
Natural Language Generation with
Neural Variational Models

by

Hareesh Pallikara Bahuleyan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Management Science

Waterloo, Ontario, Canada, 2018

c© Hareesh Pallikara Bahuleyan 2018

Author Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Chapters 4, 5 and 6 of this thesis are based on the following papers:

1. Hareesh Bahuleyan*, Lili Mou*, Olga Vechtomova, and Pascal Poupart. Varia-
tional Attention for Sequence-to-Sequence Models. In 27th International Conference
on Computational Linguistics (COLING), 2018.

2. Hareesh Bahuleyan, Lili Mou, Kartik Vamaraju, Hao Zhou, and Olga Vechtomova.
Probabilistic Natural Language Generation with Wasserstein Autoencoders. arXiv
preprint arXiv:1806.08462, 2018

I have contributed to implementation, experimentation, and preparation of the manuscript
of the above mentioned papers.

iii

Abstract

Automatic generation of text is an important topic in natural language processing with
applications in tasks such as machine translation and text summarization. In this thesis, we
explore the use of deep neural networks for generation of natural language. Specifically, we
implement two sequence-to-sequence neural variational models - variational autoencoders
(VAE) and variational encoder-decoders (VED).

VAEs for text generation are difficult to train due to issues associated with the Kullback-
Leibler (KL) divergence term of the loss function vanishing to zero. We successfully train
VAEs by implementing optimization heuristics such as KL weight annealing and word
dropout. In addition, this work also proposes new and improved annealing schedules that
facilitates the learning of a meaningful latent space. We also demonstrate the effective-
ness of this continuous latent space through experiments such as random sampling, linear
interpolation and sampling from the neighborhood of the input. We argue that if VAEs
are not designed appropriately, it may lead to bypassing connections which results in the
latent space being ignored during training. We show experimentally with the example of
decoder hidden state initialization that such bypassing connections degrade the VAE into
a deterministic model, thereby reducing the diversity of generated sentences.

We discover that the traditional attention mechanism used in sequence-to-sequence
VED models serves as a bypassing connection, thereby deteriorating the model’s latent
space. In order to circumvent this issue, we propose the variational attention mechanism
where the attention context vector is modeled as a random variable that can be sampled
from a distribution. We show empirically using automatic evaluation metrics, namely en-
tropy and distinct measures, that our variational attention model generates more diverse
output sentences than the deterministic attention model. A qualitative analysis with hu-
man evaluation study proves that our model simultaneously produces sentences that are
of high quality and equally fluent as the ones generated by the deterministic attention
counterpart.

iv

Acknowledgements

This thesis would not have been possible without the constant support that I received
from a number of people.

First and foremost, I take this opportunity to express my heartfelt gratitude to my
supervisor Professor Olga Vechtomova for her guidance throughout this research. I am
thankful to her for believing in me and being patient with me since the start of my program.
The flexibility that she provided in research has allowed me to learn new topics and explore
new ideas. I am deeply indebted to her for having taken the time and effort for reading,
reviewing and providing valuable inputs for the reports that I had made.

I am grateful to Dr. Lili Mou for being a mentor, sharing knowledge and providing
valuable technical advice. His subject expertise and guidance has played a crucial role in
structuring this project. Interactions with him have helped me develop my skills in this
field and motivated me to deal with research challenges.

I would like to acknowledge Professor Pascal Poupart for sharing his ideas and providing
valuable suggestions.

I thank Professor Jesse Hoey and Professor Stan Dimitrov for taking the time to review
my thesis and provide feedback.

I express my gratitude to Vineet John and Ankit Vadehra for the informative discussions
and enlightening me on their respective research topics.

Life in Canada would not have have been such an enjoyable journey without the friends
that I made here. I thank all my friends for making my stay here at Waterloo, a memorable
one.

I am extremely grateful to my parents and my sister for supporting me and being with
me even during the toughest times.

v

Dedication

I dedicate this thesis to my beloved parents and sister for their unconditional love,
support, and care.

vi

Table of Contents

List of Tables x

List of Figures xi

Abbreviations xiii

1 Introduction 1

1.1 Background . 1

1.2 Motivation and Problem Definition . 3

1.3 Contributions . 4

1.4 Chapter Outline . 5

2 Background and Related Work 6

2.1 Machine Learning . 6

2.1.1 Supervised Learning . 7

2.1.2 Unsupervised Learning . 7

2.2 Deep Learning . 8

2.2.1 Introduction to Neural Networks 8

2.2.2 Recurrent Neural Networks . 11

2.2.3 Long Short Term Memory . 13

2.2.4 Sequence-to-Sequence Models . 15

vii

2.2.5 Auto-encoding . 16

2.2.6 Attention Mechanism . 17

2.2.7 Variational Inference . 18

2.2.8 Question Generation . 19

2.2.9 Dialog Systems . 19

3 Sequence to Sequence Models 21

3.1 Word Embeddings . 21

3.2 Sequence to Sequence LSTMs . 23

3.3 Environment and Libraries . 25

4 Variational Autoencoders 26

4.1 Introduction . 26

4.2 Variational Inference . 26

4.3 Variational Autoencoders . 30

4.4 Reparameterization Trick . 32

4.5 Experiments . 33

4.5.1 Dataset . 34

4.5.2 Data Pre-processing . 35

4.6 VAE Optimization Challenges . 35

4.6.1 KL Cost Annealing . 36

4.6.2 Word Dropout . 36

4.6.3 Training Details . 37

4.6.4 VAE Variants . 38

4.7 Results . 40

4.7.1 Sentence Reconstruction and Random Sampling 40

4.7.2 Linear Interpolation . 43

4.7.3 Sampling From Neighborhood . 45

viii

5 Bypassing Phenomenon 49

5.1 Problem Description . 49

5.2 Evaluation Metrics . 51

5.2.1 Entropy . 51

5.2.2 Distinct Scores . 51

5.3 Results . 52

6 Variational Attention for Seq2Seq Models 55

6.1 Motivation . 55

6.2 Variational Encoder Decoder . 56

6.3 Attention Mechanism . 57

6.4 Variational Attention . 60

6.4.1 Derivation of Loss Function . 60

6.5 Experiments . 63

6.5.1 Datasets . 63

6.5.2 Training Details . 64

6.5.3 Quantitative Evaluation . 64

6.5.4 Qualitative Evaluation . 67

7 Summary and Conclusions 71

7.1 Summary of Research Work . 71

7.2 Conclusions . 72

7.3 Future Work . 72

References 74

APPENDICES 84

ix

List of Tables

1.1 Output dialog generated by a conversational system as shown in Li et al.
(2015a). For a given input, the first column shows the list of top-ranked
(most probable) responses, most of which tend to be generic. The second
column shows the lower-ranked but less generic/more engaging responses. . 3

4.1 Training VAE with different settings . 39

4.2 Sentence reconstruction performance for the Deterministic AE and different
VAE variants . 43

4.3 Generation of random sentences by sampling from the latent space 44

4.4 Linear interpolation between Sentences A and B 46

4.5 Generating sentences by sampling from the neighbourhood of the mean in
the latent space . 48

5.1 Generating sentences conditioned on a given input by sampling from the
latent space - comparison of VAE with and without bypass connection . . . 53

5.2 Comparison of VAE with and without bypass connection in terms of auto-
matic diversity metrics . 54

6.1 BLEU, entropy, and distinct scores on the question generation task. We
compare the deterministic encoder-decoder (DED) and variational encoder-
decoders (VEDs). For VED, we have several variates: deterministic atten-
tion (DAttn) and the proposed variational attention (VAttn). Variational
models are evaluated by both max a posteriori (MAP) inference and sampling. 65

6.2 Results on the conversational systems experiment 67

6.3 Qualitative samples of the question generation task. 69

x

List of Figures

2.1 Perceptron Model . 9

2.2 Feed-Forward Neural Network . 10

2.3 Unrolling of a recurrent neural network (RNN) (Britz, 2015) 12

2.4 LSTM Unit Representation (Xu et al., 2015b) 14

3.1 2d PCA projection of 1000d word embeddings of countries and their capitals
from Mikolov et al. (2013) . 22

3.2 Illustration of the softmax output layer . 24

3.3 Sequence-to-sequence encoder-decoder model framework 25

4.1 Relationship between KL(q(Z)||p(Z|X)), ELBO(q) and log p(X) 29

4.2 Encoder network for encoding the original data into the latent space and
decoder network for reconstruction using the latent representation 30

4.3 Latent space mappings learnt by a VAE. New data can be synthesized by
sampling from the known prior distribution (Kingma, 2017) 32

4.4 Difference in DAE and VAE architectures 33

4.5 Demonstation of the Reparameterization Trick in VAEs (Kingma, 2017) . . 34

4.6 Demonstration of Word Dropout . 37

4.7 Learning curves of the VAE variants. Top: KL divergence, Bottom: λ×KL
divergence. 41

4.8 Demonstration of Random Sampling from Latent Space 42

4.9 Demonstration of Linear Interpolation between points in the Latent Space 45

xi

4.10 Demonstration of sampling from the neighborhood of a given input x . . . 47

5.1 Sequence-to-sequence VAE Architechture 49

5.2 Sequence-to-sequence VAE with bypass . 50

5.3 Comparison of learning curves of VAE with and without bypass 53

6.1 Sequence-to-sequence VED Architecture 57

6.2 Illustration of VED with Deterministic Attention Mechanism 59

6.3 Illustration of VED with Variational Attention Mechanism 61

6.4 BLEU-2, BLEU-4, Entropy, and Distinct-1 calculated on the validation set
as training progresses. 68

6.5 BLEU-2, BLEU-4, Entropy, and Distinct-1 for multiple runs of the same
model (VED+VAttn-h̄) with different γa values. 68

xii

Abbreviations

AI Artificial Intelligence 1, 2

ANN Artificial Neural Networks 8, 10

CNN Convolutional Neural Network 8

DAE Deterministic Autoencoders 31, 40, 46

DED Deterministic Encoder-Decoder 57, 64, 66

ELBO Evidence Lower Bound 28, 29, 60

GRU Gated Recurrent Unit 13, 15, 19

KL Kullback-Leibler 4, 27, 31, 43, 52, 62, 67

LSTM Long Short Term Memory 13, 15, 21, 57, 60, 62, 64

ML Machine Learning 6

NLP Natural Language Processing 2, 15, 17, 21

ReLU Rectified Linear Unit 9, 12

RNN Recurrent Neural Network 8, 11–13, 15–17, 57, 64

Seq2Seq sequence-to-sequence 2, 3, 5, 15–17, 21, 23, 50, 51, 55, 57, 58, 60, 62, 64, 68

SGD stochastic gradient descent 32, 39

xiii

VAE Variational Autoencoders 2, 18, 29, 32, 40, 43, 45, 50–52, 60, 62, 64

VED Variational Encoder-Decoder 2, 55, 60, 62–64, 66, 68

xiv

Chapter 1

Introduction

1.1 Background

The term Artificial Intelligence (AI) was introduced by Professor John McCarthy in 1956,
who defined it as “science and engineering of making intelligent machines”. Although the
field of AI covers a broad range of topics, it is generally perceived as the task of making
machines achieve human-level intelligence (McCarthy, 1989).

Fast-forward a few decades, we have achieved great advancements in the field of AI.
For example, the neural network model developed by He et al. (2016) was able to classify
images with an accuracy of 96.5%, surpassing human-level performance. A new milestone
was achieved in the area of speech recognition when the system developed by Xiong et al.
(2017) was able to carry out the task with a record minimum word error rate of 5.1%. There
are numerous other commendable accomplishments made in the last decade such as AI
beating the human grandmaster in the game of Go (Gibney, 2016) and the transformations
in the transportation industry with the introduction of self-driving vehicles (Bojarski et al.,
2016).

This recent success can be attributed to the research developments made in a multitude
of fields such as computer science, mathematics, neuroscience, psychology, linguistics and
so on. This work focuses on the field of computer science, specifically the areas of machine
learning and natural language processing.

Machine learning is a sub-field of artificial intelligence in which computers are taught to
acquire knowledge or learn from data, without being explicitly programmed. In the past,
machine learning algorithms have been used to recognize patterns in the data and make

1

informed decisions. End-to-end automation with machine learning has helped improve the
efficiencies of processes and workflows in sectors such as manufacturing. The AI explosion
in the recent years is primarily due to the success of a sub-class of machine learning
models known as deep neural networks. This field, known as deep learning, along with the
availability of massive amounts of data and powerful hardware for computation has made
possible the latest advancements in AI.

The focus of this work lies in the development and application of deep learning models to
Natural Language Processing (NLP). The study of NLP is concerned with how computers
can effectively interact with humans using natural language. Broadly speaking, it deals
with manipulation, understanding, interpretation and generation of textual and speech
data. A few examples of NLP tasks include question answering, sentiment analysis, named-
entity recognition and machine translation.

Natural language generation is an NLP task that deals with generation of text in
human language. This is challenging because the text generated by a good system has to
be syntactically (follow the rules of the language) and semantically (meaningful) correct.
In this work, sequence-to-sequence (Seq2Seq) models for natural language generation are
explored. In Seq2Seq models (Sutskever et al., 2014), a sequence (of words) is given as
input in order to generate another sequence as output. This has applications in tasks
such as machine translation where a sentence in English can be fed to the model which
generates its corresponding translated sentence in French. Another application is text
summarization, where we may attempt to generate a shorter version of a larger body of
text, such as a paragraph.

The aim of this work is to integrate attention mechanism into the Variational Encoder-
Decoder (VED) framework. Attention mechanism has been shown to be particularly useful
in improving the performance of sequence-to-sequence tasks such as machine translation
(Bahdanau et al., 2014; Luong et al., 2015) and dialog generation (Yao et al., 2016; Mei
et al., 2017). A class of models that combine deep learning and variational inference,
namely Variational Autoencoders (VAE) (Kingma and Welling, 2013) have been success-
fully applied to the task of text generation (Bowman et al., 2015b). Attention mechanism
enables the model to generate fluent sentences, relevant to the input. Simultaneously, we
would be able to generate diverse outputs (for the given input) by sampling from a latent
space. This way, the proposed model combines the strengths of the attention mechanism
and variational models.

2

Input: What are you doing?

I don’t know. Get out of here.
I don’t know! I’m going home.

Nothing. Oh, my god!
Get out of the way. I’m talking to you.

Input: What is your name?

I don’t know. My name is Robert.
I don’t know! My name is John.

I don’t know, sir. My name’s John.
Oh, my god! My name is Alice.

Input: How old are you?

I don’t know. Twenty-five.
I’m fine. Five.

I’m all right. Eight.
I’m not sure. Ten years old.

Table 1.1: Output dialog generated by a conversational system as shown in Li et al. (2015a).
For a given input, the first column shows the list of top-ranked (most probable) responses,
most of which tend to be generic. The second column shows the lower-ranked but less
generic/more engaging responses.

1.2 Motivation and Problem Definition

In this research, we work with deep neural network models known as sequence-to-sequence
(Seq2Seq) models that take a sentence as input and generate another sentence as output.
Let x = (x1, x2, · · · , x|x|) be the input sequence of words and y = (y1, y2, · · · , y|y|) be the
output sequence generated by the model, where |x| and |y| correspond to the number of
tokens (words) in the input and output sequences respectively.

Consider a conversational system such as a chatbot, where x is the line input by the
user and y is the line generated by the machine. Seq2Seq neural network models can
be designed to function as such conversational agents. Traditional conversational systems
tend to output safe and commonplace responses such as “I dont know” (Li et al., 2015a).
This is because the line “I dont know” tends to appear in the training dataset with a high
frequency. One cannot label such a generic response as incorrect, since it tends to be a
valid response (refer Table 1.1). However, such responses make the conversational agent
uninteresting and less engaging.

The motivation for this work is derived from the above example. We would like to be

3

able to generate a diverse set of responses (y) for a given input line (x). Neural variational
models can be used to encode input data into latent variables. It is further possible
to sample multiple points from the latent space in order to generate diverse outputs.
Attention mechanisms such as those proposed in (Bahdanau et al., 2014; Luong et al.,
2015) have significantly improved the performance of sequence-to-sequence text generation
tasks. Attention mechanisms help in dynamically aligning the source x and target y during
generation.

In variational Seq2Seq, however, the attention mechanism unfortunately serves as a
“bypassing” mechanism. In other words, the variational latent space does not need to
learn much, as long as the attention mechanism itself is powerful enough to capture source
information.

In this work, we study how attention mechanisms can be integrated into variational
neural models, while avoiding the issue of “bypassing”. In this work, we propose a varia-
tional attention mechanism to address this problem. This is done by modeling the attention
context vector as random variables by imposing a probabilistic distribution. By doing this
we would be able to combine the stochasticity introduced by variational models with the
alignment capabilities achieved through attention mechanism.

