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Abstract 

Monopile foundations supporting offshore wind turbines are hollow circular steel piles 

of diameter 4-6 m and a slenderness ratio (length/radius) of 10-12 driven into the seabed in an 

average water depth of 35 m.  They are subjected to large lateral forces and overturning 

moments at the seabed level from wind, waves, and water currents acting on the wind turbine 

structure.  Currently, they are designed using the p-y analysis method (p is the soil reaction 

force per unit length at any point along the pile shaft and y is the corresponding pile 

displacement at that point) which has a number of shortcomings.  The p-y analysis was 

originally developed from a few full-scale field pile-load tests on small-diameter piles (less 

than 2 m in diameter) and their applicability to large-diameter monopiles is questionable.  

Besides, it is empirical, site-specific, and does not account for the three-dimensional pile-soil 

interaction important for large-diameter monopiles, thereby, resulting in a conservative design 

and an increase in the cost of the project.  Three-dimensional finite element analysis can be 

used for the analysis and design of monopiles, but such analyses require significantly large 

computational time and effort besides, the specific expertise of finite element software that 

further limits its use in practice.  

The primary objective of this thesis is to develop a computationally efficient 

continuum-based mathematical model that takes the three-dimensional monopile-soil 

interaction into account.  In the thesis, three tasks are performed towards the development of 

the mathematical model.  First, a mathematical framework is developed to analyze laterally 

loaded monopiles following the Timoshenko beam theory in a multilayered elastic soil deposit 

subjected to static lateral loading.  In the analysis, it is shown that successive simplification of 

the analysis can lead to monopiles modeled as a Euler-Bernoulli and rigid beam.  The analysis 

is verified with finite element solutions and the suitability of the application each of the beam 

theories to obtain monopile response (head-displacement and rotation) is also investigated 

besides, a comparison of the computational time between the present analysis and finite 

element analysis is also shown.  In the second task, the aforementioned framework is extended 

to analyze monopiles embedded in a multilayered linear viscoelastic soil deposit with 

frequency-independent hysteretic material damping subjected to harmonic dynamic lateral 

loading.  It is shown that the analysis can be reduced to model monopiles following the 
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Rayleigh, Euler-Bernoulli, and rigid beam theory.  The analysis is verified with well-

established solution techniques reported in the literature. Further, the results and the 

computational time obtained from this analysis are compared with those of the analysis in the 

first task for four different monopiles with varying slenderness ratio currently installed in the 

field.  The purpose of the comparison is to investigate the applicability of the dynamic analysis 

for obtaining monopile response which is subjected to cyclic loadings of frequency less than 

1.0 Hz.  It is found that the static analysis following the Euler-Bernoulli beam theory is 

sufficient for obtaining monopile response.   

In the third task, the mathematical framework developed in the first task is extended to 

analyze laterally loaded monopiles modeled as a Euler-Bernoulli beam in a multilayered 

nonlinear elastic soil deposit and subjected to static loading.  In the analysis, the nonlinear 

elastic relationships describing the variation of shear modulus with shear strain reported in the 

literature either applicable to undrained clays or sandy soil deposits are utilized.  The 

mathematical accuracy of the analysis is verified by comparing results obtained from the 

analysis with the results of finite element analysis.  A comparison of the computational time 

between the present and finite element analysis is also shown to demonstrate the computational 

efficiency of the present analysis.  The results of the analysis are further validated with the 

results of several full-scale field pile-load tests and the p-y analysis procedure available in the 

literature.  The accuracy of the results from this nonlinear elastic approach is further ensured 

by comparing monopile response with those of finite element simulations where the soil is 

modeled using an elastic-plastic constitutive model.  A comparison of the monopile response 

is also shown in the p-y analysis to investigate the appropriateness of the currently used p-y 

curves to analyze and design monopiles.  Finally, a preliminary step-by-step design procedure 

for monopile foundations embedded in nonlinear elastic soil deposit is developed following 

the recommendations outlined in current codes of practice for offshore wind turbines. 
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CHAPTER 1 

Introduction 

1.1 General 

Of the various sources of renewable energy, wind energy is a popular choice in many 

developed and developing countries.  Wind turbines are installed onshore and offshore almost 

everywhere across the world.  While onshore wind turbines are an option in most countries, 

the Western European countries have moved offshore to meet their high energy demands.  

There have been rapid installations of offshore wind turbines (OWTs) in Europe with a total 

installed capacity of 11,027 MW, with UK and Germany being the leading producers (Ho et 

al. 2016).  While Europe covers almost 84% of the offshore wind market, countries like China, 

Japan, South Korea, Taiwan, and the USA have also set up ambitious targets for offshore wind 

power generation (GWEC 2017).  The advantages of OWTs are that a continuous and steady 

supply of wind over a large area is available and that large-sized wind turbines capable of 

generating significantly high energy can be constructed. 

Although OWTs are becoming popular, it is a relatively new technology with different 

engineering challenges.  OWTs are subjected to large environmental and mechanical loads 

which are transferred to the foundations at the sea level.  This makes it necessary to adopt a 

foundation system which can effectively resist these loads.  Various types of OWT foundation 

systems have been used so far depending on the depth of installation  the gravity base and 

monopiles at shallow to moderate water depths, and the suction buckets, jacket, tripod at larger 

water depths.  Monopiles are the most common type of OWT foundation (about 80% (Ho et 

al. 2016)) because of their simple design, fabrication and installation processes (IRENA 2012).  

Currently, monopiles are typically 4-6 m in diameter, installed in water depths of around 35 m 

supporting OWTs with a rated power output of up to 5 MW.  Monopiles are designed using 

the p-y method which was developed to design piles of diameter less than 2 m.  Therefore, 

their use to design monopiles is questionable.  Besides, monopile foundations are also expected 

to support even larger sized OWTs with a power output of more than 6 MW in deeper water 

depths of up to 60 m which would require larger sized monopiles of diameter 7.5-10 m 

(Kallehave et al. 2015) commonly termed as XL monopiles.  The use of the p-y method to 

design such large diameter piles might lead to an uneconomical and conservative design.   
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Therefore, further research studies on different aspects of monopiles supporting OWTs are 

necessary to produce safe and economical designs. 

1.2 Literature Review 

This section provides a brief overview of the existing OWT monopile systems with 

respect to their typical dimensions, loading conditions, current design considerations, and past 

research studies. 

1.2.1  OWT structure monopile system 

Figure 1.1 shows a three-bladed OWT structure which typically has a rated power 

output of 2-5 MW.  The turbine system is a heavy rotating mass comprising the blade, nacelle, 

rotor, and hub assembly resting on a tall slender steel tubular column (which is the tower).  For 

example, a 3.6 MW Siemens OWT has a tower height of 90 m and a blade diameter of 120 m 

(Siemens AG 2016).  The tower and turbine system is connected to the substructure via a 

transition piece.  The substructure is a monopile which essentially is a hollow circular steel 

pile of diameter typically ranging over 4-6 m, driven hydraulically into the seabed in water 

depths of approximately 35 m (Doherty and Gavin 2012) and a slenderness ratio (length/radius) 

of 10-12 (Klinkvort and Hededal 2013).   

The OWT structure is subjected to various static and dynamic loads of cyclic nature.  

The axial static loads from the self-weight of the tower, turbine, and the substructure assembly.  

The dynamic lateral loads are from the wind load on the tower and turbine assembly with a 

predominant frequency of 0.01 Hz (Bhattacharya et al. 2011), and the waves and water current 

loads on the tower and substructure with a frequency typically in the range of 0.1-0.3 Hz 

(Kallehave et al. 2015).  There are additional dynamic lateral loads from the vibrations of the 

rotor at the hub level, typically in the range of 0.14-0.31 Hz (often termed as 1P) and vibrations 

arising from blade shadowing effects in the range of 0.42-0.93 Hz (termed as the 3P frequency, 

i.e., thrice the rotor frequency) for a standard 3 MW wind turbine (Bhattacharya et al. 2011).  

These loads on the OWT system have to be resisted by the monopile, and therefore, the 

geotechnical design of monopile is important to ensure satisfactory performance of the OWT 

during its typical service life of 20 years (DNV 2014). 
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Figure 1.1: Schematic diagram of an OWT-monopile system with imposed environmental 

loads 

1.2.2  Design requirements of OWT monopile 

Both the ultimate and serviceability limit state criteria should be considered for the 

geotechnical design of monopiles (DNV 2014).  The typical serviceability limit state criteria 

set for monopiles are in terms of maximum rotation of the monopile head at the seabed level, 

while the typical ultimate limit state criteria set for monopiles are in terms of their collapse 

load.  Another important design consideration is that the natural frequency of the OWT 
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structure should not be close to the forcing frequency of the imposed dynamic loads.  The 

details of the design requirements are mentioned below: 

 Ultimate limit state (ULS) criterion: Sufficient monopile capacity should be ensured under 

axial and lateral loading such that the applied loads do not cause the collapse of the monopile 

under axial and lateral loads during an extreme loading event. 

 Serviceability limit state (SLS) criterion: Displacement tolerances at the monopile head are 

required for satisfactory performance of the OWT under instantaneous and long-term cyclic 

loads.  The maximum allowable rotation for monopile at the seabed is 0.5 under extreme 

loading conditions, of which 0.25 is from installation tolerances.  Therefore, the usual 

allowable limit for monopile head rotation is 0.25. 

 Resonance avoidance criterion: Current OWTs are designed as “soft–stiff” which means 

that the first natural frequency of the global OWT structure-monopile system should be 

±10% away from the excitation frequency bands  1P (rotor frequency) and 3P (blade 

passing frequency) typically ranging over 0.3–1.0 Hz (see Figure 1.2) (DNV 2002).  

 

 

Figure 1.2: Forcing frequencies of a Vestas V90 3 MW OWT (Regenerated from Bhattacharya 

et al. 2011) 
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1.2.3  Research studies and developments 

Several research studies on various aspects of OWT structure monopile system have 

been conducted by researchers across the world.  These studies can be primarily grouped into 

two categories: (i) load-deformation studies on monopiles and (ii) studies on the natural 

frequency of the OWT-monopile system. 

Load-deformation studies on monopiles 

Monopiles are laterally loaded piles that should satisfy both the ULS and SLS criteria 

for adequate performance.  For offshore applications, the design of such laterally loaded piles 

is currently based on the p-y method (GL 2005, API 2011, DNV 2014).  In the p-y method, the 

soil is modeled as a series of uncoupled (Winkler) nonlinear springs attached to the pile shaft 

along its entire length, and the pile is modeled as a Euler-Bernoulli beam. The soil springs are 

characterized by nonlinear force-displacement (p-y) relationships (commonly termed as p-y 

curves) for static and cyclic loading (see Figure 1.3).  The p-y curves depend on soil properties 

and depth at which the spring is attached to the pile. 

 

 
Figure 1.3: Nonlinear p-y curves for laterally loaded monopile 

However, the widely-used p-y method recommended by the American Petroleum 

Institute (API 2011) was originally developed for long, slender piles (Matlock 1970, Reese 

1975) because of which its applicability to large-diameter monopiles is questionable.  This is 

particularly true because the p-y curves were developed by back-analyzing the results of a few 

full-scale field load tests on slender piles with 21 m length and 61 cm diameter, and the method 

does not explicitly take into account the mechanics of three-dimensional (3-D) pile-soil 
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interaction important for large-diameter monopiles.  The p-y curve for cyclic load was 

developed for less than 100 load cycles while the monopiles are subjected to billions of load 

cycles ( 107) over the service life of the OWT (Achmus et al. 2011).   

This drawback prompted researchers across the world to examine the applicability of 

the existing p-y method to large diameter monopiles under static and cyclic loads and explore 

other aspects of monopile behavior important for design.  An exhaustive literature survey based 

on the different aspects of monopile behavior highlighting the major contributions is 

summarised next.  The literature is categorized based on the loading conditions adopted in the 

studies. 

 Static loading 

Three dimensional (3-D) finite element (FE) analyses (Weimann et al. 2004, Lesny and 

Weimann 2005, 2006, Abdel-Rahman and Achmus 2005, Bekken 2009, Hearn and Edgers 

2010, Moller and Christiansen 2011, Haiderali et al. 2013), geotechnical centrifuge tests 

(Alderlieste 2011), 1-g model laboratory tests (Moller and Christiansen 2011, Zhu et al. 2015), 

and field tests on reduced-scale (Li et al. 2017) monopiles in sandy and clayey soils showed 

that the existing p-y curves are not suitable for design of monopiles because they overestimate 

the soil stiffness, and thus underestimate monopile displacement.  Therefore, efforts were made 

to modify the existing API recommended p-y curves for sandy (Weimann et al. 2004, Sorensen 

et al. 2010, Achmus et al. 2011, Zhu et al. 2015, Li et al. 2017) and clayey (Pradhan 2012) 

soils.  A method similar to the p-y analysis was also proposed to design monopiles based on 3-

D FE modeling in conjunction with site-specific field tests (Byrne et al. 2015 a, b, Zdravkovic 

et al. 2015, Murphy et al. 2018).  Additional monopile-soil response curves i.e., m- curves 

describing the relationship between the distributed moment m along monopile shaft and 

rotation  of the monopile cross-section, S-y curves describing the relationship between the 

shear force S at the pile base and pile base displacement y, and M- curves describing the 

relationship between the moment at the monopile base and monopile base rotation were 

developed.  The design curves were implemented in a 1-D FE framework in which the pile was 

modeled as a Timoshenko beam and the soil adjacent to the pile was represented by 

translational and rotational springs characterized by the p-y, m-, S-y, and M- curves. 
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 Cyclic loading 

Centrifuge tests (Alderlieste 2011, Grajales et al. 2015), 1-g model or small-scale 

laboratory tests (Leblanc et al. 2010a, Alderlieste 2011, Moller and Christiansen 2011, Hansen 

et al. 2011, Abadie and Byrne 2014, Abadie 2015, Nicolai and Ibsen 2015, Liao et al. 2018), 

and numerical modeling (Grajales et al. 2015, Depina et al. 2015, Carswell et al. 2016, Page et 

al. 2017, Chong and Pasten 2017, Barari et al. 2017, Aasen et al. 2017, Yang et al. 2017) on 

monopiles in sandy and clayey soils subjected to short- and long-term cyclic loads reported an 

increase in monopile displacement and changes in the stiffness of the monopile-soil system 

with the number of load cycles.  A theoretical model to obtain the monopile response in sandy 

soil was suggested in which the modulus degradation of sand with load cycles was determined 

from cyclic triaxial tests and given as input to a FE (Lesny and Hinz 2007, Achmus et al. 2009, 

Depina et al. 2015) or a finite difference (Yang et al. 2017) model to subsequently develop 

design charts (Achmus et al. 2009, Yang et al. 2017).  Design charts to determine accumulated 

monopile rotation because of random two-way cyclic loading from a limited amount of 

empirical data on small-scale tests were also developed (Leblanc et al. 2010b).  A design 

procedure for monopiles in sandy soil from the results of a series of centrifuge tests for any 

loading amplitude, characteristics, and a number of load cycles was also suggested (Klinkvort 

and Hededal 2013, 2014).    

Studies on the natural frequency of the OWT-monopile system  

For estimating the natural frequency of an OWT structure, the stiffness of the monopile-

soil system at seabed level can be characterized by a static lateral translational stiffness Krr, 

cross-coupling stiffness Kr, and rotational stiffness K represented as springs (see Figure 

1.4).  A research study (Zaaijer 2006) was conducted to evaluate these spring constants Krr, 

Kr, and K using three different approaches: (i) effective fixity length in which a rigid 

clamping of the pile was used beyond an effective depth of 3.3-3.7 times the pile diameter, (ii) 

FE simulation and continuum model proposed by previous studies on laterally loaded piles, 

and (iii) simplified uncoupled springs from both force and displacement based method of a FE 

model.  The range of applicability of each of the methods in the calculation of natural frequency 

was investigated, and it was suggested that the continuum and FE models gave a reasonable 

estimation of natural frequency.  Further research studies led to the development of 
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approximate (Adhikari and Bhattacharya 2011) and exact (Adhikari and Bhattacharya 2012) 

equations using which an assessment of the natural frequency of an OWT-foundation system 

can be made.  In these studies, the foundation was initially modeled with static springs Krr and 

K (see Figure 1.4) while the tower and turbine were modeled as a Euler-Bernoulli beam with 

a mass at the end.  A reasonable match was obtained between the results of the developed 

equations and those of small-scale experiments and measured values of real wind farm sites 

(Bhattacharya and Adhikari 2011).  The method was further improved by including the cross-

coupling spring Kr (see Figure 1.4) and modeling the tower both as a Timoshenko and Euler-

Bernoulli beam. Comparison of results with those of wind farm sites gave a reasonably 

accurate initial estimate of the natural frequency of wind turbines.  A higher-order beam theory 

for the tower did not improve the natural frequency prediction much (Arany et al. 2015). 

 

 

Figure 1.4: A simplified model for calculation of natural frequency 

Beside the development of static spring constants for estimating the natural frequency 

of OWTs, a few studies were also conducted to observe the effect of long-term cyclic loads on 

the natural frequency of OWTs.  Small-scale tests (Bhattacharya et al. 2013, Lombardi et al. 

2013) on OWT in homogeneous, isotropic soft clay under long-term cyclic loads at three sets 

of forcing frequency and amplitude showed a degradation of soil stiffness with a decrease in 

the natural frequency of the OWT.  A greater decrease in natural frequency at higher strain 
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levels was also observed.  Further, the damping of the system was high at higher strain level 

and loads.  The tests were also repeated for monopiles in sandy soils, and it was reported that 

there was an increase in stiffness of the soil that led to an increase in natural frequency (Arany 

et al. 2015). 

1.3  Limitations of existing studies 

The previous section provides information on the current state-of-art of the OWT-

monopile system, their design considerations, and a brief discussion on the applicability of the 

existing analysis methods to monopiles. At the same time, the behavior and design of 

monopiles under static, short- and long-term cyclic loads, and methods to predict the natural 

frequency of the OWT structure are also discussed.  Research studies on monopiles are limited 

in number, and there are a variety of aspects on which further work is required, as described 

below: 

 The API recommended p-y method is still used in practice for analyzing and designing 

monopiles (e.g., Bisoi and Haldar 2014, 2015).  Although there are improved p-y analysis 

methods for monopiles, these methods are very site-specific.  Similarly, the design 

methodologies developed from experimental and numerical studies are from a limited 

number of tests or analysis either on idealized soil profiles or for site-specific conditions.  

Therefore, there is clearly a need of an analytical, semi-analytical or a numerical model 

that can account for 3-D monopile-soil interaction, consider the soil variabilities actually 

encountered in the field and can be used in routine design projects without resorting to 

sophisticated and computationally expensive FE tools.  

 To predict the natural frequency of the OWT structure the spring constants (as shown in 

Figure 1.4) should be known.  The exact or approximate method developed for calculating 

the natural frequency of OWT utilize equations available in the literature from previous 

studies on laterally loaded piles to quantify these spring constants.  However, the equations 

are oversimplified, developed for idealized soil profiles, and are based on considerations 

of static stiffness of the pile-soil system.  Moreover, their application to the monopile-soil 

system is also questionable because monopiles are subjected to cyclic/dynamic loads 

during their lifetime and dynamic stiffness might be necessary for accurate predictions of 

the natural frequency of the OWT.  FE tools can be used for individual projects; however, 
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an analytical, semi-analytical or a numerical tool would be very useful because a large 

number of analyses for varied soil profiles can be done to develop the static and dynamic 

spring constants (commonly referred to as static and dynamic impedance functions in the 

geotechnical foundation engineering literature) quite easily and economically. 

 Conventionally, laterally loaded piles have always been modeled as a Euler-Bernoulli 

beam in any analytical, semi-analytical or numerical procedures (for example the p-y 

method) for analysis and design of laterally loaded piles.  However, for monopiles, most 

of the literature classifies the monopile as a perfectly rigid body while some numerical 

studies use the Timoshenko beam theory.   Thus, there is clearly a lack of consensus in the 

literature as to which beam theory is really suitable for modeling monopiles.  Therefore, 

an investigation of the suitability of the application of different beam theories 

(Timoshenko, Euler-Bernoulli, Rayleigh and rigid beam theory) to monopiles is necessary. 

1.4  Objectives of the present research 

Based on the limitations identified in the literature, the specific objectives of the present 

research reported in this thesis are: 

 Develop a mathematically rigorous but a computationally efficient model for analysis of 

laterally loaded monopiles in a multilayered soil deposit that  

i. accounts for 3-D monopile-soil interaction and eliminates the requirement of 

developing a new or modifying the existing p-y curves for application to monopiles, 

ii. can be used to quickly predict the monopile head displacement and rotation under 

different loading conditions (static, dynamic or cyclic) through use of appropriate soil 

properties and constitutive relationships, and  

iii. can be used to quickly perform an exhaustive parametric study for monopiles 

embedded in various soil profiles to obtain the spring constants Krr, Kr, and K 

required for estimation of the natural frequency of OWTs, without resorting to 

expensive and time-consuming FE analysis. 

 Investigate the application of various beam theories to model monopiles. 

1.5  Organization of the thesis 

The thesis contains six chapters and is organized as follows: 
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 Chapter 1 provides a brief introduction of the current state-of-art on the OWT-monopile 

system and a summary of the research objectives.  

 Chapter 2 provides the development of a continuum-based framework for analyzing 

laterally loaded monopiles in a multilayered elastic soil, subjected to static loading using 

the Timoshenko beam theory.  It is shown that the framework can be progressively reduced 

to obtain monopile response following the Euler-Bernoulli and rigid beam theory.  The 

results obtained from the present analysis following various beam theories are compared 

with 3-D FE analysis and appropriate recommendations on the use of different beam 

theories for modeling monopiles in a linear elastic soil deposit are also made.  A 

comparison of the computational time required to obtain monopile response between the 

present and 3-D FE analysis is also shown. 

 Chapter 3 provides the development of a continuum-based mathematical framework for 

analyzing laterally loaded monopiles in multilayered linear viscoelastic soil with 

hysteretic material damping, subjected to steady-state cyclic/dynamic loading using the 

Timoshenko beam theory.  It is shown that the framework can be progressively reduced 

to obtain monopile response following the Rayleigh, Euler-Bernoulli, and rigid beam 

theory.  The results obtained from the present analysis following different beam theories 

are verified with the results of existing solutions available in the literature.  Further, the 

applicability of the dynamic analysis to estimate monopile response at a cyclic/dynamic 

loading frequency of less than 1.0 Hz is also investigated. 

 Chapter 4 provides the development of a continuum-based framework for analyzing 

laterally loaded monopiles in a multilayered nonlinear elastic soil, subjected to static 

loading using the Euler-Bernoulli beam theory.  The mathematical accuracy and 

computational efficiency of this analysis are compared with 3-D FE analysis.  Further, the 

accuracy of the present analysis is validated with predicted results obtained from the p-y 

analysis and measured response from full-scale field pile-load tests for a few case studies 

in clayey and sandy soil deposit, available in the literature.  To assess the applicability of 

the present nonlinear elastic approach in predicting monopile response, the results 

obtained from the present analysis are also compared with the results of equivalent 3-D 

FE simulations using a linear elastic-perfectly plastic constitutive model and the p-y 
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analysis.  A comparison of the computational time from the present nonlinear elastic 

approach, linear elastic-perfectly plastic FE analysis, and the p-y analysis is also shown. 

 Chapter 5 demonstrates a preliminary step-by-step design procedure for laterally loaded 

monopiles using the nonlinear elastic analysis developed in Chapter 4. 

 Chapter 6 provides the conclusions resulting from the present work along with 

recommendations for future research.   
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CHAPTER 2 

Static Analysis of Laterally Loaded Monopiles in Multilayered 

Elastic Soil  

2.1  Introduction 

In this chapter, the mathematical framework for the static analysis of laterally loaded 

monopiles embedded in a multilayered soil deposit is presented.  In the analysis, the soil is 

modeled as a 3-D elastic continuum and the monopile is modeled following the Timoshenko 

beam theory.  Rational soil displacement functions are assumed and the principle of minimum 

potential energy is applied to obtain the differential equations describing the monopile and soil 

displacements.  The differential equations governing monopile and soil displacements are 

solved analytically and numerically, respectively, following an iterative algorithm.  Further, it 

is shown that the framework can be simplified to obtain monopile response following the 

Euler-Bernoulli and rigid beam theories.   

The results (pile displacement and rotation) obtained from the present analysis 

following different beam theories are compared with the results of equivalent 3-D FE analysis 

for several cases of small-diameter piles and large-diameter monopiles.  The difference in the 

prediction of pile and monopile response following different beam theories from the present 

analysis with that of equivalent 3-D FE analysis is quantified.  Besides, recommendations on 

the use of different beam theories for modeling monopiles following different beam theories 

are also made.  Further, a comparison of the computational time required to obtain pile and 

monopile response between different beam theories and equivalent 3-D FE analysis is also 

shown. 

