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Abstract

This thesis has two goals. The primary goal is to communicate two results within
the framework of black hole chemistry, while the secondary goal is concerned with higher
curvature theories of gravity.

Super-entropic black holes will be introduced and discussed. These are new rotating
black hole solutions that are asymptotically (locally) anti de Sitter with horizons that are
topologically spheres with punctures at the north and south poles. The basic properties
of the solutions are discussed, including an analysis of the geometry, geodesics, and black
hole thermodynamics. It is found that these are the first black hole solutions to violate
the reverse isoperimetric inequality, which was conjectured to bound the entropy of anti
de Sitter black holes in terms of the thermodynamic volume. Implications of this result
for the inequality are discussed.

The second main result is a new phase transition in black hole thermodynamics: the
A-line. This is a line of second order (continuous) phase transitions with no associated first
order phase transition. The result is illustrated for black holes in higher curvature gravity
— cubic Lovelock theory coupled to real scalar fields. The properties of the black holes
exhibiting the transition are discussed and it is shown that there are no obvious pathologies
associated with the solutions. The features of the theory that allow for the transition are
analyzed and then applied to obtain a further example in cubic quasi-topological gravity.

The secondary goal of the thesis is to discuss higher curvature theories of gravity. This
serves as a transition between the discussion of super-entropic black holes and A-lines but
also provides an opportunity to discuss recent work in the area. Higher curvature theories
are introduced through a study of general theories on static and spherically symmetric
spacetimes. It is found that there are three classes of theories that have a single indepen-
dent field equation under this restriction: Lovelock gravity, quasi-topological gravity, and
generalized quasi-topological gravity, the latter being previously unknown. These theories
admit natural generalizations of the Schwarzschild solution, a feature that turns out to be
equivalent to a number of other remarkable properties of the field equations and their black
hole solutions. The properties of these theories are discussed and their applicability as toy
models in gravity and holography is suggested, with emphasis on the previously unknown
generalized quasi-topological theories.
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Notation and conventions

e Throughout this thesis, we will use a mostly plus metric signature. Our convention
for the curvature is R%g,, = 'y, + - -+ with Ro3 = RFq,5.

e We will work in units such that ¢ = h = kg = 1. We will typically keep Newton’s
constant in expressions unless otherwise indicated.

e The following symbols are used commonly throughout the thesis:

D Spacetime dimension

L AdS length

Gy Newton’s constant

Qkn Volume of n-dimensional space of constant curvature k
S,R,... Used to denote topological spaces

o, By v, Spacetime indices

Tyw) = % (1), —T,,) Anti-symmetric part of tensor

Tywy = 3 (T +T,,)  Symmetric part of tensor
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Chapter 1

Introduction

Understanding the quantum nature of the gravitational field remains one of the most
profound questions in theoretical physics. While the problem of quantum gravity has
its roots in the 19th century attempts to unify electromagnetism and gravitation, there
remains today no fully satisfactory or accepted resolution of the problem.

Arguably our best insight into the quantum nature of gravity comes from the ther-
modynamics of black holes. Quantum effects cause black holes to emit radiation with a
temperature proportional to the surface gravity, and lead one to assign to them an entropy
proportional to the horizon area. Black holes exhibit incredibly rich thermal structure,
and it is even possible to describe phase transitions between different geometries. Study-
ing the thermodynamic aspects of gravity provides important clues about quantum gravity
— such a theory should be able to provide a microscopic origin for the black hole entropy,
for example. The thermal properties of gravity take on a whole new meaning in light
of powerful gauge/gravity dualities that relate gravitational theories to strongly coupled
gauge theories.

Black hole thermodynamics is the overarching topic of this thesis. The purpose of
this chapter is to provide a high-level introduction and overview of some essential ideas,
some of which will be made more concrete in later chapters. The majority of results in
this thesis concern asymptotically anti de Sitter spacetimes, and so this chapter begins
with a somewhat technical introduction to the anti de Sitter geometry. This is followed
by a discussion of black hole thermodynamics in anti de Sitter space, and black hole
chemistry is introduced. Black hole chemistry, which forms the context of this thesis,
considers the implications of treating the cosmological constant as a pressure in black
hole thermodynamics. Next, we provide some motivation for why anti de Sitter space is



relevant in physics, highlighting its importance in understanding thermodynamic aspects
of black holes, its appearance in many derivations of black hole entropy, and discussing
the AdS/CFT correspondence, which provides the strongest motivation for the study of
anti de Sitter spaces. With this background material discussed, a final section outlines the
structure of the remainder of the thesis.

1.1 Welcome to anti de Sitter space

The geometry of anti de Sitter space is most easily appreciated via the embedding space.
Consider a (D + 1)-dimensional flat spacetime with two time directions. The metric on
this space would read

ds? = —dT}? — dT3 +dX7 + -+ dXp_, . (1.1)

In the same sense that a sphere or hyperboloid can be embedded in Euclidean space, here
we can study the D-dimensional surface given by the following constraint [22]

TP Ty +X;i+-+ X5, =—L% (1.2)

The parameter L above has units of length and will be referred to as the AdS length.
The induced metric on this surface can be conveniently written in terms of the following
coordinates

T =2+ L2 cos(t/L), Ty=+r2+ L2%sin(t/L), X;=rj,, (1.3)

where [i; satisfy . i7 = 1 and represent the angular coordinates on a sphere. For example,
in the standard angular representation we would have

fip =sinfsing;---singp_3, [ip =sinfsing,---cosdp_3, (1.4)

and so on. In terms of these coordinates, the induced metric becomes

r2 P2\ 7!
ds® = — <1 - ﬁ) dt* + (1 + ﬁ) dr® 4+ r*dQ7,_,, (1.5)
where dQ?2, , is the standard line element on the (D — 2)-dimensional unit sphere. The
line element (1.5) is AdS written in familiar global coordinates. Strictly speaking, this
embedding requires that the coordinate ¢ is periodic with period ¢t ~ t + 27w L, and so AdS
has closed timelike curves — the topology is S' x RP~!. However, as is more common in

2



the literature, throughout this thesis we will use the term “AdS” to refer to the universal
cover of this space obtained by “unwrapping” the S! time coordinate and letting it take
on all values on the real line.

The anti de Sitter spacetime is maximally symmetric with D(D + 1)/2 Killing vectors
that generate the group SO(2,D — 1). It is a space of constant negative curvature and
solves the vacuum Einstein equations with cosmological constant,
(D-1)(D-2)

212 '
Anti de Sitter space has a conformal boundary located at spatial infinity, i.e. » — oo, that
is topologically R x SP~2 and timelike. A consequence of the timelike boundary is that
AdS is not a globally hyperbolic spacetime. A manifestation of this is that fields living in
AdS require boundary conditions specified at infinity [23].

A=— (1.6)

Finally, it is instructive to consider geodesic motion in AdS. It is easy to show that
radial timelike geodesics satisfy

(dz—@)2—52+1+%?2=0, (1.7)

where £ is the conserved energy associated with the Killing vector d;. Differentiating the

equation we see that ,

d°r(t 1
d7’<2 ) + ﬁ?"(T) = O, (18)
indicating that test particles following these timelike worldlines execute simple harmonic
motion with period 27 L.} This allows one to interpret the gravitational potential in AdS as
a “confining” potential — particles displaced from the “origin” experience a restoring force.
A number of physically interesting phenomena result from the gravitational potential in

AdS, and we will describe some below.

1.2 Black hole thermodynamics in anti de Sitter space

When supplemented by a negative cosmological constant, the Einstein equations admit
black hole solutions that are asymptotically AdS. The simplest such solution is the spher-
ically symmetric Schwarzschild AdS black hole

ds* = —f(r)dt* + f(r)dr® + r?dQ3,_,, (1.9)

!Note the period 27 L is the same as the period for ¢ in the embedding of AdS in higher dimensional flat
space. Despite the absence of CTCs in the universal cover, this simple harmonic motion can be considered
a ‘relic’ of the CTCs in the original space.



Figure 1.1: Causal structure of black holes. Left: The causal structure of the maxi-
mally extended asymptotically flat Schwarzschild black hole. Right: The causal structure
of the maximally extended asymptotically AdS Schwarzschild black hole. The dotted lines
represent curvature singularities, while the solid diagonal blue lines mark the event horizon.

with
m r?

f(r)zl_er:ajLﬁ' (1.10)
The metric describes a black hole with event horizon located at r = r where f(r,) = 0.
The parameter m is related to the mass of the black hole, in a way that will be made
precise in the following chapter. The causal structure of the black hole is depicted in
figure 1.1, where it is compared with the the asymptotically flat case. Some aspects of
the causal structure are similar, for example, in both cases the event horizon represents a
causal boundary in the spacetime and there is a central singularity located at » = 0 where
curvature invariants diverge. There are also a number of differences, for example in the
AdS case the metric on the conformal boundary is

dst g, = —dt* + L*dQ7,_, (1.11)

which is obtained by first rescaling by L?/r? and then sending » — oo. The boundary is
timelike and topologically R x SP—2.

The thermal properties of black holes in AdS differ significantly compared to their
asymptotically flat cousins. We will give a more precise discussion of black hole ther-
modynamics in the following chapter, but here we will simply quote some results. The
temperature of a Schwarzschild AdS black hole is given by

(D-3)  (D-1r,
47T7"+ 47TL2 ’

T = (1.12)



where the first term above corresponds to the temperature of the ordinary, asymptotically
flat black hole, while the second part is the AdS correction. The implications of the
AdS correction are significant. Note that for r, large compared to L, the temperature
is proportional to the horizon radius (and therefore grows with the mass) rather than
inversely proportional. This means that large black holes are thermally stable, i.e. have
positive specific heat. The thermal stability is a consequence of the gravitational potential
of AdS, which effectively corresponds to putting the black hole in a “reflecting box”. With
positive specific heat, it is possible for the AdS black hole to come to thermal equilibrium
with radiation, in constrast to the asymptotically flat case where this equilibrium would
be in general unstable [24].

An even more remarkable observation was made by Hawking and Page in 1983 [25]. Tt
is possible, as we will discuss in the following chapter, to assign free energy to black holes,
F =M — TS where M is the mass of the black hole, T is the temperature, and .S is the
entropy. The free energy is measured relative to some specified ground state, which in this
case is anti de Sitter space at finite temperature — thermal AdS. What Hawking and Page
observed is that, at sufficiently high temperatures, the black hole has lower free energy
than the thermal AdS space, while the reverse is true at sufficiently low temperatures.
Basic thermodynamics reveals that there will be a phase transition between thermal AdS
and a large AdS black hole at the temperature where the free energies are equal. This has
come to be known as the Hawking-Page transition and is quintessential example of a phase
transition in black hole thermodynamics.

The discovery of the AdS/CFEFT correspondence signaled a boom in studies of the ther-
modynamics of AdS black holes, e.g. [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. This was
motivated by possibility of understanding the phase structure of strongly coupled quantum
field theories via comparatively simple studies of AdS black holes. A particularly inter-
esting result to emerge during this time was due to Chamblin, Emparan, Johnson, and
Myers [30, 31]. These authors studied the thermodynamics of electrically charged AdS
black holes. As we will discuss in greater detail in the following chapter, when electric
charge is included there exist up to three black holes for a given electric charge and tem-
perature, distinguished by their size. Of these three, two have positive specific heat while
the third is thermally unstable. Remarkably, it was found that the thermal behaviour of
charged AdS black holes is analogous to the van der Waals model for the liquid-gas sys-
tem. In the black hole case, the two phases correspond to the large and small thermally
stable black holes. These phases are separated by a line of first order phase transitions
that terminates at a critical point, where the phase transition is second order. The order
parameter, which characterizes the difference between the two phases, is the difference in

size of the black holes, n = rlfrge — rsmall - As the critical point is approached, the order



parameter vanishes and various thermodynamic potentials diverge in power law fashion.
The exponents governing the approach to criticality were found to be precisely the mean
field theory critical exponents.

More recently, there has been a renewed interest in the thermodynamics and phase
structure of black holes. Motivated by basic thermodynamic scaling arguments, it has been
realized that when describing AdS black holes, the cosmological constant should be treated
as a thermodynamic black hole parameter [37, 38]. The cosmological constant is naturally
interpreted as a pressure P = —A/(87Gy), and its conjugate quantity is known as the
thermodynamic volume, V. It was found that within this framework, the critical behaviour
of the charged AdS black hole studied in [30] becomes a physical analogy with the van der
Waals fluid, with the analog of the liquid /gas transition being a small /large black hole phase
transition [39]. Numerous other results have since been obtained, including triple points
like that of water and re-entrant phase transitions like those that occur in nicotine/water
mixtures [10, 41, 12]. The thermodynamics of black holes in higher curvature gravity has
proven particularly fruitful, including examples of multiple re-entrant phase transitions [13],
isolated critical points [13, 44, 16] and most recently a black hole A-line — an analog
of a superfluid phase transition [13]. These results and their analogy with the thermal
behaviour of everyday substances has resulted in the moniker black hole chemistry for
the field [15]. This programme goes beyond critical behaviour with studies developing
entropy inequalities for AdS black holes [10, 1], discussing the notion of holographic heat
engines [17], and investigations of holographic implications [18, 19, 50, 51].

1.3 The role of anti de Sitter space in physics

While the best evidence suggests that the cosmological constant in our universe is not
negative, studies of gravitation with a negative cosmological constant comprise a large
fraction of the literature. There exist many important areas of physics where AdS appears,
so let us illustrate several examples.

When quantizing a field theory, a maximally symmetric space is often chosen to be the
ground state and the behaviour of perturbations away from the ground state are analyzed.
Minkowski, de Sitter, and anti de Sitter spaces exhaust the list of maximally symmetric
spaces. Anti de Sitter space appears naturally as the ground state in supergravity and
string theories [52].

It is hard to overemphasize the importance of anti de Sitter space in our understanding
of black holes and their quantum mechanics. It is often the case that black holes in AdS



are thermally stable, in contrast with asymptotically flat black holes that are thermally
unstable. Due to this, AdS provides a rich playground for understanding features of black
hole thermodynamics. In the most famous example, Hawking and Page demonstrated [25]
the existence of a phase transition between thermal AdS and a large AdS black hole, as was
described above. In the everyday world, phase transitions and critical behaviour reflect the
organization of the microscopic constituents of matter. Applying this same insight in the
realm of gravity means that by studying the thermal properties of gravity we are learning,
in some limited sense, about its microscopic degrees of freedom — whatever those may be.

The simplest possible black hole solution — the BTZ solution, named for its discoverers,
Banados, Teitelboim, and Zanelli [53, 54] — is a three dimensional black hole obtained by
geometric identifications of anti de Sitter space. The solution exhibits many of the features
of higher dimensional black holes, including an event horizon, an ergosphere in the rotating
case, and black hole thermodynamics. Due to the simplicity of the solution, it has featured
prominently in many investigations of the quantum properties of black holes. It has played
a key role in the understanding of the microscopic origin of black hole entropy. Strominger
was able to reproduce the entropy of the BTZ black hole by building on the work of Brown
and Henneaux [55] which demonstrated that the asymptotic symmetry group of three
dimensional AdS gravity is generated by two copies of the Virasoro algebra with equal
central charges. Application of Cardy’s formula [70] then yielded the Bekenstein-Hawking
entropy. See [77] and references therein for a review of this argument and its limitations.

Strominger’s argument goes beyond the particular example of the three dimensional
black hole. In higher dimensions, many black hole solutions exhibit enhanced symmetry
in the vicinity of the horizon. For example, the near horizon limit of near extremal static
black holes factorizes into two dimensional AdS times spheres. In some cases, the near
horizon metric factorizes into a product geometry involving AdSs as one of the factors. In
these cases, Strominger’s argument has been successfully applied to reproduce the entropy
of higher dimensional AdS black holes via conformal field theory arguments, e.g. [58, 59,

, 61].

Perhaps the most remarkable role played by AdS in physics is through the anti de Sit-

ter/conformal field theory (AdS/CFT) correspondence discovered by Maldacena in 1997 [62,

, 26]. The AdS/CF'T correspondence conjectures that gravitational theories in D dimen-
sions are equivalent to quantum field theories in D — 1 dimensions. The most well-known
(and well-tested [01]) example of this duality equates the dynamics of type IIB string the-
ory on AdS5 x S° to N' = 4 super Yang-Mills theory with gauge group SU(N). While it
is often not possible to work within a concrete example of the duality, it is expected to
be generally true. Moreover, in instances where the field theory is strongly coupled and
has a large number of degrees of freedom, i.e. when N — oo, classical gravitation in AdS
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is expected to provide a meaningful description. In this way, general relativity and its
higher curvature extensions have been fruitfully used to better understand the properties
of strongly coupled field theories [65, 66, 67, 68, 69]. For example, the dual theory can
be probed at finite temperature by considering the behaviour of black objects in the bulk.
In this context, Witten interpreted the Hawking-Page transition for AdS black holes as a
confinement /deconfinement transition in gauge theory [26, 27]. On the other hand, since
AdS/CFT is a two-way street, it offers the possibility of understanding the resolution to
some of the deepest problems in physics, e.g. the black hole information paradox [70, 71]
via an understanding of quantum field theory.

1.4 Plan of the thesis

The main goal of this thesis is to present what I regard to be my two most significant
contributions to black hole chemistry. Along the way, I will also review some of my more
recent work in higher curvature theories of gravity. I have done my best to keep the
presentation of the results as concise as possible.

To achieve these goals, this thesis is organized as follows. Chapter 2 deals with the
foundations of black hole chemistry. After a more thorough account of the laws of black
hole thermodynamics, the thermodynamic status of the cosmological constant is motivated
via scaling and geometric derivations of integral mass formulas, i.e. Smarr relations, for
black holes. A derivation of the first law of black hole mechanics is presented including
variations of the cosmological constant. The remainder of chapter 2 goes into more depth
on two important topics in black hole chemistry. First, we review the reverse isoperimetric
inequality, which is an inequality between the entropy and thermodynamic volume which
was conjectured to constrain the entropy of AdS black holes. Second, we review the
critical behaviour and van der Waals analogy for the charged AdS black hole, introducing
important thermodynamic machinery along the way.

Chapter 3 presents a new class of rotating, asymptotically (locally) AdS black holes
known as super-entropic black holes. The notion of an ultra-spinning limit is reviewed
and then applied to the four-dimensional Kerr-AdS black hole to obtain the super-entropic
black hole. The basic properties of the solution are discussed, the horizons of these black
holes are topologically punctured spheres and approach Lobachevsky space near the axis.
A study of geodesics in the spacetime shows that the symmetry axis is excised from the
geometry. The procedure used to obtain the four dimensional solution can be generalized
to higher dimensions, and this is demonstrated for a singly spinning Kerr-AdS black hole
in all dimensions. Finally, the thermodynamic properties of the solutions are discussed



and it is shown that the conjectured reverse isoperimetric inequality is violated — these
are the first and so far only AdS black holes in Einstein gravity that violate the conjecture.

Chapter 4 has two purposes. First, it serves as a bridge between chapter 3 and chapter 5,
introducing higher curvature theories of gravity, explaining some of their basic properties,
and providing details on black hole thermodynamics in higher curvature theories. The
path taken to introduce the higher curvature theories is not standard, but it chosen so that
some of my recent work on these theories can be highlighted — this is the second purpose.
To this effect, certain examples of higher curvature theories are presented based on an
exploratory analysis of spherically symmetric solutions. Specifically, it shown that there
are three natural classes of higher curvature theories under these symmetry restrictions,
including the well-known Lovelock class of theories, quasi-topological gravities, and the
recently discovered generalized quasi-topological theories. These classes are distinguished
by the fact that they admit natural extensions of the Schwarzschild solution to general
relativity. It turns out that this simple fact is unexpectedly equivalent to a number of
other properties. For example, all of these theories propagate only the usual massless, spin-
2 graviton on constant curvature spaces. The field equations are always total derivatives,
when integrated involve at most second derivatives of the metric, and admit vacuum black
hole solutions characterized only by their mass. Despite the lack of analytical black hole
solutions in some cases, it is always possible to study the thermodynamics of the black
holes exactly. These properties make these theories excellent toy models for exploring
questions in black hole physics and holography. The properties are demonstrated in detail
in the simplest cases, with comments on the general trends.

Chapter 5 returns to the main theme of the thesis and studies the critical behaviour
of black holes in higher curvature gravity coupled to scalar fields. It is demonstrated that
the black holes in cubic (or higher) order Lovelock gravity exhibit a black hole “A-line”.
This is a line of second order (continuous) phase transitions and the example presented in
this chapter represents, to the best of our knowledge, the first such example in black hole
thermodynamics. The second part of this chapter is dedicated to analyzing the properties of
the black holes exhibiting this phase transition, finding no fundamental pathologies. The
chapter concludes by presenting a necessary condition for the A-line required in certain
classes of gravity theories, and is applied to find a further example in quasi-topological
gravity.

Finally, chapter 6 presents some summarizing thoughts on the research presented in
this thesis. A number of appendices collect useful results.



Chapter 2

The foundations of black hole
chemistry

The purpose of this chapter is to provide a basic introduction to the foundations of black
hole chemistry. To start, we will review fundamental aspects of black hole thermodynamics,
and discuss Smarr relations for asymptotically flat and asymptotically AdS black holes.
We then motivate the inclusion of the cosmological constant in the first law of black hole
mechanics, followed by a derivation. The remainder of the chapter is devoted to discussing
topics from black hole chemistry and introducing concepts that are relevant later in the
thesis, specifically the reverse isoperimetric inequality and critical behaviour of black holes.

2.1 Black holes and thermodynamics

More than forty years ago, Bardeen, Carter, and Hawking published their now famous
account of the laws of black hole mechanics [72], which can be stated succinctly as fol-
lows [73].

Zeroth law The surface gravity k of a stationary black hole is constant everywhere on the
surface of the event horizon.

First law When the system incorporating a black hole switches from one stationary state
to another, the mass of the system changes as
0A
SM = =
8t

TGN

L QT + BoQ + 5. (2.1)
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where 6.J and 6Q) are the changes in total angular momentum and electric charge
of the black hole, while dq represents the change in mass due to stationary matter
surrounding the black hole.

Second law In any classical process, the area of a black hole A does not decrease.

Third law An extremal black hole cannot be created in a finite number of steps.?

The obvious connection with the laws of ordinary classical thermodynamics was not
lost on the authors, but they emphasized that this similarity is superficial. It was to
be understood that these are the mechanical laws obeyed by black holes, governing their
response to the accretion of matter or the extraction of energy, e.g. via the Penrose
process [71]. However, as we now know, the laws of black hole mechanics are precisely
the laws of thermodynamics applied to black holes. Establishing this connection was the
result of the pioneering work of Hawking and Bekenstein [75, 76]. Based on the area
theorem, Bekenstein argued that black holes should possess an entropy proportional to the
area of the event horizon. The constant of proportionality was only fixed after Hawking
demonstrated, via a quantum field theory in curved spacetime calculation, that a black
hole can radiate. If the black hole is able to radiate, then it can be sensibly assigned a
temperature, which turns out to be equal to 7" = x/(27). In this way, & is related to the
true, physical temperature of the black hole and A/(4Gy) is the entropy.

There are now many different approaches to calculate the temperature of the Hawking
radiation showing that it is simply 7' = k/(27), see e.g. [70, 77, 78, 79]. Perhaps the
most practical is the Euclidean method [0, 81], which we illustrate in more detail for a
static and spherically symmetric black hole. The most general line element for a static and
spherically symmetric black hole can be cast in the form

2 2 o dr? 2 102
ds® = —=N(r)" f(r)dt* + —— + r<dQ}_, (2.2)
f(r)
where D is the spacetime dimension and dQ2% _, is the standard line element on a (D — 2)-
dimensional sphere.®> We consider the situation where this metric describes a black hole
whose horizon radius r, is determined as the largest root of f(r) = 0. We then Wick

2A more complicated but also more technically correct statement of the third law would be: A non-
extremal black hole cannot become extremal at finite advanced time in any continuous process in which
the stress-energy tensor of accreated matter stays bounded and satisfies the weak energy condition in the
neighborhood of the outer apparent horizon [73].

3More generally, this could be the line element on any (D —2)-dimensional surface of constant curvature
k=-1,0,+1.
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rotate the time coordinate ¢ — —itp such that the metric now has a Euclidean signature
and expand f(r) near r = ry. Explicitly, the (tg,r) sector becomes

dr?
ds?, = N(r )2 f'(r ) (r — ry)dts + CAICETE (2.3)
Now, defining a new coordinate by
dr?
dp® = 24
fro)(r—ry) 24)
the (tg,r) sector can be recast as
N(r)f'(ri)]?
ds3, = dp* + {%} prdts, . (2.5)

In this form, we recognize that the (tz, p) sector is just the metric on R?, written in polar
coordinates with the horizon located at the origin. As we know from basic geometry, the
azimuthal coordinate must have a period of 27 to avoid conical singularities. So in order
for the near horizon metric to be regular, the Euclidean time must be periodically identified
astg ~ tg + 4w/ (N(ry)f'(ry)). Translating back to Lorentzian signature, what we have
shown is that regularity has imposed that the time coordinate is periodic in the imaginary

direction 4
T
t~t i . (2.6)
N(ry)f'(ry)
Now, recalling from quantum field theory that thermal states are defined via the Kubo-
Martin-Schwinger (KMS) condition® [32, 83, 84] which demands that the thermal Green’s

functions are periodic in imaginary time
Gs(t,z;t',2') = Ga(t + 1B, x; ', 2'), (2.7)

with 7' = 1/. Since regularity of the underlying spacetime enforces the imaginary time pe-
riodicity, quantum fields placed on the spacetime inherit this periodicity [35]. We conclude
that the black hole has a temperature defined by

N(ry)f'(ry) K

T = = . 2.
47 21 ( 8)

4The KMS condition can be thought of as the appropriate generalization of a standard Gibbs state to
quantum field theory.

12



This temperature immediately fixes the entropy of the black hole to be

A . /{36314

5= 4Gy 4GNE

(2.9)

In the second equality above we have included the relevant constants just to illustrate how
many different areas of physics come together in this one simple formula.

Black hole radiance and the resulting black hole thermodynamics is a quantum gravity
phenomenon. We can go further and define other thermodynamic potentials for black
holes, such as the free energy. An elegant method for doing so was introduced by Gibbons
and Hawking [30] and begins with a consideration of the partition function

Here g, is the metric while ¢ stands for the collection of all matter fields on spacetime.

In the case of general relativity, the Euclidean action is defined by

1 1
Sp = — ar R —2A] — AP 'avh K 2.11
b 167TGN //\4 :r;\/ﬁ[ ] 87TGN /3/\4 Z‘\/— ’ ( )

where R is the Ricci scalar, K is the extrinsic curvature, and h is the determinant of
the induced metric on the boundary. By the standard statistical mechanics argument, we
identify the Helmholtz free energy

F=-TlogZ. (2.12)

The standard tools of thermodynamics then allow one to compute thermodynamic poten-
tials

M = (E) = 8logZ, S =p(E)+logZ. (2.13)

0B

In the absence of chemical potentials like electric charge or angular momentum, we have
F=M-TS. (2.14)

Note that the temperature cannot be determined from the partition function — for a black
hole it is determined as described above, by demanding Euclidean regularity. Lastly, we
note that in the limit of macroscropic objects, the dominant contribution to the partition
function will come from stationary points of the action, i.e. the solutions to the classical
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theory. Within this saddle point approximation the partition function can be estimated as
coming from the metric with the least action

log Z ~ —Sglg% ] . (2.15)

In most cases, the Euclidean action will actually be divergent due to an infinite volume
contribution. In those cases, the standard procedure is to subtract off the contribution
of empty space. For black holes that are asymptotically AdS, more specialized methods
exist such as holographic renormalization which includes the use of counterterms in the
action [67, 80].

2.2 Smarr relations for black holes

As we have just discussed, the mechanical laws of black holes were first derived by Bardeen,
Carter, and Hawking. A key element in their derivation was the integral mass formula for
black holes, which was first discussed by Smarr [37] in the context of Kerr-Newman black
holes. Smarr’s observation was that the differential mass formula for the Kerr black hole®

dM = TdA + QdJ 4+ @dQ) , (2.16)
can be directly integrated to give
M =2TS5 +2QJ + Q. (2.17)

The integration is possible because M is a homogeneous function of the variables (A, J, Q)
and proceeds via Euler’s homogeneous function theorem, to be described below. The
integral mass formula, also widely known as the Smarr formula, is closely analogous to the
Gibbs-Duhem relation from ordinary thermodynamics. In that case, one regards the energy
as a function of the extensive thermodynamic variables, then by definition the energy must
be a homogeneous function of those parameters, and the integration can be performed.

Smarr derived the mass formula for a particular black hole solution, but what Bardeen,
Carter, and Hawking demonstrated is that the relationship is in fact general and has its
roots in the basic geometry of black holes. The Smarr formula is also not a fluke of four
dimensions — it was further established by Myers and Perry [88] that it holds also for
higher dimensional black holes:

(D—3)M=(D-2)TS+(D-2)> Qi (2.18)

5Smarr interpreted the quantity 7 to be an effective surface tension for the black hole.
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where the coefficients are consistent with the dimensional scaling of the mass, entropy and
angular momenta. However, all of these examples involve black holes that are asymp-
totically flat. The generalization of Smarr’s formula to general asymptotically maximally
symmetric spaces is more subtle, and it will be the goal to this section to show how the
derivation proceeds. We begin by studying in detail that Smarr formula for asymptotically
flat black holes, from both a scaling argument and a geometric construction, and then
consider how it works for black holes that are asymptotically AdS.

2.2.1 Smarr formula for asymptotically flat black holes

The focus in this subsection will be vacuum, asymptotically flat black holes solutions. Our
objective will be to establish the Smarr formula via two methods. First, we will present a
simple scaling argument that follows from dimensional analysis and Euler’s homogeneous
function theorem. Second, we will show that this simple scaling argument gives the same
conclusion as a more rigorous geometric derivation based on Komar integrals.

