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Abstract

Historical and current design code provisions for the punching shear of reinforced concrete slabs
supported on rectangular columns vary greatly and are primarily based on empirical results.
Additionally, the existing database for slabs supported on rectangular columns is quite small
compared to the empirical database for reinforced concrete slabs supported on square columns.
Conducting experimental tests of slabs supported on rectangular columns can be quite expensive and
time consuming due to the required specimen size. As such, properly calibrated finite element

simulations can be useful to expand the existing database and verify the accuracy of code provisions.

In this thesis a three-dimensional nonlinear finite element analysis (FEA) of interior slab-column
connections subjected to concentric vertical loading, in the commercial FEA software ABAQUS, is
presented. The finite element model was calibrated following the calibration procedure described in
Genikomsou (2015), which was focused on the FEA of punching shear of slabs supported on square
columns. Slab AMO04, which was a slab tested by Sagaseta et al. (2014), and which represents an
interior slab-column connection with a column rectangularity (aspect ratio) of three is considered as
the control specimen in the calibration. The calibration was then verified by modelling the three
remaining slabs in the AM series and three additional slabs tested by Sagaseta et al. (2011). These
additional slabs were supported on square columns and had different concrete strengths and flexural
reinforcing ratios than the AM series slabs. The calibrated finite element model (FEM) was found to

be able to accurately predict the load deflection response and crack patterns of the tested slabs.

The calibrated FEM was then used to conduct a parametric study on the impact of column
rectangularity on the punching shear behaviour of interior slab-column connections. Based on a
comparison of current and historical code provisions two parameters, the column aspect ratio, and the
ratio of the length of the minimum column dimension, cmin, to the effective flexural depth of the slab,
d, were considered in the parametric study. In total 77 simulations spanning 8 cmin/d ratios were
conducted. The results of these 77 simulations demonstrated that the impact of column rectangularity
is not independent of the cmin/d ratio. As the cmin/d ratio increased the impact of column rectangularity
predicted by the FEM, Eurocode 2 (2004), Model Code 2010 and the Critical Shear Crack Theory
(CSCT) became more severe. Predictions according to ACI1318M-14 were nearly independent of the
ratio of cmin/d and were typically unconservative compared to the FEM results for cmin/d ratios greater
than approximately 1.3. Additionally, the FEM, Eurocode 2 (2004), Model Code 2010 and the CSCT



predicted an impact of rectangularity for column aspect ratios between 1 and 2, which differs from the
current ACI 318 provisions. The shear stress distributions in the slab along the support perimeter
were also analyzed. Shear stresses were found to concentrate near the corner of the supported area
and along the short side of the supported area. As the cmin/d ratio increased these concentrations

became more focused at the column corner.
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Chapter 1: Introduction

1.1 Research Significance and Objectives

Reinforced concrete flat slabs are a commonly used structural system due to the many advantages
they offer such as simple formwork, reduced floor height and lower construction costs. However,
high stresses are developed at the connection between the slab and the supporting columns due to the
lack of horizontal supporting members such as beams and girders. These stresses can result in a brittle
failure mode known as punching shear. Due to its brittle nature a punching shear failure of a single
slab-column connection can lead to the progressive collapse of a portion or an entire structure if the
slab reinforcement is not properly designed or detailed. Punching shear failures typically occur before
a building is complete, due to the partially cured concrete having insufficient strength when the
temporary supports are removed (Gardner N. J., 2011). However, punching failures have also
occurred in occupied structures, such as the Sampoong department store collapse in Seoul, South
Korea in 1995, which resulted in the deaths of approximately 500 people. The collapse of the north
wing of this five-story commercial building was attributed to the punching shear failure of a slab-
column connection on the fifth floor (Gardner, Huh, & Chung, 2002; Gardner N. J., 2011). A designer
has many options to increase the punching capacity of a slab-column including using a higher
concrete compressive strength, increasing the effective flexural depth of the slab, increasing the
flexural reinforcement ratio (not accounted for in North American codes), or designing and detailing
shear reinforcement. Another popular option to increase the punching capacity of a slab-column
connection, especially in parking garages or multi-story office or residential buildings, is to use a
larger column size, or to use a rectangular column. The use of rectangular columns also has many
additional benefits such as reducing the slab clean span between the columns in the direction of the
elongated column dimension and providing lateral stiffness to the structure (Sagaseta, Tassinari,
Fernandez Ruiz, & Muttoni, 2014). Based on a linear elastic analysis of a continuous slab Simmonds
(1970) also found that the use of slightly rectangular columns resulted in reduced slab deflections and

bending moments.

