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Abstract 

 

 

Aim Optical Coherence Tomography (OCT) is a fast and non-invasive medical imaging 

technique which helps in the investigation of each individual retinal layer structure. For early 

detection of retinal diseases and the study of their progression, segmentation of the OCT 

images into the distinct layers of the retina plays a crucial role. However, segmentation done 

by the clinicians manually is extremely tedious, time-consuming and variable with respect to 

the expertise level. Hence, there is an utmost necessity to develop an automated 

segmentation algorithm for retinal OCT images which is fast, accurate, and eases clinical 

decision making. 

 

Methods Graph-theoretical methods have been implemented to develop an automated 

segmentation algorithm for spectral domain OCT (SD-OCT) images of the retina. As a pre-

processing step, the best method for denoising the SD-OCT images prior to graph-based 

segmentation was determined by comparison between simple Gaussian filtering and an 

advanced wavelet-based denoising technique. A shortest-path based graph search technique 

was implemented to accurately delineate intra-retinal layer boundaries within the SD-OCT 

images. The results from the automated algorithm were also validated by comparison with 

manual segmentation done by an expert clinician using a specially designed graphical user 

interface (GUI). 

 

Results The algorithm delineated seven intra-retinal boundaries thereby segmenting 

six layers of the retina along with computing their thicknesses. The thickness results from the 

automated algorithm when compared to normative layer thickness values from a published 

study showed no significant differences (p > 0.05) for all layers except layer 4 (p = 0.04). 

Furthermore, when a comparative analysis was done between the results from the 

automated segmentation algorithm and that from manual segmentation by an expert, the 

accuracy of the algorithm varied between 74.58% (layer 2) to 98.90% (layer 5). Additionally, 

the comparison of two different denoising techniques revealed that there was no significant 
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impact of an advanced wavelet-based denoising technique over the use of simple Gaussian 

filtering on the accuracy of boundary detection by the graph-based algorithm. 

 

Conclusion An automated graph-based algorithm was developed and implemented in this 

thesis for the segmentation of seven intra-retinal boundaries and six layers in SD-OCT images 

which is as good as manual segmentation by an expert clinician. This thesis also concludes on 

the note that simple Gaussian filters are sufficient to denoise the images in graph-based 

segmentation techniques and does not require an advanced denoising technique. This makes 

the complexity of implementation far more simple and efficient in terms of time and memory 

requirements. 
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 Chapter 1: Introduction 

 

 

1.1 Retinal Imaging 

 

Imaging of the cross-sectional anatomical structures of the retina is necessary for detection, 

diagnosis and evaluating the effects of therapy for retinal diseases including macular 

degeneration, glaucoma, and macular edema1. There are several ocular imaging techniques 

for cross-sectional imaging of the eye. However, most of the imaging techniques come with 

their own set of challenges. 

 

The limitation in the ocular tissue penetration capacity of ultrasound wavelengths restricts its 

usage to the posterior segment of the eye. Similarly, magnetic resonance image is limited to 

only a few hundred microns in terms of its penetrability and it cannot be implemented to take 

cross-sectional images of the eye. Furthermore, ocular aberrations and size of the entrance 

pupil of the eye limits the applicability of scanning laser ophthalmoscopy to image the 

fundus1.  

 

These limitations have been overcome by the application of low-coherence interferometry 

with continuous wavelengths of light sources on imaging to produce better visualization of 

the retinal layers structures, in the form of optical coherence tomography imaging of the 

retina1. 

 

1.2 Overview of the project 

 

 1.2.1 Optical Coherence Tomography 

 

Optical coherence tomography (OCT) is a non-invasive medical imaging technique, which is 

essentially a Michelson interferometer based on the principle of low-coherence 
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interferometry2.  It works by the determination of magnitude of light intensity that has been 

reflected off a region of interest within organs such as eye1,3–6, breast, skin7–11, and kidney12. 

A sample OCT image of a section of the retina of a visually healthy adult is shown in Figure 

1.1. 

 

Optical coherence tomography is based on the principle of low coherence interferometry, 

where the time differences in seeing the structures depend on the distances between 

them3,13. The beam from a low coherent light source is incident on a beam splitter. The light 

source is usually a bandwidth laser or a superluminescent diode. In Time Domain OCT (TD-

OCT), the first half of the light rays emerging from the beam splitter is incident on a mirror 

located on the reference arm at a known location. The second half of light rays emerging from 

the beam splitter is scattered at the sample arm and reflected off the tissue structures being 

scanned. The light rays both from the reference arm as well as the sample arm goes back to 

the beam splitter to recombine and emerge from the other side as an interference pattern to 

be sensed by a photodetector. If the light rays scattered from the tissue structures and the 

light from the reference arm are approximately equidistant, then constructive interference 

takes place. The resolution of the interferometer depends on the width of the signal and is 

Figure 1.1: A sample macular optical coherence tomography image of a visually healthy adult 
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inversely proportional to the coherence length of the light, which is further dependent on the 

bandwidth. 

 

However, Spectral Domain Optical Coherence Tomography (SD-OCT) images of the retina 

have been used for layer segmentation within this study. SD-OCT operates on a similar 

principle as TD-OCT with some variations. The mirror on the reference arm is stationary in 

case of SD-OCT. A grating acts as a beam splitter which splits the interference pattern into its 

frequency components. Each of these frequency components are then detected by a charge-

coupled device (CCD), which consists of a series of photodetectors. Each of the 

photodetectors within the CCD is capable of detecting a specific range of frequencies. The 

Fourier transform of the depth within the tissue structures is represented by each detected 

frequency, and contributes to a resulting A-scan. Additionally, this technique greatly improves 

upon the scanning speed as compared to TD-OCT. Figure 1.2 illustrates schematic 

representations of Time Domain and Spectral Domain OCT systems. 

 

 

Figure 1.2 A schematic representation of the principles of TD-OCT and SD-OCT reproduced from Schuman et al.3 



 4 

1.2.2 Importance of retinal OCT and its segmentation 

 

High resolution and interferometric sensitivity, and spectral transmission properties of the 

ocular media enables the application of OCT for fast and precise cross-sectional visualization 

of retinal layer structures2,14. However, for early detection and studying 

progression/remission of many ophthalmic and neurological diseases, it is important to 

investigate individual sub-retinal layers, which is achieved by segmentation of OCT slices for 

accurate delineation of layer boundaries15,16. Segmentation of spectral-domain Optical 

Coherence Tomography (SD-OCT) images facilitates visualization and quantification of sub-

retinal layers for diagnosis of retinal pathologies. However, manual segmentation is 

subjective, expertise dependent, and time-consuming, which limits applicability of SD-OCT. 

Computational techniques such as active-contours, artificial intelligence, and graph-search 

are therefore implemented to automatically segment retinal layers with accuracy comparable 

to that of manual segmentation in order to ease clinical decision-making. Graph-based image 

segmentation approach stands out from the rest because of its ability to minimize the cost 

function while maximizing the flow (which is further described in the next chapter). 

 

1.2.3 Existing challenges associated with OCT imaging and segmentation 

 

With increasing amount of volumetric imaging data, manual segmentation gets challenging, 

time consuming, and subjective, thus limiting it’s applicability15,17. The default segmentation 

algorithms available with commercial OCT imaging devices are inconsistent within versions 

and between manufacturers, with high dependence on image quality, exhibiting limited 

robustness when dealing with the pathological retina18. Furthermore, poor image contrast 

due to high-reflectivity of some retinal layers and the presence of heavy speckle noise, pose 

severe challenges to the automated segmentation algorithms. A fast, accurate and robust 

automated segmentation algorithm is therefore needed that would transcend these 

limitations18,19.  

However, noisy conditions within the retinal OCT images often make the task of automated 

segmentation computationally complex and time-consuming. It is therefore essential to make 

the scans noise-free or reduce the noise-level before accurate segmentation. Simple Gaussian 
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filters used in graph-based segmentation algorithms over-smoothen the images in certain 

cases by filtering of high-frequency components of the image which result in blurring of 

edges20,21, thus impacting the accurate detection of boundaries within the images. Other 

denoising methods have been proposed that took into account the difference between the 

noisy and noise-free images. One such technique20 reconstructed the bilaterally filtered 

images in a wavelet domain to retain the boundary details within the images. 

 

 1.3 Aim of the thesis 

 

This research is driven by the motivation to segment the various layers of retina in an OCT 

image using graph-theoretical methods to reduce the complexity of computational logic, 

optimize the processing time, and improve upon accuracy of layer detection by finding the 

best denoising technique for graph-based segmentation. 

The specific goals for the thesis are as follows: 
 
i. To delineate intra-retinal boundaries in retinal SD-OCT images. 

 

ii. To compute retinal layer thicknesses which can be compared to histological thickness 

values to ease diagnosis of ocular diseases. 

 

iii. To compare the effects of denoising in accurate boundary delineation. 

 

iv. To validate the automated segmentation results by clinical experts.  
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1.4 Organization of the thesis 

 

This thesis consists of six chapters in total including the current one, which introduces the 

concepts behind the whole project and the principle of the optical coherence imaging 

technique. Chapter 2 discusses the existing literature relevant to the segmentation of OCT 

images. The sub-sections within the chapter describe the importance of OCT segmentation 

algorithms and the different algorithmic approaches that have been implemented by 

different researchers towards the segmentation of retinal OCT images. 

 

Chapter 3 describes the methodology used in the automated segmentation of retinal OCT 

images. It discusses the dataset used  for the study, the segmentation algorithm in steps, and 

it’s implementation on the healthy adult retinal OCT images, followed by the results it yielded. 

 

Chapter 4 discusses the impact of using additional denoising techniques on the already 

developed segmentation algorithm by introducing a comparative analysis of the accuracy of 

segmentation with and without the implementation of advanced denoising technique, and 

reports the results from this analysis. 

 

Chapters 3 and 4 are written as per the publication format of the Proceedings of SPIE, where 

they have been published22,23. 

 

Chapter 5 introduces the methodology by which the algorithm is validated against the gold 

standard, namely, manual segmentation performed by a clinician who had years of 

segmentation experience in clinical practice. It also describes a graphical user interface that 

was designed and developed in order to facilitate the ease of manual segmentation and 

allows the comparison of results with that of manual segmentation. 

 

Finally, Chapter 6 concludes the thesis which highlights the significance and contributions 

made in this study compared to existing literature and points to the future directions of 

investigation. 
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Chapter 2: Background & Literature Review 

 

2.1 OCT image segmentation 

 

The task of OCT image segmentation is simultaneously of crucial importance as well as highly 

challenging at the same time. There is still no single segmentation technique, which works 

equally well for all segmentation tasks24. In general the task of OCT segmentation may be 

classified into four major steps: 1) Identifying the proper OCT image datasets for which the 

algorithm is intended to work efficiently; 2) Initializing values to the parameters of the 

algorithm; 3) Executing the algorithm on the pre-determined datasets and obtaining the 

results; 4) Validation of the algorithm by comparison with gold standards24.  

 

There are a number of OCT image segmentation techniques based on active contours, 

artificial intelligence, as well as graph-cut techniques. The presence of huge amount of 

speckle noise, makes the task of simple edge detection algorithms practically impossible to 

segment the various retinal layers in OCT images24. The main advantage of the graph-based 

segmentation algorithms in case of segmenting OCT images is the fact that they are self-

reliant when it comes to denoising of the images. Literature shows that mostly graph-based 

segmentation techniques do not need to deploy additional denoising techniques before 

segmentation of the OCT images. 

 

2.2 An introduction to graph-theoretical methods in image 

segmentation 

 

A graph (G) is a data structure which consists of a set of vertices (V) and edges (E) such that G 

=(V, E)34. For example, eij would be an edge connecting the vertices vi and vj. If the set of 

vertices {vi, vj} have no orientation and are unordered, then the graph is termed as an 

undirected graph. 
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In certain graphs, there are real numbers associated with each edge of the graph, which 

represents a property of connection between the set of vertices34. This real number 

associated with edge eij of the graph is termed as weight wij, and such types of graphs are 

called weighted graphs. An example of a weighted undirected graph is shown in Figure 2.1 

below. 

 

Figure 2.1: A sample weighted undirected graph reproduced from Wang et al.35 

In image segmentation using graph-theoretical methods, an image is considered as a 

weighted undirected graph G = (V,E) where each pixel (p) within the image (P) is represented 

by each node of the graph and the edge connecting a pair of nodes has a weight assigned to 

it. These weights signify the similarity between neighbouring pixels. The process of image 

segmentation using this technique involves partitioning of the graph into two disjoint sets of 

vertices, such that AB = V and AB = . This partitioning is generally governed by a minimum 

cut/ maximum flow method proposed by Boykov and Jolly34, which is described below. 

 

2.2.1 Min-cut/max-flow image segmentation 

 

In graph-theoretic segmentation of an image, two additional nodes are considered, namely, 

an object terminal called source (S) and a background terminal called sink (T) such that, V = 

P{S, T}. The set E consists of n-links and t-links as two types of undirected edges. The edges 

which connect the neighbouring pixels are n-links and the edges which connect the pixels to 

the terminals are t-links. Each pixel consists of a maximum of four n-links an two t-links, which 

are {p, S} and {p, T}34. 
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Weights B{p, q} are assigned to the n-links which signify the similarity between the pair of nodes 

p and q.  Similarly, weights Rp(.) are assigned to the t-links which signify the individual 

penalties for assigning the pixel p to the object Rp(obj) and the background Rp(bkg). The 

border between the object and the background which is optimal in terms of edge weights is 

considered to be the minimum cost graph-cut, which is computed from the minimization of 

the energy function34: 

E(A) = .R(A) + B(A) 

Where,  is the scaling factor which indicates the relative importance of the regional term 

Rp(.) with respect to the boundary term B{p, q}. 

A = (A1, A2, A3, …, A|P|) which represents the segmentation vector that specifies the 

assignment of pixel p in image P either to the object (Ai = 1) or to the background (Ai = -1). 

 

Hence, according to the min-cut/max-flow theorem, the segmentation vector A minimizes 

the value of the energy function E(A) such that maximum flow can be sent by the graph 

between source (S) and sink (T), which should saturate the border between the object and 

the background34. 

 

2.3 Review of graph-based retinal layer segmentation algorithms in 

OCT images 

 

In this section we will be discussing the different graph-based segmentation techniques 

implemented by different researchers towards OCT image segmentation. 

 

In 2008 Farsiu25 proposed the frame-by-frame segmentation of drusen from retinal SD-OCT 

images by making use of the MATLAB based software package, DOCTRAP (Duke OCT Retinal 

Analysis Program). As part of pre-processing, the images were denoised using a low pass filter 

on the B-scans. High pass filtering of the denoised image was done to highlight the RNFL 

outline followed by blurring of the image in the horizontal direction. The disconnected outlier 

pixels of high intensity were removed and finally smoothening constraints were applied in 

order to create the RNFL outline. Following this, a gradient vector flow based deformable 

snake method was employed to locate and segment the RPE layer. After the detection of the 
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RPE layer, possible drusen locations were analysed using the condition of convexity and fitting 

a second or fourth order polynomial to the abnormal RPE curve in order to mark the presence 

of a drusen.  In order to validate the algorithm, the SD-OCT images from age related macular 

degeneration (AMD) patients were manually segmented by two expert clinicians. However, 

the comparative results were not reported in the paper. Result images showed that drusen 

of different shapes and sizes were detected by the algorithm. However, some of the drusen 

which did not affect the normal RPE layer could not be detected. Furthermore, the presence 

of hyper-reflective debris over RPE affected the accuracy of the algorithm and led to an 

erroneous detection of a druse there. 

 

In 2009 Garvin26 proposed a 3-D graph-theoretic segmentation method for 3-D macular OCT 

scans. As a preprocessing step, an anisotropic diffusion filter was applied to reduce speckle 

noise. Creation of a 3-D macular image from the raw OCT retinal scans formed the first step 

towards segmentation, followed by determining of the six surfaces on the 3-D macular image 

thus created. In this study, a novel 3-D graph theoretic segmentation approach was 

implemented for segmenting 6 boundaries simultaneously with the application of a divide 

and conquer approach where certain cost functions are derived from prior information from 

the surfaces that were previously identified. The thickness results from the segmentation 

algorithm were compared to results from 3 manual graders and reported. In terms of 

accuracy the mean unsigned border positioning error of the algorithm was 5.69 ± 2.41 µm with 

respect to the mean from manual grading. However, large time and memory requirements were 

involved due to redundant steps. Furthermore, there is scope for optimization techniques to reduce 

the size of the graph and thus reduce the processing time. 

