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Abstract 

Historical and current design code provisions for the punching shear of reinforced concrete slabs 

supported on rectangular columns vary greatly and are primarily based on empirical results. 

Additionally, the existing database for slabs supported on rectangular columns is quite small 

compared to the empirical database for reinforced concrete slabs supported on square columns. 

Conducting experimental tests of slabs supported on rectangular columns can be quite expensive and 

time consuming due to the required specimen size. As such, properly calibrated finite element 

simulations can be useful to expand the existing database and verify the accuracy of code provisions.  

In this thesis a three-dimensional nonlinear finite element analysis (FEA) of interior slab-column 

connections subjected to concentric vertical loading, in the commercial FEA software ABAQUS, is 

presented. The finite element model was calibrated following the calibration procedure described in 

Genikomsou (2015), which was focused on the FEA of punching shear of slabs supported on square 

columns. Slab AM04, which was a slab tested by Sagaseta et al. (2014), and which represents an 

interior slab-column connection with a column rectangularity (aspect ratio) of three is considered as 

the control specimen in the calibration. The calibration was then verified by modelling the three 

remaining slabs in the AM series and three additional slabs tested by Sagaseta et al. (2011). These 

additional slabs were supported on square columns and had different concrete strengths and flexural 

reinforcing ratios than the AM series slabs. The calibrated finite element model (FEM) was found to 

be able to accurately predict the load deflection response and crack patterns of the tested slabs.  

The calibrated FEM was then used to conduct a parametric study on the impact of column 

rectangularity on the punching shear behaviour of interior slab-column connections. Based on a 

comparison of current and historical code provisions two parameters, the column aspect ratio, and the 

ratio of the length of the minimum column dimension, cmin, to the effective flexural depth of the slab, 

d, were considered in the parametric study. In total 77 simulations spanning 8 cmin/d ratios were 

conducted. The results of these 77 simulations demonstrated that the impact of column rectangularity 

is not independent of the cmin/d ratio. As the cmin/d ratio increased the impact of column rectangularity 

predicted by the FEM, Eurocode 2 (2004), Model Code 2010 and the Critical Shear Crack Theory 

(CSCT) became more severe. Predictions according to ACI318M-14 were nearly independent of the 

ratio of cmin/d and were typically unconservative compared to the FEM results for cmin/d ratios greater 

than approximately 1.3. Additionally, the FEM, Eurocode 2 (2004), Model Code 2010 and the CSCT 
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predicted an impact of rectangularity for column aspect ratios between 1 and 2, which differs from the 

current ACI 318 provisions. The shear stress distributions in the slab along the support perimeter 

were also analyzed. Shear stresses were found to concentrate near the corner of the supported area 

and along the short side of the supported area. As the cmin/d ratio increased these concentrations 

became more focused at the column corner. 
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Chapter 1: Introduction 

1.1 Research Significance and Objectives 

Reinforced concrete flat slabs are a commonly used structural system due to the many advantages 

they offer such as simple formwork, reduced floor height and lower construction costs. However, 

high stresses are developed at the connection between the slab and the supporting columns due to the 

lack of horizontal supporting members such as beams and girders. These stresses can result in a brittle 

failure mode known as punching shear. Due to its brittle nature a punching shear failure of a single 

slab-column connection can lead to the progressive collapse of a portion or an entire structure if the 

slab reinforcement is not properly designed or detailed. Punching shear failures typically occur before 

a building is complete, due to the partially cured concrete having insufficient strength when the 

temporary supports are removed (Gardner N. J., 2011). However, punching failures have also 

occurred in occupied structures, such as the Sampoong department store collapse in Seoul, South 

Korea in 1995, which resulted in the deaths of approximately 500 people. The collapse of the north 

wing of this five-story commercial building was attributed to the punching shear failure of a slab-

column connection on the fifth floor (Gardner, Huh, & Chung, 2002; Gardner N. J., 2011). A designer 

has many options to increase the punching capacity of a slab-column including using a higher 

concrete compressive strength, increasing the effective flexural depth of the slab, increasing the 

flexural reinforcement ratio (not accounted for in North American codes), or designing and detailing 

shear reinforcement. Another popular option to increase the punching capacity of a slab-column 

connection, especially in parking garages or multi-story office or residential buildings, is to use a 

larger column size, or to use a rectangular column. The use of rectangular columns also has many 

additional benefits such as reducing the slab clean span between the columns in the direction of the 

elongated column dimension and providing lateral stiffness to the structure (Sagaseta, Tassinari, 

Fernández Ruiz, & Muttoni, 2014). Based on a linear elastic analysis of a continuous slab Simmonds 

(1970) also found that the use of slightly rectangular columns resulted in reduced slab deflections and 

bending moments.  

Due to its brittle nature, and possibility of progressive collapse if punching failures do occur, many 

researchers have investigated the punching shear behaviour of reinforced concrete flat slabs. To date, 

most of this research has been focused on experimental tests which have formed the basis of many 

historical and current design code provisions. Due to the high cost and space requirements of testing 

full multi-bay slab systems, most of the reported tests are for isolated slab-column connections. 
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Isolated slab-column connections are sized to represent the extent of the negative moment region 

around the column, which is commonly referred to as the radius of contraflexure. Testing isolated 

specimens is still quite expensive and time consuming, and as such, the existing experimental 

database cannot cover all aspects which affect punching shear failures. For example, most of the 

previous research has been focused on slabs supported on square or circular columns, even though the 

use of rectangular columns with flat slabs is quite common. Properly calibrated finite element 

analysis (FEA) can be a cost-effective way to expand the existing experimental database and verify 

the accuracy of current design code provisions. Nonlinear finite element analysis (NLFEA) can be 

used to predict the punching capacity, deflected shape, reinforcement stresses, crack patterns and 

stresses at any point in the slab. However, the finite element model must first be calibrated based on 

experimental results before it can be used to conduct parametric studies.  

In this thesis the NLFEA of reinforced concrete slabs supported on square and rectangular columns 

selected from published literature, using the commercial finite element software ABAQUS, are 

presented. Based on previous work conducted at the University of Waterloo by Stoner (2015), 

Barrage (2017) and Genikomsou (2015), the “Concrete Damaged Plasticity” (CDP) model is used for 

the constitutive modelling of concrete. The CDP has also been successfully applied by other 

researchers to model many applications in reinforced concrete structures including damage estimation 

of reinforced concrete beams (Hanif, Ibrahim, Jameel, Ghaedi, & Aslam, 2016), and FRP confined 

concrete (Yu, Teng, Wong, & Dong, 2010; Hany, Hantouche, & Harajli, 2016). 

The simulated punching shear specimens are taken from four experimental programs. The first 

specimen analyzed, slab SB1, was tested at the University of Waterloo by Adetifa and Polak (2005), 

and represented an interior slab-column connection without shear reinforcement supported on a 

square column subjected to concentric vertical loading. Slab SB1 was also analyzed by Genikomsou 

(2015) in order to calibrate a nonlinear finite element model in ABAQUS using the CDP. 

Genikomsou’s calibrated model was then used to study the punching shear behavior of slabs 

supported on square columns (2015). Next, to verify ABAQUS’ capability to capture the impact of 

the column rectangularity nine slabs tested by Hawkins, Fallsen and Hinojosa (1971) were analyzed. 

These tests, which represented interior slab-column connections with column aspect ratios between 1 

and 4.33 with similar critical perimeter lengths, formed the basis of the American Concrete Institute 

(ACI) 318 provisions for punching shear of rectangular columns (ACI Committee 318, 2014; ASCE-

ACI Committee 426, 1974; Al-Yousif & Regan, 2003; Mitchell, Cook, & Dilger, 2005). Hawkins et 
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al. (1971) found that increasing the column aspect ratio (rectangularity) lead to a decrease in the 

nominal punching capacity around the critical the critical perimeter located at d/2 from the column 

face, where d is the average effective depth of the slab. The next four specimens analyzed were from 

a study conducted by Sagaseta, Tassinari, Fernández Ruiz and Muttoni (2014) in which the effect of 

loading pattern (one-way or two-way) on the punching behaviour of an isolated slab-column 

connection with a rectangularity of 3 was analyzed. Based on the experimental results and numerical 

studies, they found that the concentration of shear stresses and forces around a rectangular column 

with an aspect ratio of three is dependent on both the column geometry and the slab deflections due to 

bending. The authors also concluded that the failure mode, capacity and rotations (deflections) are 

strongly dependent on the column orientation with respect to the primary slab span, especially in 

cases of one-way loading (Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 2014). The final three 

slabs studied were from an experimental program by Sagaseta, Muttoni, Fernández Ruiz and 

Tassinari (2011) which was focused on the impact of non-axis symmetric conditions on punching 

behaviour of isolated slab-column connections. The experimental setup in the 2014 experimental 

program by Sagaseta et al. was similar to the setup used in this experimental program. The slabs in 

the 2011 study were supported on square plates, had different reinforcing ratios and concrete 

compressive strengths than those in the 2014 program, and were tested under two-way loading 

conditions. Based on the test results, it was observed that slabs subjected to symmetric loading, with a 

large reinforcing ratio in one direction and with a shear capacity lower than the shear force 

corresponding to a yield line failure, had nearly symmetrical responses, even for slabs where the ratio 

of the reinforcing ratios in both orthogonal directions was equal to two. Specimens with a low 

flexural reinforcing ratio in one direction (0.3%) demonstrated an asymmetrical punching failure due 

to the formation of a plastic hinge (Sagaseta, Muttoni, Fernández Ruiz, & Tassinari, 2011).  

The experimental specimens discussed above were modelled in ABAQUS to examine the impact of 

column rectangularity on the punching shear behaviour of reinforced concrete flat slabs supported on 

columns. The primary objective of this thesis was to create a calibrated finite element model which 

could be used to study the impact of column rectangularity on punching shear since the database for 

slabs supported on rectangular columns is much smaller than that for square columns. The FEA 

results can also be used to verify the accuracy of current code provisions which vary greatly in their 

treatment of column rectangularity.  
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The specific objectives of this research are as follows: 

1. Summarize the historical and current code provisions related to the impact of column 

rectangularity on punching shear; 

2. Develop a calibrated three-dimensional finite element model which can be used to 

investigate the impact of column rectangularity on the punching shear capacity of isolated 

slab-column connections in reinforced concrete flat slabs; 

3. Use the calibrated model to conduct a parametric study of column rectangularity and 

analyze the effect of column rectangularity on the load-deflection behaviour, and shear 

stress distributions around the column perimeter or any selected critical perimeter and; 

4. Compare the impact of column rectangularity on punching capacity predicted by the FEA 

with that predicted by current reinforced concrete design codes including ACI 318M-14, 

Eurocode 2 (2004), fib Model Code 2010 and predictions based on the Critical Shear Crack 

Theory (CSCT).  

1.2 Outline 

The outline of this thesis is as follows: 

The introduction of this thesis (Chapter 1) provides a brief introduction of the research problem, 

advantages of using finite element analysis and outlines the research objectives. Next, a description of 

the phenomenon of punching shear is provided in Chapter 2. A literature review of previous 

experimental, analytical and finite element studies of reinforced concrete slabs focused on punching 

shear is also provided in Chapter 2. This literature review is primarily focused on interior slab-column 

connections subjected to static concentric loading without shear reinforcement. Furthermore, an 

overview of current and historical design code provisions for punching shear focused on the impact of 

column rectangularity is provided. Chapter 3 provides a brief overview of the mechanical behaviour 

of concrete. Chapter 4 presents a summary of the previous finite element work conducted at the 

University of Waterloo and the development of the calibrated finite element model used to conduct 

the parametric analysis of the impact of column rectangularity. In Chapter 4, an overview of the 

considered experimental specimens, the methodology used to create the finite element model and a 

comparison of the experimental results, code predictions and FEA results is provided. Based on these 

comparisons it is concluded that ABAQUS is capable of capturing the impact of column 

rectangularity and the predicted behaviour matches experimental observations by other researchers 
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and code predictions. Chapter 5 presents the overview of the parametric study based on the calibrated 

model and provides a detailed discussion of the results. As expected, ABAQUS predicts a negative 

impact on nominal punching capacity as column rectangularity is increased. Finally, Chapter 6 

presents a summary of the research, conclusions and provides guidance for future work. 
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Chapter 2: Punching Shear in Reinforced Concrete Slabs 

2.1 Introduction 

Today, reinforced concrete flat slabs are one of the most commonly used structural systems, 

especially for buildings where open floor plans are critical such as warehouses, parking garages and 

office buildings. According to Sozen and Siess (1963) the flat slab was invented rather than 

developed, since an accepted theory of their structural behaviour was not available until 1921. George 

M. Hill is credited with constructing the first flat slab in the United States of America in 1901. He had 

originally introduced the concept of a reinforced concrete flat slab supported on monolithic concrete 

columns in the American Society of Civil Engineers (ASCE) Transactions in 1900. Following the 

work of Hill, Orlando W. Norcross patented a flat slab system which used four-way reinforcement in 

1902, with the goal of removing the need for horizontal supports such as beams and girders for slabs. 

However, it appears that the use of Norcross’ patented system was rather limited (Gasparini, 2002).  

The two people considered to have the largest influence on popularizing the flat slab system are 

American engineer C.A.P. Turner and Swiss engineer Robert Maillart, both of whom were credited 

with inventing their flat slab systems independently. In 1906, Turner built his first flat slab building, 

the Johnson Bovey Building, in Minneapolis. Turner’s designs, which used much less reinforcing 

steel than other flat slab systems built later, used four-way flexural reinforcing, and large steel shear 

heads with a diameter equal to approximately half the slab span above the columns and column 

capitals. The capitals and steel shear heads, which Turner referred to as mushrooms, were included to 

provide additional shear strength, as Turner realized the weakness of concrete in tension and in shear 

in its uncured state (Gasparini, 2002). An example of Turner’s design for the column capital and 

shearhead is shown in Figure 2-1. On the other hand, Maillart’s designs only used reinforcement in 

two orthogonal directions, and did not account for the negative moment near the slab-column 

connection. Even though Maillart neglected negative moments he successfully designed and built 

many flat slabs buildings and bridges (Fürst & Marti, 1997).  

The success of the designs by Turner and Maillart were a key development in structural 

engineering as the flat slab represented a new structural form (Fürst & Marti, 1997) compared to the 

typical systems seen in steel and timber construction (Gasparini, 2002). Between 1906 and 1910, 

Turner constructed at least 34 flat slab buildings throughout the United States (Gasparini, 2002) and 

by 1913 over 1000 flat slab buildings had been built worldwide (Sozen & Siess, 1963). The rapid 

development of the flat slab system was likely due to the many economic advantages this system 
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offered, such as minimized formwork, reduced floor framing depths and easier installation of finishes 

and lighting.  

In this chapter, a discussion of the phenomenon of punching shear and its consequences are 

discussed first. Then a review of the testing background, focused on slabs without shear 

reinforcement supported on square or rectangular columns and primarily subjected to concentric 

punching, is provided. Next, a summary of some historical and current mechanical models and design 

code provisions for punching shear with a focus on column rectangularity is provided. Finally, a 

review of the previous finite element modelling of reinforced concrete flat slabs is presented.  

 

Figure 2-1: Turner’s Design for Column Capital and Steel Shearhead (Turner, C.A.P., 1905) 

(taken from (Gasparini, 2002)) 

2.2 Phenomenon of Punching Shear 

Reinforced concrete flat slabs supported on columns are currently one of the most commonly used 

structural systems for buildings such as warehouses, parking garages and residential or commercial 

high rises due to the many advantages they offer. These advantages include simplified formwork, 

reduced floor height, reduced material requirements and simplified installation of finishes. 

Throughout their history reinforced concrete flat slabs, which typically are simple in appearance, have 

taken numerous forms as shown in Figure 2-2, due to the complexity of their loading carrying 

behaviour in flexure and shear (FIB, 2001). As the understanding of the behaviour of reinforced 
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concrete flat slabs has developed, the flat slab supported on columns without capitals or beams has 

become increasing popular. However, the removal of the beams and girders results in a statical 

discontinuity at the intersection of the slab and column. This intersection is a D region which is 

subjected to a complex three-dimensional state of stress due to flexural and shear stresses (FIB, 

2001). When the shear stresses near the slab-column connection exceed the shear strength of the 

connection, the column and a portion of the slab, which has a truncated cone shape, push through the 

slab resulting in a failure of the connection, and potentially the progressive collapse of an entire 

structure. A typical punching surface is shown in Figure 2-3. The action of the column and the 

truncated cone of concrete pushing through the slab is a brittle failure mode, known as punching 

shear, which has been studied extensively since the 1950s as the popularity of slabs supported on 

columns without capitals has grown (Muttoni, 2008).  

  

  

Figure 2-2: Typical Flat Slab Systems, a) Flat Slab with Column Capitals and Drop Panels, b) 

Two-way slab on beams and girders, c) Flat Slab, d) Waffle Slab, Acknowledgement: Reinforced 

Concrete Mechanics and Design, MacGregor and Bartlett (2000), ©2000 Pearson Education 

Canada Inc. 

a) b) 

c) d) 
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Previous research has shown that punching shear failures are preceded by radial cracking of the 

slab concrete around the slab-column connection due to the moment carried by the slab (FIB, 2010; 

MacGregor & Bartlett, 2000). As additional load is applied after this initial radial cracking a crack 

pattern which is similar to that assumed in the yield-line analysis of a two-way slab is formed 

(MacGregor & Bartlett, 2000). Simultaneously, inclined internal cracks begin forming in the slab due 

to the large increase in vertical strains in the vicinity of the slab-column connection (FIB, 2010; 

MacGregor & Bartlett, 2000; Regan & Braestrup, 1985). As the magnitude of the load is further 

increased, these inclined cracks, which typically have an angle of 25-30 degrees, extend towards the 

compression surface of the slab at a distance away from the column face (Alexander & Simmonds, 

1987; Regan & Braestrup, 1985). A punching shear failure occurs when the strength of the 

connection, which can be attributed to the shear carried by the compression zone, aggregate interlock 

along the crack, and dowel action of the reinforcing bars (Theodorakopoulos & Swamy, 2002), is 

exceeded. Once the shear strength of the connection is exceeded, a truncated cone of concrete and the 

column punch through the slab, resulting in the failure surface shown in Figure 2-3. Examples of 

punching shear crack patterns are shown in Figure 2-4 and Figure 2-5. Even though punching failures 

have typically been found to be associated with yielding of the flexural reinforcement in the vicinity 

of the slab-column connection the failure mode is brittle (Alexander & Simmonds, 1987; Park & 

Gamble, 1980; Theodorakopoulos & Swamy, 2002). 

 

Figure 2-3: Punching Shear Failure Surface, Acknowledgement: Reinforced Concrete Mechanics 

and Design, MacGregor and Bartlett (2000), ©2000 Pearson Education Canada Inc. 

The punching shear capacity of a slab-column connection may govern numerous design parameters 

such as the column size, column capital size or slab thickness (Park & Gamble, 1980). In cases where 

the overall capacity of a flat slab system is governed by the punching shear capacity, designers should 

be aware that the level of safety, or chance of warning of failure, between the majority of the slab and 
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the area of the slab around the column, are not the same due to the brittle nature of punching shear 

failures compared to a ductile flexural slab failure (FIB, 2001).  

 

Figure 2-4: Tension Surface Cracks (Anggadjaja & Teng, 2008), authorized reprint from ACI 

Structural Journal, Volume 84, Issue 3, 2008 

 

Figure 2-5: Inclined Shear Cracks in Slab After Punching Failure (Anggadjaja & Teng, 2008), 

authorized reprint from ACI Structural Journal, Volume 84, Issue 3, 2008 

2.3 Review of Punching Shear Tests 

2.3.1 Introduction 

According to Moe (1961), some of the first contributors to punching shear research were Talbot 

(1913), Bach and Graf (1915), Graf (1933 and 1938) and Richart (1948). Talbot tested 114 wall 

footings and 83 column footings, of which 20 failed in shear. Based on his results, Talbot proposed an 

equation to estimate the shear capacity of reinforced concrete footings. Bach and Graf (1915) 

conducted an extensive program to investigate the flexural behaviour of reinforced concrete slabs. 

Most of their slabs were loaded at eight or more discrete points, while others were loaded at the slab 
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center. Some of the slabs which were subjected to central loads experienced shear failures. Graf 

(1933) studied the shear capacity of reinforced concrete slabs subjected to concentrated loads near 

their supports. Based on the results of three tests, it was observed that the shear capacity of the slabs 

decreased as the distance between the load and support was increased. Graf hypothesized that flexural 

cracking impacted the shear strength of the slabs. In 1938, Graf presented the experimental results of 

8 slab tests, 6 of which included shear reinforcement. Richart (1948) published the results of an 

extensive testing program of reinforced concrete footings. Based on the results, he concluded that 

shear stresses may govern footing design instead of bond stresses (Moe, 1961).   

In the time since these initial studies, many researchers have conducted experiments to investigate 

the punching shear behaviour of reinforced concrete slabs. Many of these experimental programs are 

summarized in databases which are curated by organizations, such as the American Concrete Institute 

(ACI) or the International Federation for Structural Concrete (fib), or by independent researchers. 

However, many of these databases are primarily focused on slabs supported on square or circular 

columns. For example, the fib database, which is contained in fib Bulletin 12, “Punching of Structural 

Concrete Slabs,” contains information on 400 experimental tests of concentrically loaded reinforced 

concrete slabs cast from normal density concrete conducted between 1954 and 1999. The vast 

majority of the 400 experimental results are for slabs supported on square or circular columns, and 

150 are for slabs with shear reinforcement (FIB, 2001). The ACI database, which is curated by ACI-

ASCE Committee 445 Shear and Torsion, currently contains the results of 519 experimental tests of 

reinforced concrete slabs since 1938. Of the 519 tests only 27 are for slabs supported on rectangular 

columns (Ospina, et al., 2015). One of the largest databases for slabs supported on rectangular 

columns was curated by Paiva, Ferreira, Oliveira, Lima Neto and Teixeira (2015) and contains the 

experimental results for 131 slab tests. However, many of reported tests are for slabs supported on 

square columns or are for one-way slabs subjected to concentrated loads.  

In this section, some of the previous experimental research of reinforced concrete flat slabs 

supported on square or circular and rectangular columns will be summarized. Since the experimental 

database for slabs supported on square or circular columns is quite large, only select experimental 

programs will be presented.  

2.3.2 Square or Circular Columns 

As seen in the current punching shear databases, many researchers have investigated the punching 

shear behaviour of reinforced concrete flat slabs supported on square or circular columns. Some of 
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the largest of these programs were conducted by Elstner and Hognestad (Elstner & Hognestad, 1956), 

Moe (1961), Mowrer and Vanderbilt (1967) and Regan (Regan P. E., 1986). 

Elstner and Hognestad (1956) published experimental results for 39 slab-column connection tests. 

Most of the tested slabs were simply supported on four sides and were subjected to concentric loading 

applied through the column stub. The remaining slabs were either supported on two sides only or 

were subjected to eccentric loading to introduce unbalanced moment on the connection. 34 of the 

slabs failed in shear. The testing program was focused on determining the impact of multiple 

parameters on the punching shear behaviour of slab-column connections including concrete 

compressive strength, tensile reinforcing ratio, compressive reinforcing ratio, column size, support 

and load conditions, tensile reinforcement layout and use of shear reinforcement. The experimental 

results were quite important since many of the previous American punching shear studies were 

conducted on footings, which are typically much thicker than floor slabs. At the time, the provisions 

for punching shear of floor slabs were extrapolated from the footing test results which was 

questionable due to the lower thickness to span ratios and higher shear to moment ratios typically 

used in slabs compared to footings (Elstner & Hognestad, 1956).  

Following the work of Elstner and Hognestad (1956), Moe (1961) tested 43 slab-column 

connections, which were six feet square, six inches thick and simply supported along all four edges 

with corners free to lift. Moe investigated the impact of openings in the slab, concentrations of tensile 

reinforcement near the column, the use of shear reinforcement, column size and eccentric loading on 

the punching shear behaviour of slab-column connections. Of his 43 tests, one was supported on a 

rectangular column with side lengths of six and eighteen inches. Based on the test results, Moe 

recommended that the column perimeter should be used as the critical perimeter assumed in punching 

shear design and proposed an equation to estimate the punching capacity of slab-column connections. 

Moe also concluded that the flexural strength of the slab effects the punching capacity and that the 

shear capacity per unit length is largest when the ratio of the column dimension to the slab thickness 

is small. It was also observed that shear reinforcement could be used to increase the punching 

capacity of slab-column connections if properly anchored. Openings in the slab were also found to 

significantly reduce the punching capacity. Moe also proposed a modified version of his equation to 

estimate the punching capacity of slabs supported on rectangular columns (Moe, 1961). Moe’s work 

formed the basis of the ACI 318 provisions (ASCE-ACI Committee 426, 1974).  
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Mowrer and Vanderbilt (1967) tested 51 isolated slab-column specimens representing interior slab-

column connections. 43 of the 51 slabs were cast from lightweight concrete made from expanded 

shale. Nine of the slabs were tested with two or four edges clamped and the remaining slabs were 

tested under simply supported conditions. Mowrer and Vanderbilt investigated the impact of 

lightweight concrete, opening pattern, flexural reinforcing ratio, concrete compressive strength, 

column size and edge fixity. Based on the test results, they proposed a modified version of Moe’s 

equation, which accounted for lightweight concrete. They also presented a modified version of the 

typical isolated slab-column specimen with clamped edges that they believed better represented the 

behaviour of a continuous slab (Mowrer & Vanderbilt, 1967). Using this modified isolated slab-

column specimen, Vanderbilt (1972) tested 15 slabs to investigate the impact of column size and 

shape. The slabs were cast with square or circular columns and were subjected to a uniformly 

distributed load. Vanderbilt observed shear stress concentrations around the corners of the square 

columns and a decrease in the nominal shear stress as the ratio of the column size to the slab depth 

increased (Vanderbilt, 1972).  

Regan (1986) tested 28 reinforced slabs simply supported on four sides and subjected to 

concentrated loads at their centers. The tests were conducted to investigate many parameters 

including the arrangement of the flexural reinforcement, slab size, slab depth, concrete compressive 

strength, reinforcing ratio, boundary restraint and size of the loaded area. In many of the tests, the 

slabs were supported near the slab edges with corners free to lift. In the remaining tests, the supports 

were moved closer to the load application area. Regan found the British punching shear design 

provisions used at the time to be unconservative in many cases. The Model Code 1978 provisions 

were found to be overly conservative and the ACI 318-83 provisions, which are similar to those in 

ACI 318M-14, were found to be conservative in most cases. It was also concluded that boundary 

restraint increased the punching capacity of slab-column connections, but this effect was not 

quantifiable based on the tested slabs. (Regan P. E., 1986).  

In addition to the major studies discussed above, numerous other studies have been conducted by 

various researchers. Some researchers tested isolated slab-column connections which were centrally 

supported at loaded at the slab edges (Einpaul, Bujnak, Fenández Ruiz, & Muttoni, 2016; Lips, 

Fernández Ruiz, & Muttoni, 2012; Guandalini, Burdet, & Muttoni, 2009; Yamada, Nanni, & Endo, 

1992; Sagaseta, Muttoni, Fernández Ruiz, & Tassinari, 2011). Other researchers tested slabs which 

were supported at the edges or corners and loaded centrally, typically through a column stub (Adetifa 
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& Polak, 2005; Alam, Amanat, & Seraj, 2009; Birkle & Dilger, 2008; Marzouk & Hussein, 1991; 

Inácio, Almeida, Faria, Lúcio, & Ramos, 2015; Moreno & Sarmento, 2013). A much smaller portion 

of the experimental database has been focused on cantilever slabs subjected to concentrated loads 

(Vaz Rodrigues, Fernández Ruiz, & Muttoni, 2008) or on the punching shear behaviour of multi-bay 

slab specimens (Gardner & Shao, 1996).  

Yamanda, Nanni and Endo (1992) tested thirteen isolated-slab column specimens which 

represented interior columns. The specimens were loaded monotonically at 8 discrete points located 

at a distance of 0.75m from the column center and supported on a central column stub. Two types of 

shear reinforcement, hat shaped reinforcement, which did not intercept the slab’s flexural 

reinforcement, and double hooked bars, which intercepted the flexural reinforcement, were 

investigated. The test results showed that shear reinforcement needs to be anchored to the flexural 

reinforcement, and the spacing between subsequent rows should be less than d/2, where d is the 

effective slab depth, to be effective and increase the punching capacity and ductility of the connection 

(Yamada, Nanni, & Endo, 1992). 

Guandalini, Burdet and Muttoni (2009) studied the impact of low flexural reinforcement ratios on 

the punching capacity of slab-column connections since most experimental specimens are constructed 

with flexural reinforcing ratios much higher than those used in practice to avoid flexural failures. The 

impact of aggregate size and specimen size was also investigated. Eleven isolated slab-column 

specimens, representing interior columns, were tested. The slabs had reinforcing ratios between 

0.22% and 1.5%. Six of the eleven specimens were constructed at full scale and were 250mm thick. 

Four specimens were constructed at half scale and were 125mm thick, and the last specimen was 

constructed at double scale and was 500mm thick. Punching capacity was found to decrease as the 

slab thickness increased, and slabs with low flexural reinforcing ratios were found to fail in punching 

after excessive yielding of the slab reinforcement (Guandalini, Burdet, & Muttoni, 2009).  

Sagaseta, Muttoni, Fernández Ruiz and Tassinari (2011) also investigated the impact of flexural 

reinforcement ratio on the punching capacity of interior slab-column connections. Their investigation 

was primarily focussed on investigating the behaviour of slabs with different flexural reinforcing 

ratios in both orthogonal directions. Seven square isolated interior slab-column connections, 

supported on a central steel plate with side lengths of 260mmm, without shear reinforcement were 

tested. Three of the tested slabs had equal reinforcing ratios in both orthogonal directions, whereas the 

remaining four slabs had non-axis symmetric reinforcing layouts, where the reinforcing ratio in one 
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direction was approximately half of that in the other direction. All flexural reinforcing ratios were 

between 0.32% and 1.64%. Based on the test results, and results from linear elastic finite element 

analyses, which are briefly discussed in Section 2.6.2, it was found that slabs with non-axis 

symmetric reinforcing ratios did not have symmetric deflection responses in both orthogonal 

directions. It was also found that slabs with reinforcing ratios exceeding 0.75% failed brittlely in 

punching shear (Sagaseta, Muttoni, Fernández Ruiz, & Tassinari, 2011). Some of the slabs from this 

test series were considered during the calibration of the finite element model used in this thesis. As 

such, this experimental program will be discussed in more detail in Section 4.5.2. 

Lips, Fernández Ruiz and Muttoni (2012) tested sixteen isolated interior slab-column connections 

loaded at eight discrete points around the column and supported on a central square steel plate to 

investigate the impact of column size, slab thickness, shear reinforcement type and amount of shear 

reinforcement on punching shear behaviour. The square steel plates supporting the slab had side 

lengths between 130mm and 520mm and the slab thicknesses ranged from 250mm to 400mm. Two 

types of shear reinforcement, shear studs and continuous stirrup cages, were considered. As the 

column size was increased the punching capacity and rotation at failure were found to increase. Slab 

slenderness and size were also found to impact the punching capacity, especially for slabs which 

failed due to crushing of concrete struts. Both types of shear reinforcement were found to increase the 

punching and rotational capacity of the connection, though shear studs were found to be more 

effective due to the improved anchorage compared to continuous stirrup cages (Lips, Fernández Ruiz, 

& Muttoni, 2012).  

Einpaul, Bujnak, Fernández Ruiz and Muttoni (2016) tested thirteen symmetric isolated interior 

slab-column connections subjected to punching shear. Similar to the study by Lips, Fernández Ruiz 

and Muttoni the primary parameters investigated included the column size and slab slenderness. The 

impact of the slab’s flexural reinforcing ratio and the use of shear reinforcement were also 

investigated. The slabs were loaded at eight discrete points and supported on central steel plates. 

Eight of the thirteen slabs had octagonal shapes and were supported on circular steel plates with 

diameters between 83mm and 660mm. The remaining five slabs were square in shape, with side 

lengths between 1.7 and 3.9m, and were supported on square steel plates with side lengths between 

197mm and 211mm. All thirteen slabs were 250mm thick. The octagonal and square slab series were 

tested to investigate the influence of column size and slab slenderness respectively. Based on the 

results, it was found that the shear capacity and flexural stiffness of the slabs decreased as the slab 
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slenderness was increased. The nominal shear stresses along a critical perimeter loacated at d/2 from 

the column face were also found to decrease as the column diameter was increased (Einpaul, Bujnak, 

Fenández Ruiz, & Muttoni, 2016). 

Marzouk and Hussein (1991) examined the influence of high strength concrete on the punching 

capacity of slab-column connections by testing seventeen isolated interior slab-column connections 

loaded through the column stub and supported on four edges. Fifteen of the slabs were cast from high 

strength concrete with compressive strengths between 66MPa and 80MPa. The punching capacity 

was found to increase as the compressive strength was increased but at a rate lower than the square 

root of compressive strength, which is assumed in many codes. They also developed a modified 

version of the Kinnunen and Nylander model, which accounted for the use of high strength concrete 

(Marzouk & Hussein, 1991).  

Morento and Sarmento (2013) also investigated the impact of high compressive strengths on the 

punching capacity of slab-column connections with and without shear reinforcement. Six slabs, which 

were supported at eight discrete points along a 2165mm diameter circle whose center was coincident 

with the column center, and loaded through a 250x250mm central square column, were tested. Half of 

the slabs were tested under concentric punching and the other half were tested with a load eccentricity 

of 200mm. The slabs were cast from normal and steel fibre reinforced self-compacting concretes with 

compressive strengths ranging from 36.9MPa to 66.2MPa. The use of steel fibres and double headed 

shear studs as shear reinforcement was also investigated (Moreno & Sarmento, 2013). The 

experimental results were used to calibrate a nonlinear finite element model which is discussed in 

Section 2.6.2. 

Inácio, Almeida, Faria, Lúcio and Pinho Ramos (2015) also investigated the impact of high 

strength concretes on punching capacity. Three slabs cast from high strength concrete, with 

compressive strengths ranging from 125.6MPa to 130.1MPa, and one slab cast from normal strength 

concrete, with a compressive strength of 35.9MPa were tested. The slabs were loaded through central 

square steel plates with side lengths of 200mm and were supported at eight discrete points located 

near the radius of contraflexure (Inácio, Almeida, Faria, Lúcio, & Ramos, 2015), which is similar to 

the test setup used by Marzouk and Hussein (1991). The use of high strength concrete compared to 

normal strength concrete was found to result in a substantial increase in punching capacity. The 

punching capacity was also found to increase as the flexural reinforcing ratio increased (Inácio, 

Almeida, Faria, Lúcio, & Ramos, 2015). Both results match those of Marzouk and Hussein (1991).  
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Adetifa and Polak (2005) tested six isolated interior slab-column connections to investigate the use 

of post installed shear bolts for shear reinforcement. One slab contained no shear reinforcement, and 

the second, third and fourth slabs contained two, three and four rows of shear bolts respectively. The 

rows of shear bolts were arranged in an orthogonal pattern around a 150x150mm square column stub. 

The final two slabs tested had four rows of shear bolts and two or four openings in the slab around the 

column. The slabs were 120mm thick, simply supported along their edges and concentrically loaded 

through the monolithic column stub. Post-installed shear bolts were found to be a viable shear 

reinforcing method, as they increased the punching and ductility capacity of the slab. The use of shear 

bolts resulted in flexural failures for all five reinforced slabs, compared to a brittle punching failure 

for the unreinforced slab. The connection ductility was found to increase with the number of shear 

bolts. Lower punching strengths were observed for connections with openings in the slab due to the 

loss of shear resisting perimeter (Adetifa & Polak, 2005).   

Birkle and Dilger (2008) also investigated the influence of shear reinforcement on the punching 

capacity of reinforced concrete slab-column connections. Nine octagonal slabs, six of which were 

reinforced with steel shear studs, were tested. The slabs were supported at eight discrete points near 

the slab edges and load was applied through a monolithic square column stub. The three slabs in each 

of the test series were 250mm, 300mm and 350mm thick respectively. The slabs with shear 

reinforcement were designed to fail either inside or outside the shear reinforced zone. A severe 

decrease in nominal shear stress capacity at the critical perimeter located at d/2 from the column face 

was found as the slab thickness increased for the unreinforced slabs. A similar trend was observed for 

the slabs with shear reinforcement, although the decrease was not as severe. The use of shear studs 

was also found to greatly increase the punching and ductility capacity of the slab-column connection 

compared to the unreinforced specimens (Birkle & Dilger, 2008).  

Alam, Amanat and Seraj (2009) tested fifteen isolated interior slab-column connections to 

investigate the influence of boundary restraint, flexural reinforcing ratio and slab thickness on 

punching shear behaviour. Twelve of the fifteen slabs were cast with edge beams of varying widths to 

provide edge restraint. The slabs were supported on steel blocks at each corner of the slab, and 

concentrated loading was applied through a central square steel plate with side lengths of 120mm. 

The punching capacity was found to increase as the width of the edge beams increased. Additionally, 

as the flexural reinforcing ratio was increased from 0.5% to 1%, and the slab thickness was increased 
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from 60mm to 80mm, the nominal shear capacity along the critical perimeter located at d/2 from the 

column face was found to increase (Alam, Amanat, & Seraj, 2009).  

Unlike other researchers who tested slabs isolated slab-column connections with square columns, 

Vaz Rodrigues, Fernández Ruiz and Muttoni (2008) tested cantilever slabs subjected to concentrated 

loads. The tested specimens were ¾ scale typical box-girder deck slabs and concentrated loads were 

applied through 30mm thick square steel plates with side lengths of 300mm. Each slab was tested to 

failure three times under different load layouts. The thickness of the cantilever deck varied from 

380mm at the supported end to 190mm at the free end. All slabs were found to fail in punching shear, 

and for tests with the same loading layout but different reinforcing ratios the punching shear capacity 

was found to decrease as the reinforcing ratio decreased. A linear elastic FEA using shell elements 

was also conducted to estimate the effective critical perimeter length around the concentrated loads 

(Vaz Rodrigues, Fernández Ruiz, & Muttoni, 2008).  

All of the studies outlined above were conducted on isolated slab-column specimens or isolated 

cantilever spans. The use of isolated specimens is common due to their lower space and material 

requirements compared to continuous slabs. However, the use of isolated slab-column specimens 

neglects the impact of compressive membrane forces present in continuous slabs (Alam, Amanat, & 

Seraj, 2009; Mowrer & Vanderbilt, 1967; Genikomsou & Polak, 2017a), which can improve the 

punching capacity (Alam, Amanat, & Seraj, 2009; Genikomsou & Polak, 2017a).  

One of the few experimental studies of punching shear using a continuous slab specimen was 

conducted by Gardner and Shao (1996). In this study, a half-scale two bay by two bay slab system 

with four edge columns, four corner columns and one interior column was loaded to failure to study 

the behaviour of reinforced concrete flat slabs with temporary construction shores installed around the 

columns. The slab span between the column centerlines was equal to 2743mm and the slab was 

140mm thick. Of the nine columns, seven were square, with side lengths of 254mm, and two were 

circular, with diameters of 254mm. To simulate a uniformly distributed load, forty concentrated 

loads, whose magnitudes were dependent on their tributary area, were applied to the slab surface. To 

avoid premature failure the load was applied in increments with the temporary shores in place. The 

slab was then unloaded, and the shores were removed. The slab was then loaded and unloaded again 

with the shores removed. The shores were reinstalled before the start of the next load increment. 

Punching shear failure around the interior column was the first failure to occur during testing. To 

continue testing, this portion of the slab was shored permanently and loading was applied until two 
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edge columns, one circular and one square failed. These areas were then shored, and the slab was 

loaded until a corner column and another edge column failed. The use of temporary shoring was 

found to increase the punching capacity of the connections by taking a portion of the applied load 

(Gardner & Shao, 1996).  

2.3.3 Rectangular Columns 

One of the first experimental programs focused on investigating the impact of column rectangularity 

on punching shear behaviour was conducted by Hawkins, Fallsen and Hinojosa (1971). In this 

experimental program, nine isolated interior slab-column connections were tested. The slabs were 

supported on a central column stub with an aspect ratio between 1 and 4.33. Loading was applied at 

discrete points along the slab edges. In six of the nine tests only two slab edges were loaded, and in 

the remaining three tests all four slab edges were loaded (Hawkins, Fallsen, & Hinojosa, 1971). Based 

on the results of this testing program, the ACI 318 provisions were modified to account for column 

rectangularity based on a simple relationship dependent on the column aspect ratio (Al-Yousif & 

Regan, 2003). The nine slabs tested by Hawkins, Fallsen and Hinojosa were modelled during the 

calibration of the finite element model used in this thesis, and as such, this experimental program is 

discussed in more detail in Section 4.3.2. 

Since the study by Hawkins, Fallsen and Hinojosa (1971), many researchers have investigated the 

impact of column rectangularity on the punching shear behaviour of slab-column connections. Most 

of the experimental research has been conducted using isolated slab-column connections which are 

supported on the slab edges or a central column. Other researchers have focused on the punching 

shear behaviour of one-way slabs subjected to concentrated loads, while some have tested multi-bay 

continuous slab systems.  

Al-Yousif and Regan (2003) tested four isolated interior slab-column connections to investigate the 

impact of column aspect ratio and flexural loading conditions on punching shear behaviour. The 

tested slabs were 100mm thick and concentric loads were applied through a column stub. Three of the 

tested slabs had a 500x100mm column stub and the fourth had a 300mm square column stub. Two of 

the four tests were supported on all four sides and the remaining two were supported on two sides 

only. The slabs supported on two sides only were supported on the slab sides parallel to long side of 

the column or parallel to the short side of the column. All four slabs failed in punching shear. Shear 

force concentrations near the column corners were observed in the three tests with the 500x100mm 

columns. It was noted that the concentration of shear forces at the column corners is dependent on the 
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ratio of the column side dimensions to the effective slab depth and flexural deformations of the slab. 

When the slab is predominately bent in one direction, the impact of the ratio of the column dimension 

to the effective slab depth is more severe (Al-Yousif & Regan, 2003).  

Filatov and Bubnov (2016) tested three isolated interior slab-column specimens which were loaded 

through a central column stub and supported at 8 discrete points along the radius of contraflexure to 

study the impact of column rectangularity on punching shear behaviour. Three column sizes, 

200x200mm, 200x500mm and 200x800mm, were investigated. All three slabs were 140mm thick 

(Filatov & Bubnov, 2016). Filatov (2017) added a fourth specimen to the study, which was loaded 

through a circular column with a diameter of 210mm. All four slabs failed brittlely due to punching 

shear. For the slabs loaded through rectangular columns the maximum concrete strains were observed 

near the column corners. The measured tangential concrete strains along the long side of the column 

decreased from a maximum at the corners to a minimum near the center of the column. Similar trends 

were observed in the measured flexural reinforcing strains. The strains in the flexural reinforcement 

were also found to be highest along the column perimeter and deceased in magnitude as the distance 

from the column perimeter was increased (Filatov, 2017). The largest deflections for the slabs 

supported on rectangular columns were measured perpendicular to the short side of the column and 

along a diagonal line whose origin is the column corner (Filatov & Bubnov, 2016). 

Tan and Teng (2005) tested five ¾ scale interior slab-column connections with rectangular columns 

subjected to combined gravity and biaxial lateral loads. The study was focussed on investigating the 

impact of biaxial lateral load and the use of shear stud reinforcement on the performance of slab-

column connections with column aspect ratios of five. The slabs, which had a thickness of 150mm, 

were supported along their edges and loaded through a 180x900mm column stub. Tan and Teng 

concluded that slab-column connections with a column aspect ratio of five may not be able to sustain 

a 1.5% lateral drift even when the ratio between gravity and lateral loads is small. They recommended 

that the gravity to shear force ratio be limited to a value of 0.28 to ensure that the connections have 

sufficient drift capacity. The stiffness of the slab-column connection was found to be influenced by 

column rectangularity, and the connection strength was higher in the direction perpendicular to the 

short side of the column (Tan & Teng, 2005).  

Erdogan, Binici and Ozcebe (2011) tested seven ¾ scale isolated specimens representing interior 

slab-column connections supported on rectangular columns with aspect ratios between one and three. 

The column sizes were chosen so that each column had a similar critical perimeter length. Three of 
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the tested slabs did not include any shear reinforcement and four were reinforced with carbon fibre 

reinforced polymer (CFRP) dowels. The slabs were simply supported, and the load was applied 

through the column stub. All seven slabs failed in punching shear. In both the unreinforced and shear 

reinforced specimens, the punching capacity decreased as the column rectangularity increased. Since 

the critical perimeter length was kept approximately constant between the specimens, an increase in 

column rectangularity corresponds to a reduced column area. The energy absorption capacity of each 

connection, which was defined as the area under the load deflection curve, was also found to decrease 

as the column rectangularity was increased (Erdogan, Binici, & Ozcebe, 2011).  

Borges, Melo and Gomes (2013) tested thirteen isolated slab-column connections with and without 

openings and stud rail shear reinforcement supported on 200x600mm steel plates. Loads were applied 

to the slab through the steel plate and the slabs were supported along their edges by a series of plates 

and rods tied to the laboratory floor. For the tests with openings, one or two openings with widths 

equal to the minimum dimension of the steel plate were located adjacent to the short side of the steel 

plate. The experimental results were compared to predictions from ACI 318-11 and Model Code 

1990. Both codes were found to be generally conservative although the authors recommended using 

straight projections instead of radial projections, which are specified in ACI 318, when reducing the 

effective critical perimeter length (Borges, Melo, & Gomes, 2013).  

Eom, Song, Song, Kang, Yoon and Kang (2017) studied the influence of uneven shear transfer 

caused by unequal span lengths and the use of pre-assembled bar trusses as shear reinforcement on 

punching shear behaviour of slab-column connections. Four isolated slab-column connections 

representing interior columns were tested. One slab included no shear reinforcement, one was 

reinforced with conventional stirrups, and two were reinforced with pre-assembled bar trusses. The 

trusses did not intercept the flexural reinforcement and both orthogonal and radial layouts around the 

column were investigated. The slabs were loaded through a precast column with an aspect ratio of 

2.67 and were supported along their edges. The use of pre-assembled bar trusses in the orthogonal 

and radial layouts was found to increase the punching capacity by 42% and 49% respectively 

compared to the unreinforced specimen. This capacity increase was much higher than the 13% 

increase observed in the slab reinforced with stirrups. The use of a radial truss layout was determined 

to be more beneficial compared to the orthogonal layout when uneven shear transfer is anticipated 

(Eom, et al., 2017).  
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Sherif, Emara, Ibrahim and Magd (2005) tested five half scale slab-edge column connections to 

investigate the impact of column rectangularity and the ratio of the critical perimeter length, 𝑏𝑜, to the 

effective slab depth, 𝑑, on punching shear behaviour. The column aspect ratio was varied from 1 to 

2.5 and the ratio of the critical perimeter length to the effective slab depth ranged from 6.5 to 11. The 

slabs were 120mm thick and supported on three sides. The load was applied with an eccentricity of 

300mm with regards to the column center to simulate the behaviour of a continuous slab system 

under gravity loads. All five specimens failed in punching shear and shear stress concentrations near 

the column corners were observed. It was concluded that the punching capacity decreases as the 𝑏𝑜 𝑑⁄  

ratio increases due to a decreased level of confinement on the failure surface provided by the in-plane 

stresses in the slab. The ductility of the slab-edge column connections was found to decrease as the 

𝑏𝑜 𝑑⁄  ratio was decreased and increased as the column rectangularity was increased. No clear trends 

in deflection were observed in regards to varying column aspect ratios (Sherif, Emara, Ibrahim, & 

Magd, 2005).  

Anggadjaja and Teng (2008) tested fifteen 135mm thick slabs loaded through 180x900mm 

columns to investigate the impact of column rectangularity, gravity load level and cyclic biaxial 

loading on the connection strength, stiffness, ductility and drift capacity of slab-edge column 

connections. One slab was tested under gravity load only, two were tested under combined gravity 

and uniaxial lateral load, and two were tested under combined gravity and biaxial lateral load. It was 

observed that shear stresses concentrated around the short side of the column, and the shear stress 

magnitude decreased as the distance from the short side increased. The slab-edge column connections 

were found to behave more brittlely when the lateral load was applied perpendicular to the short side 

of the column. The use of rectangular columns was found to allow a larger moment to be transferred 

along the strong-axis of the column. However, it was observed that the stiffness in the weak column 

direction was lower than in the strong direction.  

Himawan and Teng (2014) studied the behaviour of post-tensioned slab-rectangular column 

connections under cyclic loading. Three slab specimens, loaded through a 180x900mm rectangular 

column, were tested. One slab was subjected to concentric punching only, whereas the remaining two 

specimens were subjected to lateral load in one or two directions respectively. The increase in shear 

strength due to prestressing for slabs supported on rectangular columns was found to be lower than 

that observed for slabs supported on square or circular columns (Himawan & Teng, 2014). As was 

observed by Anggadjaja and Teng (2008) the stiffness of the slab-column connections along the 
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strong direction, which is perpendicular to the short side of the column, was found to be higher than 

that perpendicular to the short side (Himawan & Teng, 2014). 

Oliveira, Regan and Melo (2004) tested fifteen reinforced concrete slabs cast from high strength 

concrete, which were supported on rectangular steel plates, with aspect ratios ranging from one to 

five, under different loading conditions. In five of the tests, loading was applied on all four slab edges 

and in the other ten tests, the loading was applied on two edges only. All fifteen slabs failed in 

punching shear, but the shape of the failure surface was found to be dependent on the load conditions. 

For slabs supported on a steel plate with an aspect ratio greater than or equal to three and loaded 

along the two slab edges perpendicular to the short side of the supported area, the failure surface did 

not extend around the longer side of the steel plate. Based on the experimental results, and a finite 

element analysis in SAP 2000, which is discussed in Section 2.6.3, it was concluded that the effective 

critical perimeter length is dependent on the column rectangularity and flexural loading conditions of 

the slab (Oliveira, Regan, & Melo, 2004). 

Sagaseta, Tassinari, Fernández Ruiz and Muttoni (2014) tested four slabs supported on 

260x780mm steel plates to investigate the influence of loading conditions on the punching shear 

capacity of reinforced concrete slabs supported on rectangular columns. All slabs except for one, in 

which the loading was applied on the two slab edges perpendicular to the long side of the steel plate, 

failed in punching. The load layout was found to have a significant impact on the punching capacity 

and overall behaviour of the slabs. During testing, the measured reaction forces were found to 

concentrate around the short sides of the steel plate (Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 

2014). The four slabs in this test series were used to calibrate the finite element model used in the 

parametric study presented in Chapter 5, and as such, a detailed discussion of this experimental 

program is provided in Sections 4.3.3.1 and 4.5.1.1.  

Teng, Cheong, Kuang and Geng (2004) investigated the punching shear behaviour of slab-column 

connections with rectangular columns and openings in the slab. Twenty isolated slab-column 

connections representing interior columns were tested. The slabs were loaded along the slab edges 

and supported on central column stubs. Three column sizes, 200x200mm, 200x600mm and 

200x1000mm, were investigated. The impact of different loading ratios in the two orthogonal 

directions was also studied. All twenty slabs failed in punching shear. It was observed that the 

punching capacity was reduced due to the presence of openings in the slab or if the load in the 

orthogonal direction perpendicular to the short side of the column was larger than the load 
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perpendicular to the long side. It was concluded that the assumption of uniform stress on the critical 

perimeter at d/2 from the column face is reasonable for slabs supported on square columns, but is 

unreasonable for slabs supported on rectangular columns (Teng, Cheong, Kuang, & Geng, 2004).  

Oliveira, Gomes and Melo (2014) also investigated the impact of openings on the punching shear 

capacity of slabs supported on rectangular columns in addition to the impact of unbalanced moments. 

Seven slabs supported on 200x500mm prestressed concrete columns were tested to failure. The slabs 

were loaded at discrete points along the slab edges and unbalanced moments were imposed by 

increasing the load magnitude on one side of the connection. All seven slabs failing in punching 

shear. It was concluded that the use of two 300x200mm openings along the long side of the column 

was less detrimental to the punching capacity than the use of one 400x400mm opening adjacent to the 

shorter column side when the moment was applied to the shorter column side. The inclusion of 

unbalanced moments in addition to gravity loads resulted in a 38% capacity loss for the slabs without 

openings compared to the slab subjected to concentric punching only. (Oliveira, Gomes, & Melo, 

2014). 

Habibi, Redl, Egberts, Cook and Mitchell (2012) evaluated the adequacy of the punching shear 

integrity reinforcement provisions in CSA A23.3-04. Seven specimens were tested to investigate the 

influence of slab thickness, integrity reinforcement length, integrity reinforcement distribution in 

slabs supported on rectangular columns and integrity reinforcement placement in slabs with drop 

panels. The slabs were loaded at eight discrete points along the radius of contraflexure and supported 

on a central column. Two of the seven specimens were supported on rectangular columns with 

dimensions of 200x300mm and 180x270mm respectively. Column rectangularity and the use of three 

times the amount of integrity reinforcement in one direction compared to the other was found to have 

an insignificant impact on the post-punching strength. However, the ultimate displacements of the 

slab column connections reinforced in this way, and supported on rectangular columns, were found to 

have lower ultimate deflections compared to the other specimens (Habibi, Redl, Egberts, Cook, & 

Mitchell, 2012). 

Teng, Chanthabouala, Lim and Hidayat (2018) investigated the punching shear behaviour of slabs 

cast from concrete with compressive strengths around 100MPa and with reinforcing ratios between 

0.28% and 1.43%. The slabs were loaded at eight discrete points and supported on column stubs 

which had sizes of 200x200mm, 200x600mm or 200x1000mm. The ACI 318-14 provisions were 

found to be unconservative for slabs with low reinforcement ratios (i.e. <0.7%). During the tests, 
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these slabs failed in punching after an initial flexural failure (Teng, Chanthabouala, Lim, & Hidayat, 

2018). Based on the results of this test program, and previous results from the authors and other 

researchers, a modified version of the empirical equation to estimate punching capacity proposed by 

Teng, Cheong, Kuang and Geng (2004) was proposed (Teng, Chanthabouala, Lim, & Hidayat, 2018). 

