this specific frequency. In this case, λp = 532 nm so

the SFG wavelengths are 1064 nm + 1064 nm→ 532 nm.

The following sections describe in more detail specific tuning properties and tolerances of SFG

conversion as well as single-photon up-conversion collection and detection.

5.2.1 Phasematching acceptance bandwidth simulations

In order for frequency conversion to occur, the phase mismatch between the three electric fields

must be zero. However, as discussed in Section 1.3.1, the function dictating the phasematching

is a sinc function. How fast does that sinc function fall off? With what precision must the

crystal parameters be set to still fall within this acceptance bandwidth? To answer these ques-

tions I simulate the phasematching acceptance bandwidth for the frequency conversion process

of 1064 nm + 1064 nm→ 532 nm using three models.

52



Method 1: Phasematching function

The first simulation approach is based on the previously discussed phasematching model of the

reverse frequency conversion process, SPDC, of Section 2.2.1. Since the three waves of SPDC

contain the same momentum and energy conservation for the reverse process of SFG, this existing

model of a squared Eq. (2.1) is a reasonable choice for this purpose, as reproduced below.

S2(ωs,qs;ωi,qi) ≈ sinc2

(
∆kL

2

)
(5.2)

∆k = kp − ks − ki −
2π

Λ
(5.3)

For all other parameters remaining equal, each of the high-energy wavelength and crystal

temperature are individually varied, as seen by the sinc functions of Fig. 5.2. By fitting a

Gaussian to each of Fig. 5.2a and 5.2b, the estimated FWHM acceptance bandwidths, ∆λ1 and

∆T1, are shown in Table 5.4.
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Figure 5.2: Simulated phasematching tolerances for wavelength and crystal temperature using

“Method 1” for a 5 mm sample of bulk 5% MgO:PPLN for frequency conversion 1064 nm +

1064 nm→ 532 nm.

Method 2: Taylor series of phase mismatch

The spectral acceptance bandwidth can be also calculated by taking the first-order terms of a

Taylor series of the phase mismatch Eq. (2.2) for ∆k|2λp (λ − 2λp). Then, solving under the

assumption ∆k = 2π
L . This results in the isolated spectral width, in terms of the down-conversion

pump wavelength, λp,

∆λ2 =
2π

| ∂∂λ∆k(2λp)|L
. (5.4)

Second-order Taylor series provides no noticeable difference in acceptance bandwidth, ∆λ.
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Method 3: SHG bandwidth from periodically-poled material [115]

This result of Ref. [115] is similarly derived from the approach of the previous method. The

authors note that spectral bandwidth, as defined by FWHM, is not affected the medium’s periodic

poling.

∆λ3 =
0.4429λ

L

∣∣∣∣n2 − n1

λ
+
∂n1

∂λ
− 1

2

∂n2

∂λ

∣∣∣∣−1

(5.5)

Translating the terminology from that of publication to this work, λ1 = λp = 532 nm and

λ2 = 1064 nm for L = 5 mm.

Results and implications

The viable parameter ranges for a given summation wavelength, λp for the three methods are

shown in Table 5.4.

Method: 1 2 3

T [◦C] 3.58 – –

∆λ [nm] 0.19 0.68 0.46

Table 5.4: Up-conversion acceptance bandwidths, calculated via different methods

As previously mentioned, the down-conversion pump wavelength, λp, must be within the

acceptance bandwidth of the second crystal. Given that the broadband down-conversion should

sum to a bandwidth of the 5 MHz pump laser (5 fm at 532 nm), there shall be no problem

fitting the down-conversion pump spectrum within the up-conversion acceptance bandwidth of

the narrowest of the three, ∆λ1=0.19 nm3.

Of greater relevance is the crystal oven temperature sensitivity. The phasematching sinc

function of Fig. 5.2b shifts at 0.0545 nm/◦C with a FWHM appreciable signal range of 3.58◦C.

Alternatively written, the optimal phasematching temperature induces a pump wavelength change

of 18.3◦C/nm.

5.2.2 Time-resolved phasematching: up-conversion crystal temperature characterizations

Now that the bounds of up-conversion crystal phasematching precision has been theoretically

determined, experimental temperature characterization of the second PPLN crystal can now be

undertaken.

3An interesting application of up-conversion phasematching functions can be found by deconvolution of the

associated spectral effects to act as an up-conversion spectrometer at more convenient wavelengths [105].
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One practical challenge when characterizing disparate frequency conversion harmonics is ad-

equate sensitivity and spectral range for spectral analysis tools. As discussed in the previous

section, the acceptance bandwidth must be temperature-tuned for maximal up-conversion of

biphotons summing to the exact 532 nm pump frequency. Since available spectrum analysis tools

were not sensitive for measuring both 532 nm pump frequency as well as the weak and broadband

SPDC centered at 1064 nm, I present, in this section, a characterization method for pinpointing

temperature dependence on SHG based off of a single spectrometer, a swept-source infrared laser,

and time-resolved coincidence detection.