For concreteness and simplicity, let us consider a stationary black hole in D spacetime
dimensions with a single angular momentum. Let us consider the mass to be a function of
the entropy and angular momentum

M =M(S,J). (2.19)
From simple dimensional analysis, the parameters have the following length dimensions
Mo [P S [P, Jo [0P72, (2.20)

where /¢ is just some length scale, not to be confused with the cosmological constant. Now,
consider a scale transformation acting on the system, ¢ — a/, which results in the following
transformation law

M —oP3M, S —aP%8, J—=aP?J, (2.21)
and so the relationship M (S, J) transforms in the following way
aPPM =M (aP7%8,a"72)) . (2.22)
Now, we differentiate this with respect to the transformation parameter, a:

oM oM )aD_3J (2.23)

(D —3)a?™*M = (D — z)m oaD2])

aP3S + (D —2)
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upon setting o = 1 we obtain Smarr’s formula,
(D—=3)M = (D—-2TS+ (D —-2)QJ, (2.24)

where we have recognized that

The method of obtaining the relationship between a function and its arguments by
studying the transformation under scaling is a particular instance of Euler’s homogeneous
function theorem. In the context of ordinary thermodynamics, the relationship analogous
to (2.24) is often called the “Euler integral” of the internal energy.

Let us now establish the relationship (2.24) via a geometric argument. By assumption,
we will take the black hole solution to be stationary and axis-symmetric, and so it admits
at least two Killing vectors which we will call ¢ and ¢®. The combination

4 =1+ Q" (2.26)

is null on the event horizon, with €2 defining the angular velocity of the black hole. On the
horizon, £ satisfies

o = ke (2.27)
where kK — the surface gravity — is constant over the entire horizon.

Now, we consider a spatial slice ¥, with future-directed normal n,, that extends from
the horizon to spatial infinity — a schematic picture is shown in figure 2.1. Over this slice,
we integrate

I:/dzavgvﬁga. (2.28)
Y

We perform this integral in two ways. First, by virtue of the fact that £* is a Killing vector,
we can use that VsVP¢* = —RY5¢P which gives

/ dX,VVPer = — / A8, R 5% =0, (2.29)
P ¥

where the last equality follows since we are assuming the vacuum Einstein equations hold.
The second method of evaluating the integral makes use of Stokes’ theorem, which for an
anti-symmetric tensor B’ reads [39)]

1
/ dAV B> = ~ ?{ dSasB*" . (2.30)
x 2 ox
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Figure 2.1: Spacelike hypersurface for asymptotically flat black holes. A depiction
of a spacelike hypersurface ¥ extending from a cross-section of the horizon to spatial
infinity. While in this diagram the causal structure is particularized to the Schwarzschild
black hole, the construction in the text is general.

The boundary of 3 consists of a (D — 2)-dimensional surface at spatial infinity that we will
denote as Sy, and a (D — 2)-dimensional cross-section of the horizon which we refer to as
. Combining the two results we have

0= ]{ dSasVEP — j'{ dSasVeEr . (2.31)
H Seo

To evaluate the component at infinity, we use the fact that since we are assuming a vacuum
solution in D dimensions, the total mass and angular momentum of the spacetime are given
by the following Komar integrals [29)]

1 (D=2
M=- dSasVt°
167Gy (D — 3) 7{500 VI

1
- dS, sV 2.32
J 167TGN]£OO SapV«P (2.32)

where Sy, is a (D — 2) dimensional sphere at spacelike infinity. In the Komar integrals, the
dimension dependent factors appear so that the conserved energy coincides with the ADM
mass when appropriate. Using these definitions for the mass and angular momentum, we
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recognize that the second integral at S, is

D—3
jf dS,sVeE® = 167 [QHJ — <m) M} , (2.33)

(oo}

leaving only the integral on the horizon to evaluate. On the horizon, we note that dS.s =
2610 Ngy/odP 2z where N is a null vector normalized so that {,N® = —1 on the horizon
and /o is the square root of the determinant of the induced metric on the horizon. Then,
we have

7{ 18,5707 = 2 ]4 N A

=2k ¢ odP2rNsEP
H

= —2kA. (2.34)

Above, we first made use of the fact that £ is a Killing vector, so V2¢# = —VP¢2, to
simplify the contraction with the surface element. Then we used that £,V?¢? = k€8 on
the horizon, with x a constant on the horizon. Finally, we used that Nz® = —1 along
with the fact that the integral evaluates to simply the area of the horizon cross-section.

Rearranging the above results we obtain
KA
(D—-3)M = (D — 2)8— + (D —-2)QuJ (2.35)
T

which, upon recognizing that 7' = x/(27) and S = A/4, gives the same Smarr formula
that was derived above via a scaling argument.

2.2.2 Smarr formula for AdS black holes

In the previous subsection, we established the Smarr relation for asymptotically flat black
holes via two methods: first via a scaling argument, and then by a geometric argument.
The geometric argument, in particular the step in eq. (2.29), made important use of the
vacuum FEinstein equations with vanishing cosmological constant, suggesting that issues
may arise.

To illustrate the difference, let us start by taking a concrete example of the four dimen-
sional Schwarzschild-AdS black hole. The metric is simply

2

2 dr
ds® = —f( >dt+f(r)
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with
m  r? 3

The solution describes a black hole in AdS with event horizon located at r = r, where
f(ry) = 0. The temperature and entropy of the black hole are easily calculated:

1 32
T= {1 + g;] . S=m?, (2.38)

but the mass merits more detailed consideration.

The vector t* = 67 is a Killing vector that approaches the natural time translation at
the boundary. We would expect the conserved quantity associated with ¢ to be the mass,
but there is a subtlety. To compute the conserved charge, we can easily verify that the
only non-vanishing components of V°t* are

r— gyt = 0 " 2.39
v v 7 T3 (2.39)

Now, using the definition of the Komar energy, we run into a problem:

1 1 m R
M=——¢ dS,;Vt’=— I R — 4+ 22 sin0dod 2.40
& b sV o A - 0 <2R3 + L2> sin ¢ —oo,  (240)

the mass diverges as R3. Of course, the source of the problem is easy to identify, and it is
simply due to the non-zero cosmological constant which contributes an infinite amount to
the energy. A simple solution is to perform the integral up to some finite cutoff, subtract
the m = 0 contribution, and then take the cutoff to infinity.® This procedure reveals that

M= % (2.41)

Having now expressions for the mass, temperature, and entropy, we can see if the Smarr
formula derived in the last section holds. A simple calculation,

3
M —2TS =——#0, (2.42)

shows conclusively that it does not.

6Let us quickly note that there are sometime subtleties with background subtraction techniques. One
has to be careful to correctly match points in the solution of interest and the background. Also, sometimes
it is difficult to determine the appropriate background for subtraction — see, e.g., [28]. However, there
are no such subtleties in the present case.

19



The failure of the Smarr formula can be understood with some dimensional analysis.
The AdS length has entered into the thermodynamic description of the black holes —
this is a new, dimensionful parameter that was not accounted for in the derivation of the
Smarr formula via scaling. Repeating the same steps in the scaling argument as in the last
section, but now also including the cosmological constant, we can arrive at an ‘extended’
Smarr formula that applies in the presence of a cosmological constant:

(D—-3)M = (D—-2)TS+ (D —-2)QJ -2VP (2.43)

where we have defined A
P=——, (2.44)

8

which would be the pressure associated with A if viewed as stress-energy. The scaling
argument introduces a new quantity

oM
Vi=—— 2.45
aP 9 ( )
which we refer to as the thermodynamic volume due to it having length dimension (D — 1)
— the same as a spatial volume. Referring back now to the four-dimensional Schwarzschild-
AdS black hole, we can confirm that the new Smarr formula holds. Indeed, in that case
we have

3 4r o
- _° - 2.4
sezt VT3 (2.46)
so that
M =275 - 2PV . (2.47)

In the flat space limit, P — 0 and we recover the usual Smarr relation.”

It seems that the first group to realize the necessity of including a cosmological term
in the Smarr formula was Calderelli, Cognola, and Klemm in early work on rotating AdS
black holes in the context of the AdS/CFT correspondence [32]. In similar fashion to
Smarr, those authors verified the ‘extended” Smarr formula for the Kerr-Newman solution,
motivated by scaling arguments. However, it then motivates one to ask if the extended
Smarr formula also enjoys a geometric foundation of greater generality. The answer is yes,
and the key ingredient in the geometric construction is the Killing potential introduced by

"There are other interesting limits that one can consider. For example, in the limit of large black holes
(i.e. high temperature), it turns out that —2PV — —4/3T'S, in which case the Smarr formula becomes,
M =2/3TS. This result is precisely that for a three dimensional CFT at finite temperature, and here we
can see that the extended Smarr formula naturally reproduces this result in the appropriate limit.
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Kastor [37] and then used by Kastor, Ray, and Traschen [38] to derive the extended Smarr
formula for AdS black holes.

Our focus will now turn to reviewing the derivation of the extended Smarr formula
presented in [38], and for concreteness and simplicity we will consider only static black
holes. First, let us note that since V,£* = 0 for a Killing vector £%, the Poincaré lemma
implies that, at least locally, £* can be written as

£ = Vwhe (2.48)

where w®® = w!*?l is the Killing potential® If one then considers the following integral over
the boundary of some codimension-1 hypersurface >::

2
veeh af ) =
/a2 dSas ( £+ ) _2Aw ) 0, (2.49)

where the equality is straightforward to show using the definition of the Killing potential
and the (vacuum) Einstein equations. We can then apply the same geometric argument
that was used in the previous section — considering the boundary to consist of a cross-
section of the black hole horizon, .7 and a sphere at infinity, S..

To evaluate the integral at infinity, we need to understand the asymptotic behaviour of
the metric there. The falloff conditions for asymptotically AdS spacetimes were discussed
in detail by Henneaux and Teitelboim [90] — see also [91, 92]. Here we are considering
only static black holes, and so the asymptotic form of the metric must be

e 1 (D —1)(D —2)¢,
ds* = <—f0 + rD*?’) dt* + % (1 - 57, D=1 dr?

2A Co 2 2
+ <1 + CENE) TD_I) rdQ% (2.50)

2A 9

— re.
(D—-1)(D—-2)

For solutions of Einstein’s equations with negative cosmological constant and (possibly)

localized stress energy sources with vanishing angular momentum, the constants in the

where

fo = (2.51)

8Note that the Killing potential is not unique — one can always add to it some divergenceless anti-
symmetric 2-tensor, w*? — w® 4+ n*# where n®# =yl and V,n*? = 0. In practice, this gauge freedom
will not affect any of the results presented in this or the following sections — terms dependent on the
gauge choice will cancel between the integrals at the horizon and infinity [38].
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above metric will satisfy ¢, = ¢, = m and ¢y = 0, and the large-r behaviour follows the
standard Schwarzschild AdS form [38]

ds* = —f(r)dt* + f(r) " 'dr* + r*dQp_o, (2.52)
with

m 2A7?
I =155 - B-nm=2"

With this asymptotic form of the metric, at large r the Killing potential has components

(2.53)

T r r
Wyl yoe = —W) oo = D1 (2.54)
while D3 oA
vrgt — _Vtgr — ( — )m _ r (255)

202 (D—1)(D—2)

Evaluating the integral at infinity, we see that the term involving the Killing potential
cancels the divergence and we are left with a term proportional to the mass

2 D -3
veeh ) [——
/Oo dSa5< §7 + D_2Aw ) 167TD_2M, (2.56)

while the integral at the horizon gives

2 2A
agp af | _ _ ap
/ydeag (V &+ 55— 2Aw ) 2kA 4 —— 5 (/% dS,pw ) : (2.57)

where the first part of the above integral proceeds exactly as in the asymptotically flat
case. Combining the expressions, we find the following Smarr formula:

(D—-3)M = (D—-2)TS—-2PV (2.58)
where A .
P = — V - — = dSa aﬂ) 259

define the pressure (as before), and the thermodynamic volume V' in terms of an integral
of the Killing potential over the horizon. Although we have considered only a static black
hole in this setup, the results can be generalized straightforwardly to include angular
momentum, giving the same result as the scaling argument above [1(].
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2.3 The first law with dA; mass as spacetime enthalpy

2.3.1 Varying the cosmological constant?

The scaling argument from which we derived the Smarr formula for AdS black holes places
the cosmological constant on equal footing with other thermodynamic properties of the
black hole, suggesting that the cosmological constant should be considered as a thermody-
namic black hole parameter. A bit of thought suggests that this is fundamentally different
than the variations of quantities like mass and angular momentum that usually appear
in the first law. The distinction arises because while the mass and angular momentum
correspond to integration constants characterizing the solution, the cosmological constant
is a parameter in the action that characterizes the theory. One way to reconcile this is
simply to argue that different A do correspond to wholly different theories and variations
O0A corresponds to moving through this ‘theory space’.

While mathematically well defined, viewing variations in A as motions in a theory space
is somewhat unsatisfying, since in doing so one is giving up on any hope of understanding
the phenomena due to variable A as physical processes. Luckily, there are alternative
ways to view this procedure, and there is a large literature concerned with understanding
mechanisms by which the cosmological constant can vary. In this subsection we will briefly
review some of the literature on mechanisms of a dynamical cosmological constant.

A simple model for generating a cosmological constant is with scalar fields. Consider
the action

R 1 .
S = /d% {167TGN = 50u00"¢ — V(¢>)} , (2.60)

which upon variation gives the following field equations for the scalar field and the metric
L
V=9

R 1 .

9w = 87TGVN au¢au¢ - §guuaa¢a (b - guuv(¢) . (261)

0y (V=99"0,¢) = V'(4) =0,

R, — 5
At fixed points of the potential, i.e. where V'(¢) = 0, the scalar field equations admit
the simple solution ¢ = constant. It is easy to see that for these configurations the stress
energy is precisely that one would associate with a cosmological constant:

A

T = =V(9)gw = e

G - (2.62)
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Understanding (contributions to) the cosmological constant as arising from scalar fields
is quite natural in the context of string and supergravity inspired black holes. Here, the
effective cosmological constant depends on the asymptotic values of massless scalar fields
(the moduli fields). The contributions of these terms to the first law of black hole thermo-
dynamics was first investigated in [93]. A cosmological constant arising from scalar fields
is also quite natural in the context of the AdS/CFT correspondence. In this case, one
considers Einstein gravity coupled to scalars with potentials; the fixed points of the poten-
tials correspond to AdS geometries. For AdS/CFT, an interesting situation to consider is
when the scalars smoothly interpolate between two such fixed points, which corresponds to
a holographic representation of renormalization group flow, and gives rise to holographic
versions of the c-theorem [94, 95, 96]. As described so far, scalar fields can only lead to
discrete values for A. For example, in the case where the potential has two fixed points,
then there are two possible values for the cosmological constant. For any dynamics that
interpolates between these two values, the spacetime would not be asymptotically AdS
during the intermediate phases. However, provided that the scalars vary slowly enough
so that one is always “approximately” at a fixed point, it is conceivable that the black
hole chemistry framework could be understood from this RG flow perspective — it seems
likely that Johnson had this in mind when he introduced the notion of holographic heat
engines [17]. Precisely this setup, but for the case of positive cosmological constant has
recently been considered [97, 98]. In these papers, the scalar fields drive the expansion of
the universe, i.e. as in inflation. By studying a setup where a scalar field is always approx-
imately at a fixed point, so that the solutions are always approximately asymptotically
de Sitter, it was possible to study the dynamics of black hole and cosmological horizons,
finding agreement with the black hole chemistry approach.

Let us now discuss a mechanism that allows us to directly interpret the cosmological
constant as a constant of integration, rather than a fundamental constant of nature. The
method we review here was first seriously studied by Brown and Teitelboim as a pro-
posed solution to the cosmological constant problem [99, ]. The idea is motivated by
supergravity considerations where the inclusion of p-form gauge fields can give rise to a
cosmological constant [101]. We consider (D — 1)-form gauge fields, A, ,,_,, from which
a D-form field strength can be directly constructed

Fuyoip = (D + 1)8[N1AM2-~-MD] : (2'63)

Now, consider the following action:

1
167Gy

4VM (AM2---MD FHP«Z--#D)
(D— 1) ’

/de\/—_g [R F F?+ (2.64)
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which consists of Einstein gravity, the obvious kinetic term for the gauge field, and a
boundary term that will be explained in a moment. Since the field strength is totally
anti-symmetric with D indices, it must be proportional to the Levi-Civita tensor. Further,
the equations of motion for the gauge field read,

Vv FrEzEb = () (2.65)
which fix the proportionality to be a constant, i.e.

F,Lu...,u,D = Cvy _ge,LLl...,LLD . (266>

The stress energy tensor associated with the gauge field is computed to be

1 1
T, =+ F Ep2orp — —q F? | . 2.67
p AnGy(D — 1) ( 1p2--PD 2D9u ) ( )
When we substitute the on-shell value of the field strength into the stress energy tensor,
we see that it reduces to

87GNT W = FC G, (2.68)

which is precisely the stress energy associated with a cosmological constant A = 4c%.
Going further, if we substitute the on-shell solution for the field strength into the action,
thanks to the boundary term, the Lagrangian reduces precisely to Einstein gravity with
a cosmological constant! Note the distinction here though: considering D-forms in the
action, the cosmological constant is now understood to arise as a constant of integration
from the equations of motion of the gauge field, rather than a fundamental constant in
the Lagrangian. Since Einstein gravity with a cosmological constant is indistinguishable
from Einstein gravity plus a (D — 1)-form gauge field, there are no conceptual issues with
including variations of the cosmological constant in the first law. In the same sense that one
could imagine throwing charged matter into a black hole to increase or decrease its electric
charge, one could imagine throwing (D — 2)-dimensional p-form “charged” membranes into
the black hole to perturb the cosmological constant.

Generating the cosmological constant (and its dynamics) from (D —1)-form gauge fields
was first investigated as a possible solution to the cosmological constant problem [102, 99,
, 103]. The first investigations of the implications for black hole thermodynamics seems

to have been by Teitelboim [104], and also by Creighton and Mann [105]. The connection
between (D — 1)-form gauge fields and the ‘standard’ approach to black hole chemistry
was recently discussed in [106], where it was shown that the cosmological constant is the

conserved charge associated with the gauge invariance of the (D —1)-form, while the volume

arises as its conjugate potential, analogous to how the electric potential arises for Maxwell
charged black holes.
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2.3.2 The first law

We have now seen that for AdS black holes, one is required to include the cosmological con-
stant as a thermodyanmic parameter in order to derive a Smarr relation that is consistent
with scaling. Now, following the work of Kastor, Ray and Traschen [358], we will review how
the cosmological constant appears in the first law of black hole mechanics. We will consider
only Einstein gravity with a cosmological constant for simplicity and clarity, though the
method can be generalized to include other sources of stress energy. Our method will be
similar to that of Wald and Sudarsky [107], and we will consider the variation of the bulk
Hamiltonian under a perturbation, showing its variation can be related to a surface term
whose integral gives the first law.

We start by foliating spacetime with a family of hypersurfaces ¥ that have a unit
timelike normal n,. The completeness relation for the metric reads
Gap = —NaNg + hap (2.69)
and we have
nen® = —1, n%h,z=0. (2.70)

If we consider the Hamiltonian formulation of general relativity, then the dynamical vari-
ables are the spatial metric h,s and its conjugate momentum m,3. A solution of general
relativity must satisfy the following constraint equations:

H = —-167GNT.sn°n”, H, = —167GnT,sn"h’, (2.71)
where H = —2Ga5n°‘n5 and H, = —2G05n"h5a. In what follows, we will consider the
cosmological constant to be the only source of stress energy, which gives H = —2A and

H, = 0 for the constraint equations.

If we have a vector field £€¢ = Nn® + N% where n,N® = 0, then the Hamiltonian
density that generates evolution along £* is given by [29)]

H =Vh[N(H+2A) + N“H,] . (2.72)

Clearly, varying H with respect to N and N® produces the constraint equations quoted
above; a variation with respect of h,s and 7 produces the evolution equations for —7”
and hag, respectively, where the overdot denotes Lie differentiation along the vector field
£

Now, let us consider perturbing a solution h((fﬁ) — hg]ﬁ)%—saﬁ and W?gi — W?i)ﬂ) +p®? and also
Ay — Ay +0A. It is assumed that the zeroth order fields satisfy the Einstein equations,
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while no such assumption is required at this point for the perturbations. Requiring that
£ be a Killing vector, Hamilton’s equations for the zeroth order spacetime demand that
—7% =0 and ilag = 0, from which it follows after some calculation that the perturbations
satisfy

NéH + N*6H, = —D,B” (2.73)

where D, is the covariant derivative operator on X that is compatible with h,3. The term
B® reads

1
B = N(D"s = Dys") = sD"N + 5Dy + =N (7 500h ™5 — 2765550 — 205 )
(2.74)

for arbitrary perturbations sz, p*® and A with s = h*?s,5. However, if the perturbations
are taken as solutions to the linearized Einstein equations, then they must satisfy the
constraint equations and we obtain

ONSA = D, B” . (2.75)

The part of this expression involving the cosmological constant can be written as a total
derivative by noting that N = —n,&* = —n,Vw’® = —Dg (nawﬁa) where the last
equality can be proven using the completeness relation in the form §° = —n,n” + h? along
with the anti-symmetry of w®?. One then has

Dy (B* + 2w ngd\) = 0= I := % dA, (B 4 2w*ngéA) = 0. (2.76)
o%

We are interested in evaluating this integral in the case where 0% has two components: one
corresponding to a black hole horizon, and the other at infinity, as shown schematically
in figure 2.2. We will show that this produces the first law of black hole mechanics. As
in the case of the extended Smarr relation, for simplicity we will focus on the case where
the perturbation is between two static solutions, so that the asymptotic behaviour is again
given by (2.50). We suppose that we have a black hole solution with a bifurcation surface.
The Killing vector responsible for the Hamiltonian evolution above will be chosen to be the
generator of the horizon and we will assume that £* approaches (9/0t)® in the asymptotic
coordinate system. We consider a hypersurface ¥ extending from the bifurcation sphere
to infinity. The boundary of ¥ consists of two components: the bifurcation sphere of the
black hole horizon, B, and a surface at infinity S, chosen so that the unit normal is
ne = —NV,t at infinity.

First, we consider the integral at infinity,

I, = ]f dA,B". (2.77)
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Figure 2.2: Spacelike surface for AdS black hole. A schematic picture of the spacelike
hypersurface and its boundary for the AdS case. The hypersurface ¥ extends from the
bifurcation surface to a sphere at spatial infinity. While this figure displays the causal struc-
ture of the static AdS black hole, this is just to serve as an illustration — the construction
in the text is more general.

Near infinity, the surface element is directed in the r direction, and we need only the r
component of B. We have N = /f and the metric perturbation

1 om 2r25A
STTI_F (TD_l - (D—l)(D—2)> , (2.78)

which is true to first order in the perturbations dm and JdA; we neglect all higher order
terms. Since the Killing vector approaches (0/0t) at infinity, the terms involving the shift
vector vanish sufficiently rapidly that they do not contribute to the boundary term [33].
A direct computation then gives

D—1
jf dA.B® = —(D — 2)Qp_s0m — lim (27”—91”) SA

r—00 D—1
2TD_1QD_2
= 167G yOM — lim | =——P=2) 5A 2.79
TGN T:%O(D_l)v (2.79)
while p-1q)
2rD=1Q),_
]f dAa(2w*PnssA) = lim (Q) SA . (2.80)
» r—00 D—1
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Combining these results, we see that the term involving the Killing potential precisely
cancels the divergence due to the variation in A.

The other component of the boundary is the bifurcation sphere. On this surface, the
integral of the boundary term B® can be shown to be (see appendix A)

f dALB* = —2k6A, (2.81)
B

where A is the area of the horizon. The best we can do with the term involving the Killing
potential is to just re-write it slightly:

f{ dAL(2w*PngdA) = 2 ( 7{ dAawaﬁnﬁ) SA . (2.82)
B B

Putting all of the results together we have
Kk 0A

OM=——+VOIP=T6S+ViP, (2.83)
21 4
where we have defined
A
P=— V=—¢ dAqw*ng, 2.84
. # dan, (2.84)

with V' the thermodymamic volume; this quantity coincides with that introduced earlier
in the construction of the Smarr relation.

Our final result in eq. (2.83) is the first law of black hole mechanics if variations of the
cosmological constant are allowed. Though we have considered only static black holes, the
generalization to the stationary case can be straightforwardly performed [16]. A similar
result can be derived for de Sitter black holes, though in that case the integration is
performed between the event and cosmological horizons [108].

Recall that in classical thermodynamics, the internal energy satisfies 6F = T9S — P6V
while the enthalpy H = E + PV satisfies 6H = TS + VOP. If we compare with the
expression for the first law (2.83), we realize that it is telling us that the mass should
be considered the enthalpy of spacetime rather than the internal energy! In classical
thermodynamics, the enthalpy is the energy of the system plus the amount of work required
to place the system in its environment, H = E + PV. This is a somewhat intuitive picture
for AdS black holes. Loosely speaking, one can consider the P — V' terms appearing in the
first law and Smarr formula to be the amount of work one would have to do to place a
black hole in an otherwise empty AdS spacetime.
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The construction of the Smarr relation and first law in spacetimes with a non-zero
cosmological constant has introduced two new thermodynamic parameters: the pressure
and the thermodynamic volume. The study of the implications of these terms for black
hole thermodynamics has been a topic of quite considerable interest for nearly a decade
now. In the remainder of this introduction, we will consider in detail two results that arise
from this new picture. First, we will discuss the reverse isoperimetric inequality, and then
discuss P — V criticality of charged AdS black holes.

2.4 The reverse isoperimetric inequality

The volume that was defined in the previous sections was referred to as a ‘thermodynamic
volume’ since it was introduced for thermodynamic rather than geometric reasons. How-
ever, a tantalizing geometric interpretation seems to exist. Indeed, we saw that in the
case of the four-dimensional Schwarzschild AdS solution that the thermodynamic volume
is given by [see eq. (2.46) above]

?TJF s (285)

which is the volume of a Euclidean ball of radius r, . In fact, this result extends in a simple
way to the higher dimensional Schwarzschild-AdS black holes, as we will now demonstrate.

In D-dimensions, the Schwarzschild-AdS solution metric is of the form

2 o, dr’ 2 702
ds® = —f(r)dt” + o) +r°dQp_, (2.86)

where A2
m r
f(?”) =1- D—3 I I :
r (D—-1)(D-2)
The timelike Killing vector £€* = 67" has an associated Killing potential w,s with compo-
nents

(2.87)

rt tr r
w w D=1 (2.88)
the integral for the thermodynamic volume then becomes
1 r riA Qp_orP™!
= - af _ + D—-2p _ + _ D2l 9
V 2jé%d5'a5w (D—l)f;\/gd 0 (D—l) D_1 - ( 89)

We see that the thermodynamic volume for the D-dimensional Schwarzschild solution
coincides with the volume of a (D — 1)-sphere in Euclidean space.
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The suggestive fact that the volume of static black holes coincides with the volume of
Euclidean spheres motivates the idea that we may expect some geometric properties of
the thermodynamic volume after all. A characteristic feature of Euclidean volumes is the
isoperimetic inequality. For a closed surface with surface area A and enclosed volume V,
the isoperimetric inequality states that the ratio

R<1 (2.91)

where saturation of the inequality occurs for spheres. The authors of [16] considered the
applicability of the isoperimetric inequality for a variety of both static and rotating black
holes arising as solutions of Einstein gravity and gauged supergravity theories in four and
higher dimensions. Using the thermdynamic volume and the area of horizon cross-sections
in R, it was found that the thermodynamic volume satisfies not the isoperimetric inequality
but rather the reverse of it!

always satisfies

As an example to illustrate the point, we consider the extension to higher dimensional
rotating black holes. We will have a more detailed discussion of the properties of these
solutions in the following chapter, here let us note that the area and thermodynamic volume
of higher dimensional Kerr-AdS black holes are given by [109]

Qp_g vy 72 +a? ry A (1+7r2/L3% a?
A= . V= e ! 2.92
e H YA D -1 (D —2)r% EZ: =i (292)

7

where Z; = 1 — a?/L? and a; with i = 1,...,|(D — 2)/2| labeling the spin parameters,
and € is equal to zero if the spacetime dimension is even, and unity otherwise. The general
expression is complicated, but for insight let us just look at the slow rotation limit of the
singly spinning black holes

(D-3)  (ri+L%?
2(D—1)(D—2)? L4

R=1+ a* 4+ 0(a%). (2.93)
We see that the correction to the static result is always positive and so R > 1. The same
conclusion holds in the general case [10].

Essentially, the result comes from the fact that rotating black holes have less “area per
volume” than the static case, explaining why the opposite behaviour is observed. Similar
behaviour was observed for all of the black holes studied in [16], which led the authors to
conjecture:
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Conjecture (Reverse Isoperimetric Inequality). For an asymptotically AdS black hole so-
lution of general relativity with thermodynamic volume V' and horizon area A, the following
inequality will be obeyed:

with saturation occurring for the Schwarzschild-AdS black hole. In other words, the entropy
inside of a horizon of thermodynamic volume V is maximized for the Schwarzschild-AdS
solution.

Since the initial work in [10], there have been a number of studies focusing on the
validity and implications of the reverse isopermetric inequality. While no general proof
or list of necessary conditions has been found, there have been some general indications
of important features for the validity of the inequality. For example, it seems that the
topology of the horizon plays a crucial role. Feng and Lu determined that, for planar black
holes, the reverse isoperimetric inequality is equivalent to the null energy condition [110].
Hennigar, Kubiznak, and Mann determined that a class of black holes whose horizons
are topologically spheres with two punctures can actually violate the reverse isoperimetric
inequality. More details about these solutions — named super-entropic black holes — will
be presented in the following chapter. To date, these are the only black hole solutions that
provide a plausible counter-example to the conjectured reverse isoperimetric inequality.

While the reverse isoperimetric inequality was formulated for black holes with AdS
asymptotics, there has been some exploration of its applicability beyond this realm with
limited success. The case of de Sitter black holes was first studied in [108]. In that case,
it is possible to define a thermodynamic volume for both the black hole horizon and the
cosmological horizon. It was found that for a wide class of de Sitter black holes, the reverse
isoperimetric inequality holds for both the black hole and cosmological thermodynamic
volumes, while a true isoperimetric inequality holds for the thermodynamic volume between
the black hole and cosmological horizons. More recent explorations of the validity of the
inequality in the context of dS solitons have found the inequality not applicable [111]. The
work considered in [112] studied the applicability of the reverse isoperimetric inequality
to black holes that are asymptotically Lifshitz spaces, finding that there are violations in
many cases. However, again it should be noted that there is no agreed upon definition for
mass in these spacetimes, which is problematic for defining the thermodynamic volume.