 

In 2009 Mishra27 proposed an adaptive kernel based approach for the segmentation of high-

resolution ICT scans of healthy and diseased rodent retinas. This technique directly accounts 

for the presence of speckle noise and does not employ any distinct pre-processing steps 

within the algorithm. A kernel based optimization technique with dynamic programming was 

implemented by this algorithm through two steps for locating each of the retinal boundaries 

during segmentation. The first step involved computation of the likelihood of all the nodes 

falling along the normal to a particular point on the boundary and determining the position 

of the node with maximum probability. The second step involved derivation of a smoothness 
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constraint from the spatial distributions as well as the locations of the external forces on the 

boundary. This could account for the presence of speckle noise and other artifacts, while 

locating a continuous retinal boundary. The algorithm was tested on a large number of 

healthy and diseased rat retinas. However no measure of accuracy was discussed in the paper. 

Furthermore, the results were not evaluated or validated by manual graders, which leaves 

scope for further study on the accuracy and implementation of the algorithm. Moreover, 

there is scope for further work on application of the algorithm on human retinal OCT images 

in the future. 

 

In 2010 Mayer28 proposed an automated segmentation approach for the retinal nerve fibre 

layer (RNFL) in FD-OCT images. As part of preprocessing step, the images were denoised using 

a complex diffusion filter. Circular B-scans were split into inner border of the retina, at the 

inner surface of RNFL or internal limiting membrane (ILM), and outer retinal border at outer 

surface of retinal pigment epithelium (RPE). This was done to limit the search region and thus 

save processing time for segmentation. Segmentation of the RNFL was based on construction 

of an energy function based on gradient and smoothening constraints, followed by minimizing 

that energy function. FD-OCT scans from 72 different glaucoma patients and 132 scans from 

healthy subjects were segmented by this technique. The results were reviewed by two expert 

manual graders and a student. Corrections were done by the observers on the automated 

segmentation results using a Matlab GUI by manually re-drawing the erroneous portions of 

the segmentation borders. Segmentation and mean thickness measurement of RNFL in 

normal and glaucomatous, good quality B-scans were accurate, but were erroneous in low 

image quality scans and required manual corrections. Moreover, a large amount of processing 

time was involved in the complex diffusion filtering of the images, which leads to further 

scope for optimization. 

 

In 2010 Chiu15 proposed and implemented a graph-based segmentation approach followed 

by dynamic programming for the automated segmentation of volumetric macular OCT scans 

of the retina. As preprocessing, the images were denoised using Gaussian filters. 

Furthermore, the retinal pigment epithelium (RPE) was estimated from the brightest pixel in 

each column and the OCT images were flattened based on this RPE estimate. The 

segmentation was done based on shortest path-based graph search using Dijkstra’s 
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algorithm, followed by dynamic programming to recursively limit the search region and 

segment a new layer in each iteration. 100 B-scans were considered for evaluation of 

automatic versus manual segmentation by two expert graders. To estimate inter-observer 

variability, a subset of 29 B-scans were graded manually by both the experts. However, in 

order to make the algorithm more usable at the clinics, it is essential to reduce the 

computational complexity of the algorithmic approach. 

 

In 2012 Chen29 reported a probability constrained graph-cut method for the segmentation of 

3D OCT images of the retinal with fluid associated abnormalities within the retina. In order 

for the initialization step of the graph-based segmentation algorithm to work, it was required 

that the fluid-associated symptomatic exudate-associated derangements (SEAD) were 

initially segmented once. This was done in order to determine the SEAD footprints using a 

statistical voxel classification approach and be able to ignore the points within those 

footprints and help flatten the scans. This was followed by a graph search and graph cut 

segmentation of the SEAD based on cost functions. This method was able to successfully 

segment SEAD regions in 15 retinal SD-OCT images. However, the segmentation results are 

highly dependent on the initialization results. Incorrect determination of the probability 

constraints from the first step would lead to inaccurate segmentation results. 

 

Kafieh30 in 2013 introduced a specific type of spectral graph theory in the form of diffusion 

maps for the segmentation of intra-retinal layers in SD-OCT images. This method is different 

from the traditional graph-based segmentation approaches as it does not rely on edge-based 

information, rather it works on region-based texture of the image. The diffusion maps were 

implemented on OCT images in two steps. In the first step, the layer 1 and layers 7 to 10 were 

segmented. In the second step, the layers 2 to 6 were identified and segmented. The 

algorithm was tested on 13 SD-OCT healthy macular 3D scans of the retina and the results 

were validated with respect to manual segmentation by two independent observers. This was 

the first study to show the implementation of diffusion maps in the segmentation of OCT 

images. However, the preprocessing step used by the algorithm in order to denoise the OCT 

images was very complicated. A single node within the graph was represented by more than 

one pixel and from each node three categories of textural features were selected to 

determine the similarity between a pair of nodes. 
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In 2013 Dufour31 implemented a different approach to graph-based segmentation on OCT 

images based on soft constraints from a previously learned model. This helped reduce the 

size of the graph and hence reduce computation time. This algorithm is based on minimization 

of the energy function and the use of a model based on prior learning. The prior learning-

based model determines the statistical distance between two retinal surfaces with respect to 

the position of the fovea. This model was constructed from 28 foveal slices of OCT image 

datasets, using the fovea as a point of reference. This was done by initial localization of the 

fovea as the lowest point on the segmented internal limiting membrane. The graph-

construction approach was similar to that used by Li32 in 2006 for multi-surface segmentation. 

The prior learned model helped breaking down the multi-surface segmentation into smaller 

steps and thus reduce the size of the graphs, its memory and time requirements. However, 

the implementation of prior learned model was a challenge when it came to the segmentation 

of drusen especially the large ones due to huge morphological changes within the retina. 

 

Lang33 in 2013 developed and implemented a random forest classifier approach along with 

graph-search technique for the segmentation of eight retinal layers in healthy OCT images as 

well as those where retina was affected by multiple sclerosis. As part of preprocessing, the 

intensity ranges of the image were normalized, followed by detection of the retinal layers and 

flattening of the image. The image is flattened in order to decrease the sensitivity of the 

algorithm towards curvature and orientation of the retina. The random forest classifier was 

trained using 27 features based on ground truth which were labelling from a manual grader. 

Following the training, the classifier was implemented on unlabelled data sets after 

computation of the 27 features, and then fed as input to the classifier. A set of boundary 

probabilities were then given as output by the random forest classifier. Followed by this a 

graph-based algorithmic approach was implemented as per the method described by Li32 in 

2006. The results from the algorithm were validated against manual boundary delineations. 

However, detecting retinal boundaries using this algorithm would be challenging in the 

presence of drusen due to the high curvature of the retinal pigment epithelium and lack of 

presence of a sharp feature at Bruch’s membrane. Furthermore, the algorithm would face 

performance issues in the presence of geographic atrophy as the features used by the random 
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forest classifier would not be able to detect the irregular boundaries. This algorithm would 

work well when the spatial arrangement of the retinal layers is consistent. 

 

Srinivasan17 in 2014 developed an approach which implemented sparsity based denoising, 

support vector machines (SVM), graph theory and dynamic programming for the automated 

segmentation of SD-OCT images of mice retinas. Initially the images were denoised using two 

different freely available sparsity based denoising techniques which are, simultaneous 

denoising and interpolation, and the block-matching and 3D filtering algorithm. Following 

this, a trained SVM classifier was used to classify each of the B-scan images to determine 

whether it belonged to the category with 10 retinal layers or to the category with eight or less 

retinal layers. The number of layers to be segmented in each volume is determined and 

segmented in order to use that as pilot data for locating the vessels and optic nerve head. 

Vertical Image gradients were computed based on dark-to-light and light-to-dark transitions 

followed by edge weight calculations. The layers were segmented starting with the most 

obvious dark-to-light boundary which was the nerve fibre layer. The optic nerve head was 

segmented using the prior segmented pilot data. After segmenting the optic nerve head and 

the vessels, the images were segmented a second time in order to incorporate those 

segmentation results. The segmentation results were validated against the gold standard 

manual segmentation results from two graders. However, scope still remains for testing this 

algorithmic approach on human retina especially the SD-OCT images of human scans affected 

by pathologies. 

 

Tian18 in 2015 implemented a shortest path-based graph search technique using Dijkstra’s 

algorithm based on the work of Chiu15. However, in this algorithm the processing time was 

further reduced with the implementation of advanced techniques which harnessed the 

spatial dependency between consecutive frames, like inter-frame flattening, inter-frame 

refinement of the search region, masking and biasing. The reference boundary was flattened 

in order to reduce the number of nodes and consecutively a reduced total weight of the 

graph. Flattening of the internal limiting membrane (ILM) was done based on the smoothness 

of retinal layers in adjacent B-scans. The image gradients were computed based on transitions 

from dark-to-light and light-to-dark similar to the technique implemented by Srinivasan17. 

Inter-frame and intra-frame search region refinement was incorporated based on the search 



 15 

region in previous frame, in order to limit the search region only to the region of interest. 

Furthermore, biasing and masking techniques were incorporated to facilitate the ease of 

segmentation of multiple closely located boundaries within the same frame so that the 

contrast of the boundary to be segmented was enhanced with respect to the others. Followed 

by the search region refinement, biasing and masking, the shortest path-based graph search 

technique was incorporated for segmentation of the intra-retinal layers within the volumetric 

SD-OCT images. This segmentation algorithm was named as OCTRIMA 3D and was validated 

against Dufour’s algorithm31, IOWA Reference Algorithm, and the algorithm by Chiu et al.15. 

Furthermore, the segmentation results from this algorithm was also validated against manual 

segmentation results from two independent observers. The shortest path-based graph search 

technique proved to be standalone against speckle noise and could detect boundaries well in 

its presence. However, the algorithm might face challenges in segmentation of OCT images 

from custom-built OCT devices in the presence of motion artifacts. Furthermore, the 

algorithm currently works on the assumption of the retinal surface and layers being regular 

and smooth. However, this may fail in the presence of pathologies that alter the surface of 

the retina. Moreover, the computational complexity of the algorithm could be further 

reduced by using a simplified segmentation approach with lesser number of operations. 

 

2.4 Conclusion 

 

In spite of the fact that several researchers have been working on the segmentation 

techniques for Optical Coherence Tomography images of the retina, until now there is no 

single technique which works perfectly well for all healthy and pathological scenarios. Each 

technique has some flaw of its own which paves the way for other researchers to continue 

the research on improvised segmentation techniques with reduced complexity and runtime 

and easier implementation. It is also important to improve upon the accuracy of the 

segmentation of OCT images so that the automated algorithm is equivalent to manual 

segmentation and thus ease clinical decision making. Furthermore, denoising of the OCT 

images prior to segmentation is another important challenge that the researchers face. 

Ideally, a segmentation algorithm should be standalone in denoising as well in accurate 

segmentation of the intraretinal layers in OCT images. 
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Chapter 3: Automated intraretinal layer 

segmentation of optical coherence tomography 

images using graph theoretical methods 

 

 

A part of this chapter has been published in Proceedings of SPIE22. Priyanka Roy, Peyman 

Gholami, Mohana Kuppuswamy Parthasarathy, John Zelek, Vasudevan Lakshminarayanan, 

"Automated intraretinal layer segmentation of optical coherence tomography images using 

graph-theoretical methods", Proc. SPIE 10483, Optical Coherence Tomography and Coherence 

Domain Optical Methods in Biomedicine XXII, 104832U (14 February 2018); doi: 

10.1117/12.2282949; https://doi.org/10.1117/12.2282949 

 

 

3.1 Overview 

 

Segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images facilitates 

visualization and quantification of sub-retinal layers for diagnosis of retinal pathologies. 

However, manual segmentation is subjective, expertise dependent, and time-consuming, 

which limits applicability of SD-OCT. Efforts are therefore being made to implement active-

contours, artificial intelligence, and graph-search to automatically segment retinal layers with 

accuracy comparable to that of manual segmentation, to ease clinical decision-making. 

Although, low optical contrast, heavy speckle noise, and pathologies pose challenges to 

automated segmentation. Graph-based image segmentation approach stands out from the 

rest because of its ability to minimize the cost function while maximizing the flow. This study 

has developed and implemented a shortest-path based graph-search algorithm for 

automated intraretinal layer segmentation of SD-OCT images. The algorithm estimates the 

minimal-weight path between two graph-nodes based on their gradients. Boundary position 

indices (BPI) are computed from the transition between pixel intensities. The mean difference 

between BPIs of two consecutive layers quantify individual layer thicknesses, which shows 

https://www.spiedigitallibrary.org/profile/Priyanka.Roy-4060411
https://www.spiedigitallibrary.org/profile/Peyman.Gholami-4069627
https://www.spiedigitallibrary.org/profile/Peyman.Gholami-4069627
https://www.spiedigitallibrary.org/profile/John.Zelek-62526
https://www.spiedigitallibrary.org/profile/Vasudevan.Lakshminarayan-10388
https://doi.org/10.1117/12.2282949
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statistically insignificant differences when compared to a previous study [for each of the 

layers: p > 0.05 (except one layer: p = 0.04)]. These results substantiate the accurate 

delineation of seven intraretinal boundaries in SD-OCT images by this algorithm, with a mean 

computation time of 4.93 seconds (64-bit Windows10, core i5, 8GB RAM). Besides being self-

reliant for denoising, the algorithm is further computationally optimized to restrict 

segmentation within the user defined region-of-interest. The efficiency and reliability of this 

algorithm, even in noisy image conditions, makes it clinically applicable. 

 

3.2 Introduction 

 

Optical coherence tomography (OCT) is a high-speed non-invasive medical imaging technique 

based on the principle of low-coherence interferometry2. High resolution and interferometric 

sensitivity, and spectral transmission properties of the ocular media enables the application 

of OCT for fast and precise cross-sectional visualization of various retinal layer structures2,14. 

However, for early detection and monitoring the progression or remission of many 

ophthalmic and neurological diseases, such as, age-related macular degeneration (AMD), 

macular edema, diabetic retinopathy (DR), and glaucoma, it is important to investigate 

individual sub-retinal layers, which is achieved by segmentation of OCT slices for accurate 

delineation of layer boundaries15,16,36.  

With increasing amount of volumetric imaging data, manual segmentation becomes 

challenging, time consuming, and subjective, thus limiting it’s applicability15,17. The default 

segmentation algorithms available with OCT imaging devices are inconsistent within versions 

and between manufacturers, with high dependence on image quality, exhibiting limited 

robustness while dealing with pathological retina18. Furthermore, poor image contrast due to 

high-reflectivity of some retinal layers as well as the presence of heavy speckle noise, pose 

severe challenges to the automated segmentation algorithms. 

This research is therefore driven by the motivation to develop a fast, accurate, robust, and 

optimized algorithm that would be able to transcend the existing limitations by being clinically 

reliable in terms of accuracy18,19. 
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3.3 Methodology 

 

 3.3.1 Image Dataset 

 

A dataset (n = 25) comprising of de-identified macular SD-OCT images of healthy adult retina, 

received in JPEG format from the Medical Research Foundation, a unit of Sankara Nethralaya 

in Chennai, India, were used to testify the algorithm. The images measuring 6 mm 

transversally, were obtained from a Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) device. 

Figure 1(a) shows a sample SD-OCT image from the test dataset. 