2.2  Overview of existing formulations for static analysis of laterally loaded piles in 

elastic soil 

There are several computational algorithms with varying degree of sophistication 

available in the literature, for estimating pile response embedded in homogeneous, 

heterogeneous, and multilayered elastic soil deposit and subjected to static lateral loading.  

These methods can be categorized into three major groups: (i) Winkler type subgrade-reaction 

based analytical formulation (Reese and Matlock 1956, Matlock and Reese 1960, Vesic 1961, 
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Davisson and Gill 1963, Gill 1968, Alizadeh and Davisson 1970, Carter 1984, Bowles 1996, 

Ashford and Juirnarongrit 2003, Salgado 2008), (ii) continuum-based 3-D semi-analytical 

boundary element (BE) (Poulos 1971, Banerjee and Davies 1978, Ai et al. 2017) formulation 

based on Mindlin’s fundamental solution (Mindlin 1936) and the numerical FE (Desai and 

Appel 1976, Kuhlemeyer 1979, Randolph 1981, Chow 1987, Carter and Kulhawy 1992, 

Higgins et al. 2013) formulation, and (iii) approximate continuum-based analytical and semi-

analytical formulation using variational calculus (Sun 1994, Guo and Lee 2001, Shen and Teh 

2004, Yang and Liang 2006, Basu et al. 2009). 

Of the various formulations available, the Winkler type subgrade-reaction based 

formulations for laterally loaded piles (derived from beams on an elastic foundation (BEF)) 

are the most popular and widely used by geotechnical engineers because these approaches are 

easy to understand and use, mathematically convenient, and computationally inexpensive.  In 

this formulation, the soil is represented by a series of independent, 1-D, linear elastic springs 

characterized by the coefficient of subgrade-reaction k (unit is F/L2; F is force and L is length) 

at distinct locations along the pile length where the soil reaction force per unit length p (unit is 

F/L) at any point is proportional to the pile displacement y (unit is L) at that point; the 

relationship between p and y is mathematically expressed as p = k  y.  Majority of the research 

in this formulation has been devoted towards developing simple correlations to quantify k 

(representing the compressional resistance of soil) as a function of the pile radius and the 

Young’s modulus and Poisson’s ratio of soil (e.g., Vesic 1961, Carter 1984, Ashford and 

Juirnarongrit 2003, Salgado 2008), such that an analytical solution of the fourth-order linear 

differential equation governing pile displacement can be obtained.  This requires parameter 

calibration from laboratory or full-scale experiments (e.g., Gill 1960, Alizadeh and Davisson 

1970, Salgado 2008) on laterally loaded piles such that the pile response can be predicted 

accurately; however, these correlations are not rigorous enough to be used in the routine 

geotechnical design.  Besides, in this formulation the soil is characterized by k i.e., a one-

parameter foundation model and it neglects the shear interaction (characterized by the soil 

parameter t) between adjacent Winkler springs which are referred to as the two-parameter 

foundation model in the BEF literature (Filonenko-Borodich 1946, Pasternak 1954, Vlasov 

and Leont’ev 1966, Vallabhan and Das 1991).   
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The numerical (BE and FE) formulations where the soil is modeled as a continuum are 

conceptually superior to the Winkler-based formulations because they account for the true 

interaction (both the soil parameters k and t) between the pile and soil, however, in these 

formulations the mathematics involved is often too complex which perhaps makes the 

formulations unattractive, the algorithm computationally expensive, and not quite useful for 

routine geotechnical practice.  The advantage of the approximate continuum-based 

formulations is that these formulations have the ability to capture the important aspect of the 

mechanics of the problem and predict pile response without significant loss of accuracy, being 

mathematically too complex, and computationally too intensive.   

In most of the aforementioned formulations, the pile is modeled as an elastic Euler-

Bernoulli beam; the Euler-Bernoulli beam theory does not account for the effect of shear 

deformation within the beam/pile cross-section.  The Euler–Bernoulli beam theory used in the 

formulations is applicable for modeling the bending behavior of beams (piles) with slenderness 

ratios (length/radius) typically greater than 20.  For piles that are stubby – for example, large-

diameter monopiles – the use of the Euler–Bernoulli theory is questionable, and perhaps the 

Timoshenko beam theory is more appropriate.  The shear deformation that is likely to be non-

negligible in large-diameter monopiles is not taken into account by the Euler–Bernoulli beam 

theory but can be captured by the Timoshenko beam theory (Shames & Dym 1985).  The use 

of the Timoshenko beam theory may be particularly necessary for monopiles supporting 

offshore wind turbines because these piles have low slenderness ratio of 10 – 12 (Klinkvort & 

Hededal 2014) and very large diameters in the range of 4 – 6 m, with future installations 

planned with diameters as large as 7·5 – 10 m (Byrne et al. 2015).  In fact, the rigid beam theory 

may also be applicable for monopiles subjected to lateral loads because, sometimes, the 

monopiles undergo rigid body rotation (Abdel-Rahman & Achmus 2005, Klinkvort & Hededal 

2013).  Rigid body motion is also possible for large-diameter stubby drilled shafts and bored 

piles as well if the stiffness of the surrounding soil is much less compared with the stiffness of 

the pile (Yang & Liang 2006). 

In this chapter, an approximate continuum-based formulation for the static analysis of 

laterally loaded monopiles following the Timoshenko beam theory in multilayered elastic soil 

is presented.  This formulation is an extension of an existing analysis framework on static 

analysis of laterally loaded piles following the Euler–Bernoulli beam theory (Basu et al. 2009).  
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In the present analysis, it is shown that the new formulation offers a generalized framework 

which under simplified assumptions, leads to monopiles/piles modeled as Euler–Bernoulli and 

rigid beams.  Closed-form solutions for monopile displacement, rotation, bending moment, 

shear force, and soil reaction are obtained considering all the three beam theories.  The 

advantages of this formulation are (i) unlike the Winkler type subgrade-reaction based 

formulation, this formulation leads to a Pasternak (1954) type two-parameter subgrade-

reaction based representation of the soil in which the Winkler soil springs are coupled through 

shear interaction between them, (ii) the values of the soil spring constant k and shear parameter 

t of the two-parameter model are not assigned a priori but are rather an outcome of the analysis, 

(iii) the mathematics involved in this formulation is comparatively simpler in comparison to 

the BE and FE formulations which makes the solution process tractable and computationally 

inexpensive, and (iv) this formulation can be extended to obtain response of piles/monopiles 

embedded in a viscoelastic soil subjected to dynamic loading (discussed in Chapter 3) and to 

account for soil nonlinearity (discussed in Chapter 4). 

2.3  Mathematical Formulation 

2.3.1  Problem definition 

Figure 2.1 shows a hollow circular monopile modeled as Timoshenko beam embedded 

in a multilayered elastic soil deposit.  The monopile has a length Lp, radius rp, wall thickness 

tp {= 6.35  (2  rp)/100 mm (API 2011)}, area of cross-section Ap, and second moment of 

inertia Ip.  The monopile is characterized by its shear modulus Gp [= Ep/{2  (1  p)}] where 

Ep is Young’s modulus and p is the Poisson’s ratio of the monopile. The soil layers are 

characterized by the Lame’s constants si [ Esisi/{(1  si)(1  2si)}] and Gsi [ Esi/{2  (1  

si)}] where Esi is Young’s modulus and si is the Poisson’s ratio of the ith layer.  The thickness 

of any ith layer is given by Hi  Hi1 (with H0 = 0).  Each layer has an infinite radial extent and 

the bottom nth layer has an infinite vertical extent in the downward direction.  

No slippage or separation between the monopile and the surrounding soil or between 

the soil layers is allowed in the analysis.  A cylindrical r--z coordinate system is chosen for 

analysis (shown in Figure 2.1).  The monopile head is flush with the ground surface and the 

loading on the wind turbine structure (shown in Figure 1.1) is modeled as a concentrated 
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horizontal force Fa and/or moment Ma
 at the monopile head.  The goal of the analysis is to 

obtain monopile response – displacement w, rotation dw/dz, bending moment M, and soil 

reaction p – as a function of depth z, under the action of the applied loading. 

 

 

Figure 2.1: A monopile embedded in a multilayered elastic soil deposit and subjected to static 

lateral loads 

2.3.2  Displacements, strain, and strain energy density in soil 

The horizontal soil displacements generated by the monopile displacement w(z) is 

described as a product of three separable functions each of which varies with one of the three 

dimensions.  The vertical soil displacement uz is assumed to be negligible because the effect 

of vertical displacement on the horizontal response of piles has been found to be negligible by 

several researchers like Tajimi (1969), Nogami and Novak (1977), Novak and Nogami (1977), 

and Mylonakis (2001).  Mathematically, the horizontal soil displacements ur and u  are 

expressed as (Basu et al. 2009) 

     , , cosr ru r z w z r    (2.1) 

     , , sinu r z w z r      (2.2) 
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wherer and  are dimensionless functions in the radial and tangential directions and are 

functions of the radial coordinate that are both assumed to be equal to 1.0 at r  rp (ensures 

perfect contact between monopile and soil) and are both assumed to be equal to zero at r   

(ensures that the soil displacements because of monopile movement decreases with increase in 

radial distance from the monopile and eventually become zero).  The sine and cosine functions 

ensure that the variation of the soil displacements in the tangential direction is compatible with 

the horizontal monopile displacement. 

Using the soil displacement field, the infinitesimal soil strains (with contractive strains 

assumed positive) is expressed as 
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 (2.3) 

Further, using the stress-strain relationship, the strain energy densitypqpq/2 (pq and pq are 

soil stress and strain tensors and the summation is implied by the repetition of the indices p 

and q) of soil is given by  
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 (2.4) 
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2.3.3  Minimization of potential energy of the monopile - soil system 

The potential energy of the monopile-soil system with the monopile modeled as 

Timoshenko beam subjected to a force Fa and/or moment Ma at the head (Figure 2.1), is given 

as 
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0 0
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p pL L

p p p p D a az z

d
E I dz G A dz U d F w M
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 
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 
    (2.5) 

where the first integral in the right hand side of equation (2.5) is the strain energy of the 

monopile arising from the bending deformation such that  is the bending slope of monopile 

axis, the second integral is the strain energy of the monopile arising from the shearing 

deformation such that  is the slope of monopile axis because of shear deformation, and the 

third integral represents the total strain energy of the soil domain; 0 being the appropriate soil 

domain that participates in the monopile-soil interaction (0 encompasses a volume 

theoretically extending to infinite distances in all radial directions from the monopile axis and 

in the downward vertical direction from the monopile base, except the cylindrical volume 

occupied by the monopile).  The external work done by the applied force Fa and moment Ma 

at the monopile head is given by the other two terms. 

According to the Timoshenko beam theory (z) is the slope due to bending deformation 

and (z) is the slope due to shear deformation, therefore the total slope dw/dz  (z) + (z) 

(Shames and Dym 1985).  The theory assumes that the shear strain is constant at all points over 

a cross-section of the beam which is not true and incurs an error.  Therefore, a correction factor 

 was introduced by Cowper (1966) based on the theory of elasticity to account for the non-

uniform shear strain distribution along a cross-section of the beam and still retain the simple 

theory of Timoshenko beam.  According to Cowper, for a hollow circular cross-section, the 

shear correction factor is given by  [ 6  (1 + p)(1 + ra
2)/(7 + 6p)  (1 + ra

2)2 + (20 + 

6p)  ra
2], where ra is the ratio of inner radius to outer radius of the circular hollow cross-

section.  

Substituting (z) = dw/dz  (z) and including the correction factor , equation (2.5) is 

rewritten as 
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A mechanical system in equilibrium has minimum potential energy.  Therefore, 

minimizing the total potential energy of the monopile-soil system (i.e., setting the first 

variation of the potential energy  equal to 0) leads to the required differential equations 

governing the equilibrium of the monopile-soil system.  Considering a layered system, setting 

 = 0 in equation (2.6) after substituting UD from equation (2.4) results in 
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 (2.7) 

Note, that the nth layer in equation (2.7) is artificially split into n and n + 1 layers.  The 

variations of w, , r, and  in equation (2.7) are independent, therefore the terms associated 

with w, , r, and  must individually be equal to zero in order to satisfy equation (2.7). 
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2.3.4  Analytical solution of differential equations describing monopile displacement 

Integrating by parts the terms associated (dw/dz) and (d/dz) in equation (2.7), then 

collecting all the terms associated with w and  and equating them to zero results in the 

differential equations of w(z) and (z).   A set of coupled differential equations of w(z) and 

(z) for the ith layer is obtained for the domain 0  z  Lp as 
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where wi = w(z) and i = (z) within the ith soil layer and the soil parameters ki and ti are given 

by 
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(2.11) 

The constant ki is analogous to the Winkler spring constant and represents the 

compressive resistance of soil in the ith layer.  The constant ti represents the shear force between 

the adjacent soil springs that arise because of the differential lateral movement of the soil 

springs caused by the monopile displacement.   

A mathematical transformation is made in terms of an auxiliary function F such that 
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and this results in a single differential equation by combining equations (2.8) and (2.9) as 
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with the corresponding relevant boundary conditions 
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Equations (2.15a)-(2.15b) are applicable at the monopile head (z  0), equations 

(2.16a)-(2.16d) are applicable at the interface between the ith and the (i + 1)th layers (z  Hi), 

and equations (2.17a)-(2.17b) are applicable at the monopile base (z  Lp).   

Closed-form solution of the differential equation representing monopile displacement 

(equation (2.14)) is obtained by substituting F(z)  evz into the equation and obtaining a 

characteristic equation in terms of v.  Introducing layering and evaluating the roots v(i) of the 

characteristic equation, the solution is obtained as 
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where the associated exponential terms are the solutions of the differential equations, C1
(i), 

C2
(i), C3

(i), and C4
(i) are the integration constants for the ith layer, and v(i) in equation (2.18) is 

given as  
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The integrations constants for each layer are determined using the boundary conditions from 

equations (2.15)-(2.17).  The function F is expressed in terms of the integration constants 

following equation (2.18) which is then used to obtain the monopile displacement w and the 

bending slope   by substituting F in equations (2.12) and (2.13), respectively. 

For the domain below the monopile (Lp  z  ) the terms associated with wn+1 in 

equation (2.7) are equated to zero.  As wn+1 is not known a priori within Lp < z  , wn+1 0 

because of which the integrand in the integral between z  Lp and z   must be equal to zero.  

This gives the differential equation of wn1 
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At infinite vertical distance down from the monopile (i.e., at z  ) wn+1  0 (this makes 

the term associated with wn+1 at z   equal to zero) and at the monopile base (i.e., at z  Lp) 

wn+1  wn.  Using these boundary conditions, the solution of equation (2.20) is obtained as 
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2.3.5  Numerical solution of differential equations describing soil displacement 

Referring back to equation (2.7), collecting the terms associated with r and , 

setting the terms associated with r and  at r  rp and r   equal to zero (since the 

variations of r and   are known at r  rp and r  ), and within the interval rp  r    (since 

r   0 and    0 as r and   is not known a priori within rp  r  ) gives the following 

set of coupled differential equations for  r and .   

2
2 222

31 2 1

2

1r r
r

p

dd d

dr r dr r r r dr r




     
 

                     

 (2.22a) 
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where 1-6 are dimensionless constants given by 
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in which Ai = (si + 3Gsi) for x = 1 and 4, Ai = Gsi for x = 2 and 5, and Ai = (si + Gsi) for x = 3 

and 6; while Bi = (si + 2Gsi) for x = 1, 2, and 3, and Bi = Gsi for x = 4, 5, and 6. 

The differential equations of r and θ (equations (2.22a) and (2.22b)) are 

interdependent and solved simultaneously using a 1-D FD scheme.  The discretized forms of 

the differential equations are given as 
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 (2.24b) 

where the superscript l represents the node number at a radial distance rl from the monopile 

edge and r is the discretization length (i.e., the distance between two consecutive nodes) (see 

Figure 2.2).  The 1-D FD grid has its first node at the monopile-soil boundary (i.e., at r  rp) 

and is chosen sufficiently long and dense so as to allow proper attenuation of the displacement 

functions for accurate results (i.e., r is chosen sufficiently small, and the total number of finite 

difference nodes m is taken sufficiently large so that mr  ). 
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Figure 2.2: Finite difference discretization along the radial direction for calculation of soil 

displacement functions 

 

Equations (2.24a) and (2.24b) when rewritten for nodes 2 through (m  1) (i.e., 

excluding the 1st and the mth nodes at which the values of r and  are known) generate two 

sets of simultaneous equations with each set containing m  2 equations.  These sets of 

equations can be represented in the matrix form as 

       
r

rX Y  (2.25a) 

    

   
rX Y  (2.25b) 

where [Xr](m2)×(m2) and [X](m2)×(m2) are the tri-diagonal matrices with FD coefficients of the 

unknown vectors {r}(m2)×1 and {}(m2)×1, respectively, and {Yr}(m2)×1 and {Y}(m2)×1 are 

the corresponding right-hand side vectors containing terms with unknowns  and r, 

respectively. 

The nonzero elements of the left-hand-side matrix [Xr] in equation (2.25a) are given 

by 
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 (2.26c) 

where y  l  1.  The yth row of the corresponding{Y} vector in equation (2.25a) is given by 
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The boundary conditions (r  1 at node 1 and r  0 at node m) modifies the 1st and (m  2)th 

rows of {Y}, which is given by   
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The non-zero elements of the left-hand-side matrix [X] in equation (2.25b) are given by 
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The yth, 1st and (m  2)th rows of the vector {Yr} in equation (2.25b) are given by 
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As the right-hand vectors in equations (2.25a) and (2.25b) contain the unknowns r and 

, iterations are necessary to obtain their values.  An initial estimate of r is made and given 

as input to {Yr}, and  is determined by solving equation (2.25b).  The calculated  values 

are then given as input to {Y} to obtain r from equation (2.25b).  The newly obtained values 
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of r are again used to obtain new values of , and these iterations are continued until 

convergence is reached. The criteria set for convergence are
previous current 6

1

1
10

m
l l

r r

lm
  



  and 

previous current 6

1

1
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l l

r r

lm
  



  where 
previousl

   and 
currentl

  are the values of the  functions (i.e., 

r and ) at the lth node for the previous and current iterations, respectively.   

2.3.6  Solution algorithm  

Monopile displacement and slope can be calculated from equations (2.12) and (2.13), 

respectively.  However, the soil parameters ki and ti must be known to obtain the monopile 

displacement and slope.  The parameters ki and ti depend on the functions r and which in 

turn depend on w through the six dimensionless constants 1-6.  Therefore, an iterative 

algorithm is followed to obtain the solutions.  

An initial guess of 1.0 is made for 1-6 using which r and are determined, which are 

then substituted in equations of ki and ti to obtain their values.  Using the calculated values of 

ki and ti, monopile displacements and slopes are calculated.  The calculated monopile 

displacements and slopes are then used to calculate 1-6 which are compared with the assumed 

initial values.  If the differences are more than the prescribed tolerable limit of 0.001, the 

calculations described so far are repeated with the calculated values of 1-6 as the new initial 

guesses.  Iterations are continued until the values of 1-6 between successive iterations fall 

below the prescribed limit.  Figure 2.3 illustrates the solution algorithm to obtain the solution 

which is implemented in a MATLAB script on a computer with Intel CoreTM i5-3210M CPU 

@ 2.50 GHz and 8 GB RAM. 

 



28 

 

 

Figure 2.3: Solution algorithm 

2.4  Simplification of analysis to Euler-Bernoulli beam theory 

The Euler-Bernoulli beam theory neglects shear deformation which can be 

mathematically implemented by assuming infinite shear stiffness in the monopile.  Indeed, if 

it is assumed that Gp  , then the second term on the right hand side of equation (2.12) 

becomes zero so that the relationships F(z) = EpIpw(z) and (z) = dw(z)/dz are obtained from 
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equations (2.12) and (2.13), respectively.  Further, equation (2.14) simplifies to the differential 

equation governing the monopile displacement w that follows the Euler-Bernoulli beam theory 

(the terms containing Gp in the denominator becomes equal to zero).  Similarly, the associated 

boundary conditions that are given by equations (2.15a)-(2.17b) simplify to the boundary 

conditions applicable to a monopile following the Euler-Bernoulli beam theory.  

The corresponding differential equation for monopile displacement following the 

Euler-Bernoulli beam theory 

4 2

4 2
2 0  i i

p p i i i

d w d w
E I t k w

dz dz
 (2.30) 

with the relevant boundary conditions at different layer interface given by 
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Closed-form solution of the differential equation representing monopile displacement 

(equation (2.30)) is obtained by substituting w(z)  esz into the equation and obtaining a 

characteristic equation in terms of s.  Introducing layering and evaluating the roots s(i) of the 

characteristic equation, the solution is obtained as 
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where the associated exponential terms are the solutions of the differential equations, D1
(i), 

D2
(i), D3

(i), and D4
(i) are the integration constants for the ith layer and s(i) in equation (2.34) is 

given as  

 

2

2 2 4

2
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i i i
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t t k

E I E I E I
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The integration constants are determined and the function w(z) is expressed in terms of the 

integration constants at different layer boundaries to obtain the monopile displacement, slope, 

bending moment, shear force, and soil reaction. 

2.5  Simplification of analysis to rigid beam theory 

For rigid monopiles, the displacement profile is linear (as there is no deformation 

present in the monopile) so that the monopile displacement can be given by  

  h hw z w z   (2.36) 

whereh is the clockwise rotation of the monopile axis that remains constant with depth.  

Although equation (2.36) is assumed a priori, it does not violate the analysis framework 

developed in this study following the variational principles of mechanics (by minimizing the 

total potential energy) because, if a function is known a priori, it can be substituted in the 

framework without developing its governing differential equations.  Equations (2.22)-(2.29) 

are also valid for rigid piles.   

Because of the assumed linear monopile displacement profile, direct algebraic 

equations for monopile head displacement wh and rotation h can be developed following the 

rigid beam theory as shown below  
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2.6  Calculation of secondary variables 

In addition to monopile displacement, its bending moment M, shear force V, and the 

soil reaction p at the monopile-soil interface are of interest.  These quantities are given by (also 

expressed in terms of F)  

2

2
( ) p p

d d F
M z E I

dz dz
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The foregoing equations are valid for Euler-Bernoulli theory as well after the required 

simplifications are made (by setting the terms with Gp in the denominator equal to zero and 

substituting F = EpIpw and  = dw/dz).  For rigid theory, bending moment, and shear force do 

not have much meaning, but the soil reaction is important and can be obtained from equation 

(2.38c) by setting d2w/dz2 equal to zero (because  is constant with depth). 

For the Timoshenko theory, the shear angle  can be calculated using 

( )
p p

V
z

G A



  (2.39) 

2.7  Results  

In order to verify the accuracy of the present analysis a comparison of results (pile 

response  displacement and rotation) obtained from the present analysis is done with the 

results of equivalent 3-D FE analysis for the case of small-diameter reinforced concrete piles 

with solid circular cross-section and large-diameter steel monopiles with a hollow circular 

cross-section.  The percentage difference in the prediction of response between the results from 

the present analysis (following the Timoshenko, Euler-Bernoulli, and rigid beam theory) and 

those of 3-D FE analysis is quantified.  A comparison of the computational time required to 

obtain results between the present and equivalent 3-D FE analysis is also shown.  Further, a 

parametric study is performed for monopiles for various cases of relative monopile-soil 
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stiffness ratio and monopile slenderness ratio in the homogeneous soil to investigate the 

applicability of different beam theories for obtaining monopile response. 

2.7.1  Comparison of results from present analysis with FE analysis for small-diameter 

reinforced concrete piles with a solid circular cross-section 

In this subsection, the accuracy of the results obtained from the present analysis 

(following the Timoshenko and Euler-Bernoulli beam theory) is verified with the results of 

equivalent 3-D FE analysis (performed using Abaqus) for the case of small-diameter solid 

circular reinforced concrete piles with Ep = 28 GPa and p = 0.2.  In Abaqus, the pile and the 

soil are modeled as a single cylindrical part with appropriate partitioning to represent the pile 

and soil separately.  This also ensures that there is no slippage or separation between the soil 

and the pile.  The top soil surface is flush with the pile head and the bottom soil surface extends 

to a finite depth of 20 m below the pile base for the cases analyzed.  The horizontal radial 

extent of the soil domain (i.e., the vertical curved boundary of the FE domain) for each case is 

considered at a distance of 20 m from the pile axis.  Different boundary conditions are 

prescribed at the boundaries of the model  all components of displacements are assumed to 

be zero along the bottom (horizontal) surface and two horizontal components are assumed to 

be zero along the outer, curved (vertical) surface of the soil domain.  Eight-node continuum 

reduced integration (C3D8R) elements are used, with an approximate global seed size of 0.8. 