Extending the phasematching characterization of Section 5.2.1, a 10 nm FWHM, Gaussian

intensity profiled spectral bandpass filter limited the time-dependent, broadband swept source

laser of ω(t) to produce SHG in the PPLN crystal under test. However, here, detection timing

information from the single-photon detector was compared within a narrow timing window to the

trigger of the laser. This resulted in a time-delay histogram which was dependent on nonlinear

crystal’s temperature.

By analyzing the coincidence timing information and individual electronic signals for a given

crystal temperature, a relation between laser frequency and sweep time can be made. Using this,

the infrared wavelength of the laser sweep can be assigned as the optimal fundamental wavelength

of the SHG phasematching at a given temperature. Assuming the ω(t) laser sweep begins and

ends at spectral intensity half-max start- and stop- times, the time-to-frequency conversion can

be calculated, as seen in Table 5.5.

Sweep time 21.475 µs

Conversion factor 74.2 nm/(21.475 µs)

T = 160◦C delay 3.394 µs

Table 5.5: Measured quantities from Santec HSL-1000 swept-source laser and time-resolved SHG

An interesting result of such a study is the measurement of a calibration offset between differ-

ent spectrometers. In this characterization, the frequency reference is based only on a spectrum

taken on a single optical spectrum analyzer [Anritsu MS9710B] for the infrared swept-source

laser. Using a different, silicon-based single-photon spectrometer [Acton SpectraPro 2750i], the

temperature-dependent up-conversion measured under the same experimental conditions shows

a relative spectrometer wavelength offset of 1.61 nm, as seen in Fig. 5.3. The validity of this

approach is demonstrated by the near parallel nature of the two fitted slopes, as seen in Eq. (5.6)

and Eq. (5.7), thus explaining differences from the calibration alone.

Tspectral(λ) = −11261.9 + 10.6962λ (5.6)

Ttime(λ) = −11180.2 + 10.6356λ (5.7)

This method, although a technically and physically interesting technique, could similarly

be determined on a single spectrometer by overlapping the temperature-dependent SHG of the
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Figure 5.3: SHG Phasematching as measured by time-resolved measurements compared to inde-

pendent spectrometer. Inset: coincidence histogram for T = 160◦C relative to laser sweep.

swept-source laser with that of the 532 nm down-conversion pump, which provided the final

second crystal temperature used in the experiment.

5.2.3 Photon hunting in biphoton “pulse” stretch and space: experimental strategies

Due to the very low biphoton up-conversion counts expected from the literature, special care is

needed to make sure misalignment and beam steering is not at fault for lack of detection. Here I

present “photon hunting” strategies to explore the parameter space of the remaining experimental

parameter uncertainties and tolerances. Additionally, I experimentally characterize and verify

many of the physical behaviours of frequency conversion and beam propagation, theoretically

discussed elsewhere.

Beyond the second PPLN crystal in the detection portion of the experiment, as seen in Fig. 5.1,

an additional beam relay is required to focus on the 50 µm active area of the silicon-based single-

photon detector [MPD PDM50CTC], optimized for detection of green light. As characterization

remains uncertain after single frequency alignment due to chromatic focal shifts, he single-photon

detector is mounted on a x, y, z translation stage set. With a beam profiling camera mounted

on a translation stage, I studied the chromatic focal shifts and beam waist propagation through

the focus of the final single-photon detector lens, as seen in Fig. 5.4. This plot shows some

important information. First, the imaging system leading up does image the beam waist (radius)

small enough to be within half of the single-photon detector active area, as hoped for. Second,

it shows that the Gaussian beam of the laser does indeed behave differently than the multimode

down-conversion. Collinearity through the 250 cm setup (including both crystals) still results

in different focusing behaviours between the two light sources so one must take care not solely

trust the alignment laser. Third, the focal shift of L5 is in the negative direction for shorter
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Figure 5.4: Wavelength-dependent focal shift in optimal single-photon detector position as mea-

sured by a beam profiling camera.

wavelengths for the laser and its up-conversion, about 2 mm closer to the lens, which is quite a

lot. This is important as this focal shift trend points to a good starting detector z-position for

biphoton quantum frequency conversion hunting.

Since tight focusing from a short focal length lens is required for the detector active area,

misplacement of the detector could result in large photon flux variances outside of the beam waist.

To combat this alignment uncertainty, I designed a LabVIEW-automated program to record

single-photon detector counts while varying the x, y position in the detector plane and the prism

compressor dispersion tuning with prism insertion, h. These automated scans of different detector

planes and GDD compensation were associated with a manual z detector position. In total, a

four-dimensional parameter space was investigated. An example of this system’s capabilities and

uses can be seen in Fig. 5.5a of an up-conversion of down-conversion scan prior to more aggressive

background count reduction (scattered down-conversion pump light cannot be spectrally filtered

out). Given that peak expected counts are so low at the best of times, and that photon flux

through the detector beam waist varies so rapidly, I fit a 2D Gaussian to the resulting x, y raster

scans to look for numerical trends across z and h slices in signal variance and amplitude beyond

what was visible by inspection, as seen in Fig. 5.5b.

