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Abstract 

Despite the importance of ammonia-oxidizing archaea (AOA; Thaumarchaeota) to soil 

nitrification (Chapter 1), their biogeography in terrestrial environments and relative contributions 

to nitrification remain unclear. Leveraging the close proximity of forest, field, and agricultural 

plots at the rare Charitable Research Reserve (Cambridge, Ontario), thaumarchaeotal 

biogeography was examined at three different depths (0-15, 15-30, and 30-45 cm) from plots 

within areas of contrasting land usage (Chapter 2). High-throughput sequencing of 

thaumarchaeotal 16S rRNA gene sequences demonstrated that OTU richness was affected 

significantly by depth and land-use type. Specifically, thaumarchaeotal diversity was higher in 

soils from forest sites than from field sites, and lower within 0-15 cm soils than either 15-30 cm 

or 30-45 cm soils. Soil land use type influenced the relative abundance of the Soil Crenarchaeota 

Group (SCG), with a lower relative abundance of SCG in forest sites compared to field sites. At 

the OTU level, thaumarchaeotal communities changed with increasing soil depth for agricultural 

soils, in contrast to homogeneous depth profiles generated from forest site samples. Soil pH was 

the strongest factor impacting thaumarchaeotal community composition and, the evenness of 

archaeal taxa. Nitrogen, carbon, and soil texture shaped thaumarchaeotal community 

composition among field site samples. 

Selected sites within the rare Charitable Research investigateg for temperature- and 

depth-dependence of AOA and ammonia-oxidizing bacteria (AOB) activities (Chapter 3). This 

work applied the recently discovered AOB inhibitor, octyne, to soil microcosms incubated at 

different temperatures (20, 30, 40°C) in order to differentiate ammonia-oxidation potential and 

N2O production by AOA and AOB, in soils from different land uses and depth. The results 

showed that surface soils (0-15 cm) possessed significantly greater ammonia oxidation potential 
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than subsurface soils (30-45 cm) at all temperatures tested, and that AOA-associated nitrification 

potential dominated at higher temperatures for both summer- and autumn-collected soils. The 

accumulation of N2O was only detected in surface agricultural soil at 30°C and positively 

correlated with nitrite accumulation within the incubation period. The detected N2O production, 

along with most nitrification potential activity, were attributed to AOB, implicating AOB as 

major producers of this greenhouse gas in the tested agricultural soil. If consistent for other sites 

and land usages, higher ammonia-oxidation activity and N2O production within surface 

agricultural soil reinforces the importance of agricultural surface soils as sources of nitrification 

and N2O production, with potential implications for land management practices and responses to 

climate change. 

In order to explore other functions of soil Thaumarchaeota besides ammonia oxidation, 

thaumarchaeotal cobalamin producing potential was targeted, and expanded to a broader range of 

cobalamin-producing and consuming microorganisms in soils (Chapter 4). Vitamin B12 

(cobalamin) is the most structurally complex coenzyme known and its availability is thought to 

influence microbial diversity and community composition. Although previous studies have 

investigated marine cobalamin synthesis, the producers, remodelers, and consumers of 

cobalamin in terrestrial habitats are unknown. Here 155 globally distributed soil metagenomes 

were surveyed for cobalamin-producing microorganisms by quantifying and classifying 

cobalamin biosynthesis marker genes (cob/cbi) with profile hidden Markov models (HMMs). 

Complementing this sequence-based analysis, different forms of cobalamin (CN-, Me-, OH-, 

Ado-B12) were measured, as well as the cobalamin lower ligand (5,6-dimethylbenzimidazole; 

DMB), in an independent set of 40 diverse soil samples. Metagenomic analysis revealed that less 

than 10% of soil microbial taxa are capable of complete cobalamin biosynthesis, predominantly 
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encoded by taxa affiliated with Proteobacteria, Actinobacteria, Firmicutes, Nitrospirae, and 

Thaumarchaeota. Consistent with vitamin production being a keystone community function, a 

larger proportion of soil genera possessed genes for cobalamin transport and lacked biosynthesis 

genes. In addition, cobalamin-dependent genes outnumbered cobalamin synthesis genes in all 

tested soil metagenomes. A significant positive correlation between cobalamin concentration and 

microbial biomass was observed, consistent with the metagenomic results showing that 

cobalamin-producing potential (cob/cbi) correlated positively with microbial community size 

(rpoB). Chemical measurements demonstrated that free water-leachable cobalamin was a 

relatively small portion of total cobalamin, compared to non-water-leachable cobalamin 

(associated with microbial biomass or tightly bound to minerals). The cobalamin lower ligand, 

DMB, was more abundant than intact cobalamin, in agreement with metagenome data showing a 

higher relative abundance of DMB synthesis cob/cbi genes than corrin ring synthesis or final 

assembly cob/cbi genes, suggesting an important role for cobalamin remodeling in terrestrial 

habitats. With broad implications for soil nutrient cycling and primary productivity (Chapter 5), 

these combined metagenomic and biochemical data implicate microbial cobalamin production as 

a keystone function that may influence total microbial community size, diversity, and associated 

biogeochemistry of terrestrial ecosystems. 
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Chapter 1  

From ammonia-oxidizer to comammox: a review of soil nitrification 

1.1 Introduction 

Nitrogen is a key element controlling terrestrial productivity and an estimated 170 Tg yr-1 

of anthropogenic nitrogen is applied to terrestrial surfaces and the corresponding microbially 

driven nitrogen cycle (Schlesinger 2009). Nitrification, ammonia oxidation to nitrate via nitrite, 

plays a critical role in linking reduced with oxidized pools in the global nitrogen cycle (Prosser 

1990). Nitrification is economically important for agricultural practices because it can decrease 

fertilizer efficiency by converting ammonium (NH4
+) into water-leachable nitrate (NO3

-) (Allison 

1966), causing groundwater and surfacewater contamination. The conventional view of 

nitrification divides the process into two steps, ammonia oxidation and nitrite oxidation, and the 

first step is generally considered rate-limiting (Prosser 1990). Ammonia oxidation has been 

regarded traditionally as being catalyzed solely by ammonia-oxidizing bacteria (AOB), 

chemoautotrophs within the Proteobacteria (Purkhold et al. 2000; Kowalchuk and Stephen 

2001), since the first isolation of Nitrosomonas europaea by Sergei Winogradsky in 1892 

(Winogradsky 1892; Dworkin and Gutnick 2012). Starting with the pioneering phylogenetic 

analyses of AOB (Woese et al. 1984, 1985), the phylogenetic framework of AOB now includes 

two distinct monophyletic groups. One group includes Nitrosospira and Nitrosomonas, 

belonging to Betaproteobacteria, and the other includes Nitrosococcus species from the 

Gammaproteobacteria (Koops et al. 2006). Most soil AOB affiliate with Betaproteobacteria, 

whereas marine AOB typically associate with the Gammaproteobacteria. However, a recently 

discovered Nitrosococcus strain TAO100 (Gammaproteobacteria) is an exception to this rule, 

obtained from an acidic soil (Hayatsu et al. 2017). The Nitrosospira lineage is subdivided into 
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clusters 0-4, on the basis of 16S rRNA sequence analysis, and Nitrosomonas fall into clusters 5-7 

(Stephen et al. 1996; Purkhold et al. 2000), although this subdivision is somewhat controversial 

(Aakra et al. 2001). In soil environments, AOB distributions have been well linked with pH. In 

acidic soils, where ammonia availability is reduced by conversion to ammonium, Nitrosospira 

dominate, especially those from cluster 2 (Stephen et al. 1998; Kowalchuk and Stephen 2001). 

Members of the Nitrosospira associate with moderately acidic soils and Nitrosomonas spp. are 

reported to dominate neutral soils (Koops and Pommerening- Röser 2001). However, pH might 

not be always the only factor that influences the distribution of these microorganisms (Norton 

2011). In a study of 23 soil samples, temperature appeared to be the best predictor of AOB 

community composition, with higher proportion of Nitrosospira cluster 2 in soils from lower 

annual temperature sites (Fierer et al. 2009). A similar pattern was reported by Avrahami and 

Conrad (2005), who observed more Nitrosospira taxa in cold soils than warm ones.     

Although much research on AOB has demonstrated their importance in the soil nitrogen 

cycle (Kowalchuk and Stephen 2001), a disconnect was observed between AOB abundance 

estimations and nitrification rates in the ocean (Watson 1965), suggesting that something was 

missing. This AOB-centric understanding of nitrification was upended early in the 21st century, 

when metagenomic studies of marine (Venter et al. 2004) and soil (Treusch et al. 2005) samples 

revealed crenarchaeotal ammonia monooxygenase (amoA) genes on archaeal scaffolds, shedding 

light on potential archaeal ammonia oxidation in non-extreme environments, although archaea 

were still largely considered as extremophiles. Mesophilic Crenarchaeota (currently 

Thaumarchaeota; Spang et al. 2010) are now recognized as being ubiquitous in marine water 

(DeLong 1992; Fuhrman 1992), freshwater sediments (Hershberger et al. 1996; MacGregor et al. 

1997; Schleper, Holben and Klenk 1997), and soil (Ueda, Suga and Matsuguchi 1995; Bintrim et 
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al. 1997; Ochsenreiter et al. 2003), indicating an important role for archaeal ammonia oxidation 

globally.  

The hypothesis that some archaea catalyze ammonia oxidation was confirmed by the first 

isolation of Nitrosopumilus maritimus from a marine aquarium, which provided incontrovertible 

evidence for chemoautotrophic growth while oxidizing ammonia into nitrite, with bicarbonate as 

the sole carbon source (Könneke et al. 2005). It took several more years before isolation of the 

first soil ammonia-oxidizing archaea (I.1b AOA), Nitrososphaera viennensis, from a garden soil 

in Vienna (Tourna et al. 2011). Another I.1b AOA enrichment, Candidatus Nitrososphaera 

gargensis originated from a hot spring (Hatzenpichler et al. 2008); a pure culture was obtained 

recently (Palatinszky et al. 2015). Enrichment cultures of I.1b AOA originate from an even 

broader range of environments where these archaea contribute to ammonia oxidation. For 

example, Candidatus Nitrosotalea devanaterra was enriched from an acidic agricultural soil, 

demonstrating optimal growth at pH 4-5 (Lehtovirta-Morley et al. 2011), Candidatus 

Nitrosocosmicus franklandus originated from a fertilized soil (Lehtovirta-Morley et al. 2016), 

and Candidatus Nitrocosmicus oleophilus MY3 was obtained from a coal tar contaminated 

sediment (Jung et al. 2016). These I.1b AOA are very similar to Candidatus Nitrosocosmicus 

exaquare G61, which was enriched recently from rotating biological contactors of a municipal 

waste water treatment plant (Sauder et al. 2017). Together, these isolates and enrichment cultures 

provide a valuable way to look into AOA physiology under varying physical and chemical 

gradients relevant to soils.  

Unlike ammonia oxiders, very little is known about nitrite-oxidizing bacteria (NOB), 

partially due to the fact that they are more difficult to grow in the lab (Daims, Lücker and 

Wagner 2016). As a result, the classification and characterization of NOB and their 
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environmental distributions depend heavily on culture-independent 16S rRNA gene sequence 

analysis. Soil-associated NOB typically belong to the genera Nitrococcus, Nitrotoga, 

Nitrobacter, and Nitrospira (Daims, Lücker and Wagner 2016), and Nitrobacter and Nitrospira 

often dominate in soils (Bartosch et al. 2002; Freitag et al. 2005; Poly et al. 2008; Wertz et al. 

2008; Pester et al. 2014; Stempfhuber et al. 2016). Interactions between soil NOB and ammonia 

oxidizers are still poorly characterized, but transient NO2
- accumulation in soil has been 

demonstrated (Chapman and Liebig 1952; Nelson 1982; Burns et al. 1995; Maharjan and 

Venterea 2013; Müller et al. 2014; Giguere et al. 2017). The classical concept of nitrification 

proposes that NOB rely on ammonia oxidizers for nitrite (Prosser 1990), thus ammonia oxidizers 

can benefit from nitrite detoxification. Observations of nitrite accumulation contradict the widely 

accepted view that ammonia oxidation is the rate-limiting step in nitrification and opens up an 

opportunity for follow-up studies that focus on nitrite accumulation and its ecological effects in 

soils.  

Members of the Nitrospira have recently been discovered that catalyze complete 

ammonia oxidation (“comammox”) to nitrate, which changes the conventional two-step 

nitrification paradigm (Daims et al. 2015; van Kessel et al. 2015). The hypothetical presence of 

comammox microorganisms was predicted because the energy yield from complete nitrification 

is higher than from either of ammonia oxidation or nitrite oxidation, and thus comammox 

microorganisms should be able to outcompete canonical nitrifiers (Costa, Pérez and Kreft 2006). 

The first comammox bacterial isolate, Nitrospira inopinata, confirms an oligotrophic lifestyle 

with high substrate affinity and high growth yield. (Kits et al. 2017).  
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1.2 Distribution, diversity, and activity of soil ammonia oxidizers  

Soil represents an immense and complex habitat for an enormous diversity of 

microorganisms (Tiedje et al. 1999; Bardgett and van der Putten 2014; Thompson et al. 2016; 

Delgado-Baquerizo et al. 2018; Richter and Markewitz 1995; Frey 2007). Ammonia-oxidizers 

are ubiquitous and abundant in soils, including agricultural (Jia and Conrad 2009; Ouyang et al. 

2016), forest (Taylor et al. 2010; Lu, Bottomley and Myrold 2015), estuary (Li et al. 2015), 

grassland (Daebeler et al. 2015), desert (Marusenko et al. 2014), and Arctic tundra (Alves et al. 

2013) soils, with the detection of either 16S rRNA gene or the functional marker gene, amoA, 

which encodes subunit A of the key enzyme, ammonia monooxygenase (AMO). The amoA gene 

is the most extensively used functional marker for ammonia oxidizer biogeography studies 

(Rotthauwe, Witzel and Liesack 1997; Purkhold et al. 2000; Pjevac et al. 2017). Soil AOA, 

estimated to account for up to 5% of all terrestrial prokaryotes (Leininger et al. 2006), 

outnumber their AOB counterparts in most soils by as much as several orders of magnitude 

(Leininger et al. 2006; He et al. 2007; Taylor et al. 2010; Alves et al. 2013) with only a few 

exceptions (Bates et al. 2011; Petersen et al. 2012; Li et al. 2015). A survey studying 713 soil 

samples from the National Soil Inventory of Scotland reported a dominance of AOA over AOB 

in all samples across different land-uses types (Yao et al. 2013), which is consistent with another 

survey of samples spanning forest, cropland, and pasture soils in Oregon, in which the highest 

reported AOA to AOB amoA gene ratio was 396:1 in pasture samples (Zeglin et al. 2011). This 

numerical dominance of AOA over AOB in soils implies a greater role for ammonia oxidation 

by AOA than AOB. Environmental gradients of temperature, soil C:N, and moisture influence 

AOA and/or AOB abundances (Adair and Schwartz 2008), as do factors linked to soil depth 

(Leininger et al. 2006; Jia and Conrad 2009), such as nitrogen and carbon availability (Leininger 
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et al. 2006). Although AOB amoA abundances are correlated with soil physiochemical factors 

(percent sand, C:N ratio), precipitation, and temperature, no such relationship was established 

between AOA populations and any of these environmental factors, although AOA dominated all 

sampling sites (Adair and Schwartz 2008). Orders of magnitude higher AOA and AOB amoA 

gene abundances were recorded from top 20 cm soils than from 40-50 cm at the same 

agricultural site (Jia and Conrad 2009) and the same pattern was observed as deep as 60-70 cm in 

a sandy soil (Leininger et al. 2006). The abundances of AOA and AOB vary along 

environmental gradients, and this variation might be a key strategy for ammonia oxidizers, as a 

whole, to survive and function in such a diverse and heterogeneous soil habitat and, sometimes, 

extreme conditions (low pH and high temperature) where AOA are more likely to thrive.      

Both pH and temperature emerge as key factors that affect niche differentiation of AOA 

and AOB, and thus impact activity responses of these two group in soils. In a study of 

agricultural soils, greater AOA-associated activity was observed in warmer seasons (Taylor et al. 

2012), and temperature optima of AOA are typically higher than AOB (Tourna et al. 2008, 2011; 

Duan et al. 2018; Lu, Nicol and Neufeld 2018), with cases where this optimal temperature 

difference could be greater than 10°C (Ouyang, Norton and Stark 2017; Taylor et al. 2017). A 

quantitative study reported that 16S rRNA genes representing members of the Crenarchaeota 

from non-hyperthermal environments (-1.5 to 32°C) accounted for as much as ~1.5% of all 16S 

rRNA genes detected in several soil samples (Buckley, Graber and Schmidt 1998). The two 

phylogenetic clusters of these environmental mesophilic-crenarchaeotal sequences are groups 

I.1a (mainly marine or freshwater sequences), and I.1b (mainly terrestrial sequences), 

characterized both by phylogenetic distance and correlating relatively well with the predominant 

habitats where they were detected (Schleper, Jurgens and Jonuscheit 2005). Group I.1c 



7 
	

Thaumarchaea are not associated with ammonia oxidation (Weber et al. 2015), despite their high 

abundance in acidic forest soils (Jurgens, Lindström and Saano 1997; Bomberg and Timonen 

2009) and close relation with groups I.1a and I.1b (DeLong 1998). Soil AOA and AOB isolates 

and enrichment cultures showed different optimal growth temperatures. For instance, 

thaumarchaeotal Candidatus Nitrosotalea devanaterra grows optimally at 25°C (Lehtovirta-

Morley et al. 2011), Candidatus Nitrosocosmicus franklandus at 40°C (Lehtovirta-Morley et al. 

2016), and Candidatus Nitrososphaera gargensis at 46°C (Hatzenpichler et al. 2008). In contrast, 

AOB representatives usually grow at temperatures between 20-30°C (Groeneweg, Sellner and 

Tappe 1994; Jiang and Bakken 1999; Avrahami and Conrad 2005; Avrahami and Bohannan 

2007), with some reported to grow even at temperatures between 0-4°C (Jones et al. 1988; 

Groeneweg, Sellner and Tappe 1994; Jiang and Bakken 1999).    

Among soil edaphic factors, pH is a strong environmental selector for different ammonia 

oxidizing groups (Nicol et al. 2008). Culture-independent surveys detect Nitrosospira as the 

dominant AOB in acidic agricultural (Stephen et al. 1996, 1998) and forest (Laverman et al. 

2001; Jordan et al. 2005; Schmidt et al. 2007; Nugroho et al. 2009) soils, whereas Nitrosomonas 

sequences dominated an acid forest soil (Carnol, Kowalchuk and De Boer 2002). Members of the 

Nitrosospira also dominated neutral pH fields that received fertilization (Bruns et al. 1999; 

Mendum, Sockett and Hirsch 1999). A dominance switch from Nitrosospira cluster 2 in acidic 

pH to Nitrosospira cluster 3 in neutral pH has been generalized in both short- and long-term 

studies (Stephen et al. 1996, 1998; Nicol et al. 2008). Cultivation of acid-tolerant soil AOB has 

been successful and activity was observed at pH 4 (De Boer et al. 1991) and 5 (Hayatsu et al. 

2017). As for soil AOA, cluster distributions show the influence of pH. For instance, AOA in 

neutral pH soils are usually dominated by Nitrososphaera, with presence of Nitrosopumilus, and 
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Nitrosocosmicus (Gubry-Rangin et al. 2011; Lu, Seuradge and Neufeld 2017), whereas in acidic 

soils, Nitrososphaera and Nitrosotalea both are abundant (Gubry-Rangin et al. 2011; Lehtovirta-

Morley et al. 2011). Little is known about nitrification in alkaline soils, and no obligately 

alkalinophilic ammonia oxidizers have been cultivated, although amoA sequences were detected 

in these soils with pH values over 7 (Shen et al. 2008; Gubry-Rangin et al. 2011). Soil pH can 

influence the equilibrium between ammonia and ammonium (pKa = 9.27), which is relevant 

because ammonia serves as the substrate for AOB (Suzuki, Dular and Kwok 1974) and 

presumably also for AOA. Acidic soils favor the presence of ammonium, rather than ammonia, 

and can potentially decrease ammonia availability by orders of magnitude with a small pH 

change. AOB pure cultures typically do not grow on ammonium below pH 6.5 (Allison and 

Prosser 1993), but ureolytic AOB such as Nitrosospira can grow at pH 4 (Burton and Prosser 

2001). Urea hydrolysis has also been demonstrated in AOA from two acidic soils (Lu et al. 

2012). Another mechanism applied by acid-tolerant ammonia oxidizers is forming aggregates, 

where internal cells are protected against unfavorable conditions such as toxic nitrous acid (De 

Boer et al. 1991). 

Ammonia concentration can also select for AOA or AOB (Bates et al. 2011; Verhamme, 

Prosser and Nicol 2011), independent of a pH-ammonia interaction. With lower substrate 

affinities, compared to their AOA counterparts (Prosser and Nicol 2012; Lehtovirta-Morley 

2018), AOB dominate fertilized agricultural soils based on several reports (Prosser and Nicol 

2008; Jia and Conrad 2009; Xia et al. 2011; Ouyang et al. 2016; Zhong et al. 2016). In general, 

AOB are stimulated by high ammonia concentrations, whereas AOA prefer low ammonia 

concentrations (Di et al. 2010; Höfferle et al. 2010; Schleper 2010; Tourna et al. 2011; 

Verhamme, Prosser and Nicol 2011; Daebeler et al. 2015; Carey et al. 2016), with the exception 
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of Nitrosocosmicus, which are also adapted to high ammonia concentrations (Lehtovirta-Morley 

et al. 2016; Sauder et al. 2017). One possible explanation for high ammonia tolerance of 

Nitrosocosmicus is the lack of S-layer (Sauder et al. 2017), which is a major cell surface 

structure for general rigidity and protection (Albers and Meyer 2011), and common in other 

AOA (Qin et al. 2017a). Computational simulations demonstrated the pseudo periplasmic space 

and a charged S-layer in AOA effectively concentrated NH4
+ to the membrane-associated AMO 

in AOA (Li et al. 2018). When this S-layer is absent, AMO will not be easily exposed to pre-

concentrated NH4
+, thus increasing cell ammonia tolerance. Substrate source seems to be another 

substrate-linked filter for AOA and AOB. Several AOB populations responded when ammonium 

was added directly to soil (Jia and Conrad 2009), whereas archaeal ammonia oxidation in soils 

might be fueled by ammonia derived from other compounds, such as urea and cyanate 

(Stopnišek et al. 2010; Levičnik-Höfferle et al. 2012; Palatinszky et al. 2015). However, AOB 

can also grow on fructose and pyruvate (Hommes, Sayavedra-Soto and Arp 2003), and AOA 

responded positively to direct nitrogen addition (Marusenko, Garcia-Pichel and Hall 2014). 

Because AOA and AOB coinhabit soils, with varying relative abundances, an important 

research goal is to determine the relative contributions of these two groups to soil ammonia 

oxidation. Nitrification inhibitors such as dicyandiamide (DCD), allylthiourea (ATU), and 

nitrapyrin (2-chloro-6-[trichloromethyl] pyridine) are used to reduce nitrogen fertilizer loss and 

also commonly used for research where differential inhibition is required (Bédard and Knowles 

1989; Subbarao et al. 2006; Lehtovirta-Morley et al. 2013). Both ATU and octyne have been 

used as differential inhibitors to distinguish between the activities of AOA and AOB 

(Hatzenpichler et al. 2008; Taylor et al. 2010, 2013; Jung et al. 2014b). The differential 

inhibition effect depends on inhibitor concentration. For example, all ammonia oxidation of N. 
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europaea (AOB) was inhibited by 10 µM ATU (Hooper and Terry 1973), 85% of the ammonia 

oxidation activity of N. devanaterra (AOA) was inhibited at a concentration of 100 µM 

(Lehtovirta-Morley et al. 2013), and 100% of N. viennensis (AOA) activity was inhibited at 300 

µM (Shen et al. 2013). As an AOB inhibitor, octyne does not inhibit ammonia oxidation by 

either N. viennensis or N. gargensis at a concentration of 10 µM, which is sufficient to inhibit 

AOB fully (Taylor et al. 2010). However, AOA-associated ammonia oxidation can be inhibited 

by 20 µM octyne (Taylor et al. 2015). In addition to ATU and octyne inhibiting AOB activity, 2-

phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) has been used as an AOA 

inhibitor. The differential effect of PTIO on AOA and AOB was proposed given that AOA might 

use a pathway that does not produce hydroxylamine, but rather nitroxyl, and PTIO acts as an NO 

scavenger (Walker et al. 2010). However, with the demonstrated ability to produce 

hydroxylamine by N. maritimus (Vajrala et al. 2013), it is currently proposed that NO might act 

as an electron shuttle rather than a direct intermediate in the AOA ammonia oxidation pathway 

(Jung et al. 2014b; Sauder, Ross and Neufeld 2016).  

In addition to catalyzing the conversion of ammonia to nitrate, greenhouse gas emission 

linked to ammonia oxidation is another important environmental implication of nitrification. 

Nitrous oxide (N2O) is a trace gas with ~300 fold greater global warming potential than CO2, and 

also a reactant causing ozone destruction (Ravishankara, Daniel and Portmann 2009), with soil 

being the largest N2O source (Syakila and Kroeze 2011; Schreiber et al. 2012). Ammonia 

oxidation is a major contributor of N2O produced aerobically, accounting for up to 80% of soil 

N2O emissions (Gödde and Conrad 1999; Wrage et al. 2001; Kool et al. 2011; Zhu et al. 2013). 

Although AOB-associated N2O could be produced through either incomplete hydroxylamine 

oxidation to nitrite or nitrifier-denitrification (reduction of nitrite) (Arp and Stein 2003), 
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hydroxylamine-dependent N2O production is thought to contribute less N2O than nitrifier 

denitrification (Arp and Stein 2003; Stein 2011a). The activities of nitrite reductase (NirK) and 

nitric oxide reductase (NorB) enable N2O production by AOB through nitrite reduction. Thus, 

nitrite accumulation has been demonstrated to stimulate aerobic N2O production in soil 

(Venterea 2007; Maharjan and Venterea 2013; Venterea et al. 2015; Lu, Nicol and Neufeld 

2018), and by AOB (Shaw et al. 2006). Although the mechanism of AOA-associated N2O 

production has not been fully elucidated, an abiotic reaction between hydroxylamine and nitric 

oxide, both of which have been detected in AOA pure culture (Vajrala et al. 2013; Martens-

Habbena et al. 2015), might result in N2O formation (Stieglmeier et al. 2014). The potential for 

N2O production by AOA through nitrifier-denitrification is still unclear, with contrasting 

observations on N2O production at variable oxygen concentrations (Jung et al. 2011; Löscher et 

al. 2012; Mosier, Lund and Francis 2012; Stieglmeier et al. 2014; Qin et al. 2017b). With a 

differential inhibitor of AOA and AOB, N2O production in soil microcosm incubations was 

monitored for several soil samples (Giguere et al. 2017; Hink, Nicol and Prosser 2017; Duan et 

al. 2018; Hink et al. 2018; Lu, Nicol and Neufeld 2018), demonstrating lower N2O emissions by 

AOA than AOB, further suggesting an alternative enzymatic pathway for AOA (Hink, Nicol and 

Prosser 2017; Lu, Nicol and Neufeld 2018). Specifically, N2O formation in acidic soils might be 

due to nitrosonium cation (NO+), which is favored at low pH and reacted with hydroxylamine to 

produce N2O (Spott, Russow and Stange 2011; Qin et al. 2017b), and might be a reason for 

extremely high N2O yields reported from a soil acidophilic AOA isolate relative to other AOA 

(Jung et al. 2014b).  
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1.3 Distribution, diversity, and activity of soil nitrite oxidizers 

In terrestrial ecosystems, nitrite is oxidized by chemolithoautotrophic nitrite-oxidizing 

bacteria (NOB; Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Chloroflexi, 

Nitrospinae, and Nitrospirae) (Robertson and Groffman 2007; Daims, Lücker and Wagner 

2016). Nitrobacter and Nitrospira are dominant nitrite-oxidizing genera in most sampled soils 

(Bartosch et al. 2002; Freitag et al. 2005; Poly et al. 2008; Wertz et al. 2008; Pester et al. 2014; 

Stempfhuber et al. 2016), although Nitrotoga were recently discovered as important for active 

layer permafrost tundra soils (Alawi et al. 2007) or surface periglacial soil (Schmidt et al. 2009). 