The optimal domains and meshes described are obtained by performing convergence checks 

ensuring that there are no boundary effects.  Concentrated force and moment are applied in a 

single increment to a reference point at the centroid of the pile head, to which all the nodes at 

the pile top are connected using a rigid body constraint.  

Figures 2.4 and 2.5 show the comparison of the displacement and rotation profiles from 

the present analysis with those of equivalent 3-D FE analysis for piles in a homogeneous and 

three-layer soil, respectively.  The details of the inputs of the pile and soil properties for both 

the problems analyzed are shown in the figures.  The shear correction factor   6  (1 + p)/(7 

+ 6p) (Cowper 1966) (applicable to solid circular cross-section) is utilized to obtain the results 

from the present analysis following the Timoshenko beam theory.  The comparison of results 

following the rigid beam theory does not make much sense for such long piles with slenderness 

ratio Lp/rp  20 because they do not undergo rigid body rotation.  From the comparison, it is 
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evident that the present analysis produces accurate results in comparison to 3-D FE analysis, 

besides, the Timoshenko and Euler-Bernoulli beam theory in the present analysis produce 

nearly identical results; this indicates that the effect of shear deformation for such long piles 

with a solid circular cross-section is not significant.  This observation is found to be true for 

several other analyses on solid reinforced concrete piles.  For the problems shown (Figures 2.4 

and 2.5) the difference in the pile head response between the present and FE analysis is 

approximately less than 0.5%.   

A comparison of the computational (CPU processing) time required to obtain the 

results is also shown in Table 2.1.  It can be seen from the table that the FE analysis requires a 

lesser computational effort to generate pile response in comparison to the present analysis; 

however, it is important to note that the reported time for the FE analysis does not include the 

time required to model the pile-soil geometry, input of the pile-soil properties, and generation 

of the mesh which is a tedious and time-consuming process and depends on the expertise of 

the user on a particular FE software.  Therefore, it can be inferred that the present analysis is 

computationally efficient in comparison to FE analysis, since, it requires simple inputs of pile-

soil data within the MATLAB script to obtain results.  Further, it can also be seen from Table 

2.1, that the difference in computational time between the Timoshenko and Euler-Bernoulli 

beam theory is also negligible; therefore, the response of small-diameter solid reinforced 

concrete piles can be obtained following the Euler-Bernoulli beam theory instead of the 

Timoshenko beam theory.  
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(a)                                                                     (b) 

Figure 2.4: Comparison of present analysis with 3-D FE analysis for a pile with a solid cross-

section of 0.61 m radius in a homogeneous soil deposit (a) displacement and (b) rotation 

 

 

(a)                                                                     (b) 

Figure 2.5: Comparison of present analysis with 3-D FE analysis for a circular pile with a solid 

cross-section of 0.9 m radius in a three-layered soil deposit (a) displacement and (b) rotation 
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Table 2.1: Computational time required for 3-D FE analysis and present analysis for small-

diameter piles with a solid circular cross-section 

Solved problems 
FE analysis, 

(secs) 

Present analysis, (secs) 

Timoshenko Euler-Bernoulli Rigid 

Figures 2.4(a)-(b) 224 244 237 - 

Figures 2.5(a)-(b) 236 251 248 - 

2.7.2  Comparison of results from present analysis with FE analysis for large-diameter 

steel monopiles with a hollow circular cross-section 

The response of hollow circular steel monopiles (Ep = 210 GPa and p = 0.3) obtained 

using the present analysis is shown in this subsection through three example problems.  For 

each problem, the response of monopile is compared with the results of equivalent 3-D FE 

analysis (performed using Abaqus) in which the same inputs of monopile and soil geometry, 

properties, and loads are given.  In Abaqus, the monopile and soil are modeled as a single 

cylindrical part with appropriate partitioning to represent the monopile and soil separately 

which ensures no slippage or separation between the soil and monopile.  The top soil surface 

is flush with the monopile head and the bottom soil surface extends to a finite depth of 20 m 

below the monopile base for the cases analyzed.  The horizontal radial extent of the soil domain 

is selected to be 80 m from the monopile axis.  Different boundary conditions are prescribed 

at the boundaries of the model  all components of displacements are assumed to be zero along 

the bottom (horizontal) surface and two horizontal components are assumed to be zero along 

the outer curved (vertical) surface of the soil domain.  Eight-noded reduced integration 

(C3D8R) brick elements are used to model both the soil and monopile domain.  A global 

approximate seed size of 2.4 is chosen to develop the mesh for all the three problems, based 

on convergence checks.  Concentrated force and moment are applied in a single load increment 

to a reference point at the monopile head, to which all the nodes of the monopile are connected.  

Figures 2.6, 2.7, and 2.8 show the comparison of monopile response (displacement and 

rotation profiles) from the present analysis with those of FE analysis in a homogeneous, two-

layer, and three-layer soil deposit, respectively, for three different monopile radius 2.5, 4, and, 

5 m of different slenderness ratio.  The details of inputs for these problems are shown in the 

figures.  From the comparison of the results presented in Figures 2.6-2.8, it is evident that a 

fairly good match is obtained between the present and FE analysis for all the three example 
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problems solved.  Four additional example problems are also analyzed in which the monopile 

length ranges over 20-30 m, the slenderness ratio ranges over 6-12, and one-, two-, and three-

layer soil deposits are considered.  Table 2.2 gives the percentage difference obtained in 

monopile head displacement and rotation for all the problems solved.  In all these examples, it 

is observed that the Timoshenko beam theory produces monopile head displacement and 

rotation closest to the corresponding FE solutions (as evident in Figures 2.6-2.8 and Table 2.2); 

however, the difference between the results from Timoshenko and Euler-Bernoulli theory are 

not significantly different.  The rigid theory is found to produce the maximum error ( 10 %) 

in comparison with the FE solutions.    

The comparison of the computational time between the present and FE analysis is also 

shown in Table 2.3; it can be inferred from the comparison that the present analysis is 

computationally efficient than FE analysis (for similar reasons discussed for the case of solid 

reinforced concrete piles). The rigid beam theory generates faster results than the Timoshenko 

and Euler-Bernoulli beam theory, although the difference with FE analysis is greater in 

comparison to the Timoshenko and Euler-Bernoulli beam theory. 

 

 

(a)                                                                     (b) 

Figure 2.6: Comparison of present analysis with 3-D FE analysis for a circular monopile with 

a hollow cross-section of 2.5 m radius in a homogeneous soil deposit (a) displacement and (b) 

rotation  
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(a)                                                                     (b) 

Figure 2.7: Comparison of present analysis with 3-D FE analysis for a circular monopile with 

a hollow cross-section of 4 m radius in a two-layer soil deposit (a) displacement and (b) rotation  

 

 

(a)                                                                     (b) 

Figure 2.8: Comparison of present analysis with 3-D FE analysis for a circular monopile with 

a hollow cross-section of 5 m radius in a three-layer soil deposit (a) displacement and (b) 

rotation 
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Table 2.2: Percentage difference in estimation of monopile head displacement and rotation 

using the different beam theories with finite element analysis  

Beam theory % difference in head displacement % difference in head rotation 

Timoshenko 0.4  3.4 1.3  2.5 

Euler-Bernoulli 1.9  5.1 4.6  8.1 

Rigid 4.1  7.8 12  54.1 

 

Table 2.3: Computational time required for 3-D FE analysis and present analysis for large-

diameter monopiles with a hollow circular cross-section  

Solved problems 
FE analysis, 

(secs) 

Present analysis, (secs) 

Timoshenko Euler-Bernoulli Rigid 

Figures 2.6(a)-(b) 402 483 480 339 

Figures 2.7(a)-(b) 403 491 488 346 

Figures 2.8(a)-(b) 409 498 494 357 

2.7.3  Applicability of different beam theories to monopiles 

To further investigate the applicability of the different beam theories to model monopile 

behaviour, monopile displacements and slopes (often the design criterion) are systematically 

calculated for different monopile-soil stiffness ratios Ep/Gs
* (according to Randolph (1981), s 

has a negligible contribution to lateral soil resistance of piles and the effect of s can be taken 

into account by defining an equivalent shear modulus Gs
* = Gs  (1+0.75s); the advantage of 

Gs
* is that the monopile response can be investigated in terms of a single soil parameter that 

integrates the effect of both the elastic constants) and monopile slenderness ratios Lp/rp, for 

monopiles embedded in homogeneous soil. 

Figures 2.9(a)-(d) shows the dimensionless monopile head displacements whGs
*rp/Fa 

and whGs
*rp

2/Ma, and the total head rotations hGs
*rp

2/Fa and hGs
*rp

3/Ma for applied forces 

and moments, respectively, as functions of relative monopile-soil stiffness ratio Ep/Gs
* for 

varying cases of pile slenderness ratio for the Timoshenko and Euler-Bernoulli theory only.  

According to the Timoshenko beam theory the shear correction factor  for different monopile 

radius produces different values of the shear correction factor.  However, it is observed in the 

analysis that the different  values produced negligible differences in the dimensionless 
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monopile response; therefore the plots corresponding to the Timoshenko beam theory in 

Figures 2.9(a)-(d) are respectively, applicable to all the steel monopiles.  

Figures 2.9(a)-(d) show that for monopiles, the two beam theories produce different 

head responses when Ep/Gs
* ≤ 104 for all the cases of monopile slenderness ratio analyzed.  For 

the case of an applied force at the monopile head, the Euler-Bernoulli beam theory is found to 

underestimate the dimensionless head displacement and rotation for Ep/Gs
* ≤ 104.  For the case 

of an applied moment at the monopile head, the Euler-Bernoulli beam theory overestimates 

the dimensionless head displacement although the head rotation is found to be nearly equal for 

both the beam theories.  The difference in response obtained from Timoshenko and Euler-

Bernoulli beam theories for the case of monopiles for Ep/Gs
* ≤ 104 arise most likely because 

of the effect of warping in the monopile cross-section.  Thus, for monopiles in an elastic soil 

deposit different beam theories should be used to estimate accurate monopile head response, 

especially for low values of relative monopile-soil stiffness ratio (i.e., for Ep/Gs
* ≤ 104). 

Further, Figures 2.10(a)-(d) show the dimensionless monopile head displacements 

whGs
*rp/Fa and whGs

*rp
2/Ma, and head rotations hGs

*rp
2/Fa and hGs

*rp
3/Ma for applied forces 

and moments, respectively, as functions of pile slenderness ratio Lp/rp.  For these figures, the 

effect of the shear correction factor  in the Timoshenko beam is found to be negligible as 

well.  It is evident from these figures that the rigid beam theory can be used with reasonable 

accuracy for cases with Ep/Gs
*  105 (see also Table 2.4).  Table 2.4 gives a summary of the 

range of applicability of different beam theories for monopiles.  
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(a)                                                                     (b) 

  

(c)                                                                     (d) 

Figure 2.9: (a) Dimensionless displacement caused by applied force, (b) dimensionless head 

rotation caused by applied force, (c) dimensionless head displacement caused by applied 

moment, and (d) dimensionless head rotation caused applied moment for monopiles with 

hollow circular cross-sections as functions of monopile-soil stiffness ratio obtained using 

Timoshenko and Euler-Bernoulli beam theories 
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(a)                                                                     (b) 

  

(c)                                                                     (d) 

Figure 2.10: (a) Dimensionless displacement caused by applied force, (b) dimensionless head 

rotation caused by applied force, (c) dimensionless head displacement caused by applied 

moment, and (d) dimensionless head rotation caused applied moment for monopiles with 

hollow circular cross-sections as functions of monopile slenderness ratio obtained using 

Timoshenko, Euler-Bernoulli, and rigid beam theories  

 

Thus, for monopiles in an elastic soil deposit, the monopile should be modeled either 

as a Timoshenko or Euler Bernoulli beam.  Modeling the monopile as a Timoshenko beam is 

preferable for Ep/Gs
* ≤ 104, as it gives the best prediction of head rotation.  The rigid beam 

theory can be used to make a first-hand estimate of the monopile head displacement and 
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rotation and it may also find its application in the design of drilled piers or caissons supporting 

bridges and transmission towers. 

 

Table 2.4: Applicability of different beam theories for monopiles with different slenderness 

ratio (Lp/rp) and relative monopile-soil stiffness ratio (Ep/Gs
*)  

Lp/rp  Ep/Gs
* Beam theory to predict pile head response 

5-80 
  Timoshenko or Euler-Bernoulli 

  Timoshenko 

5-20  5 Rigid* 

*Rigid theory should only be used for a quick initial estimate of monopile head displacement and Timoshenko or 

Euler-Bernoulli beam theories should be used for accurate prediction of monopile head response    

2.8  Summary 

A mathematical framework for the static analysis of laterally loaded monopiles is 

presented in which the Timoshenko beam theory is used to model the monopile and elastic 

continuum theory is used to model the soil.  A rational displacement field is assumed for the 

soil and the equilibrium of the monopile-soil system is obtained by applying the principle of 

minimum potential energy. The differential equations describing the monopile and soil 

displacements obtained using the variational principle of mechanics are solved analytically and 

numerically, respectively, following an iterative algorithm.  It is shown mathematically that 

the Timoshenko beam theory leads to the most generalized form of the differential equations, 

and successive simplifications to these equations result in the equations for the Euler-Bernoulli 

and rigid beam theories, respectively. 

Several example problems for the case of small-diameter reinforced concrete piles with 

solid circular cross-section and large-diameter steel monopiles with hollow circular cross-

section are solved using the analysis and compared with the response obtained from 3-D FE 

analysis.  The percentage difference in the prediction of pile response from the present analysis 

following different beam theories with those of 3-D FE analysis is quantified. A comparison 

of the computational time required to obtain a response from the present analysis with those of 

3-D FE analysis is also shown.  Further, a systematic parametric study based on normalized 

monopile head displacement and rotation is performed to investigate the range of applicability 

of different beam theories for obtaining monopile response.   
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CHAPTER 3 

Dynamic Analysis of Laterally Loaded Monopiles in Multilayered 

Viscoelastic Soil 

3.1  Introduction  

In this chapter, the mathematical framework developed in Chapter 1 is extended to 

include the effect of dynamic loading on monopiles.  In the analysis, the soil is modeled as a 

3-D multilayered viscoelastic continuum with frequency independent hysteretic material 

damping and the monopile is modeled following the Timoshenko beam theory.  Rational soil 

displacement functions are assumed and the Extended Hamilton’s Principle in conjunction 

with the calculus of variation is applied to obtain the differential equations describing monopile 

and soil displacements.  The differential equations governing monopile and soil displacements 

are solved analytically and numerically, respectively, following an iterative algorithm.  

Further, it is shown that the framework can be progressively reduced to obtain monopile 

response following the Rayleigh, Euler-Bernoulli, and rigid beam theories. 

The results (complex dynamic impedance functions, displacement, and rotation) 

obtained from the present analysis following different beam theories are verified with the 

results of existing solutions, available in the literature.  Example problems are solved to 

investigate the applicability of different beam theories for reinforced concrete piles with solid 

circular cross-section and steel piles with a hollow circular cross-section.  Further, the 

applicability of the dynamic analysis versus the static analysis (Chapter 2) to estimate the 

response of large-diameter monopiles (typically subjected to a cyclic/dynamic loading of 

frequency less than 1.0 Hz (see Figure 1.2)), is investigated.  For the investigation, a 

comparison of the dynamic and static response (monopile-head displacement and rotation) 

following different beam theories (Timoshenko, Euler-Bernoulli, and rigid) of four different 

monopiles currently installed at wind farm sites in Europe is done.  A comparison of the 

computational time to obtain the dynamic and static response of monopile is also shown and 

the appropriateness of the applicability of dynamic analysis to obtain monopile response is 

discussed.  
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3.2  Overview of existing formulations for dynamic analysis of laterally loaded piles in 

viscoelastic soil  

In the literature, several formulations are available for the dynamic analysis of laterally 

loaded piles which can be broadly categorized into four major groups: (i) Winkler spring model 

(associated with dashpots to represent the hysteretic and radiation damping) based analytical 

and numerical (Novak 1974, Novak et al. 1978, Roesset 1980, Gazetas and Dobry 1984, 

Makris and Gazetas 1992, Mylonakis 2001, Gerolymos and Gazetas 2006, Varun et al. 2009, 

Zhong and Huang 2013) formulations for piles embedded in homogeneous or layered soils 

either floating in a half-space or overlying rigid bases, (ii) 3-D continuum-based semi-

analytical BE (Kaynia and Kausel 1982, Sen et al. 1985, Kaynia and Kausel 1991, Padron et 

al. 2008, Ai and Li 2015) and FE (Blaney et al. 1976, Kuhlemeyer 1979, Roesset and Angelides 

1980, El-Marsarfawi et al. 1992, Wu and Finn 1997, Thammarak 2009) formulations for piles 

embedded in homogeneous and layered half-spaces, (iii) rigorous continuum-based analytical 

or semi-analytical (Nozoe et al. 1985, Pak and Jennings 1987, Rajapakse and Shah 1987, 1989) 

formulations for piles embedded in homogeneous half-spaces or overlying rigid bases, and (iv) 

approximate analytical studies for piles embedded in homogeneous soil overlying rigid bases 

(Nogami and Novak 1977, Novak and Nogami 1977, Sun and Pires 1993, 1995, Zheng et al., 

2013, Shadlou and Bhattacharya 2014, Liu et al. 2016, Anoyatis et al. 2016).   

Of the different analysis methods available, the Winkler based formulations are the 

most popular and widely used by geotechnical engineers because these approaches (commonly 

known as the Beam on Dynamic Winkler Foundation (BDWF)) are mathematically 

convenient, computationally inexpensive, and can be easily extended to include the effect of 

soil nonlinearity.  However, the methods based on Winkler approach require parameter 

calibration (e.g., Winkler spring constants and damping coefficients for the dashpots) for 

accurate prediction of pile and superstructure response and either neglect the coupled vibration 

between the pile-soil or between the soil layers, besides, leading to unrealistic pile behavior at 

low frequencies of vibration.  The rigorous continuum-based numerical solutions (e.g., FE 

formulations) have an advantage over the Winkler type formulations as these methods consider 

the coupled vibration of the pile and soil.  However, these methods are computationally 

intensive and expensive, and may also require the modeling of non-reflecting viscous boundary 

conditions to include the effect of radiation damping which can affect the accuracy of the 
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solution.  The rigorous analytical or semi-analytical continuum-based studies have the 

advantage of taking into account the effect of material and radiation damping within the 

formulation and solution process without recourse to artificial dashpots (as required in 

Winkler-type and continuum-based FE methods); however, the mathematics involved are often 

complex, computationally expensive, and not quite useful for routine geotechnical practice.  

The advantage of the approximate analytical continuum-based methods is that these methods 

have the ability to capture the important physics of the problem without being mathematically 

too complex and computationally too intensive.   

In most of the aforementioned analytical, semi-analytical, and numerical dynamic 

analysis of laterally loaded piles, the pile is modeled as an elastic Euler-Bernoulli beam that 

does not account for the effect of shear deformation and rotatory inertia of the pile cross-

section.  For large-diameter drilled shafts and monopiles, the use of Euler-Bernoulli beam 

theory is questionable, and perhaps the Timoshenko beam theory is more appropriate (as 

discussed in Chapter 2).  The effect of shear deformation (included in the mathematical 

framework developed in Chapter 2) and rotatory inertia which are likely to be non-negligible 

in piles and monopiles, are not taken into account by the Euler-Bernoulli beam theory but can 

be captured by the Timoshenko beam theory (Shames and Dym 1985).   

  In this chapter, an approximate continuum-based formulation for analysis of laterally 

loaded monopiles (modeled as a Timoshenko beam) in multilayered viscoelastic soil and 

subjected to harmonic force and/or moment at the monopile head, is presented.  It is shown in 

the analysis that the formulation offers a unified framework which under simplified 

assumptions leads to monopiles/piles modeled as Rayleigh (which takes into account only the 

rotatory inertia but not the shear deformation (Strutt 1877)), Euler–Bernoulli (which does not 

take into account both the rotatory inertia and the shear deformation), and rigid beams.  A 

significant advantage of the present formulation is that the values of soil spring constant k, 

shear parameter t, inertial resistance , and the radiation damping coefficient r of the soil are 

not assigned a priori but are rather obtained as part of the solution; therefore, no ad hoc inputs 

based on empirical equations or parameter calibration are necessary unlike the Winkler or FE 

formulations.   



46 

 

3.3  Mathematical formulation  

3.3.1  Problem definition 

Figure 3.1 shows a hollow circular monopile modeled as a Timoshenko beam in a soil 

deposit with n layers.  The monopile has a length Lp, radius rp, wall thickness tp, area of cross-

section Ap, and second moment of inertia Ip and is characterized by its shear modulus Gp and 

density p.  Each soil layer is modeled as a homogeneous, isotropic, and linear viscoelastic 3-

D continuum with frequency independent hysteretic material damping (Kramer 1996) 

characterized by density si, complex Lame’s constant  1 2si si sij    and 

 1 2si si siG G j where si  Esisi/{(1  si)(1  2si)}, Gsi  Esi/{2(1  si)}, Esi is Young’s 

modulus, si is the Poisson’s ratio, si is the frequency independent material damping ratio of 

the soil (the subscript i denotes the ith layer), and 1j   .  The thickness of any ith layer is 

given by Hi  Hi1 (with H0 = 0).  The monopile head is flush with the ground surface and 

subjected to a time-harmonic horizontal force Fa(t)  F0e
jt and/or moment Ma(t)  M0e

jt  

where  = circular forcing frequency, F0 = applied force amplitude, M0 = applied moment 

amplitude, and t  time.   

The goal of the analysis is to obtain the steady-state monopile head displacement and 

rotation caused by the applied force and/or moment and subsequently evaluate the dynamic 

monopile head impedances for the swaying, coupled swaying-rocking, and rocking mode of 

monopile vibration.  In the analysis, no slippage or separation between the monopile and the 

surrounding soil or between the soil layers is considered.  A right-handed cylindrical (r--z) 

coordinate system is chosen such that its origin lies at the centre of the monopile head, the z-

axis coincides with the monopile axis and points downward, the reference radial direction r0 

coincides with the direction of the applied force Fa, and the tangential distance   measured 

from r0 is clockwise positive when looked down from the top of the monopile. 
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Figure 3.1: A monopile embedded in a multilayered viscoelastic soil deposit and subjected to 

time-harmonic lateral loads 

3.3.2  Displacements, strain, and strain energy density in soil 

The horizontal soil displacement field, generated by the monopile displacement, is 

described as a product of separable functions, each of which varies with one of the three spatial 

dimensions and time.  The vertical soil displacement uz is neglected in the analysis, as discussed 

in Chapter 2.  The soil displacement field in the radial and tangential direction is expressed as 

     , , , , cosr ru r z t w z t r    (3.1) 

     , , , , sinu r z t w z t r      (3.2) 

where w(z,t)  w(z)ejt in which w(z) is the steady-state monopile displacement, r(r) and (r) 

are the dimensionless functions in the radial and tangential directions, respectively, that are 

both assumed to be equal to one at r  rp, and equal to zero at r  .  The sine and cosine 

functions ensure that the variation of the soil displacements in the tangential direction is 

compatible with the horizontal monopile displacement. 

Using the soil displacement field, the infinitesimal soil strains (with contractive strains 

assumed positive) is expressed as 
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 (3.3) 

Further, using the elastic stress-strain relationship, the strain energy density pqpq/2 of the 

viscoelastic soil with frequency independent material damping is given by  
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 (3.4) 

3.3.3  Application of Extended Hamilton Principle to monopile-soil system  

The total potential energy () of the monopile-soil system using the Timoshenko beam 

theory (Shames and Dym 1985) is given by 
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where the first integral in the right hand side of equation (3.5) is the strain energy of the 

monopile arising from the bending deformation such that  is the bending slope of monopile 

axis, the second integral is the strain energy of the monopile arising from the shearing 

deformation such that dw/dz is the total slope (i.e., slope caused by both bending and shearing) 

of the monopile axis, the third integral represents the total strain energy of the soil domain 0 

that participates in the monopile-soil interaction,  (same a Chapter 1) is a correction factor to 

account for the non-uniform shear strain distribution within the monopile cross-section.  
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The total kinetic energy (T) of the monopile-soil system using the Timoshenko beam 

theory is given by 
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 (3.6) 

where the first and the second integrals on the right-hand side of equation (3.6) represent the 

kinetic energy from the translational and rotatory inertias of the monopile, respectively, the 

third integral represents the kinetic energy of the cylindrical soil domain below the monopile, 

and the fourth integral represents the kinetic energy of the remaining soil domain that 

participates in the monopile-soil interaction.   

