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Abstract

We introduce StringFuzz, a software tool for automatically testing string SMT solvers.
String SMT solvers are specialised software tools for solving the Satisfiability Modulo
Theories (SMT) problem with string contraints, which is a type of constraint satisfaction
problem applicable in industry. Like all tools, string SMT solvers need testing. The
developers of solvers commonly test them with published test suites: pre-generated sets
of problem instances (i.e. example problems). As new features are added to string SMT
solvers, they often are not exercised by existing suites. We introduce StringFuzz, a tool for
solver developers to generate SMT instances to exercise and find defects in their solvers.
We describe StringFuzz’s features for generating and transforming SMT instances with
string and regex constraints. We also show StringFuzz’s many controls, and show how
to use them to generate specially tuned scaling instances. For public use, we present
our own suite of StringFuzz-generated SMT instances. We also introduce StringBreak,
an automated exploratory tester for string SMT solvers, which uses a genetic algorithm
to generate SMT instances that take a long time for solvers to solve. To demonstrate
the usefulness of StringFuzz and StringBreak, we show experimental results from testing
leading string SMT solvers (Z3str3, CVC4, Z3str2, and Norn) with them. We describe two
defects and one potential future enhancement that we discovered in Z3str3 as a result of
our experiments.
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Chapter 1

Introduction

Constraint Satisfaction Problem s (CSPs) are, informally, a type of mathematical problem
that involves a set of variables and a set of constraints on those variables. CSPs are
common in academia and industry as formalisations of many real-world phenomena. Some
examples of things that can be expressed as CSPs are: solving Sudoku puzzles, optimising
cargo route plans at a shipping company, and verifying that a Central Processing Unit
(CPU) design implements its specifications. Formulating and solving CSPs is therefore an
economically valuable activity, and many software tools exist to facilitate it.

1.1 String SMT Solvers

The Satisfiability Modulo Theories (SMT) problem is a decision problem that can be stated
as follows: is a given first-order logic formula (with predicates from some set of formal
theories) satisfiable? It is a type of CSP. Many real-world scenarios can be formalised as
SMT problems; for example: proving mathematical theorems, and finding bugs in software.
The string SMT problem is further explained and defined more formally in Sect. 2.1.

Software tools that can solve SMT problem instances are called SMT solvers. SMT
solvers that can solve SMT problem instances with string constraints are called string
SMT solvers. There are many algorithms for solving the SMT problem, and for solving
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specifically the string constraints. They are described in further detail in Sect. 2.3. There
are many string SMT solvers currently available, and in this thesis we will focus on four
of them: Z3str3, CVC4, Z3str2, and Norn [12, 20, 24, 10]. They are described in further
detail in Sect. 2.5.

1.2 Solver Testing

Like all tools, string SMT solvers need to be tested. Solver developers commonly test
their solvers with published test suites: sets of SMT problem instances. For example, the
authors of each of the solvers CVC4, Z3str2, and Kaluza have published their test suites
for use by others [1, 8, 4].

To test a solver for correctness, solver authors need to compare its answer for a problem
instance with an oracle: something that gives the correct answer. Usually an oracle is an
existing solver that is known to give correct answers, or a human that carried out some
decision procedure (like a proof, at instance construction time) to find the correct answer.

1.3 Motivation

Unfortunately, once instance suites are published, their authors rarely update them over
time. That means that when testing requirements for solvers change, existing suites may
no longer address them. Furthermore, it is not always possible to use another solver as
an oracle, so solver authors need to rely on another method of knowing the answers to
problem instances. From this, we identified two needs of solver authors: generating new
instances to suit their needs, and easily knowing the answers to those instances.

1.4 Contributions

In this thesis we present the following contributions:
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1. The StringFuzz tool: In Chap. 3 we describe StringFuzz, a modular tool we created
for solver developers to test their solvers. StringFuzz can generate and transform
SMT instances in SMT-LIB format, and has many modules and controls for doing
so. We describe its features and give example use cases, some of which we used
ourselves in our experiments.