Going beyond Einstein gravity and including higher curvature corrections in the grav-
itational action, the reverse isoperimetric inequality in the form (2.94) loses the nice in-
terpretation as an entropy inequality. This is because the entropy of a black hole in a
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higher curvature theory of gravity is no longer simply the area of the horizon, but is rather
given by the integral of a geometric quantity defined on the horizon [113, , . As
a result, it is unclear whether the reverse isoperimetric inequality should be extended to
higher curvature theories of gravity in the form (2.94); or in the form of an entropy in-
equality. Nonetheless, some results are known. Static black holes in Lovelock [116] and
quasi-topological [1 17, | gravity saturate the reverse isoperimetric inequality in the form
presented in (2.94), but would generically violate the inequality in the form of an entropy
inequality.” Static black holes in Einsteinian cubic gravity [121, 1] can violate the inequality
in both forms, provided the spacetime dimension is five or larger.

2.5 P —V criticality

Let us now consider the implications of the new thermodynamic parameters for the critical
behaviour of black holes. With notions of pressure and volume for black holes, it is natural
to explore questions related to thermodynamic phase transitions within this parameter
space. In this section, we will review the initial study of P —V criticality by Kubiznak and
Mann [39]. This review will also serve to introduce the standard thermodynamic machinery
used in the study of phase transitions, as will appear in the second half of this thesis.

2.5.1 Thermodynamics, equation of state, and specific volume

The starting point is the four dimensional charged AdS black hole which has line element

dr?
ds* = —f(r)dt* + — + r2dQ? 2.95
()it + (295)
where d)? is the standard line element on a two dimensional unit sphere and
2M Q*  r?
=1-—4+ =4+ =. 2.
f(r) —t T (2.96)

The (real and positive) zeros of f(r) determine the horizons in this spacetime, with the
largest root corresponding to the event horizon and denoted by 7.

9This assumes that the Lovelock couplings can be arbitrary, which is not strictly true. It would be
interesting to fully explore the entropy form of the reverse isoperimetric inequality in higher curvature
theories when constraints, such as those arising from holography [119, ], are taken into account.
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It is a straightforward matter to compute the thermodynamic parameters associated
with this black hole. The results are,

’ 1 3 2 2 4
T:f(“r): (1+ T+_Q_> 7 Szﬂri, ‘PZQ, V:_ﬂ'ri (2-97)
4 dmry +

and they satisfy the extended first law of thermodynamics

dM =TdS + VdP + &dQ (2.98)
and the associated Smarr relation

M =2TS —-2VP + Q. (2.99)
We note this this is the Smarr formula consistent with Eulerian scaling for this four-

dimensional black hole.

To study the thermodynamic structure of the black hole we require the equation of
state. This is obtained very easily by rearranging the expression for the temperature given
in eq. (2.97) and isolating for the pressure

T 1 Q?

P=— .
2ry  8mri + 8mri

(2.100)

The first term appearing in the equation of state is reminiscent of the ideal gas law P ~ T'/v.

This motivates identifying
3V \ "
=2ry =2(— 2.101
1t (2.101)

as the specific volume. In general, the specific volume will be identified as some function

of the thermodynamic volume such that, in the appropriate limit, the equation of state

takes the form of an ideal gas. In situations where it is possible to do so, it is often more

convenient to work with the specific volume than the full thermodynamic volume. Some

comments below will be directed at when doing so is — or is not — appropriate. Finally,

in terms of the specific volume, the equation of state now reads
T 1 20Q*

p==_ .
v 2m? mod

(2.102)

There are two further points worth mentioning about the specific volume at this stage.
First, it might seem offensive to refer to v as a volume since it appears to have dimensions
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of length, rather than dimensions of volume. However, we have been working in geometric
units where h = ¢ = Gy = 1 and temporarily restoring these constants is insightful. In
terms of the ‘geometric’ pressure and temperature, we would have

h I
Pressure = E—QCP and Temperature = ECT, (2.103)
P
where (3 = hff’ is the Planck length. Then, the leading behaviour of the equation of state
is seen to be LT .
Pressure = emeera e (2.104)

This reveals the ‘missing’ dimensionful factors in the specific volume is just £, which is
just unity in geometric units.

Second, it is interesting to note that the specific volume identified by these naive con-
siderations can also be thought of as a ratio of thermodynamic volume per degrees of
freedom [109]. That is, we can write

v
Ndof ( )

where D_9 A
Nyt = ————— 2.106
dof D_1 4611372 ( )

with A the area of the horizon and /p the Planck length. While an interesting observation,
this result is actually only true in a limited sense and does not hold, for example, for
rotating black holes or in higher curvature gravity.

It is instructive to consider the behaviour of the equation of state in the P — v plane.
Representative isotherms are shown in figure 2.3, where curves of higher opacity correspond
to isotherms of higher temperature. For high temperatures, the pressure follows ideal gas
law type behaviour and the black hole solutions are unique. That is, for a given pressure
there is only a single possibility for v. As the temperature decreases, there is a point
T = v/6/(187Q) (black curve) after which the isotherms exhibit an inflection point and
uniqueness of the solution is lost. In this regime, for a given pressure there can be up to
three possible values for v. It is in this regime that phase transitions can occur between
the various possible black holes, as we will discuss below. Decreasing the temperature
further, there is another distinguished isotherm corresponding to 7' = v/3/(187Q) (orange
curve). For temperatures below this, the isotherms are no longer completely positive,
with regions of negative pressure appearing. Note that negative pressure corresponds to
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Figure 2.3: Equation of state for charged AdS black hole. Here we plot various
isotherms for the charged AdS black hole, the curves of higher opacity are isotherms of
higher temperature.

positive cosmological constant, these regions must be excised as the whole structure changes
dramatically for P < 0.

The isotherm which marks the onset of the ‘non-uniqueness’ of the solutions is very
special and actually corresponds to a critical point. Recall that a necessary condition for
an equation of state to admit a critical point is that

or 0*P
v V2
where the derivatives are computed at fixed temperature. In circumstances where the ther-

modynamic volume is a simple function of the specific volume, this condition is equivalent
to

=0, (2.107)

orP o0*P
ov o2
Note that if the thermodynamic volume was a generic function of v and P, then the two

= 0. (2.108)
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statements above would not be equivalent.
The charged black hole admits the following solution to these equations
| Ve
©96mQ?’ - 187Q

where the subscript ¢ denotes ‘critical’. The isotherm in figure 2.3 that is shown as a black
line corresponds to this critical isotherm.

ve = 2V6Q, T. (2.109)

Our analysis can be summarized in the following way. For temperatures higher than
the critical isotherm, there is a unique black hole solution for a given charge and pressure.
For temperatures below the critical temperature, there can be up to three possible black
hole solutions for a given pressure and charge. Of these possible solutions, the one that is
realized in nature will be that which minimizes the free energy. Let us now analyze the
free energy.

2.5.2 Free energy and phase structure

The free energy is identified with (regularized) Euclidean action. In the fixed charge
ensemble this (complete with boundary terms) is given by

1 1
Ip=— d* — 2N — F,, F") — dPrvVhK
= T 16nGy /M wo(R wE™) = S /aM wvh
1
- vV hn,FPAg + 1, 2.110
471G N /BM avhn s+ et ( )

where [ represent the counterterms added to remove the divergences inherent in the
action. Specifically, after computing the value of this action, one obtains the free energy
Ig 1 8T 3Q?
G=M-TS===~(rp——Pri +— ). 2.111
(- X (2111)
Here we have denoted the free energy by G to make clear that for AdS black holes, the
interpretation is that this is the Gibbs free energy.

The state of the physical system is determined by requiring that the Gibbs free energy
is minimized at fixed temperature and pressure. The Gibbs free energy can be re-expressed
as a function of temperature and pressure alone by solving the equation of state for the
specific volume. Since the volume as a function of pressure and temperature is multi-
valued, this indicates there will be multiple branches of the free energy, which in turn
represent the various possible ‘phases’ of black hole.
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Figure 2.4: Gibbs free energy for the charged AdS black hole. Top left: A single plot
showing various isobars of the Gibbs free energy. The opacity of the blue lines is related
to the value of the pressure on the isobar, with higher opacity corresponding to higher
pressure. The single black, dashed curve corresponds to the critical pressure. For pressures
larger than the critical pressure, the free energy is a smooth single-valued function. At
the critical pressure, there is a cusp where the second derivative of the free energy is
discontinuous. Below the critical pressure, the free energy exhibits ‘swallowtail’ behaviour,
and is generically multi-valued. In this regime, points where two branches of the free
energy intersect corresponds to points where a first order phase transition occurs. 7Top
right: Behaviour for P = 1.1P.. Bottom left: Behaviour for P = P.. Bottom right:
Behaviour for P = 0.25F,; the dotted black line shows the location of the first order phase
transition.

In the case of the charged AdS black hole, inverting the equation of state for v = v(P,T')
can be done analytically. However, the result is the solution of a depressed quartic equation,
and is therefore quite messy and not particularly illuminating. The general prescription
which we will use here and in more complicated scenarios to follow will be to solve the
equation of state for 7" rather than v, and then plot G(T, P) as a parametric function of
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v. Doing so, we show in figure 2.4 representative constant pressure slices of G(T, P).

The behaviour can be understood in the following way. For pressures larger than the
critical pressure, the free energy is a smooth, single-valued function (see top right plot).
At the critical pressure, a cusp appears in the free energy located at T = T,. This cusp
reveals a discontinuity in the second derivative of the free energy, and therefore represents
a second order phase transition (see bottom left plot). Below the critical pressure, the
free energy exhibits ‘swallowtail’ behaviour and for a certain range of temperatures, there
can be up to three possible black hole solutions, with the one minimizing the free energy
being the physically preferred state. Referring to the bottom right plot of figure 2.4, we
can see the presence of a first order phase transition. Indeed, if a black hole starts with
temperature 7" > 0.04/Q on this isobar and radiates, cooling down as it does so, then
there will be a point (marked with the vertical, dotted line in this plot) where the minimal
branch of the Gibbs free energy changes, marking a first order phase transition.'?

0Note that the configurations with positive free energy are possible due to conservation of charge. That
is, there is no analog of the Hawking-Page transition between thermal AdS and the charged black hole
because such a transition would violate conservation of charge.
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Figure 2.5: Phase diagram for the charged AdS black hole. The solid black line
denotes the line of coexistence; along this line the small and large black hole phases have
the same free energy. Crossing the coexistence line indicates a first order phase transition
between the small and large black hole phases. The coexistence curve terminates at the
critical point, which is the only point in this parameter space for which a second order
(continuous) phase transition occurs. Beyond the critical point, there are no distinguished
phases.

The information revealed in the structure of the Gibbs free energy is nicely captured
in a phase diagram, which is shown in figure 2.5. Here we see a line which marks the first
order phase transition between small and large black holes. At any point along this line,
there are two black holes with different volumes that have the same free energy. The line
originates at (7, P) = (0,0) and terminates at the critical point, denoted here by the solid
red circle. Beyond the critical point, there are no distinguished phases.

2.5.3 Critical points and universality

The presence of the critical point results in several examples of universal behaviour, which
we will now describe. The first and simplest observation of universality is that the critical
ratio

PC (&
Ve _ 3 (2.112)
T. 8
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is independent of the specific details (i.e. the charge) of the black hole. This situation
is similar to what is observed for the van der Waals fluid, where one obtains exactly the
same value for the ratio of critical values. So, this ratio is the same for the charged AdS
black hole and for any fluid for which the van der Waals equation is a good approximate
description.

The second example of universal behaviour is the law of corresponding states. We can
introduce the following new variables
T v P

Lo v P 2.113
T Tc’ v 'UC’ p Pc ( )

In terms of these variables, the equation of state can be recast into the following form

8 2 N 1
3 v? o 3047
This ‘law of corresponding states’ applies for black holes of any charge. In other words,
written down in these rescaled variables, the behaviour is independent of the specific details

of the particular black hole.

p= (2.114)

The third example of universal behavior (and the one most important for this thesis) is
captured by critical exponents. Near the critical point, various thermodynamic potentials
and susceptibilities diverge in a power law fashion. The exponents characterizing the
divergence is known as the universality class of the critical point. If two substances share
the same universality class, then near the critical point the physical description of both
substances will be identical.

To calculate the critical exponents of the charged AdS black hole, we proceed by first
performing an expansion of the equation of state near the critical point in terms of the
following parameters

(2.115)

where we note that the thermodynamic volume V' has been used in the definition of w

rather than the specific volume. Then, near-critical equation of state is given by
8 8 4
p=3T—g™wW— 8—1w3 + O(1w?, w?). (2.116)

Here terms of order O(7w?) can be dropped as their contributions are sub-leading in the
determination of the critical exponents.

Now, let us discuss briefly the critical exponents that we are interested in here.
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e The exponent «a governs the behaviour of the specific heat capacity at constant
volume

0S

Cy=T|— ] o|r|™@. 2.117

e=1(5) =1 (2.117)

e The exponent § governs the difference in volume between the two phases along an
isotherm, a quantity known as the order parameter n. That is

n=Vi—Vyox|r]’ (2.118)
where the subscripts 1 and 2 denote the individual phases.

e The exponent v governs the behaviour of the isothermal compressibility

1 [0V
= —— R — -
Kt ((9 )T o« |T]77. (2.119)

e Lastly, the exponent § governs the behaviour of the pressure along the critical
isotherm T = T,:
|P— P o |V -V,|°. (2.120)

In general, the critical exponents are not independent and obey scaling laws (or more
generally, scaling inequalities). The scaling relations follow from the homogeneous scaling
of extensive thermodynamic potentials. Two examples of scaling relations are the Widom
relation

v=pB(6—-1), (2.121)

and the Rushbrooke inequality
a+28+7y>2. (2.122)

Now, let us calculate the critical exponents for the charged AdS black hole. First, we
note that the entropy is independent of temperature. As a result, the specific heat at
constant volume vanishes identically. Thus, there is no temperature dependence and we
therefore conclude that a = 0. The exponent § can be computed with similar ease. Along
the critical isotherm we have 7 = 0 and there immediately conclude from eq. (2.116) that
0=3.

Next, we compute § making use of the fact that, during the phase transition, the
pressure remains constant and Maxwell’s equal area law holds. We denote the volume of
the large black hole phase by V;, and use Vs to denote the small black hole phase. In terms
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of the dimensionless quantity w these translate to wy and wg, respectively. We then have
the following two equations:

- 8 Loa_ .8 8 4,
=T — —TWf, — =W}, = =T — —TWg — —W
3 9 “hgtr 3° 9 TSy
wr,
:/ [w (67 +w?)] dw, (2.123)
wg

where the first equation is due to the constancy of the pressure at the phase transition and
the second is Maxwell’s equal area law, 0 = [(dP/dV)dV. These equations have a unique
non-trivial solution,

wr, = —wg = 3V 271, (2.124)
which imply that
n=Ve(wr —ws) =6Vov—21r = 3 =1/2. (2.125)

Finally, we compute v by first noting that the derivative required in the isothermal
compressibility is given by
oV 9V, 1
—| =—=—==-+0(W). 2.126
op|,~ shr 9w (2.126)

Thus, near criticality, the isothermal compressibility is

10V
Kp = ——=—=—=

V oP

LRV 2.127
TOCSPCT i ( )

We have now computed the critical exponents associated with the critical point of the
charged AdS black hole. Collecting them in one place, they are

1
a=0, 525, y=1, 6=3. (2.128)

These critical exponents are exactly those expected from mean field theory. Mean field
theory critical exponents are remarkably robust for second order phase transitions in grav-
itational theory. To the best of the author’s knowledge, the only examples of critical
exponents that are not the mean field theory values occur for black holes in certain highly
constrained higher curvature theories [14, 16].
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Chapter 3

Super-entropic black holes

The purpose of this chapter is to introduce and study the properties of the four dimen-
sional super-entropic black hole and its singly-spinning generalization to D-dimensions.
These metrics represent new rotating solutions in Einstein gravity that are asymptotically
locally AdS. We will present an analysis of the basic properties of the solutions and their
thermodynamics.

The super-entropic solutions are interesting for at least two reasons. First, black holes
in general relativity are highly constrained objects and so solutions that present novel
features are useful in understanding general properties of black holes. A fundamental result
in the study of black holes is Hawking’s theorem concerning the topology of black hole
horizons [122]. Hawking showed that the two-dimensional event horizon cross sections of
four-dimensional asymptotically flat stationary black holes satisfying the dominant energy
condition necessarily have topology S?. More interesting black objects are permitted in
four and higher dimensions if one relaxes some of the assumptions going into Hawking’s
theorem. For example, since Hawking’s argument relies on the Gauss—Bonnet theorem, it
does not directly extend to higher dimensions. It is then not so surprising that higher-
dimensional spacetimes permit a much richer variety of black hole topologies. The most
famous example of this type is the black ring solution of Emparan and Reall which has
horizon topology S? x S! [123]. Another possibility is to relax asymptotic flatness. For
example, in four-dimensions with a negative cosmological constant, the Einstein equations
admit black hole solutions with the horizons being Riemann surfaces of any genus g [124,

, , , |. Higher-dimensional asymptotically AdS spacetimes are also known
to yield interesting horizon topologies, for example, black rings with horizon topology
StxSP=3 [129] and rotating black hyperboloid membranes with horizon topology H? x SP~4
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[130]. More generally, event horizons which are Einstein manifolds of positive, zero, or
negative curvature are possible in D-dimensional asymptotically AdS space [125, ].

The super-entropic black hole solutions, which exist in any dimension D > 4, have
horizons that are topologically spheres with two punctures. These analytical spacetimes
therefore provide further examples of black holes with interesting topological features, and
may provide valuable testing grounds for various gauge/gravity calculations — indeed, in
many cases they already have, e.g. [132, , , ].

A second reason why super-entropic black holes are interesting is because they pro-
vide the first — and so far only — plausible counter-example to the reverse isoperimetric
inequality. As we will discuss below, despite some subtleties in understanding the thermo-
dynamics of the solutions, these black holes have more entropy per “unit thermodynamic
volume” than the reverse isoperimetric inequality would suggest possible. It is from this
property that these solutions derive their name.

The organization of this chapter is as follows. First, we review the Kerr-Myers-Perry
solutions in four and higher dimensions before introducing the Kerr-AdS class of metrics.
A key point in this discussion is the notion of an ‘ultra-spinning limit’, since it is through
this type of procedure that the super-entropic black hole is derived. The four-dimensional
super-entropic black hole is then introduced, followed by a general analysis of its properties.
We then perform a short study of geodesics in this spacetime, concluding that the axis
of symmetry is in fact excised from the geometry. Finally, we present singly-spinning D-
dimensional generalization of the super-entropic black hole and discuss the thermodynamics
of the solutions. We conclude with some summarizing remarks.

3.1 Kerr-AdS black holes and ultra-spinning limits

Our goal in this section will be to introduce some examples of rotating AdS black holes and
highlight relevant properties for understanding the super-entropic limit that will follow. In
particular, we will motivate the notion of an ‘ultra-spinning’ limit for rotating black holes.

The study of rotating black holes has a long history, with the first solution describing a
four-dimensional asymptotically flat rotating black hole found by Kerr in 1963 [136]. Let
us begin by recalling the four-dimensional asymptotically flat Kerr solution. The metric
reads

2 2
@ (dt + asin® 8d¢)2 t Lo g2y p2d®? + (r* + a®) sin® 0d¢? (3.1)

ds® = —dt*
° " Pa Aa
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with
p2=r*+a’cos?d, A, =1r>—2Mr+ad>. (3.2)

The solution has two horizons: an event horizon located at the largest root of A, and an
inner Cauchy horizon located at the smaller root. It is instructive to consider the explicit
expressions for the location of the horizons:

re =M+ VM?—a?. (3.3)

Now we can note an interesting property of the four-dimensional Kerr metric: there is
a maximum spin parameter that is consistent with the metric describing a black hole.
Equivalently, this can be stated in terms of the angular momentum of the Kerr solution.
Here, let us just note that the mass and angular momentum are given simply by the
parameters M and J = Ma. For the Kerr solution to represent a black hole, we must have
J? < M*, otherwise the solution would represent a naked singularity.

The “Kerr bound” limiting the angular momentum of the four-dimensional rotating
black hole hole does not extend generally to higher dimensions. Higher dimensional gen-
eralizations were obtained in 1983 by Myers and Perry [88]. In higher dimensions, rotat-
ing black holes are complicated beasts, and in D spacetime dimensions can have up to
| (D —1)/2] independent angular momenta.'! Rather than considering the most general
Myers-Perry solution, let us just focus on the case of an asymptotically flat black hole in
D dimensions with a single spin parameter. In this restricted case, the metric is given by

2mrd—P .

ds® = —dt? + “—— (dt + asin® 6d¢)” + Ardr? 4 Tdd?
+ (r* 4 a®) sin® 0d¢? + r? cos® 0dQY3, (3.4)
where
A, =r*4a® —2mr° P (3.5)

and p? is the same as in the Kerr case. The mass and angular momentum can be computed

to be D_ N 5
(D — 2)p_om J=—""_Ma, (3.6)

M = =
87TGN ’ D -2

1This is a consequence of the fact that the rotation group SO(D — 1) has rank r = [(D — 1)/2], which
is equal to the number of independent Casimir invariants. These group invariants are naturally associated
with the conserved charges. Another way to see this same fact is to note that the number of independent
angular momenta is equal to the number of independent spatial 2-planes.
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the second relationship above is sometimes referred to as the ‘chirality condition’. The
location of the event horizon is again determined by the largest root of A. It is not hard
to see that for both D =4 and D = 5, extremality places an upper-bound on a. However,
for D > 6 we can see that there is no upper-bound on a. Note that, for D > 6, at small r
the —2m term dominates and A is negative, while at large r the 2 term dominates and
A is positive. Simple calculus then implies that A has a single positive root, independent
of the value of a. So, Myers-Perry black holes in D > 6 can (in principle) have arbitrarily
large angular momentum.

There is, however, a limit on the angular momentum of Myers-Perry black holes that is
imposed by physical considerations. Emparan and Myers [137] considered the geometry of
a higher dimensional black hole with arbitrarily large angular momentum relative to the
mass, which they termed the ‘ultra-spinning’ limit. Roughly speaking, the idea is to keep
the mass finite while taking the angular momentum to be infinite. Mathematically, this
corresponds to taking a — oo while holding m = m/a? fixed. In this limit, the geometry
limits to a black membrane,

21 2\ 7
ds® = — (1 — rD5) dt* + (1 - TD5> dr® 4+ r2dQ%_, + do® + o*d¢? . (3.7)
Due to the work of Gregory and Laflamme [138], black branes are known to be unstable.

Therefore it is expected that at some sufficiently large angular momentum, an instability
will present itself, and an effective “Kerr Bound” will be imposed dynamically.

Besides revealing an instability of higher dimensional black holes with large angular
momentum, the ultra-spinning limit is interesting for another reason. Note that the topol-
ogy of the horizon of the Myers-Perry black hole (3.4) is SP~2, while the black membrane
has topology R? x SP~4. Generating black objects with novel horizon topology is quite
generally true for ultra-spinning limits.

Let us now turn to a discussion of Kerr-AdS black holes and their properties, since these
asymptotically AdS solutions will feature prominently in the following sections. The four
dimensional version of this solution was found by Carter [139] just five years after Kerr’s
discovery of the asymptotically flat case. Motivated by the AdS/CFT correspondence, in
1999 Hawking, Hunter and Taylor-Robinson constructed the five dimensional Kerr-AdS
solution, and also provided an example of a singly-spinning solution in all dimensions [29].
The most general solution with cosmological constant was obtained by Gibbons, Lu, Page
and Pope in 2004 [110]. For our purposes, it will suffice to consider a singly-spinning
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Kerr-AdS black hole in general dimensions. The metric reads

A a . 2 pl Pa
2 a 2 a 2 a 2
s =~ [dt—ism edqs} R+ ghdf
. 29 2 2 2
+Sa% {adt—r La dgzﬁ] + 12 cos® 0d, (38)
where
2 2 r’ 5-D a’ 2 = a>
A, = (r —l—a)(l—i-ﬁ)—er_ ; Sazl—ﬁCOS 0, ::1_ﬁ7 (3.9)

and p? is the same as in the asymptotically flat cases. With m non-zero the solution
describes a black hole with horizon located at the largest root of A. The solution with
m = 0 is simply AdS, but written in non-standard coordinates. If the following change of
coordinates is used,

=72 sin? 0 = (r2 + o) sin 0,
~ a
with the other coordinates remaining the same, the relationship to AdS in global coordi-

nates is manifest. This change of coordinates, when applied to the spacetime with m # 0
has the effect of bringing the solution into a frame that does not rotate at infinity.

A full list of the thermodynamic quantities for the singly-spinning AdS black hole can
be found in [109], here let us just record a couple of the more relevant results for the
discussion:

o QD—Q m 1 (D — 4)5 J— QD—Q ma
C 4m =2 2 ’ 4r =2
(a®+r2)r™* v ri A 1+a_21+7’3/L2

A=45=Qp_ = R el
b2 = ’ D—1 E(D-2)r2

(3.11)

From the above, we can draw a few important conclusions. First, it follows that these black
holes satisfy the reverse isoperimetric inequality with R > 1 for any non-zero a — equality
only occurs when a = 0, i.e. when the solution is static. Second, unlike the asymptotically
flat Myers-Perry solution, here there is not a simple proportionality between the angular
momentum and the mass. Further, since the term = enters into the definitions of the
physical mass and angular momentum, both these quantities blow up in the limit a — L
while satisfying

J< ML (3.12)

48



which is reminiscent of the “Kerr bound” for asymptotically flat black holes. In this sense,
Caldarelli, Emparan, and Rodriguez argued that the limit a — L can be thought of as the
AdS analog of the ultra-spinning limit studied in the asymptotically flat case.

For AdS solutions, there are a number of ways in which the ultra-spinning limit can be
taken, with each yielding new and interesting examples of black objects with various horizon
topologies. Caldarelli, Emparan, and Rodriguez [130] studied the black brane limit wherein
the physical mass is held fixed and the a — L limit is taken while simultaneously zooming in
to the pole. This limit is sensible only in D > 6 and yields a static, asymptotically flat black
brane. For this reason, the procedure is analogous to the limit first studied by Emparan
and Myers. While ref. [130] considered only the singly-spinning Kerr-AdS geometry, the
limit was generalized to the full multi-spinning Kerr-AdS solution in the appendix of [2]. In
the same work, and again in a more recent paper [111], Caldarelli and collaborators studied
a different approach to the a — L limit that we will call the hyperboloid membrane limit.
In this case, the horizon radius, r,, is held fixed while zooming in to the pole and taking
a — L. The limit, valid for any D > 4, yields a rotating AdS hyperboloid membrane with
horizon topology H? x SP~*. These ultra-spinning limits are reviewed in appendix B.

The super-entropic black hole corresponds to another example of an ultra-spinning limit
for the Kerr-AdS black hole. The procedure consists of the following steps. i) We start
from a given rotating AdS black hole and, to eliminate any possible divergent terms in the
metric that would prevent us from taking the a — L limit, recast it in a rotating-at-infinity
coordinate system that allows one to introduce a rescaled azimuthal coordinate. ii) We
then take the a — L limit, effectively ‘boosting’ the asymptotic rotation to the speed of
light. iii) Finally, we compactify the corresponding azimuthal direction. In so doing we
qualitatively change the structure of the spacetime since it is no longer possible to return
to a frame that does not rotate at infinity. The obtained black holes have non-compact
horizons that are topologically spheres with two punctures.

The four-dimensional super-entropic black hole was first discovered by Klemm [142, 1413]
in the course of classifying various rotating solutions of four-dimensional Fayet-Iliopoulos
gauged supergravities. His approach takes the Carter-Plebanski solution as a starting point,
and then constrains the possible roots of the angular structure function — this construction
is reviewed in appendix C. Since there is no known higher dimensional analog of the Carter-
Plebanski solution, our approach has the advantage of being directly applicable to any
rotating black hole geometry, allowing us to obtain generalizations of Klemm’s solution in
higher dimensions, and for multi-spinning black holes.
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3.2 The super-entropic limit

We begin our discussion of super-entropic black holes by considering the simplest possible
example in D = 4. Let us first demonstrate this procedure on the Kerr—-Newman-AdS

black hole in four dimensions [139]. We write the metric and electromagnetic 1-form A in
the ‘standard Boyer—Lindquist form’ [29]
A asin20  1° % )
ds*> = —=2|dt — d “dr? 4 = dh?
° ) { = 4 AT
S sin2f 2 2 2
sin [adt—r —:a dqﬁ} |
Y =
L2
0
A = _;—r (dt - d¢> , (3.13)
where
a2 a2
Yo = rP+a’cos’d, == 1_ﬁ’ S = 1_ﬁ‘303297
2
A, = (r*+ad? <1 + ﬁ) —2mr + ¢, (3.14)
with the horizon ry, defined by A,(ry) = 0. As written, the coordinate system rotates at
infinity with an angular velocity ., = —a/L? and the azimuthal coordinate ¢ is a compact

coordinate with range 0 to 2. The choice of coordinates (3.13), while convenient, is not
necessary to obtain the metric (3.15) below, as we demonstrate in the following subsection.