1.3 Contributions

The contributions of this thesis are multi-fold and listed below:

1. A variational auto-encoder (VAE) is first designed following the work of Bowman
et al. (2015b). We overcome the difficulties associated with training VAE models for
natural language generation by employing strategies such as (1) annealing coefficient
of the Kullback-Leibler (KL) loss term and (2) word-dropout. We also propose new
and improved annealing schedules. The effectiveness of the model is demonstrated
by random sampling and linear interpolation of sentences in the latent space.

2. We discover a “bypassing” phenomenon in VAEs that causes the latent or variational
space to be ignored during training. This results in the model becoming more deter-
ministic in nature; the evidence for which is revealed through the lower diversity of
generated sentences.

3. We realize that traditional attention mechanism in variational encoder-decoder (VED)
models serves as a “bypassing” connection. To this end and in contrast to previous

4

models that utilize attention in a deterministic manner, we propose a variational
attention mechanism that can be applied in the context of VED models. In the pro-
posed framework, the attention context vector is modeled as a random variable that
can be sampled from a distribution.

4. We propose two plausible priors for modeling the prior distribution of the attention
context vector in the variational attention VED framework. Both the priors work
equally well in alleviating the problem of bypassing, which is observed in the VED
baselines with deterministic attention.

5. Experiments are carried out on two tasks – question generation and conversational
systems. Quantitative evaluation metrics show that the proposed variational atten-
tion yields a higher diversity than variational Seq2Seq with deterministic attention,
while retaining high quality of generated sentences. A qualitative analysis with hu-
man evaluation study also supports our claim regarding the fluency of sentences
generated by the proposed model.

1.4 Chapter Outline

The rest of this thesis report is organized as follows:

• Chapter 2 provides a background and brief overview of the deep learning techniques
used in this work, along with related work in the area of Seq2Seq models.

• Chapter 3 describes Seq2Seq neural network architecture in depth.

• Chapter 4 introduces variational inference and a detailed description of variational
autoencoders. The heuristics involved in training VAEs for natural language gener-
ation are presented followed by the results.

• Chapter 5 outlines the bypassing phenomenon that we discover, if the VAE architec-
ture is not designed properly and its implications.

• Chapter 6 provides details about the proposed variational attention model, which is
compared to the traditional deterministic attention. We demonstrate the benefits of
our model through qualitative and quantitative evalutation.

• Chapter 7 gives a summary of the work, followed by conclusions and scope for future
work.

5

Chapter 2

Background and Related Work

In this chapter, different classes of machine learning models are first outlined. Then, we
introduce deep learning and the structure of artificial neural networks. Following this, we
describe recurrent neural networks, specifically long short term memory networks, which
are widely used in the NLP literature. Since this work deals with text generation, we
review the recent advances in this area, specifically sequence-to sequence models, attention
mechanism and audoencoding. The chapter concludes with the related work in the tasks
of question generation and dialog systems, which are the two experiments conducted in
this study, to evaluate the proposed model.

2.1 Machine Learning

The science of Machine Learning (ML) involves enabling computers to learn from data,
without being explicitly programmed. Data is used to train the system to perform a specific
task. The model, which uses some form of mathematical optimization and statistical
methods, recognizes the patterns and intricacies within the data. This can be then used
to automate tasks or guide decision making, simply based on data and the mathematical
model.

Machine learning is being increasingly used in our day-to-day lives. For example, all
email service providers today use ML to filter out spam emails. Similarly, the online shop-
ping recommendations provided to us by ecommerce websites is based on ML. The field
of machine learning is developing at a fast pace. Researchers have been developing algo-
rithms and new methodologies and also simultaneously applying these techniques to new

6

application areas (such as medical diagnosis (Kourou et al., 2015; Foster et al., 2014) and
climate change (Lakshmanan et al., 2015)). The evolution of intelligent systems are defi-
nitely beneficial because it makes processes more efficient, and at the same time, requiring
minimal human intervention.

Broadly speaking, machine learning methodologies can be classified into two categories:
supervised learning and unsupervised learning. At a high level, this categorization is based
on how the learning process is carried out. The following subsections describe each one
with examples.

2.1.1 Supervised Learning

In supervised machine learning, we provide the model with sample inputs and their corre-
sponding ground truth labels. Here, the task of the machine learning algorithm is usually
to modify the model parameters, such that it obtains the desired output for the given
input. The important point to note here is that we have labelled outputs corresponding to
each input used to train the model. After sufficient training, if the model is provided with
a new unseen input data point, it should be able to predict the target, based on what it
has previously learnt.

To understand supervised learning with the help of an example consider the task of
image classification. We feed the machine learning model with images of huskies, retrievers,
dachshunds, etc. and label them as dogs. Similarly, we can provide images of pigeons,
eagles, sparrows, etc., all labelled as birds. The model tries to learn from the image pixel
values and their corresponding class labels, as to what would be the characteristics that
differentiate dogs from birds, which is then used to classify new images.

2.1.2 Unsupervised Learning

In contrast to the approach discussed in Section 2.1.1, the data provided to an unsupervised
machine learning model will not contain labels or corresponding target values. The task
of such models would be to identify patterns of similarity or differences within the input
data points. It can also be used for detecting anomalies, wherein some parts of the data
may not fit well with the rest of the data.

An example of unsupervised learning task would be clustering of documents by topic.
Assume that we provide an unsupervised machine learning model with unlabelled docu-
ments pertaining to different topics such as sports, politics and entertainment. A good

7

model should be able to automatically cluster similar documents (belonging to the same
topic) together, using information such as the word usage and writing style.

Other areas in machine learning include topics such as semi-supervised learning and
reinforcement learning, which are not covered in this text.

2.2 Deep Learning

Artificial Neural Networks (ANN) are an important class of machine learning models,
used for both supervised and unsupervised tasks. The structure and functioning of ANNs
are loosely inspired by biological neural networks. The brain consists of a large number
of interconnected neurons, which ANNs try to mimic. ANNs consist of multiple layers
of simple processing units known as nodes, which are connected by edges with weights
(Gurney, 2014) (refer to Section 2.2.1 for details).

Over the last decade, there has been an increasing interest in neural network architec-
tures consisting of many layers. Along with the availability of massive amounts of data
and powerful hardware for computation, such model architectures were able to outperform
humans in a number of cognitive tasks (Schmidhuber, 2015; Najafabadi et al., 2015). This
led to the creation of a sub-field of machine learning known as deep learning (referring to
deep neural networks) (LeCun et al., 2015).

The most basic version of an ANN model is a feed-forward neural network. However,
there exist other architectures such as Recurrent Neural Network (RNN) (Williams and
Zipser, 1989; Elman, 1990) and Convolutional Neural Network (CNN) (LeCun et al., 1995).
RNNs perform particularly well on sequential data such as in natural language processing
(where sentences are considered as sequences of words). Hence, the focus of this work will
be on RNNs, which are described in detail in Section 2.2.2

2.2.1 Introduction to Neural Networks

In order to understand the computational model of artificial neural networks, one needs to
begin from its building block, known as the perceptron (Rosenblatt, 1958). Inspired from
the brain’s neurons, a perceptron is a simple computational model that takes in one or
more inputs and provides a single value as output. This is illustrated in Figure 2.1. Based
on this output and a pre-defined threshold, the perceptron acts as a binary classifier, i.e.,
if the output value is greater than the threshold, the input is assigned to class 1, else it is
assigned to class 0.

8

Let x1, x2, x3 be the inputs to the perceptron model. w1, w2, w3 are the series of model
weights corresponding to each input variable. This simple model consists of two operations:

• The first step is to multiply each input with its weight, followed by a summation. To
this result, we also add the bias term b so that the model has a flexibility for location
shift.

• Next, we assign a class label (either 0 or 1), based on a binary activation function
which requires a pre-defined threshold (refer Figure 2.1).

Figure 2.1: Perceptron Model

The result is the predicted value of output y corresponding to the given set of inputs.
In order for the predicted output to be close to the desired output (ground truth), we
would need to make adjustments to the weights w1, w2, w3 and bias term b.

However, modern neural networks do not use the simple perceptron anymore. Instead,
they consist of computational units known as neurons (or nodes), which replace the simple
binary activation function with non-linear functions such as sigmoid, tanh or Rectified
Linear Unit (ReLU). It is possible to combine multiple layers of neurons to form a more
powerful model known as the feed-forward neural network. Each neuron is connected to
every other neuron in the previous and next layer. However, there are no connections
between neurons within the same layer. As illustrated in Figure 2.2, there can be multiple

9

inputs and multiple outputs which are connected via a number of hidden layers. The input
at each neuron gets transformed by weighted summation followed by non-linear activation.
The computation happens starting from the input layer, all the way till the output layer
and is known as forward propagation. Feed-forward neural network are capable of
learning non-linear representations of the data and have been successfully applied to many
classification and regression tasks.

Figure 2.2: Feed-Forward Neural Network

Although artificial neural networks have been around since the 1960s, it was not until
the late 1980s that an efficient training procedure for ANNs was discovered. There existed
no structured methodology to adjust the model weights, other than by trial and error.
Researchers like Rumelhart et al. (1986) and Werbos (1990) contributed to the develop-
ment of the method known as backpropagation of errors, which made it possible to

10

estimate the weights in an ANN model. Backpropagation makes use of the chain rule of
differentiation, and computes the gradients in an iterative manner.

In order to develop an intuition of backpropagation, it is necessary to understand how an
optimization method known as Gradient Descent works. In neural networks, we compare
the predicted output to the actual output based on a pre-defined loss function. Common
examples of loss functions are mean squared error (MSE) and negative log-likelihood (NLL).
Our objective is to adjust the model weights in a way that minimizes the loss. It is
mathematically guaranteed that moving in the direction of the gradient of the loss function
(derivative with respect to the model weights), results in loss minimization.

Assume L(w) to be the loss function, with w being the model weights. We start with
a random initialization of the weights, followed by an iterative update rule as shown in
Equation 2.1,

w ← w − η · ∇wL(w) (2.1)

where, η is a hyperparameter (set by the user) known as the learning rate, which corre-
sponds to the step size towards the local minima in each iteration and ∇ refers to the
gradient operator. While a low learning rate results in the training process to progress
slowly, a high learning rate may cause the training to diverge from the minima. Because
of this trade-off, the learning rate needs to be set carefully. We stop the iteration process
either when we reach the pre-defined maximum number of iterations (known as epochs) or
when the change in model weights between iterations is smaller than a specified threshold ε.
Readers are referred to Bishop (2006) for further details on backpropagation and Gradient
Descent.

2.2.2 Recurrent Neural Networks

One of shortcomings of feed forward neural networks such as the one illustrated in Fig-
ure 2.2 is that it assumes that all input data are independent of each other. As a result,
it fails to capture the notion of sequential order which is present in some types of data.
Consider the task of predicting the next character in a word. If we are given an incomplete
word such as ‘neura’, one can guess that the next character in the sequence would be ‘l ’
and the word is ‘neural ’. However, if the order of the previous characters was jumbled
(such as ‘renau’) and provided independently, it would be very difficult to identify the
final character. This is where RNNs are found to be extremely useful. One of the earliest

11

versions of the recurrent neural network was proposed by Elman (1990). The input to an
RNN is provided in a sequential manner, and the network makes use of the inputs in the
previous timesteps in order to make a decision at the current timestep.

A recurrent neural network can be depicted as a network with loops (see Figure 2.3),
through which information is transferred between timesteps of the network. By unrolling
the network, we realize that the information at each timestep passes through multiple
copies of the same network (Olah, 2015).

Figure 2.3: Unrolling of a recurrent neural network (RNN) (Britz, 2015)

The notation in Figure 2.3, adapted from (Britz, 2015) is described below:

• xt corresponds to the input at each timestep t

• yt refers to the output at each timestep t

• ht is called the hidden state at each timestep t, and is calculated using the input at
the current timestep xt and the hidden state from the previous timestep ht−1, i.e.,

ht = f(Uxt +Wht−1) (2.2)

where f corresponds to some non-linear activation function such as tanh or ReLU. In
RNN literature, ht is also referred to as the memory because in theory, it is assumed
to capture information from all previous timesteps. However, this does not hold
true in practice since the RNN memory fails to remember information beyond few
previous timesteps.

• U , V and W are weight matrices. From the unrolled RNN figure, one can note that
these weights are shared across all timesteps of the RNN. Doing this reduces the

12

model complexity by reducing the number of parameters that need to be optimized.
Moreover, we aim to perform the same operation across timesteps, just with different
inputs.

Training of RNNs is done via an extension of the backpropagation algorithm, known as
backpropagation through time (BPTT). As discussed earlier, RNNs perform well on sequen-
tial data and have been extensively used for tasks such as language modelling (Mikolov
et al., 2010), text generation (Graves, 2013) and speech recognition (Graves et al., 2013).

2.2.3 Long Short Term Memory

In practice, vanilla RNNs suffer from the inability to capture long term dependencies.
In other words, when the length of input sequence becomes large, RNNs are unable to
remember the dependencies between inputs which are far apart in the sequence. The
reason for this is attributed to the vanishing/exploding gradient problem (Pascanu et al.,
2013). This happens due to numeric underflow or overflow, i.e., when the multiplication of
derivative terms during backpropagration become extremely small or very large. Exploding
gradients can be an easier problem to solve - by truncating gradients when their absolute
value crosses a pre-specified threshold (Pascanu et al., 2012).

In order to circumvent the issue of vanishing gradients, extensions to the vanilla RNN
architecture, Long Short Term Memory (LSTM) Units (Hochreiter and Schmidhuber, 1997)
and Gated Recurrent Unit (GRU) (Chung et al., 2014) were proposed. This thesis work
makes use of RNNs with LSTM units, which will be described in this section.

In LSTMs, we replace the simple activation function f of Equation 2.2 with an entire
module, also known as cell. The input to each repeating module consists of xt and ht−1

along with a new term ct−1, known as the cell state. The output at timestep t now includes
both ht and ct. This is depicted in Figure 2.4.

The LSTM unit consists of gated operations and element-wise multiplications. Gates,
represented by sigmoid activations (which output values between 0 and 1) essentially decide
how much of the incoming information should flow through. The equations of the three
adaptive gates namely, the input gate (it), the forget gate (ft) and the output gate (ot)
are given below:

13

Figure 2.4: LSTM Unit Representation (Xu et al., 2015b)

it = σ(Wi · xt + Ui · ht−1 + bi) (2.3)

ft = σ(Wf · xt + Uf · ht−1 + bf) (2.4)

ot = σ(Wo · xt + Uo · ht−1 + bo) (2.5)

where σ denotes the sigmoid function. Each of the gates has its own weights (U , W and b)
and require as input the previous hidden state ht−1 and the current input xt. In addition,
we also compute a candidate cell state vector (gt) as follows:

gt = tanh(Wg · xt + Ug · ht−1 + bg) (2.6)

We now have all the vectors required to determine the cell state (ct) and hidden state
(ht) of the current timestep:

ct = it ⊗ gt + ft ⊗ ct−1 (2.7)

ht = ot ⊗ tanh(ct) (2.8)

14

where ⊗ refers to the element-wise multiplication operator.

To summarize the procedure, we start by setting the cell state and hidden state of the initial
timestep, namely c1 and h1 as zero vectors. Then, the values of ct and ht are computed
sequentially for each timestep using Equations 2.3 to 2.8, till the end of the sequence is
reached.

LSTMs excel at capturing long term dependencies and have been applied to a number
of NLP tasks: sequence tagging (Huang et al., 2015), relationship classification (Xu et al.,
2015b), textual entailment (Rocktäschel et al., 2015), machine comprehension (Cheng et al.,
2016), sentiment analysis (Tai et al., 2015) and many more.

Bi-directional LSTMs

LSTMs work based on the principle that the output at the current timestep is dependent
on the inputs (and outputs) at previous timesteps. However, in some tasks such as part-of-
speech (POS) tagging (Huang et al., 2015) and text-to-speech (TTS) synthesis (Fan et al.,
2014), it is useful to be aware of the elements in the future timesteps. Bidirectional LSTMs
are known to perform better than regular LSTMs in such scenarios (Schuster and Paliwal,
1997). Essentially, a bidirectional LSTM consists of two LSTMs stacked one on top of the
other - the first LSTM reads the sequence in the forward manner (e.g., a regular sentence),
while the sequence is fed in the backward direction to the second LSTM (e.g., the same
sentence with its word order reversed). The output vectors of the two LSTMs are then
concatenated and fed to the next layer in the neural network.

2.2.4 Sequence-to-Sequence Models

In natural language processing, sequence-to-sequence tasks usually refer to the ones in
which the model takes as input one sequence and generates another sequence as output
(instead of a single value). The sequence can range from whole documents to individual
words. In the case of documents or sentences, the individual tokens that form the sequence
are words. In contrast, when words themselves are treated as sequences, their characters
become the individual tokens.