Regan and Rezai-Jorabi (1988) studied the punching shear behaviour of one-way slabs subjected to 

concentrated loads. Twenty-nine 100mm thick slabs were tested. Twenty-three of the slabs were 

supported at their ends and subjected to two central concentrated loads applied through plates. The 

aspect ratio of these load plates varied from one (75x75mm) to ten (1000x100mm). Most of the tests 

failed in one-way shear, but three failed in punching around one or both loads, or in a combination of 

one-way and punching shear. The final six tests reused some of the original twenty-three slabs. The 

location of one support was moved closer to the other and the slabs were subjected to one central 

concentrated load. The aspect ratio of the load plates in these six tests ranged from 1.33 (100x75mm) 

to 6 (600x100mm). Four of the six slabs failed in punching shear. The orientation of the load plates 

was found to affect the observed capacity. In cases where the longer plate dimension was parallel to 

the slab span a higher capacity was observed compared to when the longer plate dimension was 

perpendicular to the slab span. For small loaded areas the failure surface was similar to those 

observed in pure punching and the slab capacity was found to increase as the distance between the 

loads was increased. The one-way shear capacity of a reinforced concrete slab subjected to 

concentrated loads was found to be different than when the slab is subjected to a uniformly 

distributed load (Regan & Rezai-Jorabi, 1988). 

Simmonds (1970) conducted an in-depth analysis of the structural behaviour of flat slabs supported 

on rectangular columns using a combination of linear elastic analysis, which is discussed in Section 

2.6.3, and an experimental test of a one-third scale three bay by three bay continuous flat slab. The 

slab was supported on rectangular columns with a maximum column dimension equal to 40% of the 

distance between the column centerlines. This maximum column dimension was chosen since it 

marked the transition point from two-way to one-way slab action based on the results of the linear 

elastic analysis. In total, eight separate tests with different load magnitudes and locations were 

completed. Testing was stopped when one of the corner columns connections failed in punching. The 

structure was found to be stiffer in the direction of the maximum column dimension. The crack 

patterns of the slab confirmed that the behaviour of the slab was predominantly one-way. Based on 

the results of the analytical and experimental study, Simmonds concluded that the maximum 
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deflection and bending moments in a flat slab are reduced as the column cross-section is elongated in 

one direction (1970). 

2.4 Mechanical Models 

In addition to the numerous experimental and finite element studies of punching shear behaviour, 

many researchers have presented mechanical models to estimate the punching capacity of slab-

column connections. In this section, some of the most popular mechanical models will be briefly 

summarized. Many additional models such as the model by Bazant and Cao (1987), which is based on 

fracture mechanics, and many modified versions of the Kinnunen and Nylander model, such as those 

proposed by Georgopoulos (1988, 1989) and Broms (1990) exist, but are not presented here. Many of 

these additional models, and the models discussed in this section are summarized in CEB Bulletin 

168 (1985) and fib Bulletin 12 (FIB, 2001). 

2.4.1 Kinnunen and Nylander 

The model presented by Kinnunen and Nylander is a plasticity-based model which was derived from 

tests of circular isolated slab-column specimens with slab ring reinforcement. The original model was 

proposed in 1960, and later modified in 1963 to account for flexural reinforcement installed in two 

orthogonal directions, and to account for dowel action. The model, which is shown in Figure 2-6, 

assumes that a truncated cone of concrete is bounded by a shear crack. Beyond this shear crack, the 

slab is divided into segments which are assumed to rotate rigidly. These slab segments are assumed to 

be supported by a fictitious conical shell, which is subjected to compressive stresses, between the 

column face and base of the shear crack. To estimate the ultimate capacity of the slab-column 

connection the equilibrium of the internal forces, which are dependent on the slab rotation, and a 

failure criterion are used (Regan & Braestrup, 1985). The failure criterion is based on two conditions, 

a maximum value of the inclined compressive stress and a maximum value of the tangential 

compressive strain at the shear crack (FIB, 2001; Menétrey P. , 1996). The assumed failure mode is a 

compression failure of the conical shell. The assumed failure mode does not match experimental 

observations since punching capacity has been shown to be related to the concrete’s tensile capacity 

(Menétrey P. , 1996).  

However, the model presented by Kinnunen and Nylander was the first mechanical model for 

punching shear which resulted in capacity predictions that agreed well with available experimental 

results and allowed for visualization of the flow of forces in the vicinity of the slab-column 
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connection (FIB, 2001). Additionally, the model allowed the failure mode, either flexural or 

punching, to be determined, and allowed the slab deformations to be approximated (Regan & 

Braestrup, 1985).  

 

 

Figure 2-6: Punching Shear Model by Kinnunen and Nylander (1960), Adapted from (Kinnunen 

& Nylander, 1960), Reproduced with Permission 

2.4.2 Upper Bound Plasticity Approach 

Braestrup, Nielsen, Jensen and Bach proposed an upper bound plasticity solution to estimate the 

punching capacity of reinforced concrete slabs in 1976. The punching capacity was calculated by 

equating the rate of external work due to the applied load to the internal work dissipated to create the 

failure surface shown in Figure 2-7. To derive the equations used in the model, it was assumed that all 

deformation occurred within the rotation symmetric failure surface around the slab-column 

connection (Menétrey P. , 1996). The concrete contained within the failure surface was assumed to 

punch out of the slab while the remaining concrete was assumed to remain rigid. The yield criterion 

used in the model was based on the modified Coulomb failure criterion and the associated flow rule. 

The concrete was also assumed to be a rigid, perfectly plastic material. The impact of dowel action 

was neglected resulting in the flexural reinforcing ratio having no impact on the predicted punching 

strength. The predicted punching capacity was found to be strongly dependent on the assumed 

concrete tensile strength (Regan & Braestrup, 1985).  
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Figure 2-7: Failure Surface Considered by Braestrup et al. Reproduced from CEB Bulletin 168:-

Punching Shear in Reinforced Concrete a state of art report by P.E. Regan and M.W. Braestrup 

(January 1985) with permission from the International Federation for Structural Concrete (fib) 

2.4.3 Nölting Model 

In 1984, Nölting proposed a method for estimating the punching shear capacity of flat slabs, one-way 

slabs, footings and slabs with eccentrically loaded columns based on an inclined compression 

approach. In the model, all inclined cracks near the location of concentrated loads or supports were 

assumed to be due to punching shear regardless of the slab reinforcement. Failure was assumed to 

occur when the compressive diagonal strain in the concrete reached a value of -4.5%. The magnitude 

of this diagonal strain was dependent on the applied load level and considered the relationship 

between the load and the critical moment at the column or loaded area, the moment and the horizontal 

strain in the concrete, and the horizontal and inclined strains in the concrete. Due to the difficulty of 

using the model, Nölting provided tabulated moments for certain typical slab types and for all others 

numerical coefficients derived from FEA were provided (Regan & Braestrup, 1985).  

2.4.4 Models by Alexander and Simmonds 

In 1987, Alexander and Simmonds proposed the first of their two models to estimate the punching 

capacity of slab-column connections. The first model they proposed, shown in Figure 2-8, was based 

on a three-dimensional truss which was made up of linear concrete compressive struts and steel 

tension ties. The model was an expansion of the truss model for edge slab-column connections 

conceptualized, but never fully developed, by Van Dusen in 1985. Two types of compression struts 

were assumed, those parallel to the plane of the slab, referred to as anchoring struts, and those 
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inclined with regard to the plane of the slab, referred to as shear struts. Both types of struts were tied 

to the column by the strut steel (Alexander & Simmonds, 1987).  

 

Figure 2-8: Alexander and Simmonds Truss Model, (Alexander & Simmonds, 1987) Authorized 

Reprint from ACI Structural Journal, Volume 84, Issue 3 (1987) 

To estimate the punching capacity, it was assumed that the strut steel yielded. Based on this 

assumption, it was then assumed that the compressive capacity of the concrete struts in plane would 

never be exceeded. Therefore, failure of the slab-column connection was assumed to occur when the 

concrete could no longer resist the out of plane force component in the compression strut. This out of 

plane force is a measure of the slab’s ability to confine the flexural reinforcing bars, and is a function 

of the tributary width of each bar, the reinforcing cover and the tensile strength of the concrete. The 

advantages of the truss model were that it explained the load path around a slab-column connection, it 

explained the role of the flexural reinforcement on the punching capacity, and the model was capable 

of accounting for column rectangularity if modification factors were applied and each face of the 

column was considered individually (Alexander & Simmonds, 1987).  

Based on the results of experimental tests conducted after the truss model was published, 

Alexander and Simmonds determined that the radial compression struts were curved, as shown in 

Figure 2-9, instead of linear as originally assumed. To account for the struts being curved, 

modifications to the mechanics used in the truss model were required. In 1992, Alexander and 

Simmonds proposed an improved version of the truss model based on the shear stress on a critical 
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section and radial arching action, which was referred to as the bond model (Alexander & Simmonds, 

1992; Lantsoght, van der Veen, Walraven, & de Boer, 2015).  

 

Figure 2-9: Curved Compression Strut Used in Bond Model (Alexander & Simmonds, 1992), 

Authorized reprint from ACI Structural Journal, Volume 89, Issue 3 (1992) 

The bond model is only applicable for slabs with orthogonal reinforcing layouts and assumes that 

all load is carried from the slab to the column by radial strips. The shear forces are assumed to be 

transferred from the slab to the column by the radial compression arches. The minimum force in each 

arch occurs where the arch intersects the flexural reinforcing and the maximum force occurs at the 

column face. Equilibrium of the radial strips is considered in the bond model and the model considers 

both the flexural capacity of the radial strips and the shear capacity of the slab quadrants adjacent to 

the radial strips. Punching failure is assumed to occur due to the slab’s inability to sustain the force 

gradients present in the flexural reinforcement in the area near the slab-column connection. These 

force gradients are assumed to be limited by either the bond between the reinforcing bars and the 

concrete or the extent of yielding along the reinforcement length. Unlike the truss model, which was 

capable of accounting for column rectangularity, the bond model does not properly account for 

column rectangularity as the model assumes all force is carried by arching action. As the column 

width increases, there is a transition from two-way to one-way shear action which results in the force 

being carried by a combination of arching and beam action. However, Alexander and Simmonds 

stated that the bond model should be conservative if the effect of rectangularity is neglected for slabs 

which were commonly used in practice at the time of its derivation (Alexander & Simmonds, 1992). 

2.4.5 Rankin and Long Yield Line Model 

In 1987, Rankin and Long presented a model to estimate the punching capacity of slab-column 

connections based on three failure modes, yielding of reinforcement, crushing of concrete or internal 
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diagonal cracking. Failures due to reinforcement yielding or concrete crushing were defined as 

flexural failures and failures due to internal inclined cracking were defined as shear failures. The 

model related the punching capacity of the slab to the flexural behaviour of the slab. For lightly 

reinforced slabs the final failure mode approaches that assumed in the yield line method as the 

reinforcing ratio is reduced since failure occurs after extensive yielding of the flexural reinforcement. 

In heavily reinforced slabs, the extent of yielding becomes localized, and the failure mode becomes 

similar to that of a localized concrete compression failure near the column. As such, the punching 

capacity should lie somewhere between the extremes of localized compression failure and the full 

yield line pattern, shown in Figure 2-10 (Rankin & Long, 1987). 

 

Figure 2-10: Yield Line Pattern for Isolated Slab-Column Specimen (taken from Rankin & Long, 

1987), Reproduced with Permission from Institution of Civil Engineers 

The shear capacity of the slab at flexural failure, 𝑃𝑓𝑙𝑒𝑥 (N), assuming the full yield line pattern 

shown in Figure 2-10 can be calculated using equation 2.1. 

𝑃𝑓𝑙𝑒𝑥 = 8(
𝑠

𝑎 − 𝑐
− 0.172)𝑀𝑏 (2. 1) 

where 𝑠 is the side length of a conventional isolated slab-column specimen (mm), 𝑐 is the length of 

the column dimension (mm), and 𝑎 is the distance between supports in a conventional isolated slab-

column specimen (mm, typically assumed as 0.4L) (Rankin & Long, 1987).  
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The shear capacity of a slab failing due to localized compression at the column face can be 

calculated using equation 2.2 

𝑃 = (
25

(ln(2.5𝑎 𝑐⁄ ))1.5
) 0.333𝑓𝑐

′𝑑2 (2. 2) 

where 0.333𝑓𝑐
′𝑑2 represents the balanced moment of resistance and is taken from an empirical 

equation by Whitney (1937) (Rankin & Long, 1987).  

The punching capacity of the slab is calculated as the minimum of two equations. One equation is 

used to estimate the capacity of a slab-column connection failing in flexural punching, which is 

characterized as a punching failure where partial yielding of the slab reinforcement has occurred. The 

second equation is used to estimate the “shear” punching capacity of slabs which fail before the 

reinforcement yields, or the concrete crushes (Rankin & Long, 1987).  

The flexural punching capacity of a slab-column connection, 𝑃𝑣𝑓 (N), is calculated using equation 

2.3 and must be less than a maximum value computed with equation 2.4. 

𝑃𝑣𝑓 = (8 (
𝑠

𝑎 − 𝑐
− 0.172) − (8(

𝑠

𝑎 − 𝑐
− 0.172) −

25
(𝑙𝑛(2.5𝑎 𝑐⁄ ))1.5

𝑟𝑓
)

𝑀𝑏

0.333𝑓𝑐
′𝑑2)𝑀𝑏 (2. 3) 

𝑃𝑣𝑓,𝑚𝑎𝑥 = (

25
(ln(2.5𝑎 𝑐⁄ ))1.5

𝑟𝑓
)0.333𝑓𝑐

′𝑑2 (2. 4) 

where 𝑟𝑓 is a column shape factor to account for stress concentrations, 𝑓𝑐
′ is the concrete compressive 

strength, and 𝑀𝑏 is the flexural capacity of the slab (Nmm). The column shape factor is equal to 1 for 

circular columns and 1.15 for square columns (Rankin & Long, 1987).  

The “shear” punching capacity, 𝑃𝑣𝑠 (N), is calculated using equation 2.5 

𝑃𝑣𝑠 = 1.66√𝑓𝑐
′(𝑐 + 𝑑) 𝑑 (100𝜌)0.25 (2. 5) 

where 𝑑 is the effective slab depth, and 𝜌 is the flexural reinforcement ratio (Rankin & Long, 1987).  

2.4.6 Shehata and Regan Model 

Shehata and Regan proposed an improved version of the Kinnunen and Nylander model in 1989. As 

with the model proposed by Kinnunen and Nylander (1960), the slab was assumed to be divided into 



 

 33 

rigid segments which rotate about a point, denoted the center of rotation, located at the neutral axis of 

the slab at the column face. Before failure, it was assumed that a rigid wedge element, which is 

bounded by the inclined cracks in the slab, and the initial circumferential crack around the column on 

the slab surface, breaks away from reach rigid segment and rotates independently about the center of 

rotation. Three equilibrium states in the radial plane are used to relate the slab rotation, neutral axis 

depth and inclination of the compressive force at the column face to the applied load. Failure is 

defined as one of three states: 

1. When the inclination of the compressive force reaches 20 degrees the front portion of the 

radial segment, which is in compression, fails due to tensile splitting.  

2. Radial crushing of the concrete is assumed to occur if the average radial strain on the 

compressed face equals 0.0035. 

3. Tangential crushing of concrete is assumed to occur if at a distance x from the column face, 

where x is equivalent to the neutral axis depth, the tangential strain reaches 0.0035 

(Shehata & Regan, 1989). 

The model proposed by Shehata and Regan is an improvement over that proposed by Kinnunen and 

Nylander since the dowel action forces are calculated from equilibrium instead of assumed, the slab 

deformation on top of the column and bounded by the shear crack is accounted for, and a more 

complete failure definition is used (Shehata & Regan, 1989). 

2.4.7 Critical Shear Crack Theory (CSCT) 

The Critical Shear Crack Theory (CSCT) is a more recent mechanical model for punching shear 

proposed by Muttoni (2008). Like the model developed by Kinnunen and Nylander, the CSCT relates 

punching capacity to slab rotation. The CSCT assumes that the punching capacity of a slab-column 

connection decreases as the slab rotation increases. The CSCT assumes that the shear strength of a 

slab-column connection is decreased due to the existence of a critical shear crack which propagates 

through the slab and intersects the inclined compression strut transferring shear forces from the slab 

to the column. As this critical shear crack opens the strength of the inclined compression strut is 

decreased until punching failure occurs. Muttoni and Schwartz (1991) assumed that the width of this 

critical shear crack is proportional to the product of the slab rotation, 𝜓, and the effective slab depth, 

𝑑, as shown in Figure 2-11. 



 

 34 

 

Figure 2-11: Relationship between the critical shear crack width and slab thickness and rotation 

(Muttoni, 2008), Authorized reprint from ACI Structural Journal, Volume 105, Number 4, 2008) 

The amount of shear which can be transferred across the critical crack is assumed to be dependent 

on the crack roughness, which is estimated using as a function of the maximum aggregate size. Based 

on research by Walraven (1981) and Vecchio and Collins (1986) the capacity of the critical shear 

crack to transfer shear force is approximated by dividing the nominal crack width, 𝜓𝑑, by 𝑑𝑔0 + 𝑑𝑔, 

where 𝑑𝑔 is the maximum aggregate size (mm), and 𝑑𝑔0 is the reference aggregate size of 16mm. 

Multiplying the slab rotation, 𝜓, by 𝑑 (𝑑𝑔0 + 𝑑𝑔)⁄  has the additional benefit of cancelling out the 

effects of slab thickness and aggregate size in the model formulation. Using the assumptions and 

factors discussed above an improved version of the CSCT failure criterion was published in 2003 by 

Muttoni (Muttoni, 2008). The improved version of the CSCT failure criterion is discussed in 

Subsection 2.5.5.  

To apply the CSCT, the designer must estimate the load-rotation response of the slab. When 

evaluating experimental tests, the rotations can be directly measured or can be calculated from 

measured deflections by assuming a conical deformation pattern of the slab beyond the column 

region. In design, the load rotation relationship can be estimated using nonlinear finite element 

analysis or simplified design equations. If different reinforcing ratios are used in each orthogonal 

direction, the maximum rotation of the slab should be used to estimate the punching capacity of the 

slab-column connection (Muttoni, 2008). 

The CSCT is used as the basis of the current punching provisions in Model Code 2010 (Muttoni, 

Fernández Ruiz, Bentz, Foster, & Sigrist, 2013). Earlier versions of the CSCT were also adopted in 

the Swiss concrete design codes SIA 262 (2003) (Muttoni, Fernández Ruiz, Bentz, Foster, & Sigrist, 

2013) and SIA 162 (1993) (Muttoni & Fernández Ruiz, 2008). The CSCT has also proven to be 

applicable to other reinforced concrete members without shear reinforcement with minor 

modifications. For example, it can be used to estimate the shear capacity of one-way slabs and beams 
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without transverse reinforcement by assuming the crack width is proportional to the product of the 

effective slab depth, 𝑑 , and the longitudinal strain at a depth of 0.6d from the compression surface, 𝜀 

(Muttoni & Fernández Ruiz, 2008). The CSCT has also been expanded to estimate the punching 

capacity of slabs which have transverse (shear) reinforcement (Fernández Ruiz & Muttoni, 2009). 

2.5 Code Provisions 

In this section a detailed discussion of the current punching shear design code provisions from ACI 

318M-14, Eurocode 2 (EC2) 2004 and Model Code 2010 will be provided. The historical 

development of each of the above codes is also briefly discussed. Finally, a discussion of the design 

equations derived from the Critical Shear Crack Theory (CSCT) presented in Subsection 2.4.7 is 

provided. Most of the provisions discussed will be focused on interior slab-column connections 

subjected to concentric punching shear without shear reinforcement.  

Many parameters such as the concrete compressive strength, slab flexural reinforcement ratio, slab 

effective depth, ratio of column perimeter length to slab depth, and shear span ratio to effective depth 

have been found to influence the punching capacity of slab-column connections (Kueres, Siburg, 

Herbrand, Classen, & Hegger, 2017). Other research has shown that additional factors such as 

restraint forces due to frame action and column shape also have a significant impact on the punching 

capacity of slab-connections (ASCE-ACI Committee 426, 1974). However, current codes of practice 

differ in their treatment of many of these parameters or do not account for them at all.  

2.5.1 Critical Perimeter Concept 

Current and historical design codes have many fundamental differences in their treatment of punching 

shear of reinforced concrete flat slabs. For example, some codes, such as Eurocode 2 (2004), account 

for the impact of the flexural reinforcing ratio on the impact of punching capacity, whereas others, 

such as ACI 318M-14, do not. However, all current major design codes for punching shear of 

reinforced concrete slabs are based on the same fundamental concept, which is the critical perimeter 

concept. Each code uses a critical perimeter where the shear stresses are typically assumed to be 

uniform, and these stresses, along with an effective critical perimeter length, are used to estimate the 

punching capacity of the slab-column connection being designed.  

When designing a reinforced concrete beam the nominal shear stresses on a cross-section are used 

to arrive at a shear design for the beam. The punching shear design of two-way slabs can be 

completed using a similar methodology if the total punching load is divided by the area of an assumed 
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control surface or critical perimeter. The critical perimeter assumed in current design codes are 

typically vertical rectangular or cylindrical surfaces around the slab-column connection. These 

perimeters are assumed at a set distance from the face of the column or loaded area based on 

experimental observations or the chosen mechanical model from which the code provisions are 

derived. The critical perimeter concept was introduced in 1913 by Talbot, based on his observations 

from tests of square footings loaded through square columns. Talbot found that the shear capacity of 

the footings could be accurately predicted by considering the nominal shear stresses on a critical 

perimeter located at a distance of d from the column face, where d is the effective flexural depth of 

the footing (Regan & Braestrup, 1985). 

To make use of the critical perimeter concept in design, the nominal shear stress on the assumed 

critical perimeter is compared to a fraction of the concrete tensile strength, since the tensile strength 

of concrete has been found to be related to the shear strength of concrete. The critical perimeter 

concept is a helpful assumption to simplify design codes but does not necessarily represent the 

mechanical behaviour of a reinforced concrete flat slab failing in punching shear. Even though it does 

not represent the complex mechanics of a slab-column connection, the critical perimeter concept has 

been found by many researchers to lead to reasonable predictions of punching capacity if proper 

factors are applied (Regan & Braestrup, 1985). Due to its simplicity, the critical perimeter concept is 

used in all major design codes, through the shape and assumed location of the perimeter varies 

between codes.  

2.5.2 ACI 318M-14 

The current version of the ACI 318 code, ACI 318M-14, is the result of over 100 years of research 

and practical engineering experience regarding the behaviour of concrete. The first official American 

concrete code was published in 1908 by the National Association of Cement Users (NACU), who by 

1920 were known as the American Concrete Institute (ACI) (Committee of Laws and Ordinances, 

1908). The first punching shear design provisions were included in ACI Standard Specification 

Number 23, which was released in 1920. The punching provisions were based on a working stress 

design methodology considering two critical sections, one vertical surface at the edge of the column 

capital, and one surface inclined at 45 degrees from the edge of the column capital carrying shear via 

diagonal tension. The stresses on these two surfaces were compared to maximum values which were 

fractions of the concrete compressive strength (American Concrete Institute, 1920). In the 1927 

edition of the code only one critical section was used instead of two. The new critical section was 
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assumed to be vertical and located at a distance d from the face of the column capital or drop panel 

(ACI Committee E-1, 1927). Between 1936 and 1956, the punching provisions were largely 

unchanged, as only minor modifications were made to maximum allowable stresses and the detailing 

requirements (ACI Committee 501, 1936; ACI Committee 318, 1956). 

The 1963 edition of ACI 318 represented a large change from the previous codes. The 1963 edition 

of ACI 318 was the first ACI code to include punching provisions for both working stress and 

ultimate stress design methods. The biggest changes in this code compared to previous versions were 

in regard to the assumed critical perimeter and maximum allowable stresses. Based on research 

completed before 1962, ASCE-ACI Committee 326, which is now known as ASCE-ACI Committee 

426, recommended the critical perimeter be located at a distance of d/2 from the face of the column or 

drop panel, which differed from Moe’s recommendations. The committee made this recommendation 

since most of the experimental punching shear test results available at the time displayed a pyramid 

shaped failure surface with an angle of approximately 45 degrees. This failure surface is under a 

complex state of stress due to combined bending and shear stresses and starts at the neutral axis of the 

slab. The committee believed that the use of the failure surface located at d/2 from the face of the 

column was simpler than using a failure surface at the column perimeter, as recommended by Moe. 

The design equation presented by Moe, which was derived assuming the critical perimeter to be the 

column perimeter, required a parameter that accounted for the ratio of the column size, c, to the 

effective depth of the slab, d (Moe, 1961; ACI Committee 318, 1965). The committee believed that 

the impact of c/d could be accounted for by using a vertical critical perimeter located at d/2 from the 

column face. It was assumed that the use of the perimeter at d/2 resulted in a shear stress distribution 

which was independent of the c/d ratio since the assumed critical surface shared a point with the 

actual failure surface, and had an area which was proportional to that of the actual failure surface 

(ACI Committee 318, 1965). The ultimate stress on the chosen failure surface was assumed equal to 

4√𝑓𝑐
′ (imperial units, where 𝑓𝑐

′ is in psi) or 0.33√𝑓𝑐
′ (SI units, where 𝑓𝑐

′ is in MPa) even for 

irregularly shaped columns (ACI Committee 318, 1965). The use of √𝑓𝑐
′ to estimate shear capacity of 

reinforced concrete was a change from the previous versions of the code which is still used in the 

current ACI provisions. Finally, ACI 318-63 also added provisions requiring designers to check both 

one-way and two-way shear capacity, provisions for shear reinforced slabs, provisions for the design 

of slabs with openings near the slab-column connection and mentioned that the negative impact of 
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unbalanced moments on punching capacity needed to be accounted for, although no specific 

provisions were provided (ACI Committee 318, 1963; ACI Committee 318, 1965). 

The assumption that the use of a critical perimeter located at d/2 resulted in uniform shear stress 

distributions for any size column was later found to be invalid, but researchers have shown that the 

use of a critical perimeter at d/2 leads to the most accurate estimation of punching capacity. Many 

current codes other than ACI 318M-14 including Model Code 2010, and SIA 232:2013 (Switzerland) 

and many historical codes such as Model Code 1978 and DIN 1045 (Germany) have used a critical 

perimeter located at d/2 from the column face (Kueres, Siburg, Herbrand, Classen, & Hegger, 2017). 

The critical perimeter assumed in ACI 318M-14 is shown in Figure 2-12. 

 

Figure 2-12: Critical Perimeter Assumed in ACI 318M-14 (ACI Committee 318, 2014) 

The current ACI 318M-14 provisions for punching shear are very similar to those in ACI 318-63 

for concentric punching around square columns. However, the assumption of the shear stress on the 

critical perimeter being independent of column size was incorrect and as such two additional 

equations for the shear capacity along the critical perimeter were added. The two-way shear capacity 

for a slab without shear reinforcement along the critical perimeter, 𝑣𝑐 (MPa), is the minimum of 

equations 2.6, 2.7 and 2.8, 

0.33𝜆√𝑓𝑐
′ (2. 6)  

0.17 (1 + 2
𝛽⁄ )𝜆√𝑓𝑐

′ (2. 7) 

0.083 (2 + 𝛼𝑠
𝑑

𝑏𝑜
⁄ ) 𝜆√𝑓𝑐

′ (2. 8) 

where 𝜆 is a term to account for the density of concrete, 𝑓𝑐
′ is the concrete compressive strength 

(MPa), 𝛽 is the ratio of the length of the long and short sides of the column, 𝛼𝑠 is a constant 
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dependent on the column location (which equals 40 for interior columns (SI units)), 𝑑 is the average 

effective depth (mm), and 𝑏𝑜 is the length of the critical perimeter (mm). Equations 2.7 and 2.8 were 

added in 1977 and 1989 respectively to account for cases where the assumption of uniform stress on 

the critical perimeter for all column sizes and shapes (equation 2.6) was found to be unconservative. 

Equation 2.7 is largely derived from experimental results published in 1971 by Hawkins, Fallsen and 

Hinojosa and accounts for stress concentrations at the corners of rectangular or oddly shaped columns 

(ACI Committee 318, 2014; ASCE-ACI Committee 426, 1974; Al-Yousif & Regan, 2003; Mitchell, 

Cook, & Dilger, 2005). As discussed in Subsection 2.3.3, many other researchers have also observed 

a negative impact of column rectangularity on punching capacity (Oliveira, Regan, & Melo, 2004; 

Himawan & Teng, 2014; Paiva, Ferreira, Oliveira, Lima Neto, & Teixeira, 2015; Filatov, 2017; Shu, 

Belletti, Muttoni, Scolari, & Plos, 2017). Equation 2.8 was added based on tests by Vanderbilt (1972) 

that indicated that the maximum nominal shear stress on the critical perimeter at d/2 from the column 

face decreased as the ratio of the critical perimeter length, 𝑏𝑜, to the effective slab depth, 𝑑, increased 

(ACI Committee 318, 2014) 

After determining the governing shear stress along the critical perimeter, the punching capacity of 

the slab-column connection, 𝑉 (kN), is calculated according to equation 2.9. 

𝑉 = 𝑣𝑐,𝑚𝑖𝑛𝑏𝑜𝑑 ÷ 1000 (2. 9) 

where 𝑣𝑐𝑚𝑖𝑛 is the governing shear stress along the critical perimeter which is the minimum of 

equation 2.6, 2.7, and 2.8 (MPa) and 𝑏𝑜 and 𝑑 are as previously defined (mm).  

2.5.3 Eurocode 2 (2004) 

The primary reason for the development of the Eurocodes was to harmonize the multiple national 

design codes used in the different European nations. The adoption of the Eurocodes allowed the same 

design code framework to be used throughout Europe, while allowing the individual nations to retain 

control of certain parameters, such as load levels (Johnson, 2009). 

As with the 2004 edition of Eurocode 2 (EC2), which was primarily based on Model Code 1990 

(European Concrete Platform ASBL, 2008), the original draft of Eurocode 2, released in 1991, 

ENV1992-1-1, was greatly influenced by the most recent Model Code available at the time. In 

addition to Model Code 1978, ENV1992-1-1 was also influenced by four British Standards, BS 8110 

– Structural Use of Concrete: Parts 1-3 (1985) and BS 5400-4 – Steel, Concrete and Composite 

Bridges: Part 4 (1984) (The Concrete Centre, part of the MPA, n.d.). Unlike EC2 (2004), which does 
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not account for column rectangularity when calculating the punching resistance of concentrically 

loaded slab-column connections, ENV 1992-1-1 accounted for column rectangularity by reducing the 

effective critical perimeter length if the column dimensions exceeded specific values (Al-Yousif & 

Regan, 2003; Teng, Cheong, Kuang, & Geng, 2004). The lengths of the straight portions of the 

effective critical perimeter in ENV 1992-1-1 matched the lengths of the straight portions of the 

critical perimeter assumed to carry two-way shear in Model Code 1978. However, the critical 

perimeter assumed in ENV 1992-1-1 had two major differences compared to that used in Model Code 

1978. Firstly, the portion of the critical perimeter assumed to carry one-way shear in Model Code 

1978 was neglected in the ENV 1992-1-1. Secondly, even though the same lengths for the straight 

portions were assumed in both codes the critical perimeters were located at different distances. The 

critical perimeter was located at a distance of d/2 from the column face in Model Code 1978, and at a 

distance of 1.5d from the column face in ENV 1992-1-1, which matched the critical perimeter 

assumed in the British design standards. Examples of the critical perimeters assumed in ENV 1992-1-

1 around typical columns and large rectangular columns are shown in Figure 2-13.  

  
 

 

Figure 2-13: Critical Perimeters Assumed in ENV 1992-1-1 (European Comittee for 

Standardization (CEN), 1993) 
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EC2 (2004), also known as EN 1992-1-1 (2004) was primarily based of Model Code 1990, and 

included many changes compared to its draft form, ENV 1992-1-1 (European Concrete Platform 

ASBL, 2008; Ricker & Siburg, 2016; Walraven & Bigaj, 2011; Gardner N. J., 2011). Firstly, the 

critical perimeter location was moved from a distance of 1.5d to 2d from the column face to match the 

critical perimeter used in Model Code 1990. Secondly, the reductions in the effective critical 

perimeter length to account for column rectangularity were removed (European Commitee For 

Standardization, 2004; European Concrete Platform ASBL, 2008). The assumed critical perimeter 

was modified from 1.5d to 2d since the further perimeter was found to result in a more uniform shear 

stress distribution even for different column sizes. The use of the critical perimeter at 2d also allowed 

the same methodology used to calculate shear in members without shear reinforcement to be used for 

slabs (European Concrete Platform ASBL, 2008; FIB, 2010). Secondly, the punching capacity 

equation was modified to resemble that used in Model Code 1990, since an error was found in the 

derivation of the ENV 1992-1-1 equation which resulted in unconservative predictions for high 

strength concretes (European Concrete Platform ASBL, 2008).  

According to EC2 (2004), the nominal punching capacity along the critical perimeter, 𝑣𝑅𝑑,𝑐 (MPa), 

can be calculated according to equation 2.10 

𝑣𝑅𝑑,𝑐 = 𝐶𝑅𝑑,𝑐  𝑘 (100 𝜌𝑙  𝑓𝑐𝑘)
1
3 (2. 10) 

where 𝑓𝑐𝑘 is the characteristic concrete strength (MPa), 𝑘 is a size effect factor which is equal to 

1 + √200 𝑑⁄ ≤ 2.0 where 𝑑 is the average effective depth (mm), 𝜌𝑙 is a term based on the flexural 

reinforcement ratio in each orthogonal direction which is equal to √𝑝𝑙𝑦 𝜌𝑙𝑧  ≤ 0.02 where 𝜌𝑙𝑦 and 𝜌𝑙𝑧 

are the reinforcement ratios for a slab width equal to the column width plus 3𝑑 on each column side 

in each orthogonal direction, and 𝐶𝑅𝑑,𝑐 is a constant equal to 0.18 𝛾𝑐⁄ , where 𝛾𝑐 is a safety factor 

found in the national annexes that typically equals 1.5 (European Commitee For Standardization, 

2004). Since equation 2.10 tends to 0 as the reinforcing ratio approaches 0, which was also the case 

in Model Code 1990, an equation was added to calculate a minimum punching resistance around the 

critical perimeter (European Concrete Platform ASBL, 2008). The minimum punching resistance 

around the critical perimeter, 𝑣𝑚𝑖𝑛 (MPa), is calculated using equation 2.11 (European Commitee For 

Standardization, 2004). 

𝑣𝑚𝑖𝑛 = 0.035 𝑘
3
2 𝑓𝑐𝑘

1
2 (2. 11) 
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EC2 (2004) also requires the designer to check the punching capacity based on a maximum stress 

around the column perimeter. The resistance of the slab-column connection along the column 

perimeter, 𝑣𝑅𝑑,𝑚𝑎𝑥 (MPa), is calculated according to equation 2.12.  

𝑣𝑅𝑑,𝑚𝑎𝑥 = 0.4 [0.6 (1 − 𝑓𝑐𝑘 250⁄ )] 𝑓𝑐𝑑 (2. 12) 

where 𝑓𝑐𝑑 is the design concrete strength (MPa) which is calculated as 𝛼𝑐𝑐𝑓𝑐𝑘/𝛾𝑐 where 𝛼𝑐𝑐 is a 

factor to account for long term effects with a recommended value of 1 (European Commitee For 

Standardization, 2004). In equation 2.12 the (1 − 𝑓𝑐𝑘 250⁄ ) term accounts for reduced strength of the 

compression struts in cracked concrete due to lateral tensile stresses (Kueres, Siburg, Herbrand, 

Classen, & Hegger, 2017; Ricker & Siburg, 2016).  

The punching capacity of the slab-column connection according to EC2 (2004) is determined as the 

minimum of the capacity based on the shear stress along the critical perimeter at 2d and along the 

column perimeter. To compute the punching capacity based on the column perimeter 𝑣𝑅𝑑,𝑚𝑎𝑥 is 

multiplied by the column perimeter and the average effective depth. The punching capacity based on 

the shear stress at the critical perimeter is calculated using equation 2.13 

𝑉2𝑑 = 𝑣 𝑢1 𝑑 (2. 13) 

where 𝑉2𝑑 is the punching capacity (N), 𝑣 is maximum of the shear stresses calculated from 

equations 2.10 and 2.11 (MPa), 𝑑 is the average effective slab depth (mm) and 𝑢1 is the length of the 

critical perimeter located at 2d from the column face. The critical perimeter assumed in EC2-2004 is 

shown in Figure 2-14. 

 

Figure 2-14: EC2 (2004) Critical Perimeter (European Commitee For Standardization, 2004) 
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As previously mentioned EC2 (2004) does not account for column rectangularity when calculating 

the punching resistance of slabs subjected to concentric loading. However, EC2 does account for 

column rectangularity in cases where unbalanced moments are transferred to the column.  

In cases where the support reaction is eccentric with regards to the critical perimeter or column 

perimeter, the shear stress due to the applied loading, 𝑣𝐸𝑑 (MPa), is calculated using equation (2.14) 

𝑣𝐸𝑑 = 𝛽 
𝑉𝐸𝑑

𝑢1𝑑
(2. 14) 

where 𝑉𝐸𝑑 is the applied shear force (N) and 𝛽 is calculated using equation 2.15 (European 

Commitee For Standardization, 2004) 

𝛽 = 1 + 𝑘 
𝑀𝐸𝑑

𝑉𝐸𝑑
 
𝑢1

𝑊1

(2. 15) 

where 𝑘 is a coefficient which depends on the ratio of the minimum column dimension to the 

maximum column dimension, 𝑀𝐸𝑑 is the design value of the applied internal bending moment 

(Nmm) and 𝑊1 is a term to account for the distribution of shear on the critical perimeter (European 

Commitee For Standardization, 2004). For a rectangular column 𝑊1 is calculated according to 

equation 2.16. 

𝑊1 = 
𝑐1

2

2
+ 𝑐1𝑐2 + 4𝑐2𝑑 + 16𝑑2 + 2𝜋𝑑𝑐1 (2. 16) 

where 𝑐1 is the column dimension parallel to the load eccentricity and 𝑐2 is the column dimension 

perpendicular to the load eccentricity (European Commitee For Standardization, 2004). 

For interior columns with rectangular cross-sections where the reaction is eccentric about both axes 

an approximate expression for 𝛽, shown in equation 2.17, is provided.  

𝛽 = 1 + 1.8√(
𝑒𝑦

𝑏𝑧
)
2

+ (
𝑒𝑧

𝑏𝑦
)

2

(2. 17) 

where 𝑒𝑦 and 𝑒𝑧 are the eccentricities along the y and z axes respectively and 𝑏𝑦 and 𝑏𝑧 are the 

dimensions of the control perimeter as shown in Figure 2-14 (European Commitee For 

Standardization, 2004).  

In the case of edge columns, alternative definitions for 𝛽 and 𝑊1 are provided, but are not 

discussed in detail here, as the work in this thesis is focused on interior slab-column connections.  
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2.5.4 Model Code 2010 

Model Code 2010 is the most recent model code published by the International Federation for 

Structural Concrete (fib). It is not a legally binding code but instead is intended to serve as a starting 

point from which other nations and code committees can create a design code for structural concrete. 

Model Code 2010 is meant to provide code creators with state-of-the-art knowledge in terms of the 

material behaviour and analysis/design of concrete structures (fédération internationale du béton (fib), 

2013; Walraven & Bigaj, 2011). 

Model Code 2010 differs from the two previous Model Codes, Model Code 1978 and Model Code 

1990, in two significant areas. Firstly, Model Code 2010 introduced the Level of Approximation 

(LoA) approach. This approach is meant to provide designers with simplified design procedures that 

can be used in preliminary design stages, or for the design of non-critical elements while allowing 

them to use state-of-the-art approaches to assess existing structures or design critical members. Four 

levels of approximation are provided for punching shear. As the level of approximation is increased 

more time is required to perform the analysis, but the final results should be more accurate and less 

conservative. The use of the LoA approach requires the code provisions to be based on sound 

physical models so that designers can see the relation between the simplified and complicated models 

through simple assumptions (Belletti, Pimentel, Scolari, & Walraven, 2015). The second fundamental 

difference between the two previous Model Codes and Model Code 2010 is that the punching 

provisions for Model Code 2010 are based on the Critical Shear Crack Theory (CSCT), which is a 

mechanical model, whereas the two previous Model Codes were empirically based (Muttoni & 

Fernández Ruiz, 2012; Muttoni, Fernández Ruiz, Bentz, Foster, & Sigrist, 2013; Ricker & Siburg, 

2016; Soares & Vollum, 2015).  

The punching shear capacity of slab-column connection without shear reinforcement is calculated 

according to equation 2.18. 

𝑉𝑅,𝑐 = 𝑘𝜓√𝑓𝑐𝑘𝑏𝑜𝑑 (2. 18) 

where 𝑏𝑜 is the length of the effective control perimeter at located at 0.5d from the column face 

(mm), 𝑑 is the effective depth of the slab (mm), 𝑓𝑐𝑘 is the characteristic compressive strength of 

concrete (MPa) and 𝑘𝜓 is a parameter that is related to the slab rotation and calculated using equation 

2.19. 
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𝑘𝜓 = 
1

1.5 + 0.9𝜓𝑑𝑘𝑑𝑔
 ≤ 0.6 (2. 19) 

where 𝜓 is the slab rotation and 𝑘𝑑𝑔 is a factor depending on the maximum aggregate size calculated 

according to equation 2.20 

𝑘𝑑𝑔 =
32

16 + 𝑑𝑔
 ≥ 0.75 (2. 20) 

where 𝑑𝑔 is the maximum aggregate size (mm).  

Four levels of approximation are provided to estimate the slab rotation, 𝜓. LoA I is meant to be 

used for preliminary design and is based on the assumption that all flexural reinforcement in the 

support strip width yields at failure. This assumption results in very large crack widths, which 

decreases the predicted punching capacity according to the CSCT. LoA I is a very safe estimation 

technique since if the finalized design meets this criteria the strength of the slab will be governed by 

bending and no further punching checks are required. Designs according to LoA I will have very 

ductile failures (Muttoni & Fernández Ruiz, 2012) and will be very conservative. According to LoA I, 

the slab rotation can be calculated according to equation 2.21.  

𝜓 = 1.5 
𝑟𝑠 𝑓𝑦𝑑

𝑑 𝐸𝑠
 (2. 21) 

where 𝑟𝑠 is the location where the radial bending is equal to zero (mm, typically 0.22 times the clear 

span), 𝑓𝑦𝑑 is the yield strength of the reinforcement (MPa), and 𝐸𝑠 is the elastic modulus of the 

reinforcement (MPa) (fédération internationale du béton (fib), 2013).  

LoA II, which is recommended for the design of new structures (Genikomsou A. , 2015; Paiva, 

Ferreira, Oliveira, Lima Neto, & Teixeira, 2015), uses a simplified estimate of the moment capacity 

per unit length of support strip. The moment capacity of the support strip is calculated using an 

analytical equation which relates the moment in the support strip to the shear force acting in this strip 

and the moment transferred from the slab to the support region accounting for eccentricity (Muttoni & 

Fernández Ruiz, 2012). Predictions according to LoA II have been found to be fairly accurate by 

numerous researchers (Muttoni & Fernández Ruiz, 2012; Muttoni, 2008; Muttoni, Fernández Ruiz, 

Bentz, Foster, & Sigrist, 2013). According to LoA II, the slab rotation can be calculated according to 

equation 2.22.  



 

 46 

𝜓 = 1.5 
𝑟𝑠 𝑓𝑦𝑑

𝑑 𝐸𝑠
 (

𝑚𝐸𝑑

𝑚𝑅𝑑
)
1.5

(2. 22) 

where 𝑚𝐸𝑑 is the average moment per unit length for calculation of the flexural reinforcement in the 

support strip (Nmm/mm) and 𝑚𝑅𝑑 is the design average flexural strength per unit length in the 

support strip (Nmm/mm). To apply LoA II, the rotation must be calculated in both orthogonal 

directions (fédération internationale du béton (fib), 2013).  

LoA III is recommended for use in special cases or to analyze existing structures (Genikomsou A. , 

2015; Paiva, Ferreira, Oliveira, Lima Neto, & Teixeira, 2015). Like LoA II, LoA III uses an analytical 

equation to estimate the slab rotation. However, LoA III allows the designer to improve the estimate 

of the slab rotation, and the estimate of punching capacity, by using linear elastic FEA to estimate the 

moment field in the slab. Since a more accurate method is used to estimate the moment, the 

coefficient of 1.5 in equation 2.22 is reduced to 1.2 (Muttoni & Fernández Ruiz, 2012; fédération 

internationale du béton (fib), 2013). Reducing this coefficient is equivalent to assuming a stiffer slab 

response since the calculated slab rotation is lower. Based on the assumptions in the CSCT, the 

critical crack width is reduced (since rotations are reduced) leading to a higher estimated punching 

capacity (Muttoni & Fernández Ruiz, 2012).  

LoA IV represents the highest level of approximation and is recommended for special cases and for 

accurate assessments of existing structural capacity (Genikomsou A. , 2015). LoA IV allows the 

designer to use NLFEA to estimate the slab rotation to be used in equation 2.19 (fédération 

internationale du béton (fib), 2013). Typically, analyses according to LoA IV are very time 

consuming and in most cases the increase in capacity between LoA III and LoA IV will be small. 

Only in cases with low reinforcing ratios, or where significant moment redistribution is expected, will 

predictions from LoA IV differ greatly compared to those from LoA III. LoA IV also requires an 

experienced designer as NLFEA is greatly affected by modelling choices. The model used to estimate 

slab rotations should be verified or calibrated based on experimental results (Muttoni & Fernández 

Ruiz, 2012).  

The basic critical perimeter in Model Code 2010 is located at a distance of d/2 from the column 

face and has curved corners as shown in Figure 2-15. However, before the punching capacity can be 

estimated using equation 2.18 the effective critical perimeter length must be calculated. The first 

reduction in critical perimeter length accounts for large columns. For columns with side lengths 

greater than 3d the effective length of the critical perimeter is reduced to a length of 3d on each 
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respective side where the length exceeds 3d, as shown in Figure 2-15. Additional reductions in 

effective critical perimeter length account for accidental eccentricities and the impact of unbalanced 

moments. However, all slabs in this thesis were concentrically loaded and were based on carefully 

tested experimental specimens. Therefore, the additional reductions were neglected when evaluating 

the adequacy of the Model Code 2010 provisions.  

  

Figure 2-15: Critical Perimeters Assumed in MC 2010, a) Unreduced b) Reduced effective 

perimeter length (3d method) (fédération internationale du béton (fib), 2013) 

It is interesting to note that a similar reduction in the critical perimeter length to account for large 

or rectangular columns was included in Model Code 1978. The commentary to Model Code 1978, 

contained in CEB Bulletin 137 (Comite Euro-International Du Beton, 1980), states that the use of a 

critical perimeter at a distance of d/2 from the column face leads to unconservative punching 

estimates for large columns. Unlike Model Code 2010, where portions of the critical perimeter are 

assumed to have zero capacity, the critical perimeter in Model Code 1978 was divided into two 

portions if the column side lengths exceeded certain dimensions as shown in Figure 2-16, one which 

carried shear through two-way (punching) shear, and one which carried shear through one-way shear. 

The nominal capacity in one-way shear was assumed to be lower than that in two-way shear in Model 

Code 1978 (Comité Euro-International Du Béton, 1978).  

a) b) 
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Figure 2-16: Critical Perimeter Around Large or Rectangular Columns Assumed in Model Code 

1978 (Comité Euro-International Du Béton, 1978) 

The punching shear provisions in Model Code 1990 are extremely similar to those in Eurocode 2 

(2004) since Eurocode 2 was derived from Model Code 1990 (European Concrete Platform ASBL, 

2008). As such, the punching provisions from Model Code 1990 will not be discussed in detail. 

However, it is interesting to note that unlike the other two Model Codes, Model Code 1990 did not 

directly account for column rectangularity in concentric punching. As with Eurocode 2 (2004), the 

critical perimeter was assumed to be located at a distance of 2d from the column face as it was found 

to result in a more uniform stress distribution around columns of any size (Comité Euro-International 

du Béton, 1993).  

2.5.5 Critical Shear Crack Theory (CSCT) 

Based on the CSCT, the punching shear capacity of a slab-column connection without shear 

reinforcement, 𝑉𝑅, can be calculated using equation 2.23. 

𝑉𝑅 = 
3

4
 

𝑏𝑜𝑑√𝑓𝑐
′

1 + 15 (
𝜓 𝑑

𝑑𝑔0 + 𝑑𝑔
)

(2. 23) 

where 𝑏𝑜 is the critical perimeter length (mm), 𝑑 is the effective slab depth (mm), 𝑓𝑐
′ is the concrete 

compressive strength (MPa), 𝑑𝑔0 is a reference aggregate size (16mm), 𝑑𝑔 is the maximum aggregate 

size (mm) and 𝜓 is the slab rotation (Muttoni, 2008). The slab rotation can be estimated through the 
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use of FEA or can be calculated using a simplified equation proposed by Muttoni, which is provided 

in equation 2.24.  

𝜓 = 1.5 
𝑟𝑠 𝑓𝑦

𝑑 𝐸𝑠
(

𝑉

𝑉𝑓𝑙𝑒𝑥
)

3 2⁄

(2. 24) 

where 𝑟𝑠 is the distance to the radius of contraflexure (mm, typically taken as 0.22L), 𝑓𝑦 is the yield 

strength of the flexural reinforcement (MPa), 𝐸𝑠 is the modulus of elasticity of the flexural 

reinforcement (MPa), 𝑉 is the applied shear force (N) and 𝑉𝑓𝑙𝑒𝑥 is the shear force associated with the 

flexural capacity of the slab (N) (Muttoni, 2008). Muttoni (2008) states that the slab’s flexural 

strength is reached when the radius of the zone where the flexural reinforcement has yielded (𝑟𝑦) 

equals the radius of an isolated-slab column connection (𝑟𝑠). Based on this definition 𝑉𝑓𝑙𝑒𝑥 can be 

calculated using equation 2.25. 

𝑉𝑓𝑙𝑒𝑥 = 2𝜋𝑚𝑅 (
𝑟𝑠

𝑟𝑞 − 𝑟𝑐
) (2. 25) 

where 𝑚𝑅 is the nominal moment capacity per unit width (Nmm/mm), 𝑟𝑞 is the radius of the load 

introduction at the perimeter (mm), and 𝑟𝑐 is the radius of the circular column (mm) (Muttoni, 2008).  

In the case of rectangular columns, the punching capacity can be calculated using one of two 

methods. The first method involves using one maximum rotation to calculate a nominal stress 

assumed to act over the effective critical perimeter length. The second method, presented by Sagaseta 

et al. (2014), accounts for the redistribution of shear around the critical perimeter and involves 

dividing the effective critical perimeter into X and Y components as shown in Figure 2-17. In order to 

apply this method, the maximum slab rotation in each orthogonal direction is used. Using both 

maximum rotations the total capacity of the slab-column connection is calculated using equation 2.26 

𝑉𝑅 = 𝑣𝑅𝑥𝑏𝑥 + 𝑣𝑅𝑦𝑏𝑦 =
𝑉𝑅𝑥

𝑏𝑜
𝑏𝑥 +

𝑉𝑅𝑦

𝑏𝑜
𝑏𝑦 (2. 26) 

where 𝑉𝑅𝑥 and 𝑉𝑅𝑦 are the punching capacities calculated using equation 2.23 based on the entire 

effective critical perimeter length and the maximum rotation in the X and Y-directions respectively 

(N), and 𝑏𝑥 and 𝑏𝑦 are the lengths of the critical perimeter in the X and Y-directions respectively 

(Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 2014).  
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Figure 2-17: Breakdown of Critical Perimeter into X and Y Components 

2.6 Review of Previous Finite Element Analysis 

2.6.1 Introduction 

Similar to the experimental database for punching shear, the majority of previous finite element 

studies have focused on slabs supported on square or circular columns. The finite element studies for 

slabs supported on square or circular columns are typically nonlinear and focus on predicting the full 

response of isolated slab-column connections or continuous slab systems. Finite element studies for 

slabs supported on rectangular columns are typically linear elastic and focused on estimating the 

elastic shear stress distribution around the column or critical perimeter. These elastic shear stress 

distributions are typically used to estimate the effective critical perimeter length which can be 

combined with code provisions to estimate the punching capacity of slabs supported on rectangular 

columns.  

Some early attempts to use FEA to analyze slab-column connections were conducted by Hawkins, 

Fallsen and Hinojosa (1971) and Masterson and Long (1974). As part of their detailed study of 

column rectangularity Hawkins, Fallsen and Hinojosa (1971) conducted two-dimensional finite 

element analysis to estimate the deflection of the tested isolated slab-column specimens. Masterson 

and Long (1974) proposed equations to estimate the capacity of slab-column connections, including 

those with rectangular columns, based on the results of a linear two-dimensional finite element 
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analysis based on elastic thin plate theory. Since these early attempts to use FEA to analyze the 

punching shear behaviour of slab-column connections the use of NLFEA has grown in popularity. 

The popularity of NLFEA has grown due to the desire of engineers to realistically model structural 

behaviour under various loading conditions. Nonlinear numerical analyses based on the finite element 

method have proven to be capable of providing a virtual testing scheme which can be used to simulate 

structural behaviour and determine the impact of parameters which are difficult to investigate 

experimentally (Alam & Amanat, 2012). However, simulating the phenomenon of punching shear in 

reinforced concrete slabs using NLFEA is not trivial due to the interaction between shear and flexure 

and the development of localized fracture zones as the load is applied to the slab (Wosatko, Pamin, & 

Polak, 2015; Shu, Belletti, Muttoni, Scolari, & Plos, 2017). 