We now want to take the limit a — L. To avoid a singular metric in this limit, we
need only define a new azimuthal coordinate ¥y = ¢/= (the metric is already written in
coordinates that rotate at infinity) and identify it with period 27/Z to prevent a conical
singularity. After this coordinate transformation the a — L limit can be straightforwardly
taken and we get the following solution:

A by )

2 _ A . .9 2 g2 A an2
ds* = > [dt L sin de} + Adr +sin29d9
. 40
2 [Ldt - (P 4 L))
A = =% (dt— Lsin®0dv) (3.15)
where
72\ 2
Y =724 L?cos’f, A:<L+Z> —2mr +¢*. (3.16)

20



Note that coordinate 1 is now a noncompact azimuthal coordinate, which we now choose
to compactify by requiring that 1) ~ 1)+ . The result is equivalent to the metric presented
by Klemm in [143] for the case of vanishing magnetic and NUT charges, as can be seen
directly using the following coordinate transformation:

T=t, p=~Lcosh, o=—¢/L, Lgiemm=p/L. (3.17)

Originally, this solution was found as a limit of the Carter—Plebanski solution and cor-
responds to the case where the angular quartic structure function has two double roots
[142, |. Klemm’s construction is reviewed in appendix C. The advantage of our con-
struction is that it immediately generalizes to the entire class of rotating AdS black holes.

3.2.1 Properties of the rotating frame

The super-entropic limit employed above required that the Kerr-AdS metric be written in
a form that rotates at infinity. Here we explore that requirement in more detail, under-
standing exactly what the restrictions on the rotating frame are and how the results relate
to the super-entropic solution presented just above.

Let us begin with the Kerr-AdS solution written in the standard Boyer—Lindquist form,
given by (3.13), (3.14) above. In this form, the metric is already written in ‘rotating co-
ordinates’, characterized by Q. = —a/L? The fact that these coordinates are ‘rotating’
is crucial for the super-entropic limit—working in non-rotating coordinates leads to a sin-
gular limit, as we will see. We can ask, though, what restrictions (if any) are there on the
rotating coordinates we use? That is, are there other frames besides that characterized by
Qo = —a/L? in which it is possible to perform the super-entropic limit? Let us begin to
answer this question by writing the metric in ‘non-rotating coordinates’ by transforming

a
<I>:gb—|—ﬁt, (3.18)
where @ is the non-rotating coordinate. We find
A a’®sin?f asin?0 1> % x
2 _ _2a|fy _ P Ha 59 | Ha ;49
ds > {( + To= )dt = d +Aadr + Sd&
S sin6 a r?+a? 242 17
[ 0 g )

It is now clear that the limit cannot be directly taken in the non-rotating coordinates: the
g and g;e components of the metric are singular in the a — L limit and cannot be made
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finite through our rescaling of ¢. There appears to be two possible ways to fix this. First,
one could simply re-scale ¢ as ¢t — =t while simultaneously taking ¢ — =¢. The second
possibility (which was the one implemented in the previous section) involves transforming
to a rotating frame and then taking ¢ — Z¢. It turns out that the first method does not
work (it leads to a singular metric) and so transforming to a rotating frame is essential.

Now, starting from the non-rotating metric let us transform to an arbitrary rotating
frame via the transformation

a
== — xﬁt, (3.19)

where x is (for now) an arbitrary parameter. Note that with the choice z =1 eq. (3.13) is
recovered. We then have for the metric in rotating-at-infinity coordinates,

A a®sin%6 asin20  1°
2 a
dS = _Z_a |:(1+ﬁ(1—1‘)) dt— E ng:|
S sin’6 r? + a? r? 4+ a? 2
+ 5 [(1 t s (1-— x)) adt — = dap}
Y Y

Considering this metric we see that the g, and g;, metric components can be made finite
with the choice
r=14+y=+0(E), (3.21)

where y is a constant with y = 0 yielding the coordinates we have used earlier, and o(=)
denotes terms of higher order in =. We then have, in these coordinates,

a

1+ Zy) . (3.22)
This result tells us that we do face some restrictions in our choice of coordinates. For
example, it is not possible to perform the super-entropic limit if one begins in coordinates
that rotate at infinity with Q. = —2a/L? since this would require y = 1/=, which is not
valid. Now we must ask: when we perform the super-entropic limit in coordinates with an
arbitrary (but valid) choice of y, how is the result related to our standard choice of y = 07

The answer is that different values of y correspond simply to coordinate transformations
of the solutions discussed earlier — there is nothing qualitatively different about the solution.
To see this consider the transformation we made to the rotating frame

a a _a
gpz@—xﬁtztﬁ— ﬁt—y:ﬁt. (3.23)
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Now recall that, at this point, when taking the super-entropic limit, we rescale ¢ via
¢ = =9 and then take a — L. So, with a non-vanishing y we have:

b — &t a L

_¥Y_ L? a— Yy

V=== —= Yt = YsE — Tt (3.24)
where sk denotes the azimuthal coordinate from the super-entropic solutions. So be-
ginning in other rotating-coordinate systems just turn out to yield a simple coordinate

transformation applied to the solution we have already obtained.

s

We need to move to a rotating coordinate system because otherwise we will have a
divergence in gy and g,. While there is some freedom in the choice of starting frame,
we cannot perform the super-entropic limit from any rotating frame whatsoever. When
an appropriate coordinate system is chosen, however, we always recover the ‘standard’
super-entropic solution, up to a simple coordinate transformation.

3.3 Basic properties

In this section we will explore some of the basic properties of the super-entropic black hole.
We note that some of the results presented here were also considered by Klemm [113]; here
the treatment follows the more detailed account given in [2].

First, let us note that the m = ¢ = 0 form of the metric is a space of constant negative
curvature with curvature scale L. For non-zero m, ¢ we find that the metric (3.15) describes
a black hole, with horizon at r = — the largest root of A(ry) = 0.

We first note that there is a minimum value of the mass required for horizons to exist.
Examining the roots of A in eq. (3.16) we find
2

r
m>my = 2’/’0<L—02 + 1) : (3.25)
where )
2 3q2 3
2="_1-1 44+ — 2
=3 + |14+ 12 (3.26)

For m > mg horizons exist while for m < my there is a naked singularity. When m = my
the two roots of A coincide and the black hole is extremal.

To gain a deeper understanding of the spacetime, let us consider the geometry of con-
stant (¢,r) surfaces. The induced metric on such a surface reads

r? + L? cos? 0d02 N L%sin* 0(2mr — ¢?)

ds® =
sin® 6 r2 4+ L2 cos? 0

dip? . (3.27)
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Since
_ L*sin'd
O ey
it follows (using m > mg and ry > 1) that gy is strictly positive outside the horizon,
indicating that the spacetime is free of closed timelike curves.

(2mr — ¢*) | (3.28)

The metric (3.27) appears to be ill-defined for § = 0,7. To ensure there is nothing
pathological occurring near these points let us examine the metric in the small # limit (due
to symmetry, the @ = 7 limit will be identical). We introduce the change of variables

k= L(1—cosh), (3.29)
and examine the metric for small . This yields

dk?  4(2mr — ¢%)
2 _ (2 2 2 72
ds® = (r*+ L7) 12 + (21 1) K2dy®| (3.30)

and the associated curvature tensor is just

1 sl (3.31)

po _ _
o™ =~ a2t

So the metric on these slices is nothing but a metric of constant negative curvature on the
hyperbolic space H2. This implies that the ¢,r = const. slices are non-compact manifolds
and that the space is free from pathologies near the poles.'? In particular, this analysis
applies to the case of the black hole horizon, for which

dr?  4K? 2}

ds; = (ri + L% {— + —-d

s T (3.32)

showing that the horizon is non-compact.

The above argument has allowed us to conclude that, near the poles, the spacetime
is free of pathologies. However, using this argument alone we cannot conclude anything
definitive about what happens precisely at § = 0, 7. In the next section, we will consider
the motion of test particles in the spacetime and argue that the symmetry axis is actually
excised from the spacetime.

12The statement that these surfaces are non-compact should not be confused with the idea that they
extend to r = oco: they are, after all, a surface at r = const.. The notion is better understood as meaning
that there is infinite proper distance between any fixed 6 € (0, 7) and either pole.
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To visualize the geometry of the horizon, we embed it in Euclidean 3-space. The induced
metric on the horizon is

dsy = gyydi® + geedd?| . (3.33)

=r4
We identify this line element with the line element in cylindrical coordinates
ds3 = d2* + dR* + R*d¢?

yielding

B(0) = (2=) guw- (3.34)

(dz(;))z _ g%_(df;_gf)f, (3.35)

where the prefactor in eq. (3.34) comes from the manner in which we have compactified
¥. Unfortunately, the resulting equations cannot be solved analytically. However it is
straightforward to integrate them numerically for various values of r,, L and ¢, as shown
in figure 3.1. We stress that the reader should not confuse the fact that z(#) extends to
400 at the poles with the horizon extending to spatial infinity in the bulk spacetime — it
is just that the transverse sections are non-compact.

The ergosphere is the region for which the Killing vector 0, is no longer timelike, given

by
A — L*sin*0 <0, (3.36)
with equality corresponding to its outer boundary. Although at § = 0,7 the ergosphere

appears to touch the horizon, this does not take place since this axis is excised from the
spacetime as we shall see.

On the conformal boundary the metric (3.15) takes the following form (the conformal
factor being given by L?/r?)

2

do? (3.37)

dsﬁdry = —dt* — 2Lsin*0dtdp + —
sin“6

and we see that ¢ becomes a null coordinate there. Writing again k = L(1 — cosf), the
small x limit gives

L2
ds%dry = —dt? — 4rdipdt + 4—/{2d,‘-€2 :

2 4 2
= —(dt + 2kdrp)* + L? (di + 224 2)

T (3.38)
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Figure 3.1: Horizon embedding. The horizon geometry of a 4D super-entropic black
hole is embedded in E3 for the following choice of parameters: ¢ = 0, L = 1, r,. = /10
and p = 2m.

As the second expression makes manifest, the boundary is AdS; written as a Hopf-like
fibration over H2. Due to the symmetry of the metric, an identical result holds for = 7.
The structure of the conformal boundary reveals why the spacetime is asymptotically locally
AdS. In somewhat formal treatments, the terminology ‘asymptotically AdS’ is reserved for
solutions that approach a constant negative curvature space that is topologically R x SP=2,
Here, due to the punctures along the symmetry axis (see also next section), these solutions
do not meet this topological criterion.

Lastly, let us make an interesting remark about the full spacetime geometry considered
in the vicinity of the symmetry axis. Taking (for simplicity) ¢ = 0 and implementing
the following coordinate transformation [113] [again after taking the limit x — 0 with
k= L(1 — cos(0))]:

et tanh ¢ — 1
e~ tanh § +1 ’

= tanh% , 2t=7+4iLln (3.39)
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the metric is cast into the form

dp?

V(p)

ds® = =V (p) |dt* + 2L sinh? %dqs g + (p* + L?/4) (do® + sinh® od¢®)  (3.40)
with
L* — 4p(m — 2p)L? + 16p?
1612 '
This is a (Lorentzian) AdS Taub-NUT geometry with an H? base space and the NUT
parameter equal to n = L/2. See, e.g., [28, , | for a discussion of these solutions.
Note that for the case where the base space is H? the fibration is trivial — there are no
Misner strings [1410], and as a result no periodicity is enforced on .

Vi(p) =

(3.41)

3.4 Geodesics and the symmetry axis

In order to understand the role of the symmetry axis 6§ = 0,7, we shall now study the
geodesics. The geometry admits a closed conformal Killing—Yano 2-form, h = db,

b= (L*cos’0 — r*)dt — L(L? cos* — r* sin6)d) (3.42)

inherited from the Kerr-AdS spacetime. Such an object guarantees separability of the
Hamilton—-Jacobi, Klein—-Gordon, and Dirac equations in this background. In particular,
it generates a Killing tensor kag = (¥h)au(*h)*s, V(okgu = 0, whose existence implies a
Carter constant of motion [117], kagu®u®, rendering geodesic motion (with 4-velocity u®)
completely integrable.

The fastest way to obtain the explicit expressions for the 4-velocity is to separate the
Hamilton—Jacobi equation [117]

05 | 1505 05 _

e =0 3.43
ox 9 e oaf T (3.43)
where the inverse metric to (3.15) reads
1 2 A sin®f
2 - = 2 L2 L =92 2
07 SA [(r* + L*)0, + Loy + 50+ %
) 2
m [L Sln208t + 8¢:| (344)
and where one can identify S with the momentum 1-form u
0,5 = u, . (3.45)
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We seek an additive separated solution (with the constants £, h, o = —u? corresponding
to explicit symmetries)

S=0X—Et+hY+ R(r)+ A(9), (3.46)
giving from (3.43)
R 2 2, A, sin®d o,
o EA[(r+L)8+Lh]+ER+ A
1 2
——— [h— Lsin®0&]" =0 3.47
+Z sin*g [ S ] ’ ( )

where R’ = dR/dr and A’ = dA/df. Multiplying by ¥ and reshuffling the terms, we obtain

1
C = —or’ + 3 [~(F + I))E + Lh]" — AR
1
= sin®0A”? + o L? cos®0) + — 1 [h— L sin295]2, (3.48)
sin

where C'is Carter’s constant, the additional (hidden) integral of geodesic motion.

Hence the geodesic 4-velocity (u; = —&, uy = h) is given by

P E(2mr — ¢*)L? N Lh(A —sin®0(r* + L?))

A YA sin?6
b = h(A —sin*0L?)  LE(A —sin®*f(r? + L?))
N Y Asin?g YA sin?6 ’
Po= % [Lh — (12 + L2)E]> ~AC — o Ar?, (3.49)
. i 1
g = 2 ;n@ \/C ~ [h — Lsin29€]2 — oL?cos?6

where 0, = & and 0y = + are independent signs.

We do not provide a complete analysis of the geodesics, leaving an analysis similar
to [148] for future study. In what follows we limit ourselves to presenting an argument
showing that the symmetry axis # = 0,7 cannot be reached by null geodesics (¢ = 0)
emanating from the bulk in a finite affine parameter. This indicates that the axis is some
kind of a ‘boundary’ that is to be excised from the spacetime.

Let us probe the behavior close to @ = 0 (the discussion for § = 7 is due to the symmetry
analogous). Consider ‘ingoing’ null geodesics for which 6 decreases. For any finite value of
C, it is obvious from the expression underneath the square root in the last equation (3.49)
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that when h # 0, # = 0 cannot be reached (the term [h — I€ sin®6]?/ sin*@ dominates for
small 0 driving the square root imaginary).

Consider next h = 0, then we have

6= —81;9\/0 Y (3.50)

It is straightforward to show from the third equation in (3.49) that there exists a constant
C' =C,>0andr =r,>ry such that 7(r,) = 0; or in other words there exists a constant-
r surface along which such photons are confined. Such geodesics will spiral towards 6 = 0
with ¢ # 0. For small 6 we obtain 6/0 ~ —b* = —/C, — L?E2/r2 = constant, i.e.,
0 — ¢ "7, Photons moving on constant r = r, surfaces spiral toward # = 0 in infinite
affine parameter. Moreover, using the first equation (3.49) together with (3.50), we have

do AWC, — L2E?

— = —ksinf, k= >0. 3.51
dt S EL2(2mr, — ¢?) (8:51)
Hence, starting from some finite 6y, we have
1 do 1 0
_ - -0 ( —) . 52
t k:/sin@ kntanz + const (3.52)

Evidently, as 6 approaches zero, t o —% In# — oo; the axis is reached in infinite coordinate
time t. Hence photons of this type can never reach the symmetry axis.'?

The final possibility is that (while A = 0) the coordinate r changes as the photon
approaches § = 0. Dividing the last two equation in (3.49) and introducing the following
dimensionless quantities:

2m q

.
r=7, A_L(l—L282/C)>O’ B=g . (3.54)

we find that

/sidneé’ —In (tan g) =0, \/%, (3.55)

3For comparison, let us review here the behavior of radial geodesics in AdS space. Writing the metric
in static coordinates, ds? = —fdt? + dr?/f, f = 1 +r?/L?, we have 2 constants of motion u? = —o and
U = —€, giving

t':?, F=4\e —of. (3.53)
Specifically, radial null geodesics (o = 0) starting from r = 0 reach the AdS boundary situated at r = co
in infinite affine parameter, 7 = r/e — oo, but (integrating dr/dt = f) at finite coordinate time t =
Larctan(r/L) = wL/2.
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where P(x) is the fourth-order polynomial given by
P(z) = A(x — B) — (1 + 2%)?. (3.56)

It is easy to see that P(z) can have at most 2 positive roots 0 < x; < x5 and that geodesic
motion occurs for r = xL obeying x1 < x < x9. The case x; = x5 corresponds to motion
on fixed r = r, discussed in the previous paragraph. To reach § = 0, the Lh.s. of eq. (3.55)
diverges as In@. However, in the region of allowed motion, the r.h.s. of (3.55) remains
finite (as only simple roots of P(x) occur). This excludes the final possibility that the axis
f = 0 can be reached by null geodesics emanating from some finite 6y in the bulk.

Finally, a much simpler argument, based on studying null geodesics on the conformal
boundary, indicates that the axis of symmetry is in fact removed from the spacetime.
Writing sin § = e™¥, the metric on the conformal boundary reads

ds* = —dt* + L*dy® + 2Le”*Ydtdy . (3.57)

The geodesic motion on this space admits 3 constants of motion u?> = —o, u; = —€ and
uy = h, giving the following 3 equations for null geodesics:

: h o, . e 2
t = Z€y7 ¢:ﬁ(h_5Le y),
. e
y = iﬁ\/h@SLe—?y —h). (3.58)

From the last equation it is obvious that no null geodesic emanating from finite y, can
reach the pole y = co (f = 0) on the conformal boundary.

To summarize, the above arguments clearly demonstrate that the symmetry axis 6 =
0, 7 is actually not part of the spacetime and represents instead some kind of a boundary.
It is an interesting question as to whether such a boundary has similar properties to those
of the boundary of AdS space.

3.5 Singly spinning super-entropic black holes in all
dimensions

As was commented at the beginning of this chapter, the super-entropic limit generalizes to
higher dimensional rotating black holes. The general solution for rotating AdS black holes
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is very complicated [110], and so here we simply present the generalization to a singly-
spinning AdS black hole — the full generalization for the Kerr-AdS black holes, as well as
charged and rotating black holes of 5D minimal gauged supergravity, can be found in [2].

To generalize the super-entropic black hole solution to higher dimensions, we start from
the singly spinning D-dimensional Kerr-AdS geometry [29]

Aa 2 2 2
ds® = —F [dt — %sin2 quﬁ] + %ah”2 + %dQQ (3.59)
5, si 29 2 2 2
% [adt T —i:_ a dgf)} + 72 cos? 0dQ3,_,
where
r? a?
Aa = (7’2+6L2)(1+ﬁ)_2mr5_D7 Za: ]-_ECOSQQ?
- a? 2 2 2 .2
= = 1_ﬁ’ p. =r1"+a"cos” 0. (3.60)

Replacing ¢ = 1= everywhere and then taking the limit a — L we obtain

A P’ P’
2 _ .2 2 2 2
ds® = —E(dt — Lsin®0dy)” + Zdr + md@
sin'f 2, 712 20,2 20,002
+ e [Ldt — (r*+L*)dy]”+r= cos“0dQy,_, , (3.61)
where
r2\2

A = (L + Z> —2mr° P p? =14 L*cos®0 . (3.62)

As before, 9 is a noncompact coordinate, which we now compactify via ¥ ~ ¥ + u. It
is straightforward to show that the metric (3.61) satisfies the Einstein-AdS equations.
Horizons exist in any dimension D > 5 provided m > 0 and in D = 5 provided m > L?/2.

Similar to the 4-dimensional case, the solution inherits a closed conformal Killing—Yano
2-form from the Kerr-AdS geometry, h = db, where

b= (L?cos* — r?)dt — L(L? cos* — r*sin’0)d) . (3.63)

This object guarantees complete integrability of geodesic motion as well as separability of
the Hamilton—Jacobi, Klein-Gordon, and Dirac equations in this background; see [119] for
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analogous results in the Kerr-AdS case. In particular, the geodesics can be discussed in a
way analogous to the previous subsection.

The arguments concerning the behavior near the symmetry axis at § = 0,7 for the
4-dimensional case can be repeated here. The induced metric on the horizon is

r? 4+ L% cos? § sin 0(r2 + L?)?

ds;, do* dip?
o sin” 6 * L2 cos? 6 +r2 4
+ 1% cos® 0dOF,_,, (3.64)
and introducing as before k = L(1 — cosf) we find
dk?  4rK?
5= 2+ 1) 95 + ]+ rtad, . (3.65)

This is a product geometry H? x SP~* of two constant curvature spaces; the horizons
of these black holes are non-compact and have finite horizon area. Similar to the four-
dimensional case, they have topology of a cylinder as the actual axis is excised from the
spacetime.

3.6 Thermodynamics and the reverse isoperimetric
inequality
Let us now directly consider the thermodynamics of the super-entropic black hole. We

present detailed calculations for the four-dimensional solution, and quote the results in the
higher dimensional setting.

As written, 0; and 0y, are Killing vectors for the metric. The linear combination
§=0,+Q0y (3.66)

is the null generator of the horizon with

L
0=_—— )
ri 4+ L? (3.67)

The surface gravity can be obtained through the identity

1
— lim ) —2eoiBe, 3.68
ko= lim [ =o€ 80 (3.68)
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which yields
pe L[5 _ ¢

= — 3.69
2r, | L? r2 + L2 (3.69)

The temperature is then given directly by T' = k/(27).

The conserved mass associated with the Killing vector 9; can be computed via a variety
of techniques. Here we will provide an explicit calculation using the conformal method
of Ashtekar, Magnon, and Das [91, 92, |, which has the advantage of requiring no
background subtraction. To facilitate the calculation of the mass, we note the leading
order behaviour of the Weyl tensor component

. 21*m
Chrtr = + - (3.70)

7D

at large distance. We then obtain the electric component £, via a conformal rescaling to
be

E=—. (3.71)

The volume element of a ¢t = constant hypersurface lying in the boundary is given by

d¥, = L?sin 0dfdy . (3.72)
Thus we obtain for the mass
L _
M=Q[o) = -~ ]{ £, (L?sin 0dfdy) = 22 (3.73)
81 Jx 2m

We note that this result for the mass also follows from the Komar definition of the
mass (2.32), using a naive background subtraction of the m = 0 solution.

The angular momentum can be computed unambiguously via a number of methods,
with no need for background subtraction, and we will perform the calculation with a Komar
integration. The surface element is given by

dsag = —2r[an5] \/Ed@dw, (3.74)

where ¢ is the determinant of the induced metric on the surfaces of constant ¢ and r, r¢
is a unit normal vector in the radial direction, and n” is the unit normal to the surface of
constant ¢

2 —-1/2
«a gti/’ « Ity ca
n" = |=gu+2— — gw} [5 — =0 ] : (3.75)
o C g !
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A direct computation then yields

1 pwmL
J=—— ¢ dS,V¢ ="——". 3.76
167 fg_ = o (3.76)
The thermodynamic quantities
um L 1 ri q°
M=—, J=ML, Q=—-—, T= 3— —1-—
27’ ’ r2 + L2’ 47ry ( L? L2472 )7
Horo 2 A qr+ Hq ryA 2 2 2
S==(L =—, b= = — =— == l 3.77
2( +T’+) 4’ 7~3+L2’ Q o’ 3 3MT+(T++ ) ( )
satisfy the relation
OM =T6S +Q6J + VP + ®6Q) . (3.78)

However, note that this cannot be the correct first law for these black holes. The reason
is that, due to the chirality condition J = ML, the relation (3.78) is not of the correct
cohomogeneity.!* As a result, eq. (3.78) does not correctly define the conjugate quantities
because it is not possible to hold constant all of the parameters (M, .S, J, P,Q) indepen-
dently. A correct approach requires implementing the chirality condition at the level of
the first law. Doing so, treating (S, J, P, @) as the independent variables’ we obtain

0 = Q6J+V'OP + ®6Q (3.79)
where

wp—2(ry — L)(ry + L)(r] + L?)
67"+ .

V=Q-1/L, V' = (3.80)
The Smarr relation that follows from scaling holds,

0=20J—2V'P+ Q. (3.81)

Note that this reduction of the thermodynamic phase space can be viewed equivalently as
transforming to a frame in which the mass vanishes (see below).

14This problem was noted in [1], but was not fully appreciated until the writing of this thesis.

150ne could also choose (M, S, P,Q) as the independent variables, and while this would lead to a
different answer for the thermodynamic volume, the conclusions would be the same. This possibility was
considered in [1]; it has the unpleasing feature that the mass is no longer a homogeneous function of the
other variables. The remaining option would be to use (M, S, J, Q) as the independent variables, in which
case the thermodynamic volume would not even be defined. This option is also unpalatable, since again
the mass would not be a homogeneous function of the remaining parameters.
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Note that the thermodynamic volume V'’ is not always positive — similar results have
also been observed for AdS Taub-NUT and bolt solutions by Johnson [151]. The thermody-
namic volume will be positive provided that r, > L. Restricting to this parameter region,
it is easy to see that the reverse isoperimetric inequality is always violated. Bearing in
mind that our space is compactified according to 1) ~ 1+ u, the orthogonal 2-dimensional
surface area takes the form ws = 2u. Consequently, the isoperimetric ratio reads (with

z=ry/L)

Hence these black holes have more entropy ‘per unit thermodynamic volume’ than the
Schwarzschild AdS solution, and so are super-entropic.

This result stands in contrast to the ‘usual’ ultra-spinning limit of Kerr-AdS black holes
in which, as a — L, the isoperimetric ratio approaches infinity, maximally satisfying the
reverse isoperimetric inequality. The distinction arises because of the nature of the ultra-
spinning limit we are taking. Rather than keeping M fixed and letting the horizon area
approach zero as a — L [137, |, here we require this limit be taken whilst demanding
the horizon area remain finite.

Unfortunately this class of charged black holes does not have interesting phase be-
haviour or critical phenomena. This is clear since solving the equation defining the tem-
perature for r, produces only a single real branch for r, .

The thermodynamic considerations above can be extended straightforwardly to the
higher dimensional generalizations of the super-entropic black hole. In the singly spinning
case presented above, the thermodynamic quantities now read

M o= wé);z (D—2)m, J:%ML, Q:ﬁ’
r= 47r7“1+L2 (D=5 + (D= 1)],
R Y'Y o5
where wp given by D1
wp = % (3.84)

is the volume of the D-dimensional unit ‘sphere’. Here €2 is the angular velocity of the
horizon and J and M have been computed via the method of conformal completion as the
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conserved quantities associated with the d, and 0, Killing vectors, respectively. Note also
that the chirality condition relating the mass and angular momentum here is reminiscent
of that for the singly-spinning Myers-Perry solution (3.6).

Again, the thermodynamic quantities satisfy the ‘naive’ extended first law, but due to
the chirality condition J = 2M L/(D — 2) the quantities are not independent. As a result,
we repeat the procedure illustrated in the four-dimensional case, treating (J, P, S) as the
independent quantities. We find that the following first law holds

0 =T8S + Q6]+ V5P (3.85)
with D 1( 4/4)
r D_2 r T+_ ]__L TJF

These quantities satisfy the Smarr relation that follows directly from scaling

0= (D —2)TS + (D —2)QJ — 2PV’ (3.87)

Restricting to the cases where r, > L so that the volume is positive, the isoperimetric
ratio for these black holes reads (defining x = r, /L)

- () ()

_ ( (2" — )77 )D_1> o . (3.88)

2D—2x2D—6 (fL‘2 +1

The ratio is clearly monotonic in x, and so the maximum value occurs in the limit x — oo.
Thus we see that, the isoperimetric ratio is bounded above by

1\ V(-1
R < <§> , (3.89)

and so, similar to their 4-dimensional cousins, these black holes are also super-entropic.

3.6.1 Subtleties in defining the conserved charges

Let us close the discussion of the thermodynamics by noting a subtlety in the definition of
the conserved mass and angular momentum that arises for the super-entropic black hole.
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This was only noticed in the preparation of this chapter, and certainly merits further study.
The subtlety arises from the chirality condition and also the non-trivial topology of the
spacetime. It is clear that the operations defining the conserved quantities are linear, and
so if Ky and K are Killing vectors, then

Q[ClKl + CQKQ] = ClQ[Kl] + CQQ[KQ] . (390)

As a result there is always a freedom to shift a conserved quantity by some amount pro-
portional to another conserved quantity. For example, we can define a new conserved mass
by adding to 0, some multiple of 9, which would yield

Myew = M +Q'J, (3.91)

for some (possibly L-dependent) constant €. Physically, this can be viewed as a coordinate
transformation that mixes the Killing coordinates (¢, ¢).

In general, this ambiguity should be fixed by choosing some privileged observer at
infinity. In the context of rotating AdS black holes, this point is subtle. Indeed, the
expressions given by Hawking, Hunter and Taylor-Robinson in [29] for the Kerr-AdS black
hole do not even satisfy the first law. In that case, the correct answer can be obtained by
transforming the Kerr-AdS solution to coordinates that do not rotate at infinity and then
calculating the conserved quantities. The appropriate transformation — which ensures
that the Killing coordinates coincide with the standard generators of the AdS group —
was first presented in [90] for the four dimensional Kerr-AdS black hole. The case for
general dimensions was discussed in [152].

In the case of the super-entropic black hole, the situation is more subtle, but the reso-
lution of the problem would be useful for deciding which set of thermodynamic parameters
(M, S, P) vs. (J,S, P)] are the appropriate choices in the first law and, therefore, the cor-
rect thermodynamic volume. In the previous section, the choice (J, S, P) was motivated
since it respects the homogeneity of the Smarr relation, though in either case the black hole
is super-entropic. Unsurprisingly, the super-entropic limit renders singular the coordinate
transformation that brings the Kerr-AdS solution into global AdS form, and so this ap-
proach cannot be used. In the absence of a simpler alternative, it may be that the only way
to fix this ambiguity for the super-entropic black hole would be to determine the algebra
generated by the Killing vectors of the m = 0 solution and determine which combination ¢
and 1 lead to the ‘standard’ commutation relations, similar to what was done in [90]. We
hope to return to this problem in the future.
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3.7 Summary remarks

In this chapter, we have described the super-entropic limit and applied it to singly-spinning
AdS black holes in all dimensions. The resulting metrics describe rotating black holes whose
horizons are topologically spheres with two punctures. The thermodynamic analysis implies
that these black holes violate the conjectured reverse isoperimetric inequality, providing
the first plausible counter-example to this conjecture. Let us close by remarking on some
further properties and problems for future study.

