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Abstract

The aim of this thesis is to develop statistical methodology for the analysis of life history

data under incomplete observation schemes and with latent features which must be accom-

modated to ensure models provide a reasonable representation of the processes of interest

and advance scientific understanding.

Life history data frequently arise in health studies of disease processes in which indi-

viduals pass through a series of stages of disease. Multistate models offer an appealing

approach to modelling processes in settings where the stages can be meaningfully char-

acterized into a finite number of disjoint stages and we adopt such models for much of

the research in this thesis. In many instances, because processes are only observed in-

termittently, the precise number, types and times of transitions between assessments are

not available. For failure time processes at most a single transition can occur between

assessments and the resulting data are called interval-censored failure time data. For more

general multistate processes it is more generally called a panel data observation scheme.

We investigate problems related to interval-censored data throughout this thesis, and con-

sider a more extreme form of incomplete data due to aggregation. The term coarsened

data is used to unify these settings.

Despite careful attempts to collect and exploit available information to characterize

the dynamic features of life history processes, substantial unexplained variability often

exists between individuals or groups of individuals. Heterogeneity can be accommodated

in various ways. Finite mixture models can be specified to accommodates distinct classes,

or sub-populations, in which different disease processes govern progression in the different

classes; latent class models are often used when class membership is fixed. When there are

two classes and no disease progression occurs in one class, so-called cure rate models are
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often used. Classical mixture models with continuous random effect models are also often

used to account for heterogeneity which can be characterized by a more finely distinguished

nature of unexplained variation. This approach is often used in frailty models for survival

data or more generally accommodating between cluster variation in clustered data.

In this thesis, the focus is on methods for statistical modeling and inference for mul-

tivariate failure time and multistate processes subject to intermittent observation; the

resulting data are interval-censored multivariate failure time data and panel data respec-

tively.

Finite mixture models offer a powerful approach for accommodating heterogeneity when

there are distinct types of processes present in a population with latent sub-populations

following one of such processes. Methods for fitting finite mixture models and conduct-

ing score tests for genetic markers are developed in Chapter 2 for a problem involving

heterogeneous multistate processes under intermittent observation.

When there are multiple marginal processes of interest, the correlation between such

processes must be taken into account. In Chapter 3 we develop multivariate models for

the joint analysis of marginal processes. Copula models are popular for modeling the

correlation between marginal failure time processes, while odds ratios are commonly used

to capture the association between binary variables. Through the use of multivariate

mixture models the dependence structure can be decomposed into one for susceptibility

and one for the failure times given joint susceptibility.

Mixed multistate processes involving aggregate data are developed in Chapter 4 and 5.

The computational challenges are addressed through the use of composite likelihood. We

deal with between-cluster variation/within-cluster correlation in both chapters and propose

two approaches to deal with such data. Specifically, we propose a marginal approach where
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we introduce dependence modeling via copulas, propose a composite likelihood and derive

procedure for inference. A random effect model is also formulated in which a cluster-level

latent variable accommodates heterogeneity between clusters. An optimal cost-effective

design is also proposed which gives insights regarding the efficiency of studies involving

aggregation and tracking. In Chapter 5, sample size criteria are developed to meet design

objectives and cost-effective optimal allocations of clusters to the tracking and aggregate

observation schemes are developed.
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Chapter 1

Introduction

1.1 General Introduction to Research Topics

In studies of chronic disease processes, interest often lies in the time at which a certain

event occurs. Usually events represent the occurrence of an undesirable change in a disease

process, such as the development of a complication, the onset of organ damage, or death.

The time from some origin until the event occurs is referred to as a failure time. When

several facets of a disease process are under study, multiple failure times are often of

interest. In such cases scientific interest may lie in modeling the relationship between the

various events, but even when this is not the case it is usually important to deal with the

fact that the failure times may be correlated within individuals. When the events represent

the occurrence of events with a very different meaning and nature, the data are often

referred to as multivariate failure time data (Hougaard, 2012). When the multiple times

represent the occurrence of the same type of event, the resulting data are called recurrent

event data (Cook and Lawless, 2007). In particular settings, multistate models can offer

a structured and appealing way of modeling event occurrence and the relation between

events of different types. The associated state space diagrams (Klein and Moeschberger,
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2003; Cook and Lawless, 2018) can be useful for representing the possible sequences of

events in a disease process.

Failure times are often not observed due to incomplete observation. Right-censored

data arise when processes are not observed for a sufficiently long period of time to record

the failure times (Kalbfleisch and Prentice, 2002; Lawless, 2003). In other settings failure

times are not known exactly because they cannot be observed directly, but the status of an

individual can be assessed by periodic intensive examination through imaging, blood tests

or other means. In such cases event times are only known to have fallen in a particular in-

terval, perhaps between the last negative assessment and the first positive assessment; such

data are referred to as interval-censored data (Sun, 2006). When multistate processes are

under intermittent observation the resulting data are referred to as panel data (Kalbfleisch

and Lawless, 1985) and when such data are reported in aggregated form it may be more

broadly characterized as coarsened data (Heitjan and Rubin, 1991). An additional theme

involves dependence modeling and accounting for heterogeneity in life history processes

under incomplete observation. The particular topics to be considered are described briefly

in Section 1.3 but we first briefly discuss some motivating settings.

They are described in more detail prior to the development and application of the

methodological advances.

1.2 Some Motivating Settings

1.2.1 University of Toronto Psoriatic Arthritis Cohort

The Centre for Prognosis Studies in the Rheumatic Diseases treats patients with various

rheumatic diseases. A registry was created in 1976 called the University of Toronto Pso-

riatic Arthritis Cohort which recruits and follows patients with psoriatic arthritis (PsA),
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an immunological disease in which persons experience pain, inflammation and ultimately

destruction of joints in the body (Gladman and Chandran, 2010). Upon entry to the

clinic, patients undergo a detailed clinical and radiological examination and provide serum

samples for genetic testing. They are then assessed annually or biannually to record joint

damage scores (Rahman et al., 1998), and other factors such as biomarker levels.

Inflammation of the sacroiliac joints, the spine and neck, and reduced lateral range of

motion of the back are all conditions that characterize spondylitis. Spondylitis is one of the

musculoskeletal manifestations of psoriatic arthritis and it can have a severe detrimental

effect on functional ability and quality of life of patients. Hanly et al. (1988) identified 52

of 220 (23.6%) patients recruited to a cohort of patients with psoriatic arthritis as having

this disease. The degree of damage of the SI joints was scored according to the New York

Criteria (Bennett and Wood, 1968) with the following categories: 0 for a normal joint, 1 if

the presence of damage is equivocal, 2 if the joint is abnormal due to erosions of the bone

surface or sclerosis, 3 if the joint is unequivocally abormal, and 4 if there is evidence of

ankylosis (abnormal stiffening and immobility due to bone fusion) of the joint.

This motivates our work in multiple aspects. If we focus only on the intensities of the

diseases progression, it can be explored considering a multistate process or through corre-

lated marginal processes. However, the data suggest that a big fraction of the population

do not develop damage on either the left or right side of the body. Hence a naive analysis

ignoring the nonsusceptible fractions in the population may lead to poor inferences. In

Chapters 2 and 3, the statistical methods that we consider will focus on the intensities of

the disease process while accounting for the nonsusceptible fraction at the same time.

Data in the U of T PsA Cohort are recorded on a total of 64 joints in the body, 28 of

which are in the two hands, 12 of which are in the two feet. The degree of joint damage in

each of the 64 joints of each individual is recorded upon each visit (Rahman et al., 1998).
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Note that joint damage is a strictly progressive process, meaning that once the joint is

damaged it can no longer be repaired. Models used to represent progression in the severity

of joint damage can be based on the state-space diagram in Figure 1.1. Sutradhar and

Cook (2008) considered four states of increasing severity of damage based on the modified

Steinbrocker score (Rahman et al., 1998). Each of the 28 hand joints were then classified

into one of these states at each assessment time and the data were analyzed to model the

development of joint damage. In Chapter 3 we consider three methods that deals with the

co-occurrence of damage in the hands and feet which also accommodates the presence of

the nonsusceptible population.

Figure 1.1: Grading joint damage based on radiologic assessments with state 0 being nor-
mal, state 1 being swelling of the soft tissues, erosion in stage 2, erosion along with joint space
narrowing in state 3 and joint destruction in state 4 .

1.2.2 Growth and Development of Lepidopsetta polyxystra

Lepidopsetta polyxystra is also known as the Northern rock sole. The study took place

in 2011 in the Hatfield Marine Science Center in Newport, Oregon and the larvae were

collected in Chiniak Bay, Kodiak, Alaska (Laurel et al., 2014). The larvae developments are

known to be sensitive to change in temperatures and the study was aiming to understand

the effect of temperature on growth rate of the larvae. In order to study the temperature

effect, larvae were maintained in 15 incubation containers under four different temperature

set-ups. The larvae metamorphosis through different stages as illustrated in Figure 4.1.
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Larval development was scored by the degree of observed tail flexion using the criteria

established by Hawkyard et al. (2014). Stage 1 is characterized by a straight notochord

(no flexion); stage 2 represents straight notochord with the appearance of caudal peduncle

node near the tail where caudal peduncle is the narrow part of a fish’s body to which

the tail fin is attached; larvae in stage 3 have a bent notochord with caudal peduncle

formation near the tail; stage 4 larvae have bent notochord and initial envelopment of the

notochord by the caudal peduncle; and stage 5 is characterized by the full envelopment

of the notochord by the caudal peduncle with only a remnant of bent notochord still

visible (Laurel et al., 2014). Two observation schedules were employed: for tanks 1-7 the

developmental stages were to be assessed on days 24, 28, 46, 66 and 90 days, while for tanks

8-15 the classifications were to occur on days 10, 18, 30 and 47. There were incomplete

data in many tanks due to missing assessment on the scheduled days. Larvae are mobile

small animals that are difficult to identify, The process of identification of individual larvae

can take time, effort and cost and may still be subject to error. Thus, it has motivated

us to develop methods that do not require tracking of individual organisms but rather

relies on the frequency counts for the different stages at each assessment time in Chapter

4. Moreover, this identifiability issue of small organisms has also motivated us to develop

optimal cost-effective design for prospective studies in Chapter 5. Note that in the original

dataset sampled fish randomly from the 15 tanks due to identifiability problems. For the

purpose of demonstrating our method, we treat them as the same individuals.
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1.3 Outline of Thesis

1.3.1 A Finite Mixture Model for Multistate Panel Data

Transition times reflecting disease progression are often interval-censored when disease

status is only known at a series of assessment times. When the precise state of a multistate

process is only available at period assessment times, the resulting data are often referred

to as panel data (Kalbfleisch and Lawless, 1985). In many settings there is considerable

variability in the nature and rate of disease progression and this can be more than expected

based on a simple model. For example, some individuals may tend to progress quickly from

one state to another, while others may not experience certain types of disease complications;

this motivates us to formulate a model which includes both aspects of the disease, i.e., the

progression of the disease and the damage status. In Chapter 2, a finite mixture model

is described which accommodates different Markov processes followed in different latent

classes as well as a nonsusceptible sub-populations under intermittent observations. Under

this framework, a score test is developed which enables one to identify covariates of interest

for further investigation. Simulation studies examining the performances of the proposed

model and the type I error of the score tests show good attainment. An application

involving progression in joint damage in psoriatic arthritis provides illustration.

1.3.2 Mixture Models for Multivariate Interval-censored Data

The finite mixture model that we have considered in Section 1.3.1 accounts for hetero-

geneity among individuals by accommodating underlying classes of individuals defined by

latent variables. Here we consider multiple processes within an individual, each with a

latent binary susceptibility variable. By adopting the marginal specifications we can di-

rectly intepret the covariate effects at the population level. In Chapter 3, we consider a
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bivariate cure rate model for interval-censored failure time. We introduce two types of

dependence structures between the two processes within an individual. Specifically, we

introduce one association model capturing the dependence between susceptibility to the

disease in each disease process and the other characterizing the association between fail-

ure times of the two processes given joint susceptibility. We introduce three approaches

to estimation: maximum likelihood, two-stage pseudo-likelihood and weighted estimating

equations. Simulations show good performances of the three proposed methods. An ap-

plication involving the onset of damage in the hands and feet joints in psoriatic arthritis

provides further illustration.

1.3.3 Analysis of Aggregate Multistate Data

Markov processes offer a useful basis for modeling the passage of organisms through devel-

opmental stages. When organisms are under intermittent observation, likelihoods based

on panel data can naturally be constructured using the transition probability functions. In

Chapter 4 we consider the problem in which organisms are not tracked individually due to

the difficulty of identifying them, but rather aggregate counts of the number of organisms

in different stages of development are recorded at successive time points in each of a num-

ber of tanks. Methods are developed to accommodate clustering of transition rates within

tanks through use of marginal models with robust variance estimates, and using random

effect models. Composite likelihood is used as a basis of inference. The methods are shown

to perform well in empirical studies and are applied to a dataset on the developmental

stages of the Northern rock sole.
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1.3.4 Cost-effective Design with Aggregation and Tracking

Studies of the development and growth of organisms are often conducted in laboratories

where organisms maintained in tanks are examined repeatedly over time. Collection and

recording of cross-sectional aggregate count data on stage occupancy is both less expensive

and administratively more convenient than tracking the stages of each organism over time.

In such settings tank-to-tank variation must also be taken into account as growth rates

may be more similar among organisms within the same tank than for those in different

tanks. In Chapter 5 we consider the cost-effect design of a prospective developmental

study of organisms based on a marginal Markov model which deals with between tank

variation and within tank dependence. We develop a flexible design in which some tanks

provide repeated cross-sectional aggregate data, and other tanks provide serial responses

through tracking individuals. We assess the relative efficiency of aggregate and individual-

level longitudinal data. The optimal cost-effective design is shown to depend on whether

primary interest lies in transition intensities or associated cluster-level covariate effects.

We also give an illustrative example on the growth and development of the Northern rock

sole.
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Chapter 2

A Finite Mixture Model for
Multistate Panel Data

2.1 Introduction

2.1.1 Literature Review

It is often of interest to model the rate at which chronic diseases progress for scientific

understanding, making prognoses, and health policy decision making. Multistate models

offer an appealing and powerful framework for modeling disease processes in settings where

the degree of damage can be meaningfully characterized into a finite number of disjoint

states. Among individuals with hepatitis C infection for example, the extent of liver

damage is quantified using a five point scale with state 1 representing no fibrosis, states 2

to 4 representing increasing degrees of fibrosis and state 5 representing cirrhosis (Sweeting

et al., 2006). In diabetic retinopathy the extent of damage is measured on an eleven

point scale with state 1 representing no damage and state 11 severe damage (The Diabetes

Control and Complications Trial Research Group, 1993). Multistate models have also

proven useful in characterizing decline in cognitive function in dementia (Tyas et al., 2007),
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loss of functional ability in arthritic conditions (Husted et al., 2007), and progression

of immunological disease (Gentleman et al., 1994), and the development of asymptotic

vertebral fractures in patients with osteoporosis (Riggs et al., 1981).

Despite careful attempts to use available information to characterize such processes,

substantial unexplained variability in disease processes between individuals is often evident.

While Markov models often provide a natural and convenient starting point for modeling

such processes, generalizations are warranted in such settings. Satten (1999) considered

a conditionally Markov model for a progressive multistate process where a single non-

negative random effect was specified to act multiplicatively on each transition intensity

to account for between-subject heterogeneity. Cook et al. (2002) described a conditional

Markov model for generalized mover-stayer model for panel data. Cook et al. (2004) and

Sutradhar and Cook (2008) developed an extension for clustered progressive processes with

correlated random effects which were unique to each possible transition.