It is worth discussing the optical propagation effects induced by varying parameters such

as prism insertion h and half-waveplate (HWP2) rotation on waist position in a single-photon

detector plane. Conveniently, the detector plane raster scanning data acquisition and Gaussian-fit

data analysis techniques were perfect for such investigations. Though varying prism glass insertion

into the SPDC path does increase the effective optical path length (+1.22 cm of total optical

path length per mm of h prism insertion), minimal beam wander and beam relay deterioration

are detected in the imaging plane. Additionally, detection plane beam wander from angular

displacements was characterized. Using HWP2 and rotating around the x-axis up to 470 µm of

lateral displacement yielded no noticeable beam shift in the detection plane. Given the minimal
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counts/second] through propagation z-slices at a single prism h position out of prism param-
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detected displacements of any purposeful beam deviations, and the flexibility of the detection

plane raster scanning fitting trend technology, I was confident that exploring the parameter

space would not result in lack of detection due to misalignment.

5.3 Discussion

Although this experiment is heavily inspired by experimental quantum frequency conversion

work by O’Donnell and U’Ren [9] and Jedrkiewicz et al. [10], it is important to point out a few

potentially important experimental differences.

Extracted from lens choices in previously cited biphoton up-conversion experiments, it is noted

that the beam waist of this experiment is half of that from others. This has a few effects: increased

down-conversion efficiency as well as less well-defined spatial correlations [51]. If anything, this

increase in frequency conversion efficiency is advantageous, allowing for a potential rate increase

for up-converted biphotons above background noise. However, larger perpendicular wavevector

(q, in Chapter 2 notation) in the phase mismatch via momentum conservation yields larger spatial

width or variance down-conversion momenta. Decreasing this spatial variance is related to an

increased degree of (spatial) entanglement by reducing the two-photon wavefunction to a narrower

distribution [75]. Careful reading of the literature and some personal correspondence revealed

that all nonlinear crystal biphoton up-conversion experiments cited here included some form of

spatial aperture to limit largely non-collinear down-conversion emission. Reasons why are hinted
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at in [116] and are potentially related to two-photon wavefunction coherence [52].

The use of parabolic mirrors for lenses in biphoton frequency conversion is not, by definition,

a problematic experimental difference. However in contrast, the OAP mirror implementation of

Jedrkiewicz et al. [10] took place with much longer effective focal lengths (f = 17.8 cm) and

without dispersive elements (except for the crystals) thus requiring no dispersion compensator.

This choice resulted in the ability for direct, 4f imaging from crystal to crystal with a substantially

shorter optical path length (≈ 71 cm) [117]. As discussed earlier, the choices of short OAP mirrors

and dispersion compensation via prism compensation resulted in two additional lenses to beam

relay between crystals, as seen in Fig. 5.1. These lenses, however, were not achromatic and

result in a wavelength-dependent focal shift over the down-conversion spectral bandwidth. A

later analysis by the same research group [70] theoretically determined the effect of imperfect

imaging on up-conversion g(2) rates (referring to crystal being located a ∆z displacement away

from optimal). For their setup, a ∆z = 500 µm focusing error (displacement in z-direction)

reduced the biphoton coincidence rates by a factor of 1/12 and for ∆z = 2000 µm, the peak was

reduced close to that of the incoherent background.

Also, it was shown in Section 1.4.3 that prism compressors could tune GDD by means of

both geometric and material dispersion (parameters q and h, respectively). However, these two

parameters are not interchangeable as each affects different higher-order (third-order and above)

spectral phase dependence. Shaked et al. [118] and Lukens et al. [40] demonstrated the need

for dispersion cancellation of even orders of dispersion to allow for preserved biphoton phase

summation in subsequent SFG4. Additionally, O’Donnell and U’Ren [9] mentioned the optimal

prism compressor position for that biphoton frequency conversion experiment was to optimized

into a position which compensated for fourth-order dispersion leaving a small, non-zero second-

order dispersion. For the experiment discussed in this thesis, only second-order dispersion was

considered.

5.3.1 Outlook and recommendations

Drawing upon all this knowledge, I propose the following recommendations. First, to remove

the touchy short focal length OAP mirrors (and subsequent beam relay) and replace them with

longer focal length lenses (similar to that of [9]). Perhaps with a longer Rayleigh length, beam

expansion won’t be as fierce and not require it. Secondly, for practical ease of automated pho-

ton hunting, I recommend the re-mounting of various spectral filters prior to the single-photon

detector onto a motorized, remotely-controlled filter flip mount. This would save significant time

as the process of reducing stray background counts from scattering of the 1 W pump laser from

the free-space single-photon detector. This was time consuming as replacement of black shielding

4Higher-order phase effects for prism compressors (including most relevantly, 4th order) can be calculated from

[119].
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would need to occur whenever a sanity-check of a green-killing long-pass filter was flipped in to

evaluate potential up-conversion signals. Third, theoretical investigations into prism compressor

fourth-order dispersion dependencies could allow for a better initial prism compressor position

for subsequent parameter space hunting.