 

3.3.2 Pre-processing 

 

With the help of a sliding window, the SD-OCT images were resized to a slice including the 

fovea (foveal slice) or to one without the fovea (non-foveal slice). The selected slice or region 

within the image selected by the user was referred to as the region-of-interest (ROI). Only the 

pixels within the ROI, which was either a foveal slice or a non-foveal slice of the same image, 

were considered for further processing. This enhanced the optimizability of the algorithm 

with concurrent reduction in time and memory requirements, because of the smaller number 

of target pixels being processed. Smoothening constraints were applied by convolving each 

of the SD-OCT images with simple Gaussian filters, rather than implementing additional 

denoising techniques, which further reduced the computational run-time. 
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3.3.3 Retinal layer segmentation 

 

A graph G = (V,E) was constructed for each SD-OCT image, where each node V represented a 

pixel of the image and each edge E, between a pair of nodes (Vi and Vj), was assigned a weight 

(Wij), based on a previously published algorithm15,44, from the normalized vertical image 

gradients (gi and gj) for the pair of nodes connecting the edge. The edge weight (Wij) signified 

Figure 3.1: (a) A sample macular SD-OCT image from the test dataset showing a healthy adult retina 

Figure 3.1: (b) the sample SD-OCT image shown in Figure 1(a), converted to grayscale by the algorithm 
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the difference between two pixels or nodes (Vi and Vj) based on their intensities37, which was 

calculated according to the following equation: 

𝑾𝒊𝒋 = 𝟐 − (𝒈𝒊 + 𝒈𝒋) + 𝑾𝒎𝒊𝒏 

(1) 

The Wmin in equation (1) is the hypothetical minimum weight within the graph, which is a 

small positive constant value. A sparse adjacency matrix was generated for the image graph 

(G) from the assigned edge weights. To simplify the adjacency matrix computation, the 

images were converted to grayscale with a single color channel, which also eased gradient 

calculation by enhancing the difference between pixel intensities. The grayscale version of 

the SD-OCT image in Figure 1(a) is shown in Figure 1(b) as an example. 

 

Potential graph-cuts within the ROI were defined by edges (Eij) between a pair of nodes 

(corresponding to the starting and ending pixels). The lowest-weighted graph-cut given by 

min(Eij) was used to detect and trace a layer boundary between a pair of nodes (Vi and Vj) so 

as to maximize the similarity between all the nodes belonging to the boundary3,9,10. 

 

3.3.4 Layer thickness computation 

 

Boundary point indices (BPI) were determined for each of the boundaries delineated by the 

algorithm. The range of pixels sandwiched within two boundaries constituted to an 

intraretinal layer, segmented by the algorithm. Layer thicknesses were computed for the 

segmented layers, from the mean difference between the corresponding BPIs of two 

consecutive boundaries along the same vertical image gradient. 

 

3.3.5 Flowchart for the algorithm 

 

Figure 3.2 schematically represents the flow of methodology used to develop this algorithm, 

before arriving at the segmented image having layer thicknesses been computed. 
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 3.4 Results 

 

3.4.1 Retinal Layer Segmentation 

 

This method successfully delineated seven boundaries, with the internal limiting membrane 

(ILM) being the topmost boundary of the delineation, thus segmenting six layers within foveal 

as well as non-foveal slices in SD-OCT images in the following order: retinal nerve fiber layer 

and ganglion cell layer (RNFL + GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer 

plexiform layer (OPL), outer nuclear layer and inner segment (ONL + IS), outer segment and 

retinal pigmented epithelium (OS + RPE). Figure 3.3 illustrates the segmentation results from 

a foveal slice of a sample macular SD-OCT image of healthy adult retina from the test dataset. 

The resulting layers have been labelled for illustration, with the respective expansions in the 

legend of the figure. The algorithm was also tested on ten non-foveal slices of macular SD-

OCT images. The segmentation results for a non-foveal slice of the same macular SD-OCT 

image has been shown in Figure 3.4. 

Figure 3.2: A schematic representation of the shortest-path based graph-search algorithm for segmenting intraretinal layers in 

Sd-OCT images 
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3.4.2 Layer thickness computation 

 

This graph-based algorithm precisely computes the mean layer thicknesses of the six 

segmented layers for each SD-OCT image within the test dataset. Tables 3.1 and 3.2 quantify 

the mean thicknesses ( standard deviation) of each of the retinal layers (in microns) 

segmented by the algorithm for the foveal and non-foveal slices respectively, across the 

entire dataset. 

 

Figure 3.3: Foveal slice of a sample macular SD-OCT image from the test dataset illustrating the layers and 

boundaries segmented by the algorithm 

(a) (b) 

Figure 3.4: (a) A non-foveal slice of the macular SD-OCT image (shown in Figure 3) in grayscale format; (b) 

the segmented image showing 7 delineated boundaries. 
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3.5 Performance Evaluation of the algorithm 

 

To evaluate the performance of this method, the mean layer thicknesses computed by this 

algorithm for the foveal SD-OCT scans were compared to the normalized layer thickness 

values reported by a previously published study38. The normalization was done by combining 

multiple layers reported by the previous study38 and determining the mean thickness across 

the 9 macular sectors for each of the combined layers to compare with corresponding mean 

layer thickness of the current study. Table 3.3 summarizes the statistical results from this 

comparative analysis. The differences between the mean ( SD) thicknesses of each retinal 

layer and those reported by the previous study38 were statistically insignificant (one-sample 

t-test, p > 0.05), except for layer 4 (p = 0.04), which is the OPL in this study. Furthermore, the 

overall mean retinal thickness computed by this algorithm did not vary significantly (p = 0.17) 

with that reported by the previous study38. These results authenticate the accuracy of 

segmentation of this newly developed algorithm. 

 

3.6 Computation time 

 

The algorithm is fast and accurate in segmenting the retinal layers shown in Figure 3.3, and 

computing their mean thickness values. This graph-based segmentation takes approximately 

takes about five seconds to produce the final output, including the segmented image and the 

layer thicknesses. These results are reported based on testing on a specific computer (64-bit 

Windows10 OS with Intel Core i5 processor, 8GB RAM, and 1GB Radeon graphics card). Table 

3.4 depicts the average computation time to segment the foveal and the non-foveal slices 

respectively, when executed on the same computer. 
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Table 3.1: Mean thicknesses of the six layers segmented by the algorithm in the foveal slices of the SD-OCT images across 

the test dataset. 

Layer # Segmented intraretinal layers (as 

shown in Figure 1) 

Thickness = Mean  SD (in 

microns) 

1 RNFL + GCL 25.02  3.16 

2 IPL 5.40  2.79 

3 INL 5.94  1.10 

4 OPL 8.45  0.96 

5 ONL + IS 16.24  1.76 

6 OS + RPE 12.67  6.04 

 

Table 3.2: Mean thicknesses of the six layers segmented by the algorithm in the ten non-foveal slices of the SD-OCT images 

from the test dataset. 

Layer # Segmented intraretinal layers 

(as shown in Figure 1) 

Thickness = Mean  SD (in 

microns) 

1 RNFL + GCL 21.16  8.29 

2 IPL 5.38  9.45 

3 INL 4.29  3.82 

4 OPL 10.38  3.58 

5 ONL + IS 17.94  5.43 

6 OS + RPE 32.92  3.60 
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Table 3.3: Statistical results showing the difference between the mean thickness values computed by the present algorithm 

for the foveal slices and that of the normalized mean thicknesses from a previous study38 

Current study 
 

Published results38 

 

Statistical 

comparison 

Retinal 

Layer 
 

Mean thickness 

 SD (in µ) 

Retinal Layer 

 

Mean thickness  SD (in µ) 

thickness across 9 macular 

sectors 

p-value 
Std. error 

of diff. 

Layer 1 25.02  3.16 Layers (1 + 2) 25.88  4.48 0.36 0.94 

Layer 2 5.40  2.79 Layer 3 5.44  1.74 0.92 0.43 

Layer 3 5.94  1.10 Layer 4 6.00  2.59 0.91 0.53 

Layer 4 8.45  0.96 Layer 5 7.67  1.93 0.04 0.40 

Layer 5 16.24  1.76 Layers (6 + 7) 15.00  4.27 0.15 0.87 

Layer 6 12.67  6.04 
Layers (8 + 9 

+ 10 + 11) 
13.22  3.34 

0.52 0.86 

 

Table 3.4: Average time taken by the algorithm to segment the foveal and non-foveal image slices of SD-OCT images across 

the test dataset. 

SD-OCT image 

slice 

Mean Computation 

time (in seconds) 

Foveal 4.93 

Non-foveal 4.78 

 

3.7 Discussion and Future Work 

 

The segmentation of six intraretinal layers and delineation of seven boundaries could provide 

ease of investigation of the retinal layer structures for clinicians. Hence, the application of this 

algorithm would considerably reduce time and overhead cost associated with the manual 

segmentation of OCT images. Furthermore, precise computation of thicknesses of the 

segmented layers, even under very noisy image conditions without any additional denoising 

requirements, adds to the efficiency of the algorithm. From the retinal layer thickness values 

computed by the algorithm, clinicians would be able to detect the presence of possible 

pathologies, involving macula (such as macular degeneration) and optic nerve head (such as 

glaucoma), that typically alter retinal layer thicknesses39–41. 
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However, the mean thickness of one of the segmented layers, the OPL, shows significant 

differences when compared to the mean OPL thickness values reported previously38. This 

could be attributed to factors such as OCT scanner type, ethnicity, age, and sex of cohort, 

sector of retina being scanned, and presence of pathologies38–42. The performance metrics of 

this algorithm in terms of accuracy, with respect to manual segmentation as the ground truth, 

can be determined and quantified when the algorithmic segmentation results are compared 

to segmentation done by trained ophthalmic experts, which is currently underway as part of 

a validation study. 

This novel graph-based segmentation algorithm can be modified to further segment layer 1 

to separate the layers RNFL and GCL, layer 5 to separate ONL and IS, and layer 6 to separate 

OS and RPE, to produce more comprehensive results and a better visualization of each of the 

individual layers of the retina visible in SD-OCT images. The accurate segmentation and 

thickness quantification of the RNFL would dramatically increase the chances of detection of 

any abnormalities that might be present within that layer and hence provide an improved 

investigation tool for tracking progression of diseases such as glaucoma13. 

Furthermore, as part of the ongoing study, the efficacy of this algorithm will be tested on 

more comprehensive data sets containing retinal SD-OCT images affected by diseases such as 

glaucoma and pigment epithelial detachment, in order to validate the accuracy of 

segmentation of the additional layers, particularly the RNFL and the RPE, and the results will 

be reported in the future. 

3.8 Conclusion 

 

This high-speed, automated algorithm has implemented a shortest-path based graph-search 

technique to accurately delineate seven intra-retinal boundaries, thus segmenting the six 

layers of RNFL + GCL, IPL, INL, OPL, ONL + IS, OS + RPE. This algorithm works equally well for 

both foveal and non-foveal slices of macular SD-OCT scans, which promotes ease of clinical 

decision making. The ROI selection mechanism within the algorithm was built with the aim to 

promote ease of use in the clinical context and save the processing time for unnecessary 

pixels outside the ROI. Furthermore, the self-sufficiency shown by the algorithm in noisy 

image conditions, achieved by the use of simple Gaussian filters, rather than implementing 
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advanced denoising techniques, increases its efficiency in terms of processing time and logical 

complexity. The precise layer thickness values computed by the algorithm could be used as a 

retinal health marker by clinicians to detect the presence of possible pathologies or 

abnormalities within the retina. 

3.9 Additional Commentary 

The vertical gradient adjacency matrices were computed based on the transition from bright 

to dark layers or dark to bright layers and normalized to values between 0 and 1. These 

gradient values were determined using [1; -1] and [-1; 1] edge maps15. Finally, the vertical 

image gradients were used in the computation of the edge weights within the image graphs 

as described in section 3.3.3. 
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Chapter 4: Comparison of Gaussian filter versus 

wavelet-based denoising on graph-based 

segmentation of retinal OCT images 

 

 

This chapter has been published in the Proceedings of SPIE23. Priyanka Roy, Mohana 

Kuppuswamy Parthasarathy, John Zelek, Vasudevan Lakshminarayanan, "Comparison of 

Gaussian filter versus wavelet-based denoising on graph-based segmentation of retinal OCT 

images ", Proc. SPIE 10578, Medical Imaging 2018: Biomedical Applications in Molecular, 

Structural, and Functional Imaging, 105782N (12 March 2018); doi: 10.1117/12.2292479; 

https://doi.org/10.1117/12.2292479 

 

 

4.1 Overview 

 

Accurate segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images 

helps diagnose retinal pathologies and facilitates the study of their progression/remission. 

Manual segmentation is clinical-expertise dependent and highly time-consuming. 

Furthermore, poor image contrast due to high-reflectivity of some retinal layers and the 

presence of heavy speckle noise, pose severe challenges to the automated segmentation 

algorithms. The first step towards retinal OCT segmentation therefore, is to create a noise-

free image with edge details still preserved, as achieved by image reconstruction on a 

wavelet-domain preceded by bilateral-filtering. In this context, the current study compares 

the effects of image denoising using a simple Gaussian-filter to that of wavelet-based 

denoising, in order to help investigators, decide whether an advanced denoising technique is 

necessary for accurate graph-based intraretinal layer segmentation. A comparative statistical 

analysis conducted between the mean thicknesses of the six layers segmented by the 

algorithm and those reported in a previous study, reports non-significant differences for five 

of the layers (p > 0.05) except for one layer (p = 0.04), when denoised using Gaussian-filter. 

https://www.spiedigitallibrary.org/profile/Priyanka.Roy-4060411
https://www.spiedigitallibrary.org/profile/John.Zelek-62526
https://www.spiedigitallibrary.org/profile/Vasudevan.Lakshminarayan-10388
https://doi.org/10.1117/12.2292479
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Non-significant layer thickness differences are seen between both the algorithms for all the 

six retinal layers (p > 0.05) when bilateral-filtering and wavelet-based denoising is 

implemented before boundary delineation. However, this minor improvement in accuracy is 

achieved at an expense of substantial increase in computation time (~10s when run on a 

specific CPU) and logical complexity. Therefore, it is debatable if one should opt for advanced 

denoising techniques over a simple Gaussian-filter when implementing graph-based OCT 

segmentation algorithms. 

 

4.2 Introduction 

 

Spectral-domain Optical Coherence Tomography is a fast, non-invasive medical imaging 

technique, which provides high transversal resolution depth for a better visualization of the 

cross-sectional structures of the retina. This makes SD-OCT imaging technique highly 

advantageous in the field of ophthalmology for investigation of the retinal layers and 

diagnosis of many ocular diseases2,13. 

The practical applicability of OCT imaging is highly dependent on the expertise of clinicians in 

accurately segmenting the retinal layers. However, manual segmentation of large patient 

datasets is confounded by huge time-requirements and associated overhead costs15,16,36. 

Hence there is a huge scope for the development of a high-speed, efficient, and robust 

automated segmentation algorithm that could be applicable in a clinical set-up to overcome 

the limitations of manual segmentation. 

However, the presence of heavy speckle noise and low optical contrast within the retinal OCT 

images often make the task of automated segmentation significantly complex and 

challenging. It is therefore essential to de-noise or reduce the noise-level within the cross-

sectional scans before attempting the accurate segmentation of retinal layers. 

Simple Gaussian filters when convolved with OCT images for denoising, can result in over-

smoothening of the images due to filtering of the high-frequency components. This leads to 

blurring of edges within the images20,21, thus impacting the accurate detection of boundaries 

when attempted to do so by an algorithm. However, the denoising technique proposed in a 

previously published study20 took into account the difference between the noisy and noise-
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free images and reconstructed the bilaterally filtered images in a wavelet domain to retain 

the boundary details within the images.  

The current research was driven by the motivation to study the effect of such an advanced 

denoising technique, with simultaneous retention of boundary details, on the accuracy of a 

newly developed novel graph-based intraretinal layer segmentation algorithm for OCT 

images8. Furthermore, this study aims to infer whether an improvement in boundary 

detection accuracy by the wavelet-based denoising technique could in-turn contribute 

towards a significant improvement in the efficiency and clinical reliability of the automated 

graph-based algorithm, when compared to the segmentation results following a usual low-

pass filter smoothening of the images. 

 

4.3 Methodology 

 

 4.3.1 Image Dataset 

 

A dataset (different from the one in Chapter 3) comprising of ten de-identified macular SD-

OCT images of healthy adult retina, were obtained from Medical Research Foundation, a unit 

of Sankara Nethralaya in Chennai, India. The images captured by a Cirrus HD-OCT (Carl Zeiss 

Meditec, Dublin, CA) device, measured 6 mm transversely.    

 

4.3.2 Pre-processing 

 

The SD-OCT image selected by the user for segmentation appeared with a sliding window 

which allowed resizing of the image based on the clinical region of interest (ROI). This 

restricted the processing to only those pixels within the ROI and thus saved computation time. 

Furthermore, the resized images were converted to grayscale in order to simplify further 

processing and segmentation by enhancing the difference between pixel intensities. 

