Recipes for Resistance: A Censorship
Circumvention Cookbook

by

Cecylia Bocovich

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2018

(© Cecylia Bocovich 2018

Some rights reserved.

@O0

BY NC SA

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examin-
ing Committee is by majority vote.

External Examiner Vern Paxson
Supervisor Ian Goldberg
Internal Members Urs Hengartner

Bernard Wong

Internal-external Member Jennifer R. Whitson

i

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

License

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-sa/4.0/.

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Statement of Contributions

The entirety of this thesis was researched and written under the supervision of Ian Goldberg,
who additionally provided guidance and input in the development of Slitheen, proposed the gos-
sip protocol for asymmetric decoy routing deployments, and contributed modifications to Firefox
and NSS in our implementation of Slitheen’s overt user simulator. The experimental setup used
for evaluation and testing in Chapter 3 and Chapter 5 were designed and implemented with the
help of Lori Paniak. The content in Chapter 4 was developed with the help of discussions with
Anna Lorimer, who also coined the name Slifox, and helped with setting up the Docker container
test environment and experimental setup.

v

Abstract

The increasing centralization of Internet infrastructure and web services, along with advance-
ments in the application of machine learning techniques to analyze and classify network traffic,
have enabled the growth and proliferation of Internet censorship. While the Internet filtering in-
frastructure of censoring authorities improves, cracks and weaknesses in the censorship systems
deployed by the state allow Internet users to appropriate existing network protocols in order to
circumvent censorship attempts. The relationship between censors and censorship resistors is of-
ten likened to a cat-and-mouse game in which resistors struggle to find new gaps in nation-state
firewalls through which they can access content freely, while censors are devoted to discovering
and closing these gaps as quickly as possible.

The life cycle of censorship resistance tools typically begins with their creation, but often
ends very quickly as the tools are discovered and blocked by censors whose ability to identify
anomalous network traffic continues to grow. In this thesis, we provide several recipes to create
censorship resistance systems that disguise user traffic, despite a censor’s complete knowledge of
how the system works. We describe how to properly appropriate protocols, maximize censorship-
resistant bandwidth, and deploy censorship resistance systems that can stand the test of time.

Acknowledgements

I would firstly like to thank Ian Goldberg, my supervisor. It was his graduate class on privacy
enhancing technologies that first captured my interest and set me on the path of fighting for
Internet freedom. I am forever grateful for his enthusiasm, guidance, and dedication to pulling
people up the ladder.

This thesis would not have been possible without the lightning response times, hard work,
and system administration skills of Lori Paniak. I would also like to thank the machines: this
work benefitted from the use of the CrySP RIPPLE Facility at the University of Waterloo. I am
grateful to my thesis committee: Urs Hengartner, Bernard Wong, Jennifer R. Whitson, and Vern
Paxson for offering their time, effort, and perspectives on this thesis.

The CrySP graduate lab and all of the experiences and friendships made there are the most
treasured possessions I have carried with me throughout the last four years. 1 will continue to
look back on the lab as the most joyful and meaningful part of my PhD. I have loved the discus-
sions that surpass the technical details of our research, the adventures, and the continued drive
to challenge everything, empower others, and make something new that pervade the lab. The
network of love and support that we created together is the most beautiful and radical experience
that I have been a part of.

Thank you also to friends far away that continue to bring happiness to my life. Our meetings
are brief but no less wonderful as a result. To Drew, for reminding me how to be kid when I
need it the most. To my friends at UnMonastery and Zagori who showed me how we can build
something new together. To everyone I met upon arriving at Waterloo who have since dispersed
but continue to bring joy into each other’s lives.

I am incredibly grateful to my family: Mary Jane, Mike, Joanne, Carolyne, and Nick, for
their love and emotional support. They have supported me endlessly in every endeavour that I
have begun and prioritize my personal happiness over any other type of accomplishment. Thank
you to Charmaine, Farrell, Sol, and Sabrina for the encouragement and support. Finally, thank
you to Adriel for always being full of sunshine.

Ideally, this thesis acknowledgement would be a comprehensive and profound thank you to
everyone I love in a way that highlights the impact they’ve had on my life during the last four
years. In reality what [have written above falls far short of that intent, and instead the only way
I hope to express my gratitude is in the adventures we will continue to have together in the years
to come.

vi

Dedication

This thesis is dedicated to the cracks and weaknesses in oppressive structures that allow
resistance to grow. Let’s make more.

vii

Table of Contents

List of Tables
List of Figures

1 Introduction

1.1 Contributions e e e

2 Internet filtering
2.1 Definitions and measurementsol
2.1.1 Basic filtering techniques L oL
2.1.2 Advanced filtering techniques
2.2 The censorship cat-and-mouse game

2.3 Threatmodel e

3 Recipe #1: Protocol appropriation
3.1 Previous attempts at appropriationo
3.1.1 Decoyrouting. e e e e e e
3.2 A generalizable method for protocol appropriation.
3.2.1 Step 1: Use the protocol asintended
3.2.2 Step2: Replaceleafdata

3.2.3 Step 3: Simulate interactive elements L.

viil

xi

xii

3.3 Appropriating secure web browsing with Slitheen 24

3.3.1 Appropriating TLS 24
3.3.2 Appropriating HTTP 27
3.3.3 The relay station state machine 30
3.3.4 The Slitheen tunnel protocol 33
3.3.5 Implementation 37
3.3.6 Latency analysis 39
3.4 Comparison to existing Systemso e e 45
3.5 Conclusion 47
Recipe #2: Simulating compliance 49
4.1 Eliminating fingerprintable features 51
4.1.1 Implementationdetails, 53
4.2 High-bandwidth censorship-resistant traffic 54
4.2.1 Replacing image resources in Slitheen 54
422 Videoreplacement 58
423 EBvaluation 61
4.2.4 Comparison to existing Systems 67
43 Conclusion 68
Recipe #3: Deployment on existing infrastructure 70
5.1 Options fordeployment 71
5.1.1 Guerillaproxies L 72
5.12 Toobigtoblock L 74
5.1.3 End-to-middle proxying oo 75
5.2 Known challenges to E2M deployment 79
5.2.1 Routingasymmetry 80
5.2.2 Asymmetric gossip protocol 83

X

5.2.3 Resistanceto RAD attacks 88

5.2.4 Bandwidthoverhead 89

5.3 Relay stationexperiments e e 91
5.3.1 Impacton qualityof service 92

5.4 Security analysis and improvementso Lo 96
5.4.1 Security analysis of Slitheen 96

5.4.2 Security of the gossip protocol Lo 100

5.5 Comparison to existing Systemsl 101
5.6 Conclusion 103

6 Conclusion 105
6.1 Defence of the thesis statement 106

6.2 Futurework L 107
References 109

List of Tables

3.1
32

4.1

5.1

5.2

53

CAIDA network traffic distribution statistics and measurements 41

A comparison of protocol appropriation systems 45

A comparison of the overhead induced by existing protocol appropriation tech-
NIQUES .« . o v v o e e e e e e e e e e e e e e e e e e 67

Estimates of the number of deployed Slitheen stations necessary in an asymmet-

FCSELtNG o o e e e e e e e 90
A comparison of the deployability features and security properties of existing

decoy routing SYStemso e e e e e 102
A comparison of different deployment techniques 103

xi

List of Figures

2.1

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39

4.1
4.2

4.3

4.4
4.5
4.6

4.7

A generic view of Internet infrastructure

A comparison of regular and Telex-appropriated TLS handshakes
Slitheen modification to TLS for decoy routing
An overview of the architecture of Slitheen
A state machine of the TLS flow state kept at the relay station.
Slitheen header format oo
AES in Galois Counter Mode (GCM)
Latency measurements for regular and appropriated accesses to a decoy site . . .
The network topology of our latency experiments

Accuracy of an ideal attacker in classifying Slitheen sessions

A byte-level comparison of the network traffic of PhantomJS and Firefox

Cumulative distribution function of the potential censorship-resistant bandwidth
provided by replacing image resources in Slitheen

Cumulative distribution function of the realistic censorship-resistant bandwidth
provided by replacing image resources in Slitheen

Modifications to the relay station state machine to parse WebM resources.
The experimental set up of our user experiencetests

A CDF of the latency of censorship-resistant traffic when tunnelled through
video streams L e e

Step functions of the load time of covert sites through Slitheen

Xii

59

5.1
5.2
53
54
5.5

An overview of E2M proxying architecture 77
Gossip protocol for asymmetric flow tagging 85
The network topology of our Sandvine deployment experiments 93
The impact of Slitheen tag checking on the latency of TLS traffic 94
The impact of Slitheen on TCP round trip times 95

xiil

RecipES
FOR
R ESISTANCE

B "/. \} :’/),V) pis
~'\n(?,) 2 ,/—.

'CEC.YL 1A Bac.o\n (&)

A CensorsHIP CircOMVENTION Coongoow

X1V

Chapter 1

Introduction

In recent years, Internet censorship has become an increasing world-wide concern. A 2016 Free-
dom House report [] showed a steady decline in Internet freedom for the six consecutive
years leading up to the study. They reported that in 2016, roughly two-thirds of Internet users
dealt with government censorship. This censorship aims to cut off access from websites that
support political opposition, marginalized communities, and the criticism or satirization of those
in power. Furthermore, journalists and users of social media that disseminate, or merely read,
content that a censoring nation deems contrary have faced personal dangers such as arrest or
increased scrutiny []. A recent crackdown on the suspected usage of privacy enhancing
technologies that are meant to protect such users in Turkey led to the arrest of approximately
75,000 people [].

Ever since its inception, Internet protocols and applications have been designed with poor
security and privacy properties, a trend that has continued to the present day to the detriment
of many Internet users. That is not to say that the marginalized and oppressed have not found
refuge in various sites and services that the Internet has to offer. Despite an overwhelming set
of odds stacked against them, people have found ways to communicate, share, and organize
online. However, they do so at great risk to themselves. The ever-increasing centralization
of infrastructure, the disconnect between marginalized groups and the developers of Internet
services, and the increased cooperation of popular sites with state censors and the police have
resulted in a decline of Internet freedom and the safety of individuals that use it in ways that
differ from the ideals of the powers that be.

The Internet was never designed by or for marginalized or oppressed groups. What is left
to those that wish to resist is to find ways to hack the existing infrastructure to provide a sliver
of empowerment and protections to those that need it most. This is an uphill battle, against

adversaries with more resources, who are in a better position to benefit from future advances in
technology.

The history of Internet freedom tools shows a repeating theme in which systems to circum-
vent censorship are created and then cease to be useful as the technology of censors and their
censorship infrastructure improves, surpassing previous assumptions of their inability to identify
and filter traffic. The cost and effort required to design, build, and deploy censorship resistance
systems draws from a much smaller pot of resources than the censor’s does for responding to
their existence. Similarly, the effort required to detect and analyze changes in Internet censor-
ship practices by state censors dwarfs the ability of censors to discover the usage of effective new
censorship resistance tools.

We are in need of tools for circumventing censorship that remain effective and protect their
users without making assumptions about censors’ ability to analyze network traffic. These tools
should continue to be usable for years after their deployment, despite complete knowledge of
their existence, implementation, and deployment by an adversarial censor.

Thesis statement: Whereas existing systems that aim to hide censorship-resistant traffic from
a censor decline in usefulness over time as assumptions limiting the censor’s ability to detect
circumvention tools collapse with improvements to traffic analysis technologies, we can design
and deploy usable Internet freedom tools that stand the test of time, despite open knowledge of
their operation and use, and despite technological improvements that enhance the traffic analysis
abilities of the censor.

This thesis is a collection of recipes for building systems for censorship resistance that will
stand the test of time in the presence of an adversary that continues to benefit disproportionately
from the Leviathan that drives the evolution of technology and the Internet, accompanied by a
scientific analysis of experiences in realizing them. The intent is to provide ideas and a basis
for the design of censorship resistance systems that will spur the creation of usable, secure, and
empowering technology that will enable people to oppose the authorities that aim to stem or
manipulate communication.

1.1 Contributions

We provide three generalizable recipes in this thesis that support our thesis statement by de-
scribing steps that guide the design and deployment of censorship circumvention tools. These
recipes satisfy the properties we outline in our statement: they perfectly hide many features of
censorship-resistant traffic by design, their design and deployment are effective even if the censor
has complete knowledge of both, and they do not rely on current assumptions of the analytical

2

inability of censors to process large amounts of data. These recipes are accompanied by a de-
scription of what we have made with them, but are meant to be generally applicable, iterated on,
modified, and applied further.

We begin with an introduction to Internet filtering, the type of Internet censorship that is the
target of our recipes and the subject of analysis in this thesis. We define and discuss measurement
studies on the current known filtering techniques used by censors to block access to a subset of
the Internet and define our threat model. We demonstrate the cat-and-mouse relationship between
censors and censorship resistors, enumerate the features of Internet traffic that censors can see
and use to decide which traffic to block, and describe the current techniques used to evade this
form of censorship.

Our first recipe in Chapter 3 outlines a method for tunnelling censorship-resistant traffic
through appropriated protocols and connections that remain unblocked by the censor. This recipe
shows how to make the single use of a protocol indistinguishable from regular, non-resistance
traffic. In Chapter 4, we provide a recipe for improving the bandwidth of censorship resistance
systems and hiding a single individual’s use of the system by simulating compliance with the
censor’s filtering policies. Our final recipe in Chapter 5 provides insight on various deployment
strategies and steps for the successful deployment of censorship circumvention tools. We con-
clude this thesis in Chapter 6 with a summary of our contributions, a discussion of future work,
and a defence of our thesis statement.

Throughout the entirety of this thesis, we demonstrate and scientifically evaluate our recipes
through the analysis of a system for censorship circumvention called Slitheen! [,].
Our implementation of Slitheen is available online? and under continued development.

'The name of our system is a reference to a family of Doctor Who aliens that disguise themselves by fitting
perfectly inside of their victims.
Zhttps://crysp.uwaterloo.ca/software/slitheen/

https://crysp.uwaterloo.ca/software/slitheen/

Chapter 2

Internet filtering

There are many different types of Internet censorship, each with its own set of threat models,
warranting a different set of solutions. In this thesis, we focus on circumventing Internet fil-
tering, a form of Internet censorship in which a censor, typically a state actor, analyzes network
traffic in an attempt to selectively block access to sites and services. In this chapter, we define
Internet filtering and summarize recent efforts to measure and document how Internet filtering
happens at the network level. We then describe the relationship between changes in Internet fil-
tering practices and the development of systems to circumvent them, motivating the thesis of this
document. Finally, we formally define our threat model and the censor that will be our adversary
for the recipes we present in the subsequent chapters.

2.1 Definitions and measurements

The centralized nature of current networks and the ability of state actors to manipulate key points
in Internet infrastructure has enabled the wide-spread practice of filtering access to content on
the Internet. The analysis of network traffic and the blocking of selected connections can occur at
several different points in the network. There have been many studies on the censorship practices
of high-profile countries known to block access to politically sensitive topics.

In this section, we provide a summary of selected studies that show basic Internet filter-

ing techniques such as IP address blocking [,] and DNS manipulation [,
,], the use of which has been measured in at least 58 countries | . We
then take a closer look at advanced filtering techniques used in China [,], whose

— /
ISP Gatewawn
(Censor)

Destination
Website

\

! DNS Server

(Censor) 1 Outside ISP
N / (Non-censoring)

> 4
’ Client -
. I}
\ ~ ’

~ -\ 1

S o -0 /
\ -
Censor's

Area of Influence

Figure 2.1: A generic view of Internet infrastructure. To access a website, a client must first
resolve the hostname to an IP address by contacting a DNS sever, which is often under the
control of the censor. The client then makes a connection to the destination IP, their traffic
passing through censor-controlled routers before leaving the censor’s area of influence.

Great Firewall is only a small piece of their widespread Internet censorship efforts to perform
the ongoing suppression of political discourse.

We define the area of influence of a censor to be the geographical region(s) over which the
censor is able to observe or control network traffic, similar to the “sphere of influence” defined
by Elahi et al. []. The majority of countries that practice Internet filtering do so by
maintaining a blacklist of sites to block. This allows censors to enumerate and block access to
high-profile sites and services, while keeping the rest of the Internet free for use by those that
reside in their area of influence. A more restrictive whitelist of allowed sites or protocols is
much less common and typically surrounds real-world events of intense political interest to the
censor, such as the whitelisting of allowed protocols leading up to the 2013 presidential election
in Iran []. In extreme cases, censors have also been known to conduct complete Inter-
net blackouts, a trend that has been increasingly common and typically occurs during political
protests or elections [].

2.1.1 Basic filtering techniques

We present a generic view of network infrastructure in Figure 2.1. Web browsing connections
made by users inside the censor’s area of influence pass through censor-controlled infrastructure
on their path to the destination site. For a typical web browsing session, a user first performs

a domain name lookup to find the IP address of the destination site at a Domain Name System
(DNS) server controlled by the censor. The user’s connection to the destination IP address then
passes through routers controlled by the censor before exiting the censor’s area of influence.

The blockage of destinations by IP address occurs at routers, typically gateway
routers [], that are subject to the control of Internet Service Providers. Upon discover-
ing a connection to an IP address on a censor’s blacklist, the censor node will inject spoofed
TCP RST packets to both the client and server machines, terminating the connection from the
client [,].

In two case studies conducted in Turkey and Russia in 2014, Anderson et al. [] mea-
sured the direct blocking of IP addresses to prevent access to websites containing political con-
tent. In Turkey, the authors detected the blocking of IP addresses associated with the hostname
twitter.com. In a similar time frame, Russia was reported blocking access to the LiveJournal
accounts of opposition leaders and a Ukrainian blog documenting events in Crimea.

Access to Tor [], a system for anonymous web browsing commonly used for cen-
sorship circumvention, is a frequent target for IP blocking attempts []. Ina 2014 study
using a remote technique to detect blocking at the TCP and IP layers, Ensafi et al. []
reported the blocking of Tor relays, Tor directory authorities, which maintain lists of the IP ad-
dresses of Tor relays, as well as known Tor bridges, which provide unlisted entry points to the
Tor network.

While IP blocking is a basic technique to terminate connections to forbidden sites or services,
the blocking or manipulation of DNS queries is a widespread and effective technique to stop
connections even before they are issued from the client. When users load a website, they typically
first retrieve the IP address of the site’s host from a DNS server. These servers are distributed
around the world, but requests within a censor’s area of influence can be easily directed by a
censor to their own state-owned servers. For example, Anderson et al.’s case study of Turkey
documented the blockage of Google’s DNS servers, 8.8.8.8 and 8.8.4.4, which were being used
to circumvent Turkey’s own DNS manipulation attempts.

The return of erroneous DNS responses for URLs that correspond to prohibited content is
known as DNS manipulation. This practice has been documented in individual studies from
within countries such as Iran [], Pakistan [], and China [], as well as in up
to 58 countries through the use of external, global measurements []. Censored responses
either timeout, redirect the user to an internal censorship page (often in the 10.0.0.0/8 range), or
return a valid yet incorrect IP address in place of the correct response.

The Great Firewall (GFW) of China has long used keyword filtering techniques to block ac-
cess to sensitive content. This is done in the upstream direction of the connection (i.e., requests

for content), and in the downstream direction (i.e., results that violate the censor’s content pol-
icy) []. The GFW analyzes plaintext wherever possible, such as in the HTTP requests
and responses of unencrypted web browsing sessions.

With the increased use of the Transport Layer Security protocol (TLS) to form end-to-end
encrypted connections between clients and servers, censors no longer have access to the plaintext
web traffic of an increasingly large percentage of Internet connections. For the remainder of
this thesis, we focus on techniques used to block encrypted connections; although many states
have implemented Internet filtering techniques that selectively block plaintext HTTP requests,
the growing adoption of TLS has reduced the efficacy of this technique. Furthermore, the anti-
censorship tools we discuss all function only in the presence of unblocked TLS connections.

2.1.2 Advanced filtering techniques

The development of more advanced measures to filter access to Internet content has been mo-
tivated by the deployment and use of censorship circumvention tools [, ,].
We will discuss this relationship in greater detail in the next section, and summarize the tech-
niques themselves and evidence of their use here. Advanced filtering techniques can therefore
be described as attacks on the usage of censorship circumvention tools and comprise both active
and passive methods. Active attacks such as active probing attempt to discover the existence
of new endpoints (IP addresses and domains) that are in active use for censorship resistance.
Passive attacks use deep packet inspection (DPI) techniques to discover the identifying charac-
teristics of censorship circumvention systems in network traffic, eliminating the need to maintain
comprehensive blacklists of emerging entry points to censorship resistance networks.

An early study by Wilde in 2011 discovered the use of DPI techniques to automatically detect
and block access to entry points into the Tor anonymity network []. They found that the
GFW was inspecting the ClientHello message of the TLS handshake, sent by the client to the
entry point, for a cipher suite list that was unique to Tor.

Winter and Lindskog conducted a follow-up study in 2012 that documented the discovery and
blockage of entry points to the Tor network [] by China. They gained several important
insights into the application of fingerprinting to traffic originating from Chinese clients. An
important point, relevant to our analysis of the capabilities of censors, is that the fingerprinting
of Tor traffic occurred only on connections to destinations outside of China. This drastically cuts
down on the amount of network traffic analysis necessary, increasing the ability of censors to
more comprehensively analyze outgoing traffic.

A more recent study on the Great Firewall’s fingerprinting and blocking efforts in 2015 by
Ensafi et al. [] showed that in addition to the ciphersuite list of ClientHello messages,

7

Chinese censors were also able to automatically detect the usage of obfs2 [], an early
traffic obfuscation tool, by looking for the telltale decryption key that precedes an encrypted
connection between the client and destination.

Active probing [] is a method used by the Great Firewall of China to discover new,
emerging entry points to Tor. When a connection is made by a client from within the firewall’s
influence with suspicious characteristics as determined by the above DPI methods, attempts to
connect to the Tor network are automatically sent from various IP addresses within China. In the
event of a successful connection to Tor, the destination IP address is categorized as a bridge relay
and added to the censor’s blacklist.

While the original documentation of active probing in 2011 by Wilde reported probing in
15-minute intervals [], Ensafi et al. discovered that by 2015 over half of all suspicious con-
nections were probed within one second of a client connecting to the Tor network, and that the
probe attempts were to connect not only to Tor, but several other known censorship circumven-
tion systems at the time [].

Disevise TRAFFEIC

e
Active
PROBNG

2.2 The censorship cat-and-mouse game

Changes in censorship practices, techniques, and infrastructure are often tied to major political
events in the censor’s area of influence [, ,]. However, changes in censor-

ship also follow the advances or adoption of censorship resistance systems. In the presence of
censorship, developers design new systems to evade this censorship. These systems are adopted
by users and subsequently discovered by government censors, who then improve their systems to
detect and block the new tools. In this way, the relationship between censors and the developers
and users of censorship resistance tools can be characterized as a cat-and-mouse game.

The relationship between censors and censorship resistance systems is reminiscent of similar
problems in cryptography, and benefits from the application of Kerckhoffs’ principle [].
Originally accompanied by five other design principles for military ciphers, what is today known
as Kerckhoffs’ principle states (in the English translation) that the system:

“should not require secrecy, and it should not be a problem if it falls into enemy
hands” [].

Perhaps ironically, the original intended beneficiaries of Kerckhoffs’ advice are our enemies in
the cat-and-mouse game—the states that use technology for manipulation and oppression. Our
enemies have perhaps a larger advantage and more direct control over us than Kerckhoffs’ did,
making his principle even more useful to us as it is even more likely that our systems will fall
into their hands. To put this in context with the design of systems for censorship resistance, we
must assume that knowledge of censorship resistance systems will eventually fall into the hands
of censors. Our tools should continue to evade censorship in an undetectable manner even if
censors are aware of their existence, the details of how they work, and are looking for them.

The history of circumventing Internet filtering is littered with examples of censorship resis-
tance tools that have worked for a brief amount of time, but were eventually discovered, analyzed,
and blocked. Many systems are designed to be secure in the event of their discovery, but rely
on assumptions of the computational, network, and data analysis limitations of censors. While
these assumptions are true at the time of the system’s inception, they cease to be true as tech-
nology advances and benefits those in power disproportionately to those in resistance to it. This
relationship between the tactics used by state censors and the development of tools to bypass
Internet filtering is strongly exemplified by the GFW and the efforts of the Tor Project to bypass
it, as described by Tschantz et al. [].

Tor [] was originally proposed as a system for anonymous web browsing and is
widely used for censorship circumvention. Tor extends the simple proxy model by routing the
user’s traffic through a circuit of three proxies, or relays. The additional hops guarantee web-
browsing anonymity for the client, even in the event that the censor has compromised one of the
relays. However, Tor itself does not mask a client’s participation in the system. Clients select
relays from a publicly available list, one that is also available to a censoring authority. Censors

have been known to block access to Tor by simply blacklisting connections to known Tor entry,
or guard, relays [].

In response to the blocking of Tor guards, the Tor Project has begun to gradually and selec-
tively release the location of secret or hidden entry relays, called bridges []. A client may
use these relays to continue circuit construction with publicly listed relays. As Tor bridges are
not included in public Tor directories, they are much more difficult for a censor to track down and
block. However, censors such as the Great Firewall of China have employed other techniques to
identify Tor traffic in the event that the client is using a hidden entry to Tor.

Tor traffic has several distinguishing characteristics necessary for providing anonymity, but
allow a censor to distinguish Tor traffic from regular traffic to an unknown IP address. In
2012, Winter and Lindskog experimentally confirmed that the GFW could identify the use of
Tor bridges with DPI boxes due to the unique ciphersuite list sent by Tor clients in the TLS
ClientHello message []. Furthermore, Tor traffic is distinguishable in the fact that all pack-
ets entering and leaving the Tor network are padded to 512-byte cells.

Thus, the current battleground between censors and censorship resistors in the Internet filter-
ing context is the disguise and discovery of network traffic patterns. When users access content,
their network traffic produces identifiable features. We divide these features into the following
categories:

1. Plaintext Information: Protocol messages and data that have not been encrypted are visible
to anyone on the network path. This includes metadata such as the source and destina-
tion [P addresses of the Internet connections, as well as application-layer messages that
establish an encrypted communication session.

2. Metadata: In this context, metadata is information about plaintext or encrypted data other
than the data itself. This includes timing information such as when the data is being sent
or the time that elapses between requests from the user and responses from the server. It
also includes how the data is split into network packets that are transmitted between the
user and the visited site, and linkable destinations between the same client and multiple
sites. Note that, contrary to other contexts, we do not consider the source and destination
IP addresses to be metadata in our scenario, unless the real source and destination of the
network traffic is not reflected as plaintext in protocol messages.

Censors can and have used both plaintext information and metadata in attempts to identify
and block censorship resistance traffic. To draw from the examples given above, censors have
analyzed the plaintext IP addresses of packets to block access to known proxies or Tor relays,
and the plaintext TLS messages to look for unique ciphersuite negotiation messages that identify

10

Tor. Packet size and timing metadata has recently been the suspected cause of the blocking of
obfs4, a censorship circumvention technique used by Tor [].

Current attempts at designing new censorship resistance systems aim to disguise both plain-
text information and metadata traffic patterns that can be used to identify censorship resistance
tools. Tor provides a variety of pluggable transports to users, that each take a slightly dif-
ferent approach to hiding the identifying features of network traffic in connections to the Tor
network. These transport protocols are designed to be swapped into use in different scenarios, as
determined by the region of the user and the censorship techniques employed by the censor.

The different approaches to hiding traffic patterns can be split into three main categories:
obfuscation, mimicry, and appropriation. Each approach boasts examples of currently successful
censorship circumvention tools. However, they also suffer from challenges and setbacks that
make them vulnerable to the cat-and-mouse game and the disproportionate ability of the censor
to make use of technological advances or exercise state control.

Traffic obfuscation approaches this problem by masking the defining characteristics of net-
work traffic through randomization, with the intent of preventing censors from identifying it as
any known protocol or tool [,]. The success of this technique is grounded in the
assumption that censors are unwilling to block traffic that they are unable to definitively clas-
sify as censorship resistance or contrary to their governance, as that would possibly lead to an
increase in public unrest []. However, past precedent indicates that during decisive po-
litical events, censors may be willing to take the risk. For example, Aryan et al. recorded the
blocking of undefined Internet protocols by the government of Iran during the 2013 presidential
elections [].

Mimicry aims to make connections indistinguishable from popular unblocked content or
services, forcing censors to make a difficult decision: to either continue to expand their list of
blocked sites to include popular services (thereby risking public unrest), or surrender their posi-
tion. Many pluggable transports shape traffic or encapsulate it in messages that closely resemble
protocols such as HTTP [], Skype [], or HTML []. The ultima-
tum presented to the censor rests entirely on the ability of these systems to mimic allowed sites
and services more closely than the censor’s ability to exploit minor differences. Houmansadr
et al. [] argue that the maintenance of near-perfect mimicry is extremely difficult; as
advances in computing allow censors to classify large amounts of traffic more accurately, cen-
sorship resistors will see themselves on the losing side of this reactive battle.