While the discussion in this chapter focused on singly-spinning black holes, the proce-
dure generalizes in the natural way to multi-spinning black holes — see [2] for the details.
However, let us note that in the multi-spinning case it is only ever possible to take a single
a; — L using the super-entropic limit. If one tries to take the limit for multiple a;, a
degenerate metric is obtained. A consequence of this is that it is not possible to apply
this limit to higher dimensional Kerr-AdS black holes with equal rotation parameters, i.e.
a; = a. Naively, one would expect that if, for example, a ‘double super-entropic limit’
could be taken, the resulting black hole would have a horizon topologically a sphere with
four punctures. Attempts to construct black holes with horizons with multiple punctures
starting from the more general Kerr-NUT-AdS class of solutions [153] was attempted but
was not successful, suggesting that there is possibly some topological obstruction to their
existence.

Another point not addressed here but considered in [2, 3] is the notion of taking ultra-
spinning limits of the super-entropic black holes themselves. For example, since the super-
entropic limit can only ever be applied in a single direction, one could imagine taking the
super-entropic limit for one rotation parameter and a different type of ultra-spinning limit
for the remaining parameters. The answer is that the super-entropic limit can be combined
with the hyperboloid membrane limit described in the first section of this chapter and in
appendix B, but is not compatible with the black brane limit. The reason seems to be
that while the hyperboloid membrane limit maintains the asymptotically AdS properties
of the spacetime, the black brane limit produces an asymptotically flat solution. This
latter point is in tension with the fact that the super-entropic black hole appears to have
no simple asymptotically flat limit — similar to the AdS black holes constructed in [154]
via an S* reduction of 11D supergravity. Further, an interesting observation was made
in [3] regarding the combination of the super-entropic and hyperboloid membrane limits.
If one starts with a rotating black hole with N rotation parameters, takes the super-
entropic limit for one of these parameters and then the hyperboloid membrane limit for
the remaining N — 1, the final solution has no punctures. That is, taking the maximum
number of hyperboloid membrane limits ‘removes’ the punctures that the super-entropic
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limit introduced.

Let us note some directions that may merit further investigation in the future. First,
the subtleties in defining the conserved charges should be addressed — this is an important
point for understanding what is the ‘true’ mass of the super-entropic black hole. Second,
the Euclidean version of these solutions should be scrutinized — naively, it seems that no
(positive definite) Euclidean sector exists. The reason is that the standard Wick rotation
trick for rotating black holes requires not only t — —itg but also a wick rotation of the
rotation parameters. Here, the rotation parameter is the AdS length, and Wick rotation
of L would change not only the structure of the metric, but would also correspond to
changing both the field equations and asymptotic structure. The situation is somewhat
analogous to the Eguchi-Hanson metrics [155], for which a Euclidean sector exists, but no
clear Lorentzian sector does. In fact, it seems that in this same sense it should be possible
to construct topologically non-trivial asymptotically dS instantons via a super-entropic
limit applied to the Euclidean Kerr-dS solutions.
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Chapter 4

Generalized theories of gravity

In this chapter, we will introduce higher curvature theories of gravity and study some of
their basic properties. Higher curvature theories in the context of black hole chemistry will
appear in the following chapter, and this chapter is to serve as an introduction to these
theories through the lens of the author’s recent work. After providing a brief introduction
to some general features of higher curvature theories, the focus will shift to studying these
theories for the case of static and spherically symmetric black hole solutions, as in [5, (].
The idea will be to study which theories of gravity admit ‘nice’ field equations under the
restriction to spherically symmetric metrics. It turns out there are three such classes:
Lovelock gravity [116], quasi-topological gravity [1158], and generalized quasi-topological
gravity [5]. The latter class of theories was recently discovered by the author and their
properties have been developed in a series of papers by the author and also Bueno and
Cano, e.g. [156]. All of these theories possess a number of interesting — and surprising
— properties that make them excellent toy models for exploring questions in black hole
thermodynamics and holography. The primary references for this chapter are [1, , 6,
], including some unpublished work.

Y ) Y ) Y

4.1 Higher curvature theories: an overview

Here we will discuss some basic properties of higher curvature theories. The literature on
this subject is vast, and we do not attempt to offer a complete picture here. Rather, the
goal will be to motivate the study of higher curvature theories in general, and then discuss
the propagating degrees of freedom and black hole thermodynamics.
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4.1.1 Introduction and motivation

There can be no doubt that general relativity is a tremendously successful physical theory,
having been vindicated in all experimental tests to date [159]. However, despite this success,
there are good reasons for studying theories of gravity beyond general relativity. One class
of modifications is higher curvature gravity, where one supplements the Einstein-Hilbert
action by terms that are higher-order in the curvature tensor.

Perhaps the most prominient reason for interest in higher curvature theories in modern
times comes from quantum gravity. It is generally expected that in a quantum theory
of gravity the Einstein-Hilbert action will be modified by the addition of higher curvature
terms. This follows from an effective field theory type argument, and can already been seen
from the renormalization of quantum fields on curved spacetime [160]. It is also possible,
via the addition of terms quadratic in curvature, to construct renormalizable theories of
quantum gravity [161]. However, this brings with it other problems, such as the existence
of ghosts in the spectrum, as will be discussed further below. Within the context of string
theory, higher curvature corrections appear in the low energy effective action. However,
the precise terms that appear in the four-dimensional world depend on the string theory
under consideration and the compactification [162, , , ].

The discovery of the AdS/CFT correspondence [62, 26, 63] around 20 years ago gives
rise to new motivations for the study of higher curvature theories. In Einstein gravity, the
only scales are the AdS length L and the Planck length /p, and so the only dimensionless
ratio is L/¢p. Higher curvature theories introduce new scales via their couplings, providing
additional parameters that can appear in the results of holographic calculations. In this
way, degeneracy is broken and one is able to make contact with a wider class of CF'Ts. This
has been used with great success in uncovering holographic results which are particular
to theories with Einstein gravity duals and results that are universal. For example, the
Kovtun—Son-Starinets (KSS) bound on the viscosity/entropy density ratio [08] was con-
jectured to be a lower bound for all theories in nature, but it was later found that CFTs
dual to higher curvature theories can in fact violate this bound [166]. Another example
would be the contribution to the entanglement entropy that arises from a sharp corner in
the entangling surface. In this case, the contribution depends on a function of the corner
opening angle, whose ratio with the central charge is effectively universal for a wide class
of holographic theories [167, , 169].

Perhaps the simplest reason for interest in higher curvature theories is simply to under-
stand which features of general relativity are special and which are robust. For example,
black holes in general relativity obey the laws of black hole thermodynamics. A huge suc-
cess of work on black holes in higher curvature theories was in showing that this is not a
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fluke — black hole solutions in any diffeomorphism invariant theory will obey the laws of
black hole thermodynamics [170), , , , ]. This is an incredibly profound result,
not only in terms of the implications for higher curvature corrections to black holes in
nature, but also because of the deep connections it suggests between geometry, thermody-
namics, and information theory. However, it should be noted that there are differences in
the black hole thermodynamics: for example, the black hole entropy in a higher curvature
theory is no longer simply proportional to the area, as we will discuss in more detail below.
These differences often lead to interesting consequences for black hole thermodynamics.
In the context of black hole chemistry, studies of higher curvature theories have provided
examples of triple points, (multiple) re-entrant phase transitions, and even an example of
a A-line for black holes [172, , , , , , , , , 43, 44, , , ,

Y ? ? ? Y Y Y Y Y ? Y ]

Having motivated the study of higher curvature theories, we now turn to discuss the
linearization of general higher-order gravities, and their black hole thermodynamics.

4.1.2 Linear spectrum of higher curvature theories

Now let us consider the linearized spectrum of higher curvature theories. Our interest here
will be to review the equations of motion for a metric perturbation A, from a maximally
symmetric geometry. In doing this, it is possible to identify the propagating degrees of
freedom in the theory of gravity. Since a general higher curvature theory can propagate
additional pathological degrees of freedom, it will be important to identify when these
problematic modes are — or are not — present will be important in the study of these
models. The primary references for this section are [192, , , ].

We will consider a general theory of gravity that has a Lagrangian built from contrac-
tions of the Riemann tensor,

1 D
e / 2L (gass Ry (4.1)

Here, and in the remainder of the chapter, we will focus on the specific case where the
Lagrangian density is a polynomial in the curvature tensor. The field equations (derived
in appendix D) that follow from the action are most conveniently written as [190]

1
gaﬁ = Pa0p6R60,05 o 590@3‘6 - 2vpv0PaPUﬁ = 87rGNTaﬁ (4'2)
where or
Paﬁpo— = aR B y (43)
afpo

72



will sometimes be referred to as the ‘entropy tensor’ and inherits the symmetries of the
Riemann tensor. Note that due to diffeomorphism invariance of the action, the generalized
Einstein tensor &,3 obeys the Bianchi identity,

VEas = 0. (4.4)

Now we will consider a maximally symmetric space with metric g, that solves the field
equations. For a maximally symmetric space, the Riemann tensor has the following simple
form

Raﬁ;w = 2K§a[ugu}ﬁ > (45)
where K is a constant of length dimension —2. In this case, the equations of motion
greatly simplify — since the background is maximally symmetric, the derivatives of the
entropy tensor that appear in the equations of motion vanish. Further, since the only
objects available are g,s, g*? and 62, the form of the entropy tensor is completely fixed by
symmetry to be

p/ﬁa/BV — 2€gﬂ[6§’/}0" (46)

where e is some theory-dependent constant. Using this, and the background Riemann
tensor, we can show that the trace of the field equations reduces to

LIK]=4(D —1)eK , (4.7)
where we write £[K] to clarify that this is the Lagrangian density evaluated on the back-
ground spacetime g,s and will be some polynomial in K. At the same time, we also
have

ALK - _
% = PP (2Ga,Gup) = 2¢D(D — 1), (4.8)
which when combined with the previous result yields the following algebraic equation:
. dL[K]
DLIK| -2K——— = 4.
LK) - 2K =0, (19)

which determines the maximally symmetric vacua of the theory. That is, this equation will
be some polynomial in K, and will depend on the couplings of the theory. The solutions
will determine how the curvature scales of the maximally symmetric vacua depend on the
coupling constants of the theory and the cosmological constant length scale. Note that
theories having up to n powers of curvature in the Lagrangian will have up to n different
maximally symmetric vacua.
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Without getting into too much detail, we note that to study the equations of motion for
perturbations away from a maximally symmetric background requires introducing another
tensor

0*L

C«Uﬁ/\n . )
opAn R&Hx

poBy T 9ue9as9s~y9vx OR (410)

For a maximally symmetric background, symmetry completely fixes this object up to three
theory-dependent constants [195]

Coo = a |6178855 67 + 605785 67 + b [GupFar — GuwFas] [37277" — 575

+ 4¢6,7 587} 67, G 505 (4.11)

In general computing this tensor for a theory of gravity is a laborious task. However, there
are efficient mechanisms for computing the constants directly from the Lagrangian [121]
or using computer algebra software like Mathematica [197], but we will not discuss those
techniques here.

Now, given the above, one can show that on general grounds a perturbation away from
a maximally symmetric solution,

G = gw/ + h/u/ ) (412)
will satisfy the following equation at linear order [195],

g, =2[e—2K (a(D—1)+¢c)+ (2a+ )0 G, +2[a+2b+d [g.,0—V,.V,] R
— 2K [a(D — 3) = 2b(D — 1) — ] g R" = 87GNT, (4.13)

where a, b, ¢ and e are constants that depend on the theory under consideration and also
the spacetime dimension, and are fixed by the structure of the tensors defined above. The
terms with superscript “L” correspond to the following:

RY =V*"V"h,, —Oh— (D —-1)Kh,
_ 1- lo -
Rl =V Vohi, - 55 = 5V DK hyy = Khgp,

1
Gﬁu = Rﬁy - §gul/RL - (D - ]->th1/ . (414)

For a general theory of gravity, the linearized equations of motion are fourth order,
which is related to the fact that theories propagate additional modes as well. Beyond the
usual massless graviton, there is also an additional scalar mode and massive graviton. In
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general, the coupling of the massive graviton to matter has the wrong sign, indicating that
this term is a ghost. The masses of the scalar and ghost-like graviton can be given directly
in terms of the same parameters appearing in the linearized equations [195],

e e(D—-2)—4K(a+bD(D —1)+¢(D — 1))

s 2a + Dc+4b(D — 1) ’
s —€¢+2K(D—3)a
= ) 4.15
Mg 2a +c (4.15)

Now, if we want the spectrum of the theory to contain only the usual massless graviton
(which will ensure the absence of the Boulware-Deser ghost instability [195]), then we must
require that the masses of the scalar and ghost-like graviton are infinite. Doing so places
the following constraints on the parameters:

2a+c¢=0, 4b+c=0. (4.16)

Note that these two conditions are also sufficient to remove all of the four derivative terms
that appear in the linear equations of motion. The conclusion is that if the linearized
equations are second order, then the theory will not possess the extra scalar or ghost-like
graviton modes. Further, note that when these conditions are imposed, the (now second-
order) linearized equations reduce to

gl =2[e—2Ka(D —3)] G, = 87GNT},, (4.17)

and we see that the higher curvature corrections have resulted in an effective renormaliza-
tion of Newton’s constant o
N

2e — 4K (D —3)a’

GNeg = (4.18)

4.1.3 Black hole thermodynamics

As was mentioned in the motivation, the fact that black holes obey the laws of thermody-
namics is not a peculiarity of general relativity — it is a generic result for black objects
derived from a diffeomorphism invariant Lagrangian. However, there are differences in the
quantities that appear in the first law. There is a great deal that could be said about the
thermodynamics of black holes in higher curvature theories, but here we will just focus on
defining entropy and conserved charges for black holes in a higher curvature theory, and
mention how these results extend to black hole chemistry at the end of the section.

75



Black hole entropy in general relativity is simply proportional to the area of horizon
cross-sections. In higher curvature theories of gravity, the area law receives corrections.
Wald provided a derivation of black hole entropy in an arbitrary theory of gravity [1 14, 115]
that gives a simple recipe for calculating the corrections. The derivation, which we will not
present here, is in the same spirit as the Hamiltonian method described in the introduction
for general relativity. The result is that black hole entropy is the Noether charge associated
with the diffeomorphism invariance of the Lagrangian. Explicitly, one can directly calculate
the entropy in the following way:'°

S = b dP 2o/ —a PP E 58 L (4.19)
which explains why we have referred to P®?* as the ‘entropy tensor’. Here the integral is
performed over a cross-section of the horizon, and ¢, is the horizon binormal, normalized
so that €,,"" = —2; for a static black hole we will just have ¢, = 2r,n,) with n” the unit
timelike normal to the horizon and r# the unit spacelike normal to the horizon.

The problem of conserved charges in generic higher curvatures theories was nicely ad-
dressed by Deser and Tekin [199] and Sentiirk, Sigman, and Tekin [200]. The approach
takes advantage of the results of [199] which addresses the problem of conserved charges
in gravity theories involving up to quadratic powers of curvature. To define the conserved
charges in higher-order theories, the following fact is used. When the action of an arbitrary
higher-order theory is expanded to second order in a metric perturbation, the theory can be
mapped into an equivalent action that involves only up to quadratic powers of curvature.
The quadratic theory is taken to have an action

S = / dPx/=g [MR = 2Ao) + aR* + SR, R"™ + v (Ruas R — 4R, R* + R?)] |

(4.20)
and the couplings in this action can be matched directly to the constants that characterize
an arbitrary higher curvature theory at the linear level [195]

A=2e—4K[a+bD(D—-1)4+c¢(D—-1)], a=2b—a, f=4a+2c, ~v=a. (421)

If Qgim[€] is a conserved charge in Einstein gravity, then the conserved charge in the
higher-order gravity will be given by

Qclél = (A+2D(D - 1)Ka+2(D - )KF+2(D = 3)(D — 4)K7) Qenl¢],  (4.22)

6Note that while, for a given Lagrangian, the Wald entropy assigns a unique entropy to a black hole,
there would be ambiguities applying it more generally. For example, any term added to the Wald entropy
proportional to the extrinsic curvature would yield the same black hole entropy (the extrinsic curvature
of the horizon vanishes), but would differ elsewhere.
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where K is the curvature length scale of a maximally symmetric vacuum in the higher
curvature theory determined by the polynomial (4.9). In the case where the theory prop-
agates neither the scalar mode nor the massive, ghost-like graviton, then the relationship
between the charges becomes quite simple:

Qclé] = S Q). (423)

GNeff

In other words, essentially the only change is that Newton’s constant is replaced with the
effective Newton’s constant for the theory.

With the appropriately defined conserved charges, black holes in a higher curvature
theory will satisfy the first law of black hole mechanics. The temperature that appears
in the first law can be obtained in the same way as before: either by identifying it as the
surface gravity divided by 27, or, equivalently, obtaining it via regularity of the Euclidean
sector. Smarr formulae can also be defined for higher curvature theories, but there are
differences. Since the coupling constants of the higher curvature terms are dimensionful,
a consistent scaling relation demands they must appear in the Smarr formula. This ‘black
hole chemistry’ approach for a higher-order gravity results in a first law and Smarr formula
of the following schematic form:

OM =T8S +VoP+3 > wiar®,

(D—=3)M = (D —2)TS —2PV + ) > (2n—2)AP ¥, (4.24)

where A are the coupling constants for terms of order n in the curvature, and Ul are

the conjugate potentials. In the same sense as the thermodynamic volume, the quantities
that are conjugate to the couplings can be understood as arising from higher-order Komar
potentials [37, 201].

4.2 Classification of theories: spherical symmetry

Having provided some essential background material, in this section we are going to address
a simple question: when does a theory of gravity admit solutions that are natural extensions
of the Schwarzschild solution? We will see that the answer leads naturally to gravitational
theories that are particularly well-suited as toy models for addressing questions about
black hole physics, thermodynamics and holography. Unless otherwise indicated, for the
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remainder of this chapter, it should be assumed that we are always discussing spherically
symmetric metrics, as described below.

First, let us clarify what is meant by ‘natural extensions of the Schwarzschild solution’.
We are interested in vacuum, static and spherically symmetric solutions. The most general
static, spherically symmetric spacetime can be cast in the form!”

2
% +7%d; b, (4.25)
where dX} ,_, is the metric on a (D — 2)-dimensional space of constant curvature k.'® The
Schwarzschild solution has the property that one is free to set N(r) = 1. Mathematically,
this freedom can be traced back to Einstein gravity having a single independent field
equation under the constraint of spherical symmetry [202]. So a more mathematically
precise phrasing of the question is: “What theories of gravity have a single independent
field equation for a static, spherically symmetric vacuum?” Further, we will restrict our
attention to theories that reduce to Einstein gravity as some parameter in the action is
sent to zero.

ds®> = —N?(r) f(r)dt* +

The question as now posed eliminates certain examples that spring to mind. For exam-
ple, it is well-known that the standard Schwarzschild solution can be embedded in f(R)
and Weyl? gravity. However, neither of these theories meet our criteria. In the case of f(R)
gravity, there are two independent field equations in the most general case — it is only after
one places some constraints on the metric function that the N = 1 solution is permitted.
Second, in the case of Weyl?, the field equations for pure Weyl? gravity do admit the single
metric function solution in general [203]. However, in this case the property is spoiled by
demanding an Einstein gravity limit, i.e. by adding the Ricci scalar to the Lagrangian.

However, this does not mean that, for example, Weyl? gravity is a theory of type we
are looking for. This theory has two independent field equations, and moreover does not
reduce to Einstein gravity in any limit.

TLet us clarify a minor technicality regarding spherically symmetric spacetimes. The metric on a
spherically symmetric spacetime can always be decomposed as

ds? = dy? +r2d0%_,

where dQ%, , is a metric on a (D — 2) dimensional sphere and dy? is a metric on a two-dimensional
manifold. The parameter r that appears multiplying the metric of the sphere is a scalar function on the
two-dimensional manifold with metric dy?. Provided r is a good coordinate, i.e. that Vr # 0, the metric
on dy? can be decomposed as described. We will assume that this is possible throughout this chapter.

18This is an abuse of language that is often used in the literature — referring to this type of metric as
‘spherically symmetric’ even when the transverse geometry is not a sphere.
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To address the question, we consider a theory of gravity that is built from the metric
and Riemann tensor with bulk action

1 D
S = T /d 2L (G, Ruvpo) (4.26)

where we allow for the possibility of matter contributions but do not write them explicitly.

We will refer to the explicit field equations on several occasions below, but let us note
that there is a much more efficient method for obtaining field equations under certain
symmetry restrictions. This method, which is sometimes referred to as the “Weyl method’
in the literature, involves evaluating the action for a specific choice of metric and then
varying the action with respect to the metric functions to obtain the field equations [204,

]. Substituting the ansatz (4.25) into the action, it is possible to integrate over the
transverse directions giving the following schematic result

Qk D—2 D—2
= —" N N 4.2
S 67l /dtdrr LI[f, N] (4.27)

where the Lagrangian density is now identified as a functional of f and N, and we have
suppressed their r-dependence for convenience. The field equations can be obtained simply
by varying the action with respect to N and f. The results are

oS Qp.p_orP™? 28, 05 Qp_orP2EH — NET,
SN 167Gy fN2'  §f 167Gy f '

(4.28)

The second variation above gives a simple criteria for when the theory has a single inde-
pendent field equation: If §S/(df) = 0 upon setting N = 1 there is only single independent
field equation. To concretely illustrate the idea, let us now apply this procedure to theories
up to cubic order in curvature. We will do this in an ‘exploratory’ manner, mentioning the
various theories that result as we go along. At the end, we will summarize and provide
greater detail on the particular theories that have resulted.

The first interesting case is quadratic gravity, where there are three invariants that can
be combined to build an action

Ql = R2 ) QQ = Roc,BRaﬁ ) Q3 = RaﬁJpRaﬁap . (429)
The Lagrangian density of the quadratic part of the theory would then be given by

Lguad = €191 + 292 + 393, (4.30)
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for some constants ¢q, ¢ and c3. To implement the procedure just described, we need these
invariants in the case where N = 1. They are quite easily computed to be

o, — [fu 2D -2)f" (D—2)(D;3)(k'—f)r |
Q2:%(f”+ (D—2)f’)2+(D_2) (_L’+ (D—3)2(k—f)>2’
Qs = (f")?*+2(D —-2) (%)2 +2(D —2)(D - 3) (k;f)Q . (4.31)

We now must compute the Euler-Lagrange derivatives of r?~2Q;, with the results,

0y (rP72Qu) =rP=0 [2r' fU 4+ (D = 2) (4°fO + 20%(D = ) f" — 8r(D — 4) f’
—12(D = 3)(k = )],

0y (rP72Qa) =rP7 [P f9 + (D = 2) (2°f¥ +12(D — 6)f" — 3r(D — 4)f'
—4(D = 3)(k— )],

0y (rP72Qs) =rP0 [2r' fU (D = 2) (4°f© + 20*(D = 5) f" — 4r(D — 4) f’
—4(D = 3)(k = f))] - (4.32)

To ensure that the theory possesses a single independent field equation, we must demand
that

(Sf (T‘D_Z [Cl Ql + CQQQ + 03Q3]) =0 (433)

for all possible choices of f. Explicitly, this constraint takes the form
0=—4(D—-2)(D—-3)(3c1+ca+c3)(k—f)—(D—2)(D—4)(8c; + 3ca + 4eg) rf’
+2(D—2) ((D — e+ %(D —6)es+ (D — 5)03) 2
+2(D —2)(2¢1 + 3 + 2¢3)r° fO) + (201 4 ¢ + 2¢3)rt fO (4.34)

Demanding that the coefficients of each term in the above vanishes, we see that there are
two possible solutions:

{c1=c3,c0=—4c3} and {D=2,c0=—-2(c;+¢3)}. (4.35)

The first solution, which has a single free parameter c3, is valid in all dimensions and
gives (unsurprisingly) the Gauss-Bonnet density, Qap = Ragu R*?" —4R,,, R* + R?. The
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second solution is valid only in D = 2, and it corresponds to a ‘trivial theory’ that vanishes
identically for the static spherically symmetric ansatz. While uninteresting, the second
solution highlights the fact that in general we can expect the results to depend on the
particular spacetime dimension.

Having determined the constraints on the constants appearing in the Lagrangian den-
sity, we can now go back and compute the field equations. To obtain the non-trivial
field equation, we need the curvature tensors with N explicitly included. These are a bit
messier, and so we do not explicitly present them. Adding back in the Einstein-Hilbert
term, so that the Lagrangian density reads £L = —2A + R + ¢3(Q1 — 4Qs + Q3), we find
the following,

" (%) e = (fgw—_Gi) {TD_l ((D = I)Q(jl\) — " L

+03(D—3)(D—4)<k_f)2)]/, (4.36)

r2

where the prime denotes a derivative with respect to . The fact that the field equation is
a total derivative is not an accident — as we will discuss below, this is one of the properties
that are generic to this class of gravity theories.

The quadratic theory is the only one for which it is useful to discuss the construction
explicitly — at higher orders in the curvature, the expressions are much messier and very
little insight can be gained from the intermediate steps. So let us now consider this con-
struction at cubic order in curvature, presenting only the most relevant details. At cubic
order, there are eight possible independent invariants that can be constructed from the
metric and Riemann tensor, given by [200]

Cl - Rag pRaupyRuauﬂ 3 C2 = RaﬁapRopﬂyRm/aﬂ 3 CS = chﬁapRaﬂg,uRp# )
Ci = RapopR* PR, C5= Rapo,R R, Co¢= R, Rs"R,",
C: = R,’RR, Cs=R®. (4.37)

These curvature invariants can be computed in arbitrary dimensions,'® which we do first
with N = 1. We consider the following cubic Lagrangian density

8
Ecubic == Z Cici y (438)
i=1

9Efficient techniques for doing this computation by hand are given in [207].

81



and perform the variation with respect to f, yielding the constraint equations to enforce
a single independent field equation. The number of parameters fixed by the constraint
equations depends on the spacetime dimension. Specifically, the situation differs depending
on whether D > 4 or D < 4. Here we will discuss the four-dimensional case, and then
proceed to the more general case in higher dimensions.

In four dimensions there is the following four-parameter family of solutions

c . 301 - 3602 — 1403 o — _301 + 4802 + ]_463
v 56 T 7 ’
6 96 14c3 — 21 —3c; — 20 7
o = c1 + 96¢ ;—8 C3 Ce - €1 5602 + (Ce ‘ (4.39)

What this means is that there is a four-parameter family of gravitational theories that
admit single metric function solutions; we now chose a convenient ‘basis’ for this ‘theory
space’. We find that the choice

CcC1 = —8, Cy = 4, C3 = —24, Cg — 16 (440)

gives the six-dimensional Euler density (i.e. the cubic Lovelock density), which vanishes
identically in D < 6 due to the Schouten identities. The remaining three interactions are
given by the following convenient choices of coefficients:

P 01:12, 02:1, 03207 06:8.
7-11 (31:0, CQIO, 03:1, 06:0.
752 61:0, CQZO, 03:0, 66:1. (441)
Here the various terms are given by the following cubic densities:
P = 12R.’,'Rs"’R,*," + RLGRI\ RS — 12R0p,, R R” + 8RIRL R}
Ti = 3R."Rs"R — 2R R Rogu, — {RRagu B + R Rap, RV,
To = RJRy"R,* —3R.,°Rs"R+ iR°. (4.42)
Here 71 and 75 are two ‘trivial theories’, in the sense that they produce vanishing field
equations under the constraint of spherical symmetry. The P term is quite interesting —

it coincides with the Einsteinian Cubic Gravity (ECG) term that was recently constructed
by Bueno and Cano [121] by completely different methods.?® While the Lagrangian density

20In that work, Bueno and Cano were constructing the most general theory of gravity that propagates
only the usual massless spin-2 graviton on the vacuum and has dimension independent coefficients in the
Lagrangian. The fact that it admits four-dimensional single metric function solutions under the constraint
of spherical symmetry was only noticed afterward [1, 157]
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for ECG is the same in all dimensions, it is only in four dimensions that the theory admits
single metric function solutions, as was noticed in [1, 157]. In four-dimensions, ECG can
be considered the most general (non-trivial) cubic theory that has this property, and it is
also the simplest — we will have more to say about ECG below.

As mentioned, the situation is different for D > 4. We find that only three couplings
¢; are independent; we choose these to be ¢, ¢y and c3, while the others are constrained in
the following way:

3 6+ 6D — 3D? 142D — D?
“ = 3ep-n" 22D 22D
Lo 3 oM4s6D-1D  AB-3DEDY)
(2D — 1) (D—2)(2D — 1) (D—-2)(2D -1
S S 8(8-5D) . 208-TD-2D%
oD 1" D-2)2D-D?" 3D-22D-1)
-3 2(D? + 6D — 12) 2(D? — 2)
cr = 1+ C2 C3,
2eD-1)"' T (D-2eD-1)"?" (D-2)(2D 1)
2
" 1, 6-6D-D (D—1)(D+3) (443

seD-1)"' " 20-2)2D-1)7? 6MD-22D-1*

Since there are three free parameters, {c1, ¢, 3}, the resulting theory is a linear combina-
tion of three independent cubic densities, for which we now seek a convenient basis. We
find that choosing

co=-8, =4, c3=-24 (4.44)

produces the six-dimensional Euler density, X5, which is topological in six dimensions and
vanishes identically for D < 5. Meanwhile choosing

3(D —2)
=1 =0 — 4.45
(&1 ) Ca 9 C3 (2D—3)<D—4)’ ( )
produces the quasi-topological density
3(3D —8)
Zp = RS VRRS ( Ragu R R
b w s e T D 3y (D = 4) 8 o
3(3D —4
—%RJRHO‘R —3(D — 2)Roppy R*P , R 4 3D Ry, R R

3D ) . (4.46)

+6(D — 2)R,"R,"Rs* + ?R:”
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The gravitational theory described by this term was discovered independently by Oliva and
Ray [117] and Myers and Robinson [115]. We will discuss some of its properties below.?!

