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Abstract

A Cross-Dock (CD) is a synchronized unit of a supply chain network, used to sort

the goods received from inbound trucks (from a warehouse or factory), and load those

products to outbound trucks (for delivery of the goods to retail stores in the supply chain

network). Most cross-docks use forklifts, and other manual material handling equipment

(MHE) to process the goods on pallets received from inbound trucks. Those pallets are

sorted and loaded onto outbound trucks. With the advancements in robotics, it could be

beneficial to employ semi-automated material handling techniques in a CD, rather than

solely relying on manual material handling. In this thesis, the scope of self-driving vehicles

(SDVs) in one such semi-automated cross-dock facility is studied. We compare the cases

of purely manual and semi-automated material handling in a cross-dock.

Using simulation, we modelled two cross-dock facilities, one with forklifts only and

with a mixture of forklifts and SDVs. Simulation was thus employed to mimic the CD’s

material handling process, to compare the two MHE configurations. Then the built cross-

dock simulation models were optimized using the response surface methodology and mixed

integer non-linear programming (MINLP), to achieve the optimal MHE configuration for

those facilities operating with the desired levels of performance metrics.

Thereby the manual and semi-automated cross-dock with similar performance (and

optimal MHE configurations) are compared and the scope of SDVs in a cross-dock is

evaluated. Conclusions are given, and opportunities for further research are presented.
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Chapter 1

Introduction

With the increasing varieties of items demanded by customers, there are increased

challenges in shipping the right quantities of those goods from suppliers to each customer.

Often the customer requirement for a particular good doesn’t meet full truck load (FTL)

capacity, resulting in excessive transportation cost because of less-than truck load (LTL)

operations. In those cases, suppliers tend to use Distribution Center (DC) or Cross-Dock

(CD) facilities to reduce or avoid the LTL shipments.

A DC is operated by receiving inventory as FTL and delivering it to the nearby retail

centers or customers in LTL or milk-runs whenever demand arises. This reduces reliance

on LTL operations and transportation cost. However, holding additional inventories in DC

facilities increases the total inventory cost, reducing the supply chain surplus. On other

hand, CD facilities are operated by coordinating with various suppliers and customers. The

total demand of various retail centers or customers is received from various suppliers at a

central hub. At that cross-dock facility, goods received from various suppliers are sorted
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and consolidated using labour and material handling equipment (MHE). Requirements

of individual retail centers or customers are shipped as FTL or LTL in a Just-In-Time

(JIT) manner without holding any inventories at the CD. Cross-Docks have been widely

preferred by companies over Distribution Centers because of their low cost operating policy

(no on-hand inventory, hence no holding cost).

Various previous research has been carried out with the objective of optimizing

cross-docking operations. However, only a few publications were identified focusing on the

CD’s internal material handling activities, sorting and consolidation. With the increase

in CD size, CD modelling difficulty also increases. To reduce the modelling complexities,

scholars end up modelling CD material handling activities as a deterministic or stochastic

model with various assumptions. Only a few of which were focused on modelling the

randomness involved in floor-level material handling activities, they are discussed briefly

in subsection 2.1.2 of Chapter 2.

1.1 Material Handling in a Cross-Dock Facility

Performance of a cross-dock is measured through various metrics such as through-

put rate (pallets processed per unit time), trucks processed per unit time, average truck

turnaround time, MHE utilization rate, doorway or dock utilization rate and shipping

accuracy. Those are all directly influenced by the efficiency of material handling activi-

ties. MHE such as hand pallet trucks and manual forklifts are widely used in cross-dock

facilities to handle the goods received. However recent advances in robotics for material

handling, such as Automated Vehicle Storage / Retrieval Systems (AVS/RS), Automated
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Storage and Retrieval Systems (AS/RS), Automated Guided Vehicles (AGV) and Self-

Driving Vehicles (SDVs) have made the present research possible; to investigate the scope

of Self-Driving Vehicles for material handling operations in a cross-dock.

1.1.1 Self-Driving Vehicles

Unlike AGVs, which are programmed to move only on the designated path marked

by paint or wire, SDVs can move on the designated aisle width or route by sensing and

maneuvering any objects and obstacles in its way. SDV’s central control system, the ability

to choose optimal routes and their obstacle-maneuvering capabilities, enables SDVs to be

a potential alternative for manual forklifts. SDVs can thus be used in a Cross-Dock to

transfer pallets or goods received as unit loads.

Material handling systems such as AGVs, AVS/RS and AS/RS may not fit the

CD material handling requirements, due to their limited movement and passive decision-

making abilities. However, those (non-SDV type) material handling systems (MHS) are

ideal for continuous material transfer activities between a limited number of stations in

manufacturing environments, or for the inventory storage and retrieval process, such as in

a distribution center or warehouse.

A generic Cross-Dock facility processing pallets as a unit load, would require manual

forklifts to sort and transfer pallets between inbound and outbound trucks. A Cross-Dock

facility with SDVs would require a mixture of manual forklifts and SDVs to process pallets.

Use of SDVs for Cross-Docking could perhaps reduce the variable cost of operating a CD

facility, when compared to a generic manually operated CD facility. The amount of labour
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required for a facility with SDVs and manual forklifts would likely be less than an all-

manual forklift CD.

Hence, this brings forth the hypothesis that it may be financially beneficial to use

SDVs and manual forklifts in CD facilities, instead of using manual forklifts only. To

validate this hypothesis for the scope of SDVs in a cross-dock facility, it is necessary to

compare a cross-dock facility operated only by manual forklifts, to one operated by a

mixture of manual forklifts and SDVs.

1.2 Solution Methodology

We thus require a problem-solving framework which can accommodate the ran-

domness involved in a CD material-handling operation and can simultaneously provide

flexibility for experimentation by changing the input variables. Discrete event simulation

serves this purpose, and meets our requirements well. Simulation software by Rockwell

Automation ARENA 15.0, was used for simulation modelling and analysis of the CD fa-

cilities which are operated by manual forklifts only and by a mixture of manual forklifts

and SDVs. The respective cases are given below;

Model 1) Forklift only cross-dock facility (FL - only CD)

Model 2) Forklift-and-SDV cross-dock facility (FL - and -SDV CD)

Both simulation models (FL - only CD and FL - and -SDV CD) were built to be

flexible and scalable (to increase the number of Inbound Docks × Outbound Docks) using
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VBA. Simulation modelling assumptions and other operating conditions are discussed later

in Chapter 3. Both CD simulation models were experimented independently, by varying

the number of MHE used for each operation. Response Surface Methodology (RSM) was

used to estimate the prediction equation for output performance metrics of the FL - only

CD and of the FL - and -SDV CD in terms of the number of MHE used for each operation.

The quadratic prediction equations computed from RSM were later used to formu-

late an optimization problem. Its objective function is to minimize the total variable cost of

operating the CD facility, subject to constraints on CD performance metrics (throughput

rate, throughput rate per MHE, category-wise MHE utilization rate, and Overall MHE

utilization rate). Standard or expected levels of the CD performance metrics were set as

right-hand sides of the respective constraints.

The formulated optimization problem, which is a Mixed Integer Non-Linear pro-

gramming (MINLP) model, was solved using the Lingo 17.0 solver. The optimal MHE

configurations for Forklift-only and Forklift-and-SDV Dross-Dock facility were found. Fi-

nancial benefits of choosing Forklift-and-SDV CD over the Forklift-only CD were thereby

justified. The overall proposed solution framework is given in Figure 1.1.

Figure 1.1: Solution Methodology.
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1.3 Organization of the Thesis

Rest of this thesis is organized into five chapters. Chapter 2: a brief literature

review of relevant works from the past. Chapter 3: an overview of simulation modelling

and output analysis. Chapter 4: experiment design for response surface methodology and

regression model fitting. Chapter 5: modelling of cross-dock optimization problem and

justification of scope of SDVs in a cross-dock facility. Chapter 6: conclusion with pros and

cons of the proposed solution methodology.
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Chapter 2

Literature Review

The objective is to compare the benefits of a cross-dock operated only by forklifts,

versus the forklifts-and-self driving vehicles. We wish to compare the two facilities for cases

that yield similar performance measures, but are operated by different types and mixtures

of MHE. See Section 3.1 for a brief overview on cross-dock design, and Figures 3.1 & 3.2

for generic layout of a CD facility.

Various papers focus on simulation, optimization and simulation optimization of

the cross-docking operation. But only a few were identified that focuses on the modelling

and analysis of floor-level material-handling operations. Fewer still optimized the material-

handling operations, directly or indirectly.

Research progress in modelling and optimization of cross-dock material handling

operations is given in Section 2.1. That is followed by Section 2.2 by a brief survey on

applications of AMHE for material-handling activities in warehouses or CD-like facilities.
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2.1 Cross-Dock Material Handling Operation

As the size of a CD facility increases, the randomness involved in sorting and con-

solidation activities increases the modelling and computational difficulties of analyzing the

CD operation. Researchers have modelled the cross-docking operations employing both

deterministic and stochastic models. Research papers that analyzes the CD operations us-

ing deterministic modelling techniques are discussed in subsection 2.1.1. Subsection 2.1.2

considers cross-docking operations using stochastic modelling techniques.

2.1.1 Deterministic Modelling of CD Material Handling Events

Bartholdi and Gue [2000] proposed an optimization model to minimize the labour

cost of an LTL cross-docking operation, subject to floor space congestion, i.e, the ratio

between average pallet flow to an outbound door and the total area available in front of

that door. The formulated objective function [Bartholdi and Gue, 2000] comprises three

cost components:

1. Expected labour cost in moving the pallets in rectilinear or manhattan dis-

tance between inbound and outbound trucks in the CD.

2. Expected labour spent in waiting to move the pallets, due to interference

between the forklifts or traffic congestion within the CD.

3. Expected labour cost of waiting due to dragline (type of MHE) congestion.

The resulting nonlinear minimization problem was solved using simulated annealing

by interchanging the pair of trucks docked at the inbound or outbound doors, in a clas-
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sic truck-scheduling, problem-solving approach [Bartholdi and Gue, 2000]. The solution

methodology proposed by Bartholdi and Gue [2000] was implemented at several cross-dock

facilities. It has not only proven to reduce the labour cost, but also to reportedly increase

the productivity by more than 11% because of reduction in material transfer distance.

Later Bozer and Carlo [2008] followed an approach similar to that of Bartholdi and

Gue [2000] to optimize the material-handling movement. They formulated a Mixed Integer

Programming (MIP) model for a truck assignment problem in a cross-dock, to minimize the

total pallet transfer distance (rectilinear distance between inbound and outbound doors),

subject to dock availability. The resulting MIP model was solved using simulated annealing.

The major difference between Bozer and Carlo [2008] and Bartholdi and Gue [2000] is the

congestion issue in a CD was solved by not assigning more than three outbound trucks

adjacent to each other implemented through simulated annealing heuristic. This approach

was said to significantly reduce the computer run time to solve the problem, also limited

the crowding of forklifts at the outbound, since congestion in general was due to forklifts

being assigned to a series of outbound doors next to each other [Bozer and Carlo, 2008].

Boysen [2010] proposed a truck scheduling approach to handle frozen foods in a

cross-dock facility operating on a JIT basis with a maximum of 10 to 20 doorways. The

objective was to aid the JIT material-handling operation and reduce material transfer and

wait times within the facility. A multi-objective truck scheduling problem was modelled and

solved using a dynamic programming approach to minimize the flow time, processing time

and tardiness of the outbound trucks. Boysen [2010] also proposed a heuristic approach

based on simulated annealing to solve the multi-objective truck scheduling problem for a

cross-dock with a greater number of doors. The proposed methodology would provide an
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optimal truck schedule for a small cross-dock with fewer doors, and a near-optimal schedule

when there is a greater number of doors. Since the time delays involved in material handling

activities are modelled as constant, a simultaneous increase in randomness as the size of a

CD facility would make the proposed truck scheduling approach unreliable [Boysen, 2010].

The deterministic modelling techniques suggested by researchers in this subsection

clearly fail to address the randomness involved in cross-docking material-handling opera-

tion. This mandates the need for study by the stochastic or simulation models. Though

the deterministic optimization models of a cross-dock material handling operation yield

optimal or near-optimal solutions, they do not guarantee optimal solutions in real CD

facilities. That is because of very high randomness involved in material handling opera-

tions [Boysen, 2010]. Research which involves simulation modelling of a CD facility, with

randomness in the material handling activities, are discussed in the next subsection.

2.1.2 Stochastic Modelling of CD Material Handling Events

Stochastic or simulation modelling helps researchers to model and analyze the ran-

domness involved in a complex system. These model types enable the analyst to experiment

and assess the working conditions of a complex system, which is difficult or infeasible to

study in real-world scenarios due to financial or time constraints [Banks et al., 2010]. Better

than deterministic models, simulation modelling techniques enable the study of randomness

involved in material handling operations in a real-world cross-dock facility. Publications

which are focused on simulation modelling of cross-dock material-handling operations are

discussed in this subsection. This is followed by a brief overview of simulation optimization

techniques for cross-dock simulation models.
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Magableh et al. [2005] modelled a generic cross-dock facility using ARENA. They

represented the material handling activities involved in a real-world cross-dock facility,

to analyze CD performance. In their model, the LTL inbound trucks arrive at the CD

facility with a specified interarrival rate. Trucks are docked at the available doors based

on FIFO, and the goods are unloaded. Unloaded goods are sorted and loaded to the

outbound vehicles by labour, using MHE such as hand pallet trucks, carts or forklifts.

Finally, outbound trucks are dispatched from the facility, once the loading is complete. This

simulation model was run for 120 hours with 20 replications, and the respective statistics

were collected. Statistics included transporter utilization, staging space utilization, cross-

dock facility utilization, trucks waiting time, average loading time and average unloading

time [Magableh et al., 2005].

Though the model represents the material handling activities with randomness as in

a real-world cross-dock facility, the CD performance at varied working conditions was not

studied. Also the input parameters or working conditions of the facility (such as facility

size, the number of workers, composition of the transporters, etc.,) were not specified

explicitly, leaving the reader with an impression that the model built was for a relatively

smaller cross-dock (20 to 30 doorways maximum).

Liu and Takakuwa [2009] modelled a CD operating 24x7 under a retail distribution

environment to minimize the labour cost, subject to constraints on product or merchandise

mix and operator skills (categorized into 3 skill levels). This cross-dock model thus requires

three different categories of operators to handle the varied product mix received, based on

the skill level needed for each product type. Not to ignore the fact that the demand for

those three operators also varies over time, and the cost to employ them depends on their
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respective skill levels.

Figure 2.1: Simulation Optimization Framework for Cross-Dock Personnel Planning.

Source: Adapted from Liu and Takakuwa [2009].

Liu and Takakuwa [2009] built an ARENA simulation model of a CD, with the

demanded product mix and varied level of the workforce from three different operator

categories. That simulation model output was used to formulate the constraints of an

Integer Programming (IP) model, minimizing the cost of employing three categorizes of

skilled operators. The workforce plan obtained from solving the IP model is called the

“to-be-optimal” workforce plan, which is fed back to ARENA, remodelling the simulation

model by updating the existing workforce plan to “to-be-optimal” workforce plan. Results

of the simulation model with the revised workforce plan were later used to assess the ability
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of the “to-be-optimal” workforce plan to meet the target time limits. It would be concluded

as the optimal workforce plan if the results of the simulation model with “to-be-optimal”

workforce plan satisfies the set target limits, or else the workforce plan in simulation model

will be revised manually (based on simulation analyst understanding of the gap between

the current and desired state) to recompute the constraints of IP model. This procedure

is iterated continuously until the workforce plan achieves the target time limits [Liu and

Takakuwa, 2009].

The cross-dock personnel planning methodology proposed by those authors, given

in Figure 2.1, is very intuitive. The to-be-optimal workforce plan is revised based on the

simulation-analyst’s ability to understand the gaps between expected and actual states.

The search procedure could be time consuming for a large cross-dock (due to simulation

run time and iterative procedure). That procedure would also require a better workforce

plan to initiate the iterative process to reach optimality in fewer iterations. And not to

ignore that the randomness involved in material handling activities was modelled based

on operator movements [Liu and Takakuwa, 2009]; randomness involved in actual MHE

movements and their requirements were ignored.

Adewunmi and Aickelin [2010] proposed a simulation optimization framework for

cross-docking operations in a distribution center environment, involving order picking and

order consolidation activities. All CD operations were performed by 5 to 7 operators us-

ing 3 to 5 pieces of MHE. The modelling and computational complexity of such small

simulation models are trivial, encouraging the researcher to implement the Common Ran-

dom Number (CRN), a variation reduction technique for model comparisons. The total

cost of operators and MHE usage was minimized, subject to the availability of operators
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and MHE. Those authors evaluated the objective function by simulation of each feasible

set within the solution space because of a relatively very small search space [Adewunmi

and Aickelin, 2010]. However, the readers should not ignore the fact that approach to

simulation optimization through evaluation of each feasible set within the solution space,

and implementation of CRN for a large-scale CD model, would drastically increase the

computational and modelling complexities.