Compared to Nitrobacter, Nitrospira have lower half saturation constants for NO2
- (Blackburne 

et al. 2007; Nowka, Daims and Spieck 2015; Le Roux et al. 2016), thus their dominance in NOB 

communities shows responses to varied nitrite concentrations in soil (Attard et al. 2010; Wertz, 

Leigh and Grayston 2012; Daebeler et al. 2014). Although cultivation challenges have slowed 

progress in studying NOB, compared with ammonia oxidizers, they are among the most diverse 

and ubiquitous nitrifiers in both natural and engineering systems (Daims et al. 2001), and can 

outnumber AOA and AOB (Winkler et al. 2012; Gülay et al. 2016). Transient nitrite 

accumulation in soils has been demonstrated in several studies due to either an increased 

ammonia oxidation (Müller, Stevens and Laughlin 2006; Giguere et al. 2017) or a decreased 

NOB activity (Chapman and Liebig 1952; Burns et al. 1995; Shen, Ran and Cao 2003; Venterea 

2007; Maharjan and Venterea 2013; Ma, Shan and Yan 2015; Venterea et al. 2015). In 

agricultural practices, NO2
- accumulation is reported after fertilization that undergo alkaline 

hydrolysis, which would inhibit NO2
- oxidation because of high pH (Smith and Chalk 1980; 

Burns et al. 1995; Van Cleemput and Samater 1995). These observations of NO2
- accumulation 

implicate nitrite oxidation as the rate-limiting step of nitrification under certain conditions. The 
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accumulated NO2
- may significantly impact terrestrial ecosystems, as it is toxic to soil 

microorganisms and plants (Court, Stephen and Waid 1962; Bancroft, Grant and Alexander 

1979), and NO2
- accumulation is also suggested to stimulate soil N2O emission (Maharjan and 

Venterea 2013; Giguere et al. 2018; Lu, Nicol and Neufeld 2018).  

The understanding of NOB biogeography mainly depends on surveys of nitrite 

oxidoreductase (NXR), encoded by its corresponding gene (nxrB), which has served as a 

powerful marker to detect uncultured NOB in soils (Poly et al. 2008; Pester et al. 2014). This 

gene is particularly useful because its phylogeny is consistent with that of the 16S rRNA gene 

(Pester et al. 2014). Based on nxrB gene similarity, up to 764 “species” were affiliated with 

Nitrospira in a soil sample from Namibia (Pester et al. 2014). NXR, a membrane-bound enzyme, 

initiates nitrite oxidation by adding an oxygen atom from water (Kumar, Nicholas and Williams 

1983). However, the direction to which the catalytic site of NXR faces differs between 

Nitrobacter and Nitrospira, with cytoplasmic and periplasmic orientations, respectively (Spieck 

and Bock 2005). This structural difference might explain the high substrate sensitivity and 

affinity of Nitrospira in comparison to Nitrobacter (Spieck and Bock 2005). The reaction 

catalyzed by NXR can be reversible, such that Nitrobacter can reduce nitrate (Sundermeyer-

Klinger et al. 1984), which enables heterotrophic growth with nitrate as alternative electron 

acceptor under anoxic conditions (Bock, Wilderer and Freitag 1988).  

Because NOB rely on the end products of ammonia oxidizers, a classical mutualistic 

symbiosis between these microbial groups was proposed, where ammonia oxidizers can benefit 

from nitrite detoxification by NOB (Stein and Arp 1998). Consistent with this possible 

mutualism, soil AOA and Nitrospira abundances were shown to correlate with each other (Pester 

et al. 2014). In this model, ammonia oxidizers initiate nitrification, followed by nitrite oxidation. 
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Although ammonia oxidizers initiating symbiosis has been widely observed, there might be 

exceptions where NOB can initiate nitrification by releasing urease, as observed in soils where 

urea is available (Koch et al. 2015). In addition to urea, cyanate may also be a substrate for 

nitrifiers, from which ammonia could be generated with cyanase (Palatinszky et al. 2015). 

Metagenomes demonstrated the presence of Nitrospira-like cyanases in temperate forest and 

agricultural soils, indicating a similar reciprocal feeding between cyanase-negative ammonia 

oxidizers and cyanase-positive NOB (Palatinszky et al. 2015).  

The mechanisms employed by ammonia oxidizers and nitrite oxidizers to signal and 

maintain efficient nitrification are not clear. However, evidence for quorum sensing (QS) among 

nitrifying bacteria has been emerging. QS signal molecules, acyl-homoserine lactones (AHL), 

have been reported produced by AOB (Burton et al. 2005; Gao et al. 2014), and NOB (Mellbye, 

Bottomley and Sayavedra-Soto 2015), and proposed to connect AOB with NOB (Mellbye et al. 

2017). Nitric oxide (NO) might also function to enhance interactions between ammonia oxidizers 

and nitrite oxidizers (Daims, Lücker and Wagner 2016) because all sequenced NOB possess 

nitrite reductase (nirK), an indicator of NO-producing potential. In this way, NO might function 

as an electron flux regulator (Starkenburg, Arp and Bottomley 2008). Both AOA and AOB can 

produce NO (Stein 2011b; Kozlowski et al. 2016) and trigger biofilm formation (Schmidt et al. 

2004; Arp and Bottomley 2006). Thus, NO release by either NOB or AOA/AOB within 

nitrification aggregates might potentially act to modulate the metabolisms of both ammonia and 

nitrite oxidizers (Daims, Lücker and Wagner 2016).   

1.4 Comammox bacteria and soil nitrification 

The widely accepted two step nitrification process paradigm was challenged by a 

thermodynamic prediction of the presence of complete ammonia oxidation (comammox), which 
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should be favored due to a higher energy yield (Costa, Pérez and Kreft 2006). A decade later, the 

first Nitrospira capable of oxidizing ammonia to nitrate were discovered (Daims et al. 2015; van 

Kessel et al. 2015). All known comammox bacteria are members of Nitrospira lineage II, which 

also contains members of the canonical NOB (Daims et al. 2015; van Kessel et al. 2015; Pinto et 

al. 2016). Three key nitrification enzymes, ammonia monooxygenase (AMO), hydroxylamine 

oxidoreductase (HAO), and nitrite oxidoreductase (NXR), are found in comammox Nitrospira 

(Daims et al. 2015). Comammox amoA genes form two monophyletic clades, clade A and clade 

B, and both share a common ancestor with betaproteobacterial AOB amo (Daims et al. 2015). 

Metagenomic screening for Nitrospira-like amoA genes revealed a wide distribution of 

commamox bacteria, including soil samples collecting under different land use types (Daims et 

al. 2015; van Kessel et al. 2015; Pinto et al. 2016). A recently developed comammox amoA 

primer set was used to survey for the presence of comammox bacteria in a wide range of 

environmental samples, including rice paddy soils, forest soils, and rice rhizosphere (Pjevac et 

al. 2017). Another quantitative study of 300 forest soil samples with the same primer set 

demonstrated a high abundance of comammox Nitrospira across all samples, in comparison to 

canonical AOB, and they found that clade A comammox bacteria were more abundant than AOA 

in acidic samples (Hu and He 2017). Physiological assessments revealed oligotrophic adaptations 

for comammox Nitrospira, suggesting a possibility that ammonia-depleted soils might be a 

fundamental niche for these organisms (Kits et al. 2017). 

1.5 Cobalamin production and its ecological importance 

Cobalamin (vitamin B12) is an important coenzyme required by most organisms for the 

synthesis of nucleotides and amino acids (Roth, Lawrence and Bobik 1996; Romine et al. 2017), 

its biosynthesis requires more than 30 enzymatic steps (Roth et al. 1993; Blanche et al. 1995; 
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Raux et al. 1999), and it can only be produced by a limited number of bacteria and archaea 

(Martens et al. 2002). Cobalamin is present in several chemical forms, depending on its upper 

ligand, which includes the enzymatically active forms of methylcobalamin (Me-B12) and 

adenosylcobalamin (Ado-B12), and the less active forms of hydroxocobalamin (OH-B12) and 

cyanocobalamin (CN-B12) (Martens et al. 2002). Cobalamin is light sensitive. Both Ado-B12 and 

Me-B12 photodegrade to OH-B12 within seconds of light exposure (Juzeniene and Nizauskaite 

2013). The challenge of accurately measuring cobalamin concentrations in marine samples was 

overcome by using ultra-performance liquid chromatography (Heal et al. 2014). Marine 

cobalamin research demonstrated a significant role for cobalamin in controlling microbial 

plankton population and primary productivity (Panzeca et al. 2006; Tang, Koch and Gobler 

2010; Bertrand et al. 2011; Giovannoni 2012; Sañudo-Wilhelmy et al. 2014; Helliwell et al. 

2016). Pseudocobalamin, with adenine as a lower ligand (Renz 1999), has recently been 

identified as another major cobalamin-like compound in the ocean that cannot be used by most 

cobalamin-dependent bacteria (Heal et al. 2017). Cyanobacteria, on the other hand, have the 

advantages of producing and using only pseudocobalamin, whereas many other cobalamin-

dependent organisms can convert pseudocobalamin into cobalamin by remodeling the lower 

ligand with DMB (Seth and Taga 2014; Helliwell et al. 2016).  

In marine environments, Thaumarchaeota have been identified as the major cobalamin 

producers in a metagenomic survey (Doxey et al. 2015). Recent research demonstrated that all 

sequenced Thaumarchaeota strains have the potential to biosynthesize cobalamin (Doxey et al. 

2015, Heal et al. 2017), and the measured per cell cobalamin concentration for Thaumarchaeota 

can be orders of magnitude higher than recorded in other phyla (Heal et al. 2017, 2018). 

Comparatively little is known about terrestrial cobalamin sources and sinks. Stimulation of soil 
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microbial growth by cobalamin was reported in the 1950s (Lochhead and Thexton 1951; 

Lochhead, Burton and Thexton 1952; Lochhead and Burton 1956). These studies predicted that 

some soil microorganisms might serve as cobalamin producers because they demonstrated that a 

high proportion of soil bacteria rely on cobalamin, and soil contains a wide variety of vitamin 

auxotrophs. Lochhead and Burton (1956) estimated the proportion of soil bacteria that require 

vitamin B12 using a semi-quantitative experiment, and suggested the importance of “growth-

promoting” substances to soil microorganisms. Soil eukaryotes also rely on cobalamin (Watson 

et al. 2014), but more studies are needed to better understand eukaryote cobalamin dependence 

in a wide range of soil habitats.       

1.6 Thesis research objectives 

Among the most abundant and ubiquitous microorganisms in terrestrial environments, 

Thaumarchaeota contribute substantially to soil nitrogen cycling. Efforts over the past decade 

have elucidated soil thaumarchaeotal biogeography, phylogeny, and activity. However, most 

previous studies have focused only on surface soils, which do not represent the full complexity 

and diversity of soil habitats. In addition, greenhouse gas production by thaumarchaeal ammonia 

oxidizers has not been explored in relation to depth. And although the contributions of soil 

thaumarchaeotes are recognized in the context of nitrogen cycling, these archaea may play other 

roles as well within the context of soil ecology and metabolite production, in relation to other 

nitrogen cycling bacteria or to the broader microbial community as a whole.  

The overarching goal of this thesis was to characterize members of the Thaumarchaeota 

in soil habitats in relation to soil depth, contrasting land use, and temperature. An important 

objective was to assess both ammonia oxidation and nitrous oxide production within the context 

of thaumarchaeotal nitrification. In order to broaden the scope of soil thaumarchaeotal functions 
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within terrestrial environments, this thesis also combined metagenomic data and novel analytical 

techniques to explore thaumarchaeotal cobalamin production potential in terrestrial 

environments. Together, the goal of my thesis research was to better understand the distributions 

and functions of soil thaumarchaeotes within the context of microbial ecology.  

This thesis summarizes my work by presenting two studies (chapters 2 and 3) describing 

soil thaumarchaeotal distributions and activity, and one study (chapter 4) on soil microbial 

cobalamin production. Chapter 2 describes a biogeographical survey of Thaumarchaeota 

distribution along soil vertical profiles under different land use (rare Charitable Research 

Reserve, Cambridge, Ontario), and their community composition changes with soil 

physicochemical parameters. Chapter 3 describes the activity of soil Thaumarchaeota-associated 

ammonia oxidation activity under different temperatures, and assesses nitrous oxide emissions of 

AOA in relation to their AOB counterparts. Chapter 4 describes cobalamin-producing bacteria 

and archaea in a collection of 155 soil metagenomes, evaluating their keystone species 

significance, and quantifies soil in situ cobalamin concentrations as they relate to microbial 

biomass. Chapter 5 presents conclusions, significance of the thesis research, and discusses future 

research directions.        
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Chapter 21 

Biogeography of soil Thaumarchaeota in relation to soil depth and land usage 

2.1 Introduction 

 Nitrogen is an important element that structures microbial communities by serving as a 

limiting resource for aquatic and terrestrial productivity (Galloway et al. 2014; Ward and Jensen 

2014). The nitrogen cycle, involving transformations of nitrogen among its six redox states, 

includes nitrification, which is the energy-yielding conversion of reduced (ammonia/ammonium; 

NH3/NH4
+) to oxidized (nitrite/nitrate; NO2

-/NO3
-) forms of nitrogen. Nitrification is an 

important aerobic process within the global nitrogen cycle, with profound influences on the 

environment through greenhouse gas emissions (Frame and Casciotti 2010) and fertilizer 

nitrogen leaching (NO3
-), the latter resulting in up to 70% loss of nitrogen fertilizer worldwide as 

well as groundwater pollution (Raun and Johnson 1999). As a result, understanding controls on 

the nitrogen cycle and its microbial contributors is essential for informing biogeochemical 

models and associated land management practices. 

 Although nitrification has been studied for over a century, it was only a decade ago that 

archaeal genes were discovered that encode ammonia monooxygenase (AMO) in soil and marine 

samples (Venter et al. 2004; Treusch et al. 2005). This was followed by the isolation of 

Nitrosopumilus maritimus strain SCM1, the first representative of ammonia-oxidizing archaea, 

from sediment of a marine aquarium (Könneke et al. 2005). Together, these discoveries 

underlined the potential importance of chemolithoautotrophic ammonia-oxidizing archaea 

																																																													
1	A	version	of	this	chapter	has	been	published	as:	
Lu	X,	Seuradge	BJ,	Neufeld	JD.	(2016).	Biogeography	of	soil	Thaumarchaeota	in	relation	to	soil	depth	and	land	
usage.	FEMS	Microbial	Ecology,	93(2),	fiw246.	
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(AOA; formerly mesophilic Crenarchaeota, now Thaumarchaeota) (Treusch et al. 2005; 

Brochier-Armanet et al. 2008) to global nitrogen cycling. Their counterparts, ammonia-oxidizing 

bacteria (AOB), were formerly regarded as sole contributors to aerobic nitrification. This 

changed paradigm of nitrification helped solve the contradiction between the low global 

abundance of AOB (Hermansson and Lindgren 2001; Altmann et al. 2003; Harms et al. 2003; 

Limpiyakorn et al. 2005), despite high in situ nitrification activity in oligotrophic environments 

where ammonia concentrations were below the threshold for AOB activity (10 µM NH4
+-N) 

(Bollmann et al. 2002; Auguet et al. 2011).  

In terrestrial environments, archaeal amoA genes have been detected across a wide range 

of land-uses such as grassland, agricultural, pasture, and forest soils (Leininger et al. 2006; 

Boyle-Yarwood et al. 2008; Taylor et al. 2010; Zeglin et al. 2011). Because the abundance of 

archaeal amoA genes often exceeds that of bacterial amoA genes (Leininger et al. 2006), AOA 

are likely major drivers of terrestrial nitrification. Nonetheless, the factors influencing soil AOA 

community composition remain poorly described (Prosser and Nicol 2012), which is a limitation 

for a better understanding of their function. Archaeal community composition is influenced by 

changing environmental factors such as soil pH (Nicol et al. 2008; Gubry-Rangin et al. 2011), 

moisture content (Stres et al. 2008; Angel et al. 2010; Szukics et al. 2010), temperature 

(Avrahami and Conrad 2003; Stres et al. 2008), ammonium availability (Höfferle et al. 2010), 

and organic carbon (Pesaro and Widmer 2002; Kemnitz et al. 2007). In addition, a recent study 

demonstrated links between the phylogeny of terrestrial thaumarchaeota and soil pH (Gubry-

Rangin et al. 2015). However, most previous studies of soil AOA have focused only on surface 

samples, which do not comprehensively represent terrestrial environments; the top soil layer 

captures only a relatively thin cross section of global soil microbial community biomass. 
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Although Höfferle et al. (2010) reported depth-related changes in archaeal communities of a peat 

wetland, which is a unique soil system with high soil water saturation and high organic matter 

content, subsequent research is needed to assess other land usage impacts on soil AOA. In 

particular, agricultural soils and forest soils are relevant for further study because they represent 

38% (Food and Agriculture Organization of the United Nations 

http://faostat3.fao.org/download/E/EL/E) and 31% (Food and Agriculture Organization of the 

United Nations http://www.fao.org/forestry/fra/fra2010/en/) of the global land use, respectively.     

 Because soil chemical and physical characteristics are depth dependent, and microbial 

communities are strongly influenced by such factors, overall soil microbial communities display 

high spatial heterogeneity in relation to soil depth (Fierer et al. 2003). In terms of ammonia-

oxidizers, the ratio of AOA to AOB has been shown to exceed 1200 as soil depth increased to 

40-50 cm (Leininger et al. 2006), indicating that AOA are better adapted to deeper soils than 

AOB. Although Hansel et al. (2008) and Watanabe et al. (2010) examined changes of archaeal 

community composition and methanogen communities along a soil depth profile, respectively, 

no study has been carried out targeting thaumarchaeotal communities in relation to soil depth in 

agricultural and forest soils, especially correlating environmental variables with thaumarchaeotal 

community patterns using multivariate statistics. In addition, even though soil texture has been 

known to select microorganisms by means of pore size, this is the first study that tests the 

influence of soil texture on thaumarchaeotal community composition, and the first one 

comparing thaumarchaeotal communities along soil depth profile associated with both 

agricultural and forest soils. 



22 
	

 Studying AOA community composition and understanding factors that influence niche 

specialization of individual AOA populations in soils will help to better elucidate how 

environmental factors impact soil nitrification and nutrient cycling. This study explored 

thaumarchaeotal biogeography along soil depth profiles among distinct land-use practices at the 

rare Charitable Research Reserve in Cambridge, Ontario. High-throughput sequencing of 

thaumarchaeotal 16S rRNA genes from soil samples was used to answer questions: (i) What are 

the dominant thaumarchaeotal taxa in field and forest sites? (ii) Do multiple land usages display 

similar depth-specific patterns in terms of thaumarchaeotal community composition? And (iii) 

what factors (e.g., pH, texture, nutrients) influence thaumarchaeotal community composition in 

soil profiles?  

2.2 Materials and methods 

2.2.1 Site selection and soil sampling 

Study sites were located at the rare Charitable Research Reserve in Cambridge, Ontario 

(43.380oN and -80.350oW; Figure 2.1). Soils were collected from field sites, which included both 

an active agricultural site (AA, Preston Flats), three decommissioned agricultural field sites 

(D03, decommissioned since 2003; D07, decommissioned since 2007; D10, decommissioned 

since 2010), and three forest sites (IW, Indian Woods; H, Hogsback; CA, Cliffs and Alvars) 

(Figure 2.1A). The forest sites have been pristine for at least 100-200 years. The well-drained 

and calcareous soils were classified as Burford series, with relatively thin A horizons, which is 

typical for the area along the Grand River (Presant 1971). Soils from each site were collected by 

randomly selecting three 5 m x 5 m plots (Figure 2.1B), each containing three randomly dug pits 

to a total depth of 45 cm (includes both A and B horizons). Soil samples were collected at three  
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depths for each pit: 0-15 cm, 15-30 cm, and 30-45 cm (Figure 2.1C). All soils were sampled in 

August or September, 2013, and were also the basis of a previously described bacterial 

community analysis (Seuradge et al., 2017). Soil chemical and physical characteristics were 

Figure 2.1 – Map of the sampling sites at the rare Charitable Research Reserve 

Land use type is designated by color (A). Diagrams showing sampling replicates (B) and vertical sampling 
strategy (C). The map and diagrams are reproduced from Seuradge et al., (2017). 
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measured by the Agriculture and Food Laboratory at University of Guelph. Briefly, soil pH was 

measured using a 1:2 ratio of soil to H2O; organic carbon (OC) measured using the combustion 

method (Nelson and Sommers, 1982); ammonium (NH4
+), nitrite (NO2

-) and nitrate (NO3
-) 

measured using the KCl-extractable method (Hood-Nowotny et al. 2010); gravimetric soil 

moisture was determined by oven drying soils at 105°C for 24 h. Soil chemical and physical 

properties are summarized in Table 2.1, and the raw data are available in an associated bacterial 

community survey (Seuradge et al., 2017).      

2.2.2 Soil DNA extraction and PCR amplification of 16S rRNA genes 

Soil DNA was extracted using the PowerSoil-htp 96 Well Soil DNA Isolation Kit (MO 

BIO) according to the manufacturer’s protocol. Thaumarchaeotal 16S rRNA genes were targeted 

with primers 771F (5’-ACGGTGAGGGATGAAAGCT-3’) and 957R (5’-

CGGCGTTGACTCCAATTG-3’) (Ochsenreiter et al. 2003), which also contained Illumina-

specific adapter and flow cell binding sequences as well as 6-base index sequences for 

multiplexing (Bartram et al. 2011). Triplicate PCR amplifications were carried out for each 

sample in 25 µL volumes. Each PCR contained 2.5 µL of 10X ThermoPol Taq buffer (New 

England BioLabs), 1.5 µL of 10 mg mL-1 bovine serum albumin, 0.05 µL of 100 mM dNTPs 

(New England BioLabs), 0.125 µL of 5 U µL-1 Taq DNA polymerase (New England BioLabs), 

0.05 µL of 100 µM forward-indexed primer (Integrated DNA Technologies), 1 µL of 5 µM 

reverse-indexed primer (Integrated DNA Technologies), 1 µL normalized template DNA (1-10 

ng µL-1) and 19 µL of nuclease-free PCR-grade H2O (Thermo Scientific). The PCR conditions 

included an initial denaturation at 95°C for 2 minutes followed by 35 cycles of (i) denaturation 

(95°C, 30 sec), (ii) annealing (55°C, 30 sec), and (iii) extension (68°C, 60 sec). The PCR ended 
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with a final extension at 68°C for 5 min. The PCR amplicons were assessed by electrophoresis 

on a 1% (w/v) agarose gel that was stained with 1 µg mL-1 ethidium bromide (Calbiochem).  

2.2.3 High-throughput sequencing 

Triplicate PCR products from each sample were pooled and gel quantified (stained with 

GelRed, 1:10,000 dilution) using AlphaView Software (Alpha Innotech Corp). All samples were 

pooled together into a single mixture with equal ng amounts. This final mixture was 

electrophoresed on a 1% (w/v) agarose gel that was stained with 1 µg mL-1 ethidium bromide. 

The correct size 16S rRNA gene amplicon band was gel extracted from primer dimers and 

purified using the Wizard SV Gel and PCR Clean-Up System (Promega). The purified library 

was diluted to 4 nM according to the Qubit 2.0 Fluorometer and the Qubit dsDNA HS Assay Kit 

(Invitrogen), and the concentration was confirmed by qPCR using the PerfeCTa NGS 

Quantification Kit for Illumina Sequencing Platforms (Quanta Biosciences). The qPCR was 

carried out in duplicate 20 µL volumes, using Illumina forward primer (5’-

AATGATACGGCGACCACCGA-3’) and Illumina reverse primer (5’-

CAAGCAGAAGACGGCATACGA-3’), then mixed with 2X PerfeCTa SYBR Green SuperMix 

(Quanta Biosciences). The thermal cycle was as follows: 3 min initial denaturation at 95°C, 

followed by 35 cycles of: (i) denaturation (95°C, 10 seconds), (ii) annealing (60°C, 20 seconds), 

and extension (72°C, 45 seconds). The quantified library was stored at -20°C prior to 

sequencing. Sequencing was carried out on the MiSeq platform (Illumina) using the MiSeq 

Reagent Kit v2 (Illumina) with 7.5% PhiX control mixed with the library. Post-run analyses, 

including Phred score calculations and demultiplexing, were performed using the MiSeq Control 

Software v.2.3.0.3 (Illumina).  
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2.2.4 Sequence data processing 

Paired-end reads were trimmed by removing 3’ and 5’ adapters from forward and reverse 

reads, respectively, using cutadapt v.1.8.3 (Martin 2011). This initial trim was done because 

amplicon lengths were shorter than the read length of the Illumina Miseq reagent kit v2 (2 x 250 

bases), which can interfere with subsequent assembly of paired-end reads. Trimmed paired-end 

reads were further processed by Automation, eXtension, and Integration Of Microbial Ecology 

(AXIOME; Lynch et al. 2013) and Quantitative Insights Into Microbial Ecology (QIIME) 

pipelines (Caporaso et al. 2010). The PANDAseq (Masella et al. 2012) algorithm was used to 

assemble trimmed paired-end reads using a quality threshold of 0.9, and assembled sequences 

were clustered into operational taxonomic units (OTUs) based on 97% sequence identity by 

UPARSE (Edgar 2013), which removed singletons and chimeras de novo. An additional chimera 

check was performed by UCHIME (Edgar et al. 2011) using the RDP (ribosomal database 

project) classifier training database (Version 9) as a reference. Taxonomy was determined by 

submitting representative sequences of each OTU to SINA (SILVA Incremental Aligner, 

Version 1.2.11).  

2.2.5 Statistical processing and multivariate analysis 

The data were rarefied to 6774 reads for each sample using the phyloseq package 

(Version 1.10.0; McMurdie and Holmes 2013). The relationship between relative OTU 

abundance and environmental factors, and between diversity indices and environmental factors, 

were examined by Spearman correlations. The effects of land-use type and depth on diversity 

were examined by two-way ANOVA with Fisher's least significant difference (LSD) procedure. 

