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Abstract 

This thesis presents the research in the field of microelectromechanical systems 

with the specific aim of investigating a microneedle based transdermal skin fluid 

extraction concept. This work presents an innovative double-side Deep Reactive Ion 

Etching (DRIE) approach for producing hollow silicon microneedle arrays for 

transdermal biological fluid extraction. The microneedles are fabricated from a double 

side polished wafer to a shank height of 200-300 μm with 300 μm center-to-center 

spacing. Moreover, the in vivo testing results are provided as well. 

In this thesis, several microfabrication techniques are investigated, developed and 

applied in the fabrication process. The first chapter brings an overview of nano-

/microfabrication and MEMS for biomedical applications (drug delivery and biofluid 

extraction). Furthermore, the fundamental background of skin structure and interstitial 

fluid (ISF) is introduced as well. The second chapter clearly illustrates three key 

techniques specifically employed in the microneedle fabrication process which are 

photolithography, wet etching and dry etching. The third chapter presents a detailed 

literature review of microneedles in terms of its general concepts, structures, materials 

and integrated fluidic system. Eventually, Chapter 4 introduces the details of our 

method to fabricate hollow silicon microneedle arrays step by step. SEM images and in 

vivo testing results confirm that hollow silicon microneedle arrays are not only sharp 

enough to penetrate the stratum corneum but also robust enough to extract ISF out of 

skin. Ongoing work will focus on the optimization of the assemble extraction apparatus 

and the capillary filling of the holes.  
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Chapter 1  Introduction 

 
This chapter brings an overview of nano-/microfabrication and MEMS for 

biomedical applications, specially the microneedle-based transdermal drug delivery 

and skinfluid extraction. Furthermore, the fundamental concept of human skin anatomy 

and skin interstitial fluid (ISF) is introduced as well. 

 

1.1 Introduction to nano-/microfabrication 

 

A talk entitled ‘There’s Plenty of Room at the Bottom’[1] given by physicist 

Richard Feynman at an American Physical Society meeting on December 29, 1959, 

reveals the concepts behind the nanotechnology. Over a decade later, Professor Norio 

Taniguchi coined the term ‘nanotechnology’ to describe semiconductor processes, 

while the modern nanotechnology was not begun until the first scanning tunneling 

microscope (STM) was developed by Gerd Binnig and Heinrich Rohrer in IBM in 1981. 

Nowadays, nanotechnology is generally defined as science, engineering and technology 

applied at the nanoscale from 1 to 100 nanometers (nm), involving the capabilities to 

control individual atoms and molecules. The applications therefore expand diversely in 

many research areas such as electronics, photonics, biology and medical etc. In 

particularly, the emerging application of nanotechnologies in medicine and healthcare 

has increasingly draw attentions in recent years. 
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Nanofabrication is the design and manufacture of devices with dimensions 

measured in nanometer. The focus will be primarily on the mechanisms that determine 

the precision and limitations of nanofabrication technology with an emphasis on those 

techniques in use for the fabrication of arbitrary shaped structures[2]. In the 

semiconductor industry, the significant demand of more advanced integration 

capabilities (e.g., integrated circuit, MEMS and the integration of CMOS/MEMS) 

constantly improve the development of both microfabrication and nanofabrication 

technologies, for such development, photolithography and electron beam lithography 

play an important role respectively. The feature size has shrunk to 500 nm in 1990s and 

to sub-100 nm in 2000s after the deep UV photolithography was invented in 1982[3]. 

Figure 1.1 shows the significant improvement in IC technology in last decades. In 2008, 

the 45 nm generation was developed by Intel conducting immersion lithography, and 

then in 2009 the 32 nm generation was successfully achieved (White Paper Introducing 

the 45nm Next-Generation Intel® Core™ Microarchitecture). In April 2012, the 22 nm 

CMOS process following the 32 nm process was started for CPU products[4]. The 

TSMC Company began accepting customer tape-outs for its 10 nm FinFET process in 

the first quarter of 2016. 
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Figure 1.1 Evolution of technology nodes in semiconductor manufacturing processes in log scale[5]. 

In parallel, innovations in the area of microfabrication have created a unique 

opportunity for manufacturing micron-sized structures[5]. In order to realize diverse 

novel applications with ultimate precision and high efficiency, various nano-

/microfabrication techniques are carried out in research area, which can be generally 

divided into two essential approaches: ‘top-down’ and ‘bottom-up’. Top-down methods 

begin with patterns defined on a relatively larger scale and end up with forming 

structures in the nm-μm range by reducing its lateral dimensions with lithography 

techniques such as optical lithography, electron beam lithography (EBL), focused ion 

beam lithography, nanoimprint and scanning probe lithography. On the other hand, 

bottom-up methods start with atoms or molecules to build up nanostructures, in some 

cases through smart use of self-assembly. Figure 1.2 shows the schematic of both the 

top-down (a) and the bottom-up (b) approaches. In the top-down approach, the resist is 

first patterned by lithography, and then (1) the pattern is transferred by deposition 

followed by liftoff, or (2) the pattern is transferred by direct etching. In the bottom-up 

approach, the pattern is commonly formed by self-assembly and then transferred onto 
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substrates by liftoff[6]. 

 

Figure 1.2 Schematic diagram of (a) top-down and (b) bottom-up approach. 

Generally speaking, the top-down approach can be subdivided into 3 categories: 

(a) bulk-/film-machining; (b) surface-machining; (c) mold-machining[6] where most of 

the key techniques in microfabrication are involved such as lithography, thin-film 

deposition and etching. 

As one of the fundamental and essential techniques in microfabrication, optical 

lithography is extensively applied and developed from the fabrication of integrated 

circuits to microelectromechanical systems (MEMS). Lithography techniques will be 

introduced in detail in the next chapter. 

Thin-film deposition as an additive method is crucial to generate the pattern, which 

is classified into two broad categories: physical vapor deposition(PVD) (sputtering, e-

beam or thermal evaporation), and chemical vapor deposition(CVD) (metal-organic 

CVD, plasma-enhanced CVD or low-pressure CVD). PVD describes a process in which 

atoms or molecules of a material are vaporized from a solid or liquid source, transported 
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in the form of a vapor through a vacuum or low-pressure gaseous environment, and 

condense on a substrate[7]. Mechanical, electromechanical or thermodynamic 

approaches can be exploited during the processes without any chemical reaction 

involved. CVD is a common industrial process in which the substrate is exposed to one 

or more volatile precursors that react and/or decompose on the surface to produce the 

desired deposit. A normal CVD process involves complex fluid dynamics since gases 

are flowing into the reactor, reacting, and then by-products are transported out of the 

reactor[8]. The various physical and chemical processes associated with the film growth 

over the surface in a CVD process are shown in Figure 1.3. 

 

Figure 1.3 An overview of the various stages of film growth over the surface in a CVD process[8]. 

Etching as a subtractive method is critically important in microfabrication for 

patterning materials. Etching can be classified into two categories: wet etch and dry 

etch in terms of two different fundamental types of etchants that are liquid-phase and 

plasma-phase respectively. Chapter 2 will give a more detailed description of etching 

techniques. 

In addition, bottom-up approach is the other method to be carried out for obtaining 
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the nanostructures (dimensions of typically 2 to 10 nm). The substrate is coated by 

chemically synthesized nano-particles followed by pattern transfer. Broadly speaking, 

bottom-up approach should be able to produce devices in parallel and much cheaper 

than top-down methods, but getting control over the methods is difficult when 

structures become larger and bulkier than what is normally made by chemical 

synthesis[9]. 

 

1.2 MEMS for biomedical applications 

 

The field of microelectromechanical system (MEMS) was invented initially by the 

microfabrication techniques discussed above for a variety of applications such as 

electronics, sensors, actuators[10][11][12]. MEMS devices have critical dimensions in 

the range of 100 nm to 1000 μm. Therefore, the small size of these devices provides a 

lot of advantages over large-scale systems in terms of power usage, sensitivity, cost, 

and space occupation. 