Appropriation uses real connections to allowed sites and services to tunnel censorship re-
sistance traffic. This is distinct from mimicry; instead of manipulating traffic patterns to make
it appear as the user is accessing an allowed site or server, the user is in fact accessing it —
the difference from regular use is that the encrypted data sent between the user and the site

11

is censorship resistance traffic as opposed to the data or service the site normally offers. Ap-
propriation is often more difficult to deploy as many tools that use this technique require the
collaboration of the sites or services [], or the owners of significant network infras-
tructure [, ,]. Additionally, although appropriation hides identifying
plaintext features of traffic patterns, it may not hide metadata by default. Geddes et al. discov-
ered several systems that use appropriation to tunnel censorship resistance traffic and failed to
account for differences in the underlying traffic that produced features identifiable to a potential
censor [].

Our recipes make use of appropriation, and we will discuss how to perform protocol appropri-
ation correctly and safely in greater detail in the subsequent chapters. Our focus on appropriation
as opposed to the other techniques ties back in with our adherence to Kerckhoffs’ principle and
desire to make censorship resistance systems secure even in the event of their discovery, turning
the cat-and-mouse game around to benefit the resistor. We see in appropriation the ability to
definitively disguise both plaintext and metadata traffic patterns in the presence of a whitelisting
censor, which mimicry and obfuscation are unable to accomplish. In our recipes, we remove any
assumptions about the technical abilities of the censors and show that regardless of a censor’s
ability to process and analyze data our censorship resistance traffic remains indistinguishable
from regular traffic to allowed sites and services.

2.3 Threat model

These recipes are meant to empower users that reside inside the area of influence of a state censor
with the ability and intent to filter access to the Internet. Our recipes are designed to be effective
against censors that maintain a whitelist of allowed sites or content, although they will be just
as effective in the much more common case of censors that use a blacklist to enumerate sites or
content that should be blocked. We do, however, assume that the censor is allowing connections
from all users to at least some sites or services that are hosted outside of the censor’s area of
influence, and that this practice is quite common.

The area of influence in this model includes regions over which the censor may not have
complete control, but can convince or coerce the governing body in that region to collude in the
blocking or identification of censorship resistance traffic. In addition to allowing access to some
outside sites or services, we also assume that user traffic to these servers pass through Internet
infrastructure that exists outside the censor’s area of influence. We do not provide recipes for
the event of a complete Internet blackout, in which users are unable to connect to any Internet
resources outside of the censor’s area.

12

In addition to allowing users to access blocked content, we also aim to prevent the censor
from identifying the use of censorship circumvention tools by anyone in their area of influence.
We assume that the censor has the ability and intent to not only analyze large amounts of traffic
to discover anomalous behaviour, but is also willing to single out individual targets or suspects
to monitor their traffic more closely in the attempt to block censorship resistance traffic or obtain
evidence of its use.

We assume that censors are aware of the details of current and future censorship circum-
vention tools. This includes the cryptographic and networking techniques used to encrypt or
disguise traffic, as well as the deployment of any infrastructure needed for users to access the
systems (unless otherwise explicitly stated). The grounds for this assumption are well founded,
as they are in keeping with Kerckhoffs’ principle. States have a disproportionate ability to per-
form reconnaissance on the existence or development of new tools, compared to our ability to
analyze censorship infrastructure.

We make a very small set of assumptions that bound the abilities of our adversary, though
unlike limits on traffic analysis and machine learning capabilities, these assumptions are likely to
continue to hold in the future. Namely, we assume that the censor cannot break state-of-the-art
public-key cryptographic protocols. We also assume that users can make end-to-end encrypted
connections with sites or services outside of the censor’s area of influence. For the purpose of
scoping this work, we also forgo an analysis of possible side-channel attacks and out-of-band
targeted attacks such as in-person surveillance, malware distribution, etc.

Despite the strength of our defined adversary, there remain opportunities to resist. In the
following recipes, we will show how to leverage the allowance of whitelisted connections to sites
and services outside the censor’s area of influence, prevent censors from flagging the users of
censorship circumvention systems as suspicious, and explain how to deploy our tools in existing
Internet infrastructure in the presence of censors with strong reconnaissance abilities.

13

Chapter 3

Recipe #1: Protocol appropriation

Internet protocols have been developed over the years to transmit information between devices
on the Internet. Many are too useful for censors to block, making them ideal candidates for
appropriation, or use outside of their original intended purpose, for censorship circumvention.
The goal of appropriation is to use a common protocol to transmit covert traffic in a censorship-
free way such that an observing censor is unable to read the covert traffic, or even detect the
deviation from the protocol’s original, intended usage.

Protocols that lend themselves well to appropriation for censorship-resistant communication

are those that are used very frequently (e.g., Domain Name Service (DNS) [] or Trans-
port Layer Security (TLS) [, , , , , , D
and those that normally transmit a large amount of information (e.g., HyperText Transfer Pro-
tocol (HTTP) [, ,] or Voice-over-IP [,]1). However, done

incorrectly, protocol appropriation can leave identifying characteristics that are detectable by an
observant censoring authority [].

In this chapter, we begin by describing in more detail the advantages of protocol appropria-
tion, followed by a description of previous attempts and their shortcomings.! We will then lay
out a generally applicable method for the correct appropriation of protocols, which does not fall
victim to the identifying characteristics of those analyzed previously. Finally, we propose and
evaluate a novel censorship circumvention system, called Slitheen, that successfully appropriates
both TLS and HTTP in this manner.

I'This chapter contains text from our CCS 2016 paper [].

14

3.1 Previous attempts at appropriation

Voice-over-IP (VoIP) is a natural choice for appropriation due to the high bandwidth and low
latency necessary to transmit its usual traffic: video or voice calls between distant users. Free-
Wave is a censorship circumvention tool that tunnels censorship-resistant traffic through VoIP
connections between the client and dedicated FreeWave VoIP IDs []. Houmansadr et al.
implement FreeWave using Skype, a popular VoIP service. The client’s censorship circumven-
tion traffic is modulated into audio signals and sent over the VoIP connection to the FreeWave
server, which then decodes the traffic and proxies between the client and the previously blocked
destination site.

A challenge with this type of appropriation is the easily identifiable difference between the
traffic patterns of normal VoIP calls and those used for web browsing, even with the employed au-
dio modulation. Despite a statistical analysis showing that the audio modulation of FreeWave is
similar to that of a normal Skype call [], Geddes et al. show that their analysis of packet
sizes, lengths, and timings was not enough and that when looked for specifically, FreeWave
produces patterns that allow a sufficiently capable censor to reliably fingerprint its use [].

Although VoIP is a popular protocol, capable of providing a high-bandwidth channel for
censorship-resistant traffic, the use of variable bit rate (VBR) encoding makes hiding the features
of the underlying tunnelled traffic difficult. In contrast, DNS is an extremely low-bandwidth pro-
tocol whose requests are difficult to fingerprint. The advantage of DNS is that it is extremely
commonly used; users make multiple DNS requests every time their browser loads a website.
Due to the low-bandwidth nature of systems that appropriate DNS, they are typically useful
in conjunction with other censorship resistance systems that require censorship-resistant boot-
strapping. Bootstrapping is an initial setup step required by some censorship resistance systems
before they can be used. A few protocol appropriation systems require users to register or pre-
share keys with another endpoint of the system [, ,]. These registration
and out-of-band communication protocols require a very small amount of bandwidth, making
them the ideal use case for low-bandwidth protocol appropriation systems.

Akbar et al. propose a system called DNS-sly that encodes small amounts of censorship-
resistant traffic in the responses of a cooperative DNS server []. This technique assumes
the cooperating DNS server has not been compromised by the censor and itself requires out-of-
band bootstrapping with the client before use. Clients encode upstream traffic in their choice of
domains to resolve. Downstream traffic in DNS-sly is encoded by the subset and order of the IP
addresses returned for a user query. In addition to the difficulties of bootstrapping this system,
DNS-sly traffic also deviates from usual patterns of requests and responses, which may be used
to fingerprint its use.

15

Domain fronting [] is a widely deployed technique to hide the true destination of a
client’s traffic through the appropriation of HTTPS connections to cloud services. Unlike existing
pluggable transports, domain-fronted traffic appears to the censor to be heading to a legitimate,
allowed website. The actual, covert destination (typically a proxy running on the same cloud
service as the allowed website) is hidden in the Host : header field of the HTTP header to the
allowed site. Destination information appears in three different places in an HTTPS request: the
IP address, the TLS Server Name Indication (SNI) extension, and the Host header of the HTTP
request. While the first two are viewable by a censor or any router between the client and the
destination, the HTTP request is encrypted with all other application data after the completion of
the TLS handshake. Domain fronting is the practice of specifying one domain, usually an edge
server for a cloud service, in the IP address and SNI fields, while setting the encrypted HTTP
host header to a different domain. Recent proposals to encrypt the SNI field [], made
possible with the move from TLSv1.2 to TLSv1.3, would allow for a similar practice, where the
IP address indicates an edge service and the SNI indicates a covert domain.

The pluggable transport that uses this technique to connect to Tor is called meek. To make a
connection to Tor using meek, the client establishes a TLS connection with an edge server of an
uncensored service that allows domain fronting. Several content distribution networks (CDN5s)
and large websites have in the past allowed domain fronting for web applications that subscribe
to their services. The proxy only has to subscribe and pay for bandwidth (shown to be between
0.10 and 0.20 USD per GB []) in order for their service to be accessible from an overt
edge server. After establishing a connection to the overt destination, the client can issue HTTP
requests to the meek proxy. Packets are redirected to the proxy by the overt destination according
to the Host field of the HTTP header. The client’s Tor traffic is then tunneled over HTTP to the
proxy and sent to a Tor guard. In this way, the proxy to Tor “hides” behind the cloud service. To
block all traffic to the meek proxy, the censor would have to block all traffic to the front service,
causing collateral damage.

In a recent evaluation of meek, Fifield reports that the cost of running meek grew to just
over 26,000 USD in 2016 and has cost a grand total of over 50,000 USD from the time of its
deployment to measurements taken in early 2017 []. These measurements were taken from
deployments on Google App Engine, Amazon CloudFront, and Microsoft Azure. Furthermore,
meek does not hide the patterns of underlying traffic, instead relying on the large amount of
traffic processed by these services to hide accesses to censored content. Although it remains to
be seen in the wild, the application of website fingerprinting techniques that use the size and

timing of responses to classify accesses to specific webpages [] could be applied to meek
traffic.
SWEET (Serving the Web by Exploiting Email Tunnels) [] appropriates email as

an essential service to relay content between the user and a blocked website. It was originally

16

proposed and submitted to ArXiv.org in 2012, but recently published in 2017. Clients send
and receive censorship-resistant traffic by sending and receiving emails to and from a dedicated
SWEET server. The fact that the client is communicating with the SWEET server is hidden by
their encrypted connection to their email provider. As with meek, SWEET does nothing to hide
the volume or frequency of emails between the client and their provider and thus exposes the
censorship-resistant traffic to website fingerprinting techniques.

3.1.1 Decoy routing

Decoy routing [, , , , , ,] is a general
technique for circumventing Internet filtering that uses protocol appropriation. Decoy routing
systems have two main characteristics: 1) they appropriate the Transport-Layer Security (TLS)
protocol to fool censors into believing the user is making a secure connection to an unblocked
website, and 2) the infrastructure for decoy routing systems is deployed at Autonomous Systems
(ASes) in the middle of the network, rather than at endpoints, a technique also known as End-
to-Middle (E2M) proxying. In this chapter, we will focus on the first of these characteristics,
the means by which decoy routing systems appropriate TLS, and in some cases HTTP, to de-
liver censorship-resistant traffic and hide the usage of the system. We will discuss the second
characteristic, E2ZM proxying, in a later recipe for deploying censorship resistance systems in
Chapter 5.

The first generation of decoy routers surfaced in 2011, proposed by three independent re-
search groups. Telex [], Cirripede [], and Curveball [] all use the
same basic technique in which the client steganographically expresses a desire to access blocked
content covertly by tagging the setup messages in a seemingly benign connection to an overt
destination. This destination is one that has not been blocked by the censor and resides outside
of the censor’s area of influence. For these systems, we refer to the overt destination also as a
decoy destination. The steganographic tags are recognized by a relay station on the path be-
tween the client and the decoy site, but are provably unidentifiable to a censoring ISP without
the relay station’s private key. After the tag has been recognized, the relay station facilitates the
flow of information between the client and the blocked website via a man-in-the-middle proxy,
maintaining the illusion that the user is accessing the decoy page while they are instead covertly
receiving content from the blocked site.

Telex tags TCP flows for censorship resistance by making slight modifications to the TLS
handshake. We give an overview of the Telex tagging procedure in Figure 3.1, along with an
overview of TLS for reference. TLS is a protocol used to establish a shared secret between
a client and a server, and to send encrypted data back and forth between the two parties us-

17

O al

Client Server

ClientHello

ServerHello, Certificate, Server KeyEx, ServerHelloDone

ClientKeyExchange, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

<

B Encrypted Application Data =

<« >

(a) Original, unmodified TLS handshake. These messages are a subset of the total allowed messages and
variations of TLS, as defined in RFC 5246 [].

7
Private key:r
D Public key:g" =

Client Relay station '(Jd':z;';s)‘;?;g
Generate: S
Compute tag: . (_ 48 TS
ClientHello random nonce: 6||h> <g HHl (g ||X)>
9° 1 H1(g"*([x)

Verify tag:) - H, (BTHX)
Compute secret: H (5" [|x)

ServerHello, Certificate, Server KeyEx, ServerHelloDone

Generate
DH param:

PRNG(H5(g"®
(2(9 HX)) ClientKeyExchange, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

A

TCP RST

_ Encrypted Application Data

-« »

(b) Modified TLS session for tagged flows using the Telex tagging procedure. We define the context string
X as server_1ipl||p, where p = ClientHello random[0..3]. After the TLS handshake is complete,
the relay station severs the connection to the decoy site and proxies information between the client and a
covert destination.

Figure 3.1: A comparison of the original TLS handshake and the modifications made by Telex
to appropriate it for use in censorship resistance.

18

ing that shared secret. In a regular use of TLS, the client initiates the handshake by sending a
ClientHello message. This message includes, among other values, a random nonce that seeds
the computation of the TLS master secret. The hello message also includes suggestions for vari-
ous methods and parameters that negotiate the encryption and authentication methods used. The
server then responds with its own ServerHello message, supplying an additional random nonce,
and completing the negotiations on ciphersuites, parameters, and extensions. The server then
sends a Certificate that can be verified by the client and a ServerKeyExchange message contain-
ing the server’s public key values for negotiating a shared secret. After the client has sent their
ClientKeyExchange message, both sides can compute the shared master secret. They both send
a ChangeCipherSpec message, indicating that all subsequent messages will be encrypted, and
complete the handshake with encrypted Finished messages that must be verified for correctness
by both sides before encrypted application data is sent. There are many variations and extensions
to TLS, as defined in RFC 5246 |].

In Telex, the tag is placed in the random nonce of the ClientHello message that initiates a
TLS handshake with the decoy site. From this tag and the station’s private key, the station can
compute the client’s Diffie-Hellman (DH) exponent, allowing it to compute the session’s TLS
master secret and man-in-the-middle the connection between the client and the overt destination.
Upon the receipt, decryption, and verification of both TLS Finished messages, the station severs
the connection to the overt destination and assumes its role as a proxy, preserving the server-side
TCP and TLS state. The client may then connect to a censored website through the relay station;
the traffic between the client and the censored site appears to the censor as encrypted traffic to
and from the decoy destination.

Cirripede takes a different approach by inserting a tag in the Initial Sequence Numbers (ISNs)
of TCP SYN packets to register the client with the relay station over the course of 12 TCP con-
nections. Once registered, the client initiates a TLS connection with a decoy site, now routed
by the relay station through a service proxy, and sends an initial HTTP GET request. After the
request goes through, the service proxy terminates the connection on behalf of the client, and be-
gins to impersonate the overt destination. The proxy generates a new TLS session key, computed
from the registration tag and station private key, and issues a ChangeCipherSpec message and
Finished message to the client. Once the client responds with a valid Finished message, the ser-
vice proxy begins to relay traffic between the client and the censored site until a predetermined
time interval has passed.

In Curveball, the client and the relay station share a predetermined secret, obtained through
the use of an out-of-band channel. This secret is used to generate a tag recognizable by the station
and is inserted in the ClientHello message of a TLS handshake to the overt destination, similar
to Telex. Upon receipt of this tagged message, the relay station observes the completion of the
TLS handshake with the overt destination, and assumes the role of the server, sending the client a

19

Hello message in the form of a TLS record encrypted with the client-station shared secret. Once
the client responds with a similar Hello message, the station begins to proxy traffic between the
client and the censored site.

TapDance [] is a second-generation decoy routing system designed to be more de-
ployable than first-generation systems. TapDance flows are tagged in an initial, incomplete HTTP
GET request to the decoy site, after the negotiated TLS handshake. The TapDance station recov-
ers the tag (steganographically embedded in the ciphertext of an ignored GET request header),
and uses the corresponding secret to encrypt a confirmation, mimicking an HTTP response from
the overt site. The client then sends the station upstream requests for a censored site, making sure
to never signify the completion of the initial GET request to the overt site. As such, the overt
site will continue to receive upstream data from the client without complaint. The station fulfills
the client’s requests for censored content, issuing encrypted responses on behalf of the overt site.
As the only downstream data from the server are the original TLS handshake messages (which
are not needed by the TapDance station), and the TCP ACK messages following extra data from
the incomplete header, the station does not need to witness this downstream traffic, making the
scheme more deployable in realistic network conditions where packets going to the decoy site
may take a different path through the Internet than returning packets.

Rebound [] is another second-generation decoy routing system that provides an
asymmetric solution and defends against an active adversary capable of injecting or modify-
ing packets. Clients tag Rebound flows in a manner similar to Telex, by inserting a tag in the
ClientHello message of a TLS handshake, enabling the Rebound station to compute the master
secret of the TLS connection between the client and the overt site. They achieve an asymmet-
ric version of the tagging procedure by leaking the values of the server random nonce and the
ciphersuite to the Rebound station by embedding them in the ciphertext of initial HTTP GET
requests from the client to the overt site. Once the Rebound station is able to man-in-the-middle
the TLS connection, the client begins issuing requests for censored content embedded in invalid
HTTP GET requests to the overt site. The relay station fetches the censored content and stores
it in a queue. When the next invalid GET request is received by the Rebound station, the sta-
tion replaces the URL field of the request with content from the censored site. This information
is forwarded to the overt site, which “rebounds” the encrypted content, inside an HTTP error
response.

Rebound maintains the connection between the client and the overt site. The TCP state of the
overt site will report the TCP sequence and acknowledgement numbers expected by the censor.
Furthermore, by rebounding content off of the overt site in the form of error messages, Rebound
delivers downstream data from the proxy to the client even if the underlying network routes are
asymmetric. There are two major barriers to the adoption of Rebound as a censorship resistance
technique. The first barrier is that a client must send upstream data in an equal amount to the

20

downstream data they receive to avoid mismatched TCP sequence numbers upstream, alerting
the censor of a decoy session. In typical Internet usage, the ratio between upstream data sent
and downstream data received by the client is very low; this trend is reflected in the bandwidth
provided by most ISPs. The second barrier to adoption is the flood of bad HTTP GET requests
that the client sends to the overt site. The frequency and size of these requests are reminiscent of
HTTP flooding, a class of Denial of Service attacks, and will likely be blocked by the overt site.

One advantage of decoy routing is that, if used for censorship-resistant web browsing, the
appropriated and tunnelled protocol are the same and thus the expected distribution of traffic
patterns are similar, making it more difficult to identify its use. However, the decoy destination
for each connection is visible to the censor and can be reliably expected to exhibit traffic patterns
that are distinct from other destinations. These distinctions can be identified using website fin-
gerprinting. All first- and second-generation decoy routing systems are vulnerable to traditional
website fingerprinting techniques, in which the censor can compare packet sizes, timings, and
directionality to differentiate between decoy and regular traffic while fingerprinting the censored
site.

All of the above decoy routing systems are vulnerable to the timing analysis attacks intro-
duced by Schuchard et al. []. They showed that differences in latency due to fetching
content from a possibly distant censored server through the decoy routing proxy is enough to
not only detect the usage of a decoy routing system, but also fingerprint the censored webpage
accessed. Although Rebound’s stored queue of censored content reduces the latency that stems
from proxying traffic between the client the covert destination, it does not account for the latency
introduced by the relay station in replacing the contents of the HTTP GET request.

While second-generation decoy routing systems can be credited for addressing the deploy-
ability challenges of decoy routing, they fall woefully short of first-generation systems in their
ability to appropriate protocols in a way that disguises their use to a knowledgable censor. Third-
generation systems are a response to this short-coming that aim to disguise as much as possible
the identifying patterns of decoy routing traffic. In the next section we will discuss our method
for appropriating protocols that we will later apply to the appropriation of HTTP in Slitheen, our
proposed third-generation decoy routing system [].

21

UNBLOLKED PRoTdCo L _J/

(Encaveren) Dara Pestocer Msos
/ t \ ~ / \
ocC_> wm) 3o .
COTENT UNRBLOLAED

\"" 't-aa swe [Service

3.2 A generalizable method for protocol appropriation

In this section, we discuss a generalizable method for appropriating uncensored protocols to tun-
nel censorship-resistant traffic. We define regular use of the protocol to be its original, intended
use that is valuable enough to a censor to prevent them from blocking it. We define appropriated
use of the protocol to be that which tunnels censorship-resistant traffic to the user. Our goal is to
make these two uses indistinguishable by making the traffic patterns (both plaintext information
and metadata) of the appropriated usage of the protocol identical to regular usage from the point
of view of the censor.

3.2.1 Step 1: Use the protocol as intended

The main challenge of proper protocol appropriation is the difference in traffic patterns between
the protocol as it is regularly used and the censorship resistance traffic. Our approach to solving
this problem is to use the appropriated protocol as intended, such that the endpoints involved (the
protocol implementation on both the client and destination machines) cannot detect a deviation
from the protocol’s regular use.

In the examples of decoy routing systems covered in the previous section, the decoy site has
no knowledge of its role in censorship resistance efforts. It receives TLS protocol messages from
the client and responds to them in the usual way, unable to detect a deviation from a regular
connection. The detectable deviation only comes afterwards, when the relay station severs the
connection to the decoy site. Our method carries this technique forward, and has the client
continue to interact with the decoy site in the usual manner and load the entire webpage. The

22

entire session, from the initial connection to termination, should be indistinguishable from a
regular access to the decoy site to both the decoy site itself and the censor.

To appropriate HTTP, our method would have the client load a full, valid webpage. For VoIP,
the client would establish a video or voice call and send real, captured video and audio frames,
not frames that were generated or converted from other data.

3.2.2 Step 2: Replace leaf data

Our method does no good if the client never deviates from the intended usage of the protocol.
This would mean the delivery of the usual, uncensored content to the user’s machine, while what
the user actually desires is access to content that has been blocked. To accomplish this, we have
our friend outside of the censor’s area of influence replace the original, uncensored data with
content that the client requests. This can be done at a router in the middle of the network, as
is suggested for decoy routing systems, or at the destination itself. Our requirements are that
this entity is a man-in-the-middle, able to read and alter all messages between the client and the
decoy.

However, as is the case with all protocols, some of the data transmitted between the client
and the destination influences future messages and traffic patterns. We define leaf data as data
that does not alter the traffic patterns of a connection. For example, in an HTTP session, an
HTML file contains information that the client’s browser parses to load a web page. HTML files
often contain instructions for the browser to issue subsequent connections to possibly multiple
destinations for more resources. An image, on the other hand, is displayed only to the user and
will not prompt the client browser to produce more network traffic. Therefore, images are leaf
data and may be safely replaced by the friendly man-in-the-middle.

We have our friendly man-in-the-middle replace only leaf data with censorship-resistant traf-
fic from the blocked, covert site. This keeps plaintext traffic patterns identical to regular usage,
as well as the amount of data that passes between the client and the decoy. Linkable connections
from the client are identical to a regular use of a connection to the decoy site as the leaf data will
not interfere with future connections made by the client’s implementation of the appropriated
protocol.

In addition to only replacing leaf data, we wait to perform the replacement until the data is
ready to be sent on the network to the decoy site. For an IP connection, this means the data has
already been packetized into packets, and we replace the leaf data on a packet-by-packet basis.
This hides the metadata patterns of packet sizes and timings. Our remaining requirement of the
man-in-the-middle is to do the replacement quickly so as to eliminate any identifiable latency
caused by our system.

23

Ideally, the leaf data (and, correspondingly the censorship-resistant traffic it is replaced with)
will be encrypted so as to be unreadable by the censor. Whether the data is encrypted or otherwise
encoded, the observable data seen by the censor after the replacement should be drawn from
distributions that are indistinguishable from one another without knowledge of a secret key.

3.2.3 Step 3: Simulate interactive elements

The regular use of most protocols involves an interaction between the user and the data they
receive. In the case of voice calls, the user speaks into a microphone and the sounds they produce
are transmitted to the other endpoint. For web browsing, the user visits multiple pages. Different
degrees of simulation are required depending on the bandwidth of the appropriated protocol (i.e.,
the amount of leaf data available for replacement), and the amount of censorship-resistant traffic
that the user is requesting.

To accomplish this, we introduce the idea of an Overt User Simulator (OUS). The OUS is part
of the client’s software that uses the appropriated protocol to make as many connections to the
decoy destination as needed to allow the user to send or receive content in a censorship-resistant
way. The OUS interacts with the client-side implementation of the appropriated protocol to
produce observable traffic that is not suspicious to a censor knowledgable of the system. We give
a recipe for simulating user behaviour in a convincing and high-bandwidth way in Chapter 4.

3.3 Appropriating secure web browsing with Slitheen

In this section, we give an example of how to appropriate HTTPS using the method described in
the previous section, and propose a state-of-the-art decoy routing system called Slitheen, whose
use is indistinguishable in the eyes of a censor from regular web browsing traffic.

3.3.1 Appropriating TLS

In this section, we refer to the friendly man-in-the middle for our system as a relay station,
keeping the terminology used by decoy routing systems even though this method can be deployed
as an end-to-end system. In the case that the deployment is E2E, i.e., where the man-in-the-
middle is the decoy site itself, the appropriation of TLS to share the session master secret is an
unnecessary though still valid step that can ease deployment as it does not require modifications
to the web server. In this case, the decoy site would deploy the relay station directly in front of
the site so that it has access to all packets passing between the web server and clients.

24

D Private key:r @ @
Public key:gr 7
Client Relay station Uncensored

(decoy)site
Generate: S

§°mp”te ,Egg: ClientHello random nonce:<5”h> — <98HH1 (gTSHX»
9° | H1(9"*[Ix) >

Verify tag: h - H, (5T||X)
Compute secret: Ho (ﬁr HX)

- ServerHello, Certificate, Server KeyEx, ServerHelloDone

Generate
DH param:

PRNG(Hy(g"*
(2(9 HX)) ClientKeyExchange, ChangeCipherSpec, Finished

>
>

ChangeCLoherSpec,MACH4(g“‘||X)(Finished) ChangeCipherSpec, Finished

Encrypted Application Data

<
<

Figure 3.2: Slitheen modifications to TLS. Modifications to the original Telex tagging procedure
are highlighted in red. Slitheen has the relay station modify the TLS Finished message sent
by the decoy site to the client in order to alert the client that the connection has been success-
fully intercepted. The relay station is then able to decrypt, modify, and re-encrypt the following
application data, which it does on a packet-by-packet basis.

25

In order to establish communication with the relay station and allow it to decrypt the traffic
between the client and the decoy site, Slitheen appropriates TLS using a tagging procedure sim-
ilar to that used by Telex. We make a few minor modifications to the Telex tagging procedure
for security purposes, highlighted in red in Figure 3.2. To appropriate a secure web browsing
session, we follow the three-step procedure outlined in the previous section.

Step 1: Use the protocol as intended

Following our method, the client completes a real, valid TLS handshake with the decoy site in
a manner that is indistinguishable from a regular handshake by either the decoy site or a censor.
The result is a secure, encrypted connection between the client and the decoy site. The relay
station deployed between the client and the decoy can man-in-the-middle this connection and
decrypt or modify its contents, but a censor is unable to view or alter the encrypted traffic.

Step 2: Replace leaf data

The amount of data we need to replace is very small, as all we need to do is provide the relay
station with a seed with which they can calculate the TLS master secret of the session.

There are only two pieces of data being altered in our appropriation of TLS:

1. The ClientHello random nonce:

This value is in regular use randomly generated and used to seed the calculation of the
TLS master secret. We replace this random value with a tag that consists of a public key
generated by the client, concatenated with a hash used by the relay station to detect the
client’s intent to appropriate the protocol.

The replacement value is meaningful only to the client and the relay station, which hold
the secret keys necessary to generate and detect the hash value of the tag. It draws from
a random distribution that is computationally indistinguishable from that of the uniform
random distribution used to generate the nonce in regular use.