The difference between the relative abundance of the most abundant taxa between field sites and 
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forest sites was tested using the Wilcoxon rank-sum test. Community composition was 

visualized by non-metric multidimensional scaling (NMDS) using the Bray-Curtis dissimilarity 

metric. Group homogeneity (forest and field) was tested by betadisper analysis in vegan package 

(Version 2.3.0), followed by permutational multivariate analysis for variance using dissimilarity 

matrices (PERMANOVA; Anderson 2001) with 999 permutations to identify environmental 

factors that correlated significantly with community composition. These environmental factors 

were further tested by a variance inflation factor (VIF) to confirm that no co-linearity existed 

among these factors before performing redundancy analysis (RDA). Hellinger transformation 

was applied to the OTU table to generate a Euclidean distance matrix suitable for RDA 

(Legendre and Gallagher 2001). The RDA approach was preferred over canonical 

correspondence analysis (CCA) because the detrended correspondence analysis (DCA) result 

demonstrated that the greatest gradient length was less than three standard deviations (Ramette, 

2007; Hill and Gauch, 1980). Distance-based redundancy analysis (db-RDA) using Bray-Curtis 

dissimilarity matrix was carried out to confirm the RDA results. Depth effect within field and 

forest samples was tested using Multi Response Permutation Procedures (MRPP). The NMDS, 

PERMANOVA, MRPP, RDA and db-RDA were performed using the vegan package (Version 

2.3.0) in R v.3.1.1 (R Development Core Team. Vienna, Austria). Diversity indices including 

Shannon index, OUT richness, and Pielou’s evenness index were calculated with vegan package 

(Version 2.3.0). Correlation and ANOVA tests were performed using StatGraphics v.16.1.03 

(Statpoint Technologies, Inc., Warrenton, VA). Sequence data are available in the EBI database 

under project accession PRJEB12084. 
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2.3 Results 

2.3.1 Soil conditions 

Soil samples spanned a pH range of 6.03 to 8.07 across all sites, a six-fold range of 

organic carbon (OC), a nine-fold range for ammonium (NH4
+), and an eleven-fold range for 

nitrate (NO3
-) (Table 2.1). The soil samples differed significantly in texture (sand, silt and clay 

content), but showed less difference in physicochemical parameters (pH, OC, NH4
+ and NO3

-) 

(Table 2.1). Field samples (AA, D03, D07 and D10) were more similar to each other in terms of 

physicochemical parameters, same as forest samples (Table 2.1). Soil samples were analyzed 

previously for bacterial communities, with results indicating that depth, land usage, and 

associated physicochemical factors impacted community composition (Seuradge et al., 2017). 

2.3.2 Soil thaumarchaeotal diversity 

For the current study, the same DNA extracts used in Seuradge et al. (2017) were 

targeted with thaumarchaeotal PCR primers to identify whether the archaeal communities were 

also impacted by depth and land usage. A total of 5,352,508 sequences were assembled by 

PANDAseq and 5,147,563 high-quality assembled 16S rRNA gene sequences were obtained 

after removal of singletons and chimeras using UPARSE and UCHIME. Beginning with a 

rarefied OTU table from AXIOME, additional OTUs (56 out of 577) were removed that did not 

classify to the Thaumarchaeota, with 521 OTUs remaining. After rarefying all remaining data to 

6,774 reads per sample, 1,205,772 sequences remained in the analysis. Of these, 97.9% of the 

sequences classified to the genus level within the Thaumarchaeota. 
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Table 2.1 – Soil physicochemical properties 
Mean concentrations of soil parameters of soil samples collected from different depths and under different land use. Standard deviation of the mean in parentheses. Significant differences (p 
< 0.05) based on Tukey’s HSD comparisons are indicated by superscript letters within each column. AA: active agriculture site; D03: decommissioned field since 2003; D07: 
decommissioned field since 2007; D10: decommissioned field since 2010; CA: forest site at Cliffs and Alvars; IW: forest site at Indian Woods; H: forest site at Hogsback. OC: organic 
carbon; IC: inorganic carbon; Soil moisture is calculated using gravimetric water content. * no gravel was detected in CA 0-15 cm soils. The table is based on Seuradge et al. (2017).  
 

Land use Depth (cm) pH OC (%) NH4
+ (mg/kg) NO3

-(mg/kg) Moisture (%) Sand (%) Silt (%) Clay (%) Gravel (%) 

AA 0-15 7.60ab (0.17) 1.28a (0.11) 2.71ac (0.19) 7.78ad (2.42) 9.12ab (0.45) 71.10ab (8.34) 19.53ace (6.69) 9.40abcd (1.67) 2.20ac (1.35) 

15-30 7.80ab (0.10) 0.77a (0.81) 3.32ac (0.32) 4.21def (1.24) 8.79ab (2.93) 68.63adh (10.47) 21.53acef (8.24) 9.83abcd (3.66) 5.37abd (4.72) 

30-45 7.90ab (0.14) 1.05a (0.83) 3.45ac (1.05) 2.89cd (0.05) 9.52ab (1.16) 64.95aeg (3.75) 23.25abcd (5.59) 11.75abcd (1.77) 3.75abd (5.30) 

D03 0-15 7.40ab (0.17) 2.67a (0.25) 7.68cde (3.33) 10.18a (3.10) 20.09bcde (6.43) 33.77cgh (2.29) 49.20bde (3.45) 17.03ad (2.06) 1.90a (1.57) 

15-30 7.63ab (0.15) 1.80a (0.18) 4.44c (1.49) 5.45abcd (1.49) 20.56bcde (5.24) 32.47chi (2.15) 53.87b (2.58) 13.70abcd (1.30) 0.83a (0.55) 

30-45 7.67ab (0.15) 1.47a (0.39) 4.45c (2.35) 3.37cd (1.23) 21.24bcde (6.37) 36.63agi (1.40) 51.33bf (2.25) 12.03abcd (0.85) 5.60abd (2.05) 

D07 0-15 7.60ab (0.34) 1.23a (0.48) 5.65cf (2.03) 5.46abcd (1.43) 9.93ac (2.74) 75.13bdefj (8.03) 17.00cg (6.21) 7.87abc (1.96) 2.03a (2.08) 

15-30 7.87a (0.25) 0.61a (0.38) 3.44ac (1.82) 1.87bce (0.43) 8.05ae (3.37) 79.63bdefk (12.98) 14.40cg (9.85) 5.97c (3.25) 4.57abd (4.41) 

30-45 8.00a (0.26) 0.24a (0.28) 2.34ac (0.77) 1.59bce (0.24) 7.32ae (2.82) 83.50bdefl (11.21) 11.70ch (7.95) 4.80c (3.48) 2.03a (2.28) 

D10 0-15 7.53ab (0.06) 2.16a (0.09) 2.49ac (0.82) 9.31af (2.66) 15.98bcde (1.46) 40.33agij (1.65) 43.90bdeg (2.92) 15.77abd (2.70) 1.00a (0.36) 

15-30 7.87a (0.06) 1.25a (0.38) 4.38c (1.42) 2.85cd (0.87) 15.86bcde (0.87) 42.27agij (5.46) 45.03bdeg (4.55) 12.70abcd (1.31) 2.57ab (2.45) 

30-45 8.07a (0.06) 0.50a (0.34) 1.67ac (0.30) 1.66bce (0.24) 10.30ac (1.25) 63.27agkl (7.38) 29.83abcd (5.22) 6.90bc (2.17) 12.57bcd (4.25) 

CA 0-15 6.03b (1.46) 6.22b (3.31) 15.60bd (5.81) 5.83abcd (5.73) 26.87d (17.08) 63.13aegijkl (13.60) 28.03abcd (11.50) 8.80abcd (2.11) 0.00* (0.00) 

15-30 6.40ab (1.25) 1.60a (0.81) 4.57c (0.20) 1.66bce (0.53) 14.76bcde (2.80) 68.53adh (16.50) 24.20abcd (14.03) 7.33bc (3.77) 1.30ac (2.25) 

30-45 6.70 ab (1.01) 0.82a (0.57) 4.17c (0.13) 1.03bce (0.43) 11.23ac (2.54) 71.03af (12.59) 22.77abcd (12.92) 6.20c (0.70) 0.33a (0.58) 

IW 0-15 7.07 ab (0.45) 1.98a (0.29) 13.07bef (0.71) 3.05cd (1.42) 23.75bcd (2.11) 54.90agijkl (17.10) 36.07abcd (15.38) 9.00abcd (2.02) 2.47ab (2.16) 

15-30 7.03 ab (0.65) 0.73a (0.25) 6.57c (1.84) 0.97bce (0.33) 17.15bcde (2.92) 57.10agijkl (17.71) 33.13abcd (16.30) 9.73abcd (7.92) 3.63abd (2.11) 

30-45 7.27 ab (0.70) 0.40a (0.22) 5.44c (1.83) 0.91bce (0.32) 14.05bcde (2.59) 61.63agijkl (16.05) 26.83abcd (13.17) 11.53abcd (4.90) 6.63abd (4.91) 

H 0-15 6.73 ab (0.68) 2.50a (0.49) 14.97be (7.91) 2.62cd (1.80) 13.93bcde (3.33) 45.97agijk (14.06) 41.37abcd (14.67) 12.63abcd (3.44) 6.53abd (3.11) 

15-30 7.17 ab (0.47) 0.84a (0.17) 7.29c (1.20) 1.08bce (0.41) 11.82bcde (2.67) 49.50agijk (12.95) 37.20abcd (14.13) 13.33abcd (1.22) 5.80abd (3.29) 

30-45 7.47 ab (0.32) 0.50a (0.15) 4.52c (0.44) 1.06bce (0.16) 10.36acde (3.88) 52.40agijkl (13.08) 30.30abcd (11.98) 17.37d (1.25) 14.70d (12.59) 
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Table 2.2 – Thaumarchaeotal diversity indices and soil physicochemical properties 

The effects of soil characteristics on Shannon index, OTU richness, and Pielou's evenness index 
using Spearman’s correlations. Significant correlations (p < 0.05) are in bold.  

 

 

 

 

	

	

 

Thaumarchaeotal 16S rRNA gene OTU richness (i.e., number of OTUs) was influenced 

significantly by land-use type (p = 0.002) and depth (p < 0.001). In contrast, both the Shannon 

index (richness and evenness) and Pielou’s evenness index (evenness) differed only among land-

use type (p < 0.001) but not among depths (p = 0.663, 0.786, Shannon index and Pielou’s 

evenness index, respectively). Specifically, the OTU richness, Pielou’s evenness, and Shannon 

indices were significantly higher (LSD, p < 0.05) in forest sites (CA, H, IW) than field sites (AA, 

D03, D07, D10); OTU richness was lower (LSD, p < 0.05) within surface soils (0-15 cm) 

compared to subsoils (15-30 cm and 30-45 cm) (Figure 2.2). Among field sites, thaumarchaeotal 

OTU richness was significantly lower in surface soils (0-15 cm) than subsoils (15-30 cm or 30-

45 cm) (LSD, p < 0.05), but not significantly different between subsoils (data not shown). 

Neither the Shannon index nor Pielou’s evenness index differed among different soil depths. 

Among forested sites, only 0-15 cm soils and 30-45 cm soils showed significant differences in 

Soil property Shannon OTU richness Pielou’s  

pH -0.45 -0.09 -0.49 

OC (%) -0.10 -0.26 -0.05 

NH4
+ (mg kg-1) 0.22 -0.09 0.27 

NO3
- (mg kg-1) -0.53 -0.34 -0.53 

Moisture (%) 0.06 -0.09 0.08 

Sand (%) 0.04 0.14 0.02 

Silt (%) 0.01 -0.10 0.02 

Clay (%) -0.15 -0.18 -0.13 

Gravel (%) -0.11 -0.07 -0.13 
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OTU richness (p < 0.05), and no significant difference was observed for either the Shannon 

index or Pielou’s evenness index (data not shown). The Shannon index, OTU richness, and 

Pielou’s evenness index showed correlations with soil characteristics (Table 2.2). Soil pH and 

NO3
- negatively correlated with both the Shannon index and Pielou’s evenness index, whereas 

NH4
+ showed a positive correlation. Using a linear regression, a clear relationship was observed 

between soil pH and the Shannon index, and between soil pH and Pielou’s evenness, but not 

between OTU richness and pH (Figure 2.3).  

 
Figure 2.2 – Thaumarchaeota diversity in different samples 

Shannon index, OTU richness and Pielou’s evenness for soil samples collected from different land 
usages (field and forest) (A, B and C), and among different soil depths (0-15 cm, 15-30 cm and 30-45 
cm) (D, E and F). * indicates significance (p < 0.05). 
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2.3.3 Soil thaumarchaeotal community composition  

The majority of the 16S rRNA gene sequences were affiliated with the Soil 

Crenarchaeote Group (SCG; 87.0%) and the Terrestrial Group (TG; 11.0%), followed by the 

South African Gold Mine Group 1 (SAGMCG-1; 0.15%) and Marine Group I (MG-I; 0.02%). 

Both SAGMCG-1 and MG-I were primarily associated with forest site samples, except for 4 and 

6 samples from the field sites with detected SAGMCG-1 and MG-I, respectively. The SCG 

Figure 2.3 – Thaumarchaeota diversity with pH 

Relationship between (A) Shannon index, (B) evenness, and 
(C) richness of thaumarchaeota among all samples and soil 
pH employing best fit line. 
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group dominated both field sites and forest sites, with 98.9% and 70.4% relative abundance, 

respectively (Figure 2.4). For the most abundant groups (SCG and TG), the relative abundance 

of SCG was significantly higher for field site samples than for those of forest sites (p < 0.01), 

whereas the relative abundance of TG was significantly higher in forest sites compared to field 

sites (p < 0.01). At all depths, the relative abundance of unclassified thaumarchaeotal sequences 

was higher in DNA extracts from forested soils in relation to those from field site soils (Figure 

2.4).  

Most of the forest sites had distinct AOA communities, in relation to the field sites, such 

that the field samples grouped distinctly within ordination space (Figure 2.5A), which was 

associated with visible differences in the corresponding AOA communities (Figure 2.5B).  

 

 

 

 

Figure 2.4 – 
Thaumarchaeotal dominant 
lineage in different samples 

Relative abundance of the two 
most abundant thaumarchaeotal 
lineages with different soil depths 
and land usages. * indicates 
significance (p < 0.05). SCG: Soil 
Crenarchaeota Group; TG: 
Terrestrial Group. 
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The field sites were characterized by SCG, whereas the forest sites were associated more with 

TG. Besides the overall difference between forest and field sites, samples from each depth also 

separated by land-use type within ordination space when data were analyzed at the OTU-level 

(Figure 2.6). The AOA community composition of individual sites associated with distinct land 

usages showed distinct depth profiles (Figure 2.7). For example, topsoil samples (0-15 cm) 

Figure 2.5 – Thaumarchaeota 
structure in different samples.  

Non-metric multidimensional scaling 
(NMDS; stress value: 0.14) 
ordinations of (A) all samples under 
different land usage and depth based 
on 16S rRNA gene OTUs (97% 
sequence identity) and (B) 
thaumarchaeotal taxa of all samples 
within the same ordination space.  
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separated from subsoil samples (15-45 cm) for all field sites, although site D03 showed a clearer 

separation between 15-30 cm and 30-45 cm depths than other field sites. Samples from the active 

agriculture site were similar to those of the samples from decommissioned sites, so all field site 

Figure 2.6 – Soil sample characterization by 
thaumarchaeota community composition 

Non-metric multidimensional scaling (NMDS) plots of 
thaumarchaeotal community composition (based on 
16S rRNA gene OTUs at 97% sequence identity) 
across all sites for the (A) 0-15 cm, (B) 15-30 cm, and 
(C) 30-45 cm depth increments. 
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samples (AA, D03, D07 and D10) were grouped together for further analysis, given the 

homogeneity among field samples, in order to reduce the complexity of data presented. For the 

three forest sites, AOA community sample profiles were more homogeneous at all depths. 

Relating the relative abundance of thaumarchaeotal groups with environmental variables, OTUs 

affiliated with the TG correlated negatively with pH (Figure 2.8A), whereas SCG showed a 

positive correlation with pH (Figure 2.8B).  

In terms of samples from the same land-use type (forest or field), the field samples 

formed distinct groups based on soil depth (MRPP; A = 0.09, p < 0.001), whereas samples from 

forest sites did not show such separation (MRPP; A= -0.01, p = 0.61) (Figure 2.7). By 

performing PERMANOVA, pH, NO3
-, OC, NH4

+ and silt content impacted total sample profiles 

(Figure 2.9). For field samples, depth, OC, NO3
-, NH4

+ and soil texture (silt, clay and gravel 

content) impacted community composition, whereas only pH and NO3
- explained community 

composition dissimilarity among forest samples (Figure 2.9). Using RDA analysis, the 

distribution of thaumarchaeotal communities in different soil samples and their relationship with 

soil environmental variables were examined and visualized (Figure 2.10; db-RDA, Figure 2.11). 

Across all samples analyzed in this study, thaumarchaeotal communities were mainly distributed 

along soil pH and NH4
+ gradients, with higher pH for field samples and higher NH4

+ for forest  
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Figure 2.7 – Thaumarchaeotal community composition for all individual sites 

Non-metric multidimensional scaling (NMDS) plots of thaumarchaeotal community composition 
(based on 16S rRNA gene OTUs at 97% sequence identity) across all depths of different sites and land 
usage. A: active agriculture; B: decommissioned since 2003; C: decommissioned since 2007; D: 
decommissioned since 2010; E: Cliffs and Alvars; F: Indian Woods; G: Hogsback; H: all forest sites; 
I: all field sites.   
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samples (Figure 2.10A, Figure 2.11A). Forest samples were affected by soil pH and NO3
- 

concentration, but there was no consistent separation among forest soils by depth or site (Figure 

2.10B, Figure 2.11B). In terms of field sites, subsoil samples (15-30 cm or 30-45 cm) separated 

from surface samples (0-15 cm), likely due to the decrease of NO3
-, NH4

+, and OC content, and 

the increase of gravel content with deeper samples. The D07 and active agriculture site samples 

were separated from all other field sites mainly along the sand gradient. The D03 site 

Figure 2.8 – Relationship between 
thaumarchaeotal dominant lineage and pH.  

Relationship between relative abundance of (A) TG and 
(B) SCG with soil pH employing best fit line.  

Figure 2.9 – Environmental factors 
influencing thaumarchaeotal 
community strucutre 

Variation in community dissimilarity of 
all samples, forest samples, and field 
samples explained by the major 
environmental factors using 
PERMANOVA.  
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corresponded to increased clay content and decreased sand content, suggesting the importance of 

soil texture in shaping thaumarchaeotal community composition for samples from this site 

(Figure 2.10C, Figure 2.11C).  

Figure 2.10 – Redundancy analysis of 
thaumarchaeotal community composition and 
environmental factors  

Redundancy analysis (RDA) plots of thaumarchaeotal 
community composition (based on 16S rRNA gene 
OTUs at 97% sequence identity) of (A) all samples 
among different depth and land usage, (B) forest 
samples among different depth and sites, and (C) field 
samples among different depth and sites. 
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Figure 2.11 – Distance-based redundancy 
analysis of thaumarchaeotal community 
composition and environemtnal factors  

Distance-based redundancy analysis (db-RDA) plots 
of thaumarchaeotal community composition (based 
on 16S rRNA gene OTUs at 97% sequence identity) 
of (A) all samples among different depth and land 
usage, (B) forest samples among different depth and 
sites, and (C) field samples among different depth 
and sites. 
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2.4 Discussion 

Based on high-throughput 16S rRNA gene sequence results, both field and forest sites 

were dominated by the Soil Crenarchaeote Group (SCG; soil group 1.1b), which agreed with 

previous findings showing group 1.1b as the main archaeal lineage in soils (Auguet et al. 2009; 

Bates et al. 2011; Tripathi et al. 2015; Höfferle et al. 2010). However, this result might also be 

influenced by the commonly used thaumarchaeotal primer set (e.g., Lehtovirta, Prosser and Nicol 

2009; Gubry-Rangin, Nicol and Prosser 2010; Sauder et al. 2012), which has a high specificity 

for members of the Thaumarchaeota (771F) and the soil 1.1b group (957R) (Hong, Kim and Cho 

2014). Nonetheless, the relative abundance of SCG was higher at field sites than forest sites, 

indicating that although group 1.1b dominated most soil samples, land-use type could influence 

the relative abundance of this group. In contrast, group 1.1a archaea are less common in soils 

sampled previously (Ochsenreiter et al. 2003; Nicol et al. 2005). A recent study by Tripathi et al. 

(2015) reported a higher abundance of group 1.1a archaea in acidic soils (mean pH = 5.4). 

However, Marine Group I (marine group 1.1a) archaea were detected in forest soils with pH 

ranges higher than this previous work (pH ranges 6.4-8.0). This pattern demonstrates that group 

1.1a thaumarchaeota are not limited to acidic soils, but can adapt to neutral or slightly alkaline 

soils. Considering that Candidatus Nitrosotenuis chungbukensis (soil cultivated representative of 

group 1.1a) is neutrophilic (optimum pH: 7-7.5) (Jung et al. 2014a), it is not surprising to find 

1.1a thaumarchaeota in neutral forest soils. However, it is interesting to note that Ca. N. 

chungbukensis was cultivated from a C horizon soil (Jung et al. 2014a) whereas in this study, 

group 1.1a 16S rRNA genes were detected at all sampled depths (0-45 cm), including samples 

from horizons A and B, indicating the capability of group 1.1a to adapt to not only oligotrophic 

deep soil horizons but also a wider range of soil niches along a depth profile.  
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The sequences classified as Terrestrial Group (TG) in this study were associated with the 

1.1c group. This group, being reported in association with acidic forest soils (Bomberg and 

Timonen 2007), was found in all soil depths (including A and B horizons) at the forest sites in 

this study, contrasting with previous results demonstrating an absence of the 1.1c group 

thaumarchaeota in the A horizon (Hansel et al. 2008). Since the first report of group 1.1c in a 

Finnish boreal soil (Jurgens et al. 1997), Weber et al. (2015) recently reported that, unlike group 

1.1a or 1.1b, 1.1c does not use ammonia as an energy source. Given that group 1.1c sequences 

were found in relatively high abundance in forest soils (Kemnitz et al. 2007; Stopnišek et al. 

2010; Catão et al. 2013), as well as in acidic agricultural soil (Lehtovirta, Prosser and Nicol 

2009), they may contribute a unique metabolism other than nitrification, which expands the 

possibility for discovery of more potential keystone roles for members of the Thaumarchaeota. 

One drawback of the primers used in this study is relatively poor coverage of group 1.1c 

thaumarchaeota (Hong, Kim and Cho 2014), which might underestimate the abundance of this 

group in these soil samples. Nonetheless, the successful detection of abundant 1.1c group 

thaumarchaeota among all soil samples indicates a potential high relative abundance of this 

group in situ. Indeed, a previous study by Yarwood and colleagues (2010) reported that the 1.1c 

group accounted for 20-25% archaeal abundance in Oregon forest soils. The inability to detect 

1.1c-associated amo genes (Yarwood, Bottomley and Myrold 2010; Weber et al. 2015) raised the 

question of their biogeochemical roles in situ. As pointed out by Weber et al. (2015), the 

possibility of possessing novel amoA genes by members of the 1.1c group cannot be ruled out, 

and it might be interesting to test the effect of AOA amoA-specific inhibitors on the growth and 

activity of this group. 
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Thaumarchaeotal OTU richness and diversity were significantly affected by soil pH, 

which is also known to alter bacterial community composition and diversity (Fierer and Jackson 

2006). Similar results of pH affecting thaumarchaeotal communities were reported by Tripathi et 

al. (2015) in a large scale survey of tropical and temperate soils. In this study, both the Shannon 

index and OTU richness negatively correlated with soil pH (Table 2.2, Figure 2.3). However, a 

peak in OTU richness around neutral pH was reported previously (Gubry-Rangin et al. 2011; 

Pester et al. 2012; Tripathi et al. 2015). This negative correlation could be due to the relatively 

narrow range of pH in this study, which did not include many acidic soils with pH below 4, 

resulting in a linear relationship instead of unimodal relationship. But the slightly higher OTU 

richness around pH 5-6 than that around alkaline pH suggested that more of the AOA taxa in this 

study were adapted to slightly acidic conditions. AOA may be more tolerant to low pH than their 

counterparts, the AOB, in terms of relative abundance (e.g., Leininger et al. 2006; Gubry-

Rangin, Nicol and Prosser 2010; Lu, Bottomley and Myrold 2015), and Nicol et al. (2008) 

reported AOA amoA gene copy numbers decreased as pH increased. This study found a 

significant decrease of thaumarchaeotal OTU evenness with pH, indicating a greater variation in 

the number of OTUs in alkaline soils than neutral or acidic soils. This pattern suggested that at 

least the abundance of some OTUs changed as pH increased. To date, little evidence supports the 

presence of AOA in soils with pH values exceeding 8 (Wuchter et al. 2006; Zhang et al. 2008).  

Importantly, this study demonstrates that thaumarchaeotal OTU richness was lower in 

surface soil (0-15 cm) than in subsoils (15-30 cm and 30-45 cm), which agreed with previous 

observations that archaeal OTU richness was lowest in the B horizon and highest in the C 

horizon (Hansel et al. 2008). Thaumarchaeotal OTU richness changed with depth differently in 

field site soils in comparison to forest site soils. In field site soils, thaumarchaeotal OTU richness 
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within shallow soil samples was significantly lower than that within either 15-30 cm or 30-45 cm 

soils. In forest soils, richness only differed between 0-15 cm soil and 30-45 cm soils. In terms of 

thaumarchaeotal community composition, however, depth was a significant variable only for 

field sites. Based on RDA results, NH4
+, NO3

-, and OC content decreased with depth (15-30 cm 

and 30-45 cm). This pattern indicates the importance of nitrogen and carbon in shaping AOA 

communities, supporting the niche hypothesis that indicates the importance of physical and 

chemical properties in supporting the growth and activity of a particular nitrifying taxon 

(Schleper 2010). All available AOA cultures possess an autotrophic metabolism (Könneke et al. 

2005; De La Torre et al. 2008; Hatzenpichler et al. 2008; Jung et al. 2011; Lehtovirta-Morley et 

al. 2011; Tourna et al. 2011; Lebedeva et al. 2013), but some also demonstrate heterotrophic or 

mixotrophic growth (Tourna et al. 2011). The results suggest an OC effect on AOA community 

composition within field sites, suggesting differences in potential carbon source preferences 

among different AOA subgroups along the depth profile. Previous research with acidic forest 

soils also showed the effect of OC on archaeal community composition (Pesaro and Widmer 

2002; Kemnitz et al. 2007). Overall, thaumarchaeotal community composition was more 

homogeneous throughout the entire 45 cm depth profile for the forest sites than field sites, with 

pH and NO3
- as the most significant variables shaping community composition. On the other 

hand, although NO3
- accumulation can be contributed by both AOA and AOB, this study shows 

that the AOA community of field and forest sites, together with higher NO3
- accumulation at 

field sites, might suggest activity differences corresponding to distinct AOA communities. 

Similarly, for the field sites only, the NO3
- vector indicates that surface soils might have a higher 

nitrification activity than subsoils due to distinct AOA communities (Figure 2.10).  