2. A suite of SMT-LIB instances: In Sect. 3.5 we describe a suite of SMT instances
in SMT-LIB format that we generated with StringFuzz and published on our web-
site [6]. The suite consists of two sub-suites: one (called Generated) with problems
generated by StringFuzz from scratch, and another (called Transformed) generated
by StringFuzz by transforming seed instances from industrial applications.

3. The StringBreak tool: In Chap. 4 we describe StringBreak, another tool we created
for solver developers to test their solvers. StringBreak uses a genetic algorithm to
generate and mutate SMT instances, selecting for instances that take a long time for
a given solver to solve. We describe elements of the genetic algorithm (like the fitness
function), and present some example instances that StringBreak discovered.

4. Experimental Results and Analysis: In Sect. 3.6 we compare the performance
of Z3str3, CVC4, Z3str2, and Norn on the StringFuzz sub-suites Concats-Balanced,
Concats-Big, Concats-Extracts-Small, and Different-Prefix . We highlight these sub-
suites because some solvers could solve them quickly and others could not, and vice
versa. We analyse the results and identify algorithmic limitations in Z3str3 that
cause it to perform poorly on some suites.

In Sect. 4.2 we exercise Z3str3 and CVC4 with StringBreak,. We present the perfor-
mance results of these two solvers on the instances StringBreak found.

1.5 Related Work

There are currently several published SMT problem instance suites. Some small suites were
created and published by solver developers to test their own respective solvers [1, 9, 8].
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There are also the larger Kaluza [4] and Kausler [19] suites, which are commonly used for
benchmarking as well as testing.

Aside from published suites, there are already fuzzers and instance generators currently
available, but none of them can generate instances with string or regular expression (regex)
constraints. For example, the FuzzSMT [15] tool can generate SMT instances with bit-
vector constraints and arrays, but not with strings or regexes. The SMTpp [14] tool can
pre-process and simplify existing instances, but cannot generate new ones or arbitrarily
alter existing ones.

StringFuzz can both generate and transform instances with string and regex constraints,
and it has input flags for its user to control its generating and transforming behaviour.
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Chapter 2

Background

This chapter provides background information and formalisations of concepts that will be
relevant in later chapters. We assume that the reader is familiar with propositional and
first-order logic, and with UNIX shell scripting syntax.

2.1 The SMT Problem

Definition 2.1.1. Decision problem A problem that can be framed as a yes-or-no question
about its input variables.

Definition 2.1.2. Satisfiability A formula is satisfiable if there exists some assignment of
values to its variables that make the formula evaluate to True.

The SMT Problem
Input: A first-order logic formula with the equality relation

and predicates from background theories.

Output: True if the formula is satisfiable; False otherwise.
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Informally, the SMT problem is a decision problem that asks whether a given first-order
logic formula with variables from mixed domains is satisfiable. The different domains and
the values, functions, and relations that belong to them are called a background theory. A
background theory in the SMT problem can be any formal theory. Some examples are:
the theory of integers (integers, addition, negation, etc.), the theory of sequences (empty
sequence, intersection, etc.), and the theory of bit vectors. Each theory in in the SMT
problem has a signature: a 3-tuple of sorts, values that inhabit the sorts, and functions
that operate on the values.

2.2 The Theory of Strings

The specific background theory relevant to StringFuzz and string SMT solvers is the theory
of strings. Although they share fundamental parts, the signatures for the theory of strings
differ from solver to solver. For example, some solvers only define the theory of strings in
terms of regular expressions, and others only support strings and do not support regular
expressions at all.

Tables 2.1a and 2.1b describe an example signature for a theory of strings. For com-
pleteness, the full theories supported by CVC4 and Z3str3 are available online [7, 3].1

2.3 String SMT Solving Algorithms

The Davis–Putnam–Logemann–Loveland (DPLL) [17] algorithm is an algorithm commonly
used to solve the satisfiability (SAT) problem for a propositional logic formula. However,
propositional logic formulae only have Boolean variables and operators, and SMT prob-
lem instances have variables and functions from background theories. To solve the SMT
problem there is a similar algorithm: the DPLL(T) algorithm [23] (the T is for Theories).
The formal definitions of either algorithm are not reproduced in this thesis, but informally,

1The documents at the provided links use the SMT-LIB format, which is described in Sect. 2.4.
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Table 2.1: One possible signature of the theory of strings

(a) String sorts

Sort Symbol Domain

String Strings
RegExp Regular expressions

(b) String functions

Function Symbol Signature Value

Length (String) → Int The length of a string
Concat (String String) → String The concatenation of two strings
CharAt (String Int) → Bool The character at a given position in a string

the DPLL(T) algorithm maps theory-specific predicates to Boolean variables, and invokes
theory-specific solvers to determine satisfiability of those predicates.