As previously mentioned, early finite element research of reinforced concrete slabs supported on 

columns was done using two-dimensional elements. As time has passed, the use of three-dimensional 

models based on shell or continuum (solid) elements has become more popular. Three-dimensional 

models offer increased flexibility and accuracy in capturing the out-of-plane behaviour of reinforced 

concrete structures compared to their two-dimensional counterparts (Shu, Plos, Zandi, Johansson, & 

Nilenius, 2016). Models based on shell elements are typically less detailed than those based on 

continuum elements since they are based on a smeared cracking approach and consider the 

reinforcement as a layer within the concrete or account for the reinforcement by modifying the 

concrete stiffness. Shell element-based models are typically used to conduct a global analysis of a 

structure, as they use less degrees of freedom and require less computational time compared to 

models using three-dimensional continuum elements. Three-dimensional solid elements are the ideal 

choice when a detailed analysis of a small portion of a structure is required (Polak, 1998). Models 

based on three-dimensional solid elements can be used to conduct detailed studies of cracking and 

damage in small portions of a structure (Guan & Polak, 2007), such as a slab-column connection. 

However, skilled practitioners are required to conduct meaningful FEA based on three-dimensional 

solid elements due to the large impact modelling choices can have on the predicted response (Shu, 

Fall, Plos, Zandi, & Lundgren, 2015).  

In this section, previous finite element studies of slabs supported on square or circular columns and 

rectangular columns using two-dimensional elements, or three-dimensional shell and solid elements 

will be discussed.  
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2.6.2 Square or Circular Columns 

2.6.2.1 Two-dimensional Finite Element Analyses 

González-Vidosa, Kotsovos and Pavlovic (1988) conducted a NLFEA of axisymmetric slabs based on 

a two-dimensional plane stress model by Bédard and Kotsovos (Bédard & Kotsovos, 1985). Two 

series of isolated slab-column connections were modelled. The first series of slabs were four circular 

slabs tested by Kinnunen, Nylander and Tolf (1978). The second series of slabs, chosen since the 

reinforcing ratios range between 0.5% and 3%, were five square slabs tested by Elstner and 

Hognestad (1956). Due to the formulation of the model, the square slabs were approximated through 

equivalent circular slabs. Eight node and three node isoparametric elements were used to model the 

concrete and the flexural/shear reinforcement respectively. Concrete cracking was accounted for by 

using a modified Newton-Raphson method and the residual force concept. The finite element model 

was found to accurately predict the load deflection curve of the circular slabs and predicted the 

punching capacity within 10%. The predicted capacities for the square slabs were within 20% of the 

experimental values, but the predicted stiffness was much higher, likely due to the use of the 

equivalent circular slab (González-Vidosa, Kotsovos, & Pavlovic, 1988). 

Menétrey, Zimmerman, Willam and Regan (1997) modelled isolated slab-circular column 

connections with four node quadrilateral axisymmetric elements. Concrete cracking was accounted 

for using a smeared crack model and a strain-softening formulation. The crack width was related to 

the concrete tensile stress through the fictitious crack model developed by Hillerborg et al. (1976). To 

overcome mesh locking the mean dilation formulation proposed by Hughes (1980) was used. The 

model was used to investigate the impact of concrete tensile strength, concrete compressive strength, 

orthogonal reinforcing layouts, reinforcing ratio and size effect on punching shear behaviour. It was 

concluded that punching failures are related to the concrete tensile strength and that increasing the 

flexural reinforcement ratio reduces cracking and increases the punching capacity. The numerical 

model also predicted a size effect similar to that observed experimentally by others (Menétrey, 

Walther, Zimmermann, Willam, & Regan, 1997). 

Hallgren and Bjerke (2002) simulated experimental tests of two circular column footings in 

SBETAX 1.2, which is two-dimensional nonlinear analysis program for reinforced concrete 

structures. The model was based on nonlinear fracture mechanics and used a smeared rotated crack 

model. Two-dimensional four node isoparametric elements with additional degrees of freedom in the 

out-of-plane direction were used. Reinforcement was included in a band of elements through a 



 

 53 

smeared method. The impact of slab slenderness, concrete compressive strength, concrete tensile 

strength and assumed concrete fracture energy on the finite element predictions were investigated. 

The punching capacity of footings was found to be greatly influenced by the slenderness and concrete 

compressive strength (Hallgren & Bjerke, 2002). 

2.6.2.2 Three-dimensional Finite Element Analyses – Shell Elements 

Polak (1998) demonstrated the capability of the finite element method for global analyses of 

reinforced concrete slabs subjected to large concentrated transverse loads using three-dimensional 

layered shell element formulations based on quadratic, degenerate isoparametric elements which 

allowed the out-of-plane shear response of the slab to be approximated. The model was formulated 

based on the Modified Compression Field Theory (MCFT) by Vecchio and Collins (1986). In plane 

reinforcement was modelled as a layer within each element whereas transverse reinforcement was 

accounted for by modifying the concrete properties in each layer. A smeared rotating crack approach 

where the crack direction is assumed to be perpendicular to the direction of the principal tensile strain 

was used. The model was able to accurately capture transverse shear behaviour and predict the 

location of flexural or punching failures in structures (Polak, 1998). 

Guan and Polak (2007) also used layered shell elements to model punching shear behavior, but 

their study was focused on slab-edge column connections with openings and the impact of shear 

reinforcing. Twelve specimens, ten of which were tested experimentally by El-Salakawy, Polak and 

Soliman (1999, 2000), were modelled using layered shell elements and the layered finite element 

method (LFEM) presented by Guan and Loo (1997). The use of LFEM allowed the model to account 

for both flexural and transverse shear cracking until failure. The presented model accurately predicted 

the slab deflections at failure, load capacity and crack patterns of the experimental specimens. The 

inclusion of openings was found to reduce both the punching capacity and stiffness of the connection. 

In cases where the connection was subjected to unbalanced moments, a smaller reduction of punching 

capacity was observed when the opening was not located in the same direction as the unbalanced 

moment (Guan & Polak, 2007). 

Plos, Shu, Zandi and Lundgren (2017) proposed a multi-level assessment strategy based on 

successively improved analysis techniques that could be used to evaluate existing reinforced concrete 

bridge deck slabs. The second and third levels of the assessment strategy use linear elastic and 

nonlinear three-dimensional shell element models respectively. Level II analyses are based on shell or 

plate bending theory and the impact of different load cases is analyzed using superposition. A level III 



 

 54 

analysis involves a nonlinear finite element study using shell elements where the loads are increased 

until structural failure is predicted. Level III analyses include reinforcing based on the assumption of 

perfect bond. Models meeting level III requirements are not capable of capturing out-of-plane shear 

failures such as punching, and these failure modes must be checked through other methods. Three-

dimensional NLFEA based on continuum elements are used for the highest analysis levels, level IV 

and V respectively. (Plos, Shu, Zandi, & Lundgren, 2017). The assumptions for levels IV and V are 

discussed in Section 2.6.2.3 

2.6.2.3 Three-dimensional Finite Element Analyses – Solid Elements  

Alam and Amanat (2012) calibrated a three-dimensional finite element model based on a total strain 

crack approach based on the experimental results of fifteen slab-column tests conducted by Alam, 

Amanat and Seraj (2009). The finite element model was implemented in TNO DIANA and was based 

on the MCFT by Vecchio and Collins (1986) and the three-dimensional extension proposed by Selby 

and Vecchio (1993). Twenty node isoparametric solid brick elements were used to model the 

concrete. The flexural reinforcement was assumed to be perfectly bonded to the concrete and was 

embedded in the concrete elements. The calibrated model was found to accurately predict the load 

deflection response and crack pattern of the tested slabs (Alam & Amanat, 2012).  

Alam and Amanat (2014; 2015) used the model calibrated by Alam and Amanat (2012) to 

investigate the punching shear behaviour of slab-column connections in continuous multi-panel 

specimens. The continuous model was a two bay by two bay flat slab system with a thickness of 

200mm and with columns spaced at 6000mm on center in both directions. To simulate continuous 

action the slab was extended 1500mm beyond the column centerlines in all directions. In the 2014 

study a total of thirty simulations were completed. In these simulations a constant column size of 

400x400mm was used and the concrete compressive strength and reinforcing ratio ranged between 

24-60MPa and 0.15-2% respectively (Alam & Amanat, 2014). In the 2015 study a total of seventy-

five simulations were presented considering three column sizes, 400x400mm, 600x600mm and 

800x800mm. In these seventy-five simulations the concrete strength and flexural reinforcing ratio 

were varied between 24-60MPa and 0.25-2% respectively for each column size (Alam & Amanat, 

2015). In both studies, the punching capacity was found to increase with increasing flexural 

reinforcing ratio and concrete compressive strength (Alam & Amanat, 2014; Alam & Amanat, 2015). 

In the 2015 study the nominal shear capacity around the critical perimeter at d/2 from the column face 
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was found to decrease as the column size, and ratio of column size to slab depth, was increased (Alam 

& Amanat, 2015). 

Eder, Vollum, Elghazouli and Abdel-Fattah (2010) also conducted NLFEA of reinforced concrete 

flat slabs in DIANA using a total strain crack approach. As with the studies by Alam and Amanat 

(2012; 2014; 2015), the model was based on MCFT (Vecchio and Collins, 1986) and the three-

dimensional extension by Selby and Vecchio (1993). The numerical model was calibrated based on 

the test of an isolated slab-column connections without shear reinforcement published by the authors 

(2009). The slab and loading plates were modelled with twenty node isoparametric brick elements 

and the reinforcement was modelled with three node three-dimensional truss elements, which were 

assumed to be perfectly bonded to the concrete. To improve the numerical efficiency, a fine mesh was 

used near the slab-column connection and a coarse mesh was used towards the slab edges. The 

calibrated model was also used to analyze four slabs, three of which were reinforced with steel 

shearheads. To accurately predict the structural behaviour of the slab-column connections, it was 

found that a fine mesh should be used for the portion of the slab extending a distance of twice the slab 

depth from the end of the shearheads (Eder, Vollum, Elghazouli, & Abdel-Fattah, 2010). 

In addition to their experimental study of punching shear of connections with high strength 

concretes, which was discussed in Section 2.3.2, Moreno and Sarmento (2013) also conducted a 

three-dimensional NLFEA of isolated slab-column connections in DIANA. The investigated slabs 

were modelled with 1600 twenty node isoparametric solid elements. The flexural and shear 

reinforcement was modelled using distributed finite elements, which were embedded in the concrete 

elements, and bar elements respectively. The finite element model used a smeared crack model based 

on a strain decomposition concept and a total strain concept. Fixed orthogonal cracks were assumed 

in the total strain concept, and as such, the decrease in elastic strains that occurs with decreased 

orthogonal strains was not accounted for. This strain reduction was approximated by setting the 

Poisson ratio to 0. Good agreement between the experimental results and finite element predictions 

was observed. However, the finite element results were found to be strongly dependent on the value 

assumed for the shear retention factor (Moreno & Sarmento, 2013).  

Mahmoud (2015) developed a three-dimensional nonlinear finite element model in ANSYS 10 to 

investigate the impact of shear reinforcement on punching shear behaviour. Sixteen slabs, which were 

tested by Lips et al (2012), and discussed in Section 2.3.2, were modelled. Eight node elements with 

three translational degrees of freedom at each node were used to model the concrete. A two node 



 

 56 

element with three translational degrees of freedom and a beam element were used to model the steel 

reinforcing, which consisted of rebar and continuous stirrup cages, and steel shear studs respectively. 

The model was found capable of predicting the punching capacity within approximately 20% of the 

experimental values, but greatly underpredicted the observed rotations. The maximum error in the 

predicted rotations was 65% (Mahmoud, 2015).  

Winkler and Stangenberg (2008) presented a preliminary finite element model of slabs failing in 

punching shear in the commercial finite element software ABAQUS. They stated that the “Concrete 

Damaged Plasticity” (CDP) model available in ABAQUS must be used when simulating the complex 

three-dimensional stress state corresponding to punching shear failures of a slab-column connection. 

The uniaxial tensile stress-strain curve for the concrete was assumed to be linear elastic until the 

maximum tensile capacity was reached. The post peak response was based on a tensile stress crack 

opening relationship proposed by Hordijk (1992), which was based on the fictitious crack model by 

Hillerborg (1983). Eight node or twenty node solid elements were used to model the concrete and 

eight node three-dimensional truss elements were used to model the reinforcement. The preliminary 

model was used to simulate previously tested square slabs supported on square columns. The model 

was found to accurately predict the ultimate load capacity and crack pattern, but the predicted 

stiffness and overall load deflection response were different than that observed experimentally 

(Winkler & Stangenberg, 2008). 

Bompa and Onet (2016) conducted a three-dimensional NLFEA of isolated slab-column 

connections in ABAQUS 6.10 to investigate the effect of slab thickness on the angle of the 

compressive stress field. The triaxial behaviour of concrete was modelled using the CDP model 

available in ABAQUS. Eight node brick elements were used to model the slab and loading plates and 

three-dimensional wire elements were used for the flexural reinforcement. The best correlation with 

the test results was observed for a mesh size of 19mm and a dilation angle of 40 degrees. The other 

parameters used in the CDP, which control the shape of the deviatoric plane and the eccentricity of 

the yield surface, were set to the default values of 2/3 and 0.1. The angle of the compressive stress 

field was found to increase proportionally as the slab thickness was increased from 150mm to 500mm 

(Bompa & Onet, 2016).  

Wosatko, Pamin and Polak (2015) presented two preliminary finite element models of an isolated 

slab-column connection without shear reinforcement tested by Adetifa and Polak (2005). The first 

model, implemented in FEAP, was based on a gradient-enhanced damaged plasticity model. The 
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second model, implemented in ABAQUS was based on the CDP model, which is a rate dependent 

damaged plasticity model. Both models were nonlinear and used three-dimensional elements to 

discretize the slab geometry. Perfect bond between the rebar and concrete was assumed. Both models 

were found to be very sensitive to the assumed concrete tensile behaviour. Premature failures were 

also predicted due to localized deformation caused by extensive flexural and shear cracking. To avoid 

these zones of localized deformation regularization was used, which effects the predicted crack 

pattern (Wosatko, Pamin, & Polak, 2015).  

Genikomsou and Polak (2015) proposed an alternate version of the finite element model in 

ABAQUS proposed by Wosatko, Pamin and Polak (2015). The alternate model was still based on the 

CDP model, and was calibrated based on the same specimen analyzed by Wosatko, Pamin and Polak 

(2015). The model was later extended to account for slabs reinforced with shear bolts by Genikomsou 

and Polak (2016). The calibrated model was also used to investigate numerous other parameters such 

as the impact of compressive membrane action (Genikomsou & Polak, 2017a), openings around the 

slab-column connection (Genikomsou & Polak, 2017b), and shear bolt layout and quantity 

(Genikomsou & Polak, 2017c). Genikomsou and Polak’s model (2015), described in more detail in 

Section 4.2, forms the basis of the model used in this thesis. 

Navarro, Ivorra and Varona (2016) also used ABAQUS to simulate the punching shear behaviour 

of the slab-column connection without shear reinforcement tested by Adetifa and Polak (2005). The 

ABAQUS model was calibrated following a procedure similar to that presented by Genikomsou and 

Polak (2015). The flexural reinforcing was modelled using four node reduced integration shell 

elements instead of the two node truss elements used by Genikomsou and Polak (2015). Good 

agreement with the experimental results was found and the calibrated model was used to investigate 

the impact of concrete compressive strength, flexural reinforcement yield strength, reinforcing ratio, 

ratio of column width to slab width and ratio of column width to slab thickness (c/d). The finite 

element model predicted a decrease in the nominal shear capacity along the critical perimeter at d/2 as 

the c/d ratio increased (Navarro, Ivorra, & Varona, 2016).  

Shu, Fall, Plos, Zandi and Lundgren (2015) developed a nonlinear finite element model based on 

three-dimensional continuum elements in DIANA to analyze the structural behaviour of reinforced 

concrete slabs in bending. The model used a total strain rotating crack model and was based on the 

MCFT (Vecchio and Collins, 1986) and the three-dimensional extension by Selby and Vecchio 

(1993). An isotropic damage constitutive law was used to describe the concrete compressive 
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behaviour and the flexural rebar was assumed to be fully bonded to the concrete. Large displacement 

theory was used since the expected displacements exceeded the slab thickness. A convergence study 

showed that at least eight elements were required through the slab depth to avoid shear locking 

effects. The predicted load capacity and deflection were found to not be affected by modelling the 

rebar as a grid or with discrete bar elements (Shu, Fall, Plos, Zandi, & Lundgren, 2015).  

As previously discussed, Plos, Shu, Zandi and Lundgren (2017) developed a multi-level structural 

assessment strategy for reinforced concrete bridge deck slabs. Level II and III of this assessment 

strategy were based on linear elastic and nonlinear FEA conducted using three-dimensional shell 

elements. Level IV and V, which represent the highest assessment levels, are based on three-

dimensional NLFEA using continuum elements. In level IV, the flexural rebar is assumed to be fully 

bonded to the concrete, whereas in level V, bond slip models between the rebar and concrete are used. 

Models implemented according to level IV and V have the advantage of capturing shear type failures 

without the need for additional analysis, as was required for levels II and III (Plos, Shu, Zandi, & 

Lundgren, 2017).  

Shu, Plos, Zandi, Johanssson and Nulenius (2016) modelled eleven isolated slab-column 

connections with square columns and without shear reinforcement, which were tested by Guandalini 

and Muttoni (2009), to analyze the impact of slab dimensions, concrete compressive strength and 

flexural reinforcement ratio on punching capacity. The slabs were modelled in DIANA and 

discretized using three-dimensional four node tetrahedron elements. Models using first order brick 

elements were found to result in similar predictions to models using first order tetrahedron elements. 

The use of second order brick elements resulted in a softer predicted behaviour and lower load 

capacity. The reinforcement was assumed to be fully bonded to the concrete, which is in line with the 

level IV analysis later proposed by Plos, Shu, Zandi and Lundgren (2017). The steel plates used to 

load the slab in the experiments were included in the finite element model and interface elements, 

based on a Mohr-Coulomb friction model, were used to model the interaction between the plate base 

and top of the slab. The model was found to accurately predict the experimentally observed structural 

response. (Shu, Plos, Zandi, Johansson, & Nilenius, 2016). 

2.6.3 Rectangular Columns 

The purpose of this section is to briefly summarize the previous finite element work for slabs 

supported on rectangular columns. Most of the previous studies have been focused on isolated slab-
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column connections and use three-dimensional elements. The remaining studies have been conducted 

on multi-bay continuous slabs.  

2.6.3.1 Isolated Slab-Column Connections  

In addition to their experimental study of column rectangularity, Oliveira, Regan and Melo (2004) 

also conducted a linear elastic finite element analysis of slabs supported on rectangular columns 

under different loading conditions using four node shell elements in SAP2000. Their analysis was 

focused on analyzing the shear force distribution around the column and critical perimeters. Shear 

force concentrations along the column perimeter near the column corners for columns with aspect 

ratios exceeding one were predicted. Shear force concentrations were not visible along the control 

perimeter used in Model Code 1990, which is located at a distance of 2d from the column face. Based 

on the experimental and finite element results, modification factors to be used in conjunction with the 

Model Code 1990 punching provision to account for column rectangularity and one-way or two-way 

shear behaviour were proposed. The modification factors were functions of the ratio of the maximum 

column dimension, cmax, to the effective slab depth, d (Oliveira, Regan, & Melo, 2004).  

Sagaseta, Tassinari, Fernández Ruiz and Muttoni (2014) also conducted a linear elastic finite 

element analysis of slabs supported on rectangular columns in addition to their experimental work. 

Like Oliveira, Regan and Melo (2004), the finite element analysis used shell elements and was used 

to investigate the shear stress distribution along the critical perimeter located at d/2 from the column 

face. Sagaseta et al. (2014) used a methodology proposed by Vaz Rodrigues, Fernández Ruiz and 

Muttoni (2008) to estimate the effective critical perimeter length. Based on their finite element 

results, they proposed an alternative method to estimate the effective critical perimeter length based 

on the predicted contact pressures on the support plate under the slab. Good correlation between the 

alternative method, the Vaz Rodrigues et al. method and the simplified critical perimeter reduction 

using in Model Code 2010 was found (Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 2014). 

Shu, Belletti, Muttoni, Scolari and Plos (2017) conducted a detailed study of the punching shear 

behaviour of reinforced concrete slabs using the finite element method. Their study was focussed on 

the impact of support geometry, slab geometry, and rebar layout on the shear stress distribution 

around the critical perimeter. Like Sagaseta et al. (2014), the authors applied the methodology and 

equation proposed by Vaz Rodrigues et al. (2008) to estimate the effective critical perimeter length. 

Unlike Sagaseta et al. (2014) and Vaz Rodrigues et al. (2008), they applied the methodology to both 

the linear elastic and non-linear portion of the predicted slab response. Four slabs, which were tested 
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between 2004 and 2015 were modelled in Diana (Shu, Belletti, Muttoni, Scolari, & Plos, 2017). Slab 

PG1 was supported on a square column and tested by Guandalini et al. (2009). Slab PT32 was tested 

by Sagaseta, Muttoni, Fernández Ruiz, and Tassinari (2011) and was supported on a square steel plate 

and had a different reinforcing ratio in each orthogonal direction. An octagonal slab tested by Einpaul 

et al. (2016), PE7, was the third slab modelled. Finally, slab AM04, which was supported on a steel 

plate with an aspect ratio of three and subjected to two-way loading, was the final slab modelled. Slab 

AM04 was tested by Sagaseta et al. (2014) and was also modelled in this thesis. Shu et al. (2017) 

found that the experimentally observed behaviour of all four slabs could be accurately predicted using 

three-dimensional models based on shell or continuum elements, which correspond to level III and IV 

analyses in the multi-level assessement strategy proposed by Plos et al. (2017) respectively. Shu et al. 

(2017) undertook a detailed study of the support conditions assumed in the finite element model and 

analyzed the shear strress distributions around the critical perimeter. The findings of their support 

condition study are similar to those described in Section 4.4. 

Megally and Ghali (2000) investigated the punching shear behaviour of slab-column connections 

subjected to unbalanced moments using NLFEA in ANACAP. Their model was based on the 

incremental theory of plasticity and a cracking criterion based on principal stresses and strains was 

used. Three-dimensional solid elements were used to model the concrete. The slabs were simply 

supported along their edges and loads were applied through the column stub. The model was verified 

based on the experimental results of interior and edge-column connections. Some of the specimens 

used to verify the finite element model also included column capitals or drop panels. Most of the 

modelled slabs were found to fail in punching shear, and different crack patterns were in observed in 

each direction due to the unbalanced moment. The predicted shear stress distribution around the 

column did not match that assumed in the ACI or CSA codes, but the code assumed distributions 

were found to be reasonable. The finite element model was used to conduct studies to calibrate the γv 

term used in the ACI or CSA codes. This γv term is used in conjunction with the assumed linear shear 

stress distribution when unbalanced moments are present. The FEA results showed that the amount of 

unbalanced moment transferred to the column through shear is dependent on the aspect ratio of the 

column (Megally & Ghali, 2000). 

Erdogan, Binici and Ozcebe (2011) conducted a three-dimensional NLFEA of their experimental 

specimens which were supported on rectangular columns and reinforced with CFRP dowels in 

DIANA. The model was based on the total strain fixed crack concept by Selby and Vecchio (1993). 
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Eight node isoparametric elements were used to model the concrete and the reinforcement was 

assumed to be perfectly bonded to the concrete. Two additional slabs, tested by Binici and Bayrak 

(2003), were also modelled to verify the applicability of the FEA results for different slab dimensions, 

reinforcing ratios and shear reinforcing methods. The proposed model was found to accurately predict 

the experimental load-deflection behaviour and measured stress and strain values in the concrete and 

shear reinforcement (Erdogan, Binici, & Ozcebe, 2011). 

2.6.3.2 Multi-panel Continuous Slab Systems  

In addition to the experimental test of a one-third scale three bay by three bay multi-panel system, 

Simmonds (1970) also conducted a linear elastic finite difference analysis of a typical interior panel 

supported on rectangular columns assuming the slab to be an elastic medium thick plate. It was also 

assumed that the columns did not deflect over their cross-section and the slope of the slab at the 

column face was zero. The analytical study was focusing on analyzing the impact of column 

elongation, the slab bay aspect ratio and the assumed Poisson ratio. The slab bay aspect ratio was 

varied between one and five with the longer span parallel to the direction of the longer column 

dimension. The minimum column dimension was fixed at a width corresponding to a c/L ratio of 

0.05, where c is the column width (mm) and L is the centerline distance between the columns (mm). 

The maximum column dimensions studied corresponded to c/L ratios of 0.05, 0.2, 0.4, 0.6 and 0.8. 

Solutions for a c/L ratio of 1.0 were derived from beam theory, as this condition was assumed to be a 

one-way slab supported on continuous walls. Poisson’s ratio of 0 and 0.2 were considered. The 

magnitude of the negative moments in both directions greatly decreased as the column elongation 

increased. Additionally, as the column aspect ratio was increased the maximum positive moment in 

the slab in the direction parallel to the elongated column dimension were found to decrease, while the 

maximum positive moment in the other orthogonal direction slightly increased. This behaviour can be 

understood as a transition from two-way to one-way behaviour and was found to occur at a c/L ratio 

of 0.4. (Simmonds, 1970). Simmonds also analyzed the shear stress distribution around the column 

perimeter, but the assumption of zero deflection over the column cross-section increased the shear 

stress concentrations at the column corners. Based on the finite difference results, it was found that 

most of the shear was carried within a distance equal to the column width from the corners for c/L 

ratios less than 0.3 (Simmonds, 1970). 

Hartley and El Kafrawy (1984) simulated a single floor of a flat slab building using a linear elastic 

finite element model based on eighteen degree of freedom bending elements. The model was used to 
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study the impact of column elongation and column offsets on the bending moments and punching 

shear behaviour of reinforced concrete flat slabs. Similar to Simmonds (1970), the minimum column 

dimension was maintained at a constant value, in this case corresponding to a c/L ratio of 0.06, while 

the maximum column dimension was varied corresponding to c/L ratios between 0.06 and 0.5. As 

was observed by Simmonds (1970), one-way behaviour was found to become more prevalent as the 

maximum column dimension was increased. Hartley and El Kafrawy found that the impact of column 

elongation on the total positive and negative moments in the direction perpendicular to the maximum 

column dimension was minimal but was quite significant in the direction parallel to the longer 

column dimension. The punching shear portion of their study was limited to analyzing the impact of 

column offset for slabs supported on square columns. As the column offset was increased, the shear 

forces around the adjacent columns was found to increase, however this effect was found to decrease 

with increasing column size (Hartley & El Kafrawy, 1984).
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Chapter 3: Overview of Mechanical Behaviour of Concrete 

In this section, a brief discussion of the short term behaviour of concrete subjected to compressive 

and tensile loads is discussed. For discussion of the long-term behaviour of concrete, including 

shrinkage and creep, the reader is referred to Reinforced Concrete: Mechanics and Design (1st 

Canadian Edition) by MacGregor and Bartlett (2000). 

3.1 Uniaxial Compressive Behaviour 

Concrete is a mix of cement paste and aggregate, both of which are essentially linear elastic brittle 

materials in compression. In brittle materials, fractures typically occur perpendicular to the direction 

of the principal tensile strain. Since concrete’s primary constituents are brittle materials, cracks are 

formed parallel to the direction of the applied load in a uniaxial compression test. Even though its two 

primary constituents are approximately linear elastic brittle materials, the uniaxial compressive stress-

strain curve of concrete is nonlinear and displays some ductility. This ductility and nonlinearity is due 

to the development of microcracks in the concrete and the stress redistribution to uncracked regions 

after cracking. There are two primary types of microcracks, those which occur along the interface of 

the aggregate and cement paste (bond cracks), and those which occur in the mortar between 

aggregates (mortar cracks) (MacGregor & Bartlett, 2000). The four main stages of microcracking for 

concrete subjected to uniaxial compression are summarized below.  

During curing of the concrete, shrinkage of the cement paste is restrained by the aggregates. This 

restraint creates internal tensile stresses which cause cracks, referred to as no-load bond cracks, 

before the concrete is loaded. No-load bond cracks have minimal impact on the uniaxial compressive 

behaviour of the concrete at low load levels. The initial portion of the uniaxial compressive stress-

strain response is still approximately linear until the stress reaches approximately 30% of the uniaxial 

compressive strength, 𝑓𝑐
′ (MacGregor & Bartlett, 2000).  

When the applied loading results in stress magnitudes which exceed 30-40% of 𝑓𝑐
′ bond cracks 

begin to develop. Bond cracks occur when the tensile and shear stresses on inclined planes along the 

interface of the aggregate and cement paste exceed the tensile and shear stress capacity of the 

interface. At this load level, the crack propagation is stable, and the crack size only increases when 

the load is increased. The formation of these bond cracks coincides with the stress-strain response 

becoming nonlinear as stresses are redistributed to the uncracked portions of the concrete (MacGregor 

& Bartlett, 2000).  
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Localized mortar cracks parallel to the applied compressive load develop between the previously 

formed bond cracks due to transverse tensile strains as the magnitude of the applied load reaches 50-

60% of the ultimate compressive capacity of the concrete. The crack propagation during this stage of 

cracking is still stable and the cracks do not grow in size unless the load is increased. This stage of 

concrete cracking is referred to as the discontinuity limit (MacGregor & Bartlett, 2000).  

When the applied load reaches 75-80% of the ultimate load capacity, which is referred to as the 

critical stress, the nonlinearity of the uniaxial compressive stress-strain curve increases as the number 

of mortar cracks increases and a continuous microcracking pattern is formed. At this point, the 

amount of cracking and lateral tensile strains experienced by the concrete increase rapidly. At the 

same time, the volumetric strains, which are a function of the compressive axial strain and the tensile 

lateral strain, also increase rapidly. For confined concrete, these increased volumetric strains cause 

outward pressures on the confining reinforcement, which resist the lateral expansion of the concrete, 

delaying failure. At the critical stress level, the crack propagation becomes unstable, and cracks 

continue to grow in size even when the magnitude of the applied load is not increased. The ultimate 

compressive capacity of the concrete is reached when the uncracked portions of the concrete can no 

longer carry additional load. Further loading beyond this point coincides with a reduced stress 

capacity for an increased strain. For concrete which is subjected to a compressive stress gradient 

instead of a uniform compressive strain, such as the concrete in the compressed zone of a beam, the 

onset of unstable crack propagation is delayed because as the portion of the concrete under the 

highest strain cracks, load is redistributed to the portions subjected to a lower strain.  

Some general notes on the uniaxial compressive behaviour of concrete are as follows: 

1. The initial modulus of elasticity has been found to increase as the compressive strength, 𝑓𝑐
′, 

is increased. 

2. The ascending portion of the uniaxial compressive stress-strain curve can be approximated 

using a parabola. However, as 𝑓𝑐
′ increases the ascending branch becomes more linear.  

3. The strain at the maximum stress, 𝜀𝑐
′ , increases as 𝑓𝑐

′ increases, but the maximum strain at 

failure, 𝜀𝑢, decreases as 𝑓𝑐
′ increases.  

4. The slope of the descending portion of the stress-strain curve increases as 𝑓𝑐
′ increases. If 

𝑓𝑐
′ is less than or equal to approximately 40MPa, the slope of the descending portion is 
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flatter than the ascending portion. If 𝑓𝑐
′ exceeds 70MPa, the descending branch is nearly 

vertical (MacGregor & Bartlett, 2000), which denotes a very brittle failure.  

3.2 Uniaxial Tensile Behaviour 

The uniaxial tensile strength of concrete is typically only 8-15% of its compressive strength. The 

stress-strain behaviour of concrete subjected to uniaxial tension is slightly curved but typically 

approximated as linear elastic until the tensile capacity (MacGregor & Bartlett, 2000). According to 

MacGregor and Bartlett (2000), “After the tensile capacity is reached microcracks are formed in a 

fracture process zone adjacent to the point of the highest tensile stress, and the tensile capacity of the 

concrete drops very rapidly with increasing [crack] elongation” (p. 64). At the same time, the 

concrete beyond the fracture process zone unloads elasticity and the elongations are concentrated in 

the fracture process zone. The tensile response of concrete is typically modelled with a tensile stress-

crack opening relationship as discussed in Section 4.2.2.2, and the tensile capacity is equal to zero 

when a crack is fully formed (MacGregor & Bartlett, 2000). 

3.3 Behaviour Under Biaxial or Triaxial Loads 

The behaviour of concrete under biaxial and triaxial loading in compression or tension is typically 

different than the uniaxial loading case. Detailed investigations focused on the mechanical behaviour 

of concrete under biaxial loading have been completed by many researchers including Kupfer, 

Hilsdorf and Rüsch (1969) (MacGregor & Bartlett, 2000). A summary of the findings of these studies 

based on information presented in MacGregor and Bartlett (2000) is presented below. 

For concrete specimens subjected to biaxial tension, the biaxial tensile strength is similar to the 

uniaxial tensile strength. In this case, failure occurs perpendicular to the direction of maximum tensile 

stress. Concrete which is subjected to compression in one direction and tension in the other typically 

fails on planes perpendicular to the maximum tensile stress at a compressive or tensile strength lower 

the respective uniaxial strength (MacGregor & Bartlett, 2000).  

As discussed in Section 3.1, the failure of concrete in uniaxial compression is caused by tensile 

cracks which form parallel to the direction of the applied load. Under biaxial or triaxial compression, 

the onset of unstable crack propagation takes longer as the compressive loads delay the formation of 

cracking, leading to a stronger and more ductile response compared to the uniaxial case (MacGregor 

& Bartlett, 2000). 
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Chapter 4: Finite Element Model Calibration  

4.1 Introduction 

The purpose of this chapter is to outline the process used to calibrate the finite element model used in 

the parametric study presented in Chapter 5. First, an overview of the previous finite element research 

focused on the punching shear behaviour of reinforced concrete flat slabs completed at the University 

of Waterloo is presented. The calibrated model from this previous research by Genikomsou (2015) 

served as the starting point for the research summarized in this thesis. Next, the results of three 

preliminary finite element studies created using slightly modified versions of the model calibrated by 

Genikomsou (2015) are presented. These preliminary studies were completed to verify ABAQUS’ 

capability to predict the impact of column rectangularity on the punching shear behaviour of 

reinforced concrete slabs. The first preliminary study was a hypothetical extension of the 

experimental program by Adetifa and Polak (2005). Five slabs supported on rectangular columns 

were modelled and the predictions were compared to the results for slab SB1, which was a slab 

without shear reinforcement and supported on a 150mm square column (Adetifa & Polak, 2005). 

Next, the nine slabs tested by Hawkins, Fallsen and Hinojosa (1971) to study the impact of column 

rectangularity were modelled. Finally, slab AM04, tested by Sagaseta et al. (2014) was modelled. In 

all three studies the finite element predictions were compared to available experimental results and 

code predictions. The results of the capability study confirmed that ABAQUS can be used to 

accurately estimate the punching shear behaviour of slabs supported on square or rectangular 

columns. However, a recalibration of the parameters used in the finite element model is required to 

account for the differences between the experimental setups compared to the SB specimens.  

The recalibration of the finite element model considered slab AM04 instead of the Hawkins’ slabs 

due to the level of detail about the experimental program and results provided by Sagaseta et al. 

(2014). The calibration methodology was similar to that used by Genikomsou (2015). The calibration 

was verified by modelling six additional slabs from literature. Firstly, the other three slabs in the AM 

test series by Sagaseta et al. (2014), which were geometrically similar to slab AM04, but loaded along 

two slab edges only instead of all four, were modelled. Then, three slabs supported on square steel 

plates, and tested by Sagaseta et al. (2011), were modelled. These three slabs were also geometrically 

similar to AM04, and were loaded along all four slab edges, but had different concrete strengths and 

reinforcing ratios than the slabs in the AM series. One of the selected slabs also had different 

reinforcing ratios in the two orthogonal directions. Based on the results of these analyses, it was 
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concluded that the calibrated finite element model is capable of accurately predicting the punching 

shear behaviour of slabs supported on square or rectangular columns and with different reinforcing 

layouts. 

4.2 Overview of Previous Work at the University of Waterloo 

Genikomsou (2015) conducted an extensive finite element analysis of punching shear of reinforced 

concrete slabs supported on square columns in ABAQUS using the “Concrete Damaged Plasticity” 

(CDP) model. The CDP model available in ABAQUS was chosen for the simulations due to its 

ability to model concrete under arbitrary loading states, including cyclic loading, and because it has 

been successfully applied to numerous applications by other researchers, some examples of which 

were discussed in Sections 1.1 and 2.6. The CDP is a continuum, plasticity, damage-based model that 

considers tensile cracking and compressive crushing of the concrete (Genikomsou A. , 2015). The 

finite element model, and the CDP parameters, were calibrated based on published experimental 

results from numerous testing programs. A brief summary of the work completed by Genikomsou is 

provided in this section. For a detailed discussion of the mechanics of the CDP, and the finite element 

models discussed in this section, the reader is referred to the dissertation by Genikomsou (2015). 

4.2.1 Calibration of the “Concrete Damaged Plasticity” Model  

Before using the CDP to model the punching shear behaviour of reinforced concrete slabs in 

ABAQUS, Genikomsou verified the ability of the CDP to model concrete behaviour under different 

loading conditions. 

The first specimens considered in the calibration of the CDP were plain concrete specimens tested 

under combinations of uniaxial/biaxial compression, uniaxial/biaxial tension and combinations of 

tension and compression by Kupfer et al. (1969). Based on the simulations of the specimens subjected 

to uniaxial or biaxial compression, Genikomsou concluded that the assumed dilation angle has no 

impact on the predicted response in the loaded direction, but has a significant impact on the predicted 

response in the unloaded directions. The dilation angle in the CDP is used to measure the dilatancy of 

the concrete. Dilatancy is a measure of the volume change caused by the inelastic strains experienced 

by the concrete due to its brittle nature. As the dilation angle was increased, the ductility of the 

predicted response was found to increase. The impact of dilation angle observed for specimens 

subjected to uniaxial or biaxial tension were found to be consistent with those subjected to uniaxial or 

biaxial compression. However, unlike the specimens loaded in compression, the predicted stiffness of 
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the specimens loaded in tension was found to increase as the dilation angle was increased. For the 

specimens subjected to combination of compressive and tensile loads, the chosen dilation angle was 

found to impact the predicted response in all directions. As the assumed dilation angle was increased, 

the ultimate stress capacity predicted by the FEM increased (Genikomsou A. , 2015).  

The next specimen modelled by Genikomsou was a reinforced concrete shear panel tested by 

Vecchio (1999) under monotonically increasing biaxial compression and shear loads in proportions of 

(-0.4:-0.4:1) to analyze the accuracy of the CDP when simulating shear stresses and strains. The 

predicted crack pattern and shear strain versus shear stress response were found to correlate well with 

the experimental results verifying the capability of the CDP to accurately model the behaviour of 

concrete in shear (Genikomsou A. , 2015).  

Next, a simply supported beam subjected to four point bending without transverse reinforcement 

tested by Leonhardt and Walther (1962), which failed in shear, was modelled to determine the impact 

of dilation angle on a reinforced concrete member. Three dilation angles, 20°, 30° and 40° were 

investigated with the best correlation to the experimental load-displacement response and crack 

pattern found for a dilation angle of 30° (Genikomsou A. , 2015). 

Finally, two reinforced concrete beams, one with transverse reinforcement, and one without 

transverse reinforcement, tested by Aoude et al. (2012) were analyzed by Genikomsou using the 

CDP. The use of dilation angles of 30° and 42° were found to lead to the best correlation between the 

experimental results and finite element predictions for the beams without and with transverse 

reinforcement respectively. From this final study, Genikomsou concluded that an increased dilation 

angle is required when modelling confined concrete members or members with large amounts of 

reinforcement (Genikomsou A. , 2015).  

After verifying the ability of the CDP to accurately capture the behaviour of different plain and 

reinforced concrete specimens under different loading conditions, Genikomsou conducted an 

extensive study of punching shear of reinforced concrete slabs supported on square columns. The 

model calibrated by Genikomsou, which is summarized in the following section, formed the basis of 

the finite element model used in this thesis.  
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4.2.2 Discussion of Calibrated Finite Element Model for Studying Punching Shear by 

Genikomsou  

The calibrated model by Genikomsou (2015) was used to analyze the impact of numerous parameters 

related to punching shear behaviour including unbalanced moments (Genikomsou & Polak, 2015), 

compressive membrane action (Genikomsou & Polak, 2017a), openings in the slab (Genikomsou & 

Polak, 2017b) and shear reinforcement (Genikomsou & Polak, 2016; 2017c). However, in this thesis 

the discussion will focus on the model calibration and results for slab SB1 only. The reader is referred 

to the papers referenced above or the dissertation by Genikomsou (2015) for details of these 

additional analyses.  

4.2.2.1 Experimental Program 

Slab SB1 was one of the six isolated slab-column connections tested by Adetifa and Polak (2005) to 

study the impact of shear bolt reinforcing on punching shear behaviour and was used by Genikomsou 

to calibrate the ABAQUS model. Specimen SB1 represented an interior slab-column connection 

without shear reinforcement and was 1800mm square in plan and was simply supported along lines 

located at 1500mm. The slab was 120mm thick and had an average effective flexural depth of 90mm. 

SB1 was loaded through a square column stub, with 150mm long sides, which extended 150mm 

above and below the slab faces. The concrete used in slab SB1 had an average compressive strength 

of 44MPa and a maximum aggregate size of 10mm. The flexural reinforcement, which consisted of 

10M bars spaced at 100mm and 200mm on the tension and compression sides respectively, had a 

yield strength of 455MPa (Genikomsou A. , 2015; Adetifa & Polak, 2005). 

4.2.2.2 Material Modelling 

As discussed in Chapter 3, the uniaxial compressive stress-strain relationship for concrete is 

nonlinear. In Genikomsou’s model the uniaxial behaviour of concrete in compression was modelled 

using the Hognestad parabola shown in Figure 4-1. The linear elastic portion of the compressive 

stress-strain response was assumed to have an initial modulus of elasticity, 𝐸𝑜, equal to 5500√𝑓𝑐
′ 

(MPa) and was assumed to end at a stress equal to 40% of the concrete compressive strength, 𝑓𝑐
′. The 

second region of the stress-strain curve represents the ascending portion up to the peak strain, 𝜀𝑜, 

which is equal to 2𝑓𝑐
′ 𝐸𝑠𝑒𝑐⁄ , where 𝐸𝑠𝑒𝑐 is equal to 5000√𝑓𝑐

′ (MPa). The third region represents the 

post peak response and extends until the ultimate compressive strain, 𝜀𝑢. As shown in Figure 4-1 the 

equation for regions 2 and 3 is the same (Genikomsou A. , 2015).  
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Figure 4-1: Hognestad Parabola (reproduced with permission, (Genikomsou A. , 2015)) 

Genikomsou (2015) assumed that concrete in tension is linear elastic until the tensile strength, 𝑓𝑡
′, 

was reached. As discussed in Chapter 3, the actual uniaxial tensile stress-strain relationship is slightly 

curved (MacGregor & Bartlett, 2000), but the error introduced by using a linear elastic relationship is 

minimal in many applications. Due to the inclusion of flexural reinforcement in the model and 

specimen, the concrete’s tensile capacity does not go immediately to zero after cracking, and the post 

peak response is modelled using a softening process which ends at an ultimate tensile strain where 

zero residual tensile capacity exists. Due to the brittle nature of concrete in tension, and to limit the 

mesh sensitivity of the finite element model, the uniaxial tensile behaviour of concrete was 

characterized through a tensile stress-crack width response instead of a tensile stress-strain response 

(Dassault Systemes Simulia Corp., 2012; Genikomsou A. , 2015). Genikomsou found that the bilinear 

tensile stress-crack width relationship proposed by Petersson (1981), shown in Figure 4-2, led to 

sufficiently accurate results and was more computationally efficient than the exponential tensile 

stress-crack width relationship proposed by Cornelissen et al (1986). 

The bilinear response proposed by Petersson (1981) is dependent on the concrete tensile strength, 

𝑓𝑡
′, which was approximated as 0.33√𝑓𝑐

′, and the concrete fracture energy, 𝐺𝑓 (N/mm), which was 

calculated according to Model Code 1990 using equation 4.1 

𝐺𝑓 = 𝐺𝑓0(𝑓𝑐𝑚 𝑓𝑐𝑚𝑜⁄ )0.7 (4. 1) 

where 𝐺𝑓0 is the base fracture energy which is dependent on the maximum aggregate size (N/mm), 

𝑓𝑐𝑚 is the mean value of the concrete compressive strength calculated using equation 4.2 (MPa) and 

𝑓𝑐𝑚𝑜 equals 10MPa according to Model Code 1990 (Comité Euro-International du Béton, 1993).  
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𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 8𝑀𝑃𝑎 (4. 2) 

where 𝑓𝑐𝑘 is the characteristic compressive strength (MPa). According to Model Code 1990, 𝐺𝑓0 is 

equal to 0.026N/mm for a maximum aggregate size of 10mm (Comité Euro-International du Béton, 

1993). 

 

Figure 4-2: Bilinear Tensile Stress-Crack Width Relationship Proposed by Petersson (1981), 

(reproduced with permission, Genikomsou (2015)) 

The tensile stress-crack width relationship is then converted to a tensile stress-strain relationship by 

dividing the cracking displacement by the characteristic element length, which is equal to the cubic 

root of the element volume for 3D first order solid elements. This conversion results in the uniaxial 

tensile stress-strain relationship is shown in Figure 4-3. 

 

Figure 4-3: Uniaxial Tensile Stress-Strain Curve (reproduced with permission Genikomsou 

(2015)) 
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An isotropic elasticity definition was used to define the linear elastic portion of the concrete 

response in tension and compression. This material definition requires two parameters, the elastic 

modulus and Poisson’s ratio. The elastic modulus was inputted as 5500√𝑓𝑐
′ to match the assumed 

Hognestad parabola. Since the CDP only allows the user to define one value for Poisson’s ratio, even 

for cracked concrete, a value of 0 was used (Genikomsou & Polak, 2015). For the reinforcing steel a 

simplified linear elastic perfectly plastic stress-strain response in tension and compression was used. 

The elastic modulus and Poisson ratio of the flexural reinforcement were inputted as 200000MPa and 

0.3 respectively (Genikomsou A. , 2015).  

4.2.2.3 Summary of Calibrated Model Parameters  

In the analysis of SB1, Genikomsou considered the impact of numerous parameters including the 

boundary conditions, analysis type, element type, element (mesh) size, use of damage parameters, 

concrete fracture energy, yield surface shape and dilation angle.  

The mesh sensitivity study was of particular importance since the CDP is based on a smeared 

cracked model which makes the results mesh dependent. In a smeared crack model, cracking is 

modelled by reducing the concrete stiffness in the direction of the principal stresses. The concrete is 

assumed to remain a continuum but becomes orthotropic or transversely isotropic (Genikomsou A. , 

2015; Chen W. , 1982). The advantage of a smeared crack model is that a new mesh is not required 

after cracks form. However, the main disadvantage is that cracking can localize into a single row of 

elements, leading to mesh sensitivity and potentially incorrect results. Genikomsou noted that the 

chosen mesh size should be larger than the maximum aggregate size. Since reduced integration 

elements were used in Genikomsou’s calibrated model, an upper limit on the chosen mesh size was 

also imposed. In order to avoid numerical effects such as hourglassing, and distortion of the three-

dimensional solid reduced integration elements, at least 5 elements through the specimen depth are 

needed. Based on a comparison of the experimental and predicted load-displacement response and 

crack patterns, a 20mm mesh size was found to be adequate (Genikomsou A. , 2015).  

Genikomsou also conducted a detailed study investigating the ideal element type to be used when 

analyzing punching shear in ABAQUS. Since a quasi-static analysis in ABAQUS/Explicit was used 

for all simulations to maximize computational efficiency, three element types were considered, three-

dimensional linear eight node hexahedral reduced integration elements (C3D8R), three-dimensional 

four node linear tetrahedral elements (C3D4) and three-dimensional ten node quadratic tetrahedral 
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modified elements (C3D10M). Both C3D8R and C3D10M elements were found to accurately capture 

the experimental results, but C3D8R elements were much more computationally efficient and were 

used for all analyses (Genikomsou A. , 2015). 

A summary of calibrated model by Genikomsou (2015) is provided in Table 4-1 and the boundary 

conditions and displacement measurement location used by Genikomsou (2015) are shown in Figure 

4-4. The boundary conditions used by Genikomsou (2015) are similar to those used in the SB1 

rectangularity study discussed in Section 4.3.1. 

Table 4-1: Summary of Calibrated Model by Genikomsou (2015) 

Concrete 

ABAQUS Material Model Concrete Damaged Plasticity 

Compression Model Hognestad Parabola (see Figure 4-1 for general equations) 

Tension Model Bilinear tensile stress-crack width (Petersson, 1981) 

Fracture Energy (𝐺𝑓) 0.082N/mm (Calculated from Model Code 199) 

Dilation Angle 40° 

Eccentricity (𝜀) 0.1 (ABAQUS Default) 

Viscosity (𝜇)* 1.0x10-5 (not used in ABAQUS/Explicit) 

𝜎𝑏𝑜 𝜎𝑐𝑜⁄   1.16 (ABAQUS Default) 

Damage Parameters Not Included  

Element Type C3D8R 

Approximate Element Size  20mm 

Modulus of Elasticity (𝐸𝑐) 36483MPa, Calculated as (5500√𝑓𝑐
′) 

Poisson’s Ratio (𝜈) 0 

Steel – Flexural Rebar 

Material Model Linear elastic, perfectly plastic (see Figure 4-24) 

Modulus of Elasticity 200000MPa 

Poisson’s Ratio (𝜈) 0.3 

Yield Strength (𝑓𝑦) 455MPa 

Element Type T3D2 (embedded into concrete elements) 

Approximate Element Size 20mm 
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Figure 4-4: Boundary Conditions and Measurement Locations in Genikomsou Model (2015) 

4.3 Capability Study 

4.3.1 SB1 Rectangularity Study 

4.3.1.1 Investigated Specimens 

The first column rectangularity investigation was a hypothetical extension of the testing program by 

Adetifa and Polak (2005). The hypothetical program included slab SB1, tested by Adetifa and Polak 

(2005), and five hypothetical specimens supported on increasingly rectangular columns with constant 

critical perimeter lengths according to ACI 318M-14. The column dimensions, column aspect ratios 

and ratio of the minimum column dimension to the effective slab depth (cmin/d) are summarized in 

Table 4-2. Other than the column dimensions and longitudinal column reinforcement, the slabs were 

identical to SB1.  

Table 4-2: Summary of Column Sizes Considered in SB1 Rectangularity Study 

Slab cmin (mm) cmax (mm) β (cmax/cmin) cmin/d 

SB1 (Control) 150 150 1.0 1.7 

C1 125 175 1.4 1.4 

C2 100 200 2.0 1.1 

C3 75 225 3.0 0.8 

C4 50 250 5.0 0.6 

C5 25 275 11.0 0.3 
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4.3.1.2 Finite Element Model 

The ABAQUS model used to analyze the six slabs was based on the calibrated finite element model 

by Genikomsou (2015) with one minor change. To reduce computational time in some of the 

analyses, Genikomsou used a bilinear compressive stress-strain relationship for the concrete instead 

of the complete Hognestad Parabola, since the punching capacity of slabs is known to be primarily 

related to the tensile strength of concrete. In this thesis, the full Hognestad parabola introduced in 

Section 4.2 is used, which resulted in a slightly higher capacity and deflection at failure compared to 

the results from the Genikomsou model. A comparison of the predicted load-deflection response 

using the bilinear stress-strain relationship used by Genikomsou (2015) and the Hognestad parabola is 

provided in Figure 4-5. As expected, the predicted response for both models correlated well with the 

experimental results, though the initial stiffness predicted by the FEM is much higher than that 

observed experimentally. The discrepancy in predicted stiffness likely occurs because the FEM does 

not account for cracking due to temperature, shrinkage and specimen transportation in the laboratory.  

 

Figure 4-5: Comparison of FEA Results of SB1 With Different Concrete Stress-Strain Curves  

4.3.1.3 Finite Element Analysis Results  

The predicted load-displacement response for the six slabs is provided in Figure 4-6. Increasing the 

column rectangularity was found to have a minimal impact on the predicted punching capacity and 

stiffness of the slab-column connection. As will be discussed in Section 5.1.1, this was expected since 

the cmin/d ratio decreased as the column rectangularity was increased. According to Model Code 2010, 

the impact of column rectangularity is very small when the cmin/d ratio is small.  
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Figure 4-6: Load-Displacement Response Predicted by ABAQUS 

A comparison of the predicted crack patterns for slabs SB1 (β=1), C2 (β=2), C4 (β=5) and C5 

(β=11), visualized through the contours of maximum principal plastic strain, are shown in Figure 4-7. 

As expected, the crack pattern for slab SB1, which was loaded through a square column, is 

approximately uniform in both orthogonal directions. The crack patterns for the other analyzed slabs, 

except for slab C5, which has a column aspect ratio of 11, are also approximately uniform. For slab 

C5, the cracks perpendicular to the long side of the column are slightly longer than those 

perpendicular to the short side of the column. The lack of non-uniformity in the crack patterns 

supports the conclusion that column rectangularity does not have a large effect on punching shear 

behaviour when the cmin/d ratio is small.  
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Figure 4-7: Tension Surface Crack Patterns Predicted by ABAQUS 

A comparison of the punching capacity predicted by the FEA, ACI 318M-14, Eurocode 2 (2004) 

(EC2) and Model Code 2010 (MC 2010) LoA I is provided in Table 4-3. The simplest level of 

approximation was used for MC 2010 since the primary objective of this study was to confirm that 

ABAQUS was properly predicting the impact of column rectangularity for the modelled slabs. As 

such, the overall trend predicted by MC 2010 is more important than accurate punching capacity 

estimates. Comparing the predicted capacities, it was found that ACI 318M-14 predicts a much more 

significant impact of column rectangularity compared to the other two design codes and the finite 

SB1 – β = 1 C2 – β = 2 

C4 – β = 5 C5 – β = 11 
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element results. Both Model Code 2010 and EC2 (2004) predict a constant capacity as the column 

rectangularity was increased since the critical perimeter length was constant for the investigated slab-

column connections. Only for slab-column connection C5, which had a rectangularity of 11, did 

Model Code 2010 predict a slightly lower capacity (112kN vs 114kN). Model Code 2010 predicted a 

slightly lower capacity for column C5 because the maximum column dimension of 275mm is 5mm 

greater than 3 times the average effective slab depth (90mm), and so the effective critical perimeter 

length is lower than the total critical perimeter length for this connection only. It should be noted that 

a constant flexural reinforcing ratio of 1.2%, which is the average reinforcing ratio of SB1, was 

assumed in the EC2 (2004) calculations, instead of calculating the reinforcing ratio in each direction 

over a slab width equal to the column width plus three times the effective slab depth on each side of 

the column. This assumption simplified the EC2 calculations and removed the influence of slight 

changes in the reinforcing ratio on the final results. The use of a constant reinforcing ratio resulted in 

an approximately 4% increase in the predicted capacities for both the control and C4 specimens and a 

less than 1% increase in capacity for the remaining four specimens.  