45 
	

The total microbial community composition has been shown to shift along soil depth 

profiles within the top 40 cm by measuring microbial C-to-N ratio in a spruce forest (Matejek et 

al. 2010). Although changing soil environmental factors along the soil profile, such as 

temperature and moisture, were suggested to cause the shift in detected microbial communities, 

no analysis was done to correlate these proposed environmental factors with the changing C-to-N 

ratio. In this study, soil moisture was also measured, but was not shown as a significant factor 

influencing thaumarchaeotal community composition or diversity.  

The thaumarchaeotal community composition differences along soil profiles for field 

samples were also shown to be influenced by soil particle size. Based on RDA results, for 

example, the vector for 15-30 cm showed an acute angle with clay content and gravel content, 

suggesting that clay and gravel increased within depth 15-30 cm. The gravel content increased as 

soil depth increased to 45 cm, but not clay content. Soil aggregates can support different 

microbial communities by physically excluding certain types of microbes in favor of others 

(Bales et al. 1989), or by changing water tension (Treves et al. 2003) and oxygen diffusion flux 

rates (Greenwood and Goodman 1967), which are essential for microbial metabolism. Given 

differing soil texture profiles due to parent material among geological locations, the distribution 

of ammonia oxidizers may vary by location, suggesting texture-associated nitrification potential. 

This pattern might also imply that studying niche separation of AOA should also take into 

account the interactions of soil texture with other physicochemical characteristics such as soil 

organic matter content, making interpretation of the underlying constraints on AOA 

biogeography more complex. 
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2.5 Conclusion  

This study demonstrated that soil thaumarchaeotal community composition is closely 

related to soil pH, and that soil pH is the variable that best explained the separation of 

thaumarchaeotal communities among field and forest sites. Soil land-use type impacted 

thaumarchaeotal community composition with depth for field samples, but not for forest samples 

collected in this study. Nitrogen and organic carbon content also influenced AOA community 

composition. To my knowledge, this is the first study showing the effects of soil mineral 

structure on thaumarchaeotal community composition, and the first one comparing 

thaumarchaeotal communities along soil depth profile associated with both agricultural and 

forest soils with consistent underlying geology. Considering the community differences along 

different soil depths, and the ubiquity of soil thaumarchaeota, it will be important for future 

research to clarify the relative contributions of these nitrifier groups to ammonia oxidation as a 

function of soil depth.  
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Chapter 32 

Differential responses of soil ammonia-oxidizing archaea and bacteria to 
temperature and depth under two different land uses 

3.1 Introduction 

Nitrification is traditionally considered a two-step microbially driven process for 

oxidizing ammonia (NH3) to nitrate (NO3
-) via nitrite (NO2

-). This process links reduced and 

oxidized nitrogen pools by the combined activities of ammonia-oxidizing bacteria (AOB; 

(Prosser 1990), ammonia-oxidizing archaea (AOA; Könneke et al. 2005), nitrite-oxidizing 

bacteria (NOB; Prosser 1990), and the newly discovered complete ammonia oxidation 

“comammox” bacteria (Daims et al. 2015; van Kessel et al. 2015).  

Although ammonia oxidation to nitrite, the first and often rate-limiting step in 

nitrification, has been studied intensively, the relative contributions of AOA and AOB to this 

process and factors that may influence their contributions are still unclear (Schleper 2010; 

Hatzenpichler 2012; Prosser and Nicol 2012). The isolation of AOA and AOB cultures from 

different environments suggests that temperature may have a role in niche separation between 

AOA and AOB. Specifically, cultured AOA range from mesophiles to hyperthermophiles, with 

optimum growth temperatures ranging from 25°C for Candidatus Nitrosotalea devanaterra Nd1 

(Lehtovirta-Morley et al. 2014) to 74°C for Candidatus Nitrosocaldus cavascurensis (Abby et al. 

2018), with others in between these extremes (De La Torre et al. 2008; Jung et al. 2011, 2014a; 

Kim et al. 2012; Stieglmeier et al. 2014a; Lehtovirta-Morley et al. 2016; Sauder et al. 2017; 

Daebeler et al. 2018). Isolated AOB appear to have a narrower range, with the optimum 

																																																													
2	A	version	of	this	chapter	has	been	published	as:	
Lu	X,	Nicol	GW,	Neufeld	JD.	(2018).	Differential	responses	of	soil	ammonia-oxidizing	archaea	and	bacteria	to	
temperature	and	depth	under	two	different	land	uses.	Soil	Biology	and	Biochemistry,	120,	272-282.	
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temperatures for most strains ranging from 20 to 30°C (Groeneweg, Sellner and Tappe 1994; 

Jiang and Bakken 1999; Avrahami and Conrad 2005; Avrahami and Bohannan 2007), but with 

growth of several also possible at 4°C (Jones et al. 1988).  

The influence of temperature on AOA and AOB community composition (Tourna et al. 

2008) and activity (Horak et al. 2013; Wu et al. 2013; Taylor et al. 2017) has been assessed for 

various environmental samples. In soil, an increase of AOA-associated activity was observed for 

an agricultural soil in the warmer seasons of late summer and early fall (Taylor et al. 2012), with 

differential inhibition during soil incubations indicating that AOA possessed at least a 10°C 

higher optimal temperature than AOB (Ouyang, Norton and Stark 2017; Taylor et al. 2017). 

Whether these patterns are observed in contrasting land-use types and at different soil depths 

remains unclear. In addition, the effect of temperature on AOA- and AOB-associated nitrous 

oxide (N2O) production associated with soil nitrification is poorly understood. Because previous 

studies examining the effect of temperature on N2O production (Conrad, Seiler and Bunse 1983; 

Slemr, Conrad and Seiler 1984; MacDonald et al. 1997; Mogge, Kaiser and Munch 1998, 1999; 

Avrahami, Liesack and Conrad 2003) were conducted before the discovery of AOA, and a recent 

one only focused on greenhouse agricultural soils (Duan et al. 2018), the temperature-dependent 

relative contributions of AOA and AOB to soil N2O production activity in a natural system 

requires further study.  

Nitrous oxide, a trace gas with a ~300 fold greater global warming potential than CO2, is 

a reactant capable of causing stratospheric ozone destruction (Ravishankara, Daniel and 

Portmann 2009). Soil is considered the largest source of N2O emissions (Syakila and Kroeze 

2011; Schreiber et al. 2012), of which microbial ammonia oxidation contributes approximately 
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80% (Gödde and Conrad 1999; Wrage et al. 2001; Kool et al. 2011; Zhu et al. 2013). AOB 

produce N2O enzymatically through two mechanisms: incomplete oxidation of hydroxylamine 

(NH2OH) to NO2
- and sequential reduction of NO2

- to NO and N2O by "nitrifier-denitrification" 

(Arp and Stein 2003). Although the N2O-producing mechanism within AOA has not been fully 

resolved, it is thought that AOA produce N2O during NH3 oxidation through an abiotic reaction 

between NH2OH and NO, an intermediate of the AOA ammonia oxidation pathway (Stieglmeier 

et al. 2014b), which has been demonstrated for pure cultures (Jung et al. 2011; Stieglmeier et al. 

2014b; Kozlowski et al. 2016; Qin et al. 2017b). AOA-associated N2O production in 

environmental samples has been reported in several studies (Santoro et al. 2011; Löscher et al. 

2012; Hink, Nicol and Prosser 2016; Peng et al. 2016; Giguere et al. 2017; Hink et al. 2018). 

Although some studies have determined the relative contributions of AOA and AOB to soil 

nitrification using selective inhibitors (Taylor et al. 2010, 2013; Daebeler et al. 2015; Giguere et 

al. 2015; Lu, Bottomley and Myrold 2015; Ouyang et al. 2016; Duan et al. 2018), and examined 

the relative contributions of AOA and AOB to nitrifier-dependent N2O production in agricultural 

or non-cropped soils (Shi et al 2017.; Hink, Nicol and Prosser 2016; Wang et al. 2016; Giguere 

et al. 2017), no microcosm study has yet examined the influence of temperature on N2O 

production by AOA and AOB along a soil depth profile. 

In Chapter 2, the influence of depth and land-use on thaumarchaeotal and bacterial 

community composition was characterized within soil samples collected at the rare Charitable 

Research Reserve (Lu, Seuradge and Neufeld 2017; Seuradge, Oelbermann and Neufeld 2017). 

Using this knowledge of thaumarchaeotal and bacterial biogeography, site-specific 

heterogeneity, and depth profiles, the aim of this study was to perform a targeted investigation 

into how AOA and AOB at different soil depths and under different land uses respond to 
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temperature with respect to their relative contributions to ammonia oxidation and N2O 

production.  

3.2 Material and methods 

3.2.1 Site selection and soil sampling 

Soil samples were taken from the rare Charitable Research Reserve (Cambridge, 

Ontario) in early September (“summer” samples) and early November (“autumn” samples) in 

2015. Soil samples were collected at two depths (0-15 and 30-45 cm) from either an agricultural 

site (Preston Flats; A) or forest site (Hogsback; F). Previous research determined sites A and F 

possessed distinct bacterial and thaumarchaeotal communities, with distinct profiles also 

associated with the two depth ranges sampled (Lu, Seuradge and Neufeld 2017; Seuradge, 

Oelbermann and Neufeld 2017). A composite soil sample from each depth at each site was 

generated by randomly collecting 3-5 replicates from the same location as previous sampling 

plots used for a bacterial and thaumarchaeotal biogeography survey (Lu, Seuradge and Neufeld 

2017; Seuradge, Oelbermann and Neufeld 2017). The agricultural site has been under no-till 

management since 2002, operated under a rotation of corn (Zea mays) and soybeans (Glycine 

max) from 2002 to 2011, and a corn monocrop since 2011. The forest site is a mixture of 

northern hardwood and Carolinian tree species, maintained as pristine forest for over 100 years, 

and is thus classified as a mature forest. Soils from both sites are classified as Burford series, 

which is typical for the area along the Grand River. The soils are well-drained and calcareous, 

with a relatively thin A horizon. The B horizons of both soils have a sandy clay loam texture, 

wavily extending into a C horizon that contains over 50% gravel (Presant and Wicklund 1971). 

Soil samples for the incubation experiment were sieved (4.75 mm) and stored at 4°C prior to 
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establishing microcosms, or at -20°C prior to physicochemical analysis at the Agriculture and 

Food Laboratory (University of Guelph). 

3.2.2 Whole soil nitrification assay  

A modified 8-day whole soil assay (Lu, Bottomley and Myrold 2015) was used to 

measure the nitrification potential (NP) attributed to AOA and AOB in composite soil samples. 

Triplicate subsamples from each composite soil were pre-incubated for two days in a 120-mL 

serum bottle (15 g field moisture soil per replicate) at room temperature (22°C) with a loosely 

capped stopper prior to microcosm incubation. This room temperature pre-incubation minimized 

the influence of 4°C storage (Giguere et al. 2015). An NH4Cl solution was added to each 

microcosm, resulting in a final concentration of 200 mg-N kg-1 soildry and a gravimetric water 

content of 30%. Serum bottles were sealed with silica stoppers and incubated in the dark at 20°C, 

30°C, or 40°C. At the beginning of the incubation, triplicate bottles were amended with either 

acetylene (0.02% v/v) or octyne gas (1.9% v/v) following a protocol published elsewhere (Taylor 

et al. 2013). Acetylene was used to irreversibly inactivate ammonia monooxygenase of both 

AOA (Offre, Prosser and Nicol 2009; Vajrala et al. 2013) and AOB (Hyman and Wood 1985), 

whereas octyne is a specific inhibitor of AOB only (Taylor et al. 2013, 2015; Giguere et al. 

2015, 2017; Lu, Bottomley and Myrold 2015; Hink, Nicol and Prosser 2016). To monitor net 

nitrification potential, the incubated soils were sampled at 0, 2, 4, 6, and 8 d by removing 2.5 g 

of soil, and then re-establishing inhibitor concentrations. Nitrification potential rates were 

determined by measuring the accumulation of NO2
-+NO3

- at each sampling point (Taylor et al. 

2010). Total net nitrification potential rates were determined by the accumulation of NO2
-+NO3

- 

without inhibitors (i.e., acetylene or octyne). Nitrification potential in octyne-amended 
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microcosms was attributed to AOA, with the difference between no inhibitor and octyne-

amended microcosms attributed to AOB activity. To determine NO2
-+NO3

- production from 

autotrophic nitrification in the forest soil, NO2
-+NO3

- concentrations in acetylene-amended 

microcosms at each time point were subtracted from those in uninhibited microcosms, as 

described previously (Lu, Bottomley and Myrold 2015). As forest soil microcosms showed a 

decrease in NO2
-+NO3

- concentrations after six days of incubation, indicating a possible increase 

in denitrification activity and/or immobilization (data not shown), only the first six days of data 

were used for analysis. 

3.2.3 Analysis of N2O, NO2
- and NO2

-+NO3
- 

N2O concentrations were determined in the headspace of microcosms immediately before 

each sampling event, as described previously (Coyotzi et al. 2017), with 1 mL gas sampled using 

a disposable syringe and injected into a GC-2014 gas chromatograph (Shimadzu Scientific 

Instruments, Columbia, MD) equipped with a Porapak Q 80-100 column and an electron capture 

detector (ECD).   

Soil NO2
- concentrations were measured directly with Griess reagents, whereas soil NO2

-

+NO3
- accumulation was determined using a vanadium reduction assay to convert NO3

- to NO2
- 

before adding Griess reagents to measure NO2
- (Miranda, Espey and Wink 2001; Sauder et al. 

2017). All assays were conducted in clear flat bottom 96-well plates (Greiner, Frickenhausen, 

Germany) and absorbance measured at 550 nm using a Filtermax F5 Multi-Mode Microplate 

Reader (Molecular Devices, Sunnyvale, CA). 
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3.2.4 DNA extraction and qPCR  

Soil genomic DNA was extracted using the PowerSoil DNA Isolation Kit (MO BIO, 

Carlsbad, CA) according to the manufacturer’s instructions. Ammonia-oxidizing archaea (AOA) 

and bacteria (AOB) were quantified by determining amoA gene abundance using recently 

developed primer sets GenAOAF/R and GenAOBF/R, respectively (Meinhardt et al. 2015). All 

qPCR amplifications used SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, 

CA) and were performed on a CFX96 Real-Time PCR Detection system (Bio-Rad, Hercules, 

CA). All qPCR amplifications were carried out in duplicate 10 µL volumes. Each reaction 

contained 5 µL of 2× SsoAdvanced Universal SYBR Green Supermix, 1 µL of template DNA, 

0.4 µL of a 10 mg mL−1 bovine serum albumin solution, and 0.025 µL of each primer at 100 µM 

concentrations. Thermal cycling conditions were as follows: 3 minutes of initial denaturation at 

98°C, followed by 39 cycles of denaturation at 98°C for 15 seconds and annealing/extension at 

55°C for 30 seconds. The standard curves for both AOA and AOB amoA genes were 

constructing with 10-fold serial dilutions of PCR amplicons generated from the same soil 

samples with the same primers. Efficiencies were 91.2% and 95.8% for AOA and AOB amoA 

qPCR data, respectively. Standard curve R2 values were all >0.99.  

3.2.5 Statistics  

A three-way ANOVA (analysis of variance) was used to identify the effects of land-use, 

depth, and temperature on activity measurements (NO2
-+NO3

- or N2O accumulation), followed 

by a Tukey’s test. Two-way ANOVA was used to assess the influence of depth and temperature 

on NO2
- accumulation. Spearman’s rank order correlation was used to test the relationship 
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between environmental factors and activity measurements or ammonia oxidizer gene 

abundances. All statistical tests were carried out using R 3.2.3 (R Core Team, Vienna). 

3.3 Results 

3.3.1 Soil sample characteristics 

Measured NH4
+ concentrations were influenced by land-use, with higher concentrations 

in composites from forest soil than those from agricultural soil (Table 3.1). The NO3
- 

concentrations were influenced by depth, higher for subsurface agricultural composites than 

subsurface forest soil composites (Table 3.1). The pH of the soil samples spanned a relatively 

narrow range (pH 6.7-8.2). The C:N ratio was highest among subsurface soil samples collected 

from forest sites in autumn (Table 3.1).    

3.3.2 Dynamics of NO2
-+NO3

- accumulation 

Background soil nitrification rates were determined for all soil samples, without 

additional NH4
+ at 30°C, by measuring net accumulation of NO2

-+NO3
-. The background 

nitrification rate was highest (1.44 mg N kg-1 soil d-1) in autumn surface agricultural soils across 

all samples (Figure 3.1). All subsurface soils showed nitrification rates below 0.20 mg N kg-1 soil 

d-1. In all soils, background nitrification rates were attributed primarily to AOA, with octyne-

resistant activity ranging from 63 to 100% of the uninhibited samples (Figure 3.1). Acetylene-

resistant activity was not observed for any soil samples.  

When additional NH4
+ was added to soil samples, detectable NO2

-+NO3
- did not 

accumulate during the six-day incubation time for agricultural soil microcosms in the presence of 

acetylene, indicating that the accumulation of NO2
-+NO3

- in acetylene-free microcosms was 
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Site Sampling 
season 

Depth 
(cm) 

NH4
+ 

(mg N kg soil-1) 
NO3

- 

(mg N kg soil-1) 
Inorganic C 

(%) 
Organic C 

(%) 
Total N 

(%) 
C:N 
ratio pH 

A 
Summer 

0-15 1.22 6.85 1.25 1.59 0.12 23.7 8.0 
30-45 0.60 3.95 0.29 1.21 0.08 18.8 7.7 

F 0-15 10.6 14.3 0.00 5.94 0.33 18.0 6.8 
30-45 8.70 2.98 2.66 1.55 0.08 52.6 7.7 

A 
Autumn 

0-15 0.59 9.41 0.85 1.90 0.13 21.2 7.8 
30-45 0.63 1.53 0.40 0.60 0.05 20.0 7.9 

F 0-15 3.39 9.14 0.00 2.89 0.16 18.1 6.7 
30-45 0.95 0.62 5.91 0.47 0.05 127.6 8.2 

Table 3.1 – Soil physicochemical properties 

Properties of soil samples from active agricultural (A) and forest (F) sites. Soils were composites of field replicates. 
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dominated by autotrophic nitrifiers. However, a relatively small amount of acetylene-resistant 

activity (up to 9.2% in surface soil and 12.2% in subsurface soil) was detected in autumn forest 

soils after four days of incubation, suggesting heterotrophic nitrification. The overall nitrification 

potential (NP) ranged from 0.72±0.16 to 6.73±0.11 mg N kg-1 soil d-1 for summer surface soils 

Figure 3.1 – Soil background nitrification rates 

Background nitrification rates in autumn (A and C) and summer (B and D) soil samples with (grey)/without 
(black) octyne. Surface soils (A and B) are in general more active than subsurface soils (C and D), except 
for summer agricultural soils. Nitrification rate was measured as the accumulation of NO2

-+NO3
-. The soils 

were incubated at 30°C. 
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and 0.18±0.03 to 1.88±0.12 mg N kg-1 soil d-1 for summer subsurface soils (Figures 3.2A and B), 

and 0.22±0.05 to 8.46±0.48 mg N kg-1 soil d-1 for autumn surface soils and 0.04±0.02 to 

0.24±0.11 mg N kg-1 soil d-1 for autumn subsurface soils (Figures 3.2E and F). No NP was 

detected in the subsurface forest soil (autumn) replicates incubated at 40°C (Figures 3.2F and H). 

The overall NP was influenced by land use type (p < 0.001), depth (p < 0.001), and temperature 

(p < 0.001). Interactions among the three factors were detected by a three-way ANOVA and, as a 

result, the overall NP was analyzed independently for each soil type. In general, agricultural soils 

had a higher overall NP than forest soil, and surface soils higher than subsurface soils, at the 

Figure 3.2 – Nitrification potential 

Overall nitrification potential (A, B, E, and F) and AOA-associated nitrification potential (C, D, G and 
H) of a six-day whole soil incubation for both agricultural (A and C, E and G) and forest (B and D, F 
and H) soils at three different incubation temperatures (20, 30, and 40°C) and depths (0-15 and 30-45 
cm). Summer (A-D) and autumn (E-H) soils are included. The NP was measured as nitrite and nitrate 
accumulation per gram of soil per day. No activity was detected in subsurface forest soils collected in 
autumn. 
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same incubation temperature (Figures 3.2A, B, E, and F). Surface soils under both land uses 

reached greatest activity at 30°C for soils collected in both seasons but statistical analysis 

indicated no significant difference between nitrification activity measured at 30 and 40°C (p = 

0.18), nor between 20 and 40°C (p = 0.13) among agricultural soils collected in autumn. For 

subsurface soils, higher nitrification activity was observed at 20°C across autumn agricultural 

and forest site samples, but not significantly different from other temperatures (p > 0.05). 

Agricultural subsurface soil sample collected in summer reached highest activity at 30°C (p < 

0.01), and its NP was even higher than summer forest surface soil sample incubated at 40°C (p < 

0.01).  

The AOA-associated (octyne-resistant) NP increased with incubation temperature in 

surface soils for both agricultural and forest samples collected in autumn (Figures 3.2G and H). 

In autumn agricultural soil, the lowest and highest rates were observed at 20 and 40°C for 

surface samples, respectively (Figure 3.2G). Within surface forest soils, the highest AOA-

associated NP was 0.55±0.22 mg N kg-1 soil d-1 (Figure 3.2H), which was only 8.8% of highest 

rate observed for the agricultural soil. No statistical difference was detected among AOA-

associated NP in subsurface soils (autumn) from either agricultural or forest sites, respectively. 

Agricultural soils collected in summer showed different temperature responses in terms of AOA-

associated activity. The lowest AOA-associated activity for surface soil was detected at 30°C, 

with similar NP as that of autumn samples at 20°C (Figure 3.2C). Similar to autumn samples, no 

significant difference was detected among forest surface soils collected in summer under 

different temperatures (p > 0.05; Figure 3.2D).  
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In order to evaluate the relative contribution of AOA to total (AOA- and AOB-

associated) nitrification, the proportion of AOA-supported nitrification to total nitrification 

activity was calculated (Figure 3.3). AOA relative activity ranged from ~5 to 98% across all 

microcosms from the agricultural and forest sites, and across multiple depths and temperatures 

(Figure 3.3). When incubated at 40°C, nitrification in all soils was dominated by AOA (mean 

percentage > 50%), except for autumn subsurface forest soils where no activity was detected. 

Figure 3.3 – AOA contribution to nitrification  

Relative contribution of AOA to total nitrification activity in summer (A and B) and autumn (C 
and D) soil samples collected from both agricultural (black) and forest (gray) sites, incubated at 
three different incubation temperatures (20, 30, and 40°C). Two depths were included: surface 
(0-15 cm; A and C) and subsurface (30-45 cm; B and D). The AOA contribution is calculated by 
dividing octyne-resistant activity over total activity. No activity was detected in subsurface 
forest soils collected in autumn. 
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The AOA-associated activity was 100% in surface forest soil collected in summer (Figure 3.3A) 

and subsurface agricultural soil collected in autumn (Figure 3.3D). At 20°C, agricultural soils 

and subsurface forest soil replicates were dominated by AOB-associated nitrification among 

autumn samples, but switched to AOA-dominance in summer samples. The only two summer 

soil samples with activity dominated by AOB were agricultural soils from both depths incubated 

at 30°C (Figures 3.3A and B). Furthermore, two-way ANOVA showed that the proportion of 

AOA-associated activity for agricultural soils was influenced significantly by temperature (p = 

0.003 summer soils, p < 0.001 autumn soils) and depth (p = 0.01 summer soils, no significant 

difference among autumn soils). For AOA-associated forest soil proportions, no significant depth 

effects were detected for samples collected in both seasons, whereas temperature (p < 0.001) 

showed a significant influence on autumn samples, but not on summer samples. Three-way 

ANOVA detected significant land-use effect on AOA-associated activity percentage only among 

autumn samples (p < 0.001), but land use effect was insignificant among summer samples (p = 

0.103). 

3.3.3 AOA and AOB amoA gene abundance  

Overall AOA amoA gene abundance decreased with depth in all samples (Figure 3.4), 

with significant differences only detected among autumn samples (p = 0.59 summer soils, p < 

0.01 autumn soils). AOB amoA gene abundance were similar at each depth among summer 

samples (p = 0.98), as well as autumn forest samples (p = 0.83). A significant decrease of AOB 

amoA gene abundance with increasing depth was only detected among autumn agricultural 

samples (p < 0.01). Temporal change was detected among AOA amoA gene abundance in 

subsurface soils from both land-use type (p = 0.04 agricultural soils, p = 0.02 forest soils), but no 
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significant change was detected in surface soils. In contrast, AOB amoA gene abundance was 

relatively stable in both seasons, with no significant change detected in either surface or 

subsurface soils.    

When correlated with environmental factors, summer and autumn samples showed a 

different trend. AOA amoA gene abundance decreased with pH (p < 0.001, rho = -0.85) and 

increased with soil NO3
- content (p < 0.001, rho = 0.89) in autumn samples, but not in summer 

samples. Summer soil AOA amoA gene abundance increased with total carbon (p = 0.04, rho = 

0.68). AOB amoA gene abundance decreased with total carbon (p = 0.03, rho = -0.69, autumn; p 

= 0.02, rho = -0.76, summer) and soil NH4
+ content (p = 0.03, rho = -0.82, autumn), and 

increased with NO3
- (p = 0.02, rho = 0.70, autumn) and pH (p = 0.03, rho = 0.71, summer). 

3.3.4 N2O production dynamics with NO2
-+NO3

- accumulation 

Across all microcosm incubations, N2O production was only detected in surface 

agricultural soil replicates incubated at 30°C. The overall six-day average N2O production rate 

for autumn replicates was 0.02 mg N2O-N kg soil-1 d-1, and 0.14 mg N2O-N kg soil-1 d-1 for 

summer. Proportional yields of N2O were calculated as accumulation of N2O-N divided by NO2
-

+NO3
--N accumulation. The six-day average yield for the whole soil incubation was 0.28±0.14% 

for autumn samples and 2.18±0.53% for summer samples (Table 3.2). 	
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 Incubation time 
(day) 

N2O accumulation (mg N 
kg-1 soil) 

Total NO2
-+NO3

- 

accumulation 
(mg N kg-1 soil) 

AOB NO2
-+NO3

- 

accumulation 
(mg N kg-1 soil) 

Total N2O yield 
(%)* 

AOB N2O yield 
(%)† 

Autumn 
soils 

2 0.05 (0.05) 33.5 (6.07) 12.3 (3.96) 0.16 (0.21) 0.53 (0.72) 
4 0.13 (0.08) 38.5 (3.06) 26.3 (2.15) 0.36 (0.22) 0.51 (0.29) 
6 0.15 (0.08) 50.8 (2.87) 31.5 (6.25) 0.28 (0.14) 0.51 (0.36) 

Summer 
soils 

2 0.05 (0.02) 14.3 (0.72) 11.5 (1.08) 0.37 (0.12) 0.46 (0.13) 
4 0.53 (0.11) 22.3 (1.65) 19.6 (1.66) 2.43 (0.62) 2.77 (0.73) 
6 0.88 (0.21) 40.4 (0.64) 36.3 (0.57) 2.18 (0.53) 2.43 (0.59) 

Table 3.2 – Nitrification dynamics during incubation  

Ammonia oxidation and N2O production in surface agricultural soil incubated for 2, 4, or 6 days. All values are given mean with 
standard deviation (n=3). Soils were composites of field replicates.  