Due to computational complexities in simulating all feasible sets within the solution

space and modelling complexities in implementing CRN for a large-scale simulation mod-

els, other simulation optimization techniques were widely used by the researchers. Those

techniques significantly reduces the computational and modeling complexities, which are

discussed in next subsection.

Performance of a cross-dock could be influenced by various factors. Studying the

effect of those factors in actual real-world scenarios is impractical. Khiong et al. [2011]

came up with a simulation experiment to analyze the effect of those factors which could

potentially impact the performance of a CD, that processes pallets in the two-step staging

process as shown in Figure 2.2. Factors such as material handling methods, freight or

product mix, number of forklifts, number of receiving doors, door layouts and size of the

cross-dock facility were listed as the potential factors for the simulation experiment.

Two smaller, full-factorial experiments were conducted [Khiong et al., 2011], since

analyzing a full-factorial experiment with all those six potential factors would be cum-

bersome and time consuming, even with only two levels. Performance of the facility was

analyzed using two output measures, mean hourly throughput rate per forklift and mean

handling time per pallet.
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Figure 2.2: Two-step Staging Process in a Cross-Dock Facility.

Source: Adapted from Gue and Kang [2001].

(Exp 1) Impact of door layouts vs number of forklifts.

(Exp 2) Impact of number of receiving doors vs size of CD.

The results of (Exp 1) and (Exp 2) led to the conclusion that the factors which

cause congestion are the ones that significantly impact the CD performance. The number

of forklifts or MHE used in the facility is one among those significant factors. Though the

material handling movements were modelled as they would occur in a real-world cross-dock,

and experimented identifying the factors which significantly impacts the CD performance

[Khiong et al., 2011], their optimal levels were not identified. This suggests the need

for a simulation optimization approach to obtain the best number of MHE required in a
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cross-dock facility.

Briesemeister and Novaes [2017] proposed a probabilistic modelling technique to

analyze the performance of a CD by adapting queueing theory to model the material

handling activities of the cross-dock facility. The proposed theoretical queueing model

was used to compute the CD performance for a varying level of input parameters, and

results were compared to the output of a simulation model built using ARENA. Though a

stochastic modelling approach was adapted to model the cross-dock facility, it was modelled

in a very high level with queues to process the trucks; and material-handling activities as

time delays following log-normal distribution. The only objective of this simulation model

was to validate the performance of the proposed theoretical queueing model, not to study

the facility itself [Briesemeister and Novaes, 2017].

Simulation Optimization of Cross-Docking Operation

Solving a simulation optimization problem is genrally more complicated than solving

a deterministic optimization problem, due to the difficulty in evaluating the objective

function. Evaluation of simulation objective function involves independent simulations of

each feasible set within the search space. Rather than simulating all of those feasible sets,

a few researchers have managed to solve the simulation optimization problem by building

and analyzing meta-models∗, to predict the optimal solution of the simulation-optimization

problem. Techniques such as Regression Analysis, Response Surface Methods and Neural

Networks have been widely used for such purposes [Fu, 2014]. A brief review of research

∗ A meta-model is a model of an already existing model, and meta-modelling is the process of generating

such meta-models. Meta-model is also called as surrogate model.
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works which are directly focused on simulation optimization of a cross-docking operation,

with or without using meta-modelling techniques is presented in this subsection.

Aickelin and Adewunmi [2008] presented a simulation-optimization methodology

for a cross-dock door assignment problem to reduce the MHE pallet-travel distance. This

standouts from the deterministic modelling techniques discussed in the previous subsection

2.1.1 by modelling the randomness involved in real-world CD facility, and by providing door

assignment decisions dynamically, whenever a truck arrives. Discrete Event Simulation

(DES) techniques were used to model a cross-dock with movements involved in transferring

the pallets from inbound to outbound trucks, with continuous arrival of vehicles to the

facility. Upon a truck arrival, the decision to dock in an assigned doorway was made, using

the decision support system programmed within the DES model. A MHE travel distance

minimization problem was formulated and solved using a Memetic algorithm to provide the

door assignment [Aickelin and Adewunmi, 2008]. However, the number of MHE required,

the MHE performance and that of the cross-dock facility were not studied by those authors.

Guignard et al. [2014] proposed a stochastic door assignment approach for the trucks

arriving at a CD facility, similar to work of Aickelin and Adewunmi [2008], and compared

the results to those of a deterministic assignment model. That substantiated the benefits of

using a stochastic modelling approach. A deterministic Cross-Dock Door Assignment Prob-

lem (CDAP) was formulated initially, with an objective to minimize the total MHE travel

distance. That resulting optimization problem was solved using a convex hull heuristic. On

the other hand a simulation model of a cross-dock was built and simulated in MATLAB.

Dynamic truck assignments were implemented in that simulation model, a routine that

was called in whenever a truck arrived (i.e., this recommended a solution of the resulting
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CDAP model for the given situation). Performance comparison of the deterministic and

stochastic assignment modelling techniques shows that the dynamic approach yields better

results [Guignard et al., 2014].

Shi et al. [2013] proposed a simulation modelling framework to design a robust JIT-

based auto-parts CD distribution centre, such that the system is insensitive to the supply

chain uncertainties. A DES model of a CD facility was built with the randomness involved

in truck arrival, auto-parts processing rate, demand uncertainty at assembly plants, failure

and repair of barcode scanners. The cross-dock facility optimization problem was modelled

with multi-objectives involving three performance measures which are influenced by five

factors [Shi et al., 2013]:

Obj 1) Minimize the waiting time of parts in the staging area.

Obj 2) Minimize the number of parts exceeding the threshold time limit.

Obj 3) Maximize the throughput rate.

Fac 1) Number of inbound doors.

Fac 2) Number of outbound doors.

Fac 3) Number of forklifts.

Fac 4) Number of Converyors.

Fac 5) Threshold time limit allowed to wait in staging area.
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Shi et al. [2013] experimented with the built simulation model, using a full factorial

design and a central composite design, to identify the relationship between the performance

measures and the factors. The proposed relationship was established using three prediction

equations. The factor levels are optimized using a response surface approach to achieve

the desired performance level.

A hybrid simulation modelling technique for a cross-dock facility was introduced

by Suh [2015]. The model represented the overall inventory flow from the suppliers to

distributors via the CD. Agent-Based modelling techniques were used to model the suppli-

ers and distributors in the logistics network, and a DES approach was used to model the

cross-dock facility. Hybridization of agent-based and DES modelling techniques enabled

the overall simulation model (built in Anylogic) to address the uncertainties involved in

information and inventory flow, from supply to demand nodes of the logistics network.

While the simulation model did not focus on material handling activities of the facility,

the objective was to assess the feasibility and performance of a cross-docking operation for

the given product suppliers and distributors [Suh, 2015].

The proposed CD model was operated with the given input parameters such as

distributor order wait time, percentage of trailers departing with full load, SKU wait

time, and trailer wait time [Suh, 2015]. Performance of the CD facility was assessed

via output measures such as a total number of trailers used, SKU througput time, LTL

fill rate and percentage of LTL trucks leaving the dock. A full factorial simulation run

(resulting in 100,000 total replications) was performed to build a regression model for each

of the performance measures. Input parameter levels were optimized to minimize SKU

throughput time, to minimize the total number of trailers used, to maximize LTL fill rate
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and to minimize the percentage of LTL trailers leaving the dock [Suh, 2015].

From the exhaustive search for previous research work on simulation modelling of

cross-dock material handling activities and simulation optimization of cross-dock perfor-

mance metrics, very little published research was found whose emphasis was on optimizing

the total number of MHE required. This is discussed in the previous subsection 2.1.2.

Most research works were focused on optimizing the total number of material handling

movements through deterministic modelling techniques, as discussed in subsection 2.1.1.

But no publications to date emphasize the applications of AMHE or Self-Driving Vehicle

in a cross-docking facility.

2.2 Autonomous Material Handling

A brief review of research on the scope of AGV and SDV for material handling

activities in distribution centre or CD-like facilities are discussed in this subsection. No

previous publications, focusing on applications of SDVs for material-handling purposes

have been found. However, various research works on AGVs for automated material han-

dling activities in factory, warehouse or distribution centre like facilities were identifed.

Some of those papers which are close to the objective of this thesis are discussed in this

section.

Autonomous material handling equipment (AMHE) move on a dedicated path, mak-

ing them ideal for warehouse material storage and retrieval processes. Ito and Abadi [2002]

developed an agent-based simulation model to assess the inventory planning strategies and

the performance of information exchange for an AMHS in a warehouse. The proposed
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simulation model consists of three subsystems:

1. Agent-based Communication System (ACS).

2. Agent-based MATerial Handling system (AMATH).

3. Agent-based Inventory Planning and CONtrol system (AIPCON).

Those subsystems interact with each other to mimic the forward and backward

inventory flow between the suppliers and customers via the warehouse facility. AMATH

assigns an AGV to perform the transshipment request based on FIFO rule, whenever a ma-

terial storage (inbound truck to warehouse), material transfer (inbound truck to outbound

truck) or material retrieval (warehouse storage to outbound truck) request is raised by the

ACS. Material handling delays were modelled as time delays to wait for an AGV and AGV

travel times [Ito and Abadi, 2002]. Although, the proposed framework did not account for

the performance or optimal number of AGVs, it was used to assess the warehouse inventory

requirements to avoid back-orders.

Kesen and Bayko [2007] modelled a Job shop environment using ARENA, where the

jobs are processed on their own sequence through various processing stations transferred

by AGVs. The built simulation model was assessed using four mean-performance metrics

(1) job throughput time, (2) queue length, (3) number of jobs per unit time and (4) inter-

job departure times. Four factors were chosen to be varied over two levels F1 - number of

vehicles, F2 - vehicle dispatching rule, F3 - number of Kanban and F4 - job arrival rate .

The main effects and interaction effects of the factors were analyzed for their significance,

but their optimal levels was not identified [Kesen and Bayko, 2007].
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Peixoto et al. [2016] used DES modelling techniques to assess the impact of new

AMHS for order-picking in a warehouse and the results were compared to the performance

of a manually operated facility. The proposed framework involves two DES models, one

representing an actual warehouse (with no autonomous MHE) and the second representing

a facility with the proposed changes (with autonomous MHE and other sequencing rules).

The randomness involved because of demand uncertainty, labour availability, traffic con-

gestion, etc., was modelled. That enabled the researcher to use the model to validate and

assess the real-world decisions (to implement AMHE and the performance of the warehouse

at varied operating conditions) by use of the model. However, the optimal AMHE require-

ments were not studied, although the differences in performance between two facilities were

justified through confidence intervals [Peixoto et al., 2016].

To conclude this chapter, we emphasize that the differences in operating charac-

teristics of AGVs and SDVs should not be ignored. Those are distinct such as manoeu-

vring between obstacles and smart decision making abilities to choose optimal path, which

make the SDVs movement equivalent to the movement of manual forklifts in a free path.

Therefore simulation of SDVs for material handling applications in a cross-dock requires

modelling techniques which are similar to the simulation of manual forklifts, not AGVs.

Further, cross-dock material-handling operation requires a greater number of MHE and

additional transshipment assignments compared to warehouse or distribution centre. This

mandates the need for further research to validate the scope of SDVs in a CD.
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Chapter 3

Simulation Modelling

It is very expensive and time consuming to establish a new facility or to make

changes and improvements to the existing facility (system). This makes it difficult to

study their implications in real life and causes uncertainties in the decision-making process.

Simulation modelling is a way to create a virtual or digital model of an already existing

real-world facility or a proposed new facility, in a computer environment to study their

performance, subject to various working conditions. Simulation modelling techniques can

drastically save cost and time; it can also act as a decision support system (DSS) to support

various decisions and business strategies delivering robust decisions [Law, 2015].

Simulation techniques have been widely used in various fields. Advancements in

computational capabilities made it possible to use simulation for various applications

such as modelling and analysis of bank teller operations, transportation systems (airports,

flights, ports, subways and buses), space shuttles, mining operations, construction engi-

neering and project management, healthcare, logistics networks and inventory modelling
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[Banks et al., 2010]. Discrete-event Simulation is a type of simulation modelling tech-

nique: Activities in the system are modelled in a discrete sequence of events in time. That

is, events occur at a particular instant in time and change the state of the system. For

more information on DES modelling techniques and analysis, refer to the textbooks on

simulation modelling and analysis by Banks et al. [2010] or Law [2015].

We employ DES techniques to model and analyze the forklift-only and forklift-and-

SDV cross-dock facilities. The ability to model the randomness and time delays involved

in CD material-handling activities as a discrete sequence of events in time makes DES

techniques apt and adequate to model a cross-dock facility.

Two simulation models, are required respectively for a FL-only and FL-and-SDV

CD, to validate the scope of SDVs in a cross-dock. Simulation modelling and analysis

of those two facilities are discussed in this chapter. The rest of this chapter is organized

into four sections. Section 3.1 defines the shape, size and dimensions of a cross-dock

facility. A brief overview of material handling assumptions and the pallet flow process are

contained in Section 3.2. Section 3.3 defines the output measures which are used to assess

the performance of each CD, while Section 3.4 contains an overview of our simulation

modelling of cross-docks using ARENA and the resulting output analysis.

3.1 Cross-Dock Design

Design of a cross-dock determines the potential volume of goods which can be

processed there. Design includes, but is not limited to, CD shape, number of inbound and

outbound doors, CD size, size of the staging area, aisle width, MHE parking area, MHE
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charging stations and the measuring stations. These all together, account for the design

of a CD; detailed representation of all those factors is beyond the scope of this study. The

part of a CD required to validate the stated hypothesis is the dedicated material-handling

region. That is the number of doors and door size, facility shape, staging area and aisle

width for MHE.

3.1.1 Number of Doorways and Dock Size

There are two types of doorways in a cross-dock, one for inbound trucks and another

for outbound. The inbound doors are dedicated to offload the material received from the

inbound trucks. The outbound doors are analogously dedicated to load the consolidated

materials to the outbound vehicles received from the inbound trucks. The required number

of outbound doors is decided based on the number of destinations served by the CD. The

necessary number of inbound doors is based on the dispatch sequence or the constraints in

loading the outbound trucks.

For this research, a cross-dock is assumed to have a total of 100 doors, each 15ft

wide. The numbers of doors for inbound and outbound trucks are assigned based on the

material handling-assumptions discussed later in Section 3.2 of this chapter.

3.1.2 Facility Shape

A cross-dock facility may come in various shapes such as I (long narrow rectangular),

L, H, U, T, H, X and E. Bartholdi and Gue [2004] performed a computational experiment

to study the labour efficiency of a CD with different shapes and an increasing number of
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doors. Based on their work, I-shaped cross-docks were found to be labour efficient for

facilities with fewer than 150 doors, T-shaped cross-docks are appropriate for the facilities

ranging from 150 to 200 doors, and X-shaped cross-docks are best for CDs with more than

200 doors. The results of Bartholdi and Gue [2004] have been widely accepted by various

researchers, supply chain and cross-docking experts.

Hence, an I-shaped narrow rectangular cross-dock facility with 100 doors is assumed.

That is, 50 doors on opposite sides of a facility, resulting in a total length of 750ft on each

side.

3.1.3 Staging Area and Aisle Width

In an ideal cross-dock, the materials are received as a unit load and marked with

destination identification (printed, colour coded or barcoded). They can then be directly

loaded to the outbound trucks from the inbound truck using MHE such as forklifts or hand

pallet trucks, but only if the outbound trucks are available and docked at the outbound

doors. In cases where the destination trucks are not available or the material received

requires sorting and consolidation, those goods will be placed in a temporary storage area

called a Staging Area for further action. A cross-dock facility with an inadequate staging

area would experience serious congestion and time delays; an excessive staging area would

result in un-utilized floor space.

Forklift-Only Cross-Dock Facility

The following are our chosen geometries for this CD.
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Staging Area: Floor space of 58×15ft2 is dedicated for one pair of doors from opposite

sides to stage the pallets.

Aisle Width for Forklifts: Floor space of 30×15ft2 is dedicated in front of each door,

for the forklifts to manoeuvre, move between the doors, sort, unload and load the trucks.

Facility layout of the assumed forklift-only cross-dock is given in Figure 3.1.

Figure 3.1: Facility Layout: Forklift-Only Cross-Dock Facility.

Forklift-and-Self-Driving Vehicle Cross-Dock Facility

Staging Area: Floor space of 13×15ft2 is dedicated for one pair of doors from opposite

sides to stage the pallets.
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Aisle Width for Forklifts: Floor space of 30× 15ft2 is dedicated in front of each door

for the forklifts to manoeuvre, unload and load the trucks.