Table 4-3: Comparison of Punching Capacity Predicted by Codes and FEA 

  Predicted Punching Shear Capacity (kN) 

Slab 
Column Aspect 

Ratio (β) 
FEA ACI 318M-14 EC2 (2004) 

MC 2010 

(LoA I) 

Control 1 230.8 189.1 207.8 114.1 

C1 1.4 233.7 189.1 207.8 114.1 

C2 2 233.6 189.1 207.8 114.1 

C3 3 229.2 162.4 207.8 114.1 

C4 5 229.7 136.4 207.8 114.1 

C5 11 219.2 115.1 207.8 112.8 

 

A comparison of the normalized nominal shear stress capacity per unit length along the ACI 318M-

14 critical perimeter, 𝑣𝑛𝑜𝑟𝑚, calculated according to equation 4.3 is provided in Figure 4-8.  

𝑣𝑛𝑜𝑟𝑚 = 
𝑉

𝑏𝑜,𝐴𝐶𝐼𝑑√𝑓𝑐
′

(4. 3)  
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where 𝑉 is the punching shear capacity predicted by the FEA or the design code (N), 𝑏𝑜,𝐴𝐶𝐼 is the 

length of the critical perimeter according to ACI 318M-14 (2 × (𝑐𝑚𝑎𝑥 + 𝑑) + 2 × (𝑐𝑚𝑖𝑛 + 𝑑), mm), 

𝑑 is the average effective slab depth (mm) and 𝑓𝑐
′ is the concrete compressive strength (MPa)  

 

Figure 4-8: Comparison of Nominal Shear Capacity Along the ACI 318 Critical Perimeter 

Predicted by the FEA and Various Design Codes 

Again, the ACI 318 provisions predicted a much more substantial impact of column rectangularity 

compared to the other design codes and the FEA. As previously discussed, MC 2010 LoA I is very 

conservative (Muttoni & Fernández Ruiz, 2012) so the nominal stresses predicted using this level of 

approximation are very low, but the minimal change in nominal stress as the column rectangularity is 

increased is the important factor, and not the actual magnitude. The EC2 (2004) provisions predict a 

nominal shear stress close to that predicted by the FEA which validates the predicted behaviour.  

4.3.2 Hawkins Slabs 

Since five of the six specimens in the SB1 rectangularity analysis were hypothetical it was desired to 

model slabs which were experimentally tested and supported on rectangular columns to further study 

the capability of ABAQUS to capture the impact of column rectangularity. The slabs tested by 

Hawkins, Fallsen and Hinojosa (1971) were selected since the experimental results and findings 

directly led to modifications to the ACI 318 provisions (ACI Committee 318, 2014; ASCE-ACI 

Committee 426, 1974; Al-Yousif & Regan, 2003; Mitchell, Cook, & Dilger, 2005). 
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4.3.2.1 Experimental Program 

Hawkins, Fallsen and Hinojosa (1971) tested nine slabs to study the impact of column rectangularity 

on the shear strength and structural behaviour of reinforced concrete slabs supported on columns. The 

specimens were isolated slab-column connections sized to represent an interior column in a flat slab 

system with columns spaced at 4.5m (15’) on center. The isolated slabs were 2.1m (7’) square, 

152mm (6”) thick and supported on a 104cm (41”) tall central rectangular column stub with an aspect 

ratio between 1 and 4.33. Slabs 1-8 had a column perimeter of 122cm (48”) and slab 9 had a column 

perimeter of 91cm (36”) (Hawkins, Fallsen, & Hinojosa, 1971). The column dimensions, flexural 

reinforcing details, effective depth and concrete compressive strengths are summarized in Table 4-4 

and a schematic of the experimental setup is provided in Figure 4-9. It should be noted that the 

concrete compressive strengths listed in Table 4-4 correspond to the strength of the concrete used to 

cast the portion of the slab around the slab-column connection and the average strength of the four 

batches used to cast each slab respectively.  

Table 4-4: Summary of Material Properties of Slabs Tested by Hawkins et al. (1971) 

Slab cmin (mm) cmax (mm) β 𝑓𝑐
′ (MPa) 𝜌𝑎𝑣𝑔 davg (mm) cmin/d 

1 304.8 304.8 1.0 30.3/29.6 1.12 117.3 2.60 

2 203.2 406.4 2 26.3/28.1 1.12 117.3 1.73 

3 152.4 457.2 3 32.0/29.9 1.12 117.3 1.30 

4 114.3 495.3 4.33 31.0/29.3 1.12 117.3 0.97 

5* 152.4 457.2 3 26.9/27.4 * 117.3 1.30 

6** 152.4 457.2 3 22.7/24.8 1.12 117.3 1.30 

7 152.4 457.2 3 25.9/26.1 0.87 117.3 1.30 

8 114.3 495.3 4.33 26.1/24.7 0.81 120.65 0.95 

9 152.4 304.8 2 29.5/27.1 0.77 120.65 1.26 

*4 additional #5 bars added to top reinforcing layer in central 45.7cm (18”) of slab 

** Column rotated 90 degrees compared to other slabs  

 



 

 81 

 

 

Figure 4-9: Hawkins et al. (1971) Experimental Setup 

Slabs 1 through 6 were loaded in one-way action and had column aspect ratios between 1 and 4.33. 

For slabs 1 through 5 the load was applied on the slab edges parallel to the short side of the column. 

The column in slab 6 was rotated 90 degrees compared to the other eight slabs, as shown in Figure 

4-9, and the load was applied parallel to the long side of the column. Slabs 7 to 9 had column aspect 

ratios between 2 and 4.33 and were loaded in two-way action. In addition to the loads parallel to the 

short side of the column, loads with a magnitude equal to 65% of the loads applied parallel to the 

short side were applied on the slab edges parallel to the long side of the column (Hawkins, Fallsen, & 

Hinojosa, 1971).  

The slabs were reinforced with #4 or #5 deformed steel bars manufactured according to ASTM 

A432. The yield strengths of the #4 and #5 bars were approximately 412MPa (59700psi) and 414MPa 

(60000psi) respectively. The reinforcement was symmetric about the slab centerline with the top 

reinforcement parallel to the long side of the column (Hawkins, Fallsen, & Hinojosa, 1971).  

All nine specimens failed due to punching shear. As the column aspect ratio was increased, the 

punching capacity of the slab-column connections decreased (Hawkins, Fallsen, & Hinojosa, 1971). 

Reduced capacity with increasing rectangularity is logical because as the column aspect ratio was 

increased the overall area of the column cross-section was decreased since the column perimeter 

length was fixed at 122cm in eight of the nine tests. Additionally, the size of the punching cone 

decreased, and the failure became more abrupt as the aspect ratio increased. It was also found that the 
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punching capacity of the slabs loaded on all four edges were only slightly lower than those of the 

slabs loaded on two edges only (Hawkins, Fallsen, & Hinojosa, 1971). 

4.3.2.2 Finite Element Model 

To take advantage of symmetry, quarter models were used to model the slabs tested by Hawkins et al. 

However, the boundary conditions assumed in the Hawkins’ slab analysis, shown in Figure 4-10, 

differ from those used in the analysis of the SB1 slabs due to the different experimental setups used 

by Hawkins et al. (1971) and Adetifa and Polak (2005). As discussed in the previous section, the 

slabs were supported on 104cm tall column stubs and loaded through discrete points near the slab 

edges. In ABAQUS, the column support was assumed to act as a roller since exact support details 

were not provided by Hawkins et al. (1971). Therefore, the vertical displacement along the column 

base were set to 0. The use of a pinned or fixed condition at the column base was also investigated 

and found to have no effect on the predicted capacity or behaviour since lateral support was supplied 

by the symmetry boundary conditions. To ensure uniform load application, a pressure load was 

applied over each load application area instead of a displacement boundary condition. The magnitude 

of the P1 loads was set at 7.0MPa and the magnitude of the P2 loads was set at 4.55MPa, which is 

65% of the P1 loads. Since the size of the loading plates was not provided, a load application area of 

80x80mm was assumed. This size was chosen to ensure that the concrete would not crush under the 

pressure load and to limit the likelihood of localized element failures in ABAQUS. A pressure-based 

load in ABAQUS remains perpendicular to the surface throughout the analysis and is a force driven 

load type. As such, the total force in the model will continually ramp up even after the slab has failed 

in punching. Therefore, a static analysis cannot be used since a peak in the predicted load-deflection 

response would never be observed. A quasi-static analysis in ABAQUS/Explicit was used to predict 

the capacity of the slabs. In addition to the computational benefits of using a quasi-static analysis 

reported by Genikomsou (2015), the use of ABAQUS/Explicit allows for a peak in the load-

deflection curve to be observed even when force driven loads are specified. When punching occurs, 

the model becomes unstable due to the brittle nature of the failure mode, leading to a noticeable drop 

in the predicted load carrying capacity.  
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Figure 4-10: Boundary Conditions in Hawkins’ Slab Analysis (Slab 8 Shown) 

The calibrated SB1 model by Genikomsou was used to model the Hawkins’ slabs with minor 

modifications. Firstly, two different concrete strengths were used in the model. Secondly, a different 

Hognestad parabola than that used by Genikomsou (2015) was used in the analysis of the Hawkins’ 

slabs, and all subsequent analyses in this thesis, where the concrete compressive strength was less 

than 60MPa. Thirdly a different steel stress-strain curve, which was based on experimental results by 

Pfister and Hognestad (1964) was used.  

As discussed in the previous section, Hawkins et al. (1971) listed two concrete strengths for each 

slab. The first of these strengths, referred to as the “shear” concrete strength in the publication, 

corresponded to the average compressive strength of the concrete batch used to cast the portion of the 

slab near the column, though the exact location of this batch was not provided. The second strength, 

referred to as the “flexure” concrete strength, corresponded to the average strength of the four batches 

used to cast each slab. In the FEM, the first concrete strength listed in Table 4-4 was used for the 

highlighted region shown in Figure 4-11 and the second concrete strength was used for the remainder 

of the slab.  
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Figure 4-11: Assumed Concrete Strength Locations in FEM 

The Hogestad parabola used in the Hawkins’ analysis, shown in Figure 4-12, is similar to that used 

by Stoner (2015) and Barrage (2017) in their analysis of concrete beams reinforced with glass fiber 

reinforced polymer, and has a smoother transition between the linear and non-linear regions than that 

used by Genikomsou (2015).  

 

Figure 4-12: Hognestad Parabola used in Hawkins' Analysis 

The linear elastic region of the compressive stress-strain curve was assumed to end at a stress equal 

to 40% of the concrete compressive strength, which has been used by other researchers (Winkler & 

Stangenberg, 2008; Genikomsou A. , 2015; Stoner, 2015; Barrage, 2017). The initial modulus of 

elasticity, 𝐸𝑐𝑜, in region 1 (σc
(1)), and the modified modulus of elasticity, 𝐸𝑐𝑡, in region 2, (σc

(2)), were 

calculated using equations 4.4 and 4.5 respectively (Stoner, 2015). 
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𝐸𝑐𝑜 = 5000 × √𝑓𝑐
′ (𝑀𝑃𝑎) (4. 4) 

𝐸𝑐𝑡 = 5500 × √𝑓𝑐
′ (𝑀𝑃𝑎) (4. 5) 

The strain at peak stress, 𝜀𝑐
′ , was calculated using equation 4.6 (Stoner, 2015). 

𝜀𝑐
′ = 2𝑓𝑐

′ 𝐸𝑐𝑡⁄  (4. 6) 

The stress in the linear elastic region, denoted as (σc
(1)) in Figure 4-12, and in the non-linear region, 

denoted as (σc
(2)), were calculated using equation 4.7 and 4.8. 

𝜎𝑐
(1)

= 𝐸𝑐𝑜𝜀𝑐                                            𝑖𝑓 𝜀𝑐 ≤ 0.4𝑓𝑐
′ 𝐸𝑐𝑜⁄ (4. 7) 

𝜎𝑐
(2)

= 𝑓𝑐
′ [2 (

𝜀𝑐

𝜀𝑐
′) − (

𝜀𝑐

𝜀𝑐
′)

2

]                𝑖𝑓 𝜀𝑐 > 0.4𝑓𝑐
′ 𝐸𝑐𝑜⁄  (4. 8) 

where 𝜀𝑐 is the concrete strain (Stoner, 2015). To avoid numerical issues caused by extending the post 

peak behaviour to a stress of zero the nonlinear region of the stress strain curve was assumed to end at 

a post peak stress equal to 40% of the concrete compressive strength.  

 Only the yield strength and the fact that the flexural reinforcement was manufactured according to 

ASTM A432 was provided by Hawkins et al. (1971). Therefore, the stress-strain curve for the 

flexural reinforcement had to be assumed. The minimum yield and ultimate tensile strengths of rebar 

manufactured according to ASTM A432 are 60000psi (413.6MPa) and 90000psi (620.5MPa) 

respectively (ASTM International, 1965). The minimum yield strength is slightly higher than the 

value for the #4 bars provided by Hawkins et al. (59700psi) and matches the value provided for the #5 

bars. However, no stress-strain curve is provided in ASTM A432.  

Pfister and Hognestad (1964) conducted extensive experimental testing of reinforced concrete 

members reinforced with high strength deformed bars. In part 6 of their study, they focused on the 

fatigue behaviour of reinforced concrete members. Included in their study was a stress-strain curve 

bars manufactured according to ASTM A432, which is shown in Figure 4-13. 
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Figure 4-13: Tensile Stress-Strain Curve for Reinforcing Bars Manufactured to Various ASTM 

Standards (Pfister & Hognestad, 1964), Adapted from the Journal of the PCA Research and 

Development Laboratories, Volume 6, No. 1 (1964), Reproduced with Permission 

The yield strength (64.2ksi) and ultimate strength (117.5ksi) (Pfister & Hognestad, 1964) are 

greater than those specified in ASTM A432 by 7% and 30.5% respectively. However, the values are 

similar to those published by Ali Mirza and MacGregor (1979) in their report focused on quantifying 

the variability in mechanical properties for multiple grades of steel reinforcing bars. Ali Mirza and 

MacGregor summarized the yield and ultimate strengths from numerous published and unpublished 

experimental studies. The collected data showed that the mean value of the ultimate tensile strength 

of bars manufactured to ASTM A432 regularly exceeded 105ksi (724MPa) (Ali Mirza & MacGregor, 

1979). The data collected by Ali Mirza and MacGregor suggests that the ultimate strength of 

deformed steel bars manufactured according to ASTM A432 greatly exceeds the required minimum 

and may be closer to the value of 117.5ksi (810MPa) observed by Pfister and Hognestad (1964). 

Therefore, the stress-strain curve published by Pfister and Hognestad was assumed in the FEM for 

both the #4 and #5 bars. However, the curve provided by Pfister and Hognestad (1964) does not show 

the relationship between 80ksi and 117.5ksi, and so a linear relationship was assumed as shown in 

Figure 4-14. Since strain hardening was accounted for the engineering stress-strain curve, shown in 

Figure 4-14, was converted to a true stress-true strain curve, which is also shown in Figure 4-14, True 

strain was calculated using equation 4.9 

𝜀𝑜 = ln(1 + 𝜀) (4. 9) 
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where 𝜀𝑜 is the true strain and 𝜀 is the engineering strain (Ugural & Fenster, 2012). True stress was 

calculated using equation 4.10. 

𝜎𝑡 = 𝜎 × (1 + 𝜀) (4. 10) 

where 𝜎𝑡 is the true stress (MPa) and 𝜎 is the engineering stress (MPa) (Ugural & Fenster, 2012).  

The inputted values for the elastic modulus and Poisson’s ratio were 200000MPa and 0.3 

respectively. The sharp decrease in tensile capacity after the peak stress, shown in Figure 4-14, was 

included to assist with identifying flexural failures in the model and to avoid ABAQUS extrapolating 

the linear relationship.  

 

Figure 4-14: Engineering and True Stress-Strain Relationship Assumed in Hawkins' Analysis 

4.3.2.3 Finite Element Analysis Results  

The experimental capacity, finite element predicted capacity and deflection for the nine Hawkins’ 

slabs are presented in Table 4-5. The FEM underpredicted the punching capacity of all nine slabs, 

with a maximum error of 24% for slabs 6 and 9. For slabs 1-5 and 7-9 the predicted deflection 

perpendicular to the short side of the column, D4, is larger than the predicted deflection perpendicular 

to the long side of the column, D8. For slab 6 the opposite is true, since the column was rotated 90 

degrees with respect to the other 8 specimens. This was expected since the larger load is applied in 

the D4 direction for all nine slabs. The FEM predicted a nearly symmetric response for slabs 7-9 

which were loaded in two-way action. 
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Table 4-5: Summary of Finite Element Results and Experimental Capacities 

  Shear Capacity FEA Predicted Displacement (mm) 

Slab β 
Vtest 

(kN) 

VFEA 

(kN) 

Perp. To column 

short side 

Perp. To column 

long side 

1 1 383.9 334.8 19.2 11.8 

2 2 351.4 313.1 15.8 10.5 

3 3 333.2 283.1 13.8 9.4 

4 4.33 330.5 287.4 13.9 9.8 

5 3 355.0 292.5 14.0 8.4 

6 3 335.8 270.1 9.5 14.9 

7 3 319.8 268.7 15.1 14.5 

8 4.33 314.5 273.1 13.8 13.5 

9 2 315.4 253.3 14.2 13.0 

 

A comparison of the experimental and predicted load-deflection curves for slab 1 (β=1), slab 3 

(β=3) and slab 7 (β=3) are provided in Figure 4-15, Figure 4-16 and Figure 4-17 respectively. It 

should be noted that the load-deflection curves provided by Hawkins et al. (1971) are incomplete and 

do not include measurements up to the peak load. As such, a horizontal line has been added to each 

plot at the peak load. From all three figures, it is clear that the capacity and stiffness predicted by the 

FEM does not match the experimental results.  

For slab 1, which was loaded in one-way action, the FEM predicted a capacity of 334.8kN, which 

is approximately 12% lower than the experimental capacity of 383.9kN. Both the finite element 

predictions and the experimental measurements displayed a different stiffness in both directions. The 

stiffness in the D4 direction, which is the direction of maximum deflection and load application, was 

lower than the stiffness in the other direction in both the experiment and in the FEM. However, the 

FEM predicted a higher stiffness in both directions compared to the experimental results.  

For slab 3, which was also loaded in one-way action, the FEM predicted a capacity of 283.1kN, 

which is approximately 17.7% lower than the experimental capacity of 332.1kN. The finite element 

results show a much lower stiffness in the direction perpendicular to the short side of the column 

compared to the direction perpendicular to the long side of the column. The experimental stiffness on 

the other hand was similar in both directions.  
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For slab 7, which was loaded in two-way action, the FEM predicted a capacity of 268.7kN, which 

is approximately 16% lower than the experimental capacity of 319.8kN. Again, the finite element 

model does not accurately predict the experimentally observed stiffness. In the case of slab 7, the 

FEM underpredicted the stiffness in both directions, which is the opposite of the results for slabs 1 

and 3. The FEM also predicted a similar stiffness in both directions, which differs from the 

experimental results, which displayed a different stiffness in each direction. 

 

Figure 4-15: Comparison of Predicted and Measured Load Deflection Plots – Slab 1, β = 1 

 

Figure 4-16: Comparison of Predicted and Measured Load Deflection Plots – Slab 3, β = 3 
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Figure 4-17: Comparison of Predicted and Measured Load Deflection Plots – Slab 7, β = 3 

Based on the predicted capacities and comparison of the predicted load-deflection response to the 

experimental measurements, it is clear that a recalibration of the FEM model is required to account 

for the different experimental setups of Adetifa and Polak (2005) and Hawkins et al. (1971). 

However, the objective of the Hawkins’s analysis was to verify that ABAQUS is capable of capturing 

the effect of column rectangularity on punching shear behaviour. To verify ABAQUS’ capability of 

estimating the impact the column rectangularity accurate capacity and deflection measurements are 

not required, but the overall trends should match those observed experimentally by Hawkins et al. 

(1971) or by other researchers. Therefore, the predicted load-deflection response and crack patterns 

for all nine slabs and a comparison of the nominal capacity around the critical perimeter at d/2 

predicted by the FEA and various design codes are analyzed.  

The load-deflection response predicted by the FEM for slabs 1-6, which were loaded in one-way 

action, are provided in Figure 4-18. For slabs 1-5, where the load was applied on the slab edges 

parallel to the short side of the column, the FEM predicted a higher stiffness in the unloaded 

direction, which is perpendicular to the long side of the column. For slab 6, where the load was 

applied on the slab edges parallel to the long side of the column, the predicted stiffness in the 

unloaded direction, which is perpendicular to the short side of the column was higher. Therefore, for 

all 6 slabs loaded in one-way action the stiffness in the unloaded direction was higher than the loaded 

direction. These predictions match experimental results from Sagaseta et al. (2014) which are 
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discussed in Section 4.3.3 and 4.4. The effect of rectangularity on total punching capacity is hard to 

identify since the predicted capacity for slab 4 (β=4.33) is similar to slabs 3 and 5 (β=3). 

  

 

Figure 4-18: Load Deflection Plots for Slabs Loaded in One-Way Action (Slabs 1-6) 

The load-deflection response predicted by the FEM for slabs 7-9, which were loaded in two-way 

action, are provided in Figure 4-19. As was observed for slab 7, the FEM predicted a similar stiffness 

and maximum deflection in both directions for slabs 8 and 9. This nearly symmetric behaviour 

matches observations by Sagaseta et al. (2014) for slab AM04, which was supported on a rectangular 

steel plate with an aspect ratio of three and loaded in two-way action. Additionally, the finite element 

model predicts a similar capacity for all three slabs even though the column aspect ratio was varied 

between 2 and 4.33.  
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Figure 4-19: Load Deflection Plots for Slabs Loaded in Two-Way Action (Slabs 7-9) 

A comparison of the predicted crack patterns for slabs 7, 8 and 9, in order of increasing column 

aspect ratio, is provided in Figure 4-20. Unlike the crack patterns in the SB1 study, the crack patterns 

on the tension surface of the slab become increasingly nonsymmetric as the column rectangularity is 

increased showing that the column rectangularity is having an effect on the overall behaviour of the 

slab. Additionally, the size of the failure cones on the slab sides decreased as the column aspect was 

increased which matches the experimental results (Hawkins, Fallsen, & Hinojosa, 1971). Similar 

behaviour was observed for the slabs loaded in one-way action.  

Due to the differences in concrete strengths for the nine slabs, the impact of column rectangularity 

is hard to identify from Figure 4-18 and Figure 4-19 or the experimental capacities. To estimate the 

impact of column rectangularity, the normalized nominal shear stress along the critical perimeter, 

calculated according to equation 4.3 for each slab, was compared. 
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Figure 4-20: Predicted Crack Patterns for Slabs Loaded in Two-Way Action 
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The normalized nominal shear stress along the ACI 318 critical perimeter based on the 

experimental results and code predictions for slabs 1-6 and slabs 7-9 are provided in Figure 4-21 and 

Figure 4-22 respectively. In both figures, both the experimental results, and a trendline of the 

experimental data are plotted. For all code equations other than ACI 318, which includes the column 

aspect ratio in the calculation directly, the plotted results correspond to the trendline of the code 

predictions for the specific column aspect ratios considered in the experimental program.  

The trendline of the nominal shear stress predicted by the FEM is much lower than the trendline 

based on both experimental data sets. This underprediction was expected since the FEM was 

underpredicting the total capacity by approximately 20%. However, the slope of the trendline for the 

experimental data and the finite element predictions are similar. Therefore, based on the changes in 

the predicted crack patterns and the trend of the nominal shear stresses along the critical perimeter 

predicted by the FEM, it can be concluded that ABAQUS is capable of capturing the impact of 

column rectangularity, although further calibration of the Hawkins’ model is required.  

 

Figure 4-21: Normalized Nominal Shear Stress Around ACI Critical Perimeter, Slabs 1-6  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5

N
o

m
in

a
l 

S
h
e

a
r 

S
tr

e
s
s
 A

ro
u
n
d
 A

C
I 

C
ri

ti
c
a

l 

P
e

ri
m

e
te

r

Column Rectangularity, β

Experimental Data Experimental (Trendline)
FEA ACI 318
EC2 CSCT
MC2010 (LoA IV)



 

 95 

  

Figure 4-22: Normalized Nominal Shear Stress Around ACI Critical Perimeter, Slabs 7-9 

Analyzing the trendlines for the investigated design codes, it is clear that current codes of practice 

account for column rectangularity differently. ACI 318M-14 is very conservative compared to the 

experimental results especially for the slabs loaded in two-way action. EC2 (2004) predicts a very 

minimal impact of column rectangularity due to the fact that all eight of the nine slabs had the same 

critical perimeter length. The MC 2010 predictions are the most conservative of the codes 

investigated. The MC 2010 provisions were conducted using LoA IV, which is the highest level of 

approximation, and therefore, should be the least conservative of the four levels of approximation 

available (Genikomsou A. , 2015). LoA IV specifies that NLFEA can be used to estimate the slab 

rotations. To estimate the Hawkins’ slab rotations, the slab deflection profile was assumed to be 

approximately linear. Linear deflection profiles under concentrated loading have been observed or 

predicted by various researchers (Oliveira, Regan, & Melo, 2004; Teng, Cheong, Kuang, & Geng, 

2004; Oliveira, Gomes, & Melo, 2014), and were found to be a reasonable assumption for the finite 

element predictions, as shown in Appendix A. The overall trend of the MC 2010 provisions correlates 

well with the experimental results for both one-way and two-way loading, but the estimates are 

extremely conservative. The CSCT predictions, which form the basis of the MC 2010 design 

procedures (Muttoni & Fernández Ruiz, 2012; Muttoni, Fernández Ruiz, Bentz, Foster, & Sigrist, 

2013; Ricker & Siburg, 2016; Soares & Vollum, 2015), predict the trend of the experimental data 

quite well, especially for the slabs loaded in one-way action. For the slabs loaded in one-way action, 

the trendline for nominal stress along the critical perimeter predicted by the CSCT is almost identical 

to that from the experimental results, though it is slightly unconservative. For the slabs loaded in two-
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way action, the CSCT predictions are conservative and predict a slightly more severe impact of 

column rectangularity compared to the experimental results.  

A comparison of the capacity predicted by the FEM and the investigated design codes for each 

individual slab is provided in Table 4-6. The results for each individual slab support the conclusions 

of the nominal stress trendline analysis. Both the FEA predictions and the ACI 318 provisions are 

conservative for all nine slabs. The EC2 (2004) provisions show good correlation with the 

experimental results and are generally conservative, except for slabs 3 and 4, where the experimental 

capacity is overpredicted by 19% and 11% respectively. The MC 2010 provisions, using rotations 

determined in accordance with LoA IV, are the most conservative, and on average underpredict the 

experimental capacities by 25%. The CSCT capacity estimates, which were also based on the slab 

rotations estimated from the FEA, best capture the trend of the experimental data with an average 

ratio of the predicted strength to the experimental strength of 1. The minimum and maximum ratios of 

the strength predicted by CSCT and experimental strength are 0.94 and 1.16 respectively. It should be 

noted that the 3d method specified in Model Code 2010 was used to estimate the effective critical 

perimeter length, and the critical perimeter was divided into X and Y components, as discussed in 

Section 2.5.5, for both the MC 2010 and CSCT calculations.  

Table 4-6: Comparison of Predicted Punching Capacity from FEA and Various Design Codes 

to Experimental Capacity 

     Vpredicted/Vexp 

Slab cmin cmax β Vexp (kN) FEA ACI EC2 MC 2010 CSCT 

1 304.8 304.8 1 383.9 0.87 0.94 0.94 0.75 1.01 

2 203.2 406.4 2 351.4 0.89 0.95 0.98 0.74 0.99 

3 152.4 457.2 3 315.4 0.80 0.96 1.19 0.87 1.16 

4 114.3 495.3 4.33 333.2 0.85 0.95 1.11 0.75 1.00 

5 152.4 457.2 3 355.0 0.82 0.82 0.98 0.73 0.96 

6 152.4 457.2 3 335.8 0.80 0.80 0.97 0.72 0.96 

7 152.4 457.2 3 319.8 0.84 0.89 0.98 0.69 0.94 

8 114.3 495.3 4.33 330.5 0.87 0.83 0.99 0.71 0.95 

9 152.4 304.8 2 314.5 0.87 0.83 0.89 0.76 1.02 

    Average 0.85 0.89 1.00 0.75 1.00 

    Minimum 0.80 0.80 0.89 0.69 0.94 

    Maximum 0.89 0.96 1.19 0.87 1.16 

 



 

 97 

4.3.3 Slab AM04 

4.3.3.1 Experimental Program 

As previously stated, Sagaseta et al. (2014) tested four reinforced concrete slabs supported on steel 

plates with an aspect ratio of three to investigate the impact of column rectangularity and loading 

conditions on punching shear behaviour of interior slab-column connections. These tests, which were 

conducted at École Polytechnique Féderale de Lausanne (EPFL), were similar to previous tests of 

slabs supported on square columns or steel plates conducted at EPFL. All four slabs were 3000mm 

square in plan, 250mm thick and supported on rectangular steel plates with a minimum and maximum 

dimension of 260mm and 780mm respectively. One of the four slabs, slab AM04, was loaded in two-

way action, as shown in Figure 4-23. The slab was loaded through 200x200mm steel plates whose 

centers were located along the radius of contraflexure. 36mm diameter Dydiwag rods installed 

through holes drilled in the slab were used to attach the steel plates to a hydraulic jack in the 

laboratory floor (Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 2014).  

 

Figure 4-23: Slab AM04 Experimental Setup (Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 

2014) 

Slab AM04 had an average effective depth of 202mm and a concrete compressive strength of 

44.6MPa. The tensile reinforcement consisted of 16mm diameter steel bars, with a yield strength of 

516MPa, spaced at 125mm on center in both directions. Compression reinforcement was also 

provided, and consisted of 12mm diameter bars with a yield strength of 526MPa, spaced at 125mm in 
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both directions. The tensile and compressive reinforcing ratios were 0.75% and 0.42% respectively 

(Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 2014).  

4.3.3.2 Finite Element Model 

The initial finite element model of slab AM04 was identical to the finite element model used to 

analyze the slabs tested by Hawkins et al. (1971) except for the stress-strain curve of the reinforcing 

steel. Sagaseta et al. (2014) did not provide a complete stress-strain curve of the reinforcing steel. The 

only information provided was the yield strength of the steel and the fact that the steel used had a 

well-defined yield plateau and a strain hardening branch. As such, the stress-strain curve for the 

reinforcing steel had to be assumed. Due to the lack of a clear plateau in the experimental load-

rotation curve for slab AM04, and because Sagaseta et al. (2014) calculated that the punching load 

was approximately 80% of the flexural capacity of the slab, the simplified stress-strain curve shown 

in Figure 4-24 was used for the reinforcing steel. A sharp drop in stress to 10MPa was also included 

to help identify flexural failures and ensure ABAQUS did not extrapolate the provided data. As with 

the other models in this thesis, an elastic modulus of 200000MPa and a Poisson’s ratio of 0.3 were 

assumed. 

Based on the experimental results provided by Sagaseta et al. (2014), it was assumed the only minor 

yielding of the flexural steel would occur, and therefore, the use of a simplified stress-strain 

relationship compared to one which included for strain hardening was not required. The assumption 

of minimal yielding was found to be correct as the predicted axial stresses in most of the truss 

elements used to model flexural reinforcement in ABAQUS were well below the yield strength until 

after punching occurred in the model. Some yielding did occur, but was primarily restricted to the 

tensile reinforcement near or crossing the column perimeter, which has been observed by other 

researchers studying punching shear (Park & Gamble, 1980; Rankin & Long, 1987; Alexander & 

Simmonds, 1987; Theodorakopoulos & Swamy, 2002).  
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Figure 4-24: Uniaxial stress-plastic strain curve inputted into ABAQUS 

For simplicity, the steel load and support plates were not included in the initial finite element 

model of slab AM04. Instead, the boundary conditions were applied directly to the slab geometry as 

shown in Figure 4-25. Similar to the Hawkins’ analysis, a roller support was used to model the 

support provided by the steel plate and pressure loads with magnitude of 3.5MPa were applied on the 

slab top over 200x200mm areas.  

 

Figure 4-25: Preliminary AM04 Model – Boundary Conditions  
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4.3.3.3 Finite Element Analysis Results  

A comparison of the load-rotation response predicted by ABAQUS and measured experimentally in 

the X-direction, which is perpendicular to the long side of the supported area, and in the Y-direction, 

which is perpendicular to the short side of the supported area, are provided in Figure 4-26a and Figure 

4-26b respectively. The calibrated model by Genikomsou (2015), with the modifications outlined in 

Section 4.3.3.2, underpredicted the load and rotation capacity in both orthogonal directions. The 

initial stiffness predicted by ABAQUS was also much higher than that observed experimentally, but 

this was expected since the ABAQUS model does not account for any cracking due to temperature, 

shrinkage or specimen transportation. The model did predict a nearly symmetrical load-rotation 

response in both orthogonal directions which matches the experimental results (Sagaseta, Tassinari, 

Fernández Ruiz, & Muttoni, 2014). A comparison of the predicted load and rotation capacity 

compared to the experimental results is provided in Table 4-7. It should be noted that experimental 

rotations at failure and the experimental load-rotation curves are approximated based on the plots 

provided by Sagaseta et al. (2014).  

  

Figure 4-26: Comparison of Predicted Load-Rotation Response and Experimental Results, a) X-

rotation, b) Y-rotation 

Table 4-7: Comparison of Initial FEA Results and Experimental Results 

Slab 

Experimental Finite Element Analysis % Difference 

Capacity, 

kN 

ψx, 

mRad 

ψy, 

mRad 

Capacity 

kN 

ψx, 

mRad 

ψy, 

mRad 
Capacity ψx ψy 

AM04 1067 17.6 16.8 896.4 11.9 12.7 -16.0 -29.1 -24.4 
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The crack pattern predicted by ABAQUS, visualized through the maximum principal tensile strains 

in the concrete, and the experimental crack pattern are shown in Figure 4-27. The crack pattern 

predicted by the finite element model is similar to the experimental crack pattern except for the fact 

that the finite element model predicted a large concentration of cracking at the slab base above the 

supported area. This cracking was not observed experimentally since this region is in the compressed 

zone of the slab. It is predicted numerically since the boundary conditions were applied directly to the 

concrete nodes at the slab base. Since the displacement of these nodes is set to 0 throughout the 

analysis, these nodes and the connecting elements are resisting the rotation of the slab due to loading. 

As such, large tensile stresses are developed which were not observed experimentally since the test 

setup used by Sagaseta et al. allowed the slabs to lift off the steel support plates (Sagaseta, Tassinari, 

Fernández Ruiz, & Muttoni, 2014; Shu, 2017).  

 

 

 
 

Figure 4-27: Comparison of Experimental and FEM Predicted Crack Pattern (Simple Model) 

The shear stress distribution in the slab around the support plate perimeter in the AM04 quarter 

model is shown in Figure 4-28 and the methodology used to create these distributions from the FEA 

results is discussed in Appendix B. As expected, the FEM predicts a large shear stress concentration 

near the corner of the supported area, and the stresses along the short side of the supported area are 

also high relative to the shear stresses predicted along the long side of the supported area as the 

distance from the corner increases. The observed shear stress concentrations match experimental and 



 

 102 

finite element results of previous research studies (Al-Yousif & Regan, 2003; Teng, Cheong, Kuang, 

& Geng, 2004; Oliveira, Regan, & Melo, 2004; Anggadjaja & Teng, 2008; Borges, Melo, & Gomes, 

2013; Himawan & Teng, 2014; Shu, Belletti, Muttoni, Scolari, & Plos, 2017).  

 

Figure 4-28: Predicted Shear Stress Distribution Around Column Perimeter– Simply Supported 

AM04 Model 

4.4 FEM Calibration – Slab AM04 

Based on the results of the capability study, it is clear that ABAQUS is capable of capturing the 

negative impact of column rectangularity on punching shear capacity and predicts behaviour which is 

in line with experimental observations and code provisions. However, a recalibration of the finite 

element model is needed to account for the differences in experimental setups compared to the SB1 

tests by Adetifa and Polak (2005). The need to recalibrate finite element models for different 

experimental setups was also noted by Eder, Vollum, Elghazouli and Abdel-Fattah (2010). 

The four slabs tested by Sagaseta et al. (2014) were selected for the finite element calibration since 

the load-rotation curves and crack patterns were provided for each load arrangement. Additionally, 

the experimental measurement locations and experimental methodology was more clearly stated in 

the Sagaseta et al. (2014) study compared to the study by Hawkins et al. (1971). Since the primary 

objective of this research was to investigate the punching shear behaviour of reinforced concrete slabs 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
h

e
a

r 
S

tr
e

s
s

 (
M

P
a

)



 

 103 

supported on rectangular columns, slab AM04, which was loaded in two-way action, was selected for 

the calibration.  

The calibration process was similar to that of Genikomsou (2015), but certain parameters including 

the element type and use of damage parameters were not investigated. Following the work of 

Genikomsou, eight node reduced integration hexahedral elements (C3D8R) were used to model the 

concrete and two node three-dimensional truss elements (T3D2) embedded in the concrete elements 

were used to model the flexural reinforcement. Parameters that were considered in the calibration 

included the boundary conditions, assumed thickness of the steel load and support plates, analysis 

type, mesh size, assumed concrete dilation angle and assumed concrete fracture energy. 

As discussed in the previous section, the initial analysis of slab AM04 was completed using a 

modified version of the model calibrated by Genikomsou and Polak (2015), based on the SB slab 

series tested by Adetifa and Polak (2005). In this initial analysis, the boundary conditions were 

applied directly to the slab geometry. This simplified way of applying the boundary conditions in the 

model did not include the steel load and support plates used in the experimental setup of slab AM04. 

The predicted crack pattern also did not accurately capture the experimental behaviour as the FEM 

predicted extensive cracking in the compressed zone of the slab.  

Therefore, the first study conducted in the calibration of the AM04 model was focused on 

determining the appropriate boundary conditions for use in the FEM. This analysis was conducted 

using the modified Genikomsou and Polak (2015) model and as such accurate predictions of load 

capacity and rotations at failure were not expected.  

Three methods of modelling the experimental boundary conditions were investigated. The first 

model, denoted the simple model, matches that discussed in Section 4.3.3.2, and did not include steel 

load or support plates, and the boundary conditions were applied directly to the slab geometry. The 

second model, denoted the elastic plate model, included linear elastic load and support plates, which 

were extruded from the slab geometry. The support and loading boundary conditions were applied 

directly to these extruded portions of the slab. The third model, denoted the contact model, involved 

creating separate parts in ABAQUS for the slab, load plates and support plate. Contact interactions 

between the different parts were assigned using the General Contact Algorithm in ABAQUS/Explicit. 

As with the elastic plate model, load and support boundary conditions were applied on the load and 

support plates, as shown in Figure 4-29. 
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Figure 4-29: Boundary Conditions in Elastic Plate and Contact Models  

In the elastic plate and contact models, the load plates were assumed to be 20mm thick and the 

support plate was assumed to be 100mm thick as this information was not provided by Sagaseta et al. 

(2014). C3D8R elements with a mesh size of 20mm were used to mesh both plates. An isotropic 

elasticity definition was used for both the load and support plates with an elastic modulus of 

200000MPa and a Poisson’s ratio of 0.3. 

The predicted load-rotation response in each orthogonal direction and a comparison of the 

predicted capacity and rotation at failure for all three models are provided in Figure 4-30 and Table 

4-8 respectively. The predicted capacity for all three models is similar, and an approximately 

symmetric response was predicted in both orthogonal directions which matches the experimental 

observations of Sagaseta et al. (2014). The fundamental difference between the models involves the 

interaction between the steel support plate and slab. In both the simple and elastic plate models, the 

slab cannot lift from the supported area, as the supporting nodes are either directly constrained 

(simple model) or attached to the same mesh as the slab (elastic plate model). The ability of the FEM 

to capture the slab lifting from the top of the support plate is important because this was observed 

during the test of slab AM02 (Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 2014). Therefore, the 

boundary conditions used in the FEM should be capable of capturing this behaviour to be an accurate 

representation of the experimental setup.  
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Figure 4-30: Comparison of Load-Rotation Response of Slab AM04 (boundary condition 

investigation) 

Table 4-8: Summary of Results for Boundary Condition Investigation, Slab AM04 

Model Failure Load (kN) 𝜓𝑥 (mRad) 𝜓𝑦 (mRad) 

Simple 896.4 11.94 12.73 

Elastic Plate 928.4 10.07 11.08 

Contact 903.0 11.32 12.42 

 

Lifting of the slab from the top of the steel support plate was possible in the contact model due to 

the contact definitions used. Between the base of the slab and top of the support a “hard” contact 

definition was used. This contact definition attempts to limit penetration of the slab elements into the 

support plate elements, but allows the two surfaces to separate after initial contact depending on the 

loading conditions. The use of this hard contact allows the model to predict similar behaviour to that 

observed experimentally and modelled by Shu, Belletti, Muttoni, Scolari and Plos (2017), through the 

use of interface elements or non-tension spring elements, in their analysis of AM04 in DIANA. To 

model the interaction between the base of the load plates and the top of the slab, a separate “cohesive” 

definition with the default parameters in ABAQUS was used. This cohesive contact also limits 

element penetration for the surfaces in contact but does not allow the surfaces to separate after initial 

contact.  
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The crack patterns predicted from the elastic plate model and contact models are shown in Figure 

4-31. Unlike the crack pattern predicted from the simple model, shown in Figure 4-27 on page 101, 

no cracking is predicting in the compression zone of the slab above the steel support plate, which 

matches the experimental results. The crack patterns from the elastic plate and contact models both 

displayed good correlation with the experimental crack patterns. 

 

 

Figure 4-31: Predicted Crack Patterns for Elastic Plate and Contact Model 

Finally, the predicted shear stress distribution in the slab around the perimeter of the steel support 

plate, shown in Figure 4-32, was analyzed. The predicted distributions for the three models are 

Elastic Plate 

Contact Model 
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similar in shape, and all display a shear stress concentration near the corner and along the short side 

of the steel support plate.  

Considering the predicted load-rotation responses, crack patterns and shear stress distributions the 

contact model was used to analyze AM04, and all subsequent slabs in this thesis, because it more 

accurately captures the experimental setup and results in similar predictions to the other two models 

studied.  

 

 

Figure 4-32: Predicted Shear Stress Distribution Around Perimeter of Steel Support Plate, Top: 

Parallel to Short Side, Bottom: Parallel to Long Side 
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As previously stated, Sagaseta et al. (2014) did not provide the thickness of the steel load and 

support plates. Therefore, in the initial model of slab AM04 the thicknesses of the load and support 

plates were assumed to be 20mm and 100mm respectively. To study the impact of the assumed plate 

thicknesses, six additional models with varying load and support plate thicknesses were studied. The 

considered combinations of load and support plate figures are summarized in Table 4-9. The naming 

convention for the investigated models is XXL YYS where XX and YY are the thickness of the load 

and support plates in millimeters respectively. The geometry of the slab with a 140mm thick load and 

support plates is shown in Figure 4-33. Also shown in Figure 4-33 is the displacement location 

considered in the plate thickness study, which is approximately located on the radius of contraflexure. 

 

Figure 4-33: Example of Model Used in Plate Thickness Study 

Table 4-9: Summary of Models Considered in Plate Thickness Study 

Model Load Plate Thickness (mm) Support Plate Thickness (mm) 

20L 100S (Baseline) 20 100 

60L 100S 60 100 

100L 100S 100 100 

60L 60S 60 60 

20L 60S 20 60 

20L 140S 20 140 

140L 140S 140 140 

 



 

 109 

The predicted load-displacement responses for the models in the plate thickness study, shown in 

Figure 4-34, are similar, with a maximum difference in estimated capacity and deflection of 1% and 

4% respectively. Based on the predicted load-displacement response, the assumed load and support 

plate thicknesses was found to have a very minimal impact on the finite element predictions. 

Therefore, 20mm thick load plates and 100mm support plates were used in all subsequent analyses.  

 

Figure 4-34: Predicted Load-Displacement Response for Various Load and Support Plate 

Thicknesses, Slab AM04 

Genikomsou (2015) studied the impact of the chosen analysis type on the finite element results. 

Two analyses were performed, a static analysis in ABAQUS/Standard with viscoplastic regularization 

and a quasi-static analysis in ABAQUS/Explicit. Genikomsou (2015) found that both the static 

analysis, which included a viscosity parameter of 0.00001, and the quasi-static analysis, predicted a 

similar load-displacement response. However, the static analysis was found to be less 

computationally efficient, and as such, all analyses were conducted using a quasi-static analysis in 

ABAQUS/Explicit.  

Since the AM04 model used contact definitions to model interactions between the load and support 

plates and the slab, and a force driven method was used to load the slab, instead of a displacement 

boundary condition as used by Genikomsou (2015), the impact of the using a static or quasi-static 

analysis was analyzed. Following the work of Genikomsou (2015), slab AM04 was analyzed using a 
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static procedure in ABAQUS/Standard with a viscosity parameter of 0.00001 and a quasi-static 

analysis procedure in ABAQUS/Explicit. The predicted load-displacement response for both analysis 

types, where the displacement is measured at the same location as used in the plate thickness study, is 

shown in Figure 4-35. 

 

Figure 4-35: Predicted Load-Displacement Response for Static and Quasi-Static Analyses, AM04 

The predicted load-displacement response for both analysis types are similar for most of the 

analysis. However, as discussed in Section 4.3.2, the static analysis did not display a sharp peak in the 

load-displacement diagram, which is typically associated with punching, since a force driven load 

was used in the model. Since a force driven load was used, the static procedure predicted a 

continually increasing force until the end of the analysis time. The quasi-static analysis on the other 

hand was able to capture the brittle punching failure and associated peak in the load-displacement 

curve. The peak in the load-displacement curve is observed because the quasi-static model becomes 

unstable when punching occurs, leading to a significant drop in the predicted reaction force. Since the 

predicted response from both analyses prior to failure is similar, it can be concluded that the dynamic 

effects in the ABAQUS/Explicit model are negligible, and as such, the analysis can be assumed to be 

quasi-static. A force driven load is required to ensure uniform load application on each load plate and 

so a quasi-static analysis in ABAQUS/Explicit was used for all subsequent analyses in this thesis.  

As noted by Genikomsou (2015), the use of a smeared crack approach in the “Concrete Damaged 

Plasticity” model in ABAQUS can cause strain localization due to the strain softening behaviour of 
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concrete. This strain softening behaviour is mesh size dependent in numerical models, and can lead to 

strains accumulating in a narrow band of elements causing premature failure of the model. This effect 

is more severe for fine meshes and is why most plasticity-based models are mesh size dependent. The 

mesh size dependency can be limited by introducing viscoplastic regularization in static analyses or a 

characteristic internal crack length (Genikomsou A. , 2015).  

To study the mesh sensitivity of the AM04 model, three different mesh sizes, 16mm, 20mm and 

24mm, were used in the analysis. All three investigated mesh sizes were greater than or equal to the 

maximum aggregate size (16mm) and resulted in more than four elements through the slab depth, 

which is the minimum number of reduced integration elements that should be used through the slab 

thickness. If less than four elements are used through the thickness, numerical effects such as 

hourglassing and distortion of the C3D8R elements may occur, possibly leading to convergence 

issues or inaccurate results (Genikomsou A. , 2015; Dassault Systemes Simulia Corp., 2012) . 15, 13 

and 10 elements through the slab thickness were used for the 16mm, 20mm and 25mm meshes 

respectively.  

Since quasi-static analyses in ABAQUS/Explicit were used, the tensile strains in the uniaxial 

tensile stress-strain response for the concrete were calculated by dividing the crack widths by the 

characteristic element length. In the case of eight node brick elements, the characteristic length is 

equal to the cubic root of the element volume (Dassault Systemes Simulia Corp., 2012; Genikomsou 

A. , 2015). Even with the introduction of the characteristic element length, the results for the three 

mesh sizes, shown in Figure 4-36, were mesh size dependent. The predicted failure loads, 

displacements and rotations at failure are summarized in Table 4-10. When the load-rotation response 

in both orthogonal directions is considered, the 20mm mesh was found to give the most accurate 

results compared to the experimental results.  



 

 112 

  

Figure 4-36: Predicted Load-Rotation Responses – AM04 Mesh Study, a) X Rotation, b) Y 

Rotation 

Table 4-10: Summary of Results for Mesh Study – AM04 

Mesh Size (mm) Load (kN) 
Displacement (mm) Rotation (mRad) 

X-Axis Y-Axis X-Axis Y-Axis 

16 1050.1 25.43 18.77 18.56 16.91 

20 997.7 21.80 18.20 15.91 16.39 

25 994.4 20.26 17.33 14.79 15.62 

 

The shear stress distribution in the slab around the perimeter of the steel support plate for each 

investigated mesh size is shown in Figure 4-37. For all three meshes, the FEM predicted a 

concentration of shear stress along the short side of the steel plate and near the corner. The shear 

stress distribution for the 25mm mesh is different than the distribution for the 16mm and 20mm mesh 

in two ways. Firstly, the peak stress for the 25mm mesh did not occur at the corner of the support 

plate but occurred at the next column of elements on the short side. Secondly, a peak in shear stress at 

an approximate distance of 160mm from the support plate corner was not observed for the 25mm 

mesh. This peak in shear stress in the 16mm and 20mm mesh models occurs due to a rebar element 

being located near the integration point of the concrete elements. Since the rebar is stiffer than the 

concrete, the rebar attracts more load which effects the predicted shear stress distribution.  
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Figure 4-37: Predicted Shear Stress Distribution Around Steel Support Plate in Slab, AM04 

The crack patterns for each mesh, provided in Figure 4-38, were also analyzed when selecting a 

mesh size. As can be seen in Figure 4-38, ABAQUS predicted a large principal plastic strain value, 

and therefore, a high concentration of cracking, in the slab above and around the support plate for all 

three mesh sizes. The predicted cracks agreed well with the experimental crack patterns shown in 

Figure 4-27. However, the 16mm mesh results demonstrated strain localization, as the strain values 

adjacent to the long side of the support plate are an order of magnitude higher than the strains in the 

rest of the model. The models with 20mm and 25mm meshes also displayed a higher strain magnitude 
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adjacent to the long side of the supported area, but the difference in magnitude between this area and 

the rest of the model is not as large as observed in the 16mm mesh model. The crack patterns for the 

20mm and 25mm meshes correlated well with the experimentally recorded cracks. 

 

 

 

Figure 4-38: Predicted Crack Patterns for 16mm, 20mm and 25mm Meshes, AM04 
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Based on the analysis of the predicted load-rotation response, crack patterns and shear stress 

distribution around the column perimeter the 20mm mesh was used in all subsequent analyses in this 

thesis. The use of the 20mm mesh over the 25mm mesh does require additional computational effort, 

but increases the number of elements along the perimeter of the supported area and the ACI critical 

perimeter. Therefore, a more detailed estimation of the shear stress distribution around these two 

perimeters is possible with the 20mm mesh compared to the 25mm mesh. The chosen mesh size also 

matches that used by Genikomsou (2015). 

Genikomsou and Polak (2015) found the CDP model in ABAQUS to be sensitive to the inputted 

concrete dilation angle. Since concrete is a brittle material, it undergoes large volume changes, which 

are caused by inelastic strains. This volume change is termed dilatancy, and is defined in the CDP 

through the inputted dilation angle. Chen and Han (1988) concluded that the non-associated flow rule 

should control dilatancy, especially for materials such as concrete, where friction is important. This 

definition allows the dilation angle to be a material parameter of the concrete. The dilatancy 

parameter, 𝛼𝑝, in the Drucker-Prager plastic potential function, shown in equation 4.11, has been 

defined to range between 0.2 and 0.3 (Lee & Fenves, 1998a; Lee & Fenves, 1998b; Wu, Li, & Faria, 

2006) 

𝐺 = √2𝐽2 + 𝛼𝑝𝐼1 (4. 11) 

where 𝐺 is the plastic potential function, and 𝐼1 and 𝐽2 are the stress invariants (Genikomsou A. , 

2015). The flow potential function, 𝐺(𝜎) used in the CDP in ABAQUS, provided in equation 4.12, is 

derived from 4.11. 

𝐺(𝜎) = √(𝜀𝜎𝑡0 tan(𝜓))2 + �̅�2 +
1

3
𝐼1 tan(𝜓) (4. 12) 

where 𝜀 is the eccentricity that determines the rate at which the plastic potential function approaches 

the asymptote, 𝜎𝑡0 is the uniaxial tensile strength, 𝜓 is the dilation angle measured in the p-q plane at 

a high confining pressure, and �̅� is the Mises equivalent effective stress (Genikomsou A. , 2015). 

Considering the asymptote line to the potential function, Genikomsou derived equation 4.13 which 

can be used to verify the value used for dilation angle in ABAQUS.  

tan(𝜓) = 3.67𝑎𝑝 (4. 13) 
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Using equation 4.13, the dilation angle is calculated to be equal to 36.3° or 47.8° degrees for 𝑎𝑝 

values of 0.2 and 0.3 respectively. Both of these values are less than the maximum value of 56.31° 

allowed in ABAQUS (Dassault Systemes Simulia Corp., 2012). 