Percentage yields of N2O were calculated as accumulation of N2O-N divided by NO2
-+NO3

--N accumulation. * Total N2O yield was 

calculated by dividing N2O accumulation by total NO2
-+NO3

--N accumulation; † AOB N2O yield was calculated by dividing N2O 

accumulation over AOB NO2
-+NO3

--N accumulation.  
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By day six, 2.33 and 5.46 nmol g soil-1 N2O was recorded in the acetylene-treated 

replicates for autumn and summer soils, respectively, which was likely not associated with 

nitrification because detectable levels of NO2
-+NO3

- did not accumulate in the acetylene 

treatments in these agricultural soils. An additional 5.24 nmol N2O g soil-1 production was 

measured in the absence of acetylene for autumn samples, which was inferred to be associated 

with nitrification. The N2O concentration detected in summer soils in the absence of acetylene 

was 31.4 nmol N2O g soil-1, six times higher than that of autumn soils. Octyne-treated 

agricultural soil had no detectable N2O production, indicating that AOA (octyne-resistant) were 

Figure 3.4 – AOA and AOB abundance in soil samples 

Abundance of amoA genes from ammonia-oxidizing archaea (upper) and bacteria (bottom) in active 
agricultural and forest soils. 
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not responsible for the N2O production. The six-day average N2O yield for AOB only was 

0.51±0.36% for autumn soils and 2.43±0.59% (Table 3.2) for summer soils. The six-day average 

N2O production rate per cell was estimated to be 1.44×10-7 nmol cell-1 d-1 for AOB-supported 

nitrification in autumn soils and 8.84 ×10-7 nmol cell-1 d-1 for summer soils.  

N2O yields after 2, 4, and 6 days of incubation were calculated for both AOB-dominated 

(octyne-sensitive) and total activity (Table 3.2). The N2O yield correlated significantly with 

incubation time (p < 0.05) for both AOB-dominated and total activity, indicating the production 

of N2O together with NO2
-+NO3

- accumulation was not independent of incubation time. A 

comparison of the N2O yields in the AOB-dominated versus total activity at each sampling point 

(days 2, 4, and 6) confirmed that AOA did not contribute significantly to N2O production. The 

statistical analysis did not detect any significant differences between N2O yields for AOB-

dominated and total activity at the three time points (p > 0.05). 

3.3.5 Dynamics of NO2
- accumulation and N2O production  

NO2
- accumulation was detected only in surface and subsurface agricultural soil 

microcosms without any inhibitor (octyne or acetylene), collected either in summer and autumn 

(Figure 3.5), with accumulation rates ranging from 0.002 to 5.82 mg N kg-1 soil d-1. In surface 

agricultural soil microcosms, NO2
- was detected after 2 days incubation, and the percentage of 

NO2- relative to total NO2
-+NO3

- concentrations increased with incubation time reaching 45.9% 

and 68.8% in summer and autumn soil microcosms, respectively, after incubation at 30°C for 6 

days (Figures 3.5A and C). In subsurface soil microcosms incubated at 30°C, this proportion 
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reached 100% after 4-and 6-days incubation in summer and autumn samples, respectively 

(Figures 3.5B and D). NO2
- accumulation was also observed in autumn surface agricultural soils 

incubated at 20 and 40°C (Figure 3.5C) and summer subsurface soils at 20°C (Figure 3.4B). 

Both temperature (p < 0.001) and incubation time (p < 0.001) influenced the NO2
- proportion 

significantly in surface autumn samples (Figure 3.5C).      

For surface agricultural soil microcosms where N2O production was detected, NO2
- 

accumulation started at 2.29 mg N kg-1 soil after 2 days incubation, and reached 18.5 mg kg-1 and 

34.9 mg N kg-1 soil after 6 days incubation in summer and autumn soil microcosms, respectively. 

The N2O accumulation rate in summer agricultural soils correlated significantly with NO2
- 

accumulation (R2 = 0.67, p = 0.004), but no significant correlation was observed in autumn 

agricultural soils (R2 = 0.13, p = 0.19) (Figure 3.6).   

Figure 3.5 – Nitrite accumulation in 
soils during incubation.  

Fraction of NO2
- in NO2

-+NO3
- 

accumulation in agricultural surface (A 
and C) and subsurface (B and D) soils 
collected in summer (A and B) and 
autumn (C and D) at 20, 30, and 40°C 
measured after 2, 4, and 6 days of 
incubation. NO2

- accumulation in surface 
summer soil and subsurface autumn soil 
was detected only at 30°C.    
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3.4 Discussion 

3.4.1 Relative contributions of AOA and AOB to soil nitrification 

The effect of temperature on short-term (≤6 days) AOA-associated (octyne-resistant) and 

AOB-associated (octyne-sensitive) ammonia oxidation activity in surface (0-15 cm) and 

subsurface (30-45 cm) agricultural and forest soils were examined. At the same time, N2O 

produced during ammonia oxidation was measured together with NO2
-+NO3

- accumulation. 

Although several studies have reported the activity of AOA isolates at 35-72°C (De La Torre et 

al. 2008; Tourna et al. 2011; Lehtovirta-Morley et al. 2016), the influence of temperature on in 

situ ammonia oxidation was not clear prior to this study.  

During the soil microcosm incubations, additional NH4
+ increased the octyne-sensitive 

(AOB-associated) contribution to overall activity compared to no addition, except for autumn 

subsurface agricultural soil and autumn subsurface forest soil. This NH4
+-induced AOB activity 

Figure 3.6 – Nitrous oxide emission 
under different nitrite accumulation.  

Correlation between N2O and NO2
- 

accumulation in agricultural surface soils 
throughout 6 days incubation at 30°C. 
Circles: summer soil; triangles: autumn soil. 
Significant (p < 0.05) correlation was only 
observed in summer soil. 
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was reported in several studies (Jia and Conrad 2009; Taylor et al. 2010, 2012; Xia et al. 2011; 

Giguere et al. 2015; Ouyang et al. 2016; Hink et al. 2018). Absolute AOA-associated 

nitrification potential was higher within agricultural soil samples than forest soils at each 

incubation temperature (Figures 3.2C, D, G, and H). Given that AOA abundance was of the same 

order of magnitude among forest and agricultural soils at the same depth, this discrepancy 

between agricultural and forest soil AOA-associated ammonia oxidation rates is probably due to 

the differences in AOA community composition in these two soils.  

3.4.2 Temperature effect on nitrification 

In this study, temperature was identified as an important factor controlling the magnitude 

of AOA and AOB ammonia oxidation and N2O production. The highest AOA-associated and 

AOB-associated activity in surface soils was observed at 40°C and 30°C, respectively. The 

highest AOA-associated activity in subsurface agricultural soils was recorded at 40°C for both 

summer and autumn soils, whereas 20°C and 30°C favored AOB-associated activity in autumn 

and summer subsurface agricultural soil, respectively. In forest subsurface soils, the optimal 

temperature for AOB showed seasonal variation, 20°C in autumn soil and 30°C in summer soil, 

but 40°C did not favor AOB activity in either soil. In general, the results showed that AOA were 

more active at higher temperature, whereas AOB preferred lower temperature. Several studies 

have reported a dominance of AOB for agricultural soil ammonia oxidation (Jia and Conrad 

2009; Xia et al. 2011; Ouyang et al. 2016), within which soil microcosms were carried out at 

temperatures ~27°C, which agreed with the results at 30°C for both surface agricultural and 

surface forest soils. Recently, Taylor and colleagues (2017) reported that soil AOA and AOB 

contributed differently to ammonia oxidation across a temperature range of 4-42°C, with AOA 
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having optimal temperatures at least 12°C higher than AOB. A similar pattern was observed in a 

slurry incubation with greenhouse agricultural soils covering 5-45°C (Duan et al. 2018). It has 

been suggested that results from a slurry assay may not extrapolate to whole soil incubations 

because of disturbed homogenizing incubation and redox conditions, which can influence 

ammonia oxidation rates (Lu, Bottomley and Myrold 2015). However, a similar pattern was 

observed in this study, with AOA showing higher activity at elevated temperatures compared to 

AOB, as found previously by Taylor et al. (2017) and Gubry-Rangin et al. (2017). In addition, 

there may be a confounding influence of temperature with soil pH, which has been demonstrated 

to be a major factor determining thaumarchaeotal niche differentiation (Prosser and Nicol 2012). 

A differential temperature response of the thaumarchaeotal community varying with soil pH was 

similar to that observed by Gubry-Rangin et al. (2017), indicating a pH-dependent selection 

mechanism on AOA populations with different optimal growth temperatures. The different 

optimal temperature of soil AOA along soil depth in this study also suggested the potential that 

different AOA lineages may be present along the soil profile, both in forest and agricultural soils.       

3.4.3 Temperature effect on soil N2O production 

The detection of N2O production in surface agricultural soils only at 30°C provides 

evidence for a temperature-dependent influence on N2O production via nitrification. However, it 

should be noted that an inability to detect the presence of N2O at 20 or 40°C does not necessarily 

mean the absence of N2O under those conditions. The N2O detection limit of the method used in 

this study was 0.05 nmol g-1 soil. Based on an agricultural soil AOA pure culture, whose N2O 

yield is 0.08-0.23% (Jung et al. 2011, 2014b), the calculated archaeal N2O production at 40°C 

would be ~0.18-0.52 nmol g-1 soil d-1 for autumn agricultural soils and 0.09-0.27 nmol g-1 soil d-1 
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for summer agricultural soils used in this study. This theoretical value is above the detection 

limit, so it is more likely that in the soil samples used here, the actual AOA-associated N2O 

production was not as high as in pure cultures. Such a low in situ N2O production rate by AOA 

was also reported by Hink et al., (2017, 2018) with inorganic N addition. In addition, soil pH 

may have a role in determining N2O yields by AOA. Currently, the highest measured N2O yield 

for a cultured AOA is for the acidophilic I.1a-associated archaeon strain CS isolated from acid 

mine sediment (original pH 3.4, grown at pH 5.0), demonstrating ~5-50 times higher N2O 

production than other agricultural strains isolated from soils with neutral pH (6.5-7.5) (Jung et al. 

2014b). These results suggest a different N2O production mechanism in acidic soils where AOA 

are probably the major contributors under oxic conditions. Acidic AOA might produce N2O via 

the formation of nitrosonium cation (NO+) from nitrous acid (HONO) under acidic conditions 

(Hughes 1999). However, this process might rely more on abiotic hybrid via nucleophilic 

nitrosation of NH2OH (Spott, Russow and Stange 2011), and it still remains unclear what 

mechanism is used by acidophilic AOA. However, given the non-acidic pH of the soils in this 

study, the low AOA-associated N2O yield is possibly due to the absence of this abiotic hybrid 

process. The high yield of acidophilic AOA strains is also possibly due to their high sensitivity to 

nitrite, which can inhibit the growth of Nitrosotalea devanaterra and strain CS at 40 µM and 100 

µM, respectively (Lehtovirta-Morley et al. 2011; Jung et al. 2014b), whereas Nitrososphaera 

viennensis, isolated from neutral pH soil, can tolerate a nitrite concentration ~100 times higher 

than N. devanaterra (Tourna et al. 2011). The detected N2O in the headspace represented net 

N2O accumulation, with N2O consumption processes potentially occurring simultaneously. 

Denitrification is considered the major N2O consumption pathway in soil (Vieten et al. 2008; Hu 

et al. 2015) and although oxic conditions were maintained during microcosm incubation, it is 
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possible that some microsites had low oxygen concentrations during the incubation which 

facilitated denitrification activity. Subsurface soil samples may naturally possess higher 

denitrification activity due to low in situ oxygen concentrations and thus a greater denitrifier 

activity. In previous research, potential denitrifiers were identified including Pseudomonas and 

Thiobacillus in these rare site soils (Seuradge, Oelbermann and Neufeld 2017). Therefore, the 

absence of detected N2O in some soils may be the result of relatively high denitrification activity 

resulting in the lowering of N2O concentrations to less than the detection limit.        

Seasonal (temporal) changes in N2O production and nitrification were also detected in 

these soil samples. The summer samples showed a 10-fold higher N2O yield than autumn soil 

samples, indicating the potential change of active populations in these soil samples. This 

difference might be due to different soil temperatures when soil samples were collected. The 

summer soil was 26°C when sampled and the autumn soil was 14°C; distinct ammonia oxidizer 

populations may have been selected during this time. Taylor and colleagues (2017) recently 

modeled temperature responses of AOA and AOB and demonstrated that AOA and AOB 

showed highest nitrification activity under different temperatures. The optimal temperature for 

AOA was close to 40°C for the soils samples they used, and AOB always showed highest 

activity below 30°C, and sometimes below 20°C. This range matched the soil temperature when 

sampled, and may have explained the AOB-dominant activity difference between the two 

sampling times. However, identification of the active lineages in these soils under different 

temperatures would enable comparison of their in situ nitrification activities to isolates or 

enrichments.  
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3.4.4 Influence of NO2
- accumulation on soil N2O production 

The results demonstrated a positive correlation between NO2
- accumulation and N2O 

production in surface agricultural soil during a 6-day incubation period (Figure 3.6). Although 

this correlation was not significant for autumn soil, a strong positive correlation was found in soil 

samples collected from the same site in summer, indicating a possible seasonal effect on NO2
- 

accumulation and nitrifier-associated N2O production in this agricultural soil. An association 

between aerobic N2O production and NO2
- accumulation in soil has been observed in several 

studies (Venterea 2007; Maharjan and Venterea 2013; Venterea et al. 2015; Giguere et al. 2017; 

Duan et al. 2018). However, AOA- or AOB-dependent N2O production was also observed in 

soils where NO2
- was not detected (Hink, Nicol and Prosser 2016). Both NO2

--dependent and 

independent N2O production were observed in the same agricultural soils collected in different 

seasons, indicating a seasonal effect on AOA- or AOB-associated N2O production. Indeed, both 

NO2
--dependent and independent N2O-producing mechanisms in ammonia oxidizers have been 

proposed in a number of studies (Cantera and Stein 2007; Jung et al. 2014b; Kozlowski, Price 

and Stein 2014; Stieglmeier et al. 2014b), and nitrite-dependent N2O production might be a 

detoxifying mechanism to protect nitrifiers from nitrite toxicity (Jung et al. 2014b). Moreover, 

growth of the recently discovered comammox bacterium Nitrospira inopinata can result in 

transient NO2
- accumulation during complete oxidation of NH3 (Kits et al. 2017), although the 

accumulated nitrite was subsequently converted to nitrate. Although it is likely that transient 

NO2
- accumulation was the result of a temporary differences in the capacity between active 

ammonia and nitrite oxidizing populations, there is a possibility that this short-term incubation 

covered only the period of nitrite accumulation by comammox, if they were present in these soil 

samples. Given the possibility of an inhibition effect of octyne on comammox bacteria, it is 
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possible that nitrite accumulation detected in soil samples without added octyne was produced by 

comammox bacteria in addition to AOB. Regardless of the NO2
- source, the results confirmed the 

presence of NO2
--dependent and independent N2O production in the agricultural soils, and more 

importantly, the temperature-dependent nature of this mechanism.  

3.4.5 Relative contributions of AOA and AOB to N2O production 

In these soils, AOB-associated N2O production showed N2O yields of ~0.50% for autumn 

samples and 2.43% for summer samples, a little higher than the range reported for Nitrosomonas 

europaea (Jung et al. 2011, 2014b), but within in the reported range of 0.02 to 7.6% (Shaw et al. 

2006; Mørkved, Dörsch and Bakken 2007; Santoro et al. 2011; Zhu et al. 2013; Jung et al. 

2014b; Stieglmeier et al. 2014b; Hink, Nicol and Prosser 2016; Hink et al. 2018). The per cell 

AOB N2O production rate (1.44×10-7 nmol cell-1 d-1 autumn, 8.84 ×10-7 nmol cell-1 d-1 summer) 

was calculated for the six-day incubation period, using the original AOB amoA gene abundance 

as an estimation. Considering that growth may have occurred during the six-day incubation, the 

actual N2O-producing rate may be lower than the calculated value. Isolated representatives of 

Nitrosospira, which are typically the dominant soil AOB group, can have N2O production rates 

of 0.9-1.4×10-7 nmol cell-1 d-1 (Smith et al. 2001), and the rate of N. europaea can be as high as 

13.9×10-7 nmol cell-1 d-1 (Shaw et al. 2006). In general, AOB cultures have higher N2O yields 

than AOA cultures, particularly when compared to marine AOA (Shaw et al. 2006; Jung et al. 

2011, 2014b; Santoro et al. 2011; Stieglmeier et al. 2014b). This higher rate of N2O production 

by AOB compared to AOA might be explained by AOB producing N2O via two enzymatic 

mechanisms (i.e. the incomplete oxidation of hydroxylamine and nitrifier-denitrifcation) whereas 

it has been proposed that N2O derived from AOA is only produced via the abiotic interaction of 
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hydroxylamine and NO (Kozlowski et al., 2016). However, although Stieglmeier et al. (2014b) 

suggested that AOA may not be capable of nitrifier-denitrification, NO2
--dependent N2O 

production was measured during AOA-supported nitrification recently by Giguere et al. (2017), 

which raises the need for further investigation into NO2
- stimulation of N2O production.    

3.5 Conclusion 

The results highlight differential temperature responses of AOA and AOB, with AOA 

dominating nitrification at higher soil temperatures. Soil AOB were identified as major 

contributors to N2O production through ammonia oxidation in the tested agricultural samples, 

influenced by temperature. Surface soils were major N2O sources, whereas subsurface soils may 

not contribute significantly to soil N2O production.
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Chapter 43 

A keystone role for soil cobalamin producers  

4.1 Introduction 

Vitamin B12 (cobalamin), once referred to as “nature’s most beautiful cofactor” (Stubbe 

1994), plays an important role as a coenzyme involved in the synthesis of nucleotides and amino 

acids, in addition to carbon processing and gene regulation within cells across all domains of life 

(Roth, Lawrence and Bobik 1996; Romine et al. 2017). Despite widespread metabolic 

dependency on cobalamin, only a relatively small subset of bacteria and archaea are capable of 

its production (Zhang et al. 2009; Degnan et al. 2014; Seth and Taga 2014). Cobalamin is 

present in natural systems in several chemical forms, including the enzymatically active forms of 

adenosylcobalamin (Ado-B12) and methylcobalamin (Me-B12), and the inactivated forms of 

hydroxocobalamin (OH-B12) and cyanocobalamin (CN-B12). Cobalamin biosynthesis requires 

more than 30 enzymatic steps (Roth et al. 1993; Blanche et al. 1995) via aerobic or anaerobic 

pathways (Raux et al. 1999) and represents a high genomic and metabolic burden for producers.  

Previous research on microbial cobalamin production and its environmental significance 

has focused on marine systems where many eukaryotic primary producers are cobalamin 

dependent and limited by the availability of this short-lived cofactor, demonstrating a significant 

role for cobalamin in controlling ocean microbial community composition (Panzeca et al. 2006; 

Tang, Koch and Gobler 2010; Bertrand et al. 2011; Giovannoni 2012; Sañudo-Wilhelmy et al. 

2014; Doxey et al. 2015; Helliwell et al. 2016; Heal et al. 2017; Frischkorn, Haley and Dyhrman 

2018; Walworth et al. 2018). Metagenomes, full genomes, and biochemical analyses revealed 

																																																													
3	A	version	of	this	chapter	has	been	submitted	for	publication	in	Nature	Microbiology:	
Lu	X,	Heal	KR,	Ingalls	AE,	Doxey	AC,	Neufeld	JD.	A	keystone	role	for	soil	cobalamin	producers.	Under	review.		
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that taxa affiliated with Proteobacteria and Thaumarchaeota are major marine cobalamin 

producers (Doxey et al. 2015; Heal et al. 2017), whereas marine Cyanobacteria produce 

pseudocobalamin, a closely related compound with limited bioavailability (Heal et al. 2017). 

Recent understanding of marine cobalamin concentrations and forms has been furthered by 

methodological advances enabling the direct measurement of cobalamin in environmental 

samples (Heal et al. 2014). Together, the availability of metagenomic data and advances in 

analytical chemistry techniques provide an ideal framework for exploring cobalamin production, 

consumption, exchange, and interdependecies in terrestrial ecosystems. 

Soils harbor high densities of microbial biomass densities and host some of the most 

diverse microbial communities on Earth (Richter and Markewitz 1995; Daniel 2005; Roesch et 

al. 2007). The majority of soil biogeochemical processes are mediated by microorganisms 

(Nannipieri et al. 2003) and the sustainability of agricultural soils relies on microbial 

communities that govern nutrient supplies to plants and crops (Kennedy and Smith 1995). 

Therefore, it is crucial to elucidate the factors that influence soil microbial diversity, activity, and 

physiology in order to understand the controls on terrestrial biogeochemical functions (Bier et al. 

2015; Louca, Parfrey and Doebeli 2016). As a cofactor required by a majority of microorganisms 

(Rodionov et al. 2003), cobalamin availability and distribution in soils are constrained by 

microbial producers, which might have profound and unexplored impacts on terrestrial 

biogeochemical cycles. Because cobalamin-dependent enzymes include ribonucleotide reductase 

(Dickman 1977), methyltransferases (Banerjee 1999), and reductive dehalogenases (Janssen, 

Oppentocht and Poelarends 2001), cobalamin availability governs a wide range of microbial 

processes, such as DNA replication and repair (Blakley and Barker 1964; Blakley 1965), 

regulation of gene expression (Ortiz-Guerrero et al. 2011), amino acid synthesis (Banerjee and 
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Matthews 1990), CO2 fixation (Berg et al. 2007), recycling of carbon to the tricarboxylic acid 

(TCA) cycle (Bertrand and Allen 2012), and aromatic compound detoxification (Giedyk, 

Goliszewska and Gryko 2015).    

Nearly seventy years ago, microbial cultivation efforts showed that a high proportion of 

cultured soil bacteria rely on exogenous cobalamin (Lochhead and Thexton 1951; Lochhead, 

Burton and Thexton 1952; Lochhead and Burton 1956), with the implication that a cohort of soil 

microorganisms may serve as in situ sources of this essential cofactor. Since these early studies, 

there has been a lack of research into the microbiology of soil cobalamin production, presumably 

due to both an inability to measure soil cobalamin and the limitations of relying on cultivation-

based approaches. In this study, cobalamin-producing genes in soil metagenomes are identified 

and quantified with profile hidden Markov models (HMMs) and relate the distribution and 

taxonomy of cobalamin biosynthesis genes to genes involved in cobalamin transport and 

utilization. Because many microorganisms require cobalamin as a cofactor, there would be a link 

between the relative abundances of cobalamin consumers and cobalamin producers/remodelers. 

In addition to metagenomic analyses, the standing stock of in situ cobalamin in representative 

soil samples were quantified and characterized and potential links between cobalamin and soil 

microbial community composition and abundance were assessed. 

4.2 Materials and methods  

4.2.1 Soil metagenomes and marker gene selection  

A set of 155 soil metagenomes were retrieved from the Metagenomics RAST Server 

(MG-RAST; Appendix A), ensuring a diverse selection of soil habitats including grassland,  
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agriculture, forest, desert, cold desert, wetland, pasture, and tundra. A set of 12 genes were 

chosen to represent both aerobic and anaerobic cobalamin biosynthesis pathways (Table 4.1), 

minimizing a potential pathway-specific bias, as described previously for the analysis of marine 

metagenomes (Doxey et al. 2015; Heal et al. 2017). These marker genes for cobalamin 

Category HMM TIGRFAM/PFAM HMM length Group 

corrin ring biosynthesis cobI_cbiL TIGR01467 230 A 

corrin ring biosynthesis cobJ_cbiH TIGR01466 239 A 

corrin ring biosynthesis cobM_cbiF TIGR01465 247 A 

corrin ring biosynthesis cbiE TIGR02467 204 A 

corrin ring biosynthesis cbiT TIGR02469 124 A 

corrin ring biosynthesis cobH_cbiC PF02570 196 A 

corrin ring biosynthesis cobB TIGR00379 449 A 

final synthesis and repair cobA TIGR00708 177 B 

final synthesis and repair cobQ TIGR00313 477 B 

final synthesis and repair cobD TIGR00380 305 B 

final synthesis and repair cobS TIGR00317 241 B 

DMB synthesis and activation bluB TIGR02476 205 C 

cobalamin transporter gene btuB TIGR01779 614 NA 

phylogenetic marker rpoB FunGene 2842 NA 

Methionine metabolism metH TIGR02082 1182 NA 

methylmalonyl-CoA mutase mutA TIGR00642 620 NA 

16S rRNA (cytosine(967)-
C(5))-methyltransferase rsmB TIGR00563 437 NA 

Table 4.1 – The HMMs used in the study of soil cobalamin. 

For information on the whole pathway: 

http://www.jcvi.org/cgi-bin/genome-
properties/GenomePropDefinition.cgi?prop_acc=GenProp0113 
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production were classified into three categories (group A, corrin ring biosynthesis; group B, final 

synthesis and repair; group C, DMB synthesis) (Bertrand et al. 2015; Heal et al. 2017). Species 

included in any of the three groups must show the presence of all marker genes within that group 

from the same soil metagenome, and the taxa with complete cobalamin synthesis pathways were 

assigned based on the presence of all 12 cob/cbi genes in the same taxonomic group from the 

same soil metagenome. Microbial community size was estimated by quantifying the amount of a 

single-copy gene for the RNA polymerase beta subunit (rpoB) (Dahllöf, Baillie and Kjelleberg 

2000; Case et al. 2007; Kembel et al. 2012). The cobalamin transporter gene, btuB (Cadieux and 

Kadner 1999; Chimento et al. 2003), was selected as a marker for evaluating cobalamin uptake 

potential. Three cobalamin-dependent enzyme coding genes, metH, mutA, and rsmB (Romine et 

al. 2017) were included to further explore cobalamin consuming potential in addition to uptake 

by btuB transporter. The input HMM profiles (Table 4.1) for cob/cbi, btuB, bluB, metH, mutA, 

and rsmB genes were retrieved from TIGRFAM (Haft, Selengut and White 2003) or Pfam (Finn 

et al. 2016), and the phylogenetic marker, rpoB, from FunGene (Fish et al. 2013). 