At the beginning, MEMS was based on silicon using bulk micromachining and 

surface micromachining processes[13]. Gradually, some other materials such as 

polymers, metals and ceramics become common to be applied in the MEMS fabrication. 

Apart from silicon, polymers can be considered as a good choice for biomedical 

applications because of its low cost, bio-compatibility and scalability for rapid 

prototyping. 
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With the development of microtechnology, various functional MEMS applications 

have been initiated in daily life. Thus, MEMS technology eventually established itself 

as a specialized field of study with a significant market share. As a unique, innovative 

product, the MEMS device has been merged with a variety of fields such as mechanics, 

fluidics, medical and healthcare. Miniaturized medical wearables and implants, 

transdermal drug delivery systems, on-chip assays, cell sorting devices, and DNA 

sequencers are some typical examples of BioMEMS. Figure 1.4 shows the Sensimed’s 

TriggerfishTM wearable MEMS IOP sensor. It consists of a disposable contact lens 

with a MEMS strain-gage pressure sensor element, an embedded loop antenna (golden 

rings), and an ASIC microprocessor (2 mm x 2 mm chip). 

 

Figure 1.4 Sensimed’s TriggerfishTM wearable MEMS IOP sensor[14]. (Source: 

http://www.sensimed.com/) 

Similarly, as one of the typical biomedical applications, MEMS-based 

microneedles have been used for transdermal drug delivery, blood extraction and bodily 

fluid sampling. Commonly, solid or hollow microneedles with various shaft shapes are 

integrated and used in conjunction with microfluidic systems. More details of the 

microneedles will be introduced in Chapter 3. 



8 

 

1.3 Skin as a barrier 

 

Transdermal patches have been applied for the delivery of drugs that have optimal 

physicochemical properties which are compatible with stratum corneum such as 

clonidine, fentanyl, lidocaine, nicotine, nitroglycerin, estradiol, oxybutynin, 

scopolamine and testosterone[15]. To design microneedles with desired shapes and 

parameters, some issues such as skin structures, penetration mechanisms and 

intradermal liquid transport should be figured out first. 

 

1.3.1 Skin anatomy 

 

The skin is the largest organ of the integumentary system[16] and has several 

functions such as preventing water loss, acting as a nerve sensory ending organ, acting 

as a site of thermoregulation, etc. It is also a protective membrane that regulates body 

temperature and fluid loss, guards the underlying muscles and internal organs, and 

conveys sensory information to the nerve system. 

The skin consists of three main layers: the superficial epidermis, dermis and 

hypodermis as shown in Figure 1.5. The epidermis layer is approximately 50-150 μm 

thick, forming the outermost skin barrier which is relatively impermeable to both polar 

and non-polar lithophilic molecules[17]. It is epidermis layer that is optimally targeted 

for interstitial fluid extraction–superficial enough to be painless. Stratum corneum is 
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the outermost layer of the epidermis, consisting of adherent dead, cornified cells and 

varying in thickness from 10-40 μm. The epidermis sits atop the lower layer of the skin, 

the dermis, from which it is separated by a proteinaceous basement membrane[18]. The 

hypodermis layer (or subcutaneous fat layer) is composed of loose fatty connective 

tissue and thickness can be different over the surface of the body as well as between 

individuals. 

Microneedle array we designed and fabricated can only penetrate through the outer 

layer of skin into epidermis layer without interfering with the nerve endings, making 

minimal invasive injection and extracting ISF out of skin. 

 

Figure 1.5 Structure of the skin[19]. 

 

1.3.2 Interstitial fluid 

 

Interstitial fluid (ISF) or tissue fluid located in the epidermis layer is liquid that 
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surrounds the tissue cells of multicellular animals. Total body water accounts for 

between 45 to 75% of total body weight in which extracellular fluid (ECF) denotes all 

body fluid outside the cells. ISF is the main component of the ECF, which constitutes 

the body’s internal environment that bathes all the cells in the body. The extracellular 

fluid provides the medium for the exchange of substances between the ECF and the 

cells, and this can take place through dissolving, mixing and transporting in the fluid 

medium[20]. 

In March of 2018, new organ termed as ‘interstitium’ was discovered in the body 

system after it was previously missed by scientists despite being one of the largest 

organs in the human body. New analysis published in the journal Scientific Reports is 

the first to identify these spaces collectively as a new organ and try to understand their 

function. The newfound organ, beneath the top layer of skin, is also in tissue layers 

lining the gut, lungs, blood vessels and muscles. The organ is a bodywide network of 

interconnected, fluid-filled compartments supported by a meshwork of strong, flexible 

proteins. Figure 1.6 is a schematic summarizing the histological findings. 

 
Figure 1.6 Schematic of the fluid-filled space supported by a network of collagen bundles lined on 

one side with cells[21]. 
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ISF is a proven carrier of several of the most essential biomarkers in the body, 

which also can be considered as an alternative source of biomarkers compared to blood 

plasma. It strongly suggests that there is convincing untapped potential for diagnostics 

area such as allergy testing, drug discovery and scientific research. 
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Chapter 2 Specific techniques for 

microneedle fabrication 

 

The fabrication of hollow microneedles is explored and developed by utilizing 

microfabrication techniques. This chapter illustrates three key techniques specifically 

employed in the microneedle fabrication process which are photolithography, wet etch 

and dry etch. 

 

2.1 Photolithography 

 

Developed in 1959, photolithography is a process that adopts high-intensity UV 

light and a photomask to prepare a polymer pattern on a silicon wafer[22][23]. As a 

well-established method commonly applied in the semiconductor industry today, 

photolithography, the underlying process for the fabrication of these complicated 

electronic devices, is rooted in MEMS technology. Much of today’s information 

technology counts on microchips that are designed and fabricated by microfabrication 

techniques. It facilitates circuit integration, through patterning and etching the multiple 

device layers, and creating vias and interconnects with modest alignment tolerances[24]. 

Figure 2.1 shows the picture of a lithography system we used in University of Waterloo 

for alignment and UV exposure of resist-coated wafers. 
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Figure 2.1 MA/BA6 Mask and Bond Aligner (Courtesy to SUSS MicroTec). 

The basic photolithography process is employed to selectively remove parts of a 

thin film (or the bulk of a substrate) by changing the chemical structure/solubility of 

the photoresist that contains a light-sensitive compound and a mixture of polymers. A 

geometric pattern is eventually transferred from a photomask to a photoresist on the 

substrate. There are two types of photoresists. If a positive photoresist is exposed, the 

illuminated area becomes highly soluble during development, while a negative 

photoresist is composed of monomers or polymers that polymerize or crosslink to form 

insoluble polymers upon ultraviolet (UV) exposure. Hence various required structures 

can be defined perfectly and efficiently by coating different types of photoresists. 

As shown in Figure 2.2, it usually starts with depositing (e.g. spin coating) 

photoresist onto a substrate followed by soft baking to evaporate the solvent inside. A 

photomask with the desired structural feature is well positioned above the photoresist 

using a mask aligner, then UV light travels through and focuses on the photoresist layer 

that is going to be soluble or insoluble depending on which type of photoresist spun 

onto the substrate. Diverse exposure modes can be determined upon UV exposure such 



14 

 

as soft contact, hard contact, proximity and projection mode. For positive resist, the 

area covered by dark area of the mask still stays insoluble; on the contrary the exposed 

area will be dissolved during subsequent development, leaving behind a patterned layer 

of photoresist. This defined pattern will act as a barrier to protect the underlying film 

from wet or dry etching in the following process. Ultimately, the pattern is transferred 

from a photomask to the substrate successfully. 

In conclusion, conventional photolithography can only achieve a resolution around 

1 𝜇𝑚, but many resolution enhancement techniques (RET) have been studied over the 

years such as off-axis illumination (OAI) and phase shift masks (PSM), leading to a 

resolution down to less than 10 nm. In this project, photolithography is a key step to 

transfer the pattern from photomask we designed to photoresist AZ4620 followed by 

wet or dry etching to define pillar and hole structures. 

 

Figure 2.2 Basic photolithography process using positive photoresist: the exposure and etching 

process that allows one to transfer a pattern to the film/wafer[24]. 