2. The Finished message from the decoy site to the client:

A value that, without the TLS master secret established in the previous TLS handshake
messages, is indistinguishable from random. We replace this in order to signal the suc-
cessful establishment of a decoy routing session between the client and the relay station.
This signal is useful, as without it the man-in-the-middle is invisible to the client. Its
presence signals to the client that the connection is usable for censorship-resistant traffic,
and its absence is a warning that the censor may have man-in-the-middled their connec-
tion instead through the use of a compromised Certificate Authority or the installation of a
compromised root certificate.

The replacement value, also being a hash, draws from the same distribution as the original
Finished message and is undetectable by both the censor and the decoy site.

26

Step 3: Simulate interactive elements

The interaction between the client and the decoy site is implemented by modifying popular,
existing implementations of TLS. The connections are made by a modified version of a popular
web browser, and the fingerprint of the TLS handshake is identical to the fingerprints produced
by the regular use of the web browser and TLS implementation.

After the establishment of the encrypted connection between the client and the decoy site
using our tagging procedure, the relay station is able to decrypt application-layer messages in
both directions. This allows them to receive upstream data that contains the client’s requests
for censorship-resistant content, and replace downstream resources from the decoy site with the
results of these requests.

3.3.2 Appropriating HTTP

As opposed to previous decoy routing systems, Slitheen maintains the connection between the
client and the decoy site after the TLS handshake as opposed to severing it. The station extracts
upstream data to the covert destination from specialized headers in valid HTTP GET requests to
the decoy site, and replaces leaf data from the decoy site with downstream data from the covert
destination. We show an overview of the Slitheen architecture in Figure 3.3.

Step 1: In Slitheen, we have the client access the decoy site exactly as a regular client would,
fetching both the original HTML page from the decoy site as well as all additional resources, as
determined by the browser, necessary to completely load the page.

A typical access to content on the web consists of a collection of TCP connections, over
which flow HTTP requests and responses. The first connection to a decoy destination typically
requests an HTML document, which in turn prompts the client’s browser to issue several more
requests to HTTP servers (the same or different) to collect various resources such as cascading
style sheets (CSS), JavaScript, images, and videos.

Step 2: The leaf data in HTTP are the contents of HTTP requests and resources that never
prompt the server or browser, respectively, to perform additional behaviour. In the upstream
direction, this includes ignored HTTP headers and values. In the downstream direction, this
includes images, and the displayed data of audio or video resources. Resources such as HTML,
JavaScript, and CSS are not leaf data, as they are parsed by the browser and can cause the browser
to produce additional network traffic that is observable by the censor. We do not replace this data,
allowing the browser to parse it as it usually would.

Step 3: The Overt User Simulator (OUS) in this system is a full browser capable of estab-
lishing the encrypted connection to the decoy site(s), parsing HTTP resources, and rendering any

27

I—’ SOCKS proxy
' | «— | (frontend)

Overt User
Simulator (OUS)

|

Censor

/
I

'

Slitheen Uncensored
relay station (overt) site

Tagged TLS handshake

4

J
7

HTTP GET notblocked.com HTTP GET notblocked.com

X-Slitheen: SOCKS data X-Ignore: Jjkl&jdsa((#@$jkl

Censored
(covert) site

Proxy SOCKS data
Client
I HTTP 200 OK HTTP 200 OK
Content-Type: slitheen Content-Type: image/png
/ Downstream data from proxy Data from overt site
— \ HTTP 200 OK HTTP 200 OK
-_— Content-Type: text/html Content-Type: text/html
~ - - Data from overt site Data from overt site

Figure 3.3: After the establishment of a TLS session between the client’s Overt User Simulator
(OUS) and the decoy site, the Slitheen station may monitor the encrypted traffic (shaded) in both
directions. The station receives upstream proxy data from the client in an X-Slitheen header of
a valid HTTP GET request to the decoy site. Once the station has relayed the upstream data
to the censored site, it stores the downstream responses in a queue. When the station receives
responses from the decoy site, it replaces leaf content types such as images with the queued data.
This data is then forwarded by the OUS to the SOCKS front-end and finally received by the
client’s browser. The censor sees only the TLS handshake and encrypted traffic to and from the

decoy site.

28

supplied data that resides on the client’s machine. The browser we use is a slightly modified
version of Firefox, called Slifox,> which we discuss in more detail in Chapter 4.

We define a Slitheen user to be the human who uses our system to access censorship-resistant
content. A Slitheen client is the software installed on the user’s machine that performs the steps
outlined above to deliver censorship-resistant content to the user. When a user initiates a Slitheen
session with the desire to tunnel censorship-resistant traffic, their client first randomly generates a
32-byte Slitheen identification number. The client then proceeds to access decoy sites through the
OUS. The client’s OUS initiates a decoy routing session with the relay station and appropriates
the TLS session, as discussed in Section 3.3.1.

After the TLS session has been established and the tagging procedure is complete, the relay
station continues to passively monitor the session as the OUS proceeds to request content from
the decoy site in the usual manner by issuing valid HTTP GET or POST requests, deviating only
to replace upstream leaf data with the client’s Slitheen identification number and requests for
censorship-resistant content.

When the Slitheen station receives HT TP requests from the client for a resource on the decoy
site, the station inspects the headers of this request for an X-Slitheen header containing the Slith-
een identification number of the client, and any upstream data meant for a covert destination.
The station now associates the TLS session with the given Slitheen ID, replaces the contents
of this header with garbage bytes, and allows it to continue to the overt site. If the X-Slitheen
header contained upstream data to be proxied to a covert destination, the station simultaneously
relays this data, and stores any responses in a queue of content for the Slitheen ID, to later re-
place leaf data from decoy sites to the client associated with the given ID. If the overt site has
a large amount of images or a video stream, a large amount of content can be delivered to the
client quickly, providing a low-latency censorship-resistant tunnel. To keep the size of HTTP
requests consistent with the addition of the X-Slitheen header and data, the client may replace
only non-essential headers or compress existing headers to be later decompressed by the relay
station before they are forwarded to the overt site. If the existing headers are compressed, the
X-Slitheen header is simply removed by the relay station.

When the Slitheen station receives downstream traffic from an overt site, it first decrypts the
TLS record and inspects the HTML response for the content type of the resource. If the content
type is not an image or video resource, the station will let the resource pass unaltered to the
client. If the resource has leaf data, the station will replace the response body with data from the
downstream queue pertaining to the Slitheen ID of the session and change the content type of
the resource to “sli/theen” so that it is recognizable by the OUS. It then re-encrypts the modified
record, recomputes the TCP checksum, and sends the packet on its way. If there is a shortage of

2Credit for the awesome name goes to Anna Lorimer.

29

downstream data, the station will replace the resource with garbage bytes, padding the response
body to the expected length. When the OUS receives the resource, it sends all resources of the
“sli/theen” content type to be processed and sent to the client’s (real, not OUS) browser. All
other resources, it processes in the usual manner. Note that the usage of a Slitheen ID allows
covert data for a single client to split across multiple tagged flows.

A key part of maintaining the same network traffic metadata, such as packet sizes and timings,
as a regular access of the decoy site is to replace the leaf data on a packet-by-packet basis.
Whenever a packet arrives at the relay station from the overt destination, the relay station will
immediately decrypt, possibly modify, re-encrypt, and forward the packet to the client with the
same size and TCP state; only the (encrypted) contents of the packet will be possibly replaced
with (again encrypted) censored content. We show that this replacement process introduces a
minimal amount of latency, leaving the censor unable to detect the usage of a decoy routing
system, and give the results of timing analysis in Section 3.3.6.

With our method for protocol appropriation, the usage of Slitheen is indistinguishable from a
regular access of the decoy site. Regardless of advances in website fingerprinting or data analysis
techniques, a censor cannot find distinguishing features that are not present.

3.3.3 The relay station state machine

While the replacement of the X-Slitheen headers and leaf content types is straightforward in
theory, it is difficult to achieve in practice while also minimizing the latency introduced by the
station. HTTP responses may be spread across multiple TLS records, and each record may
contain multiple responses. Additionally, a record may be spread across multiple packets, leaving
the station unable to decrypt a record to replace its contents or determine the content type of the
responses it contains until the rest of the record has been received. Furthermore, packets may
be delayed or dropped and arrive at the relay station out of order. Waiting for the receipt of an
entire record before sending the observed packet to the client introduces an identifiable amount
of latency, which may be used by the censor to detect the usage of Slitheen. Note that in addition
to maintaining the sizes and timings of IP packets in our appropriated protocol, we also maintain
the sizes and distributions of TLS records across packets.

A simple solution to receiving a record fragment is to forward the record unchanged and
forego any possibly replaceable responses it contains. However, as record sizes for large image
files are frequently large themselves, this results in a significant drop in the bandwidth available
for delivering censored content. Instead, we can take advantage of counter mode ciphers such
as AES-GCM and partially decrypt data as it arrives at the relay station. We can then partially
re-encrypt the data before forwarding it to the client. The relay station can only verify and

30

recompute the tag of the ciphertext after it has received the entire record. At this point, if it
verifies that the received tag is correct, it computes the correct tag for the replaced ciphertext.
If the relay is unable to verify the tag of the received data, meaning it was originally computed
incorrectly or tampered with on its way between the decoy site and the relay station, it similarly
computes an incorrect tag for the client and lets the client’s OUS handle it as it normally would.

However, partial encryption and decryption only works if the connection is encrypted using
a counter mode cipher and if key parts of the packet arrive in the right order. If this is not the
case, records will have to be forfeited and their contents not replaced. This will not affect visible
traffic patterns, but will reduce the amount of replaceable leaf content and therefore the goodput
of the system. To keep track of which data is leaf data, and therefore replaceable, and which data
can be properly decrypted and analyzed, we implement a state machine at the relay station. This
state machine is a composition of the TLS record state and the HTTP state of the decoy session.

Record state. When a packet is received by the relay station, the TLS record state of the flow
determines whether the packet’s contents begin with a new record, contain the contents of a
previously processed record, or contain the remnants of a previous record and the beginning of
a new record. The record’s length, specified in the record header, determines how many full or
partial records are contained in the current packet and how many bytes of subsequent packets
contain the remaining contents of the record.

A flow can have an unknown record state if packets arrive at the station out of order. If the
delayed packet does not contain any new record headers, the station is able to maintain the record
state and processes the received packet in the usual manner, assuming the eventual receipt of the
missing packet. However, if the delayed packet contained the beginning of a new record, the
station has lost the record state and can only regain it after the missing packet arrives. While the
record state is unknown, the station is unable to encrypt modified records for the client, as it does
not know the lengths or contents of the record(s) in a received packet.

HTTP state. The station also maintains information about the HTTP state of each flow, indicat-
ing whether the next record will contain all or part of a response header, or response body. We
give the state machine for HTTP responses in Figure 3.4. The end of a header is determined,
as specified in RFC 2616 [], by the receipt of two consecutive carriage return and line
feed characters (CRLF): one to signify the end of the last header field, and one to signify that
there are no more header fields in the message. The length of the response is determined by
the status code of the response, and the transfer encoding (in which case the length is updated
with each subsequent “chunk”) or the content length. The Content-Type header indicates to the
station whether the subsequent response should be replaced.

The HTTP state of the flow is updated upon the receipt of a new record header. Depending on

31

KNOWN

remaining length == 0

BEGIN_HEADER\
noresponsebody N |\ = =00@ @m—————————q o B
missing record length > remaining length

MID_HEADER-——————~—="——— _—— ~ __~ -~ =" (unencrypted)

remaining length -=
record length

remaining length :=
chunk size

missing record ~=--. /

T~ UNKNOWN

________ remaining length -=

END_CHUNK | MID_CHUNK}record length

decrypt missing records

remaining length == 0 — .
missing record length > remaining length

(unencrypted)

Figure 3.4: A flow may be in one of several TLS (blue) and HTTP (red, green, and black) states.
When a new packet arrives that allows the relay station to find the beginning of a new TLS record,
the station uses the record’s length, its (possibly) decrypted data, and the length of the packet to
determine the next HTTP state. States in the shaded red circle must be decrypted to decide the
next state. If the flow is in a red, shaded state when the relay receives a partial TLS record
it cannot decrypt due to missing data, the flow will enter into the UNKNOWN state until the
remainder of the record is received and decrypted. This is represented by the dashed red arrow.
States in green dashed boxes indicate states where data may be replaced. If the HTTP header
showed a leaf content type, the relay station will construct a new record to replace the one(s)
it receives. A flow with an HTTP state of UNKNOWN may recover its state by reconstructing
partial or missing records and analyzing the decrypted data, along with the previous known state.

32

the HTTP state, a record does not need to be decrypted in order to be replaced. When the station
receives a new record, it checks the record header to determine whether the record is contained in
the TCP segment and may be decrypted, or whether the record is spread across multiple packets.
It then determines, based on the HTTP state, whether the record may be replaced. If the HTTP
state and the record’s length indicates that it contains only a replaceable HTTP response body,
the station will then construct a new record of the same length and fill it with downstream data
from the client’s queue. After encrypting the modified record, it sends the first part, matching
the length of the record fragment in the received TCP segment, and stores the remainder of the
modified record to replace the data in subsequent packets. After the entire record has been sent,
the next TCP segment data will contain the header of a new TLS record.

It is possible for a packet to arrive at the station out of order, resulting in the relay station
being unable to decrypt a record if it has not yet received the GCM nonce. In that case, if the
received packet contains information about the response length or content type, the HTTP state
of the flow will be unknown until the station receives the beginning of the record and decrypts
it. In this case, the contents of the record will be forwarded immediately to the client, without
modification, and a copy saved by the station to be decrypted when the beginning of the record
arrives. Upon its receipt, the station can re-evaluate the HTTP state of the flow.

3.3.4 The Slitheen tunnel protocol

The tunnelled censorship-resistant data has the potential to arrive at the relay station and client,
respectively, in a different order than it was written, as it can be distributed across multiple
TCP connections to different overt sites. A counter allows each party to process the covert data
in order, acknowledge the receipt of data, and retransmit data that was lost. The client and
relay station re-order chunks of censorship-resistant data by sending it along with a header that
specifies the length of the data, as well as TCP-style sequence and acknowledgement numbers
to indicate the order in which it should be processed and allow for the retransmission of dropped
data. If, as is the case with Slitheen, the appropriated protocol is layered on top of TCP, we can
rely on the underlying acknowledgement mechanism to prevent the loss of covert data chunks
within a single, successful TCP connection. However, since the delivery of censorship-resistant
data is spread across multiple TCP connections that may be reset by either end, we rely on
acknowledgements to retransmit data that is lost in the termination of a TCP connection.?

The Slitheen header consists of a 4-byte sequence number, a 4-byte acknowledgement num-
ber, a 2-byte stream ID that indicates which connection to a covert server the data belongs to, the

3 Acknowledgements and the retransmission of covert traffic have not yet been implemented in the current version
of Slitheen.

33

——_———— +
| Sequence Number |
——_——_—— +
| Acknowledgement Number |
t——— t——— +
| stream ID | length |
t—————— t———— +
| padding | Zeros |
+———— +———— +

Figure 3.5: Slitheen header format. Each row represents 4 bytes.

2-byte length of the covert data chunk, and the 2-byte length of randomly generated padding. The
last remaining 2 bytes of the header are padded with zeros. The header is followed by a chunk of
covert data and/or garbage bytes, as specified by the header. The Slitheen header format is given
in Figure 3.5.

Both the header and the body of the Slitheen chunk are encrypted to prevent an attacker from
decrypting the covert traffic by comparing ciphertexts on both sides of the relay station in an ef-
fort to detect Slitheen or recover the censorship-resistant traffic. The extra layer of authenticated
encryption also prevents an attacker from tampering with the covert traffic, ensuring it arrives at
the client or relay station unmodified.

When the relay station receives TLS records, it decrypts, possibly modifies, and re-encrypts
the record. Some TLS modes of operation, such as AES-GCM (see Figure 3.6), rely on a public
nonce in addition to the secret key. It is important to the security of AES-GCM that two different
messages are never encrypted with the same nonce and the same key. Many implementations
of AES-GCM mode for TLS use sequential nonces for each message, and so when the relay
station replaces message contents with covert data, it must reuse the nonce to avoid flagging to
the observing censor that the censorship resistance system is in use. However, this presents a
security problem as a third party capable of observing the ciphertext on both sides of the relay
station can exploit patterns in the underlying plaintext to decrypt both ciphertext messages and
modify the underlying plaintext without detection.

Although this attack falls outside the usual threat model for decoy routing, in which we
assume that the censor is unable to compare traffic on both sides of the relay station, this puts
vulnerable users of our system at risk to other attackers.

The original plaintext, P;, will contain part of the HTTP response body of the original overt
image, while the modified plaintext, P, will contain covert data destined for the user. The corre-

34

counter = 0

increment increment increment
nonce || counter ——orrear nonce || counter ——omr et —oumter nonce || counter
AESk AESk AESk
[imec Boo —£1 [Pamert Bockim}—+5
v h 4
Ciphertext Block 1 Ciphertext Block 1M
A 4 b 4
b b
\d
v 1!:
Multiply Multiply ;7 Multiply .
T len(AAD) || len(ciphertext
AAD Block 1 [(AAD) [Ten(ciphertext)
Multiply ry
U

|

Authentication Tag

Figure 3.6: AES in Galois Counter Mode (GCM) [MV05]. The counter is initialized to zero
and incremented for each encryption step, in which the nonce is concatenated to the counter and
encrypted with the key k. This encrypted block is XOR’d with a plaintext block (shown in or-
ange) to produce the corresponding ciphertext block (shown in blue). Additional Authentication
Data (AAD) and the ciphertext blocks are multiplied by the hash key H = AES,(0) and XOR’d
together to produce the authentication tag (shown in yellow).

35

sponding ciphertexts (limited to 1 block each for simplicity), seen by an observer, are computed
as:
C, = Ex(n]|0°"1) @ P,

OQ == Ek(n||0311) D P2

where E is AES encryption, and n is the nonce. The observer can then compute C; & Cy =
P, & P,, and then exploit patterns in the underlying plaintexts to recover both P, and P,. If
the client was using Slitheen to browse a plaintext covert site, this two-time pad attack is trivial.
In addition to breaking the client’s confidentiality, an attacker can also modify the plaintext and
compute the correct authentication tag []. Given the ciphertexts C'; and C, as shown above,
and the corresponding authentication tags (where A is one block of AAD for simplicity):

Ty = ((A- Ex(0) ® C1) - Bx(0) @ L) - Ex(0) & Ex(n||0*?)

Ty = ((A- Ex(0) ® Co) - Ex(0) @ L) - Ey(0) & Ei(n]|0%)
where L = len(A)||len(C) and multiplications are performed in G F'(2!%%).

T ®T:
B0 =550,

and from that, since the additional authentication data A is known:

The adversary can compute:

Ex(n]|0%) = (((A- Ex(0) @ C1) - Ex(0) ® L) - E,(0)) @ T.

This gives them everything necessary to compute their own tag for an arbitrary ciphertext Cj:

Ty = ((A- E(0) @ Cs) - B4 (0) & L) - E(0) @ Ey(n]|0*)

In the event that the user’s censorship-resistant traffic is encrypted with TLS, the conse-
quences of both of these attacks are mitigated. An adversary would be unable to decrypt the
client’s censorship-resistant data, and any tampering would be detected in the TLS records sent
between the client and the covert site. However, an adversary could use this to perform a targeted
denial of service attack against decoy routing users. This attack is exceptionally damaging when
the user of Slitheen is browsing a plaintext covert site, giving a third-party observer the ability to
determine not only that the client is using Slitheen, but also what covert data they are receiving.

To defend against this attack, we propose adding an additional layer of authenticated encryp-
tion under the ciphertext on the downstream side of the relay station, both in order to make it
indistinguishable from random, and to protect against modification. We chose this method rather

36

than simply re-encrypting with a different, randomly generated, nonce as a censor could detect
the usage of a non-sequential nonce. The keys for this “superencryption” step may be derived
from the client’s Slitheen ID or the tag used to derive the TLS master secret.

Both the client and the relay station generate two superencryption keys: one to encrypt the
16-byte Slitheen header and another to encrypt a variable-length covert data body. The header
(being only one block) is encrypted using AES in ECB mode. The censorship-resistant traffic
in the covert data body is encrypted using an authenticated encryption mode such as AES-GCM
that is indistinguishable from random by an attacker.

Upon the receipt of a new chunk of covert content, the client or relay station will first decrypt
the Slitheen header and extract the length of the covert data chunk. The client should verify that
the counter is as expected and the padding at the end of the header exists. The client can then
decrypt the covert data and send it to the client’s browser.

3.3.5 Implementation

We developed a proof-of-concept implementation of our system in a combination of C and C++.
This implementation serves to demonstrate that our design behaves as expected, and provides
a basis for our evaluations in the following section. Our code is available online for reuse and
analysis.*

Client

Our implementation of the client consists of two distinct parts: the overt user simulator (OUS)
that repeatedly connects to decoy sites, and a SOCKS proxy front-end that relays SOCKS con-
nection requests and data between the client’s browser and the OUS. The OUS takes data from
the SOCKS front-end and inserts it into X-Slitheen headers of outgoing HTTP requests. It then
takes downstream data from the received resources of content type “sli/theen” and returns this
to the SOCKS front-end, which then sends this data to the browser. To allow the browser to
send multiple simultaneous requests, we assign a stream ID to each connection. When the relay
station receives downstream data for a particular stream, it includes the stream ID along with the
data in the replaced resource, allowing the SOCKS front-end at the client side to demultiplex
streams from the data received from the OUS.

For the tagging procedure, we modified NSS, the TLS library of Firefox, a popular open-
source web browser. Our modifications allow the client software to specify the value of the ran-

“The code is currently available at https://crysp.uwaterloo.ca/software/slitheen.

37

https://crysp.uwaterloo.ca/software/slitheen

dom nonce in the ClientHello message, as well as supply a given value for the client DH parame-
ter. Although there are many algorithms available to negotiate a TLS master secret, our proof-of-
concept implementation only allows the use of the DH key exchange methods. The ciphersuites
we implemented are: DHE-RSA-AES128-GCM-SHA256, DHE-RSA-AES256-GCM-SHA384,
ECDHE-RSA-AES128-GCM-SHA256, and ECDHE-RSA-AES256-GCM-SHA384. We sup-
port all the standard elliptic curves used by Firefox, including curve25519.

Other ciphersuites could easily be added to our system to expand the range of overt sites used
by the client, however we recommend limiting the implementation to known secure ciphers. In
the event that an overt site does not support one of the implemented ciphersuites, the client’s
OUS will continue to make the connection and request resources as usual, but the connection
will not be used to tunnel covert content.

We use Firefox® as the basis for our OUS, although other common, open-source browsers
such as Chromium® could be adapted for use as an OUS as well. We describe our choice of
browser and an analysis of the OUS more in the next recipe, along with a description of our
modifications to Firefox and NSS.

The SOCKS front-end receives connection requests and data from the browser and writes it
to a TCP socket to the OUS, in order to be processed and inserted into the appropriated browsing
session. It assigns each new connection a stream ID and sends that along with the data to the
OUS to send to the relay station. The SOCKS front-end reads downstream data from the OUS
and first demultiplexes it by stream ID before sending it to the browser. We wrote the SOCKS
front-end in approximately 1500 lines of C code.

Slitheen Relay Station

We implemented the Slitheen station in approximately 9000 lines of C code. The station is
responsible for recognizing and processing tagged TLS handshakes, proxying data to censored
sites, and monitoring and replacing upstream and downstream application data to overt sites.
When the station detects a tagged flow, it saves the source and destination addresses and ports in
a flow table, to later identify packets in the same decoy routing session. The station continues to
passively observe the remainder of the TLS handshake and then uses the tag-derived client secret
and observed server handshake messages to compute the TLS master secret for the session,
saving it in the flow table.

After verifying the TLS Finished message from both sides of the connection, and replacing
the downstream Finished message to signal to the client that the session has been appropriated,

Shttps://www.mozilla.org/firefox/
Shttps://www.chromium.org/

38

https://www.mozilla.org/firefox/
https://www.chromium.org/

the Slitheen station begins to monitor HTTP GET requests from the client for upstream data. It
stores any downstream response from the covert server in a censored content queue. Once the
station receives the client’s Slitheen ID, it saves this information in the flow table in order to later
identify the stream IDs that can replace downstream resources. As Slitheen reuses the TCP/IP
headers from the overt site, we have no need to modify kernel code to set up a forged TCP state
(as Telex requires). Application data is simply swapped into TCP segments as they are read from
the interface, and sent back out to their destination with a recomputed TCP checksum.

Once the client and the overt site have terminated the connection by sending a TCP FIN or
RST packet, the station removes the flow from the table. We save session tickets and session IDs
to allow clients to resume TLS sessions for subsequent requests to the same server.

To keep the transmitted data consistent for retransmissions of TCP segments to or from the
overt site, we maintain a queue of application data. When the relay station receives a retransmit-
ted packet, it copies the appropriate amount of saved data into the packet before forwarding it to
the client or overt site. This data is stored by the relay station until it expires, which occurs when
the other side acknowledges the received data, or when the flow is terminated by either end.

3.3.6 Latency analysis

While the plaintext information and metadata such as packet sizes are by design identical to a
regular access of the decoy site using our appropriation method, the remaining piece of metadata
to consider are packet timings. In this section, we evaluate whether the latency added by the
relay station in replacing leaf data adds a noticeable amount of latency to the connection to the
loading of a decoy site.

Slitheen minimizes the latency introduced by the relay station itself by not waiting for data to
be proxied to the covert destination, but rather queueing up previously collected proxy data for
the client to be replaced as soon as incoming packets from the overt site arrive. Our results show
that the encryption and replacement procedures do not add enough latency to identify the usage
of Slitheen.

We measured the time it took to fully load the overt destination both as an overt site for
tagged flows whose leaf resources were replaced with proxied data, and as a regular, untagged
access. We tested two different overt destinations: www.wikipedia.org and gmail.com 100 times
each from a client machine located at the University of Waterloo. We give the CDF of these load
times in Figure 3.7. We performed a two-sided Kolmogorov-Smirnov test on the collected data
in order to determine whether the relay station induced a different latency distribution for decoy
accesses and measured a D-value of 0.11 and a p-value of 0.58 for www.wikipedia.org, and a

39

www.wikipedia.org
gmail.com
www.wikipedia.org

1.00-
L

LR R R
r

1.00-
7
&
v A
0.75- : ‘
! 0.75- |
]]
1]
L ! Type '
0 0.50- b Decoy LL ! Type
et . = 'Regular 0Q0.50- Decoy
,' o ! = ' Regular
i |
r []
0.25- . '
(0.25- 1
& 1
L]
a []
r
0.00="4 L4 l'
v ; 0.00=*
500 550
600 700 800 900 1000
Decoy page download time (ms)

450
Decoy page download time (ms)
(b) Latency measurements for gmail.com

(a) Latency measurements for www.wikipedia.

org
Figure 3.7: Cumulative distribution functions of the page load time of three overt destinations as
both a decoy access and a regular access. The CDF shows a minimal difference in the latency
distributions of the two types of access, and a K-S test fails to find a difference in the latency

distributions due to the Slitheen station replacement and processing.

40

www.wikipedia.org
www.wikipedia.org
gmail.com

D-value of 0.12 and a p-value of 0.47 for gmail.com. These results indicate that the K-S test fails
to find any significant difference in the latency distributions of the overt destination between its
use as a regular or an overt site in a decoy routing session.

Defences against latency analysis attacks

While the page load times of popular sites accessed regularly and as decoy sites are statisti-
cally indistinguishable using a K-S test, a censor will attempt to identify decoy routing sessions
on a connection-by-connection basis. We simulated an attack in which the censor compiles a
database of expected latencies for both decoy sessions and regular browsing sessions for each
overt destination by making 100 connections to the top 5 Alexa sites for each condition. We
then calculated the precision and recall an adversary could achieve in classifying flows as decoy
routing or regular sessions.

For these experiments, we used a Sandvine Policy Traffic Switch (PTS) 22600 capable of
performing deep-packet inspection and flow diversion, and a relay station server with two 10 Gb/s
connections to the PTS. If a tagged flow is detected by the PTS, it is diverted to the relay station
server. The relay station server and client machine each used 8 cores and 2 GB of RAM. We
conducted tests to see whether the divert functionality of the PTS and the implementation of the
relay station added enough latency to tagged flows to allow a censor to reliably classify them as
decoy routing sessions.

