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Abstract

There are two main themes of this thesis. In the first part, we study the various sets of
correlations arising in the study of non-local games and Tsirelson’s problems. In the second
part we introduce the notion of entanglement breaking rank and study its connection with
the SIC POVM existence problem.

Tsirelson’s problems have been open for quite some time and continue to be an active
area of research. These problems seek to identify relationships between different sets of
quantum correlations arising from different quantum models and their relaxations. One
of the goals of this thesis is to show that the set of correlations arising from the tensor
product model is not topologically closed, and hence is distinct from the set of correlations
arising from the commuting tensor model.

We begin our investigation in Chapter 3 by working through an example of a non-local
game with three inputs and binary outputs. While this toy example does not help in
showing the distinction between the aforementioned sets of correlations, it still provides
valuable insights and motivation for a more abstract approach which we take up in the
next chapter and which turns out to be fruitful.

In Chapter 4, we observe that given a graph we can associate functions (of a real
variable) corresponding to different correlation sets. We study the properties of these
functions. We show that for the complete graph on five vertices, the assumption that the
correlation set obtained through tensor model is closed forces its corresponding function
to be piecewise linear on an interval, while the function corresponding to the commuting
model is not. This shows that the quantum correlation set is not closed hence solving one
of Tsirelson’s problem and also improves the results of Slofstra by reducing the number of
experiments and outcomes to five and two, respectively.

Finally, for the second part of the thesis, we introduce the notion of entanglement
breaking rank of an entanglement breaking channel. While technically this notion is not
new, this point of view helps us in showing that the entanglement breaking rank of a par-
ticular channel on Md being d2 is equivalent to the existence of a SIC POVM in dimension
d. This opens up another approach to tackle this existence problem.
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Chapter 1

Introduction

The primary postulate in the axiomatic formalism of quantum mechanics is that the state
space of a quantum system is described by a Hilbert space. For describing composite
systems, another postulate states that the state space of the composite system is given by
the Hilbert space tensor product of the component state spaces [53]. However, in some other
formulations of quantum mechanics like the Algebraic Quantum Field Theory (AQFT), it
is postulated that there is a single Hilbert space (possibly infinite dimensional) which
describes all quantum systems, and the composite system is then described by adding the
condition that the observables of individual systems commute [31]. To ascertain whether
these two models are same or different, we usually have Alice and Bob run experiments in
two labs which are spatially separated but are possibly in an entangled state. Each of them
have n experiments to run and each experiment has k outcomes. To study correlations
between their outcomes and the model, we let p(i, j|v, w) denote the conditional probability
that if the labs run experiment v and w, then they get outcomes i and j, respectively. This
defines a n2k2-tuple. Assuming different mathematical models we might get different sets
of such bipartite conditional probabilities satisfying (see Section 2.1):

Cloc(n, k) ⊆ Cq(n, k) ⊆ Cqs(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k) ⊆ Cvect(n, k),

where loc, q, qs, qa, qc, vect correspond to the different models. For example, q and qc
correspond to the tensor product model and the commuting model described above. The
problem then is to determine when equalities occur in the above string of inclusions.

Tsirelson first investigated these sets in [11, 74]. The problem of determining equali-
ties of such sets are now known as Tsirelson’s problems [25, 22]. The difference between
Cloc(n, k) and Cq(n, k) is well encapsulated by the famous Bell’s theorem [3]. These prob-
lems have become an active area of research. A major development took place when it was
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shown that one of such equality problem Cqa(n, k) = Cqc(n, k) for all n, k is equivalent to
Connes’ embedding problem, a long standing problem in operator algebras [17, 39, 54]. In
2017, William Slofstra showed that Cq(n, k) 6= Cqa(n, k) using the theory of finitely pre-
sented groups and non-local games [72, 73]. His results require the number of experiments
to be on the order of 100 and k = 8. One of the objectives of this thesis is to show that
this distinction between these two sets can be seen at a much lower number, namely n = 5
and k = 2.

Moreover, it is widely suspected that the non-local game corresponding to the I3322 in-
equality (based on three experiments and binary outcomes) differentiates between Cq(3, 2)
and Cqa(3, 2). This would further improve on Slofstra’s and our results [26, 16]. However,
since it is highly asymmetric it is quite difficult to analyse. In Chapter 3 we introduce a
simpler game (called the Delta game) on three experiments and two outcomes which was
brought to our attention by Richard Cleve. Instead of computing the maximum winning
probability of the Delta game over a correlation set, we compute the maximum winning
probability with some constraints over a correlation set. This results in computing a func-
tion of a real variable instead of a number. We get separate functions for separate models.
We show that we can detect a difference between the qc and the vect model, but not be-
tween the q and qc model using the Delta game. However, this analysis provides us with
some key insights which help us to develop this line of thought abstractly continuing in
Chapter 4.

The Delta game example showed that equivalently given a graph G = (V,E) one could
define a hierarchy of functions on the interval [0, 1] corresponding to each correlation set:

floc ≥ fq ≥ fqs ≥ fqa ≥ fqc ≥ fvect ≥ 0.

We study some basic properties of these functions. For example, these functions are convex
and it suffices to describe them on the interval [0, 1

2
]. One of the striking properties that

the function fq satisfies is the following. If we assume that the set Cq(5, 2) is closed, then
the function fq is linear on some interval around every irrational number in [0, 1]. On the
other hand, we could show by comparing fq with fvect that fq has to be quadratic on some
interval. This evidently presents a contradiction and implies that Cq(5, 2) is not closed.

In Chapter 5, the final chapter of the thesis, we embark on a completely different
topic: entanglement breaking rank. Entanglement breaking maps always possess a Choi-
Kraus representation where the Choi-Kraus operators are rank one [37]. Analogous to
the Choi rank, we define the entanglement breaking rank of an entanglement breaking
map as the least number of rank one operators required in a Choi-Kraus representation.
Viewing an entanglement breaking channel as a separable state (via its Choi matrix), we
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show that the entanglement breaking rank is nothing but the length [9] or the optimal
ensemble cardinality [18] of the state in hand. While this notion is not new, we show that
computing entanglement breaking rank of certain entanglement breaking maps is equivalent
to the existence problem of symmetric informationally complete POVMs (SIC POVM).
This seems to provide us with a promising approach towards a better understanding of
separable states and the problem of SIC POVM existence.

Chapters 3 and 4 are based on [20, 21]. Chapter 5 is a selection of [56].

1.1 Notations and conventions

The following notations and conventions will be followed throughout this thesis.

1. We shall let N denote the set of positive integers {1, 2, 3, ...}; R denote the set of real
numbers; and C denote the set of complex numbers.

2. The cardinality of a set X will be denoted by |X|. When i, j ∈ {0, 1, ..., k − 1}, we
shall use the notation i⊕ j to mean i+ j modulo k.

3. All Hilbert spaces will be assumed to be over the field of complex numbers unless
specified otherwise. The inner product on a complex Hilbert space is assumed to
be linear in the first variable and conjugate linear in the second variable. Moreover,
we shall follow the usual mathematical notation 〈ξ, η〉 instead of 〈ξ|η〉 for the inner
product of vectors ξ and η in some Hilbert space. The algebra of all bounded linear
maps (called operators) on a Hilbert space H will be denoted by B(H). The adjoint
of an operator T ∈ B(H) will be denoted by T ∗. An operator P ∈ B(H) is called a
projection if P = P ∗ = P 2.

4. Let d ∈ N. We shall let Cd denote the Hilbert space of n-tuples of complex numbers
with the usual inner product. We shall denote the space of d × d complex matrices
by Md, which may be identified as B(Cd). The trace of a matrix A = [ai,j] ∈ Md

is defined by Tr(A) =
∑d

i=1 ai,i. The normalised trace of A is denoted and defined
by trd(A) = 1

d
Tr(A). The space Md has a natural inner product called the Hilbert-

Schmidt inner product given by 〈A,B〉2 := Tr(AB∗) for all A,B ∈ Md. Set ‖A‖2
2 :=

〈A,A〉2; for example ‖Id‖2 =
√
d.

5. A graph will always be a simple graph (undirected graph with no loops or multiple
edges). A graph G is described by G = (V,E), where V is the set of vertices, and
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E ⊆ V × V is the set of edges. If v and w are adjacent vertices of a graph, we shall
denote it by v ∼ w.
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Chapter 2

Tsirelson’s problems for a bipartite
system

2.1 Non-local games

We outline the general theory of two-player non-local games in this section. Such games
have been useful in understanding the power of entanglement in quantum information
theory [13].

A two-player non-local game is played by two players, Alice (A) and Bob (B), cooper-
atively against a referee (R). The game has a set of rules given by a function λ called the
rule function or the predicate function of the game,

λ : IA × IB ×OA ×OB → {0, 1},

where IA, IB, OA, OB are non-empty finite sets. The sets IA and IB are referred to as the
input sets or question sets, while OA and OB are called the output sets or answer sets,
and the labels A and B refer to Alice and Bob, respectively. Thus, a two-player non-local
game is completely described by the 5-tuple G = (IA, IB, OA, OB, λ). Since we shall be
exclusively focused on two-player games, we shall drop the term “two-player” and call
them “non-local games” or simply “games”.

For one round of the game, the referee passes an element v ∈ IA to Alice and an element
w ∈ IB to Bob. Alice and Bob do not know what input the other player has received. Alice
and Bob “independently” produce outputs i ∈ OA and j ∈ OB, respectively. They “win”
the game if λ(v, w, i, j) = 1, and lose if λ(v, w, i, j) = 0. Such a round could be repeated
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a number of times with the referee passing different inputs and the players replying with
outputs. Notice that the players could reply with different outputs for the same inputs in
two different rounds.

The following are some simple examples of non-local games.

Example 2.1.1 (The Graph Colouring Game). Let G = (V,E) be a graph. Recall that
a k-colouring of the graph G is a function f : V → {1, ..., k} such that (v, w) ∈ E implies
f(v) 6= f(w).

We define a non-local game based on this graph and a set of k colors. Let IA = IB = V
be the set of vertices, and let OA = OB = {1, ..., k} be a set of colors. In this non-local
game, Alice and Bob, try to convince the referee that they have a k-colouring of the graph.
If they are given adjacent vertices in a round, then they win if they produce different
colours. On the other hand, they must produce the same colour if they are given the same
vertex. In the case when they are given vertices which are neither equal nor adjacent, they
can pass arbitrary colours to the referee without losing. Thus the rules of the game may
be encoded with the following rule function,

λ(v, w, i, j) =



1 if v ∼ w and i 6= j,

0 if v ∼ w and i = j,

1 if v = w and i = j,

0 if v = w and i 6= j,

1 if v � w and v 6= w.

Example 2.1.2 (The CHSH Game). The CHSH game essentially arose from the work in
[12]. For the CHSH game, we have binary inputs and binary outputs IA = IB = OA =
OB = {0, 1}, and the rule function is described by λ(v, w, i, j) = 1⇔ vw = i⊕ j.

Alice and Bob are aware of the rules (that is, the rule function λ) of the game and they
need to play cooperatively in order to “win” but they are not allowed to communicate
during the game. Hence, together they work out a “strategy” before the game begins.
Given a non-local game G = (IA, IB, OA, OB, λ), one of the natural strategies available to
Alice and Bob is to use functions fA : IA → OA and fB : IB → OB. Thus, when the referee
passes v ∈ IA to Alice and w ∈ IB to Bob, they simply apply the functions fA and fB to
their respective inputs and pass the answers fA(v) and fB(w) to the referee. Such a strategy
is called a deterministic strategy. A perfect or winning deterministic strategy for Alice and
Bob would then be a pair of functions (fA, fB) as above such that λ(v, w, fA(v), fB(w)) = 1
for all v ∈ IA, w ∈ IB.
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Example 2.1.3. Let G = (V,E) be a graph and consider the graph colouring game for
the graph with k colours (Example 2.1.1). It is not too hard to verify that there exists
a perfect deterministic strategy for the game if and only if there exists a k-colouring of
the graph. We shall see later (Example 2.1.16), that using certain probabilistic strategies
Alice and Bob can win such a game even when there does not exist a perfect deterministic
strategy.

More generally, Alice and Bob can employ probabilistic strategies. The idea behind
probabilistic strategies is that even though there might not exist a perfect deterministic
strategy to win the game, the players can generate outputs according to some probability
distribution and maximise their chance of winning the game overall by utilising the flexi-
bility offered by the rule function. A probabilistic strategy gives rise to a joint probability
distribution

(p(i, j|v, w))v∈IA,w∈IB ,i∈OA,j∈OB , (2.1.1)

which could be observed by playing multiple rounds of the game and recording the statis-
tics. The number p(i, j|v, w) is the joint conditional probability that Alice and Bob produce
outputs i ∈ OA and j ∈ OB, respectively, when given inputs v ∈ IA and w ∈ IB, respec-
tively. Thus, if |IA| = nA, |IB| = nB, |OA| = kA, |OB| = kB, we have an nAnBkAkB-tuple of
non-negative numbers. Observe that a deterministic strategy (fA, fB) gives rise to a joint
probability distribution trivially: p(i, j|v, w) = 1 if and only if i = fA(v) and j = fB(w).
Henceforth, any tuple

(p(i, j|v, w))v∈IA,w∈IB ,i∈OA,j∈OB ∈ RnAnBkAkB ,

satisying

p(i, j|v, w) ≥ 0, and
∑

(i,j)∈OA×OB

p(i, j|v, w) = 1, ∀(v, w) ∈ IA × IB,

will be called a correlation. Notice that the set of all correlations is a closed convex set in
RnAnBkAkB .

We shall abuse the terminology sometimes by using the terms “strategy” and “correla-
tion” interchangeably. We shall also drop the subscripts in Expression (2.1.1) and simply
write it as (p(i, j|v, w)).

The condition that the players do not communicate introduces a constraint on the con-
ditional probability densities p(i, j|v, w) in the following way. Let pA(i|v) be the conditional
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probability that Alice produces output i ∈ OA when she is given input v ∈ IA. Similarly,
let pB(j|w) be the conditional probability that Bob produces output j ∈ OB when he is
given input w ∈ IB. These are called the marginal densities for Alice and Bob. Now,
if Alice and Bob do not communicate during the game we would expect these marginal
densities to be independent of the input that the other player gets. Thus, we would expect
pA(i|v) to be independent of w, and similarly, we would expect pB(j|w) to be independent
of v. Simple probabilistic considerations tell us that

pA(i|v) =
∑
j∈OB

p(i, j|v, w), pB(j|w) =
∑
i∈OA

p(i, j|v, w). (2.1.2)

Hence, the fact that the players do not communicate during the game is reflected by the
fact that the sums in Formulae (2.1.2) are well-defined, that is, the above sums do not
depend on w and v, respectively. Non-signalling correlations are exactly the subset of
correlations for which there exist such well-defined marginal densities [11, 62]. These are
the largest set of correlations which we shall work with in this thesis. We define them
formally as follows.

Definition 2.1.4 (Non-signalling Correlations). A correlation (p(i, j|v, w)) is called a non-
signalling correlation if the marginal densities pA(i|v) and pB(j|w) are well-defined for all
v ∈ IA and w ∈ IB, that is,

pA(i|v) =
∑
j∈OB

p(i, j|v, w) =
∑
j∈OB

p(i, j|v, w′), w, w′ ∈ IB,

pB(j|w) =
∑
i∈OA

p(i, j|v, w) =
∑
i∈OA

p(i, j|v′, w), v, v′ ∈ IA.

We let Cns(nA, nB, kA, kB) denote the set of all such non-signalling correlations. We set
Cns(n, k) = Cns(n, n, k, k).

Observe that
∑

i∈OA pA(i|v) =
∑

j∈OB pB(j|w) = 1, as expected. We again remark that
whenever we shall use the term correlation in general, we shall refer to a non-signalling
correlation. It is easy to establish that the set Cns(nA, nB, kA, kB) is a closed convex set in
RnAnBkAkB .

Certain probabilistic strategies chosen by Alice and Bob may always lead to a win,
and rightly so are called winning or perfect strategies. This happens when Alice and Bob
never produce outputs for which they lose (i.e. λ(v, w, i, j) = 0 implies p(i, j|v, w) = 0),
a requirement for winning. The correlations arising from perfect strategies are formally
defined as follows.
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Definition 2.1.5. Suppose G = (IA, IB, OA, OB, λ) is a non-local game. A correlation
(p(i, j|v, w)) is called a winning or perfect correlation for G if λ(v, w, i, j) = 0 implies
p(i, j|v, w) = 0.

As a trivial example, notice that the correlation arising from a perfect deterministic
strategy is a perfect correlation.

More generally, we can associate a probability of winning the game to a probabilistic
strategy. To compute the probability the players need to know the probability distribution
through which the referee distributes the inputs. Assume that the referee sends inputs
v, w to the players according to some probability distribution π : IA × IB → [0, 1]. That
is, π(v, w) ≥ 0 for all (v, w) ∈ IA × IB and∑

(v,w)∈IA×IB

π(v, w) = 1.

The players also know this distribution beforehand and can incorporate this information
in deciding their strategies.

Given a set of different strategies we can take the supremum of all their winning prob-
abilities leading to a maximum winning probability for that set. Again, we define this
winning probability formally for correlations arising from strategies.

Definition 2.1.6. Let G = (IA, IB, OA, OB, λ) be a non-local game. The value of a corre-
lation p = (p(i, j|v, w)) given the game G and a distribution π : IA× IB → [0, 1], is defined
by

V (p, π) =
∑

v∈IA,w∈IB ,i∈OA,j∈OB

π(v, w)λ(v, w, i, j)p(i, j|v, w).

The value of the game G with respect to a distribution π and a set F of correlations is
defined by

ωF(G, π) = sup {V (p, π) : p ∈ F} . (2.1.3)

Since the set of all non-signalling correlations is a compact set in a finite-dimensional
vector space, whenever F is closed, the supremum over F in Equation (2.1.3) will be
attained. Also, notice that if F ⊆ F ′ are two sets of correlations, then ωF(G, π) ≤
ωF ′(G, π); if strict inequality holds then we have F ( F ′. This idea will be one of the
ways by which we will show the distinction between two different sets of strategies later
(Proposition 2.1.15).

The following easily established lemma shows how a correlation being perfect is related
to its value for a non-local game.
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Lemma 2.1.7 ([22]). Let G = (IA, IB, OA, OB, λ) be a non-local game with a given proba-
bility distribution π : IA × IB → [0, 1]. If p = (p(i, j|v, w)) is a perfect correlation for the
game, then V (p, π) = 1. Conversely, if π(v, w) > 0 for all v, w, and a correlation has value
1, then it is a perfect correlation.