2.2 Etching 

 

As a pattern transfer method, etching is a critically essential process to selectively 
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remove layers from the surface of a wafer resulting in desired patterns. A photoresist 

that has been patterned using lithography can be utilized as the masking material to 

protect the wafer from the etchant. It is frequently used in the microfabrication 

processes of semiconductor devices for the purposes of wafer planarization, isolation 

and cleaning. 

There are several important metrics in the etching process such as uniformity, 

etching rate, selectivity, anisotropy and undercut. Etching rate is defined as etched depth 

per unit time, normally influenced by the concentration of the etchant and temperature. 

Figure 2.3 shows that silicon etching rates in [nm/h] depend dramatically on KOH 

concentrations and etch temperatures. Selectivity is defined as the ratio of the etching 

rate between different materials. To define a high aspect ratio structure such as deep 

holes and high pillars, the masking material is supposed to have high selectivity to 

protect the underlying film. Figure 2.4 illustrates the poor selectivity resulting in defects 

during etching process. Anisotropy or isotropy is another critical parameter discussed 

often in the etching process. Figure 2.5 shows the difference between isotropic 

(uniformly in all directions) and anisotropic etching (etches in vertical direction). 

Etching can be classified by two fundamental categories based on the type of the 

etchant: wet etch (liquid-based etchants) and dry etch (plasma-based etchants). Wet etch 

is easily implemented by immersing the wafers in a chemical solution with quick 

reaction, but it is quite hard to control and define the precise feature sizes that are 

smaller than 1 μm, as well as producing chemical waste. On the other side, dry etch, 

also called plasma etching, reactive ions in a gas phase are formed in a vacuum system 
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to sputter or dissolve the materials, which is more accurate and controllable compared 

to wet etch. Furthermore, dry etch is capable to obtain 100nm feature size. In our 

microneedle fabrication process, both dry etch and wet etch are performed in the 

experiments. 

 
Figure 2.3 Silicon etching rates in [nm/h] for various KOH concentrations and etch 

temperatures(Courtesy to Nanosystem Fabrication Facility)[25]. 

 
Figure 2.4 A graphical representation of (a) a poor selectivity that causes the etchant to attack the 

bottom layer material while removing the top layer, (b) a high selectivity that results in etching out 

the top layer without affecting the underlying layer[26]. (Courtesy to Smack.) 
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Figure 2.5 A schametic of (a) Isotropic etching of silicon (b) Partially anisotropic (c) Completely 

anisotropic [27] (Courtesy to Mikael Östling.) 

 

2.2.1 Wet etching 

 

As mentioned above, wet etching is referred to as an etching process of solid 

materials in a chemical solution which the substrate is dipped in or sprayed on. It is 

extremely efficient for etching silicon, oxide, and metals into a relatively large feature 

size with some dimension loss. Normally several chemical reactions get involved in a 

single wet etching process that consumes the original reactants and produces new 

reactants. 

Three key steps in the wet etching process are shown in Figure 2.6: (1) Liquid 

etchant will be diffused to the surface to be etched. (2) Chemical reactions will happen 

at the surface. (3) Byproducts from the surface will be removed by diffusion. Good 

etching uniformity and consistent etching rate are important in the wet etching, thus 

nowadays spray etching is progressively applied in industry over immersion etching. 
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Figure 2.6 A schematic of wet etching process: the diffusion of the reactants to the reacting surfaces, 

the chemical reaction at the surface and the transportation of the products away from the surface by 

liquid flow[28]. 

Both anisotropy and isotropy can be achieved by wet etching. Alkaline liquid 

solvents, such as potassium hydroxide (KOH), ethylenediamine pyrocatechol (EDP), 

or tetramethylammonium hydroxide (TMAH) are common anisotropic etchants to etch 

bulk silicon because the etching rate varies dramatically on different silicon crystalline 

planes. Figure 2.7 shows the three major planes in a cubic unit silicon termed as <111>, 

<100>, <110> by Miller index. Less available bonds per unit area are presented in the 

<111> plane than the other two planes, thus the etching rate is expected to be slower 

for the <111> plane[29]. 

 

 

Figure 2.7 A graphical representation of silicon crystal planes. (Courtesy to Crystal Scientific.) 

Based on the etching rate ratio between the crystal planes in the silicon lattice, 

silicon microneedle structures with high accuracy and good reproducibility can be 
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fabricated by using KOH wet etching technology. A research group in Tyndall National 

Institute established a systematic method of microneedle manufacturing with well-

defined structures in 2005[30]. Figure 2.8 shows the process flow chart starting from a 

standard, P-type, bare silicon wafer with <100> orientation. As it is shown, wet etching 

of silicon microstructures with high index crystal planes forming microneedle shapes 

is exploited by using 29% KOH and a temperature of 79 °C. Step 3 illustrates the 

formation of <111> silicon crystal planes. After a certain etch depth, <111> crystal 

planes are etched away by faster etching planes (etch rate > 1.3 μm/min), with an 

octagon at the base. The needle shape is defined by the eight high index crystal planes, 

defined as <312> planes[30]. Figure 2.9 presents the result of one single microneedle 

shape with a height of 280 μm. 

 
Figure 2.8 Wet etch process flow from N. Wilke’s research group. (Courtesy to N. Wilke, A. Mulcahy, 

etc.) 
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Figure 2.9 SEM picture of a single microneedle from N. Wilke’s research group: side view with detail 

of negative slope etch (left); side view (middle); top view (right). (Courtesy to N. Wilke, A. Mulcahy, 

etc.) 

On the other side, isotropic wet etching of silicon with HF-HNO3 mixtures is 

widely used in today’s semiconductor industry and in the production of solar cells. For 

example, an isotropic silicon etchant composed of hydrofluoric, nitric and acetic acids 

(replaceable with water), commonly called HNA, has a fast, yet very reproducible etch 

rate of degenerately doped, p-type silicon[17]. This etching mechanism was done by 

Robbins and Schwartz. Figure 2.10 shows the etching rate of silicon. The solid curves 

correspond to the etching system in which acetic acid is the diluent, whereas the dashed 

curves correspond to the system in which water is the diluent[31]. The reaction can be 

divided into two simultaneous steps: (a) oxidation of silicon into silicon dioxide (SiO2) 

by HNO3 (Eq. (2.1)) and (b) SiO2 removal using HF (Eq. (2.2)). The overall reaction is 

given in Eq. (2.3). It is important that the etching rate is limited by the rate of oxide 

removal. HF diffusion to the silicon surface will be the rate-limiting factor, which will 

result in faster etching (shrinking) of the pillar top. 

3Si + 4𝐻𝑁𝑂3  → 3𝑆𝑖𝑂2 + 4𝑁𝑂 + 2𝐻2𝑂              Eq. (2.1) 

𝑆𝑖𝑂2 + 6HF →  𝐻2𝑆𝑖𝐹6 + 2𝐻2𝑂                   Eq. (2.2) 

3Si + 4𝐻𝑁𝑂3 + 18𝐻𝐹 → 3𝐻2𝑆𝑖𝐹6 +  4𝑁𝑂 + 8𝐻2𝑂           Eq. (2.3) 

In terms of R. Bhandari’s research on a wafer-scale etching technique in 2010, 

two-steps etching was introduced: (1) dynamic and (2) static etching[32]. Figure 2.11 



21 

 

illustrates the etching progression combined with dynamic and static etching. 

Based on the theories above, in this work, a static wet etching system made up of 

the mixed solution HF (49%)–HNO3 (69%) in a ratio of 1:19 by volume was set up to 

sharpen silicon pillars into a sharp needle-shaped profile. 

 

Figure 2.10 Curves of constant etch rate of silicon (mils/min) as a function of etchant composition in 

the system 49% HF, 70% HNO3, and diluent[31]. 

 

Figure 2.11 SEM images showing progress of needle formation from dicing through etching (a–f). 