 

 



 31 

4.3.3 Denoising 

 

In order to smoothen the noisy SD-OCT images, initially the scans were convolved with low-

pass Gaussian filters based on edge kernels derived from the graph weights. This saved 

processing time and memory required for the segmentation of retinal layers. However, the 

overall smoothening of the whole image might have resulted in blurred edges and possibly 

affected the accuracy of layer segmentation. Therefore, an advanced image denoising 

technique developed by a previous study20 was also implemented on the SD-OCT images to 

determine the efficiency of the algorithm when boundary details were reconstructed and 

restored after the image was denoised. 

To study the effect of wavelet-based denoising on the graph-based segmentation algorithm 

developed by the authors, bilateral filtering followed by noise thresholding technique20 for 

effective image denoising was implemented on low quality retinal SD-OCT images before 

segmentation. Gaussian white noise was removed from the images by a combination of 

Gaussian and bilateral filter. The method noise (MN) was defined by the difference between 

a noisy image (I) and the image without the white noise or the noisy image after Gaussian and 

bilateral filtering (IGF), which can be related by: 

 

MN = I - IGF 

(1) 

The noisy image (I) in equation (1) is the sum of the original image (Io) with an added white 

Gaussian noise (GN), and can be represented as, 

 

I = Io + GN 

(2) 

To retain the details of image edges and boundaries after filtering, the images were 

reconstructed using wavelet thresholding based on the value of the previously computed 

method noise. 
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4.4 Retinal layer segmentation and thickness computation 

 

After denoising the images using either of the two techniques discussed above, the novel 

graph-theoretical segmentation algorithm earlier developed by the authors8 (see Chapter 3 

section 3.3) was implemented to delineate the intraretinal layer boundaries. A graph was 

constructed for each image and edge weights based were computed based on vertical image 

gradients for the pair of nodes based on a previous study15. For each node, the vertical image 

gradient defined the intensity differences between the two pixels represented by those 

nodes9.  

 

The edge weights used to generate the adjacency matrices for each image graph were 

computed using the following equation8: 

 

𝑾𝒊𝒋  = 𝟐 − 𝒈𝒊  + 𝒈𝒋  +𝑾𝒎𝒊𝒏 

 

(3) 

In equation (3) 𝑾𝒊𝒋 represents the weight of the edge connecting two nodes, 𝒈𝒊 and 𝒈𝒋 are 

the normalized vertical image gradients for the pair of nodes connected by the edge, and 

𝑾𝒎𝒊𝒏 is a small positive constant value added for stability, representing the minimum weight 

within the graph. 

 

Graph-cuts within the range of pixels in the region of image to be segmented, were 

constructed and the one with the lowest weight was detected as a layer boundary by the 

algorithm, in order to ensure maximum similarity between all the pixels on that boundary3,10-

12. The mean difference between the boundary point indices of the delineated boundaries 

yielded the thickness of the retinal layer between them. 

 

4.5 Efficacy verification of the two denoising techniques 

 

The layer thickness values obtained after segmentation of the SD-OCT image by the graph-

based algorithm preceded by either of the two denoising techniques were compared to the 
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normalized layer thickness values available in the literature38. The layer thicknesses were 

normalized before comparison in order to ensure a fair comparative analysis between the 

thickness values of the corresponding layers from both the studies. From the statistical 

difference between the layer thicknesses of the graph-based algorithm and those reported 

by the previous study, for each of the denoising techniques, it was possible to infer which 

denoising technique yielded better accuracy for the graph-based segmentation algorithm. 

 

4.6 Results 

 

Seven retinal layer boundaries with the ILM being the topmost boundary, followed by six 

layers were segmened by the algorithm in the following order: RNFL + GCL, IPL, INL, OPL, ONL 

+ IS, OS+ RPE. Figure 4.1 illustrates these segmented layers along with expansions of their 

abbreviated names used within this paper. 

 

 

Figure 4.1: A sample macular SD-OCT image from the test dataset illustrating the layers and boundaries segmented 

by the algorithm 



 34 

Figures 4.2 illustrates a sample SD-OCT image from the test dataset when denoised using a 

simple Gaussian filter and the corresponding segmentation results given by the graph-based 

algorithm. 

 

 

The denoising results using a Bilateral filter and wavelet reconstruction of a sample SD-OCT 

image is shown in Figures 4.3 (a) and (b) and the corresponding segmentation results are 

shown in Figure 4.3 (c).  

 

Table 4.1 quantifies the retinal layer thicknesses (in microns) of the segmented image and the 

mean computation time per image over the entire dataset, when executed on a specific 

computer (64-bit Windows10 OS with Intel Core i5 processor, 8GB RAM, and 1GB Radeon 

graphics card), for each of the denoising technique implementations. 

Figure 4.2: (a) Macular SD-OCT scan of healthy retina (b) the image segmented by graph-based algorithm  after 

denoising the image with a Gaussian filter showing 7 delineated boundaries. 

(a) (b) 
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(a) (b) 

(c) 

Figure 4.3: (a) Macular SD-OCT image of healthy retina after bilateral filtering (b) the image after wavelet-

based detail thresholding (c) the segmented image showing 7 delineated boundaries. 
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Table 4.1: Mean thicknesses of the six layers between the seven boundaries segmented by the algorithm in the 

macular SD-OCT images over the entire dataset, when the images were denoised using Gaussian-filter and 

wavelet reconstruction respectively, prior to segmentation. 

Layer # 

Segmented 

intraretinal layers 

(as shown in Figure 

1) 

Gaussian filter-based denoising Wavelet-based denoising 

Thickness = Mean  

SD (in microns) 

Mean 

Computation 

time (in 

seconds) 

Thickness = Mean 

 SD (in microns) 

Mean 

Computation 

time (in 

seconds) 

1 RNFL + GCL 25.16  2.09 

1.0535 

25.29  2.21 

11.2736 

2 IPL 5.38  1.23 5.49  1.18 

3 INL 5.29  0.15 6.15  1.89 

4 OPL 9.01  2.85 8.19  2.51 

5 ONL + IS 16.95  2.24 14.88  2.62 

6 OS + RPE 14.92  2.59 14.96  2.62 

 

Figure 4.4 summarizes the results in order to illustrate a comparative analysis of the mean 

layer thicknesses computed by this novel segmentation algorithm (after simple Gaussian 

filter-based denoising and after advanced denoising using wavelet-based thresholding) and 

the normalized layer thickness values from a previously reported study38. For normalization, 

multiple consecutive layers were combined based on the layers segmented by the current 

graph-based algorithm. The mean of the thickness values reported by the previous study 

across 9 macular sectors were determined for each of the combined layers, to compare with 

corresponding mean layer thickness values from the current study, using one-sample t-tests 

for individual layers. 

 

The comparison of the reference algorithm11 with the current segmentation algorithm when 

images were denoised using simple Gaussian filter, statistically shows no significant 

differences between the mean ( SD) thicknesses of each of the retinal layers 1, 2, 3, 5, and 6 

(p > 0.05) except for layer 4 (p = 0.04). When the reference layer thicknesses were compared 

to the layer thicknesses computed post wavelet-based denoising, the reported results show 

non-significant differences (p > 0.05) for all the 6 layers, including layer 4. However, the 

overall mean retinal thickness computed by this algorithm did not vary significantly when 
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either of the denoising techniques were implemented before segmentation (pgauss = 0.17 and 

pwavelet = 0.66). 

 

 

 

Figure 4.4: Histograms illustrating the mean thickness values from Kafieh et al.11 (green bars) and those 

computed by the present segmentation algorithm when the images were denoised using Gaussian-filter (blue 

bars) and wavelet reconstruction (yellow bars) respectively, prior to segmentation. The error bars indicate ± 

standard deviation of the mean.  * indicates statistically significant difference. 

 

4.7 Discussion and Future Work 

 

The comparative analysis of the segmentation results given by the novel graph-based algorithm 

when wavelet-based denoising technique was applied, exhibits improved accuracy in terms of 

thickness computation of all the layers, including the layer whose computed mean thickness 

was not accurate as per the reference algorithm38 when a Gaussian-filter was implemented to 

smoothen the images. 

However, the improvement in segmentation accuracy for wavelet-based denoising over 

Gaussian filter-based denoising, comes at a cost of a significant increase in computation time 

when executed on a specific CPU. This is because the wavelet-based denoising takes 
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approximately 10 seconds to process before the segmentation algorithm starts executing. 

Variations in normative retinal layer thickness values can be due to different OCT devices, 

region of retina being scanned, ethnic origin, age and sex of subjects11-15. In this context, if the 

accuracy difference for the computation of thickness of a single retinal layer can be ignored, 

the optimizability of the segmentation algorithm could be enhanced both in terms of 

computation time and memory requirements. Furthermore, the complexity of the 

implementation logic for a Gaussian filter-based image smoothening is far more simplified 

than the application of advanced denoising techniques such as bilateral filtering followed by 

wavelet thresholding. 

The overall difference between the segmentation results after being denoised by each of the 

denoising techniques are not dramatically different. Therefore, the graph-based segmentation 

algorithm has been found to perform quite efficiently even without the use of any advanced 

denoising technique. In fact, simple Gaussian filters are good enough for denoising the SD-

OCT images before being segmented by the algorithm. This only further confirms published 

results from the existing literature which have implemented graph-based image segmentation 

algorithms. 

These results will be further validated by expert clinicians by a comparative analysis with 

manual segmentation as part of our ongoing study and the results will be reported in the future. 

This will provide additional information for deciding if an advanced denoising technique such 

as wavelet thresholding is worth the extended computation time for efficient graph-based 

segmentation. 
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Chapter 5: Automated intraretinal layer 

segmentation algorithm for OCT images: A 

validation study 

 

5.1 Introduction 

 

We present in this chapter, a validation study, performed to testify the segmentation results 

from the graph-based algorithm with that of manual segmentation. 

 

5.2 Methodology 

 5.2.1 Image Dataset 

 

For this study we have used a dataset comprising of twenty five de-identified macular SD-OCT 

images of healthy adult retina, received in JPEG format from the Medical Research 

Foundation, a unit of Sankara Nethralaya in Chennai, India. The images were obtained from a 

Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) device and measured 6 mm transversely. 

 

5.2.2 Automated Segmentation 

 

Initially as part of pre-processing, the macular OCT images were resized using a sliding window 

to select the region of interest of the user, so that only that portion of the OCT image slice is 

considered for segmentation and thus save unnecessary processing time and memory 

requirements. Following the selection of region of interest by the user, the image was 

smoothened with a Gaussian filter to remove the high frequency components of the image. 

 

In order to automatically segment the images, a graph was constructed on each SD-OCT image 

where each pixel within the image represented a node in the graph. An edge between a pair 
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of nodes was assigned a weight based on the normalized vertical image gradient for that pair 

of nodes22 using the following equation: 

𝑾𝒊𝒋 = 𝟐 − (𝒈𝒊 + 𝒈𝒋) + 𝑾𝒎𝒊𝒏 

(1) 

Where, gi and gj represent the vertical image gradients of each of the nodes within the pair 

and Wmin is a small positive constant which is used to normalize the equation. Using the edge 

weights, a sparse adjacency matrix was computed to determine the minimal weighted path 

between a pair of nodes. The lowest weighted path represented the graph-cut or the 

boundary connecting the starting and ending nodes. The minimum weighted graph cut 

implied the maximum similarity between pixels in terms of their intensities falling within that 

boundary3,9,10. 

 

Following the layer segmentation, the thicknesses of the segmented layers were computed 

from the mean differences between the boundary point indices of two consecutive layers. 

 

5.2.3 Manual Segmentation 

 

The manual segmentation was done by a clinician with many years of OCT segmentation 

experience. In order to facilitate the manual segmentation and make the comparison to 

automated segmentation easier, a special graphical user interface (GUI) was designed for the 

study based on a previous study44. Figure 5.1 illustrates the different options provided by the 

graphical user interface to help the clinician segment the retinal layer boundaries manually. 
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Figure 5.1: An illustration of the Graphical User Interface used to facilitate the manual segmentations 

 

The clinician could choose the name of the boundary from the list, that he/she wanted to re-

segment or correct manually. He/she was allowed to choose to either re-segment the whole 

boundary selected by clicking on the “manual” button on the GUI or only that portion of the 

boundary that seemed incorrect by clicking on the “semi auto button”. Once the re-

segmentation of the whole image was done to the satisfaction of the clinician, the “Exit” 

button was pressed and to save the new segmentation file. The program would re-compute 

the layer thicknesses according to the new segmented boundaries in a way similar to that 

which was used to compute the layer thicknesses in automated segmentation. 
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5.2.4 Comparison between automated and manual segmentation 

 

In order to validate the automated segmentation with respect to the manual segmentation 

as gold standard, the intra-retinal layer thickness values computed by both were considered 

for comparison. The mean difference between the thickness from manual segmentation 

(MS) and that from automated segmentation (AS) gave us the mean error which was 

determined by the following equation: 

𝑴𝒆𝒂𝒏 𝒆𝒓𝒓𝒐𝒓 = (𝑴𝒆𝒂𝒏(𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔𝑴𝑺) − 𝑴𝒆𝒂𝒏(𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔𝑨𝑺)) ± 𝑺𝑫 

(2) 

Furthermore, the accuracy of segmentation of the automated algorithm with respect to 

manual segmentation for each intra-retinal layer was also determined from the equation 

below: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝟏𝟎𝟎 − (
|𝑴𝒆𝒂𝒏 𝒆𝒓𝒓𝒐𝒓|

𝑴𝒆𝒂𝒏 𝒕𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔𝑴𝑺
×  𝟏𝟎𝟎) 

 

(3) 

 5.3 Results 

 

5.3.1 Automated segmentation 

 

This method successfully segmented seven boundaries, and six retinal layers with the internal 

limiting membrane (ILM) being the topmost boundary followed by the following layers: 

retinal nerve fiber layer and ganglion cell layer (RNFL + GCL), inner plexiform layer (IPL), inner 

nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer and inner segment (ONL 

+ IS), outer segment and retinal pigmented epithelium (OS + RPE). Figure 5.2 illustrates the 

layer segmentation results from a sample macular SD-OCT image of healthy adult retina from 

the test dataset. The resulting layers have been labelled for illustration, with the respective 

expansions in the legend of the figure. 
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5.3.2 Manual segmentation 

 

The six intra-retinal layers segmented by the graph-based automated algorithm were 

manually re-segmented or the erroneous regions were corrected by the expert clinician using 

the graphical user interface described above. Figure 5.3 illustrates the manual segmentation 

of six intra-retinal layers of a sample macular SD-OCT image from the test dataset. 

 

Figure 5.2: A sample macular SD-OCT image from the test dataset illustrating the layers and boundaries 

segmented by the automated algorithm 

Figure 5.3: A sample macular SD-OCT image from the test dataset illustrating the manual segmentation by 

an expert clinician 
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Table 5.1 summarizes the mean thicknesses from automated segmentation and manual 

segmentation respectively for each of the six segmented layers. The mean error is reported 

as the difference between the layer thickness from manual segmentation and that from 

automated segmentation. The negative (-) sign denotes that the layer thickness from 

automated segmentation has a larger value than that from manual segmentation. No sign 

indicates a positive value which signifies that the value of layer thickness from manual 

segmentation is greater than that from automated segmentation. 

 

The accuracy of segmentation of each layer has also been determined and reported from 

equation (3) as previously described. 