In the analysis of AM04, five values for dilation angle were investigated, 35°, 40°, 42°, 45° and 

50°. The predicted load-rotation response in each orthogonal direction is shown in Figure 4-39. As 

observed by Genikomsou (2015), the predicted capacity and deflection (rotation) at failure increased 

as the dilation angle was increased. Additionally, as the dilation angle was increased towards 50° the 

predicted response becomes more ductile. The best correlation with the experimental results was 

found for a dilation angle of 42° or 45° degrees. 

  

Figure 4-39: Predicted Load-rotation response of Slab AM04 (dilation angle investigation, Gf = 

0.093N/mm) 

As previously discussed, the fracture energy, which is related to the concrete compressive strength 

and maximum aggregate size (Comité Euro-International du Béton, 1993), was used when modelling 

the tensile behaviour of concrete. As outlined in Section 4.2, Model Code 1990 accounts for both of 

these factors and has been used to estimate the concrete fracture energy in many previous finite 

element studies (Menétrey, Walther, Zimmermann, Willam, & Regan, 1997; Hallgren & Bjerke, 

2002; Genikomsou & Polak, 2015; Shu, Plos, Zandi, Johansson, & Nilenius, 2016; Shu, 2017; Stoner, 

2015; Barrage, 2017). According to Model Code 2010, the concrete fracture energy can be calculated 

using equation 4.14, which neglects the impact of aggregate size 

𝐺𝑓 = 73𝑓𝑐𝑚
0.18 (4. 14) 
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where 𝑓𝑐𝑚 is the mean compressive strength (MPa) (fédération internationale du béton (fib), 2013). 

For slab AM04, which has a concrete compressive strength of 44.6MPa and a maximum aggregate 

size of 16mm, the fracture energy is estimated as 0.093N/mm or 0.148N/mm based on Model Code 

1990 and Model Code 2010 respectively.  

Six different values for fracture energy were investigated for slab AM04, 0.093N/mm, 0.10N/mm, 

0.11N/mm, 0.12N/mm, 0.13N/mm and 0.148N/mm. The predicted load-rotation response for four of 

the six values are shown in Figure 4-40. The remaining two values were removed for clarity.  

  

Figure 4-40: Load-rotation Response of Slab AM04 (fracture energy investigation, Dilation Angle 

= 40°) 

As observed by Genikomsou and Polak (2015), the predicted punching capacity and deflection 

(rotation) at failure increased as the fracture energy increased. Increased load and rotation capacity is 

predicted since increasing the fracture energy modifies the post-peak tensile stress-crack width 

relationship. As the fracture energy was increased, the corresponding crack widths increased, leading 

to the concrete being able to sustain higher tensile strains after cracking. Punching shear failures are 

initiated due to the formation and opening of inclined cracks near the slab-column connection, and as 

such, increasing the maximum tensile strain increases the punching capacity. 

Finally, the impact of fracture energy and increased dilation angle was investigated. The impact of 

fracture energy was investigated using dilation angles of 42° and 45° since these two dilation angles 

showed the best correlation with the experimental results in the dilation angle study. The six fracture 

energies used with a dilation angle of 40° were studied. The predicted load-rotation response in both 
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directions for a subset of the considered combinations found to best correlate with the experimental 

results are shown in Figure 4-41. 

  

Figure 4-41: Load-Rotation Response of Slab AM04 (Fracture Energy and Dilation Angle 

Investigation) 

Based on the above analyses, a dilation angle of 45 degrees and a fracture energy of 0.093N/mm, 

which was calculated from Model Code 1990, were found to lead to finite element predictions that 

best correlated with the experimental data in terms of load-rotation response and predicted crack 

pattern. A summary of the predicted load capacity and rotations at failure for this model compared to 

the experimental results is provided in Table 4-11. The crack pattern predicted from this model, 

which match those for the 20mm mesh in Figure 4-38 on page 114, also correlated well with the 

experimental crack pattern previously provided in Figure 4-27 on page 101. 

Table 4-11: Comparison of FEM Predictions and Experimental Results, AM04 

Slab 

Experimental Finite Element Analysis % Difference 

Capacity, 

kN 

ψx, 

mRad 

ψy, 

mRad 

Capacity, 

kN 

ψx, 

mRad 

ψy, 

mRad 
Capacity ψx ψy 

AM04 1067 17.6 16.8 1020.1 16.0 16.1 -4.4 -9.01 -3.8 
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4.5 Calibration Verification 

4.5.1 Remaining AM Series Slabs 

4.5.1.1 Experimental Program 

The loading layouts for slabs AM01, AM02 and AM03 are shown in Figure 4-42. These three slabs 

were geometrically similar to slab AM04 but were tested under one-way loading conditions to study 

the influence of loading layout on the structural behaviour of reinforced concrete slabs supported on 

rectangular columns. The concrete compressive strength, effective flexural depth and experimental 

failure load of all four slabs in the AM series are summarized in Table 4-12. Other than the average 

effective depth, the reinforcing layouts are identical for all four slabs.  

Table 4-12: Summary of AM Series Experimental Data (Sagaseta, Tassinari, Fernández Ruiz, 

& Muttoni, 2014) 

Slab 𝑓𝑐
′ (MPa) davg (mm) Failure Load (kN) 

AM01 44.0 214 950 

AM02 39.7 208 919 

AM03 42.2 203 883 

AM04 44.6 202 1067 
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Figure 4-42: Experimental Setups AM01-AM03 (Sagaseta, Tassinari, Fernández Ruiz, & 

Muttoni, 2014) 

4.5.1.2 Finite Element Model 

The finite element model of slabs AM01, AM02 and AM03 was identical to that for slab AM04 other 

than the required modifications to the concrete compressive strength and average effective depth for 

each slab. Only the tensile reinforcement depth was modified as the depth of reinforcement on the 

compression side of the slab was not provided. As such, the depth to the compression side 

reinforcement assumed for slab AM04 was used for all four slabs. The same total load was applied in 

all four models. Since only one load plate is included in each quarter model the pressure magnitude 

was increased to 7.0MPa, instead of the 3.5MPa load used on each of the two plates in the AM04 

quarter model.  

4.5.1.3 Finite Element Analysis Results  

A comparison of the experimental and ABAQUS predicted load-rotation response in both orthogonal 

directions for slab AM01 is shown in Figure 4-43. The punching capacity of slab AM01 predicted by 

the FEM was 963.6kN, which is approximately 1.4% higher than the experimental capacity of 950kN.  
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Figure 4-43: Comparison of Predicted Load-Rotation Response and Experimental Data Slab 

AM01, a) X-direction, b) Y-direction  

The predicted load-rotation response of slab AM01 in the Y-direction, which is parallel to the long 

side of the steel support plate, correlated very well with the experimental results in terms of load 

capacity, rotation at failure and stiffness. In the X-direction, which is parallel to the short side of the 

supported area, the finite element predictions deviated from the experimental measurements. It is 

assumed that the measurement instrumentation in the X-direction malfunctioned during the testing 

because the predicted load-rotation response for slab AM01 in the X-direction did not display the 

same trends as that observed for slab AM02. Slab AM01 and AM02 are identical except for small 

differences in concrete compressive strength and average effective flexural depth. Therefore, the 

trends in the experimental results should be similar.  

A comparison of the load-rotation response of slab AM02 predicted by ABAQUS to the 

experimental measurements is provided in Figure 4-44. The punching capacity of slab AM02 

predicted by the FEM was 926kN, which is only 0.76% higher than the experimental capacity of 

919kN. As with the results for slab AM01, the predicted load-rotation response of slab AM02 in the 

Y-direction was very similar to that measured during the test. However, unlike the results for slab 

AM01, the predicted response in the X-direction was similar to the experimental measurements, 

which supports the assumption that there is an error in the X-direction measurements for slab AM01.  
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Figure 4-44: Comparison of Predicted Load-Rotation Response and Experimental Data Slab 

AM02, a) X-direction, b) Y-direction 

Both AM01 and AM02 were predicted to fail in punching by the finite element model, which 

matches the experimental observations. Looking at the predicted deflected shape and crack patterns 

for both slabs it was observed that the model predicted an initial punching failure, as evidenced by the 

formation of punching cones on the slab sides and the slab deflections about both sides of the 

supported region. The predicted deflected shape of the slab AM01 near the support plate is shown in 

Figure 4-45. After this initial punching failure, the model predicted a secondary one-way shear failure 

along a plane parallel to the short side of the supported area.  

 

Figure 4-45: Predicted Deflected Shape of Slab AM01 Near the Supported Area 

A comparison of the crack pattern predicted by the FEA, visualized through the maximum 

principal plastic strain contours, and the experimentally observed crack pattern for slab AM02, is 
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shown in Figure 4-46. The predicted crack pattern agreed well with the experimental crack pattern. 

On the tension surface of the slab the FEM predicted a large number of horizontal cracks 

perpendicular to the long side of the supported area, which matches the experimental results. Some 

diagonal cracks which extend from the corner of the supported area are also present in both crack 

patterns. As observed experimentally, some of the cracks which are near the end of the supported area 

extend across the entire slab width. The crack pattern on the slab sides also agreed with those 

observed experimentally. On the slab side parallel to the long side of the supported area a clear 

punching cone is predicted. On the slab side parallel to the short side of the supported area the 

punching cone is not as clear at the onset of punching. If the predicted crack patterns at a later stage 

of the analysis are analyzed, a clearer punching cone similar to that observed experimentally is 

predicted, as shown in Figure 4-47. 

  

 

 

 

 

Top: Comparison of Tension Surface Crack 

Patterns 

Bottom: Comparison of Slab Side Crack 

Patterns 

Figure 4-46: Comparison of Predicted and Experimental Crack Pattern, Slab AM02 
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Figure 4-47: Predicted Crack Pattern on Slab Side Post Punching, Slab AM02 

The predicted shear stress distribution in the slab around the steel support plate perimeter for slab 

AM02 is shown in Figure 4-48. The FEA predicted a high concentration of shear stress at the corner 

and along the short side of the supported area, which was also observed experimentally by Sagaseta et 

al. (2014). A similar shear stress distribution was predicted for slab AM01.  

 

Figure 4-48: Predicted Shear Stress Distribution in Slab Around the Steel Support Plate, AM02 

The predicted load-rotation response and experimental results for slab AM03 are provided in 

Figure 4-49. Unlike the results for slabs AM01 and AM02, the finite element predictions deviated 

from the experimental response as the load was increased. The capacity predicted by the FEM was 

742.1kN, which is approximately 16% lower than the experimental capacity of 883kN.  
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Figure 4-49: Comparison of Predicted Load-Rotation Response and Experimental Data Slab 

AM03, a) X-direction, b) Y-direction 

The finite element predictions showed good correlation with the experimental results in the linear 

elastic portion and start of the plastic portion of the response. However, at a load of approximately 

600kN the finite element model predictions began to deviate from the experimental response. The 

likely reason for the discrepancy between the finite element predictions and experimental results is 

that slab AM03 failed in flexure. Of the four slabs in the AM series, slab AM03 was the only one 

which failed in flexure. The original calibration of the finite element model was conducted 

considering slab AM04, which failed in punching at a load well below its estimated flexural capacity. 

As previously discussed, a simplified stress-strain relationship was used for the flexural reinforcement 

since the FEM was focused on capturing shear failures. The FEM model is able to accurately predict 

the behaviour of slabs AM01 and AM02 since they also failed in punching before formation of the 

flexural failure mechanism. However, the model neglects numerous parameters which would 

contribute to the flexural response such as strain hardening.  

The FEM model predicted slab AM03 to fail in one-way shear which does not match the 

experimental failure mode. In addition to the lack of a detailed stress-strain curve, the predicted 

behaviour of slab AM03 may be affected by the contact definitions used. Since the contact between 

the top of the steel support plate and the slab base allowed the slab to lift and rotate, the slab becomes 

supported on the edge of the steel plate only as the slab rotates. Since the predicted rotations of slab 

AM03 are much larger than the other slabs in the AM series, it is possible that the contact definition 

used impact the predicted response.  
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A comparison of the predicted crack pattern to the experimental crack pattern is shown in Figure 

4-50. Since a very high strain magnitude is predicted in the elements very close to the edge of the 

slab, the maximum contour limit is modified to show the crack pattern. The crack pattern on the 

tension surface agreed reasonably well with that observed in the experiment as most of the predicted 

cracks are vertical and perpendicular to the short side of the column. However, more vertical cracks 

are predicted than observed in the test and the diagonal cracks extending towards the slab corner are 

not predicted by the FEM. On the slab side parallel to the short side of the column, the model also 

predicted more cracks than observed experimentally. However, even at later frames no punching cone 

is formed, reinforcing the conclusion that the model failed in one-way shear.  

  

 

 

 

*No crack pattern along long side provided 

Top: Comparison of Tension Surface Crack 

Patterns 

Bottom: Comparison of Slab Side Crack 

Patterns  

Figure 4-50: Comparison of Experimental and Predicted Crack Pattern, Slab AM03 

The predicted shear stress distribution around the column for slab AM03 is shown in Figure 4-51. 

Again, there is a concentration of shear stress around the column corner/short side. However, unlike 
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the models of AM01, AM02 and AM04, the concrete along the short side of the support plate away 

from the corner is under very low shear stress. 

 

Figure 4-51: Predicted Shear Stress Distribution in Slab Around the Steel Support Plate, AM03 

Overall, the FEM predictions correlated well with the experimental results, especially for the slabs 

which failed in shear. The FEM predicted larger rotations in the direction of the load application 

which matches the experimental observations. Additionally, the slope of the punching cones on the 

slab side parallel to the long side of the supported area in slabs AM01 and AM02 are steeper than that 

in the perpendicular direction, which matches observations by Sagaseta et al. (2014; 2011). 

A comparison of the predicted shear stress distribution in the four AM series slabs along the short 

and long sides of the support plate perimeter at the peak load is shown in Figure 4-52. As expected, 

the shape of the shear stress distributions for slabs AM01, AM02, and AM04 are similar since all 

three slabs failed in punching shear. The shear stress distributions for these three specimens showed a 

high concentration of stress near the corner of the supported area and along the short side compared to 

the shear stress values along the long side near the center of the supported region. The shear stress at 

the corner of the supported area at the peak load for each specimen was approximately 6MPa. The 

shear stress values along the short side of the supported area for slabs AM01 and AM02 are higher 

than those predicted for slab AM04 which makes sense because the load was applied on the slab 

edges parallel to the short side of the supported region in the tests of slab AM01 and AM02. The 
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shape of the shear stress distribution for slab AM03 on the other hand is quite different. The peak 

shear stress did not occur at the corner of the supported region but occurred at some distance away 

from it. The peak shear stress along the long and short sides of the supported region occurred at an 

approximate distance of 50mm and 100mm away from the corner respectively. However, it is 

interesting that a distance greater than approximately 50mm from the corner of the supported area that 

the shear stress magnitudes along the long side are similar in all four specimens.  

 

 

Figure 4-52: Predicted Shear Stress Distributions, AM Series Slabs 
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4.5.2 Select PT Series Slabs  

4.5.2.1 Experimental Program 

Sagaseta et al. (2011) tested seven reinforced concrete slabs to study the impact of non-axis 

symmetric flexural reinforcing layouts on punching shear behaviour. The slabs were 3m square in 

plan and 250mm thick, which matches the slabs in the AM series (Sagaseta, Muttoni, Fernández Ruiz, 

& Tassinari, 2011; Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 2014). Loading was applied 

through eight steel plates, whose centers were on the radius of contraflexure, and the slabs were 

supported on central 260mm square steel plates. Three of the seven slabs, PT22, PT31 and PT32 were 

modelled in ABAQUS to verify that the calibrated model was capable of predicting the behaviour of 

slabs supported on square columns and with different reinforcing ratios in each direction. A summary 

of the concrete compressive strength, average effective depth, flexural reinforcement diameter, tensile 

reinforcing ratio and flexural reinforcement yield strength in both orthogonal directions is provided in 

Table 4-13. All four slabs also included flexural reinforcement on the compression side of the slab, 

which consisted of 10mm diameter bars at the same spacing as the reinforcement on the tension side. 

Two yield strengths, 533MPa and 568MPa, are listed for the 10mm bars, but the specific yield 

strength for the bars used on the compression side in each slab was not provided. 

Table 4-13: Summary of Material Properties for Select PT Slabs (Sagaseta, Muttoni, Fernández 

Ruiz, & Tassinari, 2011) 

Slab 𝑓𝑐
′ (MPa) davg (mm) 

Tensile Flexural Reinforcement 

Bar diameter x-y (mm) ρx-ρy (%) fyx-fyy (MPa) 

PT22 67.0 196 16-16 0.82-0.82 552-552 

PT31 66.3 212 20-20 1.48-1.48 540-540 

PT32 40.0 215 20-16 1.46-0.75 540-558 

 

As seen in Table 4-13, PT22 and PT31 had symmetric reinforcing ratios, which matches slab 

AM04. However, these slabs had a much higher concrete compressive strength compared to slab 

AM04. PT32 was selected for the analysis since the concrete compressive strength was similar to slab 

AM04, but the flexural reinforcing was non-axis symmetric.  



 

 130 

4.5.2.2 Finite Element Modelling 

For slabs PT22 and PT31, the finite element model is the same as the AM04 model except that the 

uniaxial compressive stress-strain relationship by Thorendfeldt, Tomaszewicz and Jensen (1987), 

which is valid for concrete compressive strengths up 125MPa (MacGregor & Bartlett, 2000), was 

used in place of the Hognestad parabola, which is only valid for compressive strengths less than or 

equal to 60MPa. According to Thorendfeldt, Tomaszewicz and Jensen (1987), the uniaxial 

compressive stress-strain relationship for concrete can be calculated using equation 4.15 

𝑓𝑐 =

[
 
 
 𝑛 × (

𝜀𝑐

𝜀𝑐
′)

𝑛 − 1 + (
𝜀𝑐

𝜀𝑐
′)

𝑛𝑘

]
 
 
 

𝑓𝑐
′ (4. 15), 

where 𝑛 is a constant equal to 0.8 + 𝑓𝑐
′ 17⁄ , 𝑓𝑐

′ is the concrete compressive strength (MPa), 𝜀𝑐
′  is the 

strain at peak stress calculated using equation 4.16, 𝑘 is a constant which is equal to 1.0 when the 

total strain, 𝜀𝑐, is less than the peak strain and is equal to the maximum of 0.67 + 𝑓𝑐
′ 62⁄  or 1.0 when 

the total strain exceeds the peak strain (MacGregor & Bartlett, 2000).  

𝜀𝑐
′ = 

𝑓𝑐
′

𝐸𝑐
(

𝑛

𝑛 − 1
) (4. 16), 

where 𝐸𝑐 is the initial elastic modulus of concrete which can be approximated as 4500√𝑓𝑐
′ for normal 

density concrete (MacGregor & Bartlett, 2000). For slabs PT22 and PT31, 4500√𝑓𝑐
′ was used for the 

elastic modulus in the ABAQUS models, compared to the value of 5000√𝑓𝑐
′ used in the AM04 and 

PT32 analysis. A comparison of the concrete compression curve derived by Thorendfeldt, 

Tomaszewicz and Jensen (1987) and the Hognestad Parabola, which was presented in Section 4.3.2.2, 

is shown in Figure 4-53. As seen in Figure 4-53, the Hognestad Parabola predicts a more gradual post 

peak drop in capacity compared to the Thorendfeldt, Tomaszewicz and Jensen (1987) model. It is 

well known that concrete becomes more brittle as the compressive strength is increased, which is why 

the Hognestad parabola is invalid for concrete strengths exceeding 60MPa.  
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Figure 4-53: Comparison of Uniaxial Compression Curve by Thorendfeldt, Tomaszewicz and 

Jensen (1987) (MacGregor & Bartlett, 2000) and Hognestad Parabola  

The finite element model for PT32 is the same as that for AM04 except that a half model is used 

instead of a quarter model due to the non-axis symmetric reinforcement layout. Since a half model is 

used, only one symmetry condition is applied in the model. Therefore, an additional lateral support 

boundary condition is required since the displacements in the X-direction are no longer restricted by 

symmetry. This additional lateral support boundary was applied on the base of the steel support plate. 

The pressure magnitudes are also modified to account for the different experimental capacities of the 

slabs. 3.7MPa pressure loads were used in the models for slabs PT22 and PT32 a 5.0MPa pressure 

was used in the PT31 model. The boundary conditions of the PT32 model are shown in Figure 4-54. 
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Figure 4-54: PT32 Model Boundary Conditions  

As previously discussed, two yield strengths were provided for the 10mm bars by Sagaseta et al. 

(2011). In the PT slab models, the 10mm bars were assumed to have a yield strength of 568MPa 

which corresponds to the maximum value provided by Sagaseta et al. (2011). However, this assumed 

strength was found to have no impact on the final results as the axial stresses in the truss elements 

used to model the compression side reinforcement were very low (typically <100MPa). Therefore, 

defining the yield strength as 533MPa or 568MPa would not have any impact on the final results 

since the elastic modulus was defined as 200000MPa and the steel did not yield. 

4.5.2.3 Finite Element Analysis Results  

A summary of the predicted load capacity and rotation at failure compared to the experimental results 

for the selected PT slabs is provided in Table 4-14. The load-rotation curves for PT22, PT31 and 

PT32 predicted by the FEM and measured experimentally are provided in Figure 4-55.  

Table 4-14: Comparison of FEA and Experimental Results, PT Series Slabs 

Slab 

Experimental Finite Element Analysis % Difference 

Capacity, 

kN 

ψx, 

mRad 

ψy, 

mRad 

Capacity, 

kN 

ψx, 

mRad 

ψy, 

mRad 
Capacity ψx ψy 

PT22 989 14.4 16.7 908.3 13.82 13.81 -8.2 -4.0 -17.3 

PT31 1433 9.5 11.6 1225.0 9.29 9.29 -14.5 -2.2 -19.9 

PT32 1157 10 12 961.4 8.93 12.22 -16.9 -10.7 1.9 
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Figure 4-55: Comparison of Predicted and Measured Load-Rotation Plots – PT22, PT31 and 

PT32 

Based on the percent differences in Table 4-14, the load-rotation plots in Figure 4-55 and the 

results for the AM series slabs discussed in Sections 4.4 and 4.5, it is clear that the calibrated finite 

element model is able to accurately estimate the load capacity of the six slabs which failed in shear 

(AM01, AM02, AM04 and all three PT slabs), and is typically conservative compared to the 

experimental results. The calibrated finite element model was also found to accurately predict the 

rotations at failure in both orthogonal directions for the investigated slabs. For PT22 and PT31 the 

FEM underpredicted the experimental rotation in the Y-direction by 17.3% and 19.9% respectively. 

However, these large errors are because the ABAQUS model is perfectly symmetric, and therefore, it 

predicts nearly identical responses in both directions. The experimental results on the other hand are 

slightly non-symmetric, and therefore, the difference between the predicted behaviour is larger. The 

ABAQUS model is not capable of capturing imperfections unless they are inputted into the model.  
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The stress distribution around the column perimeter were also analyzed for the three PT slabs. 

Since similar trends were observed for all three models only the stress distribution for PT22 is 

discussed. The stress distribution for slab PT22 is shown in Figure 4-56. As observed experimentally 

by various researchers, including Sherif and Dilger (1996), and Oliveria, Regan and Melo (2004), a 

concentration of shear stress was predicted at the corner of the supported area due to the 90 degree 

corners . However, the shear stress in the slab along the plate perimeter away from the corner were 

found to have approximately the same magnitude, which is expected due to the use of a square 

column (Vanderbilt, 1972; Filatov, 2017). 

 

Figure 4-56: Predicted Shear Stress Distribution in the Slab Around the Steel Support Plate, 

PT22 

4.6 Summary of Calibrated Model 

A summary of the concrete and steel parameters in the calibrated AM04 model, which was used in 

the parametric study discussed in the next chapter, are provided in Table 4-15, Table 4-16 and Table 

4-17. The specific Hognestad parabola and bilinear tensile stress-crack width relationship for slab 
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AM04, based on a concrete compressive strength of 44.6MPa, are provided in Figure 4-57 and Figure 

4-58 respectively. When calculating the fracture energy, Gf, and the bilinear tensile stress-crack width 

response 𝑓𝑐𝑘 was calculated as 𝑓𝑐
′ − 1.6 (𝑀𝑃𝑎) (Reineck, Kuchma, Kim, & Marx, 2003) which 

matches the work of Stoner (2015) and Barrage (2017). 

Table 4-15: Summary of Concrete Parameters in Calibrated AM04 and Parametric Study Model 

Concrete 

ABAQUS Material Model Concrete Damaged Plasticity 

Compression Model Hognestad Parabola (see Figure 4-12 on page 84 for equations) 

Tension Model Bilinear tensile stress–crack width 

Fracture Energy (𝐺𝑓) 0.093N/mm (Calculated from Model Code 1990) 

Dilation Angle 45° 

Eccentricity (𝜀) 0.1 (ABAQUS Default) 

Viscosity (𝜇)* 1.0x10-5 (not used in ABAQUS/Explicit) 

𝜎𝑏𝑜 𝜎𝑐𝑜⁄   1.16 (ABAQUS Default) 

𝐾𝑐  0.667 (ABAQUS Default) 

Damage Parameters Not Included  

Element Type C3D8R 

Approximate Element Size  20mm 

Modulus of Elasticity (𝐸𝑐) 33392MPa, Calculated as (5000√𝑓𝑐
′) 

Poisson’s Ratio (𝜈) 0 

 

Table 4-16: Summary of Load and Support Plate Steel Parameters in Calibrated AM04 and 

Parametric Study Model 

Steel – Load and Support Plates 

Material Model Linear elastic 

Modulus of Elasticity  200000MPa 

Poisson’s Ratio (𝜈) 0.3 

Element Type C3D8R 

Approximate Element Size 20mm 

Contacts 
Load Plate and Slab – Cohesive 

Slab and Support Plate – Hard  
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Table 4-17: Summary of Flexural Rebar Steel Parameters in Calibrated AM04 and Parametric 

Study Model 

Steel – Flexural Rebar 

Material Model 
Linear elastic, perfectly plastic (see Figure 4-24 on page 

99) 

Modulus of Elasticity 200000MPa 

Poisson’s Ratio (𝜈) 0.3 

Yield Strength (𝑓𝑦) 516MPa (16mm bars), 526MPa (12mm bars) 

Element Type T3D2 (embedded in concrete elements) 

Approximate Element Size 20mm 

Depth to Tension Side Flexural 

Reinforcement 
202mm (measured from compression surface) 

Depth to Compression Side Flexural 

Reinforcement 

43.55mm (measured from compression surface, assumed 

based on bar size and cover to tension side reinforcement) 

 

 

  

Figure 4-57: Hognestad Parabola used in AM04 and Parametric Study Finite Element Model       

a) Stress vs Total Strain b) Stress vs Inelastic Strain (Inputted into ABAQUS) 
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Tensile 

Stress (MPa) 

Crack 

Width 

(mm) 

 

2.204 0.0 

0.735 0.0341 

0* 0.1533 

*ABAQUS sets the 

minimum stress at 10-2 

times the initial stress 

Figure 4-58: Bilinear Tensile Stress-Crack Width Relationship, AM04 and Parametric Study 

Model 
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Chapter 5: Parametric Study of Column Rectangularity  

In this Chapter, the parametric study of column rectangularity carried out in ABAQUS using the 

calibrated AM04 model is discussed. Firstly, the methodology used to arrive at the models included 

in the study will be discussed. Secondly, the results of the parametric study are presented and 

discussed.  

5.1 Parametric Study Setup 

Firstly, the impact of column rectangularity predicted by numerous design codes is compared. Next, 

an overview of the models included in the parametric study and the constraints imposed by the use of 

the AM04 specimen are discussed.  

5.1.1 Comparison of Code Provisions 

As outlined in Section 2.5, current and historical design codes differ in how they consider column 

rectangularity. ACI 318M-14 reduces the nominal shear capacity along the critical perimeter using 

equations based on the column aspect ratio and the ratio of the critical perimeter length to the 

effective slab depth. The 2004 edition of Eurocode 2 only accounted for column rectangularity when 

the slab-column connection was subjected to unbalanced moments. Earlier drafts of EC2 accounted 

for column rectangularity by considering portions of the critical perimeter to be ineffective in 

carrying punching shear when the column dimensions exceeded specific values. Model Code 1978 

was similar to the drafts of EC2 except that the entire critical perimeter length was assumed to 

contribute to the shear capacity of the connection, although portions of the critical perimeter were 

assumed to have a lower shear capacity. Model Code 2010 is similar to the drafts of EC2 where 

portions of the critical perimeter length are assumed to have zero shear capacity. In Model Code 2010 

the maximum critical perimeter length per column side is three times the slab depth.  

For each code which accounts for column rectangularity, a reduction factor can be calculated, and 

compared to those calculated from the other codes, to contrast the impact of column rectangularity in 

each code. The estimated reduction factors for ACI 318M-14, Model Code 1978 and Model Code 

2010 for column aspect ratios between 1 and 10 for multiple ratios of the minimum column 

dimension to effective slab depth (cmin/d) are shown Figure 5-1. These three codes were compared as 

they form the basis of many codes worldwide and all assume the critical perimeter to be located at d/2 

from the column face. Reduction factors for additional cmin/d ratios are provided in Appendix C. 
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The reduction factor for ACI 318M-14 is quite obvious. The general form of the ACI 318M-14 

provisions is some constant, denoted α in this thesis, multiplied by the square root of the concrete 

compressive strength. For a square column, α is equal to 0.33 according to equation 2.6 in Section 

2.5.2. If equation 2.7, which is dependent on the column aspect ratio, or equation 2.8, which is 

dependent on the ratio of critical perimeter length to effective depth govern, α will be less than 0.33. 

Therefore, the reduction factor for ACI 318M-14 was calculated as α divided by 0.33. 

For both investigated Model Codes, a reduction factor with a similar form to that from ACI 318M-

14 cannot be derived, since the code equations do not directly include a term to account for column 

rectangularity or column size. However, both codes require the calculation of the total critical 

perimeter length, 𝑏1 , and an effective critical perimeter length, 𝑏𝑜 . Following the work of Sagaseta 

et al. (2014), the reduction factor for both Model Codes is taken as 𝑏𝑜 𝑏1⁄ . 

  

  

Figure 5-1: Reduction Factors for ACI 318 and Model Code 1978 and 2010 for d =200mm 
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From Figure 5-1 numerous conclusions are drawn. Firstly, it can be concluded that the impact of 

column rectangularity in both Model Codes varies depending on the cmin/d ratio, whereas the ACI 

318M-14 provisions are nearly independent of cmin/d. The ACI 318M-14 reduction factors for cmin/d 

ratios less than 2 are identical, and only slight reductions in the reduction factor for column aspect 

ratios between 1.5 and 3 are observed for a cmin/d ratio of 3. Secondly, for cmin/d ratios approximately 

equal to 1, which are common in practice (Sagaseta, Tassinari, Fernández Ruiz, & Muttoni, 2014), the 

three design codes predict similar reduction factors for column aspect ratios less than or equal to 5. 

Thirdly, for very low cmin/d ratios the reduction factors for Model Code 1978 and ACI 318M-14 are 

similar for column aspect ratios less than or equal to 5. For these very low cmin/d ratios Model Code 

2010 predicts that column rectangularity does not have a negative impact on punching capacity until 

the column aspect ratio is quite large (i.e. >6). This lack of rectangularity impact for low cmin/d ratios 

is because the Model Code 2010 provisions assume that portions of the critical perimeter within 1.5d 

from the column corner in each direction are effective in resisting punching shear.  

5.1.2 Investigated Models and Considered Factors  

Based on the design code comparison in the previous section, it was observed that Model Code 1978 

and Model Code 2010 do not predict the same impact of column rectangularity for different cmin/d 

ratios, whereas ACI 318M-14 predicts a similar impact for all investigated cmin/d ratios. Additionally, 

the difference between the reduction factors from ACI 318M-14 and the two Model Codes increased 

as the cmin/d ratio increased.  

Varying impact of column rectangularity for different cmin/d ratios was also observed during the 

FEM calibration described in Chapter 4. In the SB1 rectangularity study, a very minimal impact of 

column rectangularity on punching capacity was observed for aspect ratios between 1 and 11. 

However, since the length of the critical perimeter was kept constant in the SB1 rectangularity study, 

the cmin/d ratio decreased as the column aspect ratio increased. The limited impact of column 

rectangularity observed agrees well with the Model Code 2010 reduction factor for low cmin/d ratios 

(i.e. 0.6).  

The observed impact of column rectangularity was more severe in the Hawkins’ slab analysis. In 

this analysis, the typical cmin/d ratio of the slab-column connections was 1.3, with a minimum and 

maximum value of 0.9 and 2.6 respectively. For a cmin/d ratio of 1.3, all three investigated codes 

predict a significant impact of column rectangularity on punching capacity.  
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Therefore, based on the code provision comparison and the FEM calibration results, two 

parameters, the cmin/d ratio and the column aspect ratio, were investigated in the parametric study. A 

summary of the models included in the parametric study is provided in Table 5-1 and a detailed 

breakdown of the column dimensions and rectangularity values is provided in Appendix D.  

Table 5-1: Summary of Models Included in Parametric Study 

cmin/d ratio    Minimum 

cmax/L 

Maximum 

cmax/L Desired Actual # of studies Min. β Max. β 

0.5 0.594 19 1.000 10.000 0.018 0.178 

0.75 0.792 15 1.000 8.000 0.024 0.190 

1 0.990 12 1.000 6.600 0.030 0.196 

1.25 1.287 9 1.000 5.077 0.039 0.196 

1.5 1.485 7 1.000 4.000 0.044 0.178 

1.75 1.782 6 1.000 3.556 0.053 0.190 

2 1.980 5 1.000 3.000 0.059 0.178 

3 2.970 3 1.000 2.000 0.089 0.178 

 

As shown in Table 5-1, the desired cmin/d ratios do not match the investigated cmin/d ratios. 

Modifications to the desired cmin/d ratios were required due to the AM04 geometry and use of 20mm 

elements. According to the ABAQUS user manual, the aspect ratio of C3D8R elements should be 

close to 1 for accurate results (Dassault Systemes Simulia Corp., 2012). Therefore, the investigated 

cmin/d ratios were partly chosen to ensure mesh uniformity. For the investigated cmin/d ratios, the 

minimum element side length was 18.5mm. The investigated cmin/d ratios are within the range of 

those included in the ACI 445 punching shear database. For slabs supported on square columns, the 

minimum, maximum and average cmin/d ratios are 0.528, 8.40 and 2.43 respectively. For slabs 

supported on rectangular columns, the minimum, maximum and average cmin/d ratios of the collected 

tests are 0.94, 4.20 and 2.65 respectively (Ospina, et al., 2015) 

The use of partitions in the FEM, as shown in Figure 5-2a, also influenced the cmin/d ratios and 

column rectangularities which were considered in the parametric study. Partitions were used to limit 

mesh skewing, ensure alignment of the load and support plate meshes with the slab mesh and to 

ensure elements lied along the ACI critical perimeter. When partitions are used in ABAQUS the 

meshing algorithm ensures that nodes of the elements are placed along the partition line. However, 

the use of partitions can also lead to meshing issues (very small elements etc.) if the partitions are 

spaced at values which are not a multiple of the global mesh size.  
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In order to extract the shear stress distributions along the ACI critical perimeter partitions were 

created parallel and perpendicular to the column sides. The first set of partitions were located along 

the edges of the support plate and extended to the slab edge to ensure the element size along the slab 

edges matched that in the area above the support plate. The second set of partitions were parallel to 

the first partitions, and were used to ensure elements lied along the critical perimeter at d/2. For all 

models, except for the model of AM04, the two sets of partitions were spaced at a distance of 100mm 

as shown in Figure 5-2a, which is the approximate value of d/2 for slab AM04 (101mm). For the 

AM04 model, the distance between the partitions was increased to 110mm to avoid meshing issues 

caused by the partitions for the bottom right load plate.  

Since the overall slab size and the load plate locations were kept constant in the models, the bottom 

right load plate partitions impacted the investigated column dimensions as shown in Figure 5-2c. 

Column dimensions were chosen to ensure 20mm element side lengths within the load plate partition 

areas to ensure alignment of the slab mesh and load plate meshes in this area. The column size shown 

in Figure 5-2c also corresponds to the maximum column height considered in the parametric study. 

The minimum column size and maximum column width considered in the parametric study are 

shown in Figure 5-2b and Figure 5-2d respectively. Due to the overall size of AM04, the maximum 

column rectangularity and number of studies for each cmin/d ratio decreased as the cmin/d ratio 

increased. It was desired to investigate column rectangularities at increments of 0.5, but due to the 

reasons outlined above the investigated column rectangularities were also adjusted to ensure mesh 

sizes of approximately 20mm.  

Finally, the ratio of the maximum column dimension, cmax, to the slab span, L, was considered 

when selecting column dimensions in the parametric study. As discussed in Section 2.6.3, Simmonds 

(1970) concluded that reinforced concrete slabs behave as one-way slabs when the cmax/L ratio 

exceeds 0.4 in either orthogonal direction, based on the results of a linear elastic finite difference 

analysis of a multiple bay slab system. On the basis of linear elastic finite element analysis, Sagaseta 

et al. (2014) found that reinforced concrete slabs begin to behave as one-way slabs when the cmax/L 

ratio exceeds 0.35. The highest value of cmax/L for the parametric studies was found to be 

approximately 0.2 as shown in Table 5-1, and therefore, one way-behaviour was not expected to 

govern any of the proposed models. The slab span was estimated as 25 times the slab thickness based 

on tests by Guandalini, Burdet and Muttoni (2009) which were geometrically similar to AM04.  
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Figure 5-2: Considerations When Selecting Column Dimensions, a) Overall Layout b) Minimum 

Column Size (60x60mm), c) Maximum Column Height (660mm) d) Maximum Column Width 

(300mm) 

Since the calibrated model for slab AM04, which is summarized in Table 4-15, Table 4-16 and Table 

4-17 in Section 4.6, was used in the parametric study, the following parameters were consistent 

between all models in the parametric study: 

 Overall slab dimensions, plan – 3000x3000mm (1500x1500mm quarter model used in FEA) 

 Slab thickness – 250mm 

 Load Plate Location 

 Maximum aggregate size – 16mm 

 Concrete compressive strength – 44.6MPa 

a b 

c d 



 

 144 

 Concrete tensile strength – 2.204MPa (approximated as 0.33√𝑓𝑐
′) 

 Average effective depth (tension side) – 202mm 

 Average effective depth (compression side) – 43.55mm 

 Tension side reinforcement – 16mm diameter bars at 125mm o/c (fy = 516MPa) 

 Compression side reinforcement – 12mm diameter bars at 125mm o/c (fy = 526MPa) 

5.2 Discussion of FEA Results for Each Cmin/d Ratio 

The purpose of this section is to present and discuss the parametric study results specific to each 

individual cmin/d ratio. A discussion of the results for all cmin/d ratios is provided in Section 5.3. The 

results will be presented in the following order: 

1. Total shear capacity and load-displacement behaviour predicted by FEA 

2. Comparison of punching capacity predicted by FEA and design codes (ACI 318M-14, 

Eurocode 2 (2004), Model Code 2010, Critical Shear Crack Theory (CSCT)) 

3. Comparison of nominal shear stress predicted by FEA and design codes along the ACI 318 

critical perimeter 

4. Analysis of shear stress distributions around the support plate perimeter predicted by FEA 

5. Predicted crack patterns  

In the following discussion, the X and Y-directions are consistent with the experimental setup of 

AM04. Therefore, the Y-direction is perpendicular to the short side of the support plate and the X-

direction is perpendicular to the long side of the support plate, as shown in Figure 5-3. In this section, 

the support plate is also referred to as a column or supported area.  

 

Figure 5-3: Displacement Locations used in Parametric Studies  
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The displacements reported in this section are the vertical displacements at the locations shown in 

Figure 5-3. As such, the displacements referred to in the provided tables and plots in the X-direction 

(ΔX) and in the Y-direction (ΔY) correspond to the vertical displacement of the slab as shown in 

Figure 5-4.  

 

Figure 5-4: Vertical Deflection of Slab Recorded During FEA (X-direction Shown) 

For the code predictions discussed in this section the following assumptions were made. The 

Eurocode 2 (2004) provisions are given in terms on characteristic compressive strength. Following 

the work of Reineck, Kuchma, Kim and Marx (2003), the characteristic concrete strength was 

assumed to be equal to the concrete compressive strength, 𝑓𝑐
′, minus 1.6MPa. The predictions for all 

other design codes used 𝑓𝑐
′. Additionally, the average reinforcing ratio of AM04, 0.75%, was used 

when computing the punching resistance of all slabs in the parametric study. As with the Hawkins’ 

slab study, the provisions requiring the reinforcing ratio to be calculated over a total width equal to 

three times the column width plus three times the effective slab depth on each side of the column 

were neglected to remove the influence of reinforcing ratio on the predictions. For both the Model 

Code 2010 and the CSCT predictions, the rotations at failure in both orthogonal directions predicted 

from the FEA were used, instead of the analytical equations to estimate slab rotations. The use a 

calibrated non-linear finite element analysis to estimate slab rotations corresponded with the LoA IV 

in Model Code 2010, which is the highest level of approximation available, and in theory should 

provide the most accurate estimates of shear capacity (Genikomsou A. , 2015). For both the Model 

Code 2010 and the CSCT predictions, the critical perimeter was divided into X and Y components as 

discussed in Section 2.5.5, instead of using the maximum rotation from the two orthogonal directions. 

The crack patterns for all investigated cmin/d ratios and rectangularity values are provided in 

Appendix F. The crack patterns are not provided in the body of this thesis to allow the reader to easily 

compare the crack patterns as β is increased.  
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5.2.1 Cmin/d = 0.594 

A summary of the column dimensions, column rectangularity values (β), predicted capacity and 

predicted deflections at peak load in the X and Y-directions for the models with a cmin/d ratio of 0.594 

are provided in Table 5-2. The load-displacement plots for the integer values of β are provided in 

Figure 5-5, and the remaining load-displacement plots can be found in Appendix E. Based on the 

results provided in Table 5-2 and Figure 5-5, it was observed that the FEM generally predicts a higher 

shear capacity as the column size, and rectangularity, are increased. This increase in shear capacity is 

expected since the overall column area, and length of the critical perimeter, are increased as the 

column rectangularity is increased. 

Table 5-2: Summary of FEA Results for cmin/d = 0.594 

cmin (mm) cmax (mm) β Predicted Capacity (kN) ΔX (mm) ΔY (mm) 

120 120 1.000 625.6 12.23 12.23 

120 200 1.667 674.0 13.27 13.19 

120 240 2.000 685.2 13.62 13.47 

120 320 2.667 760.1 15.71 15.25 

120 360 3.000 794.6 17.13 16.37 

120 440 3.667 837.2 17.99 16.80 

120 480 4.000 852.2 18.96 17.39 

120 560 4.667 876.6 18.67 16.88 

120 600 5.000 889.3 18.65 16.58 

120 680 5.667 903.4 19.36 16.73 

120 720 6.000 902.4 19.69 17.02 

120 800 6.667 965.2 21.87 17.59 

120 840 7.000 985.1 22.89 17.81 

120 920 7.667 993.6 22.43 17.05 

120 960 8.000 992.2 21.60 16.16 

120 1040 8.667 1014.8 23.12 16.09 

120 1080 9.000 1017.2 25.24 15.83 

120 1160 9.667 1019.0 24.83 14.62 

120 1200 10.000 1022.0 25.83 14.07 
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Figure 5-5: Predicted Load-Displacement Response, cmin/d = 0.594 

After analyzing the post failure deflected shapes predicted by the FEM, it was concluded that all 

the analyzed slabs were predicted to fail due to punching, although the higher rectangularity values 

(i.e. β>8.667) appeared to be transitioning from punching (two-way shear) behaviour to one-way 

shear behaviour, as the predicted maximum principal plastic strains, which represent concrete 

cracking, were beginning to concentrate in a line parallel to the long side of the column. An example 

of the typical deflected shape associated with punching shear failure is provided in Figure 5-6. It 

should be noted that the model with a support plate aspect ratio of 10 was predicted to initially fail in 

punching, before a secondary one-way shear failure was predicted in the next recorded analysis 

frame. Therefore, this model, which had a maximum support plate dimension of 600mm, was 

believed to represent the transition point between two-way and one-way shear failure.  

Overall, there was no trend in the predicted deflections. For the models with β less than 4.667, the 

deflections in both orthogonal directions typically increased as the column rectangularity was 

increased. However, after this point the deflections in both directions stayed approximately constant 

until β equaled 5. After this point, the deflections in the X-direction typically increased as the 

rectangularity was increased. The deflections in the Y-direction increased until β equaled 7.667 

before decreasing with increasing column rectangularity. It is possible that the deflections in the Y-
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direction decreased as β is increased beyond 7.667 because the length of the supported area in this 

direction approached 40% of the isolated specimen length for these larger support areas.  

 

Figure 5-6: Post-Punching Deflected Shape, β = 6, cmin/d = 0.594 

The predicted stiffness of the slabs in both orthogonal directions increased as the column 

rectangularity was increased. In both the linear elastic and plastic portions of the slab’s response, the 

stiffness increase in the Y-direction was larger. In the X-direction the change in stiffness in the linear 

elastic portion of the response was rather small, and although a larger increase in stiffness was 

observed in the plastic region, the increase in stiffness in the X-direction was still smaller than that 

observed in the Y-direction. The overall stiffness was also found to be higher in the Y-direction, 

which matches experimental results by other researchers (Tan & Teng, 2005; Anggadjaja & Teng, 

2008; Himawan & Teng, 2014). 

As previously mentioned, the FEA results are compared with the code predictions according to 

design methods and codes used in the United States and Europe, ACI 318M-14, Eurocode 2 (2004), 

Model Code 2010 and the CSCT. All of these design methods and codes are based on the critical 

shear perimeter concept, although the shape and location of the critical perimeter is not consistent 

between them. None of the investigated methods or codes includes a term to directly account for the 

cmin/d ratio. 

A comparison of the shear capacity predicted by the FEA to ACI 318M-14 (ACI), Eurocode 2 

(2004) (EC2), Model Code 2010 (MC 2010) and the Critical Shear Crack Theory (CSCT) is provided 

for a subset of the models in Figure 5-7, and for all the models with a cmin/d ratio of 0.594 in Figure 

5-8 and Table 5-3. An additional bar chart similar to Figure 5-7 is provided in Appendix E for the 

remaining rectangularity values.  
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Figure 5-7: Comparison of Shear Capacity Predicted by FEA and Various Design Codes, Integer 

β Values only, cmin/d = 0.594 

 

Figure 5-8: Comparison of Shear Capacity Predicted by FEA and Various Design Codes, all 

Investigated β values, cmin/d = 0.594 
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Table 5-3: Comparison of Code Predictions and FEA Results – cmin/d = 0.594 

cmin 

(mm) 

cmax 

(mm) 
β 

FEA Capacity 

(kN) 
VFEA/VACI VFEA/VEC2 VFEA/VMC2010 VFEA/VCSCT 

120 120 1.000 625.6 1.09 0.90 1.27 1.00 

120 200 1.667 674.0 1.05 0.92 1.25 0.98 

120 240 2.000 685.2 1.01 0.91 1.22 0.96 

120 320 2.667 760.1 1.12 0.96 1.32 1.02 

120 360 3.000 794.6 1.18 0.98 1.37 1.06 

120 440 3.667 837.2 1.23 0.99 1.36 1.05 

120 480 4.000 852.2 1.23 0.99 1.37 1.05 

120 560 4.667 876.6 1.23 0.97 1.29 0.99 

120 600 5.000 889.3 1.23 0.97 1.26 0.97 

120 680 5.667 903.4 1.21 0.95 1.31 1.00 

120 720 6.000 902.4 1.19 0.93 1.33 1.02 

120 800 6.667 965.2 1.22 0.95 1.50 1.14 

120 840 7.000 985.1 1.22 0.96 1.56 1.19 

120 920 7.667 993.6 1.19 0.93 1.57 1.19 

120 960 8.000 992.2 1.17 0.91 1.53 1.16 

120 1040 8.667 1014.8 1.15 0.90 1.61 1.22 

120 1080 9.000 1017.2 1.13 0.89 1.64 1.25 

120 1160 9.667 1019.0 1.09 0.87 1.61 1.23 

120 1200 10.000 1022.0 1.08 0.85 1.61 1.23 

   Average 1.16 0.93 1.42 1.09 

   COV (%) 6.02 4.33 10.42 9.43 

 

The ACI 318M-14, Model Code 2010 and CSCT provisions are conservative compared to the FEA 

predictions for a cmin/d ratio of 0.594, whereas the Eurocode 2 (2004) provisions are not. Both ACI 

318M-14 and EC2 (2004) predict a larger total shear capacity as the column rectangularity is 

increased. This was expected since the overall column size, and the length of critical perimeter 

assumed to carry shear in both codes, increased as the column rectangularity is increased. For column 

aspect ratios less than or equal to 5, the Model Code 2010 and CSCT provisions also predict an 

increased shear capacity as β increased. For column aspect ratios greater than 5, the capacities 

predicted by Model Code 2010 and the CSCT are approximately constant; because the effective 

perimeter length using the 3d method is less than the total critical perimeter length. 

On average, the capacity predictions according to ACI 318M-14, EC2 (2004), Model Code 2010 

and the CSCT are 16% lower, 7% higher, 42% lower and 9% lower than the capacity predicted by the 

FEM respectively. The EC2 (2004) predictions were found to be most accurate, but unconservative, 

for column rectangularity values between 3 and 7 (VFEA/VEC2 is between 0.95 and 0.99). For these 

same rectangularity values, the ACI predictions were found to be the most inaccurate, but 
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conservative (VFEA/ VACI is between 1.18 and 1.23). The CSCT provisions were the most accurate for 

rectangularities between 1 and 6 and were generally conservative compared to the FEA results 

(VFEA/VCSCT is between 0.96 and 1.06). The Model Code 2010 provisions were also found to be most 

accurate for column aspect ratios between 1 and 6, but were very conservative compared to the FEA 

results (VFEA/VMC2010 is between 1.22 and 1.37). For rectangularities greater than 6 the predictions 

according to the CSCT and Model Code 2010 became more conservative, whereas the predictions 

according to ACI 318M-14 and EC2 (2004) generally became less conservative and more 

unconservative respectively. The EC2 (2004) provisions were found to have the least variation based 

on the coefficient of variation of the ratio of VCODE/VFEA. None of the investigated specimens were 

predicted to fail in one-way shear by ACI 318M-14 or EC2 (2004), which matches the FEA results.  

In order to compare the impact of column rectangularity predicted by EC2 (2004), Model Code 

2010 and the CSCT to the FEA and ACI 318M-14 predictions, a normalized nominal shear stress 

around the ACI critical perimeter, 𝑣𝑛𝑜𝑟𝑚, was calculated using equation 5.1, which was originally 

presented as equation 4.3 in Section 4.3.1. 

𝑣𝑛𝑜𝑟𝑚 =
𝑉𝑝𝑟𝑒

𝑏𝑜,𝐴𝐶𝐼𝑑√𝑓𝑐
′

(5. 1) 

where 𝑉𝑝𝑟𝑒 is the shear capacity predicted by the design code being considered (N), 𝑏𝑜,𝐴𝐶𝐼 is the 

length of the ACI 318 critical perimeter (mm), 𝑑 is the effective slab depth (mm), and 𝑓𝑐
′ is the 

concrete compressive strength (MPa).  

A comparison of the normalized nominal shear stress predicted by ACI 318M-14, EC2 (2004), 

Model Code 2010, the CSCT and the finite element model along the ACI critical perimeter located at 

d/2 from the column perimeter is provided in Figure 5-9. As expected, based on the total capacity 

estimates, the nominal shear stress predicted by ACI 318M-14 is conservative when compared to the 

finite element model. However, it should be noted that the finite element model predicts an 

approximately linear response, compared to the curved response predicted by ACI 318M-14. The 

difference in these behaviours (linear vs curved) is why the ACI predictions were found to most 

conservative for the intermediate rectangularity values. For intermediate rectangularity values the 

ACI predictions predict a steep drop in nominal stress, which becomes asymptotic as the 

rectangularity increases. For example, between a β value of 2 and 4 the ACI 318 method predicts a 

drop in nominal shear stress from 2.2 MPa to 1.7MPa. However, between β values of 6 and 8 the ACI 

318 method predicts a drop in nominal capacity of 1.51MPa to 1.42MPa. Additionally, the finite 
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element model predicts an impact of rectangularity for β values between 1 and 2 which is different 

than the ACI 318 method, which assumes slight rectangularity does not have a negative impact on 

punching capacity based on the results of Hawkins et al. (1971).  

 

Figure 5-9: Comparison of Nominal Shear Capacity Predicted by FEA and Design Codes, cmin/d 

= 0.594 

Overall, the trend of the normalized nominal shear stress predicted by EC2 (2004) is similar to that 

of the FEM, though the code predictions do deviate for very small (β<2) and very large (β>8.667) 

aspect ratios. However, as expected based on the capacity comparisons, the normalized nominal shear 

stress predicted by EC2 (2004) is typically higher than that from the FEM. Again, the EC2 provisions 

are found to be fairly accurate for rectangularity values between 3 and 7. Unlike ACI 318M-14 the 

EC2 provisions predict a decrease in the normalized nominal shear stress for rectangularity values 

between 1 and 2, which matches the FEA results. Like the ACI 318M-14 predictions the impact of 

column rectangularity in EC2 (2004) is curved, and becomes less severe as β is increased.  

The trend of the normalized nominal stress based on the CSCT provisions is also similar to that 

from the FEA especially for rectangularities between 1 and 6. Unlike the total capacity estimates, 

which were approximately constant for column aspect ratios greater than 6, the predicted normalized 

nominal shear stress continues to decrease as β is increased. The nominal shear stress continues to 
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decrease because the predicted capacity, which is approximately constant, is divided by the length of 

the ACI 318M-14 perimeter, which increases in length as β is increased. The trend of the normalized 

nominal shear stress calculated from Model Code 2010 correlated well with the FEA results and is 

almost identical to the trend of the CSCT predictions. Based on Figure 5-8 and Figure 5-9, it is clear 

that Model Code 2010 provisions are a very conservative version of the CSCT predictions. As such, 

for all subsequent cmin/d ratios only the trends of the CSCT predictions will be discussed.  