It is unfortunate that, given the time restraints, it was not possible to experimentally follow

through with all the suggested recommendations. From an experimental optics perspective, the

characterizations presented here suggest that biphoton frequency conversion could have been

possible with the optical component qualities of this setup. However given what has been shown

in the literature it is probable that the current experimental design would not have yielded results.

I hope this chapter has been insightful and a good literature resource for those newly venturing

into the fascinating and plentiful field of biphoton frequency conversion. There does exists a rich

trove of experimental and theoretical literature investigating the fascinating ultrashort spatiotem-

poral capabilities of SPDC and I hope the presentation here allows them to be more accessible.

Additionally, this could be a useful resource for future modelling, designing, manipulating, and

characterizing frequency conversion phasematching in bulk PPLN.
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Chapter 6

Conclusion

The energy-time degree of freedom for SPDC provides a rich trove of physics to be explored.

The candidate SPDC source of this work, cw-pumped Type-0 interaction in bulk PPLN, have

been shown to exhibit promising spatial-spectral correlations. In order to take advantage of the

inherent spatiotemporal localization these spectrally broadband SPDC photon pairs provide, one

must confront the continual villain of such temporally ultrafast biphoton wavepackets, chromatic

dispersion. To correct for this, I built a compact dispersion manipulation tool in the form of a

doubly folded prism compressor, which I’ve shown can be precisely measured through a white

light interferometry technique inspired by spectral domain optical coherence tomography.

However chromatic dispersion doesn’t always have to be the nemesis of spectrally broad-

band SPDC. Additionally, I have demonstrated that dispersive optical fibers can also be used

to efficiently give spectral characterizations of SPDC tuning curves at the telecommunication

wavelengths.

The demonstration of these properties through ultrafast coincidence detection in biphoton up-

conversion was ultimately unsuccessful due to constraints in time (and space), however hopefully

with the knowledge and recommendations discussed here, implementation of this demanding

quantum optical experiment can be made more accessible to novel applications in the fields of

imaging and metrology.
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Appendix A

Phase Extraction

A.1 Hilbert Transform

The purpose of implementing a Hilbert transform is to create a complex analytic signal from

real-valued interferometer data [80, 120] so as to extract a time-dependent phase [88].

The Hilbert function can be defined as [121]

H{f(t)} =
1

π
P

∫ ∞
−∞

f(τ)

t− τ
dτ (A.1)

for P being the Cauchy principal value where the integral exists.

The Hilbert transform has the following properties [88, 121]:

� H{f(t)} of a given sinusoidal wave function f(t) is the same as the original function f(t),

except that the phase of the waveform is shifted by π/2

� Linearity

For a function f(t) = c1f1(t) + c2f2(t), the Hilbert transform of f(t) is H{f(t)} =

c1H{f1(t)}+ c2H{f2(t)}.

� H2 = −I

Multiple Hilbert transforms on real function give same real function with altered sign

� Hilbert transform of a derivative of a function is equal to the Hilbert transform of the

function

� Orthogonality

The real function and its Hilbert transform are orthogonal

� ±π/2 phase shift in frequency domain, as interpreted by multiplication with imaginary

value ±i
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A.2 Phase Extraction From Sample Wavepacket

As an example, for a linearly chirped wavepacket with a Gaussian intensity distribution, E(t) =

exp[−2 ln 2(t/τp)
2] cos(ω0t+ φ′′t2), where the FWHM is τp = 8π

ω0
, and φ′′ = 8

τ2
, the phase can be

extracted by using the Hilbert transform on the list to create a strong analytic signal. Directly,

the resulting phase φ(t) = Arg{Re
Im} is Fig. A.1b. Using an unwrapping function1 searching for

jumps modulo π/2, a continuous phase, Fig. A.1c can be fit to a second-order polynomial and

the fitting coefficients can elucidate the chirp.
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Figure A.1: Example wavepacket phase extraction

Fringes are modelled via the Re
[
exp

[
−i
(
dair(ωl+Ω)

c − d(Ω−ωl)nNBK7(2πc/(Ω−ωl))
c

)]]
.