4.2.2 Taxonomic classification using functional genes 

MetAnnotate (Petrenko et al. 2015), was used to mine for selected marker genes (Table 

4.1) in soil metagenomes. Each HMM is searched via HMMsearch (Eddy 1998) against RefSeq 

release 80 (O’Leary et al. 2016) for reference homologs, and against the 155 soil metagenomes 

for metagenomic homologs, with an E-value threshold of 10-6. Taxonomic classifications were 

made based on the best hits in the NCBI RefSeq database release 80, as predicted using 

USEARCH (Edgar 2010) with a 50% minimum amino acid identity threshold. Metagenome 

HMM hit counts were normalized by HMM length.  
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Sample  Project Land use 
10AS CM2BL Agricultural soil - soy 

11AW CM2BL Agricultural soil - wheat 

13CO CM2BL Compost 

1AT CM2BL Arctic Tundra 

20CG CM2BL UW community garden 

2ATN CM2BL Arctic Tundra 

4TS CM2BL Sand 

5BF CM2BL Boreal coniferous forest 

6TD CM2BL Temperate deciduous forst 

7TR CM2BL Temperate rain forest 

8NP CM2BL Northern peatlands 

9WLM CM2BL Wetland soil 

pH4-5 Scotland pH plot Agricultural 

pH5-0 Scotland pH plot Agricultural 

pH5-5 Scotland pH plot Agricultural 

pH6-0 Scotland pH plot Agricultural 

pH6-5 Scotland pH plot Agricultural 

pH7-0 Scotland pH plot Agricultural 

pH7-5 Scotland pH plot Agricultural 

AA_L1 rare Agricultural 0-15 cm 

AA_L2 rare Agricultural 15-30 cm 

AA_L3 rare Agricultural 30-45 cm 

D03_L1 rare Decommissioned agricultural 0-15 cm 

D03_L2 rare Decommissioned agricultural 15-30 cm 

D03_L3 rare Decommissioned agricultural 30-45 cm 

D07_L1 rare Decommissioned agricultural 0-15 cm 

D07_L2 rare Decommissioned agricultural 15-30 cm 

D07_L3 rare Decommissioned agricultural 30-45 cm 

D10_L1 rare Decommissioned agricultural 0-15 cm 

D10_L2 rare Decommissioned agricultural 15-30 cm 

D10_L3 rare Decommissioned agricultural 30-45 cm 

CA_L1 rare Forest 0-15 cm 

CA_L2 rare Forest 15-30 cm 

CA_L3 rare Forest 30-45 cm 

HB_L1 rare Forest 0-15 cm 

HB_L2 rare Forest 15-30 cm 

HB_L3 rare Forest 30-45 cm 

IW_L1 rare Forest 0-15 cm 

IW_L2 rare Forest 15-30 cm 

IW_L3 rare Forest 30-45 cm 

 

Table 4.2 – List of all soil sample used for cobalamin measurement.  

For rare Charitable Research Reserve soils, depth is denoted as follows: L1 is 0-15 cm, L2 is 15-30 cm, and L3 is 30-45 cm. 
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4.2.3 Soil samples collection for cobalamin measurement 

Soil samples for cobalamin measurements (Table 4.2) were composed of a collection of 

soils from three different projects: Canadian MetaMicroBiome Library (CM2BL) soils covering 

wide range of soil biome across Canada (Neufeld et al. 2011), two distinctive land-use along soil 

profiles (rare Charitable Research Reserve, Cambridge, Ontario) (Lu, Seuradge and Neufeld 

2017), and a pH gradient (4.5-7.5) of agricultural soils (Scottish Agricultural College, 

Craibstone, Scotland) (Kemp et al. 1992). The rare soil samples were retrieved from three 

different depths (L1: 0-15 cm, L2: 15-30 cm, L3: 30-45 cm) for each land use type (field and 

forest). The microbial community compositions of these soils have been determined elsewhere 

(Neufeld et al. 2011; Bartram et al. 2014; Lu, Seuradge and Neufeld 2017; Seuradge, 

Oelbermann and Neufeld 2017), but all representative 16S rRNA gene reads from these projects 

were re-classified using RDP Naive Bayesian rRNA Classifier (version 2.11), with default 

settings (Wang et al. 2007). Soil DNA for biomass estimation was extracted according to 

manufacturer protocols with the PowerSoil DNA Isolation Kit (MoBio, Carlsbad, CA), and 

quantified with a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA).  

4.2.4 Soil cobalamin extraction and UPLC/MS measurement 

Both water leachable cobalamins and non-water leachable cobalamins were extracted 

from all soil samples using a modified method developed by Heal and colleagues (Heal et al. 

2014). Field moist soil (0.5 g) was added to 15-ml tubes (VWR, Radnor, PA), with 

approximately 2 mL of a mixture of 100 µm, 400 µm, 1.4 mm, and 4.0 mm diameter glass beads 

(OPS Diagnostics). For water leachable cobalamin extraction, each tube was filled with 7 ml of 2 

M KCl solution and mixed gently every 10 minutes at room temperature for 60 minutes. The 
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tubes were centrifuged at 4000 rpm at 4°C for 15 minutes. Supernatants were transferred into 24-

ml glass vials and stored at -20°C until desalting and downstream cobalamin analysis. Following 

the removal of the water leachable portion, remaining cobalamins were extracted with three 

solutions with decreasing polarity. Solutions used were prepared fresh and the recipe of each 

solution can be found at the end of this section. Samples were initially beadbeaten three times in 

7 ml of solution A for 90 seconds; samples were kept at - 20°C for 30 minutes in between 

beadbeating rounds. Samples were centrifuged at 4000 rpm, 4°C for 15 minutes, and the 

supernatant was transferred to 60-ml glass vials. Next, 7 ml solution B was added into the 

pelleted soil subject to beadbeating for 90 seconds, stored at -20°C for 5 minutes, and 

centrifuged at 4000 rpm for 15 min at 4°C. Supernatants were added to the same 60-ml glass 

vials. Extraction was repeated with another 7 ml solution B and supernatant transferred to the 

same vial, adding up the final volume to 21 ml for each glass vial. Another three rounds of bead 

beating and centrifugation were carried out using solution C (7 ml each time, 21 ml in total), and 

the extracts transferred to the 60-ml vials, followed by three, 7ml MeOH extractions. Each 

MeOH extraction was combined with the extracts to the 60-ml vials. Samples in 60-ml vials 

were dried down overnight under clean N2 at no more than 35°C. Finally, samples were 

reconstituted with 3 ml Milli-Q H2O, sonicated and vortexed.  

Desalting was carried out following a protocol similar to that designed for marine water 

samples (Heal et al. 2014). For each sample (water leachable or non-water leachable) a C18-500 

mg SPE column (Waters Sep-Pak) was conditioned by passing through 5 ml methanol, followed 

by a rinse with 5 ml Milli-Q H2O, both via gravity. Samples were loaded to SPE columns via 

gravity, followed by two rinses with 3 ml of Milli-Q H2O and 3 ml of solution D, respectively. 

After the rinses, samples were eluted with 5 mL of solution E and collected into 12-ml 
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borosilicate centrifuge tubes. Eluates were dried down under vacuum at low heat (no more than 

35°C). Samples were reconstituted using 380 µl solution F and 20 µl vitamin injection standard 

mix, sonicated for 2 minutes, and then syringe filtered into labeled amber I-class vials. Samples 

were analyzed using ultra performance liquid chromatography – mass spectrometry (UPLC/MS) 

using previously published conditions and vitamin internal standards (Heal et al. 2014) for the 

cobalamins. For DMB, MS conditions used have been reported elsewhere (Boysen et al. 2018), 

paired with the UPLC conditions for the cobalamin analysis. Data were extracted, integrated, and 

processed through in-house quality control and normalization as reported by Boysen and 

colleagues (2018). Total cobalamin is the summed value of all detected forms of cobalamin in 

both the water leachable and non-water leachable fractions of the soil 

Solutions A-E were as follows, using Omnisolve grade solutions. Solution A: 50% 

methanol, 50% 0.2 M KCl (vol/vol); solution B: 50% methanol, 50% Milli-Q H2O (vol/vol); 

solution C: 40% acetonitrile, 40% methanol, 20% Milli-Q H2O, 0.1% formic acid (vol/vol); 

solution D: 10% methanol, 90% Milli-Q H2O (vol/vol); solution E: 80% methanol, 20% Milli-Q 

H2O (vol/vol); solution F: 20 mM ammonium formate and 0.1% formic acid in H2O.  

4.2.5 Data analysis and visualization 

Soil metagenome data were transformed into sample-based relative abundance before 

statistical analysis. All statistical analyses were carried out using R (V 3.2.3). Analysis of 

variance (ANOVA) was performed to test the effect of environmental factors on gene abundance 

or cobalamin concentration, followed by post-hoc Tukey HSD test. A Shapiro-Wilk normality 

test was used to check a normality assumption prior to correlation analysis. Spearman's rank 

correlations were employed to compare cobalamin concentrations and microbial biomass, and a 
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simple linear regression was used to test for a significant linear relationship. In order to test the 

relationship between cobalamin-producing and consuming taxa in the soil metagenomes studied, 

Spearman correlation coefficient between the relative abundance of cob/cbi and btuB genes were 

calculated and compared to the coefficient through 105 permutations to determine significance. 

Package phyloseq (V 1.14.0) (McMurdie and Holmes 2013) was used to preprocess OTU tables 

and calculate diversity indices.  

4.3 Results 

4.3.1 Soil metagenomic survey of cobalamin producers 

With selected profile HMMs and translated nucleic acid sequences, 155 soil 

metagenomes from diverse geographical locations and land use types were analyzed (Appendix 

A) to assess the contribution of different taxa to cobalamin production potential via cob/cbi gene 

taxonomic profiles (Figure 4.1). Proteobacteria, the dominant cobalamin-producing phylum, 

contributed to 45.9% of cob/cbi genes across all soil metagenomes, followed by Actinobacteria 

(24.9%), Firmicutes (6.2%), Acidobacteria (5.1%), and Thaumarchaeota (2.9%) (Figure 4.1A). 

These phyla contributed similarly to each of the cob/cbi gene groups that are defined based on 

the cobalamin biosynthesis pathway (Table 4.1): corrin ring biosynthesis (“Group A”; seven 

genes), final synthesis and repair (“Group B”; four genes), and 5,6-dimethylbenzimidazole 

(DMB) synthesis (“Group C”; one gene) (Martens et al. 2002; Campbell et al. 2006). 

Proteobacterial cob/cbi genes dominated all three groups (Figure 4.1B, C, and D). Acidobacterial 

cob/cbi genes represented a greater proportion to final assembly and repair (Figure 4.1C) than to 
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corrin ring (Figure 4.1B) or DMB biosynthesis (Figure 4.1D). Thaumarchaeota contributed 

similarly (~3%) to both corrin ring and DMB biosynthesis (Figure 4.1B and D), but with lower 

proportions associated with final synthesis and repair (Figure 4.1C).  

Across all sampled metagenomes, 26 genera from five phyla (i.e., Proteobacteria, 

Actinobacteria, Firmicutes, Nitrospirae, and Thaumarchaeota) were associated with the 

potential complete pathway for cobalamin production, based on the presence of all 12 

representative cob/cbi genes (Figure 4.2). Together, these complete cobalamin producers 

Figure 4.1 – Taxonomic composition 
of the HMM hits to cob/cbi genes  

Taxonomic composition of HMM hits to 
cob/cbi genes averaged among all 155 soil 
metagenomes for (A) all 12 cob/cbi genes, 
(B) corrin ring biosynthesis genes (“Group 
A”), (C) final assembly and repair genes 
(“Group B”), and (D) the DMB 
biosynthesis gene (“Group C”).   
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constituted 8.7 ± 2.3% of the global averaged soil microbial community, estimated by 

comparison to rpoB gene relative abundances of these same genera in the surveyed soil 

metagenomes. Of these, only three genera exceeded 1% average abundance (Solirubrobacter, 

1.98%; Bradyrhizobium, 1.22%; Streptomyces, 1.08%). Complete cobalamin-producing genera 

within the Proteobacteria constituted 3.6% of the average microbial community. Complete 

cobalamin-producing genera from Actinobacteria represented an average of 2.9% of the total soil 

microbial community across all soil metagenomes, whereas other complete cobalamin-producing 

genera (i.e., members of the Firmicutes, Nitrospirae, and Thaumarchaeota) represented less than 

Figure 4.2 – Relative abundance of 
genera with potentially complete 
cobalamin synthesis pathways 

Relative abundance of genera with potentially 
complete cobalamin synthesis pathways in 
each of the 155 soil metagenomes based on 
rpoB HMM hits. The corresponding taxa are 
shown on the left side. Phylum names are: 
*Bacillus and *Clostridium (phylum 
Firmicutes); †Nitrospira (phylum 
Nitrospirae); ‡Nitrososphaera (phylum 
Thaumarchaeota). 
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1% of soil metagenomes. The number of complete cobalamin-producing genera showed a 

relationship with soil type (one-way ANOVA, p < 0.001, Figure 4.3). 	 

At the genus level, taxonomic composition varied for the three different steps (cob/cbi 

gene groups) in the cobalamin biosynthesis pathway. DMB synthesis (Group C) was affiliated 

with 619 genera, followed by 83 genera for final assembly and repair (Group B), and 79 for 

corrin ring synthesis (Group A) (Appendix B). As for contribution to cobalamin producing 

potential (cob/cbi gene abundance), several genera played a significant genetic role based on the 

average relative abundance of HMM hits. For example, Streptomyces constituted the most 

(4.2%) to overall group A cob/cbi genes, followed by Bradyrhizobium (3.2%) and 

Nitrososphaera (2.8%) (Figure 4.4A). Bradyrhizobium (3.1%), Acidobacterium (2.9) and 

Figure 4.3 – Richness (number of 
genera) for potential complete 
cobalamin-producing genera in each of 
the 155 soil metagenomes 

The number of soil metagenomes included in 
each land use is shown above each 
corresponding box.  
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Candidatus Koribacter (2.5%) were detected as the top three genera contributing most to final 

synthesis and repair (Figure 4.4B). DMB synthesis was attributed to Bradyrhizobium (6.1%), 

Mycobacterium (4.8%), Streptomyces (4.5%), and Nitrososphaera (2.1%) (Figure 4 .4C). When 

evaluating the corresponding rpoB gene abundance for these same genera, the 79 corrin ring 

biosynthesizing genera accounted for 23.3% of total soil microbial community, final assembly 

genera represented 26.3%, whereas DMB-producing genera averaged 56.7% (Table 4.3).  

4.3.2 Cobalamin-producers and transporters in soil 

Soil metagenome analysis revealed a significant positive correlation (R2 = 0.82, p < 

0.001) between overall microbial community size (rpoB) and cobalamin-producing potential 

Figure 4.4 – Top genera 
contributing to cob/cbi gene 
HMM hits 

From (A) to (C): Group A, corrin 
ring biosynthesis; Group B, final 
synthesis and repair; Group C, 
5,6-dimethylbenzimidazole 
(DMB) synthesis.  



88 
	

(cob/cbi) (Figure 4.5). The overall ratio of cob/cbi to rpoB gene reads was 0.10 across all soil 

metagenomes. “Rare biosphere” (i.e., < 0.1% relative abundance) microorganisms collectively 

contributed to the same level of cobalamin producing potential as intermediate abundance taxa 

(Table 4.4). When testing the correlation between the relative abundance of cobalamin-

producing genes (cob/cbi) and the cobalamin transport gene (btuB) at the genus level across soil 

metagenomes, evidence for mutual exclusion (permutation test p < 0.001) of these two gene 

complements emerged for both rare biosphere members (Figure 4.6A-C) and intermediate 

abundance taxa (between 0.1 and 5%; Figure 4.6D-F). Thus, genera that were more represented 

among the cobalamin-synthesis genes were less well represented among the cobalamin transport 

gene pool and vice versa.   

Genes encoding cobalamin-dependent reactions (methionine synthase, metH; 

methylmalonyl-CoA mutase, mutA; ribosomal small subunit methyltransferase, rsmB) were also 

surveyed among all 155 soil metagenomes to further confirm the potential use of cobalamin by 

genera that either produce (with cob/cbi genes) or transport (with btuB gene) this cofactor 

(Figure 4.7). Strong and significant (p < 0.001) correlations were observed between the 

abundances of genes encoding cobalamin-dependent reactions (R2: metH, 0.77; mutA, 0.78; 

rsmB, 0.87) and those encoding cobalamin synthesis and transport (cob/cbi and btuB), indicating 

a corresponding requirement for cobalamin as a cofactor when cobalamin is produced and/or 

transported. Genera harboring cobalamin-dependent genes accounted for over 70% of the total 

community size (Figure 4.8A). The total encoded potential for cobalamin use, expressed as a 

sum of HMM hits to all three tested cobalamin-dependent genes (i.e., metH, mutA, and rsmB), 

was significantly greater (paired t-test, p < 0.001) than the encoded potential for cobalamin 

production and transport (i.e., sum of cob/cbi and btuB gene abundance) (Figure 4.8B).  
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4.3.3 Soil cobalamin measurements 

Annotations of metagenome HMM hits demonstrated substantial inter-metagenome 

variation in taxonomic contributions to the production of cobalamin (Figure 4.9A). To 

investigate differences in cobalamin production further, cobalamin concentrations were 

measured in another 40 soil samples. Representative soil samples that were collected from 

different locations were tested for in situ cobalamin concentrations and forms, originating from 

both water leachable and non-water leachable (i.e., intracellular and/or mineral-binding 

cobalamin) extracts (Table 4.5). Total cobalamin (sum of both water leachable and non-water 

leachable) ranged between 0.06 to 6.84 pmol g-1 dry soil across all 40 soil samples tested, with 

Figure 4.5 – Community cobalamin producing potential and community size  

Community cobalamin producing potential (cob/cbi gene abundance) positively correlated (R2 = 0.82, 
p < 0.001) with corresponding community size based on rpoB HMM hits for all 155 soil 
metagenomes. The gene reads were normalized to HMM length. Data are log transformed for 
visualization.   



90 
	

an average of 1.19 pmol g-1 dry soil (Figures 4.9B and 4.10, Table 4.5). Within the total 

cobalamin pool, the water leachable fraction only accounted  

Figure 4.6– Relationship between cob/cbi gene and btuB gene 

Hexagon heatmap based on relative gene abundance at the genus level across 155 soil metagenomes. 
Each point in A-C represents a genus whose rpoB gene relative abundances were below 0.1% (rare 
biosphere), D-F between 0.1 and 5% (intermediate abundance taxa), and G-I over 5% (dominant taxa). 
Mutual exclusion between the cobalamin transporter gene (btuB) and cobalamin synthesis genes 
(cob/cbi) for rare biosphere and intermediate abundance taxa are tested with 105 permutations. 
Occurrence numbers are denoted by hexagon color. From top to bottom: Group A, corrin ring 
biosynthesis; Group B, final synthesis and repair; Group C, 5,6-dimethylbenzimidazole (DMB) 
synthesis. 
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Abundance 
 Genera affiliated with cob/cbi gene (%)  Relative abundance of cob/cbi carrying 

genera within microbial community (%) 
 Relative abundance of btuB-associated 

genera within microbial community (%) 

  Group A  Group B Group C  Group A Group B Group C   

Rare  5.9 5.9 44.3  1.1 1.1 8.2  9.9 

Intermediate  21.7 26.4 57.0  15.3 18.6 40.2  44.3 

Dominant  67.6 64.7 81.4  6.9 6.6 8.3  13.2 

Total  NA NA NA  23.3 26.3 56.7  67.4 

 Group A cob/cbi  Group B cob/cbi  Group C cob/cbi  btuB  

Rare  45.4 45.4 41.9 50.5 

Intermediate  50.9 49.0 51.7 34.7 

Dominant  1.0 3.6 0.9 3.6 

Table 4.3 – Proportions of genera associated with cob/cbi genes in each of the three abundance categories (rare biosphere, intermediate abundance, 
and dominant taxa). 

The relative abundances of genera associated with cob/cbi and btuB genes, compared to the overall microbial community, were calculated by comparison to 
the abundance of rpoB genes associated with those same genera. NA is not applicable. Group A is corrin ring biosynthesis, Group B is final synthesis and 
repair, and Group C is 5,6-dimethylbenzimidazole (DMB) synthesis. 

Table 4.4 – Gene abundance breakdown (%) of each of the three microbial categories (rare biosphere, intermediate abundance, and dominant taxa). 

Group A is corrin ring biosynthesis, Group B is final synthesis and repair, and Group C is 5,6-dimethylbenzimidazole (DMB) synthesis. Only annotated 
genera are included in this table.     
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Dataset Sample Total cobalamin DMB Ado-B12 CN-B12 Me-B12 OH-B12 
rare soil IW_3 0.17 0.66 0.00 0.01 0.00 0.16 
rare soil IW_2 0.21 8.28 0.00 0.01 0.00 0.21 
rare soil IW_1 0.25 1.57 0.00 0.02 0.00 0.23 
rare soil H_3 0.13 1.26 0.00 0.01 0.00 0.12 
rare soil H_2 0.30 2.27 0.00 0.01 0.00 0.28 
rare soil H_1 1.11 2.27 0.00 0.04 0.00 1.07 
rare soil D10_3 0.18 0.03 0.00 0.01 0.00 0.17 
rare soil D10_2 0.37 1.70 0.01 0.01 0.00 0.35 
rare soil D10_1 1.00 0.44 0.00 0.02 0.00 0.97 
rare soil D07_3 0.06 0.04 0.00 0.01 0.00 0.05 
rare soil D07_2 0.13 1.04 0.00 0.01 0.00 0.12 
rare soil D07_1 0.74 0.61 0.00 0.02 0.00 0.72 
rare soil D03_3 0.69 5.12 0.04 0.01 0.00 0.64 
rare soil D03_2 0.88 2.33 0.00 0.02 0.00 0.86 
rare soil D03_1 1.09 0.47 0.00 0.04 0.00 1.05 
rare soil CA_3 0.12 0.41 0.00 0.01 0.00 0.11 
rare soil CA_2 0.24 3.06 0.01 0.01 0.00 0.22 
rare soil CA_1 0.17 0.50 0.00 0.02 0.00 0.15 
rare soil AA_3 0.09 0.04 0.00 0.02 0.00 0.07 
rare soil AA_2 0.14 1.15 0.00 0.01 0.00 0.13 
rare soil AA_1 0.52 0.50 0.00 0.04 0.00 0.47 
pH soil pH7-5 0.65 0.72 0.02 0.03 0.00 0.61 
pH soil pH7-0 0.73 1.23 0.02 0.01 0.00 0.69 
pH soil pH6-5 0.31 0.69 0.00 0.01 0.00 0.29 
pH soil pH6-0 0.33 0.71 0.00 0.02 0.00 0.31 
pH soil pH5-5 0.57 1.61 0.01 0.01 0.00 0.56 
pH soil pH5-0 0.62 1.15 0.00 0.01 0.00 0.62 
pH soil pH4-5 0.47 1.04 0.02 0.01 0.00 0.45 
CM2BL 9WLM 6.21 2.45 0.00 0.02 0.00 6.19 
CM2BL 8NP 5.51 61.12 0.00 3.70 0.00 1.81 
CM2BL 7TR 1.18 9.01 0.09 0.01 0.00 1.09 
CM2BL 6TD 2.32 0.87 0.06 0.49 0.00 1.77 
CM2BL 5BF 0.30 2.20 0.00 0.02 0.00 0.28 
CM2BL 4TS 1.65 3.44 0.05 0.25 0.00 1.35 
CM2BL 2ATN 0.69 0.05 0.00 0.59 0.00 0.11 

Table 4.5 – Cobalamin concentration measured in soils. 

Total cobalamin, DMB, Ado-, CN-, Me-, and OH-cobalamin concentrations are shown as 
pmol g-1 dry soil. 
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CM2BL 1Tundra 6.84 0.18 0.00 6.36 0.00 0.49 
CM2BL 20CG 1.99 1.49 0.06 0.12 0.00 1.81 
CM2BL 13CO 6.66 1.49 0.90 0.07 0.00 5.69 
CM2BL 11AW 0.89 0.98 0.02 0.02 0.00 0.86 
CM2BL 10ASSOY 1.09 0.52 0.02 0.02 0.00 1.04 
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Figure 4.7 – Cobalamin-dependent genes and 
supplying genes 

Correlation between HMM hits to cobalamin-
dependent genes (metH, mutA, rsmB) and cobalamin 
supplying genes (cob/cbi, and btuB). Each point in 
the plots represents a soil metagenome with gene 
reads normalized to HMM length. The x-axis is the 
sum of both cob/cbi and btuB genes.	
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for a small proportion in all samples (10.1 ± 11.9%; Figure 4.10), indicating a strong association 

between cobalamin and soil mineral binding and/or microbial biomass (Figure 4.10).  

Similar to total cobalamin, the cobalamin lower ligand (DMB) pool was also dominated 

by the non-water leachable form, with an average of 82.4 ± 31.8% of the total extractable DMB. 

The average concentration of DMB was higher than that of total cobalamin (Figures 4.9B and 

4.10, Table 4.5); in one sample, the concentration of DMB was ~40 times that of total cobalamin 

(rare IW soil, 15-30 cm). The presence of DMB concentration in excess of cobalamin in tested 

soil samples was consistent with soil metagenomics data showing that DMB biosynthesis (Group 

C cob/cbi) genes were more abundant than the other two cob/cbi gene groups. In general, OH-

B12 was observed as the dominant cobalamin form based on its concentration in the total pool 

(sum of both water soluble and non-water leachable), followed by CN-, Ado-, and Me-B12, 

consistent with previous work in marine systems (Heal et al, 2017).  

Links between microbial diversity, biomass, and cobalamin concentrations were tested in 

the 40 soil samples analyzed for cobalamin chemistry (Table 4.2). Soil biomass, as indicated 

from extracted DNA concentrations, correlated positively with cobalamin concentration (Figure 

4.11; R2 = 0.57, p < 0.01).  
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Figure 4.8 – cobalaminCobalamin producing and dependent gene abundance  

Relative abundance of genera carrying the three cobalamin-dependent genes, metH, mutA, and rsmB, 
as well as the genera with complete cobalamin pathway (A). Relative abundances are calculated using 
rpoB gene abundance across all 155 soil metagenomes. (B) The abundance of each individual 
cobalamin-dependent genes (metH, mutA, and rsmB), sum of these three cobalamin-dependent genes 
(B12-dependent genes), and cobalamin providing genes (cob/cbi and btuB genes). The reads for each 
gene are normalized to HMM length.    
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Figure 4.9 – Cobalamin biosynthesis gene relative abundance and cobalamin 
concentration 

Cobalamin biosynthesis gene relative abundance of 155 soil metagenomes (A), and the measured total 
cobalamin (sum of Ado-, CN-, Me-, and OH-B12) and 5,6-dimethylbenzimidazole (DMB) 
concentrations in 40 soil samples collected from CM2BL, the rare Charitable Research Reserve, and 
the Craibstrone pH plots (B). Cobalamin producing genes in (A) were grouped as: Group A, corrin 
ring biosynthesis; Group B, final synthesis and repair; Group C, 5,6-dimethylbenzimidazole (DMB) 
synthesis. 
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Figure 4.10 – Concentration of measured cobalamin and DMB 

Concentration of total (sum of Ado-, CN-, Me-, and OH-) cobalamin and 5,6-dimethylbenzimidazole 
(DMB) measured in soils collected from CM2BL (red), the rare Charitable Research Reserve (blue) 
and the Craibstone pH plots (green) projects. The proportion of water leachable (WL) cobalamin is 
shown on the right for each sample. 
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4.4 Discussion 

The research demonstrated that de novo complete biosynthesis of soil cobalamin is a 

keystone function that is restricted to a relatively small cohort of bacteria and archaea (Figure 

4.2), presumably supplying this essential nutrient to a much broader community. Global 

metagenomic analysis indicated the average proportion of complete cobalamin-producing taxa 

across all soils is less than 10% of the total community size, based on rpoB gene relative 

abundances. This is consistent with cobalamin producers serving as keystone species by 

shouldering the high metabolic cost of producing cobalamin (Mills, Soulé and Doak 1993; 

Giovannoni 2012; Lynch and Neufeld 2015; Mas et al. 2016).  