The shear stress distributions in the slab around the column perimeter at the peak load calculated 

from the FEA results for the investigated integer rectangularity values are provided in Figure 5-10. 

The overall shape of the shear stress distribution was found to be similar for all rectangularity values. 

For the slab supported on a square steel plate, the shear stress distribution around both sides of the 

plate was approximately symmetric. For the slabs supported on rectangular plates, a concentration of 

shear stress was observed at the corner of the supported area and along the short side of the supported 

area. Along the long side of the support plate, the predicted shear stress decreases in magnitude as the 

distance from the corner is increased. It is interesting that the shear stress levels at a specific distance 

from the column corner are similar for all investigated rectangularity values. For example, at a 

distance of approximately 100mm from the start of the corner element the predicted shear stress level 

is approximately 2 to 2.5MPa for all models. The shear stress distributions for the remaining 

rectangularity values are provided in Appendix G and were considered in the trends discussed above. 

In all models, the peak shear stress was observed at the corner of the support pate, and the shear 

stress magnitude generally decreased from the corner to the support plate centerline. The peak shear 

stress at the peak load level was found to decrease as β was increased from 1 to 6. As β was increased 

from 6 to 8 the peak stress increased. Once β exceeded 8, the predicted peak shear stress dropped as β 

was increased. The peak shear stresses for all rectangularity values greater than 1 were between 

approximately 4.8 and 6.3MPa. The peak stress observed in the square column model was 7.1MPa. 

The difference between the peak stress values for the square and rectangular columns demonstrates 

the large impact that rectangularity has on the shear stress distribution.  
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Figure 5-10: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.594, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β values 

The shear stress distributions along the ACI 318 critical perimeter, calculated from the FEA results 

at the peak load, are shown in Figure 5-11 for the same column rectangularities shown in Figure 5-10. 

The shear stress distributions for the remaining rectangularities are provided in Appendix G. Unlike 

the shear stress distribution around the column perimeter, the shear stresses along the ACI 318 critical 

perimeter do not display a clear trend. As such, only the shear stress distributions around the support 
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plate perimeter are discussed for the remaining cmin/d ratios. The shear stress distributions around the 

ACI 318 critical perimeter for all cmin/d ratios are provided in Appendix G.  

 

 

 

Figure 5-11: Predicted Shear Stress Distribution Around ACI 318 Critical Perimeter, cmin/d = 

0.594, Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β values 
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rectangularity on the predicted crack pattern is extremely apparent. Since the support plate size for a 

cmin/d ratio of 0.594 is small the tension surface crack patterns for column rectangularities less than or 

equal to 2 are approximately uniform. However, for larger β values the crack patterns were 

significantly influenced by the support area geometry. For example, as the rectangularity of the 

column was increased, the number of cracks perpendicular to the long and short sides of the column 

on the slab’s tension surface increased. These perpendicular cracks, and the presence of one long 

crack parallel to the long side of the support plate, which is visible for rectangularities greater than 

6.667, demonstrate the increasing influence of one-way shear behaviour on the predicted response. 

This crack was found to extend across the full slab with for a β value of 8.667. Thirdly, as the 

rectangularity was increased the number of diagonal cracks, which extended from the corner of the 

support plate to the corner of the slab, decreased in number, size and length. The cracks on the tension 

surface also become more focused near the corner of the supported area, and less cracking was 

predicted near the slab centerlines (symmetry edges in the model).  

Analyzing the slab side crack patterns provided in Appendix F also leads to numerous conclusions. 

When the column rectangularity is low, very clear conical crack patterns are predicted along both slab 

sides, which matches crack patterns from previous experimental programs and structures which failed 

in punching. As the rectangularity of the support plate was increased the shape of the predicted crack 

pattern on the slab side perpendicular to the long side of the supported area became less conical, as 

shown in Figure 5-12. With increased rectangularity the crack pattern on the slab side perpendicular 

to the long side of the support plate transitioned from a conical shape, to a reverse Z shape (β>5.667), 

which is shown in Figure 5-12, before becoming almost non-existent (β>9). The change in the slab 

side crack patterns perpendicular to the long side of the support plate further proves that one-way 

shear behaviour becomes more dominant as column aspect ratio is increased.  

Finally, for very high rectangularity values (i.e. β ≥ 7.667), more significant cracking in the slab 

above the support plate was predicted. This cracking concentration could be caused by the contact 

definitions used, or could be due to the extreme difference in the short and long side dimensions for 

the two lowest cmin/d ratios studied (0.594 and 0.792), as this behaviour was not observed for any 

models with cmin/d greater than 0.792. 
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Figure 5-12: Comparison of Slab Side Crack Pattern, Perpendicular to Long Side, cmin/d =0.594 

 

Reverse Z shape 

β = 6 

β = 4 

β = 2 



 

 158 

5.2.2 Cmin/d = 0.792 

A summary of the column dimensions, column rectangularity values, predicted capacity and predicted 

deflections at peak load in the X and Y-directions for the models with a cmin/d ratio of 0.792 are 

provided in Table 5-4, and the load-displacement plots for integer values of β analyzed are provided 

in Figure 5-13. The remaining load-displacement plots can be found in Appendix E. As with the 

results for a cmin/d ratio of 0.594, the FEM predicted a higher shear capacity as the column size, and 

rectangularity, were increased.  

Table 5-4: Summary of FEA Results for cmin/d = 0.792 

cmin (mm) cmax (mm) β Predicted Capacity (kN) ΔX (mm) ΔY (mm) 

160 160 1.000 700.2 14.02 14.02 

160 240 1.500 738.1 14.63 14.53 

160 320 2.000 792.2 16.22 15.75 

160 400 2.500 844.6 18.24 17.22 

160 480 3.000 884.1 19.80 18.18 

160 560 3.500 894.6 19.09 17.14 

160 640 4.000 916.0 19.25 16.80 

160 720 4.500 924.2 19.76 17.03 

160 800 5.000 998.1 22.90 18.15 

160 880 5.500 1006.7 22.40 16.85 

160 960 6.000 1021.9 23.22 16.78 

160 1040 6.500 1031.3 24.04 16.31 

160 1120 7.000 1032.8 23.91 14.72 

160 1200 7.500 1039.4 24.05 13.46 

160 1280 8.000 1047.2 20.71 11.52 

 

After analyzing the post-punching deflected shape of all the models with cmin/d=0.792, it was 

observed that all slabs with a rectangularity less than 7.5 were predicted to fail in punching. Slabs 

supported on plates where β exceeded 7.5 were predicted to fail in one-way shear. An example of the 

typical deflected shape observed for the models which failed in one-way shear is shown in Figure 

5-14. 

As with the results for cmin/d=0.594, no overall trends in the predicted deflections were observed. 

The deflections in both orthogonal directions were found to increase as β was increased when β was 

less than 3. After β exceeds 3, the deflections in the X-direction (perpendicular to the long side of the 

support plate) stay approximately constant until β = 4.5. For β greater than 4.5, the deflections in the 

X-direction typically increase as the column rectangularity is increased, except for when β equaled 8. 

The deflections in the Y-direction show no clear trend for rectangularities between 3 and 5. For 
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rectangularities between 5 and 8, the predicted deflection in the Y-direction typically decreased as the 

column rectangularity increased. 

  

 

Figure 5-13: Predicted Load-Displacement Response, cmin/d = 0.792 

 

 

Figure 5-14: Typical One-Way Shear Deflected Shape, Model Shown: β = 8, cmin/d = 0.792 
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elastic region was found to be rather small, whereas the change in the plastic region was much larger, 

but smaller than the change in stiffness observed in the Y-direction.  

A comparison of the shear capacity predicted by the FEA to ACI 318M-14 (ACI), Eurocode 2 

(2004) (EC2), Model Code 2010 (MC 2010) and the Critical Shear Crack Theory (CSCT) is provided 

for a subset of the models in Figure 5-15, and for all the models with a cmin/d ratio of 0.792 in Figure 

5-16 and Table 5-5. An additional bar chart similar to Figure 5-15 is provided in Appendix E for the 

remaining rectangularity values. 

  

Figure 5-15: Shear Capacity from FEA and Design Codes, Integer β Values, cmin/d=0.792 

 

Figure 5-16: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=0.792 

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

P
u

n
c
h

in
g

 C
a
p

a
c
it

y
 (

k
N

)

Rectangularity

FEA

ACI

EC2

MC2010

CSCT

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

P
u

n
c
h

in
g

 C
a
p

a
c
it

y
 (

k
N

)

Rectangularity

FEA ACI 318M-14 EC2 (2004)

MC2010 (IV) CSCT



 

 161 

Table 5-5: Comparison of Code Predictions and FEA Results – cmin/d = 0.792 

cmin 

(mm) 

cmax 

(mm) 
β 

FEA Capacity 

(kN) 
VFEA/VACI VFEA/VEC2 VFEA/VMC2010 VFEA/VCSCT 

160 160 1.000 700.2 1.09 0.95 1.34 1.05 

160 240 1.500 738.1 1.03 0.96 1.30 1.01 

160 320 2.000 792.2 1.01 0.98 1.33 1.03 

160 400 2.500 844.6 1.06 1.00 1.38 1.07 

160 480 3.000 884.1 1.11 1.00 1.40 1.07 

160 560 3.500 894.6 1.10 0.97 1.28 0.99 

160 640 4.000 916.0 1.11 0.96 1.27 0.97 

160 720 4.500 924.2 1.09 0.93 1.32 1.01 

160 800 5.000 998.1 1.14 0.97 1.53 1.16 

160 880 5.500 1006.7 1.11 0.94 1.51 1.15 

160 960 6.000 1021.9 1.10 0.93 1.57 1.19 

160 1040 6.500 1031.3 1.07 0.90 1.60 1.22 

160 1120 7.000 1032.8 1.04 0.88 1.56 1.18 

160 1200 7.500 1039.4 1.01 0.86 1.54 1.17 

160 1280 8.000 1047.2 0.99 0.84 1.43 1.10 

   Average 1.07 0.94 1.42 1.09 

   COV (%) 4.17 5.34 8.20 7.51 

 

The ACI 318M-14 provisions were found to be generally conservative for a cmin/d ratio of 0.792, as 

the ratio of VFEA/VACI exceeds 1 for all investigated models where β is less than 8. The EC2 (2004) 

provisions on the other hand are typically unconservative as VFEA/VEC2 is less than 1 for all models, 

except for the models where β equaled 2.5 and 3, where VFEA/VEC2 equals 1.0. As with the results for 

cmin/d=0.594, both ACI 318M-14 and EC2 (2004) predict a larger total shear capacity as the column 

rectangularity is increased. For column aspect ratios less than or equal to 4, the Model Code 2010 and 

CSCT provisions also predict an increased shear capacity as β increased. For column aspect ratios 

greater than 4, the capacities predicted by Model Code 2010 and the CSCT are approximately 

constant; because the effective perimeter length using the 3d method is less than the total critical 

perimeter length. 

On average, the capacity predictions according to ACI 318M-14, EC2 (2004), Model Code 2010 

and the CSCT are 7% lower, 6% higher, 42% lower and 9% lower than the capacity predicted by the 

FEM respectively. The EC2 (2004) predictions were found to be most accurate, but typically slightly 

unconservative, for column rectangularity values between 1 and 5 (VFEA/VEC2 is between 0.93 and 

1.0). For all investigated rectangularity values, the ACI predictions were found to be accurate and 

typically conservative (VFEA/ VACI is between 0.99 and 1.14). The CSCT provisions were the most 
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accurate for rectagularities between 1 and 4.5 and were generally conservative compared to the FEA 

results (VFEA/VCSCT is between 0.97 and 1.07). For rectangularities greater than 4.5, the predictions 

according to the CSCT and Model Code 2010 became more conservative, whereas the predictions 

according to ACI 318M-14 and EC2 (2004) generally became less conservative and more 

unconservative respectively. The ACI 318M-14 provisions were found to have smallest variation 

based on the coefficient of variation of the ratio of VCODE/VFEA. None of the investigated specimens 

were predicted to fail in one-way shear by ACI 318M-14 or EC2 (2004). The FEM on the other hand, 

predicted one-way shear failures for slabs supported on plates with aspect ratios greater than or equal 

to 7.5 (cmax≥1200mm). 

A comparison of the normalized nominal shear stress predicted by ACI 318M-14, EC2 (2004), 

Model Code 2010, the CSCT and the finite element model at the ACI critical perimeter located at d/2 

from the column perimeter is provided in Figure 5-17. As expected, based on the total capacity 

estimates, the nominal shear stress predicted by ACI 318M-14 is generally conservative when 

compared to the finite element model. However, the finite element model still predicts an 

approximately linear decrease in nominal shear capacity with increasing rectangularity, whereas a 

curved relationship is used in ACI 318. The ACI predictions for a cmin/d ratio of 0.792 and 0.594 are 

identical, and as such, the changes in nominal stress for specific rectangularity values discussed in the 

Section 5.2.1 are applicable. The ACI 318 method predicts that the impact of column rectangularity 

becomes less significant as the rectangularity value becomes very large (i.e. β>5), but this does not 

match the FEA results. Again, the finite element method predicts a reduction in the nominal shear 

stress for slightly rectangular columns (i.e 1<β≤2). 
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Figure 5-17: Comparison of Nominal Shear Capacity Predicted by FEA and Design Codes, cmin/d 

= 0.792 

Overall, the trend of the normalized nominal shear stress predicted by EC2 (2004) is similar to that 

of the FEM. As expected, based on the capacity comparisons, the normalized nominal shear stress 

predicted by EC2 (2004) is typically higher than that from the FEM, and begins to deviate from the 

trend of the FEA results for β values greater than or equal to 6.5. The EC2 (2004) provisions are 

found to be fairly accurate for rectangularity values between 1 and 5. Unlike ACI 318M-14, the EC2 

(2004) provisions predict a decrease in the normalized nominal stress for rectangularity values 

between 1 and 2, which matches the FEA results.  

The trend of the normalized nominal stress based on the CSCT provisions is also similar to that 

from the FEA especially for rectangularities between 1 and 4.5. Unlike the total capacity estimates, 

which were approximately constant for column aspect ratios greater than 4.5, the predicted 

normalized nominal shear stress continues to decrease as β is increased. The nominal shear stress 

continues to decrease because the predicted capacity, which is approximately constant, is divided by 

the length of the ACI 318M-14 perimeter, which increases in length as β is increased. 

The shear stress distribution calculated from the FEM results at the peak load level for the integer 

rectangularity values with cmin/d=0.792 are shown in Figure 5-18, and the distributions for the non-

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 2 4 6 8

N
o
rm

a
liz

e
d
 N

o
m

in
a
l 
S

tr
e
s
s

Column Rectangularity, β

FEA ACI 318M-14 EC2 (2004)

MC 2010 (IV) CSCT



 

 164 

integer rectangularity values are provided in in Appendix G. Again, the overall shape of the predicted 

shear stress distribution along both sides of the support plate was found to be similar for all 

investigated rectangularity values. As with the results for a cmin/d ratio of 0.594, the shear stresses 

were found to concentrate around the corner and short side of the support plate. Again, the magnitude 

of the shear stress along the long side at an equivalent distance from the corner of the support plate 

was found to be similar in all models.  

 

 

 

Figure 5-18: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.792, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 
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As was observed in the cmin/d=0.594 models, the maximum shear stress occurred at the corner of 

the supported area and the magnitude of the shear stresses decreased as the distance from the corner 

increased. Overall, there was no clear trend in the predicted maximum shear stress at the support plate 

corner as the rectangularity was increased. The magnitude of the maximum shear stress was found to 

be between approximately 4.8MPa and 6.3MPa for all models where β is greater than 1, which 

matched the results of the models with cmin/d=0.594. The peak stress for the model supported on a 

square steel plate was approximately 7.3MPa, which is slightly higher than the 7.1MPa observed for 

the square column with a cmin/d ratio of 0.594. Again, the maximum shear stress for the square 

support area is larger than that observed for rectangular support areas, showing that column 

rectangularity does have a large impact on the shear stress distribution.  

The trends in the predicted crack patterns for a cmin/d ratio of 0.792 are very similar to those 

observed for the cmin/d=0.594 models. As the column rectangularity increased, the amount of diagonal 

cracking on the tension surface of the slab decreased. Very few diagonal cracks are predicted for the 

models where β is greater than or equal to 7.5. The trend of the crack patterns on the slab sides are 

also similar. For low rectangularity values, typical conical shapes are observed. As β is increased 

beyond 4.5, the conical shape on the slab side perpendicular to the long side of the support plate 

becomes very thin, before transitioning into a reverse z shape, similar to that shown in Figure 5-12. 

The punching cones on the slab side perpendicular to the long side of the support plate were found to 

be nearly non-existent for models with β greater than 7. The punching cones for a cmin/d ratio of 0.594 

were found to become non-existent when β was greater than or equal to 9. Therefore, the maximum 

rectangularity before the punching cones become nearly non-existent, which coincides with the 

transition from two-way shear behaviour to one-way shear behaviour, decreased as the cmin/d ratio 

was increased. However, it should be noted that the column length in the quarter model for β equal to 

9 and cmin/d=0.594 is 540mm (cmax=1080mm) and for β equal to 7 and cmin/d=0.792 is 560mm 

(cmax=1120mm). Therefore, even though the rectangularity value where the punching cones become 

non-existent decreased as cmin/d increased, the maximum column dimension when this behaviour 

occurred is similar. Furthermore, the presence of one long crack extending across the entire slab 

width parallel to the long side of the column was first observed when β equaled 6.5 when 

cmin/d=0.792, which again is lower than the value observed for cmin/d=0.594 (β = 8.667). However, the 

column length in the quarter model in both cases is 520mm (cmax=1040mm), which shows that the 

overall column length, and not just the support aspect ratio, may be important in the shear behaviour 

of reinforced concrete slabs.  
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Finally, when β was greater than or equal to 6.5, the predicted crack patterns on the slab sides show 

a large concentration of cracks in the slab directly above the supported area. Similar behaviour was 

observed in the models where cmin/d equaled 0.594 when β exceeded 7.667. The column length in the 

quarter model where this behaviour was first observed is 520mm (cmax=1040mm) and 460mm 

(cmax=920mm) for a cmin/d ratio of 0.792 and 0.594 respectively. This tendency was not observed in 

any other cmin/d ratios.  

5.2.3 Cmin/d = 0.990 

A summary of the column dimensions, column rectangularity values, predicted capacity and predicted 

deflections at peak load in the X and Y-directions for the models with a cmin/d ratio of 0.990 are 

provided in Table 5-6, and the load-displacement plots for integer values of β are provided in Figure 

5-19. The remaining load-displacement plots can be found in Appendix E. As with the results for 

cmin/d ratios of 0.594 and 0.792, the FEM predicted a higher shear capacity as the column size, and 

rectangularity, were increased. 

Table 5-6: Summary of FEA Results for cmin/d = 0.990 

cmin (mm) cmax (mm) Β Predicted Capacity (kN) ΔX (mm) ΔY (mm) 

200 200 1.000 758.6 14.97 14.97 

200 320 1.600 830.6 16.98 16.56 

200 400 2.000 879.6 18.89 17.95 

200 520 2.600 917.8 19.79 18.02 

200 600 3.000 930.3 19.29 17.07 

200 720 3.600 932.4 19.45 16.80 

200 800 4.000 990.8 21.30 17.15 

200 920 4.600 1037.8 25.19 17.97 

200 1000 5.000 1024.1 22.69 16.46 

200 1120 5.600 1057.0 29.20 15.15 

200 1200 6.000 1060.6 29.01 13.49 

200 1320 6.600 1058.2 26.33 11.04 
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Figure 5-19: Predicted Load-Displacement Response, cmin/d = 0.990 

After analyzing the post failure deflected shape of all the finite element models, it was concluded 

that all models with a column aspect ratio less than 6 were predicted to fail via the punching mode. 

Models with higher column aspect ratios were predicted to fail in one-way shear. 

The trend in the deflection results is consistent with those discussed for the previously investigated 

cmin/d ratios. For lower values of rectangularity, the predicted deflections increase as the 

rectangularity is increased. For intermediate β values the deflections stay approximately constant. As 

the rectangularity is further increased, the deflections in the X-direction typically increase and the 

deflections in the Y-direction decrease. The trends in stiffness are also consistent with those observed 

for the previous two cmin/d ratios, and therefore, are not discussed here.  

A comparison of the shear capacity predicted by the FEA to ACI 318M-14 (ACI), Eurocode 2 

(2004) (EC2), Model Code 2010 (MC 2010) and the Critical Shear Crack Theory (CSCT) is provided 

for a subset of the models in Figure 5-20, and for all the models with a cmin/d ratio of 0.990 in Figure 

5-21 and Table 5-7. An additional bar chart similar to Figure 5-20 is provided in Appendix E for the 

remaining rectangularity values. 
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Figure 5-20: Shear Capacity from FEA and Design Codes, Integer β Values, cmin/d=0.990 

 

Figure 5-21: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=0.990 
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Table 5-7: Comparison of Code Predictions and FEA Results – cmin/d = 0.990 

cmin 

(mm) 

cmax 

(mm) 
β 

FEA Capacity 

(kN) 
VFEA/VACI VFEA/VEC2 VFEA/VMC2010 VFEA/VCSCT 

200 200 1.000 758.6 1.06 0.98 1.35 1.05 

200 320 1.600 830.6 1.01 1.01 1.37 1.06 

200 400 2.000 879.6 0.98 1.02 1.42 1.09 

200 520 2.600 917.8 1.01 1.00 1.35 1.03 

200 600 3.000 930.3 1.01 0.97 1.25 0.96 

200 720 3.600 932.4 0.99 0.92 1.27 0.97 

200 800 4.000 990.8 1.03 0.95 1.41 1.07 

200 920 4.600 1037.8 1.03 0.94 1.60 1.21 

200 1000 5.000 1024.1 0.99 0.90 1.51 1.15 

200 1120 5.600 1057.0 0.98 0.88 1.63 1.23 

200 1200 6.000 1060.6 0.96 0.86 1.58 1.20 

200 1320 6.600 1058.2 0.92 0.82 1.46 1.11 

   Average 1.00 0.94 1.43 1.10 

   COV (%) 3.60 6.64 8.75 8.17 

 

For a cmin/d ratio of 0.990, the ACI 318M-14 provisions were found to be typically slightly 

conservative, as the ratio of VFEA/VACI is near 1 for all investigated models. However, it is clear that 

as the cmin/d ratio increases, the ACI318M-14 provisions become less conservative. As with the 

previous two cmin/d ratios, the EC2 (2004) provisions are typically unconservative, as VFEA/VEC2 is 

less than 1 for most of the investigated rectangularities. As with the results for cmin/d=0.594 and 

0.792, both ACI 318M-14 and EC2 (2004) predict a larger total shear capacity as the column 

rectangularity is increased. For column aspect ratios less than or equal to 3.6 the Model Code 2010 

and the CSCT provisions also predict an increased shear capacity as β increased. For column aspect 

ratios greater than 3.6, the capacities predicted by Model Code 2010 and the CSCT are approximately 

constant; this is because the effective perimeter length using the 3d method is less than the total 

critical perimeter length for β greater than 3. 

On average, the capacity predictions according to ACI 318M-14, EC2 (2004), Model Code 2010 

and the CSCT are 0% lower, 6% higher, 43% lower and 10% lower than the capacity predicted by the 

FEM respectively. The EC2 (2004) predictions were found to be most accurate, and typically slightly 

conservative, for column rectangularity values between 1 and 3 (VFEA/VEC2 is between 0.97 and 1.02). 

For all investigated rectangularity values less than 6.6, the ACI predictions were found to be accurate 

and typically conservative (VFEA/ VACI is between 0.96 and 1.06). The CSCT provisions were 

conservative for all investigated rectangularity values other than 3 and 3.6 and were most accurate for 
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rectagularities between 1 and 4 (VFEA/VCSCT is between 0.96 and 1.09). For rectangularities greater 

than 4.6, the predictions according to the CSCT and Model Code 2010 became more conservative 

whereas the predictions according to ACI 318M-14 and EC2 (2004) generally became more 

unconservative. As with the cmin/d=0.792 results, the ACI 318M-14 provisions were found to have the 

smallest variation based on the coefficient of variation of the ratio of VCODE/VFEA. None of the 

investigated specimens were predicted to fail in one-way shear by ACI 318M-14 or EC2 (2004), 

which differs from the FEM, which predicted one-way shear failures for slabs supported on plates 

with aspect ratios greater than or equal to 6 (cmax≥1200mm). 

A comparison of the normalized nominal shear stress predicted by ACI 318M-14, EC2 (2004), 

Model Code 2010, the CSCT and the finite element model at the ACI critical perimeter located at d/2 

from the column perimeter is provided in Figure 5-22. As expected, based on the total capacity 

estimates, the nominal shear stress predicted by ACI 318M-14 shows good correlation with the FEA 

results for rectangularity values between 1.6 and 6. As with the previous cmin/d ratios, the finite 

element model predicts an approximately linear relationship between nominal shear capacity and 

column rectangularity, which differs from ACI 318. Again, the finite element method predicts a 

reduction in the nominal shear stress for slightly rectangular columns (i.e 1<β≤2). 

The trend of the normalized nominal shear stress predicted by EC2 (2004) is similar to that of the 

FEM for rectangularities less than 3. For rectangularities greater than 3, the nominal shear stress 

predicted by EC2 (2004) is higher than that predicted from the FEA. As with the previous cmin/d 

ratios, the EC2 (2004) provisions predict a decrease in the normalized nominal stress for 

rectangularity values between 1 and 2, which matches the FEA results.  

The trend of the normalized nominal stress based on the CSCT provisions is similar to that from 

the FEA for rectangularities less than 3.6 and conservative for rectangularities greater than 3.6. 

Unlike the results for the previous cmin/d ratios, the nominal stresses do not continually decrease as β 

is increased. For column rectangularities greater than or equal to 5.6, the nominal stress predicted by 

the CSCT (and MC 2010) are approximately constant. 
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Figure 5-22: Comparison of Nominal Shear Capacity Predicted by FEA and Design Codes, cmin/d 

= 0.990 

The shear stress distribution around the support plate perimeter at the peak load calculated from the 

FEA results for the integer rectangularity values are shown in Figure 5-23, and the shear stress 

distributions for the non-integer rectangularity values are provided in Appendix G. As with the 

previously investigated cmin/d ratios, the overall shape of the shear stress distribution along the long 

and short sides of the support plate is similar for all investigated models. The maximum shear stress 

occurs at the corner of the supported area and decreases as the distance from the corner increases. The 

calculated peak shear stress for all models with a cmin/d ratio of 0.990, except for the slab supported 

on a square plate, are between 4.5 and 6.3MPa. This peak shear stress range is similar to that 

observed in the two previously discussed cmin/d ratios, but the minimum peak stress is slightly lower 

(4.5MPa vs 4.8MPa). The peak shear stress for the slab supported on a square plate is 8.5MPa, once 

again showing the large impact of column rectangularity on the shear stress distribution around the 

perimeter of the supported area. The peak shear stress for a square support plate and a cmin/d ratio of 

0.990 is higher than that observed in the previous two cmin/d ratios (8.5MPa vs approximately 7MPa). 
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Figure 5-23: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.990, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 

The trends observed in the predicted crack patterns for a cmin/d ratio of 0.990 are very similar to 

those observed in the previous two cmin/d ratios. As the support rectangularity was increased, the 

amount of diagonal cracking on the tension side decreased. Very few diagonal cracks are predicted 

for models where β exceeds 6. Similar behaviour was observed in the two previous cmin/d ratios at 

higher rectangularities but similar column lengths. The shape of the crack patterns along the slab 

sides also display similar behaviour to that observed for cmin/d ratios of 0.594 and 0.792. For low 
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rectangularities, the slab side crack patterns have a distinct conical shape, but as β is increased beyond 

3.6 the conical shape on the slab side perpendicular to the long side of the column thins and becomes 

a reverse Z shape, similar to that shown in Figure 5-12. For rectangularities greater than 6, the 

punching cones on the slab side perpendicular to the long side of the support plate become almost 

non-existent, which is at a lower rectangularity, but similar column length compared to the other two 

cmin/d ratios. Unlike the two previously investigated cmin/d ratios, where only one conical crack was 

observed on the slab sides, a second crack was observed on the slab side perpendicular to the short 

side of the support plate. This second crack forms below the other conical crack and extends from the 

mid-depth of the slab to the compression surface of the slab near the support. The long crack on the 

tension surface of the slab was observed in models where β exceeds 4.6, which is at lower 

rectangularity value than for the two previous cmin/d ratios, and also a smaller column length (920mm 

vs 1040mm). Finally, the impact of column rectangularity on the crack patterns is very apparent as 

the crack pattern for the model with β equal to 1.5 was noticeably non-symmetric, and a noticeable 

increase in the amount of cracking perpendicular to the sides of the supported area was observed. 

5.2.4 Cmin/d = 1.287 

A summary of the column dimensions, column rectangularity values (β), predicted capacity and 

predicted deflections at the peak load in the X and Y-directions for the models with a cmin/d ratio of 

1.287 are provided in Table 5-8. The load-displacement plots for the investigated models are provided 

in Figure 5-24. Again, the FEM predicted a higher capacity as the column size, and rectangularity, 

were increased. This increase in total shear capacity is expected since the overall column area, and 

length of the critical perimeter increased as β increased. One outlier exists, which corresponds to 

model where β equals 2.462, which has a lower predicted capacity than the model where β equals 2. 

Table 5-8: Summary of FEA Results for cmin/d = 1.287 

cmin (mm) cmax (mm) β Predicted Capacity (kN) ΔX (mm) ΔY (mm) 

260 260 1.000 824.2 16.52 16.48 

260 390 1.500 921.9 19.89 19.23 

260 520 2.000 987.7 22.21 20.17 

260 640 2.462 976.3 19.39 17.03 

260 780 3.000 997.7 21.80 18.20 

260 920 3.538 1050.2 20.89 15.51 

260 1040 4.000 1059.7 22.69 15.99 

260 1160 4.462 1092.4 34.32 13.82 

260 1320 5.077 1089.8 37.65 11.15 
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Figure 5-24: Predicted Load-Displacement Response, cmin/d = 1.287 

After analyzing the post failure deflected shape of all the finite element models, it was concluded 

that all models with a rectangularity less than 4.462 were predicted to fail via the punching mode. 

Models with higher rectangularities were predicted to fail in one-way shear. 

The predicted deflections show no clear trend. For the intermediate rectangularity values (β=2.462– 

4) there is no trend in the predicted deflections with increased column rectangularity. However, when 

one-way behaviour began to dominate (β≥4.462), the deflections in the X-direction increased and the 

deflections in the Y-direction decreased as the column rectangularity was increased. 

The trends in stiffness are also consistent with the previous models, and therefore, they are not 

discussed in detail in this section. The reader is recommended to review the conclusions provided in 

the cmin/d = 0.792 and 0.594 subsections. 

A comparison of the shear capacity predicted by the FEA to ACI 318M-14 (ACI), Eurocode 2 

(2004) (EC2), Model Code 2010 (MC 2010) and the Critical Shear Crack Theory (CSCT) for all the 

models with a cmin/d ratio of 1.287 are provided in Figure 5-25, Figure 5-26 and Table 5-9. 
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Figure 5-25: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=1.287, Bar Chart 

 

Figure 5-26: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=1.287 
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Table 5-9: Comparison of Code Predictions and FEA Results – cmin/d = 1.287 

cmin 

(mm) 

cmax 

(mm) 
β 

FEA Capacity 

(kN) 
VFEA/VACI VFEA/VEC2 VFEA/VMC2010 VFEA/VCSCT 

260 260 1.000 824.2 1.00 1.00 1.35 1.04 

260 390 1.500 921.9 0.98 1.04 1.47 1.12 

260 520 2.000 987.7 0.94 1.04 1.49 1.13 

260 640 2.462 976.3 0.90 0.97 1.26 0.96 

260 780 3.000 997.7 0.90 0.94 1.39 1.06 

260 920 3.538 1050.2 0.92 0.93 1.39 1.06 

260 1040 4.000 1059.7 0.90 0.89 1.49 1.13 

260 1160 4.462 1092.4 0.90 0.88 1.62 1.23 

260 1320 5.077 1089.8 0.86 0.83 1.55 1.18 

   Average 0.92 0.95 1.44 1.10 

   COV (%) 4.80 7.78 7.67 7.28 

 

For a cmin/d ratio of 1.287, the ACI 318M-14 and EC2 (2004) provisions were found to be typically 

unconservative, as the ratio of VFEA/VACI and VFEA/VEC2 are below 0.95 for most of the investigated 

models. As discussed for the previous cmin/d ratios, both ACI 318M-14 and EC2 (2004) predict a 

larger total shear capacity as the column rectangularity is increased. For column aspect ratios less 

than or equal to 2.462, the Model Code 2010 and CSCT provisions also predict an increased shear 

capacity as β increased. For column aspect ratios greater than 2.462, the capacities predicted by 

Model Code 2010 and the CSCT are approximately constant; this is because the effective perimeter 

length using the 3d method is less than the total critical perimeter length for rectangularities greater 

than or equal to 2.462. 

On average, the capacity predictions according to ACI 318M-14, EC2 (2004), Model Code 2010 

and the CSCT are 8% higher, 5% higher, 44% lower and 10% lower than the capacity predicted by 

the FEM respectively. The EC2 (2004) predictions were found to be most accurate, and typically 

slightly conservative, for column rectangularity values between 1 and 2.462 (VFEA/VEC2 is between 

0.97 and 1.04). The ACI 318 provisions on the other hand were only accurate for rectangularity 

values of 1 and 1.5. The CSCT provisions were conservative for all investigated rectangularity values 

other than 2.462, and were fairly accurate for all rectangularity values investigated (VFEA/VCSCT is 

between 0.96 and 1.23). For rectangularities greater than 4, the predictions according to the CSCT 

and Model Code 2010 became more conservative, whereas the predictions according to ACI 318M-

14 and EC2 (2004) generally became more unconservative. As with the cmin/d=0.792 and 0.990 

results, the ACI 318M-14 provisions were found to have lowest variation based on the coefficient of 
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variation of the ratio of VCODE/VFEA. None of the investigated specimens were predicted to fail in one-

way shear by ACI 318M-14 or EC2 (2004) which differs from the FEM, which predicted one-way 

shear failures for slabs supported on plates with aspect ratios greater than or equal to 4.462. 

A comparison of the normalized nominal shear stress predicted by ACI 318M-14, EC2 (2004), 

Model Code 2010, the CSCT and the finite element model at the ACI critical perimeter located at d/2 

from the column perimeter is provided in Figure 5-27. As expected, based on the total capacity 

estimates, the nominal shear stress predicted by ACI 318M-14 is higher than that calculated from the 

FEA results for all rectangularities greater than 1. Again, the finite element model predicts an 

approximately linear relationship between nominal shear capacity and column rectangularity, which 

differs from ACI 318. However, the rate of change predicted by the ACI 318M-14 provisions and the 

FEA is similar for column rectangularities greater than 2. Therefore, a potential way to improve the 

accuracy of the ACI 318M-14 provisions is to include a decrease in nominal shear capacity for 

column rectangularities less than 2, as predicted by the FEA, and adjust the current provisions to 

account for this change. However, assuming the linear trend of the FEA results continues for higher 

rectangularity values it is observed that the difference between the FEA results and the ACI method 

would grow quite rapidly as the current ACI provisions approach an asymptote as β is increased. 

The trend of the normalized nominal shear stress predicted by EC2 (2004) is similar to that 

predicted by the FEM for rectangularities less than or equal to 2.462. For rectangularities greater than 

2.462, the nominal shear stress predicted by EC2 is higher than that predicted from the FEA and the 

difference between the EC2 and FEA predictions becomes larger as β increases.  

The trend of the normalized nominal stress based on the CSCT provisions is similar to that from 

the FEA for all rectangularities other than β equal to 2.462. Consistent with the cmin/d = 0.594 and 

0.792 results, the predicted normalized nominal shear stress decreases as β is increased and does not 

approach a constant value, as was observed for a cmin/d ratio of 0.990.  
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Figure 5-27: Comparison of Nominal Shear Capacity Predicted by FEA and Design Codes, cmin/d 

= 1.287 

The shear stress distributions around the column perimeter calculated from the FEA for the nine 

investigated rectangularity values are shown in Figure 5-28. The overall shape of the predicted shear 

stress distributions around the column perimeter is similar for all the investigated rectangularity 

values as was observed for the previous cmin/d ratios. The trends in the predicted shear stress levels 

along the long side of the support plate are less consistent than those for the previous cmin/d ratios and 

appear to be dependent on the slab rebar. The increased shear stress magnitude observed at a distance 

of approximately 150mm from the column corner corresponds to the approximate location of the 

flexural reinforcement on the compression and tension faces of the slab. Due to the assumption of 

perfect bond, the forces in the model may concentrate around the rebar due to the higher stiffness of 

the steel rebar compared to the concrete elements. If the peak shear stress from the investigated 

models with cmin/d = 1.287 are plotted together, the calculated peak stresses for all models, including 

the square support area, are between approximately 4.8 and 5.9MPa. This stress range is similar to 

that observed in the previously discussed cmin/d ratios. However, the maximum peak stress is lower 

(5.9MPa vs 6.3MPa) and the peak stress for the square support area is not significantly higher than all 

the other investigated rectangularity values, which differs from the previously investigated cmin/d 

ratios. 
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Figure 5-28: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.287, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 

The trends observed in the crack patterns for the cmin/d=1.287 models are very similar to those 

discussed for the previous cmin/d ratios. As the rectangularity was increased beyond 1, the amount of 

diagonal cracking on the tension side decreased. Along with this decrease in diagonal cracking, an 

increased amount of cracking perpendicular to the sides of the supported area was observed as β was 

increased. Additionally, it was observed that the cracks concentrated near the corner of the supported 

area as β was increased. The shape of the failure cones along the sides of the slab was also similar to 
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that observed in the previously discussed models. At low rectangularity values, a conical crack which 

extends from the tension surface of the slab to the compression surface was observed. As the 

rectangularity was increased, the plastic strain magnitudes predicted along the slab sides 

perpendicular to both sides of the support plate decreased denoting a reduced amount of cracking. 

Along the slab side perpendicular to the long side of the support plate, the conical crack shape 

transitions into a reverse z shape (β = 2.462), before becoming almost non-existent at a β value of 

4.462. The lack of clear punching cones on slab side perpendicular to the long side of the supported 

area was expected since a crack extending across the entire slab width, and parallel to the long side of 

the support plate, which is assumed to be associated with one-way shear, began to appear at a β value 

of 4. Finally, as observed in the cmin/d=0.990 models, a second crack, extending from the mid-depth 

of the slab to the compression surface of the slab near the support, was predicted below the top 

conical crack along the slab side perpendicular to the short side of the supported area in all models. 

5.2.5 Cmin/d = 1.485 

A summary of the column dimensions, column rectangularity values (β), predicted capacity and 

predicted deflections at peak load in the X and Y-directions for the models with a cmin/d ratio of 1.485 

are provided in Table 5-10, and the load-displacement plots are provided in Figure 5-29. Once again, 

the FEM predicted a higher total capacity as the column size, and rectangularity, were increased. This 

increase in total shear capacity was expected since the overall column area, and length of the critical 

perimeter were increased with increasing column rectangularity. 

Table 5-10: Summary of FEA Results for cmin/d = 1.485 

cmin (mm) cmax (mm) β Predicted Capacity (kN) ΔX (mm) ΔY (mm) 

300 300 1.000 846.8 16.17 16.14 

300 450 1.500 964.4 20.82 19.91 

300 600 2.000 998.1 21.20 18.92 

300 760 2.533 1043.5 21.28 17.62 

300 920 3.067 1070.3 20.36 15.37 

300 1040 3.467 1090.2 25.28 16.35 

300 1200 4.000 1110.7 33.57 12.65 
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Figure 5-29: Predicted Load-Displacement Response, cmin/d = 1.485 

From analysis of the post failure deflected shape of all models, it was found that all models where β 

was less than 4 were predicted to fail in punching shear. The model where β equaled 4 was predicted 

to fail in one-way shear. 

Generally, the deflections in the X-direction increased as the column rectangularity was increased, 

with the model where β equaled 3.067 being the exception. The deflections in the Y-direction 

generally decreased as the support plate rectangularity was increased with the exceptions being the 

models where β equaled 1 or 3.467.  

The trends in stiffness were consistent with the previous cmin/d ratios, and therefore, they are not 

discussed in detail in this section. Detailed discussions are provided in Section 5.2.1 and 5.2.2. 

A comparison of the shear capacity predicted by the FEA to ACI 318M-14 (ACI), Eurocode 2 

(2004) (EC2), Model Code 2010 (MC 2010) and the Critical Shear Crack Theory (CSCT) for all the 

models with a cmin/d ratio of 1.485 are provided in Figure 5-30, Figure 5-31 and Table 5-11. 

 

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

Lo
a

d
 (

kN
)

Displacement (mm)

Load Vs. X Displacement (Perpendicular to Long Side), 
cmin/d = 1.485 

Beta = 1 Beta = 1.5 Beta = 2 Beta = 2.533

Beta = 3.067 Beta = 3.467 Beta = 4

0

200

400

600

800

1000

1200

0 10 20 30

L
o
a
d
 (

k
N

)

Displacement (mm)
X-direction 

a) 

0

200

400

600

800

1000

1200

0 10 20 30

L
o
a
d
 (

k
N

)

Displacement (mm)
Y-direction 

b) 



 

 182 

 

Figure 5-30: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=1.485, Bar Chart 

 

 

Figure 5-31: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=1.485 
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Table 5-11: Comparison of Code Predictions and FEA Results – cmin/d = 1.485 

cmin 

(mm) 

cmax 

(mm) 
β 

FEA Capacity 

(kN) 
VFEA/VACI VFEA/VEC2 VFEA/VMC2010 VFEA/VCSCT 

300 300 1.000 846.8 0.95 0.98 1.26 0.97 

300 450 1.500 964.4 0.94 1.03 1.45 1.10 

300 600 2.000 998.1 0.86 1.00 1.33 1.01 

300 760 2.533 1043.5 0.87 0.97 1.38 1.05 

300 920 3.067 1070.3 0.87 0.93 1.36 1.04 

300 1040 3.467 1090.2 0.86 0.90 1.54 1.17 

300 1200 4.000 1110.7 0.85 0.87 1.55 1.18 

   Average 0.89 0.96 1.41 1.08 

   COV (%) 4.54 5.96 7.82 7.29 

 

For a cmin/d ratio of 1.485, the ACI 318M-14 and EC2 (2004) provisions were found to be typically 

unconservative, as the ratio of VFEA/VACI and VFEA/VEC2 are below 0.95 and 0.97 respectively, for 

most of the investigated models. As with all previous cmin/d ratios, both ACI 318M-14 and EC2 

(2004) predict a larger total shear capacity as the column rectangularity is increased. For the 

investigated models, the ACI provisions typically predict a capacity higher than that predicted by both 

the FEA and EC2 (2004). As the rectangularity was increased, the difference between the ACI 318 

and EC2 (2004) predictions became smaller, and at a β value of 5 the predicted capacities from both 

codes were nearly identical.  

For column aspect ratios less than or equal to 3.067, the Model Code 2010 and CSCT provisions 

also predict an increased shear capacity as β increased. For column aspect ratios greater than 3.067, 

the capacities predicted by Model Code 2010 and the CSCT are approximately constant; this constant 

capacity is primarily due to the fact that the effective perimeter length using the 3d method is less 

than the total critical perimeter length for β greater than or equal to 2.533. 

On average, the capacity predictions according to ACI 318M-14, EC2 (2004), Model Code 2010 

and the CSCT are 11% higher, 4% higher, 41% lower and 8% lower than the capacity predicted by 

the FEM respectively. However, it should be noted that as the cmin/d ratio is increased, the average 

VFEA/VACI is decreasing and the average VFEA/VEC2 is increasing. Therefore, the ACI 318M-14 

provisions are becoming less conservative/more unconservative as the cmin/d ratio increases and the 

EC2 (2004) provisions are becoming less unconservative.  

The EC2 (2004) predictions were found to be most accurate for column rectangularity values 

between 1 and 2.533 (VFEA/VEC2 is between 0.97 and 1.03). The ACI 318 provisions on the other hand 
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were only accurate for rectangularity values of 1 and 1.5. The CSCT provisions were conservative for 

all investigated column aspect ratios other than 1, and were fairly accurate for all rectangularity 

values investigated (VFEA/VCSCT is between 0.97 and 1.18). As with the previous cmin/d ratios, the 

CSCT and Model Code 2010 predictions are most conservative for the largest column rectangularity 

values (β≥3.467) and the ACI318M-14 and EC2 (2004) predictions are the most unconservative. As 

with the cmin/d=0.792, 0.990 and 1.287 results, the ACI 318M-14 provisions were found to have the 

smallest variation based on the coefficient of variation of the ratio of VCODE/VFEA. None of the 

investigated specimens were predicted to fail in one-way shear by ACI 318M-14 or EC2 (2004), 

which differs from the FEM, which predicted one-way shear failures for slabs supported on plates 

with aspect ratios greater than or equal to 4 (cmax≥1200mm). 

A comparison of the normalized nominal shear stress predicted by ACI 318M-14, EC2 (2004), 

Model Code 2010, the CSCT and the finite element model at the ACI critical perimeter located at d/2 

from the column perimeter is provided in Figure 5-32. As expected, based on the total capacity 

estimates, the nominal shear stress predicted by ACI 318M-14 is always higher than that predicted by 

the finite element model for all rectangularities greater than 1, which leads to ACI overpredicting the 

punching capacity. Again, the finite element model predicts an approximately linear relationship 

between nominal shear capacity and column rectangularity, which differs from ACI 318. As was 

observed for a cmin/d ratio of 1.287, the rate of change of nominal shear stress vs column 

rectangularity for the FEA and ACI 318M-14 provisions are similar when β is greater than 2. 

However, the lack of impact for column rectangularity values less than 2 assumed in ACI 318M-14 

has a significant impact on the difference observed between the two methods. 

The trend of the normalized nominal shear stress predicted by EC2 (2004) is similar to that of the 

FEM for rectangularities less than or equal to 2.462. For rectangularities greater than 2.462, the 

nominal shear stress predicted by EC2 (2004) is higher than that predicted from the FEA and the 

difference between the EC2 (2004) and FEA predictions becomes larger as β increases.  

The trend of the normalized nominal stress based on the CSCT provisions is similar to that from 

the FEA for all rectangularities other than β equal to 2.462. As was observed for cmin/d ratios of 0.594, 

0.792 and 1.287, the normalized nominal shear stress predicted by the CSCT does not approach a 

constant value and decreases as β is increased.  
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Figure 5-32: Comparison of Nominal Shear Capacity Predicted by FEA and Design Codes, cmin/d 

= 1.485 

The shear stress distributions around the column perimeter at the peak load level calculated from 

the FEA for the seven rectangularity values investigated are shown in Figure 5-33. Overall, the shape 

of the predicted shear stress distributions around the column perimeter was similar for all investigated 

rectangularity values as was observed for the previous cmin/d ratios. The peak shear stress for all 

models where β exceeds 1 are between approximately 4.3 and 5.5MPa. This stress range is similar to, 

but lower than, that observed in the previous discussed cmin/d ratios. This decrease in the achievable 

peak shear stress confirms that both the aspect ratio of the support area and the ratio of the minimum 

dimension to the slab depth (i.e. relative size) impact the overall behaviour. Again, the finite element 

model is predicting a higher achievable peak shear stress at the corner of the square support area 

which matches the results for the lower cmin/d ratios other than cmin/d = 1.287. The magnitude of the 

predicted corner stress for the slab supported on a square steel plate is equal to approximately 6.4MPa 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.000 2.000 4.000 6.000 8.000

N
o
rm

a
liz

e
d
 N

o
m

in
a
l 
S

tr
e
s
s

Column Rectangularity, β

FEA ACI 318M-14 EC2 (2004)

MC 2010 (IV) CSCT



 

 186 

 

 

 

Figure 5-33: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.485, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 

The trends in observed in the crack patterns for the cmin/d=1.485 models are very similar to those 

observed for the previous cmin/d ratios. As the rectangularity was increased beyond 1, the amount of 

diagonal cracking on the tension side decreased. Along with this decrease in diagonal cracking, an 

increased amount of cracking perpendicular to the sides of the supported area were observed as β was 

increased. Additionally, it was observed that the cracks concentrated near the corner of the supported 

area as β was increased. The shape of the failure cones along the sides of the slab was also similar to 
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that observed in the previously discussed models. At low rectangularity values, a conical crack 

extending from the tension surface of the slab to the compression surface was observed. As the 

rectangularity was increased, the plastic strain magnitudes predicted along the slab sides 

perpendicular to both sides of the support plate decreased, which denotes less cracking. Along the 

slab side perpendicular to the long side of the support plate, the conical shape transitions into a 

reverse z shape, before becoming almost non-existent at a β value of 4. The lack of clear punching 

cones on both sides of the supported area for larger β values was expected since a one-way shear 

crack which is parallel to the long side of the support plate, and extends across the slab width, was 

observed for all models where β exceeded 3.467. Finally, as observed in the cmin/d=0.990 and 1.287 

models, a second crack starting at the mid-depth of the slab and extending to the compression surface 

near the support was observed on the slab side perpendicular to the short side of the supported area. 

This second crack forms below the top conical crack. 

5.2.6 Cmin/d = 1.782 

A summary of the column dimensions, column rectangularity values (β), predicted capacity and 

predicted deflections at peak load in the X and Y-directions for the models with a cmin/d ratio of 1.782 

are provided in Table 5-12 and the load-displacement plots are provided in Figure 5-34. As with the 

previously discussed cmin/d ratios, the FEM predicted a higher total capacity as the column size, and 

rectangularity, were increased.  

Table 5-12: Summary of FEA Results for cmin/d = 1.782 

cmin (mm) cmax (mm) β Predicted Capacity (kN) ΔX (mm) ΔY (mm) 

360 360 1.000 988.1 22.43 22.44 

360 540 1.500 1026.2 21.81 20.30 

360 720 2.000 1082.5 23.66 19.95 

360 920 2.556 1126.4 26.35 17.33 

360 1080 3.000 1142.6 30.70 14.77 

360 1280 3.556 1146.9 34.22 11.49 
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Figure 5-34: Predicted Load-Displacement Response, cmin/d = 1.782 

Based on the post failure deflected shape, all models with a support plate rectangularity less than 3 

were predicted to fail in punching shear. The models where β was greater than or equal to 3 were 

predicted to fail in one-way shear. 

Generally, the deflections in the X-direction were found to increase as the column rectangularity 

increased, with the model where β equaled 1.5 being the exception. The deflections in the Y-direction 

decreased as the rectangularity increased. 

The trends in stiffness were consistent with the previous cmin/d ratios, and therefore, they are not 

discussed in detail in this section. 

A comparison of the shear capacity predicted by the FEA to ACI 318M-14 (ACI), Eurocode 2 

(2004) (EC2), Model Code 2010 (MC 2010) and the Critical Shear Crack Theory (CSCT) for all the 

models with a cmin/d ratio of 1.782 are provided in Figure 5-35, Figure 5-36 and Table 5-13. 
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Figure 5-35: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=1.782, Bar Chart 

 

 

Figure 5-36: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=1.782 
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Table 5-13: Comparison of Code Predictions and FEA Results – cmin/d = 1.782 

cmin 

(mm) 

cmax 

(mm) 
β 

FEA Capacity 

(kN) 
VFEA/VACI VFEA/VEC2 VFEA/VMC2010 VFEA/VCSCT 

360 360 1.000 988.1 0.99 1.08 1.62 1.23 

360 540 1.500 1026.2 0.88 1.02 1.41 1.07 

360 720 2.000 1082.5 0.82 1.00 1.47 1.11 

360 920 2.556 1126.4 0.82 0.96 1.55 1.17 

360 1080 3.000 1142.6 0.81 0.91 1.58 1.19 

360 1280 3.556 1146.9 0.78 0.85 1.53 1.16 

   Average 0.85 0.97 1.53 1.16 

   COV (%) 8.80 8.22 5.00 4.95 

 

For a cmin/d ratio of 1.782, the ACI 318M-14 and EC2 (2004) provisions were typically found to be 

unconservative, as the ratio of VFEA/VACI and VFEA/VEC2 are below 0.88 and 0.96 respectively for most 

of the investigated models. However, it should be noted that the EC2 (2004) predictions are 

conservative for column aspect ratios less than or equal to 2. For the investigated rectangularities the 

ACI provisions were found to predict the highest capacity. As with all previous cmin/d ratios, both 

ACI 318M-14 and EC2 (2004) predict a larger total shear capacity as the column rectangularity is 

increased. None of the investigated specimens were predicted to fail in one-way shear by ACI 318M-

14 or EC2 (2004), which differs from the FEM which predicted one-way shear failures for slabs 

supported on plates with aspect ratios greater than or equal 3.0 (cmax≥1080mm). 

For column aspect ratios greater than or equal to 1.5, the Model Code 2010 and CSCT provisions 

predict an approximately constant capacity as β increased. For column aspect ratios greater than or 

equal to 2.556, the FEM results also plateau at a constant capacity. 

On average, the capacity predictions according to ACI 318M-14, EC2 (2004), Model Code 2010 

and the CSCT are 15% higher, 3% higher, 53% lower and 16% lower than the capacity predicted by 

the FEM respectively. As noted in Section 5.2.5, the ACI 318M-14 provisions are becoming more 

unconservative and the EC2 provisions are becoming less unconservative as the cmin/d ratio is 

increased.  

The EC2 (2004) predictions were found to be most accurate for column rectangularity values 

between 1 and 2.556 (VFEA/VEC2 is between 0.96 and 1.08). The ACI 318 provisions on the other hand 

were only accurate for a rectangularity value of 1. The CSCT provisions were conservative for all 

investigated column aspect ratios other than 1, and were fairly accurate for all rectangularity values 

investigated (VFEA/VCSCT is between 1.07 and 1.23). Unlike the previous cmin/d ratios, the CSCT 
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predictions were found to have the least variability based on the coefficient of variation of 

VCODE/VFEA. This reduced variability compared to the previous cmin/d ratios is likely due to the fact 

that fewer rectangularities were investigated, and the predicted capacities for most of the models were 

similar due to the use of an effective critical perimeter length according to the 3d method in Model 

Code 2010.  