A.3 Phase Extraction Dependence on Interferometer Displacements

Position 1 Position 2 Position 4 Position 5

Coefficient Std Err Coefficient Std Err Coefficient Std Err Coefficient Std Err

1 115 0.009 59 0.008 52 0.009 117 0.009

x 2260 0.19 1143 0.17 1048 0.21 2138 0.21

x2 1163 6.7 1165 6.1 -1105 7.7 -1132 7.6

Table A.1: Fitting coefficients across all mirror displacements of {Air, -setup} (linearized (hilbert-

extracted) phase, p.189, lin avg). Adjusted R-squared goodness of fit > 0.999

1Mathematica code modified from http://forums.wolfram.com/mathgroup/archive/1998/May/msg00107.html
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{Air,-setup} {Air, +glass} {Air, -glass} {glass, +glass} {Air, glass -glass}
Adjusted theory -1973 990 95 525 560

Hilbert -2289 981 179 412 753

Fringe Count -2205 965 321 613 840

Table A.2: Extracted GDD results for all dispersion scenarios

A.4 Uncertainty in Interferometer Measurements

The uncertainty in this characterization can be attributed to multiple sources stemming from

prism compressor parameters (h, q) and interferometer stability (∆lin). Assuming uncorrelated

errors,

∆GDD =

√
|(δh)(∆h)|2 + |(δq)(∆q)|2 + |∆lin|2 = 146 fs2 (A.2)

As was already observed, prism insertion, h, can have a large influence.

∆h ∆q ∆lin

Error ±1 mm ±5 mm 4 fs2

δh δq

Uncertainty 100 fs2/mm −21 fs2/mm

Table A.3: Variable definitions from Eq. (A.2). Prism variables are derived from Section 1.4.3

and the linearization, ∆lin, is from extracting variance in GDD from theoretical fringes with

perfect displacement.

Between the two phase extraction methods, the Hilbert transform method has more data

points to base it off of, whereas for the Fringe Counting method, it depends on the amount of

zero crossings to fit a polynomial off of. In addition, for these small amounts of dispersion, the

“chirp” is quite small over the spectral bandwidth range.

The calculated uncertainty of the measurements is 146.2 fs2 from
√
|(δh)(∆h)|2 + |(δq)(∆q)|2 + |∆lin|2,

where

� Error: ∆h = ±1 mm, ∆q = ±0.5 cm, ∆lin = ±4.31 fs2

� insertion: δh = 100 fs2/mm, prism-retroreflector: δq = 1000 fs2/4.7 mm = −213 fs2/cm

(from plots)

The prism compressor errors are obtained from prism compressor alignment estimates and the

uncertainties from Section 1.4.3.

When comparing the variances, no real difference between the methods.
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Appendix B

Code

B.1 White Light Interferometry Data Analysis

Note about copy-paste to Mathematica: the (ˆ) and ( ) symbols don’t render properly. Make

sure to Find-and-Replace the (ˆ), re-add the ( ), and get rid of the . . ..

Phase unwrap modified from http://forums.wolfram.com/mathgroup/archive/1998/May/

msg00107.html

Listing B.1: Phase unwrap

1 renormalize [ args ]:=Module[{pairs, diffs , j , len=Length[args], corr=0},pairs=Partition [ args ,2,1];

2 diffs =Map[#[[1]]−#[[2]]&,pairs];

3 PrependTo[diffs ,0];

4 diffs =2*Pi*Sign[Chop[diffs,Pi ]];

5 Table[ corr+=diffs[[ j ]];

6 corr+args[[ j ]],{ j ,1, len }]]

Listing B.2: Hilbert function

1 hilbert [data ?VectorQ]:=Module[{fopts=FourierParameters−>{1,−1},e,n},
2 e=Boole[EvenQ[n=Length[data]]];

3 Im[ InverseFourier [ Fourier [data, fopts ]*

4 PadRight[ArrayPad[ConstantArray[2,Quotient[n,2]−e ],{1, e },1], n ], fopts ]]]/; And @@ Thread[Im[data]==0]

Zero-crossing Mathematica function modified from http://mathematica.stackexchange.com/

questions/10640/find-zero-crossing-in-a-list

Listing B.3: Zero-crossing
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1 zeroCrossings [ l List , freq List ] := Module[{t, u, v, pairs , startpos },
2 t = {Sign[l ], Range[Length[l ]]} // Transpose;(*List of−1,0,1 only*)

3 u = Select[ t , First [#] != 0 &];(*Ignore zeros*)

4 v = SplitBy[u, First ]; (*Group into runs of+and−values*)

5 pairs = {Most[Max[#[[All, 2]]] & /@ v], Rest[Min[#[[All , 2]]] & /@ v]} // Transpose;

6 startpos = First /@ pairs ;

7 Table[{ freq [[ startpos [[ k ]]]], k*\[Pi ]}, {k, 1, Length[ startpos ]}]
8 ]

A word of caution for the zero-crossing function: the frequency abscissa list is required for oper-

ation. Also note the code’s sensitivity to list length.

B.2 Cones: Spatial/Spectral Integration Functions

For simulation SPDC there are a number of resources without needing to write your own code.

Two great resources are SNLO [122] and SPDCalc [123].