Due to its brittle nature, and possibility of progressive collapse if punching failures do occur, many
researchers have investigated the punching shear behaviour of reinforced concrete flat slabs. To date,
most of this research has been focused on experimental tests which have formed the basis of many
historical and current design code provisions. Due to the high cost and space requirements of testing
full multi-bay slab systems, most of the reported tests are for isolated slab-column connections.
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Isolated slab-column connections are sized to represent the extent of the negative moment region
around the column, which is commonly referred to as the radius of contraflexure. Testing isolated
specimens is still quite expensive and time consuming, and as such, the existing experimental
database cannot cover all aspects which affect punching shear failures. For example, most of the
previous research has been focused on slabs supported on square or circular columns, even though the
use of rectangular columns with flat slabs is quite common. Properly calibrated finite element
analysis (FEA) can be a cost-effective way to expand the existing experimental database and verify
the accuracy of current design code provisions. Nonlinear finite element analysis (NLFEA) can be
used to predict the punching capacity, deflected shape, reinforcement stresses, crack patterns and
stresses at any point in the slab. However, the finite element model must first be calibrated based on
experimental results before it can be used to conduct parametric studies.

In this thesis the NLFEA of reinforced concrete slabs supported on square and rectangular columns
selected from published literature, using the commercial finite element software ABAQUS, are
presented. Based on previous work conducted at the University of Waterloo by Stoner (2015),
Barrage (2017) and Genikomsou (2015), the “Concrete Damaged Plasticity” (CDP) model is used for
the constitutive modelling of concrete. The CDP has also been successfully applied by other
researchers to model many applications in reinforced concrete structures including damage estimation
of reinforced concrete beams (Hanif, Ibrahim, Jameel, Ghaedi, & Aslam, 2016), and FRP confined
concrete (Yu, Teng, Wong, & Dong, 2010; Hany, Hantouche, & Harajli, 2016).

The simulated punching shear specimens are taken from four experimental programs. The first
specimen analyzed, slab SB1, was tested at the University of Waterloo by Adetifa and Polak (2005),
and represented an interior slab-column connection without shear reinforcement supported on a
square column subjected to concentric vertical loading. Slab SB1 was also analyzed by Genikomsou
(2015) in order to calibrate a nonlinear finite element model in ABAQUS using the CDP.
Genikomsou’s calibrated model was then used to study the punching shear behavior of slabs
supported on square columns (2015). Next, to verify ABAQUS’ capability to capture the impact of
the column rectangularity nine slabs tested by Hawkins, Fallsen and Hinojosa (1971) were analyzed.
These tests, which represented interior slab-column connections with column aspect ratios between 1
and 4.33 with similar critical perimeter lengths, formed the basis of the American Concrete Institute
(ACI) 318 provisions for punching shear of rectangular columns (ACI Committee 318, 2014; ASCE-
ACI Committee 426, 1974; Al-Yousif & Regan, 2003; Mitchell, Cook, & Dilger, 2005). Hawkins et



al. (1971) found that increasing the column aspect ratio (rectangularity) lead to a decrease in the
nominal punching capacity around the critical the critical perimeter located at d/2 from the column
face, where d is the average effective depth of the slab. The next four specimens analyzed were from
a study conducted by Sagaseta, Tassinari, Fernandez Ruiz and Muttoni (2014) in which the effect of
loading pattern (one-way or two-way) on the punching behaviour of an isolated slab-column
connection with a rectangularity of 3 was analyzed. Based on the experimental results and numerical
studies, they found that the concentration of shear stresses and forces around a rectangular column
with an aspect ratio of three is dependent on both the column geometry and the slab deflections due to
bending. The authors also concluded that the failure mode, capacity and rotations (deflections) are
strongly dependent on the column orientation with respect to the primary slab span, especially in
cases of one-way loading (Sagaseta, Tassinari, Ferndndez Ruiz, & Muttoni, 2014). The final three
slabs studied were from an experimental program by Sagaseta, Muttoni, Fernandez Ruiz and
Tassinari (2011) which was focused on the impact of non-axis symmetric conditions on punching
behaviour of isolated slab-column connections. The experimental setup in the 2014 experimental
program by Sagaseta et al. was similar to the setup used in this experimental program. The slabs in
the 2011 study were supported on square plates, had different reinforcing ratios and concrete
compressive strengths than those in the 2014 program, and were tested under two-way loading
conditions. Based on the test results, it was observed that slabs subjected to symmetric loading, with a
large reinforcing ratio in one direction and with a shear capacity lower than the shear force
corresponding to a yield line failure, had nearly symmetrical responses, even for slabs where the ratio
of the reinforcing ratios in both orthogonal directions was equal to two. Specimens with a low
flexural reinforcing ratio in one direction (0.3%) demonstrated an asymmetrical punching failure due

to the formation of a plastic hinge (Sagaseta, Muttoni, Fernandez Ruiz, & Tassinari, 2011).