Broadly speaking, Alice and Bob have two distinct ways to devise (probabilistic) strate-
gies: classical and quantum. One possible way to describe classical strategies is the follow-
ing. Alice has access to a set of (possibly loaded) dies numbered 1, 2, ..., nA, where each die
has kA outputs. Given an input v ∈ IA, Alice can roll her die numbered v, and pass the
output w ∈ OA to the referee. Bob also performs similar classical experiments to produce
outputs. More generally, a classical strategy arises from using local hidden variables (or
in computer science terminology, shared randomness). The correlations arising from such
classical strategies are called classical correlations which we formally define now. Thus,
classical correlations model the presence of hidden variables [5].

Definition 2.1.8 (Classical Correlations). A correlation (p(i, j|v, w)) is called a classical
correlation or a local correlation, if Alice and Bob share a probability space (Ω, µ), Alice
has a collection of random variables {fv | fv : Ω → OA}v∈IA , and similarly Bob has a
collection of random variables {gw | gw : Ω→ OB}w∈IB , such that

p(i, j|v, w) = µ ({ω ∈ Ω : fv(ω) = i, gw(ω) = j}) .

The set of all correlations (p(i, j|v, w)) arising from all choices of the probability space
and the random variables is called the set of classical correlations and is denoted by
Cloc(nA, nB, kA, kB). We set Cloc(n, k) = Cloc(n, n, k, k).

It is again not too hard to establish that the set of classical correlations also forms a
closed convex set; in fact it is a polytope. We record this fact.

Proposition 2.1.9 ([5]). For all nA, nB, kA, kB ∈ N, the set Cloc(nA, nB, kA, kB) is a closed
convex set and Cloc(nA, nB, kA, kB) ⊆ Cns(nA, nB, kA, kB). Moreover:

(a) the set may be realised as the closed convex hull of all correlations (p(i, j|v, w)) arising
from deterministic strategies. Since there are finitely many deterministic strategies,
the set of classical correlations is a polytope.

(b) The set may be realised as the closed convex hull of all correlations (p(i, j|v, w))
having the property

p(i, j|v, w) = p1(i|v)p2(j|w),
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where p1(i|v) ≥ 0, p2(j|w) ≥ 0,
∑

i∈OA p1(i|v) = 1 and
∑

j∈OB p2(j|w) = 1. (In other
words, {(p(i|v))i∈OA : v ∈ IA} and {(p(j|w))j∈OB : w ∈ Ib} are sets of conditional
probability distributions with kA-outcomes and kB-outcomes, respectively.)

We remark that in the Physics literature, part (b) in Proposition 2.1.9 is usually taken
as a definition of classical correlations. In particular, this factorisation property (or locality
condition) is seen as manifestations of hidden variable theory. For a survey on this subject
we refer the reader to [5].

Even though we have resorted to using probabilities, the following proposition says that
classical strategies are as good as deterministic strategies in winning a game. This follows
readily from Proposition 2.1.9.

Proposition 2.1.10 ([24]). Let G = (IA, IB, OA, OB, λ) be a non-local game with a prob-
ability distribution π : IA × IB → [0, 1]. The game has a perfect deterministic strategy if
and only if it has a perfect classical strategy.

Quantum strategies, on the other hand, are remarkable as they can be used to win
games which may be impossible to win with classical strategies (Example 2.1.16). Even in
the simple case of CHSH game in Example 2.1.2, the players can have a higher probability of
winning if they employ quantum strategies than using classical ones (Proposition 2.1.15).
That quantum probabilities fare better was essentially first shown by John Bell in his
seminal paper [3].

To explain quantum strategies we shall assume familiarity with the basics of quantum
information, for example, Section I.2.2 of [53] will suffice. To devise a quantum strategy,
Alice and Bob share an entangled state and have access to quantum measurement systems
which they use to generate probabilities (Section I.2.2.3 of [53]). More precisely, let G =
(IA, IB, OA, OB, λ) be a non-local game. For each input v ∈ IA, Alice has a quantum
measurement system Mv which has outcomes in OA. So, when she gets input v ∈ IA,
she runs the measurement system Mv, and returns the output i ∈ OA obtained from the
experiment to the referee. Similarly, Bob has a quantum measurement system Nw for each
input w ∈ IB having outcomes in the set OB. Different trials of the same experiment can
result in different outcomes.

Since we shall be working with probabilities, it is enough to consider POVM measure-
ments (Section I.2.2.6 of [53]) which we quickly recall.

Definition 2.1.11. A set {Rk}Kk=1 of operators on some Hilbert space H is called a positive
operator-valued measure (POVM) if Rk ≥ 0, for each k, and

∑K
k=1Rk = IH. A set

of projections {Pk}Kk=1 on some Hilbert space H is called a projection-valued measure if∑K
k=1 Pk = IH.
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Notice that every PVM is a POVM. Also, if a set of projections {Pk}Kk=1 form a PVM,
then PiPj = 0 for all i 6= j. In other words, they correspond to mutually orthogonal closed
subspaces of the Hilbert space H.

We get (possibly) different sets of quantum strategies depending upon whether we allow
the state spaces of Alice and Bob to be finite dimensional or infinite dimensional. When
we consider finite-dimensionality, we get the set of quantum correlations.

Definition 2.1.12 (Quantum Correlations). A correlation (p(i, j|v, w)) is called a quantum
correlation if

(a) Alice’s and Bob’s state spaces are given by finite-dimensional Hilbert spaces HA and
HB, respectively,

(b) for each input v ∈ IA, Alice has a POVM {Pv,i}i∈OA on HA, and similarly for each
input w ∈ IB, Bob has a POVM {Qw,j}j∈OB on HB, and

(c) they share a state (possibly entangled) h ∈ HA ⊗HB,

such that p(i, j|v, w) = 〈(Pv,i ⊗Qw,j)h, h〉.
The set of all correlations (p(i, j|v, w)) arising from all choices of finite-dimensional

Hilbert spaces HA,HB, all POVMs and all states h ∈ HA⊗HB is called the set of quantum
correlations, and is denoted by Cq(nA, nB, kA, kB). We set Cq(n, k) = Cq(n, n, k, k).

We may relax Definition 2.1.12 above by allowing the Hilbert spaces appearing therein
to be infinite dimensional. This gives rise to the set of spatial quantum correlations.

Definition 2.1.13 (Spatial Quantum Correlations). A correlation (p(i, j|v, w)) is called a
spatial quantum correlation if

(a) Alice’s and Bob’s state spaces are given by (possibly infinite dimensional) Hilbert
spaces HA and HB, respectively,

(b) for each input v ∈ IA, Alice has a POVM {Pv,i}i∈OA on HA, and similarly for each
input w ∈ IB, Bob has a POVM {Qw,j}j∈OB on HB, and

(c) they share a state (possibly entangled) h ∈ HA ⊗HB,

such that p(i, j|v, w) = 〈(Pv,i ⊗Qw,j)h, h〉.
The set of all correlations (p(i, j|v, w)) arising from all choices of Hilbert spacesHA,HB,

all POVMs and all states h ∈ HA ⊗HB is called the set of spatial quantum correlations,
and is denoted by Cqs(nA, nB, kA, kB). We set Cqs(n, k) = Cqs(n, n, k, k).

12



We have the following proposition relating the correlation sets discussed so far. The
first inclusion was shown in [61]. The second inclusion follows trivially from the definition
and the third inclusion is easy to check. The convexity of the sets of quantum correlations
and spatial quantum correlations is shown in Lemma 2.1 in [25].

Proposition 2.1.14 ([61, 25]). For all nA, nB, kA, kB ∈ N, we have

Cloc(nA, nB, kA, kB) ⊆ Cq(nA, nB, kA, kB) ⊆ Cqs(nA, nB, kA, kB) ⊆ Cns(nA, nB, kA, kB),

and Cq(nA, nB, kA, kB) and Cqs(nA, nB, kA, kB) are convex sets in RnAnBkAkB .

The first inclusion in Proposition 2.1.14 is usually a proper inclusion as the following
two examples demonstrate. The third inclusion is also a proper inclusion [41, 62].

Proposition 2.1.15 ([13, 12, 41, 11]). Consider the CHSH game described in Example
2.1.2 and assume that the referee passes on the inputs (v, w) with a uniform distribu-
tion. The maximum winning probability when the players restrict to classical strategies is
0.75, while the maximum winning probability when the players use quantum strategies is
cos2(π/8) ≈ 0.85. In particular, Cloc(2, 2) ( Cq(2, 2).

Example 2.1.16 ([4, 29, 2]). There exists a graph (specifically, the Hadamard graph G12)
for which the associated graph colouring game with 12 colours has a perfect quantum
strategy but no perfect classical strategy. (The referee passes the vertices to the players
according to the uniform distribution π : V × V → [0, 1] on {(v, v) : v ∈ V } ∪ E.)

However, for the second inclusion in Proposition 2.1.14, it was not known whether it is
proper or not for all nA, nB, kA, kB ∈ N until very recently through the work of Coladangelo
and Stark [15]. Moreover, for around two and a half decades it was not known whether
these two quantum correlation sets are closed or not till the recent work of William Slofstra
[72, 73]. This thesis also arrives at the same conclusion but with considerably smaller input
and output sets and with entirely new methods. It is not obvious why these results matter
unless we see it in a broader context which we describe next.

In defining the quantum and spatial quantum correlation sets in Definitions 2.1.12 and
2.1.13, respectively, we are assuming a fundamental axiom that is used almost always in
quantum information theory: given two individual quantum systems with state spaces HA

and HB, respectively, the state space of the composite system is described by the Hilbert
space HA ⊗ HB (for more details see Section I.2.2.8 in [53]). However, as Tobias Fritz
points out in the introduction of [25], this axiom is open to challenge by not having a strong
justification. In some more general axiomatic formulations (more general in the sense that
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they incorporate general relativity) of quantum mechanics, like the Algebraic Quantum
Field Theory (AQFT), it is posited that there is a universal Hilbert space (possibly infinite
dimensional) for Alice and Bob (as opposed to having possibly different Hilbert spaces for
Alice and Bob in the usual formulation) and the measurement operators corresponding to
both players commute. Then the question that arises is whether these two formulations
yield the same correlation sets. For a more detailed discussion we refer the reader to the
introduction by Fritz in his paper [25] (and also [39] by Junge et. al.). We introduce the
set of correlations obtained via this commuting framework.

Definition 2.1.17 (Commuting Quantum Correlations). A correlation (p(i, j|v, w)) is
called a commuting quantum correlation if

(a) Alice’s and Bob’s state space is a common (possibly infinite dimensional) Hilbert
space H,

(b) for each input v ∈ IA, Alice has a POVM {Pv,i}i∈OA and for each input w ∈ IB, Bob
has a POVM {Qw,j}j∈OB on the Hilbert space H, such that Pv,iQw,j = Qw,jPv,i for
all i, j, v, w (which explains the name commuting), and

(c) they share a state h ∈ H,

such that p(i, j|v, w) = 〈Pv,iQw,jh, h〉.
The set of all correlations (p(i, j|v, w)) arising from all choices of Hilbert space H, all

POVMs and all states h ∈ H is called the set of commuting quantum correlations, and is
denoted by Cqc(nA, nB, kA, kB). We set Cqc(n, k) = Cqc(n, n, k, k).

Thus observe that the tensor product model gives rise to the set of quantum correlations
and the commuting model gives rise to the set of commuting quantum correlations.

We now record some properties of the set of commuting quantum correlation and its
relations with the previous ones.

Theorem 2.1.18. For all nA, nB, kA, kB ∈ N, the set Cqc(nA, nB, kA, kB) is a closed convex
set, and

Cqs(nA, nB, kA, kB) ⊆ Cqc(nA, nB, kA, kB) ⊆ Cns(nA, nB, kA, kB).

Proof. The first inclusion follows from the observation

〈(Pv,i ⊗Qw,j)h, h〉 = 〈(Pv,i ⊗ IHB)(IHA ⊗Qw,j)h, h〉 .
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To show the second inclusion, let (p(i, j|v, w)) ∈ Cqc(nA, nB, kA, kB). Then, by Definition
2.1.17, there exist POVMs {Pv,i : i ∈ OA} and {Qw,j : j ∈ OB} for each v ∈ IA and w ∈ IB,
in some Hilbert space H, with the condition [Pv,i, Qw,j] = 0 for all v, w, i, j, and such that
p(i, j|v, w) = 〈Pv,iQw,jh, h〉. The commutativity condition implies that for all i, j, v, w,[

P
1
2
v,i, Q

1
2
w,j

]
= 0.

Using this, it follows that

p(i, j|v, w) = 〈Pv,iQw,jh, h〉 =
〈
P

1
2
v,iQ

1
2
w,jh, P

1
2
v,iQ

1
2
w,jh

〉
≥ 0.

Moreover, using the POVM condition, we obtain∑
i∈OA
j∈OB

p(i, j|v, w) =
∑
i∈OA
j∈OB

〈Pi,jQw,jh, h〉 =

〈∑
j∈OB

Qw,jh,
∑
i∈OA

Pv,ih

〉
= 〈h, h〉 = 1.

Thus (p(i, j|v, w)) is indeed a correlation. That this correlation satisfies the non-signalling
condition follows from

pA(i|v) =
∑
j∈OB

p(i, j|v, w) =
∑
j∈OB

〈Pv,iQw,jh, h〉 =

〈
Pv,ih,

∑
j∈OB

Qw,jh

〉
= 〈Pv,ih, h〉 ,

which is clearly independent from w. Similarly, the other non-signalling condition is also
fulfilled.

Finally, that the set Cqc(nA, nB, kA, kB) is closed and convex is proved in Proposition
3.4 in [25].

Since it is not known whether Cq(nA, nB, kA, kB) is closed or not for all nA, nB, kA, kB,
we introduce the (topological) closure of the set,

Cqa(nA, nB, kA, kB) := Cq(nA, nB, kA, kB).

As usual, we let Cqa(n, k) = Cqa(n, n, k, k). We have the following relation.

Proposition 2.1.19 ([68]). For all nA, nB, kA, kB ∈ N, Cqa(nA, nB, kA, kB) is closed convex
set and

Cq(nA, nB, kA, kB) ⊆ Cqs(nA, nB, kA, kB) ⊆ Cqa(nA, nB, kA, kB) ⊆ Cqc(nA, nB, kA, kB).

Moreover, Cqa(nA, nB, kA, kB) = Cqs(nA, nB, kA, kB).
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Boris Tsirelson was the first to investigate these correlation sets arising from different
quantum models in [74] in which he assumed that the tensor product model and the
commuting model yield the same set of correlations implying that these two models are
essentially the same. That is, Tsirelson originally wanted to show that Cq(n, k) = Cqc(n, k)
for all n, k ∈ N. However, when the authors of [52] requested a proof from Tsirelson, he
could not supply one except in the case of finite-dimensional Hilbert spaces. He then
published this as an open question on the website [75]. In the absence of a proof, one can
ask several weaker questions.

Problem 2.1.20 (Tsirelson’s Problems). For which r, s ∈ {q, qs, qa, qc} do we have the
equality Cr(n, k) = Cs(n, k) for all n, k? In particular, for which r ∈ {q, qs, qa} do we have
Cr(n, k) = Cqc(n, k) for all n, k?

Depending upon what r we choose we get different versions of Tsirelson’s problems.
In Vern Paulsen’s terminology [22], the problem whether Cq(n, k) = Cqc(n, k) for all n, k
is referred to as the strong Tsirelson’s problem, while the problem whether Cqa(n, k) =
Cqc(n, k) for all n, k is referred to as the weak Tsirelson’s problem.

Incidentally, when the number of inputs and outputs is binary, all the quantum corre-
lation sets coincide.

Proposition 2.1.21 ([25, 23, 50]). We have Cq(2, 2) = Cqs(2, 2) = Cqa(2, 2) = Cqc(2, 2).

There has been a renewed interest in the study of these problems since it was shown
that one of Tsirelson’s problems is equivalent to a long standing problem in Operator
Algebras: Connes’ embedding problem [25, 39, 54].

Conjecture 2.1.22 (Connes’ Embedding Conjecture, [17]). Any finite von Neumann alge-
bra (M, τ) with separable predual is embeddable into the ultrapower Rω of the hyperfinite
II1-factor R.

In [39], it was proved that if Connes’ embedding conjecture is true then Cqa(n, k) =
Cqc(n, k) for all n, k ∈ N. The converse was shown in [54].

Theorem 2.1.23 ([39, 54]). Connes’ embedding conjecture is true if and only if Cqa(n, k) =
Cqc(n, k) for all n, k ∈ N.

Intimately related to Tsirelon’s problems are the following questions. Are the sets
Cq(n, k) and Cqs(n, k) closed? For example, if Cq(n, k) is not closed then Cq(n, k) (
Cqc(n, k) solving one of Tsirelson’s problems. Indeed, recently Slofstra showed the following
using the representation theory of finitely presented groups.
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Theorem 2.1.24 ([72]). There is a non-local game for which there exists a perfect corre-
lation in Cqc(nA, nB, kA, kB) for some nA, nB, kA, kB ∈ N, but no perfect correlation exists
in Cqs(nA, nB, kA, kB).

Theorem 2.1.25 ([73]). There is a non-local game G for which there exists a perfect
correlation in Cqa(184, 235, 8, 2), but no perfect correlation exists in Cqs(184, 235, 8, 2). In
particular, the correlation sets Cq(184, 235, 8, 2) and Cqs(184, 235, 8, 2) are not closed.

We shall show in Chapter 4 that in fact the input and output sets can be made even
smaller. We use methods from the theory of C∗-algebras which are completely different
from Slofstra to show the following.

Theorem 2.1.26 ([21]). The correlation sets Cq(5, 2) and Cqs(5, 2) are not closed.

However, it still remains an open question whether the input sets can be made even
smaller. It is conjectured [55] that Cq(3, 2) is not closed and can be exhibited by the
so-called I3322-game.

Open Problem 2.1.27. Are the correlation sets Cq(n, 2) and Cqs(n, 2) closed for n = 3
and n = 4?

In general, the following conjecture is due to Vern Paulsen.

Conjecture 2.1.28. We have Cq(n, k) 6= Cqc(n, k) for some n, k ∈ N if and only if there
is some non-local game with n inputs and k outputs which can be played perfectly using a
limit of finite-dimensional quantum strategies but which cannot be played perfectly if the
dimension of Hilbert space is fixed.

Very recently, Coladangelo and Stark showed using the notion of self testing that in
general the quantum correlation and spatial quantum correlation sets are not equal.

Theorem 2.1.29 ([15]). We have Cq(4, 5, 3, 3) 6= Cqs(4, 5, 3, 3).

These results settle all the Tsirelson’s problems except the part which is equivalent
to Connes’. There are some variants of non-local games such as ones with “quantum
questions” or with infinite output/input sets, in which the analogue of these questions have
been studied, for example see [47, 49, 65, 14]. Quantum correlation sets have also been
looked through the lens of completely positive semidefinite cone [6]. An analogous theory
of unitary correlations sets has been developed by Sam Harris in [32, 33]. He showed that if
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UCqc(n, n) and UCq(n, n) denote the sets of unitary correlations in commuting model and

tensor product model, respectively, then UCqc(n, n) = UCq(n, n) for all n ≥ 2 is equivalent
to Connes’ embedding conjecture.