We also simulated a realistic network environment as closely as possible. For our tests, we
gathered distribution statistics for Internet traffic from the Center for Applied Internet Data Anal-
ysis (CAIDA). We used the anonymized passive trace statistics through an OC48 link belonging
to a large ISP in Chicago that handles approximately 2 Gb/s. We calculated the average flows/s

Table 3.1: CAIDA network traffic distribution statistics and measurements (CAIDA / our exper-
iments)

Flow type Average flows/s Average Mb/s
HTTPS 443k / 4,330 (£90) 848.81 / 840 (% 20)
HTTP 407k / 4,040 (£80) 814.51 / 800 (% 20)
DNS 2.26k / 2,200 (£ 100) N/A / NA
TCP 792.74 /790 (+£ 20) 246.52 / 250 (£ 10)
UDP 527.53 / 530 (£ 20) 125.87 / 128 (£ 7)
Total 12.08k /12,000 (£ 100) 2035.71 /2010 (= 40)

41

gmail.com

CAIDA ¢

ients CAIDA servers

Sandvine
DPI box

A

L

decoy routing

. Internet
client

relay station
server

AN

Figure 3.8: The network topology of our experiments. Machines designated as CAIDA clients
and CAIDA servers were dedicated to sending background traffic through the DPI box, repre-
sentative of traffic sent through an OC48 link of a large ISP according to statistics gathered from
CAIDA.

and average Mbit/s for 5 major types of flows: HTTPS, HTTP, DNS, generic TCP, and generic
UDP, gathered over the course of an hour on April 6th, 2016 []. For each test, we sent
a CAIDA-representative amount of traffic through the deployed relay station using four client
machines and four server machines, on opposite sides of the PTS. To test the validity of our
experiments, we measured the flow rate and bit rate for each type of flow at the client and server
endpoints for 100 3-second captures. The results are given in Table 3.1. The experimental setup
is shown in Figure 3.8.

We measured two different types of latency for each flow: the time it took to perform a
full TLS handshake, and the average TCP acknowledgement time, or round-trip time (RTT) for
application data. A censor will attempt to select a cutoff latency for each measurement type to
identify decoy routing sessions. All flows with a higher latency than the cutoff value are classified
as decoy routing sessions, while all flows with a lower latency are classified as a regular access
to the overt site. We computed the CDFs of each type of latency for decoy routing sessions and
regular accesses to each of the top 5 sites. From these CDFs, we can compute the true negative
rate, 7, and false negative rate, ¢, of an adversary for each possible latency cut-off point. We

42

calculate the precision of the censor as:

B —9¢)
fl=¢)+ (1 =P —7)

where [is the base rate of the incidence of decoy routing sessions. A typical censor would try
to maximize precision, thereby minimizing the number of regular accesses to the overt site that
are mistakenly identified as decoy routing sessions and blocked. By maximizing recall, a censor
ensures that they are identifying and blocking as many decoy routing sessions as possible. The
recall of the censor we calculate as the true positive rate:

precision =

recall = 1 — ¢.

A censor can achieve a precision of 1, indicating that they do not incorrectly classify any
regular accesses to the overt site as decoy routing sessions. However, often this means the censor
can only identify a very small portion of decoy routing sessions while the majority will continue
undetected. They can also achieve a recall of 1 by simply classifying all connections as decoy
routing sessions and blocking them. For most censors, both measures are important so we define
a censor’s accuracy in terms of its F-score, the harmonic mean of the precision and recall values.
Precision and recall can be weighted differently according to the individual goals of the censor,
but we consider the default equal weighting in this thesis. For each value of (3, the adversary will
select a cut-off value that maximizes their F-score, given the latency distributions of each overt
site. We plot the maximum F-score values based on the latency distributions for both the TLS
handshake time and the TCP RTT for five of the Alexa top sites in Figure 3.9.

The maximum F-score a censor can achieve in identifying decoy routing sessions is very
low for both types of latency. For the majority of sites, this value drops to almost 0 with a base
rate of occurrence of decoy routing sessions of less than 10~%, and meaning that if no more
than one in every 10,000 connections to popular sites are decoy routing sessions, a censor is
unable to reliably determine whether or not any given flow is carrying censorship resistance
traffic. Even with a higher occurrence of decoy routing, the maximum F-score stays below 0.5
for most sites, making a reasonable censor that is unwilling to upset their population extremely
wary of classifying and blocking potential decoy routing sessions. We note that some sites exhibit
anomalous behaviour (e.g., google.com and youtube.com in their TCP RTTs and TLS handshake
times, respectively). Such behaviour can be measured by the client, and those sites not selected
as overt sites.

43

google.com
youtube.com

0.100 -
\
° '} google.com
é “ = 1 youtube.com
P 0.050 N == facebook.com
w “ == baidu.com
- - E E E E . . - E. ™ I
0.025 - yahoo.com
0.0004 etttk b el Bt a
1e-03 le-04 le-05
Base rate

(a) The F-score of classifying flows based on TLS handshake time.

0.3+
type
0.27 google.com
o) A}
IS L} = 1 youtube.com
3 \
' \Ns == facebook.com
w \e == baidu.com
0.1- \\
. = 1 yahoo.com
AN
<% ~
-~
—
002 T P g e, PR
1le-03 le-04 1le-05
Base rate

(b) The F-score of classifying flows based on the average TCP round
trip time (RTT).

Figure 3.9: The maximum F-score (i.e., the harmonic mean of precision and recall) a censor can
achieve in classifying flows as decoy routing sessions or as regular accesses to the Alexa top 5
sites. Precision is dependent on the base rate of decoy routing sessions. As a result, the less
prevalent decoy routing sessions are, the lower a censor’s accuracy in classifying flows.

44

Table 3.2: A comparison of the effectiveness of hiding traffic patterns of existing censorship cir-
cumvention systems that appropriate protocols for the tunnelling of censorship-resistant traffic.
The features of the traffic patterns we consider are listed at the top of the table. The systems
are split into three main categories: systems that were proposed before Slitheen [] and
our proposal of this technique, Slitheen itself, and systems that were proposed after Slitheen
and take inspiration from our technique. A full circle @ indicates that the system has perfect
indistinguishability by design from regular use for that traffic pattern feature. A half circle © in-
dicates the indistinguishability was experimentally determined, and an empty circle O indicates
the system does not hide that traffic pattern.

S
DTN oo
0\“?2%\?2@6&\@\230&
‘0@%‘\\ O O O
. ‘\\eﬂs @@io&ﬁg’i Q(b\p\e
PP TR RS
FreeWave [] ® O O O e
DNS-sly [] e O @@ o O
Domain fronting [] ®¢ O O O O
SWEET |] ®¢ O O O e
1st gen decoy routing [, ,] @€ O O O O
2nd gen decoy routing [,] ®¢ O O O O
Slitheen [] e 6 ¢ O o
DeltaShaper [] ® O O O o
Waterfall [] ® O 6 ¢ ¢

3.4 Comparison to existing systems

Our protocol appropriation method far outperforms the traffic hiding techniques of previous sys-
tems. In Table 3.2, we show how our system performs in relation to existing systems on the
traffic pattern features discussed in Chapter 2. A key advantage of our system is that the hid-
ing of most traffic patterns (plaintext information, packet sizes, the total amount of data being
sent, and linkable connections) is identical to a regular use of the appropriated protocol. The
only traffic pattern feature that must be experimentally evaluated is the impact the parsing and
replacement of leaf data by the man-in-the-middle has on the timings of network packets.

The unifying feature of all protocol appropriation techniques is the tunnelling of traffic

45

through the appropriated protocol in a way that maintains the plaintext (unencrypted) messages
of the appropriated protocol, such as TLS handshake messages or VoIP connection messages.
This is the feature that sets appropriation as a traffic pattern hiding technique apart from mimicry
or obfuscation. One feature of the underlying censorship-resistant traffic that all previous sys-
tems fail to disguise is the total amount of data sent between the client and the decoy site. This
feature has been shown to be sufficient for use in website fingerprinting to distinguish between
covertly accessed sites []. Furthermore, for systems that appropriate web browsing (de-
coy routing systems), this fingerprinting technique is trivial as the censor must only distinguish
between the patterns expected for the decoy site and the patterns present in the client’s traffic.

We can also assume that censors will look not just at a single flow or TCP connection, but
multiple connections from the same client to try to detect anomalous behaviour. For example, in a
regular web browsing sessions, client machines will typically make connections to more than one
server, drawing image resources from CDNs rather than the main hosting site. Some previous
censorship resistance systems hide this traffic pattern by virtue of the choice of appropriated
protocol. While web browsing spawns multiple connections to different destinations, protocols
such as VoIP or email are typically single connections to an expected site or service. DNS-sly
fails the linkability check by requesting the resolution for domains that the client never visits,
as these domains are used only to encode censorship-resistant traffic. In this table, we consider
only the different network connections associated with loading a single decoy site. We discuss
the loading of multiple decoy sites and the associated risks in the next recipe.

As of the writing of this thesis there have been two systems, proposed after our first publica-
tion detailing the appropriation technique used in Slitheen, that have taken inspiration from our
method. These systems are listed in the table after Slitheen, and as seen, exhibit similar levels of
protection for hiding traffic patterns.

Barradas et al. revisited the idea of appropriating Skype calls to relay censorship-resistant
traffic to the user with a system called DeltaShaper []. In their system, a client makes a
connection through Skype to a DeltaShaper server that is seemingly just another Skype user, in
a manner similar to FreeWave. Censorship-resistant traffic is encoded into payload frames, and
embedded into carrier frames before being sent between the client and server. Carrier frames are
obtained from pre-recorded Skype calls or via a webcam while the user is browsing censorship-
resistant content. The degree to which DeltaShaper frames differ from a normal Skype call is
tunable by the size of the embedded frame relative to the carrier frame. This tunability presents
a trade-off between the bandwidth of the censorship-resistant communication and the indistin-
guishability of traffic pattern features.

DeltaShaper took inspiration from Slitheen by opening a VoIP connection to an endpoint
and sending real, captured video and audio frames. Their suggested methods for overt user

46

simulation, or the generation of these frames, is to either record previous calls, or do a live capture
of video and audio as the client is using DeltaShaper for censorship-resistant traffic. DeltaShaper
also replaces leaf data in the sense that they are replacing a part of the carrier frame with a frame
filled with censorship-resistant traffic. However, the size of this frame is not necessarily constant,
and the replacement does not occur after the data has been made ready for network transmission.
This results in an imperfect, yet experimentally evaluated hiding of features such as packet sizes
and timings. Our method can be more fully applied to DeltaShaper; one would simply have to
replace the pre-recorded carrier frames packet-by-packet immediately before they are sent on the
wire to the server. This would maximize the bandwidth available for covert traffic as well as
prevent any identifying traffic patterns from developing.

Our technique was directly adopted by Waterfall [], another third-generation system
that achieves a high degree of resistance to traffic analysis. Waterfall performs the same leaf data
replacement as Slitheen at a relay station between the client and the decoy site. While the main
contributions of Waterfall concerned the deployablity of end-to-middle proxying, they made a
few small changes to the appropriation of HTTP.

As opposed to inserting upstream content into the GET or POST requests for resources from
the client, Waterfall inserts this data into GET or POST requests for which the browser expects an
HTTP Redirect message. The data is then “bounced” back from the overt site to the relay station
inside the Redirect message. HTTP Redirect messages are common, and although this requires
the browser to use speculation or request these resources manually, they report such messages
are common enough to not cause suspicion. This reliance on pacing the generation of redirect
messages makes the linkable connections feature of traffic patterns experimentally, as opposed
to perfectly, indistinguishable.

Waterfall also deviates from our method of replacing only resources that contain leaf data.
They instead rely on the caching of non-leaf resources at the browser to produce the expected
browser behaviour of issuing future connections and replace the entirety of all cached resources
at the relay station. While they periodically update their cache, this also produces possibly
identifiable traffic patterns to a highly capable and observant censor. If, for a particular client,
a censor notices the full download of a resource it expects to be cached, this could raise their
suspicion. The total amount of data sent between a Waterfall client and the decoy site thus
differs for resources that would normally be cached.

3.5 Conclusion

Our technique for protocol appropriation makes the majority of traffic pattern features indistin-
guishable from the regular use of the appropriated protocol, and fully hides the patterns of the

47

tunnelled censorship-resistant traffic. The only traffic pattern that is not perfectly indistinguish-
able by design is the latency imposed by the man-in-the-middle in the parsing of the protocol
messages and the replacement of leaf data. In our implementation of Slitheen, a decoy routing
system that uses this method, we experimentally determined that this latency is unable to be used
by a censor to reliably distinguish between the use of Slitheen and the regular access of decoy
sites.

Our key contribution of this recipe is a method that can, and has, been applied to multiple
protocols with similar results. It has been used and modified by two systems other than Slitheen
to date and has the potential to be applied more broadly to the other systems predating Slitheen,
discussed in Section 3.1.

This method is a significant step forward in the race between censors and resistors to, respec-
tively, identify and hide censorship-resistant traffic. By hiding traffic patterns in a way that is
indistinguishable from the regular use of an appropriated protocol, we are removing the reliance
on assumptions of the inability of a censor to analyze traffic patterns. This gives our method the
potential to stand the test of time against the growing strength of censorship infrastructure as the
ability to collect, analyze, and compare data increases.

The difficulty of the appropriation resides mainly in the difficulty of overt user simulation.
For VoIP connections, the interaction of the overt user is in the production of audio or video data
to send over the wire. For email communication, it is the composition of emails with plausible
lengths that do not leak information about the censorship-resistant traffic. The latter may be more
difficult to achieve. For web traffic, which we have focused on in this section, it is in the choice
of and pattern of access to decoy sites. We leave a discussion of advanced overt user simulation
for our next recipe.

48

Chapter 4

Recipe #2: Simulating compliance

The goal of censorship resistance is to disguise traffic patterns, avoid detection, and simulate
compliance with the censor’s content access policies. This simulation extends beyond a single
session of the appropriated protocol. Censors can not only analyze the traffic patterns of a single
session, but look at the patterns of multiple sessions in an attempt to identify likely users of
censorship resistance tools, even if they are unable to identify a single usage. In this recipe we
look at factors that leak the usage of censorship resistance tools, and provide steps to eliminate
or minimize the ability of censors to detect or use this information.

Censorship resistance systems with strong defences to traffic analysis attacks are notorious
for their high latency and low bandwidth [, ,]. There is a trade-off in
existing systems between security in the form of hiding identifiable traffic patterns, and user
experience in terms of the latency and bandwidth of censorship-resistant traffic. While the pre-
vious recipe focused on hiding traffic patterns in a single use of the appropriated protocol, we
now look at the user experience and security across multiple appropriated sessions. There is an
additional interaction between security and user experience that works in our favour: the higher
the bandwidth of the censorship-resistant channel, the fewer appropriated sessions are needed
to tunnel censorship-resistant data (or, depending on the protocol, the shorter the appropriated
sessions need to be). Multiple or extended sessions may introduce identifiable patterns to the
censor, meaning that the fewer are needed to tunnel a sufficient amount of traffic to the user, the
easier it is to simulate regular usage.

This recipe focuses on the development of client-side software and extends the simulation of
compliance across multiple sessions of the appropriated protocol. We propose two steps to avoid
suspicion and increase the user experience of protocol appropriation tools:

49

Step 1: Eliminate the fingerprintable features of pro-
tocol implementations.

Internet protocols have several implementations, and
each implementation has multiple versions as bugs are
fixed or parameters are changed over time. Choos-
ing a popular implementation and updated version of
the appropriated protocol is critical to avoiding the sus-
picion of a censor. Differences between implementa-
tions produce fingerprintable features in the network traf-
fic that have been used in the past to block censor-
ship circumvention tools [,]. Censors can
enumerate the features they expect from the most com-
monly used protocol implementations, and then block
traffic that deviates from the expected features. This
can effectively block censorship resistance tools with-
out causing a significant amount of collateral dam-
age. Updates to the implementation should be per-
formed regularly to keep up with the version used
by the majority of users in the regular usage of the

protocol. ~ We discuss the elimination of fingerprint-
able features due to implementation variance in Sec-
tion 4.1.

Step 2: Find uses of the appropriated protocol that maximize bandwidth.

Although we are only replacing the leaf data of the appropriated protocol, high-bandwidth
protocols typically have large amounts of leaf data available. However, the detection and re-
placement of this leaf data can be complicated and require the man-in-the-middle to maintain
complex state machines in order to accurately parse and replace the overt traffic. We discuss
maximizing the replacement of secure web browsing content through the usage of video streams
in Section 4.2.

Together, we use these steps to make Slitheen both user friendly and more resistant to de-
tection. We provide an evaluation of the performance of Slitheen from a user perspective and a
comparison to recently proposed circumvention systems that also use protocol appropriation to
disguise traffic patterns. We show that despite the potential for future improvements, Slitheen
already delivers censorship-resistant content at rates that are usable and exceed those provided

50

by some recently proposed systems, while providing stronger security guarantees against traffic
analysis attacks that will stand the test of time.

4.1 Eliminating fingerprintable features

There is a history of censors using browser and protocol fingerprinting techniques to identify
and block censorship circumvention tools that dates back to the beginning of the cat-and-mouse
game. The first reported use of DPI to detect variations in TLS implementations occurred in
2011 [], shortly before the emergence of active probing. A customized configuration of
TLS that proposed a more restrictive set of cipher suites in the ClientHello message sent by Tor
clients allowed censors to distinguish between connections from regular browsers and connec-
tions to the Tor network. Since only Tor clients used these cipher suites, the GFW was able to
block these connections without causing collateral damage.

Although this technique was quickly discovered and defended against, circumvention tools
still fall victim to these attacks by using outdated versions of popular protocols to make outgoing
connections. Fifield attributes the blocking of Meek in 2016 to the use of an outdated version of
Firefox to make TLS connections to the Tor network []. In order to defend against these
attacks, protocol appropriation tools must not only use popular implementations of the protocol
to tunnel traffic, but must also keep their systems up to date with recent versions of the chosen
implementation.

Overt user simulation in Slitheen is done through the usage of a fully functional web browser
that makes tagged connections to decoy destinations and fully loads the decoy webpage. It inserts
upstream requests for censorship-resistant traffic in the client’s GET requests, and replaces the
leaf data of the decoy site’s responses with downstream censorship-resistant content. To accom-
plish this we modified a web browser, and that browser’s corresponding TLS implementation, to
tunnel our censorship-resistant traffic.

In our first implementation of Slitheen we modified a current version of OpenSSL, a pop-
ular TLS implementation, and PhantomJS, a headless browser, to make decoy connections and
insert and extract censorship-resistant traffic into the appropriated secure web browsing session.
However, our modifications were easily fingerprintable due to our choice of base implementa-
tions. Due to its lightweight and headless nature, PhantomJS is frequently used for testing and
metrics, but rarely used for regular web browsing. Figure 4.1 shows byte-level differences in
the ClientHello message of the TLS handshake and initial HTTP GET request to a decoy site
between our original choice of PhantomJS and Firefox version 52, a recent version at the time of
writing this thesis. Selected differences are bolded and enumerated.

51

Firefox 52 PhantomJS

16 03 01 00 b& 61 00 00 b4 03 03 a9 b2 od 89 89 16 03 01 00 b9 61 00 00 b5 03 03 b6 09 df 7c ce
c7 30 06 db6 7d f2 25 de 40 2f a8 38 b7 d8 bb 85 00 7c 1b B¢ 3b ab 17 89 44 ca 08 9a 5c e3 a2 be
c8 6T 94 d7 do 45 e2 23 c3 94 Ba 00 00 le co Zb(:) c9 dl c7 7d 06 0d fd bé b8 b® 26 00 00 26 cb 2b
cB 2f cc a9 cc a8 cO 2c cB 30 cb 0a cO 09 c6 13 ()cﬂ 2f 00 9e cb Ba cb 69 cB 13 cb 14 cb 67 cO 11
cO 14 00 33 00 39 00 2f 06 35 00 ba 01 0O 00 6 00 33 00 32 00 39 60 9c 00 2f 00 35 00 Ga 0O O5
00 00 0O 0d 00 0b GO0 6O 08 78 6b 63 64 2e 63 6 08 84 08 ff 01 @O 00 6 00 60 0O Od 0O Ob OO 0O
6d @0 17 60 00 ff 01 60 01 @60 00 0a 00 Ba 00 B8 08 78 6b 63 64 2e 63 6 6d G0 Bb 00 04 03 60 01
(:)BO 1d 00 17 00 18 00 19 06 @b 0O 62 01 00 GO0 23 02 60 Pa 60 1c 00 1la 0O 17 00 19 00 1c 00 1b 0O
00 60 00 10 00 Ge 0O Gc(j 02 68 32 08 68 74 74 70 18 00 1la 00 16 00 @e 0O 0d 60 Ob 60 Oc 00 09 0O
2f 31 2e 31 00 05 00 05 01 00 00 00 00 ff @3 00 (:hﬂ 00 23 00 00 00 Od 0O 20 00 1le 06 01 06 02 06
00 00 0d 00 18 00 16 04 03 05 03 06 03 08 04 08 03 65 01 05 02 05 03 04 01 04 02 04 03 03 01 B3
05 08 06 04 01 05 01 06 01 02 03 02 01 B2 03 03 02 01 02 @2 B2 03 00 Of 00 01 01
47 45 54 20 2f 20 48 54 54 50 2f 31 Ze 31 0d Oa 47 45 54 20 2f 20 48 54 54 50 2f 31 Ze 31 0d Oa
48 6f 73 74 3a 20 73 63 69 65 6e 63 65 2e 63 61 41 63 63 65 70 74 3a 20 74 65 78 74 2f 68 74 6d
0d @a 55 73 65 72 2d 41 67 65 6e 74 3a 20 4d 6f 6c 2c 61 70 70 6c 69 63 61 74 69 6T 6e 2f 78 68
7a 69 6c 6c 61 2f 35 2e 30 20 28 58 31 31 3b 20 74 6d 6c 2b 78 6d 6Cc 2c 61 70 70 6c 69 63 61 74
4c 69 6e 75 78 20 78 38 36 5f 36 34 3b 20 72 76 69 6f be 2f 78 6d 6c 3b 71 3d 30 2e 39 2c 2a 2f
3a 35 32 2e 30 29 20 47 65 63 6b 6T 2f 32 30 31 2a 3b 71 3d 30 2e 38 0d ©a 55 73 65 72 2d 41 67
30 30 31 30 31 20 46 69 72 65 66 6f 78 2f 35 32 65 6e 74 3a 20 4d 6f 7a 69 6¢c 6¢c 61 2f 35 2e 30
Ze 30 0d 0a 41 63 63 65 70 74 3a 20 74 65 78 74 20 28 58 31 31 3b 20 4c 69 6e 75 78 20 78 38 36
2f 68 74 6d 6c 2c 61 70 70 6c 69 63 61 74 69 6F 5f 36 34 29 20 41 70 70 6c 65 57 65 62 4b 69 74
be 2f 78 68 74 6d 6c 2b 78 6d 6c 2c 61 7@ 70 6¢ 2f 35 33 38 2e 31 20 28 4b 48 54 4d 4c 2c 20 6¢
69 63 61 74 69 6f 6e 2f 78 6d 6c 3b 71 3d 30 2e 69 6b 65 20 47 65 63 6b 6f 29 20 50 68 61 6e 74
39 2c 2a 2f 2a 3b 71 3d 30 2e 38 0d ©a 41 63 63 6f 6d 4a 53 2f 32 2e 31 2e 31 20 53 61 66 61 72
65 70 74 2d 4c 61 6e 67 75 61 67 65 3a 20 65 6e 69 2f 35 33 38 2e 31 0d 0a 43 6 6e 6e 65 63 74
2d 55 53 2c 65 6e 3b 71 3d 30 2e 35 0d Oa 41 63 69 6f be 3a 20 4b 65 65 70 2d 41 6¢c 69 76 65 Od
63 65 70 74 2d 45 6e 63 6T 64 69 6e 67 3a 20 67 Pa 41 63 63 65 70 74 2d 45 6e 63 6T 64 69 6e 67
7a 69 70 2c 20 64 65 66 6C 61 74 65 O0d Ba 44 de 3a 20 67 7a 69 70 2c 20 64 65 66 6c 61 74 65 6d
54 3a 20 31 0d 0a 43 6f 6e 6e 65 63 74 69 6T be Pa 41 63 63 65 70 74 2d 4c 61 6e 67 75 61 67 65
3a 20 6b 65 65 70 2d 61 6c 69 76 65 0d 0a 55 70 3a 20 65 6e 2c 2a 0d Ga 48 6f 73 74 3a 20 73 63

67 72 61 64 65 2d 49 6e 73 65 63 75 72 65 2d 52 (@ 69 65 6e 63 65 2e 63 61 0d Oa 0d 0Oa

Figure 4.1: A byte-level comparison of the TLS handshake and HTTP GET requests of two
different browsers: PhantomJS version 2.1.1 and Firefox version 52. Selected, fingerprintable
differences are in bold and enumerated. Some differences, such as the random nonce, are ex-
pected and not bolded. Note that with TLS, the details of the differences in the HTTP requests
are encrypted, however, a censor can see the difference in the size of the request.

52

The first set of bytes corresponds to the ClientHello message sent by each browser to initiate
the TLS handshake. PhantomlJS uses OpenSSL to issue TLS handshakes, while Firefox uses
Mozilla Network Security Services (NSS). Aside from the overall difference in the length of
the message (1) due to the difference in content, each message also suggests a different set of
ciphersuites (2), a different number of TLS extensions (3), proposes different elliptic curves in
the elliptic_curves extension (4), and lists a different set of extensions (5). All of these
differences are in plaintext, are visible to the censor, and can be used to distinguish between com-
monly used browsers (Firefox), and browsers that are uncommon and therefore can be blocked
with minimal collateral damage (PhantomJS). Note that some differences, such as the random
nonce of the ClientHello message, are expected.

The next set of bytes in Figure 4.1 shows differences in the HTTP GET requests sent by each
browser. Although these requests will be encrypted in our system, and thus the bytes unreadable
by the censor, the selected differences result in different sizes of HTTP requests, which a passive
censor can detect by observing the ciphertext. Each browser has different values for HTTP
headers such as the User-Agent header (6). Browsers also include a different number and set of
headers (7), which can greatly impact the length of the outgoing message.

To avoid browser fingerprinting, we re-implemented our overt user simulator by making mod-
ifications to Firefox version 52, taking care to do so in a way that does not produce identifiable
differences in network traffic. We refer to our modified browser as Slifox in the remainder of
the thesis, a name coined by Anna Lorimer who worked on Slitheen for eight months as an
undergraduate research assistant.

4.1.1 Implementation details

Slifox includes modifications to Network Security Services (NSS), Mozilla’s implementation of
TLS, to implement the Slitheen tagging procedure. We also modified the media and http network-
ing portions of the code in order to insert upstream censorship-resistant traffic into the headers of
outgoing requests, and detect downstream censorship-resistant data in the HTTP responses. In
total, we added 16 new files, and modified 1105 lines of code over 36 existing files in the Mozilla
source code.

To implement the tagging procedure in NSS, we modified only 321 lines of code over 13
different files. We also added 5 new files with a total of 2231 lines of code. These modifications
allow us to insert a tagged value in place of the ClientHello random nonce, generate the client’s
secret key for use in the ClientKeyExchange message, and look for a modified Finished message.
The modifications to the content management parts of Firefox allow us to communicate with a
SOCKS proxy front end, to get SOCKS CONNECT requests and censorship-resistant traffic

53

from the client, insert censorship-resistant traffic into the upstream HTTP GET requests, and
look for resources with the content type ‘“sli/theen”, which are then sent back to the SOCKS
proxy frontend. To accomplish this, we modified 484 lines of code over 23 files and added 11
new files with a total of 1205 lines of code.

We implemented our changes to be compatible with Electrolysis (e10s), Mozilla’s multi-
process framework for giving each tab its own process. To do so, we used the Inter-process
Protocol Definition Language (IPDL) to specify a way for the content processes (that receive
HTTP resources and therefore Slitheen data) to communicate with the main process that sends
this data to the SOCKS proxy front-end. This, along with the minimally intrusive nature of
our modifications, will help ease the process of updating the version of Firefox we use. This is
critical to avoid browser fingerprinting attacks in the future.

Our modifications allow users to receive censorship-resistant traffic from any image content
type, as well as WebM video and audio resources. While images are easier to replace, they
provide a very small amount of censorship-resistant bandwidth. Video streaming, on the other
hand is much more difficult to replace but provides a large amount of bandwidth to the user.
We discuss the details of WebM resource replacement and the bandwidth results of using video
streaming to tunnel censorship-resistant traffic in the next section.

4.2 High-bandwidth censorship-resistant traffic

The amount of censorship-resistant data a client receives in a single appropriated protocol session
is dependent on the amount of leaf data available for replacement. The more protocol sessions
that are required to transmit this data, the more vulnerable the client is to the scrutiny of a
censor, the more load the system places at its deployment points, and the more latency the client
experiences in viewing or interacting with censorship-resistant content.

In this section we discuss how we maximized the bandwidth available for censorship-resistant
traffic in Slitheen by replacing video streams. We give measurements showing the throughput of
our system and the user experience by showing the latency and bandwidth of censorship-resistant
traffic. We compare the performance of our system to other censorship circumvention systems
that appropriate allowed protocols.

4.2.1 Replacing image resources in Slitheen

In our first implementation of Slitheen, we only replaced HTTP resources with an image content
type. Image resources are easy to replace as the entirety of the image is leaf content and does

54

not prompt the browser to produce additional network traffic as a result of its parsing. However,
although some images are quite large, they do not provide a large amount of censorship-resistant
bandwidth.