The experimental specimens discussed above were modelled in ABAQUS to examine the impact of
column rectangularity on the punching shear behaviour of reinforced concrete flat slabs supported on
columns. The primary objective of this thesis was to create a calibrated finite element model which
could be used to study the impact of column rectangularity on punching shear since the database for
slabs supported on rectangular columns is much smaller than that for square columns. The FEA
results can also be used to verify the accuracy of current code provisions which vary greatly in their

treatment of column rectangularity.



The specific objectives of this research are as follows:

1. Summarize the historical and current code provisions related to the impact of column

rectangularity on punching shear;

2. Develop a calibrated three-dimensional finite element model which can be used to
investigate the impact of column rectangularity on the punching shear capacity of isolated

slab-column connections in reinforced concrete flat slabs;

3. Use the calibrated model to conduct a parametric study of column rectangularity and
analyze the effect of column rectangularity on the load-deflection behaviour, and shear

stress distributions around the column perimeter or any selected critical perimeter and;

4. Compare the impact of column rectangularity on punching capacity predicted by the FEA
with that predicted by current reinforced concrete design codes including ACI 318M-14,
Eurocode 2 (2004), fib Model Code 2010 and predictions based on the Critical Shear Crack
Theory (CSCT).

1.2 Outline

The outline of this thesis is as follows:

The introduction of this thesis (Chapter 1) provides a brief introduction of the research problem,
advantages of using finite element analysis and outlines the research objectives. Next, a description of
the phenomenon of punching shear is provided in Chapter 2. A literature review of previous
experimental, analytical and finite element studies of reinforced concrete slabs focused on punching
shear is also provided in Chapter 2. This literature review is primarily focused on interior slab-column
connections subjected to static concentric loading without shear reinforcement. Furthermore, an
overview of current and historical design code provisions for punching shear focused on the impact of
column rectangularity is provided. Chapter 3 provides a brief overview of the mechanical behaviour
of concrete. Chapter 4 presents a summary of the previous finite element work conducted at the
University of Waterloo and the development of the calibrated finite element model used to conduct
the parametric analysis of the impact of column rectangularity. In Chapter 4, an overview of the
considered experimental specimens, the methodology used to create the finite element model and a
comparison of the experimental results, code predictions and FEA results is provided. Based on these
comparisons it is concluded that ABAQUS is capable of capturing the impact of column

rectangularity and the predicted behaviour matches experimental observations by other researchers
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and code predictions. Chapter 5 presents the overview of the parametric study based on the calibrated
model and provides a detailed discussion of the results. As expected, ABAQUS predicts a negative
impact on nominal punching capacity as column rectangularity is increased. Finally, Chapter 6

presents a summary of the research, conclusions and provides guidance for future work.



Chapter 2: Punching Shear in Reinforced Concrete Slabs

2.1 Introduction

Today, reinforced concrete flat slabs are one of the most commonly used structural systems,
especially for buildings where open floor plans are critical such as warehouses, parking garages and
office buildings. According to Sozen and Siess (1963) the flat slab was invented rather than
developed, since an accepted theory of their structural behaviour was not available until 1921. George
M. Hill is credited with constructing the first flat slab in the United States of America in 1901. He had
originally introduced the concept of a reinforced concrete flat slab supported on monolithic concrete
columns in the American Society of Civil Engineers (ASCE) Transactions in 1900. Following the
work of Hill, Orlando W. Norcross patented a flat slab system which used four-way reinforcement in
1902, with the goal of removing the need for horizontal supports such as beams and girders for slabs.

However, it appears that the use of Norcross’ patented system was rather limited (Gasparini, 2002).

The two people considered to have the largest influence on popularizing the flat slab system are
American engineer C.A.P. Turner and Swiss engineer Robert Maillart, both of whom were credited
with inventing their flat slab systems independently. In 1906, Turner built his first flat slab building,
the Johnson Bovey Building, in Minneapolis. Turner’s designs, which used much less reinforcing
steel than other flat slab systems built later, used four-way flexural reinforcing, and large steel shear
heads with a diameter equal to approximately half the slab span above the columns and column
capitals. The capitals and steel shear heads, which Turner referred to as mushrooms, were included to
provide additional shear strength, as Turner realized the weakness of concrete in tension and in shear
in its uncured state (Gasparini, 2002). An example of Turner’s design for the column capital and
shearhead is shown in Figure 2-1. On the other hand, Maillart’s designs only used reinforcement in
two orthogonal directions, and did not account for the negative moment near the slab-column
connection. Even though Maillart neglected negative moments he successfully designed and built
many flat slabs buildings and bridges (Flrst & Marti, 1997).