The work done Wnc by the external force Fa(t) and moment Ma(t) is given by 

0
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nc a az
z

W F w M
z
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


 


 (3.7) 

where the first and the second term on the right-hand side of equation (3.7) represents the work 

done by the applied force and moment to undergo the shearing and bending deformation at the 

monopile head, respectively.   

According to the Extended Hamilton’s Principle, the motion of a given system from 

time t1 to t2 under equilibrium satisfies the following (Craig and Kurdila 2006, Humar 2012) 
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2 2

1 1
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t t
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t t

dt W dt      (3.8) 

where () is the variational operator, and t1 and t2 are the times at which the configuration of 

the system are assumed to be known.  Substituting equations (3.1), (3.2), (3.5), (3.6), and (3.7) 

in equation (3.8) and considering explicit soil layering as described in Figure 3.1 results in 
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 (3.9) 

Performing integration by parts on the terms associated with (w/z), (w/t), 

(/z), (/t), (r/r), and (/r) in equation (3.9) leads to an equation of the form 

        0r rA w wdz B dz C dr D dr               (3.10) 
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where w, , r, and  are the first variations of the functions w, , r, and , respectively, 

and A(), B(), C(), and D() are the differential operators.  Considering the variations of w, , 

r, and  separately and equating the terms associated with w, , r, and   individually 

to zero produce the governing differential equations A(w) = 0, B() = 0, C(r) = 0, and, D() 

= 0, for w, , r, and , respectively, along with the appropriate boundary conditions. 

3.3.4  Analytical solution of differential equations describing monopile displacement 

Considering the terms associated with w and  for 0  z  Lp, the governing 

differential equations of w and  are obtained.  A set of coupled differential equations of w(z) 

and (z) for the ith layer is obtained for the domain 0  z  Lp as  
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where the soil parameters ki, ti,  and i are given by 
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The constant ki, ti, and i represents the compressive, shear, and inertial resistance of 

soil in the ith layer, respectively.  

A mathematical transformation is made in terms of an auxiliary function F as shown 

below 
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and this results in a single differential equation of F by combining equations (3.11) and (3.12) 

as 
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with the corresponding boundary conditions also expressed in terms of the auxiliary function 

F.   
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Equations (3.19a)-(3.19b) are applicable at the monopile head (z  0), equations 

(3.20a)-(3.20d) are applicable at the interface between the ith and the (i + 1)th layers (z  Hi), 

and equations (3.21a)-(3.21b) are applicable at the monopile base (z  Lp).   

Closed-form solution of the function F is obtained for the differential equation (3.18) 

as 
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The integration constants C1
(i), C2

(i), C3
(i), and C4

(i) in equation (3.22a) for the ith layer 

can be determined using appropriate boundary conditions given in equations (3.19)-(3.21).  

After obtaining F(z), w(z), and (z) are calculated from equations (3.16) and (3.17), 

respectively. 

Considering the terms associated with wn+1 for Lp < z   leads to the differential 

equation of w(z) below the monopile 
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where the soil parameters kn+1, tn+1, and n+1 are defined in equations (3.13)-(3.15).  The 

boundary condition for equation (3.23) at the monopile base (i.e., at z  Lp) is wn = wn+1, which 

ensures the continuity of displacement.  For the case of z  , the solution of equation (3.23) 

satisfying the boundary conditions is given by  

   
 

2
1

1

2
21

1

12

n n
p

n

p

k
z L

tn n
n n z L

n

k
w z w z e

t





 
 


 



  
   

 
 

 (3.24) 

3.3.5  Numerical solution of differential equations describing soil displacement  

Considering the terms associated with r(r) and (r) in equation (3.10), the 

corresponding differential equations are obtained as 
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with the corresponding boundary conditions r(rp) = (rp) = 1 and r() = () = 0.  The 

dimensionless constants 1-6 in equations (3.25a) and (3.25b) are given by 
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in which  2si sii GA    for x = 1 and 4, si iA G  for x = 2 and 5, and  si sii GA    for 

j = 3 and 6; while  2si sii GB   for x = 1, 2 and 3, and 
si iB G  for x = 4, 5, and 6.  Solutions 

for equations (3.25a) and (3.25b) are obtained simultaneously (as these equations are coupled) 

using the 1-D FD method described in Chapter 2. 

3.3.6  Solution algorithm 

Monopile displacement and slope can be calculated from Equation (3.16) and (3.17) 

respectively.  However, the soil parameters ki, ti, and i must be known to obtain monopile 

displacement and slope.  The parameters ki, ti, and i depend on the functions r and which, 

in turn; depend on w through the six dimensionless constants 1-6.  Therefore, an iterative 

algorithm is followed to obtain solutions.  

An initial guess of 1.0 is made for 1-6 using which r and are determined, which are 

then substituted in equations of ki, ti, and i to obtain their values.  Using the calculated values 

of ki, ti, and i monopile displacements and slopes are calculated.  The calculated monopile 

displacements and slopes are then used to calculate 1-6 which are compared with the assumed 

initial values.  If the differences are more than the prescribed tolerable limit of 0.001, the 

calculations described so far are repeated with the calculated values of 1-6 as the new initial 

guesses.  Iterations are continued until the values of 1-6 between successive iterations fall 

below the prescribed limit.  Figure 3.2 illustrates the solution algorithm which is implemented 
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in a MATLAB script on a computer with Intel CoreTM i5-3210M CPU @ 2.50 GHz and 8 GB 

RAM. 

 

 

Figure 3.2: Solution algorithm 

Input Lp, rp, tp, Ep, p, p, n, Hi, Esi, si, si, si, F0, M0, 

Input 

Store wi and dwi /dz as the final values

End
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Calculate wi and dwi /dz

Calculate 1 (= 1
new), 1 (= 1

new),…, 6 (= 6
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3.4  Simplification of analysis to Rayleigh and Euler-Bernoulli beam theory 

The Rayleigh beam theory neglects the shear deformation which can be mathematically 

implemented by assuming infinite shear stiffness in the monopile.  Setting Gp   in equation 

(3.16) results in Fi(z) = EpIpwi(z) which simplifies the differential equation (3.18) as 

    
4 2
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4 2
2 0i i

p p i p p i p p i i

d w d w
E I t I k A w
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with the relevant boundary conditions at different layer interfaces given  
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Equation (3.27) along with the boundary conditions given by equation (3.28)-(3.30) 

gives monopile displacement w following the Rayleigh beam theory (Strutt 1877).  Closed-

form solution of w in equation (3.27) can be written in a similar way as given by equations 

(3.22a) and (3.22b) with wi replacing Fi in equation (3.22a) with the coefficients i and i in 

equation (3.22b) being replaced for the case of Rayleigh beam theory by the following  
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The Euler-Bernoulli beam theory neglects both the shear deformation and rotatory 

inertia of beam cross-section.  This can be mathematically obtained by setting pIp = 0 in the 

differential equation and boundary conditions for the case of the Rayleigh beam theory (i.e., 

equations (3.27)-(3.30)). 

3.5  Simplification of analysis to rigid beam theory 

For rigid monopiles, the displacement profile is linear (similar to Chapter 2) and the 

monopile displacement is expressed as  

 , ( ) ( )h hw z t w t t z   (3.32) 

where h is the clockwise rotation of the monopile axis at any time t.  Equations (3.25)-(3.26) 

along with the solution procedure described in Chapter 2 are also valid for rigid piles.   

The algebraic equations for monopile head displacement wh and rotation h including 

the effect of translational and rotatory inertia of the monopile following the rigid beam theory 

are given by 

1

0

0

rr rh

h r

K Kw F

MK K



 




    
     
     

 (3.33) 
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such that 
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3.6  Calculation of secondary variables 

In addition to monopile displacement, the quantities of interest are the monopile 

bending moment M, shear force V, and the soil reaction force p per unit pile length at the 

monopile-soil interface.  These quantities are also expressed in terms of F as 
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The foregoing equations are valid for Rayleigh and Euler-Bernoulli theories as well 

after the required simplifications are made (by setting the terms with Gp in the denominator 

equal to zero for Rayleigh beam theory and additionally setting pIp = 0 for Euler-Bernoulli 

beam theory, and substituting F = EpIpw and  = dw/dz).  For the Timoshenko beam theory, 

the shear rotation  can be calculated using 

( )
p p

V
z

G A



  (3.37) 

3.7  Results 

To demonstrate the accuracy of the present analysis the results (complex dynamic pile-

head impedances and pile response  displacement and rotation) from this analysis following 

the Timoshenko and Euler-Bernoulli beam theories are compared with the results of different 
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solution techniques (approximate continuum based formulation, rigorous continuum based 

formulation, and Winkler based formulation) available in the literature, for the case of solid 

reinforced concrete piles.  The accuracy of the results (pile response  displacement and 

rotation) obtained from the present analysis following the rigid beam theory is verified with 

the results of 3-D FE analysis and Winkler based formulation, available in the literature.  Two 

example problems are analyzed using the present analysis following the Timoshenko, 

Rayleigh, and Euler-Bernoulli beam theories for piles with solid and hollow cross-sections in 

a two-layer soil deposit overlying a rigid layer to investigate the effect of shear deformation 

and rotatory inertia on the dynamic response of laterally loaded piles, for a wide range of 

dimensionless frequency.  Further, the appropriateness of the applicability of the dynamic 

analysis developed in this chapter versus the static analysis developed in Chapter 2 is 

investigated for the case of large-diameter monopiles which are typically subjected to a 

cyclic/dynamic loading of frequency less than 1.0 Hz.  

3.7.1  Comparison of results from present analysis with an approximate 3-D analytical 

solution for small-diameter solid reinforced concrete piles  

A comparison of the complex dynamic pile head impedance obtained from the present 

analysis is done with those by Novak and Nogami (1977) for the case of a free-head pile with 

pile base encased in a rigid layer (fixed pile base with zero displacements and rotation).  Novak 

and Nogami (1977) based on the work of Tajimi (1969) developed a continuum-based model 

for analysis of laterally loaded piles (modeled as a Euler-Bernoulli beam) in a linear 

viscoelastic soil layer with frequency independent hysteretic material damping and embedded 

in a rigid stratum.   In the analysis, zero vertical soil displacement was assumed (similar to the 

present analysis), appropriate potential functions were introduced to decouple the governing 

equations of motion for the soil, and the eigenvalue expansion over the vertical coordinate was 

utilized to obtain the pile response in terms of an infinite trigonometric series.  The results from 

the present analysis are obtained for a solid reinforced concrete pile using the Timoshenko 

(shear correction factor  for solid circular cross-section is the same as discussed in Chapter 

2) and Euler-Bernoulli beam theories with Lp/rp = 20, Ep = 28 GPa, p = 0.2, relative pile-soil 

stiffness ratio Ep/Gs = 3  103, s = 0.25, s = 1.5Gs, pile-soil density ratio p/s = 1.25, and s 

= 0.025.  Figures 3.3(a)-(c) show the complex dimensionless pile head impedances for 
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swaying, coupled swaying-rocking, and rocking motions as functions of the applied 

dimensionless frequency a0 = rp/Vs where s s sV G  is the shear wave velocity of soil.  

The real part of the pile head impedances represents the pile stiffness and the imaginary part 

denotes the damping present in the system.  Clearly, the present analysis captures the essential 

features of the mechanics of the problem and predicts the cut-off frequency (i.e., the natural 

frequency of the pile-soil system) very well.  Below the cut-off frequency, no waves propagate 

and no radiation damping is generated in the system which can be seen from the plots.  There 

is a sudden increase in the imaginary part of the complex dynamic impedance beyond the cut-

off frequency which indicates that there is the propagation of waves within the pile-soil system 

and an initiation of the radiation damping (the plot shows the total damping  from the 

frequency dependent radiation damping r and the frequency independent hysteretic material 

damping s).  The constant value of the imaginary part below the cut-off frequency is primarily 

an effect of the presence of only the material damping within the system.  Figure 3.3(a) shows 

the impedance Krr for swaying motion in a normalized form (KrrLp
3/(EpIp)), Figure 3.3(b) 

shows the impedance Kr for coupled swaying-rocking motion in a normalized 

form(KrLp
2/(EpIp)) (note that the impedances Kr and Kr are nearly equal), while Figure 

3.3(c) shows the impedance K for rocking motion in a normalized form (KLp/(EpIp)).  The 

match between the results obtained from the present analysis with those by Novak and Nogami 

(1977) is reasonably well, particularly for the swaying and coupled swaying-rocking modes 

although the cut-off frequency is overestimated by the present analysis for the rocking mode.  

This difference in the results is most likely a result of the difference in solution approaches in 

the two methods.  In the present analysis, the impedances obtained using the Timoshenko beam 

theory is nearly identical to those obtained using the Euler-Bernoulli beam theory for the range 

of dimensionless frequency investigated.   

. 
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(a)                                                                     (b) 

 
(c) 

Figure 3.3: Dimensionless complex dynamic pile head impedance for (a) swaying, (b) coupled 

swaying-rocking, and (c) rocking motions of a free-head solid reinforced concrete piles 

embedded in a homogeneous soil layer with the pile base encased in a rigid layer 

3.7.2  Comparison of results from present analysis with a 3-D elastodynamic solution 

for small-diameter solid reinforced concrete piles  

A comparison of the results obtained from the present analysis is made with those by 

Pak and Jennings (1987), who developed a rigorous 3-D elastodynamic solution for laterally 

loaded free-head slender piles floating in homogeneous half-spaces.  Pak and Jennings (1987) 

modeled the soil as a continuum with zero viscous hysteretic material damping and the pile as 
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a Euler-Bernoulli beam, formulated the pile-soil interaction using a Fredholm integral equation 

of the second kind and solved the equation using an appropriate numerical method.  

Dimensionless pile displacement w/rp and slope dw/dz, caused by an applied force and a 

moment, as obtained by Pak and Jennings (1987), are compared with the corresponding results 

of the present analysis performed using the Timoshenko (shear correction factor  for the pile 

with solid circular cross-section is the same as that discussed in Chapter 2) and Euler-Bernoulli 

beam theories, as shown in Figures 3.4(a)-(b).  The results are obtained for a solid reinforced 

concrete pile with Lp/rp = 50, Ep = 28 GPa, p = 0.2, relative pile-soil stiffness ratio Ep/Gs = 

1.25  104, s = 0.25, pile-soil density ratio p/s = 1.7, and s = 0, and an applied dimensionless 

frequency a0 = 0.2.  The match between the results obtained from the present analysis with 

those by Pak and Jennings (1987) is reasonably well.  The results of the present analysis 

obtained using the Timoshenko beam theory are not appreciably different from the results 

obtained using the Euler-Bernoulli beam theory.  Comparisons are made for three more 

problems analyzed by Pak and Jennings (1987) and the dimensionless pile displacement and 

slope are shown in Figures 3.5-3.7 (the input data used for the analysis are given in the figures).  

As before, the match between the results obtained from the present analysis with those by Pak 

and Jennings (1987) is well.  Although the pile responses matched well in Figures 3.5-3.7, the 

dynamic pile head impedances were not found to be smooth functions of the forcing frequency, 

which is in contrast with what Pak and Jennings (1987) obtained.  This happened because the 

present analysis does not truly model a half-space (Sun and Pires 1993, 1995, Gazetas 1995) 

and is appropriate for modeling pile-soil systems in which the bottom-most soil layer is 

considered rigid (this condition is more applicable in real fields) (Anoyatis and Lemnitzer 

2017). 
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(a)                                                                     (b) 

Figure 3.4: Dimensionless pile (a) displacement and (b) slope of a free-head solid reinforced 

pile with a relative pile-soil stiffness ratio of 1.25  104 and subjected to an applied force at the 

head  

 

 
(a)                                                                     (b) 

Figure 3.5: Dimensionless pile (a) displacement and (b) slope of a free-head solid reinforced 

pile with a relative pile-soil stiffness ratio of 5  104 and subjected to an applied force at the 

head 
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(a)                                                                     (b) 

Figure 3.6: Dimensionless pile (a) displacement and (b) slope of a free-head solid reinforced 

pile with a relative pile-soil stiffness ratio of 1.25  104 and subjected to an applied moment at 

the head 

 

 
(a)                                                                     (b) 

Figure 3.7: Dimensionless pile (a) displacement and (b) slope of a free-head solid reinforced 

pile with a relative pile-soil stiffness ratio of 5  104 subjected to an applied moment at the 

head  

 

 

 



66 

 

3.7.3  Comparison of results from present analysis with a Winkler based analytical 

solution for large-diameter solid reinforced concrete piles  

A comparison of the present analysis is also made with the analysis developed by 

Mylonakis (2001) (this analysis was verified with the rigorous numerical FE solution 

developed by Kaynia and Kausel (1982)) for estimating the lateral dynamic pile head stiffness 

of fixed-head large diameter shafts embedded in homogeneous, linear viscoelastic soil with the 

pile bases resting on top of rigid layers (i.e., hinged pile base condition with zero displacement 

and bending moment at the pile base).  Figure 3.8 shows the dynamic swaying pile-head 

impedance 
0 0 0 0( ) ( 0) ( ) ( )( 2 )rr a rr a a aK K k j
   

 (the imaginary part  is a summation of the 

frequency-dependent radiation damping r and frequency independent material damping s) 

normalized with respect to the corresponding static swaying impedance, as obtained from the 

present analysis and Mylonakis (2001).  A very good match is obtained between the results of 

the present and the developed analysis by Mylonakis (2001).  Further, the Timoshenko beam 

theory does not produce a significantly different result in comparison to the Euler-Bernoulli 

beam theory for the range of dimensionless frequency investigated. 

 

 
Figure 3.8: Dimensionless dynamic swaying head impedance of a fixed-head solid reinforced 

concrete pile in a homogeneous soil profile with the pile base resting on top of a rigid stratum 
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3.7.4  Comparison of results from present analysis with 3-D FE solution and Winkler 

based solution for the case of large-diameter solid rigid piles  

A comparison of the results obtained from the present analysis following the rigid beam 

theory is made with that of a Winkler-based analysis developed by Varun et al. (2009) for 

estimating the dynamic response of rigid piles embedded in a multilayered soil deposit.  Varun 

et al. (2009) verified their analytical technique with the results of rigorous 3-D FE solution 

(performed using Abaqus).  Figures 3.9(a)-(b) show the comparisons of the maximum pile 

head displacement and rotation, respectively, as functions of the applied a0 (= rp/Vs1 where 

Vs1 is the shear wave velocity of the topsoil layer) for a massless rigid pile (i.e. p = 0) 

embedded into a three-layer soil profile with si  0.  The other details of the pile and the soil 

properties are provided in the Figures 3.9(a)-(b).  The results obtained from the present analysis 

is also compared with the results of a Winkler based model developed by Zhong and Huang 

(2013) for estimating the dynamic response of rigid caissons.  Figures 3.9(a)-(b) show that a 

reasonable match is obtained between the results of the present analysis and the results obtained 

from the Winkler-based analysis and finite element analysis.  Results obtained from the present 

analysis are in good agreement with that of the finite element analysis whereas there is some 

difference with the results of the Winkler-based analysis.  

 

 
(a)                                                                     (b) 

Figure 3.9: Maximum pile head (a) displacement and (b) rotation of a rigid pile embedded in 

a three-layer soil deposit subjected to a lateral force at the head 
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3.7.5  Example problems for reinforced concrete solid pile and steel hollow pile in a two-

layer soil 

Two example problems are analyzed, one with a reinforced concrete pile with a solid 

cross-section and the other with a steel pipe pile with the hollow cross-section, both embedded 

in two-layer soil with the pile bases encased in rigid layer (i.e., fixed base condition with zero 

rotation and displacement).  The normalized dynamic pile-head impedances for swaying 

(KrrL
3
p/(EpIp), coupled swaying-rocking (KrL2

p/EpIp), and rocking (KrrLp/EpIp)) are plotted in 

Figures 3.10-3.11 for these two piles as functions of dimensionless frequency a0 (= rp/Vs1) 

which is normalized with respect to the shear wave velocity  1 1 1s s sV G  of the first soil 

layer.  Results are obtained for all the three beam theories to investigate the effect of shear 

deformation and rotatory inertia of the pile cross-section on the pile response.  The details of 

the pile and soil properties used as inputs in these examples are shown in the figures. 

The variation of the pile head impedances with frequency for these two examples with 

layered soil profile are similar to those obtained earlier for the problems with a single soil layer.  

For the case of the reinforced concrete pile (Figure 3.10), the impedances for the swaying and 

coupled swaying-rocking modes predicted following the Euler-Bernoulli beam theory is 

slightly greater than that predicted using the Timoshenko beam theory.  For the rocking mode, 

the impedance from the Euler-Bernoulli beam theory is less than that obtained using the 

Timoshenko beam theory.  Further, the Euler-Bernoulli and Rayleigh beam theories produce 

nearly identical results, which show that the rotatory inertia of the pile cross-section has little 

effect on the estimation of the pile head impedance for the range of dimensionless frequency 

investigated.  For the case of hollow steel pile (Figure 3.11), the difference in response using 

the Euler-Bernoulli and Timoshenko beam theories is more but not significantly different.  As 

before, the impedances for the swaying and coupled swaying-rocking modes are greater and 

that for the rocking mode is less as obtained using the Euler-Bernoulli beam theory when 

compared with the Timoshenko beam theory; however, the difference is not significant.  Again, 

the Euler-Bernoulli and Rayleigh beam theories produced nearly identical impedances for the 

range of dimensionless frequency investigated. 
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(a)                                                                     (b) 

 
(c) 

Figure 3.10: Dimensionless pile head impedances for (a) swaying, (b) coupled swaying-

rocking, and (c) rocking motions of a free-head solid reinforced concrete pile embedded in a 

two-layer soil overlying a rigid layer with the pile base encased in the rigid layer  
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(a)                                                                     (b) 

 
(c) 

Figure 3.11: Dimensionless pile head impedances for (a) swaying, (b) coupled swaying-

rocking, and (c) rocking motions of a free-head hollow steel pile embedded in a two-layer soil 

overlying a rigid layer with the pile base encased in the rigid layer 

3.8  Investigation of the applicability of dynamic analysis to obtain monopile response  

In the foregoing section, the accuracy of the present analysis following different beam 

theory is shown for the case of small-diameter solid reinforced concrete piles with Lp/rp  20 

(Figures 3.3-3.7) and large-diameter solid reinforced concrete piles with Lp/rp  20 (Figures 

3.8-3.9) for a wide range of dimensionless frequency encountered in practice.  Example 
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problems are also solved to investigate the difference in results obtained from various beam 

theories (Timoshenko, Rayleigh, and Euler-Bernoulli) for the case of small-diameter solid 

reinforced concrete (Figure 3.10) and hollow steel (Figure 3.11) piles with Lp/rp  20.  From 

the comparisons and example problems, it is found that the effect of rotatory inertia is 

insignificant and the difference in results between the Timoshenko and Euler-Bernoulli beam 

theory is primarily an effect of shear deformation within the pile cross-section, although the 

difference is small for the cases studied. 

The objective of this section is to investigate and determine the applicability of the 

dynamic analysis developed in this chapter for estimating the response of large-diameter 

monopiles versus the static analysis developed in Chapter 2.  This investigation is necessary 

because monopiles are typically subjected to cyclic/dynamic loads of frequency f  1 Hz and 

in that case the inertial effect of the monopile and soil, the hysteretic material damping ratio, 

and the radiation damping because of wave propagation within the soil (which are included in 

this dynamic analysis) might not be significant and the static analysis might be itself sufficient 

for estimating monopile response.  For the investigation, four different monopiles currently 

supporting offshore wind turbines in Europe (see Table 3.1) are chosen; the monopile 

properties (Lp, rp, tp, Ep = 210 GPa, p = 0.3, and p = 7850 kg/m3) and average Young’s 

modulus Es (obtained from shear wave velocity measurements) of the soil at different wind 

farm sites are selected following Adhikary and Bhattacharya (2012) and Shadlou and 

Bhattacharya (2016), respectively, and typical values of s = 0.25, s = 1700 kg/m3, and s = 

0.05 (Mylonakis 2001) is assumed.  The applied loading F0 and M0 are assumed and the 

maximum dimensionless frequency a0 for each of the wind farm site reported by Adhikary and 

Bhattacharya (2012) (see Table 3.1) is used. 