We visited the front pages of the Alexa' top 10,000 TLS sites that support our implemented
ciphersuites and measured the amount of image leaf data available to a Slitheen client when using
the site as an decoy. To collect these results, we used the PhantomJS headless browser to capture
the size and content type of HTTP responses from each site. Note that while we use PhantomJS
for these measurements, we implemented our OUS with Firefox, as described above. From the
captured data, we measured the total amount of potential downstream bandwidth from each site
as the sum of the sizes of all resources with an image content type. We note that this is the
maximum amount of potential downstream bandwidth as some resources will not be replaced
due to an incomplete deployment, overly abstract state machines at the relay station, and the
occurrence of misordered or dropped packets.

We give a cumulative distribution function of the amount of image leaf data available for
replacement for the Alexa top 10,000 sites in Figure 4.2. About 25% of sites offer 1 MB or more
of potentially replaceable content. In total, we found that about 40% of the content from all
10,000 sites was leaf content, making less the half of the traffic from the decoy site to the user
replaceable.

As mentioned in the previous recipe, leaf data can only be replaced by the relay station if
key packets required to maintain the relay station’s state machine arrive in the correct order. To
more accurately measure the amount of downstream bandwidth for censorship-resistant traffic,
we measured the bytes of leaf image data that were actually replaced with censorship-resistant
content by the relay station when we made connections to decoy sites through our system. We
accessed the Alexa top 500 TLS sites as decoys and counted the total bytes received, the total
amount of leaf data, and the amount of leaf data that was replaced by the system. We give a CDF
of the results in Figure 4.3.

Due to our method of partially decrypting incomplete TLS records, the difference between
the amount of leaf data and the amount of data that was actually replaced is fairly small. This
difference is due in part to misordered packets, but also imperfections in the state machine’s
ability to parse headers across multiple packets. With future improvements to the relay station’s
state machine, we can continue to close the gap between potentially replaceable content and
replaced content.

Thttp://www.alexa.com/

55

http://www.alexa.com/

1.00

0.751
LL
0 0.50
@)

0.25]

0.00

1kB 10kB 100kB 1MB 10MB
Downstream leaf content (bytes’

Figure 4.2: Cumulative distribution function of the potential downstream bandwidth for
censorship-resistant data provided by the image resources of the Alexa top 10,000 TLS sites.

56

1.00- yr——
_.'i"
'. '
e
s 4
-4 4
0.75 ..l' 'l
’r"
n oo Type
a Replaced
80.50 77 - Loaf
v e - Total
-l- .'r-'
0.25 : lf'
o
"I |
: I
.—'—l
0.00—— s =
1kB 10kB 100kB 1MB 10MB

Replaceable leaf content (bytes)

Figure 4.3: Cumulative distribution function of the image leaf data that was actually replaced by
the relay station in our tests. We give the total number of bytes, the bytes of leaf content, and the
bytes replaced with downstream covert content for each of the Alexa top 500 TLS sites.

57

4.2.2 Video replacement

Images provide an easy target for leaf data; however, multiple page loads of a decoy site are
required to load even a small censorship-resistant webpage. Furthermore, if the client is inter-
acting with the covert site, such as performing a TLS handshake, they need not only sufficient
downstream bandwidth, but also enough back-and-forth communication between the OUS and
the decoy sites to relay both sides of the TLS handshake messages.

A more ideal resource to use for tunnelling traffic is video streaming data. Many popular
websites offer video streaming services, several of which are not currently blocked by large
censors. Video streams offer a large amount of bandwidth, delivering large amounts of covert
data to the user very quickly, and also involve frequent back-and-forth communication between
the client’s browser and the streaming service to periodically load the next part of the video.
The prevalence of video streaming services and their usefulness in carrying large amounts of
information has led many censorship circumvention systems to appropriate or mimic them to
proxy censorship-resistant traffic to users [, , , ,]. We
note that while previous systems used video streaming, our system is the first to provide perfect
resistance to traffic analysis attacks by replacing only leaf data with censorship-resistant traffic,
and maximizing the amount of leaf data replaced.

There are a few practical challenges with appropriating video streams that might violate
some of the assumptions of our threat model. In particular, we make the assumption that the
video streaming sites exist outside of the area of influence of the censor. This is increasingly
uncommon as many video streaming services host content in multiple regions and serve content
from servers within the same region as the requesting client. It may be an increasingly difficult
task to find popular outside streaming services or endpoints that will not draw suspicion from
censors. Streaming services are also increasingly proprietary and ship their own obfuscated
JavaScript to process and display the video content, making it difficult to modify the protocol for
tunnelling purposes.

To replace video streams in Slitheen, we chose to begin with the WebM? container format for
video and audio resources. We chose WebM resources due to the availability of clearly defined
specifications and their popularity with streaming services such as YouTube. We implemented
a WebM state machine in the relay station and modified the WebM state machine in the OUS
(Slifox). As opposed to image resources, WebM resources contain metadata and timing infor-
mation that browsers need to play the video and determine when to request more content from
the decoy site. Therefore, we use our protocol appropriation recipe from Chapter 3 again here to
appropriate WebM.

Zhttps://www.webmproject.org/

58

https://www.webmproject.org/

START

I
I
remaining_length == 0 I
I

ELEMENT_ID

no response body i_ELEMENT_BODY

I
|
[
__________ !
ELEMENT_LENGTH R ' UNKNOWN
= remaining length -= :
I

record length

I
I
WebM Element Header I
I

RESPONSE_BODY

Figure 4.4: Modifications to the relay station state machine to parse WebM resources. The
WebM state machine is composed with the HTTP state machine and is located in the body of
HTTP resources (with or without a transfer encoding). The critical parsing region is shown
shaded in red, where if a packet arrives out of order, the state is unknown until the relay station
receives the missing packet.

Step 1: To start an appropriated video streaming session, we have Slifox access a video from
a popular streaming service in the same manner that a regular user would. This includes perform-
ing a TLS handshake with the streaming service and navigating to a URL that corresponds to a
video stream. For our tests and for the remainder of this recipe, we use YouTube as the decoy site
although we acknowledge that YouTube is and has been blocked in several countries. Our results
apply to any streaming service that uses the WebM format. The WebM project maintains a list
of dozens of video libraries, hardware, platforms, and publishers supporting the WebM container
format.?

Step 2: We replace only the leaf data of WebM containers. The WebM container protocol is
a sub-specification of Matroshka*. Containers are composed of various levels of sub-containers,
the elements of which are defined in no particular order. The container provides the browser
with meta information, such as track numbers, timestamps, and seeking pointers. The leaf data

3https://www.webmproject.org/about/supporters/
“https://www.matroska.org/technical/specs/index.html

59

https://www.webmproject.org/about/supporters/
https://www.matroska.org/technical/specs/index.html

are the contents of video and audio frames, contained in Block elements, inside the main Cluster
container of the WebM resource. Our state machine in the relay station, expanded to parse
WebM resources inside of the HTTP resource body, parses the headers of WebM elements until
it reaches a Block element. It then replaces the body of the block element, leaving the header
with the length and timing information untouched.

The vast majority of a WebM resource consists of video and audio frames, which the relay
station must parse carefully to avoid giving the browser corrupted meta information which will
prevent the video from playing properly and produce identifiable network traffic patterns. We
show our addition to the relay station state machine in Figure 4.4. This addition fits inside the
RESPONSE_BODY and MID_CHUNK states of the previous state machine in Figure 3.4, which
transitions to the UNKNOWN state in the case of misordered packets. When the relay station
receives the body of a resource with content type “video/webm” or “audio/webm”, it continues
to parse the resource looking for leaf data. This involves parsing the element headers of the
container, and skipping elements that contain metadata and not video or audo frames. We only
replace simple blocks, with an element ID of Oxa3, and overwrite the element ID to be Oxef,
an ID number that does not conflict with existing WebM elements. This allows Slifox to detect
which blocks have been replaced with censorship-resistant data. The full state machine at the
relay station is now a composition of five protocols, spanning multiple network layers: 1P, TCP,
TLS, HTTP, and WebM.

Step 3: To simulate a regular video streaming session, we require the OUS to process and
play both video and audio frames in the way it normally would had we not replaced their contents.
Many popular video streaming services, such as Twitch® and YouTube®, ship their own video
playback engine as JavaScript when users access the site. Luckily for our purposes, streaming
services that use WebM still make use of Firefox’s WebM parser and state machine, allowing
us to access the censorship-resistant content and replace it with dummy video and audio frames.
However if more browser functionality is moved to customized JavaScript in the future, this step
will become much more difficult.

It is necessary to replace frames containing censorship-resistant traffic with dummy frames
before they are sent to the playback engine to avoid errors or a change in behaviour due to the
engine detecting malformed frames. We made modifications to the WebM parser in Slifox so
that when a WebM resource is received by the OUS, the block elements that were successfully
replaced by our relay station are discovered, their contents sent to the SOCKS proxy for delivery
to the user’s browser, and replaced with valid video or audio frames so that the OUS video player
continues to request additional content. We chose a blank white video keyframe as a dummy

Swww.twitch.tv
Swww.youtube.com

60

k

RT173
Internet
veth(vethl— | ; —ethi |
relay station
SOCKS ous
frontend
|:1'EI'8'D
ethQ
client container relay station container

Figure 4.5: The experimental set up of our user experience tests. We run the client and relay code
separately in two different Docker containers. Traffic to and from the client is routed through
vethO, such that is passes through the relay station on its way to and from the outside Internet.
This mimics a decoy routing deployment. The user can then connect to the client software on
port 1080 to tunnel censorship-resistant traffic, similar to a normal SOCKS proxy.

video frame and an empty audio frame to replace audio resources. We do not need to keep the
length of the received and dummy frames consistent as length does not significantly impact the
processing and play time, and therefore the network traffic, of the video streaming session.

By replacing the video and audio frames of video streaming sessions, Slitheen becomes a
very high-bandwidth, low-latency censorship circumvention system. In the subsequent sections,
we present the results of experiments on the user experience of Slitheen.

4.2.3 Evaluation

We conducted several experiments to measure the effectiveness of replacing video content in
Slitheen in terms of the overhead, latency, and the bandwidth available for censorship-resistant
traffic. These experiments were run locally on a machine running Ubuntu 14.04 LTS. Our exper-
iments used 16 cores and 16 GB of RAM. We ran the client and the relay station code in seperate
Docker containers, networked together such that client traffic routes through the relay station on
its way to the outside Internet.

We give our experimental set up in Figure 4.5. There are two Docker containers: one for
the client and one for the relay station. These containers are networked together using koko’ in

"https://github.com/redhat-nfvpe/koko/

61

https://github.com/redhat-nfvpe/koko/

a way that mimics a decoy routing deployment. Our OUS, Slifox, runs in the client container
along with the SOCKS proxy frontend, connected to each other on localhost port 57173. The
client container also exposes port 1080 to the host machine, which the SOCKS proxy frontend
listens to, allowing the client to connect to it from the web browser of their choice.

Using this configuration, we ran a series of tests, passing censorship-resistant traffic through
our system to determine the overhead, the available bandwidth for censorship-resistant traffic,
and the latency of requests for censorship-resistant content.

Overhead

We calculate the overhead of our system to be the amount of extra traffic needed to tunnel
censorship-resistant traffic. The overhead of our system is necessarily nonzero, as we are only
replacing leaf data, and not headers or metadata needed by the protocol to preserve the illusion
of the client’s regular use of video streaming services. Our goal is to minimize the overhead
as much as possible, both to improve the user experience of censorship-resistant browsing, and
also to minimize the number of decoy connections needed to provide a sufficient amount of
censorship-resistant bandwidth.

We made 100 connections to the top-trending videos in Canada on YouTube. For each
connection we measured the bytes of leaf data that the relay station replaced (or the bytes of
censorship-resistant traffic delivered to the client) and compared that to the total number of bytes
received by the client in loading the video. We found that the overhead was approximately 5x,
meaning that about a fifth of the throughput of the system is censorship-resistant traffic.

Our system has a large overhead compared to other protocol appropriation systems such as
meek or SWEET that do not hide the metadata features of traffic patterns. While we do not have
exact numbers on the overhead of these systems, we can assume it to be quite low. Our overhead
is closer to, yet still larger than, that incurred by DeltaShaper, another protocol appropriation
system that tunnels traffic through video-based protocols (although we provide strong defences
against traffic analysis attacks). Still, the overhead of our video streaming web browsing traffic is
a vast improvement over the overhead presented in Figure 4.3. From that data, we calculate the
mean overhead to be 20 (£ 50) times the goodput with the large variance caused by the different
ratios of image content to total content provided by each overt site. Thus, by moving from only
replacing the images of decoy sites to replacing video resources, we have cut the overhead of our
system down to approximately a quarter of what it was previously.

The overhead produced by our system can be reduced by further optimizations of the relay
station state machine. Some HTTP resources, TLS records, or video/audio frames are not re-
placed by the relay station due to packets arriving at the relay station out of order, or headers

62

being split across multiple packets. We leave a further reduction of the overhead of our system
to future work.

Latency

We measured the latency of the censorship-resistant traffic through our system as the time from
the user’s first HTTP GET request to the covert site, to the time the first byte of the HTTP
response is received. This requires several steps to be performed at the client, relay station,
and covert site. The client must first insert a SOCKS CONNECT request and a request for
censorship-resistant content into the HTTP GET request of an appropriated browsing session.
Next, the relay station needs to receive this request and make a connection to the covert site
through which it can proxy the GET request. The covert site then responds and the relay station
queues the censorship-resistant data. When downstream leaf content arrives at the relay station,
it inserts the queued data into downstream leaf resources, which the OUS then extracts and sends
to the user’s browser.

We accessed the Alexa top ten webites ten times each, using a different top ten trending
YouTube video to tunnel each access. A CDF of the latencies of all 100 accesses is given in
Figure 4.6. The mean latency of censorship-resistant traffic was 13 (£ 11) seconds. The large
variance in latency is due in small part to the packet distributions of different videos, causing the
relay station state machine to forfeit some video or audio frames. The buffering behaviour of the
OUS video playback engine has a much larger impact on the latency of covert traffic through the
system. The OUS will request large chunks of video at a time and then wait until enough of the
video has played before requesting more. This leads to long periods of time during which the
OUS is not receiving censorship-resistance traffic.

Although some connections took almost a minute to load, over half of the connections to
covert sites had a latency of less than 10 seconds to return the first resource. The median latency
of our experiments was 7 seconds, making it only 2 seconds slower than SWEET, but with much
stronger resistance to traffic analysis attacks. Some connections had latencies of only 2 seconds,
suggesting that the proper choice of video and improvements to the relay station would make our
system surpass existing systems in terms of the user experience of browsing censorship-resistant
traffic.

Bandwidth

To measure the overall bandwidth of censorship-resistant traffic, we accessed a large covert site
(a 500 MB file download over HTTP) through our system, using the top ten trending videos on

63

1.00-
0.75
LL
0 0.50-
@)
0.25

0.001

0 10 20 30 40 50
Latency (S)

Figure 4.6: A CDF of the latency, or the time from a user request for censorship-resistant data
to the corresponding response from the covert site. We plot results from loading ten different
censorship-resistant sites, each tunnelled through the top ten trending videos on YouTube.

64

25001

—~ ~2000
) m
<£.2000- =
© e}
2 2 1500,
© 1500 o
o L
s 81000
@ 1000 ! o
o i | i®)
S 500 g 900
O O
0 0
0 100 200 300 0 100 200 300
Time (S) Time (S)
15001
X
N—’
©
o
=
3 10001
O
S
o
©
©
)
S 500
3 7
O —t g
T
O_
0 100 200 300
Time (s)

Figure 4.7: Step functions of the time it takes to load a covert site through Slitheen. Each
plot shows the covert bytes received over time for ten trials of a different overt video stream.
The covert site for all of these tests was a large file download over HTTP in order to test the
maximum bandwidth of our system. 65

YouTube to tunnel traffic through. We accessed our covert site through each overt video stream
ten times, for a total of 100 appropriated video streaming sessions. We ran each test for a duration
of five minutes. Figure 4.7 shows the time it takes to load the covert site through ten trials of
three of the different overt videos. The bursts of content followed by long periods of wait time
are caused by buffering behaviour and the pattern of leaf data in the WebM protocol. As video
sources are loaded, they contain first metadata information about timestamps and tracks. This is
followed by video or audio frames, which we have replaced, and finally seeking information at
the end of the resource. The buffering and request of video data by the OUS is reflected in the
plots that show the receipt of a large amount of content followed by a lengthy waiting period as
the video playback engine waits to buffer more video.

We calculate the bandwidth, or goodput, of our system to be the total number of censorship-
resistant bytes received divided by the time it takes to load an entire page. There is an extremely
large amount of variance in our bandwidth measurements. This is unsurprising given the plots
in Figure 4.7 that show the amount of wait time while the video playback engine of the OUS
waits to buffer more content. We calculated the mean covert bandwidth of our 100 page loads
to be 30 (£ 20) Kbps, with a median of 30 Kbps and a maximum reported goodput of 80 Kbps.
This far surpasses the 3 Kbps goodput of DeltaShaper, a similar protocol appropriation system
that uses VoIP to tunnel censorship-resistant traffic. Our maximum goodput of 80 Kbps is still an
order of magnitude less than that provided by meek, a protocol appropriation system that proxies
traffic directly from the client to the covert site. However, while meek provides no defences
against traffic analysis or website fingerprinting attacks, our system defends against these attacks
by design and will continue to be secure in the presence of even more powerful censors.

There is a significant amount of variation between different overt video streams. We note
that video streams with more frequent requests for more video data, and therefore shorter buffer
times, are better for censorship-resistant traffic that requires multiple network round trips be-
tween the user and the covert site. We also note that the wait times shown in these plots are
exacerbated by the behaviour of the OUS, which waits until an entire WebM resources has been
fully received before processing the resource and sending the censorship-resistant traffic to the
SOCKS proxy frontend. While each load of the same video follows more or less a similar pattern
when compared to other videos, there is still variation in the processing and buffering times for
each trial as shown in the variation between the step functions of the same plot. While dissecting
the JavaScript playback engine shipped by YouTube that is responsible for loading their videos
is extremely difficult, the differences are likely due to different network conditions at the time of
each load.

All plots show large amount of initial buffering time that occurs in the first minute of the
video. Without analyzing YouTube’s obfuscated JavaScript playback engine, we are unable to
verify the cause of this almost two minute wait time near the beginning of the video. Assuming

66

Table 4.1: A comparison of the overhead induced by existing systems that use protocol appro-
priation for censorship resistance. We measure overhead as the bytes of total traffic divided by
the bytes of censorship resistance traffic.

System Protocol Overhead Median latency (s) Goodput
meek [] HTTPS N/A (low) N/A 3 Mbps
SWEET [] SMTP N/A (low) 5 N/A
Slitheen HTTPS 5(£2) 7 30 Kbps
DeltaShaper [] VoIP 2 3 3 Kbps

these wait times are consistent and that there exists a “steady-state” of the video stream in which
content is retrieved more regularly, we calculate an optimistic goodput of 300 (4 200) Kbps with
a maximum reported goodput of approximately 1 Mbps. This gives a good indication that if we
can predict the long wait times present in video streams, we can achieve bandwidths competitive
with those offered by meek.

4.2.4 Comparison to existing systems

We found that, while our system provides a much greater degree of protection against traffic
analysis attacks and relies on fewer assumptions about the inability of censors to analyze large
amounts of traffic, we incur a reasonable amount of overhead while doing so. While our over-
head, latency, and bandwidth measurements can be improved with optimizations at the relay
station state machine, we already perform well compared to similar, recently proposed, censor-
ship circumvention systems.

Table 4.1 provides a comparison of our system to recently proposed censorship circumven-
tion systems that use protocol appropriation methods. We note that while we provide competi-
tive latency and bandwidth measurements, our method defends against an adversary capable of
performing traffic analysis without making assumptions about the computational restrictions of
censors. This means that our system will continue to be secure in the future as machine learning
techniques for network classification improve.

We provide a comparison to meek, which offers no traffic analysis protections to censorship
resistance traffic as an example of the baseline bandwidth possible with no traffic hiding mea-
sures. The average goodput we measured was only one order of magnitude less than that offered
by meek, while DeltaShaper was two orders of magnitude less. Unfortunately, the nature of
video streaming behaviour in the OUS causes the bandwidth to fluctuate wildly and results in

67

lengthy periods of time during which no covert data is received. This erratic behaviour and flow
of covert traffic also has an effect on the latency of our system. We measured a median latency
of 7s, which while only slightly slower than SWEET, is much slower than DeltaShaper. The
latency of our system also varied significantly, with a minimum latency of 2's and a maximum
latency of 50s.

The results of our experiments show that our system is in its current state well suited for
censorship-resistant traffic that requires a large amount of downstream bandwidth but minimal
back-and-forth communication between the user and the covert site. We perform very well com-
pared to existing systems in loading large covert sites over time, but the latency of any given
request is subject to the state of the video playback engine.

4.3 Conclusion

The efficacy of protocol appropriation tools is largely dependent on the available implementa-
tions of the protocol, as well as the bandwidth available for censorship-resistant traffic. Usage
of these tools spans multiple protocol sessions, and their ability to avoid detection depends not
only on the session-specific disguise of plaintext and metadata, as covered in the previous recipe,
but also in the simulation of regular user behaviour across multiple appropriated sessions. This
task becomes much easier if the appropriated sessions are typically high bandwidth and have a
long duration. For this reason, the quality of censorship-resistant browsing that users experience
while using the tool is tied to the number of necessary appropriated sessions and therefore the
level of resistance to censorship that the tool provides. In the example we gave with Slitheen, it
is much easier to simulate a regular user if a small number of video streams are needed to tunnel
censorship-resistant traffic, than if the OUS must browse a large number of web pages. We leave
modifications to the OUS to realistically simulate multiple sessions for future work.

This recipe provides two necessary steps in the implementation of client-side software to im-
prove the experience of the user and avoid detection and blockage by censors. For the first step,
avoiding the fingerprinting of the protocol implementation, we showed how we implemented the
Slitheen OUS in Firefox 52, a recent version of a popular web browser that is unlikely to be
blocked due to collateral damage. For the second step, maximizing the bandwidth of censorship
resistance traffic, we applied our first recipe to video streaming in Slitheen web browsing ses-
sions. We measured the overhead, latency, and goodput of our system, and show that it performs
well compared to the state of the art in protocol appropriation.

This work is accompanied by a proof-of-concept implementation and test environment for

68

Slitheen.® While we believe that the performance of our system can be improved upon sig-
nificantly, it already shows promise in an initial comparison to other recently proposed protocol
appropriation tools. In addition, Slitheen provides a much greater degree of security, along with a
guarantee that even if the network classification abilities of censors continue to improve, Slitheen
sessions will remain indistinguishable from the regular use of the appropriated protocol.

8https://crysp.uwaterloo.ca/software/slitheen/

69

Chapter 5

Recipe #3: Deployment on existing
infrastructure

As evidenced by the ease with which state censors block access to content they deem contrary
to their goals, existing Internet infrastructure is not well suited for Internet freedom. Just as
previous recipes described ways to use existing protocols and tools to hide accesses to blocked
content, this recipe is concerned with the deployment of said systems using the existing physical
infrastructure available to us. Just as in previous recipes, we will see that although existing
systems are not perfect for our means, with a little work they may provide tiny cracks in which
resistance has a chance to grow.

Deployment is a challenging aspect of creating usable censorship resistance systems. Par-
ticularly for protocol appropriation, deployment often requires collaboration with the owners of
existing services or infrastructure. The developers of censorship resistance tools often have to
fight a battle on two fronts: against the censor to circumvent Internet filtering, and against the
owners of Internet infrastructure to allow their systems to run. As we will discuss in Section 5.1,
recent events have shown a hostility towards censorship circumvention systems by both sides.
Although these systems are often designed to be deployed outside of a censor’s area of influ-
ence, in a region that might even have political motivations to aid in the resistance of Internet
censorship, the political and economic relationships between Internet companies and states with
control over the Internet traffic of their region produces tension that has not recently played out
in favour of censorship resistance.

We note that, in addition to the possibility of political and economic conflict that cause the
benefactors of systems for censorship circumvention to withdraw their support, reliance on states
and companies to resist oppression is inherently problematic. Today’s centralized Internet infras-

70

tructure is not owned, run, or controlled by marginalized or oppressed groups. Whatever their
claims, the goals and motives (political, economic, or otherwise) of the owners and controllers
of Internet infrastructure will never be those of the groups who are resisting their owners and
controllers who just happen to be in a different geographical location. Though our provided
solutions are imperfect, our intention is to provide a way to empower Internet users without
making them more vulnerable to other states and companies that already enjoy an overwhelming
and imbalanced amount of authority over Internet traffic.

In this chapter, we give a generalized recipe for deploying censorship resistance systems on
existing infrastructure. We discuss deployment strategies for censorship resistance systems that
use protocol appropriation, their trade-offs, and our work on improving the viability of end-to-
middle proxying.!

5.1 Options for deployment

The deployment of censorship resistance systems is challenging; the system must remain avail-
able for use and be resistant to blocking in the presence of censors that are well equipped to
perform reconnaissance and discover the deployment details of the system. The following three
steps address the main properties that a censorship resistance system deployment should have:

Step 1: Make the deployment difficult to block

Assuming the censor is able to discover the points of deployment used by a censorship cir-
cumvention system, it is crucial to make the task of enumerating and blocking these points dif-
ficult, expensive, or even impossible so that the system remains usable within the censor’s area
of influence and censorship-resistant traffic continues to bypass the censor’s firewalls. This dif-
ficulty can be caused by a rapidly changing, massive number of deployed endpoints that are
difficult even for the active probes of the GFW to enumerate, or the endpoints themselves could
cause collateral damage that makes them politically or economically difficult to block.

Step 2: Reduce the impact of and barriers to deployment

All censorship resistance systems share the common feature that the more widespread the
deployment, the more successful the system is in resisting censorship or blocking. Deployment
is often done by volunteers who stand to gain very little in terms of security, economics, and ef-
ficiency from their participation in these systems. The more we can protect our volunteers from

I'This chapter contains text from our PoPETs 2018 paper [1.

71

attacks by censors and limit our impact on their quality of service, the more volunteers are likely
to participate.

Step 3: Protect the identities of the users of the system

In the event that a censor is able to block or monitor traffic to the deployment points of the
system, it is crucial to prevent them from then enumerating the users of our system. If, for ex-
ample, the censorship circumvention system is a connection to a simple proxy which is only
used for censorship resistance, a censor could then flag all clients that connect to this proxy as
censorship circumventors. This is a property that not many censorship resistance deployments
have, but may become much more important as Internet users are increasingly facing harassment
by the state based on their mere usage of privacy enhancing technologies [].

In this section, we discuss three different deployment strategies, each with their own trade-
offs, that may all be used with the protocol appropriation recipes in the previous chapters.

po | —

5.1.1 Guerilla proxies

The first technique to is to deploy censorship resistance systems at an endpoint yet unknown
to the censor. This technique has the disadvantage that, once the endpoints become known to

72

the censor (and following Kerchkoffs’ principle we can assume they eventually will), they will
be blocked. However, this assumption underlies the strategy taken by Tor Project in their use of
bridges []; the idea is to distribute information about the endpoints (called bridges because
of their use to provide a way for users to connect to the Tor network in the instance where other
paths to Tor are too difficult to traverse) using a variety of distribution methods to keep their
existence hidden from censors as long as possible.

As discussed in Chapter 2, large censors are capable of monitoring traffic and actively probing
unknown or suspicious servers to automatically determine their usage for censorship resistance.
In response some pluggable transports have implemented defences for active probes by requiring
knowledge of a password or key, distributed along with the bridge information to clients [].

While Tor bridges are typically large servers, there have been several attempts at spawning
smaller-scale endpoints for censorship resistance. Flash proxies, proposed by Fifield et al. in
2012 [], are browser-based proxies run by volunteers that are easy to set up, thereby
allowing a large number of Internet users to participate and presenting a moving target to the
censor. The large and rapidly changing set of endpoints are designed to be discovered and
blocked, but not before they provide a way for a subset of users to circumvent state firewalls.
Snowflake [,] and MassBrowser [] are more recent and more usable browser-
based proxies with similar properties.

Snowflake uses the peer-to-peer WebRTC protocol. When users outside of the censor’s area
of influence browse a site with a Snowflake deployment, they become temporary proxies that
the users from within the censored region can connect to. Although the actual proxying of
censorship-resistant traffic occurs between peers, the client must still connect to a central server
in order to initially access one of the available proxies. As this server is also prone to blockage,
the Snowflake system uses domain fronting, described in the next subsection, to bootstrap the
connection.

MassBrowser also takes the approach of combining peer-to-peer connections with a central-
ized management server, where the centralized server is also domain fronted. In order to further
limit the ability of a censor to enumerate all volunteer relays, MassBrowser advertises only a
subset of all available relays to each individual user. On the volunteer side, MassBrowser offers
an easy-to-use GUI and provides volunteers with fine-grained control over their participation.
Volunteers can easily stop using the system, choose what type of traffic to proxy, and control the
amount of bandwidth they provide.