Discrete random effect models are also useful, with the most popular being the so-called

mover-stayer model in which some fraction of the population of interest may not be at risk

for disease progression; in this case individuals are considered “stayers” if they are not at

risk, while those who are at risk of progress are thought of as “movers”. Frydman (1984)

developed maximum likelihood methods for this setting and Fuchs and Greenhouse (1988)

outlined an expectation-maximization (EM) algorithm (Dempster et al., 1977) which ac-

commodates censoring. O’Keeffe et al. (2013) consider random effects which accommodate

a point mass at zero and a continuous random effect for susceptible individuals; specifically

in their spatial analyses on the location of joint damage in psoriatic arthritis they explore

random effect models with a mover-stayer inverse Gaussian and a compound Poisson dis-

tribution. Finite mixture models offer significant generalization of mover-stayer models

and far less has been done for this setting. Here the target population is envisioned as
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being comprised of several distinct sub-populations and the disease processes are allowed

to differ in some ways between these sub-populations. In general it will not be known

which sub-population an individual is in so the membership is considered a latent variable;

in this case the mixing distribution and the parameters governing the process dynamics in

each sub-population are estimated. The EM algorithm can again be useful in this setting

(Dempster et al., 1977).

In many instances it is not apparent when a disease process has progressed and so

the precise times of transitions between states are not available. This will be the case

in most of the examples given in the opening paragraph. When the precise state of a

multistate process is only available at periodic assessment times the resulting data are

often referred to as panel data. In recent years, much statistical research has taken place

on the analysis of such data which are referred to as panel data, or alternatively multistate

data with interval-censored transition times. Kalbfleisch and Lawless (1985) developed an

efficient algorithm for maximum likelihood estimation under a Markov assumption which

is implemented in the msm package by Jackson (2011). Grüger et al. (1991) described the

conditions that need to be satisfied for the observation process to be ignorable and such

analyses valid, which are in effect the sequentially missing at random assumption given by

Hogan et al. (2004).

The remainder of this contribution is organized as follows. In the next subsection, we

introduce the University of Toronto Psoriatic Arthritis Registry and describe the data that

motivates this work. In Section 2.2, we define notation and describe a model for a finite

mixture of Markov processes. Specifically, we construct the likelihood for the setting where

individuals are under intermittent observation and describe how to estimate the asymptotic

covariance matrix for the estimates. Score tests are developed in Section 2.3 where their

finite sample properties are also studied by simulation. An application involving joint
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damage in patients with psoriatic arthritis is given in Section 2.4 and concluding remarks

and topics for further research are given in Section 2.5.

2.1.2 Sacroiliac Joint Involvement in Psoriatic Arthritis

The University of Toronto Psoriatic Arthritis Clinic is a tertiary referral center for individ-

uals with psoriatic arthritis (PsA), an immunological condition which features both skin

and joint involvement (Gladman and Chandran, 2010). A registry of patients was created

in 1976, which has been recruiting and following patients continuously since its inception.

Patients undergo a detailed clinical and radiological examination upon entry to the clinic,

and provide serum samples for genetic testing. Follow-up clinical and radiological assess-

ments (Rahman et al., 1998) are scheduled annually and every two years respectively in

order to track changes in joint damage. Spondylitis is one of the musculoskeletal manifes-

tations of psoriatic arthritis and is characterized by inflammation of the sacroiliac joints,

the spine and neck, and reduced lateral range of motion of the back. Hanly et al. (1988)

identified 52 of 220 (23.6%) patients recruited to a cohort of patients with psoriatic arthri-

tis as having this disease. There is particular interest in involvement of the sacroiliac joints

since when these become damaged it can have a severe detrimental effect on functional

ability and quality of life of patients.

A recent study by Harron et al. (2016) investigated the association between human

leukocyte antigen (HLA) B and C loci and sacroiliac joint involvement in a cohort of

patients with psoriatic arthritis. These authors used radiographic evidence of sacroilitis

(SI) to define axial disease. The criterion for identifying SI presence was of at least grade 2

radiographic damage (unilateral or bilateral) on a five point grading scheme. This analysis

was cross-sectional, however, and did not fully account for the variable times individuals

have been at risk for developing damage in the sacroiliac joints. The proposed analysis is
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based on a multistate model in which individuals make transitions between disease states

as damage occurs.

The particular formulation of our model is motivated by the possible sub-types of

patients with sacroiliac involvement and the relation between so-called psoriatic spondylitis,

a condition in which psoriatic arthritis patients develop back involvement, and ankylosing

spondylitis, an arthritic condition primarily affecting the spine. The former is often, but

not always unilateral, while the latter is more commonly bilateral. We therefore formulate

a model which accommodates a different course (unilateral or bilateral) of the disease in

psoriatic arthritis and aim to detect HLA alleles associated with these courses. We give

the details of this in the next section.

Figure 2.1 shows the time course of damage for a sample of six individuals. For each

individual, the duration of follow-up since time of disease onset is represented by the

length of the horizontal line; vertical hatch marks reflect the times that clinic visits are

made and joints are assessed. Four different types of line segments are used to convey the

damage status of each individual at a given time with a solid line representing no sacroiliac

joint involvement, a dashed line representing left side involvement, a dashed-dotted line

representing right side involvement, and a dotted line representing bilateral involvement.

The periods of time when no line segment is drawn are intervals in which the status is

unknown because there was a different damage status for the visit at the left endpoint

than at the right endpoint. Since damage is assessed radiologically, the exact times at

which damage occurs is unknown so the times are interval-censored. We note from Figure

2.1 that some individuals develop the damage shortly after diagnosis (e.g. individual 1)

and some were not observed to develop damage despite long follow-up (e.g. individual 3).

Moreover, it is apparent that some individuals progress quickly from unilateral to bilateral

damage once they enter the unilateral stage, as is the case of individuals 2 and 5, while some
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continue to have only unilateral involvement until the end of follow-up. This motivates

the formulation of a model which accommodates a mover-stayer component along with a

component which allows for changes in damage status.

We let state 0 = no SI damage, state 1 = unilateral (left), state 2 = unilateral (right),

and state 3 = bilateral. Patients are classified into four possible classes as in Figure 2.2.

We denote λk` as the intensity of transitioning from state k to state `. We constrain λ01

and λ02 to be the same for the two unilateral classes as they are for the bilateral class.

0 10 20 30 40 50

0
1

2
3

4
5

YEARS SINCE DIAGNOSIS OF PsA

PA
T

IE
N

T
 ID

| | | | | | |

| | | | | | | | | |

| | | | | | | | |

| |

| | | | | | | | | | | | |

| | | | | | | | | | | |

NO SI DAMAGE

UNILATERAL (LEFT)

UNILATERAL (RIGHT)

BILATERAL

Figure 2.1: Plot of assessment times (hatch marks) and the type of joints damage (four types
of line segments) between assessments from onset of PsA for a selected sample of patients from
the University of Toronto Psoriatic Arthritis Clinic.
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Figure 2.2: Multistate diagram for the processes of the four classes of individuals in the finite
mixture model.

2.2 Model Formulation

2.2.1 Notation

We restrict our attention to progressive processes in which the states represent, for example,

the severity of irreparable damages. Assume there are K states labelled k = 1, ..., K. Let

Z(t) represent the state occupied by the disease progress at time t since disease onset and

{Z(s), 0 < s} denote the associated stochastic process. Let X denote a p × 1 covariate

vector. When there exist heterogeneity across subjects, a traditional Markov model may

be insufficient. We therefore consider the setting where the population arises from distinct

sub-populations via a discrete mixture of different processes.

In finite mixture models with discrete mixtures, individuals in the same class are gov-

erned by a common process. Let C be a latent random variable indicating the class

to which a particular individual belongs. We let P (C = j|X; β) = πj(X; β) where∑J
j=0 πj(X; β) = 1 denotes the probability of belonging to class j given a set of fixed

covariates X. The term P (C = j|X; β) is typically modeled by a multinomial logistic

regression (McCullagh and Nelder, 1989). Using the first class as the reference category,
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we let

P (C = j|X; β) =
exp(X ′βj)

1 +
∑J

j=0 exp(X ′βj)
, (2.1)

where X = (1, X1, ..., Xp)
′.

We let H (t) = {Z(s), 0 < s < t;X} denote the history at time t. For class j (j =

0, 1, ..., J), we denote the transition intensities as

lim
4t↓0

P (Z(t+4t−) = l|Z(t−) = k,H (t), C = j)

4t
= λkl(t|H (t), C = j) = λjkl(t|H (t))

for k, l = 1, ..., K and j = 0, ..., J . We further restrict attention to Markov processes for

λjkl(t|H (t)) = λjkl(t). Notice that we do not consider the effects of covariate on the

transition intensities. Doing so can raise estimability challenges and the primary goal is

to examine covariate effects on class membership. We also let λj = λjkl for ∀k 6= l and

θ = (α′, β′)′ where α = (α′0, ..., α
′
J)′ and αj = log λj.

We now consider a sample of size m comprised of independent individuals labelled i =

1, ...,m. The inspection times for individual i are denoted by air, r = 0, ..., Ri and if Xi is

a fixed covariate, the resulting data for individual i are denoted by Di = {(Zi(air), air), r =

0, 1, ..., Ri;Xi}. We define the likelihood contribution for a particular individual i on a

finite mixture model of Markov processes as

Li(θ) =
J∑
j=0

{
Ri∏
r=1

P (Zi(ar)|Zi(ar−1), Ci = j,Xi;α)

}
P (Ci = j|Xi; β). (2.2)
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To simplify the notation, we let

Lij(α) =

Ri∏
r=1

P (Zi(ar)|Z(ar−1), Ci = j,Xi;α).

The observed likelihood for individual i is then

Li(θ) =
J∑
j=0

Lij(α)πj(Xi; β). (2.3)

The model defined in (2.2) is based on the assumption that the latent classes are mutual

exclusive and exhaustive; that is, each individual is a member of one and only one of the

latent classes.

We can obtain the estimate of θ by maximizing L(θ) =
∏m

i=1 Li(θ), or equivalently solv-

ing the corresponding observed data score equation U(θ) = 0 where U(θ) = (U ′1(θ), U ′2(θ))

with U1(θ) =
∑m

i=1 Ui1(θ), U2(θ) =
∑m

i=1 Ui2(θ) where Ui1(θ) = ∂ logLij(α)/∂α, Ui2(θ) =

∂ logP (Ci|Xi; β)/∂β.

2.2.2 Estimation via the EM algorithm and Louis’ Observed In-
formation

Suppressing the subscript i for individuals and considering the contribution from a generic

individual, the complete data likelihood is

L (θ) ∝
J∏
j=0

{Lj(α)πj(X; β)}I(C=j). (2.4)

If we let θr denote the estimate of θ at the rth iteration and D be the observed data, then

wrj = P (C = j|D ; θr) =
Lj(α

r)πj(X; βr)∑J
j=0 Lj(α

r)πj(X; βr)
.
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At the rth iteration of the EM algorithm, the E-step takes the conditional expectation

Q(θ; θr) = E{log L (θ) | D ; θr} where Q(θ; θr) = Q1(α; θr) +Q2(β; θr) and

Q1(α; θr) =
J∑
j=0

wrj logLj(α),

Q2(β; θr) =
J∑
j=0

wrj log πg(X; β).

The M-step involves maximizing Q(θ; θr) with respect to θ and obtaining the updated es-

timate θ(r+1). Note that we can maximize Q1 using a Fisher-scoring algorithm (Kalbfleisch

and Lawless, 1985) class by class if αj (j = 0, ..., J) are distinct. The function Q2(β; θr)

can be maximized using functions for estimation based on quasi-likelihood. We then iter-

ate between the E-step and M-step until the convergence criterion max |θr − θr−1| < ε is

achieved, where ε is the user-specified tolerance.

Note that U(θ) = E{S(θ)|D} where S(θ) = ∂L (θ)/∂θ, so the EM algorithm is simply

one approach to maximize the observed data log-likelihood function. To avoid computation

of the second derivative matrix of the observed log-likelihood, we compute the observed

information matrix I(θ) = −∂U(θ)/∂θ′ based on the approach of Louis (Louis, 1982) who

showed that

I(θ) = E{J (θ)|D} − E{S(θ)S ′(θ)|D}+ U(θ)U ′(θ) (2.5)

where

J (θ) =

∂2 log L (θ)/∂α′∂α 0

0 ∂2 log L (θ)/∂β′∂β

 =

∂S1(α)/∂α′ 0

0 ∂S2(β)/∂β′


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is the complete data information matrix. To compute E{S(θ)S ′(θ)|D}, we note it is equal

to

E{S(θ)S ′(θ)|D} = var(S(θ)|D) + E(S(θ)|D)E(S ′(θ)|D) = var(S(θ)|D) + U(θ)U ′(θ),

since U(θ) = E{S(θ)|D}. Note that if we find var(S(θ)|D), the third term of the Louis’

formula (Louis, 1982) cancels, and we no longer require U(θ). We let S(θ) = (S(α)′, S(β)′)′.

In matrix notation,

S(θ) = (A′αY,A
′
βY ),

where

A′α =


∂ logL0(α)/∂α0 ∂ logL1(α)/∂α0 ... ∂ logLJ(α)/∂α0

... ... ... ...

... ... ... ...

∂ logL0(α)/∂αJ ∂ logL1(α)/∂αJ ... ∂ logLJ(α)/∂αJ

 ,

A′β =


∂ log π0(β)/∂β1 ∂ log π1(β)/∂β1 ... ∂ log πG(β)/∂β1

... ... ... ...

... ... ... ...

∂ log π0(β)/∂βp ∂ log π1(β)/∂βp ... ∂ log πG(β)/∂βp



and Y = (Y0, Y1, ..., YJ)′, where Yj = I(C = j), j = 0, 1, ..., J . Hence,

var{S(θ)} =

A′αcov(Y |X)Aα A′αcov(Y |X)Aβ

A′βcov(Y |X)Aβ A′αcov(Y |X)Aβ


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where

cov(Y |X) =


var(Y0|X) cov(Y0, Y1|X) ... cov(Y0, YJ |X)

... var(Y1|X) ... ...

... ... ... ...

cov(YJ , Y0|X) cov(YJ , Y1|X) ... var(YJ |X)

 .

Since C represents the class membership, we note from (2.1) that var(Yj|X) = πj(X; β)(1−

πj(X; β)) for j = 0, ..., J and cov(Yj1 , Yj2) = −πj1(X; β)πj2(X; β) for j1 6= j2 , j1, j2 =

0, ..., J . Then we can obtain the variance estimate by summing over all individuals i and

calculate the inverse of the observed information matrix.

2.3 Score Tests for Genetic Effects

2.3.1 Construction of the Test Statistic

Since we are interested in the covariates on genetic effects, we let Z denote the covari-

ates which include both the nuisance covariates X and the genetic covariates G. We then

have Z = (X ′, G′). We further partition ηj = (βj0, βj1, ..., βj(p−q), γj1, ..., γjq) into nui-

sance parameters, i.e., βj where βj = (βj0, ..., βj(p−q)) and parameters of interest, i.e., γj

where γj = (γj1, .., γjq) for each of the latent classes j. The resulting multinomial logistic

regression (McCullagh and Nelder, 1989) is then

P (C = j|Z; η) =
exp(Z ′ηj)

1 +
∑J

j=0 exp(Z ′ηj)
, (2.6)

where Z ′η = X ′β +G′γ.

Due to the time consuming and computationally demanding problem of simultaneously

estimating all p parameters, we consider a score test of the null hypothesis of no genetic
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effect. The null hypothesis is

H0 : γ = γ0,

which specifies that γ′ = (γ1, .., γj, ..., γC) are simultaneously equal to γ0. The null hypoth-

esis is tested against the alternative hypothesis:

H1 : γ 6= γ0.