The rectangular columns (a) are transformed into sharp needle shapes (d) during static etching (8 

min). The high etch rate (20 μm/min) causes change in the geometry[32]. (Courtesy to R. Bhandari, 

S. Negi, etc.) 
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2.2.2 Dry etching 

 

Dry etching is an essential process step that is widely used in the fabrication of 

microelectromechanical systems (MEMS). In today’s semiconductor manufacturing, it 

is easier to control and capable of defining feature sizes smaller than 100 nm compared 

to wet etching which is strongly affected by ambient parameters like temperature and 

humidity. Plasma is a fully or partially ionized gas composed of equal numbers of 

positive and negative charges, as well as some neutral molecules. Electrons can be 

accelerated to gain energy to form plasma as a high energetic condition in which many 

processes can take place. Dry etching was introduced in late 1970’s. 

Dry etching may remove the materials by chemical reactions, by purely physical 

methods, or with a combination of both chemical reaction and physical bombardment. 

Thus, it is usually classified into three main categories: (1) the chemical plasma etching 

(PE), (2) the synergetic reactive ion etching (RIE) and (3) the physical ion beam etching 

(IBE). Figure 2.12 shows the typical products of the three basic mechanisms of dry 

plasma etching. PE gives rise to isotropic profiles, high etch rates and high selectivity, 

whereas IBE presents positively tapered profiles, low selectivity and low etch rates. 

RIE enables the achievement of profile control due to the synergetic combination of 

physical sputtering with chemical activity of reactive species with high etch rate and 

high selectivity[33]. 
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Figure 2.12 Typical etching profiles of the three basic mechanisms of dry plasma etching. (a) the 

chemical plasma etching (PE), (b) the synergetic reactive ion etching (RIE) and (c) the physical ion 

beam etching (IBE). (Courtesy to H. Jansen, H. Gardeniers, etc.) 

If the etching relies only on ion bombardment, it is not efficient and very time-

consuming. Thus, Reactive Ion Etch (RIE) has been considered as a very popular etch 

technique combining physical process with chemical reactions to improve the etch rate. 

Technically, the function of the ion bombardments is to enhance surface adsorptions, 

etching reactions, or byproducts removal. Figure 2.13 compares the silicon etch rates 

for applying different gas phase with or without the aid of Ar ion beam. Very slow etch 

rate will be achieved by pure chemical or physical dry etch alone, while ion-assisted 

chemical etch is a lot more efficient. 

 
Figure 2.13 Etch rates of silicon as only XeF2 gas, only Argon ion beam, and combination of them are 

introduced to the silicon surface. Ion-assisted chemical etch undoubtedly boosts the efficiency of the 

etching. 

The mechanism of RIE can be divided into four steps as shown in Figure 2.14. 
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Firstly, a feed gas is introduced into the chamber, where it is broken into chemically 

reactive species, which diffuse through boundary layer and along surface of wafer. Both 

neutral radicals and ions are generated in the plasma at first. Once the reactive species 

reach the surface, thermally activated reaction will produce soluble species. Eventually, 

the etching product will desorb from the wafer surface and diffuse away through the 

gas steam. 

 

Figure 2.14 Reaction steps of RIE for the case of Si etching by using 𝐶𝐹4[34][35]. 

Even if directional ion bombardments with low density are applied in the process, 

some isotropic etching may still exist especially when it comes to the microstructures 

with high aspect ratio. To obtain high etch rate, high aspect ratio and vertical sidewalls, 

Deep Reactive Ion Etching (DRIE) through the so-called Bosch process has become a 

competitive technology for high volume MEMS fabrication. 

DRIE etches vertically into the silicon wafer with high selectivity, producing 

structures in the silicon with vertical profiles and high aspect ratios. This is achieved 

without degrading the desired structures from etching in the lateral direction. For the 

Bosch process, there are two different plasmas that exist in the chamber, which involves 
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a sequence of alternating steps of etching and protective polymer deposition (referred 

together as “cycles”), switching within seconds. The details are shown in Figure 2.15 

step by step. In the etch step, SF6 will react with silicon first to produce SiF4 which is 

gaseous and pumped out of the system by the vacuum pump. Each etch step provides a 

short period of high rate isotropic (i.e. non-directional) silicon removal, which is 

normally less than one micrometer deep. It is followed by the deposition step that 

generates a passivating polymer film that protects lateral etching of the exposed silicon 

sidewalls during subsequent etching cycles. The C4F8 decomposes in the plasma and 

forms chains of a Teflon-like polymer that will not react with the etch plasma to protect 

the covered silicon from being further etched. Ions in the plasma can be accelerated in 

the electric field to physically and directionally sputter away the polymer on horizontal 

surfaces. The polymer will not be removed from the sidewalls and left there to protect 

the profile when the reactive part of the etch takes place. By switching back and forth 

between etch and deposition plasmas the silicon is etched in an anisotropic fashion to 

the desired etch depth[36]. In addition, the etch rate of the Bosch process is dependent 

on the percentage of exposed silicon on the wafer to be etched. Figure 2.16 shows the 

etch rate curve in terms of the standard Bosch process at University of Alberta. In our 

work, standard Bosch process recipe developed at the NanoFab at University of 

Waterloo is performed to produce ~350 μm deep holes and ~300 μm high pillars. The 

etch rate is around 400 nm/cycle and uniformity is approximately 2%. 
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Figure 2.15 A schematic of the principle of the Bosch process[37]: (a) Sample with mask (b) First etch 

step (c) Deposition Step (d) Second etch step. 

 
Figure 2.16 Etch rate curve related to the amount of exposed silicon[36]. 

In conclusion, wet etch is easily implemented in the experiment with quick 

reaction, but it is quite hard to control and define the precise feature sizes that are 

smaller than 1 μm. On the other hand, dry etch like DRIE process itself is an established 

methodology to create structures (pillars and holes in our work) with high aspect ratio, 

but developing an optimized recipe for successful etching of hollow microneedles is a 

significant challenge. In our work, both dry etch and wet etch are exploited in the 

experiments. 
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Chapter 3  Overview of microneedles 

 

This chapter gives a detailed literature review of microneedles in terms of its 

general concepts, structures, materials and integrated microfluidic system. 

 

3.1 Application of microneedles 

 

Oral administration of drugs was considered as a conventional drug delivery 

method in the past, but some drawbacks came out gradually because such techniques 

are often not applicable for new protein based, DNA-based, and other therapeutic 

compounds produced by modern biotechnology[38][39][40]. Applying transdermal 

patches to deliver drugs across the skin becomes an attractive approach for the patients 

who are suffering painful injection via a hypodermic needle. However, transdermal 

delivery, which relies on drugs passively diffusing across the skin, is severely restricted 

and hindered by the low permeability of the outer 10-20 μm of skin, the stratum 

corneum layer[41][42]. 

To increase skin permeability and reduce the pain simultaneously, the idea of 

combining the benefits of needle injection and transdermal patches is brought out, 

resulting in the creation of the microneedle concept. This concept involves micron-size 

needles that have representative parts with generally hundreds of microns long, few to 

tens of microns wide at the tip, and on the order of 100 μm wide at the base[15]. Such 
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microneedles are appropriately long to penetrate through the outer layer of skin without 

interfering with the nerve endings in the deeper layer, enabling minimal invasive and 

painless sampling. Some of the basic designs and materials used to fabricate 

microneedles are introduced below. 

 

3.2 Silicon microneedle structures 

 

Over the past few years, extensive research has been performed on a variety of 

different microneedle designs and fabrication methods. Various microneedle structures 

have been designed for assorted applications such as the applicators for transdermal 

drug delivery and biosensors for extraction of biofluids. 

Silicon microneedles can have solid or hollow structures, and can be classified into 

two models as well based on the fabrication process: in-plane or out-of-plane 

microneedles. 

The orientation of in-plane and out-of-plane microneedles is completely different. 