Since there is an extra free parameter, we obtain an additional independent cubic
density which shares the property of permitting a solution with a single metric function.
The new term could be obtained by setting c3 = 1 and ¢; = ¢ = 0, but a more convenient
choice (motivated by the Einsteinian theory in four dimensions) is

C1:14, CQZO, 03:2, (449)
which selects the following Lagrangian density,

4(66 — 35D + 2D2)

Sp = 4R, R™ Rgeyp + 2RP R Rppe — 300 —2)2D _ 1) R R’ Ry,
N 2((;)32;)251;_4 f;) RaﬁRuyRauﬁu - Ef)(i)__z;lézll_l)f )> RRaﬁuuRo‘ﬁ“"
R L o e (450
The choices (4.49) lead to the following relationship in four dimensions:
Sy + 12(6 +4T =P. (4.51)

4

Since A vanishes identically in four dimensions and 7; makes no contribution to the field
equations, we see that in four dimensions the theory given by the Lagrangian density Sp
(4.50) yields the same field equations as Einsteinian Cubic Gravity. However, we note that
there is no choice of ¢1, ¢o and c3 such that the theory reduces precisely to ECG in four
dimensions — mathematically, this is related to the fact that the constraint equations are
fundamentally different in structure in four compared to higher dimensions.

The discussion of the cubic theory provides all the additional insight required to make
some general comments. In general we can expect three types of theory to appear in this

2INote that the expression Z}, from [115] can be obtained by choosing

12(D% — 5D +5)
2D —3)(D—4)

C1 = O7 Cy = 1, C3 = — (447)

However, this term is not independent from the quasi-topological term and the six-dimensional Euler

density, but rather [118]
Xo =42}, —82Zp, (4.48)

and so Z}, does not provide the third independent invariant we are searching for here.
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construction: the Lovelock class of theories, quasi-topological gravities, and a new class of
Lagrangians that generalize some of the nice properties that Lovelock and quasi-topological
gravities share — we will call these generalized quasi-topological gravities. While we have
only presented the analysis for the quadratic and cubic class of theories, this classification
seems general. It was shown to be true for quartic theories in arbitrary dimension in [0]
and (at least) up to tenth order in curvature in four dimensions in [158]. In forthcoming
work, examples up to tenth order in curvature are presented in five dimensions [11]. In
the following subsections we will discuss at more length the three classes of theories, along
with their field equations and general properties.

4.2.1 Lovelock gravity

We have seen that in both the quadratic and cubic cases, one class of objects selected by
the single metric function criterion is the Euler densities. These objects comprise Lovelock
gravity [110], which is the most well-known and well-studied higher curvature theory of
gravity. In some ways, Lovelock gravity can be considered the natural generalization of
Einstein gravity to higher dimensions. As we will describe, Lovelock theory is constructed
from the Euler densities. The n'® Euler density involves n powers of curvature and in-
tegrates to the Euler characteristic of 2n-dimensional manifolds. In this sense, n'* Euler
density is a topological term in D = 2n and does not contribute to the equations of motion.
However, if we dimensionally continue the Euler density, and include it in the action for
D > 2n then it contributes non-trivially to the dynamics.

In D dimensions, the Lovelock action will include terms up to | (D —1)/2] in curvature.
Since the Ricci scalar is the Euler density for two-dimensional manifolds, in four dimensions
the Lovelock action reduces to the Einstein-Hilbert action with a cosmological constant,
while in higher dimensions it will include additional terms. A particularly nice feature of
Lovelock gravity is that the equations of motion are always second order for any metric.
In fact, Lovelock theory is the unique theory that has this property for any metric. It is
in these aspects that Lovelock theory can be considered the natural extension of general
relativity to higher dimensions. Let us consider spherically symmetric solutions of the
theory in more detail.

The bulk action of Lovelock gravity is given by

! / dPx/lg|L (4.52)
M

- 167TGN
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where L ovelock 18 the Lovelock Lagrangian density [116],

L(D-1)/2]

(D —1)(D —2) (D—2n-1),
L= P +R+ Z An W(—1) KXo, (4.53)

where the )\, are coupling constants with length dimension 2n — 2. The Euler densities
Xy, are given by

1
XZn _ 5#1 ManVU/z ) RV2n 1V2n (454)

2n Vi...2n H1p2 Hon—1M42n ?

with the generalized Kronecker symbol given as

SHH2 i r|5[u15u2 55:] . (4.55)

ViV2...Up

Vacuum spherically symmetric black holes in Lovelock gravity, first studied by Wheeler,
are now well-known, see for example [20%, , 3], and in general the solution takes the
form

ds* = —f(r)dt® + % +17d3; by, (4.56)

i.e. is characterized by a single metric function. There is a single independent field equation

and it is a total derivative,
L? ~k)\]
[TD—lh ( (f(r) ))} —-0, (4.57)

r2

which can be directly integrated. A remarkable fact about Lovelock gravity is that, after
integrating the field equation, the function f satisfies an algebraic rather than differential

equation,
) <L2(f (:2) - k:)> _ w::B | (458)
with h(z) given by the polynomial function
L(D-1)/2] A,
h(z)=1-a+ Z Tt (4.59)

In these expressions, w is an integration constant related to the conserved mass M

167Gy M

D-3 N

= 4.

w (D — 2)Qk7D,2 ( 60)
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where €, p_o is the (dimensionless) volume of the transverse space. Note that since the
field equations are algebraic and the mass is the only constant of integration, Lovelock
black holes are characterized only by their mass.

An immediate consequence of the fact that the field equations are second order for any
metric is that Lovelock gravity matches Einstein gravity at the linearized level. For exam-
ple, the equations of motion for a perturbation about a maximally symmetric background
take the form,

1 !
£Ly = 5H(f)GEy (4.61)

where GL 5 is the Einstein tensor linearized on a space of constant curvature, while 2'(f)

is the derivative of the polynomial h(x) evaluated for a space of curvature radius L/v/ foo-
The metric function for such a space, at large r, reads

2

fr) ~ foo% : (4.62)

Since the higher derivative contributions to the linearized equations vanish, we conclude
that Lovelock theory propagates only the usual massless graviton.

A nice aspect of Lovelock gravity is that we have an expression for the Lagrangian
density in arbitrary dimensions. However, it is useful to think for a moment of how one
could ‘discover’ Lovelock gravity if this expression was not known. Recalling the general
structure of the field equations for a generalized theory of gravity,

1
gaﬁ = PaapéRgapg — Egaﬁﬁ - QVPVUPapgg = 87TGNTQ5 y (463)

the Lovelock theories could be constructed in the following way. Since these theories have
second order equations of motion for any metric, it must be the case that V’V°F,,,5 = 0.
In fact, it turns out that Lovelock theories satisfy the condition that F, .3 is divergenceless
on any index, and imposing the slightly weaker condition involving second derivatives leads
to nothing new [210]. We will apply some of this insight for quasi-topological gravity in
the next section.

4.2.2 Quasi-topological gravity
Another class of theories that have been selected by the single metric function condition

is quasi-topological gravity. Cubic quasi-topological gravity was discovered independently
by Oliva and Ray [211] and Myers and Robinson [ 18]. The theory as presented by Myers
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and Robinson is non-trivial in D = 5 and also in D > 7; in six dimensions, the theory is
trivial.?? A quartic generalization was provided shortly after [212], and more recently a
quintic theory valid in D = 5 was presented [213].%

The advantage of quasi-topological gravity is that theories of any order in curvature
exist in D = 5 and have second order equations of motion for spherical geometries. Contrast
this with Lovelock gravity, where to have curvature of order n the spacetime dimension must
be at least 2n+1. As a result, the quasi-topological theories provide simple theories to study
the effects of higher curvature corrections in five dimensions. Of course, nothing comes for
free and the tradeoff here is that if the assumption of spherical symmetry is relaxed, then
the field equations will generically be fourth order. Nonetheless, quasi-topological gravity
has been used successfully as a toy model in holography and beyond [211, 96, 16].

Let us consider the properties of cubic quasi-topological gravity before making some
general remarks. The action for cubic quasi-topological gravity is
1 D (D—1)(D—2) 8(2D — 3)
5= 167rGN/d x\/E[ L2 R 6D =8 BD:— 15D+ 16)"°| -
(4.64)
with Zp given by eq. (4.46) above. The field equations are most easily computed by
substituting a general spherically symmetric metric ansatz and varying the action with
respect to N. This produces the following equation of motion:

[rD—l (1 - —L2({2_ o % (—L2({; k))3>] =0,. (4.65)

The field equation can be directly integrated, giving

- (L2(f — k) wP=3L2
h < = =~ - (4.66)
where we have defined .
h(z)=1—x+ %.ﬁ , (4.67)
and w is an integration constant related to the mass:
167Gy M
D-3 N
= ) 4.68
“ (D —2)Qp2 (4.68)

221t is for this reason that the theory was called ‘quasi-topological’ gravity, since in six dimensions it
behaves like a topological invariant for certain metrics. Of course, it is not actually a topological invariant,
and does not vanish for sufficiently complicated six dimensional geometries.

23Examples of quasi-topological theories up to 10th order in curvature in five dimensions have been
found in unpublished work by the author [11].
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The most remarkable property of the field equation is that it is ¢dentical to the equiva-
lent equation in cubic Lovelock gravity, but here it is also valid in D = 5. As a consequence,
we see that similar properties to the Lovelock case carry over: the black holes are described
entirely by their mass.

An unexpected and non-trivial property of quasi-topological gravity that was noted
in [118] is that the linearized equations of motion for graviton perturbations about a
maximally symmetric space are second order. This is quite remarkable since the theory
itself generically has fourth order equations. Explicitly, the linearized equations of motion
are of the same form as in Lovelock gravity,

1-
Eas = 5 (f)Gas (4.69)
where f,, satisfies the embedding equation

7!
1—foo+ﬁf§o:0. (4.70)

Our discussion has focused on the field equations of cubic quasi-topological gravity,
but the similarities with Lovelock theory generalizes. In all known examples of quasi-
topological theories, the metric function satisfies a polynomial equation identical to the
Lovelock polynomial of the same order. Quasi-topological theories linearized about a
maximally symmetric background give rise to second order equations of motion for the
perturbation, and so propagate only the usual massless graviton.

Unfortunately, unlike Lovelock theory, very little is known about the general form of
quasi-topological Lagrangians. For example, it is known that the density

1 1

QT = 5 gy Ot (Ol it — R, R )
— i Claty - Cl 00 (L71)
where
(D—=4)! n(n—-2)D(D—-3)+nn+1)(D—-3)+(D—-2n)(D—-2n-1)
=D -2k + 1) (D—=3)" (D —2)" 1+ 271 —2(3— D)»!
(4.72)
is a quasi-topological theory in D = 2n — 1 [211]. However, beyond this no general closed

form expressions are known. Some progress can be made by noting the following. All ex-
amples of quasi-topological theories presented to date satisfy the condition VP =0
for a spherically symmetric metric. This condition is identical to that which defines Love-
lock gravity, but restricted to spherically symmetric metrics. This motivates the following
definition for quasi-topological theories:
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Definition. A theory of gravity with Lagrangian density L = L (gag, Ragu) and action
S = [dPxz+\/|g|L belongs to the quasi-topological class if it is not a Lovelock theory and it
satisfies both:

58| _
5f N=1

for a spherically symmetric metric.

0 VP =0 (4.73)

Using the definition, there is a simple check that one can do to see if a theory is
quasi-topological: evaluate the action for a black brane (i.e. k = 0), and verify that

9oL (D-2 0L 1oL
“arop T ¢ af  20f
0:8(f6_£)+{(D—1)f_f’}8£ 2 OC

rof of  rof .

0

or

-
which are just the ¢rt and x;rz; components of VP (the other components vanish
identically) written in terms of direct variations of the on-shell Lagrangian. Note that
in deriving these equations we have implicitly used the condition 05/(df)|n=1 = 0 to
justify setting N = 1. The constraints in eq. (4.74) can be used to efficiently derive quasi-
topological theories, and may be useful in determining a closed form expression for the
quasi-topological Lagrangians.

4.2.3 Generalized quasi-topological gravity

In our construction of the most general cubic theory of gravity that satisfied the single met-
ric function criterion, we found in addition to the Lovelock and quasi-topological theories
a new Lagrangian density which we called Sp. While this was just one example, carrying
out the same procedure at higher order in curvature yields new Lagrangian densities that
share a number of properties with Sp, suggesting that these theories form a class of their
own. We shall refer to these theories as ‘generalized quasi-topological gravities’ since they
share a number of the same surprising properties of quasi-topological gravity, but are a
bit more complicated. A particularly nice property of the generalized quasi-topological
theories is that they are non-trivial even in D = 4, and as we will see, they are in some
sense the ‘nicest’ higher curvature theories in four-dimensions. Going forward, we will use
the following definition:
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Definition. A theory of gravity with Lagrangian density L = L (gag, Ragu) and action
S = [dPz+\/|g|L is a generalized quasi-topological gravity if it satisfies

05
Of |n=1

for a static, spherically symmetric metric and has non-trivial field equations, but is not a
Lovelock or quasi-topological theory.

=0, (4.75)

Next, let us consider the field equations for the cubic generalized quasi-topological
theory. The action is

1 12A(D — 2)(2D — 1)
- @”zy=g(R 27 Sp)
167Gy / A T D= 3)(184 = 514D + 291D? — 49D° + 4D")
(4.76)
which when varied with respect to N yields a field equation of the form

F =0, (4.77)
where F is a functional of f and its first two derivatives,

12A(D — 2)

2

F o= (D=2t (k I %) (184 — 514D + 291D2 — 49D3 + 4D4) (D*+5D — 15)

X <§7’D4f/3 grP- 5ff”(%f/ +k—f)=2r"((D—4)f —2k) f?

+8(D = 5)rP (] ~ k)

—%(D )P~ (k — f) 2(( %D2+312D—489)f

+k(129 — 192D + %D - %D?’ + )] (4.78)
The field equation can be directly integrated, giving

F=(D-2)wP? (4.79)

where w is again a constant of integration that is related to mass in the following way:

by 167Gy M
(D —2)% 2

w (4.80)
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Despite the very complicated structure of the field equations, let us note two remarkable
properties. First, it is a total derivative that can be integrated once for free giving a
constant of integration related to the mass. Second, the field equations are no longer
algebraic: they reduce (after integration) to a non-linear second-order differential equation
for the metric function f.

As mentioned, the theory defined by Sp shares a number of properties with the quasi-
topological and Lovelock theories, including being ghost free, having black hole solutions
characterized only by mass, field equations that can be directly integrated, and non-
perturbative black hole thermodynamics. In the following section, we will show in detail
that these properties, that are somewhat trivially true for Lovelock and quasi-topological
gravity, are indeed true for the generalized quasi-topological class as well.

4.3 Properties of the theories

We will now turn to a discussion of some basic properties of these theories. In particular,
we will discuss how the theories selected by the single field equation criterion are (per-
turbatively) ghost free, the field equations reduce to (at most) second-order differential
equations, black holes are described only by their mass, and black hole thermodynamics
can be studied non-perturbatively in the higher curvature couplings. Since these prop-
erties have been solidly established for Lovelock and quasi-topological gravity, in these
subsections the focus will be showing these properties are valid also for the generalized
quasi-topological models as well.

4.3.1 No ghosts

Theories that have a single independent field equation for spherically symmetric metrics
are (perturbatively) ghost free about a maximally symmetric background. By ‘ghost-free’
we actually mean something slightly stronger: that the theory propagates only the usual
massless spin-2 graviton. In fact, one can view the single metric function property as a
sufficient condition for a theory to propagate only the massless graviton. However, it is
not a necessary condition — there exist (perturbatively) ghost free theories that do not
admit single metric function solutions. A simple example is ECG in dimensions larger than
four [4]. This can be summarized in the following theorem:

Theorem. If a theory of gravity with Lagrangian density Leay = L (Gap, Rapuw) has a
single independent field equation under the constraint of a vacuum static and spherically
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symmetric metric, then the theory propagates only the usual massless spin-2 graviton on a
mazximally symmetric background.

In exploring cubic and quartic theories, this result was first conjectured in [5], and then
was subsequently proven in [156]. We will demonstrate its validity for the new term Sp
that was presented above, and then sketch how the general proof works. Recall that the
action is

1 12MX(D —2)(2D — 1)
- dPx\/=g (R—QA 5),
167Gy / g T D —3)(184 — 514D + 291D2 — 49D% + 4D1)°°
(4.81)
and we parameterize the cosmological constant in the standard way as
(D—-1)(D—2)
A=— 4.82

To linearize the theory, let us first seek the appropriate vacuum background. It is easy
to verify that the Minkowski background provides a vacuum for the theory with A = 0.
Slightly more generally, considering a nontrivial A and imposing the maximal symmetry

condition

= 2f0

Ra,ﬁ’ap = _? GaloYp)B8 (483)
upon evaluating the field equations for this choice of background, we find the following
constraint:

M) 2= L= fou (D = 6) % =0, (4.84)

which determines f.,. This in turn is related to the effective cosmological constant of the

theory

(D — 1)(D — 2)foo
212 '

Due to the cubic nature of this condition, the theory will generically have three distinct

vacua, with one having a smooth limit to the Einstein case as A — 0.

Aeff:_

(4.85)

Next we consider a perturbation around the obtained maximally symmetric back-
grounds
Gap = gaﬁ + hocﬂ . (486)
The linear equations of motion can be efficiently obtained using the method introduced
in [121, |—they are given by

1 !/
£y =~ ()Gl (4.87)
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where the prime denotes differentiation with respect to f,, and Géﬁ is the Einstein tensor
linearized on the background (4.83). The remarkable fact that the linearized equations
of motion coincide with the linearized Einstein equations indicates that the massive and
scalar modes are suppressed (i.e. they are infinitely heavy) and the theory propagates the
same transverse massless graviton as Einstein’s gravity.

The fact that the theory matches Einstein gravity at the linear level is not a fluke —
as summarized at the beginning of this section, it is a general property of the theories
that admit single metric function solutions. The fact that this happens at the cubic and
quartic levels [6] in curvature, motivated the conjecture presented in [5]. A proof of this
was first provided by Bueno and Cano in [156]. Their proof proceeds in the following way.
First, a perturbative solution for the metric outside of a static and spherically symmetric
mass distribution is obtained. In this solution, the masses of the ghost-like graviton and
scalar mode appear, and it is found that only when both m? = mg = oo is the solution
characterized by a single metric function.

4.3.2 Second-order integrated field equations

A remarkable property of all of the theories defined by the single metric function condition
is that the field equations for a spherically symmetric metric is always a total derivative and
can be integrated to yield a differential equation that is at most a second-order differential
equation for the metric function. Using the same argument, it is possible to prove that
when the theory is either Lovelock or quasi-topological, then the equations are algebraic.
(Note that part of this proof is inspired by [156], though the approach here is somewhat
different and closer to the understanding developed in [5]).

As mentioned near the start of this chapter, a general theory of gravity built from
contractions of Riemann tensors will give rise to fourth-order equations of motion. Under
the constraint of spherical symmetry, the number of independent field equations is reduced
to two. These correspond to the &! and &,” components, while the Bianchi identity relates
the remaining components of the field equations (which are all equal when written with one
index down and one index up). For theories that admit single metric function solutions,
the Bianchi identity reduces the order of the single independent field equation by one. To
see this, note that for these theories the r-component of the Bianchi identity reads (for

arbitrary k)

&7 — (DT—_Q)&-@' _0, (4.88)

d&." (D —2)
+
dr r
where &; stands for one of the transverse components of the field equations (they are all
the same), and no summation is implied. Since any component of the &,” contains at

94



most four derivatives of f(r), we can conclude that &." contains at most three derivatives
of f(r), i.e. the Bianchi identity reduces its order by one.

To see that the field equations are actually total derivatives and can be integrated once
more, we turn to a more in-depth discussion of the on-shell action for these theories. The
defining condition of the single metric function theories is that

08 B
Of |n=1
which is equivalent to demanding that the Lagrangian, when evaluated on a spherically

symmetric metric with N = 1, is a total derivative. More generally, the on-shell action
will have the general structure [7]

0, (4.89)

V09|L = NF| + N'Fy + N"F3 + terms non-linear in derivatives of N (4.90)

where F; are functionals of f and its first two derivatives. The schematic structure of
the terms involving non-linear derivatives of the lapse is completely fixed by the time
reparameterization invariance of the theory, as noted in [I56]. That is, since t — ot is
equivalent to N — aN, the Lagrangian must be a homogeneous function of N of degree 1.
This means the only possible non-linear contributions come in the form N?/N, N'N" /N,
and so on. As noted in [5], such terms cannot be eliminated using integration by parts.
As a result, successive integration by parts can reduce the action to the following form:

VI09|L = N [Fi — Fo + F5)' + terms non-linear in derivatives of N. (4.91)
A variation with respect to N then setting N = 1 yields the only independent field equation:
& =F =R -F+F], (4.92)

which we now directly see must be a total derivative. In vacuum (or in the presence of
suitable matter), this equation can be integrated for free, yielding an equation that is at
most second-order determining the metric function.

Now, let us restrict to Lovelock and quasi-topological theories, where we can actually
do better than the above argument. As defined in the previous section, these theories both
satisfy VP = () for a spherically symmetric metric. As a result, the field equations
for these theories take the simplified form

1
gaﬁ = Raauupﬁguy - §goz,BL . (493)
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Note that because the terms involving derivatives of the entropy tensor vanish, these equa-
tions contain at most second order derivatives of the metric. Now, by the same argument
above the Bianchi identity implies that £." contains at most a single derivative of the metric
function, and then the fact that £,” = F’ reveals that the integrated field equations must
be algebraic in f(r). Thus, we have proven that Lovelock and quasi-topological theories
will always have field equations that can be integrated to give a polynomial determining
the metric function f(r).

4.3.3 Black holes have no hair

It has been rigorously established that single metric function theories do not propagate
ghosts and have second order integrated field equations. The remaining two properties
seem to hold completely generally, but at this point we do not have rigorous proofs of
them for the generalized quasi-topological theories.

The next interesting property that we will discuss for these theories is that black hole
solutions have no higher derivative hair [215]. Spherically symmetric vacuum solutions in
general relativity are characterized by mass alone. This property also extends to Lovelock
and quasi-topological gravity. Here we will argue that it is true for the entire family
of single metric function theories by studying the generalized quasi-topological class of
theories. For simplicity of presentation, we will focus on asymptotically flat black holes in
four-dimensional ECG, but note that this property extends generally to higher dimensions
and different maximally symmetric asymptotics [, , 0, , 7,12, 11].

In general, a differential equation of order n requires n constants of integration. For
black hole solutions, additional constants of integration that arise in this way are often
called ‘higher derivative hair’. It is obvious that spherically symmetric vacuum black holes
in Lovelock and quasi-topological gravity have no higher derivative hair, since in these
cases the field equations are algebraic and the only constant of integration is the mass. In
the generalized quasi-topological case, however, after integrating the field equations once,
the field equation is still a (non-linear) second order differential equation. Thus, in general,
one would expect the black hole solutions in these theories to be characterized by three
integration constants — the mass, and two additional parameters. However, by fixing the
asymptotic structure of the solution and demanding a regular horizon, there appear to be
no such terms.

To illustrate this in a concrete fashion, we will focus on four-dimensional vacuum black
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holes in ECG. The action for ECG reads

S = 167T/d4x\/_ [R——P] (4.94)

where R is the usual Ricci scalar and

P =12R.” " Rs",’Ro" " + RUGRIP RS — 12Rop,, R R™ + 8RO RL R (4.95)
is the ECG Lagrangian density. Note that throughout this subsection we will set Gy = 1 to
simplify the equations. We restrict ourselves to asymptotically flat, static and spherically
symmetric vacuum black holes. In this case, the only independent field equation is

(- E

Fof7 = SR -0~ A -2 - )| =2, (4.96)
where a prime denotes differentiation with respect to r. The quantity M appearing on
the right-hand side of the equation is the ADM mass of the black hole [157, 5], and we
will assume A > 0 in what follows. Unfortunately the field equations cannot be solved
analytically (except in certain special cases [216]), and either numerical or approximate
solutions (or some combination) must be computed to make progress. We will review the
construction of a numerical solution.

We begin by solving the field equations via a series expansion near the horizon using
the ansatz

fun(r) = 47T (r —ry) + Z an(r—ry)", (4.97)

n=2

which ensures that the metric function vanishes linearly at the horizon (r = ry), and
T = f'(ry)/4n is the Hawking temperature. Substituting this ansatz into the field equa-
tions (4.96) allows one to solve for the temperature and mass in terms of r, and the

coupling A\:
i :
2 4
12)\2{ +(2A — i)y /rd + )\1 :
r+
T = Y {, 4 + 4\ — ri} : (4.98)

One then finds that as is left undetermined by the field equations, while all a,, for n > 2
are determined by messy expressions involving 7', M, r, and as.
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We now consider an expansion of the solution in the large-r asymptotic region. To
obtain this, we linearize the field equations about the Schwarzschild background:

2M
fasymp =1- T + Eh(r)7 (499)

where h(r) is to be determined by the field equations, and we linearize the differential
equation by keeping terms only to order €, before setting € = 1. The resulting differential
equation for h(r) takes the form

R +~(r)h — w(r)*h = g(r), (4.100)
where
2(M —r) 9 r% + 56 M2\ — 12Mr)
Wr) = - W)= 3 :
(2M —r)r 6Mr2(r — 2M)A
2M (46 M — 27r)
- 4.101
9(r) 92M — r)r3 ( )
In the large r limit, the homogeneous equation reads
2 r3
hy — =hy, — hy = 4.102
he = oo =0, (4.102)

and can be solved exactly in terms of modified Bessel functions:

By — 32 [;u ( 27 >+B’K ( 27 )} (4.103)
=r 3 | ——— — |, .
" =5 \ 5760\ > \5v6MA

where [,(x) and K,(z) are the modified Bessel functions of the first and second kinds,
respectively. To leading order in large r, this can be expanded as

215/2 —orb/2 ]

DV OEMA DV OEMA

where we have absorbed various constants into the definitions of A and B (compared to A
and B) Thus, the homogeneous solution consists of a growing mode and a decaying mode.
Asymptotic flatness demands that we set A = 0, while the second term decays super-
exponentially and can therefore be neglected.?* In this way, one of the possible integration
constants has been uniquely fixed by the boundary conditions.

[SA1[9]

hi(r) = Art/*exp [ ] + Br'/*exp [ (4.104)

24This assumes that M X > 0. In cases where M\ < 0, the homogeneous solution contains oscillating
terms that spoil the asymptotic flatness. The only viable solution in this case is to set the homogenous
solution to zero.
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The particular solution, which reads

fip = 76 3 7

36AM2 184 AM3 M3\
— +— +0 ( ) , (4.105)

rll

clearly dominates over the super-exponentially decaying homogenous solution at large r,
thereby giving

fr) =1 ===t hy. (4.106)

Neither the near horizon approximation nor the asymptotic solution is valid in the
entire spacetime outside of the horizon. One means to bridge this gap is to numerically
solve the equations of motion in the intermediate regime. The idea is quite simple: For a
given choice of M and A, pick a value for the free parameter ay,. Use these values in the
near horizon expansion to obtain initial data for the differential equation just outside the
horizon:

f(ry +€) =4nTe + ase®,
f'(re +€) = 47T + 2ase, (4.107)

where € is some small, positive quantity. A generic choice of as will excite the exponentially
growing mode in (4.104). Thus, as must be chosen extremely carefully and with high
precision to obtain the asymptotically flat solution. A satisfactory solution will be obtained
if for some value of r that is large (compared with the other scales in the problem), the
numeric solution agrees with the asymptotic expansion to a high degree of precision. In
practice, we find that there is a unique value of ay for which this occurs. Of course, since
the differential equation is very stiff, the numerical scheme will ultimately fail at some
radius, ruax. The point at which this failure occurs can be pushed to larger distance by
choosing as more precisely and increasing the working precision, but this comes at the
cost of increased computation time.? In this way, we fix two integration constants via
boundary conditions — the only remaining constant is the mass, and so it seems these
black holes have no higher derivative hair.

25 A solution for r < r can be obtained by choosing € to be small and negative in (4.107). The numerical
scheme encounters no issues in this case.
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Figure 4.1: Numerical scheme. Top: Numerical solution for \/M* = 10 and a shooting
parameter a3 = —0.022853992336918507. The solid, red curve is the Schwarzschild solution
of Einstein gravity. The black, dotted curve is the near horizon approximation, including
terms up to order (r — ). The dashed, black curve is the asymptotic solution, including
terms up to order r—!2. The solid black line is the numeric solution. Bottom left: A plot
of Tmax (where the numerical solution breaks down) vs. ay for the case A = 1. The peak
corresponds to the value of ay that gives an asymptotically flat solution. Bottom right: A
plot of the value of as giving an asymptotically flat solution vs. A. Note that in the limit
A — 0 we have a;M? — —1/4, which coincides with the Einstein gravity result. In all
cases, € = 107 was used in eq. (4.107) to obtain the initial data.

In figure 4.1 we highlight some representative numerical results. The bottom left plot
displays 7max VS. ag, revealing a prominent peak at a point aj. The peak coincides with
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the value of a, that produces the asymptotically flat solution. If ay is chosen different
from this value, it results in the excitation of the growing mode and the solution is not
asymptotically flat. In the bottom right plot, we show the value of aj plotted against the
coupling, A. Notably, aj limits to the Schwarzschild value of asM? = —1/4 when A — 0.
While we have not been able to deduce a functional form for a} from first principles, it is
possible to perform a fit of the numeric results giving

1 1+ 2.1347x + 0.010917222
M? 4 4 15.5284x + 8.0347922

ay (z = \/M*) ~ (4.108)

which is accurate to three decimal places or better on the interval A\/M* € [0, 5].

In the top plot of figure 4.1 we show a numerical solution for A/M* = 10 and compare
it with the Schwarzschild solution, as well as the near horizon and asymptotic approximate
solutions. For the same physical mass, the ECG black hole has a larger horizon radius
than the Schwarzschild solution. Note that the near horizon solution provides an accurate
approximation from r = 0 to about r = 5M, but then rapidly diverges to f — —oc. The
numeric solution begins to rapidly converge to the asymptotic solution near r = 4M, but
near r = 10M it breaks down: the stiff system causes the integrated solution to rapidly
diverge to f — +o0o. This is just a consequence of not choosing a3 to high enough precision
in the numeric method, and the exponentially growing mode has been excited. Before the
numeric solution breaks down, the asymptotic solution (dashed line) is accurate to better
than 1 part in 1,000 and so it can be used to continue the solution to infinity.