Following Boos (1992), the score test statistic is

T = [U(γ0, ψ̂(γ0))]′Iγγ(γ0, ψ̂(γ0))U(γ0, ψ̂(γ0)), (2.7)

where ψ = (θ′, γ′)′ and U(·) is a q×1 score function for γ. ψ̂(γ0) is the maximum likelihood

estimates of ψ under the constrained null model, and Iγγ(·) is the q × q covariance matrix

of γ. Asymptotically the score test statistic satisfies T ∼ χ2
q under the null hypothesis.

2.3.2 Simulation Studies

The purpose of the simulation studies are to (1) demonstrate the performance of a pro-

posed finite mixture model and (2) investigate the rejection percentage of the score test.

We consider 4 classes (j = 0, 1, 2, 3) and constrain α as in Figure 2.2. To model class

membership for individual i we generate a Bernoulli covariate Xi1 with P (Xi1 = 1) = 0.5.

Let Xi = (1, Xi1)′, generate Gi as Bernoulli with probability of success 0.05 or 0.20, and

let Zi = (X ′i, Gi)
′, i = 1, . . . ,m. We set the coefficients for Xi to be β11 = β21 = log 1.1 and

β31 = log 1.2; the coefficients for the genetic variable in the multinomial regression model

is set such that γ1 = γ2 = 0 and γ3 = 0. We determine the intercepts β10, β20 and β30 so

that P (C = 0) = 0.30, P (C = 1) = 0.25, P (C = 2) = 0.25, and P (C = 3) = 0.20.

The transition intensities in the multistate framework are set so that P (Z(E) = 1|C =
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1) = 0.80, P (Z(E) = 2|C = 2) = 0.80, and P (Z(E) = 3|C = 3) = 0.60. The number of

inspection times Ri for individual i is generated by a time homogeneous Poisson process

with rate ρ giving E{Ni(E)} = µ, where µ = 15 and 30, E = 1 without loss of generality.

To assess the performance of estimators we fit the correct model under the constraint

γ = 0 and examine the empirical performance of the other parameter estimates. We

display these in a table reporting the empirical bias, the empirical standard error, and the

empirical coverage probability where the sample standard deviation is computed based on

Louis’ method (Louis, 1982). We also use these estimates as a basis for the score test of

the null hypothesis of γ = 0. For each setting we consider the empirical type I error rate of

γ = 0. We also consider the setting when γ 6= 0 and for each case we examine the empirical

power of the score test. For this we consider several different values of the components of

γ = (γ1, γ2)′ where γ = (log 1.25, log 1.5) and γ = (log 1.5, log 2); for each combination the

values of βjc, c = 1, 2, 3 to give the same marginal probabilities of class membership.

Table 2.1 contains simulation results with 2000 individuals per simulation under 500

simulations. From the simulation results in Table 2.1 we see good performances under the

correct model and the type I error of the score test under H0 is well within the nominal

level. Figure 2.3 gives a 2× 2 layout of the Q-Q plots for the 2 d.f. test statistic under the

null hypothesis (represented in the third to last row of the Table 2.1). The top row displays

the plots when the expected number of assessments is 15 and the bottom row when it is

30. The plots suggest good agreement between the empirical and asymptotic distributions

for the case of 30 assessments on average; the slight increase in the empirical type I error

rate when the expected number of assessments is low as 15 is explained by the fatter right

tail of the empirical distribution of the test statistic than would be expected under the 2

d.f. chi-squared statistic. The increase in the empirical power with increasing effect size

under HA is also apparent from the bottom of Table 2.1 suggesting this test statistic can
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be useful in detecting genetic effects.

Figure 2.3: Q-Q plots of χ2
2 statistics with the top row displaying results when the expected

number of assessments is 15 and bottom row when is 30 .

2.4 Sacroiliac Damage in Psoriatic Arthritis

The methods developed in the previous sections were applied to data on joint damage

in patients with PsA from the University of Toronto Psoriatic Arthritis Clinic. Specific

interest lies in examining the effects of human leukocyte antigen (HLA) markers on the
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types of back involvement. We examine the effects of HLA markers on the SI joint damage

while controlling for gender and patient age. We let βj0 = Intercept, βj1 = Gender (baseline

= male), βj2 = Age (centered) for class j. We formulate our null hypothesis of γ = 0 where

γ = (γ1, γ3) with subscript 1 indicating patients who belong to the unilateral classes and

3 indicating the bilateral class.

Table 2.2 includes estimates, standard errors and 95% confidence intervals for all pa-

rameters under the null model. From this fitted model the odds of males experiencing

bilateral disease (compared to no SI joint involvement) is lower than it is for females. The

results of applying the score tests of Section 2.3.1 are given in Table 2.3. For the HLA

analysis we excluded the HLA markers with a frequency of less than 1% due to sparsity.

Among the HLA markers, HLA-A3, HLA-A29, HLA-B27, HLA-B35, HLA-C2, HLA-C4

and HLA-C12 have significant association with the types of back involvement.

We explore the effects of the identified HLA markers further by fitting a model including

each of the HLA markers found to be significant at the 5% level. From Table 2.4, we see

that HLA-A3 and HLA-C2 are risk factors, and HLA-B35 and HLA-C4 are protective

for unilateral damage compared to no damage. HLA-B27 is a risk factor and HLA-A29

and HLA-B35 are protective for bilateral damage compared to no SI joint damage. A

generalization of interest would be to assess whether the effects are different from unilateral

and bilateral damage. We have reparametrized the model to assess the effects between

unilateral and bilateral damage and the results are presented in Table 2.4. Among patients

with SI damage, HLA-B35 and HLA-C4 are risk factors for, and HLA-A3 is protective for,

bilateral SI involvement.
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2.5 Discussion

We have formulated the finite mixture model of Markov processes under intermittent ob-

servations to accommodate the different transition intensities and regression coefficients

between latent classes. Under this framework, the score test can be adopted to assess the

effect of the markers. This approach is especially convenient when markers are large in

number – only one model needs to be fitted instead of many. We study the empirical

performances of the proposed model and show that the coverage probabilities are all com-

patible with the nominal 95% level. Then we link the score test to study its type I error

under the null hypothesis of no markers effect, and show that the type I error is within

the nominal 5% level. In line with the previous study (Harron et al., 2016), our method

accommodated potential nonsusceptibles while considering the longitudinal responses of

individuals instead of a single point in time. In addition, more significant markers showed

up in our method compared to Harron et al. (Harron et al., 2016).

We consider the setting in which the transition intensities for the onset of damage in

the left SI joint in class 1 is the same as the onset time of damage in the left side in class

3, where in the latter both joints are at risk of damage. This constraint can be relaxed in

practice to allow for more general, functionally independent models in the different classes,

but more data is required to enable estimation. It is also worth noting that the intensity in

class 1 is for the only joint damage that can occur in this class, whereas in class 3 the λ01

term is the intensity for the first joint damage being in the left side in the competing risk

setting where the first damage can be in the left or right sides. While justified on the basis

of the assumption of robustness of intensities to removal of competing causes of failure,

larger data sets involving more frequent inspection for joint damage would be of interest

to relax this assumption. Alternative approaches to dependence modeling in susceptibility
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and in failure time given susceptibility which don’t feature this complication are discussed

in the next chapter.
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E{Ni(E)} = 15 E{Ni(E)} = 30

Value EBIAS ESE ASE ECP EBIAS ESE ASE ECP

Class model

β10 -0.182 -0.005 0.102 0.101 94.3 -0.014 0.098 0.097 95.3
β11 log 1.1 -0.012 0.100 0.102 95.4 -0.016 0.094 0.096 95.4
β20 -0.182 -0.027 0.274 0.284 94.1 -0.033 0.243 0.248 94.1
β30 -0.405 -0.009 0.283 0.283 93.7 -0.036 0.258 0.259 94.7
β31 log 1.2 -0.007 0.171 0.173 96.3 -0.008 0.157 0.161 97.1

Multistate Model

α01 0.476 -0.005 0.166 0.172 97.0 -0.004 0.159 0.162 95.8
α02 0.476 0.032 0.213 0.221 95.6 0.036 0.205 0.205 96.0
α13 0.354 -0.013 0.154 0.162 95.6 -0.001 0.148 0.158 97.5
α23 0.354 -0.001 0.163 0.164 93.0 0.004 0.163 0.162 92.8

% Rejection

P (G = 1) = 0.05 P (G = 1) = 0.20 P (G = 1) = 0.05 P (G = 1) = 0.20

Under H0: 7.10 5.80 6.41 5.60
Under HA

1: 19.6 42.0 19.1 42.3
Under HA

2: 36.6 85.0 39.9 85.7

1 γ1 = log 1.25, γ2 = log 1.5
2 γ1 = log 1.5, γ2 = log 2

Table 2.1: Empirical performance of estimators for β and α under the null model (upper part
of table) and empirical rejection rate for 2 d.f. score tests based on 500 simulations with 2000
individuals per simulation.
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EST. S.E. 95% C.I.

Class model
β10 -1.547 0.265 (-2.066, -1.028)
β11 -0.668 0.397 (-1.446, 0.111)
β12 0.013 0.015 (-0.017, 0.042)
β20 -2.134 0.667 (-3.442, -0.827)
β21 0.838 0.655 (-0.447, 2.123)
β22 0.002 0.017 (-0.031, 0.036)
β30 0.823 0.139 (0.551, 1.096)
β31 -0.884 0.180 (-1.237, -0.531)
β32 -0.013 0.007 (-0.027, 0.001)

Multistate Model

α01 -2.261 0.106 (-2.469, -2.053)
α02 -2.684 0.133 (-2.945, -2.423)
α13 0.283 0.161 (-0.033, 0.599)
α23 -1.748 0.194 (-2.128, -1.368)

Table 2.2: Results of fitting the finite mixture model under the null hypothesis (omitting HLA
markers) for the occurence of sacroiliac joint damage.
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χ2
(2) p χ2

(2) p χ2
(2) p

HLA-A

A1 1.762 0.414 A2 3.482 0.175 A3† 7.152 0.028
A11 1.603 0.449 A24 0.823 0.663 A25 1.973 0.373
A26 5.881 0.053 A29† 11.99 0.003 A30 1.784 0.410
A31 0.839 0.657 A32 3.199 0.202 A33 1.621 0.445
A68 1.278 0.528 A23* 2.870 0.238 A28* 0.848 0.654
A34* 0.550 0.760 A66* 2.810 0.245 A69* 0.368 0.832

HLA-B
B7 0.523 0.770 B8 1.015 0.602 B13 3.494 0.174
B14 3.182 0.204 B15 2.886 0.236 B62 1.916 0.384
B18 0.481 0.786 B27† 8.086 0.018 B35† 10.01 0.007
B37 0.801 0.670 B38 2.936 0.230 B39 3.314 0.191
B40 0.007 0.997 B44 0.669 0.716 B50 0.987 0.610
B51 0.221 0.895 B52 0.345 0.841 B55 0.668 0.716
B57 0.466 0.792 B58 0.291 0.865 B60 0.774 0.679
B61 0.319 0.853 B70* 2.935 0.231 B41*† 23.53 <0.001
B45* 2.741 0.254 B46* 4.585 0.101 B47*† 22.53 <0.001
B48* 2.328 0.312 B49* 3.893 0.143 B53* 0.048 0.976
B56* 1.768 0.413 B63* 1.092 0.579 B67* 0.442 0.802

HLA-C

C1 1.189 0.552 C2† 9.095 0.011 C3 0.656 0.720
C4† 7.316 0.026 C5 0.428 0.807 C6 2.562 0.278
C7 1.792 0.408 C8 1.754 0.416 C12* 6.572 0.037
C14 0.235 0.889 C15 2.608 0.271 C16 0.822 0.663
C17*† 23.88 <0.001 C18* 1.609 0.558

* markers of <1% in frequency
† siginificant marker.

Table 2.3: Results of applying the 2 d.f. score test for each of the HLA-A, HLA-B and HLA-C
markers to the University of Toronto Psoriatic Arthritis Cohort
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γ̂ S.E.(γ̂) O.R. C.I. p∗

Unilateral vs. None

A3 0.905 0.398 2.473 (1.133, 5.398) 0.023
A29 -1.169 0.772 0.311 (0.068 1.411) 0.130
B27 0.680 0.450 1.974 (0.816 4.774) 0.131
B35 -1.468 0.459 0.231 (0.094, 0.566) 0.001
C2 1.309 0.598 3.701 (1.146, 11.965) 0.029
C4 -1.210 0.620 0.298 (0.088, 1.004) 0.051
C12 -0.255 0.459 1.582 (0.316, 1.904) 0.578

Bilateral vs. None

A3 0.179 0.303 1.196 (0.660, 2.168) 0.554
A29 -0.976 0.335 0.377 (0.195, 0.727) 0.004
B27 0.692 0.305 1.999 (1.100, 3.629) 0.023
B35 -0.503 0.238 0.605 (0.379, 0.964) 0.034
C2 0.831 0.466 2.297 (0.922, 5.720) 0.074
C4 -0.380 0.226 0.684 (0.440, 1.065) 0.093
C12 0.446 0.238 1.562 (0.980, 2.489) 0.061

Bilateral vs. Unilateral

A3 -0.726 0.326 0.484 (0.256, 0.916) 0.026
A29 0.193 0.779 1.213 (0.264, 5.579) 0.804
B27 0.012 0.361 1.012 (0.499, 2.054) 0.973
B35 0.964 0.420 2.623 (1.153, 5.972) 0.022
C2 -0.477 0.435 0.621 (0.264, 1.456) 0.273
C4 0.831 0.399 2.295 (1.049, 5.013) 0.037
C12 0.701 0.369 2.012 (0.978, 4.154) 0.058

∗ p-values are based on Wald tests.

Table 2.4: Results of fitting a finite mixture model for sacroiliac joint damage including all
significant HLA markers with a frequency of greater than 1% found from screening score tests.
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Chapter 3

Marginal Mixture Models for
Multivariate Interval-censored Times

3.1 Introduction

3.1.1 Background

Life history data are frequently collected for use in investigations within disciplines such

as medicine. Such data arise when individuals are observed over time and information on

occurrence of one or more events for these individuals are recorded on each visit. When in-

dividuals are observed at prespecified assessment times, their information on the occurrence

of events are determined only at these times. When the precise time of event occurrences

are unknown due to intermittent examination of a sub-clinical feature the transition times

are interval-censored (Sun, 2006). Chronic diseases for example, frequently affect mul-

tiple organ systems or multiple locations of the body, which often renders multivariate

censored failure times. Developments in recent years have been directed at analysis of

bivariate right-censored (Shih and Louis, 1995), bivariate interval-censored data (Betensky

and Finkelstein, 1999; Kim and Xue, 2002; Sun, 2006; Cook et al., 2008b), and bivariate
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current status (Wang and Ding, 2000). The need to accommodate dependencies between

associated failure times may be to advance scientific understanding, to facilitate joint state-

ments about two or more disease features, or simply to ensure valid inference.

Despite careful attempts to use available information to characterize multivariate dis-

ease processes, substantial unexplained variability often remains between individuals. In

the analysis of lifetime data, individuals who do not experience the event of interest by

the end of the study are often treated as having right-censored event time. However, if a

subgroup of the individuals are not susceptible to an event of interest, it may be important

to accommodate this in analyses. In order to address the potential nonsusceptible sub-

population in the context of lifetime data, mixture models or “cure-rate” models are often

used. Farewell (Farewell, 1977; Farewell, 1982) pioneered the work for right-censored data,

and there have been considerable further developments on mixture models during the past

20 years (Sy and Taylor, 2000; Peng et al., 2001; Peng, 2003). Chatterjee and Shih (2001)

considered a bivariate model for modeling familial association in disease onset which ac-

commodates a nonsusceptible fraction and deals with data subject to right censoring. Kim

(2016) considered inference for a cure rate model with bivariate interval-censored data via

an approximate likelihood.