There is yet another set of correlations which first arose in [52] where they form the
first level of the NPA hierarchy called Q1 (and also as almost quantum correlations in [51]).
They have been used to approximate the quantum value for unique games in [40]. They
have been also studied in the context of vectorial chromatic number [60].

Definition 2.1.30 (Vector Correlations). A correlation (p(i, j|v, w)) is called a vector
correlation if there are sets of vectors {xv,i : v ∈ IA, i ∈ OA}, {yw,j : w ∈ IB, j ∈ OB} in
some Hilbert space H and a unit vector h ∈ H, which satisfy

1. xv,i ⊥ xv,j for all v ∈ IA and i 6= j ∈ OA,

2. yw,i ⊥ yw,j for all w ∈ IB and i 6= j ∈ OB,

3.
∑

i∈OA xv,i = h =
∑

j∈OB yw,j for all v, w,

4. 〈xv,i, yw,j〉 ≥ 0 for all v, w, i, j,

and such that p(i, j|v, w) = 〈xv,i, yw,j〉.
The set of all correlations (p(i, j|v, w)) arising from all choices of Hilbert space and

vectors therein satisfying above conditions is called the set of vector correlations and is
denoted by Cvect(nA, nB, kA, kB). We set Cvect(n, k) = Cvect(n, n, k, k).

Since all of the inner products appearing in Definition 2.1.30 are real-valued, there is
no generality lost in requiring H to be a real Hilbert space. Vector correlations are also
non-signalling (Definition 2.1.4) and form a closed convex set.

Proposition 2.1.31 ([11, 58]). For all nA, nB, kA, kB, the set Cvect(nA, nB, kA, kB) is a
closed convex set and

Cqc(nA, nB, kA, kB) ⊆ Cvect(nA, nB, kA, kB) ⊆ Cns(nA, nB, kA, kB).

Moreover, Cqc(2, 2) = Cvect(2, 2), extending the set equalities in Proposition 2.1.21.

Before ending this section, we state two results which we shall use in the next section.
One of the first simplifications towards understanding the different quantum correlation
sets is the following proposition. If we modify Definitions 2.1.12, 2.1.13, and 2.1.17 by
replacing “POVM” with “PVM” we get essentially the same sets of correlations. This
gives us the benefit of working with simpler operators and makes the analysis easier.
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Proposition 2.1.32. Let C̃q(n, k), C̃qs(n, k), C̃qc(n, k) be the sets obtained by replacing
“POVM” with “PVM” in Definitions 2.1.12, 2.1.13, and 2.1.17. Then, for every n, k ∈ N,
we have

(a) Cq(n, k) = C̃q(n, k),

(b) Cqs(n, k) = C̃qs(n, k),

(c) Cqc(n, k) = C̃qc(n, k).

Proof. Part (a) and (b) are non-trivial. The core idea is to use Naimark’s dilation theorem
[57]. On the Hilbert space HA, we use the dilation theorem to dilate one set of POVMs on
HA to a set of PVMs on a larger Hilbert space KA. Then we lift the remaining POVMs to
this larger space and iterate. Similarly, we dilate Bob’s POVMs to another larger Hilbert
space KB, and then one considers the tensor products of these PVMs on KA ⊗KB. For a
detailed proof we refer the reader to [58].

Part (c) is considerably more difficult and we refer the reader to Proposition 3.4 in [25],
or Remark 10 in [39], or [60].

The next proposition characterises correlations in Cloc(n, k) and Cq(n, k) as members
of Cqc(n, k). Relevant literature in this context are [74, 19, 50].

Proposition 2.1.33 (Theorem 5.3 and Remark 5.4 in [59]). A correlation (p(i, j|v, w))
belongs to the set Cq(n, k) if and only if (p(i, j|v, w)) ∈ Cqc(n, k) and such that there exists
a finite dimensional Hilbert space (as in Definition 2.1.17) which realises the correlation.
Similarly, a correlation (p(i, j|v, w)) belongs to Cloc(n, k) if and only if (p(i, j|v, w)) ∈
Cqc(n, k) and such that all the operators in its realisation commute.

We indicated in the paragraph after Definition 2.1.6 that the notion of value of a non-
local game can be used to distinguish two sets of correlations. Since we shall be interested in
the correlation sets Cr(nA, nB, kA, kB) for various values of r described earlier, we introduce
a notation to talk about the values of a game with respect to these sets.

Definition 2.1.34. Let G = (IA, IB, OA, OB, λ) be a non-local game with a probability
distribution π : IA × IB → [0, 1]. Let r ∈ {loc, q, qs, qa, qc, vect, ns}. A perfect correlation
(p(i, j|v, w)) is called a perfect r-correlation if (p(i, j|v, w)) ∈ Cr(nA, nB, kA, kB). A strat-
egy which yields a perfect r-correlation is called a perfect r-strategy. The r-value of G is
defined as ωr(G, π) = ωF(G, π), where F = Cr(nA, nB, kA, kB).
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For example, for the CHSH game in Proposition 2.1.15 we may write ωloc(CHSH) =
0.75, whereas ωq(CHSH) ≈ 0.85. Observe that ωq(G, π) = ωqs(G, π) = ωqa(G, π) for all
non-local games G and all distributions π. Therefore, just computing these numbers won’t
imply that Cq(n, k) ( Cqa(n, k). Moreover, computing these numbers is hard.

2.2 Synchronous correlations

In this section, we focus on an another major simplification towards understanding the
correlation sets described in the previous section. To do so we study the subset of syn-
chronous correlations for each correlation set. The notion of synchronous subsets was first
formulated by Vern Paulsen et. al. in [59, 22]. The motivation for this arises from instances
of a special kind of non-local games like the graph colouring games. Notice that in the
graph colouring game, the rules dictate that whenever the referee passes the same input to
the players, they must return the same output in order to win the game. In contrast, the
CHSH game does not share this property, since if the referee passes 1 to both Alice and
Bob, they cannot both respond with 0 (or 1) to win.

Definition 2.2.1. A non-local game G = (IA, IB, OA, OB, λ) is called synchronous if IA =
IB = I and OA = OB = O and λ(v, v, i, j) = 0 for all v ∈ I and i 6= j ∈ O.

It is then a simple exercise to show the following lemma which motivates the following
definition.

Lemma 2.2.2. Let G = (I, I, O,O, λ) be a synchronous non-local game. If (p(i, j|v, w)) is
a perfect correlation for the game then p(i, j|v, v) = 0 for all v ∈ I and i 6= j ∈ O.

Definition 2.2.3. Let v, w ∈ I and i, j ∈ O. A correlation (p(i, j|v, w)) is called a
synchronous correlation if p(i, j|v, v) = 0 for all v ∈ I and i 6= j ∈ O. This means that
whenever Alice and Bob get the same input they always produce the same outputs.

If F is a set of correlations, we let F s ⊆ F denote the subset of synchronous correlations
in F . Notice that if F is closed then the subset F s is also closed. Also, if F1 = F2

are two sets of correlations, then F s1 = F s2 . However, the converse need not hold. Let
r ∈ {loc, q, qs, qa, qc, vect, ns}. We let Cs

r (n, k) ⊆ Cr(n, k) denote the subset of synchronous
correlations of the respective correlation set. Using propositions from Section 2.1, it is then
straightforward to establish the following proposition.

20



Proposition 2.2.4. For all n, k ∈ N, we have

Cs
loc(n, k) ⊆ Cs

q (n, k) ⊆ Cs
qs(n, k) ⊆ Cs

qa(n, k) ⊆ Cs
qc(n, k) ⊆ Cs

vect(n, k) ⊆ Cs
ns(n, k).

(2.2.1)

All these synchronous correlation subsets are convex. The synchronous correlation subsets
Cs
loc(n, k), Cs

qa(n, k), Cs
qc(n, k), Cs

vect(n, k) and Cs
ns(n, k) are closed as well.

Notice that Cs
r (n, k) ⊆ Cs

r′(n, k) does not necessarily imply that Cr(n, k) ⊆ Cr′(n, k).
We can ask the same kind of questions for the hierarchy of the synchronous correlation
subsets as we did in the previous section.

Problem 2.2.5 (Synchronous versions of Tsirelson’s problems). For which r ∈ {q, qs, qa},
do we have Cs

r (n, k) = Cs
qc(n, k) for all n, k ∈ N?

Again because it was not known whether the sets Cq(n, k) and Cqs(n, k) were closed or
not, it was not known whether Cs

q (n, k) and Cs
qs(n, k) were closed or not. We shall prove

the following theorem in Chapter 4. Notice that Theorem 2.2.6 implies Theorem 2.1.26.

Theorem 2.2.6. The synchronous correlation sets Cs
q (5, 2) and Cs

qs(5, 2) are not closed.

It has also been shown that the Connes embedding problem is related to the synchronous
version of Theorem 2.1.23.

Theorem 2.2.7 ([22, 43]). Connes’ embedding conjecture is true if and only if Cs
qa(n, k) =

Cs
qc(n, k) for all n, k ∈ N.

Working with synchronous correlation subsets adds a great deal of simplification as the
following theorems show. Notice that in Theorem 2.2.8, PVM is used instead of POVM as
mentioned in Theorem 2.1.32. Also, the remarkable thing about this theorem is that we
need PVMs of only one player to generate the correlation.

Recall that a linear functional ϕ on a C∗-algebra A is called a state if ϕ is positive and
ϕ(1) = 1. A state ϕ : A → C is called tracial if ϕ(ab) = ϕ(ba) for all a, b ∈ A.

Theorem 2.2.8 (Theorem 5.5, [59]). Let (p(i, j|v, w)) ∈ Cs
qc(n, k) be realised with PVMs

{Pv,i : i ∈ O}v∈I and {Qw,j : j ∈ O}w∈I on some Hilbert space H satisfying Pv,iQw,j =
Qw,jPv,i and with some unit vector h ∈ H such that p(i, j|v, w) = 〈Pv,iQw,jh, h〉. Then,

(a) Pv,ih = Qv,ih for all v, i, and
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(b) p(i, j|v, w) = 〈(Pv,iPw,j)h, h〉 = 〈(Qw,jQv,i)h, h〉 = p(j, i|w, v).

(c) Let A be the C∗-algebra in B(H) generated by the family {Pv,i : v ∈ I, i ∈ O}
and define τ : A → C by τ(X) = 〈Xh, h〉. Then τ is a tracial state on A and
p(i, j|v, w) = τ(Pv,iPw,j).

Conversely, let A be a unital C∗-algebra equipped with a tracial state τ and having
a family of projections {ev,i : v ∈ I, i ∈ O} ⊂ A such that

∑
i∈O ev,i = 1 for all v.

Then (p(i, j|v, w)) defined by p(i, j|v, w) = τ(ev,iew,j) is an element of Cs
qc(n,m). That

is, there exists a Hilbert space H, a unit vector h ∈ H and mutually commuting PVMs
{Pv,i : i ∈ O}v∈I and {Qw,j : j ∈ O}w∈I on H such that

p(i, j|v, w) = 〈(Pv,iQw,j)h, h〉 = 〈(Pv,iPw,j)h, h〉 = 〈(Qw,jQv,i)h, h〉.

Theorem 2.2.8 and Proposition 2.1.33 lead to the following nice characterisation of the
synchronous subsets Cs

loc(n, k) and Cs
q (n, k).

Recall that a finite dimensional C∗-algebra may be expressed as a direct sum of matrix
algebras. That is, if A is a finite dimensional C∗-algebra then there exists k1, ..., kn ∈ N
such that A = Mk1 ⊕ · · · ⊕Mkn . In contrast to a full matrix algebra, notice that there
can be infinitely many tracial states on a finite dimensional C∗-algebra. Indeed, if A =
Mk1 ⊕ · · · ⊕Mkn and τ : A → C is a tracial state, then there exists n scalars λi ≥ 0 such
that

∑n
i=1 λi = 1 and τ = λ1trk1 ⊕ · · · ⊕ λntrkn , where trki is the normalised tracial state

on Mni .

Corollary 2.2.9 (Corollary 5.6, [59]). We have that (p(i, j|v, w)) ∈ Cs
q (n, k) (respectively,

Cs
loc(n, k)) if and only if there exists a finite dimensional (respectively, abelian) C∗-algebra
A with a tracial state τ and with a generating family {ev,i : v ∈ I, i ∈ O} ⊆ A of projections
such that

∑
i∈O ev,i = 1 for all v and p(i, j|v, w) = τ(ev,iew,j) for all v, w, i, j. Moreover,

when A is abelian and τ is tracial, then τ is a ∗-homormorphism.

The subset of synchronous vector correlations also witnesses this kind of simplification.

Proposition 2.2.10 ([60]). Suppose (p(i, j|v, w)) ∈ Cs
vect(n, k) is generated by a set of

vectors {xv,i, yw,j, h : v, w ∈ I, i, j ∈ O} ⊆ H satisfying the conditions in Definition 2.1.30.
Then xv,i = yv,i for all v ∈ I and i ∈ O.

The notion of r-value of a non-local game (as in Definition 2.1.34) for the correlation
sets Cr(nA, nB, kA, kB) may also be defined for synchronous subsets.
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Definition 2.2.11. Let G = (I, I, O,O, λ) be a non-local game with a probability distri-
bution π : I × I → [0, 1]. Let r ∈ {loc, q, qs, qa, qc, vect, ns}. The synchronous r-value of
G is defined as ωsr(G, π) = ωF(G, π), where F = Cs

r (n, k).

The following proposition relates the values of a non-local game to Connes’ embedding
conjecture [22]. However, it is not known whether the converse holds true.

Proposition 2.2.12 ([22]). If Connes’ embedding conjecture is true, then ωq(G, π) =
ωqc(G, π) and ωsq(G, π) = ωsqc(G, π) for every non-local game G and every distribution
π : I × I → [0, 1].

From the work in [43], it follows that Cs
q (n, k) = Cs

qa(n, k) for all n, k ∈ N, and therefore
ωsq(G, π) = ωsqs(G, π) = ωsqa(G, π) for all games G and all distributions π. Thus as mentioned
before in the previous section these numbers do not highlight any difference between the
sets Cs

q (n, k) and Cs
qa(n, k). Moreover, even though working with synchronous correlations

brings significant simplifications, it is still difficult to compute these numbers for arbitrary
games. To work around this, we shall try to obtain these numbers under some constraints
and analyse them so as to detect any differences. We shall go over this idea for a specific
game in Chapter 3.
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Chapter 3

The Delta game

In this chapter we investigate a synchronous non-local game having three inputs and binary
outputs with the aim being to understand the synchronous correlation sets Cs

r (3, 2) for
r ∈ {q, qc, vect}. The game we discuss here is called the Delta game (stylised as the ∆
game) which was brought to our attention by Richard Cleve. We show that studying the
maximum winning probability for the Delta game by introducing a parameter is helpful in
distinguishing the vector correlation set Cs

vect(3, 2) and Cs
qc(3, 2). This method also provides

us with some clues to extend this analysis for larger number of quantum experiments, and
indeed, we use this approach in Chapter 4.

3.1 Description of the Delta game

Let ∆ = (I, I, O,O, λ) represent the Delta game where I = {0, 1, 2} is the input set and
O = {0, 1} is the output set. To describe the rule function notice that there are 36 possible
tuples. The tuples (v, w, i, j) ∈ I × I ×O ×O for which λ(v, w, i, j) = 0 are given by

(0, 0, 0, 1), (0, 1, 0, 0), (1, 1, 0, 1), (1, 2, 0, 0), (2, 2, 0, 1), (2, 0, 0, 0),

(0, 0, 1, 0), (0, 1, 1, 1), (1, 1, 1, 0), (1, 2, 1, 1), (2, 2, 1, 0), (2, 0, 1, 1).

For the remaining 24 tuples (v, w, i, j), we always have λ(v, w, i, j) = 1. A glance at the
rule function tells us that the game is indeed synchronous.

While the rule function defined above might seem arbitrary, here is an easy way to
visualise it (see Figure 3.1). The edges (0, 0), (1, 1), (2, 2) are shown with dashed lines
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while (0, 1), (1, 2), (2, 0) are shown with solid lines. The dashed lines are “even” while the
solid lines are “odd”. This means that if Alice and Bob are given inputs joined by dashed
lines then to win they must return outputs with even sum; and in the other case they
return outputs with odd sum. For the edges which are not connected by any lines, they
are free to output anything.

Alice Bob

0 0

1 1

2 2

Figure 3.1: The ∆ game rule function.

Alice and Bob receive inputs according to the uniform distribution π = (π(v, w)) on
the set of inputs

E = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2), (2, 0)},

that is, π(v, w) = 1
6

for all (v, w) ∈ E (and zero otherwise). This completes the description
of the game.

3.2 Constrained synchronous value of the Delta game

In this section we compute the expressions for the synchronous r-values (see Definition
2.2.11) of the ∆ game for r ∈ {q, qc, vect}. In what follows, we would usually have v ∈
{0, 1, 2} and i ∈ {0, 1}. Thus the expressions v+ 1 and i+ 1 will always mean v+ 1 mod 3
and i+ 1 mod 2, respectively.

Let p = (p(i, j|v, w)) be a synchronous correlation. The synchronous value of p for the
∆ game given the distribution π as above is then

V (p, π) =
2∑

v,w=0

1∑
i,j=0

π(v, w)λ(v, w, i, j)p(i, j|v, w)

=
1

6

(
2∑
v=0

1∑
i=0

p(i, i|v, v) + p(i, i+ 1|v, v + 1)

)
,
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so that the synchronous r-value of the ∆ game becomes,

ωsr(G, π) = sup

{
1

6

(
2∑
v=0

1∑
i=0

p(i, i|v, v) + p(i, i+ 1|v, v + 1)

)
: p(i, j|v, w) ∈ Cs

r (3, 2)

}
,

where r ∈ {q, qc, vect}. Let us denote the expression inside the braces by θ̃, that is,

θ̃ =
1

6

(
2∑
v=0

1∑
i=0

p(i, i|v, v) + p(i, i+ 1|v, v + 1)

)
.

We shall use Theorem 2.2.8 and Proposition 2.2.10 to simplify θ̃ and to obtain expressions
involving projections and vectors in the case of r = qc and r = vect, respectively. Moreover,
when r = q, by Corollary 2.2.9 it suffices to proceed as in the case r = qc using Theorem
2.2.8 to simplify θ̃, but restricting to the case of projections in finite dimensional C∗-
algebras.

We first handle the r = qc case. By Theorem 2.2.8, a correlation (p(i, j|v, w)) is in
Cs
qc(3, 2) if and only if there exists a C∗-algebra A of B(H) generated by a family of

projections {Av,i : i = 0, 1 and v = 0, 1, 2} satisfying Av,0 + Av,1 = IH for v ∈ {0, 1, 2} and
a tracial state τ : A → C such that p(i, j|v, w) = τ(Av,iAw,j) = 〈(Av,iAw,j)h, h〉, for some
unit vector h ∈ H. For notational convenience we define

A0 = A0,0, A1 = A1,0, A2 = A2,0.