Aisle Width for Self-Driving Vehicles: Floor space of 12 × 150ft2 called an SDV

path, is dedicated for the SDVs to move back and forth across all 50 doors. A floor space

of 6 × 15ft2 is dedicated on either side of the 12ft wide SDV path, across 50 doors, for

the SDVs to park.

The facility layout of the assumed forklift-and-SDV cross-dock is given in Figure 3.2.

Figure 3.2: Facility Layout: Forklift-and-Self-Driving Vehicle Cross-Dock Facility.
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3.2 Material Handling Assumptions

Various material-handling activities are performed in a cross-dock, creating multiple

discrete sequences of events in time. Precise modelling of all those events would make a

simulation model an accurate representation of a real-world facility. That can only be

achieved by closely studying the cross-dock, and collecting and analyzing the data of the

facility. That data collection and analysis must particular attention to operating conditions,

material flow process, working behaviour of MHE, sequencing or priority rules for MHE

and trucks. Studying the detail characteristics of a real cross-dock is a time consuming

process.

Due to the difficulties in getting access to such a cross-dock, those real-world char-

acteristics and facility working behaviour were not studied. After a series of brainstorming

sessions with CD subject matter expert and the SDV manufacturer, various assumptions

were made to build a generic cross-dock model with two MHE configurations. One con-

figuration had forklifts only, and the other both forklifts-and-Self-Driving Vehicles. As-

sumptions which are common to both models are discussed in subsection 3.2.1, followed

by subsection 3.2.2 and 3.2.3 on assumptions which are unique to the particular cross-dock

MHE configuration (forklifts only; forklifts plus SDVs) of the particular CD.

3.2.1 General Assumptions

(GA 1) Inbound (IB) and outbound (OB) trucks are always available throughout

the simulation run time. Those trucks are ready to offload or load at any

point in time, without any dock scheduling conflicts.
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(GA 2) There are 50 inbound doors on the left-hand side of the I-shaped cross-dock

facility and 50 outbound doors on the right-hand side.

(GA 3) IB trucks arrive at a CD with inter-arrival time 0 (more precisely, the facility

does not need to wait for an inbound vehicle). This is assumed to maintain

our focus on the internal material handling activities of a facility.

(GA 4) The number of pallets carried on each IB truck has a uniform distribution

over (20, 26), i.e., full capacity of a 53ft trailer. Those pallets are ready to

offload.

(GA 5) Pallets received from the IB trucks are sorted and then loaded to the respec-

tive OB trucks as a unit load, without any change in their properties.

(GA 6) Pallets can be moved only by MHE such as forklifts or SDVs.

(GA 7) The destination dock of each pallet received is assigned based on an equal

probability. That is, pallets received from the inbound trucks can be desig-

nated to any destination dock with a probability of ( 1
number of outbound doors

).

(GA 8) Each and every outbound truck require UNIF (20, 26) pallets to be loaded

onto it, before departing from the cross-dock facility.

(GA 9) MHE are available throughout the simulation runtime, without any down-

time.

(GA 10) There is no traffic congestion within the cross-dock.

(GA 11) Forklifts and SDVs are allocated based on their proximity to the “job call”.

By this we mean the nearness of free MHE to the pallet in question.
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(GA 12) Inbound or outbound truck has a changeover time of TRIA (2, 3, 5)mins∗.

That is the time taken for a processed truck (offload inbound truck or loaded

outbound truck) to depart and a unprocessed truck to dock at a doorway.

3.2.2 Forklift-only Cross-Dock Facility

The two assumed generic types of cross-docks differ in their MHE configuration. The

forklift-only cross-dock facility is with three zones or stations: inbound docks, a staging

area and outbound docks (see Figure 3.3).

Inbound Docks (IB-D): This zone includes the inbound doors on the left-hand side,

where the inbound trucks are parked or docked to offload the pallets, and the 30ft space

in between the inbound doors and staging area.

Staging Area (SA): A floor space of 58 × 15ft2 is dedicated for the process of pallet

sorting and consolidation, after the pallets have been offloaded from inbound trucks through

IB-D.

Outbound Docks (OB-D): Included in this zone are the outbound doors on the right-

hand side, where the outbound trucks are parked or docked to load the pallets, and the

30ft space in between the staging area and outbound doors.

In the forklift-only CD (Figure 3.3) manual forklifts are used to offload pallets from

the trucks parked at IB-D, and stage those pallets in SA. Post sorting and consolidation

∗ Acquired from cross-dock SME.
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Figure 3.3: Forklift-only Cross-Dock Facility: Zone Classification.

from SA, manual forklifts load pallets to respective outbound trucks parked at OB-D.

Categories of MHE in Forklift-only CD facility

Manual forklifts are the only MHE used in a forklift-only cross-dock. Based on

offloading or loading activity in which they engage, they are categorized as inbound forklifts

and outbound forklifts respectively.

Inbound Forklift (IB-FL): Forklifts which are dedicated to offload and stage the pallets

from an inbound truck to the respective staging area. They can move across the inbound

doors or between an inbound door and the staging area.
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Outbound Forklift (OB-FL): Forklifts which are dedicated to sort and load the pallets

from the staging area to the destination trucks that are at the outbound doors. They can

move between the staging area and outbound doors to load the pallets from that SA to

the outbound (destination) trucks.

The flow process of pallets from inbound trucks to outbound trucks in a Forklift-only

cross-dock is given in Figure 3.4 as a swimlane.

Modelling Assumptions: Forklift-only cross-dock facility

1. An inbound forklift assigned to a particular truck offloads pallets individu-

ally, one by one, from that inbound vehicle to the staging area, based on a

time delay due to the distance travelled and speed.

2. The staging area (58 × 15ft2) in front of an inbound door is dedicated for

the pallets received only from that respective door.

3. An inbound forklift assigned to offload an inbound truck is relieved only after

the offloading is complete.

4. If the staging area is full, the assigned IB-FL will wait for the pallets to be

moved by an OB-FL, to complete the offloading process.

5. Each pallet can be assigned to any destination dock with equal probability,

before being picked up by an OB-FL.

The assumed forklift-only cross-dock facility is modelled with the given general and mod-

elling assumptions. The other design parameters and various time delays involved in the
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Figure 3.4: Swimlane Diagram: Forklift-only Cross-Dock Facility.
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material-handling activities of a cross-dock facility are given in Table 3.1. The choices

of decision variables (number of inbound and outbound forklifts), for the FL-only CD to

operate under the optimal conditions are discussed later in Chapter 5.

Parameter Value

Model Naming (IB-FL).(OB-FL)

CD working or simulation run time 7.5hr/day.

Facility Dimension

Length of the facility 750ft.

Width of the facility 118ft.

Trucks

Inbound or Outbound Truck Inter-arrival time 0.

Pallets per Inbound or Outbound Truck UNIF (20, 26).

Docks

Number of Inbound Doors or Docks 50.

Number of Outbound Doors or Docks 50.

Staging area space capacity 30 Pallets in 15× 26ft2

Forklift average speed

IB-FL or OB-FL with pallet∗ 316ft/min or 1.61m/s.

IB-FL or OB-FL without pallet∗ 548ft/min or 2.78m/s.

Time delays

IB or OB truck changeover time† TRIA(2, 3, 5) mins.

IB or OB Forklift travel time Manhattan Distance
Speed

Forklift time to maneuver and pickup pallets† UNIF (8, 12) secs.

Forklift time to maneuver and drop pallets† UNIF (8, 12) secs.

Table 3.1: Design Parameters: Forklift-only Cross-Dock Facility.

∗Source: [The MHEDA Journal] www.themhedajournal.org/2013/03/06/facts-about-forklifts
†Acquired from cross-dock SME.
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3.2.3 Forklift-and-Self-Driving Vehicle Cross-Dock Facility

As mentioned earlier, the assumed generic type of forklift-and-SDV cross-dock fa-

cility is operated using manual forklifts and SDVs. The CD is thus designed and modelled

to support those material handling activities. The facility layout of such a system given in

Figure 3.2.

The sortation and consolidation activities of a cross-dock are the most cumbersome,

result in huge floor and traffic congestion. Immense labour and supervision are required

to sort and validate the accuracy of the sorting activities. SDVs thus come in handy when

it comes to the consolidation of unit load items. Once a pallet is loaded to it, an SDV can

auto-detect the destination of that inbound pallet (using identification techniques such as

RFIDs or with instructions given by the master computers used for job allocation). The

SDV will thereby transfer pallets to those respective outbound doors, significantly reducing

the labour requirement.

The proposed facility for a generic type of forklift-and-SDV cross-dock is comprised

of five stations (see Figure 3.5) to support those material-handling activities, which are

listed as follows:

Inbound Docks (IB-D): These include inbound doors, where inbound trucks are parked

or docked to offload the pallets, and the 30ft space between inbound doors and the inbound

drop-off point. This space is dedicated for the offloading forklifts to move between doors,

to manoeuvre or to load the pallets offloaded from trucks to pallet holder or SDVs waiting

at the inbound drop-off point.
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Inbound Drop-off Point (IB-DP): Each IB-D has a dedicated spot for SDVs to park

and pick up the pallets (with an area of 6 × 15 = 90ft2), separated from the inbound

doorways by a distance of 30ft. Each IB-DP also has a pallet holder to which an offloading

forklift can drop off a pallet if an SDV is not immediately available for pickup.

Outbound Pickup Point (OB-PP): Each outbound dock or doorway has a dedicated

spot for SDVs to park near the outbound docks or doors (again, with an area of 90sq.ft),

for an outbound forklift to pick up pallet from the SDV.

Staging Area (SA): Dedicated 13×15ft2 floor space for sorted pallets, the latter ready

to be loaded to outbound trucks from the respective doorway.

Outbound docks (OB-D): Located at the right hand side of the facility, where the

outbound trucks dock. These are separated from the SA by a distance of 30ft for the

outbound-loading forklifts (outbound forklifts) to manoeuvre and move between docks.

Facility layout representing the preceding five stations in the forklift-and-SDV cross-

dock facility is given in 3.5. Pallets from inbound trucks docked at IB-D are offloaded using

the manual forklifts and loaded to the SDVs waiting at IB-DP. SDVs sort the pallets and

transfer them to the designated doorways OB-DP. A manual forklift is allocated to pick

up each pallet from an SDV at OB-DP. That pallet will be staged in SA, or loaded to an

outbound truck at OB-D based on truck availability.

37



Figure 3.5: Forklift-and-Self-Driving Vehicle Cross-Dock Facility: Zone Classification.

Categories of MHE in Forklift-and-SDV CD Facility

MHE used in a forklift-and-SDV CD are grouped into three categories based on

the offloading, sorting or loading activities they engage in as inbound forklifts, SDVs and

outbound forklifts respectively.

Inbound Forklift (IB-FL): Inbound forklifts are dedicated to offload the pallets from

inbound trucks, and load each pallet to an SDV if available, or else to the pallet holder.

Inbound forklifts move across the inbound docks (when empty), or between the inbound

dock and the inbound drop-off point, to offload the trucks.
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Self-Driving Vehicle (SDV): SDVs are dedicated to sort and deliver pallets from IB-

DP to OB-PP. They move between IB-DP and OB-PP, following a rectilinear or Manhattan

distance through the dedicated 12ft SDV path. An SDV can pick up a pallet directly from

an inbound forklift or a pallet holder at IB-DP (but not from the floor), and requires an

outbound forklift to offload the pallet.

Outbound Forklift (OB-FL): Outbound forklifts are used to load the pallets to out-

bound trucks from SDVs or SA. Pallets are sorted and delivered by an SDV at OB-PP;

outbound forklifts load pallets directly to an outbound truck if available, or else stage pal-

lets in the SA. Pallets staged will later be loaded to trucks by an OB-FL once the trucks

are available.

The flow of pallets from inbound to outbound trucks in a generic type of forklift-

and-SDV CD is given in Figure 3.6 as swimlane diagram.

Modelling Assumptions: Forklift-and-Self-Driving Vehicle Cross-Dock Facility

1. An IB-FL assigned to a particular truck offloads all pallets one by one, based

on the time required to travel the distance between IB-D and IB-DP.

2. Pallets picked up by IB-FLs from inbound trucks are loaded to an SDV, if

available at IB-DP, or else to the free pallet holder. If neither one is available,

IB-FL will wait for an SDV at IB-DP.

3. An IB-FL assigned to offload an inbound truck is relieved only after the

offloading is complete.
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Figure 3.6: Swimlane Diagram: Forklift-and-Self-Driving Vehicle Cross-Dock Facility.
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4. SDVs transfer the pallets collected from IB-DP to OB-PP in a rectilinear

path (or Manhattan distance), manoeuvring between obstacles in its path.

5. After offloading pallets at OB-PP, a free SDV will return to the shortest

active IB-DP (having the least number of SDVs) within a 10-dock distance.

6. After an SDV is allocated to transfer a pallet, that pallet is assigned to any

destination dock with equal probability.

7. If an outbound truck is not available at the destination dock, the respective

pallets will be staged at the staging area to free the SDV. If neither the

outbound truck nor the staging area is available, then the SDV will wait for

an outbound truck to offload.

8. Pallets staged in SA will be loaded to an outbound truck by OB-FLs, once

a truck is available at OB-D.

The assumed forklift-and-SDV cross-dock facility is modelled with the stated general

and modelling assumptions. The other design parameters and various time delays involved

in the material handling activities of a CD are given in Table 3.2. Choices of decision

variables (number of inbound forklifts, SDVs and outbound forklifts), for the forklift-and-

SDV cross-dock facility to operate optimally are discussed later in Chapater 5.

∗Acquired from SDV manufacturer.
†Acquired from cross-dock SME.
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Parameter Value

Model Naming (IB-FL).(SDV).(OB-FL)

CD working/simulation run time 7.5hr/day.

Facility Dimension

Length 750ft.

Width 97ft.

Trucks

IB or OB Truck Inter-arrival time 0

Pallets per IB or OB Truck UNIF (20, 26).

Docks

Number of Inbound Doorways or Docks 50.

Number of Outbound Doorways or Docks 50.

OB Staging capacity 13 Pallets in 15× 13ft2.

Number of pallet holders 1 .

MHE Speed

Forklifts with pallet 316ft/min or 1.61m/s.

Forklifts without pallet 548ft/min or 2.78m/s.

SDV with or without pallets∗ 316ft/min or 1.61m/s.

Time delays

IB or OB Truck changeover time TRIA(2, 3, 5)mins.

MHE travel time delays Manhattan Distance
Speed

MHE time to maneuver and pick up pallets† UNIF (8, 12)secs.

MHE time to maneuver and drop off pallets† UNIF (8, 12)secs.

Table 3.2: Design Parameters: Forklift-and-SDV Cross-Dock Facility.

3.3 Output Performance Measures

As discussed in Section 2.1 of the literature review, various output measures are used

by researchers to assess the performance of a cross-dock facility. Some of these measures

are “Average Throughput rate”, “Average Throughput rate / MHE”, “Average Number

of Trucks Processed / Day”, “Average Pallet Flow Time”, “Outbound Truck Tardiness”,

“Transporter or MHE Utilization rate”, “Staging Space Utilization rate”, “Cross-Dock
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Facility Utilization rate”, “Dock or Doorway Utilization rate”, “Average Truck Waiting

Time”, “Average Loading and Unloading time”, and “Pallet Waiting Time at SA”. While

a few of those provide insight on overall CD performance, most of the others emphasizes

particular operations at a cross-dock: MHE, doors or trucks.

For example, measures such as Average Throughput rate, Average Pallet Flow

Time or CD Utilization rate provide insight on overall effectiveness and capability of cross-

docking operation on different scales of measure. On the other hand, measures such as

Outbound Truck Tardiness, MHE Utilization rate, Average Loading or Unloading time are

performance indicators of only certain aspects of CD operation (truck scheduling proce-

dure) or the entities (MHE) in a cross-dock. Hence the identification of appropriate output

measure(s) is critical to assess the scope of SDVs in a cross-dock. Studying inappropriate

performance metrics may result in analyzing a components which are not relevant.

After a series of brainstorming sessions, Average Throughput rate, Average Through-

put rate/ MHE and Average MHE Utilization rate were chosen to study the performance of

cross-dock material handling operations, and to validate the capability of SDVs. Together,

these measures provide better insight on the overall effectiveness of material handling ac-

tivities in a CD facility.

3.3.1 Average Throughput Rate - δ

δ is an average of the total number of pallets processed per day in a cross-dock.

This provides an insight on the facility’s overall material handling capability for a given

MHE configuration. However, the efficient utilization of MHE cannot be known by from

considering δ only. The cross-dock objective is to maximize δ.
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Let Pi = Number of pallets processed on day i.