The guerilla deployment of censorship resistance endpoints provides a moving target to the
censor, and in the case of browser-based proxies are very easy to deploy. However, there is a
trade-off between deployability (the ease of spinning up fresh, unblocked endpoints), and the
need for bootstrapping servers that are difficult to replace if blocked. As far as barriers to de-

73

ployment, guerilla deployments aim to make the cost of deployment as low as possible in order
to allow many volunteers to run proxies and lessen the impact of discovery and blocking. Fi-
nally, guerilla deployments often do not protect the identities of censorship resistance users. The
endpoints involved, whether they are Tor bridges or browser-based proxies, are almost always
single-use addresses; a connection to the endpoint can almost certainly be classified as a connec-
tion to a censorship resistance system. A possible exception to this are browser-based proxies that
live behind a large network address translation table (NAT). In this case, the browser shares an
IP address with many different machines, each of which may offer a service that is not involved
with the censorship resistance system.

5.1.2 Too big to block

A key element of the success of protocol appropriation is the unwillingness of censors to block
the protocol, site, or service being used to tunnel censorship-resistant traffic, despite knowledge
of their involvement in censorship resistance. This unwillingness to cause collateral damage, or
the blocking of sites and services that are not used solely for censorship resistance or the original
target of censorship, is a commonly seen feature for censors that do not conduct complete Internet
blackouts.

Domain fronting is a technique for protocol appropriation that uses the “too big to block”
deployment strategy, relying on the edge servers of large service providers or CDNs to redirect
censorship-resistant traffic to blocked services such as Tor [], or encrypted messaging
applications [].

While it is still recognized that censors strongly prefer to keep as many sites and services
available to their populations as possible, we have seen several recent instances where govern-
ments have blocked access to a significant portion of the Internet to prevent the usage of privacy
enhancing tools. This blocking may have been a commitment to longer-term blocking, and an
acknowledgement that there are some instances in which the collateral damage caused is worth
it to effectively censor certain content or tools. It is also possible that the blocking was short-
term and meant to put political or economic pressure on the companies involved with censorship
circumvention.

In April 2018, there were massive blockages of Amazon AWS and Google in Russia, consist-
ing of over two million IP addresses, caused by the Russian government’s attempts to block ac-
cess to Telegram,” an encrypted messaging application []. Telegram uses domain fronting
to evade censorship, with domain-fronted servers existing behind Amazon’s edge services. No

Zhttps://telegram.org/

74

https://telegram.org/

more than ten days after experiencing massive outages in Russia, Amazon announced their in-
tention to implement measures to detect and block domain fronting, or the usage of their edge
services to mask censorship-resistant traffic [].

While their press release states that their reasons for doing so are to protect their customers
from malware, the timing of the decision suggests it was targeted at systems that use domain
fronting to circumvent censorship. This is further supported by the notice sent in the same
week to Signal, another encrypted messaging application that uses domain fronting to evade
censorship, notifying them of the suspension of their account []. Tor has also reported
that Google and Amazon have removed support for meek, and that support is expected to soon
be withdrawn from Microsoft Azure, the only remaining CDN that works for the pluggable
transport [].

The future of domain fronting is unclear, but it is possible that large services and CDNs such
as Google, Amazon, and Microsoft Azure are still too big to block long-term, just unwilling to
actively participate in censorship resistance and suffer from short-term outages. In this case, the
next step for censorship resistance is to hide from both the censor and the hosting service.

Another trend that has the potential to impact this deployment strategy is the implementation
and deployment of their own versions of popular services by large censors such as China and
Russia. This reduces the need for their users to issue outgoing connections to services hosted
outside of their area of influence.

Despite the withdrawal of support by domain fronting services, censors take a significant
economic and political hit in the blockage of large sites and services. Although several coun-
tries have blocked Amazon recently in an effort to block access to domain fronted censorship
resistance systems, these blockages have been short term and it is unsure whether longer term
blocking is feasible for most censors. Although domain fronting is relatively easy for the cen-
sorship resistance system to set up (it involves in many cases merely making an account with the
service and pointing the system’s clients to the right domain), it is expensive to maintain and has
a large impact on the service if a censor decides to block them. Finally, domain fronting does
protect the users of the system. A connection to a domain fronted service appears in many ways
identical to any of the numerous connections to the front service. The identification of censorship
resistance traffic then rests on a censor’s ability to perform traffic analysis, which we describe
how to defend against in the previous two recipes.

5.1.3 End-to-middle proxying

End-to-middle (E2M) proxying is a technique used by decoy routing systems in which the
censorship circumvention happens at routers in the middle of the network as opposed to end-

75

points [, , , , , ,]. The communication
with the censorship resistance system happens covertly through the guise of end-to-end (E2E)
connections to endpoints that have not been blocked. The unblocked endpoints, the participant
routers, and all routers on the path between the deployment and the unblocked endpoint exist
outside of the censor’s area of influence, as per our threat model in Section 2.3. Although the
majority of decoy routing systems propose an E2M deployment, we distinguish between their
use of protocol appropriation to disguise network traffic patterns (described in Chapter 3), and
their deployment details (described here) by referring to the former as decoy routing and the
latter as E2M proxying. As stated previously, the protocol appropriation methods used by decoy
routing systems can be deployed in either an E2E or E2M manner.

In E2M proxying clients communicate with unblocked endpoints in an E2E manner, but
steganographically encode messages to routers with deployed relay stations that sit on the path
between the user and the unblocked site. The steganographic encoding uses public key cryptog-
raphy to remain provably invisible to a censor, while allowing the relay station to proxy covert
information to and from the client and the covert site. We show the basic architecture of an E2M
deployment of Telex, previously described in Section 3.1, in Figure 5.1.

The advantage of E2M proxying is that in order to block access to the censorship resistance
system, a censor would have to block not just one service, but all services behind the deployed
relay station. Nasr and Houmansadr have shown that with the careful placement of relay stations
at autonomous systems surrounding the censor’s area of influence, this could result in a decision
by the censor to allow censorship resistance traffic or block the majority of the Internet [].

We find it very unlikely that the majority of ASes, being the corporate entities that they are,
would be willing to deploy censorship circumvention tools in their infrastructure, but devote a
large portion of this chapter to describing ways in which to reduce the burden on Internet service
providers should they wish to participate. This technique also faces the same problem as domain
fronting: if censors are willing to put pressure on ASes by blocking them for a short period of
time, it is likely their response will be similar to those of their CDN counterparts. Due to the
nature of deployment, hiding the existence of E2M relay stations from ASes is likely far more
difficult than hiding a deployment at an endpoint such as a CDN. The currently proposed de-
ployment requirements of E2M proxying systems would require sneaking into Internet exchange
points to install and rewire hardware.

Although E2M decoy routing systems provide strong security properties against both active
and passive attacks, there are numerous obstacles to deployment. The deployment of an E2M
proxying system relies on the participation of autonomous systems (ASes) that own routers in
the middle of the network. Previous work on the optimal placement of E2M proxies aims to
maximize the number of unblocked, overt sites available and minimize the required amount of

76

Friendly

PO -

_— 2

\ - @ Overt

Censor |e=— . -
destination
@ =
t -
Covert
destination
Figure 5.1: An overview of the Telex [] E2M deployment architecture. A client first

initiates a TLS handshake with the overt destination, tagging the ClientHello message (1). The
friendly ISP with a deployed relay station recognizes the tag, and then continues to passively
monitor the TLS handshake (2). Upon receipt of the TLS Finished messages from both sides,
the station decrypts and verifies the Finished messages with the session’s TLS master secret,
computed from the client’s tag. Finally, the station will sever the connection to the overt site (3),
and assume its role as a proxy to the censored, covert site (4). Slitheen is very similar, except that
in step (3), the connection between the client and the overt destination is maintained and actively
used.

7

deployed stations [, ,]. However, researchers have yet to convince large
ASes to deploy E2M proxies in a production setting. While recent work on analyzing a small-
scale E2M deployment [] provides hope that ISPs are willing to deploy lightweight
decoy routers, we are still a long way from convincing the majority of ASes to adopt these
systems for Internet freedom purposes. Concerns such as the hardware required to block, modify,
or drop traffic at the router, the effect checking for steganographic tags would have on regular
traffic, and the logistics involved in setting up and maintaining a relay station remain deterrents
for both large and small ASes.

Furthermore, connections to overt sites are often asymmetric. While they may cross a router
with a deployed decoy routing relay station on the path to an overt site, the path taken back
from the overt site to the user may not cross the same router. This makes the deployment of
E2M systems more difficult, perhaps necessitating a larger number of participant ASes. While
some asymmetric solutions exist [, ,], they suffer from security vul-
nerabilities that could put users already under the scrutiny of a state censor at risk. Waterfall, a
recently proposed asymmetric E2M system, requires a relay station only on the downstream
half of a flow []. This provides resistance against routing around decoys (RAD) at-
tacks []. Furthermore, Waterfall provides significant security improvements to existing
asymmetric designs by employing and improving upon the techniques used in Slitheen []
to securely relay covert information in an undetectable and high-bandwidth manner. However,
the registration protocol of Waterfall is prone to denial of service attacks and blocking.

E2M proxying is a deployment option that has the potential to be very difficult to block, but
is also difficult to deploy. Similar to domain fronting, it also protects the identities of the users of
censorship resistance systems. Since the E2E connections are made to unsuspecting endpoints
that have not been blocked, and may even be whitelisted by the censor, the identification of
censorship resistance traffic relies on traffic analysis techniques.

In the next section, we address the main challenges to deployability that current E2M sys-
tems face. We provide an experimental analysis of affordable, off-the-shelf hardware that can
be used by ASes in the deployment of decoy routing relay stations. To address the problem of
route asymmetry, we leverage the fact that routes between specific clients and overt sites are
very stable, meaning they pass through the same set of ASes in subsequent flows. We propose a
“gossip” protocol that may be applied to all previously symmetric systems to make them work
in an asymmetric setting. In keeping with the ideas presented in Waterfall, our approach empha-
sizes downstream traffic. We use extremely light-weight upstream stations (simple taps) to relay
information to stations on the downstream half of the flow that incur a bandwidth overhead of
only 1.0055x the total bandwidth through upstream station. Our design provides a more secure
alternative to Waterfall’s registration protocol and requires fewer deployed heavy-weight relay
stations that perform in-line blocking and intense computations than symmetric systems. We

78

require as few as five heavy-weight stations for a highly connected, routing capable adversary
such as China, as opposed to the hundreds of stations required by symmetric designs.

5.2 Known challenges to E2M deployment

Recently, a number of research groups have proposed solutions to the decoy router placement
problem (DRP) that aim to maximize the coverage of overt sites available through E2M decoy
routing stations and minimize the number of decoy routers needed to successfully inhibit a cen-
sor’s ability to evade decoy routers and block overt sites [, ,]. Sufficiently
powerful censors can perform Routing Around Decoys (RAD) attacks by manipulating BGP
and routing tables to send traffic to overt sites down paths that do not contain a deployed relay
station [,]. With enough deployed stations, these attacks become extremely dif-
ficult and expensive []. However, we have yet to see deployment on large ASes, let alone
the widespread placement of relay stations in the middle of the network.

Wustrow et al. [] were the first to closely examine deployment challenges, and devel-
oped TapDance as the result of discussions with ISPs about their reluctance to deploy existing
systems. The resource requirements of relay stations and route asymmetry were cited as the most
onerous to ISPs and practical usage of existing systems. Telex and Curveball both require the
relay station to perform in-line flow blocking, severing the connection between the user and the
overt site after the TLS handshake. This not only requires sophisticated and potentially expen-
sive hardware, it also violates the terms of service many ISPs have with overt sites. Because
TapDance does not perform in-line flow blocking, it does not have an impact on the quality of
service of HTTPS traffic through the router of a deployed relay station. This has made the trial
deployment of TapDance successful, at both a regional ISP and a university network [].
During the trial, the deployed TapDance stations were able to serve up to 3,000 clients while
processing 40 Gb/s of regular ISP traffic. However, the deployability of TapDance is offset by
security vulnerabilities that may lead to easy blocking by a state censor, as we discuss in the next
section.

To our knowledge, there have yet to be experiments on the resources needed by a relay sta-
tion that performs in-line blocking to check steganographic tags and the impact these operations
would have on the quality of service for all overt sites accessible through the deployed relay
station. Tags need to be checked for every TLS connection, which now comprise over a third of
all Internet traffic [] and require the relay station to perform expensive public key opera-
tions. In Section 5.3, we provide an extensive analysis of the impact of checking Slitheen tags
using specialized hardware. We chose this tagging procedure as it is used by multiple systems,
including Telex, Slitheen, and Rebound.

79

Another obstacle in the deployment of E2M systems is the prevalence of asymmetric flows.
The upstream path from a user to an overt site may pass through a relay station, but the down-
stream path may take a different route and miss the relay station targeted by the user’s tag. Of the
seven existing E2M decoy routing systems, only Cirripede, TapDance, Rebound, and Waterfall
support asymmetric flows. With these systems, as long as the user’s traffic passes through a relay
station on the upstream (or downstream, in the case of Waterfall) path to the overt site, the relay
station can effectively deliver covert content to the user. However, as we discuss in Section 5.2.1,
second-generation asymmetric solutions have significant flaws that could allow a passive censor
to identify their usage. While Waterfall has strong security properties, the registration protocol
is prone to denial of service and blockage by a censor. Our solution presents an alternative to
client registration as well as a solution to the relaying of upstream covert data from the client to
the relay station that places less strain on overt sites.

For Telex, Curveball, and Slitheen, the relay station has to see both upstream and downstream
traffic of a tagged session. Our solution can be applied to all previously symmetric systems to
recognize and use asymmetric flows for the delivery of covert content. We use a gossip pro-
tocol for deployed relay stations to share information about potential steganographic tags. We
provide a discussion of the deployability features and security properties of existing systems in
Section 5.4. We analyze the previously symmetric systems Telex, Curveball, and Slitheen both
in their original form and along with our improvements to support routing asymmetry.

5.2.1 Routing asymmetry

Traffic between a client and an overt site often takes a different route, passing through different
routers or ASes, in the upstream and downstream directions. Past studies have found somewhere
between 80% and 90% of routes to be asymmetric [, ,]. This asymmetry
becomes more prevalent in the centre of the network. John et al. [] found that only about
10% of flows are symmetric in Tier-1 networks (i.e., the backbone of the Internet), while flows
at the edge of the network are symmetric about 70% of the time. The ability of a decoy rout-
ing system to work in the presence of asymmetric flows enhances the system’s deployability by
increasing the effectiveness of deployed stations and lowering the number of relay stations that
must be deployed to defend against routing-capable adversaries. Each individual relay station
can intercept traffic meant for a larger number of overt sites. Four of the existing decoy rout-
ing systems accommodate routing asymmetry. Cirripede [], TapDance [], and
Rebound [] function properly if a user’s traffic passes through a deployed relay station
only in the upstream direction towards the overt site, but each has security issues or drawbacks,
which we outline next. Waterfall [] takes a different approach, placing relay stations only
on the downstream path from the overt site to the user.

80

Cirripede accomplishes routing asymmetry by handling client registration (i.e., recognizing
that a client wishes to begin a decoy routing session) solely through the passive observation of
TCP SYN packets. These packets are sent from the client to the overt site at the start of every
connection. After recording the ISNs from 12 of the client’s TCP connections, they make a rule
in their routing table to divert all traffic from the client’s IP address to a service proxy for a
fixed period of time. During this time, as long as the client’s traffic passes through this router
in the upstream direction towards any overt site, it will be redirected to a service proxy that will
relay data to and from the client and a covert site. Downstream data from the covert site is sent
directly from the service proxy to the client, eliminating any need for a relay station to be placed
downstream.

On the usability side, a disadvantage of this approach is that all of a client’s traffic will be
redirected to the service proxy during the fixed time set by the relay station. If a client wishes
to browse a site normally, they must wait for the duration of the decoy routing session to end.
There is also a security vulnerability due to the fact that traffic between the user and the covert
site does not follow the same downstream path it normally would in a connection to the overt site
during the proxy phase. If the overt site and the covert site are significantly far apart, a censor
could easily notice a significant difference in latency or in where the traffic enters their network
to identify decoy routing sessions.

TapDance implements asymmetry by waiting for the client and overt site to complete the
TLS handshake before initiating the tagging procedure. The first upstream HTTP GET request
from the client contains a tag in the ciphertext that gives the relay station the client’s public key
and the encrypted TLS master secret for the session. After retrieving the TLS master secret, the
relay station can decrypt upstream data from the client and establish a connection to the covert
site. It then sends covert data to the client directly, encrypting it with the TLS master secret
and assuming the role of the overt server. Unfortunately, the non-blocking nature of TapDance
and its inability to block or modify downstream traffic leaves the system vulnerable to active
attacks by an adversarial censor. Because the relay station is sending traffic to the client on
behalf of the overt site, the TCP sequence numbers for downstream data will differ from the
overt site’s TCP state. A censor can then replay a stale TCP packet to the overt site, prompting
an acknowledgement that reveals the server’s true state, inconsistent with what the censor has
witnessed. TapDance also suffers from the same passive attack as Cirripede that stems from the
difference in the locations of the relay station and the overt site.

Rebound’s asymmetric solution presents a different problem by making traffic vulnerable to
attack from a passive adversary. Rebound’s upstream-only relays receive necessary handshake
information from the client in an encoding method similar to TapDance. After reconstructing the
TLS master secret, the relay delivers covert content to the user by encrypting it and sending it as
an invalid resource name to the overt server in an HTTP GET request. To maintain a consistent

81

TCP state between the overt server and what a passive censor sees, a client must send a GET
request with a length that matches the length of the downstream data she wishes to receive.
This results in a nearly equal amount of upstream traffic and downstream traffic, which is a
highly atypical traffic pattern for any type of web browsing activity. Furthermore, the ethical
implications of sending an unending stream of bad requests to overt sites makes this technique
undesirable.

Waterfall places relay stations on the downstream path between the user and overt site, a tech-
nique that allows for much stronger security properties in the proxy phase of the decoy routing
session as well as a defence against RAD attacks. The downstream-only asymmetry of Water-
fall is made possible by the separate registration protocol between the client and the registration
server. The client sends a registration package with a series of identifiers, one for each future de-
coy routing session the client wishes to establish. The identifiers contain all necessary upstream
information a relay station would need to man-in-the-middle the TLS session with the overt site.
The registration server disseminates this information to relay stations, which then attempt to de-
crypt TLS sessions whose client IP address are included in the list of registered clients, using
the connection identifier information provided. This registration process provides a usability
advantage over Cirripede: clients can choose which of their subsequent flows are to be decoy
sessions and which are regular browsing sessions. However, an attacker could perform a denial
of service attack against suspected clients by registering a series of identifiers in their name. It is
unclear how such conflicts in registration would be solved. Furthermore, the connection between
the client and the registration server could be censored, requiring the client to adopt a different
censorship circumvention system to make this initial connection.

The proxying of covert information to the user in Waterfall is very similar to Slitheen: overt
resources are replaced in a manner that perfectly imitates the loading of an overt site. However,
upstream information is bounced off of the overt site to the downstream station in a manner
similar to Rebound. They suggest several methods for bouncing covert data off of the overt
server, including HTTP 404 messages and HTTP Redirects, the latter of which are quite common
in normal web-browsing behaviour.

In this section, we describe a solution to achieve asymmetry in previously symmetric decoy
routing systems such as Telex, Curveball, or Slitheen, that maintains the security properties of
these systems. Our solution can also be used as an alternative to the registration protocol of
Waterfall and as an alternate way to relay upstream information to the downstream relay station,
and maintains the same RAD-resistance as Waterfall due to the focus on the downstream half of
the flow.

We position easily deployable, non-blocking relay stations (which are really just simple taps)
in the upstream half of a connection from a user to an overt site to gossip ClientHello random

82

nonces to possible downstream relay stations that may be able to recognize a tag. As this random
nonce is the only upstream part of the TLS handshake a relay station needs to compute the TLS
master secret, the downstream station only needs this small amount of gossipped information—
and not necessarily in real time—to successfully use that and subsequent flows for decoy routing.
During the proxy phase of the decoy routing session, these gossip stations also relay upstream
information to nearby downstream stations.

5.2.2 Asymmetric gossip protocol

Our solution for asymmetric decoy routing takes a slightly different approach from existing so-
lutions. We require the existence of a relay station in both the upstream half of the flow (on the
path from the client to the overt site), and the downstream half (on the path from the overt site to
the client). These relay stations do not need to be placed on the same router, or even in the same
AS. The relay station in the upstream path requires only an extremely lightweight non-blocking
network tap and aids in both registration and the proxying of upstream information. This tap
removes Waterfall’s need for a client to connect to a registration server, provides a DoS-resistant
way to tag decoy sessions, and reduces the load on the overt site by directly sending upstream
covert data to the downstream station.

Our focus on the downstream relay station comes from the fact that a relay station only needs
to observe one upstream handshake message to compute the TLS master secret: the ClientHello
message that contains the steganographic tag in its random nonce. However, the relay station
needs to see multiple downstream handshake messages: the ServerHello, ServerKeyExchange,
and (in the case of Slitheen), the downstream Finished message. To minimize the communication
between two relay stations on either side of the flow, the upstream relay station “gossips” received
ClientHello messages to other known relay stations, in an attempt to reach a relay station on the
downstream path.

This approach spans multiple flows between a client and an overt site and therefore requires
route stability, in which although each flow is routed asymmetrically, the routers traversed in
each direction do not vary significantly between the same two endpoints. There is evidence that
routes are highly stable; a 2009 study by Schwartz et al. [] compared the routes taken
between between over 10,000 sets of endpoints with an average of about 100 measurements for
each pair over the course of four days. Analysis over this time frame is more than sufficient for
the purposes of our system. They found that most pairs of endpoints had a dominant route, or one
in which over half of the traffic between these pairs traversed. 25% of pairs had absolute stability
where all traffic (although possibly asymmetric) always crossed the same routers. Furthermore,
the number of distinct routes for endpoints that did experience variance was usually small: only

83

about 20% of all endpoint pairs had over 20 distinct routes, and very few had over 60.

While the existence of dominant routes indicates high route prevalence, this is only one
aspect of stability. Prevalence measures how often traffic between two endpoints passes through
the same set of routers. Another relevant aspect of stability is route persistence, which measures
how often a route changes over a given period of time. Routes can have high prevalence but
low persistence, in which most connections are sent over the same path but less common paths
occur regularly between two endpoints. We desire both high prevalence and high persistence for
our asymmetric tagging procedure to work. A 1996 study by Paxson [] showed that the
majority of routes persisted for days to weeks. Additionally, only 10% of routes persisted for
less than an hour, which is well within the necessary stability time required for our system.

The measured high persistence and high prevalence of Internet routes leads us to believe that
there is a high probability that subsequent flows between the same client and overt site will cross
the same downstream relay station, particularly in the short term due to load-balancing practices.

We first describe the tagging phase of our asymmetric solution using the modified TLS hand-
shake used by Slitheen for tagging flows. We follow this with a discussion of asymmetry in the
relay, or proxying, phase of the decoy routing session.

Asymmetric tagging

We use the Slitheen tagging protocol as it is a slightly modified, updated version of Telex’s
tagging procedure. This method varies only slightly from that used by Curveball, in which the
client and the relay station share a symmetric secret that was exchanged out of band.

In Slitheen, a steganographic tag is placed in the last 28 bytes of the 32-byte random nonce
of the TLS ClientHello handshake message. The first 4 bytes are reserved and usually randomly
generated; however, some older implementations of TLS used them as a timestamp. Our solution
uses an implementation that randomly computes these bytes, and we will refer to this random
value as p = ClientHello random|0..3] for ease of reference in the rest of the chapter.

To enable the downstream relay station to compute the TLS master secret from the previ-
ous ClientHello random nonce and the server’s TLS handshake messages, we make one further
small modification to the tag. In Telex and Slitheen, the tag and the client’s TLS key exchange
parameters are computed from the client-relay shared secret as well as a context string x, where
X = server_ip||p||TLS_session_id. In our asymmetric setup, the downstream relay sta-
tion is responsible for intercepting the flow and may not have access to the TLS session id (as this
may or may not be reflected in the ServerHello message, depending on the session’s resumption
status). Therefore, we use a different context string y = server_ip||p that depends only on

84

Gossips:
censor - ClientHello random,
- server IP,
@ - ciphersuite list
S

. 1
client i S
T upstream relpy
1
; downstream relay

® ! S

Next flow to overt site:

calculates secret value:
s = H3(g™||server ip|p) Computes TLS master secret from

server messages and g"°

Recognizes tag, performs C-R protocol overt site
with the upstream relay, saves IP addresses

and gm

Figure 5.2: Gossip protocol for asymmetric flow tagging. The client tags a connection to the overt
site for a relay station positioned in the downstream half of the flow. When a relay station sees
a ClientHello message in an upstream flow for which it has not seen the downstream SYN|ACK
packet, and does not recognize a tag in the random nonce, they gossip this nonce, along with
the server IP address and the proposed list of ciphersuites, to nearby relay stations (1). Each
of these relay stations checks the gossipped nonce for a tag using its own private key. If it was
tagged for them, and they observe the downstream half of the flow, they perform a challenge-
response protocol with the upstream station to receive the client IP address, and wait for a future
TLS session between the client and the overt site to begin (2). When the client next makes
a connection to the same overt site (3), it generates the new client exponent as a hash of the
previous client-relay shared secret s = H3(¢"°|[server_ip||p). The downstream relay can
reconstruct the client exponent and the new ClientHello random nonce themselves. After seeing
the server’s handshake messages, the relay can compute the TLS master secret (4) and replace
downstream content. After the tagging phase, the upstream relay station will continue to send
copies of the upstream data to the downstream server; however, this communication is not time
critical.

the server’s IP address and the first 4 bytes of the ClientHello random nonce. Removing the TLS
session ID from the context string will not affect the security of the scheme as an adversarial cen-
sor is still unable to perform a tag replay attack. In this attack, a censor would observe a suspect
flow and then initiate a TLS connection to the same overt site, reusing the suspect ClientHello
random nonce in the hopes of observing their own decoy routing session. Such an attack would
require the censor to generate the correct TLS session key matching the tag without the client or
the relay private secret, which violates the security of public-key cryptography.

We give an overview of our asymmetric solution in Figure 5.2. Our system uses four dif-
ferent hash functions: H,, Hs, H3, and H4. In our implementation, each of these functions is
a SHA256-based PRF with a function-specific constant string prepended to the input as a do-

85

main separator. A client begins an asymmetric decoy routing session by generating a random
secret s and composing the steganographic tag ¢°|| H1(g"*||x) for the ClientHello random nonce
using the public key, ¢g", of a relay station in the downstream half of the flow. Each relay station
has its own public key and these are distributed along with the client-side software to the client.
The discovery of overt sites whose paths contain deployed stations can be done by experimen-
tally tagging flows to see if they are successful, guided by a publicly known deployment map of
relay stations. The client computes their secret exponent in the key exchange part of the TLS
handshake from the client-relay shared secret, g"® by seeding a secure pseudo-random number
generator with Hs(g"*||x).

When a relay station in the upstream half of the flow receives a ClientHello message for
which it does not recognize the tag, and for which it has not seen the SYN|ACK packet for the
flow (indicating routing asymmetry), it gossips the ClientHello random nonce along with the
flow’s context information (i.e., the server IP address and p), as well as ciphersuite information,
over encrypted connections to nearby relay stations that could possibly be on the downstream
path of the flow. The number of downstream stations deployed for a specific region is likely very
small, allowing a gossip station to simply gossip to all nearby deployed stations. If a relay station
receives this information and recognizes the tag, it performs a challenge-response protocol with
the upstream station to prove that it recognized the tag and receive all further records in that flow.
We discuss this challenge-response protocol further in Section 5.2.2. It then saves the client and
server [P addresses in a table along with the client-relay shared secret ¢g"*, and waits for future
connections from the client to the same overt site. We emphasize that this gossipped message
does not need to be received by the downstream station before the overt site responds to the
ClientHello message. If it is late, it simply acts as a registration step, allowing the downstream
station to successfully use the next asymmetric connection between the client and the same overt
site.

To compute the TLS master secret for a decoy routing session, the relay station needs three
values: 1) the premaster secret, computed from the tag in the ClientHello random nonce and the
server’s public key in the ServerKeyExchange message, 2) the ClientHello random nonce, and 3)
the ServerHello random nonce. In the event that the downstream relay station receives the tag and
flow information before the overt site has sent the ServerHello message of the TLS handshake, it
can proceed to compute the TLS master secret for the current session. If the downstream station
has missed the ServerHello message by the time the gossip protocol completes, it waits for the
next connection from the client to the same overt site.

The next time a client makes a connection to the same overt site, the client computes the
new secret exponent used to construct the steganographic tag as the hash of the previous client-
relay shared secret and the IP address of the overt site: s’ = H3(¢g"*||server_ip||p) where
the first 4 bytes of the ClientHello random nonce, p, are generated from the previous shared

86

secret g"*. 3 They then place their tag, g* || (g™ || x), in the ClientHello random nonce of the
new TLS session along with the deterministically generated first 4 bytes. When a downstream
relay station receives the server handshake messages, they extract the ServerHello random nonce,
ServerKeyExchange parameters, and compute the client’s secret exponent and the ClientHello
random nonce from the saved client-relay shared secret, ¢g"*, and the server IP address.