Seq2Seq models are typically implemented with the help of two recurrent neural net-
works (usually an LSTM or GRU). In the most basic version, the input/source sequence is
fed token-by-token to the first RNN (encoder), which computes a vector representation for
the whole sequence. This vector representation becomes the starting point for the second

15

RNN (decoder), which generates the output/target sequence, again in a token-by-token
manner.

Sutskever et al. (2014) first introduced Seq2Seq models for the task of machine transla-
tion. Their LSTM based approach was able to achieve a translation performance close to
the state-of-the-art. The advantage of their method is that it could be trained completely
end to end (assuming the availability of a parallel corpora), without the need for any man-
ual feature engineering. In order to generate vector representations for sentences, similar
to the idea of word2vec (Mikolov et al., 2013) for words, Kiros et al. (2015) proposed a
Seq2Seq learning approach. Essentially the network would be trained to generate a given
sentence, based on two of its neighbouring sentences (previous and next).

In NLP, Seq2Seq models are extensively used for the text generation. Yin et al. (2015)
developed a Seq2Seq model trained on question-answer pairs and knowledge-base triples
for the task of answering short factoid questions. Seq2Seq models have opened up the
possibility to train dialog sytems in an end-to-end manner, without the need for any hand-
crafted features (Vinyals and Le, 2015). Modifications to the original negative log likelihood
objective function (Li et al., 2015a) and beam search optimization (Wiseman and Rush,
2016) have made dialog systems to be more human-like.

Seq2Seq models have also been successfully applied to multimodal data. For instance,
Venugopalan et al. (2015) demonstrate how Seq2Seq LSTMs could be used to generate
textual descriptions when they are trained with video clips as input. In (Yao and Zweig,
2015), the authors develop a model to synthesize speech from textual data.

Since generation of text is the focus of this thesis work, LSTM based sequence-to-
sequence models are used following previous research in this area.

2.2.5 Auto-encoding

Autoencoding is an unsupervised learning technique in which we provide an input (such
as image or text) to a model, learn an intermediate representation and then try to recon-
struct the original input from this representation. The model is usually an artificial neural
network, and the intermediate representation typically has lower dimensionality than the
original input (Hinton and Salakhutdinov, 2006). Hence, the goal becomes to learn an
efficient encoding that stores just the necessary information required for reconstruction.

The intermediate representation can later be used for other supervised tasks in the
machine learning pipeline. For example, consider the task of recognizing hand written
digits. We train an autoencoder with images of digits from 0 to 9. Next, instead of using

16

the original image, we could use their intermediate representations to train a feed forward
neural network to classify these digits. Autoencoders have been successfully applied to
solve problems such as image super-resolution (Zeng et al., 2017) and speech enhancement
(Lu et al., 2013). Since the lower dimension representations generated by autoencoders are
useful in identifying patterns pertaining to the original data, they have also been applied
to anomaly detection (Malhotra et al., 2016).

In the domain of NLP, autoencoders are usually Seq2Seq models. RNNs encode the
input sentence into its latent representation. The decoder then uses this representation
to reconstruct and generate the original sentence. In (Dai and Le, 2015), the authors
demonstrate how a sequence autoencoder can serve as a ‘pretraining’ method for enhancing
the performance of downstream supervised tasks. Autoencoders can be used not just to
represent sentences, but also paragraphs and documents (Li et al., 2015b).

2.2.6 Attention Mechanism

Broadly speaking, attention mechanism in neural networks is a way to guide the training
process, by informing the model as to what parts of inputs or features it needs to focus
on, in order to accomplish the task at hand. In this section, we will review the attention
mechanisms used in NLP. This is different from visual attention in computer vision tasks
such as image captioning (Xu et al., 2015a) and object detection (Borji et al., 2014).

The two popular attention mechanisms used in Seq2Seq models are Luong Attention
(Luong et al., 2015) and Bahdanau Attention (Bahdanau et al., 2014). Both of these models
were introduced for machine translation, where they were shown to perform better than
vanilla Seq2Seq models. Attention mechanisms achieve this by aligning tokens on the target
side to the tokens on the source side. While the core idea behind both attention mechanisms
remain the same, the method in which the attention context vector is computed is different
- it takes a multiplicative form in Luong Attention whereas in Bahdanau Attention it has
an additive form.

To explain this Seq2Seq attention mechansim intuitively, consider the task of trans-
lating the following sentence from French to English: c’est un chien −→ that is a dog.
During the decoding phase, when we arrive at the timestep that decodes the word dog, the
model looks at each word on the source side and has to identify that the word chien, is
where it has to focus on, thereby giving that particular source token the highest weight
when computing the attention context vector. The mathematical details pertaining to how
attention mechanism works will be detailed in Chapter 6.

17

Apart from machine translation, attention mechanism has been found to improve the
performance of text summarization (Rush et al., 2015), dialog generation (Li et al., 2017),
textual entailment (Rocktäschel et al., 2015), question generation Du et al. (2017) and so
on.

2.2.7 Variational Inference

In variational inference, we use machine learning and optimization to approximate proba-
bility distributions which are otherwise difficult to estimate (Blei et al., 2017). In Bayesian
Inference, it is often of interest to compute posterior distributions. This usually involves
solving for intractable integrals which becomes cumbersome. In general terms, we try
to find an approximate distribution from a family of distributions that is similar to the
posterior which we wish to estimate. In other words, we minimize the Kullback-Leibler
divergence between the two distributions.

Although there are methods such as mean field approximation (Wainwright et al., 2008)
for variational inference, we will focus on variational auto-encoders (VAE) in this work.
In comparison to such traditional methods, VAEs leverage modern neural networks which
are universal function approximators and are a more powerful density estimator. VAEs
were first introduced by Kingma and Welling (2013) in the image domain, to learn latent
representations for images of handwritten digits. What makes VAEs powerful is that these
learnt latent representation (approximately) belong to a pre-defined distribution, such as
Gaussian with a known mean and variance. This makes it possible to simply sample a
vector from this known distribution and to generate the desired image. It is also possible to
manipulate the latent representation to change certain characteristics of the input image.
For instance, Kulkarni et al. (2015) showed that VAEs could be used as a 3D graphics
rendering engine. Specifically, they could manipulate the latent representation of an input
image in order to change the pose and orientation of objects within that image. Pu et al.
(2016) train VAEs jointly with images and captions. They demonstrate that the same
learnt intermediate representations could be used for a number of downstream supervised
tasks including image classification and image captioning.

The VAEs discussed so far either use MLPs or CNNs as encoders and decoders. In NLP,
the straightforward alternative choice is to use RNNs. However, VAEs that use RNNs have
been found to be more difficult to train, due to issues relating to the KL divergence between
the posterior and prior vanishing to zero. Bowman et al. (2015b) were able to successfully
train LSTM-VAEs after implementing optimization strategies such as KL cost annealing
and word dropout. In Yang et al. (2017), the authors retain an LSTM encoder, but use

18

a CNN decoder for generation of text. In addition, they use dilated convolutions along
with residual connections in order to prevent the collapse of the KL term during training.
Similar to the image domain VAEs, it is possible to sample from the latent space and
generate text. The latent space also exhibits properties such as homotopy (Bowman et al.,
2015b), i.e., it is possible to smoothly interpolate between points in the latent space and
generate meaningful sentences.

2.2.8 Question Generation

The task of question generation is as follows: given an input sentence or paragraph, the
model is required to generate a question relevant to the input. Such a task would have
applications in the field of education to prepare questions relevant to a given passage
within a piece of text (Heilman and Smith, 2009). Question generation could also be used
to automatically generate frequently asked questions (FAQs), given product descriptions.

Question generation is a relatively new research topic. One of the first studies in this
area was conducted by Heilman (2011), who defined a set of rules to transform sentences
into factoid questions. Another rule-based approach proposed by Chali and Hasan (2015)
makes use of named entities and semantic role labeling for automatic question generation.
Neural networks were implemented for this task only recently by Du et al. (2017) and
Zhou et al. (2017). The Seq2Seq GRU model by Zhou et al. (2017) generates questions
for sentences from the Stanford Question Answering Dataet (SQuAD) (Rajpurkar et al.,
2016). The model requires as input the word embeddings along with lexical and answer
position features. The LSTM encoder-decoder model developed by Du et al. (2017) was
evaluated for fluency for both sentence level and paragraph level inputs. This model was
trainable completely end-to-end, without the need for any feature engineering. Question
generation can also be carried out with knowledge base triples as input (Song and Zhao,
2016).

2.2.9 Dialog Systems

Dialog systems (or chatbots) that can converse like humans can be viewed as one of the
characteristics of intelligent machines. One of the earlist chatbots, ELIZA was developed by
Weizenbaum (1966). ELIZA would provide responses based on a set of pre-defined rules,
most of which try to paraphrase the user questions or sentences. ALICE bot (Wallace,
2009) was an extension to ELIZA, which incorporated more rules and was provided with
template responses from more domains (Kerly et al., 2007).

19

However, with the introduction of Seq2Seq models, conversational agents could now be
trained end-to-end without the need for any rules (Vinyals and Le, 2015). Neural dialog
systems were enhanced by making them context sensitive (Serban et al., 2016; Sordoni
et al., 2015), i.e., the conversation history would be provided as input to the model to gen-
erate a response. Bordes et al. (2016) show how deep neural networks can be used to design
goal-oriented domain specific dialog systems. The persona-based conversational system de-
veloped by Li et al. (2016a) encodes speaker information through a learnt embedding, so
that the system is more personalized and provides responses that are consistent. Recent
studies in neural dialog generation also focus on making agent responses more diverse and
less generic (Li et al., 2015a). Generative Adversarial Networks (GANs) (Li et al., 2017)
and deep reinforcement learning techniques (Li et al., 2016b) have also been implemented
for dialog systems.

20

Chapter 3

Sequence to Sequence Models

We first introduce the concept of word embeddings, which are a convenient vector repre-
sentation for text data. In continuation to the LSTM concepts introduced in the previous
chapter, we provide a mathematical description of Seq2Seq models. To conclude this chap-
ter, the tools used to build the word embeddings and neural network models are briefly
discussed.

3.1 Word Embeddings

In order to feed textual data into machine learning models, we need to have corresponding
numeric representations. There has been multiple methods proposed in the literature to
address this problem (Mitra and Craswell, 2017), such as bag-of-words (BoW) and one-hot
representation. However, word embeddings such as GloVe (Pennington et al., 2014) and
word2vec (Mikolov et al., 2013) are the most common way of representing text for deep
neural network models used in NLP.

The notion of distributional similarity was introduced by Harris (1954), who stated
that “words that occur in similar contexts would have similar meaning”. For example, the
words sport and game occur in similar contexts in documents and hence, share similarities
in their meanings. This means that the numeric or vector representations of these two
words should be similar. In NLP, the cosine distance metric is typically used to measure
similarity between two vectors.

cos θ =
~a ·~b
|~a| · |~b|

(3.1)

21

where | · | refers to the L2-norm of the corresponding vector. A higher value of cos θ implies
that the angle between the two vectors is small, and hence they are more similar and
vice-versa.

A word embedding maps words to real valued vectors, W: words→ Rn, where n is the
dimension of each word vector. Mikolov et al. (2013) show that word2vec embeddings can
be obtained by training a neural network with a single hidden layer, which is provided with
one-hot vectors as input. Consider a context window of m+1 words where the centre word
is called the focus word and the remaining m words are known as the context words. They
propose two methods: 1) given the context words, predict the focus word (continuous
bag-of-words or CBOW approach); 2) given the focus word, predict the context words
(skipgram approach). In both cases, the weight matrix in the hidden layer of this shallow
neural network, at the end of training, will be our word embeddings.

Figure 3.1: 2d PCA projection of 1000d word embeddings of countries and their capitals
from Mikolov et al. (2013)

Although this model seems simple, it generates surprisingly meaningful word vectors.
The embeddings represent inherent concepts and relationships between words. An example
is illustrated in Figure 3.1 taken from Mikolov et al. (2013). It shows how the word vectors
for countries and their capitals are organized, when projected onto a 2D surface using
Principle Component Analysis (PCA). Another classic example is the following: king -
man + woman ≈ queen. This means that if we have the vectors corresponding to king,
man and woman, and if we carry out the arithmetic operation on the LHS, we get a vector

22

which is approximately equal to the vector representation of queen. In plain English, this
makes sense because a ‘king’ who is not a ‘man’ but a ‘woman’ corresponds to a ‘queen’.

Through this example of vector arithmetic, we realize how word embeddings represent
semantic information. Word embeddings have been successfully applied to a wide range
of NLP tasks due to their compactness (in comparison to one-hot representation) and
ability to capture semantic concepts (without any explicit supervision). This study uses
only word2vec embeddings and hence the details regarding other embedding models are
skipped.

3.2 Sequence to Sequence LSTMs

Text generation is an important area in NLP. Introduced by Sutskever et al. (2014),
sequence-to-sequence models have greatly benefited text generation tasks such as ques-
tion answering, dialog systems and machine translation. Essentially, these models take
one sequence as input and generate another sequence as output. This is in contrast to
regular classification models, which output only a single class label, and not an entire se-
quence. Seq2Seq models are typically implemented using two recurrent neural networks,
one which is referred to as the encoder and the other is called the decoder. The encoder
creates a vector representation of the input sequence that is then fed into the decoder,
which then generates tokens in a sequential manner. This study uses the LSTM recurrent
neural networks for encoding and decoding sentences.

More concretely, let x = (x1, x2, · · · , x|x|) be the tokens (i.e., the corresponding word
embeddings) from the source sequence and y = (y1, y2, · · · , y|y|) be the tokens from the
target sequence. Note that |x| and |y| correspond to the number of tokens (words) in the
input and output sequences, respectively. At the end of the encoding process, we will have
h

(src)
|x| and c

(src)
|x| , the final hidden and cell states respectively from the source sequence (see

Section 2.2.3). We then set the initial states (h
(tar)
1 and c

(tar)
1) of the decoder LSTM to

h
(src)
|x| and c

(src)
|x| . This is a method to transfer information from the source side to the target

side, and is known as hidden state initialization. Then, at each further timestep of the
decoding process, we compute h

(tar)
j using an input word embedding yj−1 (typically the

groundtruth during training and the prediction from the previous timestep during testing).
This is given by

h
(tar)
j = LSTMθ(h

(tar)
j−1 ,yj−1) (3.2)

23

where θ refers to the weights of the LSTM network. The predicted word at timestep j is
then given by a softmax layer as follows:

p(yj) = softmax(Wouth
(tar)
j) (3.3)

where Wout is a weight matrix and the softmax function is defined by Equation 3.4

softmax(yjk) =
exp yjk∑|V |
k=1 exp yjk

(3.4)

where yjk refers to the value of the kth dimension of the output vector at timestep j. In
total the output vector at each timestep has |V | dimensions, where |V | corresponds to the
vocabulary size. The softmax layer essentially normalizes the output layer and computes
a vector of probabilities. From among the |V | dimensions of the output layer, we pick the
dimension with the highest calculated probability and generate the word corresponding to
that index. The softmax operator is demonstrated with an examples in Figure 3.2.

Figure 3.2: Illustration of the softmax output layer

Figure 3.3 is an illustration of the working of a sequence-to-sequence LSTM model. It
has a tokenized input sequence [where, do, you, live, ?] provided to the encoder LSTM.
Note that the input at each timestep is the word embedding corresponding to the respective
word in the vocabulary. The decoder LSTM generates the outputs [i, reside, in, waterloo].
Note the use of special tokens: (1) the start-of-sequence token <SOS>, which signals the
decoder LSTM to start the decoding process; and (2) the end-of-sequence token <EOS>,
which indicates when to stop decoding. The word embeddings for these can also be learnt
either by pretraining the word2vec model or while training the Seq2Seq model.

24

Figure 3.3: Sequence-to-sequence encoder-decoder model framework

3.3 Environment and Libraries

Python 3 was used as the programming environment for this project1. For building word
vectors, the gensim package (Rehurek and Sojka, 2010) in Python was utilized. The deep
learning models were implemented using keras (Chollet et al., 2015) and tensorflow

Abadi et al. (2016). In particular, the tf.contrib.seq2seq module was used for building
encoders and decoders and calculating the loss.

1Python Software Foundation http://www.python.org

25

http://www.python.org

Chapter 4

Variational Autoencoders

4.1 Introduction

In deep learning, autoencoders (Vincent et al., 2008; Bengio et al., 2014) can be used to
encode high dimensional input data into lower dimensional latent code. Variational au-
toencoders are a very useful class of models that combine neural networks and variational
inference. In Bayesian statistics, it is common to compute posterior probability distribu-
tions. Variational inference provides a method to approximate these difficult-to-compute
probability distributions through optimization. A known probability distribution of the la-
tent code makes it possible to do generative modelling, i.e., to synthesize new samples (e.g.,
images) similar to the original data. In this chapter, we first provide a short introduction to
variational inference. Then we describe the working of variational autoencoders including
the reparameterization trick. Finally, we discuss the training difficulties associated with
VAEs and empirical results obtained on a natural language dataset.