N = Total number of replications or days.

Then δ =

∑N
i=1 Pi

N
(3.1)

Unit of δ is pallets/day or ppd.

3.3.2 Average MHE Utilization Rate - U

The ratio between the total MHE uptime and the total MHE time in a facility is

Overall MHE Utilization rate - UO. UO provides insight on aggregate utilization of the

MHE in a CD, rather than attempting to analyze individually. Any MHE idle time incurs

cost in terms of improper utilization of labour and MHE.

Let UTij = Uptime of ith MHE in the jth replication.

T = Simulation runtime / replication.

c = Total number of MHE in a cross-dock.

c = XI +XO +XS

XS = 0 (for FL - only CD).

Then UO =

∑c
i=1

∑N
j=1 UTij

T × c×N
× 100 % (3.2)

The category-wise MHE Utilization rates are also computed for IB-FLs (UI), SDVs

(US) and OB-FLs (UOB). The cross-dock objectives are to maximize the overall and

44



category-wise MHE utilization rate.

Let UTIij = Uptime of ith IB-FL in the jth replication.

UTSij = Uptime of ith SDV in the jth replication.

UTOij = Uptime of ith OB-FL in the jth replication.

XI = Total number of inbound forklifts in a CD.

XS = Total number of self-driving vehicles a CD.

XO = Total number of outbound forklifts in a CD.

Then UI =

∑XI

i=1

∑N
j=1 UTIij

T ×XI ×N
× 100 % (3.3)

US =

∑XS

i=1

∑N
j=1 UTSij

T ×XS ×N
× 100 % (3.4)

UOB =

∑XO

i=1

∑N
j=1 UTOij

T ×XO ×N
× 100 % (3.5)

Even though the MHE Utilization rate provides an insight on its usage and idleness,

it does not account for MHE efficient usage in a facility. That is, can fewer MHE be used

to process a greater number of pallets? Poor MHE allocation in an FL-only CD (between

IB-FLs and OB-FLs) or FL-and-SDV CD (between IB-FLs, SDVs and OB-FLs) may result

in achieving maximum MHE Utilization rate. However, that allocation would not account

for their efficient usage.

3.3.3 Average Throughput Rate / MHE - δM

δM provides a balance between the above two performance metrics. It is a ratio

between Average Throughput rate (δ) and a total number of MHE in a cross-dock. δM
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yields insight on how efficiently pallets are processed using the MHE in a facility. The

cross-dock objective is to maximize δM .

δm =

∑N
i=1 Pi

N × c
(3.6)

δm is measured in pallets/day/MHE or ppd/MHE.

3.4 ARENA Simulation Model Overview

ARENA 15.0, the simulation software by Rockwell Automation, was used for sim-

ulation modelling of cross-dock facilities. Two independent simulation models were built,

representing the forklift-only and forklift-and-SDV cross-docks, following the material han-

dling assumptions and working parameters established in Section 3.2.

3.4.1 Cross-Dock Modelling in ARENA

The major simulation components of the FL-only and FL-and-SDV cross-dock fa-

cilities are given in Table 3.3. Visual Basic API (Application Programming Interface) in

ARENA was used to model a scalable cross-dock facility with increasing numbers of in-

bound and outbound doors. When there is need to study a facility with greater number of

doors, this scalability technique comes in handy, reducing the modelling time from days to

nearly a minute. However, as stated in material handling assumptions of subsection 3.1.1,

the number of doors is fixed as 50×50 (IB doors × OB doors).
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The built simulation model was set to terminate when the simulation clock time

reaches 7.5hrs, assuming one shift or 8hrs of operation with 30mins break and no simu-

lation warm-up period.

Components Forklift-Only CD Forklift-and-SDV CD

Entity

Pallets

Inbound Trucks

Outbound Trucks

Pallets

Inbound Trucks

Outbound Trucks

Transporter
Inbound Forklifts −XI

Outbound Forklifts −XO

Inbound Forklifts −XI

Self-Driving Vehicles −XS

Outbound Forklifts −XO

Resources Pallet Holder −0 Pallet Holder −1

Stations

Inbound Docks −50

Staging Area −50

Outbound Docks −50

Inbound Docks −50

Inbound-DP −50

Outbound-PP −50

Staging Area −50

Outbound Docks −50

State Variables

Staging Area capacity −30

IB-D availability - Yes or No

OB-D availability - Yes or No

Staging Area capacity −26

IB-D availability - Yes or No

OB-D availability - Yes or No

Table 3.3: Components of Simulation Model.

Verification and validation of a simulation model is critical to ensure that the model

represents the actual system [Rossetti, 2010]. The built simulation models for the FL-

only and FL-and-SDV cross-docks were verified and validated by the group of members

involving a cross-dock SME, a simulation analyst from the SDV manufacturer, and other

representatives of that SDV manufacturer.
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3.4.2 Simulation Results

The built cross-dock simulation model requires one other major input parameter,

besides those given in Tables 3.1 and 3.2 to execute. That is the cross-dock MHE configu-

ration. The MHE configuration of an FL-only CD is a combination of XI and XO; and of

XI , XS and XO for an FL-and-SDV CD.

These parameters determine the cross-dock’s material handling performance, and

(a major portion of) variable operating cost of the facility. Both forklift-only and forklift-

and-SDV CD models were simulated with various MHE configurations∗ identified from

brainstorming sessions, 5 replications each (to graphically visualize the relationship be-

tween MHE configuration and cross-dock performance metrics.). Each replication allowed

independent realizations of the particular random variables. The respective performance

metrics were computed and analyzed at varying levels of MHE configuration in terms of

δ, UO, and δM .

Forklift-only Cross-Dock Facility

The performance of a forklift-only CD is determined by the combination of inbound

and outbound forklifts present in that facility. To understand the relationship between

the MHE configuration and CD performance metrics, the FL-only CD was simulated (5

replication each) with 96 varied MHE configurations given in Table 3.4, and their respective

statistics were recorded†. The simulation results of those 96 models are presented in this

subsection. Poor MHE configuration, which would be inadequate for CD material handling

∗Each MHE configuration of a cross-dock facility is an independent simulation model.
† See subsection 3.4.3 for all feasible MHE configurations available within the search space.
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process as advised by cross-dock SME, and the MHE configurations with no change in trend

(of CD performance) are excluded from the study.

Average Throughput rate - δ

δ of a CD operating at varying levels of XI and XO is given in Figure 3.7. δ is

represented on the graph’s left-hand side (primary vertical axis) for fixed levels of XI ,

for a varying level of XO on the horizontal axis. The average throughput rate increases

gradually when there are simultaneous increases in the numbers of inbound and outbound

forklifts, but that increase begins to plateau. Either XI or XO can act as a bottleneck if

allocated suboptimally.

Average Throughput rate per MHE - δM

δM of a CD facility operating at varying levels of XI and XO is given in Figure 3.7,

with δM on the right-hand side (secondary vertical axis) of the graph. As shown in that

figure for a fixed level of XI , δM increases to a maximum and then decreases with an

increase in XO. An inverted-V shaped pattern is consistently followed for all fixed levels

of XI . Optimal allocation of forklifts between inbound offloading and outbound loading is

a critical factor to maximize δM . Since the pallet-inflow capacity of a CD does not exceed

a certain limit for a given XI , the maximization of deltaM requires use of adequate or

optimal levels of XO to process pallets.

MHE Utilization rate - UO, UI , and UOB

Similar to δM , UO follows an inverted-V shaped pattern. As shown in Figure 3.8

for a fixed level of XI , UO increases to a maximum and then decreases, following that

inverted-V shaped pattern consistently for fixed levels of XI . The inversely proportional
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trend observed between the category-wise MHE utilization rate of IB-FLs (UI) and OB-

FLs (UOB) shown in Figure 3.9 provides better insight for that pattern observed in Figure

3.8 for a fixed level of XI and increasing XO.

Some of the other performance metrics (Average Pallet Processing Time, Aver-

age Truck Processing Time and Average Number of Trucks Processed/Day) are given in

Appendix A.1.
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MHE
Inbound Forklifts

20 25 30 35 40 45

O
u

tb
o
u

n
d

F
o
rk

li
ft

s

40 x x

45 x x

50 x x x x x x

55 x x x x x x

60 x x x x x x

65 x x x x x x

70 x x x x x x

75 x x x x x x

80 x x x x x x

85 x x x x x x

90 x x x x x

95 x x x x x

100 x x x x x

105 x x x x

110 x x x x

115 x x x x

120 x x x x

125 x x x x

130 x x x

135 x x x

140 x x x

Table 3.4: MHE Configuration: Forklift-Only Cross-Dock Facility.

[Note: Blank cells are omitted from our analysis.]
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Forklift-and-Self-Driving Vehicle Cross-Dock Facility

The forklift-and-SDV cross-dock model was simulated for all 277 MHE configu-

rations given in Table 3.5 (poor MHE configuration which would be inadequate for CD

material handling process as advised by cross-dock SME and configurations for which no

change in trend are excluded from the study), independently for 5 replications each, to

study the relationship between MHE configuration and CD performance metrics. The

number of dimensions required to graphically visualize the impact of MHE configuration

on those metrics increases to four (XI , XS, XO and performance metric itself) for the

FL-and-SDV CD. Therefore to better interpret the relationship, the performance metrics

are graphically represented on the vertical axis, for a fixed level of XI , followed by fixed

levels of XO, and varying levels of XS on the horizontal axis of the 2D graph. This enables

the reader to graphically visualize the impact of MHE configuration on the cross-dock

performance metrics.

Average Throughput rate - δ

δ of a forklift-and-SDV cross-dock facility is given in Figure 3.10. For fixed levels of

XI and XO, δ increases gradually and plateaus as there is an increase in XS. δ increases

for a simultaneous increase in XI and XO, when the SDVs are sufficiently available to sort

the pallets between offloading and loading. Allocation of appropriate numbers of MHE

for offloading (XI), sorting (XS) and loading (XO) results in a higher throughput rate for

forklift-and-SDV CD. Sub-optimal allocation of any of these, individually, can act as a

bottleneck.

Average Throughput per MHE - δM
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δM of a forklift-and-SDV cross-dock facility is given in Figure 3.10. The inverted-V

shaped pattern is observed for some MHE combinations of fixed levels of XI-and-XO : 30-

and-25, 35-and-25, 35-and-30 and 45-and-30. The inconsistent appearance of inverted-V

pattern could be because of insufficient data points to visualize the hidden pattern, or else

due to a drastic increase in the total number of MHE (c) in the facility, causing a different

pattern.

For the same average throughput rate - δ, δM of the FL-and-SDV CD turns out

to be significantly lower than δM of the FL-only CD. This is due to the fact that the

former requires a greater number of MHE in terms of SDVs, to achieve a similar average

throughput rate as the FL-only CD. This is obviously due to the nature of CD design

and material handling assumptions: FL-only CD requires only two categories of MHE, for

offloading (IB-FLs) and sorting-and-loading (OB-FLs); while the FL-and-SDV CD requires

three, for offloading (IB-FLs), sorting (SDVs) and loading (OB-FLs).

MHE Utilization ate - UO, UI , US and UOB

UO of a forklift-and-SDV CD is given in Figure 3.11. Similar inconsistent appearance

of the inverted-V shapped pattern is observed for UO as was found in δM . However,

analysis of category-wise MHE utilization rate (UI , US, UOB) given in Figure 3.12 yields

comparatively better insights for those inconsistent inverted-V patterns.

Figure 3.12 shows that within the fixed levels of XI and XO, UOB increases and

begins to plateau, while US decreases; This is because of the limited pallet-inflow capacity

for a given XI . UI stays constant at a maximum level when XI is low, and reduces steeply

(in intervals of XO and XS) with simultaneous increases in XI , XS and XO. This causes

an inconsistent inverted-V shaped pattern observed in Figure 3.11.
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3.4.3 Finding Optimal MHE Configuration for a Cross-Dock

Statistical comparison or optimization of a simulation model requires a minimum of

30 replications each. Assuming an FL-only CD, the number of IB-FLs can range between

25 to 45 and the number of OB-FLs can range between 50 to 140, yielding 1,800 inde-

pendent MHE configurations. The runtime of each replication of a CD simulation model

programmed in ARENA takes a minute on average, in a computer system with a configu-

ration of Intel(R) Core(TM)i7-3537U CPU @ 2.0 GHz processor, 6GB RAM manufactured

by ASUS.

Just the independent simulation of a forklift-only cross-dock for 1,800 feasible MHE

configurations 30 replications each, would take 25 days for the ARENA run time alone.

On the other hand, 1,250 days of computer run time would be required to simulate 30

replications of each of the 60,000 feasible MHE configurations, for the forklift-and-SDV

cross-dock (assuming the CD can operate with an MHE configuration of between 25 and

45 IB-FLs, 50-150 SDVs and 25-55 OB-FLs). Therefore, it requires enormous computer run

time nearly 3.5 years to simulate all that feasible MHE configurations, 30 replications

each. Which is not a desirable time limit to wait for a decision.

Hence, first and foremost, to understand the impact of MHE configuration on the

CD performance metrics, we chose to simulate 5 replications of selected MHE configura-

tions and analyze those outputs for both cross-dock facilities. Which considerably helped

to establish the relationship between performance metrics and the MHE configuration of

a cross-dock facility (see subsection 3.4.2). But the optimal MHE configuration stays

unknown due to the difficulties in validating the greater number of feasible MHE configu-

rations available within the solution space.
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Secondly, we propose a simulation optimization technique in Chapter 4 and 5 to

overcome the issues related to computational difficulties in finding the optimal MHE con-

figuration from the greater search space.
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IB-FLs OB-FLs
SDVs

50 55 60 65 70 75 80 85 90 95 100 105 120 125 130 135 140 145 150

30

25 x x x x x x x x x x x x x x x x x x

30 x x x x x x x x x x x x x x x x x

35 x x x x x x x x x x x

40 x x x x x x x

35

25 x x x x x x x x x x x x x x x x x

30 x x x x x x x x x x x x x x x x x

35 x x x x x x x x x x x x x x x

40 x x x x x x x x x x x x x

45 x x x x x x x

50 x x x x

40

25 x x x x x x x x x x x x x x x x

30 x x x x x x x x x x x x x x x x x

35 x x x x x x x x x x x x x x x

40 x x x x x x x x x x x x x

45 x x x x x x x x x x

50 x x x x x x

55 x x x x

45

25 x x x x x x x x x x x x x x x

30 x x x x x x x x x x x x x x x

35 x x x x x x x x x x x x

40 x x x x x x x x x x x x

45 x x x x x x x x

50 x x x x

55 x

55
50 x x

55 x

Table 3.5: MHE Configuration: Forklift-and-SDV Cross-Dock Facility.
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Chapter 4

Response Surface Methodology

Optimization of the MHE configuration for the forklift-only or the forklift-and-SDV

cross-dock simulation model becomes a complex process, due to the enormous computer

runtime required to validate the objective function for all feasible MHE configurations

within a large solution space. Therefore, we propose to use a meta-modelling approach to

find the optimal MHE configuration in a fast time-efficient manner.

The goal of the proposed simulation meta-modelling approach is to develop predic-

tion models (using Response Surface Methodology (RSM)) for the CD performance metrics.

The exploratory variables, MHE configurations, will be used to formulate the constraints

of an optimization problem. The corresponding objective is to minimize the total variable

cost incurred by operating MHE in a cross-dock facility. Solving that optimization model

will result in the optimal MHE configuration, i.e., the MHE configuration with minimum

variable operating cost, and whose levels of cross-dock performance metrics are expected

values. Fu [2014] presented various simulation-optimization techniques, of which Response
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Surface Methodology (RSM) meets our requirement to built prediction models.

Variance reduction techniques such as correlated sampling or common random num-

bers (CRN) are widely used for simulation comparison purposes. CRN technique reduces

the variance between two simulation models by using same or correlated stream of ran-

dom numbers. It results in dependency or correlation between response variables of two

systems. That is, if CRN is applied the response variable−Yi obtained from simulation of

MHE configuration (XI .XO) will be correlated to Y ′i obtained from (X ′I .X
′
O) [Banks et al.,

2010]. However RSM technique requires the response variables to be independent to each

other, i.e., COV (Yi, Y
′
i ) = 0. Using CRN along with RSM would violate that requirement;

and require further analysis through blocking of experiments if CRN is used [Fu, 2014].

Therefore, we experimented both the forklift-only and the forklift-and-SDV cross-

dock simulation models, independently without CRN at various levels of MHE configura-

tion (exploratory variables). The response surface (or regression) models were estimated

for the CD performance metrics (δ, δM , UO, UI , UOB, and US). Those regression models

were later used to formulate separate optimization models, individually for forklift-only

and forklift-and-SDV CD facilities, to optimize their MHE configurations.