In-plane needles are arranged along the plane of the substrate while out-of-plane 

needles are set up perpendicular to the plane of the substrate. Figure 3.1 presents (a) 6 

mm long in-plane microneedle and (b) 1.5 mm long out-of-plane microneedles 

respectively. 
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Figure 3.1 (a) 6 mm long in-plane silicon microneedle with embedded fluidic channels[43]. (Courtesy 

to Talbot and Pisano) (b) Individually addressable, 1.5 mm long, solid, sharpened to point, out-of-

plane microneedles used as neural electrodes[44]. (Courtesy to Campbell et al.) 

Early microneedles were in the form of solid microneedles. They are designed to 

increase the skin permeability by piercing the stratum corneum to create micron-size 

openings that allow molecular transport across the skin, or alternatively to expose the 

underlying skin layers to the drugs that already coat on the surface of the needles[45]. 

Solid microneedles tend to be simpler to fabricate compared to hollow 

microneedles[15]. Figure 3.2 (a) shows that the first out-of-plane solid microneedles 

for transdermal drug delivery applications[46][47]. 

In contrast to solid microneedles, hollow needles not only offer the feasibility of 

active injection into the tissue, but also present the successful extraction of biofluid 

from the skin. The first hollow out-of-plane microneedles were produced by McAllister 

et al. in 1999[47]. Figure 3.2 (b) shows that 150 μm long hollow silicon microneedles 

can be fabricated by combining the fabrication process of solid silicon microneedles 

with DRIE Bosch process to form a needle bore[47][48]. 
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Figure 3.2 (a) Solid silicon microneedles used for transdermal drug delivery. Approximately 80 μm at 

the base and 150 μm long solid microneedles were fabricated in silicon using DRIE, and featured 

sharp tips with a tip radius below 1 μm[46]. (b) The first hollow out-of-plane microneedles by 

McAllister et al. The silicon needles are 150 μm long and were fabricated through DRIE using the 

Bosch process[48]. 

In 2000, Stoeber and Liepmann together created another type of hollow silicon 

microneedles[47][49]. The needle bores are produced from the backside DRIE process 

and needle shape is etched from the frontside of the wafer by isotropic dry etching. 

Figure 3.3 shows hollow silicon microneedle array with (a) pointed tip and (b) flat tip. 

  

Figure 3.3 Hollow silicon microneedles by Stoeber and Liepmann[49]. The 200 μm long needles are 

fabricated by Bosch DRIE and sharpened by isotropic dry etching. (a) Pointed tip; (b) Flat tip. 

Clogging issue must be considered discreetly once the microneedles were tested 

on human being no matter for drug delivery or biofluid extraction. In 2003, Griss and 

Stemme developed and demonstrated a concept of side-opened microneedles to realize 

a relatively low fluidic resistance. A three-dimensional needle structure was protruded 

in which the needle bore is located at the shaft of the needle as shown in Figure 3.4[50]. 
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This side-opened design for drug delivery applications is being commercialized by 

Debiotech SA, Switzerland[47]. 

  

Figure 3.4 210 μm, cross-shaped, hollow, side-opened, silicon microneedles fabricated by Griss and 

Stemme. (a) Needles with a 50 μm long base shaft. (b) Needles without a base shaft[50]. 

This side-opened design was accepted by the academia and further developed by 

Roxhed et al. in 2005[51]. Compared to the previous design, the aspect ratio was 

increased in the new design by producing the silicon needles significantly longer to 400 

μm as shown in Figure 3.5. In the meanwhile, the geometry of tips is changed from 

cross-shaped to circular to form a sharp and well-defined tip, thus the new design 

reveals superior penetration characteristics. In terms of all reported tests with this 

design, needles penetrated into skin using finger force without pretreatment of the 

insertion area[47]. 

 

Figure 3.5 The circular side-opened design developed by Roxhed et al. (a) 400 μm long, ultra-sharp, 

side-opened microneedles. (b) Magnified view of the microneedle tip. The tip-radius is below 100 

nm[51]. 

In 2003, wet etching approach was introduced in the fabrication process of silicon 



32 

 

microneedles to sharpen the tip of needles resulting in intersecting crystal planes. 

Gardeniers’ research group presented tetrahedrally-shaped hollow silicon microneedles 

by integrating DRIE and KOH etching techniques[52]. Figure 3.6 (a) shows a typical 

result of a 350 μm high microneedle with a triangular tip shape, a base of 250 μm, and 

a maximum hole width of 70 μm, and (b) presents a microneedle design with a round 

tip shape. In addition, this new alternative to fabricating sharp tip microneedles is being 

commercialized by NanoPass Ltd., Israel. The company also collaborated with 

GlaxoSmithKline on microneedle-based vaccine delivery and joint patents[53]. 

 

Figure 3.6 (a) SEM picture of a 350 μm high microneedle, with a base of 250 μm. (b) SEM picture of 

a microneedle with a tip with large radius of curvature[52]. 

 

3.3 Other materials for microneedle fabrication 

 

As mentioned above, the microneedles are designed and fabricated in various 

shapes yet only based on silicon. In fact, the material choice should be more diverse 

due to high fabrication costs associated with silicon microneedles. Polymer and metal 

are two typical materials for microneedles fabrication. 
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3.3.1 Polymer microneedles 

 

Polymer microneedles can be applied as a drug carrier with higher safety because 

of its biodegradable characteristics. In 2007, Jung-Hwan Park and his research group 

presented PDMS micromolding technique to fabricate an array of 200 PGA solid 

microneedles[54][55]. Microneedle master structures were fabricated using 

microlenses etched into a glass substrate that focused light through SU-8 negative resist 

to produce sharply tapered structures[55]. Figure 3.7 (a) shows the results after 

replicating SU-8 master structures using PDMS micromolding technique. 

In the meantime, hollow out-of-plane polymer microneedle array design was 

realized by Sang Jun Moon and Seung S Lee using the LIGA (a German acronym for 

Lithographie, Galvanoformung, Abformung)) techniques with both vertical and 

inclined deep x-ray exposure[56]. Figure 3.7 (b) shows the fabricated hollow 

microneedle array based on PMMA. 

 

Figure 3.7 (a) SEM of tapered solid polymer microneedles. An array of 200 microneedles made of 

PGA biodegradable, in which each needle has a base diameter of 250 μm, a tip diameter of 

approximately 20 μm, and a length of 1500 μm[55]. (b) SEM image of the hollow PMMA microneedle 

array[56]. 
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3.3.2 Metal microneedles 

 

Besides polymer microneedles, metal is another ideal material especially for tall 

(e.g. up to 1 mm) microneedle fabrication because of its high mechanical strength, and 

established safety records in many medical applications[15][41][57]. 

In-plane hollow metal microneedles were first designed, fabricated and 

characterized by Brazzle, Papautsky et al. from University of Utah in 1998[58]. One 

year later, they modified the design from ‘multiple-needle’ to ‘single-needle with 

multiple output ports’[58][59] yet both fabricated in similar fashion. Figure 3.8 (a) 

shows the single-design with multiple ports published in 1999 which had 140 μm by 20 

μm channel size, shaft dimensions of 200 μm by 60 μm, tip dimensions of less than 15 

μm by 15 μm, a distance of 300 μm from tip to first outlet port and was 6 mm in 

length[15][59]. 

On the contrary, hollow out-of-plane metal needles were produced from SU-8 

molds that were based on solid silicon microneedles[60]. Given the fact that the SU-8 

layer can be cross-linked under UV light exposure, thin SU-8 layer was first spin-coated 

onto an array of solid microneedles. Then, the cross-linked SU-8 needle tips were 

exposed to plasma etching resulting in a hollow structure. In the following step, all the 

silicon was etched away by flipping over the samples. The final step was to sputter 

metal onto the SU-8 mold with conical holes to provide uniform surface to electroplate 

metal onto. Figure 3.8 (b) shows the hollow metal microneedles fabricated by the 

combination of lithography, RIE, and electroplating. 
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Figure 3.8 (a) SEM of hollow in-plane metal single-design microneedle. Shaft dimensions are 200 

μm wide and 60 μm thick. Tip dimensions are less than 15 μm X 15 μm. Output ports are 30 μm2[59]. 