4.2 Variational Inference

Consider a latent variable model (a probability distribution over two sets of variables) given
by Equation 4.1

p(X,Z) = p(Z)p(X|Z) (4.1)

where, X refers to the observed data and the is Z is the latent variable. In Bayesian
modeling, p(Z) is known as the prior distribution of the latent variable and p(X|Z) is the
likelihood of the observation X given the latent code Z.

26

The inference problem in Bayesian statistics refers to computing the posterior distri-
bution, which refers to the conditional density of the latent variables given the data, and
is given by p(Z|X) (Blei et al., 2017). Mathematically, this can be written as follows:

p(Z|X) =
p(X,Z)

p(X)
(4.2)

The denominator in Equation 4.2 is the marginal distribution of the data, also called
the evidence. It is computed by marginalizing out the latent variables from the joint
distribution p(X,Z).

p(X) =

∫
p(X,Z)dz (4.3)

In many cases, the evidence integral is intractable and cannot be computed in closed
form (Dave, 2017).

In Variational Inference, we obtain an approximate inference solution by trying to find
an approximate distribution from a family of distributions that is similar to the posterior
which we wish to estimate. In other words, we minimize the Kullback-Leibler divergence
between the approximation and the true posterior distribution. The KL divergence (Kull-
back and Leibler, 1951) is a statistical method to measure how different two probability
distributions are. A lower value of divergence indicates that the distributions are more
similar. It is also referred to as relative entropy. Assuming P and Q are two probability
distributions, the equation for KL divergence in the discrete case is given by,

KL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(4.4)

In the continuous case, this can be written as:

KL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx (4.5)

27

Returning to the discussion of variational inference, we need to find a distribution over
the latent variables, namely q(Z), from a family of distributions τ that minimize the KL
divergence with respect to the exact posterior p(Z|X). In equation form, this corresponds
to

q∗(Z) = argmin
q(Z)∈τ

KL(q(Z)||p(Z|X)) (4.6)

It is to be noted that we may get a better approximation if we choose a more complex
family of distributions, at the cost of a more complex optimization process. Also, it is not
possible to directly optimize Equation 4.6 since it contains the term p(Z|X), which was
difficult to compute in the first place. Using rules of probability and logarithm, we can
rewrite Equation 4.6 as follows:

KL(q(Z)||p(Z|X)) = Eq(Z)

[
log

q(Z)

p(Z|X)

]
= Eq(Z) [log q(Z)]− Eq(Z) [log p(Z|X)]

= Eq(Z) [log q(Z)]− Eq(Z)

[
log

p(Z,X)

p(X)

]
= Eq(Z) [log q(Z)]− Eq(Z) [log p(Z,X)] + Eq(Z) [log p(X)] (4.7)

Rearranging the terms, we obtain{
Eq(Z) [log p(Z,X)]− Eq(Z) [log q(Z)]

}
+ KL(q(Z)||p(Z|X)) = log p(X) (4.8)

ELBO(q) + KL(q(Z)||p(Z|X)) = log p(X) (4.9)

The first term on the LHS of Equation 4.8 is known as the variational lower bound (Kingma,
2017) The term on the RHS, log p(X), known as log evidence is constant with respect to
q(Z). Since the variational lower bound is also a lower bound to the log evidence, it is also
known as Evidence Lower Bound (ELBO)(Yang, 2017). That is, log p(X) ≥ ELBO(q) for
any q(Z).

The LHS, which is the sum of the variational lower bound ELBO(q) and the KL di-
vergence KL(q(Z)||p(Z|X)) adds up to a constant term on the RHS (the log probability
of the observations) in Equation 4.9. Hence, the objective of minimizing KL divergence is
equivalent to maximizing the variational lower bound. This is illustrated in Figure 4.1.

28

Figure 4.1: Relationship between KL(q(Z)||p(Z|X)), ELBO(q) and log p(X)

We can rewrite the ELBO into a simpler and more interpretable form as follows

ELBO(q) = Eq(Z) [log p(Z,X)]− Eq(Z) [log q(Z)]

= Eq(Z) [log p(X|Z)p(Z)]− Eq(Z) [log q(Z)]

= Eq(Z) [log p(X|Z)] + Eq(Z) [log p(Z)]− Eq(Z) [log q(Z)]

= Eq(Z) [log p(X|Z)] + Eq(Z)

[
log

p(Z)

q(Z)

]
= Eq(Z) [log p(X|Z)]−KL(q(Z)||p(Z)) (4.10)

The first term in Equation 4.10 corresponds to the expected log-likelihood of the data.
The second term refers to the negative KL divergence between approximate posterior q(Z)
and the prior p(Z). With the overall objective to maximize ELBO(q), we maximize the
log-likelihood while encouraging a posterior with a density function that is close to the
prior.

One way to compute the approximate posterior q∗(Z) in Equation 4.6 is using mean
field inference (Wainwright et al., 2008). The main assumption in the mean field variational
family of distributions is that each dimension in the latent code z is mutually independent
and is modelled by its own density function qi(zi). The optimization is carried out using
Coordinate ascent mean-field variational inference (CAVI) algorithm and readers are re-
ferred to Dave (2017) and Kuleshov and Ermon (2017) for details. This thesis explores
how deep learning models can be used to compute approximate posteriors, namely with the
help of variational autoencoders. In comparison to traditional methods, the VAE leverage
modern neural networks and is a more powerful density estimator.

29

4.3 Variational Autoencoders

Introduced by Kingma and Welling (2013), variational autoencoders use neural networks
to parametrize the density distributions p and q, discussed in Section 4.2. In theory, with
sufficient layers used, neural networks can work as universal function approximators, i.e.,
they can be used to represent any function.

In the case of VAEs, neural networks can be used to represent the inference network
(the encoder) and the generative network (the decoder) (Altosaar, 2017; Kuleshov and
Ermon, 2017). To compute the approximate posterior q, we can design a neural network
with parameters φ, called the encoder qφ(Z|X). In order to reconstruct the data, we can
use another neural network with parameters θ, which is represented as pθ(X|Z), referred to
as the decoder. This is illustrated with the help of Figure 4.2. As described in Section 2.2.1,
these parameters correspond to the model weights and biases.

Figure 4.2: Encoder network for encoding the original data into the latent space and
decoder network for reconstruction using the latent representation

Using the notation described above, we can replace the approximate posterior q(Z) in
Section 4.2 to qφ(Z|X), the one parametrized by the encoder neural network. Consider a
dataset D = {x(n)}Nn=1, the likelihood of a data point (log evidence) and the ELBO(q) are
related as follows:

log pθ(x
(n)) ≥ Ez∼qφ(z|x(n))

[
log

{
pθ(x

(n), z)

qφ(z|x(n))

}]

= Ez∼qφ(z|x(n))

[
log pθ(x

(n)|z)
]
−KL

(
qφ(z|x(n))‖p(z)

)
(4.11)

30

The above equations essentially rewrite Equations 4.9 and 4.10 in the notation discussed
for neural network parameterization of probability density functions. We are required
to maximize the ELBO(q) shown in Equation 4.11, which is equivalent to minimizing
−ELBO(q). The loss function for the neural network can be written as

J (n) = −Ez∼qφ(z|x(n))

[
log pθ(x

(n)|z)
]

+ KL
(
qφ(z|x(n))‖p(z)

)
= Jrec(θ,φ, x

(n)) + KL
(
qφ(z|x(n))‖p(z)

)
(4.12)

The first term, called reconstruction loss, is the (expected) negative log-likelihood of
data, similar to traditional deterministic autoencoders. For sequence-to-sequence models,
this is calculated as a summation of the categorical cross entropy of the prediction across
all timesteps of the decoder. The second term refers to the KL divergence between the
approximate posterior distribution qφ(Z|X) that the encoder network maps the original
data space into, and the pre-specified prior. In case of continuous latent variables, the
prior is typically assumed to be Gaussian N (0, I). In this case, the KL divergence denoted

as KL(N (µ
(n)
z ,σ

(n)
z)‖N (0, I)) for input x(n) is given by the Equation 4.13 (assuming that

only one sample is drawn for each input data point).

1

2
(1 + log((σ(n)

z)2)− (µ(n)
z)2 − (σ(n)

z)2) (4.13)

As described in Doersch (2016), the KL divergence term can be viewed as a regular-
ization technique (similar to L2-regularization that is used to avoid overfitting). Without
the KL term, the model boils down to a regular Deterministic Autoencoders (DAE), that
encodes the data into a latent space which can be then used for reconstruction. With
the KL term regularization, the latent space is forced into a pre-specified distribution. As
a result, the latent space now follows a known distribution, from which one can sample
and synthesize new data, such as images (Kulkarni et al., 2015) and sentences (Bowman
et al., 2015b). This is in contrast to traditional DAEs, whose latent space can only be
used for reconstruction and does not typically possess any such interesting properties. In
other words, DAEs map input data onto arbitrary points on a high dimensional manifold.
Whereas, VAEs project data onto continuous ellipsoidal regions that fill the latent space,
rather than simply memorizing the arbitrary mappings for the input data (Bowman et al.,
2015b). This is depicted in Figure 4.3, where a VAE is used to project the observed data X,
which has an unknown distribution, into a latent code Z with a known distribution (trained
to be approximately similar to that of the prior by using the KL term regularization).

Figure 4.4 provides a comparison of the architectures for a DAE versus a VAE. In the
traditional DAE, after we learn a latent code z, this is directly fed to the decoder. In

31

contrast, for VAEs, we use the encoder outputs to learn the parameters of the underlying
posterior distribution. For example, if we assume Gaussian, we would want to learn its
mean µ and variance σ (for simplicity we can assume a diagonal covariance matrix Σ,
which implies that the dimensions of the latent code are mutually independent). Next, we
can generate a random sample z from this known Gaussian distribution N (µ,σ2) and feed
it to the decoder. This difference in the procedure during the forward pass is demonstrated
in Figure 4.4.

Figure 4.3: Latent space mappings learnt by a VAE. New data can be synthesized by
sampling from the known prior distribution (Kingma, 2017)

4.4 Reparameterization Trick

Once we have the VAE network architecture defined, we next focus on training the model
using stochastic gradient descent (SGD). However, this leads to an issue because the model
in its original form has a probabilistic node in the computational graph as shown in Fig-
ure 4.5. Sampling of the latent variable z from the approximate posterior is carried out at

32

Figure 4.4: Difference in DAE and VAE architectures

the node indicated in blue on the LHS. This stochastic node results in a disconnect in the
computational graph and we cannot propagate gradients back to the encoder network.

In order to circumvent this issue, Kingma and Welling (2013) proposed the reparame-
terization trick. This simple solution involves sampling from a fixed distribution, followed
by a variable transformation to the original latent space.

We can consider the example of a Gaussian distribution to illustrate the reparame-
terization trick. Instead of directly sampling z from its posterior distribution given by
N (µ,σ2), we can instead sample ε from N (0, I) and do a simple variable transformation
as shown below:

z = µ+ σ ⊗ ε (4.14)

where µ and σ have already been obtained by transforming the encoder output (see Fig-
ure 4.4). The effect of this reparameterization is that the gradient passes back to the
encoder network (through µ and σ) and the model is trained end to end. There is no gra-
dient update at the node where we do the sampling of ε from the fixed distribution N (0, I).
This is exactly what we need as we do not want the fixed sampling to be influenced during
gradient propagation.

4.5 Experiments

In this section, the autoencoding experiments with VAEs are detailed. We start with a
description of the data and the pre-processing steps. This is followed by the training details

33

Figure 4.5: Demonstation of the Reparameterization Trick in VAEs (Kingma, 2017)

including the optimization challenges and the strategies adopted to train the network in a
stable manner.

4.5.1 Dataset

For VAE training and hyperparameter tuning, we use the Stanford Natural Language
Inference (SNLI) Dataset (Bowman et al., 2015a). In order to create the SNLI dataset,
the authors adopted the following annotation procedure — human annotators were shown
an image along with its original one-line caption; they were then asked to provide three
separate sentences about the scene in the image, corresponding to the following three
class labels – entailment, neutral, and contradiction, for the task of recognizing textual
entailment (Androutsopoulos and Malakasiotis, 2010). The original corpus consists of
570k pairs of sentences and in this experiment, we use a randomly sampled subset of 80k
sentences for training the VAE to carry out reconstruction.

34

4.5.2 Data Pre-processing

The following data pre-processing steps are adopted:

1. All sentences are converted to lowercase.

2. All punctuations except comma (,) and full stop (.) are dropped.

3. We generate word2vec embeddings for all the words in the subset corpus using the
CBOW model (see Section 3.1). The size of the context window was set to 5 and
word embedding dimension was chosen to be 300d.

4. The sentences are then shuffled and a train/validation/test split of 78k/1k/1k is
created.

5. Each sentence is appended with an end of sequence token <EOS>.

6. We then decide on the vocabulary size of the model |V |. Only the top |V | most
frequently occurring words are retained in the corpus, while the rest are replaced
with a special token <UNK>, referring to words unknown in the vocabulary.

7. Next, we tokenize sentences into a list of words using the NLTK tokenizer (Bird and
Loper, 2004). Each word is then mapped into an integer index.

8. Finally, we set the maximum sequence length m (chosen as 10 for this experiment).
Sentences with fewer than m words are resized to be of size m by appending a
special token named <PAD>. Sentences with more than m words are trimmed off
at m words.

4.6 VAE Optimization Challenges

As described in Bowman et al. (2015b), training VAEs for text generation using RNN
encoder-decoder is not straightforward. Optimization challenges associated with the Kull-
back Leibler (KL) divergence term (between the approximate posterior and the prior) of
the loss function, vanishing to zero makes the task of training VAEs notoriously difficult
(Bowman et al., 2015b; Yang et al., 2017). When the KL loss is zero, this means that the
approximate posterior is exactly the same as the prior. As a consequence of this, the model
fails to encode any useful information into the latent space. This causes the model to have

35

a poor reconstruction for any given input. Hence, there is a need to balance the recon-
struction term and the KL term of the loss function described in Equation 4.12. Bowman
et al. (2015b) suggest two strategies to overcome this issue of KL term collapse, which are
adopted in this work and are described in the following subsections.

4.6.1 KL Cost Annealing

In this approach, we introduce a coefficient to the KL term of the loss function. This
coefficient, referred to as the KL weight is gradually increased (annealed) from zero to a
threshold value, as the training progresses. We can rewrite Equation 4.12 as follows

J (n) = Jrec(θ,φ, x
(n)) + λ ·KL

(
qφ(z|x(n))‖p(z)

)
(4.15)

where λ refers to the KL weight, whose value is set to be a function of the iteration number
during training. The key idea behind this technique is that we first allow the model to
learn to reconstruct the input sentences well, and then we gradually focus on mapping the
sentence encodings onto a continuous latent space by making the approximate posterior
to be close to the prior. Another way to think of this annealing of the KL weight is
that we gradually transform the model from a completely deterministic autoencoder into
a variational one. In this study, we experimentally identify new and improved KL weight
annealing schedules, which are discussed in Section 4.6.4. We find that the model is
sensitive to the rate at which the KL weight is increased and the details are provided in
Section 4.7.

4.6.2 Word Dropout

The other method to ensure that we learn a useful latent representation is called word
dropout. As mentioned in Section 3.2, we feed the ground truth tokens delayed by one
timestep to the decoder during training (see Figure 3.3). In the word dropout strategy, we
replace any given input token to the decoder RNN with the <UNK> token with certain
probability p ∈ [0, 1]. If p = 0, the it means that no words are dropped out during decoding.
On the other extreme, if p = 1 we replace each word fed to the decoder with <UNK>.
The <UNK> token essentially conveys no information about the source sentence (that is
to be reconstructed). Referring to Figure 4.6, an example input with p = 0.5 dropout can
be [i, <UNK>, in, <UNK>], i.e., half of the words are replaced with the <UNK> token.
Doing this weakens the decoder and encourages the model to encode more information in
the latent variable z to make accurate reconstructions.

36

Figure 4.6: Demonstration of Word Dropout

4.6.3 Training Details

For training this sequence-to-sequence variational autoencoder model, we used LSTM units
of dimension 100d for both the encoder and the decoder. The dimension of the latent vector
z was also chosen to be 100d. We adopted 300d word embeddings (Mikolov et al., 2013),
pretrained on the 80k subset of the SNLI dataset described in Section 4.5.1. For both the
source and target sides, the maximum sequence length was set to be 10. The vocabulary
was limited to the most frequent 20k tokens (i.e., |V | = 20000). The batch size was set to
be 32. Following Kingma and Welling (2013), we choose the standard normal distribution,
N (0, I) to be the prior.

To learn the model weights, we experiment with both the stochastic gradient descent
(SGD) algorithm (Bottou, 2010) and the Adam optimizer (Kingma and Ba, 2014). For
both the optimizers, a constant learning rate of 0.001 was used throughout the training
process.