Most SMT solvers implement the DPLL(T) algorithm, and include a SAT solver and
several theory-specific sub-solvers. String SMT solvers include sub-solvers for the theory of
strings. Different solvers have different approaches for solving string and regex constraints,
and Sect. 2.5 briefly describes the approach of each solver that we tested.

2.4 The SMT-LIB Language

There is a standard language for describing SMT problem instances, called SMT-LIB [11].
Most SMT solvers accept instances in the SMT-LIB language as input, and produce an
answer as output. The SMT-LIB language describes both the formula that constitutes a
problem instance, and the commands for a solver to process it. For example, below is a
simple first-order logic formula with elements from the theory of strings.
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"Hello " ·X = "Hello World"

It has one string variable, X, and one string constraint: an equality between a string
literal and the concatenation (represented by the · symbol) of X and another string literal.
Informally, to solve the SMT problem for this formula is to find a value for X such that the
concatenation of "Hello " and X is equal to "Hello World". Its corresponding SMT-LIB
representation (with a command on the last line for the solver to compute the satisfiability
of the formula) is:

(set-logic QF_S)
(declare-fun X () String)
(assert (= (str.++ "Hello " X) "Hello World"))
(check-sat)

The output of the CVC4 solver for the abover instance is:

sat

If a command is added to also produce the model (which is (get-model) in SMT-LIB),
then CVC4 outputs:

sat
(model
(define-fun X () String "World")
)

The full grammar of SMT-LIB is available online at http://smt-lib.org.
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2.5 Existing String SMT Solvers

We chose four solvers for our experiments: Z3str3, CVC4, Z3str2, and Norn. Each solver
implements different solving techniques, and we briefly describe them in this section. For
more formal descriptions, we direct the reader to the solvers’ respective published papers.

CVC4 The CVC4 solver is an SMT solver and has a sub-solver for the theory of
strings. The authors of CVC4 formalise a calculus with reduction rules, which reduce
string constraints to simpler string constraints, and ultimately to SAT or UNSAT [20].
CVC4 repeatedly applies those rules to solve string constraints.

Z3str3 (and Z3str2) The Z3str3 (and Z3str2) solver is a theory-specific extension (for
the theory of strings) to the Z3 SMT solver [18, 12]. Z3str3 solves string constraints by
interpreting them as word equations, and then searching the space of possible arrangements
of variable concatenations for a satisfying assignment.

Norn The Norn solver is an SMT solver and has a sub-solver for the theory of strings [10].
It uses a mixed approach that is similar to both Z3str3 and CVC4: it treats some con-
straints as word equations and simplifies them (like Z3str3), and it applies reduction rules
to other constraints (like CVC4).
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Chapter 3

StringFuzz

StringFuzz is the main contribution of this thesis. It is a software package for string SMT
solver developers, and comes with several tools to generate, transform, and measure SMT
instances with string constraints, in SMT-LIB format. StringFuzz consists of the following
tools:

stringfuzzg
This tool generates SMT-LIB instances with string and regex constraints. Sect. 3.1
describes it in detail.

stringfuzzx
This tool transforms SMT-LIB instances with string and regex constraints. Sect. 3.2
describes it in detail.

stringbreak
This tool generates an SMT-LIB instance that takes a long time for a given solver to
solve. Chap. 4 describes it in detail.

stringmerge
This tool takes two or more SMT-LIB instances as input and merges them into one,
which it outputs. Sect. 3.3 describes it in detail.
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stringstats
This tool takes an SMT-LIB instance as input and outputs its properties: the number
of variables/literals, the max/median syntactic depth of expressions, the max/median
literal length, etc.