Then Av,1 = IH − Av,0 = IH − Av for v ∈ {0, 1, 2}. Using this we can rewrite θ̃ as

θ̃ =
1

6

(
2∑
v=0

1∑
i=0

p(i, i|v, v) + p(i, i+ 1|v, v + 1)

)

=
1

6

(
2∑
v=0

1∑
i=0

τ(Av,iAv,i) + τ(Av,iAv+1,i+1)

)
=

1

2
+

1

3
τ(A0 + A1 + A2)− 1

3
τ(A0A1 + A1A2 + A2A0). (3.2.1)

Thus, to compute the synchronous qc-value (respectively, synchronous q-value) of the
game we simply take the supremum of the above quantity over all possible C∗-algebras
A (respectively, finite dimensional C∗-algebras A) equipped with a tracial state τ and
having three projections A0, A1 and A2. However as mentioned in Section 2.2, it is difficult
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to compute the actual number and also the number itself provides little help to gather
anything. Therefore, we introduce a “parameter” so that the synchronous r-value becomes
a function of the parameter instead of simply a number. A cleaner way to visualise this
approach is provided in the summary of this chapter which also paves way for a more
abstract approach in Chapter 4.

Revisiting the expression of θ̃ in Equation (3.2.1), we define a “parameter” θ by setting

θ =
1

3
τ(A0 + A1 + A2),

which enables us to write θ̃ as

θ̃ =
1

2
+ θ − 1

3

2∑
v=0

τ(AvAv+1). (3.2.2)

Notice that

θ =
1

3
τ(A0 + A1 + A2) =

1

3
τ(A2

0,0 + A2
1,0 + A2

2,0)

=
1

3
(p(0, 0|0, 0) + p(0, 0|1, 1) + p(0, 0|2, 2)) ,

so that θ is independent of the C∗-algebra A and projections therein. Thus beginning
with (p(i, j|v, w)) ∈ Cs

qc(3, 2) we compute the tuple (θ, θ̃) using Theorem 2.2.8. Notice
that since Av’s are projections and τ is a state we get, 0 ≤ 1

3
τ(A0 + A1 + A2) ≤ 1. Hence

0 ≤ θ ≤ 1. Conversely, if θ ∈ [0, 1], then we can always find projections A0, A1 and A2 in
some C∗-algebra with a tracial state τ , such that 1

3
τ(A0 +A1 +A2) = θ, for example using

the next lemma.

Lemma 3.2.1. Let θ ∈ [0, 1], then there exists a projection P in some (finite dimensional)
C∗-algebra A with some tracial state τ such that τ(P ) = θ.

Proof. First suppose that θ is rational with θ = p
q

(0 < p < q). Consider the q × q matrix

P =

[
Ip 0
0 0q−p

]
,

then τ(P ) = p
q

= θ. Next let 0 < θ < 1 be irrational. Let A = Mn ⊕Mn and define

a tracial state on A by τ(X1 ⊕ X2) = θτ(X1) + (1 − θ)τ(X2), for all X1, X2 ∈ Mn. If
P = In ⊕ 0n, then clearly τ(P ) = θ.
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For the r = vect case, using Proposition 2.2.10 we know that a correlation (p(i, j|v, w))
belongs to Cs

vect(3, 2) if and only if there exist a set of vectors {xv,0, xv,1 : 0 ≤ v ≤ 2} in
some Hilbert space H and a unit vector h satisfying conditions in Definition 2.1.30 and
such that p(i, j|v, w) = 〈xv,i, xw,j〉. As before, for notational convenience we let

x0 = x0,0, x1 = x1,0, x2 = x2,0.

Then θ̃ becomes

θ̃ =
1

2
+

1

3
〈x0 + x1 + x2, h〉 −

1

3

2∑
v=0

〈xv, xv+1〉.

Again letting θ = 1
3
〈x0 + x1 + x2, h〉, we may write

θ̃ =
1

2
+ θ − 1

3

2∑
v=0

〈xv, xv+1〉. (3.2.3)

Again, it is is easy to show that θ is independent of the Hilbert space H and the vectors
chosen therein. Moreover, by the Cauchy-Schwarz inequality we get 0 ≤ 1

3
〈x0+x1+x2, h〉 ≤

1, and conversely, given θ ∈ [0, 1] it is easy to find vectors x1, x2, x3, h in some Hilbert space
H with required properties and such that 1

3
〈x0 + x1 + x2, h〉 = θ.

For each r ∈ {q, qc, vect}, let Θs
r denote the set of all points (θ, θ̃) ∈ R2 that can be

obtained from correlations (p(i, j|v, w)) ∈ Cs
r (3, 2) in the manner described above. Our

goal is to examine how Θs
r behaves under different values of r. Since Cs

q (3, 2) ⊆ Cs
qc(3, 2) ⊆

Cs
vect(3, 2), it follows that

Θs
q ⊆ Θs

qc ⊆ Θs
vect. (3.2.4)

It is easy to verify that Θs
r is a convex set since it is the affine image of the convex set

Cs
r (n,m). To find Θs

r, it is enough to compute the following two functions,

fur (θ) = sup{θ̃ : (θ, θ̃) ∈ Θs
r}, f lr(θ) = inf{θ̃ : (θ, θ̃) ∈ Θs

r}, (3.2.5)

where “u” and “l” stand for “upper” and “lower”, respectively. We also need to determine
if the supremum and the infimum are attained or not. Notice that in the r = qc case, in
order to find the supremum (resp., infimum) of θ̃ = 1

2
+ θ− 1

3

∑2
v=0 τ(AvAv+1), we need to

find the infimum (resp., supremum) of the quantity
∑2

v=0 τ(AvAv+1). A similar statement
holds for the r = vect case.
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3.3 The vect case

We compute the functions f lvect and fuvect (Definition 3.2.5) in this section. We will employ
the symmetrisation provided by the next lemma.

Lemma 3.3.1. The set Θs
vect is equal to the set of pairs (θ, θ̃) with 0 ≤ θ ≤ 1, such that

there exist vectors x0, x1, x2, h in a Hilbert space H with the properties:

(a) ‖h‖ = 1,

(b) 〈xv, h〉 = 〈xv, xv〉 = θ, for all 0 ≤ v ≤ 2

(c) 〈xv, xv+1〉 = β for all 0 ≤ v ≤ 2, where θ̃ = 1
2

+ θ − β and 2θ − 1 ≤ β ≤ θ.

Proof. By Proposition 2.4, and the discussion in Section 3.2, Θs
vect is the set of pairs (θ, θ̃)

such that there exist vectors x0, x1, x2, h in a Hilbert space H with the properties that
‖h‖ = 1, and for all v and w, we have

〈xv, h〉 = 〈xv, xv〉, 〈xv, xw〉 ≥ 0, 〈xv, h− xw〉 ≥ 0, 〈h− xv, h− xw〉 ≥ 0

and, moreover,

1

3

2∑
v=0

〈xv, h〉 = θ,
1

3

2∑
v=0

〈xv, xv+1〉 = β,

where θ̃ = 1
2

+ θ − β. The conditions appearing in the lemma are precisely these, but
with the additional requirement that the quantities 〈xv, h〉 and 〈xv, xv+1〉 are the same
for all v ∈ {0, 1, 2}. However, given x0, x1, x2, h satisfying these weaker conditions and
considering

h̃ =
1√
3

(h⊕ h⊕ h), x̃v =
1√
3

(xv ⊕ xv+1 ⊕ xv+2), 0 ≤ v ≤ 2,

in the Hilbert space H ⊕ H ⊕ H, we see that x̃0, x̃1, x̃2, h̃ satisfy the stronger conditions
and yield the same pair (θ, θ̃).

We now describe the functions f lvect and fuvect in the next theorem.
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Theorem 3.3.2. The functions f lvect and fuvect are given by

f lvect(θ) =
1

2
, fuvect(θ) =


1
2

+ θ for 0 ≤ θ ≤ 1
3

1+3θ−3θ2

2
for 1

3
≤ θ ≤ 2

3
3
2
− θ for 2

3
≤ θ ≤ 1.

(3.3.1)

Moreover, both the infimum and supremum are attained, for all values of θ ∈ [0, 1].

Proof. Fix θ ∈ [0, 1]. By Lemma 3.3.1, we are interested in the set of β such that there exist
vectors x0, x1, x2, h in some Hilbert space satisfying the conditions listed there. Let yv = h−
xv. Consider the Gramian matrix G associated with the seven vectors h, x0, x1, x2, y0, y1, y2.
Note that

〈yv, yv+1〉 = 〈h, h〉 − 〈h, xv+1〉 − 〈xv, h〉+ 〈xv, xv+1〉 = 1− 2θ + β ≥ 0,

where the inequality follows from Lemma 3.3.1. This and the conditions of Lemma 3.3.1
imply that G is the 7× 7 matrix

G =



1 θ θ θ 1− θ 1− θ 1− θ
θ θ β β 0 θ − β θ − β
θ β θ β θ − β 0 θ − β
θ β β θ θ − β θ − β 0

1− θ 0 θ − β θ − β 1− θ 1 + β − 2θ 1 + β − 2θ
1− θ θ − β 0 θ − β 1 + β − 2θ 1− θ 1 + β − 2θ
1− θ θ − β θ − β 0 1 + β − 2θ 1 + β − 2θ 1− θ


,

and furthermore, that G is positive semidefinite and since each entry of G is non-negative,

max(0, 2θ − 1) ≤ β ≤ θ. (3.3.2)

Conversely, given any such 7 × 7 positive semidefinite matrix and with the additional
condition (3.3.2), we can construct seven such vectors in a Hilbert space. Indeed, assume
that we are given a positive semidefinite 7× 7 matrix. Then it is the Gramian of some set
of vectors, h, x0, x1, x2, y0, y1, y2 and we claim that these vectors satisfy the relations given
in Lemma 3.3.1. To see this note that ‖h‖2 = 1, while ‖xv‖2 = θ and ‖yv‖2 = 1− θ. The
zeros in the matrix yield that xv ⊥ yv. Thus, ‖xv + yv‖ = 1. The fact that 〈h, xv + yv〉 =
θ+ (1− θ) = 1, together with Cauchy-Schwarz inequality yields that h = xv + yv. The rest
of the relations follow similarly. Thus, we are interested in the set of β that satisfy (3.3.2)
and yield a positive semidefinite matrix G given above.
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We apply one step of the Cholesky algorithm [35], and conclude that the 7×7 matrix G
is positive semidefinite if and only if the following 6× 6 matrix G′ is positive semidefinite:

G′ =


θ − θ2 β − θ2 β − θ2 θ2 − θ θ2 − β θ2 − β
β − θ2 θ − θ2 β − θ2 θ2 − β θ2 − θ θ2 − β
β − θ2 β − θ2 θ − θ2 θ2 − β θ2 − β θ2 − θ
θ2 − θ θ2 − β θ2 − β θ − θ2 β − θ2 β − θ2

θ2 − β θ − θ2 θ2 − β β − θ2 θ − θ2 β − θ2

θ2 − β θ2 − β θ2 − θ β − θ2 β − θ2 θ − θ2

 .

This matrix G′ partitions into a block matrix of the form

[
A −A
−A A

]
, where

A =

a x x
x a x
x x a

 ,
with a = θ − θ2 and x = β − θ2. Thus the matrix G′ is positive semidefinite if and only
if A ≥ 0. Using the determinant criteria we see that A ≥ 0 if and only if |x| ≤ a and
2x3−3ax2 +a3 ≥ 0. Simplifying we see that A ≥ 0 if and only if −a

2
≤ x ≤ a. Substituting

the values of a and x, we find that the Gramian matrix G is positive semidefinite if and
only if

3θ2 − θ
2

≤ β ≤ θ.

Thus, the set of all possible β is the set satisfying

max

{
3θ2 − θ

2
, 2θ − 1, 0

}
≤ β ≤ θ.

This becomes

0 ≤ β ≤ θ for 0 ≤ θ ≤ 1
3

3θ2−θ
2
≤ β ≤ θ for 1

3
≤ θ ≤ 2

3

2θ − 1 ≤ β ≤ θ for 2
3
≤ θ ≤ 1.

Thus, using these inequalities we obtain the values (3.3.1) and we have that the infimum
and supremum in (3.2.5) are attained.
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3.4 The q and qc cases

In this section, we compute f lr and fur when r ∈ {q, qc}. We begin with a symmetrisation
lemma, analogous to Lemma 3.3.1.

Lemma 3.4.1. The set Θs
qc (resp., Θs

q), is equal to the set of pairs (θ, θ̃) with 0 ≤ θ ≤ 1,
such that there exists a C∗-algebra A (resp., a finite dimensional C∗-algebra, A) with a
faithful tracial state τ and with projections A0, A1, A2 ∈ A such that for all 0 ≤ v ≤ 2,

τ(Av) = θ, τ(AvAv+1) = β, (3.4.1)

where θ̃ = 1
2

+ θ − β.

Proof. By Theorem 2.2.8 and the discussion in Section 3.2, (θ, θ̃) belongs to Θs
qc (respec-

tively, Θs
q) if and only if there is a C∗-algebra A (respectively, a finite dimensional C∗-

algebra A), with a faithful tracial state τ and projections A0, A1, A2 such that

1

3

2∑
v=0

τ(Av) = θ,
1

3

2∑
v=0

τ(AvAv+1) = β,

where θ̃ = 1
2

+ θ − β. But if such projections exist, then we can consider the C∗-algebra

Ã = A⊕A⊕A with the trace τ̃ = 1
3
τ ⊕ 1

3
τ ⊕ 1

3
τ , and projections Ãv = Av ⊕Av+1⊕Av+2

that satisfy the stronger requirements of the lemma that include Equations (3.4.1).

We now show that if there exists a C∗-algebra A with a tracial state τ and projections
A0, A1, A2 ∈ A, such that these projections attain the infimum, then the projections satisfy
a nice relation, viz., each projection commutes with the sum of the other two. To prove
this, we begin with a C∗-algebra result.

Proposition 3.4.2. Let A be a unital C∗-algebra with a faithful tracial state τ . Let A and
P be hermitian elements in A. If AP − PA 6= 0, then there exists H = H∗ ∈ A such that,
letting f(t) = τ(A(eiHtPe−iHt)) for t ∈ R , we have f ′(0) > 0.

Proof. If H ∈ A is hermitian, then

f ′(0) = iτ(AHP − APH) = iτ((PA− AP )H),

where we used the fact that τ is a tracial state. Supppose AP − PA 6= 0. Let H =
i(PA − AP ). Then H is hermitian and f ′(0) = τ(|PA − AP |2) > 0, where the strict
inequality follows because AP − PA 6= 0 and τ is a faithful state.
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Proposition 3.4.3. Let A be a unital C∗-algebra with a faithful tracial state τ . Fix
θ ∈ [0, 1]. Let

β = inf

{
1

3
τ (AB +BC + CA) : A,B,C ∈ A projections, τ(A) = τ(B) = τ(C) = θ

}
.

If there exist projections A0, B0, C0 in A such that τ(A0) = τ(B0) = τ(C0) = θ and
β = 1

3
τ(A0B0 +B0C0 + C0A0), then

[A0, B0 + C0] = [B0, C0 + A0] = [C0, A0 +B0] = 0.

Proof. We will show that A0 commutes with B0 +C0 and the other commutation relations
follow by symmetry. Let P = B0 +C0. Suppose, for contradiction, that [A0, P ] 6= 0. Then,
by Proposition 3.4.2, there exists H = H∗ ∈ A such that if f(t) = τ(A0(eiHtPe−iHt)), then
f ′(0) > 0. Fix some small and negative t such that f(t) < f(0). Letting Bt = eiHtB0e

−iHt

and Ct = eiHtC0e
−iHt, we see that Bt and Ct are themselves projections in A and τ(Bt) =

τ(Ct) = θ. But then for our value of t,

τ(A0Bt +BtCt + CtA0) = τ(A0(Bt + Ct) +BtCt)

= τ(A0(eiHtPe−iHt)) + τ((eiHtB0e
−iHt)(eiHtC0e

−iHt))

= f(t) + τ(B0C0) < f(0) + τ(B0C0) = 3β,

which implies that β is not the infimum, contrary to hypothesis. Thus, A0 commutes with
B0 + C0.

Proposition 3.4.3 provides a nice constraint on the projections which achieve the infi-
mum. This leads to the question of understanding the universal C∗-algebra A generated by
three projections which satisfy the constraint in Proposition 3.4.3. This is the C∗-algebra
that is obtained in the following manner. First form the universal unital complex algebra
A generated by three non-commuting variables A, B and C. Each time that we have a
set of three projections on a Hilbert space H satisfying the above equations, we have a
representation of this algebra, π : A → B(H). Setting |||u||| = sup ‖π(u)‖, where the
supremum is over all such representations, defines a seminorm on A. The norm-zero ele-
ments form a 2-sided ideal, J , and this seminorm induces a norm on A/J . The completion
of A/J is what we mean by A. It has the universal property that given three projections
PA, PB, PC on a Hilbert space, H, satisfying the above relations, then there exists a unique
∗-homomorphism π : A→ B(H) with

π(A+ J ) = PA, π(B + J ) = PB, π(C + J ) = PC .
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Proposition 3.4.4. Let A be the universal unital C∗-algebra generated by three projections
A,B and C satisfying the commutator relations

[A,B + C] = [B,A+ C] = [C,A+B] = 0. (3.4.2)

Then A is isomorphic to C8 ⊕M2, wherein

A = 0⊕ 0⊕ 0⊕ 0⊕ 1⊕ 1⊕ 1⊕ 1⊕
(

1 0
0 0

)
,

B = 0⊕ 0⊕ 1⊕ 1⊕ 0⊕ 0⊕ 1⊕ 1⊕

(
1
4

√
3

4
√

3
4

3
4

)
,

C = 0⊕ 1⊕ 0⊕ 1⊕ 0⊕ 1⊕ 0⊕ 1⊕

(
1
4
−
√

3
4

−
√

3
4

3
4

)
.

Proof. We will describe all irreducible ∗-representations of A on Hilbert spaces. Let

Y = 2(B + C)− (B + C)2 ∈ A.

By the commutation relations (3.4.2), Y commutes with A. We also note that Y =
B + C − BC − CB and BY = B − BCB = Y B, namely, that Y commutes with B.
Similarly, Y commutes with C. Hence Y lies in the center of A. Thus, under any irreducible
∗-representation π : A → B(Hπ), Y must be sent to a scalar multiple of the identity
operator. In other words, we have

π(B + C −BC − CB) = π(Y ) = λπ(1)

for some λ ∈ C, so that

π(CB) ∈ span π
(
{1, B, C,BC}

)
.

Similarly, we have

π(CA) ∈ span π
(
{1, A, C,AC}

)
, π(BA) ∈ span π

(
{1, A,B,AB}

)
.