A brief overview of the experiments designed for the FL-only and FL-and-SDV

cross-docks, and factor definitions for both CD models, are given in Section 4.1, followed

by Section 4.2 on regression model fitting.
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4.1 Response Surface Design

A full-factorial experiment is designed for a forklift-only and forklift-and-SDV cross-

dock simulation model with varying levels of MHE configuration.

4.1.1 Factors

Forklift-only Cross-Dock Facility

Performance of the FL-only CD facility is studied by varying two factors, the number

of inbound and outbound forklifts in a CD. The number of levels for those two factors, and

their factor levels are given in Table 4.1.

Factors Notation Number of Levels Factor Levels

Number of IB-FLs XI 5 25, 30, 35, 40, 45

Number of OB-FLs XO 10 50, 60, 70, . . . , 130, 140

Table 4.1: RSM Factor Definition: Forklift-only Cross-Dock Facility.

Forklift-and-SDV Cross-Dock Facility

We experimented with the performance of the forklift-and-SDV cross-dock by vary-

ing three factors, numbers of IB-FLs, SDVs and OB-FLs in the CD facility. The number

of levels for those three factors, and their factor levels are given in Table 4.2.
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Factors Notation Number of Levels Factor Levels

Number of IB-FLs XI 5 25, 30, 35, 40, 45

Number of SDVs XS 11 50, 60, 70, . . . , 140, 150

Number of OB-FLs XO 7 25, 30, 35, 40, 45, 50, 55

Table 4.2: RSM Factor Definition: Forklift-and-SDV Cross-Dock Facility

4.1.2 Replications

The full-factorial experiment, as designed in subsection 4.1.1, results in a total of

50 (5x10) treatment combinations for the forklift-only CD, and 385 (5x11x7) treatment

combinations for the forklift-and-SDV CD. Each treatment combination is replicated 15∗

times in ARENA; performance metrics (δ, δM , UO, UI , UOB, and US) for those respective

combinations are recorded as a point estimate for each replication.

4.2 Model Fitting

The estimated response variables for CD performance metrics are defined as follows;

Predicted Average Throughput rate = δ̂ (4.1)

Predicted Average Throughput rate / MHE = δ̂M (4.2)

Predicted Average Overall MHE Utilization rate = ÛO (4.3)

Predicted Average IB-FLs Utilization rate = ÛI (4.4)

∗ Chosen following the number of replications = 10 used by Shi et al. [2013] to fit cross-dock response

surface model, under similar situation.
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Predicted Average OB -FLs Utilization rate = ÛOB (4.5)

Predicted Average SDVs Utilization rate = ÛS (4.6)

The prediction variables for CD performance metrics defined from Eqs (4.1) to (4.5)

are applicable for both the forklift-only and forklift-and-SDV cross-dock facilities, Eq (4.6)

is applicable only for the forklift-and-SDV cross-dock.

To establish the relationship between CD performance metrics (response variable)

and MHE configuration (expoloratory variables) in a form R̂ = f(XI , XO) or R̂ =

f(XI , XO, XS), four types of response surface models are considered.

Here R = Response variable or CD performance metric.

R̂ = Predicted CD performance metric.

Model 1) Linear: First order polynomial model.

FL - only CD :: R̂ = β + βIXI + βOXO

FL - and -SDV CD :: R̂ = β + βIXI + βSXS + βOXO

Model 2) Linear+Interaction: First order polynomial + two-way interaction

model.

FL - only CD :: R̂ = β + βIXI + βOXO + βIOXIXO

FL - and -SDV CD :: R̂ = β + βIXI + βSXS + βOXO

+ βISXIXS + βIOXIXO + βSOXSXO
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Model 3) Linear+Square: Second order polynomial, without two-way interac-

tion.

FL - only CD :: R̂ = β + βIXI + βIIX
2
I + βOXO

+ βOOX
2
O

FL - and -SDV CD :: R̂ = β + βIXI + βIIX
2
I + βSXS

+ βSSX
2
S + βOXO + βOOX

2
O

Model 4) Quadratic: Second order polynomial, with two-way interaction.

FL - only CD :: R̂ = β + βIXI + βIIX
2
I + βOXO

+ βOOX
2
O + βIOXIXO

FL - and -SDV CD :: R̂ = β + βIXI + βIIX
2
I + βSXS + βSSX

2
S

+ βOXO + βOOX
2
O + +βISXIXS

+ βIOXIXO + βSOXSXO

4.2.1 Model Fitting: Forklift-only Cross-Dock Facility

Using Minitab, 20† regression models were estimated for each performance metric

and their summary statistics are given in Table 4.3 (See appendix B.1 for a brief overview

on regression model fitting). Hypothesis test 1 and Hypothesis test 2 enabled testing the

validity of the built regression models.

Hypothesis Test 1: Ability of the fitted regression model to explain the variation caused

by the exploratory variables or significance of the regression model.

†4 types of response surface models for all five performance metrics
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H0: Regression model does not explain the variation caused by exploratory variables.

H1: Regression model explains the variation caused by exploratory variables.

Significance level, α = 0.05.

Hypothesis Test 2: Presence of unexplained source of non-random variation or lack-of-

fitness test.

H0: All sources of non-random variation are explained by the regression model.

H1: Not all sources of non-random variation are explained by the regression model.

Significance level, α = 0.05

Inference

Hypothesis test 1: Regression (Reg) p-value < α statistically validates that the given

regression model‡ significantly explains the variation in cross-dock performance metrics

caused by changes in levels of XI and XO. That is, the built regression models are sig-

nificant. However, Hypothesis test 1 does not reveal if there is any non-random source of

variation left unexplained by the regression model.

Hypothesis test 2: From Lack-of-Fitness (LOF) p-value < α, it is statistically evident

that a non-random source of variation is left unexplained by the fitted regression model.

This can be further explicitly seen from the heteroscedastic (or non-homogeneous) residual

distribution of the fitted regression model shown in subsection B.1.3 of Appendix B. In

regression modelling, heteroscedasticity could arise because of two reasons; 1) one or more

‡ Linear, Linear + Interaction, Linear + Square, Quadratic
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Model Reg P-value LOF P-value PRESS R2 (%) R2
pred (%) R2

Adj (%) s RMSE

δ̂

Linear 0 0 6134471468 71.3 71.1 71.2 2853 2515

Linear+Interaction 0 0 3791015991 82.3 82.1 82.3 2241 2566

Linear+Square 0 0 3040699307 85.9 85.7 85.8 2004 2799

Quadratic 0 0 670845369 96.9 96.8 96.9 941 958

δ̂M

Linear 0 0 350284 31.1 30.5 30.9 21.56 19.64

Linear+Interaction 0 0 202800 60.2 59.8 60.1 16.39 19.45

Linear+Square 0 0 211353 58.5 58.1 58.7 16.71 21.70

Quadratic 0 0 62468 87.8 87.6 87.8 9.08 8.94

ÛO

Linear 0 0 3.86 65.8 65.5 65.7 0.072 0.210

Linear+Interaction 0 0 2.36 79.1 78.9 79.0 0.056 0.214

Linear+Square 0 0 2.31 79.7 79.4 79.6 0.055 1.791

Quadratic 0 0 0.80 93.0 92.9 93.0 0.032 0.091

ÛI

Linear 0 0 1.05 72.2 72.0 72.1 0.037 0.033

Linear+Interaction 0 0 0.90 76.3 76.0 76.2 0.037 0.479

Linear+Square 0 0 0.43 88.7 88.5 88.6 0.024 0.034

Quadratic 0 0 0.28 92.8 92.6 92.7 0.019 0.019

ÛOB

Linear 0 0 3.62 81.8 81.6 81.7 0.694 0.210

Linear+Interaction 0 0 2.49 87.5 87.4 87.5 0.057 0.214

Linear+Square 0 0 2.31 88.5 88.3 88.4 0.055 1.791

Quadratic 0 0 1.16 94.2 94.1 94.2 0.039 0.156

Table 4.3: Model Fitting: Forklift-only Cross-Dock Facility.

significant exploratory variables were left unconsidered while modelling, 2) higher-order

polynomial terms or different a regression modelling technique (like piece-wise regression)

were required to model the unexplained source of variation.

Due to lack of access to real-world cross-dock facilities, there were difficulties in

identifying the other potential exploratory variables. Hence the experiments were con-

ducted by considering only MHE configuration as the only potential factors. Studying a

real-world CD facility could possibly reveal other factors. Those could significantly impact

the cross-dock performance, but were not considered in here.
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The coefficient of determination (R2), predicted (R2
pred) and adjusted coefficient

of determination (R2
Adj) values of quadratic regression models are significantly high, and

close to each other for all five performance metrics. Further inclusion of higher-order terms

(cubes or higher) may result in over-fitting.

Therefore, from Hypothesis test 1 and Hypothesis test 2, we conclude that all esti-

mated regression models for the performance metrics of the forklift-only cross-dock facility

are significant. However, there is a need for further analysis to address the unexplained

non-random sources of variation.

Due to various constraints, we assume that each fitted regression model has no

unexplained source of non-random variation, to perform further analysis and to identify

the optimal MHE configuration.

Model Selection

PRESS (Predicted Residual Sum of Squares)§, R2, R2
pred and R2

Adj values of the

regression models given in Table 4.3, are considered for model selection process. “s” is the

standard error of the fitted regression model, and RMSE (Root Mean Squared Error) is

the error measure between the simulation output of the cross-dock models¶ and regression-

predicted results for the same MHE configuration.

For each performance metric, a regression model with the least PRESS statistic

and highest R2
Adj is selected for further analysis. Quadratic regression models, marked

§ PRESS=
∑N

i=1(Ri − R̂i,−i)
2, Lower the better : : R̂2

i,−i is Predicted response of fitted regression

model without ith observation.
¶ These are discussed in simulation results of subsection 3.4.2
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bold and highlighted in Table 4.3, turn out to be the best fit for all 5 performance metrics

based on PRESS and R2
Adj statistics. The selected regression models for the corresponding

performance metrics of the forklift-only cross-dock facility are listed below;

δ̂ = − 13688.7 + 823.6×XI + 315.6×XO

− 18.4×X2
I − 2.6×X2

O

+ 8.7×XI ×XO (4.7)

δ̂M = 136.33 + 3.962×XI + 0.362×XO

− 0.138×X2
I − 0.017×X2

O

+ 0.069×XI ×XO (4.8)

ÛM = 0.62275 + 0.023509×XI − 0.00071×XO

− 0.000562×X2
I − 0.000054×X2

O

+ 0.000219×XI ×XO (4.9)

ÛI = 0.499352 + 0.025742×XI + 0.002618×XO

− 0.000572×X2
I − 0.000022×X2

O

+ 0.00007×XI ×XO (4.10)

ÛOB = 0.684438 + 0.020197×XI − 0.001311×XO

− 0.000417×X2
I − 0.000052×X2

O

+ 0.000191×XI ×XO (4.11)
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4.2.2 Model Fitting: Forklift-and-SDV Cross-Dock Facility

Four regression models were estimated for all six forklift-and-SDV cross-dock per-

formance metrics. Summary statistics for all those 24 regression models are given in Table

4.4. Hypothesis testing was done to validate the significance of regression models and re-

gression models lack-of-fitness. Both tests yield similar statistical inference, as was seen in

subsection 4.2.1 for regression models of the forklift-only cross-dock facility.

Therefore, we conclude that all the linear, linear + interaction, linear + square and

quadratic regression models, estimated for all six performance metrics, are statistically sig-

nificant. We assume there is no unexplained source of non-random variation (see Appendix

B.2 for more analysis on regression model fitting.).

Model Selection

For each performance metric, a regression model with the least PRESS statistic

and highest R2
Adj is selected for further analysis. The quadratic regression model turns

out to be the best fit for all six performance metrics. Those respective models are marked

bold and highlighted in Table 4.4 The selected regression models for the corresponding

performance metrics of the forklift-and-SDV CD are given in Eq 4.12 to Eq 4.17.

δ̂ = − 13354.1493 + 1021.8703×XI + 89.5301×XS + 107.5189×XO

− 22.6917×X2
I − 1.0839×X2

S − 6.2406×X2
O

+ 4.5356× XI ×XS + 10.0245×XI ×XO

+ 1.7879×XS ×XO (4.12)
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Model Reg P-value LOF P-value PRESS R2 (%) R2
pred (%) R2

Adj (%) s RMSE

δ̂

Linear 0 0 29143358964 76.8 76.8 76.8 2245 2245

Linear+Interaction 0 0 18465421544 85.3 85.3 85.3 1786 1785

Linear+Square 0 0 16964451208 86.5 86.5 86.5 1712 1711

Quadratic 0 0 6251135915 95.0 95.0 95.0 1039 1038

δ̂M

Linear 0 0 824020 22.8 27.2 22.8 11.94 11.94

Linear+Interaction 0 0 537615 49.7 49.6 49.7 9.64 9.63

Linear+Square 0 0 456626 57.3 57.2 57.3 8.88 8.88

Quadratic 0 0 169237 84.2 84.1 84.2 5.41 5.40

ÛO

Linear 0 0 26.57 66.8 66.8 66.8 0.068 0.068

Linear+Interaction 0 0 16.18 79.8 79.8 79.8 0.053 0.053

Linear+Square 0 0 16.14 79.8 79.8 79.8 0.053 0.052

Quadratic 0 0 5.14 93.6 93.6 93.6 0.030 0.030

ÛI

Linear 0 0 2.132 54.1 54.1 54.1 0.0192 0.0192

Linear+Interaction 0 0 1.638 64.8 64.7 64.8 0.0168 0.0168

Linear+Square 0 0 1.638 64.8 64.7 64.8 0.0168 0.0135

Quadratic 0 0 0.558 88.0 88.0 88.0 0.0098 0.0098

ÛOB

Linear 0 0 62.29 81.1 81.1 81.1 0.1083 0.1038

Linear+Interaction 0 0 49.41 85.1 85.0 85.0 0.0924 0.0924

Linear+Square 0 0 49.41 85.1 85.0 85.0 0.0924 0.0885

Quadratic 0 0 32.44 90.2 90.2 90.2 0.0749 0.0748

ÛS

Linear 0 0 36.82 68.0 67.9 68.0 0.0798 0.0798

Linear+Interaction 0 0 14.93 87.0 87.0 87.0 0.0508 0.0508

Linear+Square 0 0 14.93 87.0 87.0 87.0 0.0508 0.0704

Quadratic 0 0 6.80 94.1 94.1 94.1 0.0343 0.0342

Table 4.4: Model Fitting: Forklift-and-Self-Driving Vehicles Cross-Dock Facility.
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δ̂M = 41.3728 + 5.3649×XI − 0.1321×XS − 0.0761×XO

+−0.1259×X2
I − 0.0059×X2

S − 0.0338×X2
O

+ 0.0227×XI ×XS + 0.0500×XI ×XO

+ 0.0106×XS ×XO (4.13)

ÛO = 0.4888 + 0.0410×XI − 0.0006×XS − 0.0130×XO

− 0.0008×X2
I − 3.14× 10−5 ×X2

S

+ 0.0001×XI ×XS + 0.0001×XI ×XO

+ 4.07× 10−6 ×XS ×XO (4.14)

ÛI = 0.5147 + 0.0259×XI + 0.0011×XS + 0.0015×XO

− 0.0003×X2
I + 8.64× 10−7 ×X2

S + 1.10× 10−5 ×X2
O

− 3.58× 10−5 ×XI ×XS − 4.9× 10−5 ×XI ×XO

− 6.50× 10−6 ×XS ×XO (4.15)

ÛS = 0.5563 + 0.0390×XI − 0.0045×XS − 0.0035×XO

− 0.0008×X2
I − 1.63× 10−5 ×X2

S + 5.9466× 10−5 ×X2
O

+ 0.0002×XI ×XS + 0.0001×XI ×XO

− 8.32× 10−5 ×XS ×XO (4.16)

ÛOB = 0.5549 + 0.0355×XI + 0.0056×XS − 0.0335×XO

− 0.0007×X2
I − 4.828× 10−5 ×X2

S − 3.4910−5 ×X2
O

+ 0.0001×XI ×XS + 0.0003×XI ×XO

+ 6.19× 10−5 ×XS ×XO (4.17)

The fitted regression models for the performance metrics of the forklift-only and
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forklift-and-SDV cross-dock facilities were used to formulate respective models to optimize

the MHE configuration. The formulation and optimization of those models is given in

Chapter 5.
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Chapter 5

Optimization of Cross-Dock MHE

Configuration

Two independent optimization models were formulated in terms of MHE configu-

ration, respectively for the FL-only CD and for the FL-and-SDV CD. The objective is to

minimize the total variable operating cost of a CD, subject to constraints on CD perfor-

mance metrics that will yield desired level of performance. Each formulated optimization

model will yield the optimal or near-optimal∗ MHE configuration and the total variable cost

of operating that CD. Thus, the scope of SDVs in a CD could be validated by comparing

the total variable operating cost of the two respective cross-docks.