The model is trained for 10 epochs. We observe that the validation set converges at
around 10 epochs and hence stop training further. We also compute BLEU (Bilingual
Evaluation Understudy) scores on the reconstructed sentences. Originally introduced for
automatic evaluation of machine translation systems, BLEU (Papineni et al., 2002) scores
can be used to assess the sentence reconstruction capability of autoencoders. BLEU-
1 measures the unigram overlap between the generated sentence and a set of reference

37

sentences, while penalizing generated sentences that are short. In the same manner, we
can determine the bigram, trigram and 4-gram overlap and report BLEU-2, BLEU-3 and
BLEU-4 respectively. The automatic evaluation using BLEU scores has been reported to
be correlated with human judgment (Papineni et al., 2002). For computing, BLEU-j based
on the j -gram overlap (i.e., precisionj), we use the following equation.

BLEU-j = min

(
1,

generated-length

reference-length

)
∗ (precisionj) (4.16)

In addition to the ability of a VAE to fluently reconstruct the original input, we also
need to assess the quality of the latent space created (refer Figure 4.3). This is done in a
qualitative manner by randomly sampling points from the latent space and generating sen-
tences. The exact details will be discussed in Section 4.7. A well trained VAE model should
be able to generate new sentences (unseen in the training set) that are both syntactically
and semantically correct.

4.6.4 VAE Variants

As mentioned in Section 4.6, training variational autoencoders for probabilistic sequence
generation is not very straightforward. We try out multiple settings to train the VAE.
Here, we describe and compare five VAE variants which are summarized in Table 4.1.

The models ADAM-NoAnneal-1.0λ and ADAM-NoAnneal-0.001λ are trained with no
annealing and no word dropout. ADAM-tanh-3000 and ADAM-linear-10000 have different
annealing schedules, i.e., the rate and function based on which annealing is done. In
ADAM-tanh-3000, we anneal till 3000 iterations based on Equation 4.17. At this point,
the value of λ reaches 0.047, and we continue training with this constant λ till model
convergence. We have a similar setting in ADAM-linear-10000, where the value of λ reaches
0.05 after 10000 iterations (based on Equation 4.18) and is then kept constant for the rest
of the training. For the final 3 variants in Table 4.1, word dropout was implemented as
follows - at the start of training no words are dropped out (p = 0.0) and at the end of every
epoch, we increase the dropout rate by 0.05 until it reaches a maximum value of p = 0.5.
The model SGD-tanh-3000 is trained with the same settings as ADAM-tanh-3000, except
that we use an SGD optimizer instead of ADAM.

λi =
tanh (i−4500

1000
) + 1

2
(4.17)

38

VAE Variants

ADAM-NoAnneal-1.0λ VAE trained with no KL cost annealing. The KL coefficient (λ)
is set to a constant value of 1.0 throughout training. Optimizer
used is ADAM.

ADAM-NoAnneal-0.001λ Same setting as above, except that the λ is set to a constant
value of 0.001

ADAM-tanh-3000 KL cost annealing from 0 to 3000 iterations using a rescaled
tanh function (refer Eqn 4.17). Optimizer used is ADAM.

SGD-tanh-3000 Same setting as above, but with Stochastic Gradient Descent
Optimizer (SGD)

ADAM-linear-10000 KL cost annealing from 0 to 10000 iterations in a linear manner
(refer Eqn 4.18). Optimizer used is ADAM.

Table 4.1: Training VAE with different settings

λi =
i

200000
(4.18)

where i corresponds to the iteration number.

The learning curves for the different variants described earlier are illustrated in Fig-
ure 4.7. It can be seen that when there is no annealing procedure in place, the KL loss
instantly vanishes to a near zero value within the first few iterations. In contrast, when
λ = 0.001, the value of λ × KL is low and the model has a very small effect of the KL
regularizer term. As a result, such a model tends to be more deterministic in nature.

For the models that have annealing in place, the iteration till which annealing is done
is an important hyperparameter. The method by which we decide the threshold value till
which annealing is carried out is based on the λ×KL graph. The green line in Figure 4.7
shows that beyond 3000 iterations (approximately), the value of λ×KL starts to decrease
after reaching a maximum value. We realize that if we do not stop annealing at this point,
the KL loss steadily decreases further and collapses to zero. We determine that it is ideal
to stop annealing once the value of λ × KL has reached its maximum value. Beyond this
point, we can continue with this constant KL coefficient for the rest of the training. For
ADAM-tanh-3000 and ADAM-linear-10000, these values are 0.047 and 0.05 respectively.
It can be observed that during later stages of training, the graphs for these two models

39

tend to converge. When the optimizer is changed to SGD, a completely different pattern
is observed. The reason for this unusual trend needs to be investigated further.

4.7 Results

4.7.1 Sentence Reconstruction and Random Sampling

The reconstruction performance measured in terms of BLEU scores for the different model
variants are listed in Table 4.7.1. In this case, to generate the reconstructed sentence, we
feed the mean vector (µ) to the decoder, rather than the sampled z (refer Equation 4.14).
This is done so that we do not consider any variance in the latent space and pick the most
probable value, the mean µ (referred to as the max a posteriori or MAP estimate).

In order to assess the quality of the latent space, we randomly sample points from the
prior distribution N (0, I) and feed the sampled z to the decoder to generate new sentences.
This is illustrated in Figure 4.8. If the learnt latent space is continuous, we can expect to
generate a meaningful sentence by sampling from anywhere within the latent space. Note
that in this setting, the encoder network can be discarded after completion of training.
The randomly generated sentences for each VAE variant are shown in Table 4.3.

For comparison purposes, the BLEU scores and random sentence generations obtained
using a deterministic autoencoder (DAE) are also presented. It is to be noted that while
DAEs can give better reconstructions, there is no useful latent space learnt.

The regular VAE model trained without any optimization strategies, ADAM-NoAnneal-
1.0λ, produces the same output sentence irrespective of the input. This is due to the KL
divergence part of the loss function collapsing to zero which causes the model to have both
(1) poor reconstruction capability and (2) poor latent space.

The observation on training the model with a small constant KL coefficient of 0.001
(ADAM-NoAnneal-0.001λ) is that the model tends to function like a deterministic autoen-
coder. This is expected since limλ → 0, the model ignores the KL term and becomes
a deterministic autoencoder. Although the model has good reconstruction performance
indicated by the high BLEU scores, its latent space is not very desirable. The sentences
generated are not very meaningful and also not grammatically correct in most cases.

KL weight annealing and word dropout are indeed very useful training heuristics. This
can be seen from the models ADAM-tanh-3000 and ADAM-linear-10000, both of which
have sentences of similar quality being generated from the latent space. The sentences are

40

Figure 4.7: Learning curves of the VAE variants. Top: KL divergence, Bottom: λ×KL
divergence.

41

Figure 4.8: Demonstration of Random Sampling from Latent Space

usually syntactically and semantically correct. They are also diverse, i.e., truly random in
the sense that they talk about different topics. In terms of BLEU scores, ADAM-tanh-3000
performs relatively better than the linear KL annealing model. However, it is to be noted
that when the optimizer was changed to SGD instead of ADAM, the same model turns
out to be extremely poor. The sentences generated are more or less the same, i.e., not
diverse. The reconstruction capability is only slightly better than the model with the worst
performance, ADAM-NoAnneal-1.0λ.

By comparing ADAM-NoAnneal-0.001λ and ADAM-tanh-3000, we realize that recon-
struction performance and quality of the latent space are conflicting objectives. The model
with better BLEU scores typically results in a non-continuous latent space, generating
sentences of lower quality and vice-versa. If our primary objective was just sentence recon-
struction, we could simply use a deterministic autoencoder, that can reconstruct sentences
in a near perfect manner. From the perspective of probabilistic natural language generation
by sampling from a known distribution, ADAM-tanh-3000 is a more desirable model.

The ADAM-tanh-3000 variant has a good balance between reconstruction capability
and smoothness of the latent space. Hence we adopt only ADAM-tanh-3000 for further
discussions and evaluations. We however compare it with the deterministic autoencoder
to demonstrate other interesting properties exhibited by VAEs.

42

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

Deterministic AE 89.56 83.22 78.29 73.73

ADAM-NoAnneal-1.0 26.57 10.32 4.72 2.05

ADAM-NoAnneal-0.001 88.59 81.90 76.77 72.05

ADAM-tanh-3000 66.97 53.55 44.36 36.50

SGD-tanh-3000 32.58 13.74 6.79 2.70

ADAM-linear-10000 65.55 52.03 42.98 35.29

Table 4.2: Sentence reconstruction performance for the Deterministic AE and different
VAE variants

4.7.2 Linear Interpolation

The VAE objective function simultaneously minimizes the negative log likelihood of the
data and the KL divergence between the approximate posterior distribution and the pre-
specified prior. At the end of training, we can assume that the posterior and prior distri-
butions are approximately close. This allows us to sample from the prior, which is N (0, I)
in our case, and generate new sentences from the latent space (Section 4.7.1). If the learnt
latent space is continuous, then we expect the points sampled from any part of the latent
space to generate valid sentences. Another method to determine the continuity of the
latent space is using linear interpolation or homotopy (Bowman et al., 2015b).

Assume that we are give two input sentences A and B. After mapping them to the
latent space, we can obtain their latent representations zA and zB. For instance, we can
linearly interpolate between A and B by manipulating the latent vector as follows:

zαi
= αi · zA + (1− αi) · zB (4.19)

where αi ∈
[
0, 1

5
, 2

5
, 3

5
, 4

5
, 1
]
. This gives us 4 new sentences between A and B. With a

good latent space, we expect the transition from A to B to happen in a smooth manner.
Each linearly interpolated vector in the latent space should result in a syntactically and
semantically correct sentence. The method by which linear interpolation of points in the
latent space is carried out is depicted in Figure 4.9.

We carry out the above linear interpolation operation for both the deterministic AE
and the variational AE. We can observe from Table 4.4 that in the case of the VAE, the

43

Deterministic AE ADAM-NoAnneal-1.0

a men wears an umbrella waits to a man is sitting on a bench .
a couple cows a monument a man is sitting on a bench .

some a play mat on the gym a man is sitting on a bench .
falling bricks is checking to a tree . a man is sitting on a bench .

skate other women . a man is sitting on a bench .
a seagull is brown to a sandbox a man is sitting on a bench .

a training underwater with the jog down the mountains a man is sitting on a bench .
there is sleeping and two rug . a man is sitting on a bench .

a man in a pick photos a man is sitting on a bench .
a boy are people at a lake escape . a man is sitting on a bench .

ADAM-NoAnneal-0.001 ADAM-tanh-3000

two men sit past where the government entering a scene the dog is sleeping in the grass .
they are excited formation to ride a castle of a the girls are being detained .

their janitor is leaving the dirt wearing his suits . the group of people are going to begin .
two children in it exits a a girl with blond-hair on a bike with a stick

six people sitting are sorting at single radio in . a woman and a man are walking on a street
the guy gets cancer . a brown dog barking at a small dog .

i woman who is on watch a factory the people and a woman are giving a speech .
three people are wearing overalls . the boy is competing with his athletes .

an artist is giving a women in china . a biker is on the racetrack .
the camel is pulling on a bull . a man wearing white racing outside .

SGD-tanh-3000 ADAM-linear-10000

people are playing in the street . woman talking to the boy .
a man is playing a blue shirt and a blue there are boys playing on a trampoline .

a man is playing in the street . a group of people are cooking
a man is playing in a blue shirt . two girls are cleaning up their beds .

the man is in a blue shirt and a blue a child with bare eyes closed and being pulled by
the man is playing in the street . the little girl is brushing her teeth .

a man is wearing a blue shirt and a blue a few school students riding in a meadow .
two men are playing in the street . the woman in the bathtub .

a man is wearing a blue shirt and a blue two cyclists ride horses .
a man is playing in a blue shirt . some kids are sitting .

Table 4.3: Generation of random sentences by sampling from the latent space

transition is smooth. The sentences in between are both fluent and meaningful. Although,
one may note that the input sentences A and B have not been perfectly reconstructed in
case of the VAE. The deterministic AE on the other hand, has a better reconstruction of
the original sentences. However, the intermediate sentences are not grammatically correct
or meaningful. The transitions are also observed to be very irregular or non-continuous.

44

Figure 4.9: Demonstration of Linear Interpolation between points in the Latent Space

Hence, we conclude that inclusion of the KL regularization term in the loss function of the
VAE gives rise to a smooth and continuous latent space.

4.7.3 Sampling From Neighborhood

In a VAE, the reparameterization trick uses the mean and standard deviation to compute
the latent vector as z = µ+ σ ⊗ ε. In other words, we sample a point in the latent space
that is within one standard deviation from the mean. If we sample further away from the
mean, we can expect the generated sentence to be more different from the original input
which we needed to reconstruct.

In this experiment, we sample the latent vector as z = µ+3σ⊗ε, i.e., within 3 standard
deviations from the mean. This experiment of sampling from the neighborhood of a given
input x is illustrated in Figure 4.10. In a VAE, the latent space is continuous, which
means that there are no empty regions. Because of this, the latent vectors sampled from
any region will have meaningful representations which can be decoded into sentences. Also,
since we sample not too far away from the mean, we can expect the generated sentence to
have some topical similarity with the input. This can be observed from the VAE examples
in Table 4.5, where for a given input, we generate sentences using multiple sampled latent
vectors. Each sampled z generates a different sentence, which is however topically similar
to the input.

45

Deterministic AE VAE ADAM-tanh-3000

Sentence A: there is a couple eating cake .

there is a couple eating cake . there is a couple eating cake .
there is a couple eating cake . there is a couple eating .
there is a couple eating cake . there is a couple eating dinner .
there is a group of people eating a party . there is a couple of people eating dinner .
a group of men are watching a party . a group of people are having a conversation .
a group of men are watching a dance party . a group of men are having a discussion .
a group of men are watching a dance party . a group of men are watching a movie .
a group of men are watching a dance party . a group of men are watching a movie theater .

Sentence B: a group of men are watching a dance party .

Sentence A: two boys are performing their fencing skills .

two boys are performing their fencing skills . two boys are performing their martial arts .
two boys are performing their fencing skills . two boys are doing their homework .
two boys are performing their sports skills . two boys are doing their homework outside .
two boys are performing chess the last . two men are playing video games .
a young man is eating air inside a theater . a young man is playing golf at a park .
a white man is eating alone inside a restaurant . a young man is eating dinner in a restaurant .
a white man is eating alone inside a restaurant . a young man is eating inside a restaurant .
a white man is eating alone inside a restaurant . a homeless man is eating inside a restaurant .

Sentence B: a white man is eating alone inside a restaurant .

Table 4.4: Linear interpolation between Sentences A and B

On the other hand, the deterministic autoencoder does not encode input information
into a continous space. The latent space in this case is an arbitrary high dimensional
manifold. As a result, when we sample points which are 3 standard deviations from the
mean, we may end up in empty regions which have no useful latent encodings present. This
causes the model to generate the exact same sentence which we would have obtained by
feeding the mean vector to the decoder, even when multiple samples are drawn. In other
words, the DAE maps input sentences into points on the high dimensional space that are
far apart with empty regions in between.

With the results from the 3 experiments, namely random sampling, linear interpolation

46

Figure 4.10: Demonstration of sampling from the neighborhood of a given input x

and sampling from neighbourhood, we can conclude that the VAEs produce latent spaces
that are continuous and characterized by a known distribution. This interesting property
allows us to use VAEs for probabilistic generation of text, if trained in a careful manner.

47

Deterministic AE VAE ADAM-tanh-3000

Input Sentence: a dog with its mouth open is running .

a dog with its mouth is open running . a dog with long hair is eating .
a dog with its mouth is open running . a guy and the dogs are holding hands
a dog with its mouth is open running . a dog with a toy at a rodeo .

Input Sentence: the man is wearing a black suit .

the man is wearing a black suit . there are two men in a blue shirt .
the man is wearing a black suit . the man is drinking from the bar .
the man is wearing a black suit . the men in a black suit walking through a crosswalk .

Input Sentence: there are people sitting on the side of the road

there are people sitting on the side of the road the boy is walking down the street .
there are people sitting on the side of the road there are people standing on the street outside
there are people sitting on the side of the road the police are on the street corner .

Table 4.5: Generating sentences by sampling from the neighbourhood of the mean in the
latent space

48

Chapter 5

Bypassing Phenomenon

In this chapter, we discuss an important design aspect for variational neural network
models. Specifically, we introduce a problem which we refer to as bypassing connection.
We discuss its effects on the performance of variational autoencoders both quantitatively
and qualitatively.

5.1 Problem Description

The VAE is essentially an encoder-decoder model. With the help of the learnt latent
variable, the decoder can be used as a generative model pθ(X|Z). The implementation of
the VAE neural network architecture consists of sampling latent vectors and feeding them
to the decoder network. This has been illustrated with the help of a diagram in Figure 5.1.
We use the reparameterization trick to sample from a fixed distribution and carry out a
variable transformation using the learnt mean (µ) and standard deviation (σ).