(b) SEM of hollow out-of-plane metal (nickel-iron) microneedle array. It was arranged in a 20 by 20 

array, 80 μm at their bases, taper to 10 μm at the tips, 150 μm in height, with 3 μm wall thickness 

and 150 μm center-to-center spacing[15][60]. 

 

3.4 Integrated microneedle devices 

 

Over the past decades, integrated microneedle devices were created and developed 

to be functionalized as sensing unit. There are various types of integrated devices 

designed and fabricated in terms of diverse shapes of microneedles. Figure 3.9 shows a 

minimally-invasive self-calibrating glucose monitoring system designed by 

Zimmermann, Fienbork, et al[61]. Once the needle was filled with ISF, glucose diffused 

into dialysis fluid that passed an integrated flow-through enzyme-based glucose 

sensor[15][61]. 
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Figure 3.9 Prototype of microneedle-based glucose sensor that incorporates array of 8 hollow 200 

μm tall silicon hollow microneedles, integrating with glucose sensor located in the Pyrex® fluidic 

channel underneath[61]. 

In 2004, an integrated fluidic system was designed by Mukerjee and his research 

group[17]. A reservoir for the fluid samples is connected to hollow microneedles on the 

backside of silicon wafer, by one or more micro-channels as shown in Figure 3.10. That 

ISF can be extracted into microchannels using only capillary action was claimed in 

Mukerjee’s paper. 

 

Figure 3.10 Schematics of (A) Front side (B) Backside of microneedles[17][15]. 
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3.5 Conclusion 

 

Extensive research has been performed in the microneedle field including both ex 

vivo and in vivo clinical trials. Advancements in microfabrication technology enables 

the realization of hollow microneedles, with the increasing interests in transdermal 

biological fluid extraction[62][17][63]. Even for the drug delivery, hollow 

microneedles are more desirable than solid microneedles for providing a better 

alternative in both the delivery quantity and more controllable flow rate. Such 

preferable transdermal systems require the high-level integration of microneedles and 

fluidic system. 

This work aims at presenting an innovative double-side DRIE approach for 

producing hollow silicon microneedle arrays for skin penetration and transdermal skin 

fluid extraction. 
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Chapter 4 Methods 

 

This chapter describes the method developed to fabricate hollow silicon 

microneedle arrays including key techniques such as lithography, DRIE, and wet 

etching. An innovative double-side DRIE approach is also presented in detail. Skin 

penetration and ISF extraction were applied on human’s skin for in vivo tests. 

 

4.1 Chip design 

 

The goal of the process is to make a hollow silicon needle-shape array for ISF 

extraction in an innovative double-side DRIE approach. The basic logic behind our 

process is as follow: define the bore-hole structure on one side of wafer then pillar 

structure on the other side; afterward, sharpen the pillars into needles while exposing 

the bore-holes at the same time. Therefore, our process includes three essential steps: 

lithography, DRIE and wet etching. The backgrounds of these techniques have been 

introduced in Chapter 2. 

Three different designs for the microneedle tip shape were investigated based on 

Mukerjee’s paper termed as ‘volcano-like’, ‘micro-hypodermic’ and ‘snake-fang’ 

design[17]. The only difference between them is the relative position of the central bore 

hole to the shaft of the needle. Figure 4.1 shows three different fashions designed by 

Mukerjee. In ‘volcano-like’ design, the silicon walls at the tip are relatively fragile and 
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the centered bore will be blocked with tissue that will prevent ISF extraction. Compared 

to ‘volcano-like’ design, ‘micro-hypodermic’ design proved robust microneedles to 

penetrate skin without any breakage. However, this design also exhibited bore hole 

plugging problems. Therefore, based on the ‘snake-fang’ fashion, our microneedle 

array was designed as shown in Figure 4.2. Peripheral supporting solid needles can 

enhance the penetration. The bore holes were shifted 30 μm from the center of the 

column. 

 
Figure 4.1 SEM pictures of three different designs (a) ‘volcano-like’, (b) ‘micro-hypodermic’, and (c) 

‘snake-fang’[17]. 

   

Figure 4.2 The design of hollow microneedle array. (a) 200 μm in diameter pillars and 40 μm in 

diameter holes with 76 holes per die. (b) 30 μm offset from the central bore hole to the center of the 

pillar. 

4.2 Fabrication process 
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The proposed fabrication process for hollow silicon microneedles is demonstrated 

in Figure 4.3. First, a single layer of AZ 4620 photoresist at a thickness about 10 μm 

was spun onto one side (termed as the ‘backside’) of a 4-inch wafer (double-side 

polished, Fig 4.3a). Standard photolithography was then applied to pattern this 

photoresist, forming holes that are approximately 30 μm in diameter (Fig 4.3b). DRIE 

(i.e. the Bosch process) was performed to etch bore holes 300 μm deep into the backside 

of the wafer defining a high aspect ratio structure (around 1:10 HAR, Fig 4.3c). Note 

that at this moment the other side of the wafer (termed as ‘frontside’) is still flat. The 

DRIE process was halted before the bore-holes were etched through the wafer to its 

frontside. Similar to the backside patterning, the frontside pillar pattern was defined 

(Fig 4.3d) with the double-sided alignment to the holes on the backside. The AZ 4620 

photoresist was patterned to create cylindrical pillars aligned to the bore-holes. This 

alignment also enabled accurate patterning of holes such that their centers were offset 

with the circles that defined needle. This was to address tissue coring within the needle 

bore during insertion[17]. Pillars of approximately 300 μm in height and 200 μm in 

diameter were then etched by DRIE (Fig 4.3e), making an overlap of 100 μm between 

the pillars and holes. At this point, the bore-holes were still not exposed on the frontside; 

essentially they are still buried channels. Afterward, using a mixed solution of 

hydrofluoric acid and nitric acid, the circular pillars were sharpened into needles and 

the through wafer holes were fully opened (Fig 4.3f and 4.3g). This was possible by 

taking advantage of the isotropic etching nature of the chemical mixture, i.e., the 

etching rate decreases from the needle tip to the base[32]. Holes were exposed on the 
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side wall of the needles creating channels from the needles to the wafer’s backside. This 

final step is a critical and novel process for creating hollow microneedle structures. 

 

Figure 4.3 Schematic fabrication processing of hollow silicon microneedle arrays. (a) Spin coating on 

the backside, (b) Standard lithography, (c) DRIE on the backside, (d) Backside alignment lithography, 

(e) DRIE on the frontside, (f) Wet etch. 

 

4.2.1 Photolithography 

 

Standard cleaning procedures for silicon wafers were established before 

performing lithography. Silicon wafers are cleaned by an HF dip and DI rinse, followed 

by acetone and isopropanol (IPA) rinsing and blowing dry with a N2 gun. To remove 

residue on the surface of a wafer prior to processing, oxygen plasma treatment can be 

also applied to the wafers afterwards. A following dehydration bake is necessary to 

remove all moisture from the surface of the wafer. The silicon wafer is placed face up 

on the hot plate in soft contact at 120°C for 3 minutes. After cooling to room 

temperature, the next step is to spin coat one layer of hexamethyldisilazane (HMDS) 

which serves as an adhesion promoter for the photoresist application. HMDS is spin 

coated at 3000 rpm for 30 seconds and dries completely after the spin coating. The 
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whole process requires 30 minutes to complete.  

Positive photoresist AZ 4620 with a thickness about 10 μm was spun onto the 

backside of a double-side polished wafer at 2000 rpm for 40 seconds followed by 

standard photolithography. Figure 4.4 (a) (b) shows the hole and pillar pattern after 

lithography with HMDS coating prior to photoresist application, and (c) presents a poor 

result caused by spin coating photoresist without HMDS treatment. 

 

Figure 4.4 The pattern is defined after standard lithography and development with and without HMDS 

coating. HMDS promotes the adhesion to define a better pattern. Otherwise, structures migrate on 

the wafer. (a) 30 μm in diameter holes, 300 μm pitch. (b) 200 μm diameter pillars. (c) Structures 

migrating after photoresist development. 

In the process of pillar side lithography, various diameters of pillars have been 

designed as shown in Figure 4.5. Pillars surrounded by a ring structure were introduced 

into the design to protect the pillars from undercut during DRIE. 