We consider a bivariate cure rate model for interval-censored failure times. Like Chat-

terjee and Shih (2001) we use a pairwise odds ratio to model the association between latent

susceptibility indicators and use a copula model for the dependence structure between the

failure times for which individuals are susceptible. This formulation enables one to consider

two aspects to the dependence structure between processes within an individual. More-

over we consider three approaches of estimation including maximum likelihood, two-stage

estimation, and the use of weighted second-order estimating functions.

The remainder of this contribution is as follows. In the following subsection, we describe

32



the data from the University of Toronto Psoriatic Arthritis Cohort that motivates this

work. In Section 3.2 we define notation, formulate the model, and give the association

structure. In Section 3.3, the likelihood is constructed and variance estimation is described

for simultaneous and two-stage estimation. An alternative approach is also developed

based on weighted second-order estimating functions. Empirical studies and an application

involving the incidence of hand and foot joint damage in individuals with psoriatic arthritis

are given in Section 3.4. General remarks are given in Section 3.5.

3.1.2 A Study of Joint Damage in the Hands and Feet

The Center for Prognosis Studies in Rheumatic Disease maintains a registry of patients with

psoriatic arthritis who are followed according to a standard protocol with annual visits and

biannual radiographic assessments. Patients with arthritis experience inflammation in and

around the joints in several areas including the wrists, hands, knees, ankles, lower back, and

neck. Individuals are assessed at each visit to determine the level of damage in each of 64

joints, by both radiological and clinical examination. The level of the damage is measured

according to a validated modified Steinbrocker scoring system (Rahman et al., 1998) where

a score of 0 represents no damage, and scores from 1 to 5 represent progressively more

advanced stages of damage with states 4 and 5 representing severe damage. Individuals

with 5 or more severely damaged joints are considered to have an aggressive form of the

disease called arthritis mutilans.

Of clinical interest is in the relationship between the development of damage in the

hand and foot joints. To study this we restrict attention to the 28 joints of the hands and

12 joints in the feet. Individuals are considered damage-free in the hands when all hand

joints are in state 0, but when one or more hand joint enters state 1, they are considered

to have developed damage in the hands; the time to the onset of foot damage is defined
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similarly. We let T1 denote the time to the onset of damage in the hands and T2 the time

to the onset of damage in the feet. Because individuals are only seen periodically for the

assessment of joint damage, T1 and T2 are interval-censored ; that is, we only know them to

lie between the last negative assessment and the first positive assessment. For those joints

not recorded to become damaged the onset times of damage are right-censored at the last

assessment. Let Bij = [lij, rij] denote the censoring interval for Tij and Bi = Bi1×Bi2 be

the censoring region for Ti = (Ti1, Ti2)′; rij or lij = ∞ is a right censoring time for Tij in

individual i if they are not observed to develop damage. Figure 3.1 contains a plot of the

censoring regions for eight sample individuals in the cohort. We return to this example in

Section 3.4.2 when we analyze this data.
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Figure 3.1: Censoring regions for the times to joint damage in the hands and feet in a sample
of eight individuals from the University of Toronto Psoriatic Arthritis Cohort.

3.2 Model Formulation

Let Zij = 1 if individual i is susceptible to the event of interest for process j, j = 1, 2, and

Xi = (1, Xi1, ..., Xi,p−1)′ be a p× 1 vector of fixed covariates. Let µij = E(Zij|Xi; βj) with

g1(µij) = X ′iβj where g1() is a monotonic differentiable link function mapping the interval

[0, 1] onto the real line and βj is a p× 1 vector of regression coefficients. To accommodate

an association between Zi1 and Zi2 given Xi we construct a joint model and express the
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association in term of the odds ratio,

ψi =
P (Zi1 = 1, Zi2 = 1|Xi)P (Zi1 = 0, Zi2 = 0|Xi)

P (Zi1 = 1, Zi2 = 0|Xi)P (Zi1 = 0, Zi2 = 1|Xi)

(Lipsitz and Laird, 1991). A second-order dependence model can be specified via g2(ψi) =

v′iγ where g2() maps the non-negative real line onto the real line, vi = (1, vi1, ..., vi,q−1)′ is

a q× 1 vector of covariates, and γ is a q× 1 vector of regression coefficients. The resulting

joint distribution of Zi = (Zi1, Zi2)′ is P (Zi|Xi; β, γ) where β = (β′1, β
′
2)′.

If Zij = 1 then individual i is at risk of event j and we let Tij denote the time of

the type j event and let Ti = (Ti1, Ti2)′. We let Fj(t|Xi;λj) = P (Tij > t|Zij = 1, Xi)

denote the marginal distribution of Tij given (Zij = 1, Xi) indexed by λj, j = 1, 2, and

F12(t1, t2|Xi;λ, φ) = P (Ti1 > t1, Ti2 > t2|Zi = (1, 1)′, Xi) where λ = (λ′1, λ
′
2)′ and φ is an

association parameter. In keeping with the marginal specification of the model for Zi|Xi,

we use a copula model to model the bivariate distribution for Ti|Zi = (1, 1)′, Xi. Cop-

ula functions are bivariate cumulative distribution functions with uniform [0, 1] margins.

Specifically we use an Archimedian copula C(u1, u2;φ) which can be written in the form

C(u1, u2;φ) = G−1(G(u1;φ) +G(u2;φ);φ)

where G : [0, 1]→ [0,∞] is a continuous, strictly decreasing and convex generator function

with G(1;φ) = 0. The Clayton copula has generator G(u;φ) = φ−1(u−φ − 1), while the

Frank and Gumbel copulas have generators G(u;φ) = −log((exp(−φu)−1)/(exp(−φ)−1))

and G(u;φ) = (−logu)−φ respectively. Kendall’s τ , a natural dependence measure within

the Archimedian family is expressed as

τ = 1 + 4

∫ 1

0

G(u;φ)

G′(u;φ)
du

(Nelsen, 2006).

36



Consider a Clayton copula for example which has the form

C(u1, u2) = (u−φ1 + u−φ2 − 1)−φ
−1

.

The joint survivor function for Ti|Zi = (1, 1), Xi is obtained by letting

F12(t1, t2|Zi = (1, 1)′, Xi) = C(F1(t1|Zi1 = 1, Xi;λ1),F2(t2|Zi2 = 1, Xi;λ2);φ).

Because of the monotonic form of the survivor function, the association between u1 and u2

is the same as the association between Ti1, Ti2|Zi = (1, 1)′, Xi. Note that this formulation

involves a common distribution for Tij|Zij for Zij = 0 or 1. One may alternatively adopt

a bivariate model with different margins so that

F (2)
12 (t1, t2|Zi = (1, 1)′, Xi) = C(F (2)

1 (t1|Zi1 = 1, Xi;λ
(2)
1 ),F (2)

2 (t2|Zi2 = 1, Xi;λ
(2)
2 );φ)

where F (2)
j (tj|Zij = 1, Xi;λ

(2)
j ) denotes the marginal distribution in the bivariate model

which is possibly different than the respective marginal distributions in the settings where

individuals are only at risk of one event.

3.3 Methods for Estimation and Inference

3.3.1 Maximum Likelihood

We now consider the analysis of the data discussed in Section 1.2. We let Di = (Bi, Xi)

denote the data from individual i, i = 1, ..., n. The full vector of parameters is θ =

(β′, γ′, λ′, φ)′. We partition θ here in terms of θ1 = (β′, γ′)′ which reflects the parameters

governing the distribution of Zi and θ2 = (λ′, φ)′ which governs the distribution of Ti|Zi.
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The observed likelihood is

Li(θ) ∝
∑
zi∈Zi

P (Zi = zi|Xi; θ1)P (Ti ∈ Bi|Zi = zi; θ2). (3.1)

and the complete likelihood is

Li(θ) ∝
∏
zi∈Zi

[P (Zi = zi|Xi; θ1)P (Ti ∈ Bi|Zi = zi; θ2)]I(Zi=zi) (3.2)

and the score functions from (3.1) can be written as

Si1(θ) = E{S1(Zi|Xi; θ1)|Di; θ}

Si2(θ) = E{S2(Ti ∈ Bi|Zi, Xi; θ2)|Di; θ}
(3.3)

for θ1 and θ2 respectively where S1(Zi|Xi; θ1) = ∂logLi(θ)/∂θ1 and S2(Ti ∈ Bi|Zi, Xi; θ2) =

∂logLi(θ)/∂θ2. We obtain P (Zi = zi|Di; θ) using Baye’s rule as

P (Zi = zi|Di; θ) =
P (Ti ∈ Bi|Zi; θ2)P (Zi|Xi; θ1)∑

zi∈Zi
P (Ti ∈ Bi|Zi; θ2)P (Zi|Xi; θ1)

Equations (3.3) can be solved directly, or iteratively using an EM algorithm (Dempster

et al., 1977). If θr denotes the estimate at the rth iteration, θr+1 is obtained by solving

S1(θ1; θr) =
n∑
i=1

E{S1(Zi|Xi; θ1)|Di; θ
r} = 0

S2(θ2; θr) =
n∑
i=1

E{S2(Ti ∈ Bi|Zi, Xi; θ2)|Di; θ
r} = 0

Louis’ method (Louis, 1982) can be used to obtain the observed information matrix

based on the identity,

Ii(θ) = E [Ji(θ)|Di]− E [Si(θ)S
′
i (θ)|Di] + Si(θ)S

′
i(θ),

38



where we write Si(θ) for (S ′
1(Zi|Xi; θ1),S ′

2(Ti ∈ Bi|Zi; θ2))′ when it is not necessary to

write the variables in explicitly, and Ji(θ) = −∂Si(θ)/∂θ is the block-diagonal observed

information for the complete data. We then sum up over all individuals in order to obtain

I(θ).

3.3.2 Two-stage Estimation

Instead of simultaneously estimating all the parameters as in the full likelihood function

(3.1), a two-stage procedure can be adopted. Shih and Louis (1995) suggested such an

approach where we may estimate the marginal parameters and the association parameters

separately. To this end, we partition the parameter vector θ as (α′1, α
′
2)′ where α1 = (β′, λ′)′

and α2 = (γ′, φ)′. At stage 1 we estimate α1 = (β′, λ′)′ by assuming independence between

the two processes. The association parameters α2 = (γ′, φ)′ are then estimated at stage

2 with the parameters governing the marginal distribution set at the values obtained at

stage 1. We describe this in more detail in what follows.

At stage 1, let δij = 1 if individual i is known to have experienced the event for process

j. We can then construct the following observed likelihood,

Li1(α1) ∝
2∏
j=1

(µij [Fij(lij)−Fij(rij)])
δij [µijFij(rij) + (1− µij)](1−δij) (3.4)

where [lij, rij) denotes the censored interval for individual i for process j. Let α̃1 = (β̃′, λ̃′)′

denote the value that maximizes (3.4).

At stage 2, α2 can be estimated by inputing the estimate α̃1 from stage 1 into the

observed likelihood

Li2(α̃1, α2) ∝
∑
zi∈Zi

P (Zi = zi|Xi; β̃, γ)P (Ti ∈ Bi|Zi = zi; λ̃, φ). (3.5)
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Let S̄i1(α1) = ∂logLi1(α1)/∂α1 and S̄i2(α) = ∂logLi2(α̃1, α2)/∂α2 be the observed data

score functions from stage 1 and stage 2 respectively. Standard estimating function theory

gives

√
n

α̃1 − α1

α̃2 − α2

→ MVN(0, Ā −1(θ)B̄(θ)
[
Ā −1(θ)

]′
),

with Ā (θ) = E{−∂S̄i(θ)/∂θ} and B̄(θ) = E{S̄i(θ)S̄ ′i(θ)}, where

Â(θ̃) = −n−1

n∑
i=1

∂S̄i(θ)

∂θ′
|θ=θ̃

B̂(θ̃) = n−1

n∑
i=1

S̄i(θ)S̄
′
i(θ)|θ=θ̃

3.3.3 Weighted Second-Order Estimating Equations

In this section we describe weighted second-order estimating equations which have the form

of expected complete data estimating equations which would be employed if the suscepti-

bility indicators were known. Given their use of second-order moments they are expected

to yield more efficient estimates and the opportunity to consider different structures means

this framework enables one to investigate robustness and efficiency trade-offs.

The estimating equation we propose for θ1 is of the form

U1(θ) =
n∑
i=1

∑
zi∈Zi

P (Zi = zi|Di; θ) · H ′i1(θ1) Σ−1
i1 (θ1)

 Zi − µi1
Wi1 − ωi1

 (3.6)

where Zi = (Zi1, Zi2)′, µi1 = E(Zi|Xi; β), Wi1 = Zi1Zi2, ωi1 = E(Wi1|Xi; θ1),

Hi1(θ1) =

∂µi1/∂β′ ∂µi1/∂γ
′

∂ωi1/∂β
′ ∂ωi1/∂γ

′

 , and Σi1(θ1) =

 cov(Zi|Xi) cov(Zi,Wi1|Xi)

cov(Wi1, Zi|Xi) var(Wi1|Xi)

 .

40



The second set of estimating equations for θ2 has the form

U2(θ) =
n∑
i=1

∑
zi∈Zi

P (Zi = zi|Di; θ) · H ′i2(θ2) 4i Σ−1
i2 (θ2)

 Yi − µi2
Wi2 − ωi2

 (3.7)

where Yik = I(Tik ∈ Bik) and Yi = (Yi1, Yi2)′, µi2 = E(Yi|Zi;λ), Wi2 = Yi1Yi2, ωi2 =

E(Wi2|Zi; θ2),

Hi2(θ2) =

∂µi2/∂λ′ ∂µi2/∂φ

∂ωi2/∂λ
′ ∂ωi2/∂φ

 , Σi2(θ2) =

 cov(Yi|Zi) cov(Yi,Wi2|Zi)

cov(Wi2, Yi|Zi) var(Wi2|Zi)

 ,

and

4i =


zi1 0 0

0 zi2 0

0 0 zi1zi2

 .

The derivative matrix Hi2(θ2) and covariance matrix Σi2(θ2) are analogous to those of (3.6)

but are given by the underlying model for the failure times. If Zi were known, the matrix

4i would ensure that the appropriate elements of this estimating equation contributed

information about the marginal and association parameters of the multivariate failure

time distribution; as Zi is unknown we take the conditional expectation over the possible

values of Zi.

We let Ui1(θ) and Ui2(θ) denote the contribution from the ith individual to (3.6) and

(3.7) respectively and Ui(θ) = (U ′i1(θ), U ′i2(θ))′. Then
∑n

i=1 Ui(θ) = 0 can be solved for θ

simultaneously, or one can exploit the weighted structure of each set of equations (3.6) and

(3.7) and solve them iteratively. In this case at the kth step we insert an estimate θ̂k−1

from the (k − 1)st step into P (Zi|Di; θ) in (3.6) and (3.7) and solve them for θ̂k1 and θ̂k2

respectively. Algorithms for GEE2 can be exploited for estimation of θ1 at each step by

the creation of a pseudo-dataframe containing multiple lines per individual corresponding
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to each realization of Zi with weights based on P (Zi|Di; θ̂
k−1). The same approach can be

employed in principle for (3.7) but the derivative and covariance matrices are unique in this

setting (e.g. the moments are determined by the multivariate failure time model and the

observation times) and would require specialized coding; a similar situation is described

by Tolusso and Cook (2009).