Figure 5.1: Sequence-to-sequence VAE Architechture

49

In regular sequence-to-sequence (Sutskever et al., 2014) models, it is common to use
hidden state initialization to transfer source information to the target side. In LSTM-
RNNs, this is done by setting the initial state of the decoder to the encoder’s final hidden
and cell states. In the Seq2Seq literature, the hidden state initialization technique has been
extended to train VAEs (Serban et al., 2017; Cao and Clark, 2017). This architecture has
been illustrated in Figure 5.2. However, based on our experiments with VAEs, we argue
that such hidden state initializations results in bypassing phenomenon.

Figure 5.2: Sequence-to-sequence VAE with bypass

We observe that, if the decoder has a direct, deterministic access to the source in-
formation, the latent variables Z might not capture much information, which causes the
variational space to not play a role in the training process. We call this a bypassing phe-
nomenon. This renders the learnt latent space to be inadequate without exhibiting any
variational properties such as linear interpolation and sampling from neighbourhood. The
distribution of z corresponding to a given input tends to be more peaked with the bypass
connection (see Figure 5.2). In other words, the standard deviation around the mean is
very small. As a result, sampling points around the mean, we can generate only the same
or very similar sentences. In contrast, VAEs without the bypass connection can generate
more diverse sentences that pertain to the same topic as the input. The latent variable
distribution is flatter as depicted in Figure 5.1.

This can also be explained theoretically. Assume that X̂ is the reconstruction that
needs to be generated using the latent variable Z. We can denote the decoder as pθ(X̂|Z).
If the decoder is provided with a bypass connection to the source X, it can now be written
as pθ(X̂|X,Z). Since the latent space is much harder to learn, the decoder in this case
can choose to completely ignore Z. It can learn to reconstruct the input just using the
information from X, i.e., pθ(X̂|X). In this case, the reconstruction loss from Equation 4.12
can be minimized without the effect of the KL term. In other words, the KL term fails
to act as a regularizer as it can be minimized independently by fitting the posterior to

50

its prior. This will result in the model learning a meaningless latent space that does not
encode any useful source information. Hence, a bypass connection degrades a variational
Seq2Seq model to a deterministic one. We prove this empirically in Section 5.3.

5.2 Evaluation Metrics

In a variational model, we learn a continuous latent space. We had qualitatively evaluated
the latent space by random sampling and linear interpolation of sentences in Chapter 4.
When provided with an input, we expect a VAE to generate sentences that are similar
to the input sentence but not necessarily the exact same sentence as output. Because we
sample points from around the mean vector corresponding to the input, this can result
in some variability in the output. As a result, the generated sentences may be diverse,
although they speak about the same topic. Here, we introduce two quantitative metrics to
assess the diversity of sentences generated.

5.2.1 Entropy

Assume that for a given input x, we generate k outputs y1,y2, ...,yk by sampling a new
latent variable each time. We can consider this set of k output sentences as our corpus
and compute the unigram probability of each token. Note that the unigram probability
of token w is calculated by normalizing the count of that particular token by the total
number of tokens in the corpus. We can compute the entropy of this unigram probability
distribution as

H = −
∑
w

p(w) log p(w) (5.1)

A higher value of entropy corresponds to more randomness in the system. In our case, the
VAE that produces more diverse sentences will have a higher entropy.

5.2.2 Distinct Scores

The distinct metrics were introduced by Li et al. (2015a) for evaluating the diversity
of responses provided by neural conversational agents. Similar to the case of entropy

51

calculation, we can generate k sentences for a given input. To compute Distinct-1 and
Distinct-2 scores for this set of k sentences, we can use the following equations.

Distinct-1 =
Count of distinct unigrams

Total unigram count
(5.2)

Distinct-2 =
Count of distinct bigrams

Total bigram count
(5.3)

The higher the distinct score, the more diverse the output sentences will be.

5.3 Results

We make use of the best performing VAE in Section 4.7, namely the ADAM-tanh-3000
variant for these experiments. Specifically, we train the exact same model with and without
a hidden state initialization of the decoder, which we consider a bypass connection. We
observe very different learning curves for the two cases. When the model is trained with
a bypass connection, the KL term of the loss function gradually vanishes to zero (refer
Figure 5.3). In contrast, when there is no bypass connection, the VAE can be trained in a
more stable manner.

Due to the differences observed during training, we expect both models to perform
differently. We employ the same technique as in Section 4.7.1 and sample points within 1
standard deviation around the mean. In this manner, we generate sentences from the latent
space conditioned on a given input. We obtain diverse and topically related sentences for
the VAE with no hidden state initialization. However, the bypass connection in the other
model degrades it to a deterministic autoencoder. The latent space is not continuous or
smooth. This can be seen from the generated sentences in Table 5.1, which have little or
no diversity.

We also verify the qualitative findings with the automatic evaluation metrics described
in Section 5.2. For each input sentence in the test set, we sample 10 points in the latent
space and generate 10 corresponding sentences. We then compute the entropy of each
set of 10 sentences using its unigram probability distribution. The average entropy of the
outputs generated by the VAE with bypass is much lower than the same model without
bypass connection. Note that even a decrease in entropy of 0.68 corresponds to a relatively
large difference in diversity because entropy is computed using the log-scale. The same
trend is observed for the other diversity metrics, namely Distinct-1 and Distinct-2. The
number of distinct unigrams and bigrams produced by the VAE without hidden state
initialization is much higher than the VAE with bypass.

52

Figure 5.3: Comparison of learning curves of VAE with and without bypass

VAE with Bypass VAE without Bypass

Input Sentence: the men are playing musical instruments

the men are playing musical instruments the men are playing video games
the man is playing musical instruments the men are playing musical instruments
the men are playing musical instruments the musicians are playing musical instruments

Input Sentence: a child holds a shovel on the beach .

a child holds a shovel on the beach . a child playing with the ball on the beach .
a child holds a shovel on the beach . a child holding a toy on the water .
a child holds a shovel on the beach . a child holding a toy on the beach .

Input Sentence: a group of professional football players having a game

a group of professional football players having a game a group of football players celebrate a game
a group of professional football players having a game a group of men watching a soccer match
a group of professional football players having a game a group of football players having a good time

Table 5.1: Generating sentences conditioned on a given input by sampling from the latent
space - comparison of VAE with and without bypass connection

This observation regarding the bypassing phenomenon sheds light on the design philos-
ophy of variational neural models. This motivates us to further explore possibilities of such
bypassing connections that limits the performance of variational encoder-decoder models.

53

VAE with Bypass VAE without Bypass

Entropy 2.004 2.686
Distinct-1 0.099 0.302
Distinct-2 0.118 0.502

Table 5.2: Comparison of VAE with and without bypass connection in terms of automatic
diversity metrics

We discuss this in the upcoming chapters along with ways to address the issue.

54

Chapter 6

Variational Attention for Seq2Seq
Models

6.1 Motivation

In the previous chapters, the process of autoencoding was discussed. Given an input
sequence of words, the task was to learn an intermediate representation, from which it is
possible to reconstruct the input. However, in most real life applications we would need
to transform a given input sequence into a different output sequence. An example is the
task of machine translation, where the input sentence may be in French and we would like
to obtain the corresponding translated output in English. Another example is that of a
conversational system, where chatbots learn to respond to user inputs.

In such scenarios, we would need to implement encoder-decoder models (rather than
autoencoders). In deep learning, recurrent neural network based sequence-to-sequence
models (Sutskever et al., 2014) are the most popular models used for text generation.
They have been extensively used for machine translation (Bahdanau et al., 2014), dialog
systems (Vinyals and Le, 2015), text summarization (Rush et al., 2015) and so on. In
most cases, these models tend to be deterministic, i.e., trained to simply maximize the
log-likelihood of the data.

Variational Seq2Seq models have also been applied for encoding-decoding purposes.
Serban et al. (2017) report that when dialog systems are trained with variational neural
models, the output responses tend to be longer and more diverse. Zhang et al. (2016) show
that by using variational encoder-decoder (VED) models for neural machine translation,
they achieve higher BLEU scores than existing deterministic Seq2Seq baselines.

55

The introduction of attention mechanisms (Bahdanau et al., 2014; Luong et al., 2015)
resulted in major performance improvements to existing Seq2Seq models. Attention mech-
anisms essentially align source information on the encoder side to target information on the
decoder side. Due to this, the decoding process becomes more accurate by appropriately
weighting the source information. Attention mechanisms in Seq2Seq models are described
in detail in Section 6.3.

However, we argue that traditional attention mechanism cannot be directly applied
to variational encoder-decoder models. Doing so unfortunately leads to bypassing phe-
nomenon, similar to the one described in Chapter 5. In this case, deterministic attention
provides direct access to the source information. This may cause the latent space to be
ignored during training, resulting in an ineffective variational model. In this chapter we
investigate the effect of such a bypassing connection caused by deterministic attention
mechanism. We propose an alternative attention mechanism, which we refer to as vari-
ational attention that can circumvent this bypassing issue in variational encoder decoder
models.

First, the traditional attention mechanism is introduced and then we discuss how this
can be transformed to variational attention. Next, we report empirical results on two
experiments - question generation and dialog systems. We prove the advantage of our
proposed method by showing that it alleviates the bypassing phenomenon and increases
the diversity of generated sentences while maintaining language fluency.

6.2 Variational Encoder Decoder

Encoder-decoder models are used when we wish to transform source information X into
target information Y . To make the model variational, we need to learn a latent variable
Z whose distribution (referred to as the posterior) is close to a pre-specified prior. In
the literature, different approaches have been proposed to learn the latent space in VEDs.
Zhang et al. (2016) and Cao and Clark (2017) use both X and Y as input variables to
encode information into Z. In this case, z is sampled from a posterior distribution given
by qφ(Z|X, Y), the encoder neural network. However, this causes a discrepancy between
training and prediction because Y is not available during the prediction stage. Hence,
we follow the approach mentioned in Zhou and Neubig (2017). Here, the assumption is
that Y can be considered as a function of X, i.e., Y = Y (X) and as a result, we have

qφ(Z|X, Y)
∆
= qφ(Z|X, Y (X))

∆
= qφ(Z|X). Hence, we can simply use an encoder that

requires only X as input to learn the latent variable Z. This is depicted in Figure 6.1.

56

Figure 6.1: Sequence-to-sequence VED Architecture

6.3 Attention Mechanism

In deep learning, attention mechanism refers to the techniques by which neural networks
are trained to focus on specific aspects of the input in order to accomplish the task at
hand. In this section, the attention mechanisms popularly used in Seq2Seq models are
explained. Note that this is different from visual attention in computer vision tasks such
as image captioning (Xu et al., 2015a) and object detection (Borji et al., 2014), which will
not be covered in this thesis.

Consider RNNs with LSTM units as both encoder and decoder. Following the same
notation as in Chapter 3, let x = (x1, x2, · · · , x|x|) be the tokens from the source sequence
and y = (y1, y2, · · · , y|y|) be the tokens from the target sequence. At each timestep j of the
decoding process, we predict the target token by computing a softmax across the words in
the vocabulary V to obtain probabilities as follows

p(yj) = softmax(Wouth
(tar)
j) (6.1)

where, Wout is a weight matrix, and h
(tar)
j is the decoder LSTM output at timestep t.

h
(tar)
j = LSTMθ(h

(tar)
j−1 ,yj−1, z) (6.2)

where θ refers to the weights of the LSTM network, yj−1 is the decoder input word em-
bedding (of the output word at the previous timestep) and z is the sampled latent repre-
sentation of the input sentence x

In Deterministic Encoder-Decoder (DED), some source information is passed on to the
decoder via hidden state initialization (see Section 5.1). In contrast, it is to be noted that
the decoder LSTM in the vanilla Seq2Seq VED does not have access to source information
other than through the latent vector z. Attention mechanism can serve as a way to learn
additional source information in encoder-decoder models. Essentially, during each timestep
j of the decoding process, the decoder is provided access to all of the encoded source tokens.

57

More concretely, the decoder at timestep j is provided with the encoder LSTM outputs,
i.e., h

(src)
i where i ∈ {1, 2, · · · , |x|}. Now, instead of giving equal weight to every h

(src)
i ,

depending on the target word to be decoded, the decoder LSTM can give higher weight
to certain h

(src)
i and lower weight to others. This means that the source outputs can be

weighted differently at each decoding timestep. The idea behind this is that all source
words need not contribute equally while generating the current target word.

Mathematically, attention mechanisms compute a probabilistic distribution (across the
source tokens) at each decoding timestep j given by

αji =
exp{α̃ji}∑|x|
i′=1 exp{α̃ji′}

(6.3)

where αji ∈ [0, 1] is the weight given to source output i and α̃ji is a pre-normalized score.
In the literature of Seq2Seq models, two methods have been proposed to calculate α̃ji.

1. Multiplicative (Luong et al., 2015)

α̃ji = h
(tar)
j W Th

(src)
i (6.4)

2. Additive (Bahdanau et al., 2014)

α̃ji = vTa tanh
(
W1h

(tar)
j +W2h

(src)
i

)
(6.5)

where, W , W1, W2 and vTa are weights that are learnt via error backpropagation.

While both methods work equally well in practice, this thesis uses the multiplicative style
attention for all the encoder-decoder experiments. The next step is to take the sum of the
source outputs {h(src)

i }|x|i=1 weighted by αji to obtain the context vector.

cj =

|x|∑
i=1

αjih
(src)
i (6.6)

Finally the attention vector can be computed using a tanh non-linear operation and learnt
weights Wc as follows

aj = f(cj,h
(tar)
j) = tanh(Wc[cj;h

(tar)
j]) (6.7)

58

Figure 6.2: Illustration of VED with Deterministic Attention Mechanism

This attention vector can now be fed to the softmax layer at timestep j. Rewriting Equa-
tion 6.1, we obtain

p(yj) = softmax(Woutaj) (6.8)

In this manner, attention mechanisms are capable of dynamically aligning target infor-
mation to the source information, during the generation process. This process has been
illustrated in Figure 6.2 and we refer to this as deterministic attention.

59

6.4 Variational Attention

One can observe from Figure 6.2, that the decoder LSTM has direct access to source infor-
mation via the context vector cj during attention computation. Although the latent vector
z is fed to the decoder at every timestep, we fear that availability of source information via
cj may cause the decoder LSTM to ignore z. This may result in bypassing phenomenon
due to which the VED model does not encode any useful information into the z latent
space.

In this work, we propose variational attention mechanism to prevent bypassing. Specif-
ically, the context vector is modelled as a Gaussian random variable, which can be sampled
using its mean and standard deviation. This results in a stochastic node before the softmax
layer as shown in Figure 6.3. That is, we now have two nodes in the computational graph
at which we do sampling, one for the sentence latent representation z and the other latent
space for the context vector cj at every timestep j. The attention is not modelled in a
deterministic fashion anymore. In this way, we can prevent the bypassing issue in Seq2Seq
VED models with attention.

6.4.1 Derivation of Loss Function

Variational attention treats both the sentence representation z and the context vector cj
as random variables. We would need to regularize the distribution of both these latent
variables in the loss function. Analogous to the case of VAE, we rewrite Equation 4.11
for evidence lower bound (ELBO) by adding the extra variable cj. The ELBO for the jth
timestep of the nth data point, i.e., input x(n) and target y(n) , can be expressed as follows.

ELBO
(n)
j (θ,φ) = Ez,cj∼qφ(z,cj |x(n))

[
log pθ(y

(n)|z, cj)
]
−KL

(
qφ(z, cj|x(n))‖p(z, cj)

)
(6.9)

where qφ and pθ correspond to the encoder and decoder neural networks with respective
weights φ and θ. Given x, we can assume conditional independence between z and cj.

Hence, the posterior factorizes as qφ(z, cj|·) = q
(z)
φ (z|·) q(cj)

φ (cj|·). We also assume separate
priors for z and cj. In this way, the sampling procedure can be done separately and the
KL loss can also be computed independently.

60

Figure 6.3: Illustration of VED with Variational Attention Mechanism

ELBO
(n)
j (θ,φ) = E

z∼q(z)φ (z|x(n)),cj∼q
(cj)

φ (cj |x(n))

[
log pθ(y

(n)|z, cj)
]

−KL
(
q

(z)
φ (z|x(n))‖p(z)

)
−KL

(
q

(cj)
φ (cj|x(n))‖p(cj)

) (6.10)

As mentioned in Chapter 4, we are required to maximize the evidence lower bound, which
is equivalent to minimizing −ELBO

(n)
j (θ,φ). The first term then becomes the negative

log-likelihood, which can be computed as the standard Seq2Seq word prediction categorical
cross-entropy loss, summed across all timesteps (Jrec(θ,φ,y

(n))). Next, we have two KL
regularization terms - one for the sentence latent space z and the other for the context
vector at each timestep cj. In both cases, we are required to minimize the KL divergence

61

between the computed posterior and the pre-specified prior. Hence, the overall training
objective of the Seq2Seq VED with both variational sentence latent space z and variational
attention c is to minimize the following loss function,

J (n)(θ,φ) = Jrec(θ,φ, y
(n)) + λKL

[
KL
(
q

(z)
φ (z|x(n))‖p(z)

)
+ γa

|y|∑
j=1

KL
(
q

(cj)
φ (cj|x(n))‖p(cj)

)]
(6.11)

In the above equation, λKL acts as coefficient of both the KL terms. We only anneal this
hyperparameter in a manner similar to that of the VAE as discussed in Section 4.5. γa is
the coefficient of the context vector’s KL term which is kept constant throughout training.
This is done because training Seq2Seq variational models can be difficult and we would like
to anneal just one of the coefficients which can simultaneously influence both KL terms.