Optimization model formulations for the FL-only and the FL-and-SDV CD are

given in Section 5.1. Those models are solved in Section 5.2. The overall feasibility of

using SDVs in a CD is substantiated in Section 5.3. Section 5.4: concludes with the

∗ Based on prediction accuracy of the regression models.
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statistical validation of the proposed optimal MHE configuration.

5.1 Cross-Dock MHE Optimization Model

A generic optimization model to minimize the total variable cost incurred by the

MHE in a cross-dock facility is formulated as follows;

Min Total Variable cost of operating a CD

Subject to:

Predicted performance level. ≥ Desired performance level.

That is, R̂ ≥ R

Where, R is the desired level of CD performance metric.

5.1.1 MHE Optimization Model: Forklift-only CD

The variable cost of operating a CD includes labour and MHE operating cost.

Let L = Labour cost per day.

M = Unit forklift operating cost per day.

Then L = 31.43× 8 = $251.43/day∗

M = Cost of electricity consumed by MHE per day†

+ Cost of MHE repair and maintenance per day‡

= $ 260.88/day + $ 10.31/day
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M = $ 271.20/day.

Assuming forklift operators constitute the only labour required for the forklifts, and no

other workforce is required for material handling in a CD, the total variable cost (TVC)

of operating an FL-only CD is expressed as Eq (5.1).

Decision Variables
XI - Number of IB-FLs.

XO - Number of OB-FLs.

TVC of FL-only CD = L× (XI +XO) +M × (XI +XO) (5.1)

Then, the resulting optimization model for an FL-only CD is formulated as follows;

Min TVC = 522.63× (XI +XO) (5.2)

Subject To

Constraint 1: Average Throughput rate

−13688.7 + 823.6×XI + 315.6×XO

− 18.4×X2
I − 2.6×X2

O

∗Forklift operator, average hourly wages = $ 31.43/hr [Source: Payscale, Canada]
†Electric forklift power consumption rate = 3.5kW/hr [Source: http://raymondhandling.com]
†Cost of electricity = $ 9.32/kWh [Source: Waterloo North Hydro Inc.]
‡Cost of forklift repair and maintenance = $ 1.289/hr [Source: http://raymondhandling.com]
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+ 8.7×XI ×XO ≥ δ (5.3)

Constraint 2: Average Throughput rate per MHE

136.33 + 3.962×XI + 0.362×XO

− 0.138×X2
I − 0.017×X2

O

+ 0.069×XI ×XO ≥ δM (5.4)

Constraint 3: Overall MHE Utilization rate

0.62275 + 0.023509×XI − 0.00071×XO

− 0.000562×X2
I − 0.000054×X2

O

+ 0.000219×XI ×XO ≥ UO (5.5)

Constraint 4: Inbound Forklifts Utilization rate

0.499352 + 0.025742×XI + 0.002618×XO

− 0.000572×X2
I − 0.000022×X2

O

+ 0.00007×XI ×XO ≥ UI (5.6)

Constraint 5: Outbound Forklifts Utilization rate

0.684438 + 0.020197×XI − 0.001311×XO

− 0.000417×X2
I − 0.000052×X2

O

+ 0.000191×XI ×XO ≥ UOB (5.7)

25 ≤ XI ≤ 45 (5.8)

50 ≤ XO ≤ 140 (5.9)

XI , XO ∈ Z (5.10)

80



5.1.2 MHE Optimization Model: Forklift-and-SDV CD

Manual forklifts in a CD incur labour and forklift operating cost. SDVs incur

operating cost only. In the long-term, assuming the operating costs of SDVs and manual

forklifts are equal, the optimization model to minimize the total variable cost of a forklift-

and-SDV cross-dock can be formulated as follows;

Decision Variables

XI - Number of IB-FLs.

XS - Number of SDVs.

XO - Number of OB-FLs.

TVC = (L+M)×XI +M ×XS + (L+M)×XO

Min TVC = 522.63× (XI +XO) + 271.20×XS (5.11)

Subject To:

Constraint 1: Average Throughput rate

− 13354.1493 + 1021.8703×XI + 89.5301×XS + 107.5189×XO

−22.6917×X2
I − 1.0839×X2

S − 6.2406×X2
O

+4.5356× XI ×XS + 10.0245×XI ×XO

+1.7879×XS ×XO ≥ δ (5.12)

Constraint 2: Average Throughput rate per MHE

41.3728 + 5.3649×XI − 0.1321×XS − 0.0761×XO
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+− 0.1259×X2
I − 0.0059×X2

S − 0.0338×X2
O

+0.0227×XI ×XS + 0.0500×XI ×XO

+0.0106×XS ×XO ≥ δM (5.13)

Constraint 3: Overall MHE Utilization rate

0.4888 + 0.0410×XI − 0.0006×XS − 0.0130×XO

−0.0008×X2
I − 3.1400× 10−5 ×X2

S

+0.0001×XI ×XS + 0.0001×XI ×XO

+4.07× 10−6 ×XS ×XO ≥ UO (5.14)

Constraint 4: Inbound Forklifts Utilization rate

0.5147 + 0.0259×XI + 0.0011×XS + 0.0015×XO

−0.0003×X2
I + 8.64× 10−7 ×X2

S + 1.10× 10−5 ×X2
O

−3.58× 10−5 ×XI ×XS − 4.9× 10−5 ×XI ×XO

−6.50× 10−6 ×XS ×XO ≥ UI (5.15)

Constraint 5: Self-Driving Vehicles Utilization rate

0.5563 + 0.0390×XI − 0.0045×XS − 0.0035×XO

−0.0008×X2
I − 1.63× 10−5 ×X2

S + 5.9466× 10−5 ×X2
O

+0.0002×XI ×XS + 0.0001×XI ×XO

−8.32× 10−5 ×XS ×XO ≥ US (5.16)

Constraint 6: Outbound Forklifts Utilization rate

0.5549 + 0.0355×XI + 0.0056×XS − 0.0335×XO
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−0.0007×X2
I − 4.828× 10−5 ×X2

S − 3.4910−5 ×X2
O

+0.0001×XI ×XS + 0.0003×XI ×XO

+6.19× 10−5 ×XS ×XO ≥ UOB (5.17)

25 ≤ XI ≤ 45 (5.18)

50 ≤ XS ≤ 155 (5.19)

25 ≤ XO ≤ 55 (5.20)

XI , XS, XO ∈ Z (5.21)

5.2 Optimal MHE Configuration

The formulated optimization model for FL-only (Eq (5.2) to Eq (5.10)) and FL-

and-SDV cross-dock (Eq (5.11) to Eq (5.21)) is a mixed-integer nonlinear programming

(MINLP) model. The objective function is linear and the constraints are nonlinear. Both

MINLP models are solved using Lingo 17.0 solver for an increasing level of expected

throughput rate (δ ), expected Overall MHE Utilization rate (UO) of 80%, and expected

category-wise MHE utilization rate (UI , UOB, and US) of 65% . δM for forklift-only CD

is set as 200ppd/MHE, and 120ppd/MHE for forklift-and-SDV CD†.

The optimal MHE configurations obtained by solving the MINLP models are given

in Table 5.1. Validity of the optimality is assessed statistically later in Section 5.4.

† Since the FL-and-SDV CD requires a greater number of MHE than the FL-only CD to achieve smiliar

δ.
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δ
FL-only FL-and-SDV TVC ($/day)

Optimal Model
XI XO XI XS XO FL-only FL-and-SDV

20,000 32 60 33 81 31 48,082 55,416 FL-only

21,000 33 63 35 87 31 50,172 58,088 FL-only

22,000 33 67 35 90 34 52,263 60,469 FL-only

23,000 32 72 36 94 36 54,354 63,122 FL-only

24,000 34 74 36 98 39 56,444 65,775 FL-only

25,000 36 77 37 104 40 59,057 68,447 FL-only

26,000 36 81 38 110 41 61,148 71,120 FL-only

27,000 37 85 40 113 43 63,761 74,024 FL-only

28,000 38 89 39 115 52 66,374 78,747 FL-only

29,000 39 94 42 122 48 69,510 80,123 FL-only

30,000 42 97 41 127 55 72,646 84,615 FL-only

Table 5.1: Optimal MHE Configuration, if M = $ 271.20/day.

5.3 Scope of SDVs in a Cross-Dock

The assumed cost of electricity, $ 9.32/kWh, is based on extreme conditions. It

may vary, depending on location and commodity discounts. The objective function cost

coefficient changes, if we happen to assume lower electricity charges, say $ 4.66/kWh

or $ 3.11/kWh, which are realistic (later two values corresponds to M = $ 140.76/day

or $ 97.28/day). This leads to a change in optimality. Therefore the optimal MHE

configuration for all those three cases are examined (without commodity discounts and

peak consumption, with discounts and peak consumption, with discounts and off-peak

consumption).

The revised objective functions for the FL-only and FL-and-SDV cross-docks, if
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M = $ 140.76/shift, are given in Eq (5.22) and Eq (5.23). Their optimal MHE con-

figurations and total variable operating cost are given in Table 5.2. The optimal MHE

configuration for the FL-only CD, presented earlier in Table 5.1, still holds, but changes

for the FL-and-SDV CD.

For FL-only CD: Min 392.19× (XI +XO) (5.22)

For FL-and-SDV CD: Min 392.19× (XI +XO) + 140.76×XS (5.23)

δ
FL-only CD FL-and-SDV CD Optimal Savings /

XI XO TVC ($) XI XS XO TVC ($) Model year ($)

20,000 32 60 36,081 32 87 29 36,170 FL-only NA

21,000 33 63 37,650 33 93 30 37,799 FL-only NA

22,000 33 67 39,219 34 96 32 39,398 FL-only NA

23,000 32 72 40,788 35 102 33 41,026 FL-only NA

24,000 34 74 42,357 36 106 35 42,766 FL-only NA

25,000 36 77 44,317 37 110 37 44,506 FL-only NA

26,000 36 81 45,886 38 117 38 46,275 FL-only NA

27,000 37 85 47,847 39 119 41 48,126 FL-only NA

28,000 38 89 49,808 40 124 43 50,006 FL-only NA

29,000 39 94 52,161 41 128 46 52,138 FL-and-SDV 5631

30,000 42 97 54,514 41 127 55 55,527 FL-only NA

Table 5.2: Optimal MHE Configuration, if M = $ 140.76/day.

Similarly the revised objective functions for both cross-docks if M = $ 97.28/day

are given in Eq (5.24) and Eq (5.25). The corresponding optimal MHE configurations and
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total variable costs are given in Table 5.3.

For FL-only CD: Min 348.70× (XI +XO) (5.24)

For FL-and-SDV CD: Min 348.70× (XI +XO) + 97.28×XS (5.25)

δ
FL-only CD FL-and-SDV CD Optimal Savings/ Fixed† PP

XI XO TVC ($) XI XS XO TVC ($) Model Year ∗ ($) Cost (in $M) (in years)

20,000 32 60 32,080 32 96 26 29,563 FL-and-SDV 604,061 17.1 14.15

21,000 33 63 33,475 32 99 29 30,901 FL-and-SDV 617,707 17.48 14.15

22,000 33 67 34,870 33 102 31 32,239 FL-and-SDV 631,354 17.93 14.2

23,000 32 72 36,265 35 105 32 33,577 FL-and-SDV 645,000 18.45 14.3

24,000 34 74 37,660 36 112 33 34,956 FL-and-SDV 648,946 19.8 15.26

25,000 36 77 39,403 36 116 36 36,391 FL-and-SDV 722,933 20.33 14.06

26,000 36 81 40,798 38 117 38 37,883 FL-and-SDV 699,586 20.4 14.58

27,000 37 85 42,541 39 125 39 39,359 FL-and-SDV 763,872 21.9 14.33

28,000 38 89 44,285 40 130 41 40,891 FL-and-SDV 814,512 22.73 13.95

29,000 39 94 46,377 40 131 46 42,732 FL-and-SDV 874,853 22.5 12.86

30,000 42 97 48,469 41 127 55 45,830 FL-and-SDV 633,490 21.23 16.75

Table 5.3: Optimal MHE Configuration, if M = $ 97.28/day.

When the MHE operating costs are lower, it is financially beneficial to employ

both forklifts and SDVs in a cross-dock, rather than using manual forklifts only. The

savings/year and payback period (PP) for the additional fixed cost, from choosing the

FL-and-SDV CD instead of the FL-only CD, are given in Table 5.3. Note: The payback

period will be reduced by half if there are two 8hr shifts per day.

∗No of days in a year = 5days x 4weeks x 12months; one 8hr shift per day
†Cost of an Forklift = $ 75,000 [Source: http://www.costowl.com/b2b/forklift-electric-cost.html]
†Cost of an SDV = $ 150,000
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5.4 Validation of Optimal MHE Configuration

If the regression model predictions are accurate‡, then the MHE configurations

suggested from solving the MINLP model for FL-only and FL-and-SDV CD would be the

optimal, and yield similar performance measures equivalent to predicted performance (that

is, δ of FL-only CD = δ of FL-and-SDV CD = δ̂). Or else, the result be prediction errors

and near-optimal MHE configurations. As mentioned earlier in Section 4.2, there exhibit

a non-random source of variation, left unexplained by the regression models (Eq (4.7) to

Eq (4.17)). As a result, the regression models fail to predict the CD performance metrics

accurately, having huge s and RMSE.

The forklift-only and forklift-and-SDV cross-docks models are simulated with ‘the

optimal MHE configurations found by solving the MINLP models’. Later the validity

of the ‘proposed optimal MHE configurations’ was assessed to verify if the FL-only and

FL-and-SDV CDs yield similar average throughput rates. The statistical comparisons of

average throughput rates for all pairs of ‘proposed optimal MHE configurations’ are given in

Table 5.4. It shows that those forklift-only and forklift-and-SDV cross-docks performance

metrics are not equal (that is, the difference between the average throughput rate of the

forklift-only and forklift-and-SDV CDs is statistically significant).

We conclude, therefore, that the MHE configurations obtained from solving the

MINLP models are efficiently allocated, not necessarily optimal. Modelling the un-

explained source of non-random variations in the residuals (see Sections B.1 and B.2 of

Appendix B ) to the regression models by adapting other advanced regression models, or

else incorporating other potential exploratory variables to the existing regression model,

‡ That is, δ̂ is not statistically different from δ.
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δ
FL-only FL-and-SDV t-Test p-value

Model δ̂ δ TVC ($) Model δ̂ δ TVC ($) n=8 n=30

M = $ 217.20 / day.

20,000 32.60 20,105 19,512 48,082 33.81.31 20,001 19,629 55,416 0.03 0.00

21,000 33.63 21,103 20,401 50,172 35.87.31 21,045 21,070 58,088 0.00 0.00

22,000 33.67 22,162 21,681 52,263 35.90.34 22,021 21,793 60,469 0.02 0.01

23,000 32.72 23,115 23,412 54,354 36.94.36 23,037 22,751 63,122 0.00 0.00

24,000 34.74 24,049 23,988 56,444 36.98.39 24,000 19,056 65,775 0.00 0.00

25,000 36.77 25,117 24,926 59,057 37.104.40 25,021 24,363 68,447 0.00 0.00

26,000 36.81 25,989 26,244 61,148 38.110.41 26,002 24,928 71,120 0.00 0.00

27,000 37.85 26,997 27,496 63,761 40.113.43 27,006 26,048 74,024 0.00 0.00

28,000 38.89 27,956 28,820 66,374 39.115.52 28,027 27,268 78,747 0.00 0.00

29,000 39.94 29,032 30,441 69,510 42.122.48 29,029 27,790 80,123 0.00 0.00

30,000 42.97 30,039 31,486 72,646 41.127.55 30,033 30,431 84,615 0.00 0.00

M = $ 140.76 / day.

20,000 32.60 20,105 19,512 36,081 32.87.29 20,005 20,402 36,170 0.00 0.00

21,000 33.63 21,103 20,401 37,650 33.93.30 21,050 21,488 37,799 0.02 0.01

22,000 33.67 22,162 21,681 39,219 34.96.32 22,018 22,296 39,398 0.00 0.00

23,000 32.72 23,115 23,412 40,788 35.102.33 23,010 22,955 41,026 0.00 0.00

24,000 34.74 24,049 23,988 42,357 36.106.35 24,027 23,538 42,766 0.00 0.00

25,000 36.77 25,117 24,926 44,317 37.110.37 25,019 23,996 44,506 0.00 0.00

26,000 36.81 25,989 26,244 45,886 38.117.38 26,012 24,808 46,275 0.00 0.00

27,000 37.85 26,997 27,496 47,847 39.119.41 27,010 25,415 48,126 0.00 0.00

28,000 38.89 27,956 28,820 49,808 40.124.43 28,007 26,376 50,006 0.00 0.00

29,000 39.94 29,032 30,441 52,161 41.128.46 29,077 27,440 52,138 0.00 0.00

30,000 42.97 30,039 31,486 54,514 41.127.55 30,033 30,431 55,527 0.00 0.00

M = $ 97.28 / day.