Note that when solving the set the estimating equations, robustness comes in when we

use a diagonal Hi(θ) matrix, because we are not trying to draw any information about

the marginals from the association structures. To simplify calculations, we have used a

diagonal Hi(θ) and Σi(θ) matrix in our simulations and what follows. Subject to correct

specification of the conditional moments, (3.6) and (3.7) are unbiased estimating functions,

so the estimator θ̆1 and θ̆2 solving the two estimating equations by setting them to zero is

consistent with an asymptotic normal distribution

√
n(θ̆ − θ)→ N(0, ¯̄A −1(θ) ¯̄B(θ)

[
¯̄A −1(θ)

]′
),

with ¯̄A (θ) = E [−∂Ui(θ)/∂θ′] and ¯̄B(θ) = E [Ui(θ)U
′
i(θ)], where

Â(θ̆) = −n−1

n∑
i=1

∂Ui(θ)

∂θ′
|θ=θ̆

B̂(θ̆) = n−1

n∑
i=1

Ui(θ)U
′
i(θ)|θ=θ̆

3.4 Empirical Studies and Application

3.4.1 Simulation Studies

To gain some insights on the empirical performances of the three methods in Section

3, simulation studies are performed. We set the covariate of interest Xi ∼ Bern(0.5)
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with the corresponding link function logit(P (Zij = 1|Xi; βj)) = βj0 + βj1Xi. We let

P (Zij = 1|Xi = 1; βj) = 0.66, βj = (βj0, βj1)′, j = 1, 2, where βj1 = log1.5. The association

between the susceptibility indicators (i.e. the log odds ratio) is then set as logψ = log 1.5

and log 3. For generating the failure times, we suppose Tij|Zij = 1, Xi ∼ Weibull(λj),

λj = (λj1, λj2)′, and hence P (Tij > t|Zij = 1, Xi;λj) = exp(−λj1t)λj2 . The copula for

the bivariate failure time is then F12(t1, t2|Zi = (1, 1), Xi) = C(F1(t1;λ1),F2(t2;λ2);φ),

with Kendall’s τ = 0.3 and 0.6. For simplicity we consider an exponential margin with

λj2 = 1, j = 1, 2. We specify λj1 such that P (Tij < A|Zij = 1) = 0.9, where A is

the administrative censoring time, and set A = 1 without loss of generality. To generate

interval censored data, we let {Ni(s), 0 < s} denote the counting process for the assessments

and let {Ni(s), 0 < s} ∼ Poisson(ρ). We set ρ = 10 and 20 to correspond to an average

of 10 and 20 visits over (0, 1] respectively. In the analyses a piecewise-constant baseline

hazard was adopted for each component failure time model with cut-points 0.25 and 0.50.

The results presented in Tables 3.1 and 3.2 are from the analysis of 500 simulated

samples of n = 1000 individuals each with and average of 10 and 20 visits respectively; we

comment here on the results of Table 3.1 . We see that empirical biases of all methods are

negligible, there is excellent agreement between the empirical and average robust standard

errors, and the empirical coverage probability are close to the nominal 95% level. The

estimators from the two-stage procedure are less efficient than the maximum likelihood

estimates, but the efficiency of estimators from the weighted estimating equation approach

is remarkably good. Findings from Table 3.2 are similar with slightly smaller standard

errors.
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3.4.2 Co-Occurrence of Damage in the Extremities in Psoriatic
Arthritis

Our data consist of n=657 patients, each assessed at multiple visits to determine the level

of radiological damage in the two disease processes, i.e., hands and feet. Every joint is

considered to be at state 0 at the time of disease onset. In the regression model we

include sex as a covariate with male as the reference level. After inspecting the quantiles

of the distribution of the assessment times, we consider a two-piece piecewise-constant

hazards model with a cut-point at 5 years post-onset so the hazard is constant over the

interval [0, 5) and [5,∞). We apply maximum likelihood, two-stage estimation, and the

estimating equations approach of Section 3.3; the results in Table 3.3 reveal that the three

methods yield estimates and standard errors with similar results. Figure 3.2 shows the

fitted piecewise model compared to the nonparametric estimates, we see a good agreement

between the two. Females are shown to have lower risk of developing damage in the hands

and feet joints compared to males. Moreover, based on maximum likelihood estimates, the

odds ratio for the association in the susceptibility is 8.440 with a 95% CI (3.229, 13.651).

Among individuals who are susceptible to damage in both locations, the association in the

onset times is estimated based on Kendall’s τ to be 0.449 with a 95% CI (0.212, 0.686).

One dimensional profile relative likelihood plots of φ and ψ are shown in Figure 3.3. Two

dimensional contour profile relative likelihood plot showing the relationship between the

two association parameters is also shown in Figure 3.4.
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(a) (b)

Figure 3.2: Estimates from the fitted model (red) via piecewise maximum likelihood vs non-
parametric estimates (black) of F (t) = P (T ≤ t) for hand and foot damage.

(a) Profile relative likelihood plot of φ (b) Profile relative likelihood plot of ψ

Figure 3.3: One dimensional profile relative likelihood plots of φ and ψ for onset of damage in
the hands and feet.
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Figure 3.4: Two dimensional countour profile relative likelihood plot of φ and ψ for onset of
damage in the hands and feet.

3.5 Discussion

In this paper we have developed flexible methods for modeling multivariate interval-

censored data which accommodates the possibility that some individuals will be nonsuscep-

tible to one or more of the conditions of interest. This framework enables one to decompose

dependence measures into one component for susceptibility and one component for the de-

pendence in the failure times given joint susceptibility. There are numerous applications

where this framework can yield useful insight into disease processes. In diabetes some
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individuals do not experience significant complications, some develop nephropathy, some

develop retinopathy, and some develop both. In settings where genes play a role in sus-

ceptibility for the different complications the mover-stayer formulation seems appropriate,

particularly when variable follow-up or assessment times make classification of individuals

difficult. The model may also be used in the analysis of family data when interest lies in

modeling within-family dependence to gain insight into the genetic basis for disease. It may

be quite natural to examine the effect of genetic markers on the susceptibility indicators

rather than the failure times themselves.

-
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EST. SE EST. SE EST. SE

ML Two-Stage WGEE
β10 1.622 0.191 1.656 0.203 1.518 0.184
β11 -0.361 0.252 -0.367 0.258 -0.355 0.237
β20 1.938 0.245 1.690 0.212 1.681 0.199
β21 -0.559 0.281 -0.487 0.240 -0.492 0.241
logψ 2.133 0.351 2.051 0.314 2.023 0.294

logλ
(1)
1 -0.924 0.199 -0.851 0.211 -0.778 0.215

logλ
(1)
2 -1.520 0.080 -1.566 0.209 -1.512 0.117

logλ
(2)
1 -0.855 0.184 -0.623 0.131 -0.618 0.124

logλ
(2)
2 -1.719 0.088 -1.403 0.231 -1.503 0.126

logφ 0.487 0.186 0.444 0.237 0.495 0.163

Table 3.3: Estimates and standard errors from fitting a two-piece piecewise constant hazards
bivariate mixture model for the onset of damage in the hands and feet.
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Chapter 4

Analysis of Aggregate Data from
Clustered Multistate Processes

4.1 Introduction

4.1.1 Literature Review

Progressing processes arise in studying the development of organisms through different

stages of maturation. The life cycle of insects, for example, is characterized by a series

of instars stages until maturation (Borror and White, 1970). Multistate models offer an

appealing and powerful framework for modeling these and other progressive processes when

the stages can be meaningfully characterized into a finite number of disjoint states. Among

individuals with hepatitis C infection for example, the extent of liver damage is quantified

using a five point scale with state 1 representing no fibrosis, states 2 to 4 representing

increasing degrees of fibrosis and state 5 representing cirrhosis (Sweeting et al., 2006).

Joint damage (Gladman and Chandran, 2010) can also be viewed in this way as patients

with arthritis progress through a sequence of damage stages until joint destruction. In

many such instances it is not apparent when a change of state has happened and so the
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precise times of transitions between states are unavailable. Such data are referred to as

panel data or multistate interval-censored data (Kalbfleisch and Lawless, 1985). Kalbfleisch

and Lawless (1985) developed a maximum likelihood approach under Markov assumption

and is implemented in the msm package in R by Jackson (2011).

In many instances it is difficult to identify individual organisms under study in which

case the data available are often aggregated in some way. This happens, for example,

when individual are not indistinguishable as in some insect studies, and hence they cannot

be tracked over time. A study of the lifecycle of Chorthippus parallelus (Munholland and

Kalbfleisch, 1991) involved the recording of aggregate data on insects in different stages due

to such an identifiability problem. Studies on the development of plants through a series

of stages (e.g. Arabidopsis thaliana (Gouno et al., 2011)) may only record the aggregate

data. In this article we consider the metamorphosis of Lepidopsetta polyxystra where the

identification of larvae and tracking is difficult.

The focus in this article will be in clustered multistate aggregate data. Frequently,

individuals within the same cluster tend to be similar comparing to the other clusters. As

a result, the heterogeneity between clusters should be taken into consideration when mod-

eling the multistate processes. Several articles in the literature have dealt with clustered

but individual-level multistate data.

The focus here is on modeling clustered multistate aggregate data with the focus on both

marginal models and random effect models. Diao and Cook (2014) considered composite

likelihood for joint analysis of multiple multistate progressive processes via copula-based

marginal models. Satten (1999) considered a conditionally time-homogeneous Markov

models for progressive disease for panel data with random effects incorporated. Random

effects on clustered progressive disease processes under intermittent observation schemes

have also been developed recently by Cook et al. (2004) and Sutradhar and Cook (2008).
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The remainder of this contribution is organized as follows. In the next subsection, we

describe a study on the growth and development of Lepidopsetta polyxystra. In Section

4.2, we define notation and describe the likelihood construction with clustered multistate

aggregate data under a Markov assumption. In Section 4.3 we introduce dependence

modeling via copulas, propose a composite likelihood, derive a procedure for robust variance

estimation, and evaluate the methods by simulation. A random effect model is formulated

in Section 4.4 in which a cluster-level random effect accommodates heterogeneity in the

growth rates between clusters; simulation studies are also carried out. Both methods are

applied to data on the growth and development of Lepidopsetta polyxystra in Section 4.5

and concluding remarks are given in Section 4.6.

4.1.2 Data on the Growth and Development of Lepidopsetta
polyxystra

We consider modeling the development of larvae from a laboratory cohort of Northern rock

sole (Lepidopsetta polyxystra) where the study took place in the Hatfield Marine Science

Center in Newport, Oregon (Laurel et al., 2014). Larvae after hatching were distributed

evenly across 15 tanks to monitor their development under four different temperatures.

The larvae pass through distinct stages as depicted in Figure 1. Larval development was

scored by the degree of observed tail flexion using the criteria established by Hawkyard

et al. (2014). According to Hawkyard et al. (2014), stage 1 of the larvae development

is characterized by a straight notochord (no flexion); while stage 2 larvae have straight

notochord with the appearance of caudal peduncle ’node’ near the posterior end; larvae

in stage 3 have a bent notochord with caudal peduncle formation near the posterior end;

stage 4 larvae have bent notochord and initial envelopment of the notochord by the caudal

peduncle; and stage 5 is characterized by the full envelopment of the notochord by the
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caudal peduncle with only a remnant of bent notochord still visible (Laurel et al., 2014;

Hawkyard et al., 2014).

The tanks were maintained at either 2, 4, 7, or 10◦C with a view to studying the effect of

temperature on the rate of transitions through the developmental stages. Two observation

schedules were employed: for tanks 1-7 the developmental stages were to be assessed on

days 24, 28, 46, 66 and 90 days, while for tanks 8-15 the classifications were to occur on

days 10, 18, 30 and 47. In many tanks assessments did not occur on the scheduled days

leading to incomplete data. Figure 4.2 gives a graphical plot of the data from tank 13.

In general , accurate identification of individual larvae is difficult, as is often the case in

developmental studies of small mobile organisms. The process of identification of individual

larvae can take time, effort and cost and may still be subject to error. Laurel et al.

(2014) sampled the 10 fishes from 15 tanks due to identifiability problems. This is yet

another motivation for our work, because aggregating data does not require identifying

the fishes on an individual level. Here we treat them as the same ones and proceed with

the analysis in the paper. We therefore develop methods that do not require tracking of

individual organisms but rather relies on the frequency counts for the different stages at

each assessment time.

Figure 4.1: A 5-state progressive model for the development of Northern rock sole; state 1 is
the stage with a straight notochord, state 2 corresponds to the development of a caudal peduncle
node, state 3 involves a bent notochord, state 4 involves a bent notochord plus envelopment and
state 5 involves full envelopment.
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Figure 4.2: Plot of the frequency of the different stages over time for tank 13 containing 10 fish
examined under schedule 1.

4.2 Aggregate Data with Independent Units

4.2.1 Notation and Model Formulation

We consider a strictly progressive model in this paper. Suppose that observations are

made on a group of individuals who act independently of one another, with each individual

passing through states according to a multistate process with state space {1, 2, ..., K}. We

let Zi(t) denote the state occupied by ith individual at time t and {Zi(s), 0 < s} the

multistate process. Let Hi(t) = {Zi(s), 0 ≤ s < t} denote the history of the process for

individual i at time t and let

λk(t|Hi(t)) = lim
4t↓0

P (Zi(t+4t−) = k + 1|Zi(t−) = k,Hi(t))

4t
(4.1)
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denote the k → k + 1 transition intensity, k = 1, . . . , K − 1 . For Markov processes the

intensity in (5.1) does not depend on the history Hi(t) in which case we write it as λk(t).

Given a K×K transition intensity matrix Λ(t) with (k, k+1) entry λk(t), diagonal entries

−λk(t), k = 1, . . . , K − 1, and zeros elsewhere, the K × K transition probability matrix

P (s, t) is obtained by product integration as

P (s, t) =
∏
(s,t]

{1 + Λ(u)du}

with (k, l) entry P (Zi(t) = l|Zi(s) = k) (Cook and Lawless, 2018).

Suppose that observations for individual i are made at times 0 = ai0 < ai1 < ... < aiRi

yielding panel data {(Zi(air), air), r = 0, 1, 2, . . . , Ri} for individual i. If λk(t) = λk, k =

1, . . . , K − 1, are time homogeneous then we can write P (Zi(air) = l|Zi(ai,r−1) = k) =

pkl(ai,r−1, air) with a particular form as

pkl(ai,r−1, air) =


l∑

h=k

B(k, h, l)e−λh4air , k ≤ l

0 k > l

(4.2)

where 4air = air − ai,r−1, B(k, h, l) is given by,

B(k, h, l) =
l−1∏
u=k

λu/

l∏
u=k
u6=h

(λu − λh), k ≤ h ≤ l, (4.3)

and B(h, h, h) = 1 provided λk 6= λl for all k 6= l = 1, ..., K − 1 (Satten, 1999). This can

lead to simplifications of the likelihood which can be useful in certain settings as we discuss

in Sections 4.3 and 4.4.
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4.2.2 Likelihood Construction with Data Aggregated over a Sin-
gle Tank

We now consider the setting in which observations are made at a common set of times

0 = a0 < a1 < ... < aR for all organisms in a single tank where data are aggregated

within the tank. We let Nkl(4ar) =
∑

i∈S I(Zi(ar−1) = k, Zi(ar) = l) for k ≤ l where

S is the set of labels for individuals in the tank. Note that Nkl(ar) is unobserved in the

aggregate data setting where we only know the total number of individuals in state l at

each time ar denoted by Ml(ar) =
∑l

k=1 Nkl(4ar), l = 1, ..., K, r = 1, ..., R; we also let

M(ar) = (M1(ar), ...,MK(ar))
′ denote the vector of frequencies for the different stages of

development (i.e., states).