Prior

Similar to the VAE described in Chapter 4, the sentence latent code z is assumed to have a
standard normal prior N (0, I). For the context vector cj, we propose two plausible priors:

1. The simplest option would be to set the prior p(cj) to be N (0, I).

2. With an understanding of attention mechanism in Seq2Seq models, one can observe
that cj is calculated as a linear combination of the source hidden states, i.e., cj =∑|x|

i=1 αjih
(src)
i . Geometrically, this means that the context vector is inside the convex

hull of hidden representations of the source sequence, i.e., cj ∈ conv{h(src)
i }. Thus,

we choose p(cj) = N (h̄(src), I) as an alternative choice for the prior, where h̄(src) =
1
|x|
∑|x|

i=1 h
(src)
i , the mean of the source hidden states.

Posterior

Once we have pre-specified the prior distributions of both latent variables z and cj, we
now discuss how the corresponding approximate posteriors are computed. In both cases,
an LSTM based encoder neural network is used to parameterize the posterior distribu-
tions. More concretely, for the sentence latent space, the encoder’s final hidden state h

(src)
t

is linearly transformed to obtain µz and σz, the parameters of the posterior Gaussian
distribution. Now the posterior of z can be defined as q

(z)
φ (z|x) = N (µz,σz).

62

In an analogous manner, the posterior of the context vector at timestep j, denoted

by q
(cj)
φ (cj|x) is modeled as a Gaussian distribution N (µcj ,σcj) using the same encoder

neural network. We first compute the context vector in a deterministic manner (cdet
j) as

mentioned in Equation 6.6 and then transform it into the variational space using learnt
parameters µcj and σcj . For the mean µcj , we apply an identity transformation, i.e.,
µcj ≡ cdet

j . To compute σcj , we first transform cdet
j by a neural layer with tanh activation

followed by another linear transformation. We can then sample the context vector cj from
its posterior N (µcj ,σcj). Readers are referred to Figure 6.3 for a diagrammatic overview
of the method in which the parameters of the posterior distributions are computed.

6.5 Experiments

In this section, we provide the VED training details, the datasets used and finally report
the qualitative and quantitative results.

6.5.1 Datasets

We evaluate and compare the proposed variational attention on two tasks - (1) Question
Generation, (2) Dialog Systems. In question generation, the task is as follows - given an
input sentence or paragraph, generate a question relevant to the input. Although this may
seem trivial for humans, it is more difficult for computers since the generated questions
need to be semantically and syntactically correct, and maintain topical relevance to the
input. Apart from these, we expect to obtain diverse but relevant questions by sampling
different points from the latent space, conditioned on the same input. According to Du
et al. (2017), attention mechanisms are especially critical in this task in order to generate
relevant questions. We use the Stanford Question Answering Dataset (Rajpurkar et al.,
2016, SQuAD) to carry out this task. The SQuAD dataset was originally curated for the
task of machine comprehension, i.e., given a paragraph and a set of relevant questions,
the computer is required to pick the sentences from the paragraph that are answers to
the questions. The dataset has about 100k question-answer pairs, and we follow the same
train-validation-test split as in Du et al. (2017).

The second task is that of developing a generative conversational agent. The goal of
such a dialog system is to generate replies in response to user utterances. Here again,
response fluency and relevance are critical, for which attention mechanisms can play an

63

important role. For this experiment, we use the Cornell Movie-Dialogs Corpus1 (Danescu-
Niculescu-Mizil and Lee, 2011) as our dataset, which contains more than 200k conversa-
tional exchanges. While 180k sentences were used for training the model, 10k was held out
for validation, and the rest for reporting test set performance.

6.5.2 Training Details

We used RNNs with 100d LSTM units for both the encoder and decoder; the dimension
of the latent vector z was also 100d. Pre-trained word2vec (Mikolov et al., 2013) word
embeddings of 300d were used. For the question generation experiment, the vocabulary
was set to the most frequent 40k words. The dataset in the dialog system experiment had
fewer distinct unigrams and hence we set the model vocabulary size to 30k words. ADAM
optimizer was used to train all the models. The convergence of the validation loss was set to
be the stopping criterion. The question generation model is trained for 20 epochs. Dialog
systems typically take more time for convergence and are trained for 250 epochs. The rest
of the hyperparameters including the annealing schedule, word dropout rate, learning rate,
etc., are set to those of the best performing VAE model described in Chapter 4, namely
ADAM-tanh-3000.

Evaluation Metrics. To determine the sentence generation performance, we report
BLEU scores on the test set. Diversity of generated sentences is an important aspect
in our study and this is evaluated using the automatic metrics described in Chapter 5, i.e.,
entropy and distinct scores.

6.5.3 Quantitative Evaluation

For the question generation experiment, we first replicate the neural network architecture
proposed by Du et al. (2017) for this task. As shown in Table 6.1, we obtain similar BLEU
scores as those of the deterministic encoder-decoder (DED) described in Du et al. (2017).
Incorporating deterministic attention to this vanilla Seq2Seq DED, we obtain the model
referred to as DED+DAttn. As expected, the attention mechanism improves the BLEU
scores in comparison to the regular DED model.

The next set of results correspond to the variational encoder-decoder models (VED).
Given an input, the output sentence generation at inference time can be done either by
sampling from the latent space or by using the max a posteriori estimate (MAP). This

1https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

64

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

Model Inference BLEU-1 BLEU-2 BLEU-3 BLEU-4 Entropy Dist-1 Dist-2

DED (w/o Attn) Du et al. (2017) MAP 31.34 13.79 7.36 4.26 - - -

DED (w/o Attn) MAP 29.31 12.42 6.55 3.61 - - -
DED+DAttn MAP 30.24 14.33 8.26 4.96 - - -

VED+DAttn
MAP 31.02 14.57 8.49 5.02 - - -

Sampling 30.87 14.71 8.61 5.08 2.214 0.132 0.176

VED+DAttn (2-stage training)
MAP 28.88 13.02 7.33 4.16 - - -

Sampling 29.25 13.21 7.45 4.25 2.241 0.140 0.188

VED+VAttn-0
MAP 29.70 14.17 8.21 4.92 - - -

Sampling 30.22 14.22 8.28 4.87 2.320 0.165 0.231

VED+VAttn-h̄
MAP 30.23 14.30 8.28 4.93 - - -

Sampling 30.47 14.35 8.39 4.96 2.316 0.162 0.228

Table 6.1: BLEU, entropy, and distinct scores on the question generation task. We com-
pare the deterministic encoder-decoder (DED) and variational encoder-decoders (VEDs).
For VED, we have several variates: deterministic attention (DAttn) and the proposed
variational attention (VAttn). Variational models are evaluated by both max a posteriori
(MAP) inference and sampling.

refers to the most probable output corresponding to the given input, which in the Gaussian
case is the mean of the posterior distribution. In the sampling setting, we draw 10 samples
(z and/or a) from the posterior given x, i.e., for each data point, and report average
BLEU scores. We also compute the diversity metrics on each set of 10 sampled sentences
and average it across the test data. Note that these metrics can only be calculated for the
sampling setting.

Comparing the proposed variational attention (VED+VAttn) and the deterministic
attention (VED+DAttn) models, we observe that VED+VAttn significantly outperforms
VED+DAttn in terms of the diversity of generated sentences. It should be noted that
entropy is a logarithmic measure, and hence the difference of 0.1 in Table 6.1 is significant;
VED+VAttn also generates more distinct unigrams and bigrams than VED+DAttn. The
BLEU scores obtained by the variational attention models are only slightly lower than the
deterministic attention counterparts. This means that the output sentence reconstruction
performance of both models is similar, while the VED+VAttn models can generate more
diverse outputs. This confirms our hypothesis that deterministic attention serves as a
bypassing connection that affects the learning of a good latent space. The lower diversity
of DAttn models can be attributed to the learnt posterior distributions being more peaked,
similar to the issue depicted in Figure 5.2.

Table 6.1 reports results for the two priors that were proposed in Section 6.4.1.

65

VED+VAttn-0 and VED+VAttn-h̄ refer to the variational attention models with priors
N (0, I) and N (h̄(src), I) respectively. VED+VAttn-0 has slightly lower BLEU but higher
diversity. The results are generally comparable, showing both priors are reasonable.

The model indicated by VED+DAttn (2-stage) refers to a heuristic based model which
was implemented for the same task. In this setting, the VED is first trained without
attention for 6 epochs, and then the attention mechanism is incorporated into the model
for the rest of the training. The logic behind this simple heuristic is that we first allow
the VED to learn a meaningful latent space during the early stages of training, and we
only introduce the deterministic attention connection at a later stage. However, this still
continues to influence the model performance as a result of bypassing. We conclude that
such simple heuristics do not help much, and are worse than the principled variational
attention mechanism in terms of all BLEU and diversity metrics.

Next we present the results on the dialog systems experiment. In general, automatic
conversational systems tend to have low BLEU scores because for a given user utterance,
there are multiple possible responses which are valid (Liu et al., 2016). The dataset typi-
cally only provides only one ground truth response. Hence, it is much harder to evaluate
dialog systems. Nevertheless, we report BLEU scores and diversity metrics on the three
main models (refer Table 6.2). The deterministic encoder-decoder model (DED) tends to
have a better output reconstruction capability. This is expected since it is explicitly trained
to minimize the negative log likelihood of observing the data. On the other hand, VED
models have additional KL regularization terms in their loss functions. VED+VAttn-0 and
VED+VAttn-h̄ provide similar results and only the model with N (h̄(src), I) prior is chosen
for reporting purposes.

It can be observed that both the quality and diversity of sentences generated by
VED+VAttn-h̄ are slightly better than VED+DAttn. However, we find the improvement
is not so large as in the question generation task. We conjecture the reason for this to be
that in conversational systems, there is a weaker alignment between the source and target
information. As a result, the attention mechanism itself is less effective.

Learning Curves

For the question generation experiment, we also studied the learning curves of the eval-
uation metrics (on the validation set) as training progresses. In Figure 6.4, we illustrate
BLEU-2 and BLEU-4 (representative of output reconstruction quality), and entropy and
Distinct-1 (representative of diversity). It can be observed that BLEU scores and diversity
are conflicting objectives. In order to attain a higher BLEU score, the model needs to be

66

Model Inference BLEU-1 BLEU-2 BLEU-3 BLEU-4 Entropy Distinct-1 Distinct-2

DED+DAttn MAP 5.75 1.84 0.99 0.64 - - -

VED+DAttn
MAP 5.33 1.68 0.88 0.57 - - -

Sampling 5.34 1.68 0.89 0.57 2.113 0.311 0.450

VED+VAttn-h̄
MAP 5.48 1.78 0.97 0.64 - - -

Sampling 5.55 1.79 0.97 0.64 2.167 0.324 0.467

Table 6.2: Results on the conversational systems experiment

more deterministic in nature, as a result of which it may lose interesting variational prop-
erties such as diversity. The red and green lines indicate the variational attention models,
which tend to have comparable BLEU scores while maintaining high diversity. This verifies
the effectiveness of our model design which circumvents the bypassing phenomenon.

Strength of Attention KL Loss

As mentioned in Equation 6.11, annealing is only done for the common KL coefficient, i.e.,
λKL, whereas the coefficient of the attention KL γa loss is fixed for each experiment. In
this section, we study the influence of γa, which affects the strength of attention KL loss
in variational attention models, specifically the VED+VAttn-h̄ variant. This is done by
running multiple experiments on the question generation task with the same model, the
only difference being the value of γa in each run. The learning curves of the different runs
are presented in Figure 6.5. It can be seen that with lower values of γa, the BLEU scores
are higher, while the corresponding diversity metrics are lower. This is expected because
a lower γa gives the model less incentive to optimize the attention’s KL term, which then
causes the model to behave more deterministic. On the other hand, high γa increases the
diversity of the sentences generated by the model, at the cost of output reconstruction
performance, i.e, lower BLEU scores. Based on this experiment, we chose a value of 0.1 for
γa, as it yields a learning curve in the middle among the different γa values, being a good
balance between quality and diversity. The results reported in Table 6.1 and Table 6.2
correspond to this setting.

6.5.4 Qualitative Evaluation

In this section, we compare the proposed variational attention to the deterministic attention
counterpart in terms of qualitative samples. We generate multiple samples conditioned on
the same input for both models. This was done on the task of question generation, where

67

Figure 6.4: BLEU-2, BLEU-4, Entropy, and Distinct-1 calculated on the validation set as
training progresses.

Figure 6.5: BLEU-2, BLEU-4, Entropy, and Distinct-1 for multiple runs of the same model
(VED+VAttn-h̄) with different γa values.

we input a sentence and attempt to generate a relevant question. It can be observed from
Table 6.3 that VED+VAttn-h̄ is capable of producing multiple diverse questions relevant to
the input sentence. In contrast, the questions obtained by sampling from the latent spaces
of VED+DAttn are less diverse. In many cases, the same sentence is generated multiple
times, indicating that the posterior distributions corresponding to the inputs tend to be
more peaked. This is caused by low standard deviations due to which the sampling always
happens from just around the mean value. Thus, we are able to demonstrate the benefits
of variational attention which is proposed as a method to alleviate the bypassing issue in
Seq2Seq VED networks.

Human Evaluation

Although we quantitatively evaluate our model in the previous section, none of the metrics
capture the language fluency of the model. It is difficult to come up with an automatic

68

Source when the british forces evacuated at the close of the war in 1783 ,
they transported 3,000 freedmen for resettlement in nova scotia .

Reference in what year did the american revolutionary war end ?

VED+DAttn

how many people evacuated in newfoundland ?
how many people evacuated in newfoundland ?
what did the british forces seize in the war ?

VED+Vattn-h̄

how many people lived in nova scotia ?
where did the british forces retreat ?
when did the british forces leave the war ?

Source downstream , more than 200,000 people were evacuated from
mianyang by june 1 in anticipation of the dam bursting .

Reference how many people were evacuated downstream ?

VED+DAttn

how many people evacuated from the mianyang basin ?
how many people evacuated from the mianyang basin ?
how many people evacuated from the mianyang basin ?

VED+VAttn-h̄

how many people evacuated from the tunnel ?
how many people evacuated from the dam ?
how many people were evacuated from fort in the dam ?

Table 6.3: Qualitative samples of the question generation task.

evaluation metric that can compare the level of fluency of the text generated by each model.
However, this is an important aspect considering the recent developments in artificial
intelligence where machines are trained to be more human-like.

Thus, in order to assess the quality of the generated text in terms of language fluency, a
human evaluation study was carried out with the text generated from the question genera-
tion task. For the two main models under comparison, VED+DAttn and VED+VAttn-h̄,
a randomly shuffled subset of 100 generated questions was selected. Six human evaluators
were asked to rate the fluency of these 200 questions on a 5-point scale: 5-Flawless, 4-
Good, 3-Adequate, 2-Poor, 1-Incomprehensible, following the annotation scheme described
in (Stent et al., 2005). The human evaluators were fellow researchers proficient in English.
No additional instructions apart from the 5-point annotation scheme were provided to the
evaluators. Essentially, this gave them the freedom to decide what they thought to be a
fluent question versus a poor question.

The average rating obtained for VED+DAttn was 3.99 and for VED+VAttn-h̄ was
4.01, which shows that, on an average, the sentences generated by both models are of good
fluency. It is to be further noted that the difference between the scores of VED+DAttn
and VED+VAttn-h̄ is not statistically significant (based on hypothesis test comparing two

69

means, at the 5% level). The human annotations achieved 0.61 average Spearman corre-
lation coefficient (measuring order correlation) between any two annotators. According to
Swinscow (1976), this indicates moderate to strong correlation among different annotators.
Hence, we can safely conclude that variational attention does not negatively affect the
fluency of sentences.

70

Chapter 7

Summary and Conclusions

7.1 Summary of Research Work

In this research, we present deep learning approaches to probabilistic natural language
generation. In particular, we design and implement variational neural network models
for text generation. Variational autoencoders are capable of mapping sentences into a
continuous latent space from which it is possible to sample and generate new sentences.
However, VAEs are notoriously difficult to train due to issues associated with the KL
regularization term vanishing to zero, resulting in model collapse. The first part of the
thesis addresses this problem with the help of various optimization strategies.