20,000 32.60 20,105 19,512 32,080 32.96.26 20,029 20,524 29,563 0.00 0.00

21,000 33.63 21,103 20,401 33,475 32.99.29 21,024 20,702 30,901 0.00 0.00

22,000 33.67 22,162 21,681 34,870 33.102.31 22,023 21,376 32,239 0.00 0.00

23,000 32.72 23,115 23,412 36,265 35.105.32 23,019 22,834 33,577 0.00 0.00

24,000 34.74 24,049 23,988 37,660 36.112.33 24,013 23,485 34,956 0.00 0.00

25,000 36.77 25,117 24,926 39,403 36.116.36 25,008 24,241 36,391 0.00 0.00

26,000 36.81 25,989 26,244 40,798 38.117.38 26,012 24,808 37,883 0.00 0.00

27,000 37.85 26,997 27,496 42,541 39.125.39 27,017 26,260 39,359 0.00 0.00

28,000 38.89 27,956 28,820 44,285 40.130.41 28,009 27,397 40,891 0.00 0.00

29,000 39.94 29,032 30,441 46,377 40.131.46 29,069 27,944 42,732 0.00 0.00

30,000 42.97 30,039 31,486 48,469 41.127.55 30,033 30,431 45,830 0.00 0.00

Table 5.4: Statistical Validation of Optimal MHE Configuration.
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would improve the prediction accuracy. Thereby, the optimal MHE configuration may be

predicted using the proposed solution methodology.

5.5 Results

Solving the formulated MINLP model resulted in many interesting insights. They

are presented as follows;

v The total number of MHE required in a cross-dock increases drastically for an increase

in the desired level of average throughput rate. The total number of MHE in each

category increases simultaneously to achieve that desired mean average throughput.

v When the MHE operating cost reduces, using a mixture of forklifts and SDVs in a

cross-dock results in lower total variable operating cost than a manually operated

facility with similar levels of performance metrics. See Tables 5.1, 5.2 and 5.3 for

the impact of changes in MHE operating cost on the total variable operating cost

and optimal MHE configuration. This leads us to conclude that using forklift-and-

SDVs in a CD could be financially beneficial, relative to using forklifts only, at lower

operating cost (or electricity charges).

v Statistical comparison of the manual and semi-automated cross-dock actual through-

put rates shows that the difference between their actual performance is significantly

different. This is due to lack of fitness of regression models used to formulate the

optimization model constraints. However, the predictive accuracy can be improved
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by studying other potential factors which could significantly impact the cross-dock

performance metrics.
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Chapter 6

Conclusion

The solution methodology proposed in this thesis, to find the optimal MHE config-

uration for forklift-only and forklift-and-SDV cross-docks operating at similar performance

levels, only yields efficient MHE configuration. This is due to regression models lack-of-

fitness (that is, δ̂ is statistically different from δ).

FL-only CD FL-and-SDV CD CI for difference in mean Savings/ PP

Model δ TVC($) Model δ TVC ($) Lower Bound Mean Upper Bound year ($) ∗ (in years) †

32.72 23,412 36,265 36.112.33 23,485 34,956 -147 -73 1 628,387 22.56

36.81 26,244 40,798 39.125.39 26,260 39,359 -71 -17 38 690,864 19.65

39.94 30,441 46,377 41.127.55 30,431 45,830 -48 9 67 262,723 61.95

Table 6.1: MHE Configurations of Cross-Docks with Similar δ.

Even though the MINLP model fails to provide the optimal MHE configuration,

manual identification and comparison the of FL-only and FL-and-SDV CDs given in Table

∗No of working hours = 8 x 2 x 5 x 4 x 12 (two shifts per day); Operating cost, M = $ 97.28 / day.
†Cost of Forklift = $ 75,000; Cost of SDV = $ 150,000
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6.1 for the facilities yielding similar δ. Their similarity in performance is justified through

a confidence interval for the difference in average throughput rate for those facilities at

a significance level of 0.05. Savings/year and payback period(PP), given in that table,

show that “using SDVs in a cross-dock facility could be financially beneficial, for lower

MHE operating cost”. We should not ignore the fact that the MHE configurations given

in Table 6.1 are not the optimal, and are obtained from Table 5.4. The optimal MHE

configuration may have much higher savings per year and faster payback.

6.1 Summary of Research

In this thesis, we have proposed a simulation-optimization technique to optimize

the MHE configuration of two cross-dock facilities with similar performance measures. The

goal was to validate the scope of self-driving vehicles in a cross-dock. The overall summary

of our research is given as the following steps as follows:

Step 1: Floor-level pallet movements in a cross-docking centre were modelled us-

ing ARENA. Two simulation models, for forklift-only and forklift-and-self-

driving vehicle cross-docks, were constructed. The two different MHE con-

figurations (forklift-only and forklift-and-SDV) would thus support material-

handling activities in the respective CDs.

Step 2: Due to computational complexities and time limitations in finding the opti-

mal MHE configuration, RSM was used to fit a regression model, in a form

CD performance metric = f(MHE configuration).
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Step 3: Then we built two independent MINLP models, for FL-only and FL-and-

SDV cross-docks, to minimize the variable operating cost, subject to con-

straints on CD performance metrics. Those constraints were modelled using

the fitted regression models of CD performance metrics on the left-hand side

and desired level of respective CD performance metrics on the right-hand

side.

Step 4: Each MINLP model was solved using the Lingo 17.0 solver. The respective

models would yield the optimal MHE configuration for the FL-only and FL-

and-SDV CDs operating at similar performance levels, if the desired levels of

performance were set to be the same, and the fitted regression models could

predict accurately.

6.1.1 Pros of Proposed Solution Methodology

v It could be used to solve the complex simulation optimization problems (of

any system, not limited to cross-dock centres) with a greater search space in

a shorter time span.

v It could be used for simulation optimization and comparison of multiple

systems, subject to constraints on various performance metrics, eliminating

family-wise error rate due to multiple-comparison.
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6.1.2 Cons of Proposed Solution Methodology

v Requires an in-depth knowledge of the system to precisely model the existing

system, and to identify the factors and factor levels for RSM.

v The regression models should significantly explain all sources of variation

caused by the exploratory variables, with no unexplained sources of non-

random variation. Otherwise, the result will be only a near-optimal, or even

suboptimal, solution.

6.2 Suggestions for Future Study

We wish to propose a few potential research ideas for future studies, which could

be explored from this thesis.

v Improve the prediction accuracy of the regression models incorporating other

exploratory variables (like product mix or labour required for sorting other

than forklift operators), and thus compute the MHE configurations for the

FL-only and FL-and-SDV CDs that is closer to optimal. s

v Remodel and analyze the proposed cross-docks with uncertainties in the

supply and demand, MHE breakdowns, traffic congestion and less-than-

truckload shipment operations.

v Reformulate and analyze the proposed MINLP model with an objective to

optimize one or more cross-dock performance metrics, now subject to addi-

tional constraints on costs, space or other measures.
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v Study the scope of self-driving vehicles for order picking in a CD. This would

be for the case in which some outbound pallets require a mix of items from

other inbound pallets.
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Appendix A

Cross-Dock Performance Metrics

A.1 Performance Metrics: Forklift-only Cross-Dock

A.1.1 Average Pallet Processing Time

From Figure A.1, it is clear that the average pallet processing or flow time (bar

from primary axis) reduces gradually as there is an increase in the number of outbound

forklifts, for a given number of inbound forklifts. Hence, outbound forklifts clearly act as

a bottleneck to processing pallets in a shorter interval. This has an inverse effect on the

average throughput rate (line from secondary axis). As expected, the higher the throughput

rate, the lower the average pallet processing time.
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Figure A.1: Forklift-only Cross-Dock Facility: Average Pallet Processing Time.

A.1.2 Average Truck Processing Time

From Figure A.2, for a given number of inbound forklifts in the Forklift-only CD,

the number of outbound forklifts in a facility can act as a bottleneck to process trucks

quickly. An increase in outbound forklifts directly reduces the average truck processing

time.

Hence, with a given number of IB-FLs in an FL-only CD, the number of OB-FLs

should be increased sufficiently to process trucks as quickly as possible.

A.1.3 Average Number of Trucks Processed per Day

From Figure A.3, for a given number of inbound forklifts in an FL-only CD, out-

bound forklifts act as a bottleneck to process additional trucks. An increase in OB-FLs
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Figure A.2: Forklift-only Cross-Dock Facility: Average Truck Processing Time.

directly increases the average number of Trucks/Day that can be processed. That is, when

there are fewer OB-FLs, the buffer area gets filled and acts as a bottleneck for offloading

trucks. This results in the processing of a low number of inbound trucks/day. Since it takes

more time to sort and load the pallets from the buffer area, when there are fewer OB-FLs,

an increase in the number of OB-FLs directly increases the truck-processing capacity of

the CD.

Hence, for any FL-only facility, and a given number of IB-FLs, the number of OB-

FLs should be increased sufficiently, to be able to process a greater number of inbound or

outbound trucks/day.
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Figure A.3: Forklift-only Cross-Dock Facility: Average Number of Trucks per Day.

A.2 Performance Metrics: Forklift-and-SDV Cross-

Dock

A.2.1 Average Pallet Processing Time

Figure A.4 indicates that, given the number of inbound forklifts for the FL-and-SDV

CD facility, SDVs and outbound forklifts can each act as a bottleneck to process pallets.

That is, an increase in either SDVs or OB-FLs results in processing pallets in a shorter

time. When SDVs are fewer, they act as a bottleneck for pallets waiting for SDVs. When

SDVs are sufficiently high for the given number of IB-FLs and a lower number of OB-FLs,
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Figure A.4: Forklift-and-SDV Cross-Dock Facility: Average Pallet Processing Time.

pallets spend their time waiting for OB-FLs.

Hence, in an FL-and-SDV CD, with a given number of IB-FLs, the number of

SDVs and OB-FLs should both be sufficiently increased to process the pallets as quickly

as possible.

A.2.2 Average Truck Processing Time

From Figure A.5, for a given number of inbound forklifts in the FL-and-SDV CD

facility, SDVs and outbound forklifts can each act as a bottleneck to process trucks. Thus,

an increased number of SDVs and OB-FLs results in processing trucks as quickly as pos-
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Figure A.5: Forklift-and-SDV Cross-Dock Facility: Average Truck Processing Time

sible. When there are insufficient SDVs, they act as a bottleneck for IB-FLs to offload

pallets from inbound trucks, resulting in those IB-FLs having to wait for SDVs. When

SDVs are sufficiently numerous for the given number of IB-FLs with fewer OB-FLs, most

SDVs spend their time waiting for OB-FLs, resulting in a bottleneck for offloading and

loading as well.

Hence, in an FL-and-SDV facility, for a given number of IB-FLs, both SDVs and

OB-FLs should be increased sufficiently to reduce the average truck processing time.
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A.2.3 Average Number of Trucks Processed per Day

For a given number of inbound forklifts in the FL-and-SDV CD, Figure A.6 indicates

that either SDVs or outbound forklifts can act as a bottleneck to process more trucks.

Therefore, we need to provide sufficient numbers of SDVs and OB-FLs to process more

trucks/day. That is, when there are fewer SDVs, they act as a bottleneck for IB-FLs to

offload pallets from the inbound trucks, resulting in the IB-FLs waiting for SDVs. But

when SDVs are sufficiently numerous for the given number of IB-FLs, fewer OB-FLs result

in the SDVs waiting for OB-FLs. Hence, both the number of SDVs and OB-FLs should be

sufficiently increased for the FL-and-SDV CD facility to process more inbound or outbound

trucks/day.

Figure A.6: Forklift-and-SDV Cross-Dock Facility: Average Number of Trucks per Day.
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Appendix B

Response Surface Models

As mentioned in Section 4.2 of Chapter 4, four regression models (linear, linear +

interactions, linear + square, and quadratic) were considered for model fitting. Statistical

inference of those models which were selected for further analysis are given in this chapter.

B.1 RSM: Forklift-only Cross-Dock

B.1.1 Analysis of Variance: FL-only CD

We experimented with two potential factors (XI and XO), to assess their contribu-

tion towards variation in CD performance metrics. The resulting sources of variance and

their significance are given in Table B.1.

Analysis of variance (ANOVA) shows that all sources of variation are significant,

based on F-statistic p-value at a significance level of α = 0.05, and significantly contribute
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ANOVA Source DF Seq SS Adj SS Adj MS F P

δ

Regression 5 20531750098 20531750098 4106350020 4636.04 0

Linear 2 15111890183 833279096 416639548 470.38 0

XI 1 4860514814 167417528 167417528 189.01 0

XO 1 10251375369 752061935 752061935 849.07 0

Square 2 3086661897 3086661897 1543330949 1742.41 0

XI ×XI 1 444769494 444769494 444769494 502.14 0

XO ×XO 1 2641892403 2641892403 2641892403 2982.68 0

Interaction 1 2333198017 2333198017 2333198017 2634.16 0

XI ×XO 1 2333198017 2333198017 2333198017 2634.16 0

Residual Error 744 658994916 658994916 885746

Lack-of-Fit 44 644962550 644962550 14658240 731.22 0

Pure Error 700 14032366 14032366 20046

Total 749 21190745014

δM

Regression 5 442613 442613 88523 1073.78 0

Linear 2 156874 4383 2191 26.58 0

XI 1 28133 3874 3874 46.99 0

XO 1 128740 989 989 11.99 0.001

Square 2 139125 139125 69562 843.79 0

XI ×XI 1 24870 24870 24870 301.67 0

XO ×XO 1 114255 114255 114255 1385.91 0

Interaction 1 146615 146615 146615 1778.43 0

XI ×XO 1 146615 146615 146615 1778.43 0

Residual Error 744 61336 61336 82

Lack-of-Fit 44 59984 59984 1363 705.85 0

Pure Error 700 1352 1352 2

Total 749 503949

Table B.1: Analysis of Variance: Forklift-only Cross-Dock.
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ANOVA Source DF Seq SS Adj SS Adj MS F P

UI

Regression 5 3.4753 3.47531 0.695062 1908.92 0
Linear 2 2.7049 0.19246 0.096229 264.29 0
XI 1 2.1758 0.16355 0.163552 449.18 0
XO 1 0.5291 0.05177 0.05177 142.18 0
Square 2 0.618 0.618 0.309001 848.64 0
XI ×XI 1 0.4291 0.42914 0.429139 1178.59 0
XO ×XO 1 0.1889 0.18886 0.188862 518.69 0
Interaction 1 0.1524 0.15237 0.152371 418.47 0
XI ×XO 1 0.1524 0.15237 0.152371 418.47 0
Residual Error 744 0.2709 0.2709 0.000364
Lack-of-Fit 44 0.1122 0.11218 0.002549 11.24 0
Pure Error 700 0.1587 0.15872 0.000227
Total 749 3.7462

UOB

Regression 5 18.5518 18.5518 3.71037 2411.84 0
Linear 2 16.1037 0.127 0.06351 41.28 0
XI 1 3.1314 0.1007 0.10068 65.44 0
XO 1 12.9724 0.013 0.01299 8.44 0.004
Square 2 1.3169 1.3169 0.65847 428.03 0
XI ×XI 1 0.2288 0.2288 0.22877 148.7 0
XO ×XO 1 1.0882 1.0882 1.08818 707.35 0
Interaction 1 1.1312 1.1312 1.13116 735.28 0
XI ×XO 1 1.1312 1.1312 1.13116 735.28 0
Residual Error 744 1.1446 1.1446 0.00154
Lack-of-Fit 44 1.1368 1.1368 0.02584 2332.07 0
Pure Error 700 0.0078 0.0078 0.00001
Total 749 19.6964

Table B.1 (continued): Analysis of Variance: Forklift-only Cross-Dock.
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ANOVA Source DF Seq SS Adj SS Adj MS F P

UO

Regression 5 10.4 10.4 2.07999 1977.91 0
Linear 2 7.3596 0.1501 0.07507 71.39 0
XI 1 0.9464 0.1364 0.13641 129.71 0
XO 1 6.4132 0.0038 0.00381 3.62 0.057
Square 2 1.5522 1.5522 0.77611 738.02 0
XI ×XI 1 0.4142 0.4142 0.41415 393.83 0
XO ×XO 1 1.1381 1.1381 1.13807 1082.22 0
Interaction 1 1.4882 1.4882 1.48819 1415.15 0
XI ×XO 1 1.4882 1.4882 1.48819 1415.15 0
Residual Error 744 0.7824 0.7824 0.00105
Lack-of-Fit 44 0.7534 0.7534 0.01712 413.61 0
Pure Error 700 0.029 0.029 0.00004
Total 749 11.1824

Table B.1 (continued): Analysis of Variance: Forklift-only Cross-Dock.

towards their respective performance metrics (R). The exception is the performance metric

- UO, whose main effect - XO is insignificant. Even though the main effect (XO) of UO

turns out to be insignificant, the square (X2
O) and interaction (XI × XO) effects derived

from the main effects have strong significance. Exclusion of the main effect would result

in exclusion of its higher-order and interaction effects as well. Hence we decide to retain

the insignificant main effect - XO.