After computing the TLS master secret for the session, the relay station attempts to decrypt
the downstream TLS Finished message. If the decryption is successful, it replaces the hash of
the Finished message, finished_hash with MAC’H4(9TS/||X) (finished_hash). When the
client receives the Finished message, they will compute the keyed MAC of the unmodified TLS
Finished message and compare the result with the received value. If they received an unmodified
Finished message, the flow was not successfully intercepted by a relay station. If they received
the keyed MAC, they know the flow has been intercepted and a decoy routing session has begun.

Asymmetric proxying

After the TLS handshake, the downstream relay station begins to proxy information between the
client and a covert site. All three symmetric systems rely on upstream data from the client in
order to establish a connection to a covert site and relay upstream data from the client to the
covert site. We note that in this stage, the amount of upstream data from the client to the covert
site is typically far less than the downstream covert data. To retrieve covert data from an upstream
relay station, the downstream relay station will perform a challenge-response protocol with the
upstream station, proving the session has been tagged for their private key and signalling that
they wish to receive TLS application data from the upstream half of the flow. If successful, the
upstream station will proceed to funnel upstream TLS records (over a point-to-point encrypted
and authenticated connection) to the downstream station, which then decrypts the TLS records
and proceeds in the usual manner.

The sending of these upstream TLS records has no time constraints; they can arrive at the
downstream station asynchronously with downstream data from the covert site or (in the case
of Slitheen) the overt site. Any delay in the receipt of this data will not affect the security or
correctness of the system, but only the latency experienced by the client in their browsing of
covert content. The downstream station will make a connection to the covert site specified by the
client and send the client’s upstream covert data through this connection. Telex and Curveball
will then deliver downstream covert data directly to the client, while Slitheen will insert it into
downstream leaf resources.

3The OUS should therefore be a browser whose TLS implementation uses random data instead of a timestamp
in that field. Our Slifox OUS, described in Chapters 3 and 4, uses the NSS implementation of TLS, which does have
this property.

87

Challenge-response protocol

We require the downstream relay station to perform a challenge-response protocol with the up-
stream gossip station in order to receive 1) the client information necessary to recognize future
tagged flows, and 2) the upstream TLS records during the proxy phase of the decoy routing ses-
sion. The reason for this requirement is to mitigate denial-of-service attacks on upstream stations
and protect the privacy of both tagged and untagged traffic that passes through each upstream re-
lay station. While the amount of additional data leakage in our gossip protocol is small (all ASes
on the path between the client and the overt site have access to the same information), this pre-
vents the usage of our decoy routing system by adversaries in expanding their ability to perform
mass surveillance on Internet metadata. While we assume that participant downstream routers
in our system can be trusted to not collude with the censor, and will safely allow users to access
censorship-resistant content, we do not rule out the scenario in which they wish to collect extra
information for surveillance purposes.

First, to prove to the upstream station that they recognize one of the gossipped ClientHello
tags, the downstream station uses the gossipped tag, context string information (i.e., the server IP
and p), and ciphersuite information (i.e., the list of client-proposed cipher suites that the decoy
routing system supports as well as valid elliptic curves if applicable) and computes all possible
client key exchange parameters for those ciphersuites. Note that in current implementations of
decoy routing systems this is at most six different sets of parameters. The downstream station
then sends hashes of these key exchange parameters to the upstream station. The upstream station
compares these hashes with the hash of the key exchange parameters in the client’s key exchange
message. If one of them matches, they then send the connection information (i.e., the client IP
address) to the downstream station so that they can recognize future tagged flows.

The downstream station must perform the above challenge-response protocol for each sub-
sequent TLS session that the client sends to the overt site in order to receive the upstream TLS
records. Because the downstream station can compute the key exchange parameters for future
sessions ahead of time, they can send multiple sets of parameter hashes to the upstream station at
once. Then, the upstream station can immediately forward upstream records as soon as the client
sends a key exchange message whose parameters hash to a matching value.

5.2.3 Resistance to RAD attacks

The placement of decoy routers at ASes is critical for providing censorship resistance to users
within censoring regions. Schuchard et al. [] were the first to acknowledge that the num-
ber of decoy routers necessary to evade censorship in the presence of a routing-capable adversary

88

is much greater than previous estimates. Since the introduction of RAD attacks, there have been
many proposals for the optimal placement of decoy routers [, , ,].
Although it is unrealistic that all ASes will be willing to deploy our system, these proposals
provide an idea for how many decoy routers will need to be deployed to provide censorship
resistance for different regions. We draw on the findings of previous work to give an estimate
on the number of heavy-weight downstream and light-weight gossip stations needed to resist
censorship for China (a highly connected routing-capable adversary).

The placement of downstream decoy routers was investigated by Nasr et al. [] in their
analysis of Waterfall. They found that it is much more difficult and expensive for adversaries
to route around downstream stations, and as a result fewer deployments were needed. Only one
deployed decoy station impacts almost a quarter of the traffic from Chinese users, while five
deployed stations impacts 78% of the routes.

It is much easier for an adversary to route around upstream decoy stations. We used the re-
sults from Houmansadr et al. [] to estimate the number of gossip stations needed. Their
results show that if decoy stations are placed at 3% of ASes (outside of China and its ring ASes),
40% of the Internet becomes unreachable for Chinese users, meaning it is not possible for China
to avoid all deployed stations without cutting off access to 40% of the Internet. This requires the
placement of roughly 880 gossip stations. Table 5.1 gives a comparison of the number of nec-
essary deployments to previous systems. We note that while we require more deployments than
both TapDance and Waterfall, our gossip stations are even more deployable than TapDance sta-
tions (which have been successfully deployed []): we require no intensive computations
in our upstream stations to check for tagged flows.

Our asymmetric solution in this section provides a more secure alternative to previous pro-
posals for the asymmetric deployment of decoy routing systems. Our methods can be easily
integrated into Waterfall, providing a more secure alternative to client registration and a method
for relaying upstream covert data in a manner that is kinder to overt sites. The tiered deployment
made possible by our approach presents a cost-effective way for hesitant ISPs to participate in
censorship resistance without the need for hardware that can perform in-line blocking or traffic
replacement.

5.2.4 Bandwidth overhead

The bandwidth overhead of the gossip protocol is small compared to the existing load of routers.
We also note that the upstream stations do not need to perform in-line blocking, drastically light-
ening the load compared to previous symmetric systems. The overhead has three parts: (1) that
induced by gossipping the ClientHello data that passes through the router to a set of known relay

89

Table 5.1: Estimates of the number of deployed downstream and upstream stations needed to
evade censorship for China, a highly connected, routing-capable adversary. We use results from
Houmansadr et al. [] to estimate a necessary 880 upstream stations to resist RAD attacks
and results from Nasr et al. [] to estimate a necessary 5 downstream stations. While
our solution requires more deployed stations than TapDance or Waterfall, it is applicable to all
previously symmetric systems and allows for better security properties than its slightly more
deployable alternatives.

Heavy-weight Light-weight

System . .
stations stations
Symmetric designs [, , 880 N/A
,]
TapDance [] 0 880
Waterfall [] 5 0
Gossip protocol + any symmetric design 5 880

stations, (2) the challenge-response protocols between the upstream and downstream stations,
and (3) that of funnelling the upstream TLS application records of proven tagged flows to the
downstream station. The gossipped data consists of the ClientHello random nonce, the server IP
address, and the list of supported ciphersuites and supported elliptic curves. Its size is dependent
on the number of ciphersuites supported by the client. Using Firefox, we measured the average
gossip data size to the Alexa top 100 sites as 66 bytes. Note that there was almost no variation
in the ciphersuites offered by the client in the version of Firefox we were using. Using traf-
fic measurements from the Center for Applied Internet Data Analysis (CAIDA) [] shown
in Table 3.1 in Section 3.3.6, we calculate the bandwidth overhead of gossipping ClientHello

messages as
gossip bytes - Average HTTPS flows/s - n

Bytes per Mb - Average Mb/s

66 - 4430n
1 —1+0.0011
125000203571 V00t

where 7 is the number of relay stations gossipped to. If, for example, we set n = 5, the number
of downstream routers sufficient to defend against a highly connected adversary such as China,
the overhead is only 1.0055x the total bandwidth through the router of the deployed relay sta-
tion. To give concrete numbers, for a router on a typical OC48 link of a large ISP that handles
approximately 2 Gb/s of traffic, the router would have to transmit an extra 11 Mb/s of gossip data.

1+

The challenge-response protocol requires the downstream station to send the upstream station
a maximum of six 32-byte hashes for each TLS session, given current implementations of decoy

90

routing systems. The upstream station responds with a 4-byte client IP address. The total amount
of data exchanged for a single-session asymmetric decoy routing session is then 196 bytes. As
the base rate of decoy routing flows is very low, this number is negligible in the calculation of
the overhead.

To calculate the bandwidth of the proxy phase of the gossip protocol, we measured the av-
erage bandwidth of upstream TLS application data to the Alexa top 100 sites. Note that this
data is only gossipped for flows that are tagged for a downstream station, which do not likely
make up the majority of traffic through a relay station. In our CAIDA data set, the proportion
of all data that is upstream data in TLS flows is 0.042. The overall bandwidth overhead is then
1+ 0.0011n + 0.0423 where f3 is the base rate of tagged TLS flows. Note that for 5 < 1072, the
overhead induced by copying upstream data is negligible, resulting in a total overhead of only a
few percent.

To compare the bandwidth cost of relaying upstream information to the downstream relay
during the proxy phase of the session to Waterfall, which has a similar requirement, our approach
requires strictly less additional traffic. Our approach sends upstream records directly, while
Waterfall requires them to be wrapped in appropriately sized HTTP GET requests. It is important
to note that while our approach requires less traffic overhead, it does require more effort from
the system to determine which bytes to forward, perform the challenge-response protocol, and
tunnel upstream traffic, though the demands we place on the upstream station are less than those
required by TapDance, which is already shown to be deployable []. Importantly, unlike
Waterfall, our approach places zero additional load on unsuspecting overt sites.

5.3 Relay station experiments

Wustrow et al. [] found the main obstacle in convincing ISPs and ASes to deploy de-
coy routing systems to be the resource requirements of existing systems in checking tags and
performing in-line blocking. By checking every TLS session for steganographic tags, the de-
ployment of decoy routing systems also has the potential to affect the quality of service for all
customers whose traffic traverses a relay station.

We performed several experiments to determine the impact a deployed decoy routing station
would have on existing traffic in a real-world scenario. Note that these experiments measure the
cost of the heavyweight downstream relay stations, of which fewer need to be deployed to defend
against routing-capable adversaries. The cost of an upstream gossip station in terms of its impact
on quality of service is non-existent as the station does not perform in-line blocking of flows.

91

Our first set of tests aims to measure the effect tag checking would have on the quality of
service for both TLS and non-TLS traffic of regular customers. The Slitheen tagging procedure is
the most suitable for these measurements as a worst-case scenario for all proposed decoy routing
systems, as the Slitheen modified TLS handshake requires the most effort from a deployed relay
station.

For our tests, we used specialized (but off-the shelf) hardware capable of performing in-line
blocking and efficient deep-packet inspection. Our reasons for doing so were that 1) only Tap-
Dance does not require in-line blocking, and this feature also introduces several vulnerabilities
that an active attacker can exploit to easily differentiate decoy routing sessions, and 2) by show-
ing the capabilities of existing hardware to efficiently perform decoy routing tasks we can target
existing users of this hardware as the first to deploy a decoy routing system.

The relay station itself consists of two parts: a Sandvine Policy Traffic Switch (PTS) 22600
capable of performing deep-packet inspection and flow diversion, and a relay station server with
two 10 Gb/s connections to the PTS. If a tagged flow is detected by the PTS, it is diverted to the
relay station server. The relay station server and client machine each used 8 cores and 2 GB of
RAM. The PTS is responsible for routing all traffic and checking the tags of TLS flows. If a flow
is tagged for the relay station’s public key, the PTS then diverts the flow through the relay station
server, which performs the rest of the tagging procedure during the TLS handshake and handles
the proxy phase of the decoy routing session. We provide an overview of our experimental setup
in Figure 5.3.

As in Chapter 3, we rain a CAIDA-representative distribution of traffic through the relay
station to simulate realistic network conditions.

5.3.1 Impact on quality of service

Deployed relay stations must check every incoming TLS ClientHello random nonce for a steg-
anographic tag. This requires a public key operation to compute the client-relay shared secret
from the first 21 bytes of the nonce, and then a hash of the shared secret with a context string.
This hash is then compared to the last 7 bytes of the 28-byte random nonce. These operations
take time, and we sought to measure the latency they add to TLS flows.

To do so, we made 1000 sequential, untagged TLS handshakes to the Alexa top 1000 TLS
sites and measured the time between when the client sent the ClientHello message to the time
it took for the client to receive the TCP acknowledgement of the message. We tested two con-
ditions: one where the PTS checked ClientHello messages for tags, and one in which the PTS
did not check for tags. For each of these tests, we ran a CAIDA-representative amount of back-
ground traffic through the relay station, as described above. We present the results in Figure 5.4.

92

CAIDA ¢

ients CAIDA servers

Sandvine
DPI box

AN

L

decoy routing

. Internet
client

relay station
server

AN

Figure 5.3: The network topology of our experiments. Machines designated as CAIDA clients
and CAIDA servers were dedicated to sending background traffic through the DPI, represen-
tative of traffic sent through an OC48 link of a large ISP according to statistics gathered from
CAIDA []. [Repeated from Figure 3.8 for convenience.]

100_ - = s
/’
/
- /
0.75- ’
/
0 / Type
8 0.50 - I’ 4 = Not Checking Tags
i Checking Tags
0254 |
!
!
0.00 +=——*

0 10 20 30 40 50
ClientHello TCP RTT (ms)

Figure 5.4: The impact of Slitheen tag checking on the latency of TLS traffic. We give cumulative
distribution functions comparing the TCP round trip time (RTT) for TLS ClientHello packets
with tag checking on and off.

94

1.00 - .
P
Pd
'e
!
0.75- -,
’
= Type
LL
0 0.50- / — Not Checking Tags
{ Checking Tags
{
0.25- r
/
/
0.00 ===

0 5 10 15 20 25
Average TCP RTT (ms)

Figure 5.5: Cumulative distribution functions comparing the average TCP round trip time (RTT)
for non-TLS flows with tag checking on and off.

Although deploying a relay station has an impact on the latency of ClientHello messages, the
average additional latency is 7 ms, which is very low and falls within the standard deviation of
each condition (10 ms).

In addition to measuring the impact a deployed relay station has on the quality of service for
TLS flows, we also measured the impact it has on non-TLS flows and whether our equipment
and software introduced any additional latency by performing deep-packet inspection to search
for ClientHello messages. We performed a similar test as above, this time making 1000 HTTP
connections to remote sites for each condition. For each connection, we calculated the average
RTT of all TCP packets in the flow. The results are given as CDFs in Figure 5.5. The additional
latency of deploying a relay station was 0.4 ms, which is very low, and falls within a standard
deviation of each condition (10 ms). We note that at this time, the Slitheen tag checking and
relay station code has not been optimized for quality of service. With further improvements, the
results in this section for both TLS and non-TLS flows will likely show an even lower impact on
the customers of participant ISPs.

95

Our results show that while the deployment of a full downstream relay station adds additional
latency to flows due to checking for tags in ClientHello random nonces, the latency introduced
is quite small.

5.4 Security analysis and improvements

Our proposal to add asymmetry to previously symmetric decoy routing systems has two main
advantages: it has better security properties than previously proposed asymmetric systems, and
it provides a path for tiered deployment, creating a less expensive defence against routing-capable
adversaries.

TapDance remains the only system capable of performing decoy routing without requiring
a relay station to block or modify traffic. However, this feature comes at the cost of security.
We believe a better route to deployment is by providing ISPs and ASes with experimental ev-
idence of the impact a deployed relay station would have on customer traffic using existing
hardware capable of performing tag checks efficiently and blocking or modifying tagged flows.
By targeting ASes that already own this hardware or showing them a clear path to deployment,
we are providing more evidence that decoy routing is an attainable option and moving towards
real-world deployment. Furthermore, our asymmetric solution does not require in-line blocking
for upstream relays, enabling more cautious potential participants to provide a stronger defence
against RAD attacks.

5.4.1 Security analysis of Slitheen

In addition to successfully disguising traffic patterns, Slitheen also defends against previously
proposed attacks active attacks on decoy routing systems [, ,]. These
attacks consider two different types of adversaries: a network adversary capable of both moni-
toring and modifying traffic by dropping, injecting, or changing packets inside their area of in-
fluence, and a routing-capable adversary, as defined by Schuchard et al. [] who is able
to not only change traffic, but also make routing decisions on traffic that leaves their network.

The goal of the adversary is ultimately to identify a decoy routing session. An adversary
may also try to identify the censored content that the client is accessing through the decoy rout-
ing session. We do not consider attacks that allow the adversarial censor to perform unrealistic
computations or utilize unrealistic amounts of resources; for example, we assume that the adver-
sary is unable to distinguish a tagged ClientHello message from a truly random nonce, as doing
so would violate a cryptographic assumption. Similarly, we assume that the adversary may not

96

compromise the TLS session between the client and the overt site by brute-forcing the overt site’s
private key, or performing a TLS downgrade attack. Furthermore, deployed relay stations and
overt sites are assumed to be geographically outside the censor’s sphere of influence.

Network Attacks

An active adversary is capable of modifying, injecting, or dropping traffic in addition to passive
monitoring. The following attacks are known active attacks against previous decoy routing sys-
tems.

Tag Replay Attack. Our system inherits protection against a tag or handshake replay attack
from the Telex handshake procedure. If an adversary attempts to replay a tag, they will not be
able to successfully construct the TLS Finished message without knowledge of the shared secret,
resulting in a connection terminated by the client and overt destination.

State-Controlled Root Certificates. In deployments where censors are actively performing
man-in-the-middle attacks on TLS traffic by mandating the installation of a state-controlled root
certificate, the resultant flows will not properly proceed through the tagging procedure and will
pass through the station unaltered. While this performs a denial of service attack on Slitheen,
it does not reveal a client’s usage of the system unless they include X-Slitheen headers in their
upstream requests. To alert the client of the fact that their decoy routing session has not been
safely established, we make a slight modification to the TLS handshake in which the Slitheen
station modifies the Finished message hash by replacing it with

MAC’H4(grS lIx) (Finished) ;

a MAC of the original Finished message. The MAC key is derived from the client-relay shared
secret g"* and contextual information about the appropriated session Y, as described in Sec-
tion 3.3.1. This modification occurs after the station has verified that the Finished messages are
correct. In the event that the Finished message from the server is not correct, the relay station
will forward the unmodified, incorrect Finished message to the client in order to allow the client’s
TLS implementation to sever the TLS session as it normally would.

When the client receives the Finished message, they will verify it using the additional seeded
input to determine whether the decoy session has been established. If it has, the client proceeds
to include X-Slitheen headers with upstream data. If it has not, the client will verify the Finished
message the traditional way and continue with a regular (non-decoy) fetch of the page. A man-
in-the-middle capable of viewing the plaintext will therefore detect no unusual behaviour from

97

the client. This modification also serves to notify the client of a failure in the tagging procedure
due to route asymmetry.

Server Collusion. In previous systems, the censor could collude with or set up an overt destina-
tion server to entrap clients that use that server for decoy routing purposes. This attack is outside
of our threat model, but we still consider the power such an attacker might have. In Slitheen, the
client’s behaviour from the overt site’s perspective will be identical to regular use with the ex-
ception of an X-Ignore header containing garbage bytes. If the existence of the X-Ignore header
is a concern, the relay station can instead replace it with a common but mostly unused header.
However, a censor that monitors information leaving the overt destination can compare cipher-
texts to detect content replacement. In fact, no existing decoy routing system can completely
defend against an adversary that has a complete view of packets entering and leaving both the
client and the overt site. Our system increases the work of the adversary from previous systems
by requiring the colluding parties to compare ciphertexts as opposed to metadata.

Routing Attacks

Routing-capable attackers were introduced by Schuchard et al. [] and describe censors
with the ability to route packets through either a tainted path (i.e., one on which a Slitheen station
resides between the client and the overt destination), or a clean path (i.e., a path with no Slitheen
station between the client and the overt site). While a censor may not always be able to find a
clean path to the overt destination, our system defends against an adversary that does have this
ability. We also note that, as in Telex, the location of relay stations can be public knowledge, and
therefore routing-capable attacks to determine whether a network path contains a relay station
(as opposed to whether a particular flow is using a relay station) do not affect the security of our
system.

TCP Replay Attack. In a TCP replay attack, the censor attempts to identify the use of decoy
routing by testing whether the client has a TCP connection with the overt site. The censor
can replay a TCP packet sent by the client on a clean path. In TapDance and first-generation
decoy routing systems, the connection between the client and the overt site has been severed
or abandoned and the overt site will issue a TCP RST packet or a stale TCP sequence number,
signaling to the censor the usage of decoy routing. Note that in TapDance, the adversary does
not need to find a clean path, but can inject a TCP packet into the stream. Since the TapDance
station does not perform in-line blocking, the packet will be forwarded to the overt destination
despite the fact that it traverses a tainted path.

98

Our system maintains a TCP connection to the overt destination, providing a defence against
this type of replay attack. Since our replacements match the sizes of requests and responses
exactly, the TCP state between the client and the overt site as seen by the censor is the true TCP
state. Furthermore, Slitheen eliminates the ability of the censor to identify its use through TCP/IP
protocol fingerprinting. The station modifies only application-level data, which is unidentifiable
by the censor as ciphertext. We do not need to mimic the server’s TCP options, or IP TLS values
as these are supplied by the overt site itself.

Crazy Ivan. The Crazy Ivan attack involves a censor with the ability to control the path a client’s
packets take to their destination to detect the usage of, or deny availability to, decoy routing. The
censor allows a client to connect to the overt site through a tainted path, and waits until the TLS
session has been established to redirect the flow down a clean path.

In previous systems, this attack gives the censor overwhelming evidence of decoy routing.
Systems such as Telex, Cirripede, Curveball, and TapDance that sever or abandon the connection
between the client and the overt destination will be unable to block packets sent down the new
clean path, resulting in TCP RST packets from the overt site. By keeping the connection between
the client and the overt site active, both Slitheen and Rebound offer a defence against this type
of detection attack. Packets sent down a clean path will be received by the overt destination in
the usual manner, prompting the server to send the requested resource (in Slitheen) or an HTTP
error message with the invalid request (in Rebound). The TCP sequence and acknowledgement
numbers will match those that the censor expects. The censor, unable to decrypt these packets,
will see no difference in the traffic. In Slitheen, as long as the client is compressing only the
unnecessary headers of HTTP GET requests in the upstream half of the flow, the server will re-
spond as usual and produce no identifying differences in behaviour.

Forced Clean Paths. An adversary with the ability to chose between clean and tainted paths
may route around a Slitheen station altogether. This would prevent the client from ever coming
into contact with a participating ISP. Although the consequences of this attack would result in
a complete loss of availability to the decoy system, Houmansadr et al. [] show that this
attack is too expensive for realistic censors, and very unlikely. We also note that this attack is
only a denial of service, and will not leak information about whether the client is using or has
used Slitheen.

99

5.4.2 Security of the gossip protocol

While the gossip protocol does not leak any additional information of tagged or untagged flows to
an adversary, and it is encrypted between the upstream and downstream stations, it does increase
the number of routers that see traffic between the client and the overt site, possibly increasing the
ability of a passive adversary to perform traffic analysis or surveillance attacks. However, gos-
sipped messages do not significantly increase a censor’s ability to detect the usage of censorship
circumvention tools or attribute them to individual users. In this section, we discuss the impact
of the gossip protocol on the security and privacy of both users of Slitheen and non-users whose
upstream handshake messages are gossipped to other relay stations.

Passive adversary: The gossip protocol requires an upstream station to send the ClientHello
random nonces of all seemingly untagged ClientHello messages, along with the upstream TLS
application data to the downstream relay station. Note that the gossipping of ClientHello infor-
mation is done for all TLS handshakes that the upstream station does not recognize as tagged
and includes both untagged and potentially tagged flows; therefore the gossip messages do not
expose censorship resistance traffic.

It is worth noting that the gossipping of application data to the downstream relay station
only happens for tagged flows. A censor that can see traffic between relay stations could then
perform a timing analysis attack to connect outgoing connections to gossipped messages. This
is outside our threat model as we assume relay stations exist outside of the censor’s area of
influence and therefore probably do not cross through a censor’s control. It is also practically
difficult to correlate the TLS application records of any one flow to the encrypted traffic sent
between two relay stations. Approximately 37% of flows are HTTPS [], meaning that a
censor observing traffic on even a small router would have to decide which of the thousands
(1/8) of TLS sessions that data corresponded to.

Malicious relays: Our challenge-response protocol in Section 5.2.2 prevents a malicious
downstream relay from lying about recognizing tags in order to induce extra load on the gossip
station in a denial-of-service attack, or to increase their surveillance of flows outside of their
usual field of view. However, precautions should be taken to prevent a censor from pretending
to be an upstream station in order to use downstream stations as oracles to identify tagged flows.
Downstream stations should maintain a list of approved and trusted upstream stations, as well as
their public key information. This information can be updated by relay station operators as new
upstream stations are deployed in much the same way as the client software maintains a list of
public keys for trusted downstream stations.

100

5.5 Comparison to existing systems

We gave a general outline of the challenges different deployment methods face with respect to
our general recipe for the deployment of censorship resistance systems in Section 5.1. In this
section we look at the desired properties of censorship resistance deployments in more detail and
compare our enhanced version of E2M proxying to existing systems.

The main challenge faced by E2M decoy routing systems was Step 2 of our recipe: reducing
the impact of and barriers to deployment. This is exacerbated by the apparent trade-off between
enhanced deployability at routers in realistic network conditions, and the ability of the system to
resist detection and blocking (which are covered in Steps 1 and 3 of our recipe). Recently pro-
posed asymmetric systems that boast less of an impact on participating ASes are easily subjected
to either active or passive attacks that results in an identification of users and the blockage of
censorship-resistant connections.

Symmetric decoy routing systems that require in-line blocking at the deployed relay station
offer better security properties and satisfy Steps 1 and 3 of our recipe. The solution we proposed
in the previous sections can be applied to all previously symmetric systems to recognize and use
asymmetric flows for the delivery of covert content in way that maintains the security properties
of symmetric systems. Furthermore, requiring in-line blocking only on the downstream half of
the flow reduces the impact and barriers of adoption for volunteer ASes.

We provide an overview of the deployability features and security properties of existing E2M
decoy routing systems in Table 5.2. The previously symmetric systems Telex, Curveball, and
Slitheen are analyzed both in their original form and along with our improvements to support
routing asymmetry.

While we have improved the deployability of E2M decoy routing systems, E2M proxying
still carries a high deployment cost when compared to the other deployment options we have
presented. Table 5.3 shows our estimation of the relative blockage resistance, deployability, and
user security properties of censorship resistance systems, and therefore their adherence to our
deployment recipe. We give relative values for the blockage resistance, deployability, and user
protections of censorship resistance systems grouped by their deployment strategy. We consider
each of the systems discussed at the beginning of the chapter, with all symmetric decoy routing
systems grouped together. In this table, Slitheen includes the system we presented in previous
chapters with the enhancements discussed in this one. Each of the deployment properties is as-
signed relatively to be very low, low, medium, high, or very high. The blockage resistance values
for many systems are unknown, due to a lack of deployment and therefore data on blockage
attempts.

Systems that are deployed through guerilla proxies all exhibit high deployability, but lower

101

UONBIISISAI JUB)SISAI-SO(]
JURISISAI-QV Y

Sunundiofuy 911sqam Isurese spuajo(J
SISATeue Aoudje| Jsurede spuajo(q
syoene Aejdar gD, Isurede spuajoq
JLOWIWAS Y

3uD{o0[q dull-uT ON

«000000
*«00000O
«000000
ONON N N NON /
ON N N RONON /
L NONORON N J
N N NORON N
ONON NORONON /
ON N NORONON /
N N NORON N
ONON NORONON /

© &z@wwz&»wm@/&/%o%& Q%@v«éOv%W»bﬂ&b/oﬂ%@

Y ¥ VAN Cg
R Nt P

&/M«V wf@«/ /n»wa/ VOWI

SO U Gt T Y

‘syoene (VY Memyl o1 renuajod ayy sapraoad AiiqeAordop o1 Juawaaoadwr sy, ("B S[0I0 PI[[Y-JIey
) YIIM SUOIIR]S WRANSUMOP Y} A[UO UI SURYO0[q QUI[-UI JOJ JUSWAIIMNDAI Y} AJOUIP IAY) "SUONE]S WRANSUMOP
1YS1omAABIY [BUISLIO Y} 0) UONIPPR Ul SUYO0[q UI[-UI OU Im suonels weansdn Jy3romiysiy jo juswiordop oyl
so[qeua sanol ommawwAse joddns 03 ugrsop pasodoid o O opoard Aidwid ue Ym payaew are A11adoad 10 arnyeoy
B YO®[1By} SWISAS @ 910 PI[Y ' YIm J[qe) Y} JO 1JI[oY) U0 paisi| axmedy Jo Auxadoid oyp sey walshs e jey)
IBOIPUL A\ “SWAISAS Funsixa Jo santadoid Aumdas pue saxmed) Ajjiqeiordop oy Jo uosuredwod y :7°¢ 9[qeL

102

Table 5.3: A comparison of different deployment techniques. We look at the blockage resis-
tance, deployability, and user protections of censorship resistance systems, grouped by their de-
ployment strategy. Values for each of these properties are assigned relatively to be very low, low,
medium, high, or very high. Unknown values due to a lack of deployment or data are represented
with a ?. Guerilla proxies all exhibit high deployability, but lower user protections. The “too big
to block™ strategy has high user protections, but has been shown to be prone to blockages. E2ZM
proxying is very difficult to deploy, but provides high user protections. The blockage resistance
of E2M proxying is still unknown, but has the potential to be high given widespread deployment.