Since A is densely spanned by the set of all words in the idempotents A, B and C, we see

π(A) = span π
(
{1, A,B,C,AB,AC,BC,ABC}

)
.
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This implies that dim π(A) ≤ 8. Since π(A) is finite dimensional and acts irreducibly on a
Hilbert space Hπ, it must be equal to a full matrix algebra. Considering dimensions, we
must have dimHπ ≤ 2.

The irreducible representations π of A for which dimHπ = 1 are easy to describe. They
are the eight representations that send A, B and C variously to 0 and 1. We will now
characterise the irreducible representations π of A for which dimHπ = 2, up to unitary
equivalence. Let π be such a representation. From the commutation relations (3.4.2), we
see that, if π(A) and π(B) commute, then also π(C) commutes with π(A) and with π(B),
and the entire algebra π(A) is commutative. This would require dimHπ = 1. By symmetry
we conclude that no two of π(A), π(B) and π(C) can commute. In particular, each must
be a projection of rank 1. After conjugation with a unitary, we must have

π(A) =

(
1 0
0 0

)
, π(B) =

(
t

√
t(1− t)√

t(1− t) 1− t

)
,

for some 0 < t < 1. Since π(B) + π(C) must commute with π(A), we must have

π(C) =

(
c11 −

√
t(1− t)

−
√
t(1− t) c22

)
,

for some c11, c22 ≥ 0. Since π(C) is a projection, the only possible choices are (i) c11 = t
and c22 = 1−t and (ii) c11 = 1−t and c22 = t. But in Case (ii), we have π(C) = IHπ−π(B),
which violates the prohibition against π(C) and π(B) commuting. Thus, we must have

π(C) =

(
t −

√
t(1− t)

−
√
t(1− t) 1− t

)
.

Now, using that π(A) + π(B) and π(C) commute, we see that we must have t = 1
4

and we
easily check that this does provide an irreducible representation of A.

To summarise, up to unitary equivalence, there are exactly nine different irreducible
representations of A, one of them is two-dimensional and the others are one-dimensional.
Thus, A is finite dimensional and is isomorphic to the direct sum of the images of its
irreducible representations, namely to C8 ⊕M2, with A, B and C as indicated.

We now compute the functions f lr and fur for r ∈ {q, qc}.
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Theorem 3.4.5. For r ∈ {q, qc}, the functions f lr and fur are given by

f lr(θ) =
1

2
, fur (θ) =


1
2

+ θ for 0 ≤ θ ≤ 1
3

3+θ
4

for 1
3
≤ θ ≤ 1

2
4−θ

4
for 1

2
≤ θ ≤ 2

3
3
2
− θ for 2

3
≤ θ ≤ 1.

(3.4.3)

Moreover, both the infimum and supremum are attained, for all values of θ ∈ [0, 1].

Proof. Fix θ ∈ [0, 1]. From the inclusions (3.2.4), we conclude

f lqc(θ) ≤ f lq(θ) ≤ fuq (θ) ≤ fuqc(θ).

To find f lqc(θ), by Lemma 3.4.1, we should find the supremum of values β such that there
exists a C∗-algebra A with faithful tracial state τ and with projections A0, A1, A2 such
that

∀v, τ(Av) = θ, τ(AvAv+1) = β. (3.4.4)

By Cauchy-Schwarz, β ≤ θ. But taking A = C ⊕ C with Av = 1 ⊕ 0 and an appropriate
trace τ shows that β = θ occurs, and in a finite dimensional example. Thus, we find
f lqc(θ) = f lq(θ) = 1

2
.

To find fuqc(θ), again using Lenma 3.4.1, we should find the infimum β0 of values β
as described above. Since Θs

qc is closed, this infimum is attained. Thus, there exists a
C∗-algebra A with tracial state τ and projections A0, A1, A2 such that (3.4.4) holds with
β = β0. Morover, by the proof of Lemma 3.4.1, we have that β0 equals the infimum of
1
3
τ(AB + BC + CA) over all projections A,B,C in some C∗-algebra with faithful tracial

state τ such that τ(A) = τ(B) = τ(C) = θ. Thus, Proposition 3.4.3 applies and the
commutation relations

[A0, A1 + A2] = [A1, A0 + A2] = [A2, A0 + A1] = 0

hold. Thus, there is a representation of the universal C∗-algebra A considered in Propo-
sition 3.4.4, sending A to A0, B to A1 and C to A2. So, using Gelfand–Naimark–Segal
representations, in order to find β0, it suffices to consider tracial states (faithful or not) on
A. In particular, β0 is the minimum of all values of β ≥ 0 for which there exists a tracial
state τ on A satisfying

τ(A) = τ(B) = τ(C) = θ, τ(AB) = τ(AC) = τ(BC) = β. (3.4.5)

36



Since A is finite dimensional, we get fuqc(θ) = fuq (θ).

An arbitrary tracial state of A is of the form

τ

(
λ1 ⊕ · · · ⊕ λ8 ⊕

(
x11 x12

x21 x22

))
=

(
8∑
j=1

tjλj

)
+
s

2
(x11 + x22),

for some t1, . . . , t8, s ≥ 0 satisfying t1 + · · ·+ t8 + s = 1. The conditions (3.4.5) become

t5 + t6 + t7 + t8 +
s

2
= t3 + t4 + t7 + t8 +

s

2
= t2 + t4 + t6 + t8 +

s

2
= θ,

t7 + t8 +
s

8
= t6 + t8 +

s

8
= t4 + t8 +

s

8
= β.

These are equivalent to

t1 = 1 + 3β − 3θ +
s

8
− t8

t2 = t3 = t5 = θ − 2β − s

4
+ t8

t4 = t6 = t7 = β − s

8
− t8.

Thus, writing t = t8, β0 is the minimum value of β such that there exist s, t ≥ 0 such that
the inequalities

1 + 3β − 3θ +
s

8
− t ≥ 0, θ − 2β − s

4
+ t ≥ 0, β − s

8
− t ≥ 0

hold. This is a standard linear programming problem solvable by the simplex method and
whose solution is,

β0 =


0, 0 ≤ θ ≤ 1

3
3θ−1

4
, 1

3
≤ θ ≤ 1

2
5θ−2

4
, 1

2
≤ θ ≤ 2

3

2θ − 1, 2
3
≤ θ ≤ 1,

which, using fuqc(θ) = 1
2

+ θ − β0, yields the values given in (3.4.3).

3.5 Summary

We may summarise Theorem 3.3.2 and Theorem 3.4.5 as follows. The functions as obtained
in Theorem 3.5.1 are shown in Figure 3.2.
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Theorem 3.5.1. For r ∈ {q, qc}, we have

f lr(θ) =
1

2
, fur (θ) =


1
2

+ θ for 0 ≤ θ ≤ 1
3
,

3+θ
4

for 1
3
≤ θ ≤ 1

2
,

4−θ
4

for 1
2
≤ θ ≤ 2

3
,

3
2
− θ for 2

3
≤ θ ≤ 1.

(3.5.1)

For r = vect, we have

f lvect(θ) =
1

2
, fuvect(θ) =


1
2

+ θ for 0 ≤ θ ≤ 1
3
,

1+3θ−3θ2

2
for 1

3
≤ θ ≤ 2

3
,

3
2
− θ for 2

3
≤ θ ≤ 1.

(3.5.2)

In all of these cases, the infimum and supremum as in Equation (3.2.5) are attained by

both f lr and fur . Since (θ, θ̃) ∈ Θs
r if and only if 0 ≤ θ ≤ 1 and f lr(θ) ≤ θ̃ ≤ fur (θ), we see

that Θs
r is a closed set in R2 for each r ∈ {q, qc, vect}. In particular, we have

Θs
q = Θs

qc ( Θs
vect. (3.5.3)

0 1
3

1
2

2
3

1

0.5

0.7

0.9

θ

θ̃

Figure 3.2: Plots of f lr and fur for r ∈ {q, qc, vect}.

The fact that Θs
qc ( Θs

vect allows us to deduce the following.

Corollary 3.5.2. We have that Cs
qc(3, 2) ( Cs

vect(3, 2).
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We may analogously define the set Θs
ns corresponding to the set of synchronous non-

signalling correlations, and similarly the functions f lns and funs. Since Cs
ns(3, 2) is a polytope

(for example, see [45]), it implies that that f lns and funs would be piecewise linear. Since fuvect
is seen to be quadratic on

[
1
3
, 2

3

]
, we get fuvect 6= funs and we can conclude that Cs

vect(3, 2) (
Cs
ns(3, 2).

Corollary 3.5.3. We have that Cs
vect(3, 2) ( Cs

ns(3, 2).

Essentially, what we did in this chapter was to minimise, for example, the expression
1
3
τ(A0A1 + A1A2 + A2A0) over all C∗-algebras A with a tracial state τ and projections
A0, A1 and A2 subject to the condition that 1

3
τ(A0 +A1 +A2) = θ for a fixed θ ∈ [0, 1]. As

we saw earlier, we may write

1

3
τ(A0A1 + A1A2 + A2A0) =

1

3
(p(0, 0|0, 1) + p(0, 0|1, 2) + p(0, 0|2, 0)) . (3.5.4)

Now, (0, 1), (1, 2) and (2, 0) may be thought of as edges of the complete graph on three
vertices, K3. Thus the right-hand side of Equation (3.5.4) may be interpreted as

1

6

∑
(v,w)∈E(K3)

p(0, 0|v, w),

where E(K3) = {(0, 1), (1, 0), (1, 2), (2, 1), (0, 2), (2, 0)}. The additional factor 1
2

arises due
to p(0, 0|0, 1) = τ(A0A1) = τ(A1A0) = p(0, 0|1, 0). The constraint in hand is

θ =
1

3
τ(A0 + A1 + A2) =

1

3
(p(0, 0|0, 0) + p(0, 0|1, 1) + p(0, 0|2, 2)) ,

which may be interpreted as

1

3

∑
v∈V (K3)

p(0, 0|v, v) = θ.

In general, given a graph G = (V (G), E(G)), we aim to minimise the expression

1

|E(G)|
∑

(v,w)∈E

p(0, 0|v, w),

subject to the set of correlations (p(i, j|v, w)) ∈ Cs
r (n, 2) satisfying the constraint

1

|V (G)|
∑
v∈E

p(0, 0|v, v) = θ.
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By symmetrisation process as done in Lemma 3.3.1 and Lemma 3.4.1, we may simply
demand p(0, 0|v, v) = θ for all v ∈ E. But, now notice that because the correlation is
synchronous, p(0, 0|v, v) = p(0, 0|v, v)+p(0, 1|v, v) = pA(0|v). Thus we may define a subset
for each r ∈ {loc, q, qs, qa, qc, vect, ns} and for each θ ∈ [0, 1] as

Γr(θ) = {(p(i, j|v, w)) ∈ Cs
r (n, 2) : pA(0|v) = pB(0|w) = θ, ∀v, w},

and we try to minimise the function ∑
(v,w)∈E

p(0, 0|v, w)

with the constraint p ∈ Γr(θ) for each graph G = (V,E). This provides a cleaner approach
and generalises to the study of such functions for different graphs. This will be taken up
in the next chapter.
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Chapter 4

Graph correlation functions

In this chapter we develop the idea outlined in Section 3.5. We introduce the graph
correlation functions and study their general properties. We develop some of the basic
theory in the first section and apply these general results in the special case of complete
graphs to prove the promised non-closure Theorems 2.1.26 and 2.2.6.

4.1 Basic properties of the graph correlation func-

tions

We begin by defining the constraint set over which we shall be working. The motivation
behind this set is outlined in Section 3.5.

Definition 4.1.1. Let r ∈ {loc, q, qs, qa, qc, vect, ns}. For each t ∈ [0, 1], define a slice

Γr(t) = {(p(i, j|v, w)) ∈ Cs
r (n, 2) : pA(0|v) = pB(0|w) = t, 1 ≤ v, w ≤ n} ⊆ Cs

r (n, 2),

where pA and pB are the marginal densities from Equations (2.1.2).

As usual, we have the following result which is straightforward to prove.

Proposition 4.1.2. Let r ∈ {loc, q, qs, qa, qc, vect, ns}. Then for each t ∈ [0, 1], the set
Γr(t) is non-empty and convex, and

Γloc(t) ⊆ Γq(t) ⊆ Γqs(t) ⊆ Γqa(t) ⊆ Γqc(t) ⊆ Γvect(t) ⊆ Γns(t). (4.1.1)

Moreover, for r ∈ {loc, qa, qc, vect, ns}, the set Γr(t) is closed for all t ∈ [0, 1].
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Using these sets we can now define our graph correlation functions.

Definition 4.1.3 (Graph Correlation Functions for a Graph). Given a graph G = (V,E)
on n vertices, we consider the affine function F : Cns(n, 2)→ R given by

F ((p(i, j|v, w))) =
∑

(v,w)∈E

p(0, 0|v, w).

For each r ∈ {loc, q, qs, qa, qc, vect, ns} and t ∈ [0, 1], we let

fr(t) = inf{F (p) : p ∈ Γr(t)}. (4.1.2)

The functions fr are called the graph correlation functions for the graph G.

We begin with the following elementary proposition.

Proposition 4.1.4. If G = (V,E) is a graph on n vertices, then for all t ∈ [0, 1],

floc(t) ≥ fq(t) ≥ fqs(t) ≥ fqa(t) ≥ fqc(t) ≥ fvect(t) ≥ fns(t) ≥ 0. (4.1.3)

For r ∈ {loc, q, qa, vect, ns}, the infimum in (4.1.2) is attained for all 0 ≤ t ≤ 1. Moreover,

fns(t) =

{
0 if 0 ≤ t ≤ 1

2
,

|E|(2t− 1) if 1
2
≤ t ≤ 1.

Proof. The first two claims of the proposition follow from Proposition 4.1.2. We prove the
expression for fns.

Since Γns(t) is a closed set for each t ∈ [0, 1], there exists a correlation (p(i, j|v, w)) ∈
Γns(t) such that pA(0|v) = pB(0|w) = t for all v, w ∈ V and fns(t) =

∑
(v,w)∈E p(0, 0|v, w).

Since pA(0|v) = t,
∑1

i,j=0 p(i, j|v, v) = 1, and using the fact that the correlation is syn-
chronous, we have

p(0, 0|v, v) = t, p(0, 1|v, v) = p(1, 0|v, v) = 0, p(1, 1|v, v) = 1− t. (4.1.4)

If (v, w) ∈ E, then using the non-signalling conditions with Equations (4.1.4) we get the
equations

p(0, 0|v, w) + p(0, 1|v, w) = p(0, 0|v, w) + p(1, 0|v, w) = t,

p(1, 0|v, w) + p(1, 1|v, w) = p(0, 1|v, w) + p(1, 1|v, w) = 1− t,
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which have the solution,

p(0, 1|v, w) = p(1, 0|v, w) = t− p(0, 0|v, w),

p(1, 1|v, w) = 1− 2t+ p(0, 0|v, w).
(4.1.5)

Since these are probabilities we must also have

p(0, 0|v, w) ≥ 0, t− p(0, 0|v, w) ≥ 0, 1− 2t+ p(0, 0|v, w) ≥ 0,

which yields
max{0, 2t− 1} ≤ p(0, 0|v, w) ≤ t. (4.1.6)

Furthermore, choosing any values for p(0, 0|v, w) such that (4.1.6) and (4.1.4) are satisfied
and then assigning the other values of p(i, j|v, w) using (4.1.5), we do get an element of
Cs
ns(n, 2). This shows that the choice

p(0, 0|v, w) = max{0, 2t− 1} =

{
0 if 0 ≤ t ≤ 1

2

2t− 1 if 1
2
≤ t ≤ 1

,

yields an element of Cs
ns(n, 2), whereby the desired value of fns(t) is attained.

Next, we prove that the correlation functions fr enjoy a certain symmetry, in the sense
that if fr is known on the half-interval

[
0, 1

2

]
, then it can be described on rest of the interval[

1
2
, 1
]
. To prove this we define some actions on the correlation sets Cr(n, k).

Definition 4.1.5. Let Sn and Sk denote the symmetric groups on n and k elements,
respectively. For each permutation π ∈ Sn, we define an affine self-map βπ : Cns(n, k) →
Cns(n, k) given by

βπ
((
p(i, j|v, w)

))
=
(
p(i, j|π−1(v), π−1(w))

)
. (4.1.7)

For each permutation σ ∈ Sk, we define another affine self-map γσ : Cns(n, k)→ Cns(n, k)
given by

γσ
((
p(i, j|v, w)

))
=
(
p(σ−1(i), σ−1(j)|v, w)

)
. (4.1.8)

Proposition 4.1.6. Let π ∈ Sn and σ ∈ Sk. Then the affine maps βπ and γσ as in
Definition 4.1.5 define actions β : Sn × Cns(n, k) → Cns(n, k) and γ : Sk × Cns(n, k) →
Cns(n, k), respectively, in a canonical way. These actions restrict to actions on Cr(n, k)
and Cs

r (n, k) for each r ∈ {loc, q, qs, qa, qc, vect}.
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Proof. It is easy to verify that β and γ are actions. To see that the restrictions are indeed
self-maps, say for r = vect, suppose that the set {xv,i, yw,j, h : v, w ∈ I, i, j ∈ O} of vectors
satisfying Definition 2.1.30 realise a given vector correlation p = (p(i, j|v, w)). Then it
is easy to check that the (re-indexed) set {xπ−1(v),i, yπ−1(w),j, h} of vectors realise βπ(p).
Similarly, for r ∈ {loc, q, qs, qc}, applying permutations to systems of projections that
realise a given p ∈ Cr(n, k) show βπ(p) ∈ Cr(n, k). The case of r = qa now follows by
taking closures. Restrictions to synchronous subsets also follow similarly.

We will use this only in the case k = 2, when for the order-two transposition σ : 0↔ 1,
we get the reflection R = γσ. We now prove that it suffices to describe the functions fr on
the interval

[
0, 1

2

]
.

Proposition 4.1.7. Let G = (V,E) be a graph on n vertices. Then fr is a convex function
for all r ∈ {loc, q, qa, qc, vect, ns}, and

fr(1− t) = |E|(1− 2t) + fr(t), t ∈ [0, 1]. (4.1.9)

Proof. By the convexity of Cs
r (n, 2), for each t1, t2, λ ∈ [0, 1], we have

λΓr(t1) + (1− λ)Γr(t2) ⊆ Γr(λt1 + (1− λ)t2).

Applying F , we have

λF (Γr(t1)) + (1− λ)F (Γr(t2)) = F (λΓr(t1) + (1− λ)Γr(t2)) ⊆ F (Γr(λt1 + (1− λ)t2)).

Taking infima implies

λfr(t1) + (1− λ)fr(t2) = inf(F (λΓr(t1) + (1− λ)Γr(t2))) ≥ fr(λt1 + (1− λ)t2),

namely, that fr is convex.