Let H 0(ar) = {M(as), s = 1, . . . , r−1} denote history of observed marginal frequencies.

Under the Markov property, to construct the likelihood with aggregate data the states

occupied at time ar depend only on the occupancy at ar−1 (i.e., M(ar−1)). We therefore

only need consider consecutive assessment times, and the joint distribution is built up as

a product of the conditional probabilities. Table 4.1 displays the data for a progressive

K state Markov process for assessment times ar−1 and ar, with the missing information

(the transition counts) represented by the entries inside the table. Take row k for example,

noting that
∑K

l=kNkl(4ar) = Mk(ar−1) corresponds to the number of individuals occupying

state k at time ar−1; the lth column sum then corresponds to the number of individuals

occupying state l at time ar. If Nk(4ar) = (Nkk(4ar), ..., NkK(4ar))′ denotes the potential

non-zero elements in the kth row, the distribution of these latent counts is multinomial

with

Nk(4ar)|Mk(ar−1) ∼ Multinom(Mk(ar−1); pkk(4ar), ..., pkK(4ar))

for k = 1, .., K−1; note P (NKK(4ar) = MK(ar−1)|MK(ar−1)) = 1 since K is an absorbing
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state. Let N(4ar) = (N ′1(4ar), ..., N ′K(4ar))′ denote the full vector of latent counts in

Table 4.1 and M(ar−1) = (M1(ar−1), ...,MK(ar−1))′ denote the marginal counts at ar−1.

Then if we let θk = log λk and θ = (θ1, ..., θK−1)′, the observed data likelihood can be

constructed as

L(θ) ∝
R∏
r=1

∑
N(4ar)∈Nr

P (N(4ar)|H 0(ar),M(ar−1); θ) =
R∏
r=1

K∏
k=1

P (Mk(ar)|Mk(ar−1); θ)

(4.4)

where Nr = {N(4ar) : Nk.(4ar) = Mk(ar−1), N.l(4ar) = Ml(ar),∀ (k, l)} is the set of

latent transition counts that are compatible with the margins of the table. In particular,

Nk.(4ar) =
∑K

l=kNkl(4ar) and N.l(4ar) =
∑K

k=kNkl(4ar).

N11(4ar) N12(4ar) ... N1K(4ar) M1(ar−1)
0 N22(4ar) ... N2K(4ar) M2(ar−1)

... ... ... ...

0 ... ... MK−1(ar−1)
0 0 0 NKK(4ar) MK(ar−1)

M1(ar) M2(ar) ... MK(ar)

Table 4.1: Complete data on transitions and marginal counts
over (ar−1, ar).

4.3 Marginal Models for Clustered Aggregate Data

4.3.1 Composite Likelihood for a Marginal Model

Consider J tanks (clusters) j = 1, ..., J . We assume covariates are only at the cluster level,

and denote the vector by xj for cluster j, j = 1, ..., J . We let nj denote the number of

individuals per cluster. Diao and Cook (2014) describe how models can be formulated
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for correlated Markov processes which accommodate dependence between processes and

retain the marginal Markov property for processes. For progressive processes, the de-

pendence is accommodated by selecting a sojourn or entry time of interest and using a

copula function to induce a dependence between the corresponding times within a clus-

ter. We consider here the class of Archimedian copulas of the form C(u1, u2, . . . , unj
; η) =

G−1(G(u1; η) + · · · + G(unj
; η), η), where G : [0, 1] → [0,∞) is a continuous, strictly de-

creasing and convex generator function with dependence parameter η and G(1; η) = 0. We

consider a progressive process and select the first transition time (i.e. the entry time to

state 2) as the time on which the dependence is based. Let Tij2 denote the entry time to

state 2 for individual i in tank j and Tj2 = (T1j2, . . . , Tnjj2)′ denote the vector of all state

2 entry times in tank j, j = 1, . . . , J . We use the Clayton copula (Nelsen, 2006) in this

setting with generator G(u; η) = η−1(u−η − 1) to model the dependence. Kendall’s τ , a

common dependence measure for copula models in the Archimedian family is obtained as

τ = 1 + 4

∫ 1

0

G(u; η)

G′(u; η)
du.

The joint survivor function for Tj2 is obtained via the probability integral transform and

linking all marginal survivor functions Fij(tij2) = exp(−λ1tij2) via the Clayton copula as

F (tij; θ1, η) =
(
F (t1j2; θ1)−η + · · ·+ F (tnjj2; θ1)−η − (nj − 1)

)−1/η
.

Since the process is progressive the association in the entry times to state 2 will induce

an association in the entry times to subsequent states within clusters. An alternative

approach would be to remodel the association in the absorption times as considered in

Diao and Cook (2014).

Here we adopt a composite likelihood by adopting a working independence assumption

and considering contribution from marginal frequency data observed at each time point
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as arising independently from the data at different time points for the same cluster. This

gives

CLjr(θ) ∝ P (Mj(ajr)|Mj1(aj0) = nj, xj; θ) (4.5)

where we let λjk = λk exp(x′jβ) and let log λjk be indexed by θjk, j = 1, ..., J . The

component likelihood for each cluster j is given by (5.7) and a overall composite likelihood

is simply the product of the component likelihoods,

CL(θ) =
J∏
j=1

Rj∏
r=1

CLjr(θ)

if we assume independence within clusters. Robust sandwich variance estimates are used

to (see later) ensure correct inferences. The estimating equations corresponding to the

composite likelihood is

S(θ) =
J∑
j=1

Rj∑
r=1

Sjr(θ)

where Sjr(θ) = ∂ logCLjr(θ)/∂θ. Since the contributions CLjr(θ) in (5.7) are valid likeli-

hood contributions, then

E(S(θ)) = 0.

Under standard regularity conditions (White, 1982), we can then construct the robust

sandwich variance
√
J(θ̂ − θ)→ N(0, A−1(θ)B(θ)

[
A−1(θ)

]′
) (4.6)

whereA(θ) = −E(∂
∑Rj

r=1 Sjr(θ)/∂θ
′) andB(θ) = E(Sj(θ)S

′
j(θ)). Here Sj(θ) = (Sj1(θ), . . . , SjRj

(θ))′.

The matrices A(θ) and B(θ) can be estimated empirically by

Â(θ) = −J−1

J∑
j=1

∂
∑Rj

r=1 Sjr(θ)

∂θ′
|θ=θ̂
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and

B̂(θ) = J−1

J∑
j=1

Sj(θ)S
′
j(θ)|θ=θ̂.

4.3.2 A Simulation Study

Here we consider a strictly progressive process with all individuals starting at state 1. We

set λ12 such that P (Zi(1) = 1|Zi(0) = 1) = 0.135, We set λ23 = 1.1λ12, λ23 = 1.12λ12

and λ45 = 1.13λ12. The data is generated such that the failure time to state 2 within each

cluster is correlated under a copula model, we then generate sojourn times in state 2 by

an exponential distribution with intensity λ23. The entrance time to state 3 is then the

sum of the failure time of state 2 and the sojourn time. We adopt the Clayton’s copula

with Kendall’s τ of 0.1 and 0.2. To assess the effect of cluster size, we have used 25, 50

and 100 clusters with 10 and 30 individuals per cluster in the simulation for a total of 500

simulations under 4 common assessment times. Results are displayed in Table 4.2. From

the result, we see that the empirical biases (EBIAS) are all close to zero, the empirical

standard errors (ESE) agree well with the average robust standard errors (ASE), and the

empirical coverage (ECP) is well within the nominal level. Note that the standard error

decreases as the number of clusters increase, as well as when the number of organisms per

per cluster (nj/cluster) increases for a given correlation. We also observe the anticipated

increase in variation with increasing association as reflected by Kendall’s τ .

4.4 Accommodating Heterogeneity via Random Ef-

fects

Another approach for accommodating within-cluster variation dependence is to model

between-cluster variation. We consider this here through the use of random effect models.
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Let Uj be a scalar cluster-level random effect for cluster j with E(Uj) = 1, var(Uj) = φ,

and distribution function G(Uj;φ). We assume Uj ⊥⊥ Uj′ for j 6= j′ = 1, ..., J . The

time-homogeneous transition intensities given Uj for an individual in cluster j is then

lim
4t↓0

P (Zij(t+4t−) = k + 1|Zij(t−) = k, Uj = uj, xj,Hij(t))

4t
= ujλjk

where λjk = λk exp(x′jβ).

The marginal likelihood is obtained by integrating the joint likelihood for the aggregate

data over the random effect. Maximum likelihood estimates are obtained by maximizing

with respect to both the parameters λ in the conditional Markov model and the parameter

φ in the random effect distribution.

For our strictly progressive process (see Section 4.2) we can make use of (4.2) to ac-

commodate the cluster level random effect and covariate and write

P (Z(aijr) = sijr|Z(aij,r−1) = sij,r−1;uj, xj) =

sijr∑
h=sij,r−1

B(sij,r−1, h, sijr) exp(−ujλhex
′
jβ4ajr)

where 4ajr = ajr − aj,r−1 is the lag between the (j − 1)st and jth assessment times for

tank j and sijr represent the state occupied for the ith individual at time ajr in cluster j.

Note B(·, ·, ·) is defined as in (4.3).

With individual level panel data, the likelihood contribution given uj in cluster j can

be written as

Lj(λ, β|uj, xj) ∝
nj∏
i=1

Rj∏
r=1

P (Z(aijr) = sijr|Z(aij,r−1) = sij,r−1;uj, xj). (4.7)
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Based on the form of (4.2) we can rewrite (4.7) as

Lj(λ, β|uj, xj) ∝
nj∏
i=1

 sij1∑
h0=sij0

sij2∑
h1=sij1

...

sijRj∑
hRj−1=sij,Rj−1


Rj∏
r=1

B(sij,r−1, hr−1, sijr)e
−uhλjhr−1

4ajr


 .

We can then get the marginal distribution by averaging over the random effect

Lj(λ, β, φ) ∝
∫ ∞

0

Lj(λ, β|uj, xj)dG(uj;φ).

A closed-form of marginal likelihood is obtainable if there exists a Laplace transform vφ(·)

for the random effect distribution.

When only aggregate data are available at the cluster level, we must again marginalize

over the complete tables as in (5.7). This summation is infeasible because the number of

possible realizations of individual paths increases at a prohibitive rate with the number

of assessment times and the cluster size nj, even for progressive models. We therefore

consider an alternative approach based on a composite likelihood. Specifically we consider

a two-way contribution over [0, ajr] given uj in cluster j.

4.4.1 Two-way Composite Likelihood

Here we consider composite likelihood contributions based on data at times a0 and ajr for

r = 1, . . . , Rj. For a particular r in cluster j we obtain

Ljr(λ, β|uj, xj) ∝
nj∏
i=1

P (Z(ajr) = sijr|Z(aj0) = sij0;uj, xj) (4.8)

where

Ljr(λ, β|uj, xj) ∝
nj∏
i=1

sijr∑
hi=sij0

B(sij0, hi, sir)e
−ujλjhiajr . (4.9)
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Integrating (4.8) over the random effect and taking the product of all such terms for

r = 1, . . . , Rj gives a joint probability and composite likelihood for panel data setting

which can be written as

Lj(λ, β, φ) ∝
Rj∏
r=1

{∫ ∞
0

Ljr(λ, β|uj, xj)dG(uj;φ)

}
. (4.10)

If vφ(·) is the Laplace transform of the random effect distribution, a closed-form for the

integral is obtained by replacing each exponential factor by the Laplace transform to obtain

Lj(λ, β, φ) ∝
Rj∏
r=1


s1jr∑

h1=s1j0

s2jr∑
h2=s2j0

...

snjjr∑
hnj =snj,j0

nj∏
i=1

B(sij0, hi, sijr)vφ

(
nj∑
i=1

λjhiajr

) . (4.11)

When data are aggregated and only marginal totals are available at each assessment time,

the observed data composite likelihood is obtained by replacing each term in curly brackets

in (4.11) with its sum over all possible K × K matrices of transition counts between a0

and ar to give

Lj(λ, β, φ) ∝
Rj∏
r=1

∑
N(ajr)∈Njr

Ljr(λ, β, φ) (4.12)

for each cluster j where Nj1l(ar) =
∑nj

i=1 I(Zij(ajr) = l|Zij(aj0) = 1) and Njr = {Nj(ajr) :

Nj1.(ajr) = nj, Nj.l(ajr) = Mjl(ajr),∀ l}. The overall composite likelihood is obtained by

multiplying composite likelihood contributions of the form (4.12) over all J clusters.

4.4.2 A Simulation Study for Random Effect Model

Here we consider a strictly progressive process with all individuals starting at state 1. We

set λ12 such that P (Zi(1) = 1|Zi(0) = 1) = 0.135, We set λ23 = 1.1λ12, λ23 = 1.12λ12 and

λ45 = 1.13λ12. The random effect Uj ∼ Gamma(mean = 1, var = φ) where φ = 0.4 and

0.8. To assess the effect of cluster size, we have used 25, 50 and 100 clusters with 10 and
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30 individuals per cluster in the simulation for a total of 500 simulations under 4 common

assessment times. Results are displayed in Table 4.3. We see that the ESE and ASE are in

alignment and the empirical coverage probabilities are well within the nominal level. Note

that the finite sample empirical biases of the parameters under the random effect model

decreases as the number of clusters increases. As the number of clusters increase and/or

number per cluster increase, we see the resulting decrease in the standard errors.

4.5 Application

Lepidopsetta polyxystra is also known as the northern rock sole which are widely studied for

understanding larval transport and associated nursery grounds in the Bering Sea (Laurel

et al., 2014). As part of a study on the role of temperature on the development of the

organism, fish larvae were placed in 15 different tanks under four constant temperatures of

2, 4, 7 or 10◦C respectively. The fish larvae metamorphosis through egg, first, second, third

stage of maturation, and finally enter an adult fourth stage. At each temperature, tanks

were supplied with nutritionally enriched rotifers (Branchionus plicatilis), after which the

number of fish larvae were recorded along with their development stages. Two distinct

unevenly spaced assessment schedules were employed; see Section 4.1.2. We consider data

from all 15 tanks and conduct an analysis of the aggregate counts recorded at the unevenly

spaced assessment times based on both a robust marginal and a two-way random effect

model.

We present results from fitting models without covariates, and with temperature as

a continuous covariate and as a factor variable. For the model without covariates the

parametric estimates of the state entry time distributions are then superimposed on the

nonparametric composite likelihood estimates obtained by the pooled-adjacent violators
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algorithm (PAVA) (Ayer et al., 1955) to assess the goodness of fit of our proposed mod-

els. This nonparametric estimate was obtained by constructing a dataset of “pseudo-

individuals” from each tank by treating each assessment time as corresponding to a dif-

ferent individual. Let C(j1) < C(j2) < ... < C(jR) denote R ordered assessment times for

tank j. Let fjr denote the number of pseudo-individuals in tank j who have experienced

the event of interest at time C(jr) and those who had not failed by Cjr as njr − fjr. An

isotonic regression of (fj1/nj1, ..., fjR/njR) with weights (nj1, ..., njR) gives

1− F̂ (C(jr)) = max
u≤r

min
v≥r

(∑v
h=u fjl∑v
h=u njr

)
. (4.13)

Under a working independence assumption (across time and across tanks) we pool all such

data to obtain the nonparametric estimate of the state entry time distribution.. Figure

4.3 shows the nonparametric estimates superimposed with the marginal composite likeli-

hood estimates on the left column and the marginal probabilities based on the random

effect model on the right column. The dashed line is the lower and uppoer limits of the

95% confidence intervals. From Figure 4.3 we see that both methods agree well with the

nonparametric estimates. For the random effect approach, we see that there is (as yet)

unexplained tank-to-tank variation with φ̂ = 0.28 (see Table 4.4). It is natural to question

what the source of this biological variation could be. To explore this we next fit regression

models using the only covariate available, which is the temperature of the tank.