The numerical results suggest that there is a unique value of ay such that the solution
is asymptotically flat. We can provide further evidence for this by considering the field
equations near the horizon and demanding that the solution limits to the Einstein gravity
result as the ECG coupling is set to zero. Recall that, near the horizon, the metric function
is expanded as

fan(r) =4xT(r —ry) +a5(r —ry)* + Z ai(as)(r —ry)", (4.109)

where the constants a,, with n > 2 are determined by the field equations in terms of the
parameter a3 and M, T and r,. We will demand that this expansion has a smooth A — 0
limit. It turns out that this constraint is also enough to ensure that the near horizon
expansion limits to that for the Schwarzschild solution

Ein _ Z(_l)il(r_—“)i _ (4.110)

,r.Z
i=1 +
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We proceed by writing a5 = a3(\) and expand each of a,(aj) to lowest order in A. For
example, the expansion for the first two terms is

az(0)r8 +ry N 3r8ah(0) — 6a2(0)*rd + 34a2(0)r2 — 14

o _ A
a3(a’2) 9A 277"1 + O( ) )
) az(0)rS + 71 3rSab(0) — 60az(0)?ry + 89az(0)r? + 68
a1(a2) =+ 1632 648\
3r1%a5(0) — 240a2(0)r8 ab(0) + 278 (89ah(0) + 72a2(0)?) — 968a2(0)?rd + 1040a2(0)r? — 278
+ 1
129677
+O(N). (4.111)
Clearly, for az to have a smooth A — 0 limit, we must take
N 1
a3(0) = —a (4.112)
+

which also cures the A2 divergence in as. Then, for a4 to have a smooth A\ — 0 limit, we

must take o7
ay'(0) = — (4.113)

T
Ty

Interestingly, this choice for a3'(0) also ensures that

1
az(ay) = — + O(N), (4.114)
T+
which is precisely the value expected from the Schwarzschild solution. This procedure
continues in the obvious way: The expansion of a, for small A fixes a3™~(0), which in
turn guarantees that the term a,,_; limits to the Schwarzschild value from (4.110).

It is straight-forward, but computationally costly, to do this to arbitrary order. We
have computed ag(”)(O) up to n = 15, finding the results presented in table 4.1. While
a3™(0) oc 1/74"+2 we were not able to deduce the dependence of the coefficients of 3™ (0)
on n. The fact that these coefficients grow unboundedly indicates that a Taylor series
expansion of a3(A) has a small or vanishing radius of convergence. Thus the function is
not analytic, and the Taylor series cannot be expected to provide a good approximation.
However, rather than a Taylor series we can use a Padé approximant to reconstruct the
form of a5(\), and we show this in figure 4.2. The basic conclusion is that, as more terms
are included in the Padé approximant, the form of a%(\) converges to the results of our
numerical scheme presented in figure 4.1. While the convergence is fast for small A, more
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(_ 1)n+1rin+2aa2((n) (0)

1

27

3384
1320534

1151833248
1875967406160
5107532147380800
21544624968666695280

133135416924677418585600
1154324990320626883159054080

10 13568049825205878205542081792000
11 210227289858470130670513367566041600

12 4194920428540096167815139429105212006400

13 105700177837430847101072792547386798551142400

14 3306987976911675043248786217918581692121564979200

15 126609498143560198473638841716966388468374445902592000

|l No ok |lwNn R~ oS3

Table 4.1: Series coefficients for ECG shooting parameter. Here we display the first
fifteen derivatives of the shooting ECG parameter a3 computed by demanding that the
near horizon solution limits smoothly to the Einstein gravity result.

terms are required to obtain good convergence for larger A\. With the fifteen derivatives
presented in table 4.1, it is not possible to accurately match a over the full domain of A,
and the fit to the numerical data (4.108) is more accurate for larger A. If the functional
dependence of a5™(0) on n could be deduced, then this would allow a} to be determined

to arbitrary precision.

Let us summarize: the existence of a numerical asymptotically flat solution seems to
fix the value of as uniquely. Further, we have also seen that demanding that the near
horizon solution limits smoothly to the Einstein gravity result uniquely determines all of
the derivatives of as when regarded as a function of A\. Further, these two methods seem
to agree on what the value of ay should be: by fitting the derivatives of as to a Padé
approximant, the derivative expansion appears to converge to the same value required by
the numerical scheme as more terms are included in the series expansion. Now, let us
note that while we have presented this discussion for four-dimensional ECG, the same
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Figure 4.2: Analytical approach for shooting parameter. Here the solid black line
denotes the value of a; as determined through the numerical scheme. The remaining curves
denote Padé approximants built from the derivatives presented in table 4.1. Specifically, the
dotted, blue curve corresponds to a [2, 2]-order Padé approximant, the dashed, green curve
corresponds to a [4, 4] order Padé approximant and the dot-dashed, red curve corresponds
to a [7,7] order Padé approximant. For \/M* < 1 convergence to the numerical result is
rapid, but convergence for larger values would require more derivatives than we were able
to reasonably compute.

thing happens for the higher dimensional theories and also when the asymptotics are dS
or AdS. Therefore, we have strong evidence that the vacuum black holes in generalized
quasi-topological gravity are characterized simply by their mass, and there is no higher
derivative hair that is often present in generic higher-order theories [217, .

4.3.4 Non-perturbative thermodynamics

In the case of Lovelock and quasi-topological black holes, the temperature, entropy and
mass can be obtained for arbitrary couplings. It appears that this extends to the entire
class of theories defined by the single metric function condition. This is in contrast to an
arbitrary theory of gravity, where the best one could hope to do would be to work pertur-
batively in the couplings to obtain corrections [193]. While the result is again somewhat
trivially true for Lovelock and quasi-topological gravity, it is not obviously true for the

104



generalized quasi-topological class. In these theories, we do not have an analytical expres-
sion for f(r), and so it is somewhat surprising that, for example, an expression for the
black hole temperature can be obtained analytically. Our focus here will be to show how
this plays out for four-dimensional asymptotically flat black holes in ECG, and comment
on how the result generalizes [, , 6, , 7,12, 11].

Again, the action for ECG (with G = 1) reads

1 4 A
and we will be interested in the near-horizon expansion of the field equations,
Jon(r) =47T(r —ry) + Z an(r—ry)". (4.116)
n=2

The lowest order field equations take the form:

AxT\ [4nT
2M—r++47rT)\( T )(” ”H):o,

Ty 3

ArT >
1—47rTr+—)\(L) =0, (4.117)
r+

while at the next order az and as appear, and so on. It is a remarkable fact that the two
lowest order terms do not involve the undetermined constant as. This allows us to exactly
determine the temperature and mass simply by solving a system of polynomial equations,
even though we lack an analytical solution for f(r). The correct choice of branch is that
which limits smoothly to the Einstein gravity result when A — 0,

3
M= 12;2 [ri + (22X =)/t +4)\} :
T = 8% {«/ri + 4\ — ri} : (4.118)

Using Wald’s formula, one can show that the entropy of the black holes is given by

4rT\? 1 1
S=mr2|1-2\ — -
ﬂu[ (7‘+> {2+27TT7“J

where the last term ensures that S — 0 as M — 0. Identifying the coupling potential
_ 8mPT?(3 4 2w, T) 2T
3ry VA
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the first law and extended Smarr formula hold:26

SM =T8S + USA,
M = 2T'S + 4\ | (4.121)

Einsteinian Cubic Gravity is the simplest example of the generalized quasi-topological
theories, but it highlights all of the essential points. In more general cases, one proceeds in
the same way. Expanding the field equations near a black hole horizon, it is found that the
first two equations determine the mass and temperature as solutions of (often complicated)
polynomial equations. No perturbative expansions in the coupling are required, and as a
result these theories provide excellent toy models whenever thermodynamics is important.
Because the field equations depend on second derivatives of the metric, it is in principle
possible that the ‘arbitrary’ parameter a, could appear in these lowest order equations,
and this would spoil the property. However, it seems that the theories selected by the
single metric function criterion have field equations with a structure that gives a precise
cancellation of these possible terms. It would be desirable to better understand how this
is connected with the single metric function condition.

4.4 Summary remarks

In this chapter we have introduced and studied higher curvature theories of gravity, focusing
on the case of static and spherically symmetric metrics. We found that in this case, the
theories decouple into three groups — Lovelock, quasi-topological, and generalized quasi-
topological gravities — distinguished by the structure of their field equations and the
dimensions in which the theory is non-trivial. The Lovelock and quasi-topological theories
have been known for some time [1106, |, while the generalized quasi-topological theories
are relatively new [5]. The theories are united in that they share certain desirable and
somewhat unexpected properties: they are ghost-free on constant curvature backgrounds,
the integrated field equations are at most second order differential equations, and they
admit black hole solutions characterized by mass alone with thermodynamics that can be
studied exactly.

The properties of these theories make them excellent toy models for exploring questions
in black hole thermodynamics and holography [218, , , , 13, 16]. The general-
ized quasi-topological theories are particularly interesting in this regard, since they are

Z6Note that, for small black holes we have 4\¥ ~ —4TS/3 and the extended Smarr formula reduces
to M = 2T'S/3, which coincides with what one would expect for a three-dimensional CFT at finite
temperature. This intriguing limit was first noted in [158] via a different approach.
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non-trivial in all dimensions D > 4, they allow for the holographic studies in four and
six dimensions, in which both (cubic) Lovelock and quasi-topological gravity are trivial.
To date, a number of interesting results have been found through studies of these theo-
ries. It was found that in four dimensions, small asymptotically flat black holes become
thermally stable [158]. Studies of AdS solutions revealed examples of critical behaviour in
the phase space of electrically charged black branes, a result that is observed in neither
Lovelock nor quasi-topological theories [7]. In the context of holography, it is interesting
to note that simply by demanding that the black hole solutions are well-behaved asymp-
totically the KSS bound [08] on the ratio of shear viscosity to entropy density is enforced
in both four [220] and higher dimensions [12]. In ongoing work, it has been found that
the generalized quasi-topological theories admit NUT charged solutions in four and higher
dimensions. In addition to providing the first examples of higher curvature theories ad-
mitting NUT solutions in four dimensions, this study has allowed for the identification
of simple and universal results for the free energy of holographic CFTs defined on odd
dimensional squashed spheres [9, 10].

Of course, there remains much about these theories to study. One obvious problem to
attack would be the dynamical stability of black holes. While the theories are free from
ghosts on constant curvature spaces, since the field equations for all but the Lovelock class
of theories are higher-order for a generic metric, we do expect that at least some solutions
of the theories will be unstable.?” Determining if and for what metrics the solutions are
unstable would be an important step, especially if one wished to use the four-dimensional
theories for more than just toy models [158]. However, this is in general a very complicated
problem, and there is still lots of work to be done even in the simplest case of Lovelock
theory [223, 224, 225].

2TNote that higher order equations of motion are not always fatal for black hole stability — see, e.g. [221,

-
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Chapter 5

Black hole )-lines

Having introduced higher curvature gravity models in the previous chapter, we now con-
sider their relevance in black hole chemistry. In particular, here we will focus on a class of
exact, spherically symmetric black holes in Lovelock gravity coupled to real scalar fields.
Black hole chemistry was first studied for this model in [17] in the case where the grav-
itational sector consisted only of Einstein gravity. In [13, 14], the study was generalized
to higher-order Lovelock theories. The most interesting result to come from those inves-
tigations is that, in third and higher order Lovelock gravity, there are examples of black
hole ‘A-lines’. These are lines of second order phase transitions in the thermal phase space,
and the example presented in [13] represents, to the best of our knowledge, the first such
example in black hole physics.

The purpose of this chapter will be to explain this result in greater detail. We begin by
providing a brief overview of the theory, the motivation for it, and the black hole solutions.
After presenting the thermodynamic quantities, the existence of a black hole A-line is
demonstrated. The remainder of the chapter is spent discussing the necessary conditions
for this phenomena, and any possible pathological behaviour of the black holes exhibiting
it. Our discussion will mostly follow [13].

5.1 Lovelock black holes with scalar fields

Recently, Oliva and Ray have constructed a simple recipe that allows for the conformal
coupling of a scalar field to higher curvature terms [226]. The field equations of the theory
are second order for both the metric and the scalar field and admit exact black hole
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solutions with the scalar field is regular everywhere outside of — and on — the horizon
and the back-reaction of the scalar field onto the metric is captured analytically [227, ,

, , , ]. This work provided the first example of black holes with conformal
scalar hair in D > 4 where no-go results had been reported previously [232]. The obtained
solutions are valid for positive, negative and vanishing cosmological constant; however, the
AdS case has received the most attention due to hopeful applications in the AdS/CFT
correspondence.

The model we consider consists of Lovelock gravity, a Maxwell field, and a real scalar
field coupled conformally to the dimensionally extended Euler densities,

1 Mmax
/ dPax\/—g (Z £ — 47rGNFWFW> (5.1)
k=0

- 167TGN

where

1 n n
n) __ n arBr D—4n o Br
£ —275( ) <anHRMTVT +b, HSWT> (5.2)

T s

with 60" = 63115113351" the generalized Kronecker tensor, a,, and b, are coupling constants,
and Nmex < (D —1)/2. Here the tensor S, describes how the scalar field couples to
gravity:

S, =07R,," — 20000V 6V 6 — 460,V , V16 + 85 V,16V" ¢, (5.3)

p [n"v]

and transforms homogeneously under the conformal transformation, g, — Q%g,, and
¢—=Q'pas S, "0 — Q1S

The theory has stress-energy associated with both the scalar and Maxwell fields, with
the former given by

EDY 25311 @D TGS G, S e (5.4)
n=0
and the latter,
(TQ)Z - (FupFVp N iFAPF/\p(SZ) : (5.5)
The gravitational field equations then read
Ew = (1) + 87GN(T2) (5.6)
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where

Tmax

s — _ j : (7% 51/>\1.--)\2nR9192>\ NEEE szn—1p2n
112

I3 OQn+1"HpP1 P2

A2n—1A2n ° (57)
n=0

is the generalized Einstein tensor.

By varying the action with respect to the scalar field, one can show that the scalar field
must obey the following equation of motion:

Mmax

n=0
Note that the above equation of motion ensures that the trace of the stress-energy tensor
of the scalar field vanishes on shell, as expected for this conformally invariant theory.
Similarly, varying the action with respect to the Maxwell gauge field A,, we obtain the
Maxwell equations

V., F" =0. (5.9)
We take a line element of the form
ds® = —fdt* + [~ dr® + r*dSi 5, (5.10)

where dXj ;,_, (its volume denoted € p_») is the line element on a surface of constant
curvature k with £ = +1,0, —1 corresponding to spherical, flat and hyperbolic geometries;
in the latter cases, the space is compact via identification [128]. For this ansatz, the field
equations for the metric reduce to

’i"a k—f\"_ 16aGyM
" r2 N (D — 2>Qk7D_2’T‘D_1

n=0
H 87I'GN Q2
— — A1
T T DD —3) 0 (5.11)
where
o 1 ao
= — = a1 = a
0 L2 (D_l)(D_2)7 1 1,
2n
a, = ay, H(D —j) forn>2, (5.12)
j=3
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and

T'max '

H= by k" NP~2" 5.13
Z - 2 (n —I— 1)! (5.13)
is the “hair parameter”. For this conﬁguratlon, the electromagnetic field strength is given
by
Q
F=—= (5.14)
where () is the conserved electric charge. The scalar field takes the form
N
= — 5.15
=" (5.15)
and its equations of motion reduce to the following constraints:
Mmax D o 1
an ( 2k)1 | S 1N22n — 07
n=1 ( - )
= ! D(D — 1) +4n?)
by, E"N™ = 0. 5.16
Z —2n —1)! (5.16)

These equations also ensure that the trace of the scalar field stress energy tensor vanishes.
Since these are two equations in a single unknown (V), one equation enforces a constraint
on the allowed coupling constants, b,. Further, these equations can only be solved in the
cases k = £1, otherwise the only solution is N = 0. This means that the scalar field
configuration is completely fixed in terms of the coupling constants of the theory, and for a
given set of couplings, there are only a finite number of possible values for N corresponding
to the various roots of a polynomial. Because of this, the black holes are not technically
‘hairy’ since that would require there to be an additional, free constant of integration
appearing in the equations of motion.

Asymptotically, the field equations reduce to the following embedding equation:

T'max n
an f,

h(foo)zl—foo+ZL2nf‘;=o, (5.17)
n=2

where f, is defined such that the leading order behaviour of the metric at large r is

2

f(r) ~ foo%. (5.18)
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This equation determines the maximally symmetric vacua of the theory, characterized by

the curvature 5
Joo sl g7 (5.19)

py I
Fag™ = L2 latpl
For the space to be asymptotically AdS, we require that f,, > 0. Further, since the
derivative of (5.17) with respect to f,, appears as a prefactor in the linearized equations

of motion for graviton perturbations about the vacuum, we also require that

h(fs) <0 (5.20)
to ensure that the graviton is not a ghost or, equivalently, that Newton’s constant has the
correct sign.

The thermodynamics of the black holes can be studied using the standard methods.
Computing the temperature by requiring the absence of conical singularities in the Eu-
clidean sector and the entropy using the Iyer-Wald formalism [115], we find the thermody-
namic quantities for this solution are

D=2 pog &K D=2 p oH Qe p_oQ?
( ) k,D QZOzn/{?n’l“D_Qn_l—( ) k,D—2 + k,D 2@

M =
167Gy~ * 167G Ny 2(D —3)rP?
F(ry) 1 K\ H 8GN Q?
T=="=—0 Y kan(D—2m-1) (5] +—55- 5=
@ mrD(ry) |4 Lt T+ (D —=2)ry
Ok p_2 iy (D — 2)nk”_1an D—2 D .
S =" no _———~ __H| ifb,=0Vn>2 (521
el ; D—2n '+ " 2k(D-4) : " (5:21)

In the above, D(ry) = S nay, (kr;*)"~!. Employing the extended first law

OM =T65 + ®5Q + Y ¥ sa, + Y K™Mdb, (5.22)
k n
we find it is satisfied provided
Sl e[ ]
o = _Qk’DﬁigN_ Ly [(D = 2(71€ Y (94 71”2];1)!} (5.23)

and the Smarr relation which follows from scaling

(D=3)M = (D—-2)TS+(D—-3)2Q+ Y 2(n—1)¥"a, +(D-2)) K™b,, (5.24)
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also holds. We point out that in the situation when black hole solutions are considered,
the couplings by are not all independent, but are constrained by eq. (5.16). As a result, in
these cases, one must keep in mind that the variations of by in the first law above are not
all independent. Henceforth we shall set ay; = 1 so that we recover general relativity in the
limit o, — 0 for £ > 1 and we will also set Gy = 1.

This completes the basic set-up of black holes in this theory, our focus will now turn
to understanding the phase structure.

5.2 Black hole )-line

An exhaustive analysis of the thermodynamics of these black holes was performed in [14],
where it was found that the black holes exhibit a rich thermodynamic structure, including
examples of van der Waals behaviour, re-entrant phase transitions, and triple points in
their thermal phase space. Here we will focus on the most interesting result to come from
that work (also reported in [13]) — an example of a black hole A-line.

To present the simplest possible example, in what follows we consider «,, = 0Vn > 3
and b, = 0Vn > 2. This last condition is for simplicity: the falloff in the metric function
is the same for all b,, and the contribution to the entropy is always just a constant; so only
the first three b,,’s are required to see all the physics of the scalar hair.

Introducing the dimensionless parameters

— /4

1/4 ta ! 4mh D-2
r+:va3/7 T:D3—2’ H:D_2a34

q D= 167 M
@= 7% fom= D3

2 (D —2)5}_sa5*

_ Oéo(D—].)(D—2)w/Oég o= (6]
p A ) ,_043 )
(D=3)

G=M-T8= Qg 4 Qk7D_Qg (525)

the dimensionless equation of state (obtained by solving the expression for the temperature
in eq. (5.21) for the pressure) reads

pZE_U(D—S)(D—Q)+2akt_a(D—2)(D—5) 3t

v 4v? v3 Aot v
KD-T)(D-2) ¢ h
- g + =55 " b (5.26)

113



where the quantity p represents the pressure and ¢ the dimensionless Gibbs free energy.
At equilibrium, the state of the system is that which minimizes the Gibbs free energy.

Let us now consider the behaviour of this equation of state. Noting that the conditions
for a critical point are
op  0%p
o Ov?
we find that for o = /5/3 if h and ¢ are set to

—0 (5.27)

_ 42D = 5)(D = 2)%PC 2D = 1)(D - 2)2P-10

7D(D — 4) 1= ’ (5.28)

h (D —4)

and k = —1, eq. (5.27) will be satisfied by v. = 154 and

e

] - V15(11D — 40)(D — 1)(D — 2) (5.20)

8
|2
Pe { (15) 9007 D

225
for all temperatures t.! In other words, this system exhibits infinitely many critical points
with critical volume v, = 15'/4. In the p — v plane, every isotherm is a critical isotherm,
i.e. has an inflection point at v = 154, In the variables (¢,p) there is no first order
phase transition but rather a line of second order phase transitions, characterized by a
diverging specific heat ¢, = —t9%g/0t* at the critical values. We show representative
thermodynamic behaviour in figure 5.1 for D = 7. We note in passing that the line of
second order transitions given in (5.29) exhibits dimension dependence only in the zero
temperature intercept — the slope is the same in all dimensions.

Let us pause for a moment to discuss where, in condensed matter systems, similar
lines of second order phase transitions occur. In that context, lines of second order phase
transitions correspond to, for example, fluid /superfluid transitions [233], the onset of super-
conductivity [234], and paramagentism /ferromagnetism transitions [235]. In these cases,
lines of second order phase transitions are often called ‘A-lines’ since the divergence of the
specific heat across the phase transition resembles the Greek letter ‘A’ (see below).

To the best of our knowledge, this is the first example of a of a A transition in black
hole thermodynamics. Building on the black hole/van der Waals fluid analogy [39], the
natural interpretation here is that this second order phase transition between small/large
black holes is analogous to a fluid/superfluid type transition. The resemblance to the
fluid /superfluid A-line transition of He (c.f. figure 2 in [13]) is striking. In each case, a
line of critical points separates the two phases of ‘fluid’ where specific heat takes on the same
qualitative “\” structure. The phase diagram for helium is more complicated, including
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solid and gaseous states. This is to be expected since helium is a complicated system, while
these hairy black hole solutions are comparatively simple being characterized by only four
numbers: v, h, g and «. However, it is remarkable that with so few parameters the essence
of the A-line can be captured. Most of the interesting properties of a superfluid are either
dynamical or require a full quantum description to understand (see, e.g. [230, | for
an introduction and review). Since we do not have access to a model of the underlying
quantum degrees of freedom it is not possible to explore the black hole analogues of these
properties at a deeper level. However, an interesting direction for future investigation
would be to compute transport properties in the holographically dual theories and see if
they exhibit any interesting behaviour near the A-line.

5.3 Further properties and a necessary condition

While the specific heat is positive — indicating thermal stability — it is natural to wonder
if there is any pathological behaviour hiding behind the scenes here. We will consider
several possibilities below, in most cases particularized to the case of d = 7 for the purpose
of clarity.

First, we consider the Kretschmann scalar evaluated on the horizon:

K = Ry Rl [<d2f>2 L 2AP—2) (ﬁ)l 2(D = 2)(D — 3>] 6w

dr? r? dr rd

The first derivative of f is clearly finite for any finite temperature, so we need only consider
f". For simplicity we consider the case D = 7 where the A-line solution was first observed.
Expanding near v, p. we see that

1297

1727 (15)Y/4
Ltfr [750(15)1/%% + T} dp—

f" (vetdv, p.+dp) = 20072+ =

Adv .
(5.31)

This is completely finite at the horizon both at the critical point and near it; there are no
curvature singularities associated with this thermodynamic behaviour. For thoroughness,
we have also examined the explicit solution to the field equations in detail. Outside the
horizon the metric function is well-behaved and the Kretschmann scalar is everywhere
finite. There is a curvature singularity that occurs within the horizon and before r = 0,
but this type of behaviour is nothing new —similar behaviour occurs for both neutral and
electrically charged black holes in Gauss-Bonnet and cubic Lovelock black holes [170, 43].
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Figure 5.1: Thermodynamic behaviour near \ transition. Top left: the p—v diagram
for various temperatures. Note that all the isotherms here are critical isotherms with an
inflection point. Top right: A plot of the Gibbs free energy vs. temperature for three
distinct pressures chosen so that critical temperatures are t. = 3,5,7 corresponding to
the red, blue and black curves. The dotted lines highlight the points where the second
derivative of the Gibbs free energy diverges. Bottom left: A plot of the specific heat
cp = —tg—ig for the case t. = 3. Bottom right: p—t parameter space. The black line shows

the locus of critical points, i.e. a line of second-order phase transitions known as the
‘lambda’ line in the context of superfluidity. These plots are for D = 7.
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Next, we note that the couplings are such that the vacuum is free of ghosts. It can be
verified that, along the A-line, the conditions are such that h'(fs) < 0 for all temperatures.
Indeed, it can be shown that in any dimension, the maximum value of A'( f) is —4/9 which
occurs at the temperature

(16D* 4 87D? — 373D + 270)157/4
= 1087D ! (5:32)

which is positive in all cases of interest. Therefore, theses choices of couplings correspond
to vacua with a positive Newton constant. Further, since the only constraint is that
az = (3/5)aZ it seems that the black holes satisfy known constraints arising from the
physicality conditions imposed on the dual CFT, e.g. positivity of energy flux and causality
constraints [218]. These checks suggest that there is nothing obviously wrong with the black
hole solutions exhibiting these transitions. A more thorough analysis (e.g. a study of the
dynamics of perturbations) would be required to make conclusive statements about the
stability.

The A-line is a line of critical points, and it would be desirable to determine the crit-
ical exponents along this line. The standard method of computing the critical exponents
ultimately fails in this case, as we will now explicitly highlight. To see this, suppose we
proceed to calculate the critical exponents in the naive way (we do this for D = 7 for
concreteness). We can expand the equation of state near any one of the infinitely many
critical points to obtain

P 112(15)" /4, 280(15)Y4nt, ,  140(85 + 2w (15)Y4%,)
= = T — Tw® —
De 112(15)Y/47t,. + 555 112(15)Y/47t,. + 555 112(15)Y/47t,. + 555
(5.33)
Proceeding naively, we find that o = 0 governs the behaviour of the specific heat at constant
volume near the critical point and § = 3 governs the behaviour of |p — p.| o |v —v.|° along

any critical isotherm. For (3, we evaluate the following expressions:

[ dp/p.)
s 0—/w W (5.34)

p

De

p

w=w1 Pe

1

These equations can only be solved by the trivial solution, w; = ws, or if 7 is constrained

to be
151/4

307,

with wy and wy free. This latter case is not a sensible solution since in the limit of 7 — 0, we
are left with a negative t., while for the trivial solution we have that the order parameter,

T =

[85\/5 + 27r(15)3/4tc} (5.35)
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n = v.(wy — wq) vanishes, suggesting that 8 = 0. This result is unchanged by the inclusion
of higher order terms in the expansion of the equation of state. The exponent v governs
the behaviour of the isothermal compressibility near criticality

1 owv
Kp = ————

v OP

-
ol (5.36)

Computing this for the above expansion we find

1 1127 (15)/*t, + 555
©420w? | 27(15)Y/4t 1 + 27 (15)1/4¢, + 85

(5.37)

RT

which in the limit of the critical point is independent of 7, suggesting that v = 0. Therefore,
by this argument, it seems that each critical point on this line of criticality is characterized
by the critical exponents

a=0, =0, v=0, 6=3. (5.38)
These critical exponents trivially satisfy the Widom relation

v=p(6-1), (5.39)
but violate the Rushbrooke inequality

a+284+72£2. (5.40)

While these are manifestly ‘non-standard’ critical exponents, these bizarre results signal
that something has gone wrong in the approach. The problem lies in the assumption that
the pressure is still the ordering field. Here, this is not the case—changing the pressure
merely changes the temperature at which the second order phase transition occurs. Thus,
pressure is no longer the appropriate ordering field, a situation similar to that in liquid
He! at the A line [233].

If one wishes to assign critical exponents to the A-line, the thermodynamic parameter
space must be enlarged. That is, we must choose an additional parameter such that, in the
larger phase space, the A-line is approached along a first order coexistence curve. There
are three choices here for the ordering field, ©, and they are ¢, h or a.. It turns out that the
obtained critical exponents are the same regardless of which choice is made, but the electric
charge ¢ is in some sense the most natural choice since it is easy to imagine adjusting ¢
by throwing charged material into the black hole. To calculate the critical exponents, we
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proceed as usual, expanding the ordering field near any of the critical points in terms of 7
and w. We find o

o = 1 — A7 4+ Brw — Cu® + O(1w?, w?), (5.41)
where the values of A, B,C depend on both the pressure, p, and will be different (but
non-zero) depending on which choice is made for the ordering field. This expansion yields
the following critical exponents

| N
a=0, f=5, =1, §=3, (5.42)

which govern the behaviour of the specific heat at constant volume, Cy o |7|=%, the order
parameter w oc |7]7, the susceptibility /compressibility (0w/00)|, o |7|~7 and the ordering
field |© — O, o |w|® near a critical point. These results coincide with the mean field theory
values, which agree with those for a superfluid in a D > 5 (cf. Table I of [233]), though this
is not particularly insightful since essentially all critical phenomena in black hole physics
falls into this universality class.

One way to visualize this result is that the line of critical points in the p — ¢ plane
represents a line where a surface of first order phase transitions terminates in some larger
space (p,t,0). Our calculation of critical exponents then represents the behaviour of the
system as the line of criticality is approached, not in (p,t) space, but rather in this larger
space. We highlight this in figure 5.2 for the case (p,t, ¢?).