All of the tools, source code, documentation, and published instances that come with
StringFuzz are available on our website [6].

3.1 Generator

stringfuzzg is an executable provided by StringFuzz. It can generate SMT-LIB in-
stances with string and regex constraints. It implements several generation strategies
(called generators), each one with input flags that can be used control its behaviour.
Table 3.1 describes the built-in generators and the instances they generate. The com-
mand stringfuzzg --help documents the meanings of specific flags and generators that
stringfuzzg supports. We explain some example uses of stringfuzzg below.

In Sect. 3.5.1 we present the suite of instances we created using stringfuzzg. For
example, we generated the last instance of the Concats-Small sub-suite with this command:

stringfuzzg concats --depth 88 --depth-type semantic --solution solution

In addition to generating instances in a batch, StringFuzz can also work as a random
fuzzer. For example, the script below repeatedly feeds random (but semantically valid)
instances to CVC4 until the solver takes more than 5 seconds to solve one of them:

while true; do
ANSWER=$(stringfuzzg -r random-ast --meaningful --num-vars 3 --depth 3 \

| tee instance.smt25 \
| cvc4 --lang smt2.5 --tlimit=5000 --strings-exp)

echo $ANSWER
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if [[ "$ANSWER" = "unknown" ]] || [[ "$ANSWER" = "timeout" ]]; then
cat instance.smt25
break

fi
done

Table 3.1: stringfuzzg built-in generators.

Name Generates instances that have ...

Concats Long concats and optional random extracts.
Lengths Many variables (and their concats) with length constraints.
Overlaps An expression of the form A.X = X.B.
Equality An equality among concats, each with variables or constants.
Regex Regexes of varying complexity.
Random-Text Totally random ASCII text.
Random-AST Random string and regex constraints.

3.2 Transformer

stringfuzzx is an executable provided by StringFuzz. It implements several transforma-
tion strategies (called transformers), each one with input flags that can be used control its
behaviour. Table 3.2 describes the supported transformers. In Sect. 3.5.2 we describe the
suite of instances we created using stringfuzzx.

The transformers Translate and Reverse preserve satisfiability under certain conditions.
The command stringfuzzx --help documents the meanings of specific flags and controls
that it supports.
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Table 3.2: stringfuzzx built-in transformers.

Name The transformer ...

Fuzz Replaces literals and operators with similar ones.
Graft Randomly swaps non-leaf nodes with leaf nodes.
Multiply Multiplies integers and repeats strings by N.
Nop Does nothing (can translate between SMT-LIB).
Reverse Reverses all string literals and concat arguments.
Rotate Rotates compatible nodes in syntax tree.
Translate Permutes the alphabet.
Unprintable Replaces characters in literals with unprintable ones.

3.3 Merger

stringmerge is an executable provided by StringFuzz. It merges two or more SMT-
LIB instances into one. stringmerge supports three variable merging strategies: Concat,
Disjoint, and Intersect.

Concat The output instance is a concatenation of the inputs, with duplicate statements
removed. The following command implements this merge:

stringmerge a.smt25 b.smt25 simple

Disjoint This strategy is the same as Concat, but it renames all the variables in each
input instance to fresh names. The output instance describes disjoint formulas, one for
each input instance. The following command implements this merge:

stringmerge a.smt25 b.smt25 simple --renaming disjoint

Intersect This strategy does the opposite of Disjoint. Instead of renaming all variables to
fresh names, it creates one name pool and renames all variables to names in the pool. The
output instance describes one formula with some variables having constraints from one or
more of the input formulas. The following command implements this merge:
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stringmerge a.smt25 b.smt25 simple --renaming intersecting

3.4 Implementation

We implemented StringFuzz in the Python programming language. We made several design
decisions to optimise for its interoperability with other tools and for ease of future extension.

To ensure interoperability, we implemented the stringfuzzg and stringfuzzx tools
as UNIX filters. This means that stringfuzzg can send its output into stringfuzzx, and
then in turn that output can be sent to a solver. The following command illustrates this:

stringfuzzg concats | stringfuzzx fuzz | z3str3 -in

We organized StringFuzz to be easily extended. To show this, we note that while the
whole project contains 3,183 lines of code, on average it has 45 lines of code per transformer
and 109 lines of code per generator.