To prove Equation (4.1.9), we use the reflection map R : Cs
r (n, 2)→ Cs

r (n, 2) described
above. Using (4.1.4) we see that R maps Γsr(t) onto Γsr(1 − t) and using (4.1.5) we see
F ◦ R(p) = |E|(1 − 2t) + F (p) for every p ∈ Cs

r (n, 2). Equation (4.1.9) then follows by
taking infima on both sides.

Let k, n ∈ N, and let Zk = {0, 1, ..., k − 1} be the cyclic group of order k. Define

F(n, k) = Zk ∗ ... ∗ Zk︸ ︷︷ ︸
n times

to be the free product of n copies of Zk. Since the left regular representation of F(n, k)
is faithful on the group algebra, we may think of C∗(F(n, k)) as the universal C∗-algebra
generated by the elements {ev,i : 1 ≤ v ≤ n, 1 ≤ i ≤ k} satisfying the following relations:

44



(a) e2
v,i = e∗v,i = ev,i, for all 1 ≤ v ≤ n and 1 ≤ i ≤ k,

(b) ev,iev,j = 0, for all 1 ≤ v ≤ n and i 6= j, and

(c)
∑k

i=1 ev,i = 1, for all 1 ≤ v ≤ n.

Every state τ on C∗(F(n, k)) has Gelfand-Naimark-Segal (GNS) representation, that is,
there exists a Hilbert space H, a unital ∗-homomorphism π : C∗(F(n, k)) → B(H), and
a unit vector ψ ∈ H such that τ(a) = 〈π(a)ψ, ψ〉 for all a ∈ C∗(F(n, k)). We shall
call a state τ on C∗(F(n, k)) finite-dimensional provided that the Hilbert space in the GNS
representation is finite dimensional. We shall call a state abelian if the image of C∗(F(n, k))
under the GNS representation is commutative.

In what follows, we shall be primarily working with C∗(F(n, 2)), which is the universal
C∗-algebra generated by {ev,0, ev,1 : 0 ≤ v ≤ n − 1} satisfying Relations (a), (b) and (c)
in the previous paragraph. To keep subscripts uncluttered, we shall adopt the notation
ev := ev,0, for all 0 ≤ v ≤ n− 1.

Corollary 4.1.8. Let G = (V,E) be a graph on n vertices. Then we have

fqc(t) = inf

 ∑
(v,w)∈E

τ(evew) : τ is a tracial state on C∗(F(n, 2)), τ(ev) = t, ∀ v ∈ V

 ,

and fq(t) can be obtained by the same equation but now the infimum runs over all finite-
dimensional tracial states τ .

Proof. This follows from Theorem 2.2.8 and Corollary 2.2.9.

We establish a result similar to that of Proposition 3.4.3. While this result is not used
anywhere in this chapter, it led to the question of realising scalar multiples of the identity
as sums of projections as described in [44], which is crucial in the proof of Theorem 4.3.5.

Proposition 4.1.9. Let G = (V,E) be a graph on n vertices, and assume that τ :
C∗(F(n, 2)) → C is a faithful tracial state (respectively, faithful finite dimensional tra-
cial state) such that τ(ev) = t for all v ∈ V and fqc(t) (respectively, fq(t)) is equal to∑

(v,w)∈E τ(evew). Set pv =
∑
{w : (v,w)∈E} ew. If π : C∗(F(n, 2)) → B(H) is the GNS

representation of τ , then π(ev)π(pv) = π(pv)π(ev).
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Proof. Fix v ∈ V . Let π : C∗(F(n, 2)) → B(H) be the GNS representation of τ with
τ(a) = 〈π(a)ψ, ψ〉 for all a ∈ C∗(F(n, 2)) and for some cyclic vector ψ ∈ H. Let B =
π(C∗(F(n, 2))) ⊆ B(H) be the image C∗-algebra. Suppose, for contradiction, that π(ev)
and π(pv) do not commute. Then by Proposition 3.4.2, there exists H = H∗ ∈ B (therefore
H = π(h), h ∈ C∗(F(n, 2))) such that if

f(t) =
〈
π(ev)(e

iHtπ(pv)e
−iHt)ψ, ψ

〉
= τ(ev(e

ihtπ(pv)e
−iht)),

then f ′(0) > 0. Fix some small and negative t0 such that f(t0) < f(0).

Define for y ∈ V ,

Fy =

{
π(ev) if y = v,

eiHt0π(ey)e
−iHt0 if y 6= v.

Then each Fy is a projection in B and

〈Fyψ, ψ〉 =
〈(
eiHt0π(ey)e

−iHt0
)
ψ, ψ

〉
= τ

(
eiht0π(ey)e

−iht0
)

= τ(ey) = t.

But for this new set of projections, we have that∑
(x,y)∈E

〈FxFyψ, ψ〉

=
∑

{w : (v,w)∈E}

〈FvFwψ, ψ〉+
∑

{w : (w,v)∈E}

〈FwFvψ, ψ〉+
∑

{(x,y)∈E :x 6=v, y 6=v}

〈FxFyψ, ψ〉

=

〈
Fv

 ∑
{w : (v,w)∈E}

Fw

ψ, ψ

〉
+

〈 ∑
{w : (w,v)∈E}

Fw

Fvψ, ψ

〉
+

∑
{(x,y)∈E :x 6=v, y 6=v}

〈FxFyψ, ψ〉

= 2 Re

〈
π(ev)

 ∑
{w : (v,w)∈E}

eiHt0π(ew)e−iHt0

ψ, ψ

〉
+

∑
{(x,y)∈E :x 6=v, y 6=v}

〈(
eiHt0π(ex)e

−iHt0
) (
eiHt0π(ey)e

−iHt0
)
ψ, ψ

〉
= 2 Re

〈
π(ev)

(
eiHt0π(pv)e

−iHt0
)
ψ, ψ

〉
+

∑
{(x,y)∈E:x 6=v,y 6=v}

τ(eiht0exeye
−iht0)
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= 2f(t0) +
∑

{(x,y)∈E :x6=v, y 6=v}

τ(exey) < 2f(0) +
∑

{(x,y)∈E :x 6=v, y 6=v}

τ(exey)

= τ(evpv) + τ(pvev) +
∑

{(x,y)∈E :x6=v, y 6=v}

τ(exey) =
∑

(x,y)∈E

τ(exey) = fqc(t),

where we have used that (v, w) ∈ E if and only if (w, v) ∈ E. This contradicts the definition
of fqc.

Proposition 4.1.10. Let G = (V,E) be a graph on n vertices. Then

fq

(
1

2

)
= fqa

(
1

2

)
= fqc

(
1

2

)
= fvect

(
1

2

)
.

Proof. From the relations (4.1.3), it is sufficient to show that fq
(

1
2

)
= fvect

(
1
2

)
. In fact,

we show that Γvect
(

1
2

)
= Γq

(
1
2

)
.

Let (p(i, j|v, w)) ∈ Γvect
(

1
2

)
. By Proposition 2.2.10, there exist vectors {xv,0, xv,1, h :

v ∈ V } ⊆ H such that p(i, j|v, w) = 〈xv,i, xw,j〉. Without loss of generality, we may assume
that H is a finite-dimensional real Hilbert space, say of dimension m. Set xv = xv,0 for all
v ∈ V . Then 1

2
= pA(0|v) = 〈xv, h〉, and non-signalling conditions yield,

p(0, 0|v, w) = p(1, 1|v, w) = 〈xv, xw〉,

p(0, 1|v, w) = p(1, 0|v, w) =
1

2
− 〈xv, xw〉.

Define x̃v = 2xv − h for all v ∈ V . It is easy to verify that each x̃v is a unit vector, and

p(i, j|v, w) =
1

4

(
1 + (−1)i+j〈x̃v, x̃w〉

)
.

Recall the representation of the Clifford algebra [34] that is determined by a real linear
map H 3 x 7→ C(x) ∈ Md for some d, where each C(x) is self-adjoint and has trace zero
and where they satisfy C(x)C(y) + C(y)C(x) = 2〈x, y〉Id. Thus, when x is a unit vector,
C(x) is a symmetry. We let

Pv,i =
Id + (−1)iC(x̃v)

2
.

Then each Pv,i is a projection and computation shows that

trd(Pv,iPw,j) =
1

4

(
1 + (−1)i+j〈x̃v, x̃w〉

)
= p(i, j|v, w).

Therefore (p(i, j|v, w)) ∈ Γq
(

1
2

)
as well and the proposition follows.

47



The graph correlation functions of a graph are also related to the fractional chromatic
number and its generalisations. For completeness sake we include the definitions.

Definition 4.1.11 (Fractional Chromatic Number). A graph G = (V,E) is said to have
an a/b-colouring if to each vertex we can assign a subset of {1, ..., a} having cardinality
b such that whenever two vertices are adjacent, their corresponding subsets are disjoint.
The fractional chromatic number of G is then defined by

χf (G) = inf
{a
b

: G has an a/b-colouring
}
.

Definition 4.1.12 (Mančinska-Roberson’s projective rank, [48]). Let G = (V,E) be a
graph. Let d ∈ N and r ∈ Z+. We say that the graph G admits a d/r-representation if
there exists a collection of projections {Ev : v ∈ V } ⊆ Md such that Tr(Ev) = r for all
v ∈ V and EvEw = 0 for all (v, w) ∈ E. Define the projective rank to be

ξf (G) = inf

{
d

r
: G has a d/r-representation

}
.

Definition 4.1.13 (Tracial Rank, [59]). Let G = (V,E) be a graph. We define the tracial
rank ξtr(G) to be the infimum of the the set of all real numbers s such that there exists a
C∗-algebra A with a tracial state τ and projections {pv : v ∈ V } ⊆ A such that τ(pv) = s,
and τ(pvpw) = 0 for all (v, w) ∈ E.

We remark that if we restrict the infimum in Definition 4.1.13 over finite dimensional
C∗-algebras we get the projective rank of the graph [59, Proposition 5.11]. Moreover, it
is well-known that the fractional chromatic number gives a lower bound on the chromatic
number. In fact, ξf (G) ≤ χf (G) ≤ χ(G), for all graphs G [30]. The other two parameters
provide lower bounds for quantum versions of chromatic numbers [48, 60, 59]

The following two propositions follow from the definitions.

Proposition 4.1.14. For a graph G, we have

χf (G)−1 = sup{t : floc(t) = 0},
ξf (G)−1 = sup{t : fq(t) = 0},
ξtr(G)−1 = sup{t : fqc(t) = 0},

where χf (G), ξf (G) and ξtr(G) as defined in Definitions 4.1.11, 4.1.12, and 4.1.13, respec-
tively.
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Proposition 4.1.15. Let G be a graph on n vertices and let G be its complement. If Kn

denotes the complete graph on n vertices, then

fr(G) + fr(G) ≤ fr(Kn),

for all r ∈ {loc, q, qs, qa, qc, vect}.

Proof. Let r ∈ {loc, q, qs, qa, qc, vect} and let t ∈ [0, 1]. Let p = (p(i, j|v, w)) ∈ Cs
r (n, 2) be

such that pA(0|v) = pB(0|w) = t for all 1 ≤ v, w ≤ n. Letting E(G) and E(G) denote the
edge sets of G and G, respectively, we see that

fr(G)(t) + fr(G)(t) ≤
∑

(v,w)∈E(G)

p(0, 0|v, w) +
∑

(v,w)∈E(G)

p(0, 0|v, w) =
∑

(v,w)∈E(Kn)

p(0, 0|v, w).

Since this holds for all p = (p(i, j|v, w)) ∈ Γr(t), we get the desired result.

4.2 Vertex and edge transitive graphs

With these basic properties of graph correlation functions in place, it would be beneficial
to have some concrete examples in hand. The class of vertex transitive and edge transitive
graphs provide examples of graphs with ample symmetry to exploit. We begin with the
definition of such graphs.

Definition 4.2.1. A graph automorphism of a graph G = (V,E) is a bijective function
π : V → V such that (v, w) ∈ E if and only if (π(v), π(w)) ∈ E. We let Aut(G) denote
the group of all graph automorphisms of G. A graph is called vertex transitive if for every
v, w ∈ V there is a graph automorphism π with π(v) = w. A graph is called edge transitive
if for every (v, w), (x, y) ∈ E, there is a graph automorphism π with (π(v), π(w)) = (x, y).

The symmetries of a vertex and edge transitive graph allow us to restrict our attention
to even smaller sets of correlations with higher degrees of symmetry.

Proposition 4.2.2. If G = (V,E) is a vertex and edge transitive graph on n vertices, then
for every r ∈ {loc, q, qa, qc, vect, ns} and every t ∈ [0, 1], we have fr(t) = inf{F (p) : p ∈
Γ̃r(t)}, where

Γ̃r(t) = {(p(i, j|v, w)) ∈ Γr(t) : p(0, 0|v, w) = p(0, 0|x, y), ∀ (v, w), (x, y) ∈ E} .
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Proof. Using the convexity of Γr(t) and the vertex and edge transitivity of the graph G, it
is not too hard to show that the map

p 7→ 1

|Aut(G)|
∑

π∈Aut(G)

βπ(p),

maps Γr(t) into Γ̃r(t). Since βπ leaves the function F invariant, it follows that the above
map also leaves F invariant. But then by Equation (4.1.2) we get fr(t) = inf{F (p) : p ∈
Γ̃r(t)}.

Corollary 4.2.3. Let G = (V,E) be a vertex and edge transitive graph. Then for all
t ∈ [0, 1], fqc(t) is the infimum over all real numbers s such that there exists a C∗-algebra
A with a tracial state τ and projections {Pv : v ∈ V } ⊆ A such that τ(Pv) = t for all v ∈ V
and τ(PvPw) = s

|E| whenever (v, w) ∈ E. Moreover, fq can be computed in an identical
manner but with the infimum restricted to finite dimensional C∗-algebras.

Proof. This follows from Proposition 4.2.2 and Corollary 4.1.8.

Remark 4.2.4. Let r ∈ {loc, q, qa, qc, vect, ns} and let (p(i, j|v, w)) ∈ Cs
r (n, 2) be such

that pA(0|v) = pB(0|w) = t for all v, w ∈ V and p(0, 0|v, w) = s
|E| for all (v, w) ∈ E. The

synchronous condition implies t = pA(0|v) = p(0, 0|v, v) + p(0, 1|v, v) = p(0, 0|v, v), so that

p(0, 0|v, v) = t, p(0, 1|v, v) = p(1, 0|v, v) = 0, p(1, 1|v, v) = 1− t. (4.2.1)

If (v, w) ∈ E, then using the non-signalling conditions (Definition 2.1.4) with Equations
(4.2.1) we must have

p(0, 0|v, w) =
s

|E|
, p(0, 1|v, w) = p(1, 0|v, w) = t− s

|E|
, p(1, 1|v, w) = 1− 2t+

s

|E|
.

Since these are probabilities, we must have

0 ≤ max{0, 2t− 1} ≤ s

|E|
≤ t. (4.2.2)

The following proposition states that the graph correlation function fq for a vertex and
edge transitive graph is “piecewise” linear, and it may certainly contain infinitely many
linear parts.

Proposition 4.2.5. Let G = (V,E) be a vertex and edge transitive graph on n vertices
and let t ∈ [0, 1] be irrational. Suppose that the value of fq(t) is attained in the infimum
(4.1.2) defining it. Then there is a non-degenerate interval [r, s] having rational endpoints
such that t ∈ [r, s] and the restriction of fq to [r, s] is linear.
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Proof. Since the value fq(t) is attained, there is a finite dimensional C∗-algebraA generated
by projections {Pv : v ∈ V } and equipped with a trace τ : A → C with τ(Pv) = t for all
v ∈ V and such that

fq(t) =
∑

(v,w)∈E

τ(PvPw).

Since A is finite dimensional, we may write A =
⊕m

l=1Mnl and τ = ⊕ml=1λltrnl , where
λl > 0 with

∑m
l=1 λl = 1, and where trnl : Mnl → C denotes the normalised trace on

matrices. Moreover, we have Pv = ⊕ml=1Pv,l for projections Pv,l ∈Mnl . Let Aut(G) denote
the group of graph automorphisms of the graph G and set N = |Aut(G)|. For v ∈ V and
1 ≤ l ≤ m, set

P̃v,l = ⊕π∈Aut(G)Pπ(v),l ∈
⊕

π∈Aut(G)

Mnl =: Al.

Define a trace, τl : Al → C, by

τl
(
⊕π∈Aut(G)Xπ

)
=

1

N

∑
π∈Aut(G)

trnl(Xπ).

Given any v, w ∈ V if we fix ρ ∈ Aut(G) such that ρ(v) = w, then

τl(P̃w,l) =
1

N

∑
π∈Aut(G)

trnl(Pπ(w),l) =
1

N

∑
π∈Aut(G)

trnl(Pπρ(v),l) = τl(P̃v,l),

which is some fixed rational number rl. After a permutation we may assume that these
rational numbers rl are arranged in non-decreasing order.

Thus, {P̃v,l : v ∈ V } is a feasible set for the definition of fq(rl) and hence we have that

fq(rl) ≤
∑

(v,w)∈E

τl(P̃v,lP̃w,l).

Now, we set Ã = ⊕ml=1Al, and define a normalised trace τ̃ : Ã → C by τ̃(⊕ml=1Yl) =∑m
l=1 λlτl(Yl). Define projections P̃v in Ã by P̃v = ⊕ml=1P̃v,l. Then we have that

τ̃(P̃v) =
m∑
l=1

λlτl(P̃v,l) =
1

N

m∑
l=1

∑
π∈Aut(G)

λltrnl(Pπ(v),l) =
1

N

∑
π∈Aut(G)

τ(Pπ(v)) = t,
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while a similar calculation shows that
∑

(v,w)∈E τ̃(P̃vP̃w) = fq(t). Thus,

fq(t) =
∑

(v,w)∈E

m∑
l=1

λlτl(P̃v,lP̃w,l) ≥
m∑
l=1

λlfq(rl).

By Proposition 4.1.7, fq is a convex function and so we have

fq(t) =
m∑
l=1

λlfq(rl),

and so we must have that fq(rl) =
∑

(v,w)∈E τl(P̃v,lP̃w,l).

But this is exactly the equality case of Jensen’s inequality, which holds if and only if
either all the points in the convex combination are the same or the function is piecewise
linear on an interval containing the points. Since t is irrational, the points rl cannot all
be same and this forces the function fq to be linear on an interval containing the points
rl.

Theorem 4.2.6. Let G = (V,E) be a vertex and edge transitive graph on n vertices and let
t ∈ [0, 1]. Then fvect(t) = s, where s is the smallest real number satisfying Equation (4.2.2)
and for which there exists an (n + 1) × (n + 1) positive semidefinite matrix P = [pi,j]

n
i,j=0

satsifying

(a) pi,j ≥ 0 for all 0 ≤ i, j ≤ n

(b) p0,0 = 1 and pi,i = t for all 1 ≤ i ≤ n,

(c) p0,j = pj,0 = t for all 1 ≤ j ≤ n

(d) pi,j = s
|E| for all (i, j) ∈ E.