Compared to the cobalamin-producing phyla identified previously in marine studies 

(Doxey et al. 2015; Heal et al. 2017), a relatively broad diversity of soil microorganisms possess 

the genomic potential for cobalamin biosynthesis. Proteobacteria are numerically abundant 

Figure 4.11 – Cobalamin 
concentration and microbial 
biomass 

Scatter plot showing positive 
relationship between total cobalamin 
concentration and microbial biomass 
(i.e., DNA yield) across 40 soil 
samples collected for CM2BL, rare 
Charitable Research Reserve, and 
Craibstone pH plots.  
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cobalamin producers in both marine (Doxey et al. 2015) and soil environments. Cyanobacteria, 

and Bacteroidetes/Chlorobi are the most abundant cobalamin contributors in marine 

metagenomes (Doxey et al. 2015), but did not contribute a significant proportion of cobalamin 

synthesis genes in soils. Instead, Actinobacteria, Firmicutes, and Acidobacteria numerically 

dominated phyla in soil metagenomes that contained cobalamin genes. Despite being abundant 

cobalamin producers in marine environments (e.g., over 80% in some samples; Giovannoni 

2012; Helliwell et al. 2016), thaumarchaeotal cob/cbi genes were relatively rare within sampled 

soil metagenomes (Figure 4.1). Nevertheless, because all known thaumarchaeotal cultures 

produce cobalamin (Qin et al. 2017), and the per cell cobalamin concentrations for members of 

the Thaumarchaeota growing in exponential phase is higher than for members of the 

Proteobacteria (Heal et al. 2017), Thaumarchaeota could nonetheless be a more important 

source of soil cobalamin than gene counts suggest (Heal et al. In press). 

The research showed that, collectively, rare biosphere (0.1% relative abundance) and 

intermediate abundance (0.1-5.0% relative abundance) taxa are equally likely to be cobalamin 

producers (~50%) but the most abundant taxa (> 5% relative abundance) generally lack 

cobalamin synthesis genes (Table 4.4). Because rare taxa have been demonstrated to mediate 

nutrient cycle (Pester et al. 2010) and plant production (Hol et al. 2010), this research suggests 

that future experiments should investigate the importance of rare cobalamin-producing taxa to 

microbial community function more broadly.     

The only known function of DMB in cells is as the lower ligand of cobalamin, and this 

component was detected at relatively high concentrations compared to cobalamin. Group C 

cob/cbi gene abundance were higher than group A and B cob/cbi genes (Figure 4.9), suggesting 

that greater biosynthesis of DMB could explain its elevated concentrations. Free DMB represents 
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the potential for pseudocobalamin, or other cobalamin-like compounds, present in terrestrial 

environments to be remodeled into cobalamin. Microorganisms capable of transforming 

cobalamin-like compounds to cobalamin play a critical role in maximizing the impact of 

cobalamin production. The cyanobacterium Synechococcus was hypothesized to be a major 

cobalamin source in some marine environments (Bonnet et al. 2010), yet has been demonstrated 

recently to produce pseudocobalamin (Helliwell et al. 2016; Heal et al. 2017), a less bioavailable 

cobalamin-like compound in which adenine replaces DMB. Synechococcus accounted for only 

0.05% of soil metagenomes used in this study, but those detected also lacked HMM hits to the 

bluB gene that encodes for DMB synthesis, indicating they might also be a source of soil 

pseudocobalamin. Several marine microalgal species can remodel pseudocobalamin to increase 

its bioavailability when DMB is present (Helliwell et al. 2016). It is also possible that observed 

DMB concentrations are a result of cobalamin degradation. Nevertheless, this research suggests 

the possibility that DMB could be readily exchanged among different microorganisms via cross 

feeding, enabling subsequent remodeling within cells as has been hypothesized for the gut 

microbiome (Seth and Taga 2014). 

Nitrospira spp., the most diverse and abundant nitrite-oxidizing bacteria (Daims et al. 

2001), were detected in soil metagenomes with genetic capacity for complete cobalamin 

synthesis, in agreement with previous reports of cobalamin-producing genes in the Candidatus 

Nitrospira defluvii genome (Lücker et al. 2010). This research demonstrated that Nitrospira were 

associated with ~0.5% of all cob/cbi genes across 155 soil metagenomes (Figure 4.2), spanning 

cold desert, desert, forest, grassland, and other unclassified terrestrial environments. Genome 

analysis demonstrated the presence of cobalamin-dependent enzymes involved in porphyrin 

synthesis (HemE) and methyl-accepting chemotaxis (Mcp), suggesting a need for this cofactor 
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(Lücker et al. 2010; Romine et al. 2017). Another common nitrite-oxidizing bacterium, 

Nitrobacter winogradskyi, lacks the complete pathway encoding cobalamin biosynthesis, 

although cobalamin-dependent methionine synthase (MetH) is present (Starkenburg et al. 2006). 

Moreover, Nitrospira defluvii lacks genes coding for enzymes associated with detoxification of 

reactive oxygen species (Lücker et al. 2010), which are present in most other known aerobic 

microorganisms. Although manganese might function to protect N. defluvii cells from H2O2 

(Horsburgh et al. 2002; Lücker et al. 2010), cobalamin synthesized by Nitrospira might also be a 

way to protect against oxidative stress, as demonstrated in Leptospirillum (Ferrer et al. 2016). 

Together with the potential for thaumarchaeotal production of NO2-cobalamin (Qin et al. 2017b; 

Heal et al. 2018), the presence of these ammonia/nitrite oxidizers as cobalamin producers 

suggests links between cobalamin-production and the aerobic nitrogen cycle in diverse soil 

biomes. 

Strong positive correlations between both soil microbial biomass and cobalamin 

concentrations (Figure 4.11), and microbial community cobalamin potential (cob/cbi) and 

community size (rpoB) (Figure 4.5), imply an importance for cobalamin in governing overall soil 

microbial community size. These observations contrast with measurements of intracellular 

cobalamin in marine samples, which do not appear to correlate with microbial biomass 

(Suffridge, Cutter and Sañudo-Wilhelmy 2017). The highest cobalamin concentration in a gram 

of soil can be two orders of magnitude greater than those measured in a liter of seawater (Heal et 

al. 2017), which is likely due to lower microbial biomass in marine relative to terrestrial habitats 

(Whitman, Coleman and Wiebe 1998). Lower water-leachable cobalamin concentrations in soils 

might suggest rapid scavenging of these compounds; thus, rates of cobalamin release from cells 

to the soil matrix may actually exceed those in the marine environment. Besides prokaryotes, soil 
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cobalamin might also be ingested by soil eukaryotes (e.g., nematodes), accelerating development 

and reducing mortality (Watson et al. 2014).    

Combined metagenomic and biochemical perspectives provide strong evidence for an 

important role of cobalamin-producing taxa in relation to the much larger overall microbial 

community in terrestrial environments. Lower ligand remodeling mechanisms among soil 

microorganisms is likely given the presence of higher concentrations of free DMB and higher 

relative abundance of DMB synthesis genes in soil metagenomes. This study, by quantifying soil 

cobalamin and identifying the bacterial and archaeal contributions to cobalamin synthesis, 

transport, dependence and remodeling in soils, implicates cobalamin synthesis as a keystone role 

for maintaining an abundant and diverse terrestrial microbial community that, in turn, contributes 

to the broader functioning of terrestrial ecosystems. 
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Chapter 5 

Conclusions 

5.1 Summary 

Recent research has changed the central dogma of nitrification dramatically. The 

discovery of ammonia-oxidizing archaea (AOA, Thaumarchaeota) addressed the gap between 

ammonia oxidation activity and AOB biomass in acidic (Lehtovirta-Morley et al. 2011; Li et al. 

2018) and nitrogen-limited soils (Daebeler et al. 2015), triggering follow-up studies investigating 

the distributions (Angel et al. 2010; Nelson, Martiny and Martiny 2016) and relative 

contributions of AOA and AOB within diverse terrestrial habitats (Prosser and Nicol 2008; Jia 

and Conrad 2009; Gubry-Rangin, Nicol and Prosser 2010; Taylor et al. 2010, 2013; Zhang et al. 

2012; Che et al. 2015; Giguere et al. 2015; Lu, Bottomley and Myrold 2015; Ouyang et al. 

2016). The ubiquitous distribution and dominance of AOA in global soils (Leininger et al. 2006) 

implicated AOA as important contributors to nitrogen cycling in terrestrial biomes.  

Although the ecology, physiology, and biochemistry of AOA have been investigated for 

more than a decade, their role in the nitrogen cycle remains an important area of research. My 

thesis project adds new understanding to the role of AOA in soil nitrogen cycling from the 

perspectives of depth-dependent biogeography (Chapter 2) and temperature-influenced activity 

(Chapter 3). Although previous research investigated thaumarchaeotal distributions in surface 

soils in relation to abiotic factors such as soil pH, moisture content, temperature, and ammonia 

availability (Nicol et al. 2008; Angel et al. 2010; Höfferle et al. 2010; Szukics et al. 2010; 

Gubry-Rangin et al. 2010, 2011), the influence of soil depth on thaumarchaeotal biogeography 

was overlooked. Soil bacterial communities are highly heterogeneous along soil depth profiles 

due to depth-dependent physicochemical characteristics (Fierer, Schimel and Holden 2003) and 
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my research targeted Thaumarchaeota to uncover their vertical soil distributions using the range 

of land uses available locally at the rare Charitable Research Reserve (Chapter 2).  

With AOA representatives enriched and/or isolated from soils under diverse pH, 

temperature, nitrogen concentration, and agricultural practices (Jung et al. 2011, 2014b; 

Lehtovirta-Morley et al. 2011, 2016; Tourna et al. 2011; Kim et al. 2012), physiological 

characterization of these ammonia oxidizers revealed optimum growth temperatures that range 

from 25 to 74°C (De La Torre et al. 2008; Kim et al. 2012; Jung et al. 2014a; Lehtovirta-Morley 

et al. 2014; Stieglmeier et al. 2014a; Sauder et al. 2017; Abby et al. 2018; Daebeler et al. 2018). 

This relatively high temperature range may be useful for distinguishing activities of soil AOA 

from AOB given that AOB optimum temperatures typically range from 20 to 30°C (Groeneweg, 

Sellner and Tappe 1994; Jiang and Bakken 1999; Avrahami and Conrad 2005; Avrahami and 

Bohannan 2007). As a consequence of this potential for niche differentiation between AOA and 

AOB as a function of temperature, differential responses of ammonia oxidizers along soil 

vertical profiles under different land usages were studied at three different temperatures (Chapter 

3). Using differential inhibition, this research shed light on how temperature, depth, and land use 

resulted in varying production of N2O, and nitrite stimulation of N2O production, providing 

evidence for N2O derived from nitrifer denitrification.  

Vitamin B12 (cobalamin) is the most structurally complex coenzyme known (Hodgkin et 

al. 1955), requiring approximately 30 enzymatic steps for de novo synthesis (Roth, Lawrence 

and Bobik 1996; Romine et al. 2017). Cobalamin is necessary for the growth of many microbial 

lineages and its availability is thought to influence microbial diversity and community 

composition. Inspired by the discovery of thaumarchaeotal contributions to cobalamin 
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production in the marine environment (Doxey et al. 2015; Heal et al. 2017), the research 

described in Chapter 4 originated as an effort to explore the role of soil thaumarchaeota to 

cobalamin production. The scope of this study encompassed global soil metagenomes and all 

known cobalamin-producing phyla when it became apparent that members of the 

Thaumarchaeota were among many other cobalamin-producing taxa (Doxey et al. 2015). In a 

broader context, this research provided first evidence for the potential regulating effect of 

cobalamin on soil microbial community composition and abundance. Accompanied by in situ 

soil cobalamin concentration measurements, this metagenomics research addressed a wide 

knowledge gap and served as important follow-up to research conducted many decades ago 

(Lochhead and Thexton 1951; Lochhead, Burton and Thexton 1952; Lochhead and Burton 

1956).  

5.2 AOA communities along soil depth profiles under different land use types 

Previous reports indicate that AOA dominate ammonia-oxidizers in subsoils, showing 

that AOA to AOB ratios increase with soil depth. Indeed, AOA can be over three orders of 

magnitude more abundant than AOB in subsoils at 40-50 cm depth (Leininger et al. 2006). 

However, research on AOA community composition focused on only surface soils (Pesaro and 

Widmer 2002; Kemnitz, Kolb and Conrad 2007; Nicol et al. 2008; Angel et al. 2010; Höfferle et 

al. 2010; Gubry-Rangin et al. 2011, 2015), and their community composition along vertical soil 

profile remained poorly understood. Because agricultural and forest soils represent more than 

30% of global land usage, and heavily rely on nitrogen, it is necessary to comprehensively 

characterize the dominant ammonia oxidizers within a deeper soil profile.  

The data reported in my thesis demonstrate that thaumarchaeotal community composition 

varies along soil depth profiles and under contrasting land use types. The biogeography of AOA 
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was explored by high-throughput sequencing of thaumarchaeotal 16S rRNA genes. Diversity 

was higher in forest sites than field sites, and lower in surface soils than subsurface soils (Figure 

2.2). Field sites were characterized by members of the Soil Crenarchaeote Group (SCG), whereas 

the forest sites were dominated by members of the Terrestrial Group (TG). My research showed 

that AOA communities showed distinct depth profiles for top (0-15 cm) and subsurface (30-45 

cm) samples for all field sites, whereas AOA communities were more homogeneous across all 

depths in forest soils (Figure 2.7).  

Soil pH is the major abiotic factor that separated thaumarchaeotal communities among 

field sites from those among forest sites (Figures 2.10, 2.11). Specifically, thaumarchaeota in 

forest samples were related to soil pH and NO3
- concentrations, but not specifically to variables 

related to depth (Figures 2.10, 2.11). In terms of field soils, NO3
-, NH4

+, organic carbon, and 

gravel content variations along soil profiles likely drove the separation of thaumarchaeotal 

communities of topsoils from subsoils (Figures 2.10, 2.11), underlining the importance of 

nitrogen and carbon in shaping the niches of soil AOA. Previously, archaeal community changes 

with soil organic carbon were demonstrated in acidic forest soils (Pesaro and Widmer 2002; 

Kemnitz, Kolb and Conrad 2007), and here this trend was confirmed specifically for 

thaumarchaeota in agricultural soils. Data presented in this research suggested that soil mineral 

content was linked to thaumarchaeotal community differences (Figure 2.10). The impact of the 

soil matrix on microbial communities was observed five decades ago (Greenwood and Goodman 

1967; Bales et al. 1989; Treves et al. 2003), but its effect on thaumarchaeotal community 

composition was overlooked before my research. Soil particle vectors linked to thaumarchaeotal 

community changes supported physical “filtering” for certain microbes, and suggested a 

potential soil matrix-associated nitrification activity, which needs further investigation. 
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5.3 Temperature effect on soil AOA and AOB  

Because the observed differences of AOA communities in top (0-15 cm) and sub (30-45 

cm) soils (Chapter 2), follow-up investigations on their ammonia oxidation activity was carried 

out, especially under environmental stress (e.g., temperature), which is not well understood. 

Temperature was identified as a key factor governing the relative activity of AOA and AOB, 

with AOA more active at high temperature. For example, AOA-associated activity in surface 

soils peaked at 40°C, whereas AOB-associated activity was highest at 30°C. (Figure 3.2). The 

overall AOA-associated relative activity ranged from 5 to 98% across all soil microcosms, and 

increased to over 50% in all soils when incubated at 40°C (Figure 3.3). AOB dominated activity 

in agricultural and subsurface forest samples collected in autumn when the incubation 

temperature was reduced to 20°C. However, AOA dominated in the same soils collected in 

summer (Figure 3.3). This general temperature trend agreed with that found by Taylor and 

colleagues (2017), demonstrating an average of 12°C higher optimum temperature for AOA 

compared to AOB in several soils. Overall, nitrification potential was significantly influenced by 

land use type (agricultural and forest), depth (0-15 and 30-45 cm), and temperature (20, 30, and 

40°C).  

Ammonia oxidation contributes to 80% of soil N2O emissions (Gödde and Conrad 1999; 

Kool et al. 2011, 2011), yet relative contributions of AOA and AOB to N2O production was not 

studied when this research started. Accompanying ammonia oxidation, N2O was detected in soil 

microcosms only in surface agricultural soils incubated at 30°C, which indicates a land-use and 

temperature-sensitive N2O production (Table 3.2). Importantly, no N2O was detected with 

octyne-resistant activity, thus the N2O produced during incubation was attributed to AOB-driven 

ammonia oxidation, suggesting AOB as major contributors to N2O production. This pattern was 
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reported in Scottish agricultural soils, with the same incubation inhibitor (Hink, Nicol and 

Prosser 2017). Possible N2O-producing mechanisms among ammonia oxidizers are not clear yet, 

but nitrifier-denitrification has been suggested as one pathway in AOB (Arp and Stein 2003). A 

significant correlation between NO2
- accumulation and N2O production was observed in summer 

soil samples (Figure 3.6). However, the inability to detect AOA-associated N2O production in 

this study did not exclude the possibility of their contributions. A recently published study 

demonstrated NO2
--dependent N2O production during AOA-supported nitrification (Giguere et 

al. 2017), which pointed out the need for further study into N2O producing mechanisms in AOA. 

For terrestrial environments, assessing AOA-associated greenhouse gas emissions, niche 

differentiation, and efficient nitrification inhibitors, might help reduce agriculture-associated 

N2O production, and enhance fertilizer use efficiency. 

5.4 Soil microbial cobalamin producing and consuming potential 

Recently, marine cobalamin production has been investigated, where members of the 

Thaumarchaeota were identified as major cobalamin producers in marine habitats (Doxey et al. 

2015; Heal et al. 2017), and currently all thaumarchaeotal cultures tested have been detected to 

produce cobalamin (Doxey et al. 2015; Heal et al. 2017). My research combined metagenomics 

and analytical chemistry to provide the first broad survey of soil cobalamin, “nature’s most 

beautiful cofactor” (Hodgkin et al. 1955; Stubbe 1994). Soil microbial cobalamin producers were 

identified across 155 global soil metagenomes (Appendix A and B) and five predominant phyla 

were associated with cobalamin synthesis genes, among which, members of the Thaumarchaeota 

accounted for ~3% of all cobalamin gene abundances (Figure 4.1). Only a limited group of 

bacteria and archaea can biosynthesize cobalamin and data presented in this study identified 

genera that likely encoded complete cobalamin synthesis pathways. The results showed that 
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these genera accounted for less than 10% of the overall microbial community. Such small 

relative population sizes suggest that production of cobalamin is a disproportionally important 

function, consistent with a keystone role for cobalamin producers. Besides these genera with 

complete cobalamin synthesis pathways, many more genera were capable of 5,6-

dimethylbenzimidazole (DMB) biosynthesis than those responsible for corrin ring biosynthesis 

or final assembly and repair (Table 4.2). 

This research measured soil cobalamin (Me-, Ado-, OH-, and CN-B12) concentrations 

(Table 4.5) in an independent investigation of 40 soil samples, representing a wide range of land 

use types (Table 4.2). Water-leachable cobalamin concentrations were lower than those of non-

water-leachable cobalamin (Figure 4.9), suggesting that most cobalamin is associated with 

microbial biomass and/or soil mineral matrix. The biologically inactive form, OH-B12, 

dominated the soil cobalamin pool, and thus is proposed to serve as a “currency” for cross-

feeding among soil microbes, which requires further research to confirm. The lower-ligand, 5,6-

dimethylbenzimidazole (DMB), was found in much higher concentration than cobalamin, 

consistent with the finding of more DMB biosynthesis gene reads than cobalamin synthesis gene 

reads (Figure 4.9), suggesting a possible lower-ligand remodeling in soils. Cobalamin 

concentrations positively correlated with microbial biomass in soil, consistent with a significant 

positive correlation between cobalamin producing gene abundance and microbial community 

size estimation. These results provide strong evidence that cobalamin constrains soil microbial 

community sizes. Interestingly, cobalamin concentrations and microbial biomass in marine 

samples did not follow the same trends (Suffridge, Cutter and Sañudo-Wilhelmy 2017), implying 

different cobalamin-producing and transferring mechanisms in terrestrial and marine habitats that 

are worthy of further study.     
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5.5 Future outlook 

Overall, my thesis research suggests that pH is the key factor separating AOA 

communities in soils linked to agricultural activities from those in forest soils. Currently, 

cultivated soil AOA representatives are derived from acidic (Lehtovirta-Morley et al. 2011) or 

neutral (Tourna et al. 2011) soils, and no obligately alkalinophilic AOA have been obtained, 

although their presence has been detected in alkaline soil environments (Shen et al. 2008). A 

lack of AOA cultures from high pH soils prevents understanding of ammonia oxidation 

mechanisms under low H+ concentrations, which might be different from low pH soils because 

ammonia/ammonium dynamics change with soil pH (Sigunga, Janssen and Oenema 2002). 

Obtaining high pH AOA cultures would help determine if AOA cultures from a wide range of 

pH values employ the same carbon assimilation pathways. Current knowledge is that AOB fix 

atmospheric CO2 by the Calvin cycle, whereas AOA fix HCO3
- with a more efficient 

hydroxypropionate-hydroxybutyrate cycle (Berg et al. 2007). Because the CO2 and HCO3
- 

equilibrium is pH dependent, the mechanisms and consequences for these differential substrate 

preferences for AOA and AOB are not clear.  

This research has provided evidence demonstrating a significant stimulatory effect of 

NO2
- on N2O production in soil samples. Interesting topics for future research include NOB 

distributions in soils under diverse land use types, and along soil depth profiles, and their co-

existence with AOA/AOB. Assessing a possible symbiosis between NOB and AOA/AOB could 

be achieved by tracking 15N signature in soil AOA/AOB and NOB. This could be coupled with 

different environmental stresses (e.g., temperature, substrate forms, pH) to demonstrate NO2
-, 

and nitrogen oxide gas (NO, NO2, and N2O) dynamics in nitrification under diverse 

environmental conditions.  
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Potentially important for soil nitrification, the biogeography and activity of bacteria that 

are linked to complete ammonia oxidation (comammox; Daims et al. 2015; van Kessel et al. 

2015) may result in a reconsideration of their influence on the terrestrial nitrogen cycle. Recent 

metagenomic surveys demonstrate a widespread distribution of comammox bacteria in soils 

(Daims et al. 2015; van Kessel et al. 2015; Pinto et al. 2016), indicating a potentially significant 

role in soil nitrification. The only available comammox isolate, Nitrospira inopinata, 

demonstrates an extremely high substrate affinity compared to either AOA or AOB, and transient 

NO2
- accumulation during ammonia oxidation (Kits et al. 2017). The NO2

- accumulation 

detected in my research incubations might be attributed partially to comammox-associated 

Nitrospira present in those soils. It remains an open question whether or not comammox bacteria 

can produce N2O. If so, N2O yields may be comparable to those of AOA and AOB. More 

investigations of soil comammox bacteria would help estimate soil ammonia oxidation-related 

N2O production more accurately, and be linked to solutions to reducing greenhouse gas 

emissions by identifying suitable inhibitors.           

Resuming pioneering research initiated seven decades ago, my Chapter 4 research 

focused on soil cobalamin, the cofactor required by most microorganisms, elucidating its 

microbial production and consumption, and in situ concentration. Although evidence provided 

showed that the microbial cobalamin producers are potential keystone species among soil 

microbial communities, the cobalamin-dependent microbial dynamics must be confirmed by wet 

lab experimentation. It would be valuable to assess impacts of cobalamin additions on soil 

microbial community composition. With OH-B12 being the most abundant cobalamin form in 

soils, it might serve as a “currency” of exchange among cobalamin consumers in microbial 

communities, readily taken up and converted to biologically active forms such as Ado- and Me-
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B12 by cells (Obeid, Fedosov and Nexo 2015). This hypothesis could be tested by developing 

OH-B12 probes (Romine et al. 2017) and tracking its uptake and transformation within microbial 

cells. Because soil is a complex system involving both prokaryotes and eukaryotes, and 

eukaryotes are incapable of cobalamin production, follow-up research should also focus on 

microbial cobalamin producers and their effects on soil eukaryotic community dynamics. Soil is 

home to both eukaryotes (e.g., earthworms, nematodes, and mites) and prokaryotes (bacteria and 

archaea) that benefit each other (Binet et al. 1998; Drake and Horn 2007).  

5.6 Research significance 

Soil is home to the most diverse microbial communities on Earth (Richter and Markewitz 

1995; Daniel 2005; Roesch et al. 2007), feeding humans by supporting crop growth with 

microbially driven biogeochemical cycles (Kennedy and Smith 1995; Nannipieri et al. 2003), 

among which, nitrogen is one of several basic elements. This thesis research, combining both 

biogeochemical and bioinformatics techniques, has bridged gaps in our understanding of 

nitrogen cycling within terrestrial environments. Data presented in Chapter 2 and 3 contributed 

the first AOA biogeography survey along soil vertical profile under contrasting land use types, 

and the first report of AOA-associated N2O responses to temperature gradients under contrasting 

land practices, respectively. Chapter 4 presents first evidence demonstrating the importance of 

cobalamin in governing soil microbial community composition, underlining the potential 

keystone function of cobalamin-producers, including but not limited to AOA. As the first 

quantitative and culture-independent large-scale investigation of cobalamin in terrestrial 

environments, data presented here laid important foundations for further studies connecting 

microbial community composition and activity with cofactor-associated biogeochemistry.                
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Appendix A 

All 155 soil metagenomes used in this study. Sample accession number and soil type are 
included. 