The success of the designs by Turner and Maillart were a key development in structural
engineering as the flat slab represented a new structural form (Flrst & Marti, 1997) compared to the
typical systems seen in steel and timber construction (Gasparini, 2002). Between 1906 and 1910,
Turner constructed at least 34 flat slab buildings throughout the United States (Gasparini, 2002) and
by 1913 over 1000 flat slab buildings had been built worldwide (Sozen & Siess, 1963). The rapid
development of the flat slab system was likely due to the many economic advantages this system
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offered, such as minimized formwork, reduced floor framing depths and easier installation of finishes

and lighting.

In this chapter, a discussion of the phenomenon of punching shear and its consequences are
discussed first. Then a review of the testing background, focused on slabs without shear
reinforcement supported on square or rectangular columns and primarily subjected to concentric
punching, is provided. Next, a summary of some historical and current mechanical models and design
code provisions for punching shear with a focus on column rectangularity is provided. Finally, a
review of the previous finite element modelling of reinforced concrete flat slabs is presented.

MUSHROOM SYSTEM OF CONSTRUCTION
! COLUMNG AND FLODR SLAB ONLY = NO BEAMSE

FOOTING |

R R Y P S S S .

Figure 2-1: Turner’s Design for Column Capital and Steel Shearhead (Turner, C.A.P., 1905)
(taken from (Gasparini, 2002))

2.2 Phenomenon of Punching Shear

Reinforced concrete flat slabs supported on columns are currently one of the most commonly used
structural systems for buildings such as warehouses, parking garages and residential or commercial
high rises due to the many advantages they offer. These advantages include simplified formwork,
reduced floor height, reduced material requirements and simplified installation of finishes.
Throughout their history reinforced concrete flat slabs, which typically are simple in appearance, have
taken numerous forms as shown in Figure 2-2, due to the complexity of their loading carrying
behaviour in flexure and shear (FIB, 2001). As the understanding of the behaviour of reinforced
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concrete flat slabs has developed, the flat slab supported on columns without capitals or beams has
become increasing popular. However, the removal of the beams and girders results in a statical
discontinuity at the intersection of the slab and column. This intersection is a D region which is
subjected to a complex three-dimensional state of stress due to flexural and shear stresses (FIB,
2001). When the shear stresses near the slab-column connection exceed the shear strength of the
connection, the column and a portion of the slab, which has a truncated cone shape, push through the
slab resulting in a failure of the connection, and potentially the progressive collapse of an entire
structure. A typical punching surface is shown in Figure 2-3. The action of the column and the
truncated cone of concrete pushing through the slab is a brittle failure mode, known as punching
shear, which has been studied extensively since the 1950s as the popularity of slabs supported on
columns without capitals has grown (Muttoni, 2008).

a) b)

Drop panel

™ capital

Figure 2-2: Typical Flat Slab Systems, a) Flat Slab with Column Capitals and Drop Panels, b)
Two-way slab on beams and girders, c) Flat Slab, d) Waffle Slab, Acknowledgement: Reinforced
Concrete Mechanics and Design, MacGregor and Bartlett (2000), ©2000 Pearson Education

Canada Inc.



Previous research has shown that punching shear failures are preceded by radial cracking of the
slab concrete around the slab-column connection due to the moment carried by the slab (FIB, 2010;
MacGregor & Bartlett, 2000). As additional load is applied after this initial radial cracking a crack
pattern which is similar to that assumed in the yield-line analysis of a two-way slab is formed
(MacGregor & Bartlett, 2000). Simultaneously, inclined internal cracks begin forming in the slab due
to the large increase in vertical strains in the vicinity of the slab-column connection (FIB, 2010;
MacGregor & Bartlett, 2000; Regan & Braestrup, 1985). As the magnitude of the load is further
increased, these inclined cracks, which typically have an angle of 25-30 degrees, extend towards the
compression surface of the slab at a distance away from the column face (Alexander & Simmonds,
1987; Regan & Braestrup, 1985). A punching shear failure occurs when the strength of the
connection, which can be attributed to the shear carried by the compression zone, aggregate interlock
along the crack, and dowel action of the reinforcing bars (Theodorakopoulos & Swamy, 2002), is
exceeded. Once the shear strength of the connection is exceeded, a truncated cone of concrete and the
column punch through the slab, resulting in the failure surface shown in Figure 2-3. Examples of
punching shear crack patterns are shown in Figure 2-4 and Figure 2-5. Even though punching failures
have typically been found to be associated with yielding of the flexural reinforcement in the vicinity
of the slab-column connection the failure mode is brittle (Alexander & Simmonds, 1987; Park &
Gamble, 1980; Theodorakopoulos & Swamy, 2002).