In order to assess the effect of different temperatures in tanks, we have also fit a model

with temperature as a covariate (see Table 4.4). The coefficient of temperature for the

marginal model when it is treated as having a linear effect gives a relative increase in the

transition intensity of 1.29 (95% CI 1.23, 1.35) for each degree increase in temperature.

The p-value of the test of the null hypothesis is p<0.001 suggesting that progression rates

through the developmental stages are affected by the temperature of the environment.
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When temperature is treated as a categorical covariate with 4 level, we select 2◦C as

the baseline temperature such that β1, β2 and β3 represent the effects of 4◦C, 7◦C and

10◦C respectively. It is also possible to compute the effects of the temperature change

from 2◦C to 4◦C, 2◦C to 7◦C and 2◦C to 10◦C by computing exp(log(1.29) ∗ (4 − 2)) =

1.66, exp(log(1.29) ∗ (7 − 2)) = 3.57, and exp(log(1.29) ∗ (10 − 2)) = 7.67 which are in

broad agreement with the estimates from the model treating temperature as a continuous

covariate.

The estimates from the random effects model are similar to the marginal approach

when we add in the temperature effect. When adjusting for temperature the estimate of

φ from the random effects model is zero for both categorical and linear covariates, which

reflects the fact that temperature explains all of the residual tank-to-tank variation from

the null model.

4.6 Discussion

We have described a composite likelihood-based method for the analysis of clustered ag-

gregate developmental data. The computational feasibility of this approach hinges on the

progressive nature of the process which is characteristic of most growth cycles, and the

fact that all organisms were observed from the start of the first stage. Use of composite

likelihood greatly reduces the size of the sample space that must be marginalized over to

compute the probabilities based on the marginal frequencies.

Marginal models and random effect models were used to accommodate clustering of

rates within tanks. Estimation of the parameters under the marginal formulation did

not involve estimation of the dependence parameter of the copula as this was more of a

nuisance parameter in the present setting. Moreover the apparent need to accommodate
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heterogeneity between clusters seems minimal once the temperature effect was accounted

for. The plots of the state entry time distributions based on the available data exhibited

good agreement with the nonparametric estimates using the pooled adjacent violators

algorithm and so models with exponential sojourn times appear reasonable for the data at

hand.
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Figure 4.3: Nonparametric estimates(represented by dots) vs. parametric estimates from the
marginal model on the left column and the random effect model via composite likelihood on the
right column; the dotted line repreents a 95% confidence interval for the parametric fits.
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Chapter 5

Cost-effective Design with
Aggregation and Tracking

5.1 Introduction

In many growth and developmental studies organisms are arranged in tanks or other types

of enclosure and repeatedly examined over time to acquire information on developmental

stages. Examples include studies of plant growth (Gouno et al., 2011), metamorphosis of

fish or amphibians (Laurel et al., 2014), or small arthropods (Munholland and Kalbfleisch,

1991). The maturation process can usually be naturally modelled using multistate pro-

cesses.

In some contexts it can be difficult to identify individual organisms. In studies of

hornworms for example (Borror and White, 1970), the larvae are both mobile and indis-

tinguishable. Gouno et al. (2011) also reported on a growth study of arabidopsis thaliana

where the data are recorded in aggregated form. In such cases the available data consists

only of the counts of the number of organisms in the different developmental stages at each

assessment time. This form of aggregation is also common when the only available data
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are published in tabular form.

There has been much discussion on methods for dealing with aggregate data. MacRae

(1977) first introduced the nonlinear generalized least squares approach and briefly men-

tioned methods for exact maximum likelihood approach for aggregate data. Kalbfleish

and Lawless (1983) introduced a weighted least squares approach for estimating transition

intensities from aggregate data. We build upon a likelihood approach in this paper and

consider strictly progressive Markov processes appropriate for growth data. Computational

challenges may arise as the number of assessment times and individuals increase, so we

propose composite likelihood (Varin et al., 2011) as an appealing alternative in such cases.

When organisms are organized in different tanks (i.e. clusters), tank-to-tank variation

must be taken into consideration. Chapter 4 use composite likelihood to handle such data

based on both marginal methods with robust variance estimation, and a random effects

model.

The focus of this paper is on the optimal design for studies involving multiple tanks/clusters;

we adopt the marginal approach of Chapter 4 for aggregate data. In some contexts track-

ing of individuals is possible but incurs a cost. We also consider cost-effective design by

addressing the situation in which some tanks contain organisms to be tracked individu-

ally over time, while other tanks may be designated to provide only aggregate counts in

the different developmental stages at different assessment times. Sample size calculations

are derived and cost-effective allocation of tanks to these two observation schemes is also

considered.

The remainder of this contribution is organized as follows. In Section 5.2 we define

notation and describe a composite likelihood for clustered Markov processes which we

use to characterize growth of individual organisms and to accommodate dependence in

progression rate within tanks. Large sample results and methods of inference for both
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tracking and aggregate observation schemes are given in Section 5.2. Sample size criteria

are developed to meet design objectives and cost-effective allocation of tanks to the tracking

and aggregate observation schemes are developed in Section 5.3. Simulation studies are also

carried out in Section 5.4 along with an illustration involving the growth and development

of Northern rock sole. Concluding remarks are made in Section 5.5.

5.2 Notation and Likelihood

5.2.1 Composite Likelihood for Clustered Panel Data

We consider strictly progressive multistate models suitable for studying maturation pro-

cesses. Suppose that observations are made on a group of individuals who act independently

of one another, with each individual passing through states according to a multistate pro-

cess with state space {1, 2, . . . , K}. We let Zj(t) denote the state occupied by individual j

at time t and {Zj(s), 0 < s} be the multistate process.

Let Hj(t) = {Zj(s), 0 ≤ s < t} denote the history of the process for individual j at

time t and let

λk(t|Hj(t)) = lim
4t↓0

P (Zj(t+4t−) = k + 1|Zj(t−) = k,Hj(t))

4t
(5.1)

denote the k → k + 1 transition intensity, k = 1, . . . , K − 1. For Markov processes the

intensity does not depend on the history in which case we write (5.1) as λk(t). Given a

K ×K transition intensity matrix Λ(t) with (k, k + 1) entry λk(t), diagonal entry −λk(t),

for k = 1, . . . , K−1 and zeros elsewhere, by product integration (Cook and Lawless, 2018)

the K ×K transition probability matrix is

P (s, t) =
∏
(s,t]

{1 + Λ(u)du} (5.2)
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with (k, l) entry P (Z(t) = l|Z(s) = k) for k ≤ l. If observations are made at times 0 =

aj0 < aj1 < ... < ajRj
for individual j, panel data denoted by {(Zj(ajr), ajr), r = 1, 2, ..., Rj}

are obtained. Kalbfleisch and Lawless (1985) develop a Fisher-scoring algorithm for fitting

the likelihood which is implemented in the R function msm (Jackson, 2011).

Now consider a setting with I tanks of organisms with ni individuals in tank i, i =

1, . . . , I. Let 0 = ai0 ≤ · · · ≤ aiRi
denote the common assessment times for all j = 1, . . . , J

individuals in tank i, i = 1, . . . , I. Diao and Cook (2014) formulate a copula-based model

for correlated Markov processes which accommodate dependence between processes within

clusters and retain the marginal Markov property for each process. With progressive

processes, within-cluster dependence can be modeled in terms of sojourn or state entry

times through copula functions. We consider a class of Archimedian copulas (Nelsen, 2006)

of the form C(u1, u2, . . . , uni
; η) = G−1(G(u1; η)+· · ·+G(uni

; η)) whereG : [0, 1]→ [0,∞) is

a continuous, strictly decreasing and convex generator function with dependence parameter

η and G(1; η) = 0 (Nelsen, 2006). To induce a dependence, we select the first transition

time (i.e. the entry time to state 2) and note that a dependence is induced within clusters

for the subsequent state entry times. Specifically, we let Tij2 denote the entry time to

state 2 for individual j in tank i and Ti2 = (Ti12, . . . , Tini2)′ denote the vector of all state

2 entry times in tank i, i = 1, . . . , I. We adopt the Clayton copula (Nelsen, 2006) and use

Kendall’s τ as a measure of dependence where

τ = 1 + 4

∫ 1

0

G(u; η)

G′(u; η)
du.

We formulate the joint survivor function for Ti2 by linking all marginal survivor functions

Fij(tij2;λ1) = P (Tij2 ≥ tij2) exp(−λ1tij2) via the Clayton copula as

F (ti2;λ1, η) =
(
F (ti12;λ1)−η + · · ·+ F (tini2;λ1)−η − (ni − 1)

)1/η
.
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Diao and Cook (2014) describe an alternative approach where the association in the ab-

sorption times is modeled instead of earlier state entry or sojourn times, but the principle of

inducing a dependence between multistate processes within a cluster by linking a particular

time is in the same spirit.

Consider the case with a cluster level covariate xi, i = 1, . . . , I and let

lim
4t↓0

P (Zij(t+4t−) = k + 1|Zij(t−) = k,Hj(t))

4t
= λk exp(x′iβ)

which we denote more compactly as λik, k = 1, . . . , K−1. If αk = log λk, k = 1, . . . , K−1,

α = (α1, . . . , αK−1)′ and β = (β′1, . . . , β
′
K−1)′, we then let θ = (α′, β′)′. Under a working

independence assumption and a panel observation scheme (i.e. with individual tracking)

the composite likelihood is

L1(θ) ∝
I∏
i=1

Ri∏
r=1

L1ir(θ) (5.3)

where

L1ir(θ) ∝
ni∏
j=1

∏
k≤l

P (Zij(air) = l|Zij(ai,r−1) = k, xi; θ) (5.4)

and Zij(t) is the state occupied by individual j in tank i at time t. We then define

S1ir(θ) =

ni∑
j=1

∑
k≤l

∂logP (Zij(air) = l|Zij(ai,r−1) = k, xi; θ)

∂θ
(5.5)

and we let S1i(θ) = (S1i1(θ), . . . , S1iRi
(θ)) be a p×Ri matrix. We let θ̂ denote the solution

to S1(θ) =
∑I

i=1

∑Ri

r=1 S1ir(θ) = 0.

A robust sandwich variance estimate is required to ensure valid inference under this

working independence assumption. Under standard regularity conditions (White, 1982)

√
I(θ̂ − θ)→ N(0,A −1

1 (θ)B1(θ)A −1
1 (θ)) (5.6)
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where A1(θ) = −E{
∑Ri

r=1 ∂S1ir(θ)} and B1(θ) = E{S1i(θ)S
′
1i(θ)}. The matrices A1(θ)

and B1(θ) can be estimated empirically by

Â1 = −I−1

I∑
i=1

Ri∑
r=1

∂S1ir(θ)

∂θ′
|θ=θ̂

and

B̂1 = I−1

I∑
i=1

S1i(θ)S
′
1i(θ) |θ=θ̂,

and tests regarding elements of θ or associated 95% confidence intervals are constructed

based on the estimated covariance matrix Â−1
1 B̂1Â

−1
1 .

5.2.2 Composite Likelihood for Correlated Aggregate Data

Under the Markov property for a single individual process considered on its own, the stage

occupied at time air only depends on the stage occupied at ai,r−1. With aggregate data

we only need to consider two consecutive assessment times, and the joint distribution

is built up as a product of the conditional probabilities. However, as the number of

assessment times and individuals per tank increase, the likelihood becomes computationally

challenging. That motivates use of a composite likelihood approach where we adopt a

working independence assumption and consider contributions from the marginal frequency

data observed at each time point as arising independently from the data at different time

points from the same tank.

Here we consider data from the baseline assessment to each of the followup assessment

times. Thus for two assessment times ai0 = 0 and air, the missing information in the

aggregate data are Ni(air), the vector containing all counts Ni1l(air) =
∑ni

j=1 I(Zij(air) =

l|Zij(ai0) = 1) for l = 1, ..., K and i = 1, . . . , I. With a strictly progressive process

and P (Zij(ai0) = 1) = 1 and we let Ni1l(air) = Mil(air) corresponds to the number of
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individuals occupying state l at time air in tank i. We can then obtain the composite

likelihood

L2(θ) ∝
I∏
i=1

Ri∏
r=1

L2ir(θ) (5.7)

and

L2ir(θ) ∝ P (Mi(air)|Mi1(ai0) = ni, xi; θ)

where Mi(air) = (Mi1(air), . . . ,MiK(air))
′.

Robust sandwich variance estimates are adopted to ensure valid inference. The esti-

mating equations corresponding to the composite likelihood is

S2(θ) =
I∑
i=1

Ri∑
r=1

S2ir(θ)

where S2ir(θ) = ∂ logL2ir(θ)/∂θ. Since the contributions of (5.7) are valid likelihood

contributions E{S2(θ)} = 0 and the solution is denoted by θ̃. Again, under standard

regularity conditions (White, 1982), we can then construct the robust sandwich variance

as
√
I(θ̃ − θ)→ N(0,A −1

2 (θ)B2(θ)A −1
2 (θ)) (5.8)

where A2(θ) = −E{
∑Ri

r=1 ∂S2ir(θ)} and B2(θ) = E{S2i(θ)S
′
2i(θ)} with

S2i(θ) = (S2i1(θ), . . . , S2iRi
(θ)). The matrices A2(θ) and B2(θ) can be estimated em-

pirically by

Â2 = −I−1

I∑
i=1

Ri∑
r=1

∂S2ir(θ)

∂θ′
|θ=θ̃

and

B̂2 = I−1

J∑
i=1

S2i(θ)S
′
2i(θ) |θ=θ̃ .
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5.3 Study Design

In this section we discuss the cost-effect design of a prospective study in which a Markov

model can characterize dynamic features of the process with some clusters providing re-

peated aggregate data, and others providing longitudinal responses at the individual level.

Note that the expected information for both panel and aggregate data will be computed

in a robust sandwich form due to the working independence assumption from the com-

posite likelihood (see Section 5.2 ). We let I1 denote the number of tanks for assigned to

the panel observation scheme and I2 denote the number of tanks providing only repeated

aggregate data. Without loss of generality we suppose tanks 1, . . . , I1 are under the panel

and tanks I1 + 1, . . . , I1 + I2 are aggregate observation schemes. The composite likelihood

resulting from pooling the data from the panel and aggregate data observation schemes

is L(θ) = L1(θ)L2(θ) where L1(θ) =
∏I1

i=1

∏Ri

r=1 L1ir(θ) and L2(θ) =
∏I1+I2

i=I1+1

∏Ri

r=1 L2ir(θ).

We let f = I1/I denote the proportion of tanks that are under panel observation scheme.

We let n denote the number of individuals per tank which is fixed and common across

all tanks. The cost of observation per individual is C1 and C2 for panel and aggregate

data observation schemes respectively. The asymptotic robust variance of the maximum

composite likelihood estimator is then

G (θ) = A (θ)−1B(θ)A (θ)−1

where

A (θ) = fA1(θ) + (1− f)A2(θ),

B(θ) = fB1(θ) + (1− f)B2(θ)

with the component matrices from (5.6) and (5.8) and

√
I(θ̄ − θ) ∼ N(0,G (θ))
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with θ̄ being the estimate of θ. Given a target parameter of interest represented by the

qth element of θ, the optimal cost-effective design involves allocation of tanks subject to

the cost constraint B satisfying

min [G (θ)]qq + ρ[nI(fC1 + (1− f)C2)−B] (5.9)

where ρ is a Lagrange multiplier. If the interest lies in more than one parameter, we can

adopt other optimal allocation methods such as the D-optimality which is widely used in

experimental design studies (John and Draper, 1975).