The residual-error component is split into two, as lack-of-fit (LOF) and pure error.

In general, a source of variation is categorized into two, as assignable (or non-random) and

random∗. LOF statistically validates the presence of non-random source of variance in the

∗ The variations caused by the known factors (controllable or uncontrollable) are non-random or

assignable sources of variation. The variation due to natural randomness is random variation or (pure)

error.
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error or residuals. LOF p-value < α † shows that there is a non-random source of variance

in the error component. This may lead to inferior prediction accuracy.

B.1.2 Regression Coefficient Estimation: FL-only CD

The regression coefficients are estimated for each performance metric following the

least square method; their estimates and significance are given in Table B.2. It shows

that all regression coefficients (β, βI , βO, βII , βOO and βIO) are strongly significant, at a

significance level of α = 0.05‡, and they significantly contribute towards estimating their

respective performance metrics (R̂). The exception is the regression model ÛO, whose

t-test p-value for βO = 0.057 > α.

Even though the main effect of the term XO is (nearly) insignificant, resulting

in an insignificant regression coefficient - βO, the square (X2
O) and interaction (XI ×XO)

effects resulting from the main effect (XO) possess strong significance. Hence the regression

coefficient βO is retained in spite of its insignificance, due to its higher-order significant

effects.

B.1.3 Residual Analysis: FL-only CD

The residual§ plots for all cross-dock performance metrics are given in Figure B.1.

The probability plots and histograms in that figure show that the residuals of the fitted

regression models are not normally distributed. In addition, the scatter plot (Versus Fits)

† From subsection 4.2.1, Hypothesis test 2
‡ From subsection 4.2.1, Hypothesis test 1
§Residual = R− R̂
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R̂ Term Coef SE Coef T stat P-value

δ̂

Constant -13688.7 1200.7 -11.401 0

XI 823.6 59.91 13.748 0

XO 315.5 10.83 29.139 0

X2
I -18.4 0.82 -22.409 0

X2
O -2.6 0.05 -54.614 0

XI ×XO 8.7 0.17 51.324 0

δ̂M

Constant 136.33 11.5838 11.769 0

XI 3.962 0.5779 6.855 0

XO 0.362 0.1045 3.463 0.001

X2
I -0.138 0.0079 -17.369 0

X2
O -0.017 0.0005 -37.228 0

XI ×XO 0.069 0.0016 42.171 0

ÛI

Constant 0.499352 0.024344 20.512 0

XI 0.025742 0.001215 21.194 0

XO 0.002618 0.00022 11.924 0

X2
I -0.00057 0.000017 -34.331 0

X2
O -2.2E-05 0.000001 -22.775 0

XI ×XO 0.00007 0.000003 20.457 0

ÛOB

Constant 0.684438 0.05004 13.678 0

XI 0.020197 0.002497 8.09 0

XO -0.00131 0.000451 -2.906 0.004

X2
I -0.00042 0.000034 -12.194 0

X2
O -5.2E-05 0.000002 -26.596 0

XI ×XO 0.000191 0.000007 27.116 0

ÛO

Constant 0.62275 0.041372 15.052 0

XI 0.023509 0.002064 11.389 0

XO -0.00071 0.000373 -1.903 0.057

X2
I -0.00056 0.000028 -19.845 0

X2
O -5.4E-05 0.000002 -32.897 0

XI ×XO 0.000219 0.000006 37.619 0

Table B.2: Regression Coefficients: Forklift-only Cross-Dock.
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Figure B.1: Residual Analysis: Forklift-only Cross-Dock.
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between the residuals (R − R̂) and fitted values (R̂) shows a clear existing pattern. This

is not favourable.

All these showcase heteroscedasticity or non-homogeneous residual distribution.

That is, the fitted regression model fails to explain some sources of non-random varia-

tion existing in the system.

B.2 RSM: Forklift-and-SDV Cross-Dock

B.2.1 Analysis of Variance: FL-and-SDV CD

We experimented with three potential factors XI , XS and XO to assess their contri-

bution towards the variations in CD performance metrics. The resulting sources of variance

and their significance are given in Table B.3. Analysis of variance shows that for a CD

performance metric - δM , the main effect (XO) is insignificant at a significance level of

α = 0.05, but has to be retained because of its higher orders significance (X2
O, XI ×XO

and XS×XO). However, the square effect (X2
O) of the performance metric - UO is excluded

because of its insignificance.

Apart from those two, all other sources of variation were found significant, based

on F-statistic p-value, and contribute towards their respective performance metrics. LOF

p-value < α shows that there is a non-random source of variation left unexplained by the

regression models.
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ANOVA Source DF Seq SS Adj SS Adj MS F P

δ

Regression 9 1.19E+11 1.19E+11 1.32E+10 12256.35 0

Linear 3 9.62E+10 2.1E+09 7E+08 648.01 0

XI 1 2.39E+10 1.81E+09 1.81E+09 1672.22 0

XS 1 6.13E+10 4.99E+08 4.99E+08 462.09 0

XO 1 1.1E+10 55250328 55250328 51.17 0

Square 3 1.22E+10 1.22E+10 4.06E+09 3761.01 0

XI ∗XI 1 5.2E+09 5.2E+09 5.2E+09 4819.71 0

XS ∗XS 1 5.29E+09 5.29E+09 5.29E+09 4901.04 0

XO ∗XO 1 1.69E+09 1.69E+09 1.69E+09 1562.28 0

Interaction 3 1.07E+10 1.07E+10 3.56E+09 3299.64 0

XI ∗XS 1 5.94E+09 5.94E+09 5.94E+09 5501.67 0

XI ∗XO 1 2.9E+09 2.9E+09 2.9E+09 2687.46 0

XS ∗XO 1 1.85E+09 1.85E+09 1.85E+09 1709.81 0

Residual Error 5765 6.22E+09 6.22E+09 1079699

Lack-of-Fit 375 6.05E+09 6.05E+09 16133819 498.97 0

Pure Error 5390 1.74E+08 1.74E+08 32335

Total 5774 1.25E+11

δM

Regression 9 897655 897655 99739 3410.74 0

Linear 3 243563 54482 18161 621.03 0

XI 1 192576 49767 49767 1701.85 0

XS 1 50411 1088 1088 37.2 0

XO 1 575 28 28 0.95 0.33

Square 3 367434 367434 122478 4188.32 0

XI ∗XI 1 160434 160434 160434 5486.28 0

XS ∗XS 1 157350 157350 157350 5380.83 0

XO ∗XO 1 49650 49650 49650 1697.85 0

Interaction 3 286658 286658 95553 3267.56 0

XI ∗XS 1 148841 148841 148841 5089.85 0

XI ∗XO 1 72256 72256 72256 2470.91 0

XS ∗XO 1 65560 65560 65560 2241.94 0

Residual Error 5765 168585 168585 29

Lack-of-Fit 375 163308 163308 435 444.82 0

Pure Error 5390 5277 5277 1

Total 5774 1066240

Table B.3: Analysis of Variance: Forklift-and-SDV Cross-Dock.
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ANOVA Source DF Seq SS Adj SS Adj MS F P

UI

Regression 9 4.08411 4.08411 0.45379 4708.08 0

Linear 3 2.51098 1.19001 0.39667 4115.44 0

XI 1 2.22306 1.16344 1.16344 12070.66 0

XS 1 0.22403 0.08127 0.08127 843.17 0

XO 1 0.06389 0.01092 0.01092 113.26 0

Square 3 1.07772 1.07772 0.35924 3727.11 0

XI ∗XI 1 1.06914 1.06914 1.06914 11092.33 0

XS ∗XS 1 0.00337 0.00337 0.00337 34.91 0

XO ∗XO 1 0.00521 0.00521 0.00521 54.09 0

Interaction 3 0.49541 0.49541 0.16514 1713.31 0

XI ∗XS 1 0.36984 0.36984 0.36984 3837.13 0

XI ∗XO 1 0.10119 0.10119 0.10119 1049.88 0

XS ∗XO 1 0.02438 0.02438 0.02438 252.91 0

Residual Error 5765 0.55566 0.55566 0.0001

Lack-of-Fit 375 0.55139 0.55139 0.00147 1856.74 0

Pure Error 5390 0.00427 0.00427 0

Total 5774 4.63977

US

Regression 9 107.988 107.988 11.9987 10221.22 0

Linear 3 78 4.603 1.5345 1307.15 0

XI 1 35.346 2.64 2.6397 2248.67 0

XS 1 37.643 1.311 1.3108 1116.65 0

XO 1 5.011 0.06 0.0605 51.5 0

Square 3 8.125 8.125 2.7085 2307.24 0

XI ∗XI 1 6.787 6.787 6.7869 5781.5 0

XS ∗XS 1 1.185 1.185 1.1853 1009.74 0

XO ∗XO 1 0.153 0.153 0.1532 130.47 0

Interaction 3 21.863 21.863 7.2877 6208.05 0

XI ∗XS 1 17.46 17.46 17.46 14873.49 0

XI ∗XO 1 0.41 0.41 0.4097 349.03 0

XS ∗XO 1 3.993 3.993 3.9932 3401.64 0

Residual Error 5765 6.768 6.768 0.0012

Lack-of-Fit 375 6.657 6.657 0.0178 866.52 0

Pure Error 5390 0.11 0.11 0

Total 5774 114.756

Table B.3 (continued): Analysis of Variance: Forklift-and-SDV Cross-Dock.
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ANOVA Source DF Seq SS Adj SS Adj MS F P

UOB

Regression 9 297.339 297.339 33.0377 5893.39 0

Linear 3 267.463 10.934 3.6446 650.14 0

XI 1 29.687 2.187 2.1873 390.17 0

XS 1 77.603 1.973 1.9733 352.01 0

XO 1 160.173 5.369 5.3695 957.83 0

Square 3 16.965 16.965 5.6551 1008.78 0

XI ∗XI 1 6.409 6.409 6.4088 1143.23 0

XS ∗XS 1 10.504 10.504 10.5038 1873.71 0

XO ∗XO 1 0.053 0.053 0.0528 9.42 0.002

Interaction 3 12.911 12.911 4.3036 767.69 0

XI ∗XS 1 6.424 6.424 6.4236 1145.87 0

XI ∗XO 1 4.28 4.28 4.2804 763.55 0

XS ∗XO 1 2.207 2.207 2.2068 393.65 0

Residual Error 5765 32.318 32.318 0.0056

Lack-of-Fit 375 31.947 31.947 0.0852 1239.44 0

Pure Error 5390 0.37 0.37 0.0001

Total 5774 329.657

UO

Regression 8 74.7895 74.7895 9.34868 10532.62 0

Linear 3 53.3755 7.6592 2.55306 2876.38 0

XI 1 25.4532 2.9104 2.91038 3278.96 0

XS 1 0.7856 0.0246 0.0246 27.72 0

XO 1 27.1366 2.7774 2.77745 3129.19 0

Square 2 11.0239 11.0239 5.51193 6209.97 0

XI ∗XI 1 6.5824 6.5824 6.58245 7416.06 0

XS ∗XS 1 4.4414 4.4414 4.44141 5003.88 0

Interaction 3 10.3901 10.3901 3.46338 3901.99 0

XI ∗XS 1 9.5863 9.5863 9.58631 10800.34 0

XI ∗XO 1 0.7943 0.7943 0.79428 894.86 0

XS ∗XO 1 0.0096 0.0096 0.00956 10.77 0.001

Residual Error 5766 5.1179 5.1179 0.00089

Lack-of-Fit 376 5.0173 5.0173 0.01334 715.41 0

Pure Error 5390 0.1005 0.1005 0.00002

Total 5774 79.9073

Table B.3 (continued): Analysis of Variance: Forklift-and-SDV Cross-Dock.
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R̂ Term Coef SE Coef T P

δ̂

Constant -13354.1 617.769 -21.617 0

XI 1021.9 24.989 40.893 0

XS 89.5 4.165 21.496 0

XS 107.5 15.03 7.153 0

X2
I -22.7 0.327 -69.424 0

X2
S -1.1 0.015 -70.007 0

X2
O -6.2 0.158 -39.526 0

XI ×XS 4.5 0.061 74.173 0

XI ×XO 10 0.193 51.841 0

XS ×XO 1.8 0.043 41.35 0

δ̂M

Constant 41.3728 3.21502 12.869 0

XI 5.365 0.13005 41.253 0

XS -0.1322 0.02168 -6.099 0

XO -0.0762 0.07822 -0.974 0.33

X2
I -0.126 0.0017 -74.069 0

X2
S -0.0059 0.00008 -73.354 0

X2
O -0.0339 0.00082 -41.205 0

XI ×XS 0.0227 0.00032 71.343 0

XI ×XO 0.05 0.00101 49.708 0

XS ×XO 0.0107 0.00023 47.349 0

ÛI

Constant 0.514788 0.005837 88.196 0

XI 0.02594 0.000236 109.867 0

XS 0.001143 0.000039 29.037 0

XO 0.001511 0.000142 10.642 0

X2
I -0.00033 0.000003 -105.32 0

X2
S 0.000001 0 5.909 0

X2
O 0.000011 0.000001 7.355 0

XI ×XS -3.6E-05 0.000001 -61.945 0

XI ×XO -5.9E-05 0.000002 -32.402 0

XS ×XO -6E-06 0 -15.903 0

Table B.4: Regression Coefficients: Forklift-and-SDV Cross-Dock.

119



R̂ Term Coef SE Coef T P

ÛS

Constant 0.556363 0.02037 27.313 0

XI 0.039073 0.000824 47.42 0

XS -0.00459 0.000137 -33.416 0

XO -0.00356 0.000496 -7.177 0

X2
I -0.00082 0.000011 -76.036 0

X2
S -1.6E-05 0.000001 -31.776 0

X2
O 0.000059 0.000005 11.423 0

XI ×XS 0.000246 0.000002 121.957 0

XI ×XO 0.000119 0.000006 18.682 0

XS ×XO -8.3E-05 0.000001 -58.324 0

ÛOB

Constant 0.554935 0.044514 12.467 0

XI 0.035567 0.001801 19.753 0

XS 0.005631 0.0003 18.762 0

XO -0.03352 0.001083 -30.949 0

X2
I -0.0008 0.000024 -33.812 0

X2
S -4.8E-05 0.000001 -43.286 0

X2
O -3.5E-05 0.000011 -3.069 0.002

XI ×XS 0.000149 0.000004 33.851 0

XI ×XO 0.000385 0.000014 27.632 0

XS ×XO 0.000062 0.000003 19.841 0

ÛO

Constant 0.488814 0.016359 29.88 0

XI 0.041027 0.000716 57.262 0

XS -0.00063 0.000119 -5.265 0

XO -0.01307 0.000234 -55.939 0

X2
I -0.00081 0.000009 -86.117 0

X2
S -3.1E-05 0 -70.738 0

XI ×XS 0.000182 0.000002 103.925 0

XI ×XO 0.000166 0.000006 29.914 0

XS ×XO 0.000004 0.000001 3.281 0.001

Table B.4 (continued): Regression Coefficients: Forklift-and-SDV Cross-Dock.
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B.2.2 Regression Coefficient Estimation: FL-and-SDV CD

The regression coefficients were estimated through the least-square method for all

performance metrics; their significance is given in Table B.4. The table shows that, apart

from βO for the performance metric - δ̂M , all other regression coefficients are significant and

contribute towards their performance metrics at the given level of significance, α = 0.05.

B.2.3 Residual Analysis: FL-and-SDV CD

The residual plots for all performance metrics of the forklift-and-SDV cross-dock

are given in Figure B.2. The probability plots and histograms given in that figure show

that the residuals of fitted regression models are not normally distributed. In addition, the

scatter plot (Versus Fits) between the residuals and fitted values shows a clear existing

pattern, again unfavourable, between the residuals and fitted values.

This demonstrates heteroscedasticity, the failure of a homogeneous residual distri-

bution once more. This further validates the lac of fitness of the regression models discussed

in subsection 4.2.2 of Chapter 4.
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Figure B.2: Residual Analysis: Forklift-and-SDV Cross-Dock.
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