/slf

Figure 2-3: Punching Shear Failure Surface, Acknowledgement: Reinforced Concrete Mechanics
and Design, MacGregor and Bartlett (2000), ©2000 Pearson Education Canada Inc.

The punching shear capacity of a slab-column connection may govern numerous design parameters
such as the column size, column capital size or slab thickness (Park & Gamble, 1980). In cases where
the overall capacity of a flat slab system is governed by the punching shear capacity, designers should

be aware that the level of safety, or chance of warning of failure, between the majority of the slab and
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the area of the slab around the column, are not the same due to the brittle nature of punching shear

failures compared to a ductile flexural slab failure (FIB, 2001).

Figure 2-4: Tension Surface Cracks (Anggadjaja & Teng, 2008), authorized reprint from ACI

Structural Journal, Volume 84, Issue 3, 2008

ﬂ" ,l‘ -
,!

Figure 2-5: Inclined Shear Cracks in Slab After Punching Failure (Anggadjaja & Teng, 2008),
authorized reprint from ACI Structural Journal, Volume 84, Issue 3, 2008

2.3 Review of Punching Shear Tests

2.3.1 Introduction

According to Moe (1961), some of the first contributors to punching shear research were Talbot
(1913), Bach and Graf (1915), Graf (1933 and 1938) and Richart (1948). Talbot tested 114 wall
footings and 83 column footings, of which 20 failed in shear. Based on his results, Talbot proposed an
equation to estimate the shear capacity of reinforced concrete footings. Bach and Graf (1915)
conducted an extensive program to investigate the flexural behaviour of reinforced concrete slabs.

Most of their slabs were loaded at eight or more discrete points, while others were loaded at the slab
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center. Some of the slabs which were subjected to central loads experienced shear failures. Graf
(1933) studied the shear capacity of reinforced concrete slabs subjected to concentrated loads near
their supports. Based on the results of three tests, it was observed that the shear capacity of the slabs
decreased as the distance between the load and support was increased. Graf hypothesized that flexural
cracking impacted the shear strength of the slabs. In 1938, Graf presented the experimental results of
8 slab tests, 6 of which included shear reinforcement. Richart (1948) published the results of an
extensive testing program of reinforced concrete footings. Based on the results, he concluded that
shear stresses may govern footing design instead of bond stresses (Moe, 1961).

In the time since these initial studies, many researchers have conducted experiments to investigate
the punching shear behaviour of reinforced concrete slabs. Many of these experimental programs are
summarized in databases which are curated by organizations, such as the American Concrete Institute
(ACI) or the International Federation for Structural Concrete (fib), or by independent researchers.
However, many of these databases are primarily focused on slabs supported on square or circular
columns. For example, the fib database, which is contained in fib Bulletin 12, “Punching of Structural
Concrete Slabs,” contains information on 400 experimental tests of concentrically loaded reinforced
concrete slabs cast from normal density concrete conducted between 1954 and 1999. The vast
majority of the 400 experimental results are for slabs supported on square or circular columns, and
150 are for slabs with shear reinforcement (FIB, 2001). The ACI database, which is curated by ACI-
ASCE Committee 445 Shear and Torsion, currently contains the results of 519 experimental tests of
reinforced concrete slabs since 1938. Of the 519 tests only 27 are for slabs supported on rectangular
columns (Ospina, et al., 2015). One of the largest databases for slabs supported on rectangular
columns was curated by Paiva, Ferreira, Oliveira, Lima Neto and Teixeira (2015) and contains the
experimental results for 131 slab tests. However, many of reported tests are for slabs supported on

square columns or are for one-way slabs subjected to concentrated loads.

In this section, some of the previous experimental research of reinforced concrete flat slabs
supported on square or circular and rectangular columns will be summarized. Since the experimental
database for slabs supported on square or circular columns is quite large, only select experimental

programs will be presented.

2.3.2 Square or Circular Columns

As seen in the current punching shear databases, many researchers have investigated the punching

shear behaviour of reinforced concrete flat slabs supported on square or circular columns. Some of
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the largest of these programs were conducted by Elstner and Hognestad (Elstner & Hognestad, 1956),
Moe (1961), Mowrer and Vanderbilt (1967) and Regan (Regan P. E., 1986).