Proof. Fix t ∈ [0, 1] and let fvect(t) = s. Then s must satisfy Equation (4.2.2). Since
Cs
vect(n, 2) is closed, by Proposition 4.2.2 there exists (p(i, j|v, w)) ∈ Cs

vect(n, 2) such that
pA(0|v) = pB(0|w) = t for all v, w ∈ V and p(0, 0|v, w) = s

|E| for all (v, w) ∈ E. By

Proposition 2.2.10 there exist vectors {xv,0, xv,1, h : v ∈ V } ⊆ H in some Hilbert space H
such that

‖h‖ = 1, 〈xv,0, xv,1〉 = 0, h = xv,0 + xv,1, p(i, j|v, w) = 〈xv,i, xw,j〉.
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Set xv = xv,0 and yv = xv,1. Let x0 = h and let P = [pv,w]nv,w=0 be the Gramian of vectors
{x0, x1, . . . , xn}. Then this matrix is positive semidefinite and satisfies the properties stated
in theorem. For notice that for all v ∈ V we have

〈xv, h〉 = 〈xv,0, xv,0 + xv,1〉 = p(0, 0|v, v) + p(0, 1|v, v) = pA(0|v) = t,

‖xv‖2 = 〈xv,0, xv,0〉 = 〈xv,0, h− xv,1〉 = 〈xv,0, h〉 = t,

and for all (v, w) ∈ E we have

〈xv, xw〉 = 〈xv,0, xw,0〉 = p(0, 0|v, w) =
s

|E|
.

Conversely, given such a matrix P there are vectors {x0, . . . , xn} such that P is the
Gramian of these vectors. Set h = x0 and yv = x0 − xv for all 1 ≤ v ≤ n and observe
that 〈xv, yv〉 = 〈xv, x0 − xv〉 = p0,v − pv,v = t− t = 0, from which it is easy to construct a
synchronous vector correlation.

4.3 Complete graphs

In this section, we compute the function fvect explicitly for the complete graph Kn when
n ≥ 3. We shall then compare the function fvect with the function fq for K5 to deduce
that the set Cq(5, 2) is not closed.

Proposition 4.3.1. For the complete graph Kn on n ≥ 3 vertices, we have that

fvect(t) =


0, if 0 ≤ t ≤ 1

n
,

nt(nt− 1), if 1
n
≤ t ≤ n−1

n
,

(n2 − n)(2t− 1), if n−1
n
≤ t ≤ 1.

Proof. We seek the smallest s for which the (n+1)×(n+1) matrix satisfying the conditions
of Theorem 4.2.6 is positive semidefinite. Applying one step of the Cholesky algorithm, this
is equivalent to the n× n matrix Q = [qi,j] being positive semidefinite, where qi,i = t− t2
and qi,j = s

|E| − t
2 for i 6= j. Let J be the n× n matrix of all 1’s, then

Q =

(
t− s

|E|

)
I +

(
s

|E|
− t2

)
J
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which has eigenvalues, {
t− s

|E|
, (n− 1)

s

|E|
+ t− nt2

}
.

Thus, Q is positive semidefinite if and only if

nt2 − t
n− 1

≤ s

|E|
≤ t.

Combining this condition with the constraint in (4.2.2) and observing that nt2−t
n−1

≤ t for
0 ≤ t ≤ 1, we arrive at

max

{
0,
nt2 − t
n− 1

}
≤ s

|E|
, when 0 ≤ t ≤ 1

2
,

max

{
2t− 1,

nt2 − t
n− 1

}
≤ s

|E|
, when

1

2
≤ t ≤ 1.

Simplifying this proves the proposition.

Before we prove our main result of this chapter, we digress to an interesting problem
which arose while trying to understand certain universal C∗-algebras related to the quan-
tum correlation sets. Understanding this problem (and its solution) is key to Theorem
4.3.5.

Problem 4.3.2. Fix n ∈ N. Determine the set Σn of all real numbers α such that there
exist n projections P1, ..., Pn in some Hilbert space H such that P1 + ...+ Pn = αIH.

It is not hard to establish some elementary properties of the set Σn. For example,

(a) {0, 1, ..., n} ⊆ Σn ⊆ [0, n], and,

(b) α ∈ Σn if and only if n− α ∈ Σn.

It is also pretty straightforward to find Σn for n = 1, 2, 3. In fact,

Σ1 = {0, 1}, Σ2 = {0, 1, 2}, Σ3 =

{
0, 1,

3

2
, 2, 3

}
.

However, it is not so simple to find what Σn is for n ≥ 4. It turns out that this problem
has been studied deeply in [44, 63, 64] together with representations of algebras generated
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by such projections. For our purpose, we merely state the results that we shall use. It is
fascinating to notice that for 1 ≤ n ≤ 3, the set Σn is finite; for n = 4 the set is countably
infinite; however, for n ≥ 5, the set Σn contains a non-degenerate interval, and this is why
Theorem 4.3.5 works.

Theorem 4.3.3 ([44]). Let n ≥ 4. Then

Σn =

{
Λ1
n,Λ

2
n,

[
n−

√
n(n− 4)

2
,
n+

√
n(n− 4)

2

]
, n− Λ1

n, n− Λ2
n

}
, (4.3.1)

where Λ1
n,Λ

2
n are discrete sets which lie in the interval

[
0,

n−
√
n(n−4)

2

)
. In particular, when

n ≥ 5, the interval

[
n−
√
n(n−4)

2
,
n+
√
n(n−4)

2

]
is non-degenerate.

Theorem 4.3.4 ([44]). Let n ≥ 5 and let α ∈ Σn ∩
[
n−
√
n(n−4)

2
,
n+
√
n(n−4)

2

]
. Then there

exist projections P1, ..., Pn in a finite-dimensional Hilbert space H such that
∑n

i=1 Pi = αIH
if and only if α is rational.

With these results in hand we now proceed to prove our key result.

Theorem 4.3.5. The synchronous correlation set Cs
q (5, 2) is not closed.

Proof. Consider the complete graph G = K5 on five vertices. By Proposition 4.3.1 we
know that

fvect(t) =


0, if 0 ≤ t ≤ 1

5
,

5t(5t− 1), if 1
5
≤ t ≤ 4

5
,

20(2t− 1), if 4
5
≤ t ≤ 1.

Notice that fvect(t) is quadratic in t on the interval
[

1
5
, 4

5

]
. We show that fq(t) = fvect(t) =

5t(5t − 1) for all rational t ∈
[√

5−1
2
√

5
,
√

5+1
2
√

5

]
⊂
[

1
5
, 4

5

]
. This will imply that fq cannot be

linear on any non-degenerate subinterval of
[√

5−1
2
√

5
,
√

5+1
2
√

5

]
, so that, by Proposition 4.2.5, it

will follow that the value of fq(t) is not attained for any irrational t in that interval. In
this case, Cs

q (5, 2) cannot be closed.

From (4.1.3), we have fq(t) ≥ fvect(t) = 5t(5t − 1) when t ∈ [1
5
, 4

5
]. Suppose t ∈[√

5−1
2
√

5
,
√

5+1
2
√

5

]
and t is rational. We will show fq(t) ≤ 5t(5t−1). Since 5t ∈

[
5−
√

5
2
, 5+

√
5

2

]
∩Q,
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by Theorem 4.3.4, it follows that there exist five projections P1, . . . , P5 ∈ Mk for some
natural number k, such that P1 + · · ·+ P5 = 5tIk. Define

P̃i = Pi ⊕ Pi+1 ⊕ · · · ⊕ Pi+4 ∈Mk ⊕Mk ⊕ · · · ⊕Mk ⊆M5k.

Clearly
∑5

j=1 P̃j = 5tI5k, and also notice that if tr5k denotes the normalised trace on M5k,
then

tr5k(P̃i) =
1

5k
Tr(P̃i) =

1

5k

5∑
j=1

Tr(Pj) =
1

5k
Tr

(
5∑
j=1

Pj

)
=

1

5k
(5tk) = t.

Therefore, we have five projections P̃1, . . . , P̃5 ∈ M5k such that tr5k(P̃i) = t, for all

1 ≤ i ≤ 5, and
∑5

j=1 P̃j = 5tI5k. Squaring the sum, we get
∑

i 6=j P̃iP̃j = 5t(5t − 1)I5k,
which, upon taking the normalised trace, yields∑

i 6=j

tr5k(P̃iP̃j) = 5t(5t− 1).

This implies fq(t) = 5t(5t− 1) for all t ∈
[√

5−1
2
√

5
,
√

5+1
2
√

5

]
∩Q, completing the proof.

Remark 4.3.6. Examining the above proof, we can write down an explicit element of
Cqa(5, 2) that is not an element of Cq(5, 2). Indeed, let t be an irrational element of

the interval
[√

5−1
2
√

5
,
√

5+1
2
√

5

]
. Working with the complete graph K5, since fqa(t) = fq(t) =

5t(5t− 1), by Proposition 4.2.2 and since Γ̃qa(t) is closed, there exists

p = (p(i, j|v, w)) ∈ Γ̃qa(t) ⊆ Cqa(5, 2),

such that pA(0|v) = pB(0|w) = t for all v, w ∈ V and p(0, 0|v, w) = t
4
(5t − 1) for all

v, w ∈ V with v 6= w. Now using Remark 4.2.4, we calculate: if v = w, then

p(0, 0|v, w) = t, p(0, 1|v, w) = p(1, 0|v, w) = 0, p(1, 1|v, w) = 1− t,

while if v 6= w, then

p(0, 0|v, w) =
1

4
t(5t− 1), p(0, 1|v, w) = p(1, 0|v, w) =

5

4
t(1− t),

p(1, 1|v, w) =
1

4
(1− t)(4− 5t).

However, since the value fq(t) is not attained in the infimum defining it, we have p /∈
Cq(5, 2).
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Corollary 4.3.7. The sets Cq(5, 2) and Cqs(5, 2) are not closed, and Cqs(5, 2) 6= Cqa(5, 2).

Proof. It is easily seen that if Cq(5, 2) were closed then necessarily the subset of synchronous
quantum correlations would be closed. Hence, Cq(5, 2) is not closed.

Similar reasoning shows that if Cqs(5, 2) were closed, then Cs
qs(5, 2) would be closed.

But Theorem 3.10 of [43] shows that Cs
qs(5, 2) = Cs

q (5, 2), and so Cqs(5, 2) is not closed.

The last claim follows from the fact that Cqa(5, 2) is closed.
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Chapter 5

Entanglement breaking rank

In this chapter we move away from the study of quantum correlations and focus on a
parameter of entanglement breaking maps called the entanglement breaking rank, and the
existence problem of symmetric informationally complete POVMs. The results mentioned
in this chapter became the basis of [56]. For a background on quantum channels and their
representations, we refer the reader to [76, Chapter 2].

The study of separable states is an important topic in quantum information theory and
helps to shed light on the nature of entanglement. Recall that, a state ρ ∈ Mm ⊗Mn is
called separable if it can be written as a finite convex combination ρ =

∑
i λiσi⊗ δi, where

σi and δi are pure states. In general, a separable state can have many such representations
[38]. It is then natural to introduce the notion of optimal ensemble cardinality [18] or length
[9] of a separable state by defining it to be the minimum number `(ρ) of pure states σi⊗ δi
required to write the separable state ρ as their convex combination.

The notion of entanglement breaking maps was introduced and studied in [37, 67]. We
say that a linear map Φ : Md →Mm is entanglement breaking if the tensor product Φ⊗In
maps states of Md ⊗Mn to separable states in Mm ⊗Mn, for all n ∈ N. An equivalent
criterion of entanglement breaking [37] is that Φ admits a Choi-Kraus representation of
the form

Φ(X) =
K∑
k=1

RkXR
∗
k, X ∈Md, (5.0.1)

where the Rk’s are rank one matrices in Mm,d. Since Choi-Kraus representations are not
unique, we define the entanglement breaking rank of Φ to be the minimum K required in
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such an expression (5.0.1), and denote it by ebr(Φ). Clearly, the entanglement breaking
rank of Φ is never less than its Choi rank, since the Choi rank is the minimum K required
but without the restriction on Rk’s being rank one.

Another equivalent criterion [37] for a map to be entanglement breaking is that its
Choi-matrix CΦ := [Φ(Ei,j)] ∈ Md ⊗Mm should be separable, where {Ei,j : 1 ≤ i, j ≤ d}
is the set of canonical matrix units of Md. If Φ is entanglement breaking, then it is easy
to see that `(CΦ) = ebr(Φ) so that studying entanglement breaking rank is the same as
studying length. However, for our purposes it is more natural to study channels instead of
states, so we will think in terms of entanglement breaking rank instead of length.

On the other hand, the existence of a symmetric informationally complete POVM (SIC
POVM) for an arbitrary dimension d ≥ 2 is a major unsolved problem in quantum informa-
tion theory and is an active area of research, beginning with [77, 78, 66]. SIC POVMs have
found applications in quantum state tomography, quantum cryptography and foundations
of quantum mechanics. For a sample and the extent of numerical evidence we refer the
reader to [8, 27, 28, 71, 66, 1, 69]. Stated in terms of equiangular lines, the problem asks
about the existence of d2 unit vectors {vi : 1 ≤ i ≤ d2} ⊆ Cd such that |〈vi, vj〉|2 = 1

d+1
for

all i 6= j.

Assuming the existence of a SIC POVM {vi}d
2

i=1 ⊂ Cd in a dimension d, it can be shown
[7] that if Pi are the rank one projections onto the span of vi, then,

1

d

d2∑
i=1

PiXPi =
1

d+ 1
(X + Tr(X)Id), X ∈Md.

Denoting this channel by Zd, it is independently known to be entanglement breaking and its
Choi-rank is d2 [46, 36]. Thus, if a SIC POVM exists in dimension d, then the entanglement
breaking rank of the channel Zd is d2.

We prove the converse: if ebr(Zd) = d2, then there exists a SIC POVM in dimension d.
This is a slight relaxation of the SIC POVM conditions, since the d2 rank one matrices are
not a priori assumed to be positive. Although our proof will show that they are necessarily
positive. This leads to the conclusion (Corollary 5.2.7) that for d ≥ 2, ebr(Zd) = d2 if and
only if a SIC POVM exists in dimension d.

We collect necessary definitions and results in Section 5.1 and prove the equivalence
result in Section 5.2.

We close this discussion with a remark pointed out by John Watrous. A similar kind
of study was undertaken in [42], where the author studies a relationship between the
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quantumness of a set of states with the cardinality of the set. The notion of quantumness
for a set of states was defined by [27] which we reproduce here. If {ψi : 1 ≤ i ≤ N} ⊆ Cd
is a set of states in a d-dimensional Hilbert space, we define its quantumness as

Q{ψi:1≤i≤N} = inf
π

sup
∑
i,j

πi 〈Ejψi, ψi〉 〈σjψi, ψi〉 ,

where the infimum runs over all probability distributions π, and the supremum runs over
all over POVMs {Ej : 1 ≤ j ≤ J} and density matrices {σj : 1 ≤ j ≤ J}. It was shown in
[27], that

2

d+ 1
≤ Q{ψi:1≤i≤N} ≤ 1,

and moreover, that a SIC POVM in dimension d achieves the lower bound. The authors
asked whether this lower bound can be achieved by a set of states with cardinality less
than d2. Kim [42] showed that the answer is no by showing that at least d2 states are
always needed to achieve the minimal quantumness, and the states in that collection must
form a SIC POVM.

5.1 Preliminaries

We begin with the definition of a symmetric informationally complete POVM (SIC POVM).
Recall the definition of a POVM in Definition 2.1.11.

Definition 5.1.1. A POVM {Ri}d
2

i=1 ⊆Md is called a symmetric informationally complete
POVM if it satisfies the following conditions:

(a) The POVM is symmetric: 〈Ri, Ri〉2 is constant for all 1 ≤ i ≤ d2, and 〈Ri, Rj〉2 is
constant for all i 6= j. (Recall that 〈., .〉2 is the Hilbert-Schmidt inner product on
Md.)

(b) The POVM is informationally complete: span{Ri : 1 ≤ i ≤ d2} = Md, and,

(c) rank(Ri) = 1 for all 1 ≤ i ≤ d2.

The following proposition gives a characterisation of SIC POVMs in terms of equian-
gular unit vectors.
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Proposition 5.1.2 ([78]). A set of operators {Ri}d
2

i=1 ⊆ Md is a SIC POVM if and only
if there exist d2 unit vectors {wi}d

2

i=1 ⊆ Cd such that Ri = 1
d
wiw

∗
i for each 1 ≤ i ≤ d2, and

|〈wi, wj〉|2 = 1
d+1

for all i 6= j.

Because of Proposition 5.1.2, we shall call a set {wi}d
2

i=1 ⊆ Cd of d2 unit vectors a SIC
POVM if | 〈wi, wj〉 |2 = 1

d+1
for all i 6= j.

The constant 1
d+1

appearing in Proposition 5.1.2 can be derived independently.

Proposition 5.1.3 ([78]). If {wi}d
2

i=1 ⊆ Cd is a set of unit vectors such that | 〈wi, wj〉 |2 = k
for all i 6= j, then k = 1

d+1
.

We now state the SIC POVM existence conjecture in terms of equiangular vectors,
which we shall call Zauner’s conjecture.

Conjecture 5.1.4 (Zauner’s conjecture). For each positive integer d ≥ 2, there exist d2

unit vectors {wi}d
2

i=1 in Cd such that |〈wi, wj〉|2 = 1
d+1

for all i 6= j.

The existence of the SIC POVM for all dimensions d ≥ 2 is still an open question.
However, in some specific dimensions (d = 1− 21, 24, 28, 30, 31, 35 etc.), analytic solutions
have been found. See [70] for the latest progress in finding these solutions.

We now collect some facts about quantum channels. We refer the reader to [10, 76]
for more details. Recall that a linear map Ω : Md → Mm is completely positive and trace
preserving (hence a quantum channel) if and only if Ω can be expressed as

Ω(X) =
K∑
k=1

BkXB
∗
k, X ∈Md, (5.1.1)

for some B1, ..., BK ∈ Mm,d with
∑K

k=1 B
∗
kBk = Id. The expression (5.1.1) is called a

Choi-Kraus representation of the quantum channel Ω. Choi-Kraus representations of a
quantum channel are not unique, and therefore the minimum K possible in (5.1.1) is
called the Choi-rank of Ω. The Choi-rank of Ω is equal to the rank of the dm× dm Choi-
matrix [Ω(Ei,j)]

d
i,j=1, where {Ei,j : 1 ≤ i, j ≤ d} are the canonical matrix units of Md. If

the value of K in expression (5.1.1) equals the Choi-rank of Ω, then {Bk}Kk=1 ⊆ Mm,d is a
linearly independent set.