 Table 3.1 shows the maximum monopile head response (displacement wh and rotation 

h) obtained from the dynamic analysis developed in this chapter and the static analysis 

developed in Chapter 2 following the Timoshenko, Euler-Bernoulli, and rigid beam theory.  It 

can be seen from Table 3.1 that the difference in the dynamic response of monopiles in a 

homogeneous viscoelastic soil and the static response of monopiles in a homogeneous elastic 

soil, is not significantly different.  The dynamic response following different beam theories is 

always greater than the static response for the range of dimensionless frequency investigated.  

A maximum difference of 4.4%, 4.7%, and 3.7% in the monopile head displacement and 4.4%, 
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4.8%, and 1.0 % in the monopile head rotation for the Timoshenko, Euler-Bernoulli, and rigid 

beam theory, respectively, is obtained between the dynamic and static response, for the Walney 

wind farm site.  For all the other wind farm sites (Lely-A2, North Hoyle, Irena Vorrink), the 

difference between the dynamic and static response of monopiles following different beam 

theories is either identical or less than 3%.  A comparison of the computational time required 

to obtain monopile response between the present dynamic and static analysis following 

different beam theories for all the wind farm sites is also depicted in Table 3.2.  It is evident 

from Table 3.2 that the computational time required for the dynamic analysis is approximately 

three times more than that of the static analysis; this is a result of calculations involving 

complex numbers within the dynamic analysis.  Therefore, from the foregoing discussion, it is 

evident that performing a dynamic analysis to obtain monopile response which is typically 

subjected to loading frequency less than 1 Hz is not necessary since the static analysis can 

produce relatively accurate results, besides, it is computational efficient than the dynamic 

analysis.   

A comparison of the percentage difference in static response obtained from Euler-

Bernoulli and rigid beam theory with respect to Timoshenko beam theory for the four wind 

farm sites is also depicted in Table 3.3.  It can be seen that the percentage error in the response 

obtained from rigid theory is the greatest; this is because the rigid theory is applicable to 

monopiles when Ep/Gs
*  105 and Lp/rp is in the range of 5-20 (Table 2.4).  Therefore, a careful 

consideration of Ep/Gs
* and Lp/rp is required to use the rigid theory for monopiles.  Further, for 

all the cases studied, the percentage difference in response between the Timoshenko and Euler-

Bernoulli beam theory is approximately  3% for wh and 9% for h.  Although the Timoshenko 

beam theory gives a better prediction of monopile head rotation  the difference is typically  

10% for the case of combined loading (Fa and Ma) at the monopile head (also shown in Figures 

2.6-2.8). Therefore, the Euler-Bernoulli beam theory can be used to obtain monopile response 

without significant loss of accuracy instead of the Timoshenko beam theory.  Further, the 

Euler-Bernoulli beam theory, unlike the rigid theory, accounts for both bending and rigid body 

rotation irrespective of Ep/Gs
* and Lp/rp for monopiles available in the practice. 
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Table 3.1: Dynamic and static response of monopiles from the present analysis for wind farm sites in Europe 

 

 

 

 

 

 

 

Wind farm 

site 
Soil property 

Monopile 

properties 

Applied 

loading 

Dynamic response of monopiles in homogeneous 

viscoelastic soil 

Static response of monopiles in homogeneous 

elastic soil 

Timoshenko Euler-Bernoulli Rigid Timoshenko Euler-Bernoulli Rigid 

Lely-A2, 

Netherlands 
Es = 42.5 MPa 

Lp  20.9 m 

rp  1.85 m 

tp  35 mm 

F0 = 3 MN 

M0 = 30 MN 

f = 0.94 Hz 

a0 = 0.11 

wh  14.7 mm 

h  0.147 

wh  14.5 mm 

h  0.138 

wh  11.3 mm 

h  0.043 

wh  14.4 mm 

h  0.147 

wh  14.3 mm 

h  0.138 

wh   11.2 mm 

h  0.042 

North Hoyle, 

Wales, UK 

Es = 382.5 MPa 

 

Lp  33 m 

rp  2 m 

tp  46.4 mm 

F0 = 5 MN 

M0 = 60 MN 

f = 0.717 Hz 

a0 = 0.03 

wh  4.6 mm 

h  0.094 

wh  4.6 mm 

h  0.086 

wh  1.3 mm 

h  0.003 

wh  4.6 mm 

h  0.094 

wh  4.5  mm 

h  0.086 

 

wh  1.3 mm 

h 0.003  

 

Irena Vorrink, 

Netherlands 

Es = 42.5 MPa 

 

Lp  19 m 

rp  1.75 m 

tp  28 mm 

F0 = 2.5 MN 

M0 = 20 MN 

f = 0.91 Hz 

a0 = 0.1 

wh  12.4 mm 

h  0.136 

wh  12.3 mm 

h  0.126 

wh   9.8 mm 

h  0.042 

wh  12.3 mm 

h  0.136 

wh  12.1 mm 

h  0.126 

wh   9.5 mm 

h  0.04 

Walney, 

England, UK 
Es = 30 MPa 

Lp  23.5 m 

rp  3 m 

tp  80 mm 

F0 = 8 MN 

M0 = 100 MN 

f = 0.90 Hz 

a0  0.2 

wh  34.1 mm 

h  0.152 

wh  33.9 mm 

h  0.145 

wh  34.8  mm 

h  0.108 

wh  32.6 mm 

h  0.148 

wh  32.3 mm 

h  0.138 

wh  33.5 mm 

h  0.107 
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Table 3.2: Computational time required to obtain the dynamic and static response of monopiles from the present analysis for wind farm 

sites in Europe  

Wind farm site 
Dynamic analysis, (secs) Static analysis, (secs) 

Timoshenko Euler-Bernoulli Rigid Timoshenko Euler-Bernoulli Rigid 

Lely-A2, Netherlands  1349 1033 534 381 371 297 

North Hoyle, Wales, UK 935 748 624 279 268 213 

Irena Vorrink, Netherlands 1123 825 535 383 367 281 

Walney, England, UK 1559 1202 504 591 563 452 

 

Table 3.3: Percentage difference in static response obtained from Euler-Bernoulli and rigid beam theory with respect to Timoshenko 

beam theory for wind farm sites in Europe   

Wind farm site Lp/rp Ep/Gs
* 

% difference in the static head displacement wh between 

Timoshenko (T), Euler-Bernoulli (EB), and Rigid (R) beam 

theory 

% difference in the static head rotation h between 

Timoshenko (T), Euler-Bernoulli (EB), and Rigid (R) beam 

theory 

(T-EB)/TB100 % (T-R)/T100 % (T-EB)/T100 % (T-R)/T100 % 

Lely-A2, Netherlands 11.3  104 0.7 22.2 6.1 71.4 

North Hoyle, Wales, UK 16.5  104 2.1 71.7 8.5 96.8 

Irena Vorrink, Netherlands 10.9  104 1.6 22.7 7.3 70.5 

Walney, England, UK 7.9  104 0.9 2.7 6.8 27.7 
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3.9  Summary 

A mathematical framework for the dynamic analysis of laterally loaded monopiles 

embedded in a multilayered soil is presented in which the Timoshenko beam theory is used to 

model the monopile and viscoelastic continuum theory is used to model the soil.  Rational 

displacement field, maintaining the 3-D nature of the problem, is assumed for the soil and the 

equilibrium of the pile-soil system is obtained by applying the extended Hamilton’s principle.  

Two sets of coupled differential equations describing the pile and soil displacements are 

obtained using the variational principles of mechanics, which are solved analytically and 

numerically, respectively, following an iterative algorithm.  It is shown mathematically that 

the Timoshenko beam theory leads to the most generalized form of differential equations, and 

successive simplifications of these equations result in the differential equations for the 

Rayleigh and Euler-Bernoulli beam theories, respectively.  

The accuracy of the proposed method is ensured by comparing the dynamic pile head 

impedances, pile displacement, and rotation obtained from this analysis with those obtained 

from three different types of formulations of varying degree of sophistication  approximate 

continuum-based analytical solution, rigorous continuum-based analytical solution, and 

approximate Winkler-type analytical solution. Two example problems are analyzed that 

demonstrate the use of the analysis in layered soil deposit.  Further, the applicability of the 

dynamic analysis developed in this chapter versus the static analysis developed in Chapter 2 is 

investigated for the case of large diameter monopiles.  In the investigation, the dynamic and 

static response obtained following various beam theories are compared, besides a comparison 

of the computational time required to obtain monopile response between the dynamic and static 

analysis is also shown.   
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CHAPTER 4 

Static Analysis of Laterally Loaded Monopiles in Multilayered 

Nonlinear Elastic Soil 

4.1  Introduction  

In this chapter, the mathematical framework developed in Chapter 2 is extended to 

include the effect of nonlinear soil behavior.  In the analysis, the monopile is assumed to be an 

elastic Euler-Bernoulli beam (since the Euler-Bernoulli beam theory produces reasonably 

accurate pile/monopile response in comparison to the Timoshenko beam theory and accounts 

for both bending and rigid body rotation, unlike, the rigid beam theory) and each soil layer is 

considered to be a continuum characterized by nonlinear elastic constitutive relationships 

which describe the variation of shear modulus with strain.  The displacement within the soil 

mass in different directions because of monopile movement is considered to be a product of 

separable functions and the principle of virtual work is applied to obtain the governing 

differential equations describing the monopile and soil displacements that are solved 

numerically using the 1-D FD method, in an iterative scheme.   

The mathematical accuracy of the present analysis is verified by comparing the 

nonlinear pile response (head displacement and rotation) obtained from the present analysis 

with those of the response obtained from equivalent 3-D nonlinear elastic FE analysis.  A 

comparison of the time required to obtain results between the present and FE analysis is also 

shown to demonstrate the computational efficiency of the present analysis.  In order to validate 

the accuracy of the present analysis, the predicted results obtained from the present analysis 

using nonlinear elastic constitutive relationships are compared with the results of the p-y 

analysis and full-scale field pile-load tests for a few case studies in clayey and sandy soil 

deposit, available in the literature.  Further, to assess the applicability of the present nonlinear 

elastic approach in predicting monopile response, the results obtained from the present analysis 

are also compared with the results of elastic-plastic 3-D FE simulations (unlike, the present 

analysis, the soil behaviour in the FE analysis is described using a linear elastic-perfectly 

plastic constitutive model following the Tresca yield criterion) and the p-y analysis.  A 

comparison of the computational time from the present nonlinear elastic approach, linear 
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elastic-perfectly plastic FE analysis, and the p-y analysis shows that the present analysis 

predicts accurate and faster results.    

4.2  Overview of existing formulations for analysis of laterally loaded piles in 

nonlinear soil  

In the last few decades, several computational methods have been developed to predict 

the nonlinear response of laterally loaded pile foundations.  These methods can be broadly 

classified into three categories: (i) p-y method (McClelland and Focht 1958, Matlock 1970, 

Reese et al. 1975, Reese and Welch 1975, Georgiadis 1983, O’Neill and Murchinson 1983, 

O’Neill et al. 1990, Yan and Byrne 1992, Reese 1997, Anderson et al. 2003, Kim et al. 2004, 

Zhang and Ahmari 2013), (ii) strain wedge model (SWM) (Norris 1986, Gowda 1991, Ashour 

et al. 1998, Ashour and Norris 2000, Ashour et al. 2002, Xu et al. 2013, Yang et al. 2017), and 

(iii) continuum-based methods based on FE and FD solution techniques (Desai and Appel 

1976, Faruque and Desai 1982, Pressley and Poulos 1986, Kooijman 1989,  Trochanis et al. 

1991, Bhowmik 1992, Wakai et al. 1999, Yang and Jeremic 2005, Kim and Jeong 2011, 

Ahmed and Hawlader 2016).   

Of the different methods discussed above, the p-y method is widely used by 

geotechnical engineers and also included in several design codes of practice (API 2011, DNV 

2014).   In the p-y method, the pile is considered to be an elastic Euler-Bernoulli beam while 

the soil is modeled as a series of independent, nonlinear, 1-D springs at distinct locations along 

the pile length which are characterized by nonlinear force-displacement relationships 

(commonly termed as p-y curves).  This kind of modeling is often referred to as a beam on 

nonlinear Winkler foundation (BNWF) in the geotechnical foundation engineering literature.  

These p-y curves depend on the soil properties and depth at which the spring is attached to the 

pile (p is the soil reaction force per unit pile length at a given depth and y is the corresponding 

lateral pile displacement at that depth).  However, there are a few limitations associated with 

the p-y method: (i) the p-y curves are modeled as independent springs along the pile-shaft 

which are characterized by the spring constant k along the pile-shaft and they do not account 

for the shear transfer t between adjacent soil layers; thus, neglecting the continuum nature of 

the pile-soil interaction problem, (ii) the p-y curves reported in several design codes (e.g., API 

2011 and DNV 2014) are developed from a few full-scale field pile-load tests on slender piles 
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and their applicability to larger-diameter piles (e.g., monopiles) is questionable, besides, the 

curves developed are site-specific and considerable judgment is required for using these p-y 

curves to predict pile response at  a different site; in fact, standard p-y curves have often failed 

to predict the actual pile response (Yan and Byrne 1992, Kim et al. 2004), and (iii) parameters 

such as the 50 (strain corresponding to one half of the maximum deviatoric stress) used for 

soft clay (Matlock 1970) and stiff clay (Reese et al. 1975) criterion for the development of p-

y curves (also available in commercial software’s such as LPILE (Reese and Wang 1997)) is 

semi-empirical.   

The SWM eliminates some of the limitations of the p-y method by estimating the p-y 

curves for the 1-D BNWF from the soil strain in the 3-D passive wedge mobilized in front of 

the pile because of pile movement, thus, providing a theoretical link between the more 

sophisticated 3-D pile-soil interaction and the simpler 1-D BNWF characterization.  However, 

both the p-y method and the SWM depend on parameters (e.g., 50) that are based on the user’s 

experience rather than fundamental considerations, hence, these methods are semi-empirical.  

Besides, it is shown in the literature that both the p-y method and SWM are unsuitable to 

analyze and design monopiles (Lesny et al. 2007).  

The continuum-based method with FE or FD solution techniques using commercially 

available software packages (e.g., Abaqus) or self-developed research codes can handle 

various geometry, boundary conditions, and elastic-plastic constitutive soil models which can 

be used to predict the nonlinear response of laterally loaded piles accurately and realistically.  

Despite the versatility associated with these methods, their use in routine geotechnical 

engineering design is limited because of (i) the modeling knowledge and expertise required to 

develop such solution techniques or the use of a particular software package and (ii) such 

solution techniques require considerably large computational effort to obtain solutions.  The 

FE software packages (e.g., Abaqus) facilitate the use of sophisticated constitutive 

relationships based on elasticity and plasticity theory (soil yielding and strain/work hardening 

or softening) to model the nonlinear soil behaviour; however, such models based on plasticity 

theory are useful when the design interest is the estimation of ultimate load capacity (Osman 

et al. 2007).  For most laterally loaded pile problems, the primary interest in design is the 

estimation of head response under working load conditions (e.g., head rotation h = 0.5 is the 

design criterion for laterally loaded monopiles under extreme loading conditions); thus, the use 
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of such sophisticated constitutive models based on plasticity theory might not be necessary and 

nonlinear elastic soil models may be sufficient to predict reasonably accurate pile response 

with lesser computational effort. 

In this chapter, an approximate continuum-based method is developed to estimate the 

nonlinear response of monopile foundations.  In this analysis, the monopile is modeled 

following the Euler-Bernoulli beam theory and each soil layer is characterized by nonlinear 

elastic constitutive relationships, available in the literature.  The nonlinear pile response 

obtained from this analysis is verified and validated with the results of equivalent 3-D FE 

analysis (both using nonlinear elastic and elastic-plastic constitutive models), full-scale field 

pile-load tests, and the p-y analysis for piles embedded in clayey and sandy soil deposit.  There 

are several advantages of  the present analysis: (i) the solution algorithm is faster compared to 

an equivalent 3-D FE analysis because in the present analysis the solution of the differential 

equations describing soil displacements are 1-D in nature although the actual problem is 3-D, 

(ii) reasonable accurate and computationally faster prediction of monopile response can be 

made using nonlinear elastic constitutive relationships for soil in comparison to an equivalent 

3-D FE analysis with sophisticated elastic-plastic constitutive models. 

4.3  Soil nonlinearity  

The stress-strain behavior of soil is highly nonlinear i.e., the soil stiffness (e.g., secant 

shear modulus or Young’s modulus) decays with strain (e.g., shear strain), except for very 

small strains (typically less than 10-6 (Atkinson 2000) or 10-5 (Osman et al. 2007)).  This 

degradation of soil modulus with strain is often expressed as a ratio of Gs/Gs0 where Gs is the 

secant shear modulus at any strain and Gs0 is the initial (small-strain or elastic) shear modulus.  

Figure 4.1 depicts a typical modulus degradation curve with the induced shear strain () for 

soil.  There are several such modulus degradation curves available in the literature for clayey 

and sandy soil deposit (Kondner 1963, Duncan and Chang 1970, Seed and Idriss 1970, Hardin 

and Drnevich 1972, Fahey and Carter 1993, Ishibashi and Zhang 1993, Lee and Salgado 2000, 

Darendali 2001, Menq 2003, Zhang et al. 2005, Osman et al. 2007, Vardanega and Bolton 

2013, Oztoprak and Bolton 2013); these modulus degradation curves are often expressed in 

the form of a power law or a hyperbolic expression and can be used to obtain the response of 
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monopiles.  In this chapter, three such nonlinear elastic constitutive relationships are used; a 

brief description of the relationships is given in the subsequent subsections of this section.  

 

 

Figure 4.1: Normalized secant shear modulus versus shear strain curve  

4.3.1  Nonlinear elastic soil models for undrained clay 

Osman et al. (2007) proposed a power law expression (equation (4.1a)) based on the 

results of a few triaxial compression test performed on three different types of clay (Gault clay, 

London clay, and Kaolin clay with overconsolidation ratio (OCR) 35, 30 and 1, respectively) 

sheared at an effective confining stress of about 100 kPa (performed by Dasari 1996) which is 

given by 
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  (4.1b) 

q is the deviatoric strain for a 3-D strain state in the soil, rr, , zz, r, z, and zr are the 

strain components for a 3-D strain state in soil for a r--z coordinate system, q0 is the maximum 

deviatoric strain of linear elastic (initial or small-strain) behavior at  10-5, and b (=  0.5) is a 

curve fitted parameter describing the nonlinear variation of soil with deviatoric strain. 
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In a recent study, Vardanega and Bolton (2013) formulated a modified hyperbolic 

expression (equation (4.2a)) from their statistical study on a database of 67 tests on 21 clays 

and plastic silts on the undrained shear stress-strain data of fine-grained soils reported in the 

literature for use in the foundation engineering practice.  The compiled tests data included fine-

grained soil from various countries, under a variety of conditions, from normally consolidated 

to heavily consolidated, and performed in a variety of shear testing devices over a period of 30 

years.  The hyperbolic expression is given by 
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  (4.2a) 

where for a 3-D strain state in soil  is considered to be the octahedral engineering shear strain 

oct, which is given by  

       
2 2 2 2 2 22

6
3

oct rr zz zz rr r z zr                       (4.2b) 

 (= 0.736) is the curvature parameter describing the nonlinear variation of soil with strain, 

and ref {= J  (PI/1000)} is the octahedral reference shear strain at which the initial shear 

modulus is halved where J = 2.2 and PI is plasticity index of clay, which is expressed 

numerically.   

The initial shear modulus Gs0 described in equations (4.1a) and (4.2a) can be obtained 

from shear wave velocity measurements either in the laboratory (using the resonant column or 

the bender element tests) or in the field (using the plate-load tests, seismic cone penetration 

tests, cross-hole tests).  There are several such relationships proposed in the literature for the 

estimation Gs0 where it is correlated to various elementary soil parameters such as void ratio, 

plasticity index, initial mean effective stress, overconsolidation ratio, and the shear strength of 

soil (Hardin and Black 1968, Hara et al. 1974, Duncan and Buchignani 1976, Viggiani and 

Atkinson 1995, Shibuya et al. 1996, Atkinson 2000).  In this study, the Gs0 for an undrained 

clayey soil deposit is obtained following the correlation proposed by Duncan and Buchignani 

(1976) (also included in USACE 1990) which describes the variation of the initial (small-strain 

or elastic) Young’s modulus Es0 of the undrained clay soil as a function of three basic soil 

parameters  undrained shear strength su, plasticity index PI, and the overconsolidation ratio 
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OCR (these parameters can be easily obtained from a geotechnical site investigation report).  

The correlation proposed by Duncan and Buchignani (1976) is given by 

0s c uE K s   (4.3) 

where  

Kc is a correlation factor and is a function of the PI and OCR which was obtained from field 

measurements and can be estimated from Figure 4.2.  The small-strain shear modulus for the 

undrained clay can be evaluated following Gs0 [= Es0/{2  (1 + s)}] for a Poisson’s ratio s = 

0.49. 

 

 

Figure 4.2: Relationship between Kc, PI, and OCR for clays (Regenerated from USACE 

(1990)) 

4.3.2  Nonlinear elastic soil model for sand 

Oztoprak and Bolton (2013) formulated a modified hyperbolic expression (equation 

(4.4)) from the shear stress-strain data of sandy soils performed on a database of 454 tests, 

available in the literature for obtaining the nonlinear response of geotechnical engineering 

structures, subjected to static loading.  The database consisted of sandy soils with various grain 

size and gradation (e.g., clean sands, gravels, sands with fines and/or gravels, and gravels with 

sands and fines), types (e.g., reconstituted and/or undisturbed Toyura, Ottawa, Ishikari sand), 

under a variety of state (e.g., saturation, void ratio, relative density, confining stress, and 

drainage conditions), and tested under static and dynamic conditions.  The best-fit functional 
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relationship from the secant shear modulus degradation data demonstrated in Figure 4.3 is 

given by 
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 (4.4) 

where  (note that for   e, Gs/Gs0 = 1) for a 3-D strain state in soil is considered to be the 

octahedral shear strain (see equation (4.2b)), e is the elastic threshold strain beyond which the 

shear modulus falls below its maximum, ref is the characteristic reference strain at which the 

initial elastic shear modulus is halved, and  is the curvature parameter.  The numerical values 

of e, ref, and  are reported in Table 4.1. 

  

 

Figure 4.3: Normalized secant shear modulus versus shear strain curve for sandy soil 

(Regenerated from Oztoprak and Bolton (2013)) 

 

Table 4.1: Fitted parameters for lower bound, mean, and upper bound curves in Figure 4.3  

Parameters Lower bound Mean Upper bound 

ref 0.0002 0.00044 0.001 

e 0 0.000007 0.00003 

 0.88 0.88 0.88 
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Several researchers (Hardin and Black 1966, Darendali 2001, Menq 2003, Salgado 

2008) in the past have proposed relationships to obtain the initial shear modulus Gs0 of sandy 

soils.  In this study, the Gs0 for a sandy soil deposit is obtained following the relationship 

(equation (4.5)) proposed by Hardin and Black (1966)  

'
00 0

01

gn

gs m
g

a a

e eG
C

p e p

  
  

  
  (4.5) 

where Cg, eg, and ng are intrinsic soil properties (Cg = 612.0, eg = 2.17, and ng = 0.44 

corresponding to Ottawa sand); 
'

0m is the initial mean effective stress, pa is the reference stress 

(= 100 kPa), and e0 is the initial void ratio. 

4.4  Mathematical formulation  

4.4.1  Problem definition 

Figure (4.4) shows a hollow circular steel monopile modeled as a Euler-Bernoulli 

beam, embedded in a multilayered nonlinear elastic soil deposit.  The monopile has a length 

Lp, radius rp, wall thickness tp, area of cross-section Ap, second moment of inertia Ip, and 

characterized by Young’s modulus Ep.  The soil layers are characterized by a modulus 

degradation relationship described by the equations (4.1), (4.2), or (4.3).  The soil layers extend 

to an infinite distance along the radial direction and the nth soil layer extends to infinity in the 

vertical direction.  A cylindrical r--z coordinate system is chosen for the purpose of analysis 

where the origin of the coordinate system lies at the center of the monopile head.  Further, in 

the analysis, no slippage or separation between the monopile and the surrounding soil is 

assumed.  The objective of the analysis is to predict the nonlinear monopile response – head 

displacement wh and rotation h because of the application of the static horizontal force Fa 

and/or moment Ma. 
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Figure 4.4: A monopile embedded in a multilayered nonlinear elastic soil and subjected to 

static lateral loads 

4.4.2  Displacements, strains, and stress in soil  

The soil displacement field in the radial and tangential direction generated by the 

monopile displacement w(z) is expressed as a product of separable functions and given by 

     , , cosr ru r z w z r    (4.6) 

     , , sinu r z w z r      (4.7) 

where r(r) and (r) are both assumed to be equal to one at r  rp and equal to zero at r  . 