Here we give an example of the cost-effective design for clustered data under a specified

setting. Let n = 10 for each tank i and let Xi ∼ Bern(0.5) be a tank level covariate,

i = 1, . . . , I. We use a 5-state progressive process as in the case of the maturation stages

of Northern rock sole. We assume 4 follow-up assessment times (not including a0) and the

assessment times are evenly spaced between 0 and 1. We set λ12 such that P (Zij(1) =

1|Zij(0) = 1) = 0.135. We then set λ23 = λ12w, λ34 = λ12w
2, and λ45 = λ12w

3 with

w = 1.1 indicating an increasingly rapid progression through the more advanced states,

and set β = log 1.2. The data is generated such that the entry times to state 2 within each

tank are correlated under a copula model (see Section 5.2); the subsequent sojourn times

are generated from an exponential distribution. In this example we adopt the Clayton

copula with Kendall’s τ set to 0 (for independence) or 0.2.

Under the above setting, we now consider the case where the interest lies in study

design with the goal is to achieve a pre-specified precision set to 0.01 for the estimator of

the regression coefficient. Given the pre-specified variance, Figure 5.1 shows the percentage

of aggregate tanks needed to achieve that variance as a function of the cost when Kendall’s

τ is 0 (left column) and Kendall’s τ is 0.2 (right column). Note that when the cost ratio

is 1, λ12 increases then decreases again. This is due to the fact that our model is strictly
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progressive and all units start in state 1. Under this particular situation, aggregate data

gives similar amount of information as panel data. Moreover, we see that λ45 has a strictly

increasing curve for cost ratio = 1 which corresponds to the fact that aggregate data is

losing information comparing to panel data. Note that increasing Kendall’s τ increases the

cost to achieve the pre-specified variance. Figure 5.2 displays the trade-off between the

optimal allocation of tanks and the associated asymptotic variance asymptotic variance

when we decrease the budget but keep the constraint that the total number of tanks is

the same. The number of tanks is fixed at a number such that we can achieve the pre-

specified variance under panel observation scheme. Here we used cost ratio C2/C1 = 0.5

for illustration purposes. Again, we plot the results in Figure 5.2 for Kendall’s τ 0 (left

column) and Kendall’s τ 0.2 (right column).

Note that we have also superimposed a blue line mimicking the asymptotic variance

from a simulation study under the same setting as outputted from Figure 5.2. Moreover, we

have done 100 simulation to assess the empirical biases (Ebias), empirical standard errors

(ESE) and the robust standard errors (ASE) for β. We see a good agreement between the

blue lines (simulated ASE) broadly match of the red (expected asymptotic variance) from

Figure 5.3.
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Figure 5.1: Plot of the trade-off between cost and % of aggregated tanks needed to achieve a
pre-specified variance with Kendall’s τ = 0 on the left column and Kendall’s τ = 0.2 on the right
column.
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Figure 5.3: Empirical performance of estimators for 100 simulations under a mixture of panel
and composite likelihood via marginal model according to a proportion vs. the expected asymp-
totic variance.

5.4 An Illustrative Study of Northern Rock Sole

We consider the study of the development and growth of Northern rock soles (Lepidopsetta

polyxystra) (Laurel et al., 2014). The larvae were distributed across 15 tanks under four

different temperatures and two observation schemes. Tanks 1-7 were assessed under scheme

1 on days 24, 28, 46, 66 and 90 days while tanks 8-15 were assessed under scheme 2 on

days 10, 18, 30 and 47. In many tanks assessment did not occur on the scheduled days

leading to incomplete data. Of interest was the effect of temperature on the growth and

development of the larvae. Specifically, the larvae pass through a sequence of progressive

stages and their development was scored by the degree of observed tail flexion using the

criteria established by Hawkyard et al. (2014). Stage 1 of the larvae is characterized
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by a straight notochord (no flexion); stage 2 larvae have straight notochord with the

appearance of caudal peduncle ‘node’ near the posterior end; larvae in stage 3 have a bent

notochord with caudal peduncle formation near the posterior end; stage 4 larvae have bent

notochord and initial envelopment of the notochord by the caudal peduncle; and stage

5 is characterized by the full envelopment of the notochord by the caudal peduncle with

only a remnant of bent notochord still visible (Laurel et al., 2014). Larvae are hard to be

identified and may be subjected to a higher cost and error. Laurel et al. (2014) sampled

10 fishes randomly from each tank to potentially avoid identification problems and for

convenience. Our method proposed in this paper could provide insights on the optimal

cost-effective design for such prospective study.

We first estimate the parameters θ with the constraint λ45 = 0.4λ34 due to the sparsity of

stage 4 to 5 transitions. We adopt the marginal composite likelihood methods for aggregate

data treating temperature as a continuous variable as in Chapter 4. The estimates are

shown in Table 5.1. The expected information matrices can then be constructed from the

estimates. For demonstration purposes we only consider the observation scheme 1 as our

assessment times. We consider both cases when Kendall’s τ = 0.1 and 0.2. We set the

cost per fish for tracking to be $1 and this could be multiplied by a factor to accommodate

different costs. Figure 5.4 shows the trade-off between cost and % aggregated tanks need

to achieve a pre-specified variance which we set to 0.01. We see that when Kendall’s τ

increase, there’s a increase in price needed to achieve the same pre-specified variance. Note

that when the cost ratio is about 0.2, we see that going 100% aggregate cost less than 100%

panel while achieving the pre-specified variance level. We then let the number of tanks

fixed at the number needed to achieve a pre-specified variance of 0.01 when all the tanks

are under panel observation scheme which in turn gives us a maximum cost. We then

decrease the maximum cost while keep the number of tanks the same and observe the

86



trade-off between optimal allocation of % aggregated tanks and the associated asymptotic

variance as shown in Figure 5.5. Note that when Kendall’s τ increase, we see an increase

both in the asymptotic variance and the budget.
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5.5 Discussion

We have described a cost-effective optimal design method based on clustered panel and

aggregate data. Aggregate data may be subjected to a lower cost and effort when mon-

itoring organisms. Having aggregate data may also prevent possible misclassification or

measurement error when the organisms are hard to identify. The method proposed here

gives insight on the trade-off between number of aggregate tanks and panel tanks needed in

order to achieve a user-desired variance tolerance. Design can also be considered in terms

of power of tests of the cluster-level covariate effects, or other features of the multistate

process such as mean sojourn times or median time to maturation. Depending on the cost

ratio and the user-desired variance tolerance, one can gain insights on such prospective

study with the optimal cost-effective design.
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EST. S.E. 95% C.I.

log λ12 -1.116 0.154 (-2.066, -1.028)
log λ23 -1.494 0.201 (-1.888, -1.100)
log λ34 -2.575 0.313 (-3.188, -1.962)
exp(β) 1.283 0.028 (1.229, 1.339)

Table 5.1: Results of fitting the composite likelihood model under aggregate data setting for
the growth of Northern rock soles.
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Chapter 6

Future and Ongoing Work

6.1 Finite Mixture Models for Multistate Panel Data

In Chapter 2 attention was restricted to the case in which the transition intensities for

the unilateral classes (left or right) are the same as the corresponding are in the bilateral

class. We also assume that the marker effects are the same for two unilateral classes.

It is reasonable to assume these constraints on scientific grounds in this context, but in

other settings it may be desirable to relax these constraints to obtain more flexible models

and test the plausibility of these assumptions. Fitting of this more flexible model may be

feasible with larger datasets and estimability issues may arise if the dataset is not sufficient

to support the estimation of different margins.

We have assumed that the observation process satisfies the sequential missing at random

assumption of Hogan et al. (Hogan et al., 2004). An alternative approach to our analysis

would be to predict the presence and nature of back involvement at a particular point in

the disease course based on direct multinomial regression; in this case inverse intensity of

visit weights (Lin et al., 2004) are required to adjust for the selection bias arising from the

need to restrict attention to individuals who can be definitively classified at the landmark
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time. These may also be required when assessing the predictive accuracy if a fitted model

with a validation sample. We do not explore this here as the modeling of a nonsusceptible

fraction is less natural in a marginal framework such as this; see Cook and Lawless (2018).

6.2 Marginal Mixture Models for Multivariate Interval-

censored Times

6.2.1 Accommodating Higher Dimensional Responses

The model in Chapter 3 was studied in the context of bivariate processes. In some settings

interest may lie in modeling higher dimensional interval-censored data while accommodat-

ing a non-susceptible fraction and understanding the association between latent marginal

processes. Suppose J events may be realized. In this case the multivariate binary model

for the susceptibility indicators naturally extends, where one may let

ψijj′ =
P (Zij = 1, Zij′ = 1|Xi)P (Zij = 0, Zij′ = 0|Xi)

P (Zij = 1, Zij′ = 0|Xi)P (Zij = 0, Zij′ = 1|Xi)
(6.1)

denote the odds ratio for type j and j′ susceptibility indicators. These odds ratios may be

different for each possible pair j and j′, but we note that while there are several models that

can be considered, there are constraints on the admissible odds ratios with multivariate

binary data (Liang et al., 1992).

For the failure times, let τjj′ denote Kendall’s τ for the association between Tij and Tij′

given Zij = Zij′ = 1. A multivariate Gaussian copula function seems the most natural to

consider in this setting since the pairwise dependencies in failure times may differ across

pairs given joint susceptibility.

The likelihood, two-stage and estimating function approaches of Section 3 may all be

extended and employed to deal with higher dimensional failure time models. Composite
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likelihood may also offer an appealing and computationally convenient option in this setting

(Varin, 2008), with options for pairwise and higher-order forms. With a higher dimensional

response, the risk of mis-specifying the dependence structure is greater, so the robustness

of the composite likelihood, two-stage approach to estimation or the estimating function

approaches may make them preferable to maximum likelihood.

6.2.2 Analysis of Current Status Data

Many large cohort studies are being conducted around the world with a view to collecting

data on disease prevalence, incidence and progression. Such cohort studies often involve

complex survey design which involves recruiting individuals from the population according

to a stratified sampling scheme. Specifically individuals may be recruited according strata

defined by age and sex and furnish information on their disease status (present or absent)

at the time of first contact. This current status data represents a special case of the

intermittent observation scheme of Section 3 where disease onset times are either left- or

right-censored. The pooled adjacent violators algorithm (PAVA) is a widely used method

for obtaining nonparametric maximum likelihood estimates of the survivor function or

onset time distribution based on current status data (Ayer et al., 1955) . The corresponding

estimator for F (·) is a step function which can jump at each observed inspection time, or

a subset of inspection times, but cannot jump at any other time.

Here we can consider a two-stage approach to fitting the model of Chapter 3 to current

status data. We can adopt PAVA to estimate F (·) and the susceptibility model for each

process, and then use the estimates from stage 1 to obtain estimates of the association

parameters in stage 2. Let Yij = I(Tij < Ci) indicate that the type j event was known

to occur for individual i. Let α1 = (β′,F ′
j(·), j = 1, 2)′. The complete date composite

94



likelihood at Stage 1 can then be written as

L1(α1) ∝
n∏
i=1

2∏
j=1

(
[1−Fj(Ci)]µij

)zijyij( [Fj(Ci)µij]
zij [1− µij]1−zij

)1−yij (6.2)

and

logL1(α1) =
n∑
i=1

2∑
j=1

zijlogµij + (1− zij)log(1− µij)

+ zij [yijlog(1−Fj(Ci)) + (1− yij)logFj(Ci))]

(6.3)

At the rth iteration of the EM algorithm, we will have

Q1ij(βj;α
r
1) = ηrijlogµij + (1− ηrij)log(1− µij)

Q2ij(Fj(·);αr1) = ηrij [yijlog(1−Fj(Ci)) + (1− yij)logFj(Ci)]

where

ηrij = P (Zij = 1|Yij = 0, Di;α
r
1) =

[Fj(Ci)]µij
[Fj(Ci)]µij + (1− µij)

, j = 1, 2.

Optimization of (6.2) can be carried out by adapting the PAVA. Specifically, for each

process j, the number of individuals who are estimated to be at risk at the kth inspection

time in the mth iteration is 4̂m
jk where 4̂m

jk =
∑n

i=1 I(Ci = Ck)(Yij + (1 − Yij)η
m
ij ). An

isotonic regression of (r1/4̂m
j1, ..., rK/4̂m

jK)′ with weights (4̂m
j1, ..., 4̂m

jK)′ gives

F̂ (m+1)(Ck) = max
u≤k

min
v≥k

(∑v
l=u

∑n
i=1 rl∑v

l=u 4̂m
jk

)
.

With the estimates from stage 1 then, we are able to obtain the association parameters by

maximizing (3.5). Survey weights can also be incorporated into the likelihood or the EM

algorithm for the nonparametric estimation of the onset time distribution based on the

PAVA, this would be appropriate for cross-sectional studies employing a complex survey
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design.

6.2.3 Other Extensions

There are several directions for further development of the proposed model in Chapter

3. Smoothed estimates of the marginal densities for the failure times can be developed

(Hjort and Jones, 1996; Li et al., 1997) or smoothed estimates of baseline hazards can be

obtained by local likelihood (Betensky et al., 1999). Smoothing of multivariate failure time

distributions based on interval-censored data can also be carried out (Braun and Stafford,

2016) but this will not yield parsimonious measures of dependence in the failure times.

Often it is most natural to consider covariate effects on the latent susceptibility indica-

tors but if there is interest in modeling covariate effects on the failure times semiparametric

proportional hazards or additive models can be considered.

6.3 Analysis of Aggregate Data from Clustered Mul-

tistate Processes

In Chapter 4 we introduced a composite likelihood approach to handle aggregate data

using either marginal methods with robust variance estimation, or random effects models

to accommodate clustering of transition rates within tanks. In principle, however, one

could consider relaxing the working independence assumption within tanks in the marginal

approach to estimate the dependence parameter as well.

We restricted attention to time homogeneous transition intensities, but this can be

relaxed easily to accommodate a piecewise-constant form. This was not done in the appli-

cation because of the close alignment of the empirical estimates and the estimates based

on the proposed model. Extensions may be developed for recurrent processes or processes
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involving a terminal (e.g. death) state which can be entered at any time during the mat-

uration process, but settings involving multistate models with reversible transitions are

much more difficult to handle even under the panel observation scheme.

6.4 Cost-effective Design with Aggregation and Track-

ing

In some settings it may be feasible to tag organisms to enable tracking of individuals, but

this may incur a cost. If it is possible, it may be of interest to consider the cost-benefit

of tracking individual organisms. The framework we have described in Chapter 5 can

be generalized in a number of ways. In some settings it may only be possible to record

aggregate data at certain phases of the development process (i.e. at the larval stage) but it

may be possible to tag or otherwise identify organisms when they are more developed. In

this case aggregate data may be available at early stages but tracking of individuals may

yield panel observations once a certain stage of the life cycle has been reached. Another

interesting variation of this design is to allow timing of assessments to differ between tanks.

Some tanks, for example, may be examined more frequently at the early stages of the life

cycle and others may be examined more frequently at later stages. Optimal allocation of

the tanks to these observation schedules can also be considered.

In Chapter 5 we have considered a cost-effect design for a strictly progressive model

that deals with growth studies. In a completely different setting this issue arises in school-

based studies of health knowledge, attitudes and behaviour among youth. Here tracking of

individuals may require greater effort to get ethics approvals in comparison to repeat cross-

sectional studies, which offer data more like the aggregate data in our setting. However

school-based studies also feature immigration and emigration which mean any models based
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on marginal aggregate summaries must accommodate the fact that some new students may

have entered the school and some may have left; such data may be available from school

administrators.
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