Elstner and Hognestad (1956) published experimental results for 39 slab-column connection tests.
Most of the tested slabs were simply supported on four sides and were subjected to concentric loading
applied through the column stub. The remaining slabs were either supported on two sides only or
were subjected to eccentric loading to introduce unbalanced moment on the connection. 34 of the
slabs failed in shear. The testing program was focused on determining the impact of multiple
parameters on the punching shear behaviour of slab-column connections including concrete
compressive strength, tensile reinforcing ratio, compressive reinforcing ratio, column size, support
and load conditions, tensile reinforcement layout and use of shear reinforcement. The experimental
results were quite important since many of the previous American punching shear studies were
conducted on footings, which are typically much thicker than floor slabs. At the time, the provisions
for punching shear of floor slabs were extrapolated from the footing test results which was
guestionable due to the lower thickness to span ratios and higher shear to moment ratios typically

used in slabs compared to footings (Elstner & Hognestad, 1956).

Following the work of Elstner and Hognestad (1956), Moe (1961) tested 43 slab-column
connections, which were six feet square, six inches thick and simply supported along all four edges
with corners free to lift. Moe investigated the impact of openings in the slab, concentrations of tensile
reinforcement near the column, the use of shear reinforcement, column size and eccentric loading on
the punching shear behaviour of slab-column connections. Of his 43 tests, one was supported on a
rectangular column with side lengths of six and eighteen inches. Based on the test results, Moe
recommended that the column perimeter should be used as the critical perimeter assumed in punching
shear design and proposed an equation to estimate the punching capacity of slab-column connections.
Moe also concluded that the flexural strength of the slab effects the punching capacity and that the
shear capacity per unit length is largest when the ratio of the column dimension to the slab thickness
is small. It was also observed that shear reinforcement could be used to increase the punching
capacity of slab-column connections if properly anchored. Openings in the slab were also found to
significantly reduce the punching capacity. Moe also proposed a modified version of his equation to
estimate the punching capacity of slabs supported on rectangular columns (Moe, 1961). Moe’s work
formed the basis of the ACI 318 provisions (ASCE-ACI Committee 426, 1974).
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Mowrer and Vanderbilt (1967) tested 51 isolated slab-column specimens representing interior slab-
column connections. 43 of the 51 slabs were cast from lightweight concrete made from expanded
shale. Nine of the slabs were tested with two or four edges clamped and the remaining slabs were
tested under simply supported conditions. Mowrer and Vanderbilt investigated the impact of
lightweight concrete, opening pattern, flexural reinforcing ratio, concrete compressive strength,
column size and edge fixity. Based on the test results, they proposed a modified version of Moe’s
equation, which accounted for lightweight concrete. They also presented a modified version of the
typical isolated slab-column specimen with clamped edges that they believed better represented the
behaviour of a continuous slab (Mowrer & Vanderbilt, 1967). Using this modified isolated slab-
column specimen, Vanderbilt (1972) tested 15 slabs to investigate the impact of column size and
shape. The slabs were cast with square or circular columns and were subjected to a uniformly
distributed load. Vanderbilt observed shear stress concentrations around the corners of the square
columns and a decrease in the nominal shear stress as the ratio of the column size to the slab depth
increased (Vanderbilt, 1972).

Regan (1986) tested 28 reinforced slabs simply supported on four sides and subjected to
concentrated loads at their centers. The tests were conducted to investigate many parameters
including the arrangement of the flexural reinforcement, slab size, slab depth, concrete compressive
strength, reinforcing ratio, boundary restraint and size of the loaded area. In many of the tests, the
slabs were supported near the slab edges with corners free to lift. In the remaining tests, the supports
were moved closer to the load application area. Regan found the British punching shear design
provisions used at the time to be unconservative in many cases. The Model Code 1978 provisions
were found to be overly conservative and the ACI 318-83 provisions, which are similar to those in
ACI 318M-14, were found to be conservative in most cases. It was also concluded that boundary
restraint increased the punching capacity of slab-column connections, but this effect was not
quantifiable based on the tested slabs. (Regan P. E., 1986).