A comparison of the normalized nominal shear stress predicted by ACI 318M-14, EC2 (2004), 

Model Code 2010, the CSCT and the finite element model at the ACI critical perimeter located at d/2 

from the column perimeter is provided in Figure 5-37. As expected, based on the total capacity 

estimates, the nominal shear stress predicted by ACI 318M-14 is higher than that predicted by the 

finite element model, which leads to ACI overpredicting the punching capacity. Additionally, the 

assumption of zero impact for rectangularity values less than 2 is leading to increased error, as the 

finite element model is predicting a significant impact of column rectangularity for rectangularity 

values between 1 and 2. 

The impact of column rectangularity predicted by EC2 (2004) is less severe than that predicted by 

the FEM. For rectangularities greater than 2.556, the nominal shear stress predicted by EC2 is higher 

than that predicted from the FEA and the difference between the EC2 and FEA predictions becomes 

larger as β increases.  

The trend of the normalized nominal stress based on the CSCT provisions is similar to that from 

the FEA for all rectangularities other than β equal to 1. As was observed for cmin/d ratios of 0.594, 

0.792, 1.287 and 1.485, the normalized nominal shear stress predicted by the CSCT does not 

approach a constant value and decreases as β is increased. 
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Figure 5-37: Comparison of Nominal Shear Capacity Predicted by FEA and Design Codes, cmin/d 

= 1.782 

The shear stress distributions in the slab around the support plate perimeter at the peak load level 

calculated from the FEA results for the six rectangularity values investigated are shown in Figure 

5-38. The overall shape of the predicted shear stress distributions around the column perimeter was 

similar for all investigated rectangularity values, which is consistent with the results from the other 

cmin/d ratios.   

If the peak shear stresses from the six models are plotted together the calculated peak stress for all 

models including the square support area, are between approximately 5.2 and 6.2MPa. This stress 

range is higher than that observed for the cmin/d = 1.485 results. However, this stress range is similar 

to that observed for the lower cmin/d ratios.  
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Figure 5-38: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.782, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 

The trends in observed in the crack patterns for the cmin/d=1.782 models are very similar to those 

discussed for the previous cmin/d ratios. As the rectangularity was increased beyond 1, the amount of 

diagonal cracking predicted on the tension side decreased. Along with the decrease in diagonal 

cracking, an increased amount of cracking perpendicular to the sides of the supported area were 

predicted as β was increased. Additionally, the cracks concentrated near the corner of the supported 

area as β was increased. The shape of the failure cones along the sides of the slab was also similar to 
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that observed in the previously discussed models. At low rectangularity values, a conical crack 

extending from the tension surface of the slab to compression surface was predicted. As the 

rectangularity increased, the plastic strain magnitudes predicted along both the long and short sides 

decreased, which denotes less cracking. Along the slab side perpendicular to the long side of the steel 

plate, the conical shape transitions into a reverse z shape, before becoming almost non-existent at a β 

value of 3, which is a lower rectangularity but similar column length at which similar behaviour was 

observed for the lower cmin/d ratios. The lack of clear punching cones on both sides of the supported 

area was expected since a one-way shear crack extending across the slab width parallel to the long 

side of the steel plate began to appear at a β value of 2.5. Again, this one-way shear crack appeared at 

a lower rectangularity value when compared to the previous cmin/d ratios, but the overall column 

length was similar. Finally, as observed in the models with a cmin/d ratio greater than or equal to 

0.990, a second crack starting at the mid-depth of the slab and extending to the compression surface 

of the slab near the support was observed on the slab side perpendicular to the short side of the 

supported area in all models. This second crack forms below the top conical crack. 

5.2.7 Cmin/d = 1.980 

A summary of the column dimensions, column rectangularity values (β), predicted capacity and 

predicted deflections at peak load in the X and Y-directions for the models with a cmin/d ratio of 1.980 

are provided in Table 5-14 and the load-displacement plots are provided in Figure 5-39. As with the 

previously discussed cmin/d ratios, the FEM predicted a higher total capacity as the column size, and 

rectangularity, were increased. 

Table 5-14: Summary of FEA Results for cmin/d = 1.980 

cmin (mm) cmax (mm) β Predicted Capacity (kN) ΔX (mm) ΔY (mm) 

400 400 1.000 1025.0 23.20 23.20 

400 600 1.500 1078.8 23.36 21.17 

400 800 2.000 1134.9 23.96 19.00 

400 1000 2.500 1162.9 32.79 17.08 

400 1200 3.000 1178.9 30.21 12.75 
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Figure 5-39: Predicted Load-Displacement Response, cmin/d = 1.980 

The FEM model predicted all slabs to fail in punching shear, except for the slab where β equaled 3. 

The slab where β equaled 3 was predicted to fail in one-way shear. 

Generally, the deflections in the X-direction increased as the column rectangularity increased, with 

the model where β equaled 3.0 being the exception. The deflections in the Y-direction decreased as 

the rectangularity increased.  

The trends in stiffness are consistent with the previous models, and therefore, they are not 

discussed in detail in this section. 

A comparison of the shear capacity predicted by the FEA to ACI 318M-14 (ACI), Eurocode 2 

(2004) (EC2), Model Code 2010 (MC 2010) and the Critical Shear Crack Theory (CSCT) for all the 

models with a cmin/d ratio of 1.980 are provided in Figure 5-40, Figure 5-41 and Table 5-15. 

For the investigated slabs with a cmin/d ratio of 1.980, the ACI 318M-14 provisions were found to 

be unconservative and the EC2 (2004) provisions were found to be typically conservative. However, 
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rectangularities greater than or equal to 2.5 with a cmin/d ratio of 1.980 the one-way shear capacity 

predicted from ACI 318M-14 governs leading to a constant shear capacity with increasing 

rectangularity. None of the investigated specimens were predicted to fail in one-way shear by EC2 

(2004). The FEA model predicted that one-way shear behaviour begins to govern at a column 

rectangularity of 3 (cmax=1200mm) and at a load value of 1178.9 kN. Based on the work of Regan and 

Rezai-Jorabi (1988), it is expected that the one-way shear capacity predicted by the FEA would be 

less than that predicted from ACI 318M-14 (1486kN) since the ACI equation assumes the slab to be 

under uniformly distributed loading.  

 

Figure 5-40: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=1.980, Bar Chart 

 

Figure 5-41: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=1.980 
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For column aspect ratios greater than or equal to 1.5, the Model Code 2010 and CSCT provisions 

predict an approximately constant capacity as β increased. As seen in Figure 5-40 and Figure 5-41, 

the FEM predictions begin to plateau for column rectangularities greater than or equal to 2.  

Table 5-15: Comparison of Code Predictions and FEA Results – cmin/d = 1.980 

cmin 

(mm) 

cmax 

(mm) 
β 

FEA Capacity 

(kN) 
VFEA/VACI VFEA/VEC2 VFEA/VMC2010 VFEA/VCSCT 

400 400 1.000 1025.0 0.96 1.07 1.61 1.22 

400 600 1.500 1078.8 0.86 1.03 1.44 1.09 

400 800 2.000 1134.9 0.79 1.00 1.50 1.14 

400 1000 2.500 1162.9 0.78* 0.94 1.67 1.26 

400 1200 3.000 1178.9 0.79* 0.89 1.53 1.16 

   Average 0.84 0.99 1.55 1.17 

   COV (%) 8.77 7.27 5.97 5.78 

*Governed by one-way shear capacity 

 

On average, the capacity predictions according to ACI 318M-14, EC2 (2004), Model Code 2010 

and the CSCT are 16% higher, 1% higher, 55% lower and 17% lower than the capacity predicted by 

the FEM respectively. As noted in Section 5.2.5, the ACI 318M-14 provisions are becoming more 

unconservative and the EC2 (2004) provisions are becoming less unconservative as the cmin/d ratio is 

increased.  

The EC2 (2004) predictions were found to be most accurate for column rectangularity values 

between 1 and 2.5 (VFEA/VEC2 is between 1.00 and 1.07). The ACI 318 provisions on the other hand 

are unconservative for all investigated rectangularity values with a maximum VFEA/VACI value of 0.96 

for a square support area. The CSCT provisions were conservative for all investigated column aspect 

ratios other than 1 and were fairly accurate for all rectangularity values investigated (VFEA/VCSCT is 

between 1.09 and 1.26). Similar to the results for a cmin/d ratio of 1.982, the CSCT predictions were 

found to have the least variability based on the coefficient of variation of VCODE/VFEA. Again, the 

reduced variability of the CSCT predictions is because fewer rectangularities were studied, and the 

predicted capacities for most of the models were similar due to the use of an effective critical 

perimeter length according to the 3d method in Model Code 2010. 

A comparison of the normalized nominal shear stress predicted by ACI 318M-14, EC2 (2004), 

Model Code 2010, the CSCT and the finite element model at the ACI critical perimeter located at d/2 

from the column perimeter is provided in Figure 5-42. As expected, based on the total capacity 

estimates, the nominal shear stress predicted by ACI 318M-14 is higher than that predicted by the 
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finite element model, which leads to ACI overpredicting the punching capacity. Additionally, the 

assumption of zero impact for rectangularity values less than 2 is leading to increased error, as the 

finite element model is predicting a significant impact of column rectangularity for rectangularity 

values between 1 and 2. 

 

Figure 5-42: Comparison of Nominal Shear Capacity Predicted by FEA and Design Codes, cmin/d 

= 1.980 

The impact of column rectangularity predicted by EC2 (2004) is less severe than that predicted by 

the FEM. For rectangularities greater than 2, the nominal shear stress predicted by EC2 (2004) is 

higher than that predicted from the FEA and the difference between the EC2 (2004) and FEA 

predictions becomes larger as β increases.  

The trend of the normalized nominal stress based on the CSCT provisions is similar to that from 

the FEA for rectangularities between 1.5 and 2.5. However, for column rectangularities between 1 

and 1.5 and 2.5 and 3, the normalized nominal shear stress is constant.  

The shear stress distributions around the column perimeter at the peak load level calculated from 

the FEA results for the five investigated rectangularity values are shown in Figure 5-43. As with the 

previous cmin/d ratios, the overall shape of the predicted shear stress distributions around the support 

plate perimeter was similar for all investigated rectangularity values. The peak shear stress occurred 
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at the corner of the supported area, and the shear stress magnitude dropped as the distance from this 

corner increased. 

If the peak shear stress in the slab at the plate corner are plotted together, the calculated peak stress 

for all models, including the square support area, are between approximately 5.0 and 5.9MPa. This 

stress range is similar to that observed in the cmin/d = 1.782 results. 

 

 

 

Figure 5-43: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.980, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 
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The trends in observed in the crack patterns for the cmin/d = 1.980 models are very similar to those 

observed for previously discussed cmin/d ratios. As the rectangularity was increased beyond 1, the 

amount of diagonal cracking on the tension side decreased. Along with the decreased diagonal 

cracking, the amount of cracking perpendicular to the sides of the supported area increased as β was 

increased. The cracks also concentrated near the corner of the supported area as β was increased. The 

shape of the failure cones along the sides of the slab is similar to that observed in the previously 

discussed models. At low rectangularity values, a conical crack extending from the compression 

portion of the slab to the tension side was predicted. As the rectangularity was increased, the plastic 

strain magnitudes predicted along both the long and short sides decreased. Along the slab side 

perpendicular to the long side of the support, the conical shape transitioned into a reverse z shape, 

before becoming almost non-existent at a β value of 3, which matches the rectangularity value where 

similar behaviour was observed for a cmin/d ratio of 1.782. The lack of clear punching cones on both 

sides of the supported area corresponded with the development of a one-way shear crack on the 

tension surface of the slab when β was greater than or equal to 2. As with the previous cmin/d ratios, 

the one-way shear crack appeared at a lower rectangularity value but a similar overall column length. 

Finally, as observed in the models with a cmin/d ratio greater than or equal to 0.990, a second crack 

starting at the mid-depth of the slab and extending to the compression surface of the slab near the 

support was observed on the slab side perpendicular to the short side of the supported area in some of 

the models. This second crack forms below the top conical crack and was observed for models where 

β equaled 1.5, 2 and 2.5. 

5.2.8 Cmin/d = 2.970 

A summary of the column dimensions, column rectangularity values (β), predicted capacity and 

predicted deflections at peak load in the X and Y-directions for the models with a cmin/d ratio of 2.970 

are provided in Table 5-16, and the load-displacement plots are provided in Figure 5-44. As with the 

previously discussed cmin/d ratios, the FEM predicted a higher total capacity as the column size, and 

rectangularity, were increased. 

Table 5-16: Summary of FEA Results for cmin/d = 2.970 

cmin (mm) cmax (mm) β Predicted Capacity (kN) ΔX (mm) ΔY (mm) 

600 600 1.000 1200.8 24.87 24.87 

600 920 1.533 1285.9 25.97 18.81 

600 1200 2.000 1336.6 35.23 14.62 
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Figure 5-44: Predicted Load-Displacement Response, cmin/d = 2.970 

All models with a cmin/d ratio of 2.970 were predicted to fail via the punching mode. It should be 

noted that the behaviour of the model where cmin/d and β equaled 2.970 and 2 respectively was similar 

to that observed in the model where cmin/d and β equaled 0.594 and 10 respectively. In both these 

models, an initial punching failure was predicted by the FEA before a secondary one-way shear 

failure. For the model where cmin/d and β equaled 2.970 and 2 respectively this secondary one-way 

failure did not occur instantaneously after punching, which differs from the model where cmin/d and β 

equaled 0.594 and 10 respectively.  

The deflections in the X-direction increased and the deflections in the Y-direction decreased as the 

column rectangularity increased.  

The trends in stiffness are also consistent with the previous models, and therefore, they are not 

discussed in detail in this section 

A comparison of the shear capacity predicted by the FEA to ACI 318M-14 (ACI), Eurocode 2 

(2004) (EC2), Model Code 2010 (MC 2010) and the Critical Shear Crack Theory (CSCT) for all the 

models with a cmin/d ratio of 1.980 are provided in Figure 5-45, Figure 5-46 and Table 5-17. 
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Figure 5-45: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=2.970, Bar Chart 

 

Figure 5-46: Shear Capacity from FEA and Design Codes, All β Values, cmin/d=2.970 
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increase in capacity with increasing rectangularity for rectangularity values less than 1.533. For 

column rectangularities greater than or equal to 1.533 with a cmin/d ratio of 2.970, the one-way shear 

capacity predicted from ACI 318M-14 governs leading to a constant shear capacity with increasing 

rectangularity. 

Table 5-17: Comparison of Code Predictions and FEA Results – cmin/d = 2.970 

cmin 

(mm) 

cmax 

(mm) 
β 

FEA Capacity 

(kN) 
VFEA/VACI VFEA/VEC2 VFEA/VMC2010 VFEA/VCSCT 

600 600 1.000 1200.8 0.84 1.05 1.55 1.16 

600 920 1.533 1285.9 0.86* 1.00 1.59 1.20 

600 1200 2.000 1336.6 0.90* 0.94 1.75 1.32 

   Average 0.87 1.00 1.63 1.22 

   COV (%) 3.37 5.51 6.66 6.69 

*Governed by one-way shear capacity 

 

For the investigated column rectangularities, the Model Code 2010 and CSCT provisions predict an 

approximately constant capacity as β increased. The FEM predicted capacities on the other hand do 

not plateau for the investigated column rectangularities.  

On average, the capacity predictions according to ACI 318M-14, EC2 (2004), Model Code 2010 

and the CSCT are 13% higher, 0% higher, 63% lower and 22% lower than the capacity predicted by 

the FEM respectively. As noted in Section 5.2.5 and 5.2.7, the ACI 318M-14 provisions are 

becoming more unconservative and the EC2 provisions are becoming less unconservative as the cmin/d 

ratio is increased. The CSCT and Model Code 2010 predictions become more conservative as the 

cmin/d ratio is increased.  

The EC2 (2004) predictions were found to be most accurate of the considered design codes for a 

cmin/d ratio of 2.970 (VFEA/VEC2 is between 0.94 and 1.05). The ACI 318 provisions on the other hand 

are unconservative for all investigated rectangularity values with a maximum VFEA/VACI value of 0.90 

for a rectangularity of 2, which is governed by one-way shear capacity. The CSCT provisions were 

conservative for all investigated column aspect ratios and became more conservative as the column 

aspect ratio was increased (VFEA/VCSCT is between 1.16 and 1.32). For a cmin/d ratio of 2.970 the ACI 

318M-14 predictions were found to have the least variability based on the coefficient of variation of 

VCODE/VFEA because two of the three aspect ratios studied were governed by one-way shear capacity. 

A comparison of the normalized nominal shear stress predicted by ACI 318M-14, EC2 (2004), 

Model Code 2010, the CSCT and the finite element model at the ACI critical perimeter located at d/2 
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from the column perimeter is provided in Figure 5-47. As expected the nominal shear stress predicted 

by ACI 318M-14 is much higher than that predicted by the finite element model, which leads to ACI 

318 overpredicting the shear punching capacity.  

 

Figure 5-47: Comparison of Nominal Shear Capacity Predicted by FEA and Design Codes, cmin/d 

= 2.970 

The impact of column rectangularity predicted by EC2 (2004) and the CSCT are similar to that 

predicted by the FEM for the rectangularities studied. However, the nominal capacities predicted by 
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from the corner increased. From the short side stress distributions, it was observed that the peak shear 
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discussed previously, experimental results have shown that shear stresses typically concentrate 
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around the short side of the column. However, in the three stress distributions shown in Figure 5-48, 

this concentration is not observed as the shear stresses magnitude decreases significantly after the first 

few elements. It is possible that this lack of shear stress concentration is due to the overall column 

size, or influence of one-way shear behaviour, but further investigation is required.   

The calculated peak stress for all models with a cmin/d ratio of 2.970 are between approximately 5.3 

and 6.0MPa. This stress range similar to that observed in the cmin/d = 1.782 and 1.980 results. 

 

 

 

Figure 5-48: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 2.970, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 
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The trends observed in the crack patterns for the cmin/d = 2.970 models are very similar to those 

observed for the previous cmin/d ratios. As the rectangularity was increased beyond 1, the amount of 

diagonal cracking predicted on the tension side decreased. Along with the decrease in diagonal 

cracking an increased amount of cracking perpendicular to the sides of the supported area were 

observed as β was increased. Additionally, it was observed that the predicted cracks concentrated near 

the corner of the supported area as β was increased. The trends in the failure cones along the slab 

sides are consistent with those observed for the previously discussed cmin/d ratios. However, the crack 

pattern on the slab side perpendicular to the long side of the support plate quickly transitioned from 

conical to a reverse z shape. In the model where β equaled 1.5, the reverse z shape is visible inside the 

punching cone, and in the model where β equaled 2, only the reverse z portion of the crack is fairly 

noticeable. Again, as the rectangularity was increased the plastic strain magnitudes predicted along 

both the long and short sides decreased, which was consistent with all previous model results. Unlike 

the results for cmin/d ratios greater than or equal to 0.990, a second crack below the top conical crack, 

starting at the slab mid-depth and extending towards the compression surface of the slab near the 

support, was not observed on the slab side perpendicular to the short side of the supported area. 

5.3 Discussion of FEA Results for All Cmin/d Ratios 

In this section, results considering all eight investigated cmin/d ratios simultaneously are discussed. In 

Section 5.3.1, a comparison of the impact of column rectangularity predicted by the FEM and the four 

investigated design methods is provided. In Section 5.3.2, a further discussion of the predicted shear 

stress distributions in the slab around the support plate perimeter is provided.  

5.3.1 Code Comparisons  

The primary aim of the parametric study was to determine if the impact of column rectangularity is 

dependent on the ratio of minimum column dimension, cmin, to the effective slab depth d. This 

parameter was investigated due to differences seen in current and historical design code provisions as 

discussed in Section 5.1.1.  

In this section, a comparison of the FEA results and code predictions for all investigated cmin/d 

ratios is provided. Firstly, a comparison of the nominal shear stress predicted by ACI 318M-14 and 

the FEM is presented. Secondly, the impact of column rectangularity predicted for each cmin/d ratio 

according to EC2 (2004), Model Code 2010 (LoA IV) and the CSCT is discussed. These three design 

methods are not directly compared to the FEA results as detailed discussions are provided throughout 
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Section 5.2. Thirdly, the change in nominal shear stress for constant rectangularity values, but varying 

cmin/d ratios, predicted by the FEA and the four design methods are compared. Fourthly, the overall 

trends of the code predictions compared to the FEA results for all cmin/d ratios are discussed. Finally, 

a summary of the models predicted to fail in one-way shear is provided. 

5.3.1.1 Comparison of Nominal Shear Capacity Predicted by FEM and ACI 318M-14 

A comparison of the normalized nominal shear stress along the ACI 318 critical perimeter 

predicted by the FEM and ACI 318M-14 is shown in Figure 5-49. Unlike the FEA results, which 

demonstrated that the impact of column rectangularity is highly dependent on the cmin/d ratio, the ACI 

318M-14 predictions are largely independent of the cmin/d ratio. As shown in Figure 5-49, the nominal 

shear stress capacity predicted by ACI 318M-14 for column aspect ratios between 1.5 and 3 for a 

cmin/d ratio of 2.970 is slightly lower than that predicted for the smaller cmin/d ratios. For all other 

rectangularity values, the ACI 318 predictions are identical for the eight investigated cmin/d ratios. 

Furthermore, the FEA predictions display an approximately linear decrease in nominal shear 

capacity as the support aspect ratio increases. The slope of a trendline fit to the FEA predictions 

shown in Figure 5-49, for each cmin/d ratio, became steeper as the cmin/d ratio increased, as shown in 

Table 5-18. Therefore, the FEM predicted a more severe impact of column rectangularity as the cmin/d 

ratio was increased. Unlike the FEA predictions, the ACI 318M-14 predictions are curved and assume 

that moderate column rectangularity (β≤2) has no effect on nominal shear stress capacity. The FEA 

predictions on the other hand show that even moderate column rectangularity has a negative impact 

on nominal shear stress capacity. The trendlines referenced in Table 5-18 are provided in Appendix J. 

Table 5-18: Slope of Trendline Fit to Nominal Shear Stress vs β Plot for each cmin/d ratio 

cmin/d βmax Trendline Slope (Punching Capacity vs β) R2 of Trendline 

0.594 10 -0.0154 0.9884 

0.792 8 -0.0208 0.9891 

0.990 6.6 -0.0262 0.9819 

1.287 5.077 -0.0331 0.9778 

1.485 4 -0.0346 0.9858 

1.782 3.556 -0.0447 0.9892 

1.980 3 -0.0482 0.9946 

2.970 2 -0.0528 0.9987 
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Figure 5-49: Comparison of Nominal Shear Stress Around ACI 318 Critical Perimeter Predicted 

by ACI 318M-14 and FEA, all cmin/d ratios 

The nominal shear capacity predicted by ACI 318M-14 is generally conservative compared to the 

FEA results for all investigated rectangularity values for the two smallest cmin/d ratios, 0.594 and 

0.792. Additionally, the nominal capacity predicted by ACI 318M-14 and the FEM for a cmin/d ratio 

of 0.990 are very close until a rectangularity of 5. As β is increased beyond 5, the ACI predictions 

become unconservative compared to the FEA results. For a cmin/d ratio of 1.287, the nominal stress 

predicted by ACI 318M-14 is higher than that from the FEA, though the values are similar. For all 

other investigated cmin/d ratios, the difference between the nominal capacity predicted by ACI 318M-

14 and the FEA grows as the cmin/d ratio is increased. It should be noted that the nominal shear stress 

capacities calculated according to ACI 318M-14 shown in Figure 5-49 do not account for one-way 

shear. For cmin/d ratios of 1.980 and 2.970, and an average effective slab depth of 202mm, the ACI 

318M-14 provisions predict one-way shear capacity to govern for investigated column aspect ratios 

greater than or equal to 2.5 and 1.533 respectively. 
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5.3.1.2 Discussion of Nominal Shear Capacity Predicted by EC2 (2004), Model Code 2010 

and the CSCT 

As discussed in Section 5.2.1, a normalized nominal shear stress was used to compare the impact of 

column rectangularity predicted by EC2 (2004), Model Code 2010 and the CSCT to the FEA and 

ACI 318M-14 predictions. In this section, the overall trends of each code are analyzed. Detailed 

comparisons of the code predictions to the FEA results are provided in Section 5.2.   

The predicted nominal shear stress around the ACI 318 critical perimeter for Eurocode 2 (2004) is 

shown in Figure 5-50. The predicted nominal shear stress according to ACI 318 for the investigated 

cmin/d ratios less than or equal to 1.980 are also provided in Figure 5-50. As previously stated, the ACI 

318M-14 predictions for the largest cmin/d ratio of 2.970 are nearly the same as those for the lower 

cmin/d ratios. Therefore, the nominal shear stress according to the ACI 318M-14 for a cmin/d ratio of 

2.970 was removed from Figure 5-50 for clarity. The impact of one-way shear according to ACI 

318M-14 is also neglected in Figure 5-50, as it only governed the predictions when β exceeded 2.5 or 

1.533 for cmin/d ratios of 1.980 and 2.970 respectively. It should also be noted that unlike the ACI 

318M-14 predictions, none of the investigated slab-column connections were predicted to be 

governed by one-way shear by EC2 (2004).  

Even though the EC2 (2004) provisions do not include a term to directly account for column 

rectangularity the nominal punching capacity around the ACI 318 critical perimeter decreased as the 

column rectangularity increased. Additionally, the nominal shear stress for the same rectangularity 

value significantly decreases as the cmin/d ratio increases, which differs from the current ACI 318M-

14 provisions (2014), where a minimal difference in the nominal stress for different cmin/d ratios is 

predicted. Also, unlike the ACI 318M-14, which predicts a constant nominal stress for rectangularity 

values between 1 and 2, the nominal shear stress predicted by EC2 (2004) decreases for β values 

between 1 and 2, which matches the FEA results. As discussed for each individual cmin/d ratio in 

Section 5.2, the impact of rectangularity predicted by the EC2 provisions is very similar to that 

predicted by the FEA, though the EC2 provisions are typically slightly unconservative.  
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Figure 5-50: Predicted Nominal Shear Stress Capacity Along ACI 318 Critical Perimeter vs 

Rectangularity for all Investigated cmin/d ratios, EC2 (2004) 

The predicted nominal shear stress around the ACI 318 critical perimeter according to the CSCT 

and Model Code 2010 (LoA IV) provisions, which are derived from the CSCT (Muttoni & Fernández 

Ruiz, 2012; Muttoni, Fernández Ruiz, Bentz, Foster, & Sigrist, 2013; Ricker & Siburg, 2016; Soares 

& Vollum, 2015), are shown in Figure 5-51. As with Figure 5-50, the ACI 318M-14 predictions for 

cmin/d ratios less than or equal to 1.980, neglecting the impact of one-way shear, are provided for 

comparison.  

As with the FEA and EC2 (2004) predictions, the impact of column rectangularity predicted by 

Model Code 2010 and the CSCT are dependent on the cmin/d ratio. Additionally, for the majority of 

the investigated cmin/d ratios, both Model Code 2010 and the CSCT predict a decrease in the nominal 

shear stress capacity along the ACI 318 critical perimeter for columns with aspect ratios between 1 

and 2. As mentioned in Section 5.2.1, the trend of the Model Code 2010 and CSCT predictions are 

identical, but the Model Code 2010 provisions, even at the highest level of approximation, are much 

more conservative.  
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Figure 5-51: Predicted Nominal Shear Stress Capacity Along ACI 318 Critical Perimeter vs 

Rectangularity for all Investigated cmin/d ratios, Left: CSCT, Right: Model Code 2010 

5.3.1.3 Comparison of Predicted Nominal Stress for Constant β Values and Varying cmin/d 

Ratios 

A comparison of the nominal shear stress capacity along the ACI critical perimeter calculated from 

the FEA results, ACI 318M-14, EC2 (2004), Model Code 2010 (LoA IV) and the CSCT provisions 

for consistent rectangularity values between 1 and 5 and varying cmin/d ratios are provided in Figure 

5-52. 

The current ACI 318 provisions typically predict a constant nominal shear stress capacity along the 

critical perimeter for each individual rectangularity considered since the provisions are independent 

of the cmin/d ratio and are primarily based on the column aspect ratio. It should be noted that the ACI 

318 provisions predict a slight change in nominal shear stress capacity when the column aspect ratio 

equals 2 since the equation based on 𝑑 𝑏𝑜⁄  governs over the equation based on the column aspect ratio 

for a cmin/d ratio of 2.970. It should be noted that when β exceeds a value of 2.5 for a cmin/d ratio of 

1.980 or a value of 1.533 for a cmin/d ratio of 2.970, the one-way shear capacity predicted by ACI 318 

governs compared to the punching capacity. This lower one-way shear capacity is not accounted for 

in the plots in Figure 5-52. The ACI 318 predictions are found to be unconservative when compared 

to the FEA predictions for many of the cmin/d ratios investigated.   
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*ACI 318M-14 capacity estimates governed by 

one way shear for β≥1.533 for cmin/d=2.970 and 

for β≥2.5 for cmin/d=1.980 

Figure 5-52: Comparison of Normalized Nominal Shear Stress Along ACI 318 Critical Perimeter 

Predicted by FEA and Codes for Varying cmin/d Ratios and Consistent Rectangularities, 1≤β≤5 
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Unlike the ACI provisions, which predict a constant normalized nominal shear stress capacity for 

most of the cmin/d ratios, both the FEA results and predictions according to EC2 (2004), Model Code 

2010 (LoA IV) and the CSCT predict a reduction in the normalized nominal stress for a constant β 

value and increasing cmin/d ratio.  

The EC2 (2004) provisions predict a similar reduction in nominal stress when compared to the 

FEA results. When considering the results for square columns or slightly elongated columns (β=2), 

the EC2 (2004) provisions predict normalized nominal stresses at the ACI critical perimeter which are 

very close to those predicted by the FEA results. However, the EC2 (2004) provisions are found to be 

slightly unconservative compared to the FEA results for the very small cmin/d ratios (0.594 and 0.792). 

The EC2 (2004) provisions are also found to be slightly unconservative compared to the FEA results 

for all cmin/d ratios for the larger column aspect ratios (β = 4 and 5). 

Overall, the CSCT predictions correlate very well with the finite element predictions for all β and 

cmin/d ratios included in Figure 5-52. Typically, the CSCT predictions are conservative compared to 

the FEA results with a few predictions that are slightly higher. The Model Code 2010 predictions, 

according to LoA IV, are very conservative compared to the FEA results for all β and cmin/d ratios 

included in Figure 5-52. Theoretically, LoA IV predictions should be the least conservative (Muttoni 

& Fernández Ruiz, 2012; Genikomsou A. , 2015), which demonstrates that although Model Code 

2010 captures the overall impact of column rectangularity well, it is extremely conservative.  

Based on the comparison of the FEA results and the code predictions presented in Figure 5-52, it is 

concluded that the punching provisions according to EC2 (2004), Model Code 2010 and the CSCT 

better capture the predicted impact of column rectangularity compared to ACI 318M-14. As 

previously stated, EC2 (2004) was based on Model Code 1990 (European Concrete Platform ASBL, 

2008), and the punching provisions in Model Code 1990 were primarily based on experimental results 

(Muttoni & Fernández Ruiz, 2012). On the other hand, the punching provisions in Model Code 2010 

are mechanically based on the CSCT (Muttoni & Fernández Ruiz, 2012; Muttoni, Fernández Ruiz, 

Bentz, Foster, & Sigrist, 2013; Ricker & Siburg, 2016; Soares & Vollum, 2015) so the positive 

correlation with the FEA results observed for both codes is not caused by the codes sharing a similar 

basis. The predictions according to EC2 (2004), Model Code 2010 and the CSCT prove that the 

column aspect ratio and ratio of the critical perimeter length to the effective slab depth considered in 

ACI 318M-14 are not the only important parameters when estimating the punching capacity of slab-

rectangular column connections.  
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5.3.1.4 Summary of Code Predictions vs FEA Predictions 

Table 5-19 summarizes the results for the average ratio of the FEA to code predicted shear capacity 

discussed in Section 5.2 for each individual cmin/d ratio. The coefficient of variation of VCODE/VFEA for 

each code for each cmin/d ratio is also included in Table 5-19.  

Table 5-19: Comparison of Code Predicted Capacity to Capacity Predicted by FEA 

   VFEA/VACI VFEA/VEC2 VFEA/MC2010 VFEA/VCSCT 

cmin/d βmax 
# of 

Models 
Average 

COV 

(%) 
Average 

COV 

(%) 
Average 

COV 

(%) 
Average 

COV 

(%) 

0.594 10.0 19 1.16 6.02 0.93 4.33 1.42 10.42 1.09 9.43 

0.792 8.0 15 1.07 4.17 0.94 5.34 1.42 8.20 1.09 7.51 

0.990 6.6 12 1.00 3.60 0.94 6.64 1.43 8.75 1.10 8.17 

1.287 5.077 9 0.92 4.80 0.95 7.78 1.44 7.67 1.10 7.28 

1.485 4.0 7 0.89 4.54 0.96 5.96 1.41 7.82 1.08 7.29 

1.782 3.556 6 0.85 8.80 0.97 8.22 1.53 5.00 1.16 4.95 

1.980 3.0 5 0.84 8.77 0.99 7.27 1.55 5.97 1.17 5.78 

2.970 2.0 3 0.87 3.37 1.00 5.51 1.63 6.66 1.22 6.69 

 

In general, the ACI 318M-14 provisions become less conservative compared to the FEA results as 

the cmin/d ratio is increased and are generally unconservative for cmin/d ratios larger than 1. Generally, 

the EC2 (2004) provisions were unconservative compared to the FEA results but improved in 

accuracy as the cmin/d ratio increased. The EC2 (2004) provisions were typically more accurate than 

the ACI 318M-14 predictions with a minimum ratio of the finite element estimated capacity to the 

code predicted capacity of 0.93 for EC2 (2004) and 0.84 for ACI 318. The EC2 (2004) provisions 

may be more accurate since the design equations account for size effect and flexural reinforcement 

ratio, whereas ACI 318 does not. Additionally, the shear stresses along the critical perimeter located 

at 2d from the column face used in the EC2 (2004) provisions have been found to be approximately 

uniform even for rectangular columns (Oliveira, Regan, & Melo, 2004). As such, the EC2 (2004) 

predictions are likely less impacted by column rectangularity. The predictions according to Model 

Code 2010 (LoA IV) were the most conservative, with a minimum ratio of the finite element 

predicted capacity to the code predicted capacity of 1.41. In general, the Model Code 2010 

predictions became more conservative as the cmin/d ratio increased. This occurred since the rotations 

predicted by the FEM typically increased as the cmin/d ratio increased. Since the punching provisions 
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in Model Code 2010 are derived from the CSCT (Muttoni & Fernández Ruiz, 2012; Muttoni, 

Fernández Ruiz, Bentz, Foster, & Sigrist, 2013; Ricker & Siburg, 2016; Soares & Vollum, 2015), 

larger rotations lead to smaller punching capacities. Typically, the CSCT predictions were slightly 

conservative compared to the FEA results and became more conservative as the cmin/d increased.   

Finally, the observation of one-way shear failures predicted by the FEA should be discussed. As 

discussed in Section 5.1.2, one-way shear failures were not expected to govern any of the slabs 

included in the parametric study as the ratio of the column (support plate) dimensions, c, to the 

estimated slab span, L, measured from column centerline to centerline, were much less than 0.4 or 

0.35. One-way behaviour was found to govern at c/L ratios greater than or equal to 0.4 or 0.35 by 

Simmonds (1970) and Sagaseta et al. (2014) respectively. These c/L ratios were determined through 

finite differences using a quarter model of a full slab system (Simmonds, 1970) and through linear 

elastic FEA on a full slab system (Sagaseta et al., 2014) subjected to uniformly distributed loading. 

The models by Simmonds (1970) and Sagaseta et al. (2014) differ from the quarter models used in 

the parametric study. The quarter models used in the parametric study are based on an isolated slab-

column connection which was tested in a laboratory. These isolated slab-column specimens are sized 

to approximate the extent of the negative moment region around the column in a full slab system, 

which is known as the radius of contraflexure. This radius of contraflexure is typically assumed to be 

located at 0.22L from the center of the supported area. Additionally, slab AM04, which was the 

baseline of the parametric study, was loaded via discrete point loads at the radius of contraflexure. 

Regan and Rezai-Jorabi (1988) showed that the one-way shear capacity of slabs subjected to 

concentrated loads is less than that for slabs under uniformly distributed load. It has also been proven 

that the behaviour of an isolated slab-column connection specimen is different than that of a slab-

column connection in a continuous slab due to the lack of membrane action and other confining 

effects (Alam, Amanat, & Seraj, 2009; Mowrer & Vanderbilt, 1967; Genikomsou & Polak, 2017a). 

Therefore, it is possible that one-way shear behaviour is governing at a lower c/L ratio, if the length 

of the full system is considered, due to the differences in the specimen (isolated versus continuous) 

and the loading (uniformly distributed versus discrete point loads). 

The models predicted to fail in one-way shear and the corresponding cmax/L ratios, considering the 

length of the isolated specimen and the column in the quarter model, are provided in Table 5-20. 

From Table 5-20, it is clear that one-way shear behavior is predicted to govern for a consistent 

column length and cmax/L ratio across the investigated cmin/d ratios. The minimum and maximum 
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lengths of the support plate in the quarter models predicted to fail in one-way shear were 540mm and 

600mm respectively, which correspond to cmax/L ratios of 0.36 and 0.40. Therefore, the c/L ratios 

where one-way shear behaviour was predicted to govern for the isolated slab-column specimens 

subjected to concentrated loads are similar to the c/L ratios where one-way shear behavior was found 

to govern for continuous concrete slabs subjected to uniformly distributed loads.  

Table 5-20: Summary of Models Predicted to Fail in one-way Shear 

Cmin/d β Cmin/2 (a) Cmax/2 (a) Cmax/L1/4 model 
(b) 

0.594 (c) 10 60 600 0.40 

0.792 7.5 80 600 0.40 

0.990 6 100 600 0.40 

1.287 4.462 130 580 0.39 

1.485 4 150 600 0.40 

1.782 3 180 540 0.36 

1.980 3 200 600 0.40 

2.970 (d) - - - - 

(a) Half dimensions used in quarter model due to symmetry 
(b) Length of quarter model = 3000mm/2 = 1500mm 
(c) Simultaneous two-way and one-way shear failure predicted for β = 10 model 
(d) One-way shear failure not found to govern for cmin/d = 2.970 results. β = 2 model experienced secondary one-way 

shear failure model 
 

5.3.2 Slab Shear Stress Distribution Discussion  

In this section, the predicted shear stress distributions in the slab around the support plate perimeter 

and the peak shear stress in the slab at the corner of the support plate are analyzed at different load 

levels. In Section 5.3.2.1, shear stress distributions around the support plate perimeter at 30% and 

90% of the peak load level are presented. In Section 5.3.2.2, the peak shear stresses calculated at the 

corner of the support plate at 30%, 90% and 100% of the peak load are discussed. Firstly, the 

calculated peak stresses for constant β values and varying cmin/d ratios are presented. Secondly, the 

peak stresses for all β values and cmin/d ratios in the parametric study are analyzed. 

5.3.2.1 Shear Stress Distribution Along the Perimeter of the Supported Area vs. Load Level 

As discussed in Section 2.6.3, most of the previous FEA of reinforced concrete slabs supported on 

rectangular columns has been focused on estimating the linear elastic shear stress distribution around 



 

 217 

the column or critical perimeter. Using NLFEA, it is possible to estimate the shear stress distribution 

around the column or critical perimeter during the non-linear portion of the response. Since no trends 

in the predicted shear stress distribution at the critical perimeter at d/2 from the column face were 

observed, only the shear stress distributions around the column perimeter are analyzed in this section. 

Three load levels were considered in the analysis, 30% of the peak load, 90% of the peak load and the 

peak load. 30% of the peak load was selected as it represented the approximate end of the linear 

elastic region on the load-displacement curves for each slab in the parametric study. 90% of the peak 

load was used to analyze the behaviour of the slab before failure, and to determine if stress 

redistribution was occurring as the slab-column connection approached failure. In this section, the 

shear stress distributions at all three load levels around the support plate for specific slab-column 

connections are presented and discussed. Shear stress distributions in the slab around the support plate 

for all models in the parametric study at 30% and 90% of the peak load are provided in Appendix H. 

The distributions in Appendix H are similar in format to those presented in Section 5.2. 

For each cmin/d ratio the stress distribution for three rectangularities at 30%, 90% and 100% of the 

peak load were plotted together to investigate the overall shape of the shear stress distribution around 

the support plate, and to determine if any stress redistribution occurred. The three rectangularities 

selected corresponded to the square support plate, maximum rectangularity in each cmin/d ratio and an 

intermediate rectangularity, which was typically selected to be near the median rectangularity in each 

cmin/d ratio. A summary of the models considered is provided in Table 5-21. The shear stress 

distributions for the three models with a cmin/d ratio of 1.287 are provided in Figure 5-53 and the 

remaining distributions are provided in Appendix I. 

Table 5-21: Column Aspect Ratios Considered in the Stress Distribution vs. Load Level Analysis 

cmin/d Rectangularities (β) Investigated 

0.594 1 5 10 

0.792 1 4.5 8 

0.990 1 4 6.6 

1.287 1 3 5.077 

1.485 1 2.533 4 

1.782 1 2 3.566 

1.980 1 2 3 

2.970 1 1.533 2 
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Figure 5-53: Shear Stress Distribution Along Support at Different Load Levels, cmin/d=1.287 
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From Figure 5-53, and the stress distributions provided in Appendix I, two conclusions can be 

drawn. Firstly, the overall shape of the stress distribution changes throughout the course of the 

analysis for all investigated cmin/d ratios and β values. In the linear elastic region, the impact of 

column rectangularity is extremely clear, as a concentration of shear stress at the corner of the support 

plate and along the short side of the plate was observed for all investigated slab-column connections. 

For connections with cmin/d ratios less than or equal to 1.485, the shear stresses along the short side of 

the column are fairly uniform and have magnitudes which are similar to those at the corner of the 

supported area. For slab-column connections with cmin/d ratios greater than 1.485, the shear stresses 

become more concentrated near the corner of the supported area and the shear stress magnitude along 

the short side is less uniform, but still typically higher than that near the centerline of the long side of 

the supported area.  

Secondly, for most of the slab-rectangular column connections in Table 5-21, a shear stress 

redistribution between 90% and 100% of peak load was observed. For all the investigated models 

which have elongated columns and cmin/d ratios less than or equal to 1.485, a clear redistribution of 

stress from the short side of the supported area to the long side is observed after 90% of the peak load 

is applied. In most of the investigated slab-rectangular column connections, the shear stress levels 

along the short side of the supported area dropped after 90% of the peak load had been reached and 

the stresses along the long side, typically towards the centerline of the supported area, increased after 

this point. Therefore, shear failures of slab-column connections are initiated by failure of the slab 

concrete along the short side of the supported area. The concrete along the long side of the column is 

temporarily able to redistribute and sustain these stresses, before failure occurs when the long side is 

no longer able to carry the additional load. Stress redistribution was also observed for the three largest 

cmin/d ratios, 1.782, 1.980 and 2.970, but some different behaviour compared to the results for the 

lower cmin/d ratios was observed. For example, the stress distribution for the model with a square 

supported area and a cmin/d ratio of 1.782 displayed an increase in stress at all element lines except for 

at the column corner, which differs from the results for the lower cmin/d ratios discussed on the 

following page. For the cmin/d ratio of 1.782, the other two rectangularity values also show some 

discrepancy from the trend. For example, for the slab-column connections with an aspect ratio of 2 or 

3.556, the stresses away from the corner were found to redistribute, but the stresses at the column 

corner continued to increase after 90% of the peak load was reached. Similar discrepancies were 

observed in the investigated stress distributions for cmin/d ratios of 1.980 and 2.970. 
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For the models supported on square plates with a cmin/d ratio less than 1.485, a redistribution of 

stress from one side of the column to the other was not observed. For the models which are supported 

on square plates, the predicted shear stress at every line of elements increased as the load increased 

towards the peak load. The lack of stress redistribution may be due to a lack of a “weak” side since 

the model is symmetric. Therefore, for the models supported on square columns, failure is initiated 

when the slab on both sides of the supported area reaches its maximum shear capacity. This lack of 

stress redistribution is also likely why the peak stresses at the column perimeter, which occurred at 

the column corners for models supported on square columns, are typically higher than those for the 

slabs supported on elongated columns. 

5.3.2.2 Peak Shear Stress in the Slab at the Corner of the Supported Area  

The maximum shear stress in the slab at 30% of the peak load for each model, which was found to 

occur at the column of the support plate in all models, for the rectangularity values between 1 and 5, 

for each cmin/d ratio, is provided in Figure 5-54. There is no clear trend in the predicted shear stress at 

the support plate corner, but all the calculated stresses fall within a small stress range (1.36-1.96MPa), 

even though the investigated load level for each model is not the same. Unlike the peak shear stresses 

calculated at higher load levels, the peak shear stress for slabs supported on square columns do not 

exceed those for slabs supported on elongated columns.  

The maximum shear stress calculated for each model at 30% of the peak load level for all the 

investigated rectangularity values and cmin/d ratios are provided in Figure 5-55. Unlike the data in 

Figure 5-54, which displayed no clear trend between the peak stress and the cmin/d ratio, the data in 

Figure 5-55 show a clear trend between the column rectangularity and the peak stress level. For most 

of the models in the parametric study, it is clear that as the column rectangularity was increased the 

peak stress at the column corner increased. This peak shear stress increase shows that a large portion 

of the stress in the linear elastic and initial plastic portions of the slabs response is carried by the 

concrete near the corner of the supported area.  
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Figure 5-54: Comparison of Shear Stress at Column Corner, 30% of Peak Load, 1≤β≤5 

 

Figure 5-55: Peak Shear Stresses at Column Corner Predicted by FEA, 30% of Peak Load, All β 
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Figure 5-56: Comparison of Shear Stress at Column Corner, 90% of Peak Load, 1≤β≤5 
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Figure 5-57: Peak Shear Stresses at Column Corner Predicted by FEA, 90% of Peak Load, All β 
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 The maximum predicted shear stress at the peak load level for each cmin/d ratio for the 

rectangularity values between 1 and 5 are provided in Figure 5-58. As with the results at 30% and 

90% of the peak load level, no consistent trend between the peak stress at the corner of the support 

plate and the cmin/d ratio was observed. However, unlike the results for 30% of the peak load, and 

similar to the results at 90% of the peak load level, the peak stress for slabs supported on square 

columns typically exceeded the peak stress for slabs supported on elongated columns.  

 

Figure 5-58: Comparison of Shear Stress at Column Corner, Peak Load, 1≤β≤5 
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square columns which is likely due to the lack of stress redistribution observed for slabs supported on 

square support plates. 

 

Figure 5-59: Peak Shear Stresses at Column Corner Predicted by FEA, Peak Load, All β 
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Chapter 6: Conclusions and Future Work  

In this chapter, the conclusions of the capability study and finite element calibration presented in 

Chapter 4 and the parametric study presented in Chapter 5 are provided. A summary of the work 

conducted in this thesis and recommendations for future work are also provided. 

6.1 Summary 

Even though the empirical database for punching shear of reinforced concrete slabs supported on 

columns is large, it cannot address all parameters which impact punching shear. Additionally, most of 

the empirical data is for slabs supported on square or circular columns, and experimental tests of slabs 

supported on rectangular columns subjected to concentric loads are limited. Nonlinear finite element 

models, properly calibrated based on experimental results, can provide a cost-effective way to study 

parameters which are difficult to evaluate experimentally, or are not adequately accounted for in the 

existing experimental database. The capability of the commercial finite element software ABAQUS 

to accurately capture the punching shear behaviour of reinforced concrete slabs supported on square 

columns using the “Concrete Damaged Plasticity” model was proven by Genikomsou (2015). 

The work presented in this thesis was undertaken to investigate the impact of column rectangularity 

on the punching shear behaviour of reinforced concrete slabs supported on rectangular columns using 

a nonlinear finite element model based on the “Concrete Damaged Plasticity” model available in 

ABAQUS. First, modified versions of the model presented by Genikomsou (2015) were used to 

model hypothetical and experimentally tested slab-column connections to verify ABAQUS’ ability to 

accurately capture the impact on column rectangularity. The overall trends of the finite element model 

results correlated well with design code predictions and experimental results, but the punching 

capacities and deflections at failure were typically underpredicted by approximately 20%. Therefore, 

the finite element model was recalibrated considering seven experimental slab-column specimens. 

Four of the seven slabs, tested by Sagaseta et al. (2014), were supported on rectangular steel plates, 

with an aspect ratio of three, and were subjected to different loading layouts. The remaining three 

slabs, tested by Sagaseta et al. (2011), were supported on square steel plates and loaded in two-way 

action. The slabs supported on square steel plates also had different reinforcing ratios and concrete 

compressive strengths compared to the slabs supported on rectangular steel plates.  

The calibrated model was then used to investigate the impact of two parameters, the support aspect 

ratio, β, and the ratio of the minimum column dimension, cmin, to the effective slab depth, d, on the 
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punching shear behaviour of isolated slab-column connections. These two parameters were selected 

for the parametric study based on a comparison of the reduction factors for column rectangularity 

calculated from various design codes and the finite element analysis results from the capability study.  

6.2 Capability Study and Finite Element Model Calibration  

Chapter 4 presented three studies which were used to verify ABAQUS’ capability to capture the 

impact of column rectangularity on the punching shear behaviour of reinforced concrete slabs. The 

first of these studies was conducted considering one slab supported on square column, tested by 

Adetifa and Polak (2005), and five hypothetical slab column specimens with consistent critical 

perimeter lengths according to ACI 318M-14, but increasing column rectangularity. In the second 

study, the nine slabs tested by Hawkins, Fallsen and Hinojosa (1971) were modelled. In the third 

study, one slab supported on a rectangular steel plate with an aspect ratio of three was modelled. This 

slab was used to calibrate the finite element model used in the parametric study. The calibration was 

verified by modelling three additional slabs supported on rectangular steel plates (Sagaseta, Tassinari, 

Fernández Ruiz, & Muttoni, 2014) and three slabs supported on square steel plates (Sagaseta, 

Muttoni, Fernández Ruiz, & Tassinari, 2011). The following conclusions were made from these 

studies: 

 ABAQUS predicts an impact of column rectangularity which agrees with current design 

code provisions and published experimental results. ABAQUS is also capable of capturing 

the impact of different load arrangements and reinforcing ratios on the punching shear 

behaviour of reinforced concrete slabs supported on square or rectangular columns. The 

analysis results from ABAQUS simulations can also be used to analyze the shear stress 

distribution in the slab around the column/support perimeter or any chosen critical 

perimeter. However, if C3D8R elements are used to mesh the slab only perimeters with 90° 

corners should be analyzed.  

 Nonlinear finite element models must be calibrated based on experimental results since 

modelling choices including the boundary conditions, assumed concrete fracture energy, 

dilation angle (if the “Concrete Damaged Plasticity” model is used) and mesh size effect 

the predicted crack pattern and load-deflection response.  

 A recalibration of the finite element model parameters is required for each experimental 

setup considered.  
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 Force driven loads should be used in ABAQUS when applying equivalent loads over 

discrete loading areas. If displacement boundary conditions are used the force distribution 

over the loaded areas will not be uniform. If force driven loads are used, quasi-static 

analysis in ABAQUS/Explicit is required to observe a peak capacity in the load-deflection 

curve. If a static analysis in ABAQUS/Standard is conducted, the load will continue to 

ramp until the end of the analysis. 

 The rotation of isolated slab-column specimens subjected to concentrated loads can be 

approximated using a linear approximation based on the slab deflections at the end of the 

supported area and the slab edge.  

 For slabs which fail in punching before reaching their flexural capacity, the slab 

reinforcement crossing the column boundary or near the column typically yields before 

punching.  

 For a constant critical perimeter length, the impact of column rectangularity diminishes as 

the cmin/d ratio is decreased. Eurocode 2 (2004) does not predict column rectangularity to 

have any impact for slab-column connections subjected to concentric vertical loads if the 

total critical perimeter length is constant.  

6.3 Parametric Study 

A parametric study using the calibrated AM04 model was conducted to evaluate the impact of the 

aspect ratio of the supported area and to investigate if the impact of column rectangularity on 

punching shear behaviour is dependent on the ratio of the minimum column dimension, cmin, to the 

effective slab depth, d. From the results of 77 finite element simulations, the following conclusions 

were made: 

 The impact of column rectangularity on punching shear capacity of slab-column 

connections was found to not only be dependent on the column aspect ratio. The impact of 

column rectangularity on the total capacity, and nominal shear capacity along the ACI 

318M-14 critical perimeter predicted by the FEM, which was approximately linear for the 

investigated aspect ratios within each cmin/d ratio, was found to become more severe as the 

cmin/d ratio increased. Even though the punching provisions in Eurocode 2 (2004), Model 

Code 2010 and those derived from the Critical Shear Crack Theory (CSCT) are not 

explicitly functions of the cmin/d ratio, these three design methods predict a more severe 
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impact of column rectangularity as the cmin/d ratio is increased. ACI 318M-14, on the other 

hand does not predict a significant change in the impact of column rectangularity as the 

cmin/d ratio is increased.  

 ACI 318M-14 and Eurocode 2 (2004) are most accurate for column aspect ratios between 1 

and 5. The ACI provisions were found to be most accurate for cmin/d ratios less than 

approximately 1.3 and the Eurocode 2 (2004) provisions were found to be most accurate 

for cmin/d ratios greater than 1.3.  

 The assumption that minimal column rectangularity (1<β≤2) has no impact on punching 

capacity in ACI 318M-14 does not match the FEM results or the predictions according to 

Eurocode 2 (2004), Model Code 2010 or the CSCT. This assumption makes the ACI 318 

provisions unconservative for cmin/d ratios greater than 1.3. 