    
Figure 4.5 (a) 100 μm in diameter pillars. (b) 150 μm in diameter pillars. (c) 130 μm ID 270 μm OD. 

(d) 150 μm ID 270 μm OD. 

Furthermore, backside alignment is a key step to precisely placing the holes with 

different offsets relative to the center of the pillars. Figure 4.6 shows the alignment 

process in detail. The picture of mask aligner is taken before loading the sample as 
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shown in Figure 4.6 (a), and then aligning the marks accurately is shown in Figure 4.6 

(b). 

 
Figure 4.6 Backside alignment process in Karl SUSS MA6. (a) Capture the pattern on the mask only. 

(b) Align the marks accurately by rotating X, Y, Z knobs. 

A series of experiments has been carried out on the backside alignment lithography. 

After 600 cycles of Bosch process DRIE to define pillars, holes will be exposed if a 

large misalignment exists between them. Otherwise, holes will be set precisely inside 

the pillars to create the approximate 100 μm overlap. Figure 4.7 shows the results of 

both well-established alignment and misalignment after running a DRIE process. 

 

Figure 4.7 The results of both well-established alignment and misalignment after DRIE process in the 

microscope. (a) well aligned, (b) less than 50 μm misalignment, (c) more than 50 μm misalignment. 

 

4.2.2 DRIE 

 

Cryogenic and Bosch-based DRIE can be considered as two main technologies for 
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high-rate DRIE, although the Bosch process is the only recognized production 

method[64]. The essential issues with cryo-DRIE is that photoresist or other masks 

crack under extreme cold condition, and the by-products have a tendency of depositing 

on the nearest cold surface such as the substrate and electrode [64][65][66]. For many 

applications of DRIE, the main goals are usually in producing trenches or other features 

of very high aspect ratio[67]. 

In our case, the standard Bosch process recipe developed at the Quantum NanoFab 

at University of Waterloo has been applied for both our pillar and hole etching to 

achieve a high aspect ratio feature. The etch rate is around 400 nm/cycle (each cycle 12 

seconds) and uniformity is approximately 2%. Our target is to obtain ~350 μm deep 

holes 30 μm in diameter and pillars approximately 300 μm high and 100 μm in diameter. 

In the preliminary experiments, 300 cycles Bosch processing was exploited to 

produce 110 μm deep holes with a vertical profile, but the diameter was enlarged from 

30 μm to 50 μm. Figure 4.8 (a) shows the cross-section view after 300 cycles of Bosch 

processing and (b) gives a clear clue about the diameter change after DRIE. 

  
Figure 4.8 SEM results after 300 cycles of Bosch processing. (a) A cross-section view. (b) A 70°top 

view. 

Subsequently, 1500 additional cycles were added on the samples above. 

Approximately 6 more hours of DRIE processing generated the holes to a depth of 400 
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μm. It was observed that a significant overcut was present and that the diameter was 

enlarged to 126 μm. Figure 4.9 shows the results after the total 1800 cycles. 

 

Figure 4.9 The SEM picture after 1800 cycles of Bosch processing. (a) A cross-section view. (b) A 

zoomed-in view. 

As shown in Figure 4.9, the diameter and profile should be more effectively 

controlled to form vertically deep holes 30 μm in diameter. Aspect ratio dependent 

etching (ARDE) is widely reported for deep silicon etching. Figure 4.10 (a) shows an 

example of ARDE of trenches in varying widths. Figure 4.10 (b) illustrates the ARDE 

lag measured as trench depths are normalized to that of a 100-μm-wide trench[68]. 

 
Figure 4.10 (a) ARDE lag exhibited in typical TDM plasma etch process. The final etch depths in wider 

trenches are larger. (b) A plot of trench depth normalized to that of a 100-μm-wide trench. An ~50% 

ARDE lag is observed in a 2.5-μm-wide trench[68]. 

The etch rate rapidly decreases with the aspect ratio; over a certain critical point 

of aspect ratio, the etch rate likely reaches a constant minimal value, all while the etch 

mask is constantly consumed therefore resulting in lateral etching on the surface. Thus, 

both enhancement of photoresist selectivity and optimization of the etching recipe are 
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required to mitigate the consequences of ARDE. 

For etching deeper holes with a vertically straight profile, the depassivation time 

and bias voltage should be respectively increased to remove the passivation polymer at 

the bottom of the holes by enhancing the ion bombardment. 

The DRIE machine at University of Toronto, which offers a high selectivity of up 

to 1:200, was used to optimize the recipe. Figure 4.11 (a) shows the SEM results after 

etching with different optimized recipes. By ramping the process pressure, increasing 

the RF power, and adjusting the length of Argon bombardment time, we are able to 

produce holes approximately 310 μm deep and 30 μm in diameter as shown in Figure 

4.11 (b); (c) gives a top view of the holes after DRIE. The diameter remained at 30 μm. 

Therefore, holes ~310 μm deep and 30 μm in diameter can be achieved by an optimized 

recipe, consisting of increased RF power followed by a high aspect ratio etching recipe. 

The whole DRIE process is only 1 hour in duration which is comparatively a low cost 

and time efficient solution. 

A 3D optical profilometer was used to measure the surface roughness as shown in 

Figure 4.12. The mean roughness was found to be around 400 nm and the root mean 

square roughness about 500 nm. 
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Figure 4.11 (a) From left to right, SEM results are shown after 500 cycles etching with each recipe. I. 

shows the result with an original recipe. A 214 μm deep hole with a critically vertical profile. II. By 

modifying the RF power from 100W to 120W, 243 μm deep holes can be fabricated. III. By modifying 

Ar time from 700 ms to 800 ms, deeper holes with a 266 μm depth can be defined. IV. The best 

recipe is 500 cycles with 120W power optimized recipe followed by a high aspect ratio recipe for 278 

cycles. (b) A zoomed-in view of the hole. (c) A top view of the holes. 

 

Figure 4.12 The characterization of surface roughness on the backside of silicon. 

On the other side, DRIE on the frontside of the wafer is more reliable; fabricating 

pillars ~330 μm tall 200 μm in diameter was possible due to a low aspect ratio 

dependency. At the beginning, 300 and 900 cycles of the Bosch process were applied 

separately on the pillars to test the profiles. Figure 4.13 shows the pillar profiles after 

(a) 300 cycles (b) 900 cycles etching. The pitch was 300 μm for both samples while the 

diameters varied from 100 μm and 150 μm respectively. 
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Figure 4.13 SEM pictures after Bosch process etching. (a) 300 cycles. The pillar is ~100 μm tall and 

100 μm in diameter. (b) 900 cycles. The pillar is ~330 μm tall and 150 μm in diameter. 

In the following experiments, the combination of holes and pillars is the key step 

to defining hollow structures. As mentioned in Figure 4.7, the perfect well-aligned 

structure is formed on the backside via alignment lithography. Figure 4.14 shows the 

integration of holes and pillars after double-sided etching; (a) misalignment (b) well-

aligned. Figure 4.15 shows another design where solid pillars are positioned between 

hollow pillars to enhance chip robustness and strength when the pillars are subsequently 

sharpened into needles and inserted into skin. 

 

(a)                               (b) 

Figure 4.14 The integration of holes and pillars. (a) misalignment between pillars ~80 μm in diameter 

and holes 40 μm in diameter; (b) pillars well-aligned to bore holes. After DRIE, bore holes are exposed 

at the base of columns. 



49 

 

 
Figure 4.15 An array of pillars with a hollow structure. The center to center spacing is 300 μm. In this 

design, 50% of the needles have bored holes for ISF collection, and the other half are solid to distribute 

the pressure. 

 

4.2.3 Wet etching 

 

As discussed in the Chapter 2, a static wet etching system consisting of a solution 

of HF (49%)–HNO3 (69%) mixed at a ratio of 1:19 by volume was set up in this work 

to sharpen silicon pillars into a sharp needle-shaped profile. 