 

Table 5.1: Results showing the layer-wise mean thickness values computed by the algorithm for manual and automated 

segmentations, the mean error and accuracy of segmentation for each layer across 25 SD-OCT images 

Retinal 

Layer 
 

Manual 

segmentation 

Automated 

segmentation 

Mean Error 
Accuracy 

(%) Mean thickness 

 SD (in µ) 

Mean thickness  SD 

(in µ) 

RNFL + GCL 22.76 ± 2.52 25.02  3.16 -2.26  1.59 90.07 

IPL 7.24 ± 2.81 5.40  2.79 1.84  1.64 74.58 

INL 6.46 ± 1.12 5.94  1.10 0.52  0.69 91.95 

OPL 8.23 ± 0.93 8.45  0.96 -0.22  0.67 97.33 

ONL + IS 16.42 ± 1.58 16.24  1.76 0.18  0.74 98.90 

OS + RPE 12.18 ± 4.68 12.67  6.04 -0.49  1.57 95.98 

 

 

5.3.3 Computation time 

 

The automated graph-based segmentation algorithm took 4.93 seconds on an average to 

segment six intra-retinal layers and compute their thickness values in microns. However, the 

manual segmentation followed by thickness computation of the segmented layers using the 

graphical user interface took an average of 578.05 seconds (9 min 38 sec). These results are 

reported based on testing on a specific computer (64-bit Windows10 OS with Intel Core i5 

processor, 8GB RAM, and 1GB Radeon graphics card).  
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5.4 Discussion and conclusion 

 

This graph-based automated segmentation algorithm accurately segmented and computed 

the thicknesses of 6 retinal layers, delineating 7 boundaries in SD-OCT images. The difference 

between the layer thicknesses computed by the automated algorithm and the manual 

segmentation gave us the mean error which can be used to authenticate the accuracy 

parameters of the automated algorithm with respect to manual segmentation regarded as 

the gold standard. The lower the magnitude of mean error, the higher was the accuracy of 

the automated algorithm and the higher the magnitude of mean error, the lower was the 

accuracy of segmentation of the automated algorithm. The sign associated with the value of 

mean error was an indication of which of the mean thickness value, between that computed 

by the automated algorithm and that after manual segmentation, was greater than the other. 

Negative values of mean error for the layers RNFL + GCL, OPL, and OS +RPE signified that the 

mean thickness values computed by the automated algorithm for these layers were greater 

than the values computed after manual segmentation. On contrary, positive values for the 

other three layers indicates that the thickness values computed after manual segmentation 

were of greater magnitude than that from automated segmentation. The accuracy of 

segmentation varied from the lowest being 74.58% for the inner plexiform layer to the highest 

being 98.90% for the fifth layer which is a combination of the outer nuclear layer and inner 

segment. From these accurately determined layer thickness values of the intra-retinal layers 

by the automated segmentation algorithm, the presence of possible pathologies could be 

detected, which generally are capable of altering the thicknesses of certain retinal layers of 

specific region of the retina, for example macula in case of macular degeneration and optic 

nerve head in case of glaucoma39–41. 

 

Application of the automated algorithm considerably reduces time and overhead costs 

associated with manual segmentation of OCT images. Hence this validated automated graph-

based segmentation algorithm could be incorporated for the segmentation of intra-retinal 

layers in healthy macular SD-OCT images. With some further modifications for specific 

diseases in the future, this algorithm would also be capable of retinal layer segmentations for 

images with the presence of pathologies.  
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Chapter 6: Discussion and Future Directions 

 

 

 

This chapter is aimed at providing a conclusion and general discussions of the overall theme 

of the thesis. It also throws light at the more specific discussions for each chapter (Chapters 

3-4) of the thesis. Finally, it concludes the thesis by discussing the limitations of the current 

study and scopes for future research. 

 

 

6.1 Background of the thesis 

 

In the past, several studies15,18,28–31,43 have implemented graph-based techniques for the 

segmentation of OCT images of the retina. 

 

This thesis is primarily based on the work of Chiu et al.15. Their technique involved a graph-

based segmentation followed by dynamic programming. The images were denoised using 

simple Gaussian filters, followed by the shortest-path based graph search technique based on 

Dijkstra’s algorithm, and then finally the use of dynamic programming to limit the search 

region recursively and thus segment a new layer in each iteration. The algorithm was also 

validated against manual segmentation by two independent graders. 

 

The current study similarly, implemented simple Gaussian filters for the denoising of the OCT 

images, followed by a shortest-path based graph search. However, the dynamic programming 

approach was not incorporated to limit the search region. Instead, a region-of-interest 

selection tool, based on the user’s selection, was used to limit the search region before 

segmentation in order to reduce computation time and memory. 
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6.2 Graph-based segmentation of intraretinal layers in OCT images 

 

The novel graph-based algorithm implemented shortest-path based graph-search technique 

for the segmentation of intraretinal layers in macular OCT images. This algorithm successfully 

segmented six intraretinal layers (RNFL + GCL, IPL, INL, OPL, ONL + IS, OS + RPE) in both foveal 

as well as non-foveal slices with equal precision. The region-of-interest (ROI) selection 

mechanism incorporated in this algorithm saved computation time and memory by not 

segmenting the areas out the ROI and thus increased the efficiency of the algorithm in terms 

of clinical use. Furthermore, the use of simple Gaussian filter for smoothening the OCT images 

before segmentation saved the use of additional denoising techniques and made the 

algorithm high-speed, accurate and standalone. 

 
Additionally, the algorithm accurately computed the thicknesses of all the segmented 

intraretinal layers. These retinal layer thickness values could be used by clinicians as retinal 

health markers to detect the presence of pathologies within individual layers of the retina 

and keep track of the progression or remission of ocular diseases, that alter the thicknesses 

of retinal layers. 

 

6.3 Is an advanced denoising technique necessary for graph-based 

segmentation of retinal OCT images? 

 

The second objective of the thesis was to determine whether the implementation of an 

additional denoising technique improves the accuracy of the graph-based segmentation of 

intraretinal layers in OCT images. A comparative analysis was performed on the results given 

by the graph-based algorithm when denoised using simple Gaussian filters and that when 

denoised using an advanced wavelet-based denoising technique20. The results show that the 

segmentation accuracy after being denoised by each of the denoising techniques were not 

significantly different. However, the implementation of an advanced denoising technique 

before the segmentation of the images, considerably increases the time and memory 

requirements of the algorithm. Furthermore, the complexity of implementation logic is also 
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significantly increased for the wavelet-based denoising technique as compared to the use of 

simple Gaussian filters. 

 
Since similar accuracy of segmentation was achieved by the implementation of both the 

denoising techniques, it is always advisable to use the less complex one which reduces the 

overall processing time and memory requirements of the algorithm. Hence, we can conclude 

that no advanced denoising techniques are required as preprocessing before the 

segmentation of intraretinal layers by graph-based algorithms. Rather, graph-based 

algorithms are quite standalone with just the implementation of simple Gaussian filters for 

the denoising of retinal OCT images before their segmentation. 

 

6.4 Is the novel algorithm at par with manual segmentation 

standards? 

 

Chapter 5 of this thesis illustrated the accuracy of the novel graph-based segmentation 

algorithm with respect to manual segmentation being the gold standard. The comparison was 

done based on the retinal layer thicknesses as computed by the algorithm after the 

automated and the manual segmentations. The difference between the thickness values 

computed by the graph-based algorithm and that computed after manual segmentation by 

the expert gave us the mean error, which was further used to compute the accuracy of the 

automated algorithm with respect to the gold standard. 

 

The layer-wise accuracies of the segmentation algorithm varied between 74.58% for layer 2, 

the inner plexiform layer to 98.90% for layer 5, the combination of outer nuclear and inner 

segment layers. These parameters stand by the efficacy of the algorithm in the accurate 

segmentation and precise computation of thicknesses of the segmented layers by the 

automated graph-based algorithm, with respect to manual segmentation by an expert. 

Hence, this algorithm could be put to use in clinical practice for segmenting intraretinal layers 

in healthy macular OCT images and the layer thicknesses could be used to determine the 

presence of possible pathologies within the retina. 
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6.5 What does this thesis add? 

 

This thesis has implemented a shortest path-based graph-search technique based on the 

work of Chiu et al.15. However the dynamic programming approach in addition to the graph-

based technique in the previous study was omitted in this current study. In spite of this 

change, the algorithm has obtained fast and accurate results with respect to a previous 

study38 as well as with respect to manual segmentation by an expert. Furthermore, this study 

shows that simple Gaussian filtering is sufficient for the denoising of SD-OCT images in graph-

based segmentation techniques and does not require any additional denoising techniques. 

Additionally, this study has developed a Graphical User Interface (GUI) in order to facilitate 

manual segmentation by the expert clinician, the results from which can be used for 

comparison with the results from the automated algorithm. 

 

Overall, this thesis has given us a standalone graph-based OCT segmentation algorithm for 

macular images of the retina, which is fast, accurate and at par with expert manual 

segmentation. This algorithm could be put to clinical implementation in order to ease decision 

making and automatically assess the overall health of the retina. 

 

6.6 Limitations of the thesis and future directions 

 

Although this thesis has developed a novel graph-based algorithm for automated 

segmentation of intraretinal layers in SD-OCT images, there are certain limitations to this 

study. 

 

Firstly, the study was conducted on healthy adult retinal images without much focus on the 

diseased ones. Future studies could look into extrapolating this algorithm with some 

modifications to segment intraretinal layers in retinal OCT images affected by ocular diseases 

that alter the retinal layer thicknesses. 

 

Secondly, the manual segmentation was done by a single observer in the current study due 

to limited availability of time and resources. In the future, the results could be testified by 
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manual segmentation from two or more independent observers, wherein, the inter-observer 

variability could be taken into account and compared to that with the automated 

segmentation results. 

 

Lastly, this graph-based novel segmentation algorithm could be implemented on larger and 

more comprehensive datasets, including those affected by pathologies and the results could 

be compared to that of the automated algorithms that come with the OCT devices. 
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Appendices 

 

Appendix I 

Optical Coherence Tomography Image Database (OCTID) 

 

This section is a manuscript in preparation. Peyman Gholami*, Priyanka Roy*, Mohana 

Kuppuswamy Parthasarathy, John Zelek, Vasudevan Lakshminarayanan, "OCTID: Optical 

Coherence Tomography Image Database". 

*both the authors have equal contributions. 

 

A huge open source database consisting of about 500 retinal OCT images in JPEG format has 

been constructed. These images were collected at Sankara Nethralaya (SN), Chennai, India on 

a Cirrus HD-OCT device (Carl Zeiss Meditec, Inc., Dublin, CA). A raster scan protocol was 

followed which measured 2mm transversely with an image resolution of 512 x 1024 pixels. 

The images were later resized to 500 x 750 pixels. The retinal OCT images within the database 

were categorized into 4 sub-datasets: 

a) Normal (NO) - consisting of 206 healthy retinal OCT images 

b) Macular Hole (MH) – consisting of 102 images 

c) Age-related Macular Degeneration (AMD) – consisting of 55 images 

d) Diabetic Retinopathy (DR) – consisting of 107 images 

This categorization was done on the basis of the labelling done by experienced clinicians after 

detection of the pathologies at SN. 

 

Another sub-dataset consisting of 25 normal images along with their ground truth 

delineations in MATLAB format (.mat files) were included within OCTID, based on the manual 

grading done by a clinician having years of experience with OCT segmentation. 

 

This database will be soon published online for free use once the associated paper is 

published. 

  

https://www.spiedigitallibrary.org/profile/Peyman.Gholami-4069627
https://www.spiedigitallibrary.org/profile/John.Zelek-62526
https://www.spiedigitallibrary.org/profile/Vasudevan.Lakshminarayan-10388
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Appendix II 

Program Listings for the graph-based segmentation algorithm 

 

getRetinalLayersExample.m is the main parent function where the OCT image to be 

segmented is supposed to be specified as input. The image can either be downloaded in order 

to test this program on or an image saved on the computer could be used by specifying the 

path of the file under the variable name “path”. The sub-function getRetinalLayers.m is called 

from this function, which further calls another sub-function getRetinalLayersCore.m. All the 

sub-functions (2 – 7) which are being called one after the other from their respective parent 

functions have been written in the same order below. The MATLAB files for the respective 

sub-functions need to be created before the main parent function can be executed. After sub-

function 7, the image has been segmented and the execution comes back to the main function 

which the calls the sub-function octSegmentationGUI.m. This sub-function triggers the 

execution of the graphical user interface in order to facilitate manual segmentation by the 

clinician. Finally, the GUI prompts whether to save the manual segmentation and exit for the 

user to decide. 

 

 

1. getRetinalLayersExample.m 

 

close all;clear all;clc; 
%% Section 1, loads the path of the image. 

  
%set 'isUseExampleImage' to 1 to download example image or to 0 to use your 
%own images. 
isUseExampleImage = 0; 

  
if isUseExampleImage     

     
    %if no example images in folder, download an image and save as 3 
    %images to serve as 3 b-scans. 
    if exist('exampleOCTimage0001.tif','file') == 0 
       img = 

imread('http://files.abstractsonline.com/CTRL/a7/f/f52/85a/21f/4bf/c96/efa/

5b4/85d/99a/0d/g6297_1.jpg'); 
       imwrite(imresize(img(1000:end,   

1:2000,1),0.5),'exampleOCTimage0001.tif'); 
       

imwrite(imresize(img(1000:end,2001:4000,1),0.5),'exampleOCTimage0002.tif'); 
       

imwrite(imresize(img(1000:end,4001:6000,1),0.5),'exampleOCTimage0003.tif'); 
    end 
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    %get the filepath of the images 
    folderPath = cd; 
    imagePath{1} = [folderPath '\exampleOCTimage0001.tif']; 
    imagePath{2} = [folderPath '\exampleOCTimage0002.tif']; 
    imagePath{3} = [folderPath '\exampleOCTimage0003.tif']; 

     
    yrange = []; 
    xrange = []; 

  

     
else     

     
%     path = '\'; 
    path = 'C:\Users\p7roy\Google Drive\#UW Grad Studies\OCT images SN\'; 
    [filename, folderPath , filterindex] = uigetfile([path '*.jpg'],'Pick 

some images','MultiSelect', 'on'); 
    for i = 1:numel(filename) 
        imagePath{i} = [folderPath ,filename{i}]; 
    end 

     
%     figure; 
    figure, title('pick a region of interest to segment for the selected 

images'); 
    [trsh rect] = imcrop(imread(imagePath{1})); 
    xrange = round(rect(1)):round(rect(1)+rect(3)); 
    yrange = round(rect(2)):round(rect(2)+rect(4)); 

     
end 

  
%% Section 2, automatically segments the retinal layers based on graph 

theory. 

  
for i = 1:numel(imagePath) 

     
    %timer for computation time 
    tic; 
    timerVal = tic; 

     
    display(sprintf('segmenting image %d of %d',i,numel(imagePath))); 

     
    % read in the image. 
    rgbimg = imread(imagePath{i}); 

     
    % Get the number of rows and columns,  
    % and, most importantly, the number of color channels. 
    [rows, columns, numberOfColorChannels] = size(rgbimg); 
    if numberOfColorChannels > 1 
        % It's a true color RGB image.  We need to convert to gray scale. 
        img = rgb2gray(rgbimg); 
    else 
        % It's already gray scale.  No need to convert. 
        img = rgbimg; 
    end 

     

    grayimg = img; 
    figure, imshow(grayimg); 

     
    % error checking, get one channel from image. 
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    if size(img,3) > 1 
        img = img(:,:,1); 
        display('warning: this is probably not an oct image'); 
    end 

     
    % make image type as double. 
    img = double(img); 

     
    % get size of image. 
    szImg = size(img); 

     
    %segment whole image if yrange/xrange is not specified. 
    if isempty(yrange) && isempty(xrange) 
        yrange = 1:szImg(1); 
        xrange = 1:szImg(2); 
    end     
    img = img(yrange,xrange); 

     
    % get retinal layers. 
    [retinalLayers, params] = getRetinalLayers(img); 

     
    % save range of image. 
    params.yrange = yrange; 
    params.xrange = xrange; 

     
    % save data to struct. 
    imageLayer(i).imagePath = imagePath{i}; 
    imageLayer(i).retinalLayers = retinalLayers;     
    imageLayer(i).params = params; 

  
end 

  
% save segmentation 
filename = [imageLayer(1).imagePath(1:end) '_octSegmentation.mat']; 
save(filename, 'imageLayer'); 
display(sprintf('segmentation saved to %s',filename)); 

  
%%   Section 3, using a GUI, iterate through the segmentation results, 
%              and maually or semi-automatically correct the segmented 
%              retainl layers. 