 The Model Code 2010 provisions and capacity predictions according to the CSCT, using 

the 3d method from Model Code 2010 to calculate the effective critical perimeter length, 

and the maximum slab rotation in each orthogonal direction calculated from the NLFEA, 

typically predict an impact of column rectangularity which agrees with the FEA results. 

Generally, the CSCT predictions were found to be conservative compared to the FEA 

results and the Model Code 2010 predictions were found to be extremely conservative even 

at the highest level of approximation (level IV). The Model Code 2010 provisions were 

found to be a very conservative adaptation of the CSCT provisions.  

 The stiffness of the slab-column connection in both orthogonal directions was found to 

increase with increasing column rectangularity. This increase was found to be larger in the 

direction perpendicular to the short side of the column, which was predicted to be the 

stiffer direction by the FEM. A higher stiffness in the direction perpendicular to the short 

side of the column was observed experimentally by Tan and Teng (2005), Anggadjaja and 

Teng (2008) and Himawan and Teng (2014). 

 The impact of column rectangularity on the crack pattern of the slabs was consistent for all 

investigated cmin/d ratios. As the column rectangularity is increased, the predicted crack 

patterns became non-uniform on the tension side and slab sides. On the tension side, the 

amount of diagonal cracking decreases and the amount of cracking perpendicular to the 

long and short sides of the supported area increases. The cracks also tend to concentrate 
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near the corner of the supported area. The predicted punching cones on the slab sides also 

become thinner as the column rectangularity is increased. Along the slab side perpendicular 

to the long side of the supported area the punching cone becomes smaller in size, and 

eventually non-existent, as the column rectangularity is increased. The disappearance of the 

punching cone on the slab side perpendicular to the long side of the supported area 

coincides with the formation of a one-way shear crack across the entire slab width parallel 

to the long side of the supported area on the tension surface of the slab. This one-way shear 

crack is predicted to occur at lower column rectangularities, but similar column lengths as 

the cmin/d ratio is increased. One-way shear failures were predicted by the FEM when the 

column length was equal to 35-40% of the isolated specimen length.  

 The shear stresses in the slab around the perimeter of the support plate calculated from the 

FEA results were found to concentrate near the corner and along the short side of the 

support plate, which matches previous experimental and FEA results (Al-Yousif & Regan, 

2003; Teng, Cheong, Kuang, & Geng, 2004; Oliveira, Regan, & Melo, 2004; Anggadjaja 

& Teng, 2008; Borges, Melo, & Gomes, 2013; Himawan & Teng, 2014; Shu, Belletti, 

Muttoni, Scolari, & Plos, 2017). As the cmin/d ratio increased, the concentration of shear 

stresses in the slab at the corner of the supported area was found to increase and the 

concentration of shear stresses along the short side of the supported area was found to 

decrease. The maximum shear stress in the slab was predicted to occur at the corner of the 

supported area. Also, the shape of the shear stress distribution around the support plate 

perimeter was found to change with load level, and a redistribution of stress from the 

portion of the slab along the short side of the supported area to the portion of the slab along 

the long side of the support plate was found to occur before failure.  

 No clear trends were observed in the calculated stress distribution at the ACI 318M-14 

critical perimeter located at d/2 from the column face. 

6.4 Recommendations for Future Work 

The calibrated finite element model presented in this thesis has been found to be robust for analyses 

of reinforced concrete slabs failing in shear under different load conditions. However, as discussed in 

Section 4.5.1, the current model is not capable of accurately capturing flexural failures due to the 

simplified stress-strain curve used for the reinforcing steel. Therefore, a more detailed stress-strain 
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curve for the reinforcing steel should be added to the model and the model’s ability to accurately 

model reinforced concrete slabs failing in flexure should be verified by analyzing slabs such as AM03 

tested by Sagaseta et al. (2014). Assuming the steel stress-strain curve is updated, and the model is 

found to accurately capture flexural failures, the model can then be used to conduct various 

parametric studies similar to the calibrated model presented by Genikomsou (2015). If the stress-

strain curve is not updated, the model can still be used to conduct parametric studies but the stresses 

in the flexural reinforcing will have to be carefully analyzed to ensure the simplified stress-strain 

curve is not impacting the results.  

The effect of unbalanced moments in one or both orthogonal directions on the punching shear 

behaviour of slab-rectangular column connections should be evaluated. As discussed in Chapter 2, 

some experimental work has been conducted on this subject, but the current experimental database is 

quite small, and the column rectangularities investigated are limited. If damage parameters are 

incorporated into the concrete modelling, the impact of cyclic loads could also be analyzed.  

The effect of openings on the shear capacity and shear stress distribution in the slab around the 

column and critical perimeters can also be evaluated using the calibrated finite element model. As 

with unbalanced moments, limited experimental work has been conducted in this area for slabs 

supported on rectangular columns. The optimal opening size and layout and adequacy of current code 

provisions can be analyzed using the calibrated finite element model.  

Following the modelling recommendations of Genikomsou (2015), the calibrated finite element 

model can also be used to evaluate the impact of shear reinforcement on the punching shear 

behaviour of slab-rectangular column connections. The impact of radial or orthogonal shear 

reinforcing layouts, and different shear reinforcement types can be analyzed. The impact of shear 

reinforcing layout and spacing on the failure modes and load-deflection capacity can be evaluated.  

The impact of compressive membrane forces, which exist in continuous slab specimens (Alam, 

Amanat, & Seraj, 2009; Mowrer & Vanderbilt, 1967; Genikomsou & Polak, 2017a), on the punching 

shear capacity of slab-rectangular column connections can also be evaluated using the calibrated 

model. Modified isolated slab-column connections, similar to those proposed by Genikomsou (2015), 

or continuous models can be used with the calibrated model parameters to evaluate the impact of 

compressive membrane forces on the shear stress distributions, the punching capacity and connection 

stiffness in both orthogonal directions.  
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The calibrated finite element model can also be extended to evaluate the punching shear behaviour 

of slabs supported partially supported on long walls. It is common for slabs to be partially supported 

on shear walls, but this design scenario is not discussed in ACI 318M-14 or EC2 (2004). Model Code 

2010 recommends a critical perimeter which can be used to evaluate punching capacity around the 

end of the wall, but no reference to the experimental or analytical research leading to this assumed 

critical perimeter is provided. The calibrated finite element model can be used to evaluate the portion 

of the wall perimeter or critical perimeter which is effective in resisting punching shear and the 

results can be used to draft code provisions. The tributary area of the wall can also be evaluated using 

a finite element model of a continuous slab system.  

Finally, it is recommended that some of the slabs modelled in this thesis be tested experimentally to 

validate the finite element results. It is recommended that some of the hypothetical connections from 

the SB1 rectangularity study be tested to verify that impact of column rectangularity decreases with 

decreasing cmin/d ratios. It is also recommended that some of the models which were predicted to fail 

in one-way shear be tested to verify that isolated specimens where the column length is equal to 

approximately 40% of the specimen length fail in one-way shear. It would also be beneficial to model 

and test slabs with the same cmin/d ratios and column rectangularities as those included in the 

parametric study. It is recommended that some of these slabs be larger than AM04 so the impact of 

the location of the load plates on the finite element results can be verified.  
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PERMISSIONS <permissions@asce.org> 7/3/2018, 12:10 PM

RE: Requesting Copyright Permissions to Reproduce Figures from
ASCE Publications for use in a Master's Thesis
To Graeme Milligan <graememilligan_3@sympatico.ca>  

Dear Graeme,
Hi.  We actually don’t hold the copyright on that image.  It is referenced “Turner, C. A. P. (1905b) Engineering
News, October 12, 383–384 (le�er).”

But based on the publica�on date (1905) that should be in the public domain.

Sorry we couldn’t be more help.

Sincerely,
Leslie Connelly
Senior Marke�ng Coordinator
American Society of Civil Engineers
1801 Alexander Bell Drive
Reston, VA  20191

PERMISSIONS@asce.org

703-295-6169
Internet: www.asce.org/pubs  |  www.ascelibrary.org | h�p://ascelibrary.org/page/rightsrequests

A full credit line must be added to the material being reprinted. For reuse in non-ASCE publica�ons, add the words "With permission from ASCE" to your

source cita�on.  For Intranet pos�ng, add the following addi�onal no�ce: "This material may be downloaded for personal use only. Any other use requires

prior permission of the American Society of Civil Engineers. This material may be found at [URL/link of abstract in the ASCE Library or Civil Engineering

Database].”

To view ASCE Terms and Condi�ons for Permissions Requests: h�p://ascelibrary.org/page/ascetermsandcondi�onsforpermissionsrequests

Each license is unique, covering only the terms and condi�ons specified in it. Even if you have obtained a license for certain ASCE copyrighted content, you

will need to obtain another license if you plan to reuse that content outside the terms of the exis�ng license. For example: If you already have a license to

reuse a figure in a journal, you s�ll need a new license to use the same figure in a magazine. You need separate license for each edi�on.

Authors may post the final dra� of their work on open, unrestricted Internet sites or deposit it in an ins�tu�onal repository when the dra� contains a link

to the bibliographic record of the published version in the ASCE Library or Civil Engineering Database. "Final dra�" means the version submi�ed to ASCE

a�er peer review and prior to copyedi�ng or other ASCE produc�on ac�vi�es; it does not include the copyedited version, the page proof, or

a PDF of the published version.

For more informa�on on how an author may reuse their own material, please view: h�p://ascelibrary.org/page/informa�onforasceaut

horsreusingyourownmaterial

mailto:PERMISSIONS@asce.org
http://www.asce.org/pubs
http://www.ascelibrary.org/
http://ascelibrary.org/page/rightsrequests
http://ascelibrary.org/page/ascetermsandconditionsforpermissionsrequests
http://ascelibrary.org/page/informationforasceauthorsreusingyourownmaterial
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From: Graeme Milligan <graememilligan_3@sympa�co.ca> 
Sent: Tuesday, July 03, 2018 11:14 AM 
To: PERMISSIONS <permissions@asce.org> 
Subject: Reques�ng Copyright Permissions to Reproduce Figures from ASCE Publica�ons for use in a Master's
Thesis

Good morning,
I am a graduate student at the University of Waterloo currently working on my Master's thesis. In my literature
review I would like to use a portion of Figure 6 from "Contributions of C. A. P. Turner to Development of Reinforced
Concrete Flat Slabs 1905–1909" (Journal of Structural Engineering, Volume 128, Issue 10 October 2002) and was
wondering about the procedure/who to contact to acquire the permission to reproduce this figure. My thesis would
be published in the institutional repository at the University of Waterloo (Waterloo, Ontario, Canada). I have
attached the portion of Figure 6 I wish to reproduce.
If any additional information is required please let me know. Thank you in advance for your time.
Kind Regards, 
Graeme Milligan 
MASc Candidate, University of Waterloo

This email has been scanned for email related threats and delivered safely by Mimecast. 
For more information please visit http://www.mimecast.com

mailto:graememilligan_3@sympatico.ca
mailto:permissions@asce.org
http://www.mimecast.com/
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Corinne Bottollier <webmaster@fib-international.org> 7/4/2018, 9:45 AM

Re: FIB | The International Federation for Structural Concrete:
Requesting Copyright Permissions to Reproduce Figures from CEB
Bulletins for use in a Master's Thesis
To Graeme Milligan <gjmillig@uwaterloo.ca>  

Dear Graeme,

Thank you for your interest in the fib.

We are happy that you can use the Figure 3.8 from CEB Bulletin 168. We allow you to use it without any inconvenience on our
side. We do not have records to have the full rights for the figure. Figure 3.8 is a drawing that I presume has been developed by
the task group, then we think that you can use them with the proper reference to the CEB Bulletin 168 as per below:

Figure 3.8:
Reproduced from CEB Bulletin 168:  - Punching Shear in Reinforced Concrete a state of art report by P.E.
Regan and M.W. Braestrup (January 1985) with permission from the International Federation for Structural
Concrete (fib).

Please let me know if there is anything else that you would need from us.

Meanwhile, I invite you to check our website (https://www.fib-international.org). Do not hesitate to visit the Membership
page (https://www.fib-international.org/membership.html) to check all the benefits you could get if you wish to become a
fib member,

Best regards,

Corinne

 
Best Regards, 
 
Webmaster

fib A Bridge between Research and Practice 
International Federation for Structural Concrete

publications@fib-international.org 
+41 21 693 2749 
www.fib-international.org
 

On 3 Jul 2018, at 17:05, FIB | The International Federation for Structural Concrete <webmaster@fib-
international.org> wrote:
 
This is an enquiry email via https://www.fib-international.org/ from: 
Graeme Milligan <gjmillig@uwaterloo.ca> 

https://www.fib-international.org/
https://www.fib-international.org/membership.html
mailto:secretary.general@fib-international.org
http://www.fib-international.org/
mailto:webmaster@fib-international.org
https://www.fib-international.org/
mailto:gjmillig@uwaterloo.ca
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Hi, 
I am a graduate student at the University of Waterloo currently working on my Master's thesis. In my
literature review I would like to use Figure 3.8 from CEB Bulletin 168 - Punching Shear in Reinforced
Concrete a state of art report by P.E. Regan and M.W. Braestrup (January 1985) and was wondering
about the procedure/who to contact to acquire the permission to reproduce this figure. My thesis
would be published in the institutional repository at the University of Waterloo (Waterloo, Ontario,
Canada).  
If you require any additional information please let me know. Thank you in advance for your time.  
Kind Regards, 
Graeme Milligan 
MASc Candidate, University of Waterloo 
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Aikaterini Genikomsou <aikaterini.genikomsou@queensu.ca> 7/10/2018, 10:21 AM

RE: Permission to Reproduce Figures From Your Thesis
To Graeme Milligan <graememilligan_3@sympatico.ca>  

Hi Graeme,

Yes can. You have my permission.
Wishing you good luck with the thesis.

All the best,
Katerina

From: Graeme Milligan [graememilligan_3@sympa�co.ca] 
Sent: Tuesday, July 10, 2018 5:18 PM 
To: Aikaterini Genikomsou <aikaterini.genikomsou@queensu.ca> 
Subject: Permission to Reproduce Figures From Your Thesis

Hi Katerina,
I hope all is well with you in Kingston.
Currently, I am working on completing my Master's thesis with the plan to graduate this term and
return to UW in the fall to begin work on a PhD with Professor Polak. 
In my thesis I was hoping to reproduce some of your figures when I summarize the work you
completed. After speaking with the copyright librarian at UW (Lauren Byl) I was informed that I
needed to request permission from you to reproduce the figures and to check that the figures were not
reproduced from someone else (as I would need to request permission from them). 
I have attached the three figures I wish to reproduce. At your earliest convenience could you let me
know if you are the copyright owner of the attached images (or the publication where you took them
from). Assuming you are the copyright owner please let me know if I can reproduce the figures in my
thesis. 
Best Regards,
Graeme 

mailto:mailto:graememilligan_3@sympatico.ca
mailto:aikaterini.genikomsou@queensu.ca
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Rosa Lönneborg via RT <ask-kthb@kth.se> 7/5/2018, 6:40 AM

[kth.se #2721220] Requesting Copyright Permissions to Reproduce
Figures From Transactions of the Royal Institute of Technology
To gjmillig@uwaterloo.ca  

Hi Graeme, 

When it comes to newer publications we normally ask the author of permission, but since this is published in 1960
KTH gives a general permission to reproduce parts of the material as long as it is in line with good research
practice. So it is ok for you to reproduce the figures as long as you properly cite the source. 

Kind regards, 
Rosa Lönneborg 
KTH Library 

On Wed Jul 04 16:37:24 2018, gjmillig@uwaterloo.ca wrote: 

Fråga till: Huvudbiblioteket 
Från: Graeme Milligan, 
gjmillig@uwaterloo.ca 
 
Fråga 
Hi, 
I am a graduate student at the University of Waterloo currently 
working on my Master's thesis. In my literature review I would like to 
use Figure 31a,b and c from "Punching of Concrete Slabs Without Shear 
Reinforcement" (1960) by Kinnunen and Nylander and was wondering about 
the procedure/who to contact to acquire the permission to reproduce 
this figure. My thesis would be published in the institutional 
repository at the University of Waterloo (Waterloo, Ontario, Canada). 
 
If you require any additional information please let me know. Thank 
you in advance for your time. 
 
Kind Regards, 
Graeme Milligan 
MASc Candidate, University of Waterloo

mailto:gjmillig@uwaterloo.ca
mailto:gjmillig@uwaterloo.ca
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Kaitlin Beer <kbeer@cement.org> 7/24/2018, 12:51 PM

RE: Requesting Copyright Permissions to Reproduce Figures from
PCA Publications for use in a Master's Thesis
To Graeme Milligan <graememilligan_3@sympatico.ca>  

Hi Graeme,

That looks great to me! Have a great day and again good luck wrapping up your thesis!

Best wishes,
Kaitlin Beer
Library Informa�on Specialist
Portland Cement Associa�on
5420 Old Orchard Road
Skokie, IL 60077
847.972.9176 (office)
kbeer@cement.org

From: Graeme Milligan [graememilligan_3@sympa�co.ca] 
Sent: Monday, July 23, 2018 10:13 AM 
To: Beer, Kaitlin <kbeer@cement.org> 
Subject: RE: Reques�ng Copyright Permissions to Reproduce Figures from PCA Publica�ons for use in a Master's
Thesis

Hi Kaitlin,
Thank you for providing me with the permission to reproduce Figure 2 from the Journal of the PCA
Research and Development Laboratories, Vol.6, no. 1, 1964. Based on conversations with the copyright
librarian here at the University of Waterloo your previous email is all I require for my thesis. 
I have captioned the figure as shown below citing the original article and attributing the figure to the
PCA as you recommended. If any changes need to be made please let me know. 
Tensile Stress-Strain Curve for Reinforcing Bars Manufactured to Various ASTM Standards (Pfister &
Hognestad, 1964), Adapted from the Journal of the PCA Research and Development Laboratories,
Volume 6, No. 1 (1964), Reproduced with Permission 
Kind Regards,
Graeme Milligan

mailto:kbeer@cement.org
mailto:mailto:graememilligan_3@sympatico.ca
mailto:kbeer@cement.org
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---------- Original Message ----------  
From: "Beer, Kaitlin" <kbeer@cement.org>  
Date: July 20, 2018 at 4:54 PM

Hello Graeme,
 
Thank you for your request. You are more than welcome to reproduce figure 2 from the Journal of
the PCA Research and Development Laboratories, Vol. 6, no. 1, 1965. Would you like a wri�en
permission form or will this email suffice? Please be sure to cite and a�ribute the figure to the
Portland Cement Associa�on. If you need anything else please let me know and good luck
wrapping up your thesis.
 
 
Best wishes,
Kaitlin Beer
Library Informa�on Specialist
Portland Cement Associa�on
5420 Old Orchard Road
Skokie, IL 60077
847.972.9176 (office)
kbeer@cement.org
 

 
 
 

From: Graeme Milligan [graememilligan_3@sympa�co.ca]  
Sent: Tuesday, July 17, 2018 2:35 PM 
To: Beer, Kaitlin <kbeer@cement.org> 
Subject: Re: Reques�ng Copyright Permissions to Reproduce Figures from PCA Publica�ons for use
in a Master's Thesis
 
Hi Kaitlin,
I just wanted to follow up on my July 3rd request to reproduce figures from a PCA
publication. As mentioned in my previous email, I hope to reproduce a stress-strain curve
for deformed reinforcing bars manufactured according to ASTM A432. As I plan to submit
my thesis in August I am hoping to acquire all copyright permissions sometime this month.
Best Regards,
Graeme Milligan 

---------- Original Message ----------  
From: Graeme Milligan <graememilligan_3@sympatico.ca>  
Date: July 3, 2018 at 12:03 PM

mailto:kbeer@cement.org
mailto:kbeer@cement.org
mailto:graememilligan_3@sympatico.ca
mailto:kbeer@cement.org
mailto:graememilligan_3@sympatico.ca
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Good Morning Kaitlin,
I am a graduate student at the University of Waterloo currently working on my
Master's thesis. In my thesis I would like to reproduce the first graph in Figure
2 from "High Strength Bars as Concrete Reinforcement Part 6. Fatigue Tests"
(Journal of the PCA Research and Development Laboratories, Volume 6, #1,
January 1964). Lauren Byl from the University of Waterloo recommended I
contact you in regards to getting permissions to reproduce this figure. 
My thesis would be published in the institutional repository at the University
of Waterloo (Waterloo, Ontario, Canada). 
If any additional information is required please let me know. Thank you in
advance for your time.
Kind Regards, 
Graeme Milligan 
MASc Candidate, University of Waterloo

 
 

image001.png (13 KB)
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Canada Permissions <canadapermissions@pearson.com> 7/26/2018, 3:50 AM

Re: Fwd: Permission Request Form Submission - CANADA
To Graeme Milligan <graememilligan_3@sympatico.ca>  

Dear Graeme

Our ref: 564

Thank you for your e-mail and the confirmation furnished.

I am pleased to be able to grant permission for you to use figures 13.2 and 13.35 of our publication, Reinforced
Concrete: Mechanism and Design Canadian Edition by James G MacGregor and F Michael Bartlett in your Masters thesis:
Nonlinear Finite Element Analysis of Punching Shear of Reinforced Concrete Slabs on Rectangular Columns which will be
published by the University of Waterloo in August 2019.
Permission is granted free of charge, subject to acknowledgement to author/title and ourselves as publishers.
Permission does not extend to material that has been acknowledged to another source.
Acknowledgement: Title, author, Pearson Education Limited and Copyright line as it appears in our publication.
This permission is for Canada, non-exclusive print and electronic rights in the English language. Electronic content must
appear on an access controlled website. 

I thank you and trust you find the above to be in order.

Kind regards

Gaynor Thomas

On Fri, Jul 20, 2018 at 4:29 PM, Graeme Milligan <graememilligan_3@sympatico.ca> wrote: 

Hi Gaynor,
Thanks for the follow up.
Yes, please proceed to grant permission for the two figures as mentioned in your previous email.
I just have one question about obtaining permission for Figure 13.36. I see that this photo is courtesy of Dr. James.
MacGregor. As you mentioned this content belongs to the author and I would need to contact him. However, I believe Dr.
MacGregor passed away in 2015. In cases such as these is it possible to obtain permissions?
Thanks for any insight you can provide.
Cheers,
Graeme Milligan

---------- Original Message ---------- 
From: "Permissions, Canada" <canadapermissions@pearson.com> 
Date: July 20, 2018 at 1:47 AM 
 
Dear Graeme
 
Our ref: 564 
 
Thank you very much for the additional information furnished.
 
Yes, there are usually separate Credits pages, but this is not the case with every title.
 
I note that the the figure 13.36 is accredited to the author. Usually when a credit line like this appears, the
content belongs to the author in his personal capacity. In this regard, you will have to reach out to the author
directly to obtain permission.
 
I can proceed to grant permission for the use of the other two figures. Please confirm this is how you wish to
proceed.
 
I thank you and look forward to hearing from you.
 
Kind regards
 
Gaynor Thomas
 
On Tue, Jul 17, 2018 at 9:27 PM, Graeme Milligan < graememilligan_3@sympatico.ca> wrote: 

Hi Gaynor,
I just wanted to confirm you received the additional information from ISBN 013101403X I sent
last Monday (July 9). If so, is there any update on my request? (Reference # 564).
Best Regards,
Graeme Milligan

---------- Original Message ---------- 
From: Graeme Milligan < graememilligan_3@sympatico.ca > 

mailto:graememilligan_3@sympatico.ca
mailto:canadapermissions@pearson.com
mailto:graememilligan_3@sympatico.ca
mailto:graememilligan_3@sympatico.ca
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Date: July 9, 2018 at 12:31 PM 
 
Good Afternoon Gaynor, 
Please find copies of Figures 13-2, 13-35 and 13-36 and the acknowledgement
page from ISBN 013101403X attached. I was unable to locate a credits page. Is it
typically separate from the acknowledgements?
I plan to reproduce the content in my Master's thesis submitted to the University of
Waterloo which will be published this August 2018. My thesis will be made
available in print and electronic formats in the library at the University of Waterloo.
Details of my thesis are as follows:
Thesis Title: Nonlinear Finite Element Analysis of Punching Shear of Reinforced
Concrete Slabs Supported on Rectangular Columns
Author: Graeme Milligan
Let me know if anything else is required.
Best Regards,
Graeme

---------- Original Message ---------- 
From: "Permissions, Canada" < canadapermissions@pearson.com
> 
Date: July 9, 2018 at 5:21 AM 
 
Dear Graeme
 
Our ref: 564 
 
I acknowledge receipt of your request, which you submitted via the
online form.
 
Please be advised that your request is currently receiving our
attention. In order for us to process your request further, please
furnish:

your publication details i.e. the title, author, edition number,
print run and your publication date; 
copies of the content (figures 13.2, 13.35 and 13.36),
scanned directly from the source title i.e. ISBN: 013101403X; 
copies of the Credits and Acknowledgement pages, scanned
directly from the source title i.e. ISBN: 013101403X; 
formats requested i.e. print/electronic

Once the above is received, I will be in a position to process your
request further. 
 
Kind regards
 
Gaynor Thomas 

 

 
---------- Forwarded message ---------- 
From: Permission-Request-Form@pearson.com < Permission-
Request-Form@pearson.com> 
Date: Sat, Jul 7, 2018 at 7:56 PM 
Subject: Permission Request Form Submission - CANADA 
To: canadapermissions@pearson.com 
 
 

Book Title: Reinforced Concrete: Mechanics and Design 
Edition: First Canadian Edition 
Author: James G. MacGregor and F. Michael Bartlett 
ISBN: 0-13-101403-X 
URL:  
Ancillary Title:  
Edition:  
Author:  
ISBN:  
URL:  
Type of Use: other 
Requested Material: Figure 13-2 page 578, Figure 13-35 and Figure 13- 
36 page 617 
Select the intentional uses for the material: Republication 
Number of copies/units that will be reproduced, if any:  
Will the textbook be adopted and students required to purchase the text or product for the course?: No
URL where the content will appear: https://uwspace.uwaterloo.ca/ 
Number of users who will access material: Unknown 
Type of users who will have access: Academics 
Access to the information be restricted and password protected: No 
If yes, explain how:  

mailto:canadapermissions@pearson.com
mailto:Permission-Request-Form@pearson.com
mailto:Permission-Request-Form@pearson.com
mailto:canadapermissions@pearson.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__uwspace.uwaterloo.ca_&d=DwMCaQ&c=0YLnzTkWOdJlub_y7qAx8Q&r=e6bIY7aXsKDrsDV86YWoS9bwwiqgp8oju6YR25nXB2c&m=J-HoaWSew-EJO46Jnqo-8vOcKajvOiuTsUBxG8LB1Cg&s=2u4qd1Xf9e7FBzcUTkNMJxuH3aym0Y3dRfzErzanEkc&e=
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Downloading, printing, and copying will be restricted: No 
If yes, explain how:  
Educator/Contact Name: Graeme Jacob Milligan 
School/Company: University of Waterloo 
Address: 200 University Avenue West 
City: Waterloo 
Province: Ontario 
Postal Code: N2L 3G1 
Email: gjmillig@uwaterloo.ca 
Fax:  

 
 
 
-- 
Global Innovations & Services 
Pearson Canada 

4th Floor, Auto Atlantic
Corner Hertzog Boulevard and Heerengracht
 

Cape Town, 8001
South Africa
E: permissions@pearson.com
 
Learn more at za.pearson.com 
 

 

 

 
 
 
-- 
Global Innovations & Services 
Pearson Canada 

4th Floor, Auto Atlantic
Corner Hertzog Boulevard and Heerengracht
 

Cape Town, 8001
South Africa
E: permissions@pearson.com
 
Learn more at za.pearson.com 
 

 

--  
Global Innovations & Services 
Pearson Canada 

4th Floor, Auto Atlantic
Corner Hertzog Boulevard and Heerengracht
Cape Town, 8001
South Africa

E: permissions@pearson.com

Learn more at za.pearson.com  

https://maps.google.com/?q=200+University+Avenue+West&entry=gmail&source=g
mailto:gjmillig@uwaterloo.ca
mailto:permissions@pearson.com
http://za.pearson.com/
mailto:permissions@pearson.com
http://za.pearson.com/
mailto:permissions@pearson.com
http://za.pearson.com/
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Appendix A 

Estimation of Slab Rotations – Linear Approximation Verification 

In this appendix, the procedure used to estimate the slab rotations from the finite element results is 

outlined. The deflected shape of select slabs as the load is increased in the finite element analysis are 

provided and compared to the linear approximation used.  
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The predicted deflection profiles in each orthogonal direction along the symmetry faces for all slabs 

analyzed in this thesis, other than the slabs in the SB1 analysis which were supported at the slab edge, 

were found to be approximately linear between the end of the supported area (column stub or steel 

plate) and the unsupported edge of the slab throughout the analysis until punching or one-way shear 

failure occurred. Therefore, the slab rotations in each orthogonal direction were estimated using 

equations 𝐴1 and 𝐴2, where ∆i, si and ci are the vertical deflection at the slab edge predicted by the 

FEA, half length of the isolated specimen and half of the column dimension in each orthogonal 

direction respectively. The small angle approximation tan θ  ≅ θ was used in all models.  

𝜓𝑥 = 
∆𝑥

𝑠𝑥 − 𝑐𝑥

(𝐴1) 

𝜓𝑦 =
∆𝑦

𝑠𝑦 − 𝑐𝑦

(𝐴2) 

For the Hawkins’ slabs 𝑠𝑥 = 𝑠𝑦 = 1066.8𝑚𝑚 (7′) and for the AM and PT series slabs 𝑠𝑥 = 𝑠𝑦 =

1500𝑚𝑚.  

A comparison of this linear approximation to the predicted deflected profile for slabs 1 and 7 from 

the Hawkins’ slab analysis and for slab AM04 (calibrated model) are shown in Figure A-1, Figure A-

2, and Figure A-3 respectively. Slab 1 and 7 were loaded in one-way and two-way action 

respectively. In all investigated cases, the linear approximation was found to correlate well with the 

predicted deflected profile until approximately 90% of the peak load. Between 90% of the peak load 

and the peak load, the deviation between the linear approximation and the actual deflection profile 

increased. However, the linear approximation has a similar slope to the deflected profile near the 

supported region which is the region of interest. Therefore, the linear approximation was used to 

estimate all slab rotations in this thesis.  
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Figure A-1: Predicted Deflection Profile – Slab 1 from Hawkins, Fallsen and Hinojosa (1971) 
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Figure A-2: Predicted Deflection Profile – Slab 7 from Hawkins, Fallsen and Hinojosa (1971) 
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Figure A-3: Predicted Deflection Profile – Slab AM04 from Sagaseta et al. (2014)  
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Appendix B 

Shear Stress Distribution Calculation Methodology 

In this appendix, the methodology used to calculate the shear stress distributions in the slab around 

the column perimeter and the ACI critical perimeter is discussed. Python 2.7 was used to post-process 

the ABAQUS results and export the results to Microsoft Excel for plotting.  
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For reference, a top view of the quarter model for the AM series (AM04 is shown) and the parametric 

study models is provided in Figure B-1. In the ABAQUS model, the X-axis is parallel to the long side 

of the steel plate and the Y-axis is parallel to the short side of the steel plate, which is opposite of the 

experimental setup. However, the experimental convention was used when referring to the stress 

distributions and the load-rotation or load-deflection responses in this thesis. Therefore, the Y-

direction was parallel to the long side of the steel plate and the X-direction was parallel to the short 

side of the steel plate.  

 

Figure B-1: Overview of AM04 Quarter Model 

The location of the elements considered in the calculation of the shear stress distribution in the slab 

around the perimeter of the steel support plate (“column”) and the ACI 318 critical perimeter are 

shown in Figure B-2. The elements parallel to the short side of the supported area were denoted 

“Parallel to X” or “Parallel to X ACI.” The elements parallel to the long side of the supported area 

were denoted “Parallel to Y” or “Parallel to Y ACI.” In all models, the support plate/column 
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perimeter elements were located along the outer edge of the supported area as shown in Figure B-2. 

In all models except for the AM04 model, the ACI critical perimeter elements were located at a 

distance of 100mm from the outer edge of the supported area. Since the elements only have one 

integration point, located at the element centroid, the stress values used are calculated at a distance of 

90mm away from the edge of the supported area, which is slightly less than d/2 (101mm). In the 

AM04 model the ACI critical perimeter elements were located at 110mm from the edge of the 

supported area, and therefore, the integration points are approximately located 100mm from the edge 

of the supported area. However, the distance of 110mm was not used for all models because it led to 

meshing issues due to the use of a 20mm global mesh size. For the elements parallel to the short side 

of the supported area shear stress S13 was recorded during the analysis. For the elements parallel to 

the long side of the supported area shear stress S23 was recorded.  

 

Figure B-2: Top View of Elements Considered in Shear Stress Distribution Calculations 

A side view of slab showing the elements considered when calculating the shear stress distribution 

is shown in Figure B-3. As previously discussed, the elements along the perimeter of the supported 

area were located along the outer edge of the support plate. All elements through the slab depth were 

included when calculating the shear stress distribution.  

Parallel to Y 

Parallel to X 

Supported Area 
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Figure B-3: Side View of Elements Considered in Stress Distribution Calculations 

Since the element area is not a variable which can be extracted from ABAQUS it must be 

calculated using the deformed nodal coordinates of each element. As noted in Figure B-3, the outer 

element face area was used instead of the inner face area or average face area. Only using the area of 

the outer element face was found to have a minimal impact on the predicted shear stress distribution 

but greatly increased the computational efficiency of the Python post processing code.  

The Shoelace algorithm, provided in equation 𝐵1, was used to calculate the outer element face area 

from the four deformed nodal coordinates at each step during the analysis. The area of a closed 

polygon with four non-intersecting sides was calculated according to equation 𝐵2.  

𝐴 =
1

2
 |(𝑥1𝑦2 + 𝑥2𝑦3 + ⋯+ 𝑥𝑛𝑦1) − (𝑥2𝑦1 + 𝑥3𝑦2 + ⋯+ 𝑥1𝑦𝑛)| (𝐵1) 

𝐴 =
1

2
|(𝑥1𝑦2 + 𝑥2𝑦3 + 𝑥3𝑦4 + 𝑥4𝑦1) − (𝑥2𝑦1 + 𝑥3𝑦2 + 𝑥4𝑦1 + 𝑥1𝑦4)| (𝐵2) 

where 𝑥𝑖 and 𝑦𝑖 are the nodal coordinates of each node of the polygon (1-n) in a Cartesian plane 

and the nodes are numbered in a counterclockwise or clockwise direction (Hamberg & Vavrinek, 

1993). 

Using the element area and shear stress at the element integration point, the shear force acting on 

each element was calculated as shown in Figure B-4. The total shear stress on each column of 

elements was then calculated as the total force in the column of elements divided by the total area. 
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This process was repeated for each column of elements along the support plate and critical perimeter. 

As shown in Figure B-2, the elements considered in each direction intersect at the corner of the 

supported area or the critical perimeter. Therefore, the procedure outlined above was implemented 

twice for the corner elements considering the S13 and S23 stresses and the results were summed.  

 

Figure B-4: Procedure to Calculate Total Stress on a Column of Elements 

 

  



 

 278 

Appendix C 

Code Reduction Factor Comparisons for Additional cmin/d Ratios 

In this appendix, punching shear reduction factors from ACI 318M-14, Model Code 1978 and Model 

Code 2010 for additional cmin/d ratios not included in Section 5.1.1 are provided. In Section 5.1.1, the 

reduction factors for cmin/d ratios of 0.6, 1.3, 2 and 3 were provided. In this appendix, the reduction 

factors for cmin/d ratios of 0.8, 1.0, 1.5, 1.8 and 4 are provided. These additional cmin/d ratios were 

considered in the discussion included in Section 5.1.1. 
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Figure C-1: Reduction Factors for ACI 318M-14, Model Code 1978 and Model Code 2010, Left: 

cmin/d = 0.8, Right cmin/d = 1.0, d = 200mm 

  

Figure C-2: Reduction Factors for ACI 318M-14, Model Code 1978 and Model Code 2010, Left: 

cmin/d = 1.5, Right cmin/d = 1.8, d = 200mm 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10

R
e

d
u

c
ti

o
n

 F
a

c
to

r

Beta (cmax/cmin)

ACI 318 MC 1978 MC 2010

cmin/d = 0.8d = 200mm

a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10

R
e

d
u

c
ti

o
n

 F
a

c
to

r

Beta (cmax/cmin)

ACI 318 MC 1978 MC 2010

cmin/d = 1.0d = 200mm

b) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10

R
e

d
u

c
ti

o
n

 F
a

c
to

r

Beta (cmax/cmin)

ACI 318 MC 1978 MC 2010

cmin/d = 1.5d = 200mm

a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10

R
e

d
u

c
ti

o
n

 F
a

c
to

r

Beta (cmax/cmin)

ACI 318 MC 1978 MC 2010

cmin/d = 1.8d = 200mm

b) 



 

 280 

  

Figure C-3: Reduction Factors for ACI 318M-14, Model Code 1978 and Model Code 2010, cmin/d 

= 4.0, d = 200mm 
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Appendix D 

Summary of Models Included in Parametric Study  

In this appendix, a summary of the 77 models in the parametric study is provided. The full column 

dimensions, column aspect ratios and column dimensions in each quarter model are summarized in 

the following table for each of the eight cmin/d ratios. All other parameters are constant for each model 

and are summarized in Section 5.1.2.  
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Final Parametric Matrix 

cmin/d cmin cmax β cmin/2 cmax/2 

0.594 

120 120 1 60 60 

120 200 1.667 60 100 

120 240 2 60 120 

120 320 2.667 60 160 

120 360 3 60 180 

120 440 3.667 60 220 

120 480 4 60 240 

120 560 4.667 60 280 

120 600 5 60 300 

120 680 5.667 60 340 

120 720 6 60 360 

120 800 6.667 60 400 

120 840 7 60 420 

120 920 7.667 60 460 

120 960 8 60 480 

120 1040 8.667 60 520 

120 1080 9 60 540 

120 1160 9.667 60 580 

120 1200 10 60 600 

0.792 

160 160 1 80 80 

160 240 1.5 80 120 

160 320 2 80 160 

160 400 2.5 80 200 

160 480 3 80 240 

160 560 3.5 80 280 

160 640 4 80 320 

160 720 4.5 80 360 

160 800 5 80 400 

160 880 5.5 80 440 

160 960 6 80 480 

160 1040 6.5 80 520 

160 1120 7 80 560 

160 1200 7.5 80 600 

160 1280 8 80 640 
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cmin/d cmin cmax β cmin/2 cmax/2 

0.990 

200 200 1 100 100 

200 320 1.6 100 160 

200 400 2 100 200 

200 520 2.6 100 260 

200 600 3 100 300 

200 720 3.6 100 360 

200 800 4 100 400 

200 920 4.6 100 460 

200 1000 5 100 500 

200 1120 5.6 100 560 

200 1200 6 100 600 

200 1320 6.6 100 660 

1.287 

260 260 1.0 130 130 

260 390 1.5 130 195 

260 520 2.0 130 260 

260 640 2.462 130 320 

260 780 3.0 130 390 

260 920 3.538 130 460 

260 1040 4.0 130 520 

260 1160 4.462 130 580 

260 1320 5.077 130 660 

1.485 

300 300 1.0 150 150 

300 450 1.5 150 225 

300 600 2.0 150 300 

300 760 2.533 150 380 

300 920 3.067 150 460 

300 1040 3.467 150 520 

300 1200 4.00 150 600 

1.782 

360 360 1.000 180 180 

360 540 1.500 180 270 

360 720 2.000 180 360 

360 920 2.556 180 460 

360 1080 3.000 180 540 

360 1280 3.556 180 640 
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cmin/d cmin cmax β cmin/2 cmax/2 

1.980 

400 400 1.000 200 200 

400 600 1.500 200 300 

400 800 2.000 200 400 

400 1000 2.500 200 500 

400 1200 3.000 200 600 

2.970 

600 600 1.000 300 300 

600 920 1.533 300 460 

600 1200 2.000 300 600 

 

  



 

 285 

Appendix E 

Additional Load-Displacement Plots and Code Comparison Bar 

Charts 

In this appendix, additional load-displacement plots and bar charts of shear capacity vs rectangularity 

not included in Section 5.2 are provided. These additional figures are for cmin/d ratios of 0.594, 0.792 

and 0.990 and were not included in the main document for clarity. These additional load-

displacement responses and shear capacity predictions were considered in the trends discussed in 

Section 5.2. 
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Figure E-1: Additional Load-Deflection Plots for cmin/d = 0.594, Non-integer β values 

 

Figure E-2: Capacity Predicted by FEA and Various Design Codes, cmin/d = 0.594, Non-integer β 

values 
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Figure E-3: Additional Load-Deflection Plots for cmin/d = 0.792, Non-integer β values 

 

Figure E-4: Capacity Predicted by FEA and Various Design Codes, cmin/d = 0.792, Non-integer β 

values 
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Figure E-5: Additional Load-Deflection Plots for cmin/d = 0.990, Non-integer β values 

 

Figure E-6: Capacity Predicted by FEA and Various Design Codes, cmin/d = 0.990, Non-integer β 

values 
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Appendix F 

Predicted Crack Patterns – Parametric Study Models  

The predicted crack patterns for each investigated cmin/d ratio are provided in this appendix in order of 

increasing column rectangularity. The crack patterns on the tension surface of the slab, and the sides 

of the quarter model along the long and short sides of the steel support plate are provided. 

The crack patterns are visualized in ABAQUS through the contour plots of the maximum principal 

plastic strain. In most of the provided contour plots, the maximum plastic strain magnitude has been 

set to a value of 0.05. This maximum limit was set so that the contour lines shown in each crack 

pattern represent the same magnitude. Any portions of the slab predicted to have a higher maximum 

principal plastic strain are shown in grey. The steel support and load plates are white as the material 

definition of these parts was linear elastic, and as such, no plastic strain is possible. In a few of the 

models with low cmin/d ratios, the maximum principal plastic strain magnitude predicted by ABAQUS 

was much lower than 0.05. In these contour plots the maximum plastic strain was set to the default 

value chosen by ABAQUS. These contour plots are labelled as using the default contour limits for 

clarity.  
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cmin/d = 0.594 

 

 

 

 
 

Figure F-1: β = 1 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 

 

 

 

 

 

 

 

*default 

contour limits 
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Figure F-2: β = 1.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-3: β = 2 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

*default 

contour limits 

*default 

contour limits 
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Figure F-4: β = 2.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-5: β = 3 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

*default 

contour limits 
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Figure F-6: β = 3.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-7: β = 4 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-8: β = 4.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-9: β = 5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-10: β = 5.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-11: β = 6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-12: β = 6.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-13: β = 7 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-14: β = 7.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-15: β = 8 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-16: β = 8.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-17: β = 9 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-18: β = 9.667 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-19: β = 10 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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cmin/d = 0.792 

 

 

 

 
 

Figure F-20: β = 1 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 

 

 

 

 

 

 

 

 

*default 

contour limits 
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Figure F-21: β = 1.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-22: β = 2 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

*default 

contour limits 

*default 

contour limits 
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Figure F-23: β = 2.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-24: β = 3 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-25: β = 3.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-26: β = 4 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-27: β = 4.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-28: β = 5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-29: β = 5.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-30: β = 6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-31: β = 6.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-32: β = 7 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-33: β = 7.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-34: β = 8 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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cmin/d = 0.990 

 

 

 

 
 

Figure F-35: β = 1 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-36: β = 1.6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-37: β = 2 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-38: β = 2.6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-39: β = 3 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-40: β = 3.6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-41: β = 4 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-42: β = 4.6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-43: β = 5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-44: β = 5.6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-45: β = 6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-46: β = 6.6 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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cmin/d = 1.287 

 

 

 

 
 

Figure F-47: β = 1 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-48: β = 1.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-49: β = 2 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-50: β = 2.462 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-51: β = 3 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

*default 

contour limits 
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Figure F-52: β = 3.467 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-53: β = 4 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-54: β = 4.462 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-55: β = 5.077 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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cmin/d = 1.485 

 

 

 

 
 

Figure F-56: β = 1 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-57: β = 1.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-58: β = 2 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-59: β = 2.533 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-60: β = 3.067 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-61: β = 3.467 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-62: β = 4 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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cmin/d = 1.782 

 

 

 

 
 

Figure F-63: β = 1 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-64: β = 1.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-65: β = 2 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-66: β = 2.556 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-67: β = 3 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-68: β = 3.556 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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cmin/d = 1.980 

 

 

 

 
 

Figure F-69: β = 1 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-70: β = 1.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-71: β = 2 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-72: β = 2.5 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-73: β = 3 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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cmin/d = 2.970 

 

 

 

 
 

Figure F-74: β = 1 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 
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Figure F-75: β = 1.533 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side 

 

 
 

Figure F-76: β = 2 Crack Pattern, Bottom Left: Long Side, Bottom Right: Short Side  
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Appendix G 

Additional Peak Load Shear Stress Distributions  

In this appendix, additional shear stress distributions in the slab around the perimeter of the steel 

support plate and at the ACI critical perimeter at the peak load level predicted in each model not 

shown in Section 5.2 are provided.  

As with the load-displacement plots for the three lowest cmin/d ratios (0.594, 0.792 and 0.990) the 

stress distributions provided in Section 5.2 at both the support plate and critical perimeter do not 

include the results for all the investigated models. Once again, these models were removed for clarity, 

but were considered in the discussed trends. The stress distributions for these remaining models are 

provided in this appendix.  

Also provided in this appendix are the predicted stress distributions at the ACI critical perimeter for 

all eight cmin/d ratios. As discussed in Section 5.2.1, no clear trends were observed in the peak stress 

values around the ACI critical perimeter, but they are included for completeness.  
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cmin/d = 0.594 

 

 

 

Figure G-1: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.594, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β 
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Figure G-2: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 0.594, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β 
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Figure G-3: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 0.594, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-Integer β 
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cmin/d = 0.792 

 

 

 

Figure G-4: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.792, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β 
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Figure G-5: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 0.792, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β 
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Figure G-6: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 0.792, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-Integer β 
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cmin/d = 0.990 

 

 

 

Figure G-7: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.990, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β 
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Figure G-8: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 0.990, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β 
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Figure G-9: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 0.990, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-Integer β 
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cmin/d = 1.287 

 

 

 

Figure G-10: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 1.287, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 

  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300

St
re

ss
 a

t 
El

e
m

e
n

t 
In

te
gr

at
io

n
 P

o
in

t,
 

M
P

a

Distance from Column Centerline  (mm)

Beta = 1

Beta = 1.5

Beta = 2

Beta = 2.462

Beta = 3

Beta = 3.538

Beta = 4

Beta = 4.462

Beta = 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250

St
re

ss
 a

t 
El

e
m

e
n

t 
In

te
gr

at
io

n
 P

o
in

t,
 

M
P

a

Distance from Column Centerline  (mm)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800

Sh
e

ar
 S

tr
e

ss
 (

M
P

a)

Distance From Start of Corner Element (mm)



 

 344 

cmin/d = 1.485 

 

 

 

Figure G-11: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 1.485, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 
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cmin/d = 1.782 

 

 

 

Figure G-12: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 1.782, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 
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cmin/d = 1.980 

 

 

 

Figure G-13: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 1.980, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 
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cmin/d = 2.970 

 

 

 

Figure G-14: Predicted Shear Stress Distribution Around ACI Critical Perimeter, cmin/d = 2.970, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side 
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Appendix H 

Shear Stress Distributions – 30% and 90% of Peak Load  

As discussed in Section 5.3.2.1, the shape of the predicted shear stress distribution in the slab around 

the support plate perimeter was found to change throughout the analysis. In this appendix, the shear 

stress distributions around the support plate perimeter at 30% and 90% of the peak load for each 

model are provided for each cmin/d ratio.  
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cmin/d = 0.594 

 

 

 

Figure H-1: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.594, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β, 30% of Peak Load 
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Figure H-2: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.594, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β, 90% of Peak Load 
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Figure H-3: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.594, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β, 30% of Peak 

Load 
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Figure H-4: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.594, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β, 90% of Peak 

Load 
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cmin/d = 0.792 

 

 

 

Figure H-5: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.792, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β, 30% of Peak Load 
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Figure H-6: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.792, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β, 90% of Peak Load 
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Figure H-7: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.792, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β, 30% of Peak 

Load 
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Figure H-8: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.792, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β, 90% of Peak 

Load 
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cmin/d = 0.990 

 

 

 

Figure H-9: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.990, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β, 30% of Peak Load 
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Figure H-10: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.990, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Integer β, 90% of Peak Load 
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Figure H-11: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.990, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β, 30% of Peak 

Load 
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Figure H-12: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 0.990, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, Non-integer β, 90% of Peak 

Load 
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cmin/d = 1.287 

 

 

 

Figure H-13: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.287, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 30% of Peak Load 
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Figure H-14: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.287, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 90% of Peak Load 
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cmin/d = 1.485 

 

 

 

Figure H-15: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.485, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 30% of Peak Load 
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Figure H-16: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.485, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 90% of Peak Load 

  

0

1

2

3

4

5

6

7

0 50 100 150 200

Sh
e

ar
 S

tr
e

ss
 (

M
P

a)

Distance from Column Centerline (mm)

Beta = 1

Beta = 1.5

Beta = 2

Beta = 2.533

Beta = 3.067

Beta = 3.467

Beta = 40

1

2

3

4

5

6

7

0 50 100 150 200

Sh
e

ar
 S

tr
e

ss
 (

M
P

a)

Distance from Column Centerline (mm)

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700

Sh
e

ar
 S

tr
e

ss
 (

M
P

a)

Distance From Start of Corner Element (mm)



 

 365 

cmin/d = 1.782 

 

 

 

Figure H-17: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.782, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 30% of Peak Load 
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Figure H-18: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.782, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 90% of Peak Load 
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cmin/d = 1.980 

 

 

 

Figure H-19: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.980, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 30% of Peak Load 
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Figure H-20: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 1.980, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 90% of Peak Load 
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cmin/d = 2.970 

 

 

 

Figure H-21: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 2.970, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 30% of Peak Load 

0

0.5

1

1.5

2

2.5

0 100 200 300 400

Sh
e

ar
 S

tr
e

ss
 (

M
P

a)

Distance from Column Centerline (mm)

Beta = 1

Beta = 1.533

Beta = 2

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350

Sh
e

ar
 S

tr
e

ss
 (

M
P

a)

Distance from Column Centerline (mm)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700

Sh
e

ar
 S

tr
e

ss
 (

M
P

a)

Distance From Start of Corner Element (mm)



 

 370 

 

 

 

Figure H-22: Predicted Shear Stress Distribution Around Support Plate Perimeter, cmin/d = 2.970, 

Top) Stresses Along Short Side, Bottom) Stresses Along Long Side, 90% of Peak Load 
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Appendix I 

Shear Stress Distributions at 30%, 90% and 100% of Peak Load for 

Select Models 

In this appendix, the shear stress distributions in the slab around the support plate perimeter for the 

remaining models considered in the stress distribution study discussed in Section 5.3.2.1 for the 

remaining cmin/d ratios are provided. 

  



 

 372 

  

  

  

 

Figure I-1: Shear Stress Distributions in the Slab Around the Support Plate Perimeter at 30%, 

90% and 100% of Peak Load for Selected β Values, cmin/d = 0.594 
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Figure I-2: Shear Stress Distributions in the Slab Around the Support Plate Perimeter at 30%, 

90% and 100% of Peak Load for Selected β Values, cmin/d = 0.792 
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Figure I-3: Shear Stress Distributions in the Slab Around the Support Plate Perimeter at 30%, 

90% and 100% of Peak Load for Selected β Values, cmin/d = 0.990 
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Figure I-4: Shear Stress Distributions in the Slab Around the Support Plate Perimeter at 30%, 

90% and 100% of Peak Load for Selected β Values, cmin/d = 1.485 
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Figure I-5: Shear Stress Distributions in the Slab Around the Support Plate Perimeter at 30%, 

90% and 100% of Peak Load for Selected β Values, cmin/d = 1.782 
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Figure I-6: Shear Stress Distributions in the Slab Around the Support Plate Perimeter at 30%, 

90% and 100% of Peak Load for Selected β Values, cmin/d = 1.980 
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Figure I-7: Shear Stress Distributions in the Slab Around the Support Plate Perimeter at 30%, 

90% and 100% of Peak Load for Selected β Values, cmin/d = 2.970  
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Appendix J 

Trendlines Plots Referenced in Table 5-18 

In this appendix, the trendlines of the FEM predicted normalized nominal shear stress capacity along 

the ACI critical perimeter versus column rectangularity referenced in Table 5-18 in Section 5.3.1.1 

are provided. The trendlines demonstrate that the reduction in normalized nominal shear capacity 

along the ACI 318 critical perimeter predicted by the FEM is approximately linear, and becomes 

more severe as the cmin/d ratio increases. The plots provided in this appendix, and referenced in Table 

5-18, include all models considered in the parametric study, including those which were predicted to 

fail in one-way shear by the FEM.  
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Figure J-1: Normalized Nominal Shear Stress Along ACI 318 Critical Perimeter Versus Column 

Rectangularity, cmin/d = 0.594 

 

 

Figure J-2: Normalized Nominal Shear Stress Capacity Along ACI 318 Critical Perimeter Versus 

Column Rectangularity, cmin/d = 0.792 
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Figure J-3: Normalized Nominal Shear Stress Capacity Along ACI 318 Critical Perimeter Versus 

Column Rectangularity, cmin/d = 0.990 

 

Figure J-4: Normalized Nominal Shear Stress Along Capacity ACI 318 Critical Perimeter Versus 

Column Rectangularity, cmin/d = 1.287 
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Figure J-5: Normalized Nominal Shear Stress Capacity Along ACI 318 Critical Perimeter Versus 

Column Rectangularity, cmin/d = 1.485 

 

 

Figure J-6: Normalized Nominal Shear Stress Capacity Along ACI 318 Critical Perimeter Versus 

Column Rectangularity, cmin/d = 1.782 
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Figure J-7: Normalized Nominal Shear Stress Capacity Along ACI 318 Critical Perimeter Versus 

Column Rectangularity, cmin/d = 1.980 

 

Figure J-8: Normalized Nominal Shear Stress Capacity Along ACI 318 Critical Perimeter Versus 

Column Rectangularity, cmin/d = 2.970 
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