Using the soil displacement field, the infinitesimal soil strains (with contractive strains 

assumed positive) is expressed as 
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 (4.8) 

Further, using the stress-strain relationship, the stress state at any point within the soil mass is 

given by 

2pq s pq ll s pqG       (4.9) 

where pq and pq are soil stress and strain tensors and the summation is implied by the 

repetition of the indices p and q and pq is the Kronecker’s delta. 

4.4.3  Principle of virtual work  

Applying the principle of virtual work to the monopile-soil system (Figure 4.4) the 

following equation is obtained 
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 (4.10) 

where the first, second, and third integral on the left-hand side of equation (4.10) denotes the 

internal virtual work done by the monopile, the soil except the cylindrical soil domain below 

the monopile base, and the cylindrical soil domain of radius rp below the monopile base, 

respectively.  The fourth and the fifth term on the left-hand side of equation (4.10) denotes the 

external virtual work done by the applied force and moment, respectively.    

Substituting equations (4.8) and (4.9) in equation (4.10) and introducing layering, the 

following equation is obtained 



87 

 

 

 

1

1

2 2
2 1 1

02 2
1

22

2 2

1 0

2

2

2 cos 2 cos

2 cos

i

i p

i

i p

Hn
i i n n

p p p sn

i H L

Hn
rr r

si si si

i H r

r r
si si si

d w d w dw dw
E I dz r G dz

dz dz dz dz

d d
G

dr dr r

G G
r







  

  
   

   
 







 







       
       

      

    
      

   

  
   

 

  

   

 
1

2

2 2

2

2

2

2 2 2 2

1 0

1
1 0

0

2 2

sin 2 sin

sin

sin cos

cos

i

i p

r
si

r
si i i

Hn
i i

si si r

i H r

a az

z

r
si i

d
G

r dr r

d
G w w rdrd dz

dr

dw dw
G G rdrd dz

dz dz

dw
F w M

dz

w
r

  







  
 


  

     

 

 
 











   
   

   

 
  

  

   
     

   

 
   

 






   

 

     

1

1

21
2 2

1 0

2 2 2 21
2 2 2

2 2
1 0

22
2 2

2 cos

cos 2 cos sin

sin cos

i

i p

i

i p

Hn
r r

si si i

i H r

Hn
i i ir

si si si r si r

i H r

i i
si si r

d d
G w rdrd dz

dr dz

w w wd
G G

r dr r r

w d dw
G G

r dr dz





 



 
   


        


  













   
     

  


     



 
   

 

   

   

   

 

1

1

21
2 2 2 2

1 0

2 2 21
2 2

2
1 0

2 2
2

2

sin sin

cos 2 cos

sin si

i

i p

i

i p

r

Hn
r

si i si i

i H r

Hn
i ir

si si si r

i H r

i i
si r si

rdrd dz

d d
G w G w rdrd dz

r dr dz

w wd
G

r dr r

w w
G G

r r



  







 

   
   


     

  

















     
     

    


    



  

   

   

2

2 2n sin 0i
si

d dw
G rdrd dz

dr dz


 


    

 
  

  

 (4.11) 

Note, that the nth layer is artificially split into nth and (n + 1)th layer.  Further, in the 

equation (4.11), Gsi {= Esi/(2  (1 + si))} and si {= 2Gsi(1 - si)/(1 - 2si)} varies with strain 

at each point within the soil mass which implies that they are functions of the radial r and 

tangential  coordinate (i.e., Gsi = Gsi(r,) and si = si(r,)) and therefore, included within the 

integrations unlike equation (2.7) in Chapter 2.  Further, for the circular soil domain of radius 

rp below the monopile base, the soil stiffness is not expected to degrade much and therefore, 
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the shear modulus in this region is assumed to be equal to the small-strain shear modulus (i.e., 

Gsn = Gsn0). 

4.4.4  Numerical solution of monopile displacement  

Performing integration by parts on the terms associated with (d2w/dz2) and  (dw/dz), 

in equation (4.11), then collecting all the terms associated with w and equating them to zero 

results in the differential equations of w(z).  Considering the terms associated with w within 

the region 0  z  Lp, the governing differential equations of w is obtained and given by 
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with the relevant boundary conditions at different layer interface given by 
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where the coefficients ki and ti are given by 
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(4.17) 

Note, that the parameters ki and ti are functions of the r and   for a spatially varying 

Gsi and si, unlike the equations (2.10) and (2.11) in Chapter 2. 

For the domain below the monopile base (Lp  z  ) the terms associated with wn+1 

in equation (4.11) are equated to zero.  As wn+1 is not known a priori within Lp < z  , wn+1 

0 because of which the integrand in the integral between z  Lp and z   must be equal to 

zero.  This gives the differential equation of wn1 
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At infinite vertical distance down from the monopile (i.e., at z  ) wn+1  0 (this makes 

the term associated with wn+1 at z   equal to zero) and at the monopile base (i.e., at z  Lp) 

wn+1  wn.  Using these boundary conditions, an analytical solution of equation (4.18) is 

obtained as 
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The differential equation governing monopile displacement (equation (4.12)) is solved 

using the 1-D FD scheme.  The FD form of equation (4.12) for various set of nodes (monopile 

is discretized into a set of uniformly spaced nodes of spacing z (see Figure 4.5(b)) with a total 

number of nodes n (same as the number of soil layers) satisfying the boundary conditions at 

the monopile head (equations (4.13a)-(4.13b)) and at the monopile base (equations (4.15a)- 

(4.15b)) are given by 
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 (4.20b) 
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 (4.20e) 

Equations 4.20(a) and 4.20(b) are applicable to nodes 1 and 2 respectively, equations 

4.20(c) is applicable to nodes i = 3  (n  2), equations 4.20(d) and 4.20(e) are applicable to 

nodes i = (n  1) and i = n, respectively.  These FD equations form a system of linear equations 

whose solutions results in the monopile displacement wi at each node along the z-axis.  Note, 

the small-strain shear modulus Gs0 can be input at each node, which implicitly accounts for 

layering within the solution process. 
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Figure 4.5: Finite difference discretization of the monopile-soil domain 
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4.4.5  Numerical solution of differential equations describing soil displacement 

Referring to equation (4.11), collecting all the terms associated with r, , (dr/dr), 

and (d/dr) and further, performing integration by parts on the terms associated (dr/dr) 

and (d/dr), an equation of the following form is obtained  
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 (4.21) 

where 
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Collecting the terms associated with r and , setting the terms associated with r 

and   at r  rp and r   equal to zero (since the variations of r and   are known at r  rp 

and r  ), and within the interval rp  r    (since r   0 and    0 as r and   is not 
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known a priori within rp  r  ), a set of coupled differential equations for r and  describing 

soil displacement are obtained. 
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r r
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The coupled differential equations (equations 4.23(a) and 4.23(b)) are solved 

simultaneously using a 1-D FD scheme.  The discretized forms of the differential equations 

and the associated coefficients are given as 
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where 
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where the superscript l represents the node number at a radial distance rl from the monopile 

edge and a non-uniform spacing of nodes is assumed with the total number of nodes m such 

that the discretization length (rl +1  rl)  (rl  rl1) (see Figure 4.5(b)).  The 1-D FD 

discretization has its first node at the monopile-soil boundary (i.e., at r  rp) and sufficiently 

long and dense so as to allow proper attenuation of the displacement functions for accurate 

results. 

Equations (4.25a) and (4.25b) when rewritten for nodes 2 through (m  1) (i.e., 

excluding the 1st and the last (mth) nodes at which the values of r and  are known) generate 

two sets of simultaneous equations with each set containing m  2 equations.  These sets of 

equations can be represented in the matrix form as 

   r

rX Y       (4.27a) 

   rX Y 

     (4.27b) 
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where [Xr](m2)×(m2) and [X](m2)×(m2) are the left-hand-side tridiagonal matrices with 

finite difference coefficients of the unknown vectors {r}(m2)×1 and {}(m2)×1, respectively, 

and {Yr}(m2)×1 and {Y}(m2)×1 are the corresponding right-hand side vectors containing terms 

with unknowns  and r, respectively. 

[Xr] formed from equations (4.27a) (i.e., r is unknown) the nonzero elements of the 

yth row of [Xr] are obtained as 
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where y = l  1.  The first, yth, and (m  2)th row of {Y} vector in equation (4.27a) is given by 
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[X] formed from equations (4.27b) (i.e.,  is unknown) the nonzero elements of the 

yth row of [X] are obtained as 
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where y  = l  1.  The first, yth, and (m  2)th row of  {Yr} vector in equation (4.27b) is given 

by 
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The functions r and , are solved using an iterative process for each node within the 

discretized soil domain (see Figure 4.5(b)).  An initial estimate of 
l

r is made and given as 

input to equations 4.31(a)-4.31(c), and 
l

  is determined by solving equation 4.27(b) where 

[X] is obtained from equations 4.29(a)-4.29(c).  The calculated values of 
l

  are given as 

input to {Y} (equations 4.29(a)-4.29(c)) and 
l

r  is determined from equation 4.27(a) where 

[Xr] is obtained from equations 4.28(a)-4.28(c).  Iterations are performed with the newly 

obtained 
l

r to calculate 
l

  until the convergence is reached at each node.  The criteria set for 

convergence to calculate 
l

r and 
l

  at each node is considered to be 
previous current 610

l l

r r     

and 
previous current 610

l l

     , respectively, at the lth node for the previous and current iterations, 

respectively. 

4.4.6  Solution algorithm 

The soil parameters k and t which are functions of r and  must be known to obtain 

w from the differential equation (equation (4.12)) describing the monopile displacement.  

Moreover, the parameters 1-8 (equations (4.24a)-(4.24h)) must be known to obtain r and  

from equations (4.23a) and (4.23b) and these parameters depend on w through ms1, ms2, ms3, 

ns1, and ns2 (equations (4.22a)-(4.22e)).  Therefore, the differential equation describing 

monopile displacement wi and soil displacement r and  are coupled and an iterative 

algorithm is required to obtain a solution. 

An initial guess of 1.0 is made for 1-8 (equations (4.26a)-(4.26h)) at each grid point 

(see Figure 4.5(a)) along r using which r and  are determined using an iterative algorithm 
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that satisfy the boundary conditions r and  = 1 at r  rp and r and  = 0 at r  .  After 

obtaining r and  at each grid point, the strain components are calculated (using equation 

(4.8)) with which the secant shear modulus Gs(r,) are evaluated (using equation (4.1), (4.2) 

or (4.3)), at each grid point in the soil domain along r and   and at each node along the z-axis 

(see Figure 4.5(b)).  It is important to note that the induced displacement and strain varies at 

each point in the monopile-soil domain because of which the secant shear modulus also varies 

at each point (because of the nonlinear stress-strain behaviour of soil), which implies that the 

deformation induced in the soil mass because of monopile movement renders the soil 

heterogeneous.  

Using the calculated values of Gs(r,), r and , the values of ki and ti (described by 

equations (4.16) and (4.17)) are obtained at each node along the monopile length using the 

trapezoidal rule of integration where the integration is first performed along the r-direction 

with step length (rl + 1  rl) or (rl  rl - 1) at any tangential distance , followed by a subsequent 

integration over  with step length  (see Figure 4.5(a)).  With the calculated values of ki and 

ti the monopile displacement wi and rotation dwi/dz is evaluated (using equation (4.20a)-

(4.20e)) at different node points along the monopile length with which the parameters ms1, ms2, 

ms3, ns1, and ns2 (equations (4.22a)-(4.22e)) are evaluated numerically following the trapezoidal 

rule of integration along the  and z-direction.  First, the integration is performed along  at 

any radial distance rl with a step length rl ; the value of the integration obtained is further 

integrated along the z-direction with a step length z.  After obtaining ms1, ms2, ms3, ns1, and 

ns2, new values of 1-8 are evaluated at each grid point and compared to the assumed initial 

values.  If the differences are more than the prescribed tolerable limit of 0.001 at each grid 

point, the calculations described so far are repeated with the calculated values of 1-8 as the 

new initial guesses.  Iterations are continued until the values of 1-8 between successive 

iterations fall below the prescribed limit at each grid point.  Figure (4.6) illustrates the solution 

algorithm which is implemented in a MATLAB script on a computer with Intel CoreTM i5-

3210M CPU @ 2.50 GHz and 8 GB RAM.   
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Figure 4.6: Solution algorithm 
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4.5  Results 

In order to verify the mathematical accuracy of the present analysis a comparison of 

pile response  head displacement and rotation obtained from the present analysis is done with 

the results of equivalent 3-D FE analysis using nonlinear elastic relationships for the case of 

small-diameter piles.  The analysis is validated with several full-scale field pile-load tests and 

the p-y analysis commonly used to predict laterally loaded pile response, for small-diameter 

piles embedded in clayey and sandy soil deposit.  Further, verification of the present nonlinear 

elastic approach is done with that of an equivalent 3-D FE analysis using an elastic-plastic 

constitutive soil model following the Tresca yield criterion for the case of large-diameter 

monopiles.  A comparison of the computational time required to obtain results between the 

present and equivalent 3-D FE analysis is also shown to demonstrate the computational 

efficiency of the present analysis.   

4.5.1  Verification of present analysis with 3-D FE analysis using nonlinear elastic soil 

constitutive relationships 

In order to verify the mathematical accuracy and computational efficiency of the 

present formulation, a comparison of the pile response obtained from the present analysis is 

done with the results of equivalent 3-D FE analyses using the nonlinear elastic soil constitutive 

relationships described by equation (4.1) and (4.2).   

In the 3-D FE analysis (performed using Abaqus), the pile and soil are modeled as a 

single cylindrical part with appropriate partitioning to represent the pile and soil separately, 

which ensures no slippage or separation between the soil and pile.  The topsoil surface is flush 

with the pile head and the bottom soil surface is extended to a finite depth below the pile base.  

The horizontal radial extent of the soil domain is selected to be approximately 30 times the pile 

diameter from the pile axis for the problems solved.  Different boundary conditions are 

prescribed at the boundaries of the model  all components of displacements are assumed to 

be zero along the bottom (horizontal) surface and two horizontal components are assumed to 

be zero along the outer curved (vertical) surface of the soil domain.  Eight-noded reduced 

integration (C3D8R) brick elements are used to model both the soil and pile domain.  

Concentrated force or moment is applied to a reference point at the pile head, to which all the 
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nodes of the pile head are connected.  These loads (force/moment) are applied in several fixed 

increments. 

The pile in the FE analysis is modeled as an elastic element whereas the soil is modeled 

using the nonlinear constitutive relationships (given by equation (4.1) or (4.2)).  In order to 

implement the nonlinear equations i.e., the variation of secant shear modulus of soil with the 

strain the ‘‘field variable (FV)” and the ‘‘user defined field” options, for the material definition 

in Abaqus is used.  In the simulations, the field variable is assigned as the Young’s modulus 

and the user-defined field (USDFLD) FORTRAN subroutine is written in Microsoft Visual 

Studio where Young’s modulus is made to vary with the evaluated value of the strain following 

equation (4.1) or (4.2) within the integration points of each element in the soil domain for each 

load increment.  In the FORTRAN code, the arrays of the strain components in each direction 

at each integration point within the soil elements are obtained using the GETVRM subroutine 

at the end of each increment.  Then, the strain corresponding to equation (4.1) or (4.2) is 

calculated.  Further, it is checked that if the strain is less than the minimum specified strain (q0 

 10-5 for equation (4.1) and oct  10-6 for equation (4.2)) within each element, then the initial 

Young’s modulus is specified to those elements else for other elements Young’s Modulus is 

evaluated using equation (4.1) or equation (4.2).  The evaluated value of Young’s modulus for 

each element at the end of each increment is saved as a “solution dependent variable (SDV)” 

which is then used for the material definition at the integration points of each element of the 

soil domain in the next load increment.  This (USDFLD) subroutine written is linked to the 

model developed in the Abaqus Create job option and the analysis is performed in an Intel 

Fortran environment to get the outputs.  Note, that for an accurate implementation of the 

variation of Young’s modulus, it is necessary that the size of the load increments and the size 

of the elements should be adequately chosen, based on convergence checks.  For the problems 

solved, the pile-soil domain is discretized using a global seed of 1.0 and the applied load is 

divided into 40 increments.  

Figures 4.7(a)-4.7(b) and 4.7(c)-4.7(d) show the comparison of the pile responses (head 

displacement wh and rotation h) obtained from the present and FE analysis, for an applied 

force and moment, respectively.  The nonlinear elastic relationships given by Osman et al. 

(2007) (equation (4.1)), is used for modeling the soil in the present and FE analysis.  The details 

of the pile-soil inputs are given in the figure itself.  For the problems analyzed, the initial shear 



101 

 

modulus Gs0 of soil is specified to be 10 MPa in the present analysis; the results are obtained 

for two different values of Poisson’s ratio s = 0.2 and 0.49.  In the 3-D FE analysis, Young’s 

modulus of soil is varied with the deviatoric strain, therefore, the initial Young’s modulus Es0 

{= Gs0  2  (1 + s)} is given as input for the two cases of Poisson’s ratio which are 24 MPa 

(corresponding to s = 0.2) and 29.8 MPa (corresponding to s = 0.49), respectively.  For 

convergence, the pile-soil domain is discretized using a global seed of 1.0 and the applied load 

is divided into 40 increments.  From the comparisons (4.7(a)-4.7(b) and 4.7(c)-4.7(d)), it is 

evident that the match between the pile response obtained from the present and FE analyses 

are in good agreement.  Further, an illustration of the degraded value of Young’s modulus 

(FV1) at the end of the 40th increment (final load increment) from the FE analysis, is also 

shown in Figures 4.8(a)-4.8(b) (for the problems shown in Figures 4.7(a)-4.7(b) corresponding 

to s = 0.2 and 0.49) and 4.9(a)-4.9(b) (for the problems shown in Figures 4.7(c)-4.7(d) 

corresponding to s = 0.2 and 0.49) to confirm the implementation of the nonlinear elastic 

constitutive relationship in Abaqus.  It is evident from the figures that the degradation of 

Young’s modulus is predominant around the pile head and near the pile-soil interface.  At a 

greater distance from the pile head, Young’s modulus is equal to the initial (small-strain) 

modulus. 

 

 
(a)                                                                     (b) 
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(c)                                                                     (d) 

Figure 4.7: Comparison of (a) pile head displacement, (b) pile head rotation, for an applied 

force, and (c) pile head displacement, (d) pile head rotation, for an applied moment, using the 

nonlinear elastic relationship by Osman et al. (2007) for two different values of Poisson’s ratio 

 

 
(a) 

 

FV1-Young’s modulus, (Pa) 
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(b) 

Figure 4.8: Variation of Young’s modulus in the soil domain (a) with Poisson’s ratio of 0.2, 

and (b) with Poisson’s ratio of 0.49, for an applied force from the 3-D FE analysis in ABAQUS 

using the nonlinear elastic relationship by Osman et al. (2007), at the end of the 40th increment  

 

 
(a) 

FV1-Young’s modulus, (Pa) 

FV1-Young’s modulus, (Pa) 
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 (b) 

Figure 4.9: Variation of Young’s modulus in the soil domain (a) with Poisson’s ratio of 0.2, 

and (b) with Poisson’s ratio of 0.49, for an applied moment from the 3-D FE analysis in Abaqus 

using the nonlinear elastic relationship by Osman et al. (2007), at the end of the 40th increment 

  

Figures 4.10(a)-4.10(b) and Figures 4.10(c)-4.10(d) show the comparison of pile 

responses obtained from the present and FE analysis, for an applied force and moment, 

respectively, following the nonlinear elastic constitutive relationship given by Vardanega and 

Bolton (2013) (equation (4.2)) where ref  0.002 is assumed.  The details of the pile-soil inputs 

are given in the figure itself.  For the problems analyzed, the initial (small-strain) shear 

modulus Gs0 = 20 MPa with s = 0.49 is given as input, in the present analysis.  In the 3-D FE 

analysis, Young’s modulus of soil is made to vary with the octahedral shear strain, therefore, 

the initial Young’s modulus Es0 {= Gs0  2  (1 + s)} = 59.6 MPa, is given as input.  Further, 

an illustration of the degraded value of Young’s modulus (FV1) at the end of the 40th increment 

from the FE analysis, is also shown in Figures 4.11(a) (for the problems shown in Figures 

4.10(a)-4.10(b)) and 4.11(b) (for the problems shown in Figures 4.10(c)-4.10(d)) to confirm 

the implementation of the nonlinear elastic constitutive relationship in Abaqus.  

  

FV1-Young’s modulus, (Pa) 
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(a)                                                                     (b) 

  
(c)                                                                     (d) 

Figure 4.10: Comparison of (a) pile head displacement, (b) pile head rotation, for an applied 

force, and (c) pile head displacement, (d) pile head rotation, for an applied moment, using the 

nonlinear elastic relationship by Vardanega and Bolton (2013)   
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(a) 

 
(b) 

Figure 4.11: Variation of Young’s modulus in the soil domain (a) with Poisson’s ratio of 0.49 

for an applied force, and (b) with Poisson’s ratio of 0.49, for an applied moment from the 3-D 

FE analysis in Abaqus using the nonlinear elastic relationship by Vardanega and Bolton 

(2013), at the end of the 40th increment 

 

From the comparisons shown in Figures 4.7 and 4.10, it is evident that the present 

analysis is mathematically accurate and can be used to predict pile response with a reasonable 

FV1-Young’s modulus, (Pa) 

FV1-Young’s modulus, (Pa) 
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degree of accuracy.  The difference in the pile responses is approximately less than 8% for the 

problems demonstrated in Figures 4.7 and less than 4% for the problems demonstrated in 

Figures 4.10, for the range of applied load.  This difference in the prediction may be a result 

of the assumption of the soil displacement functions in the analysis (equations (4.4)); the 

assumption of zero vertical displacement does not have a significant influence on the prediction 

of pile response.  A comparison of the computational time (CPU processing time) for the 

problems solved (Figure 4.7 and 4.10) in a computer with Intel CoreTM  i5-3210M CPU @ 

2.50 GHz and 8 GB RAM between the present and FE analysis is also depicted in Table 4.2.  

It is evident from Table 4.2 that the present analysis is computationally efficient compared to 

the 3-D FE analysis; this is because of the reduction in computational effort to obtain the 

solutions of the differential equations describing soil displacement (equations 4.25(a) and 

4.25(b)) which are 1-D in nature; although, the actual problem is 3-D. 

 

Table 4.2: Computational time required for 3-D FE analysis and present analysis using 

nonlinear elastic constitutive relationships  

Solved problems 3-D FE analysis, (secs) Present analysis, (secs) 

Figures 4.7(a) and (b) 8685 337  

Figures 4.7(c) and (d) 8777 356  

Figures 4.10(a) and (b) 8918 380  

Figures 4.10(c) and (d) 9279 380  

4.5.2  Comparison of the present nonlinear elastic analysis with full-scale field pile-load 

tests and p-y analysis for small-diameter piles in clay soil deposit  

To validate the accuracy and reliability of the present analysis, the nonlinear response 

obtained from the present analysis is compared with the response obtained from full-scale field 

pile-load tests and the semi-empirical p-y method.  The comparison is done for five different 

case studies of field pile-load tests in undrained clayey soil deposit, available in the literature.  

The prediction of the response from the present analysis is done following the recently 

developed nonlinear elastic relationship by Vardanega and Bolton (2013) (equation (4.2)) 

where the initial shear modulus Gs0 of soil for the undrained clay is estimated following 

equation (4.3) if elementary parameters describing clay behaviour  su, PI, and OCR are known 

or can be judiciously estimated based on the soil description in a geotechnical site investigation 
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report.  An illustration of a typical geotechnical site investigation report from the site Manor, 

Texas is demonstrated in Figures 4.12(a)-4.12(c) from which the description of the soil profile 

along with necessary inputs for the computational models (p-y method or the present analysis) 

to describe soil behavior can be obtained.  Figure 4.12(a) provides a description of the soil 

profile with depth; the soil is primarily a heavily overconsolidated highly plastic stiff clay.  

Figure 4.12(b) shows the water content, plastic limit, and liquid limit at different depths; the 

water content is used to locate the ground water table at the time of the field pile-load test and 

also to estimate the unit weight of clay while the Plastic limit (PL) and Liquid limit (LL) are 

used to evaluate the Plasticity index PI (= LL  PL) of the soil.  Figure 4.12(c) shows the 

undrained shear strength su of the clay deposit with depth from the in-situ penetrometer test. 

 

 
(a)                                               (b)                                             (c) 

Figure 4.12: Details of the soil profile at the site Manor, Texas (regenerated from Reese et al. 