3.5 StringFuzz Suite

We generated a suite of SMT-LIB instances with stringfuzzg and stringfuzzx, and
published them online [5]. We conducted the experiments in Sect. 3.6 on these instances.

3.5.1 Generated

Table 3.3 lists instances that we generated with stringfuzzg. The instances in each
stringfuzzg-generated sub-suite are grouped by a common property. For example all
instances in the Concats-Balanced sub-suite describe formulas with a deep, balanced tree
of concatenations. In addition, the instances in each sub-suite are scaling: they range from
easier to harder instances. We achieved this using stringfuzzg’s controls for instance
properties (like depth, or the number of variables).
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Table 3.3: The Generated suite.

Name Each instance is ... Count

Concats-Small A right-heavy, deep tree of concats. 60
Concats-Big Same as above, but more extreme. 60
Concats-Balanced A balanced, deep tree of concats. 100
Concats-Extracts-Small A single concat tree with character extracts. 60
Concats-Extracts-Big Same as above, but more extreme. 60
Lengths-Long One single, large length constraint. 100
Lengths-Short Same as above, but more extreme. 100
Lengths-Concats A tree of fixed-length concats of variables. 100
Overlaps-Small A formula of the form A.X = X.B. 40
Overlaps-Big Same as above, but more extreme. 40
Regex-Small A complex regex membership test. 60
Regex-Big Same as above, but more extreme. 60
Many-Regexes Multiple random regex membership tests. 40
Regex-Deep A membership test in a nested regex. 45
Regex-Pair A membership test in one out of two regexes. 40
Regex-Lengths A regex membership test of bounded length. 40
Different-Prefix An equality of two concats with different prefixes. 60

3.5.2 Transformed

Table 3.4 lists instances the we derived from existing seed instances by iteratively apply-
ing stringfuzzx. Every transformed instance is named according to its seed and the
transformations it undertook. For example, z3-regex-1-fuzz-graft.smt2 was created
by applying the Fuzz and then Graft transformers to z3-regex-1.smt2.

The Amazon sub-suite contains 472 instances derived from two seeds supplied by our
industrial collaborators. The Regex sub-suite is seeded by the Z3str2 regex test suite [8],
which contains 42 instances. Through cumulative transformations we expanded the 42
seeds to 7,551 unique instances. The Sanitizer sub-suite came from five industrial e-mail
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address and IPv4 sanitizers.

Table 3.4: The Transformed suite.

Name Seed Count

Amazon Two industrial regex instances. 472
Regex Z3str2 regex test suite. 7,551
Sanitizer Five e-mail and IPv4 sanitiser examples. 1,170

3.6 Results

stringfuzzg’s and stringfuzzx’s ability to produce scaling instances helped uncover
several implementation issues and performance limitations in Z3str3. Varying only one
property of an instance (e.g. depth in Concats-Balanced) allowed us to see how the solver’s
performance depends on that property only.

We found several sub-suites on which one solver performed poorly, but not others.
They are Concats-Balanced, Concats-Big, Concats-Extracts-Small, and Different-Prefix .1

Fig. 3.2 shows the suites that were uniquely difficult for CVC4. Fig. 3.1 shows the suites
that were uniquely difficult for Z3str3. All experiments were conducted in series, each with
a timeout of 15 seconds, on an Ubuntu Linux 16.04 computer with 32GB of RAM and an
Intel R© CoreTM i7-6700 CPU (3.40GHz).

The Z3str3 team identified performance issues and opportunities for a new heuristic
by examining Z3str3’s execution traces on the instances in the Concats-Big suite. In
particular, Z3str3 does not make full use of its solving context (e.g. when some terms are
empty strings) to simplify the concatenations of a long list of string terms before trying
to reason about the equivalences among sub-terms. Z3str3 therefore introduces a large
number of unnecessary intermediate variables and propagations.