We identify two simple quantum channels for our purpose.
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Definition 5.1.5. The quantum channel Id : Md → Md defined by Id(X) = X, for all
X ∈ Md, is called the identity channel. The quantum channel Ψd : Md → Md defined by
Ψd(X) = 1

d
Tr(X)Id, for all X ∈ Md, is called the completely depolarizing channel. For

t ∈ [0, 1], we define Φt : Md →Md to be Φt = tId + (1− t)Ψd. When t = 1
d+1

, we set,

Zd := Φ 1
d+1

=
1

d+ 1
Id +

d

d+ 1
Ψd.

A Choi-Kraus representation of the identity channel Id is simply Id(X) = IdXId, and
hence its Choi-rank is 1. Since CΨd = [Ψd(Ei,j)] = 1

d
Id2 , it follows that the Choi-rank of

the completely depolarizing channel Ψd is d2.

Since the set of quantum channels Ω : Md → Md forms a convex set in the space
L(Md,Md), it follows that the map Φt = tId + (1 − t)Ψd is also a quantum channel for
every t ∈ [0, 1]. When t ∈ (0, 1), it is easy to see that the Choi-rank of Φt is d2. Indeed,
notice that the Choi-matrix of Φt is CΦt = t[Ei,j]+

1−t
d
Id2 . Let ξ ∈ Cd2 . If CΦt(ξ) = 0, then

[Ei,j]ξ = −1−t
td
ξ. But the only eigenvalues of [Ei,j] are 0 and d, which implies that ξ = 0.

Thus rank(CΦt) = d2.

We now define an entanglement breaking map. Recall that a state ρ ∈ Mm ⊗Mn is
called separable if it can be expressed as ρ =

∑r
i=1 λixix

∗
i ⊗ yiy∗i , where xi and yi are unit

vectors in Cm and Cn, respectively, and λi ≥ 0 with
∑r

i=1 λi = 1. If a state is not separable
it is called entangled.

Definition 5.1.6 ([37]). A linear map Φ : Md → Mm is called entanglement breaking if
for all n ∈ N, the tensor product map

Φ⊗ In : Md ⊗Mn →Mm ⊗Mn

maps all states (entangled or not) in Md ⊗Mn to separable states in Mm ⊗Mn.

The set of all entanglement breaking maps Φ : Md → Mm forms a convex set in the
space of all linear maps L(Md,Mm). The following theorem lists some equivalent conditions
on a map to be entanglement breaking.

Theorem 5.1.7 ([37]). Let Φ : Md → Mm be a linear map. Then the following are
equivalent.

(a) The map Φ is entanglement breaking.

(b) The Choi matrix of Φ is separable.
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(c) The map Φ has a Choi-Kraus representation

Φ(X) =
I∑
i=1

AiXA
∗
i , X ∈Md,

where each Ai is a rank-one operator.

We end this section with the following known result which characterizes when the maps
Φt = tId + (1− t)Ψd as in Definition 5.1.5 are entanglement breaking.

Proposition 5.1.8 ([36, 46]). Let t ∈ R. The map Φt = tId + (1− t)Ψd is entanglement
breaking if and only if −1

d2−1
≤ t ≤ 1

d+1
.

5.2 Entanglement breaking rank and SIC POVMs

Definition 5.2.1. Let Φ : Md →Mm be an entanglement breaking map. The entanglement
breaking rank of Φ, denoted by ebr(Φ), is the minimum number of rank-one operators Ak
required when Φ is written in the form Φ(X) =

∑K
k=1AkXA

∗
k.

Let cr(Φ) denote the Choi-rank of a entanglement breaking channel Φ : Md →Mm. We
have the following simple estimate: cr(Φ) ≤ ebr(Φ).

By Proposition 5.1.8, it follows that the channel Zd is an entanglement breaking channel,
and hence it has a Choi-Kraus representation consisting of rank-one Choi-Kraus operators.
Zauner’s conjecture can then be related to the problem of obtaining a minimal Choi-
Kraus representation of the quantum channel Zd consisting of rank-one operators. First
we establish a weaker proposition.

Proposition 5.2.2. Zauner’s conjecture is true if and only if for each positive integer

d ≥ 2, the quantum channel Zd has a Choi-Kraus representation Zd(X) =
∑d2

i=1 RiXRi,
for all X ∈Md, where each Ri is a rank-one positive operator.

Proof. The forward implication is a known result [7]. However, we include a proof for the
sake of completeness.

Suppose that Zauner’s conjecture is true. Then for each positive integer d ≥ 2, there
exist d2 unit vectors {wi}d

2

i=1 in Cd such that | 〈wi, wj〉 |2 = 1
d+1

for all i 6= j. By Proposition

63



5.1.2, the set
{

1
d
wiw

∗
i

}d2
i=1
⊆Md forms a SIC POVM. Set Ri = 1

d
wiw

∗
i for each 1 ≤ i ≤ d2,

and define a map Φ : Md →Md by

Φ(X) = d

d2∑
i=1

RiXRi, X ∈Md.

Then Φ is a unital quantum channel since

d
d2∑
i=1

R∗iRi = d
d2∑
i=1

1

d
Ri =

d2∑
i=1

Ri = Id.

The set {Rj}d
2

j=1 being informationally complete spans Md, and so each X ∈ Md may

be written as X =
∑d2

j=1 rjRj for some unique scalars rj. Taking trace on both sides of

X =
∑d2

j=1 rjRj yields

d2∑
j=1

rj = dTr(X). (5.2.1)

Next observe that

Φ(Rj) = d

R3
j +

∑
1≤i≤d2
i 6=j

RiRjRi

 = d

 1

d2
Rj +

1

d2(d+ 1)

∑
1≤i≤d2
i 6=j

Ri


= d

(
1

d2
Rj +

1

d2(d+ 1)
(Id −Rj)

)
=

1

d+ 1

(
Rj +

1

d
Id
)
,

which implies

Φ(X) =
d2∑
j=1

rjΦ(Rj) =
1

d+ 1

d2∑
j=1

rjRj +
Id

d(d+ 1)

d2∑
j=1

rj

=
1

d+ 1
X +

Id
d(d+ 1)

dTr(X) =
1

d+ 1
Id(X) +

d

d+ 1
Ψd(X),

where we used Equation (5.2.1) in the third equality. Hence Φ = Zd.
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Conversely, suppose that Zd has a Choi-Kraus representation, Zd(X) =
∑d2

i=1RiXRi,
where each Ri is a rank-one positive operator, Ri = viv

∗
i for some vi ∈ Cd. Since the

channel is unital, we have

Id =
d2∑
i=1

R2
i =

d2∑
i=1

‖vi‖2Ri.

Using this, on one hand we have

Zd(Rj) =
1

d+ 1
(Rj + ‖vj‖2Id) =

1

d+ 1

(
Rj +

d2∑
i=1

‖vj‖2‖vi‖2Ri

)

=
1

d+ 1

(1 + ‖vj‖4)Rj +
∑

1≤i≤d2
i 6=j

‖vi‖2‖vj‖2Ri

 ,

and on the other hand,

Zd(Rj) =
d2∑
i=1

RiRjRi = R3
j +

∑
1≤i≤d2
i 6=j

RiRjRi = ‖vj‖4Rj +
∑

1≤i≤d2
i 6=j

| 〈vi, vj〉 |2Ri.

Comparing Zd(Rj) obtained in two ways, we get(
1 + ‖vj‖4

d+ 1
− ‖vj‖4

)
Rj +

∑
1≤i≤j
i 6=j

(
‖vi‖2‖vj‖2

d+ 1
− | 〈vi, vj〉 |2

)
Ri = 0.

Since {Ri}d
2

i=1 is a linearly independent set (because number of Choi-Kraus operators equals
the Choi-rank; see the discussion after Definition 5.1.5), we must have

1 + ‖vj‖4

d+ 1
− ‖vj‖4 = 0,

‖vi‖2‖vj‖2

d+ 1
− | 〈vi, vj〉 |2 = 0.

The first one yields, ‖vj‖4 = 1
d
, which is constant for all 1 ≤ j ≤ d2, and using this

the second one yields | 〈vi, vj〉 |2 = 1
d(d+1)

, for all i 6= j. Then it is easy to see that the

normalised vectors wi = vi
‖vi‖ satisfy | 〈wi, wj〉 |2 = 1

d+1
for all i 6= j, so that Zauner’s

conjecture holds.
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We can drop the positivity condition on Ri in Proposition 5.2.2.

Theorem 5.2.3. Zauner’s conjecture is true if and only if for each positive integer d ≥ 2,

the quantum channel Zd has a Choi-Kraus representation Zd(X) =
∑d2

i=1 RiXR
∗
i , for all

X ∈Md, where each Ri is a rank-one operator.

Proof. We only have to show the converse part. Suppose that the quantum channel Zd
has a Choi-Kraus representation given by Zd(X) =

∑d2

i=1RiXR
∗
i , where each Ri is a rank

one operator, Ri = xiy
∗
i , for some vectors xi, yi ∈ Cd. Without loss of generality, we may

assume that each yi is a unit vector. Since Zd is unital, we have

Id = Zd(Id) =
d2∑
i=1

RiR
∗
i =

d2∑
i=1

(xiy
∗
i )(xiy

∗
i )
∗ =

d2∑
i=1

xiy
∗
i yix

∗
i =

d2∑
i=1

xix
∗
i . (5.2.2)

Since the Choi rank of Zd is d2, it follows that the set {Ri}d
2

i=1 is a basis for Md. We
prove the following claims.

Claim 5.2.4. The set of matrices {xix∗i }d
2

i=1 is also a basis for Md.

Proof. Since the set {xix∗i }d
2

i=1 contains d2 elements and since {Rj}d
2

j=1 form a basis for Md,
it is enough to show that each Rj can be expressed as a linear combination of elements in
{xix∗i }d

2

i=1. To this end, notice that for 1 ≤ j ≤ d2,

Zd(Rj) =
1

d+ 1
(Rj + Tr(Rj)Id) =

1

d+ 1

(
Rj + 〈xj, yj〉

(
d2∑
i=1

xix
∗
i

))
,

where we used Equation (5.2.2). On the other hand, we have

Zd(Rj) =
d2∑
i=1

RiRjR
∗
i =

d2∑
i=1

(xiy
∗
i )(xjy

∗
j )(xiy

∗
i )
∗ =

d2∑
i=1

〈xj, yi〉 〈yi, yj〉xix∗i .

Comparing the two expressions of Zd(Rj), we get

1

d+ 1

(
Rj + 〈xj, yj〉

(
d2∑
i=1

xix
∗
i

))
=

d2∑
i=1

〈xj, yi〉 〈yi, yj〉xix∗i ,

which implies

Rj =
d2∑
i=1

((d+ 1) 〈xj, yi〉 〈yi, yj〉 − 〈xj, yj〉)xix∗i ,

completing the proof of the claim.
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Claim 5.2.5. For all 1 ≤ j ≤ d2, we have ‖xj‖2 = 1
d
.

Proof. For 1 ≤ j ≤ d2, using Equation (5.2.2) we have

Zd(xjx
∗
j) =

1

d+ 1

(
xjx

∗
j + Tr(xjx

∗
j)Id
)

=
1

d+ 1

(
xjx

∗
j + ‖xj‖2

(
d2∑
i=1

xix
∗
i

))

=
1

d+ 1

(1 + ‖xj‖2)xjx
∗
j +

∑
1≤i≤d2
i 6=j

‖xj‖2xix
∗
i

 ,

and on the other hand, we have

Zd(xjx
∗
j) =

d2∑
i=1

Ri(xjx
∗
j)R

∗
i =

d2∑
i=1

xiy
∗
i xjx

∗
jyix

∗
i =

d2∑
i=1

| 〈yi, xj〉 |2xix∗i .

Comparing the two expressions of Zd(xjx
∗
j), we get

1

d+ 1

(1 + ‖xj‖2)xjx
∗
j +

∑
1≤i≤d2
i 6=j

‖xj‖2xix
∗
i

 =
d2∑
i=1

| 〈yi, xj〉 |2xix∗i .

Because of linear independence of the set {xix∗i }d
2

i=1 from Claim 5.2.4, we have

(d+ 1)| 〈yj, xj〉 |2 = 1 + ‖xj‖2, (d+ 1)| 〈yi, xj〉 |2 = ‖xj‖2, ∀i 6= j. (5.2.3)

Using the Cauchy-Schwarz inequality in the first equation of (5.2.3),

1 + ‖xj‖2 = (d+ 1)| 〈yj, xj〉 |2 ≤ (d+ 1)‖yj‖2‖xj‖2 = (d+ 1)‖xj‖2,

which implies 1
d
≤ ‖xj‖2. Taking the trace of Equation (5.2.2), we get

∑d2

i=1 ‖xi‖2 = d,
using which we have

d2∑
i=1

(
‖xi‖2 − 1

d

)
=

d2∑
i=1

‖xi‖2 −
d2∑
i=1

1

d
= d− d2 1

d
= 0.

Thus ‖xj‖2 = 1
d
, for all 1 ≤ j ≤ d2.
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Claim 5.2.6. The unit vectors {yi}d
2

i=1 satisfy Zauner’s conjecture.

Proof. For 1 ≤ j ≤ d2, the first equation of (5.2.3) together with Claim 5.2.5 yields

(d+ 1)| 〈yj, xj〉 |2 = 1 + ‖xj‖2 = 1 +
1

d
=
d+ 1

d
,

which implies that | 〈yj, xj〉 |2 = 1
d
. Also for i 6= j, using the second equation of (5.2.3), we

get

(d+ 1)| 〈yi, xj〉 |2 = ‖xj‖2 =
1

d
,

which implies that | 〈yi, xj〉 |2 = 1
d(d+1)

. Therefore, for 1 ≤ i, j ≤ d2,

| 〈xi, yj〉 |2 =

{
1
d
, if i = j,

1
d(d+1)

, if i 6= j.

But

1

d
= | 〈xi, yi〉 |2 ≤ ‖xi‖2‖yi‖2 =

1

d
,

so that equality holds everywhere. This implies (from the equality case in Cauchy-Schwarz)
that xi = λiyi, for some λi ∈ C. Then

1

d
= | 〈xi, yi〉 |2 = | 〈λiyi, yi〉 |2 = |λi|2.

Using this when i 6= j, we get

1

d(d+ 1)
= | 〈xi, yj〉 |2 = |λi|2| 〈yi, yj〉 |2 =

1

d
| 〈yi, yj〉 |2,

which implies | 〈yi, yj〉 |2 = 1
d+1

. Therefore the unit vectors {yi}d
2

i=1 satisfy Zauner’s conjec-
ture.

Finally, note that

Zd(X) =
d2∑
i=1

(xiy
∗
i )X(xiy

∗
i )
∗ =

d2∑
i=1

|λi|2(yiy
∗
i )X(yiy

∗
i ) =

d2∑
i=1

1

d
(yiy

∗
i )X(yiy

∗
i ),

so that Zd has a Choi-Kraus representation with Choi-Kraus operators being rank-one
positive operators.
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Corollary 5.2.7. Zauner’s conjecture holds if and only if ebr(Zd) = d2 for all d ≥ 2.

Proof. This follows from Proposition 5.2.2 and Theorem 5.2.3, together with the fact that
cr(Φ) = d2.

Interestingly, for t ∈
[ −1
d2−1

, 1
d+1

)
, (see Proposition 5.1.8) the channels Φt : Md → Md

defined by Φt = tId + (1− t)Ψd cannot have a Choi-Kraus representation with d2 positive
rank-one Choi-Kraus operators, which we prove next.

Proposition 5.2.8. Let t ∈
[ −1
d2−1

, 1
d+1

)
. Let Φt : Md →Md be the quantum channel given

by Φt = tId + (1 − t)Ψd. Then Φt cannot have a Choi-Kraus representation, Φt(X) =∑d2

i=1RiXR
∗
i , where each Ri is a positive rank-one operator.

Proof. We shall follow the arguments as in Proposition 5.2.2. Suppose Φt has a Choi-Kraus

representation, Φt(X) =
∑d2

i=1RiXR
∗
i , where Ri = viv

∗
i for some vector vi ∈ Cd. Since Φt

is unital, we have Id =
∑d2

i=1 ‖vi‖2Ri. Applying Φt on Rj,

Φt(Rj) = tRj +
1− t
d

Tr(Rj)Id =

(
t+

1− t
d
‖vj‖4

)
Rj +

∑
1≤i≤d2
i 6=j

1− t
d
‖vj‖2‖vi‖2Ri,

and also

Φt(Rj) =
d2∑
i=1

RiRjR
∗
i = ‖vj‖4Rj +

∑
1≤i≤d2
i 6=j

| 〈vi, vj〉 |2Ri.

Comparing both the expressions of Φt(Rj) and using the linear independence of Ri’s, we
get

t+
1− t
d
‖vj‖4 = ‖vj‖4,

1− t
d
‖vj‖2‖vi‖2 = | 〈vi, vj〉 |2, ∀i 6= j.

This implies

‖vj‖4 =
dt

d+ t− 1
, | 〈vi, vj〉 |2 =

t(1− t)
d+ t− 1

, ∀i 6= j.

Let wi = vi
‖vi‖ . Then for all i 6= j, we have

| 〈wi, wj〉 |2 =
1

‖vi‖2‖vj‖2
| 〈vi, vj〉 |2 =

d+ t− 1

dt

t(1− t)
d+ t− 1

=
1− t
d

.

But by Corollary 5.1.3, we must have 1−t
d

= 1
1+d

, which implies that t = 1
d+1

, which is a
contradiction.
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5.3 Summary

In this summary we outline the work in [56] which developed from the work here.

In Section 5.2 we showed that computing the entanglement breaking rank of the channel
Zd for all d ≥ 2 is equivalent to Zauner’s problem. It is natural to ask whether Zd is the only
channel which has this property. If XT denotes the transpose of X, we prove in [56] that
having ebr(ZTd ) = d2 for all d ≥ 2 is also equivalent to Zauner’s conjecture. The channel
ZTd is an example of Werner-Holevo channels. What is remarkable with the channel ZTd is
that it is also an example of a map for which the Choi rank is strictly smaller than its
entanglement breaking rank [56].

The channel Zd is a particular convex combination of the identity channel and the
completely depolarizing channel. We conjecture that, for all t with 0 ≤ t ≤ 1

d+1
, the

entanglement breaking rank of each of these channels is d2. In [56], we verify this stronger
conjecture in dimensions d = 2 and d = 3. Moreover, we show, in these dimensions, that
there is a continuous family of d2 rank one matrices Ri :

[
0, 1

d+1

]
→Md for 1 ≤ i ≤ d2 such

that

(tId + (1− t)Ψd)(X) =
d2∑
i=1

Ri(t)XRi(t)
∗, X ∈Md.

In particular, when t = 1
d+1

, we get a Choi-Kraus representation of Zd consisting of d2 rank
one matrices, so that (by Theorem 5.2.3) we get the existence of a SIC POVM in that
dimension. We conjecture that such continuous families of rank one matrices exist in all
dimensions. Finally, we also show that more generally, the ebr is a lower semicontinuous
function.
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