1975)  

   

A comparison of pile head displacement obtained from the present analysis with those 

of the p-y analysis (reported by Reese and Impe (2011) which is also included in the design 

code API (2011)  Load deflection (p-y) curves for stiff clay (Reese et al. 1975)) and the 

measured data from the field pile-load test, conducted at the Manor, Texas test site (Figure 

4.12(a)) by Reese et al. (1975) on a steel pipe pile, is shown in Figure 4.13.  To predict the pile 

response from the present analysis  an average value of su = 153 kPa at five pile diameters 
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(Reese et al. 1975) and PI = 60 (Guo 2012) is computed from Figure 4.12(c) and Figure 

4.12(b), respectively, OCR = 6 (since the soil is heavily overconsolidated (Wu et al. 1998)) is 

assumed, the correlation factor Kc = 260 is obtained from Figure 4.2 to evaluate Es0 = Kc  su 

= 220  153/1000 = 48.6 MPa such that Gs0 = 13.3 MPa for the undrained clay deposit with s 

= 0.49, and equation (4.3) with ref = J  (PI/1000) = 2.2  (0.6/1000) = 0.00132, are used as 

inputs.  The pile properties and applied loading used in the analysis are  modulus of rigidity 

EpIp = 493.7 MPa, Lp = 15.2 m, rp = 0.321 m, and the load being applied at an eccentricity e = 

0.305 m (Guo 2013).  The maximum difference in the pile head displacement for the range of 

applied load is approximately 16% between the measured data and the predicted response from 

the present analysis and 7% between the measured data and the predicted response from the p-

y analysis. 

 

 
Figure 4.13: Comparison of pile head displacement with measured data from a field test, p-y 

analysis, and the present study at Manor, Texas test site 

 

Figure 4.14 show the comparison of the pile head displacement for the lateral load tests 

conducted at the Houston, Texas test site (Reese and Welch 1975) on a bored pile with those 

of the measured data, p-y analysis (reported by Reese and Impe (2011) which is also included 

in the design code API (2011)  Load deflection (p-y) curves for stiff clay (Reese et al. 1975)), 

and the present analysis.  To obtain the pile response from the present analysis  Gs0 = 8.1 MPa 

is estimated for Kc = 230 (from Figure 4.2) and s = 0.49 for an average value of su = 105 kPa 
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(measured from unconsolidated undrained triaxial compression test), OCR = 4.5 (since the soil 

is reported to be overconsolidated (Wu et al. 1998)), and PI = 51 (Reese and Impe 2011, 

Heidari et al. 2013) and equation (4.3) with ref = 2.2  (0.51/1000) = 0.001122, are used as 

inputs.  The pile properties and applied loading reported are  modulus of rigidity EpIp = 400 

MPa, length Lp = 15.2 m, rp = 0.321 m, and the load applied at an eccentricity e = 0.305 m.  

The maximum difference in the pile head displacement for the range of applied load is 

approximately 26% between the measured data and the predicted response from the present 

analysis and 21% between the measured data and the predicted response from the p-y analysis. 

 

  
Figure 4.14: Comparison of pile head displacement with measured data from a field test, p-y 

analysis and the present study at Houston, Texas test site 

 

Further, a comparison of the prediction of pile head displacement (Figure 4.15) from 

the present analysis is also done with the p-y analysis (reported by Reese and Impe (2011) 

which is also included in the design code API (2011)  Load deflection (p-y) curves for soft 

clay (Matlock 1970)) and lateral load tests on steel pipe piles, performed at Sabine, Texas test 

site (Matlock 1970).  The soil was reported to be lightly overconsolidated soft clay with an 

average su = 14.4 kPa measured from in-situ vane shear test and PI = 68 (Guo 2013) such that 

ref = 2.2  (0.68/1000) = 0.001496.  Gs0 = 1.02 MPa is evaluated for Kc = 210 assuming OCR 

= 1.5 for the slightly overconsolidated clay (Wu et al. 1998).  The details of the pile and loading 

properties are provided in the figure itself.  The maximum difference in the pile-head 
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displacement for the range of applied load is approximately 6% between the measured data 

and the predicted response from the present analysis and 77% between the measured data and 

the predicted response from the p-y analysis. 

 

 
Figure 4.15: Comparison of pile head displacement with measured data from a field test, p-y 

analysis and the present study at Sabine, Texas test site 

 

A comparison of the prediction of pile head displacement (Figure 4.16) from the present 

analysis is also done with the lateral load tests performed on reinforced concrete short piles 

(Pile no. 4, Tests site B) at Los Angeles (Bhusan et al. 1979), and the p-y analysis formulated 

by Zhang and Ahmari (2013) for the nonlinear analysis of short piles in cohesive soils.  The 

soil at the site consisted of overconsolidated sandy clay of medium to high plasticity.   An 

average value of su = 143.7 kPa (Vallahavan and Alikhanlou 1982) with Kc = 347 (Zhang and 

Ahmari 2013), and PI = 30 (Bhusan et al. 1979) such that ref = 2.2  (0.30/1000) = 0.00066 

are used as input in the analysis for computations.  The details of the pile and loading properties 

are reported in the figure itself.  The maximum difference in the prediction of pile head 

displacement for the range of applied load is approximately 13% between the measured data 

and the predicted response from the present analysis and 24% between the measured data and 

the predicted response from the p-y analysis. 
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Figure 4.16: Comparison of pile head displacement with measured data from a field test, p-y 

analysis, and the present study at a Los Angeles test site 

 

Pile head displacement (Figure 4.17) from the present analysis is also compared with 

the lateral load tests performed on reinforced concrete short piles at College Station, Texas 

(Bierschwale et al. 1970), and the p-y analysis developed by Zhang and Ahmari (2013).  The 

soil at the site consisted of medium stiff to stiff sandy clay with an underlying stiff to very stiff 

fissured clay of high plasticity.  An average value of su = 100 kPa such with Kc = 250 (Zhang 

and Ahmari 2013), and PI = 30 % (Bierschwale et al. 1970) such that ref = 2.2  (0.30/1000) 

= 0.00066 are used as inputs.  The maximum difference in the pile head displacement for the 

range of applied load is approximately 7% between the measured data and the predicted 

response from the present analysis and 8% between the measured data and the predicted 

response from the p-y analysis. 
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Figure 4.17: Comparison of pile head displacement with measured data from a field test, p-y 

analysis and the present study at College Station, Texas test site 

 

From the comparisons demonstrated in Figures 4.13-4.17, it is evident that the present 

nonlinear elastic analysis can be used predict pile response with an acceptable degree of 

accuracy.  For the predictions demonstrated in Figures 4.13-4.15, the initial shear modulus 

which is an input in the present analysis is estimated based on the recommendations of Duncan 

and Buchignani (1976) (also included in USACE 1990) where the numerical data for PI and 

OCR are judiciously chosen which are either reported or recommended by several researchers 

in the literature.  For the problems demonstrated in Figures 4.16 and 4.17, the initial shear 

modulus reported by Zhang and Ahmari (2013) is used in the present analysis.    The difference 

in the pile response between the present analysis and the measured data may be a result of the 

pile-soil slippage and separation. Further, the p-y analysis predicts reasonably accurate results 

in comparison to the field tests (see Figure 4.13 and Figures 4.16-4.17); this is because the p-

y curves for these analyses are generated based on the pile-soil data of the specific site, 

however, their applicability to obtain pile response at other sites is questionable (e.g., see 

Figure 4.14).  Thus, the p-y curves are site-specific and not applicable universally; in fact, p-y 

curves constructed from the pile-soil data of a specific site have failed to produce accurate 

results when compared to the measured response of that site (e.g., see Figure 4.15). 
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4.5.3  Comparison of present analysis using nonlinear elastic relationship with field pile-

load tests and p-y analysis for small-diameter piles in a sandy soil deposit  

To further assess the reliability of the present analysis in predicting the nonlinear 

response of laterally loaded piles, pile head response obtained from the present analysis is 

compared with the response obtained from full-scale field pile-load tests and the semi-

empirical p-y method in sandy soil deposit for three different case studies, available in the 

literature.  The prediction of the response from the present analysis is done following nonlinear 

elastic relationship given by Oztoprak and Bolton (2013) (equation (4.4)) where the initial 

shear modulus Gs0 of the sandy soil deposit is evaluated using equation (4.5). 

Figure 4.18 shows a comparison of pile head displacement obtained from the present 

analysis with those of the p-y analysis (reported by Reese and Impe 2011), p-y analysis 

according to API (2011) (recommended by O’ Neil and Murchinson 1983), and the measured 

data from field pile-load test, conducted at the Arkansas river test site (Alizadeh and Davission 

1970) on a reinforced pipe pile (Pile 2) and embedded in a sandy soil deposit.  For the 

comparison  an effective internal friction angle  = 45, effective unit of soil  = 10.9 kN/m3 

(Reese and Van Impe 2011, Guo 2010) and s = 0.25 are used as inputs to characterize the 

sandy soil and EpIp = 69.02 MPa, Lp = 16.10 m, rp = 0.480 m, and e = 0.031 m (Guo 2010) are 

used as inputs for the pile properties and applied loading.  To predict the pile response from 

the present analysis, the initial shear modulus Gs0 is evaluated at each node along the pile length 

following equation (4.5) for which the initial void ratio e0 = 0.485 is estimated from e0 = [{(gs 

 1)  w}/ -1] where w = 9.81 kN/m3 is the unit weight of water and gs = 2.65 is the specific 

gravity of sand; Cg = 612.0, eg = 2.17, and ng = 0.44 corresponding to Ottawa sand are used, 

since no specific data is available; the initial mean effective stress 
m0 = (

zz + 2  
rr)/3 = 


zz  (1 + 2  K0)/3 =   z  (1 + 2  K0)/3 (where 

zz =   z is effective vertical stress at 

any depth in the soil and 
rr = K0  

zz is the effective horizontal stress at any depth z in which 

K0 = 1 - sin  = 0.3 (Jaky 1948) is the coefficient of earth pressure at rest for a normally 

consolidated soil) is evaluated (note that Gs0 is linearly varying with depth).  The nonlinear 

variation of soil modulus with strain is captured following equation (4.4); the fitted parameters 

ref, e, and  corresponding to the upper bound curve (see Figure 4.3 and Table 4.1) are used 

since the friction angle of the sandy soil deposit corresponds to that of dense sand (Mayerhoff 

1956, Budhu 2010) and it is expected that the rate of degradation of soil modulus for dense 
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sand would be slower than that of medium (mean curve) and loose (lower bound curve) sand.  

The response from the p-y analysis (API 2011) where p-y curves are generated (using LPILE) 

for an initial modulus of subgrade reaction kh = 62.43 MN/m3 corresponding to  = 45 and 

sand below the water table is also shown.  The maximum difference in the pile head 

displacement for the range of applied load is approximately 36% between the measured data 

and predicted response from the present analysis, 17% between the measured data and p-y 

analyses reported by Reese and Impe (2011), and 53% between the measured data and the p-y 

analysis.  

 

  
Figure 4.18: Comparison of pile head displacement with measured data from a field test, p-y 

analyses (following Reese and Impe 2011 and API 2011), and the present study, for the test 

site at Arkansas river (Pile 2) 

 

A comparison of pile head displacement obtained from the present analysis with those 

of the p-y analysis (API 2011) and the measured data from the field pile-load test conducted at 

the Arkansas river test site (Alizadeh and Davission 1970) on an open-ended pipe pile (Pile 

16), is also shown in Figure 4.19.   For the comparison  an effective internal friction angle  

= 43, effective unit of soil  = 9.87 kN/m3 (Guo 2010), and s = 0.15 are used as inputs for 

the sandy soil deposit; the pile properties and applied loading reported by Guo (2010) are given 

in the figure itself (Figure 4.18).  The initial shear modulus Gs0 is evaluated at each node along 

the pile length following equation (4.5) for which the initial void ratio e0 = 0.64 is estimated 

using the same procedure as described in the previous problem; Cg, eg, and ng corresponding 
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to Ottawa sand are used; the initial mean effective stress 
m0 at any depth z along the pile 

length is evaluated for K0 = 0.32 (as demonstrated in the previous problem).  The nonlinear 

variation of soil modulus with strain is captured following equation (4.4) and the fitted 

parameters ref, e, and  corresponding to the upper bound curve (see Table 4.1 and Figure 

4.3) are used.  The results for the p-y analysis is obtained using the software LPILE where the 

p-y curves are obtained following API (2011) recommendations where kh = 46.15 MN/m3 is 

given as input corresponding to  = 43 and sand below the water table.  The maximum 

difference in the pile head displacement for the range of applied load is approximately 37% 

between the measured data and the predicted response from the present analysis and 20% 

between the measured data and the predicted response from the p-y analysis. 

 

 
Figure 4.19: Comparison of pile head displacement with measured data from a field test, p-y 

analysis (API 2011) and the present study, for a test site in Arkansas river (Pile 16) 

 

Further, comparison of pile head displacement obtained from the present analysis with 

those of the p-y analysis (Reese and Impe 2011), p-y analysis (API 2011) and the measured 

data from the field pile-load test conducted at the Mustang Island, Texas test site (Cox et al. 

1974) on an open-ended pipe pile, is demonstrated in Figure 4.20.  For the comparison  an 

effective internal friction angle  = 39, effective unit of soil  = 10.4 kN/m3 (Cox et al. 1974), 

and s = 0.15 are used as inputs for the sandy soil deposit; the pile properties and applied 

loading are given in the figure itself (Figure 4.20).  The initial shear modulus Gs0 is evaluated 
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for e0 = 0.56 is estimated; Cg, eg, and ng corresponding to Ottawa sand are used; the initial 

mean effective stress 
m0 at any depth z along the pile length is evaluated for K0 = 0.37.  The 

nonlinear variation of soil modulus with strain is captured following equation (4.4) and the 

fitted parameters ref, e, and  corresponding to the mean curve (see Table 4.1 and Figure 4.3) 

since the friction angle corresponds to that of a medium dense sand (Mayerhoff 1956, Budhu 

2010).  The results for the p-y analysis is obtained using the software LPILE where the p-y 

curves are obtained following API (2011) recommendations where kh = 40.72 MN/m3 is given 

as input corresponding to  = 39 and sand below the water table.  The maximum difference 

in the pile head displacement for the range of applied load is approximately 34% between the 

measured data and the predicted response from the present analysis, 0% between the p-y 

analyses reported by Reese and Impe (2011) and the measured data, and 30% between the 

measured data and the p-y analyses following API (2011) recommendations.  

 

 
Figure 4.20: Comparison of pile head displacement with measured data from a field test, p-y 

analysis and the present study for a test site in Mustang Island, Texas 

 

From the comparisons demonstrated in Figures 4.18-4.20, the difference between the 

predicted response from the present analysis and the measured data from field tests is typically 

greater than the acceptable range of 10-20% in the geotechnical foundation engineering 

practice.  Besides, for all the three case studies, the curvature (i.e., the change in slope) of the 

plot obtained from the present analysis is appreciably different from those obtained from the 

field tests.  The possible reasons for such differences in the predictions may be because of (i) 
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pile-soil slippage and separation, (ii) the uncertainty associated in the estimation of Gs0 (see 

equation (4.5)) where the parameters corresponding to Ottawa sand are used for calculation in 

the present analysis, (iii) the nonlinear elastic relationship used might not be completely 

applicable to the test sites investigated, and (iv) soil yielding with increasing load that can be 

captured using the theory of plasticity is not included in the present analysis.  Nevertheless, it 

is important to note that the present analysis can be used to predict the nonlinear response of 

laterally loaded piles in sandy soil deposit, however, further extension of the present nonlinear 

elastic framework including the plasticity theory which can capture soil yielding within this 

framework (especially for piles installed in sandy soil deposits) is necessary.   

Further, the comparison of the response obtained from measured data with those of the 

p-y analysis where the p-y curves are obtained following the API (2011) recommendations also 

shows that the API recommendations might not always be suitable for predicting laterally 

loaded pile response (see Figures 4.18 and 4.20) unless calibrations are done to construct the 

p-y curves based on the specific site data (p-y analysis performed by Reese and Impe 2011 see 

Figures 4.18 and 4.20).   

4.5.4  Comparison of present nonlinear elastic analysis with elastic-plastic 3-D FE 

analysis and p-y analysis for large-diameter monopiles in undrained clay soil 

deposit 

Often commercial FE programs are used to obtain the nonlinear response of laterally 

loaded monopiles because they have several inbuilt elastic-plastic constitutive models which 

require simple inputs to describe the soil behavior.  It will be interesting to check how the 

monopile response obtained from the present nonlinear elastic framework compares with those 

of 3-D FE analysis (performed using Abaqus) where the soil is modeled by an elastic-plastic 

constitutive model.  The monopile response obtained from the present and 3-D FE analyses are 

also compared with the results of the p-y analysis to check the applicability of the p-y curves 

recommended in API (2011) to design monopiles. 

In the 3-D FE analysis, steel monopiles with hollow circular cross-section and soil are 

modeled separately as single cylindrical parts within the part module.  Three different monopile 

radius 2, 3, and 3.75 m are modeled where the wall thickness of each monopile is calculated 

by tp = 6.35 + (2  rp)/100 (mm).  The embedment length of each monopile is 35 m with a 

length of 1 m above the ground surface.  The soil domain extends to a finite depth below the 
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monopile base and the horizontal radial extent is selected to be 9 times the monopile diameter.  

Eight-noded reduced integration (C3D8R) brick elements are used to model both the soil and 

monopile with a global seed of 1.4 and 0.8, respectively, in the mesh module.  In the property 

module, appropriate material and sectional definitions are created for the soil and monopile.  

The monopile is assumed to be linear elastic with Ep = 210 GPa, p = 0.3, and density of 7850 

kg/m3.  The soil is considered to be a heavily oversonsolidated stiff undrained clay with 

undrained shear strength su = 100 kPa, OCR = 2.5, and PI = 38 % (typical type of clay available 

in the UK North Sea where monopiles are being installed (Thomas (1989), Haiderali et al. 

(2013)) with Es0 = 47.9 MPa and s = 0.49 MPa given as input for the clay deposit.  The plastic 

characteristics of the clay are modeled using the Tresca yield criterion where su = 100 kPa is 

given as input.  The density of the soil is input as 1800 kg/m3.  The monopile and the soil part 

instances are then positioned together in the assembly module to introduce a global coordinate 

system to the model.  The analysis is then performed in a sequence of four steps  (i) Initial 

step  all components of displacements are assumed to be zero along the bottom (horizontal) 

surface and two horizontal components are assumed to be zero along the outer curved (vertical) 

surface of the soil domain, (ii) Geostatic step  initial stresses are generated within the soil 

elements by introducing a gravity load to the soil elements in the load module and 

simultaneously deactivating the monopile elements in the interaction module, (iii) General 

static step  the monopile elements are reactivated to model the interaction between the pile 

and the adjoining soil; the monopile-soil interaction is modelled using the finite sliding, 

surface-to-surface master slave contact formulation (monopile is the master surface and the 

soil is the slave surface) where the normal (hard contact  both allowing no separation and 

separation after contact) and tangential (friction coefficient of 0.25 is given as input, typical 

for a clay-steel interface (Lemos and Vaughan 2000)) constraints are generated using the 

penalty method, and (iv) General static step  a gravity load is applied to the monopile elements 

to simulate the self-weight of the monopile along with the application of static horizontal 

concentrated load and overturning moment that simulates the loading behaviour of waves, 

current, and wind at a reference point to which all the nodes of the monopile are connected on 

the head.   
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In the p-y analysis, the p-y curves for the soil at different depths along the monopile are 

generated using the “Stiff clay without free water (Reese)” criteria with zero base shear 

available in LPILE which requires inputs of the unit weight of soil , su, and the strain factor 

50 corresponding to a stress of 50% of the ultimate stress.  An input of  = 18 kN/m3, su = 100 

kPa, and 50 = 0.005 (recommended by Reese et al. 1975 for clayey soil deposit with su ranging 

from 100-200 kPa) is given as input in the LPILE analysis to generate the p-y curves.   The 

soil layer below the monopile base extends to a finite depth below the monopile base.  Further, 

in the analysis, each monopile is modeled as a circular solid pile with equivalent elastic 

properties.   

Figure 4.21(a)-(b) show the comparison of the monopile response (head displacement 

wh and rotation h) obtained from the present 3-D FE analysis (both with and without 

monopile-soil separation), p-y analysis, and the present analysis.  The initial shear modulus Gs0 

= 16.1 MPa is given as input to obtain the results from the present analysis using equation (4.3) 

applicable to undrained clays.  The details of the other monopile-soil properties and applied 

loading are reported in the figures itself.  From the comparison shown in Figure 4.21(a) (head 

displacement wh), it is evident that the p-y analysis (the p-y curves for stiff clays were 

developed from field pile-load tests on pile diameters ranging from 0.254-0.641m) in 

comparison to the FE analysis and present analysis overpredicts the response for all the cases 

of monopile diameters considered, therefore, the p-y analysis is unsuitable to design monopiles.   

Further, the present analysis overestimates the monopile head displacement wh in 

comparison to the FE analysis ((Figure 4.21(a))), whereas, a reasonable match of the 

predictions of the monopile head rotation h from the present analysis with those of the FE 

analysis, is obtained (Figure 4.21(b)).  This difference in the prediction of monopile response 

between the present and FE analysis may be because of (i) mismatch in the modeling 

techniques and (ii) the inputs used to describe the constitutive behavior of soil.  Nevertheless, 

the present analysis using nonlinear elastic relationship is capable of predicting reasonable 

monopile response in undrained clays, without resorting to elastic-plastic soil models.  

Although the present analysis does not include monopile-soil separation (an important 

phenomenon observed in a laterally loaded pile problems), the present analysis is capable of 

predicting monopile head response accurately, besides, this effect might not be of much 

importance for monopiles which are typically designed to undergo a maximum head rotation 
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of h = 0.5.  A closer examination of the monopile head rotation (see Figure 4.22) in Figure 

4.21(b) shows that for h = 0.5, the difference between the present and FE analysis is not 

significant and the phenomenon of gap formation in the analysis can be neglected for 

monopiles in stiff undrained clays. 

An illustration of the CPU processing time is also depicted in Table 4.3.  It is evident 

that the present analysis is far more computationally efficient compared to the 3-D FE analysis 

framework.  Although, the p-y analysis is computationally efficient than the present analysis it 

produces inaccurate results, which is unacceptable. 

 

  
(a)                                                                     (b) 

Figure 4.21: Comparison of monopile response obtained from present analysis (using non-

linear elastic constitutive relationship (equation (4.3)), 3-D FE analysis (using elastic-plastic 

constitutive models), and the p-y analysis 
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Figure 4.22: Monopile head rotation obtained from the present and 3-D FE analysis up to h = 

0.5  

 

Table 4.3: Computational time required for 3-D FE analysis, p-y analysis and present analysis 

Pile radius 

(m) 

3-D FE analysis, 

(secs) 

p-y analysis, 

(secs) 

Present analysis, 

(secs) 

2 10791  22 512 

3 11568  22 533 

3.75 12180 22 546 

4.6  Summary 

A new continuum-based computational method is developed to obtain the response of 

laterally loaded monopile foundations embedded in a nonlinear elastic soil, subjected to a static 

force and/or moment at the monopile head.  In the analysis, the displacement in the soil is 

considered to be a product of separable functions and the principle of virtual work is applied 

to obtain the governing differential equations describing the monopile and soil displacements.  

An iterative algorithm is followed to solve for the monopile and soil displacements and obtain 

the monopile response using a 1-D FD numerical scheme.   

In the analysis, the soil nonlinearity is taken into account using nonlinear constitutive 

relationships expressed in the form of a power law and a hyperbolic equation applicable to 

undrained clay and sandy soil deposits where the degradation of secant shear modulus is 

expressed as a function of the induced strain in soil.  Several example problems are solved to 

demonstrate the use of the analysis.  The results obtained from the analysis are verified with 
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the results of an equivalent 3-D FE analysis using the same rule of modulus degradation as the 

present analysis.  The present analysis predicts accurate and computationally faster nonlinear 

pile response in comparison to 3-D FE analysis.  The results obtained from the present analysis 

are validated with the results of measured data from full-scale field pile-load tests and p-y 

analysis in clay and sandy soil deposit, for a few case studies.  Further, monopile response in 

undrained clay obtained from the present nonlinear elastic approach is compared with elastic-

plastic 3-D FE analysis.  From the comparison, the p-y analysis is found to predict unrealistic 

results for large-diameter monopiles while the present analysis predicts reasonably accurate 

and computationally efficient results in comparison to the 3-D FE analysis.   