Inevitably, for ease of comparison between measured SPDC properties and simulation, I sim-

ulated spatial and spectral intensities in Mathematica. It turns out when integrating broadband,

cw-pumped SPDC over large spectral and spatial ranges, it can become quite computationally

demanding. As such, I after experimenting on different integration bounds, I settled upon a

method for determining the minimal integration bounds to simulate the observed SPDC proper-

ties, as dictated in Appendix B.2.2. What follows is Mathematica code (most recently tested in

version 11.3.0.0)

B.2.1 SPDC Integration functions

For ease of use with Sellmeier equations as well as inherent units of dispersion, the following code

definitions are in the units of µm/fs which additionally yields convenient constants such as the

speed of light in vacuum, c = 0.2998 µm/fs and wavelength of interest, λ0 = 1.064 µm.

Mathematica functions

Listing B.4: Periodically-poled lithium niobate crystal properties

1 ne=Compile[{{\[Omega], Real},{T, Real}},Sqrt[5.756+(2.860*10ˆ−6)*(T−24.5)(T+570.82)+

2 (0.0983+(4.700*10ˆ−8)*(T−24.5)(T+570.82))/((2\[Pi] ...

.2998/\[Omega])ˆ2−(.2020+(6.113*10ˆ−8)*(T−24.5)(T+570.82))ˆ2)+

3 (189.32+(1.516*10ˆ−4)*(T−24.5)(T+570.82))/((2\[Pi] ...

.2998/\[Omega])ˆ2−12.52ˆ2)−(1.32*10ˆ−2)*(2\[Pi] .2998/\[Omega])ˆ2]]
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4

5 no=Compile[{{\[Omega], Real},{T, Real}},Sqrt[(5.653` +7.940999999999999`*ˆ−7 (−24.5`+T) (570.82` ...

+T)+(89.61` −2.188`*ˆ−6 (−24.5`+T) (570.82` ...

+T))/(−117.7225`+3.5483217534163507`/\[Omega]ˆ2)+(0.1185` +3.134`*ˆ−8 (−24.5`+T) ...

(570.82` +T))/(−(0.2091` −4.641`*ˆ−9 (−24.5`+T) (570.82` ...

+T))ˆ2+3.5483217534163507`/\[Omega]ˆ2)−0.0699019385423021`/\[Omega]ˆ2)]];

6

7 l [L ,T ]:=L(1+1.57*10ˆ−5(T−25)+5.3*10ˆ−9(T−25)ˆ2)

8 \[CapitalLambda]t[\[CapitalLambda] ,T1 ]:=\[CapitalLambda](1+1.53*10ˆ−5(T1−19)+5.3*10ˆ−9(T1−19)ˆ2);

The ordinary (no) and extraordinary (ne) indices of refraction are from [64].

Temperature-dependent poling period ([CapitalLambda]t[[CapitalLambda] ,T1 ]) is rendered

more beautifully when pasted in Mathematica appearing as Λt[Λ ,T1 ]). Both this and the

temperature-dependent crystal length l[L ,T ] are taken from [66].

Additional note about copy-paste to Mathematica: the (ˆ), ( ), (”), and (−) symbols don’t

render properly. Make sure to Find-and-Replace the problematic symbols; re-add the ( ) in the

function definition; and remove line numbers.

Listing B.5: Phasematching wavevector mismatch function

1 \[ CapitalDelta ]kz2[ksx , kix , ksy , kiy ,\[ Omega]s ,\[Omega]0 ,T ,\[CapitalLambda] ]:=Module[{c},
2 c=.2998;

3 ne[2\[Omega]0,T]Sqrt[(2\[Omega]0)ˆ2/cˆ2−(ksx+kix)ˆ2/no[2\[Omega]0,T]ˆ2−(ksy+kiy)ˆ2/ne[2\[Omega]0,T]ˆ2] ...

−ne[\[Omega]s,T]Sqrt[\[Omega]sˆ2/cˆ2−ksxˆ2/no[\[Omega]s,T]ˆ2−ksyˆ2/ne[\[Omega]s,T]ˆ2] ...

−ne[2\[Omega]0−\[Omega]s,T]*Sqrt[(2\[Omega]0−\[Omega]s)ˆ2/cˆ2−kixˆ2/no[2\[Omega]0

4 −\[Omega]s,T]ˆ2−kiyˆ2/ne[2\[Omega]0−\[Omega]s,T]ˆ2]−2\[Pi]/\[CapitalLambda]t[\[CapitalLambda],T]];

Full Mathematica implementation of Eq. (2.2). In expanded form:

∆k =ne(2ω0)

√
(2ω0)2

c2
− (ks,x + ki,x)2

n2
o(2ω0)

− (ks,y + ki,y)2

n2
e(2ω0)

− ne(ωs)

√
(ωs)2

c2
−

k2
s,x

n2
o(ωs)

−
k2
s,y

n2
e(ωs)

− ne(2ω0 − ωs)

√
(2ω0 − ωs)2

c2
−

k2
i,x

n2
o(2ω0 − ωs)

−
k2
i,y

n2
e(2ω0 − ωs)

− 2π

Λ
, (B.1)

Listing B.6: SPDC Spectral integration function

1 psi \[Omega]3sqrt[\[Omega]s ?NumericQ,L ,wp ,T ,\[Omega]0 ,\[CapitalLambda] ,kr ]:=Module[{c},
2 c=.2998;
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3 Chop[NIntegrate[Sqrt [\[ Omega]s]Lˆ2 Exp[−((kix+ksx)ˆ2+(kiy+ksy)ˆ2) ...

wpˆ2]Sinc[\[CapitalDelta]kz2[ksx,kix,ksy, kiy ,\[ Omega]s,\[Omega]0,T,\[CapitalLambda]] ...