	

Sample Biome Source 
4477873 Desert MG-RAST 
4477900 Cold Desert MG-RAST 
4492602 Desert MG-RAST 
4497370 Agriculture MG-RAST 
4497385 Forest MG-RAST 
4508942 Forest MG-RAST 
4509398 Agriculture MG-RAST 
4510219 Wetland MG-RAST 
4511180 Grassland MG-RAST 
4539063 Grassland MG-RAST 
4539575 Grassland MG-RAST 
4539580 Grassland MG-RAST 
4539582 Grassland MG-RAST 
4539593 Grassland MG-RAST 
4541647 Grassland MG-RAST 
4541649 Grassland MG-RAST 
4541650 Grassland MG-RAST 
4543021 Desert MG-RAST 
4547279 Agriculture MG-RAST 
4554764 Pasture MG-RAST 
4554769 Pasture MG-RAST 
4554770 Pasture MG-RAST 
4554771 Pasture MG-RAST 
4573680 Lawn MG-RAST 
4573682 Lawn MG-RAST 
4578924 Grassland MG-RAST 
4582238 Forest MG-RAST 
4582244 Forest MG-RAST 
4582254 Forest MG-RAST 
4582263 Forest MG-RAST 
4582273 Forest MG-RAST 
4582275 Forest MG-RAST 
4582277 Forest MG-RAST 
4582792 Forest MG-RAST 
4582796 Forest MG-RAST 
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4582799 Forest MG-RAST 
4582800 Forest MG-RAST 
4597444 Agriculture MG-RAST 
4623639 Grassland MG-RAST 
4626747 Agriculture MG-RAST 
4631724 Agriculture MG-RAST 
4635904 Lawn MG-RAST 
4654023 Grassland MG-RAST 
4667212 Agriculture MG-RAST 
4667213 Agriculture MG-RAST 
4637810 Grassland MG-RAST 
4637811 Grassland MG-RAST 
4637814 Grassland MG-RAST 
4637816 Grassland MG-RAST 
4637818 Grassland MG-RAST 
4637819 Grassland MG-RAST 
4637820 Grassland MG-RAST 
4637821 Grassland MG-RAST 
4637822 Grassland MG-RAST 
4637825 Grassland MG-RAST 
4637826 Grassland MG-RAST 
4637828 Grassland MG-RAST 
4637829 Grassland MG-RAST 
4637830 Grassland MG-RAST 
4637832 Grassland MG-RAST 
4637833 Grassland MG-RAST 
4637834 Grassland MG-RAST 
4637838 Pasture MG-RAST 
4637840 Pasture MG-RAST 
4637841 Pasture MG-RAST 
4637842 Pasture MG-RAST 
4637843 Pasture MG-RAST 
4637844 Pasture MG-RAST 
4637845 Pasture MG-RAST 
4637847 Pasture MG-RAST 
4637848 Pasture MG-RAST 
4637849 Pasture MG-RAST 
4637850 Forest MG-RAST 
4637852 Forest MG-RAST 
4637853 Forest MG-RAST 
4637855 Forest MG-RAST 
4637857 Grassland MG-RAST 
4637859 Grassland MG-RAST 
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4637860 Grassland MG-RAST 
4637861 Grassland MG-RAST 
4637862 Grassland MG-RAST 
4637864 Grassland MG-RAST 
4637866 Grassland MG-RAST 
4637868 Grassland MG-RAST 
4664851 Forest MG-RAST 
4664852 Forest MG-RAST 
4664853 Forest MG-RAST 
4664854 Forest MG-RAST 
4664855 Grassland MG-RAST 
4664856 Forest MG-RAST 
4664857 Forest MG-RAST 
4664860 Forest MG-RAST 
4664862 Forest MG-RAST 
4664863 Forest MG-RAST 
4664864 Forest MG-RAST 
4664865 Pasture MG-RAST 
4664867 Pasture MG-RAST 
4664868 Forest MG-RAST 
4664869 Forest MG-RAST 
4664870 Pasture MG-RAST 
4664871 Grassland MG-RAST 
4664874 Forest MG-RAST 
4664875 Grassland MG-RAST 
4664876 Forest MG-RAST 
4664877 Forest MG-RAST 
4664878 Grassland MG-RAST 
4664880 Grassland MG-RAST 
4664881 Forest MG-RAST 
4664884 Forest MG-RAST 
4664885 Grassland MG-RAST 
4664889 Grassland MG-RAST 
4664890 Grassland MG-RAST 
4664891 Grassland MG-RAST 
4664892 Forest MG-RAST 
4664893 Forest MG-RAST 
4664895 Forest MG-RAST 
4664896 Forest MG-RAST 
4664898 Grassland MG-RAST 
4664899 Grassland MG-RAST 
4664900 Forest MG-RAST 
4664901 Grassland MG-RAST 
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4664905 Forest MG-RAST 
4664907 Pasture MG-RAST 
4664908 Wetland MG-RAST 
4664909 Forest MG-RAST 
4664910 Pasture MG-RAST 
4664911 Forest MG-RAST 
4664912 Pasture MG-RAST 
4664913 Forest MG-RAST 
4664915 Pasture MG-RAST 
4664916 Forest MG-RAST 
4664919 Wetland MG-RAST 
4664922 Pasture MG-RAST 
4664924 Grassland MG-RAST 
4664925 Pasture MG-RAST 
4664926 Pasture MG-RAST 
4664927 Grassland MG-RAST 
4664930 Forest MG-RAST 
4664931 Grassland MG-RAST 
AND11f Forest LTER (courtesy of Noah Fierer) 
AND11h Herb LTER (courtesy of Noah Fierer) 
BNZ11f Forest LTER (courtesy of Noah Fierer) 
BNZ11h Herb LTER (courtesy of Noah Fierer) 
CDR11f Forest LTER (courtesy of Noah Fierer) 
CDR11h Herb LTER (courtesy of Noah Fierer) 
CWT11f Forest LTER (courtesy of Noah Fierer) 
CWT11h Herb LTER (courtesy of Noah Fierer) 
HBR11f Forest LTER (courtesy of Noah Fierer) 
HFR11f Forest LTER (courtesy of Noah Fierer) 
HFR11h Herb LTER (courtesy of Noah Fierer) 
KBS11h Herb LTER (courtesy of Noah Fierer) 
KNZ11f Forest LTER (courtesy of Noah Fierer) 
KNZ11h Herb LTER (courtesy of Noah Fierer) 
LUQ11f Forest LTER (courtesy of Noah Fierer) 
NWT11h Herb LTER (courtesy of Noah Fierer) 
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Appendix B 

Presence/absence of Groups A, B, and C cob/cbi genes at genus level for 155 soil metagenomes. 
Complete cobalamin pathway genera were selected when all of the 12 cob/cbi genes were 
present within the same taxa in the same soil metagenome, and annotated with “Y”. Otherwise, 
“N” means absence of the group gene for that genus. Group A is corrin ring biosynthesis, Group 
B is final synthesis and repair, and Group C is 5,6-dimethylbenzimidazole (DMB) synthesis. The 
genera with three cob/cbi gene groups are highlighted if they are also the known cobalamin 
producing species in Perlman (1959).   

Genus Group A Group B Group C Complete cobalamin pathway 
in the same metagenome 

[Clostridium] ultunense N N Y  

Acetobacter N Y Y  

Acetobacteraceae bacterium AT-5844 N N Y  

Acetomicrobium N N Y  

Acidianus N N Y  

Acidibacillus N N Y  

Acidimicrobium N N Y  

Acidiphilium N N Y  

Acidisphaera N N Y  

Acidobacteriaceae bacterium KBS 83 N N Y  

Acidobacteriaceae bacterium KBS 89 N N Y  

Acidobacteriaceae bacterium TAA166 N N Y  

Acidobacteriaceae bacterium URHE0068 N Y N  

Acidobacterium N N Y  

Acidocella N N Y  

Acidovorax N N Y  

Actibacterium N N Y  

Actinobacteria bacterium IMCC26207 N N Y  

Actinobacteria bacterium IMCC26256 N N Y  

Actinobacteria bacterium OK006 N N Y  

actinobacterium LLX17 N N Y  

Actinocatenispora N N Y  

Actinokineospora N N Y  

Actinomadura Y Y Y  

Actinomycetospora N N Y  

Actinophytocola N N Y  

Actinoplanes Y Y Y  

Actinopolymorpha N N Y  

Actinopolyspora N N Y  

Actinospica N N Y  

Actinosynnema N N Y  
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Actinotalea N N Y  

Acuticoccus N N Y  

Aeromicrobium N N Y  

Aestuariimicrobium N N Y  

Afipia N N Y  

Agarivorans N N Y  

Agrobacterium N N Y  

Agromyces N N Y  

Ahrensia N N Y  

Alcanivorax N N Y  

Algiphilus N N Y  

Algoriphagus N N Y  

Alicyclobacillus N N Y  

Aliihoeflea N N Y  

Aliiroseovarius N N Y  

Alloactinosynnema N N Y  

Allokutzneria N N Y  

alpha proteobacterium AAP81b N N Y  

alpha proteobacterium BAL199 N N Y  

alpha proteobacterium Mf 1.05b.01 N N Y  

Alteromonas N N Y  

Aminiphilus N N Y  

Aminobacter N N Y  

Aminomonas N N Y  

Ammonifex N N Y  

Amycolatopsis N Y Y  

Anaerolinea N N Y  

Anaerosphaera N N Y  

Ancylobacter N N Y  

Andreprevotia N N Y  

Aneurinibacillus N N Y  

Aquimarina N N Y  

Archangium N N Y  

Arcobacter N N Y  

Ardenticatena N N Y  

Arenimonas N N Y  

Arhodomonas N N Y  

Aromatoleum N N Y  

Arsenicicoccus N N Y  

Asaia N N Y  

Asinibacterium N N Y  
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Aureimonas Y Y Y  

Austwickia N N Y  

Azoarcus N N Y  

Azohydromonas N N Y  

Azonexus N N Y  

Azorhizobium N N Y  

Azospira N N Y  

Azospirillum N Y Y  

Azotobacter N N Y  

Azovibrio N N Y  

Bacillus Y Y Y Y 

bacterium JKG1 N N Y  

bacterium L21-Spi-D4 N N Y  

Balneola N N Y  

Barnesiella N N Y  

Bdellovibrio N N Y  

Beijerinckia N N Y  

Belnapia Y N Y  

beta proteobacterium AAP51 N N Y  

Blastochloris N N Y  

Blastococcus N N Y  

Blastomonas N N Y  

Bordetella N N Y  

Bosea Y Y Y Y 

Bradyrhizobium Y Y Y Y 

Brevibacillus N N Y  

Bryobacter N N Y  

Burkholderia Y Y Y  

Burkholderiales bacterium GJ-E10 N N Y  

Caballeronia Y N Y  

Caenispirillum N N Y  

Caldanaerobacter N N Y  

Caldanaerobius N N Y  

Caldanaerovirga N N Y  

Caldicoprobacter N N Y  

Caldilinea N N Y  

Caloramator N N Y  

Candidatus Brocadia N N Y  

Candidatus Competibacter N N Y  

Candidatus Contendobacter N N Y  

Candidatus Desulforudis N N Y  
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Candidatus Glomeribacter N N Y  

Candidatus Jettenia N N Y  

Candidatus Korarchaeum N N Y  

Candidatus Marispirochaeta N N Y  

Candidatus Methanoperedens N N Y  

Candidatus Microthrix N N Y  

Candidatus Nitrosoarchaeum N N Y  

Candidatus Nitrosopelagicus N N Y  

Candidatus Nitrosotenuis N N Y  

Carboxydothermus N N Y  

Catelliglobosispora N N Y  

Catenulispora N N Y  

Caulobacter N Y Y  

Caulobacteraceae bacterium OTSz_A_272 N N Y  

Celeribacter N N Y  

Cellulosimicrobium N N Y  

Chelatococcus N N Y  

Chloracidobacterium N N Y  

Chlorobaculum N N Y  

Chlorobium N N Y  

Chloroflexus N N Y  

Chloroherpeton N N Y  

Chromobacterium N N Y  

Chthonomonas N N Y  

Clostridiales bacterium DRI-13 N N Y  

Clostridiales bacterium VE202-09 N N Y  

Clostridioides N N Y  

Clostridium Y Y Y Y 

Comamonadaceae bacterium CCH4-C5 N N Y  

Comamonas N N Y  

Commensalibacter N N Y  

Corynebacterium N N Y  

Couchioplanes N N Y  

Cupriavidus N N Y  

Curvibacter N N Y  

Cutibacterium N N Y  

Cyanothece Y N N  

Cylindrospermum N N Y  

Cystobacter N N Y  

Dactylosporangium N N Y  

Dasania N N Y  
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Dechloromonas N N Y  

Deefgea N N Y  

Deferrisoma N N Y  

Defluviimonas N N Y  

Dehalococcoides N Y N  

Dehalogenimonas N Y Y  

Deinococcus N Y Y  

Delftia N N Y  

delta proteobacterium NaphS2 Y Y Y Y 

Dermacoccus N N Y  

Desulfarculus Y N N  

Desulfatibacillum Y Y Y  

Desulfatiglans N N Y  

Desulfatirhabdium Y Y N  

Desulfatitalea N N Y  

Desulfitobacterium N N Y  

Desulfobacca Y N N  

Desulfobacter N Y N  

Desulfobacterium Y N Y  

Desulfobacula Y Y Y  

Desulfobulbus Y N Y  

Desulfocapsa Y N N  

Desulfocarbo Y N Y  

Desulfococcus Y Y Y  

Desulfocurvus N N Y  

Desulfofustis Y N Y  

Desulfomicrobium N N Y  

Desulfomonile Y Y N  

Desulfonatronospira N N Y  

Desulfonatronovibrio N N Y  

Desulfonatronum N N Y  

Desulfopila Y Y Y  

Desulfosarcina Y Y Y  

Desulfospira N N Y  

Desulfosporosinus N Y Y  

Desulfotignum Y N Y  

Desulfotomaculum Y N Y  

Desulfovermiculus N N Y  

Desulfovibrio Y N Y  

Desulfovirgula N N Y  

Desulfuribacillus N N Y  
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Desulfurivibrio Y N N  

Desulfurococcus N N Y  

Desulfuromonas Y Y Y  

Dethiobacter N N Y  

Dethiosulfatarculus N N Y  

Devosia Y Y Y  

Dialister N N Y  

Dictyoglomus N N Y  

Dietzia N N Y  

Dinoroseobacter N N Y  

Domibacillus N N Y  

Donghicola N N Y  

Dongia N Y Y  

Draconibacterium N Y Y  

Duganella N N Y  

Dyella N Y Y  

Ectothiorhodospira N N Y  

Edaphobacter Y Y Y  

Effusibacillus N N Y  

Eggerthellaceae bacterium AT8 N N Y  

Elusimicrobium N N Y  

Endozoicomonas N N Y  

Ensifer Y N Y  

Epsilonproteobacteria bacterium LFT 1.7 N N Y  

Erythrobacteraceae bacterium CCH12-C2 N N Y  

Ferrimicrobium N N Y  

Ferrimonas N N Y  

Ferriphaselus N N Y  

Ferrithrix N N Y  

Fervidicella N N Y  

Fervidicola N N Y  

Fibrisoma N N Y  

Fictibacillus N N Y  

Filomicrobium N N Y  

Fischerella N N Y  

Flammeovirga N N Y  

Flavisolibacter N N Y  

Flavobacterium N N Y  

Fodinicurvata N N Y  

Frankia Y Y Y  

Fulvimarina N N Y  
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Fusobacterium N Y N  

gamma proteobacterium HdN1 N N Y  

gamma proteobacterium HTCC2207 N N Y  

Geitlerinema N N Y  

Geminicoccus N N Y  

Gemmatimonas N N Y  

Gemmobacter N N Y  

Geobacter Y Y Y  

Geodermatophilaceae bacterium URHB0048 N N Y  

Geodermatophilaceae bacterium URHB0062 N N Y  

Geodermatophilus Y Y Y  

Geosporobacter N N Y  

Gluconacetobacter N N Y  

Gluconobacter N N Y  

Gordonia N N Y  

Gracilimonas N N Y  

Granulibacter N N Y  

Granulicella N N Y  

Granulicoccus N N Y  

Hahella N N Y  

Halanaerobium N N Y  

Haliangium N N Y  

Halioglobus N N Y  

Haloarcula N N Y  

Halobacteroides N N Y  

Halocynthiibacter N N Y  

Halodesulfovibrio N N Y  

Haloferax N N Y  

Halofilum N N Y  

Haloglycomyces N N Y  

Halomonas N N Y  

Halonatronum N N Y  

Halopiger N N Y  

Halotalea N N Y  

Haloterrigena N N Y  

Heliobacterium N N Y  

Herbaspirillum N N Y  

Herbidospora N N Y  

Herbinix N N Y  

Herminiimonas N N Y  

Herpetosiphon N N Y  
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Hoeflea N N Y  

Humibacillus N N Y  

Hyalangium N N Y  

Hydrocarboniphaga N N Y  

Hydrococcus N N Y  

Hydrogenibacillus N N Y  

Hydrogenophaga N N Y  

Hyphomicrobium N Y Y  

Ilumatobacter N Y Y  

Ilyobacter N N Y  

Immundisolibacter N N Y  

Inquilinus N N Y  

Intrasporangiaceae bacterium URHB0013 N N Y  

Intrasporangium N Y Y  

Isoptericola N N Y  

Janibacter N Y Y  

Jannaschia N N Y  

Janthinobacterium N N Y  

Jatrophihabitans Y N Y  

Jiangella N N Y  

Kibdelosporangium N N Y  

Kiloniella N N Y  

Kineosphaera N N Y  

Kitasatospora N N Y  

Klebsiella N Y N  

Knoellia N N Y  

Komagataeibacter N N Y  

Kordiimonas N N Y  

Kribbella Y N Y  

Kribbia N N Y  

Ktedonobacter N Y Y  

Kushneria N N Y  

Kutzneria Y N Y  

Kyrpidia N N Y  

Labrenzia N N Y  

Labrys N N Y  

Lachnoclostridium N N Y  

Lachnospiraceae bacterium 3_1_57FAA_CT1 N N Y  

Lachnospiraceae bacterium 6_1_63FAA N N Y  

Leadbetterella N N Y  

Lechevalieria N N Y  
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Leisingera N N Y  

Lentimicrobium N N Y  

Lentisphaera N N Y  

Lentzea N N Y  

Leptolinea N N Y  

Leptolyngbya N N Y  

Leptospira N N Y  

Leptospirillum N N Y  

Litoreibacter N N Y  

Loktanella Y N Y  

Longispora N N Y  

Luteipulveratus N N Y  

Lyngbya N N Y  

Lysinibacillus N N Y  

Lysobacter N N Y  

Magnetococcus N N Y  

Magnetospira N N Y  

Magnetospirillum Y N Y  

Magnetovibrio N N Y  

Mameliella N N Y  

Maribacter N N Y  

Maribius N N Y  

Maricaulis N N Y  

Marichromatium N N Y  

marine gamma proteobacterium HTCC2143 N N Y  

Marinobacter N N Y  

Marinobacterium N N Y  

Marinomonas N N Y  

Marinovum N N Y  

Marivirga N N Y  

Marmoricola N N Y  

Massilia N N Y  

Mastigocladopsis N N Y  

Megasphaera N N Y  

Melioribacter N N Y  

Mesorhizobium Y Y Y  

Metallosphaera N N Y  

Methanobacterium Y N Y  

Methanobrevibacter N N Y  

Methanocella N N Y  

Methanoculleus N Y N  
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Methanosarcina N Y Y  

Methylibium N N Y  

Methylobacillus N N Y  

Methylobacter N N Y  

Methylobacterium Y Y Y  

Methylocaldum N N Y  

Methylocapsa N N Y  

Methyloceanibacter Y Y Y  

Methylocella N N Y  

Methylococcus N N Y  

Methylocystis N Y Y  

Methyloferula N N Y  

Methyloglobulus N N Y  

Methyloligella N N Y  

Methylomarinum N N Y  

Methylomicrobium N N Y  

Methylomonas N N Y  

Methylophaga N N Y  

Methylophilus N N Y  

Methylopila N N Y  

Methylosarcina N N Y  

Methylosinus N N Y  

Methylotenera N N Y  

Methyloversatilis N N Y  

Methylovorus N N Y  

Methylovulum N N Y  

Microbispora N N Y  

Microbulbifer N N Y  

Microcoleus Y N Y  

Micromonospora Y Y Y  

Microtetraspora N N Y  

Microvirga N Y Y  

Mitsuokella N N Y  

Mobilicoccus N N Y  

Modestobacter N N Y  

Moorella N N Y  

Moritella N N Y  

Mycobacterium Y Y Y  

Myxosarcina Y N N  

Natrialba N N Y  

Natrinema N N Y  



154 
	

Natronohydrobacter N N Y  

Natronolimnobius N N Y  

Natronorubrum N N Y  

Neokomagataea N N Y  

Neorhizobium N N Y  

Neptuniibacter N N Y  

Neptunomonas N N Y  

Nevskia N N Y  

Niastella N N Y  

Nioella N N Y  

Nisaea N N Y  

Nitratireductor Y N Y  

Nitrolancea N N Y  

Nitrosomonas N N Y  

Nitrosopumilus N N Y  

Nitrososphaera Y Y Y  

Nitrospina N Y Y  

Nitrospira Y Y Y  

Niveispirillum N N Y  

Nocardia Y N Y  

Nocardioides Y Y Y  

Nocardiopsis Y Y Y  

Nonomuraea N N Y  

Noviherbaspirillum N N Y  

Novispirillum N N Y  

Novosphingobium N N Y  

Numidum N N Y  

Oblitimonas N N Y  

Oceanimonas N N Y  

Oceanithermus N N Y  

Oceanospirillum N N Y  

Ochrobactrum N N Y  

Octadecabacter N N Y  

Oleiagrimonas N N Y  

Oleiphilus N N Y  

Opitutus N N Y  

Orenia N N Y  

Ornatilinea N N Y  

Oscillatoria N N Y  

Oxalobacteraceae bacterium AB_14 N N Y  

Paenibacillus Y Y Y  
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Paenirhodobacter N N Y  

Paludibacterium N N Y  

Pandoraea N N Y  

Pannonibacter N N Y  

Paraburkholderia Y Y Y  

Paracoccus N Y Y  

Paramesorhizobium N N Y  

Paraprevotella N N Y  

Pararhizobium N N Y  

Patulibacter N N Y  

Pelobacter Y Y N  

Pelodictyon N N Y  

Pelosinus N N Y  

Peptococcaceae bacterium CEB3 N N Y  

Phaeobacter N N Y  

Phaeospirillum N N Y  

Phenylobacterium N N Y  

Phormidesmis N Y N  

Photobacterium N N Y  

Phycicoccus N N Y  

Phyllobacterium N N Y  

Pimelobacter N N Y  

Piscicoccus N N Y  

Planctomycetaceae bacterium FC18 N N Y  

Planomonospora N N Y  

Pleomorphobacterium N N Y  

Pleomorphomonas N N Y  

Pleurocapsa Y Y N  

Polaromonas N N Y  

Polycyclovorans N N Y  

Polymorphum N N Y  

Porphyrobacter N N Y  

Porphyromonadaceae bacterium FC4 N N Y  

Porphyromonas N N Y  

Prauserella N N Y  

Propionibacterium N N Y  

Propionimicrobium N N Y  

Prosthecochloris N N Y  

Prosthecomicrobium N N Y  

Pseudaminobacter N N Y  

Pseudoalteromonas N N Y  
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Pseudodonghicola N N Y  

Pseudoduganella N N Y  

Pseudogulbenkiania N N Y  

Pseudomonas Y Y Y  

Pseudonocardia Y Y Y  

Pseudooceanicola N N Y  

Pseudopelagicola N N Y  

Pseudorhodobacter N N Y  

Pseudorhodoferax N N Y  

Pseudothermotoga N N Y  

Pseudovibrio N N Y  

Psychromonas N N Y  

Pyrinomonas N N Y  

Ralstonia N N Y  

Raoultella N Y N  

Reinekea N N Y  

Reyranella N Y Y  

Rhizobiales bacterium CCH10-E5 N N Y  

Rhizobiales bacterium CCH11-D2 N N Y  

Rhizobiales bacterium CCH3-A5 N N Y  

Rhizobiales bacterium HL-109 N N Y  

Rhizobium Y Y Y  

Rhodobacter N N Y  

Rhodobacteraceae bacterium CY02 N N Y  

Rhodobacteraceae bacterium EhC02 N N Y  

Rhodobacteraceae bacterium HTCC2083 N N Y  

Rhodobacteraceae bacterium KLH11 N N Y  

Rhodobacteraceae bacterium PD-2 N N Y  

Rhodococcus Y Y Y  

Rhodocyclaceae bacterium Paddy-1 N N Y  

Rhodoferax N N Y  

Rhodomicrobium N N Y  

Rhodoplanes Y Y Y  

Rhodopseudomonas Y Y Y  

Rhodospirillaceae bacterium CCH5-H10 N N Y  

Rhodospirillales bacterium URHD0088 Y Y Y  

Rhodospirillum N N Y  

Rhodothermaceae bacterium RA N N Y  

Rhodovibrio N N Y  

Rhodovulum N Y Y  

Robiginitomaculum N N Y  
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Roseateles N N Y  

Roseibium N N Y  

Roseiflexus Y N Y  

Roseimaritima N N Y  

Roseivirga N N Y  

Roseobacter N N Y  

Roseomonas N N Y  

Roseovarius N Y Y  

Rubritalea N N Y  

Rubrivivax N N Y  

Rubrobacter Y Y Y  

Ruegeria N N Y  

Ruminiclostridium N Y Y  

Saccharomonospora N N Y  

Saccharopolyspora N N Y  

Saccharothrix N N Y  

Sagittula N N Y  

Salinispora N N Y  

Salipiger N N Y  

Sciscionella N N Y  

Sedimenticola N N Y  

Sediminispirochaeta N N Y  

Selenomonas Y N N  

Serinicoccus N N Y  

Shewanella N N Y  

Shimia N N Y  

Silvibacterium N N Y  

Simiduia N N Y  

Singulisphaera Y Y Y  

Sinorhizobium Y N Y  

Skermanella N N Y  

Smaragdicoccus N N Y  

Solirubrobacter Y Y Y  

Sorangium Y Y Y  

Sphaerobacter N N Y  

Sphaerochaeta N N Y  

Sphingobium N Y Y  

Sphingomonadales bacterium EhC05 N N Y  

Sphingomonas N Y Y  

Sphingopyxis N N Y  

Spirillospora N N Y  
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Spirochaeta N N Y  

Spongiibacter N N Y  

Sporosarcina N N Y  

Stappia N N Y  

Starkeya N N Y  

Streptacidiphilus Y N Y  

Streptoalloteichus N N Y  

Streptomonospora N N Y  

Streptomyces Y Y Y  

Streptosporangium Y N Y  

Sulfitobacter N N Y  

Sulfobacillus N N Y  

Sulfolobus N N Y  

Sulfurimonas N N Y  

Sulfurospirillum N N Y  

Symbiobacterium N N Y  

Syntrophothermus N N Y  

Tangfeifania N N Y  

Tardiphaga N N Y  

Tateyamaria N N Y  

Tenacibaculum N N Y  

Tepidicaulis N N Y  

Tepidimonas N N Y  

Tepidiphilus N N Y  

Terasakiella N N Y  

Terrabacter N N Y  

Tessaracoccus N N Y  

Thalassobacter N N Y  

Thalassobius N N Y  

Thalassolituus N N Y  

Thalassospira N N Y  

Thauera N N Y  

Thaumarchaeota archaeon N4 N N Y  

Thermacetogenium N N Y  

Thermoactinomyces N Y Y  

Thermoanaerobacter N N Y  

Thermobifida N N Y  

Thermococcus N N Y  

Thermodesulfatator N N Y  

Thermodesulfobacterium N N Y  

Thermofilum N N Y  
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Thermogemmatispora N N Y  

Thermomicrobium N N Y  

Thermomonospora Y N Y  

Thermonema N N Y  

Thermopetrobacter N N Y  

Thermoproteus N N Y  

Thermorudis N N Y  

Thermosediminibacter N N Y  

Thermosulfidibacter N N Y  

Thermotoga N N Y  

Thermovenabulum N N Y  

Thermus N Y Y  

Thioalkalivibrio N N Y  

Thiobacillus N N Y  

Thiocapsa N N Y  

Thioclava N N Y  

Thiomonas N N Y  

Tistrella N N Y  

Trichodesmium N N Y  

Tropicibacter N N Y  

Tyzzerella N N Y  

Variovorax N N Y  

Verrucosispora N N Y  

Vibrio N N Y  

Vogesella N N Y  

Wenxinia Y N N  

Williamsia N N Y  

Woeseia N N Y  

Xanthobacter N N Y  

Xylanimonas N N Y  

Xylophilus N N Y  

Zetaproteobacteria bacterium TAG-1 N N Y  

Zhongshania N N Y  

Zooshikella N N Y  

	