In addition to the major studies discussed above, numerous other studies have been conducted by
various researchers. Some researchers tested isolated slab-column connections which were centrally
supported at loaded at the slab edges (Einpaul, Bujnak, Fenandez Ruiz, & Muttoni, 2016; Lips,
Fernandez Ruiz, & Muttoni, 2012; Guandalini, Burdet, & Muttoni, 2009; Yamada, Nanni, & Endo,
1992; Sagaseta, Muttoni, Fernandez Ruiz, & Tassinari, 2011). Other researchers tested slabs which

were supported at the edges or corners and loaded centrally, typically through a column stub (Adetifa
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& Polak, 2005; Alam, Amanat, & Seraj, 2009; Birkle & Dilger, 2008; Marzouk & Hussein, 1991;
Inécio, Almeida, Faria, Lucio, & Ramos, 2015; Moreno & Sarmento, 2013). A much smaller portion
of the experimental database has been focused on cantilever slabs subjected to concentrated loads
(Vaz Rodrigues, Fernandez Ruiz, & Muttoni, 2008) or on the punching shear behaviour of multi-bay
slab specimens (Gardner & Shao, 1996).

Yamanda, Nanni and Endo (1992) tested thirteen isolated-slab column specimens which
represented interior columns. The specimens were loaded monotonically at 8 discrete points located
at a distance of 0.75m from the column center and supported on a central column stub. Two types of
shear reinforcement, hat shaped reinforcement, which did not intercept the slab’s flexural
reinforcement, and double hooked bars, which intercepted the flexural reinforcement, were
investigated. The test results showed that shear reinforcement needs to be anchored to the flexural
reinforcement, and the spacing between subsequent rows should be less than d/2, where d is the
effective slab depth, to be effective and increase the punching capacity and ductility of the connection
(‘YYamada, Nanni, & Endo, 1992).

Guandalini, Burdet and Muttoni (2009) studied the impact of low flexural reinforcement ratios on
the punching capacity of slab-column connections since most experimental specimens are constructed
with flexural reinforcing ratios much higher than those used in practice to avoid flexural failures. The
impact of aggregate size and specimen size was also investigated. Eleven isolated slab-column
specimens, representing interior columns, were tested. The slabs had reinforcing ratios between
0.22% and 1.5%. Six of the eleven specimens were constructed at full scale and were 250mm thick.
Four specimens were constructed at half scale and were 125mm thick, and the last specimen was
constructed at double scale and was 500mm thick. Punching capacity was found to decrease as the
slab thickness increased, and slabs with low flexural reinforcing ratios were found to fail in punching

after excessive yielding of the slab reinforcement (Guandalini, Burdet, & Muttoni, 2009).

Sagaseta, Muttoni, Fernandez Ruiz and Tassinari (2011) also investigated the impact of flexural
reinforcement ratio on the punching capacity of interior slab-column connections. Their investigation
was primarily focussed on investigating the behaviour of slabs with different flexural reinforcing
ratios in both orthogonal directions. Seven square isolated interior slab-column connections,
supported on a central steel plate with side lengths of 260mmm, without shear reinforcement were
tested. Three of the tested slabs had equal reinforcing ratios in both orthogonal directions, whereas the

remaining four slabs had non-axis symmetric reinforcing layouts, where the reinforcing ratio in one
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direction was approximately half of that in the other direction. All flexural reinforcing ratios were
between 0.32% and 1.64%. Based on the test results, and results from linear elastic finite element
analyses, which are briefly discussed in Section 2.6.2, it was found that slabs with non-axis
symmetric reinforcing ratios did not have symmetric deflection responses in both orthogonal
directions. It was also found that slabs with reinforcing ratios exceeding 0.75% failed brittlely in
punching shear (Sagaseta, Muttoni, Fernandez Ruiz, & Tassinari, 2011). Some of the slabs from this
test series were considered during the calibration of the finite element model used in this thesis. As
such, this experimental program will be discussed in more detail in Section 4.5.2.

Lips, Fernadndez Ruiz and Muttoni (2012) tested sixteen isolated interior slab-column connections
loaded at eight discrete points around the column and supported on a central square steel plate to
investigate the impact of column size, slab thickness, shear reinforcement type and amount of shear
reinforcement on punching shear behaviour. The square steel plates supporting the slab had side
lengths between 130mm and 520mm and the slab thicknesses ranged from 250mm to 400mm. Two
types of shear reinforcement, shear studs and continuous stirrup cages, were considered. As the
column size was increased the punching capacity and rotation at failure were found to increase. Slab
slenderness and size were also found to impact the punching capacity, especially for slabs which
failed due to crushing of concrete struts. Both types of shear reinforcement were found to increase the
punching and rotational capacity of the connection, though shear studs were found to be more
effective due to the improved anchorage compared to continuous stirrup cages (Lips, Fernandez Ruiz,
& Muttoni, 2012).