Strategy System Blockage resistance Deployability User protections
Tor bridges high high low
. . Flash proxy ? high medium
Guerilla proxies Snowflake ? very high medium
MassBrowser ? very high medium
Too big to block meek medium medium very high
Symmetric DR ? low very high
E2M proxying TapDance low medium medium
Slitheen ? medium very high

user protections. The “too big to block™ strategy has high user protections, but has been shown
to be prone to blockages. E2M proxying is very difficult to deploy, but provides high user
protections. The blockage resistance of E2M proxying is still unknown, but has the potential to
be high given widespread deployment.

5.6 Conclusion

In this chapter, we provided a recipe for the deployment of censorship resistance systems. This
recipe describes three main properties that all censorship resistance deployments should strive
for: 1) resistance to blocking despite a censor’s knowledge of the system and deployment strat-
egy, 2) a low barrier to participation, and 3) protections against the discovery of users, even in
the event that a censor is able to find and block deployment points.

E2M proxying provides a promising solution to Internet censorship, contingent on the par-
ticipation of ASes. Its strong security properties, and compatability with protocol appropriation
techniques have the potential to end the cat-and-mouse game in favour of the resistor. E2M

103

systems by virtue of their design provide protections to individual users as their connections to
the system appear identical to connections to whitelisted IP addresses. However, before E2M
proxying can be deployed and used by people in censored regions of the world, we must first
address the obstacles to deployment that have prevented the owners of network infrastructure
from participating in existing systems.

We proposed a new approach to routing asymmetry that provides better security than previous
asymmetric systems and a path to tiered deployment that allows for several lightweight, limited
systems to surround a powerful censor, limiting the censor’s ability to perform routing-based
attacks. We also investigated the use of existing hardware in the implementation of decoy routing
systems. We experimentally tested the impact decoy router deployment would have on the quality
of service for traffic flowing through a participant router and more carefully examine the latency
of decoy routing sessions processed by the relay station. Finally, we identified a possible security
vulnerability in existing systems and proposed a cryptographic solution that doubles as a means
to more reliably deliver covert content to the user.

This work presents the next steps towards the deployment of decoy routing systems, however
there is still much work to be done. With more efficient implementations of the relay station,
the possible impact of deployment may be even less than what we measured with our limited
improvements. We look at our results as a positive indication that decoy routing may prove to be
practical in the future and may convince the owners of Internet routers to consider participating
in censorship circumvention.

104

Chapter 6

Conclusion

Our recipes for resistance cover three main aspects of the development of censorship circumven-
tion systems:

1. how to hide the traffic patterns of censorship circumvention tools such that the ever more
powerful censors of tomorrow will be unable to identify their use amidst traffic that com-
plies with their censorship policies,

2. how to create high-bandwidth and low-latency channels for covert data that are comparable
to the performance of existing circumvention systems while providing stronger security
properties, and

3. how to deploy censorship circumvention tools on the infrastructure available to us.

Despite our less-than-ideal current situation with the state of Internet censorship and increasingly
bold Internet blockages by state-level censors, these recipes for usable and invisible censorship-
resistant communication provide a way to hack self-determination and empowerment into a sys-
tem that is increasingly manipulated by state and corporate entities.

In Chapter 3, by removing all visible traffic patterns from censorship resistance systems
through the careful appropriation of popular protocols, we provide a way to end the cat-and-
mouse relationship between censors and the designers of censorship resistance systems. No
matter how much more powerful censors become and how much better their systems become
at analyzing network traffic patterns, our tools can be indistinguishable from the regular use of
these protocols.

105

In Chapter 4, we discuss how to simulate compliance and make secure censorship circum-
vention systems usable by increasing the bandwidth of tunnelled censorship-resistant traffic. Our
high-bandwidth methods allows users to gain access to the content they want while limiting the
amount of censorship resistance traffic needed and thereby protecting users from targeted attacks.

In Chapter 5, we provide a recipe for the successful deployment of censorship resistance
systems that results in three desirable properties for their deployment: resistance to blocking,
low barriers for participation, and security protections for individual users. We describe the
trade-offs between different deployment strategies and how to increase the deployability of E2M
deployments of Slitheen.

6.1 Defence of the thesis statement

In our thesis statement, we pointed to a trend in which many censorship circumvention systems
cease to be useful as the traffic analysis and detection abilities of censors grow. This trend is
backed up by a history of blocked Internet freedom tools and recent events that have eliminated
the usefulness of popular circumvention strategies.

We stated that, while many systems fall victim to the cat-and-mouse game between censors
and censorship resistors, it is possible to design and deploy systems that “stand the test of time...
despite technological improvements that enhance the traffic analysis abilities of the censor". Our
first recipe provides a generalized method that may be applied to a variety of different proto-
cols, for making censorship resistance traffic identical to non-resistance traffic. Systems built
following this recipe stand the test of time against censors that employ traffic analysis techniques
by making censorship resistance traffic indistinguishable from non-resistance traffic to anyone
without the secret key, which is held only by the trusted man-in-the-middle outside of the cen-
sor’s area of influence. We enumerate all traffic pattern features visible to a censor: plaintext
protocol messages and information, and metadata such as packet sizes, latency, and linkable
Internet connections from a single user. By replacing only encrypted leaf data with encrypted
censorship-resistant traffic on a packet-by-packet basis and simulating multiple connections by
the user, we hide all features other than latency, which we experimentally determine to be statisti-
cally impossible for a censor to detect. No improvements in machine learning, traffic analysis, or
website fingerprinting techniques will allow a censor to identify our traffic among non-resistance
connections.

In our second recipe, we show how to make these systems usable and defend against the
identification of individual users in specific implementations of our recipe and across multiple
appropriated sessions by maximizing the goodput of censorship-resistant traffic. We accompany

106

these recipes with a scientific analysis of Slitheen, our proposed decoy routing system for appro-
priating secure web browsing traffic, and demonstrate that the implementation and use of such a
system is possible. In our evaluation, we report measured bandwidths comparable to and exceed-
ing those of existing systems. In our recipes and discussions of Slitheen, we have demonstrated
that it is possible to design secure censorship resistance systems that will continue to remain
useful despite advances in censorship infrastructure.

The remaining part of our thesis statement, that these systems remain undetectable “despite
open knowledge of their operation and use” is addressed in all three recipes. Particularly, in our
third recipe, we discuss the deployment of these systems and compare three different deployment
strategies. These deployment strategies are designed to be successful despite open knowledge of
the details of their deployment and the ability of censors to discover deployment points through
reconnaissance. On a traffic analysis level, our protocol appropriation methods in our first and
second recipes are also secure in the event that a censor has complete knowledge of how the
system works. To accompany our third recipe, we present the results of our work to lower
the barriers of deployment for one such strategy, end-to-middle proxying, and evaluate these
improvements with our implementation of Slitheen. In support of our thesis statement this shows
that we can both “design and deploy” strong and effective censorship resistance systems.

Through our generalizable recipes and our in-depth analysis and discussion of Slitheen, we
have provided clear steps and evidence for the existence of censorship circumvention systems
that will continue to remain secure and unidentifiable, even in the face of censors with superior
traffic analysis and reconnaissance abilities to those seen today. We have removed the assump-
tions of limitations on censors’ technological abilities and instead explore solutions that are by
design indistinguishable from regular, non-circumvention traffic.

6.2 Future work

There are many opportunities to improve upon our contributions, in both the wider application
of our recipes and in further improvements to our proposed system, Slitheen. As stated in Chap-
ter 3, our method for protocol appropriation and the replacement of leaf data can be applied to
other protocols as well as HTTPS. In particular, VoIP is a protocol that has long suffered from
traffic analysis attacks yet provides a lot of potential in terms of a high-bandwidth, low-latency
carrier for censorship resistance traffic. Our method would eliminate traffic analysis concerns
and maximize the amount of goodput possible by the replacement of real video and audio data.

Although we have presented Slitheen as a decoy routing system, recent events surrounding
the withdrawal of support for domain fronting suggest that an E2M deployment may suffer a

107

similar fate. Slitheen and other decoy routing systems can also be deployed in an E2E manner
by performing the man-in-the-middle at the participating endpoint. The nature of Slitheen in ad-
hering perfectly to the decoy site’s traffic patterns make it an ideal candidate for a Tor pluggable
transport and disguising the identities of Tor bridges, prolonging their lifespans and usefulness
to the resistance community.

Finally, Slitheen itself can be made much more efficient and secure by further work on the
relay station and the OUS. At the moment, the relay station state machine misses some resources
due to WebM element headers being split across two packets. If we keep a buffer of previously
seen data at the relay station, we can parse the header once the new packet is received rather than
forfeit the flow. At the client side, we can automate the OUS to realistically simulate multiple web
browsing sessions. For covert traffic that requires a lot of back-and-forth communication between
the covert site and the user, we can access a combination of video sites that are good for high-
bandwidth covert data and image sites that are good for multiple back-and-forth connections.

Our hope is that these recipes will lead to the design, development, and deployment of future
systems that will not fall victim to advances in network analysis tools that have benefited censors
and made many censorship circumvention systems in the last 20 years obsolete. Our hope is
that eventually the detection of censorship resistance systems will become so difficult and their
usage so popular that censors become useless and Internet users can begin to regain their ability
to communicate freely and openly on the Internet.

Faruey

‘Fmemﬂ

108

References

[AAH13]

[AFK16]

[And12]

[Anol4]

[AW14]

[AWR14]

[BG16]

Simurgh Aryan, Homa Aryan, and J. Alex Halderman. Internet censorship in
Iran: A first look. In 3rd USENIX Workshop on Free and Open Communications
on the Internet (FOCI), 2013.

Qurat-Ul-Ann Danyal Akbar, Marcel Flores, and Aleksandar Kuzmanovic. DNS-
sly: Avoiding censorship through network complexity. In 6th USENIX Workshop
on Free and Open Communications on the Internet (FOCI 16). USENIX Associ-
ation, 2016.

Daniel Anderson. Splinternet behind the great firewall of china. ACM Queue,
10.11:40, 2012.

Anonymous. Towards a comprehensive picture of the great firewall’s DNS cen-
sorship. In 4th USENIX Workshop on Free and Open Communications on the
Internet (FOCI 14). USENIX Association, 2014.

Yawning Angel and Philipp Winter. obfs4 (the obfourscator). https://gitweb.
torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt, May 2014.
[Online; accessed 6-June-2018].

Collin Anderson, Philipp Winter, and Roya. Global network interference detec-
tion over the RIPE Atlas network. In 4th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 14). USENIX Association, 2014.

Cecylia Bocovich and Ian Goldberg. Slitheen: Perfectly imitated decoy rout-
ing through traffic replacement. In Proceedings of the 2016 ACM Conference
on Computer and Communications Security, CCS 16, pages 1702—-1714. ACM,
2016.

109

https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt

[BG18]

[Bow17]

[BSR17]

[Cenl6]

[Chil8]

[CKSR12]

[CMWO06]

[DCS15]

[Dinl2]

[DMS04]

[dP17]

Cecylia Bocovich and Ian Goldberg. Slitheen: Perfectly imitated decoy routing
through traffic replacement. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2018(3), July 2018.

Owen Bowcott. Turks detained for using encrypted app ‘had hu-
man rights breached’. https://www.theguardian.com/world/2017/sep/11/
turks-detained-encrypted-bylock-messaging-app-human-rights-breached, 2017.
[Online; accessed 6-June-2018].

Diogo Barradas, Nuno Santos, and Luis Rodrigues. DeltaShaper: Enabling un-
observable censorship-resistant TCP tunneling over videoconferencing streams.
Proceedings on Privacy Enhancing Technologies (PoPETs), 2017(4):1-18, 2017.

Center for Applied Internet Data Analysis. The CAIDA UCSD Statistical infor-
mation for the CAIDA Anonymized Internet Traces. http://www.caida.org/data/
passive/passive_trace_statistics.xml, 2016. Accessed 22-February-2017.

Richard Chirgwin. Google, AWS IPs blocked by Russia in Telegram crack-
down. https://www.theregister.co.uk/2018/04/17/russia_blocks_google_aws_ip_
addresses_to_get_telegram/, April 2018. [Online; accessed 6-June-2018].

Jacopo Cesareo, Josh Karlin, Michael Schapira, and Jennifer Rexford. Optimizing
the placement of implicit proxies. Technical report, Princeton, NJ, USA, 2012.

Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. Ignoring the
Great Firewall of China. In Sixth Workshop on Privacy Enhancing Technologies
(PET 2006), page 20-35. Springer, June 2006.

Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. Marionette: A pro-
grammable network-traffic obfuscation system. In 24th USENIX Security Sym-
posium, pages 367-382, 2015.

Roger Dingledine. Obfsproxy: The next step in the censorship arms
race. https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race,
February 2012. [Online; accessed 6-June-2018].

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In /3th USENIX Security Symposium, pages 303320,
2004.

Nicholas de Pencier. Black code. Mongrel Media, 2017.

110

https://www.theguardian.com/world/2017/sep/11/turks-detained-encrypted-bylock-messaging-app-human-rights-breached
https://www.theguardian.com/world/2017/sep/11/turks-detained-encrypted-bylock-messaging-app-human-rights-breached
http://www.caida.org/data/passive/passive_trace_statistics.xml
http://www.caida.org/data/passive/passive_trace_statistics.xml
https://www.theregister.co.uk/2018/04/17/russia_blocks_google_aws_ip_addresses_to_get_telegram/
https://www.theregister.co.uk/2018/04/17/russia_blocks_google_aws_ip_addresses_to_get_telegram/
https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race

[DROS]

[EDHT16]

[EFW*15]

[EJIMT15]

[EKAC14]

[FDS*17]

[FGF99]

[FHE*12]

[Fif17]

[Fif18]

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, August 2008.

Tariq Elahi, John A Doucette, Hadi Hosseini, Steven J Murdoch, and Ian Gold-
berg. A framework for the game-theoretic analysis of censorship resistance. Pro-
ceedings on Privacy Enhancing Technologies, 2016(4):83-101, 2016.

Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and
Vern Paxson. Examining how the great firewall discovers hidden circumvention

servers. In Proceedings of the 2015 Internet Measurement Conference, IMC ’15,
pages 445-458. ACM, 2015.

D. Ellard, C. Jones, V. Manfredi, W.T. Strayer, B. Thapa, M. Van Welie, and
A. Jackson. Rebound: Decoy routing on asymmetric routes via error messages.
In Local Computer Networks (LCN), 2015 IEEE 40th Conference on, pages 91—
99, Oct 2015.

Roya Ensafi, Jeffrey Knockel, Geoffrey Alexander, and Jedidiah R. Crandall. De-
tecting intentional packet drops on the Internet via TCP/IP side channels. In
Passive and Active Measurement, pages 109—118. Springer, 2014.

Sergey Frolov, Fred Douglas, Will Scott, Allison McDonald, Benjamin Vander-
Sloot, Rod Hynes, Adam Kruger, Michalis Kallitsis, David G. Robinson, Steve
Schultze, Nikita Borisov, Alex Halderman, and Eric Wustrow. An ISP-scale de-
ployment of TapDance. In 7th USENIX Workshop on Free and Open Communi-
cations on the Internet (FOCI 17). USENIX Association, 2017.

R. Fielding, J. Gettys, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1. RFC 2616, June 1999.

David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Dan Boneh,
Roger Dingledine, and Phil Porras. Evading censorship with browser-based prox-

ies. In Proceedings of the 12th International Conference on Privacy Enhancing
Technologies, PETS’ 12, pages 239-258. Springer-Verlag, 2012.

David Fifield. Threat modeling and circumvention of Internet censorship. PhD
thesis, University of California, Berkeley, 2017.

David Fifield. Probing obfs4 servers based on timing and byte count thresh-
olds. https://groups.google.com/forum/#!topic/traffic-obf/GUrPkhqliOk, May
2018. [Online; accessed 7 August 2018].

111

https://groups.google.com/forum/#!topic/traffic-obf/GUrPkhqli0k

[FLH*15]

[GSH13]

[Hanl1]

[HBS13]

[HFKHO6]

[HNCB11]

[HR18]

[HRBS13]

[HWS14]

[HZCB17]

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson.
Blocking-resistant communication through domain fronting. Proceedings on Pri-
vacy Enhancing Technologies, 2015(2):46-64, 2015.

John Geddes, Max Schuchard, and Nicholas Hopper. Cover your ACKs: Pitfalls
of covert channel censorship circumvention. In Proceedings of the 2013 ACM

Conference on Computer and Communications Security, CCS 13, pages 361-
372. ACM, 2013.

Serene Han. Snowflake technical overview. https://keroserene.net/snowflake/
technical, January 2011. [Online; accessed 8-June-2018].

Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The parrot is dead:
Observing unobservable network communications. In 2013 IEEE Symposium on
Security and Privacy, pages 65-79, May 2013.

Yihua He, Michalis Faloutsos, Srikanth Krishnamurthy, and Bradley Huffaker.
On routing asymmetry in the Internet. In Global Telecommunications Conference,
2005. GLOBECOM’05. IEEE, volume 2, pages 6—pp. IEEE, 2006.

Amir Houmansadr, Giang T.K. Nguyen, Matthew Caesar, and Nikita Borisov.
Cirripede: Circumvention infrastructure using router redirection with plausible
deniability. In Proceedings of the 2011 ACM Conference on Computer and Com-
munications Security, CCS *11, pages 187-200, 2011.

C. Huitema and E. Rescorla. SNI encryption in TLS through tunneling. Internet-
Draft. https://tools.ietf.org/html/draft-ietf-tls-sni-encryption-02, March 2018.

Amir Houmansadr, Thomas J Riedl, Nikita Borisov, and Andrew C Singer. I want
my voice to be heard: IP over Voice-over-IP for unobservable censorship circum-
vention. In 2013 Network and Distributed System Security (NDSS) Symposium,
2013.

Amir Houmansadr, Edmund L. Wong, and Vitaly Shmatikov. No direction home:
The true cost of routing around decoys. In 2014 Network and Distributed System
Security (NDSS) Symposium, 2014.

A. Houmansadr, W. Zhou, M. Caesar, and N. Borisov. SWEET: Serving the
web by exploiting email tunnels. [EEE/ACM Transactions on Networking,
25(3):1517-1527, June 2017.

112

https://keroserene.net/snowflake/technical
https://keroserene.net/snowflake/technical
https://tools.ietf.org/html/draft-ietf-tls-sni-encryption-02

[JDC10]

[Jou06]
[KEJ*11]

[Ker83]

[KTS*16]

[Lew09]

[LSH14]

[Mac18]

[Marl6]

[Marl8]

Wolfgang John, Maurizio Dusi, and K. C. Claffy. Estimating routing symmetry
on single links by passive flow measurements. In Proceedings of the 6th Inter-

national Wireless Communications and Mobile Computing Conference, IWCMC
"10, pages 473-478. ACM, 2010.

Antoine Joux. Authentication failures in NIST version of GCM. 2006.

Josh Karlin, Daniel Ellard, Alden W Jackson, Christine E Jones, Greg Lauer,
David P Mankins, and W Timothy Strayer. Decoy routing: Toward unblockable

internet communication. In USENIX workshop on free and open communications
on the Internet (FOCI 11),2011.

Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires,
[X:5-38, January 1883.

Sanja Kelly, Mai Truong, Adrian Shahbaz, Madeline Earp, Jessica White, and
Rose Dlougatch. Silencing the messenger: Communication apps under pressure.
https://freedomhouse.org/report/freedom-net/freedom-net-2016, 2016. [Online;
accessed 6-June-2018].

Andrew Lewman. Torproject.org blocked by GFW in China: Sooner or
later? https://blog.torproject.org/blog/tor-partially-blocked-china, September
2009. [Online; accessed 6-June-2018].

Shuai Li, Mike Schliep, and Nick Hopper. Facet: Streaming over videoconferenc-
ing for censorship circumvention. In Proceedings of the 2014 ACM Conference
on Computer and Communications Security, CCS *14, pages 163—-172, 11 2014.

Colm MacCarthaigh. Enhanced domain protections for ama-
zon cloudfront requests. https://aws.amazon.com/blogs/security/
enhanced-domain-protections-for-amazon-cloudfront-requests, ~ April 2018.
[Online; accessed 6-June-2018].

Moxie Marlinspike. Doodles, stickers, and censorship circumvention for Signal
Android. https://signal.org/blog/doodles-stickers-censorship, December 2016.
[Online; accessed 6-June-2018].

Moxie Marlinspike. Amazon threatens to suspend Signal’s AWS account over
censorship circumvention. https://signal.org/blog/looking-back-on-the-front,
April 2018. [Online; accessed 6-June-2018].

113

https://freedomhouse.org/report/freedom-net/freedom-net-2016
https://blog.torproject.org/blog/tor-partially-blocked-china
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests
https://signal.org/blog/doodles-stickers-censorship
https://signal.org/blog/looking-back-on-the-front

[MHS16]

[MMLDG12]

[MVO05]

[Nab13]

[NAHI8]

[NH16]

[NZH17]

[Pax06]

[Pet97]

[PIL*17]

[SGTH12]

Richard McPherson, Amir Houmansadr, and Vitaly Shmatikov. Covertcast: Using
live streaming to evade Internet censorship. Proceedings on Privacy Enhancing
Technologies, 2016(3):212-225, 2016.

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. Skypemorph: Protocol obfuscation for Tor bridges. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security, CCS
"12, pages 97-108, 2012.

David McGrew and John Viega. The galois/counter mode of operation (GCM).
2005.

Zubair Nabi. The anatomy of web censorship in Pakistan. In 3rd USENIX Work-
shop on Free and Open Communications on the Internet (FOCI), 2013.

Milad Nasr, Anonymous, and Amir Houmansadr. Massbrowser: Unblocking the
web for the masses, by the masses. https://web.cs.umass.edu/publication/docs/
2018/UM-CS-2018-003.pdf, 2018. [Online; accessed 8-June-2018].

Milad Nasr and Amir Houmansadr. Game of decoys: Optimal decoy routing
through game theory. In Proceedings of the 2016 ACM Conference on Computer
and Communications Security, CCS *16, pages 1727-1738. ACM, 2016.

Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr. The waterfall of liberty:
Decoy routing circumvention that resists routing attacks. In Proceedings of the
2017 ACM Conference on Computer and Communications Security, CCS 17,
pages 2037-2052, 2017.

Vern Paxson. End-to-end routing behavior in the Internet. SIGCOMM Computer
Communication Review, 36(5):41-56, October 2006.

Fabien Petitcolas. Kerckhoffs’ principles from «la cryptographie militaire». http:
/Ipetitcolas.net/kerckhoffs, 1997. [Online; accessed 10 June 2018].

Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick Feamster, Nick Weaver, and
Vern Paxson. Global measurement of DNS manipulation. In 26th USENIX Se-
curity Symposium (USENIX Security 17), pages 307-323. USENIX Association,
2017.

Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper.
Routing around decoys. In Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security, CCS *12, pages 85-96, 2012.

114

https://web.cs.umass.edu/publication/docs/2018/UM-CS-2018-003.pdf
https://web.cs.umass.edu/publication/docs/2018/UM-CS-2018-003.pdf
http://petitcolas.net/kerckhoffs
http://petitcolas.net/kerckhoffs

[SSW10]

[TAAP16]

[Torl5a]

[Tor15b]

[WCQ'17]

[Whil8]

[Will2]

[WL12]

[WPF13]

[WSH14]

Y. Schwartz, Y. Shavitt, and U. Weinsberg. On the diversity, stability and sym-
metry of end-to-end Internet routes. In 2010 INFOCOM IEEE Conference on
Computer Communications Workshops, pages 1-6, March 2010.

M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson. SoK: Towards grounding
censorship circumvention in empiricism. In 2016 IEEE Symposium on Security
and Privacy, pages 914-933, May 2016.

Tor Project. obfs2 transport evaluation. https://trac.torproject.org/projects/tor/
wiki/doc/PluggableTransports/Obfs2Evaluation, 2015. [Online; accessed 6-June-
2018].

Tor Project. Tor: Bridges. https://www.torproject.org/docs/bridges, 2015. [On-
line; accessed 6-June-2018].

Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V. Krish-
namurthy. Your state is not mine: A closer look at evading stateful Internet cen-
sorship. In Proceedings of the 2017 Internet Measurement Conference, IMC ’17,
pages 114-127. ACM, 2017.

Stephanie A. Whited. Domain fronting is critical to the open web. https://blog.
torproject.org/domain-fronting-critical-open-web, April 2018. [Online; accessed
6-June-2018].

Tim Wilde. Great firewall Tor probing circa 09 DEC 2011. https://gist.github.
com/twilde/da3c7a9af01d74cd7de7, December 2012. [Online; Accessed 6-June-
2018].

Philipp Winter and Stefan Lindskog. How the Great Firewall of China is blocking
Tor. In 2nd USENIX Workshop on Free and Open Communications on the Internet
(FOCI), 2012.

Philipp Winter, Tobias Pulls, and Juergen Fuss. ScrambleSuit: A polymorphic
network protocol to circumvent censorship. In 12th ACM Workshop on Workshop
on Privacy in the Electronic Society, WPES ’13, pages 213-224, 2013.

Eric Wustrow, Colleen M. Swanson, and J. Alex Halderman. Tapdance: End-to-
middle anticensorship without flow blocking. In 23rd USENIX Security Sympo-
sium, pages 159-174, 2014.

115

https://trac.torproject.org/projects/tor/wiki/doc/PluggableTransports/Obfs2Evaluation
https://trac.torproject.org/projects/tor/wiki/doc/PluggableTransports/Obfs2Evaluation
https://www.torproject.org/docs/bridges
https://blog.torproject.org/domain-fronting-critical-open-web
https://blog.torproject.org/domain-fronting-critical-open-web
https://gist.github.com/twilde/da3c7a9af01d74cd7de7
https://gist.github.com/twilde/da3c7a9af01d74cd7de7

[WWGH11]

[WWY*12]

[Xynl18]

[ZH16]

Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. Telex: An-
ticensorship in the network infrastructure. In 20th USENIX Security Symposium,
2011.

Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister,
Steven Cheung, Frank Wang, and Dan Boneh. StegoTorus: A camouflage proxy
for the Tor anonymity system. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS *12, pages 109-120, 2012.

Maria Xynou. Investigating Internet blackouts from the edge of the net-
work: OONI’s new upcoming methodology. https://ooni.torproject.org/post/
investigating-internet-blackouts/, April 2018. [Online; accessed 6-June-2018].

Hadi Zolfaghari and Amir Houmansadr. Practical censorship evasion leveraging
content delivery networks. In Proceedings of the 2016 ACM Conference on Com-
puter and Communications Security, CCS *16, pages 1715-1726. ACM, 2016.

116

https://ooni.torproject.org/post/investigating-internet-blackouts/
https://ooni.torproject.org/post/investigating-internet-blackouts/

	List of Tables
	List of Figures
	Introduction
	Contributions

	Internet filtering
	Definitions and measurements
	Basic filtering techniques
	Advanced filtering techniques

	The censorship cat-and-mouse game
	Threat model

	Recipe #1: Protocol appropriation
	Previous attempts at appropriation
	Decoy routing

	A generalizable method for protocol appropriation
	Step 1: Use the protocol as intended
	Step 2: Replace leaf data
	Step 3: Simulate interactive elements

	Appropriating secure web browsing with Slitheen
	Appropriating TLS
	Appropriating HTTP
	The relay station state machine
	The Slitheen tunnel protocol
	Implementation
	Latency analysis

	Comparison to existing systems
	Conclusion

	Recipe #2: Simulating compliance
	Eliminating fingerprintable features
	Implementation details

	High-bandwidth censorship-resistant traffic
	Replacing image resources in Slitheen
	Video replacement
	Evaluation
	Comparison to existing systems

	Conclusion

	Recipe #3: Deployment on existing infrastructure
	Options for deployment
	Guerilla proxies
	Too big to block
	End-to-middle proxying

	Known challenges to E2M deployment
	Routing asymmetry
	Asymmetric gossip protocol
	Resistance to RAD attacks
	Bandwidth overhead

	Relay station experiments
	Impact on quality of service

	Security analysis and improvements
	Security analysis of Slitheen
	Security of the gossip protocol

	Comparison to existing systems
	Conclusion

	Conclusion
	Defence of the thesis statement
	Future work

	References