1We present only the results that made one solver perform poorly and not others, but results for the
full suite are available on our website[6].
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(a) Performance on Concats-Balanced (b) Performance on Concats-Big

Figure 3.1: Instances hard for Z3str3

(a) Performance on Concats-Extracts-Small (b) Performance on Different-Prefix

Figure 3.2: Instances hard for CVC4

3.7 Bugs Fixed in Z3str3

We also found and reported two different implementation bugs in Z3str3 as a result of
testing with the Generated scaling suites Lengths-Long and Concats-Big.
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The first bug we reported involved interoperability between the theory of integers and
the theory of strings. When Z3str3 searched for integer length values to check a model for
consistency, it didn’t take advantage of an available shortcut to check for constants first.
We found this bug by testing Z3str3 with Concats-Big. Because the number of variables
grows in each instance in the suite, so does the model size, and so does the number of
checks that Z3str3 was making to determine consistency. This bug was addressed in pull
request #1147 (https://github.com/Z3Prover/z3/pull/1147), and was fixed between
the commits 6308636 and 3865c45.

The second bug we reported involved length-testing during model construction. When
Z3str3 was trying to compute a length for a variable, it tested possible lengths using linear
search, instead of binary search. We found this bug by testing Z3str3 with Lengths-Long.
Because the length constraints in each instance grew very large, the solving time also grew
with it. The Z3str3 team fixed this bug between the commits 66bc68f and 7b536e9.
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Chapter 4

StringBreak

stringbreak is an executable provided by StringFuzz. It generates an SMT-LIB instance
that takes a long time for a given solver to solve. It takes a solver command as input1, and
uses a genetic algorithm to mutate a seed instance into another that takes a longer time
for the solver to solve. The genetic algorithm and its components are described further in
Sect. 4.1.

To run stringbreak (assuming CVC4 is installed), execute this command:

stringbreak "cvc4 --lang smt2.5 --strings-exp" --trace

stringbreak can also select for specific answers, and can accept a seed problem. For
example, the following script generates a random instance with stringfuzzg, and then
tries to mutate it to a SAT instance that takes a longer time to solve:

stringfuzzg random-ast --meaningful > random.smt
stringbreak "cvc4 --lang smt2.5 --strings-exp" -a SAT -s random.smt

Currently stringbreak is random in its mutations, but a future enhancement could
allow its user to control the allowed mutations.

1The command must be such that the solver expects its input on the standard input channel. Some
solvers cannot do this.
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4.1 Genetic Algorithm

StringBreak implements a genetic algorithm to mutate a seed string SMT instance into
one that takes longer to solve. Fig. 4.1 shows the pseudocode of the algorithm.

1: function simulate(seed, command, numGenerations, worldSize)
2: P ← {seed} // Initially, the population is a list of one instance: the seed
3: i← 0

4: while i < numGenerations do:
5: P ← repopulate(P,worldSize)
6: F ← judge(P, command)

7: P ← kill(P, F )

8: i← i+ 1

9: return P

Figure 4.1: Pseudocode of the StringBreak genetic algorithm

This algorithm implements evolution by simulating “natural” selection over a population
of SMT-LIB instances. At each iteration (i.e. a generation) of the algorithm the population
goes through two phases described below: repopulation, and culling.

4.1.1 Repopulation Phase

The REPOPULATE function adds new instances to the population using the reproduction
function until the population limit (specified by an input flag to stringbreak) is reached.
Fig. 4.2 shows the repopulation and reproduction functions. The SPAWN function sim-
ulates vegetative reproduction: every child instance is a random mutation of one parent
instance. The random mutations are picked from among 4 possible ones: the stringfuzzg
transformers Reverse and Translate, and two simple mutators that add or remove a random
constraint.
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1: function repopulate(P,worldSize)
2: space← worldSize− P.size

3: children← {}
4: while space > 0 do
5: children.append(spawn(P ))

6: space← space− 1

7: return P + children

1: function spawn(P )
2: parent← random instance from P

3: return randomlyMutate(parent)

Figure 4.2: Pseudocode of the repopulation phase

4.1.2 Culling Phase

In the culling phase of the genetic algorithm, instances are ordered according to a fitness
function, and all except the first 4 in the order are removed from the population. Fig. 4.3
shows the pseudocode for the culling phase.