L/2]ˆ2,{ksx,−kr,kr},{ksy,−kr,kr},{kix,−kr,kr},{kiy,−kr,kr}, ...
Method−>{”GlobalAdaptive”,Method−>”GaussKronrodRule”,”SymbolicProcessing”−>0},PrecisionGoal−>3]]]

Listing B.7: SPDC Spatial integration function

1 psi \[Omega]3v2sqrt\[Omega][ksx ,ksy ,\[Omega]s ?NumericQ,L ,wp ,T ,\[Omega]0 ,\[CapitalLambda] ,kr ]:=Module[{c},
2 c=.2998;

3 Chop[NIntegrate[Sqrt [\[ Omega]s]Lˆ2 Exp[−((kix+ksx)ˆ2+(kiy+ksy)ˆ2) ...

wpˆ2]Sinc[\[CapitalDelta]kz2[ksx,kix,ksy, kiy ,\[ Omega]s,\[Omega]0,T,\[CapitalLambda]] ...

L/2]ˆ2,{kix,−kr,kr},{kiy,−kr,kr}, ...
Method−>{”GlobalAdaptive”,Method−>”GaussKronrodRule”,”SymbolicProcessing”−>0},PrecisionGoal−>3]]]

Listing B.8: FWHM bandwidth function

1 bw[\[Sigma] ]:=((2\[Pi] .2998)/(1.064−\[Sigma]/2)−(2\[Pi] .2998)/(1.064+\[Sigma]/2))/2.355

Listing B.9: X-blob function

1 psi \[Omega]3sqrtxmod[\[Omega]s ?NumericQ,ksx ?NumericQ,L ,wp ,T ,\[Omega]0 ,\[CapitalLambda] ,kr ]:=Module[{c},
2 c=.2998;

3 Chop[NIntegrate[Sqrt [\[ Omega]s]Lˆ2 Exp[−((kix+ksx)ˆ2+(kiy+ksy)ˆ2) ...

wpˆ2]Sinc[\[CapitalDelta]kz2[ksx,kix,ksy, kiy ,\[ Omega]s,\[Omega]0,T,\[CapitalLambda]] ...

L/2]ˆ2,{ksy,−kr,kr},{kix,−kr,kr},{kiy,−kr,kr}, ...
Method−>{”GlobalAdaptive”,Method−>”GaussKronrodRule”,”SymbolicProcessing”−>0},PrecisionGoal−>3]]]

Code in action

Computationally efficient ways of generating plotable simulation data. Works well on grid com-

puters.

Listing B.10: SPDC spatial emission with bandpass filter

1 ParallelTable [{ksx,

2 NIntegrate [(Abs[

3 psi \[Omega]3v2sqrt\[Omega][ksx, 0, \[Omega]s, 5000, 38.7,

4 108.6 − 1.8, 2 \[Pi] .2998/1.064, 6.76775, .866]]*

5 Exp[−((\[Omega]s − 2 \[Pi] .2998/1.064)ˆ2/

6 bw[.010/(2 Sqrt[Log [2]]) ]ˆ2) ]) , {\[Omega]s,

7 2 \[Pi] .2998/1.3, 2 \[Pi] .2998/0.90},
8 Method −> {Automatic, ”SymbolicProcessing” −> 0},
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9 PrecisionGoal −> 3]}, {ksx, 0, .41, 0.0067},
10 Method −> ”FinestGrained”]; // AbsoluteTiming

Listing B.11: SPDC spectral emission

1 ParallelTable [{2\[Pi] .2998/\[Omega]s,(Abs[psi\[Omega]3sqrt[\[Omega]s,5000,66.3,140.9+0,2\[Pi] ...

.2998/(1.064) ,6.760,0.1333]]) },{\[Omega]s,2\[Pi] .2998/1.16,2\[Pi] ...

.2998/.97,0.012}, Method−>”FinestGrained”];

B.2.2 A method for choosing parameters for simulating SPDC

Λ poling period

qlens Wavevector from NA of coupling lens (or most limiting aperture)

qw Wavevector from pump waist divergence angle

Table B.1: Parameters needed for SPDC simulation.

Procedure

1. Measure spectral tuning curves via spectrometer. Pick out experimentally what the degen-

erate temperature is

2. Calculate qw from the divergence angle of the beam waist

3. Solve (NSolve or FindRoot) ∆k = 0 of Listing B.5 with qw included as the perpendicular

wavevector components

4. Simulate SPDC spectrum (Listing B.11) for a few measured temperatures, compare with

measured spectrum

5. Tune Λ a few nanometers as needed to overlap

B.2.3 Spatial donut Gaussian model

The bandpass filtered down-conversion imaged on the CCD camera was fit using NonlinearMod-

elFit in Mathematica to a “donut” Gaussian of radius r0 and with variances σx and σy in units

of pixels, as seen in Eq. (B.2).