  
%close all; 
 

  
filename = [imagePath{1}(1:end) '_octSegmentation.mat']; 

  
isReviewSegmentation = 1; 
if isReviewSegmentation 
    [h,guiParam] = octSegmentationGUI(filename);    

  
    if guiParam.proceed 
        delete(guiParam.figureOCT); 
        delete(h); 
    else 
        return; 
    end     
end 
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calculateRetinalThickness 

 

 

2. getRetinalLayers.m 

 

function [retinalLayers, params] = getRetinalLayers(img,params) 
%% 

  
if nargin < 1 
    display('requires 1 input'); 
    return; 
end 

  
%initialize constants 
if nargin < 2         

     
    % resize the image if 1st value set to 'true', 
    % with the second value to be the scale. 
    params.isResize = [true 0.5]; 

     
    % parameter for smothing the images. 
    params.filter0Params = [5 5 1]; 
    params.filterParams = [20 20 2];            

         
    % constants used for defining the region for segmentation of individual 

layer 
    params.roughILMandISOS.shrinkScale = 0.2; 
    params.roughILMandISOS.offsets = -20:20;     
    params.ilm_0 = 4; 
    params.ilm_1 = 4; 
    params.isos_0 = 4; 
    params.isos_1 = 4; 
    params.rpe_0 = 0.05; 
    params.rpe_1 = 0.05; 
    params.inlopl_0 = 0.1; %   0.4;% 
    params.inlopl_1 = 0.3; %   0.5;%   
    params.nflgcl_0 = 0.05;%  0.01; 
    params.nflgcl_1 = 0.3; %   0.1; 
    params.iplinl_0 = 0.6; 
    params.iplinl_1 = 0.2; 
    params.oplonl_0 = 0.05;%4; 
    params.oplonl_1 = 0.5;%4;     

         
    % parameters for ploting 
    params.txtOffset = -7; 
    colorarr=colormap('jet');  
    params.colorarr=colorarr(64:-8:1,:); 

     
    % a constant (not used in this function, used in 

'octSegmentationGUI.m'.) 
    params.smallIncre = 2;     

     
end 

  
%clear up matlab's mind 
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clear retinalLayers 

  
%get image size 
szImg = size(img); 

  
%resize image. 
if params.isResize(1) 
    img = imresize(img,params.isResize(2),'bilinear'); 
end 

  
%smooth image with specified kernels 
%for denosing 
img = 

imfilter(img,fspecial('gaussian',params.filter0Params(1:2),params.filter0Pa

rams(3)),'replicate');         

  
%for a very smooth image, a "broad stroke" of the image 
imgSmo = 

imfilter(img,fspecial('gaussian',params.filterParams(1:2),params.filterPara

ms(3)),'replicate'); 

  
% create adjacency matrices and its elements base on the image. 
[params.adjMatrixW, params.adjMatrixMW, params.adjMA, params.adjMB, 

params.adjMW, params.adjMmW, imgNew] = getAdjacencyMatrix(img); 

  
retinalLayerSegmentationOrder = {'roughILMandISOS' 'ilm' 'isos' 'rpe' 

'inlopl' 'nflgcl' 'iplinl' 'oplonl'}; 
 

% segment retinal layers 
retinalLayers = []; 
for layerInd = 1:numel(retinalLayerSegmentationOrder)         
    [retinalLayers, ~] = 

getRetinalLayersCore(retinalLayerSegmentationOrder{layerInd},imgNew,params,

retinalLayers); 
end 

  
%delete elements of the adjacency matrices prior function exit to save 

memory 
toBeDeleted = {'adjMatrixWSmo' 'adjMatrixMWSmo' 'adjMWSmo' 'adjMmWSmo'  

'adjMW' 'adjMmW' 'adjMatrixW' 'adjMatrixMW' 'adjMA' 'adjMB'}; 
for delInd = 1:numel(toBeDeleted) 
    params.(toBeDeleted{delInd}) = []; 
end 

  

  
% plot oct image and the obtained retinal layers. 
isPlot = 1; 
if isPlot, 

  
    imagesc(img); 
    axis image; colormap('gray'); hold on; drawnow; 

  
    layersToPlot = {'ilm' 'isos' 'rpe' 'inlopl' 'nflgcl' 'iplinl' 

'oplonl'};% 'rpeSmooth'}; % 
    hOffset =       [40    0      40    0        0        40       -40      

-40]; % for displaying text 
    for k = 1:numel(layersToPlot) 

  
        matchedLayers = strcmpi(layersToPlot{k},{retinalLayers(:).name}); 
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        layerToPlotInd = find(matchedLayers == 1); 

  
        if ~isempty(retinalLayers(layerToPlotInd).pathX)             
            colora = params.colorarr(k,:); 
            

plot(retinalLayers(layerToPlotInd).pathY,retinalLayers(layerToPlotInd).path

X-1,'-','color',colora,'linewidth',1.5); 
            plotInd = round(numel(retinalLayers(layerToPlotInd).pathX)/2);             
            

text(retinalLayers(layerToPlotInd).pathY(plotInd)+hOffset(k),retinalLayers(

layerToPlotInd).pathX(plotInd)+params.txtOffset,retinalLayers(layerToPlotIn

d).name,'color',colora,'linewidth',2);             
            drawnow; 
        end % of if ~isempty             

  
    end % of k 
    hold off; 

  
end % of isPlot         

 
 

3. getRetinalLayersCore.m 

 

function [rPaths, img] = getRetinalLayersCore(layerName,img,params,rPaths) 

  
% this is a function used within getRetinalLayers.m 

  
if nargin < 3 
    display('3 inputs required, getLayers.m'); 
    return;    
end 

  

szImg = size(img); 

  
switch layerName 

     
    case {'roughILMandISOS'} 

         
        imgOld = img(:,2:end-1); 
        pathsTemp = 

getHyperReflectiveLayers(imgOld,params.roughILMandISOS);                  

                         
        %save to structure  
        clear rPaths 
        rPaths = pathsTemp; 

         
        return;         

  
    case {'nflgcl' 'inlopl' 'ilm' 'isos' 'oplonl' 'iplinl' 'rpe'} 

         
        adjMA = params.adjMA; 
        adjMB = params.adjMB; 
        adjMW = params.adjMW; 
        adjMmW = params.adjMmW;         

         
end 
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% initialize region of interest 
szImg = size(img); 
roiImg = zeros(szImg); 

  
% avoid the top part of image 
roiImg(1:20,:) = 0; 

  
% select region of interest based on layers priorly segmented. 
for k = 2:szImg(2)-1 

     
    switch layerName 

         
        case {'nflgcl'} 

             
            % define a region (from 'startInd' to 'endInd') between 'ilm' 
            % and 'inlopl'. 
            indPathX = find(rPaths(strcmp('ilm',{rPaths.name})).pathY==k); 
            startInd0 = 

rPaths(strcmp('ilm',{rPaths.name})).pathX(indPathX(1));             
            indPathX = 

find(rPaths(strcmp('inlopl',{rPaths.name})).pathY==k); 
            endInd0 = 

rPaths(strcmp('inlopl',{rPaths.name})).pathX(indPathX(1)); 

                         

            startInd = startInd0 - ceil(params.nflgcl_0*(endInd0-

startInd0)); 
            endInd = endInd0 - round(params.nflgcl_1*(endInd0-startInd0)); 

             
        case {'rpe'} 

  
            indPathX = find(rPaths(strcmp('isos',{rPaths.name})).pathY==k); 

             
            % define a region (from 'startInd' to 'endInd') below 'isos'. 
            startInd0 = 

rPaths(strcmp('isos',{rPaths.name})).pathX(indPathX(1)); 
            endInd0 = 

startInd0+round((rPaths(strcmp('isos',{rPaths.name})).pathXmean-

rPaths(strcmp('ilm',{rPaths.name})).pathXmean)); 

  
            startInd = startInd0+round(params.rpe_0*(endInd0-startInd0)); 
            endInd = endInd0-round(params.rpe_1*(endInd0-startInd0));                    

             
        case {'inlopl'}      

             
            % define a region (from 'startInd' to 'endInd') between 'ilm' 
            % and 'isos'. 
            indPathX = find(rPaths(strcmp('ilm',{rPaths.name})).pathY==k); 
            startInd0 = 

rPaths(strcmp('ilm',{rPaths.name})).pathX(indPathX(1)); 
            indPathX = find(rPaths(strcmp('isos',{rPaths.name})).pathY==k); 
            endInd0 = 

rPaths(strcmp('isos',{rPaths.name})).pathX(indPathX(1)); 

                                     
            startInd = startInd0+round(params.inlopl_0*(endInd0-

startInd0)); 
            endInd = endInd0-round(params.inlopl_1*(endInd0-startInd0));             
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        case {'ilm'} 

             
            % define a region (from 'startInd' to 'endInd') near 'ilm'. 
            indPathX = find(rPaths(strcmp('ilm',{rPaths.name})).pathY==k); 

                         
            startInd = 

rPaths(strcmp('ilm',{rPaths.name})).pathX(indPathX(1)) - params.ilm_0;  
            endInd = rPaths(strcmp('ilm',{rPaths.name})).pathX(indPathX(1)) 

+ params.ilm_1;              

             

        case {'isos'}             

             
            % define a region (from 'startInd' to 'endInd') near 'isos'. 
            indPathX = find(rPaths(strcmp('isos',{rPaths.name})).pathY==k);             

             
            startInd = 

rPaths(strcmp('isos',{rPaths.name})).pathX(indPathX(1)) - params.isos_0;  
            endInd = 

rPaths(strcmp('isos',{rPaths.name})).pathX(indPathX(1)) + params.isos_1;              

             
        case {'iplinl'} 

  
            % define a region (from 'startInd' to 'endInd') between 
            % 'nflgcl' and 'inlopl'. 
            indPathX = 

find(rPaths(strcmp('nflgcl',{rPaths.name})).pathY==k); 
            startInd0 = 

rPaths(strcmp('nflgcl',{rPaths.name})).pathX(indPathX(1)); 
            indPathX = 

find(rPaths(strcmp('inlopl',{rPaths.name})).pathY==k); 
            endInd0 = 

rPaths(strcmp('inlopl',{rPaths.name})).pathX(indPathX(1)); 

             
            startInd = startInd0 + round(params.iplinl_0*(endInd0-

startInd0)); 
            endInd = endInd0 - round(params.iplinl_1*(endInd0-startInd0)); 

             

             
        case {'oplonl'} 

                         
            % define a region (from 'startInd' to 'endInd') between 
            % 'inlopl' and 'isos'. 
            indPathX = 

find(rPaths(strcmp('inlopl',{rPaths.name})).pathY==k); 
            startInd0 = 

rPaths(strcmp('inlopl',{rPaths.name})).pathX(indPathX(1)); 
            indPathX = find(rPaths(strcmp('isos',{rPaths.name})).pathY==k); 
            endInd0 = 

rPaths(strcmp('isos',{rPaths.name})).pathX(indPathX(1)); 

                         
            startInd = startInd0 +round(params.oplonl_0*(endInd0-

startInd0)); 
            endInd = endInd0 -round(params.oplonl_1*(endInd0-startInd0)); 
    end 

     
    %error checking     
    if startInd > endInd 
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        startInd = endInd - 1; 
    end             

     
    if startInd < 1 
        startInd = 1; 
    end 

     
    if endInd > szImg(1) 
        endInd = szImg(1); 
    end 

                     
    % set region of interest at column k from startInd to endInd 
    roiImg(startInd:endInd,k) = 1; 

     
end 

  
%ensure the 1st and last column is part of the region of interest. 
roiImg(:,1)=1; 
roiImg(:,end)=1;             

  
% include only region of interst in the adjacency matrix 
includeA = ismember(adjMA, find(roiImg(:) == 1)); 
includeB = ismember(adjMB, find(roiImg(:) == 1)); 
keepInd = includeA & includeB; 

  
%get the shortestpath 
switch layerName 
    %bright to dark 
    case {'rpe' 'nflgcl' 'oplonl' 'iplinl' } 
        adjMatrixW = 

sparse(adjMA(keepInd),adjMB(keepInd),adjMW(keepInd),numel(img(:)),numel(img

(:)));     
        [ ~, path ] = graphshortestpath( adjMatrixW, 1, numel(img(:)) ); 
        % dist = nan(size(path)); 
        % for i = 1:numel(path)-1,dist(i)=adjMatrixW(path(i),path(i+1));end 
    %dark to bright 
    case {'inlopl' 'ilm' 'isos' } 
        adjMatrixMW = 

sparse(adjMA(keepInd),adjMB(keepInd),adjMmW(keepInd),numel(img(:)),numel(im

g(:)));     
        [ ~, path ] = graphshortestpath( adjMatrixMW, 1, numel(img(:)) );         

         
end 

  
%convert path indices to subscript 
[pathX, pathY] = ind2sub(szImg,path); 

  
%if name layer existed, overwrite it, else add layer info to struct 
matchedLayers = strcmpi(layerName,{rPaths(:).name}); 
layerToPlotInd = find(matchedLayers == 1); 
if isempty(layerToPlotInd)     
    layerToPlotInd = numel(rPaths)+1; 
    rPaths(layerToPlotInd).name = layerName; 
end 

  
% save data. 
rPaths(layerToPlotInd).path = path; 
% rPaths(layerToPlotInd).dist = dist; 
rPaths(layerToPlotInd).pathX = pathX; 



 66 

rPaths(layerToPlotInd).pathY = pathY; 
rPaths(layerToPlotInd).pathXmean = 

mean(rPaths(layerToPlotInd).pathX(gradient(rPaths(layerToPlotInd).pathY)~=0

)); 

  
%create an additional smoother layer for rpe 
isSmoothRpe = 1; 
if isSmoothRpe 
    switch layerName 
        case {'rpe'}        

  
            %find lines where pathY is on the image 
            rpePathInd = gradient(pathY) ~= 0; 

  
            % fit line with cubic smoothing spline 
            lambda = 1E-6; %small means really smooth 
            pathXpoly = pathX; 
            pathYpoly = pathY; 

  
           [pathXpoly(rpePathInd), ~] = 

csaps(pathY(rpePathInd),pathX(rpePathInd),... 
              lambda,pathY(rpePathInd));                

 

            
            rPaths(layerToPlotInd).pathX = round(pathXpoly); 
            rPaths(layerToPlotInd).pathY = round(pathYpoly);             
            rPaths(layerToPlotInd).path = 

sub2ind(szImg,rPaths(layerToPlotInd).pathX,rPaths(layerToPlotInd).pathY); 
            rPaths(layerToPlotInd).pathXmean = 

mean(rPaths(layerToPlotInd).pathX(gradient(rPaths(layerToPlotInd).pathY)~=0

));             

  
        otherwise 
    end 
end 

 

 

4. getHyperReflectiveLayers.m 

 

function paths = getHyperReflectiveLayers(inputImg,constants) 

  
if nargin < 1 
    display('requires at least 1 input (findHyperReflectiveZones.m)'); 
    return; 
end 

  
if nargin == 1 
    %initiate parameters 
    constants.shrinkScale = 0.2; 
    constants.offsets = -20:20; 
end 

  

isPlot = 0; 

  
%shrink the image. 
szImg = size(inputImg); 
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procImg = imresize(inputImg,constants.shrinkScale,'bilinear'); 

  
%create adjacency matrices 
[adjMatrixW, adjMatrixMW, adjMX, adjMY, adjMW, adjMmW, newImg] = 

getAdjacencyMatrix(procImg); 

  
%create roi for getting shortestest path based on gradient-Y image. 
[gx, gy] = gradient(newImg); 
szImgNew = size(newImg); 
roiImg = zeros(szImgNew); 
roiImg(gy > mean(gy(:))) =1 ; 

  
% find at least 2 layers 
path{1} = 1; 
count = 1; 
while ~isempty(path) && count <= 2 

  
    %add columns of one at both ends of images 
    roiImg(:,1)=1; 
    roiImg(:,end)=1; 

     
    % include only region of interst in the adjacency matrix 
    includeX = ismember(adjMX, find(roiImg(:) == 1)); 
    includeY = ismember(adjMY, find(roiImg(:) == 1)); 
    keepInd = includeX & includeY; 

     

    % compile adjacency matrix 
    adjMatrix = 

sparse(adjMX(keepInd),adjMY(keepInd),adjMmW(keepInd),numel(newImg(:)),numel

(newImg(:))); 

     
    % get layer going from dark to light         
    [ dist,path{1} ] = graphshortestpath( adjMatrix, 1, numel(newImg(:))); 

     
    if ~isempty(path{1}) 

                         
        % get rid of first few points and last few points 
        [pathX,pathY] = ind2sub(szImgNew,path{1});         

  
        pathX = pathX(gradient(pathY)~=0); 
        pathY = pathY(gradient(pathY)~=0); 