The M-line is an interesting new result in the thermodynamics of black holes, and it
would be desirable to find further examples where it occurs. With some hindsight, we can
return to the Lovelock case and see if anything general can be learned. The necessary
feature of our result is that the conditions for a critical point are satisfied irrespective of
the temperature. Thus, consider a general black hole equation of state of the form

P =ai(ry, pi)T + as(ry, ¢;) (5.43)

where ¢; represent additional constants in the equation of state (here they would corre-
spond to a, g and h), and the equation of state is linear in these parameters. The equation
of state considered above is of this form, and it is more generally true for a wide class of
higher curvature theories. Given this equation of state, a A-line will occur provided that
the following system of equations is satisfied:

% . 82(11 . 8@2 82a2

= — =0, —=0 =0 5.44
ory Toort Toory ’ ’ (5.44)

—— =
ors.
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Figure 5.2: Line of criticality in (p,t,q) space. If the space of thermodynamic parame-
ters is enlarged, the line of critical points in the p —t plane (the bold red line here) can be
thought of as the critical line at which a surface of first order phase transitions terminates.
For each constant p slice, this is a first order small/large black hole phase transition as
temperature increases.
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with both a; and as non-trivial. From this perspective, it makes sense that we found
the behaviour that we did: here we have four equations, and in the case considered here
there are a total of four variables. It is natural then to wonder if other systems exhibit
this behaviour. We have checked this for the rotating black hole of 5D minimal gauged
super-gravity [238] which has four parameters, but have found that no solution to the
above equations exist. Furthermore, in the case of higher order Lovelock gravity with
electric charge (but not hair) solving the four equations forces a; = 0. Hence such a line of
critical points does not occur (or, if something similar does, it happens under a different
configuration).

5.3.1 An example in quasi-topological gravity

As an example, we can apply condition eq. 5.44 in quasi-topological gravity coupled to
scalar fields in the same manner described above. The details of this calculation were
presented in [15], and here we simply quote some results for the purposes of illustration.
Since quasi-topological gravity is non-trivial in D = 5, this provides a means of constructing
the A-line in fewer than seven dimensions.

The equation of state for cubic quasi-topological black holes with scalar hair takes the

form [15]

t 3k 2akt N Ry N 33 ¢ h
P v 2mu? v3 Vo o2mvb w6 @b

where € represents the sign of the quasi-topological coupling, and the various lower-case
quantities correspond to dimensionless thermodynamic parameters in the same way as
above. Notice that with e = 41 this is identical to the equation of state presented for the
Lovelock black holes with D = 5. The equation of state has the form of eq. (5.43) with

1 N 20k  3Kk? 3k 33 h ¢

_ - 2 __ LG, 5.46
“ v v3 ¢ vd = 2mv? 627rv6 Vo + V6 ( )

(5.45)

The condition for a black hole A-line is given by the simultaneous solution of
da; 0 0a;
ov T Ov?

which amounts to solving the conditions for a critical point without placing any restrictions

on what t. should be. Here we find that a solution to this system exists, but only for the
following parameters:

5 12(15)3/4 24
e=+1, k=-1, 04:\/;, v, = 1544, h:#, ¢ ==. (5.48)

5T T

=0 fori=1,2 (5.47)
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The value of a above agrees with the result obtained by setting D = 5 in the expressions
from the Lovelock case above, but the values of ¢ and h are different. This is simply
because there is an additional term in ay for the equation of state when D > 5.

For the above parameter values we have a line of critical points with the critical values

8(15)%4 /15
.= 154 .= t, t, e RY. 5.49
v P 905 et g5p € (5-49)

We emphasize that there is no first order phase transition associated with this line of
critical points: there is simply a line of second order (continuous) phase transitions. The
entropy of the black holes which possess this superfluid-like transition is positive. Once
again, by enlarging the phase space, one can show that the critical exponents are the mean
field theory values.

5.4 Summary remarks

In this chapter, we have presented the first example of a A-line in black hole thermody-
namics. This line of second order phase transitions was observed in a class of Lovelock
black holes coupled to scalar fields in seven and higher dimensions. The A-line resembles
those that occur in various condensed matter models such as, for example, superfluidity.

An analysis of the black hole solutions was given indicating they are free of any obvi-
ous pathologies. Reflecting on the structure of the equation of state that permitted this
solution, it was possible to determine a necessary condition for A-line transitions to occur.
This was successfully used to identify a second example of a A-line in quasi-topological
gravity, also coupled to scalar fields. Going forward, it would be desirable to understand
what properties distinguish the black holes across the A-line. In the case of a first or-
der phase transition, the order parameter is simply the difference in size between the two
phases of black holes. However, since this is a second order phase transition, the size
varies continuously across the phase transition. It is possible some insight could be gained
from holography, e.g. by studying the behaviour of transport properties in the dual theory
across the A\ transition.

It may be helpful in this endeavor to find further examples of the black hole A-line
beyond the Lovelock and quasi-topological gravity examples presented here. One possi-
bility for this would be to explore black holes that have an equation of state that is not
linear in temperature. In this direction, there has been a recent example found in Horava
gravity [239, 210] for four-dimensional black holes with spherical horizon topology.
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Chapter 6

Final thoughts

The primary purpose of this thesis was to present two novel results in black hole chemistry:
super-entropic black holes and black hole A-lines. The secondary purpose was to highlight
recent work on higher curvature theories of gravity that have particularly nice properties
when restricted to spherically symmetric metrics. Before concluding the thesis, let us
reflect on the results presented here, what they have taught us, and what meaning they
may hold for future directions.

Super-entropic black holes are rotating, asymptotically (locally) AdS solutions of the
Einstein equations. The horizons of these black holes are topologically spheres with punc-
tures at the north and sole poles. This result is interesting in part because black holes
in general relativity are highly constrained objects, and the topology of the event horizon
is no exception. This is especially true in the four-dimensional, asymptotically flat case
where horizon must have spherical topology, provided the dominant energy condition is sat-
isfied. The super-entropic black holes therefore provide new examples, in four and higher
dimensions, of the possibilities for event horizon topology when a cosmological constant
is included. While intrinsically interesting for this reason in the context of gravity, the
solutions are further valuable since they are asymptotically AdS and so can be studied in
the AdS/CFT correspondence.

As was discussed, the super-entropic black holes also violate the conjectured reverse
isoperimetric inequality. This inequality (which is the “opposite” of the standard re-
verse isoperimetric inequality) suggests that the entropy of asymptotically AdS black holes
should be bounded from above in a way that depends on the thermodynamic volume. So
far, the super-entropic black holes provide the only examples of black holes in Einstein grav-
ity that violate the conjecture. The necessary and sufficient conditions for the inequality
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are at present unknown, but the fact that the super-entropic black hole violates the in-
equality may provide some insight. For example, two non-trivial aspects of these solutions
is their non-compact horizon and their asymptotic structure — the super-entropic black
holes are only locally asymptotically AdS since the boundary metric is not topologically
R x SP~2. Perhaps, then, the reverse isoperimetric inequality requires that the horizon be
compact and/or that the black hole be asymptotically AdS in the strictest sense.

The second key result concerned phase transitions of black hole spacetimes. Since the
discovery of the AdS/CFT correspondence, there has been considerable effort dedicated to
the investigation of the phase transitions of AdS black holes since this thermal behaviour
can in some sense be mapped to that of the dual theory. When the advent of black hole
chemistry, research on black hole critical behaviour has further intensified, and numerous
new and interesting results have been obtained. For example, van der Waals behaviour,
triple points, and (multiple) re-entrant phase transitions have been found for black holes
involving various matter fields, and also in various theories of gravity. In this thesis, we have
discussed a new addition to this list — the black hole A-line. In contrast to more ordinary
van der Waals behaviour where a line of first order phase transitions terminates at a critical
point (which corresponds to a second-order phase transition), A-lines are lines of second
order phase transitions. That is, the conditions for a critical point are satisfied at infinitely
many points in the thermodynamic parameter space and there is no associated first-order
phase transition. In some sense, this could be viewed as a second-order (or continuous)
analog of the Hawking-Page transition. While this result is intrinsically interesting insofar
as it deepens our understanding of the types of thermal behaviour accessible to AdS black
holes, it would be desirable to better understand the ‘microscopics’ of the A-transition
or its implications for holographic field theories. In the gravitational picture outlined
in this thesis, it was not possible to know precisely what this underlying description is.
In ordinary thermal systems, A-lines can represent fluid /superfluid transitions, mark the
onset of superconductivity, or mark paramagnetism/ferromagnetism transitions. Perhaps
a future investigation involving holography could help to shed light on whether any of these
descriptions provide a decent picture for what this phase transition could be describing.

In the context of higher curvature theories of gravity we discussed how, under the
restriction to spherically symmetric metrics, there are three particularly natural classes
of gravitational theories, one of which — generalized quasi-topological gravity — was
previously unknown. When constructing the theories, we posed an intentionally naive
question: “what theories of gravity have a single independent field equation for spherically
symmetric metrics?” However, it turns out that this property — which is true for Einstein
gravity and Lovelock gravity, but often taken for granted — implies a number of interesting
and unexpected results for the gravity theories that possess it. We saw that theories
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meeting this single field equation criterion have second-order linearized equations of motion
on constant curvature spaces, and so do not propagate ghost modes. For a spherically
symmetric metric, the single independent field equation is a total derivative and so can be
integrated to give an equation that is at most a second-order differential equation for the
metric function. Further, black hole solutions of the theories seem to be characterized by
mass alone, and the thermodynamics of black holes can be studied exactly despite the lack
of an analytical form for the metric function.

It is the hope that this class of theories will provide useful toy models in the context
of black hole thermodynamics and holography. One promising direction that is currently
under investigation is Taub-NUT type metrics [9, 10]. In that work, we demonstrate
that the generalized quasi-topological theories allow for Taub-NUT and Bolt solutions
characterized by a single metric function in four and six dimensions (and almost certainly
in higher dimensions) for a variety of base spaces. This work represents, to the best of our
knowledge, the first example of four-dimensional Taub-NUT metrics in a higher curvature
theory of gravity. Further, the higher curvature terms have allowed us to identify what
appear to be universal results for the energy and free energy of these solutions in terms
of the embedding equation and the Lagrangian evaluated on an AdS space. Since Taub-
NUT metrics with complex projective spaces as the base describe holographic theories on
squashed spheres, these results have allowed us to identify a universal structure in how the
free energy of CF'Ts on squashed spheres behaves for small squashings. As this is a work
in progress, further scrutiny will be required before a conclusive statement can be made.
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Appendix A

Derivation of Eq. (2.81)

Here we provide some additional calculations that are important to establishing the first
law via the Wald-Sudarsky argument. Namely, we provide a derivation of eq. (2.81). We
closely follow [241].

We consider a black hole spacetime with bifurcate Killing horizon. As in the main
text, we denote the bifurcation surface as B; the Killing field £* vanishes on B. We are
considering Hamiltonian evolution along £¢ we have £* = Nn® + N® where n® is the unit
timelike normal to the family of hypersurfaces that foliate spacetime. To evaluate the
integral appearing in eq. (2.81), we consider B to be approached as a limit within a slice
3.

First, note that since £* vanishes on B it follows by taking projections of £€* that both
N and N vanish on B. As a result, the boundary terms proportional to the lapse and
shift vanish and we need only consider those that are proportional to the derivative of the

lapse. Our goal now is to evaluate
lim D, N (A.1)

where lim denotes the limit where B is approached from within . The calculation is
somewhat subtle, but the final result will be that this derivative is proportional to the
surface gravity, and so that is where we begin.

Let us note that the surface gravity can be defined by [212]

- m¢ EVLNEVE) 5T (a2)

145



where in the second equality we defined the quantity |£| := /—£%€,. Therefore, to deter-
mine the surface gravity, we must work out the components of V,[¢].

We decompose the metric on ¥ as
haﬁ =TaTg + 0as (AB)

where 7,7® = 1 and r,0® = 0. In the limit where we approach B, 0qp Will be the induced
metric on B and r® will be the spacelike normal of B pointing into Y. It is easy to see that

limo?V,[¢| =0, (A.4)

since this represents the derivative of |¢| along B, it vanishes because |{| = /—£%¢, =
VN2 — N, ,N® =0 on B. Our second observation is that

lim £V, |¢] = 0. (A.5)

This result follows because

OV Ve

V—=E%, V—E7
where the third inequality makes use of the fact that {* is a Killing vector, i.e. V(,§z) = 0.
Combining these two observations, we conclude that any non-vanishing component of V,[¢]
must be in the r, direction. Further, since the surface gravity of a bifurcate Killing horizon
does not vanish, we conclude that 7*V, || # 0. Our goal now is to determine an expression
for that component.

§*Val¢] = 0 (A.6)

First we produce a result that will be useful below. We consider

Na
lim — A7

which is an indeterminant form of the type 0/0, and so we can determine the limit using
I’Hopital’s rule. We perform some straightforward manipulations:

r*VoN? =12V, (h3¢7)
= 1TV hY + rhIN o7
= 1%V [98 + nPn, ] + 10 hIV &7
= 12N Van® + 1% nPVon, + r*hPV £°
= —Nro‘Kg +nPreN K,y + r° [crﬁ" + rﬁr”} Voo
= —NroKP 4+ nProN° Ko, — 10"V ,&, (A.8)
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We made use of the fact £* is a Killing vector and that r*V,n® = r? hgVan? = r*Kg since
r® lies entirely within > and n“n, = —1 always. From the last line, we can conclude that

limr®V,N? =0, (A.9)

since the lapse and shift (not to mention also the extrinsic curvature) vanish at B, and
lim r0%7V €, = 0 since the projection ensures the derivative is acting only on B where &
is a constant (namely zero). This ensures that

NO[

lim— =0, (A.10)
€]
and as a byproduct we also see that,
N« N« 1 N¢
0=1lim— = lim — = lim— =0. A1l
i N \/T—N—2N,N° N (A-11)

Finally, let us consider lim V,[¢|. By direct computation we have

NV, N N,V N°
Vol = Va/ N2 — NoNo = 2Vl NoValN7 (A12)
€] €]
The second term above vanishes under the limit because of (A.11). Then we have,
NV,N olN
VoV ¥V (A.13)
€] /1 — NN
N2
so that NY.N
lim V,|¢| = lim TT =limV,N, (A.14)

again by eq. (A.11). Going back again to the expression for the surface gravity we can now
see that
k= lim|r*V,N]| . (A.15)

Taking the minus sign (to ensure an outward pointing normal) we then have

limV,N = —limkr, = D,N = —kr, on B. (A.16)

This important result will be crucial to showing eq. (2.81). To proceed, let us note
that, on B, the integral (2.81) can be recast into the following form:

]{ dA.B* = f dAoDgN [h* B — h*Ph*] Ghiyy, . (A.17)
B B
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The surface element on B is given by, dS, = —ry\/cd”~20 where 6% are the coordinates
on B and o = det (00‘5 ) is the determinant of the induced metric. Substituting our result
above for the derivative of the lapse and noting that the surface gravity is constant over
the horizon, we can re-express the above in the following manner:

]{ dAoDgN [h* B — h*PhA] 6oy = K 7{ VodP20rars [R*7R — h*P RN Shey .
B B
(A.18)

Now performing some simple manipulations on the integral:
7{ VodP20rarg [h7R — PRI Ghgy = 7{ VodP20rarg [h7RN — h*PhA] $hgy
B B
= jqf VodP =20 [r7r — 7] Ghq
B
= —7{ VadP205°*5h,
B
= —j{ VodP200 50,
B

= -2 7{ VodP20
B
= —20A. (A.19)

In this derivation we have used the completeness relation for h,g, as well as the fact that
0¥ projects the variations into B, i.e. 0%0h,s = 0P8 (rors + 04p5) = 0°%60,, and

finally the formula for the variation of the metric determinant do = go**do,. This result
establishes eq. (2.81).
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Appendix B

Review of ultra-spinning limits for
AdS black holes

In this appendix, we discuss the ultra-spinning limits of rotating AdS black holes. Specifi-
cally, we discuss the black brane limit and the hyperboloid membrane limit. In each case,
we illustrate the idea of the limit for a single rotation parameter — additional details can

be found in [2, 3].

B.1 Black brane limit

Ultraspinning black holes were first studied by Emparan and Myers [137] in an analysis
focusing on the stability of Myers—Perry black holes [25] in the limit of large angular mo-
mentum. For AdS black holes several physically distinct ultraspinning limits are possible.
In this appendix we review the first type—the black brane ultraspinning limit—first stud-
ied by Caldarelli et al. [130] for Kerr-AdS black holes. The procedure consists of taking
a limit where one or more rotation parameters, a;, approach the AdS radius, L, a; — L,
keeping the physical mass M of the black hole spacetime fixed while simultaneously zoom-
ing in to the pole. This limit is sensible only for D > 6 and yields a vacuum solution
of Einstein equations (with zero cosmological constant) describing a static black brane.
Armas and Obers later showed that the same solution can be obtained by taking a — oo
while keeping the ratio a/L fixed, their approach having the advantage of being directly
applicable to dS solutions as well [213].

In this appendix we follow the original reference [130] and demonstrate the procedure
for the multiply spinning Kerr-AdS black hole spacetimes discussed in section. We also
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comment on an (im)possibility of taking the black brane limit starting from the newly
constructed super-entropic black holes.

First, let us introduce the general Kerr-AdS metrics. In the generalized Boyer—Lindquist
coordinates the metric takes the following form:

2 Udr?
ds? — do? + quﬂ + ﬁ A2, (B.1)
where we have defined
W p? N2 a?
dy = — 2 dt2+ZTM?d¢?,
i=1 v
N+6 2 2 N+€ 2 2
e+ a; 1 e+ a; 2
wr = g (T )
i=1 - TN —
N
7 d [
w o= Wa -y Lo (B.2)
=1t
and, as usual p? = r? 4+ L%, while
N+e ,LL2 N+e ILLQ N
i < i 2 2

W = E’ U:?" Zr2+a2H<r +Clj),

i=1 ! i=1 Ty

7’5_2p2 N _ %2
F = B:HW+@,:F:—E. (B.3)

To treat even (¢ = 1) odd (¢ = 0) spacetime dimensionality D simultaneously, we have
parametrized

D=2N+1+¢ (B.4)

and in even dimensions set for convenience ay,1 = 0. The coordinates p; are not indepen-
dent, but obey the following constraint:

N+e

Z pi=1. (B.5)

In general the spacetime admits N independent angular momenta J;, described by N
rotation parameters a;. Namely, the mass M, the angular momenta J;, and the angular
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velocities of the horizon ; read [152]

M - Mwp_s (i\f:i_l—e)
47r(Hj:), = 2 /7

Ji = == Qiz%a (B.6)
' =j Tyt a;

Let us first discuss how to take the black brane limit in one direction, associated with
the j 2-plane. Starting from the Kerr-AdS metric (B.1) we perform the following scaling:

t=¢€X, r=ér, ,ujze%a/L, (B.7)

where

e=Z=7"—=0 as a;—~ L. (B.8)

Since we want to keep the physical mass M and angular momenta J; finite for all i, we
have to have m ~ €2P=5)_ Namely, we set

m — PmL?, (B.9)

where the factor L? was chosen to cancel a factor of L? in U after the rescaling. For the
limit to work, we must have also keep m /U finite. Using the scalings (B.7),

N+e ’uz N
e | (GEX (B.10)
=1 vk

2 N+e 2/ 442 2 N
_ 24 (9 Dot pi (€7 + aj) 402 | 2
= € Ere(ﬁe +Z SR ) H(e 7+ aj) .
i ik
We see from this that we will not have U ~ ¢2P=3{ unless we rescale the a;’s so that

a; — €2a; for i#7j. (B.11)

Let us define the following two functions for future reference:

N+e

9 N
~ R jo “ ~
U = r‘5< —f2—|—ld2> | |(7’2+ai),
i i7 ki

>

I

>
1)
)

[ +a3). (B.12)



Then we find

2 N+e 2 € TAz—i—a N
e (ah gl ) ) (0
I 72 4 a2
i#j ¢ k]
— 62(D_5)G§U + O(EQD_G) ; (B13)

giving (in the limit € — 0)

62(D75)mL2

m m
— N = = B.14
U *5)a?U U ( )
Also the limits of W and F' are now easy to take
r2\
F = r? (14—?) H(TQ—HZ?) = eQ(D_E’)a?F + O(e2P79)
i=1
N+e ILLQ N+te
w = Z:i +Z 64 2/L2)
i=1
N+e
= >+ 0() =1+ 0("). (B.15)
i#]
Hence we get the correct scaling of F' to keep U/(F — 2m) finite. We also have
N N
Z sz dgzs’b . 4(lj0'2d¢j + Z 6 al/‘Lz d¢’b
= L2 (1— eta?/L?)
i=1 i#j i
N
=€ Z aipi;dgi + O(e)
i#]
N
Z 7" + Cl 2d¢
- i
+ e4a2 0o 4 P+ a7 ;
_ od¢? + € Z o Q/LQ)MMJ
a? il
— €4L_1202d¢§ + et (P 4 a7 ppde? + O() (B.16)
i#]



and the dy; terms give

N4e 9, o 842 N+e 72
r°4a; 2_6T+ea 4 +a
;—Ei dp; = do?+e Z Z a2 12 d,ul
N+e
4L2do + et Y (P +af)dpl + O(f),
i#j
N+e 2
+ a; 2
(Z uzduz>
-
872 4 ¢4q2 N+e A2+a 2
_ 4
= <T0d0+6 ;mﬂzdﬂz>
= O(%). (B.17)

Now that we know how all the components of the metric scale at lowest order as we take
the black brane ultraspinning limit, we can set ¢; = ¢, and rescale the metric by a constant
conformal factor, s = €23. There are no components of order less than 4 in the rescaled
metric, so we may cancel the e* and complete the limit a; — L.

The obtained metric is a vacuum solution of Einstein equations with zero cosmological
constant that describes a (static in the original 2-plane) black brane

Udr?
di? = —di* + <dt dip2d ) T
; pidgn) +=——
7]
N+e
+ do’ +o%dg’ + > (i + a7y
i#£]
N
+ Y (P4 a])plde] (B.18)
2]

Here, the metric functions F and U are given by (B.12), and the coordinates p; are bound

to satisfy the following constraint:
N+e

d =1 (B.19)
i#]
Note that in the process of taking the black brane limit we have ‘lost’ the AdS radius L
and no longer have an asymptotically AdS space. This is in contrast to the super-entropic
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and hyperboloid membrane limits which retain their asymptotic AdS structure. Another
difference is that the black brane limit can be simultaneously taken in several directions?®,
whereas this is impossible for the super-entropic limit.

B.2 Hyperboloid membrane limit

In this appendix, we examine another type of the ultraspinning limit—the hyperboloid
membrane limit. The hyperboloid membrane limit was first studied in [130, 111], where
it was found applicable to the Kerr-AdS spacetime for D > 4. In this limit, one lets the
rotation parameter a approach the AdS radius L, a — L, while scaling the polar angle
f# — 0 in a way so that the coordinate o defined by

sinf = VEsinh(o/2) (B.20)

remains fixed. Contrary to the super-entropic limit, this limit does not require any spe-
cial rotating frame. We shall now demonstrate how this works for black holes in four
dimensions.

In four dimensions, applying the coordinate transformation (B.20) to the Kerr-Newman-
AdS metric (3.13) and taking the limit « — L, we find

d 2
—f(dt — Lsinh*(o/2) d(b)2 ;
,02
Z(da + sinh’*cdg?) (B.21)
where ) )
f:1—%+%, P=r2 L2, (B.22)

Note that whereas the black brane limit discussed previously yield asymptotically flat
metrics, this limit retains the asymptotically AdS structure of the spacetime.

28Gince the result of the black brane limit is no longer AdS it is not possible to take several such limits
successively.
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Appendix C

Klemm’s construction of the
super-entropic black hole

In this appendix, we review Klemm'’s construction of the super-entropic black hole in four
dimensions [113]. Klemm begins with the Carter-Plebaniski solution of Einstein-Maxwell-A
theory, which has the following metric and field strength:

X(z) v+, y2+w2d2 Y(y)

ds® = — +
P’ +q 1

S(dr — yPdo)? + (dr + 2%do)?, (C.1)

X() Yiy) Y T2

2 .2 2 _ 2y _
o Qy? — x )+2nyda;/\ P(y* — z*) — 2Quy
(y* +2?) (r* + ¢%)?
The Einstein-Maxwell equations demand that the functions X (z) and Y (y) are quartic
polynomials with the following forms:
X(z) = a+Q*—2mx+ex®+ (—A/3)x",
Y(y) = a—P*+2ny —ey® + (=A/3)y*. (C.3)

(dr — y*do) + dy A (dr + ¢*do) . (C.2)

Here, ), P and n denote the electric, magnetic and NUT-charge respectively, m is the
mass parameter, while  and e are additional non-dynamical constants. Also, A is the
cosmological constant, which we take to be negative, A = —3/L?.

The solution possesses a scaling symmetry
y =Xy, T, T—=T/\, o—=0/\,
a —=MNa, P NP, Q- )\NQ,
m = XNm, n—Nn, - \e. (C4)
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that leaves (C.1) and (C.2) invariant. This scaling symmetry can be used at leisure to adjust
the non-dynamical constants o and €. From now on will we assume that the magnetic and
NUT charges vanish, P =n = 0.

The Carter-Plebanski solution reduces to various more familiar solutions upon assuming
certain explicit forms for the polynomials X (z) and Y'(y). For the case of black hole
solutions, roughly speaking, we can think of the roots of X (z) as determining the locations
of horizons, while the roots of Y (y) determine the transverse geometry; the range of y
should be constrained to regions where Y'(y) is positive to ensure the absence of closed
timelike curves and proper signature.

A particularly interesting case arises when multiple roots of Y (y) coincide — this yields
the super-entropic black hole. Under the constraint

L*e* = 4o, (C.5)
the polynomial Y (y) has two double roots at

eL?
Y =1y, = ——

: (C.6)

Because of the scaling symmetry, without loss of generality we can set ¢ = 2 yielding
Yo = L. In this case, the polynomials read

X(z) = (L + ”%2)2 +Q* —2mz, (C.7)

and the metric describes the super-entropic black hole, with the largest root of X (z) giving
the location of the horizon.

The equivalence between Klemm’s solution and the four-dimensional super-entropic
black hole presented in chapter 3 is observed after performing the coordinate transformation
given in eq. (3.17).
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Appendix D

Field equations in a general theory of
gravity

In this appendix, we provide a derivation of the field equations in a higher curvature theory
of gravity. The primary reference for this appendix is [196].

We consider a Lagrangian of the form

L = v=9L(gap, Rapuv) (D.1)

and vary the action to produce the field equations and isolate the boundary term. Here we
do not consider the possibility that the Lagrangian depends on derivatives of the Riemann
tensor.

We have ac .
0L =+/—g (deaﬁ + §£go‘ﬁdga5 + Paﬁ“yéRafgw) (D.2)
af
where we have defined
poow Ok (D.3)
aRaﬁW 7

which, by definition, has the same symmetries as the Riemann tensor. We will now focus
on the two “non-trivial” terms in the variation.

First, we focus on the variation of the Riemann term. Using R%g,, = g%’ Ryp,,, we have
6 (9% Ropuw) = 9°70Ropp + Ropu09™” = OR" g
= §"70Ropu =V, (M‘gl,) -V, (5Fgu) — Ry 0g™
= 0Rapu = 9op Vi (01%,) = 9ap Vi (61%,) + 9" Roguv09ay (D.4)
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Now, we simplify the contraction with P
PO = PRy P, T, (1) — P, (31
= Paﬁprﬁw(sgap + QPQWVQOWVM (5sz/)
_ Pa'BWRp,BWngap + QVM (Paﬁuugapérgy) + QVB (vypaﬁ#yaga”)
+ 2V 3V, P §g,, (D.5)

In going from the second line to the third line, we used
1 v
6FZ[3 = 59“ (Va(;gﬂu + vﬁ(sgau - quaﬂ) (D6)

and made plenty of use of the symmetries of P+,

To compute

oL

8ga5

we will study how the Lagrangian changes under diffeomorphisms z¢ — x® + £% in two
different ways. First, since £ is a function of the metric and Riemann tensor we have

oL

8ga5

oL
=2

8ga5

(D.7)

5L = Ly + P LRy

Vals + PPN o Rog + 4P R7 5,V oo (D.8)

To go from the first line to the second line, we exploited the symmetry of P##,
Second, since L is a scalar, we have:
0L =2:L
=&V, L

_ é;o oL Vogag + Paﬂ‘uyvaRaﬂmx
aga,@

= PPN Ropyuw (D.9)

Now, putting the two together we have:

oL
2 39 ﬁvagﬁ + PPHEIN Ry + AP R 5,V & = P M E7N s Ropyu
oL
- — _gpacwps D.10
agaﬁ 14 ( )
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where the last implication follows because this must be true for any vector £*.

Combining the various results above, we have

5L ¢—<

1
==y < P“”“”Rﬁg,w + 597 LA PR gy + 2V, Pwﬁ> 0gas

Bégaﬁ + POC’BMV(SRQIM,,)

+2y/—gV, (P“ﬁ“”gapéfp +V Pa“‘”’égao)
==y ( PO R g+ 5 1L+ 97,V Pafwﬂ> 09as
+ 0, [2v/=g (P 90,015, + YV, P76 g40) | (D.11)
From the above, we can read off the generalized Einstein tensor:
1
E = =P MR 5y + 597 L+ 2V, V, PO (D.12)
with indices up, or (noting that 69, = —gaogs,09*")
1
(c;ag = pagijgam, — égagﬁ — 2VUVMPQUM5 (D13)

with indices down. By definition

2 6(/gLlw)
Taﬁ_—\/__g 57 (D.14)

so the full field equations read
ga,@ = "QTaﬁ . (D15)

Written in the action form, we see that:

5S = / du\/=gEasbg™ + yf A5, 60" (D.16)
% 2%

where
vt =2 (P“B“”gap(SFgV + V,,Pa’w”égag) . (D.17)

If Dirichlet boundary conditions are enforced on the metric, then the term involving the
variation of the metric above will vanish, giving

vt = 2P g, 0T, . (D.18)
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This term should be recast in terms of extrinsic and intrinsic curvatures of the boundary
giving generalizations of the Gibbons-Hawking-York term for Einstein gravity. In the
case of Lovelock theory, these terms were worked out independently by Myers [241] and
Teitelboim and Zanelli [245].
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