Next, we further explore VAE architectures and discover the bypassing phenomenon.
Hidden state initialization of the decoder results in a bypassing connection which degrades
the VAE into a deterministic model. We describe how this can negatively impact the
learning of a meaningful latent space.

Finally, we move on to variational encoder-decoder models wherein we require to trans-
form a given source sequence into a desired target sequence. We realize that traditional
sequence-to-sequence attention mechanisms act as bypassing connections. To circumvent
this problem, we propose the variational attention mechanism. We show that by treating
the contect vector as a random variable, it is possible to overcome the bypassing issue.

71

7.2 Conclusions

Being able to generate meaningful textual data is an important characteristic of intelli-
gent machines. For probabilistic generation of natural language sentences, we developed
a sequence-to-sequence variational autoencoder. The VAE was successfully trained by
implementing optimization heuristics, namely KL cost annealing and word dropout. By
carefully engineering the annealing rate, schedule and threshold, the VAE that we trained
was able to learn a meaningful continuous latent space. We demonstrate interesting prop-
erties of the latent space such as random sampling, linear interpolation and sampling from
the neighbourhood, and compare it to a baseline deterministic autoencoder. We show that
VAEs can learn meaningful sentence representations and also generate previously unseen
sentences which are semantically and syntactically correct.

We studied the problem of bypassing phenomenon in VAEs wherein the decoder has
a deterministic access to source information. We illustrate with the example of decoder
hidden state initialization that such bypassing connections cause the VAE model to ignore
the latent space during training. We show both quantitatively and qualitatively that
bypassing results in the loss of interesting properties of the variational latent space and
degrades the model into a deterministic autoencoder.

In variational encoder decoder models, we observe similar bypassing issues when tra-
ditional sequence to sequence attention is used. To prevent the decoder from having
direct access to the encoder, we proposed a variational attention mechanism for VED
frameworks. This technique introduces an additional stochastic node in the computational
graph by modelling the context vector as a random variable with a pre-specified probability
distribution. In practice, we sample the context vector at each timestep of the decoding
process. An additional term, that computes the KL divergence between the context vec-
tor’s posterior and prior distributions, is added to the loss function. Two plausible priors
were proposed, which work equally well. With empirical results on two tasks - question
generation and dialog systems, we show that variational attention yields more diversified
samples while retaining high quality.

7.3 Future Work

For the VED model with variational attention, we impose a probabilistic distribution on the
context vector. However, the context vector itself is computed using attention weights, αji
(see Figure 6.3). Instead of the context vector cj being modeled as a random variable, we

72

could assume the attention weights αj = {αji}|x|i=1 as random variables which are sampled
from a distribution. Note that αj represent probability values that sum up to 1. Hence,
they can be thought of as parameters of a categorical distribution which has Dirichlet
distribution as its conjugate prior. To incorporate this scenario into the VED framework,
we are required to sample from a Dirichlet distribution instead of sampling from a Gaussian
distribution. However, this relies on a reparametrization trick to propagate error gradient
back to the recognition neural network (refer Figure 4.5). In other words, we should be able
to sample from a fixed distribution (i.e., without learnt parameters) and then obtain the
variable in the desired latent space by doing necessary variable transformation. However,
doing this is non-trivial for Dirichlet distribution. In future work, it would be interesting
to investigate VEDs that model the attention weights with Dirichlet distributions.

Since the latent space learnt by VAEs is continuous and meaningful, future work can
also explore how VAEs can be used for disentangling sentence level attributes. For example,
if we are able to represent different attributes such as sentiment, tense, topic, etc., into
different dimensions of the latent vector, this would be useful for supervised tasks later in
the machine learning pipeline.

73

References

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

Jaan Altosaar. Tutorial - what is a variational autoencoder? https://jaan.io/

what-is-variational-autoencoder-vae-tutorial/, 2017. Accessed: 2018-06-12.

Ion Androutsopoulos and Prodromos Malakasiotis. A survey of paraphrasing and textual
entailment methods. Journal of Artificial Intelligence Research, 38:135–187, 2010.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Hareesh Bahuleyan, Lili Mou, Kartik Vamaraju, Hao Zhou, and Olga Vechtomova. Prob-
abilistic natural language generation with wasserstein autoencoders. arXiv preprint
arXiv:1806.08462, 2018a.

Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, and Pascal Poupart. Variational attention
for sequence-to-sequence models. In 27th International Conference on Computational
Linguistics (COLING), 2018b.

Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason Yosinski. Deep generative stochas-
tic networks trainable by backprop. In International Conference on Machine Learning,
pages 226–234, 2014.

Steven Bird and Edward Loper. Nltk: the natural language toolkit. In Proceedings of the
ACL 2004 on Interactive poster and demonstration sessions, page 31. Association for
Computational Linguistics, 2004.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

74

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Antoine Bordes, Y-Lan Boureau, and Jason Weston. Learning end-to-end goal-oriented
dialog. arXiv preprint arXiv:1605.07683, 2016.

Ali Borji, Dicky N Sihite, and Laurent Itti. What/where to look next? modeling top-down
visual attention in complex interactive environments. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 44(5):523–538, 2014.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.
A large annotated corpus for learning natural language inference. arXiv preprint
arXiv:1508.05326, 2015a.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015b.

Denny Britz. Recurrent neural networks tutorial. http://www.wildml.com/2015/09/

recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/, 2015. Ac-
cessed: 2018-05-25.

Kris Cao and Stephen Clark. Latent variable dialogue models and their diversity. In
Proceedings of the 15th Conference of the European Chapter of the Association for Com-
putational Linguistics: Volume 2, Short Papers, volume 2, pages 182–187, 2017.

Yllias Chali and Sadid A Hasan. Towards topic-to-question generation. Computational
Linguistics, 41(1):1–20, 2015.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for
machine reading. arXiv preprint arXiv:1601.06733, 2016.

François Chollet et al. Keras, 2015.

75

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 28, pages 3079–3087. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf.

Cristian Danescu-Niculescu-Mizil and Lillian Lee. Chameleons in imagined conversations:
A new approach to understanding coordination of linguistic style in dialogs. In Pro-
ceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages
76–87, 2011.

Rahul Dave. Advance scientific computing (am207). https://am207.github.io/2017/,
2017. Accessed: 2018-06-12.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908,
2016.

Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural question generation
for reading comprehension. arXiv preprint arXiv:1705.00106, 2017.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Yuchen Fan, Yao Qian, Feng-Long Xie, and Frank K Soong. Tts synthesis with bidi-
rectional lstm based recurrent neural networks. In Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

Kenneth R Foster, Robert Koprowski, and Joseph D Skufca. Machine learning, medi-
cal diagnosis, and biomedical engineering research-commentary. Biomedical engineering
online, 13(1):94, 2014.

Elizabeth Gibney. Google ai algorithm masters ancient game of go. Nature News, 529
(7587):445, 2016.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645–6649. IEEE, 2013.

76

http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf
https://am207.github.io/2017/

Kevin Gurney. An introduction to neural networks. CRC press, 2014.

Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Michael Heilman. Automatic factual question generation from text. PhD thesis, Carnegie
Mellon University, 2011.

Michael Heilman and Noah A Smith. Question generation via overgenerating transforma-
tions and ranking. Technical report, Carnegie-Mellon University Language Technologies
Institute, 2009.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging.
arXiv preprint arXiv:1508.01991, 2015.

Alice Kerly, Phil Hall, and Susan Bull. Bringing chatbots into education: Towards natural
language negotiation of open learner models. Knowledge-Based Systems, 20(2):177–185,
2007.

Diederik P Kingma. Variational inference & deep learning, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Anto-
nio Torralba, and Sanja Fidler. Skip-thought vectors. In Advances in neural information
processing systems, pages 3294–3302, 2015.

Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos, Michalis V
Karamouzis, and Dimitrios I Fotiadis. Machine learning applications in cancer prog-
nosis and prediction. Computational and structural biotechnology journal, 13:8–17, 2015.

77

Volodymyr Kuleshov and Stefano Ermon. Probabilistic graphical models (cs228). https:
//ermongroup.github.io/cs228-notes/, 2017. Accessed: 2018-06-12.

Tejas D Kulkarni, William F. Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep
convolutional inverse graphics network. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 28, pages 2539–2547. Curran Associates, Inc., 2015. URL http://papers.nips.

cc/paper/5851-deep-convolutional-inverse-graphics-network.pdf.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

Valliappa Lakshmanan, Eric Gilleland, Amy McGovern, and Martin Tingley. Machine
learning and data mining approaches to climate science. In Proceedings of the 4th Inter-
national Workshop on Climate Informatics. Springer, 2015.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436,
2015.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-
promoting objective function for neural conversation models. arXiv preprint
arXiv:1510.03055, 2015a.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hierarchical neural autoencoder for
paragraphs and documents. arXiv preprint arXiv:1506.01057, 2015b.

Jiwei Li, Michel Galley, Chris Brockett, Georgios P Spithourakis, Jianfeng Gao, and Bill
Dolan. A persona-based neural conversation model. arXiv preprint arXiv:1603.06155,
2016a.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep
reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016b.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. Adver-
sarial learning for neural dialogue generation. arXiv preprint arXiv:1701.06547, 2017.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and Joelle
Pineau. How not to evaluate your dialogue system: An empirical study of unsupervised

78

https://ermongroup.github.io/cs228-notes/
https://ermongroup.github.io/cs228-notes/
http://papers.nips.cc/paper/5851-deep-convolutional-inverse-graphics-network.pdf
http://papers.nips.cc/paper/5851-deep-convolutional-inverse-graphics-network.pdf

evaluation metrics for dialogue response generation. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing, pages 2122–2132, 2016.

Xugang Lu, Yu Tsao, Shigeki Matsuda, and Chiori Hori. Speech enhancement based on
deep denoising autoencoder. In Interspeech, pages 436–440, 2013.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agar-
wal, and Gautam Shroff. Lstm-based encoder-decoder for multi-sensor anomaly detec-
tion. arXiv preprint arXiv:1607.00148, 2016.

John McCarthy. Artificial intelligence, logic and formalizing common sense. In Philosoph-
ical logic and artificial intelligence, pages 161–190. Springer, 1989.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter. Coherent dialogue with attention-
based language models. In AAAI, pages 3252–3258, 2017.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Eleventh Annual Conference of the
International Speech Communication Association, 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

Bhaskar Mitra and Nick Craswell. Neural text embeddings for information retrieval. In
Proceedings of the Tenth ACM International Conference on Web Search and Data Min-
ing, pages 813–814. ACM, 2017.

Maryam M Najafabadi, Flavio Villanustre, Taghi M Khoshgoftaar, Naeem Seliya, Randall
Wald, and Edin Muharemagic. Deep learning applications and challenges in big data
analytics. Journal of Big Data, 2(1):1, 2015.

Christopher Olah. Understanding lstm networks. http://colah.github.io/posts/

2015-08-Understanding-LSTMs/, 2015. Accessed: 2018-05-25.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th annual meeting on
association for computational linguistics, pages 311–318. Association for Computational
Linguistics, 2002.

79

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gra-
dient problem. CoRR, abs/1211.5063, 2012.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recur-
rent neural networks. In International Conference on Machine Learning, pages 1310–
1318, 2013.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543, 2014.

Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens, and
Lawrence Carin. Variational autoencoder for deep learning of images, labels and captions.
In Advances in neural information processing systems, pages 2352–2360, 2016.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Radim Rehurek and Petr Sojka. Software framework for topic modelling with large corpora.
In In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks.
Citeseer, 2010.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, and
Phil Blunsom. Reasoning about entailment with neural attention. arXiv preprint
arXiv:1509.06664, 2015.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533, 1986.

Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for
abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

80

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C Courville, and Joelle
Pineau. Building end-to-end dialogue systems using generative hierarchical neural net-
work models. In AAAI, volume 16, pages 3776–3784, 2016.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. A hierarchical latent variable encoder-decoder model for
generating dialogues. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Linfeng Song and Lin Zhao. Question generation from a knowledge base with web explo-
ration. arXiv preprint arXiv:1610.03807, 2016.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Mar-
garet Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. A neural network ap-
proach to context-sensitive generation of conversational responses. arXiv preprint
arXiv:1506.06714, 2015.

Amanda Stent, Matthew Marge, and Mohit Singhai. Evaluating evaluation methods for
generation in the presence of variation. In Proceedings of International Conference on
Intelligent Text Processing and Computational Linguistics, pages 341–351, 2005.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

TD Swinscow. Statistics at square one: Xviii-correlation. British Medical Journal, 2(6037):
680, 1976.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic rep-
resentations from tree-structured long short-term memory networks. arXiv preprint
arXiv:1503.00075, 2015.

Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Dar-
rell, and Kate Saenko. Sequence to sequence-video to text. Technical report, University
of Texas at Austin Austin United States, 2015.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pages 1096–1103. ACM, 2008.

Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint
arXiv:1506.05869, 2015.

81

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families,
and variational inference. Foundations and Trends R© in Machine Learning, pages 1–305,
2008.

Richard S Wallace. The anatomy of alice. In Parsing the Turing Test, pages 181–210.
Springer, 2009.

Joseph Weizenbaum. Elizaa computer program for the study of natural language commu-
nication between man and machine. Communications of the ACM, 9(1):36–45, 1966.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280, 1989.

Sam Wiseman and Alexander M Rush. Sequence-to-sequence learning as beam-search
optimization. arXiv preprint arXiv:1606.02960, 2016.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas Stolcke,
Dong Yu, and Geoffrey Zweig. The microsoft 2016 conversational speech recognition
system. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on, pages 5255–5259. IEEE, 2017.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudi-
nov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption
generation with visual attention. In International Conference on Machine Learning,
pages 2048–2057, 2015a.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin. Classifying relations
via long short term memory networks along shortest dependency paths. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
1785–1794, 2015b.

Xitong Yang. Understanding the variational lower bound, 2017.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Improved
variational autoencoders for text modeling using dilated convolutions. arXiv preprint
arXiv:1702.08139, 2017.

Kaisheng Yao and Geoffrey Zweig. Sequence-to-sequence neural net models for grapheme-
to-phoneme conversion. arXiv preprint arXiv:1506.00196, 2015.

82

Kaisheng Yao, Baolin Peng, Geoffrey Zweig, and Kam-Fai Wong. An attentional neural
conversation model with improved specificity. arXiv preprint arXiv:1606.01292, 2016.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, and Xiaoming Li. Neural
generative question answering. arXiv preprint arXiv:1512.01337, 2015.

Kun Zeng, Jun Yu, Ruxin Wang, Cuihua Li, and Dacheng Tao. Coupled deep autoencoder
for single image super-resolution. IEEE transactions on cybernetics, 47(1):27–37, 2017.

Biao Zhang, Deyi Xiong, Hong Duan, Min Zhang, et al. Variational neural machine trans-
lation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 521–530, 2016.

Chunting Zhou and Graham Neubig. Morphological inflection generation with multi-
space variational encoder-decoders. In Proceedings of the CoNLL SIGMORPHON
2017 Shared Task: Universal Morphological Reinflection, pages 58–65, 2017. doi:
10.18653/v1/K17-2005.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou. Neural
question generation from text: A preliminary study. In National CCF Conference on
Natural Language Processing and Chinese Computing, pages 662–671. Springer, 2017.

83

APPENDICES

84

Appendix A: Python Code for
Encoder-Decoder Models

Code is available at https://github.com/HareeshBahuleyan/tf-var-attention

85

https://github.com/HareeshBahuleyan/tf-var-attention

	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Motivation and Problem Definition
	Contributions
	Chapter Outline

	Background and Related Work
	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Deep Learning
	Introduction to Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory
	Sequence-to-Sequence Models
	Auto-encoding
	Attention Mechanism
	Variational Inference
	Question Generation
	Dialog Systems

	Sequence to Sequence Models
	Word Embeddings
	Sequence to Sequence LSTMs
	Environment and Libraries

	Variational Autoencoders
	Introduction
	Variational Inference
	Variational Autoencoders
	Reparameterization Trick
	Experiments
	Dataset
	Data Pre-processing

	VAE Optimization Challenges
	KL Cost Annealing
	Word Dropout
	Training Details
	VAE Variants

	Results
	Sentence Reconstruction and Random Sampling
	Linear Interpolation
	Sampling From Neighborhood

	Bypassing Phenomenon
	Problem Description
	Evaluation Metrics
	Entropy
	Distinct Scores

	Results

	Variational Attention for Seq2Seq Models
	Motivation
	Variational Encoder Decoder
	Attention Mechanism
	Variational Attention
	Derivation of Loss Function

	Experiments
	Datasets
	Training Details
	Quantitative Evaluation
	Qualitative Evaluation

	Summary and Conclusions
	Summary of Research Work
	Conclusions
	Future Work

	References
	APPENDICES