         
        %block the obtained path and abit around it 
        pathXArr = repmat(pathX,numel(constants.offsets)); 
        pathYArr = repmat(pathY,numel(constants.offsets)); 
        for i = 1:numel(constants.offsets) 
            pathYArr(i,:) = pathYArr(i,:)+constants.offsets(i); 
        end 

         
        pathXArr = pathXArr(pathYArr > 0 & pathYArr <= szImgNew(2)); 
        pathYArr = pathYArr(pathYArr > 0 & pathYArr <= szImgNew(2)); 

         
        pathArr = sub2ind(szImgNew,pathXArr,pathYArr); 
        roiImg(pathArr) = 0; 

         
        paths(count).pathX = pathX; 
        paths(count).pathY = pathY; 
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        if isPlot; 
            subplot(1,3,1); 
            imagesc(inputImg); 
            subplot(1,3,2); 
            imagesc(gy);         
            subplot(1,3,3); 
            imagesc(roiImg); 
            drawnow; 
            pause; 
        end 

         
    end % of ~empty 
    count = count + 1; 
end 

 
if ~exist('paths','var') 
    paths = {}; 
    keyboard; 
    return; 
end % if exist 

  
%format paths back to original size 
for i = 1:numel(paths)     
    [paths(i).path, paths(i).pathY, paths(i).pathX] = resizePath(szImg, 

szImgNew, constants, paths(i).pathY, paths(i).pathX);     
    paths(i).pathXmean = nanmean(paths(i).pathX); 
    paths(i).name = []; 

     
end 

  
%name each path (numel(paths) should equal to 2) 
if numel(paths) ~= 2 
    paths = {}; 
    display('error'); 
    return; 
end 

  
%based on the mean location detemine the layer type. 
if paths(1).pathXmean < paths(2).pathXmean 
    paths(1).name = 'ilm'; 
    paths(2).name = 'isos'; 
else 
    paths(1).name = 'isos';     
    paths(2).name = 'ilm';     
end 

  

  
if isPlot; 
    imagesc(inputImg); 
    axis image; colormap('gray'); 
    hold on; 
    for i = 1:numel(paths) 
        cola = rand(1,3); 
        plot(paths(i).pathY,paths(i).pathX,'r-','linewidth',3); 
        text(paths(i).pathY(end),paths(i).pathX(end)-

15,paths(i).name,'color',rand(1,3)); 
        drawnow; 
    end 
    hold off; 
end 
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5. getAdjacencyMatrix.m 

 

function [adjMatrixW, adjMatrixMW, adjMAsub, adjMBsub, adjMW, adjMmW, img] 

= getAdjacencyMatrix(inputImg) 

  
% pad image with vertical column on both sides 
szImg = size(inputImg); 
img = zeros([szImg(1) szImg(2)+2]); 

  
img(:,2:1+szImg(2)) = inputImg; 

  
% update size of image 
szImg = size(img); 

  
% get vertical gradient image 
[~,gradImg] = gradient(img,1,1); 
gradImg = -1*gradImg; 

  
% normalize gradient 
gradImg = (gradImg-min(gradImg(:)))/(max(gradImg(:))-min(gradImg(:))); 

  
% get the "invert" of the gradient image. 
gradImgMinus = gradImg*-1+1;  

  
%% generate adjacency matrix, see equation 1 in the refered article. 

  
%minimum weight 
minWeight = 1E-5; 

  
neighborIterX = [1 1  1 0  0 -1 -1 -1]; 
neighborIterY = [1 0 -1 1 -1  1  0 -1]; 

  
% get location A (in the image as indices) for each weight. 
adjMAsub = 1:szImg(1)*szImg(2); 

  
% convert adjMA to subscripts 
[adjMAx,adjMAy] = ind2sub(szImg,adjMAsub); 

  
adjMAsub = adjMAsub'; 
szadjMAsub = size(adjMAsub); 

  
% prepare to obtain the 8-connected neighbors of adjMAsub 
% repmat to [1,8] 
neighborIterX = repmat(neighborIterX, [szadjMAsub(1),1]); 
neighborIterY = repmat(neighborIterY, [szadjMAsub(1),1]); 

  
% repmat to [8,1] 
adjMAsub = repmat(adjMAsub,[1 8]); 
adjMAx = repmat(adjMAx, [1 8]); 
adjMAy = repmat(adjMAy, [1 8]); 

  
% get 8-connected neighbors of adjMAsub 
% adjMBx,adjMBy and adjMBsub 
adjMBx = adjMAx+neighborIterX(:)'; 
adjMBy = adjMAy+neighborIterY(:)'; 
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% make sure all locations are within the image. 
keepInd = adjMBx > 0 & adjMBx <= szImg(1) & ... 
    adjMBy > 0 & adjMBy <= szImg(2); 

  
adjMAsub = adjMAsub(keepInd); 
adjMBx = adjMBx(keepInd); 
adjMBy = adjMBy(keepInd);  

  
adjMBsub = sub2ind(szImg,adjMBx(:),adjMBy(:))'; 

  

% calculate weight 
adjMW = 2 - gradImg(adjMAsub(:)) - gradImg(adjMBsub(:)) + minWeight; 
adjMmW = 2 - gradImgMinus(adjMAsub(:)) - gradImgMinus(adjMBsub(:)) + 

minWeight; 

  
% pad minWeight on the side 
imgTmp = nan(size(gradImg)); 
imgTmp(:,1) = 1; 
imgTmp(:,end) = 1; 
imageSideInd = ismember(adjMBsub,find(imgTmp(:)==1)); 
adjMW(imageSideInd) = minWeight; 
adjMmW(imageSideInd) = minWeight; 

  
% build sparse matrices 
adjMatrixW = 

[];%sparse(adjMAsub(:),adjMBsub(:),adjMW(:),numel(img(:)),numel(img(:))); 
% build sparse matrices with inverted gradient. 
adjMatrixMW = 

[];%sparse(adjMAsub(:),adjMBsub(:),adjMmW(:),numel(img(:)),numel(img(:))); 

 

6. calculateRetinalThickness.m 

 

excelCompiled = {}; 
excelLumped = {}; 
filename = [imagePath{1} '_octSegmentation.mat']; 

  
load(filename); 

  
%intitialize a vector location of the layers 
layersToPlot  = {'ilm' 'nflgcl' 'iplinl' 'inlopl' 'oplonl' 'isos' 'rpe'}; 
for i = 1:numel(layersToPlot) 
    layerCompile(i).name = layersToPlot{i}; 
    layerCompile(i).x = []; 
end 

  
% format the paths for analysis (get rid of uneeded  
imageLayer = formatPathsForAnalysis(imageLayer); 

  
%% iterate through 'imageLayer(i).retinalLayers(j)' 
% and save location to the corresponding vector 'layerCompile(storeInd)' 

  
for i = 1:numel(imageLayer), 

  
    for j = 1:numel(imageLayer(i).retinalLayers), 
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        %find location in layerCompile to save the new pathX 
        storeInd = find( 

strcmpi(imageLayer(i).retinalLayers(j).name,layersToPlot) ==1); 

  
        if ~isempty(storeInd) 
            layerCompile(storeInd).x = [ layerCompile(storeInd).x 

imageLayer(i).retinalLayers(j).pathXAnalysis]; 
        end 

  
    end % of for j = 1:numel(imageLayer(i).retinalLayers), 

  

  
end % of for i = 1:numel(imageLayer), 

  
%ending timer for computation time 
toc; 
computationTime = toc(timerVal); 
computationTime 

  
%% 
% quantify retinal layer thickness 
excel = {}; 
layersToAnalyze = {'ilm' 'nflgcl' 'iplinl' 'inlopl' 'oplonl' 'isos' 'rpe'}; 

  
excel = [excel; {'name' 'mean' 'sd'}]; 
for i = 2:numel(layersToAnalyze) 
    firstLayerInd = find(strcmpi(layersToAnalyze{i-1},layersToPlot)==1); 
    secondLayerInd = find(strcmpi(layersToAnalyze{i},layersToPlot)==1); 
    excel = [excel; {strcat( [ layersToAnalyze{i-1} ' - ' 

layersToAnalyze{i}] ),... 
        nanmean(layerCompile(secondLayerInd).x-

layerCompile(firstLayerInd).x),... 
        nanstd(layerCompile(secondLayerInd).x-

layerCompile(firstLayerInd).x)}]; 
end 

  
% print out thickness 
excel 

 

7. formatPathsForAnalysis.m 

 

function imageLayer = formatPathsForAnalysis(imageLayer) 

  
% transform the path back to original space (so when you plot pathY and 
% pahtX on the image, it fits with the coordinates of the original image) 

  
params = imageLayer(1).params; 
blankImg=ones([numel(imageLayer(1).params.yrange) 

numel(imageLayer(1).params.xrange)]); 

  
%get image size 
if params.isResize(1) 
    szImg = size(imresize(blankImg,params.isResize(2))); 
else 
    szImg = [size(blankImg)]; 
end 
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for i = 1:numel(imageLayer); 
    %get info 
    params =  imageLayer(i).params; 

  
    for j = 1:numel(imageLayer(i).retinalLayers), 

  

        
        %make sure subscript-Y is inbound image, and left shift subscript-y 
        indValidPath = find(imageLayer(i).retinalLayers(j).pathY ~=1 & ... 
                       imageLayer(i).retinalLayers(j).pathY ~= szImg(2)+2); 

         
        pathX = imageLayer(i).retinalLayers(j).pathX(indValidPath); 
        pathY = imageLayer(i).retinalLayers(j).pathY(indValidPath)-1;  

         
        %make sure subscript-ys are unique 
        [uniqVal uniqInd] = unique(pathY); 

  
        pathX = pathX(uniqInd); 
        pathY = pathY(uniqInd);  

  
        %make sure Ys are contiguous 
        pathYNew = 1:szImg(2); 
        pathXNew = interp1(pathY,... %original Y 
            pathX,... %original X, to be interp 
            pathYNew,... %new Y 
            'nearest'); 

         
        if params.isResize(1) 

  
                %translate before scaling 
                pathYNew = pathYNew - 1; 
                pathXNew = pathXNew - 1; 

  
                %scale back 
                %built scaling matrix T 
                scale = 1/params.isResize(2); 
                T = [scale 0 0; 0 scale 0; 0 0 1]; 
                arr= [pathYNew; pathXNew; ones(size(pathY))]; 
                arr = T*arr; 
                pathYNew = arr(1,:); 
                pathXNew = arr(2,:); 

  
                %translate after scaling 
                pathYNew = pathYNew+round(scale/2); 
                pathXNew = pathXNew+round(scale/2);     

  

                %resample, use extrap to extrap out of range subscripts.             
                imageLayer(i).retinalLayers(j).pathYAnalysis = 

1:szImg(2)/params.isResize(2);         
                imageLayer(i).retinalLayers(j).pathXAnalysis = nan([1 

szImg(2)/params.isResize(2)]); 

  
                

%imageLayer(i).retinalLayers(j).pathXAnalysis(params.xrange) = 

round(interp1(pathYNew,pathXNew,1:szImg(2)/params.isResize(2),'linear','ext

rap')); 
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                imageLayer(i).retinalLayers(j).pathXAnalysis(:) = 

round(interp1(pathYNew,pathXNew,1:szImg(2)/params.isResize(2),'linear','ext

rap')); 

                 

  
        end % of resize 
    end % of j 
end % of i 

 

8. octSegmentationGUI.m 

 

function varargout = octSegmentationGUI(varargin) 

  
% Begin initialization code 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @octSegmentationGUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @octSegmentationGUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 

                
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if length(varargin)< 1, 
    display('needs 1 parameter! (octSegmentationGUI.m)'); 
    return; 
end 

  

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code 

  

  
% --- Executes just before octSegmentationGUI is made visible. 
function octSegmentationGUI_OpeningFcn(hObject, eventdata, handles, 

varargin) 

 
handles.output = handles.octSegmentationGUI_figure; 

  
% initiate stuff 
handles.layersToPlot =  {'ilm' 'isos' 'rpe' 'inlopl' 'nflgcl' 'iplinl' 

'oplonl' 'rpeSmooth'}; 
handles.proceed = 0; %when exiting 
handles.isUpdateLayer = 0; %for resegmentation 
handles.isShowLayer = 1; %for resegmentation 
handles.pathsTemp = []; 

  
% get input filepath 
handles.filePath = varargin{1}; 
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% load file 
tempLoaded=load(handles.filePath); 
handles.imageLayer=tempLoaded.imageLayer; 
clear tempLoaded; 

  
% create figure; 
handles.figureOCT = figure; 
set(handles.figureOCT,'Name','oct image', ... 
           'Position',[50 100 512 512], ... 
           'NumberTitle','off', ... 
           'Color','w', ... 
           'Resize','on', ... 
           'MenuBar','none'); 

  

        

  
handles.imgInd = 1; 
handles.selectedLayer = nan; 

  
handles.errorMsg = ''; 
handles.imgRange = [0 255]; 
handles.figureOCTh = []; 

  
handles = updateDisplay(handles); 
handles = updateMaterials(handles); 

  

figure(handles.octSegmentationGUI_figure); 

 
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes octSegmentationGUI wait for user response (see UIRESUME) 
uiwait(handles.octSegmentationGUI_figure); 

  

  
function handles = updateMaterials(handles) 
    %create rois 
    for newRoisInd = 

1:numel({handles.imageLayer(handles.imgInd).retinalLayers.name}) 
        handles.newRois{newRoisInd} = zeros(handles.szImg,'uint8'); 
    end 

  
% --- Outputs from this function are returned to the command line. 
function varargout = octSegmentationGUI_OutputFcn(hObject, eventdata, 

handles)  
 

% Get default command line output from handles structure 

  
varargout{1} = handles.octSegmentationGUI_figure; 
guiParam.figureOCT = handles.figureOCT; 
guiParam.proceed = handles.proceed; 
varargout{2} = guiParam; 

  
display('outputFcn'); 

 
% --- Executes on selection change in listboxLayerName. 
function listboxLayerName_Callback(hObject, eventdata, handles) 
%get list 
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contents = cellstr(get(hObject,'String')); 
%get selected item 
index_selected_str = contents{get(hObject,'Value')}; 
handles.selectedLayer = get(hObject,'Value'); 

  
pathY = 

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hY; 
pathX = 

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hX; 
params = handles.imageLayer(handles.imgInd).params; 

  
newRoi = handles.newRois{handles.selectedLayer}; 
if ~sum(newRoi(:)) 
    %block the obtained layer in the roi image. 
    for k = 2:handles.szImg(2)-1 
        indPathX = find(pathY==k); 
        startInd = pathX(indPathX) - params.smallIncre;%#*2; 
        endInd = pathX(indPathX) + params.smallIncre;%#*2; 
        if startInd < 1 
            startInd = 1; 
        end 
        if endInd > handles.szImg(1) 
            endInd = handles.szImg(1); 
        end 
        newRoi(startInd:endInd,k) = 1; 
    end 
    newRoi(:,1)=1; 
    newRoi(:,end)=1; 
    handles.newRois{handles.selectedLayer} = newRoi; 
end 

  
%update display 
handles = updateDisplay(handles); 

  
%show roi 
handles = updateDisplayROI(handles); 

  
%refocus to main window 
figure(handles.octSegmentationGUI_figure); 

  
%guidata 
guidata(hObject, handles); 
function handles = updateDisplayROI(handles) 

  

  
redImg = cat(3, ones(handles.szImg), zeros(handles.szImg), 

zeros(handles.szImg)); 

  
figure(handles.figureOCT); 
hold on; 
handles.figureOCTh = imshow(redImg); 
hold off; 

  

set(handles.figureOCTh, 'AlphaData', 

double(handles.newRois{handles.selectedLayer}).*0.25); 
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% --- Executes during object creation, after setting all properties. 
function listboxLayerName_CreateFcn(hObject, eventdata, handles) 
 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes on button press in checkboxSmooth. 
function checkboxSmooth_Callback(hObject, eventdata, handles) 

 
% --- Executes on button press in pushbuttonPrevious. 
function pushbuttonPrevious_Callback(hObject, eventdata, handles) 

 
%previous image 
handles.imgInd = handles.imgInd - 1; 

  
if handles.imgInd < 1  
    handles.imgInd = 1; 
    handles.errorMsg = '!'; 
elseif handles.imgInd > numel(handles.imageLayer) 
    handles.imgInd = numel(handles.imageLayer); 
    handles.errorMsg = '!'; 
else 
    handles.errorMsg = ''; 
    handles.selectedLayer = nan; 
    handles = updateMaterials(handles); 
    handles.isShowLayer = 1;     
end 