1: function judge(P, command)
2: F ← {}
3: for all I ∈ P do
4: F.append(getFitness(I, command))

5: return F

1: function kill(P, F )
2: sorted← orderByFitness(P, F )

3: survivors = sorted[0 : 3] // Keep the best 4 instances
4: return survivors

Figure 4.3: Pseudocode of the culling phase
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The GETFITNESS function runs the solver command on the given instance and com-
putes the instance’s fitness. The fitness is a tuple of the following parameters: solve time,
the solver’s answer (i.e. SAT or UNSAT), and the instance’s size. The solve time is a
median solve time from among several invocations of the solver on the instance. We did
this to smooth out any irregularities in solver run times.

The ORDERBYFITNESS function sorts the population of instances by their fitness.
Because fitness is a multivalued property, this function sorts the population on several
values in the following order: by size (ascending), and then by solve time (descending). In
the resulting order, instances with the longest run time and shortest size are first. This
function favours instances that take the longest time to solve first. Once run times reach
the timeout limit and are equal, the function favours smaller instances.

4.2 Results

We ran stringbreak on CVC4 and Z3str3. All simulations were conducted in series 15
times, each with a maximum timeout of 3 seconds per instance, for 25 generations. The
maximum world size was 8 instances, and the upper limit of assertions per instance was 6.

We then ran CVC4 and Z3str3 on the generated instances. Fig. 4.4 shows the perfor-
mance of both solvers on the instances that the simulations discovered. All the experiments
were run on a macOS High SierraTM laptop computer with 16GB of RAM and an Intel R©
CoreTM i7 CPU (2.30GHz).
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(a) Results on instances evolved for CVC4 (b) Results on instances evolved for Z3str3

Figure 4.4: Performance of CVC4 and Z3str3 on instances evolved by stringbreak

23



Chapter 5

Conclusions

We have shown StringFuzz: a tool for string SMT solver developers to test their solvers,
find defects in them, and discover performance issues in them. Our motivation at the outset
of this thesis was to give solver developers a means to generate their own instances, and
to have control over the properties (like satisfiability, structure, etc.) of those instances.

We demonstrated the utility of StringFuzz by presenting the bugs we discovered with
its help in Z3str3. We also showed a suite of crafted scaling instances that we published,
and showed how the suite helped reveal performance issues unique to each of Z3str3 and
CVC4.

Automating and structuring the process of instance generation has helped us systemat-
ically test solvers and analyse their performance. We are confident that solver developers
will likewise use our tools to analyse and improve their solvers. We hope that the filter
design of StringFuzz will enable others to easily integrate it into their own analysis pro-
cesses, and we also hope that its modular architecture will enable others to extend it in
the future.
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Rezine, Philipp Rümmer, and Jari Stenman. Norn: An SMT solver for string con-
straints. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided Ver-
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Appendix A

StringFuzz and StringBreak

This appendix is an archive of source code for StringFuzz and StringBreak. The file name
of this archive is “stringfuzz.zip”.

If you accessed this thesis from a source other than the University of Waterloo, you
may not have access to this file. You may access it by searching for this thesis at
http://uwspace.uwaterloo.ca.
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Glossary

SMT solver A software tool that can solve instances of the SMT problem. 1, 7, 30

decision problem A problem that can be framed as a yes-or-no question about its input
variables. 1

filter A program that accepts a stream of input and produces a stream of output. 14

predicate A function mapping its inputs to a Boolean value. 7

problem instance A specific example of a given problem. 1, 2

regular expression A string that describes a regular language. xii, xiii, 4, 6

regular language A language recognized by a finite automaton. 30

stream A sequence of data elements (e.g. bytes) that are made available over time. 30

string A sequence of (e.g. alphanumeric) characters. xiii, 1, 4, 6, 11, 30

string SMT solver An SMT solver that can solve SMT problem instances that have
constraints on string (and sometimes regex) variables. 1, 2, 6, 7, 10

word equation An equality among string variables and concatenations thereof. 9
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