 

  



124 

 

CHAPTER 5 

Design of Monopiles in Nonlinear Elastic Soil 

5.1  Introduction  

In this chapter, the step-by-step procedure for the design of monopiles embedded in a 

nonlinear elastic soil and subjected to extreme lateral loading conditions is demonstrated 

through two example problems.  In the solved example problems, the design considerations 

are outlined, the procedures recommended in offshore design codes for the calculation of the 

extreme lateral loads from wind and wave action on the wind turbine structure is demonstrated, 

the analysis developed in Chapter 4 is performed for the evaluated wind and wave loading on 

monopiles embedded in undrained clay deposit, and finally, appropriate monopile dimensions 

satisfying the design requirements for monopiles recommended in offshore design codes are 

chosen. 

5.2  Design Problem 1 

From a geotechnical foundation engineering perspective, monopiles supporting 

offshore wind turbines should satisfy two design criteria (i) Ultimate limit state (ULS) criterion 

because of applied lateral and axial loads and (ii) Serviceability limit state (SLS) criterion 

where the maximum allowable limit for monopile head rotation h at the seabed is 0.5 (DNV 

2014) under extreme loading conditions.   In this design, it is assumed that (i) the monopile is 

safe against axial capacity besides, it is also reported in the literature that the effect of the axial 

loads (static loading from self-weight of the wind turbine tower, turbine, and the substructure 

assembly) on the lateral response of monopiles supporting offshore wind turbines is negligible 

(Haiderali et al. 2013, Arany et al. 2015) and (ii) the design of laterally loaded monopiles is 

typically governed by the serviceability limit state criterion (Arany et al. 2015, 2017) instead 

of the ultimate limit state criterion, in fact, for most laterally loaded pile problems the allowable 

head displacement and rotation are often the criteria for design.  Therefore, the present design 

of monopiles is performed satisfying the SLS criterion. 

The present design consists of the following steps (i) calculation of the maximum lateral 

loads from wind and wave action acting on the wind turbine structure which are ultimately 

transferred to the monopile head, (ii) evaluation of the geotechnical properties of the site, and 
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(iii) selection of appropriate monopile dimensions that satisfies the serviceability limit state 

criterion of h = 0.5 under extreme loading conditions by performing the analysis developed 

in Chapter 4. 

5.2.1  Calculation of maximum lateral loads acting on the wind turbine structure 

The wind turbine structure is subjected to dynamic lateral loads from wind, waves, 

water currents, and vibrations from the rotor and blades with frequencies less than 1 Hz (see 

Chapter 1, subsection 1.2.1).  The effect of the dynamic loadings on the wind turbine structure 

from water currents, rotor, and blades can be neglected since, they are very small compared 

the wind and wave loading (Lombardi 2010, Arany et al. 2015).  Further, it is shown in this 

research that the static analysis is sufficient to obtain monopile response because the inertial 

effect of the monopile and soil, hysteretic and radiation of soil included in the dynamic analysis 

is insignificant for loading frequencies less than 1 Hz (see Chapter 3).  Therefore, in this design, 

the loading encountered by the wind turbine structure from winds and waves (see Figure 1.1) 

are modeled as a static horizontal force and the overturning moment at the monopile head (see 

Figure 4.1).   

Calculation of maximum lateral loads from wind 

According to the DNV (2014) code, there are numerous wind load scenarios that need 

to be analyzed for the design of OWT monopile foundation.  In this design, the force because 

of the wind which is expected to be highest when an extreme gust hits the rotor at the hub level 

at a rated wind speed UR (DNV 2014, Arany et al. 2015, 2017) is evaluated; the DNV (2014) 

codes gives the following expression for the calculation of the extreme gust uext (equation 5.1)  
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 (5.1) 

where D is the rotor diameter, 1 = Lk/8.1 is the longitudinal turbulence scale parameter with 

Lk = 340.2 m (obtained from DNV (2014), also reported by Arany et al. (2015) in their 

calculations) being the longitudinal integral length scale of turbulence, U,c = 0.11U10,1-year is 

the characteristic standard deviation of wind speed, and U10,1-year = 0.8U10,50-year is the 10 
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minutes wind speed with 1-year return period.  The 10 minutes mean wind speed with a 50-

year return period U10,50-year (= 

1

1

52596ln 1 0.98
sw

kw
  
   
   

, where wk and ws are the wind speed 

Weibull distribution scale and shape parameter, respectively) is determined by taking the 98% 

quantile of the probability distribution of 1-year return period (Table 4-2 in DNV (2014)). 

Using equation (5.1), the total wind load Fwind at the hub (see Figure 5.1) is estimated 

by the following equation 

 
21

2
wind a R T R extF A C U u   (5.2) 

where a is the density of air, CT = {3.5  (2  UR – 3.5)}/UR
2 is the thrust coefficient following 

Frohboese and Schmuck (2010), and AR is the rotor swept area. 

The overturning moment Mwind at the monopile head is obtained using the following 

expression 

 wind wind hub surM F z z   (5.3) 

where zhub is the hub height from the sea level and zsur is the mean water depth. 

Calculation of maximum lateral loads from wave 

According to the DNV (2014) code, the maximum wave force Fwave at a height zw from 

the seabed and overturning moment Mwave at the head of a large-diameter vertical cylindrical 

monopile can be evaluated following the linear Airy wave theory which is given by the 

following equations  
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where w is the density of water, g (= 9.81 m/sec2) is the gravitational constant, Hm (= 1.87 Hs, 

such that Hs is the significant wave height (DNV 2014)) is the maximum wave height, K is the 

wave number,  and  are functions of Krp (obtained from Table E2 of DNV (2014) code of 

practice) i.e., the product of the wave number and monopile radius. 
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The overturning moment Mwind at the monopile head is obtained by 

wave wave wM F z  (5.6) 

 

 

Figure 5.1: OWT-monopile system with imposed wind and wave loads and their point of 

application 
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To obtain the maximum force and overturning moments (using equations (5.1)-(5.6)) 

because of wind and wave action a monopile radius of 2.5 m is assumed (the calculation of 

wave load is a function of monopile radius).  The inputs adopted for the wind turbine 

dimensions and wind and wave parameters are reported in Table 5.1 and Table 5.2, 

respectively.  The output parameters for the calculation of the maximum force, overturning 

moments, and the point of application on the wind turbine structure because of wind and wave 

action are reported in Table 5.3.  In the present design, the wind and wave loads on the wind 

turbine structure are considered to be collinear (based on are DNV (2014) recommendations).  

Table 5.2 also depicts the total applied force Fa (= Fwind + Fwave) and moment Ma (= Mwind + 

Mwave) at the monopile head because of wind and wave action which is required for performing 

the analysis developed in Chapter 4 and subsequently, designing the monopile. 

 

Table 5.1: Input parameters of a Siemens SWT-3.6-120 type 3.6 MW wind turbine (Arany et 

al. 2015) 

D 120 m 

zhub 87 m 

 

 

Table 5.2: Input parameters for calculation of wind and wave loading on  SWT-3.6-120 

UR 12 m/sec 

wk 8 m/sec 

ws 1.8 

a 1.225 kg/m3 

w 1030 kg/m3 

Hs 8.2 m 

zsur 25 m 

* 1.162 

* 0.04095 

* and  are selected from Table E2 of DNV (2014) 
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Table 5.3: Output parameters for wind and wave loading for OWT supported on a 2.5 m radius 

monopile    

1 42 m 

U10,50-year  18.64 m/sec 

U10,1-year 14.92 m/sec 

U,c 1.64 

uext 3.942 m/sec 

CT 0.5 

AR 11304 m2 

Hm 15.334 m 

K* 0.064 

Fwind 0.88 MN 

Mwind 98.56 MNm 

zw 7.75 m 

Fwave 2.9 MN 

Mwave 22.4 MNm 

Fa 3.8 MN 

Ma 120.96 Nm 

* K is back-calculated from the selected values of  and   for a 2.5 m radius monopile 

5.2.2  Evaluation of geotechnical properties of soil  

The monopile shown in Figure 5.1 is considered to be embedded in a homogeneous 

deposit of normally consolidated undrained soft clay.  The nonlinear stress-strain behavior of 

the undrained clay is described by the hyperbolic expression given by Vardanega and Bolton 

(2013) (equation (4.2); see Chapter 4, subsection 4.3.1).  For performing the analysis and 

obtaining the monopile head response using equation (4.2), Gs0 [= Es0/{2  (1 + s)}] is 

evaluated where Es0 = Kcsu following the correlation is given by Duncan and Buchignani (1976) 

is used and Kc is obtained from Figure 4.2.  Table 5.4 depicts the geotechnical properties of the 

normally consolidated soft undrained clay. 
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Table 5.4: Geotechnical properties of normally consolidated soft undrained clay deposit    

OCR PI % su (kPa) Kc Es0 (MPa) s Gs0 (MPa) J ref 

1.0 44 50 390 19.5 0.49 6.54 2.2 0.000968 

5.2.3  Selection of monopile dimensions  

A radius of rp = 2.5 m is already chosen for the steel monopile with Young’s modulus 

Ep = 210 GPa in the calculation of wave loads (see subsection 5.2.1).  The other dimensions 

that needs to be evaluated to resist the lateral loads Fa and Ma (see Table 5.2) on the monopile 

embedded in the homogeneous undrained soft clay deposit are the monopile wall thickness tp, 

second moment if inertia Ip, and the embedment length Lp such that the maximum allowable 

monopile head rotation h is  0.5. 

Calculation of monopile wall thickness and second moment of inertia 

The monopile wall thickness tp (unit is mm) and Ip are evaluated from the following 

equations 
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t    (5.7) 
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For rp = 2.5 m, tp = 56.35 mm and Ip = 2.67 m4. 

Calculation of monopile embedment length 

For estimating the monopile embedment length Lp, there are several recommendations 

proposed in the literature, for example, GL (2005) proposes that for offshore piles under 

extreme static loading conditions the following set of criteria can be followed to determine the 

pile embedment length (also discussed by Achmus et al. (2008) and Kuo et al. (2012)) (i) 

vertical tangent criterion i.e., the displacement profile of the pile has vertical tangent at the toe, 

(ii) zero toe-kick criterion i.e., no or negative pile toe displacement, and (iii) critical pile length 

criterion i.e., the pile length is so chosen that any further increase in pile length has no or little 

effect on the pile head response.   Achmus et al. (2008) and Kuo et al. (2012) in their analysis 

on monopiles found that the criterion (i) and (ii) are very conservative i.e., resulting in very 
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large embedment lengths, hence, unsuitable for monopile design.  In the present design, Lp is 

selected following criterion (iii). 

For the selection of the appropriate monopile embedment length, several guesses of Lp 

are made which satisfies the SLS criterion of h  0.5.  The monopile response for each guess 

from the present analysis is reported in Table 5.5.  It is evident from Table 5.5 that for an 

applied loading of Fa = 3.8 MN, Ma = 120.96 MNm at the monopile head, and rp = 2.5 m, a 

design Lp = 30 m can be used (since h  0.5; see Table 5.5).  However, following criterion 

(iii) (as discussed in the previous paragraph), Lp = 40 m should be used since an increase in Lp 

beyond 40 m has little or no effect on h.  Further, monopile head response (head displacement) 

from the p-y analysis (performed using LPILE software) where the p-y curves are developed 

following “Matlock (1970) soft clay criteria” with zero base shear,  = 18 kN/m3, and 50 = 

0.02 (applicable to normally consolidated soft undrained clay, Matlock (1970)) as input is also 

reported in Table 5.5.  It is obvious from the table, that the p-y analysis significantly 

overestimates the head displacement for the range of monopile length considered and hence, it 

is unsuitable for designing large-diameter monopiles.  Note, the rotation values from the p-y 

analysis are not obtained as an output in the LPILE software, hence, they are not reported in 

Table 5.5. 

 

Table 5.5: Monopile embedment length obtained from present and p-y analysis in a soft 

undrained clay deposit 

Guess no. Lp 
Present analysis p-y analysis 

wh (m) h () wh (m) h () 

1 25 0.2059 0.81 1.3516 - 

2 30 0.1287 0.49 0.5 - 

3 40 0.0840 0.34 0.13 - 

4 50 0.0764 0.32 0.092 - 

5 60 0.0757 0.32 0.0916 - 

5.3  Design Problem 2 

In this section, the design of the monopile foundation with rp = 3.75 m embedded in a 

heavily overconsolidated medium stiff undrained clay deposit and supporting a Siemens SWT-
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6.0-154 type 6 MW wind turbine is discussed.  In the design, the same assumptions as the 

problem 1 are made, the wind and wave loads acting on the turbine structure are evaluated 

following the same procedures discussed in the design problem 1, the evaluation of the initial 

elastic modulus and the modulus degradation rule for the heavily overconsolidated medium 

stiff clay are also the same. 

5.3.1  Calculation of maximum lateral loads acting on the wind turbine structure 

Table 5.6 and 5.7 depicts the input parameters for the wind turbine structure and the 

wind and wave loading, respectively, and Table 5.8 depicts the output parameters for a 3.75 m 

monopile radius. 

 

Table 5.6: Input parameters for a Siemens SWT-6.0-154 type 6.0 MW wind turbine 

D 154 m 

zhub 87 m 

 

 

Table 5.7: Input parameters for calculation of wind and wave loading on SWT-6.0-154  

UR 12 m/sec 

wk 8 m/sec 

ws 1.8 

a 1.225 kg/m3 

w 1030 kg/m3 

Hs 8.2 m 

zsur 25 m 

* 1.471 

* 0.05197 

* and  are selected from Table E2 of DNV (2014) 
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Table 5.8: Output parameters for wind and wave loading for OWT supported on a 3.75 m 

radius monopile    

1 42 m 

U10,50-year  18.64 m/sec 

U10,1-year 14.92 m/sec 

U,c 1.64 

uext 3.942 m/sec 

CT 0.5 

AR 18617.06 m2 

Hm 15.334 m 

K* 0.048 

Fwind 1.45 MN 

Mwind 162.29 MNm 

zw 9.83 m 

Fwave 5.92 MN 

Mwave 58.2 MNm 

Fa 7.37 MN 

Ma 220.49 MNm 

*K is back-calculated from the selected values of  and   for a 3.75 m radius monopile 

5.3.2  Evaluation of geotechnical properties of soil  

Table 5.9 depicts the elastic properties and other the input parameters for the modulus 

degradation relationship following Vardanega and Bolton (2013) for the heavily 

overconsolidated medium stiff undrained clay deposit. 

 

Table 5.9: Geotechnical properties of heavily overconsolidated medium stiff undrained clay 

deposit    

OCR PI % su (kPa) Kc Es0 (MPa) s Gs0 (MPa) J ref 

2.5 41 75 455 34.125 0.49 11.45 2.2 0.000902 

5.3.3  Selection of monopile dimensions  

A radius rp = 3.75 m is chosen for the steel monopile in the calculation of wave loads 

(see subsection 5.3.1).  For rp = 3.75 m, tp = 81.35 mm and Ip = 13.04 m4 are evaluated.  The 
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calculation of the monopile embedment length Lp such that h  0.5 for Fa = 7.37 MN and Ma 

= 220.49 MNm at the head for monopile embedded in medium stiff undrained clay is 

demonstrated below. 

Calculation of monopile embedment length 

Several guesses are made to obtain the design Lp which satisfies h  0.5 (see Table 

5.10).  For Fa = 7.37 MN and Ma = 220.49 MNm at the monopile head and rp = 3.75 m, a 

design Lp = 25 m can be used.  However, to satisfy the critical pile length criterion (as discussed 

in the design problem 1), Lp = 42.5 m should be used since for Lp  42.5 m the change in h is 

negligible.  Further, the comparison of the head displacement between the p-y analysis (p-y 

curves developed following the “Stiff clay without free water (Reese)” criteria with zero base 

shear,  = 18 kN/m3, and 50 = 0.01 (applicable to medium stiff normally consolidated clay 

(Matlock 1970) as input)) and the present analysis (see Table 5.10), the p-y analysis is found 

to predict unacceptable results.   

 

Table 5.10: Monopile embedment length for design obtained from present and p-y analysis in 

medium stiff clay 

Guess no. Lp 
Present analysis p-y analysis 

wh (m) h () wh (m) h () 

1 25 0.1200 0.44 1.03 - 

2 30 0.0783 0.26 0.27 - 

3 35 0.0593 0.19 0.09 - 

4 40 0.0498 0.16 0.047 - 

5 42.5 0.0449 0.15 0.039 - 

6 45 0.0449 0.15 0.035 - 

 5.4  Summary  

A step-by-step design procedure for monopiles embedded in a normally consolidated 

soft and heavily overconsolidated medium stiff undrained clay deposit is shown through two 

example problems.  In the solved problems, extreme lateral loads from wind and wave action 

on the wind turbine structure is calculated following the procedures outlined in the DNV code 

of practice, the soil is characterized by a nonlinear stress-strain relationship that describes the 
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variation of shear modulus with shear strain, and finally, the design monopile dimensions that 

satisfy the recommended head response and embedment length criterion outlined in offshore 

codes of practice are selected through a series of iterations.   

It is important to note that the purpose of this chapter is to outline a preliminary 

procedure for the design of monopile foundations supporting offshore wind turbines, 

embedded in nonlinear soil deposit.  For a complete design, numerous other load case scenarios 

from wind, waves, currents, rotor, and blades outlined in the DNV code of practice should be 

considered and the effects of fatigue on monopile dimensions (both embedment length and 

wall thickness) because of cyclic loading should also be taken into account. 

.   
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CHAPTER 6 

Conclusions and Recommendations 

The thesis presents a mathematical formulation for the analysis and design of laterally 

loaded monopiles supporting OWTs.  In the formulation, the soil is modeled as a 3-D 

continuum and the monopile is modeled using various beam theories based on strength of 

material concepts.  In the analysis, the displacements within the soil mass in various directions 

because of monopile displacement are rationally considered to be a product of separable 

functions and the calculus of variation is utilized to obtain the differential equations governing 

soil and monopile displacements.  The differential equations governing the soil and monopile 

displacements are solved analytically/numerically following an iterative algorithm.  The 

formulation outlined in the thesis is developed in stages and includes several aspects of 

constitutive soil behavior  linear elasticity and linear viscoelasticity with hysteretic material 

damping (low strain) and nonlinearity (high strain) and loading conditions  static and 

dynamic.  The accuracy and reliability of the developed framework at various stage of the 

formulation is ensured by comparing pile/monopile response with either 3-D FE framework 

(performed using Abaqus), existing formulations available in the literature, p-y analysis 

(performed using LPILE or results available in literature), or measured data from full-scale 

field pile-load tests.  This chapter highlights the major contributions, key conclusions, and 

recommendations for future work. 

6.1  Major contributions  

The major contribution resulting from this work are as follows:  

(i) In various analytical, semi-analytical, and numerical studies on laterally loaded 

piles, the pile is conventionally modeled as a Euler–Bernoulli beam.  Modeling 

large-diameter monopiles using the Euler–Bernoulli beam theory may not be 

appropriate, because the Euler–Bernoulli beam theory is strictly valid for long 

slender piles and does not account for shear deformations, which may have a 

significant effect on the lateral response of large-diameter monopiles.  Therefore, 

in the mathematical formulation developed in Chapter 2 of the thesis  the analysis 

of monopiles in linear elastic soil deposit subjected to static loading, a novel 
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analytical technique to solve the differential equation describing monopile 

displacement following the Timoshenko beam theory is developed (see equations 

(2.12)-(2.17)).  Further, it is shown that the analysis framework can be 

progressively simplified to incorporate the Euler-Bernoulli (see section 2.4) and 

rigid beam (see section 2.4) theory to model monopiles.  Hence, a unified 

framework is developed that can account for different beam theories.     

(ii) The analysis developed in Chapter 3 demonstrates a novel analytical technique 

following the Timoshenko beam theory (includes the effect of rotatory inertia of 

the monopile cross-section along with the shear deformation; see equations (3.16)-

(3.17)) for the dynamic analysis of laterally loaded monopiles in linear viscoelastic 

soil deposit with hysteretic material damping.  It is demonstrated that the analysis 

can be progressively simplified to incorporate the Rayleigh (includes rotatory 

inertia of the monopile cross-section and no shear deformation), Euler-Bernoulli 

(includes translational inertia of the monopile cross-section and no rotatory inertia 

and shear deformation; see section 3.4), and rigid beam (includes translational and 

rotatory inertia of the monopile cross-section; see section 3.5) theory.  Hence, a 

unified framework including various beam theories for the analysis of dynamically 

loaded monopiles/piles is developed.   The other advantage of this framework is 

that unlike the 3-D FE analysis, this solution process does not require the modeling 

of non-reflecting viscous boundary conditions and takes into account the effect of 

material and radiation damping within the formulation and solution process. 

(iii) Often, 3-D FE software packages with inbuilt constitutive soil models (based on 

the theory of elasticity and plasticity) are used to predict the nonlinear response of 

laterally loaded piles/monopiles in the geotechnical foundation engineering 

practice.  However, such constitutive models based on plasticity theory are useful 

when the design interest is the estimation of ultimate load capacity.  For most 

laterally loaded pile problems, the primary interest in design is the estimation of 

head displacement and rotation under working load conditions and the use of such 

sophisticated constitutive soil models based on plasticity theory might not be 

necessary and nonlinear elastic soil models may be sufficient to predict a 

reasonably accurate and computationally faster pile response.  Therefore, in 
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Chapter 4 a novel analysis framework is developed to predict the load-deformation 

response of monopiles (modeled as a Euler-Bernoulli beam) in which the soil is 

modeled using nonlinear elastic constitutive relationships (describes the variation 

of secant shear modulus with strain) applicable to undrained clays and sandy soils, 

available in the literature. 

(iv) The analysis framework developed in Chapter 4 has been successfully applied to 

develop a step-by-step procedure for the design of monopiles in undrained clay soil 

deposit (Chapter 5).   

(v) Several peer-reviewed journals and conference papers (published, accepted, and 

under review and preparation) have resulted from this work which are reported in 

the Appendix.    

6.2  Conclusions  

The major conclusions from the current research work can be summarized as follows: 

(i) The Euler-Bernoulli beam theory is sufficient to model monopiles and the 

Timoshenko or rigid beam theory may not be required because (a) the error in 

the prediction of monopile head rotation following the Euler-Bernoulli beam 

theory in comparison to the Timoshenko beam theory is minor and can be 

neglected, (b) the Euler-Bernoulli beam theory can be used to model monopiles 

which accounts for both bending and rigid body rotation and is capable of 

producing accurate results irrespective of the monopile-soil stiffness and 

slenderness ratio unlike the rigid beam theory which requires a careful 

consideration of the monopile-soil stiffness and slenderness ratio to produce 

accurate results, and (c) the difference in the computational time in the present 

analysis among the different beam theories is not significant.  

(ii) The effect of the monopile and soil inertia, hysteretic material damping, and 

radiation damping of soil included in the dynamic analysis of monopile 

foundation which is subjected to frequencies less than 1 Hz is not significant, 

hence, the static analysis is sufficient to obtain the monopile response. 
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(iii) The nonlinear elastic analysis can be used to predict of pile/monopile response 

in undrained clay deposit, however, to predict better results for piles/monopiles 

embedded in sandy soil deposit an elastic-plastic framework would be apt.  

(iv) The effect of monopile-soil separation and slippage (an important phenomenon 

in laterally loaded pile problems) is found to be insignificant for monopiles 

embedded in stiff undrained clay deposit for h  0.5 (the design criterion for 

monopiles supporting OWTs).  

(v) The present analysis framework is computationally efficient than 3-D FE 

analysis framework.  The p-y analysis is computationally efficient than the 

present formulation, however, it produces inaccurate results and should not be 

used for the analysis and design of monopiles. 

(vi) The design methodology demonstrated in Chapter 5 should only be used to 

obtain a first-hand estimate of the monopile dimension.  

6.3  Recommendations for future work  

Based on the limitations of the current research work, the possible extensions of the 

present research work are as follows: 

(i) The present analysis can be used to obtain the response of piles for other civil 

engineering structures where the effect of pile-soil separation and slippage may 

have a significant effect on the nonlinear pile response.  Hence, the current 

nonlinear analysis framework can be extended to include the effect of pile-soil 

separation and slippage. 

(ii) The nonlinear analysis framework should be extended to include elastic-plastic 

constitutive soil models especially for piles/monopiles in sandy soil deposit.   

(iii) Monopiles are subjected to cyclic loading during their lifetime.  It has been 

observed in geotechnical engineering literature that the nature of nonlinearity 

changes with the number of cycles; the general trend is the degradation of soil 

modulus with the number of load cycles.  This degradation of soil modulus 

with a cyclic strain may result in a change of the monopile-soil stiffness (Krr, 

Kr, and K; also see Figure 1.4) which is an input in the calculation of the 

natural frequency of the OWT structure.  Hence, the effect of degradation of 
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soil modulus with load cycles should be included in the analysis and design of 

OWT structure monopile system.   
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