  
%show image 
handles = updateDisplay(handles); 
%refocus to main window 
figure(handles.octSegmentationGUI_figure); 

  
%guidata 
guidata(hObject, handles); 

  
% --- Executes on button press in pushbuttonNext. 
function pushbuttonNext_Callback(hObject, eventdata, handles) 

 
%next image 
handles.imgInd = handles.imgInd + 1; 

  
if handles.imgInd < 1  
    handles.imgInd = 1; 
    handles.errorMsg = '!'; 
elseif handles.imgInd > numel(handles.imageLayer) 
    handles.imgInd = numel(handles.imageLayer); 
    handles.errorMsg = '!'; 
else 
    handles.errorMsg = ''; 
    handles.selectedLayer = nan; 
    handles = updateMaterials(handles);  
    handles.isShowLayer = 1; 
end 

 
%show image 
handles =updateDisplay(handles); 
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%refocus to main window 
figure(handles.octSegmentationGUI_figure); 

  
%guidata 
guidata(hObject, handles); 

  
function handles = updateDisplay(handles) 

  
figure(handles.figureOCT); 
hold off; 

  

%get stuff from handles for plotting images 
retinalLayers = handles.imageLayer(handles.imgInd).retinalLayers; 
params = handles.imageLayer(handles.imgInd).params; 

  
%imgPath = [params.folderPath params.strImgNum '.tif']; 
imgPath = handles.imageLayer(handles.imgInd).imagePath; 

  

  
images=imread(imgPath); 
img = double(images(params.yrange,params.xrange,1)); 

  
%resize image. 
if isfield(params,'isResize') 
    if params.isResize(1) 
        img = imresize(img,params.isResize(2),'bilinear'); 
    end 
end 

  
handles.imgNew = [zeros([size(img,1),1]) img zeros([size(img,1),1])]; 
handles.szImg = size(handles.imgNew); 

  
handles.figureOCTh = imshow(handles.imgNew,handles.imgRange(:));axis 

image;colormap('gray'); 

  

  
slashInd = strfind(handles.filePath,'\'); 
title(sprintf('%s, image %d of %d, %s',handles.filePath(slashInd(end-

1):slashInd(end)),... 
    handles.imgInd,numel(handles.imageLayer),handles.errorMsg)); 
hold on; 

  
%layersToPlot = {retinalLayers(:).name}; 
layersToPlot = handles.layersToPlot; 
if handles.isShowLayer 
for k = 1:numel(layersToPlot) 
    matchedLayers = strcmpi(layersToPlot{k},{retinalLayers(:).name}); 

     
    %if layer is resegment, show new layer or else show old layers 
    isPlotNewLayer = 0; 
    if handles.isUpdateLayer 
          if strcmp(layersToPlot{k},handles.pathsTemp.name) 
              isPlotNewLayer = 1; 
          end 
    end 

     
    if ~isPlotNewLayer, 
        layerToPlotInd = find(matchedLayers == 1); 



 78 

        if ~isempty(retinalLayers(layerToPlotInd)) 
            if ~isempty(retinalLayers(layerToPlotInd).pathX) 
                colora = params.colorarr(k,:);         
                

plot(retinalLayers(layerToPlotInd).pathY,retinalLayers(layerToPlotInd).path

X,'-','color',colora,'linewidth',2); 
                plotInd = 

round(numel(retinalLayers(layerToPlotInd).pathX)/2); 
                

text(retinalLayers(layerToPlotInd).pathY(plotInd),retinalLayers(layerToPlot

Ind).pathX(plotInd)+params.txtOffset,retinalLayers(layerToPlotInd).name,'co

lor',colora,'linewidth',2); 
            end 
        end 

     
    else 
        if ~isempty(handles.pathsTemp) 
            colora = params.colorarr(k,:);         
            plot(handles.pathsTemp.pathY,handles.pathsTemp.pathX,'-

','color',colora,'linewidth',2); 
            plotInd = round(numel(handles.pathsTemp.pathX)/2); 
            

text(handles.pathsTemp.pathY(plotInd),handles.pathsTemp.pathX(plotInd)+para

ms.txtOffset,handles.pathsTemp.name,'color',colora,'linewidth',2); 
        end                 
        handles.isUpdateLayer = 0; 

         

    end 
end %of k 
end % of if handles.isShowLayer 

  
drawnow; 
hold on; 

  

  
%update list  
set(handles.listboxLayerName,'String',{handles.imageLayer(handles.imgInd).r

etinalLayers.name}); 

  
% --- Executes on button press in pushbuttonExit. 
function pushbuttonExit_Callback(hObject, eventdata, handles) 

  
%folderPath = handles.imageLayer(handles.imgInd).params.folderPath; 
imageLayer = handles.imageLayer; 
% Handle response 
choice = questdlg('Save and Exit?', 'Alert', 

'SaveAndExit','Exit','Resume','Resume'); 

  

switch choice 

     
    case 'SaveAndExit'         
        handles.proceed = 1; 
        %fig = figure(handles.figureOCT); 

         
        fn = handles.filePath; 
        saveas(figure(handles.figureOCT),[fn(end - 34:end) '.jpg']); 
        save(fn, 'imageLayer');     
        display(sprintf('file successfully saved to %s', fn)); 
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        % Resume execution 
        uiresume; 
    case 'Exit'         
        handles.proceed = 1; 
        % Resume execution 
        uiresume; 
    case 'Resume'         
        handles.proceed = 0; 
end 

  
guidata(hObject, handles); 

  
% --- Executes on button press in pushbuttonResegment. 
function pushbuttonResegment_Callback(hObject, eventdata, handles) 

 
if ~isnan(handles.selectedLayer) 

     
newRoi = handles.newRois{handles.selectedLayer}; 
newRoi(:,1)=1; 
newRoi(:,end)=1; 
retinalLayerName = 

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).nam

e; 

  
img = handles.imgNew; 
params = handles.imageLayer(handles.imgInd).params; 

  
display('wait for a while, calculating adjacency matrices...'); 
if get(handles.checkboxSmooth,'Value'), 
    img = 

imfilter(img,fspecial('gaussian',params.filterParams(1:2),params.filterPara

ms(3)),'replicate'); 
    [adjMatrixW, adjMatrixMW, adjMX, adjMY, adjMW, adjMmW, ~] = 

getAdjacencyMatrix(img); 
else 
    [adjMatrixW, adjMatrixMW, adjMX, adjMY, adjMW, adjMmW, ~] = 

getAdjacencyMatrix(img); 
end      

  
% include only region of interst in the adjacency matrix 
includeX = ismember(adjMX, find(newRoi(:) == 1)); 
includeY = ismember(adjMY, find(newRoi(:) == 1)); 
keepInd = includeX & includeY; 

  

  
display('wait for a while, calculating shortest path...'); 
switch retinalLayerName 

     

    case {'rpe' 'nflgcl' 'oplonl' 'iplinl'} %{'rpe' 'nflipl'} 
        adjMatrixW = 

sparse(adjMX(keepInd),adjMY(keepInd),adjMW(keepInd),numel(img(:)),numel(img

(:)));     
        [ dist( 1 ), path{1} ] = graphshortestpath( adjMatrixW, 1, 

numel(img(:)) );                 

     
    case {'inlopl' 'ilm' 'isos'} 
        adjMatrixMW = 

sparse(adjMX(keepInd),adjMY(keepInd),adjMmW(keepInd),numel(img(:)),numel(im

g(:))); 



 80 

        [ dist( 1 ), path{1} ] = graphshortestpath( adjMatrixMW, 1, 

numel(img(:)) );         
end 

  

  
[pathX, pathY] = ind2sub(handles.szImg,path{1}); 
handles.pathsTemp.path = path{1}; 
handles.pathsTemp.pathX = pathX; 
handles.pathsTemp.pathY = pathY; 
handles.pathsTemp.pathXmean = 

mean(handles.pathsTemp.pathX(gradient(handles.pathsTemp.pathY)~=0)); 
handles.pathsTemp.name = retinalLayerName; 
handles.isUpdateLayer = 1; 

         
handles = updateDisplay(handles); 

  
% Handle response 
choice = questdlg('Keep new segmentation?', 'Alert', 'yes','no','no'); 

  
switch choice 
    case 'yes' 
        

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

h = handles.pathsTemp.path; 
        

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hX = handles.pathsTemp.pathX; 
        

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hY = handles.pathsTemp.pathY; 
        

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hXmean = handles.pathsTemp.pathXmean; 
    case 'no' 

  
        %update display 
        handles = updateDisplay(handles); 

  
        %show roi 
        handles = updateDisplayROI(handles); 

  
        %refocus to main window 
        figure(handles.octSegmentationGUI_figure); 
end 

  
else 
    display('select a layer first'); 
end % of if ~isnan(handles.selectedLayer) 
guidata(hObject, handles); 

  

  
% --- Executes on button press in pushbuttonSelectROI. 
function pushbuttonSelectROI_Callback(hObject, eventdata, handles) 
if ~isnan(handles.selectedLayer) 

     
%get roi 
newRoi = handles.newRois{handles.selectedLayer}; 

  
%draw revisions 
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figure(handles.figureOCT); 
revisedRoi = roipoly; 

  
%if out selected 
if get(handles.radiobuttonIn,'Value') 
    newRoi(revisedRoi == 1) = 1; 
else 
    newRoi(revisedRoi == 1) = 0; 
end 

  
%update roi 
handles.newRois{handles.selectedLayer} = newRoi; 

  
%show image 
handles =updateDisplay(handles); 
handles = updateDisplayROI(handles); 

  
%refocus to main window 
figure(handles.octSegmentationGUI_figure); 

  
else 
    display('select a layer first'); 
end%if ~isnan(handles.selectedLayer) 

     
%guidata 
guidata(hObject, handles); 

  

  

  
% --- Executes on button press in pushbuttonAutoMagicMarker. 
function pushbuttonAutoMagicMarker_Callback(hObject, eventdata, handles) 
if ~isnan(handles.selectedLayer) 
    %get roi 
    newRoi = handles.newRois{handles.selectedLayer}; 

  
    %imfreehand revisions 
    figure(handles.figureOCT); 
    h = imfreehand; 
    position = wait(h); 

     
    pathX = round(position(:,2)); 
    pathY = round(position(:,1));     

     
    %make sure subscript-Y is inbound image 
    indValidPath = find(pathY >= 1 & pathY <= handles.szImg(2)); 
    pathX = pathX(indValidPath); 
    pathY = pathY(indValidPath);  

     
    %make sure subscript-ys are unique 
    [uniqVal uniqInd] = unique(pathY); 
    pathX = pathX(uniqInd); 
    pathY = pathY(uniqInd);  

     
    %sort subscript-ys 
    [sortVal sortInd] = sort(pathY,'ascend'); 
    pathX = pathX(sortInd); 
    pathY =  pathY(sortInd); 
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    %interp 
    pathYNew = round(min(pathY):max(pathY)); 
    pathXNew = round(interp1(pathY,... %original Y 
        pathX,... %original X, to be interp 
        pathYNew,... %new Y 
        'nearest')); 

     
    %revise roi 
    for i = 1:numel(pathYNew) 
        %if position is inbound image 
        if i >= 1 && i <= handles.szImg(2) 
        newRoi(:,pathYNew(i)) = 0; 
        startInd = pathXNew(i) - 

handles.imageLayer(handles.imgInd).params.smallIncre; 
        endInd = pathXNew(i)+ 

handles.imageLayer(handles.imgInd).params.smallIncre; 
        if startInd < 1 
            startInd = 1; 
        end 
        if endInd > handles.szImg(1) 
            endInd = handles.szImg(1); 
        end    
        newRoi(startInd:endInd,pathYNew(i)) = 1; 
        end % of if position(i,1) >= 1 &&... 
    end 

  
    %update roi 
    handles.newRois{handles.selectedLayer} = newRoi; 

  
%guidata 
guidata(hObject, handles); 

     
    %update newRoi 
    pushbuttonResegment_Callback(hObject, eventdata, handles); 

  
    %refocus to main window 
    figure(handles.octSegmentationGUI_figure); 
else 
    display('select a layer first'); 

  
%guidata 
guidata(hObject, handles); 

     
end% if ~isnan(handles.selectedLayer) 

  
% --- Executes on button press in pushbuttonToggleLayer. 
function pushbuttonToggleLayer_Callback(hObject, eventdata, handles) 

 

%flip the switch 
if handles.isShowLayer == 1, 
    %update display 
    handles.isShowLayer = 0; 
    handles = updateDisplay(handles);     
else 
    handles.isShowLayer = 1; 
    handles = updateDisplay(handles);     
end 
%guidata 
guidata(hObject, handles); 
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% --- Executes on button press in pushbuttonManualSegButton. 
function pushbuttonManualSegButton_Callback(hObject, eventdata, handles) 

 
if ~isnan(handles.selectedLayer) 
    %get roi 
    newRoi = handles.newRois{handles.selectedLayer}; 

  
    %imfreehand revisions 
    figure(handles.figureOCT); 
    h = imfreehand; 
    position = wait(h); 

     
    pathX = round(position(:,2)); 
    pathY = round(position(:,1));     

     
    %make sure subscript-Y is inbound image 
    indValidPath = find(pathY >= 1 & pathY <= handles.szImg(2)); 
    pathX = pathX(indValidPath); 
    pathY = pathY(indValidPath);  

     
    %make sure subscript-ys are unique 
    [uniqVal uniqInd] = unique(pathY); 
    pathX = pathX(uniqInd); 
    pathY = pathY(uniqInd);  

     
    %sort subscript-ys 
    [sortVal sortInd] = sort(pathY,'ascend'); 
    pathX = pathX(sortInd); 
    pathY =  pathY(sortInd); 

     
    %interp 
    pathYNew = round(min(pathY):max(pathY)); 
    pathXNew = round(interp1(pathY,... %original Y 
        pathX,... %original X, to be interp 
        pathYNew,... %new Y 
        'nearest')); 

     
    pathXOriginal = 

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hX; 
    pathYOriginal = 

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hY;     

     
    %revise path 
    for i = 1:numel(pathYNew)         

         
        %if position is inbound image 
        if pathYNew(i) >= 1 && pathYNew(i) <= handles.szImg(2)             
            pathXOriginal(pathYOriginal == pathYNew(i)) = pathXNew(i); 
        end % of if position(i,1) >= 1 &&... 
    end 

  
    %update roi 
    handles.newRois{handles.selectedLayer} = newRoi; 
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%#$ 
handles.pathsTemp.path = sub2ind(handles.szImg,pathX,pathY); 
handles.pathsTemp.pathX = pathXOriginal; 
handles.pathsTemp.pathY = pathYOriginal; 
handles.pathsTemp.pathXmean = 

mean(handles.pathsTemp.pathX(gradient(handles.pathsTemp.pathY)~=0)); 
handles.pathsTemp.name = 

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).nam

e; 
handles.isUpdateLayer = 1; 

         
handles = updateDisplay(handles); 

  
% Handle response 
choice = questdlg('Keep new segmentation?', 'Alert', 'yes','no','no'); 

  
switch choice 
    case 'yes' 
        

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

h = handles.pathsTemp.path; 
        

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hX = handles.pathsTemp.pathX; 
        

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hY = handles.pathsTemp.pathY; 
        

handles.imageLayer(handles.imgInd).retinalLayers(handles.selectedLayer).pat

hXmean = handles.pathsTemp.pathXmean; 
    case 'no' 

  
        %update display 
        handles = updateDisplay(handles); 

  
        %show roi 
        handles = updateDisplayROI(handles); 

  
        %refocus to main window 
        figure(handles.octSegmentationGUI_figure); 
end 

  
    %refocus to main window 
    figure(handles.octSegmentationGUI_figure); 
else 
    display('select a layer first'); 

     
end% if ~isnan(handles.selectedLayer) 

  
%guidata 
guidata(hObject, handles); 

  
function edit1_Callback(hObject, eventdata, handles) 
edit1text = str2num(get(hObject,'String')); 
if ~isempty(edit1text); 
    handles.imageLayer(handles.imgInd).params.smallIncre = 

round(edit1text); 
else 
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set(hObject,'String',num2str(handles.imageLayer(handles.imgInd).params.smal

lIncre)); 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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