Fdonut(r) = bkg+N exp

−(√ 1

2(1− ρ2)

(
(x− x0)2

2σx
+

(y − y0)2

2σy
− 2ρ(x− x0)(y − y0)

2σxσy

)
− r0√

σxσy

)2


(B.2)
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Rotation rotation of the donut was controlled by ρ, though values were typically near zero.

The donut was centered on the beam profiler at pixel numbers (x0, y0). Since these beam profiler

measurements were taken near the limit of this camera’s sensitivity, the noise floor, bkg and peak

height N to accurately fit this noisy, realistic data.

The X-blob representations of Section 2.3.1 required the parameters r0 and σx/σy. Due to

the square root, the true variances at FWHM, in units of micrometers, is σx,true = Cx→µm ×√
2
√

2 ln 2σx for this beam profiler camera’s pixel conversion Cx→µm = 4.65 µm/px.

B.2.4 Gaussian beam propagation

In order to compare the experimental measurements to the spatial integrations and vice versa,

an accurate conversion between Cartesian space and momentum space was needed. It was found

that refraction at the interface between PPLN and air resulted in a constant, noticeable radial

offset thus beam propagation through the ABCD matrix method was employed.

Gaussian ABCD matrix definitions

The ABCD matrix method allows an optical beam, represented as an initial height, x1, and slope

(angle), x′1, with respect to the optical axis, to be transformed by matrices making up an optical

system into an output vector. This formalism holds for paraxial beams.

(
x2

x′2

)
=

(
A B

C D

)(
x1

x′1

)
(B.3)

For Gaussian beams propagating along the z-axis, properties of the radius of curvature, R(z)

of the wavefront can be described by the complex q-parameter [19, 124]

1

q(z)
=

1

R(z)
− i λ

πw(z)2
(B.4)

where the q-parameter can additionally be related by

q(z) = z + izR (B.5)

for zR being the Rayleigh range. Using the optical system results of the ABCD law, the output

q-parameter (labelled q2) can be related to the matrix elements of Eq. (B.3) by

q2 =
Aq1 +B

Cq1 +D
. (B.6)
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Propagation Lens Refraction

(distance d) (focal length f) (refractive index n1 → n2)

Mfree(d) =

(
1 d

0 1

)
Mlens(f) =

(
1 0

− 1
f 1

)
Mrefrac =

(
1 0

0 n1
n2

)

Table B.2: ABCD law matrices for modelling optical systems

Propagation through PPLN

Of interest for modelling PPLN is the propagation from lens to beam waist in PPLN or vice

versa.

To determine the waist size within PPLN for a given lens focal length, the q-parameter

(Eq. B.6) of the optical system needs to be calculated. For a f = 175 mm lens with a waist at

the center of a 5 mm PPLN crystal of length L, the matrix representing the optical system is

M = Mfree(L/2)Mrefrac(nair, nPPLN)Mfree(f − L/2)Mlens(f) (B.7)

results in a q-parameter of q2 = −2698 + 8854i, in units of micrometers. Relating the imaginary

portion to the Rayleigh range of Eq. (B.5) and solving for the desired beam waist wPPLN =

38.7 µm. This is larger, due to refraction as compared to the refraction-free result of wair =

26.3 µm, as generated from optical system M = Mfree(f)Mlens(f) and by conventional Gaussian

optical means [19].

Position to wavevector conversion

Building on the previous beam propagation matrix formalism, a function for conversion between

position and perpendicular wavevector, q (not to be confused with the q-parameter of the previous

section) can be made from extraction of the half-angle, x′2, from the output vector.

Let the optical system – spanning the beam waist in PPLN to the collimating lens in air –

for propagation in the z-direction, be defined as:

Mq(z) = Mfree(f |λ − z)Mrefrac(no, nair)Mfree(z) (B.8)

where it is worth while to obtain the actual focal length of the lens for the wavelength of interest

via Zemax OpticStudio or the like rather than relying on the design wavelength.

The initial vector for the down-conversion cone is defined as(
x1

x′1

)
=

(
0

arctan
[

1
2
y
f

]) (B.9)

for the beam profiler position y. The factor of 1
2 is necessary from the definition of Eq. (B.2).
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The beam profiler positions can be converted to wavevector via

Fq(y) =
2π

λ
sin(x′2). (B.10)

Similarly, wavevector to position transformation is obtained from calculating the component

x2 from the output vector

(
x2

x′2

)
is calculated from

My(q) = Mfree(f |λ − L/2)Mrefrac(no, nair)Mfree(L/2) (B.11)

with initial vector (
x1

x′1

)
=

 0

arcsin

[
q

2πno
λ

] . (B.12)
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