In the preliminary experiments, solid pillars were used to perform wet etching tests 

to obtain solid needles. Figure 4.16 shows pillars 200 μm high and 100 μm in diameter 

after acetone, IPA, photoresist stripper and oxygen plasma treatments were performed 

to remove photoresist on their tops. 
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Figure 4.16 The SEM results of pillars after DRIE process, 200 μm high and 100 μm in diameter. (a) 

Solid pillar array. (b) A zoomed-in view of pillars. 

Figure 4.17 shows the SEM results after 20 mins of wet etching. The tip diameter 

is approximately 60 μm while the base was measured to be approximately 90 μm in 

diameter. The height of the pillars is approximately 190 μm. From this result, we 

concluded that the vertical shrinkage is much less than the lateral tip shrinkage while 

the etching rate decreases gradually from the needle tip to the base. 

 

Figure 4.17 SEM pictures demonstrate the blunt cone-shaped pillars. (a) high uniformity of the wet 

etch; (b) a zoomed-in view. 

Another 20 mins of wet etching was performed subsequently. Figure 4.18 presents 

a very sharp solid microneedle array. The pillar height decreased from 200 μm to 150 

μm, and simultaneously the diameter at the base decreased from 100 μm to 70 μm while 

the tip radius decreased dramatically to less than 5 μm. 
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Figure 4.18 SEM image shows (a) high uniformity of a solid silicon microneedles array, and (b) the 

zoomed-in view of an individual sharp needle. 

Over-etching will be present for statically etching for an excessive amount of time 

or dynamic etching. Figure 4.19 shows two types of over-etching caused by employing 

excessive static and dynamic etching times respectively. The height of needles 

decreased to approximately 20 μm or in some cases less than 10 μm. 

 

Figure 4.19 SEM image showing the shape of over-etching due to (a) 60 min of static etching; (b) 10 

min of dynamic etching. 

After successfully producing sharp solid microneedle array, combining holes with 

needles to create the hollow structure was the next step. Various hollow shapes can be 

achieved by placing bore holes with different offsets relative to the center of the pillars. 

In our experiments, ‘micro-hypodermic’ and ‘snake-fang’ fashions were produced as 

Figure 4.20 shows. 



52 

 

  

Figure 4.20 SEM image showing the hollow Si microneedles with two different hole offsets for 

producing (a) the ‘micro-hypodermic’, and (b) ‘snake-fang’ fashions of microneedle design. 

Although the bore hole in the ‘micro-hypodermic’ needle design is elongated 

along the side of the needle, the potential of coring skin during ISF extraction may be 

present[17]. Thus, the ‘snake-fang’ design was fabricated in form of an array. Figure 

4.21 (a)-(d) shows the ‘snake-fang’ hollow silicon microneedle array with different 

needle base diameters; (e) and (f) demonstrate a solid-hollow microneedle array and a 

needle height of approximately 300 μm, larger than that of Figure 4.21 (a)-(d). 
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Figure 4.21 SEM images showing: (a)-(d) the hollow silicon microneedle arrays with different needle 

base diameters: (a) 200 μm high and 100 μm in diameter at the base; (b) a zoom-in view of (a); (c) 

200 μm high and 60 μm in diameter at the base; (d) a zoom-in view of (c); (e)-(f) a solid-hollow 

composite silicon microneedle array: (e) 50% of the needles have bored holes for ISF collection, and 

the other half are solid to distribute the pressure during skin insertion; (f) a zoomed-in view of 

microneedles 300 μm high and 80 μm in diameter. 

 

4.3 In vivo tests 

 

Confirmation of the above fabricated microneedle arrays piercing skin was 

achieved by dye penetrant inspection (DPI). Pig skin was penetrated first for the 

preliminary tests in this work. Figure 4.22 (a) shows the evidence of friction adhesion 

between the array and human skin after skin penetration as shown in Mukerjee’s 

paper[17]; (b) shows a successful penetration test on the pig skin in our work. By 

holding the microneedle array with a tweezer, the pig skin can be moved upwards due 

to the friction adhesion; (c) presents a clear pattern on the pig skin which can be 

observed by the naked eyes. 
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Figure 4.22 (a) Friction adhesion between the microneedle array and the skin surface as shown in 

Mukerjee’s paper[17]. (b) A successful penetration test on the pig skin in our work. (c) The appearance 

of the needle pattern on pig skin. 

A set of hollow microneedle arrays were applied onto human skin in the following 

experiments. The earlobe was selected as a penetration site since it is less elastic than 

other skin areas and allows pressure to be applied on both sides of the array. The earlobe 

was first cleaned with IPA and then pierced by the hollow microneedle array. 

Afterwards, Methylene Blue was placed on the skin and subsequently wiped away after 

1 min. Figure 4.23 (a) reveals that Methylene Blue migrated down through the highly 

impermeable stratum corneum that was breached by the microneedle arrays. Figure 

4.23 (b) shows that the majority of needles stand well after penetration likely due to the 

force distribution among all the needles in the array. 

  

Figure 4.23 (a) Methylene Blue used on the insertion site and was later imaged on the earlobe to 

demonstrate a successful penetration. (b) an SEM image of the microneedle array after insertion. 

Ongoing work will focus on ISF extraction by using an integrated system 

consisting of a microneedle arrays and reservoirs. Figure 4.24 shows the assembly of a 

microneedle array and a reservoir system. PDMS was cut out into desired dimensions 
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with a reservoir facing the backside of the microneedle array. By using oxygen plasma 

cleaning and heating assembly on hotplate, the PDMS reservoir was bonded to the 

silicon microneedle array as shown in Figure 4.24 (a). About 80 cm of PTFE tubing 

was inserted into PDMS to connect the reservoir to a syringe pump as shown in Figure 

4.24 (b). 

 
Figure 4.24 The prototype of the assembled extraction apparatus. (a) A side view of the extraction 

device without the PTFE tubing. (b) A top view of the microneedle-reservoir system. 

Extraction tests with this microneedle-reservoir system were performed on a 

human arm using the following procedure. Insert the microneedles into skin by pushing 

on the device with thumb pressure on center of the array and then holding the device in 

place for about 20 min. Immediately afterwards, set syringe pump to withdraw fluid at 

predetermined fluid extraction rate for a predetermined total volume. Once the 

withdrawal process is complete, detach microneedle array from skin by lifting directly 

outwards. The sample was then baked at 150°C for 2 hours to keep the residual 

organic material. Figure 4.25 shows SEM results of the microneedle array before and 

after extraction tests. 
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Figure 4.25 (a) An SEM image of the microneedle array before insertion. (b) and (c) The tissue and 

liquid residual remained on the needle. 

These exciting results presented above can prove that the hollow silicon 

microneedle array can penetrate through the highly impermeable outer-most layer of 

skin and reach the epidermis layer in which ISF is located. ISF was extracted 

successfully inside the bore hole of the microneedles. In the future, the microneedle-

reservoir apparatus will be optimized and ISF extraction by the capillary force will also 

be concentrated on. 
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Chapter 5 Conclusion 

 

The fabrication of hollow silicon microneedle array and in vivo testing of a 

microneedle-reservoir integrated assemble system are presented in this thesis. 

This work illustrates an innovative double-side DRIE approach for producing 

hollow silicon microneedle arrays. In the experiments, solid microneedles with tip radii 

less than 5 μm were fabricated by performing DRIE and the subsequently wet etching 

on the frontside only. Afterwards the etching from both sides were integrated, resulting 

in the accomplishment of the hollow Si microneedles with two bore placements. Hollow 

silicon microneedle arrays with 200 μm and 300 μm in height were fabricated 

successfully as well. Such microneedles can only penetrate through the outer layer of 

skin without interfering with the nerve endings in the deeper layer, making minimal 

invasive and painless sampling fashion. 

All the promising results from the fabrication and in vivo testing confirm that 

hollow silicon microneedle arrays are not only sharp enough to penetrate the stratum 

corneum but also robust enough to extract ISF out of skin. Ongoing work will focus on 

the optimization of the assemble extraction apparatus and the capillary filling of the 

holes. 
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