Einpaul, Bujnak, Fernandez Ruiz and Muttoni (2016) tested thirteen symmetric isolated interior
slab-column connections subjected to punching shear. Similar to the study by Lips, Fernandez Ruiz
and Muttoni the primary parameters investigated included the column size and slab slenderness. The
impact of the slab’s flexural reinforcing ratio and the use of shear reinforcement were also
investigated. The slabs were loaded at eight discrete points and supported on central steel plates.
Eight of the thirteen slabs had octagonal shapes and were supported on circular steel plates with
diameters between 83mm and 660mm. The remaining five slabs were square in shape, with side
lengths between 1.7 and 3.9m, and were supported on square steel plates with side lengths between
197mm and 211mm. All thirteen slabs were 250mm thick. The octagonal and square slab series were
tested to investigate the influence of column size and slab slenderness respectively. Based on the

results, it was found that the shear capacity and flexural stiffness of the slabs decreased as the slab
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slenderness was increased. The nominal shear stresses along a critical perimeter loacated at d/2 from
the column face were also found to decrease as the column diameter was increased (Einpaul, Bujnak,
Fenandez Ruiz, & Muttoni, 2016).

Marzouk and Hussein (1991) examined the influence of high strength concrete on the punching
capacity of slab-column connections by testing seventeen isolated interior slab-column connections
loaded through the column stub and supported on four edges. Fifteen of the slabs were cast from high
strength concrete with compressive strengths between 66MPa and 80MPa. The punching capacity
was found to increase as the compressive strength was increased but at a rate lower than the square
root of compressive strength, which is assumed in many codes. They also developed a modified
version of the Kinnunen and Nylander model, which accounted for the use of high strength concrete
(Marzouk & Hussein, 1991).

Morento and Sarmento (2013) also investigated the impact of high compressive strengths on the
punching capacity of slab-column connections with and without shear reinforcement. Six slabs, which
were supported at eight discrete points along a 2165mm diameter circle whose center was coincident
with the column center, and loaded through a 250x250mm central square column, were tested. Half of
the slabs were tested under concentric punching and the other half were tested with a load eccentricity
of 200mm. The slabs were cast from normal and steel fibre reinforced self-compacting concretes with
compressive strengths ranging from 36.9MPa to 66.2MPa. The use of steel fibres and double headed
shear studs as shear reinforcement was also investigated (Moreno & Sarmento, 2013). The
experimental results were used to calibrate a nonlinear finite element model which is discussed in
Section 2.6.2.

Inécio, Almeida, Faria, Lucio and Pinho Ramos (2015) also investigated the impact of high
strength concretes on punching capacity. Three slabs cast from high strength concrete, with
compressive strengths ranging from 125.6MPa to 130.1MPa, and one slab cast from normal strength
concrete, with a compressive strength of 35.9MPa were tested. The slabs were loaded through central
square steel plates with side lengths of 200mm and were supported at eight discrete points located
near the radius of contraflexure (Inacio, Almeida, Faria, Ldcio, & Ramos, 2015), which is similar to
the test setup used by Marzouk and Hussein (1991). The use of high strength concrete compared to
normal strength concrete was found to result in a substantial increase in punching capacity. The
punching capacity was also found to increase as the flexural reinforcing ratio increased (Inacio,
Almeida, Faria, Lucio, & Ramos, 2015). Both results match those of Marzouk and Hussein (1991).
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Adetifa and Polak (2005) tested six isolated interior slab-column connections to investigate the use
of post installed shear bolts for shear reinforcement. One slab contained no shear reinforcement, and
the second, third and fourth slabs contained two, three and four rows of shear bolts respectively. The
rows of shear bolts were arranged in an orthogonal pattern around a 150x150mm square column stub.
The final two slabs tested had four rows of shear bolts and two or four openings in the slab around the
column. The slabs were 120mm thick, simply supported along their edges and concentrically loaded
through the monolithic column stub. Post-installed shear bolts were found to be a viable shear
reinforcing method, as they increased the punching and ductility capacity of the slab. The use of shear
bolts resulted in flexural failures for all five reinforced slabs, compared to a brittle punching failure
for the unreinforced slab. The connection ductility was found to increase with the number of shear
bolts. Lower punching strengths were observed for connections with openings in the slab due to the
loss of shear resisting perimeter (Adetifa & Polak, 2005).

Birkle and Dilger (2008) also investigated the influence of shear reinforcement on the punching
capacity of reinforced concrete slab-column connections. Nine octagonal slabs, six of which were
reinforced with steel shear studs, were tested. The slabs were supported at eight discrete points near
the slab edges and load was applied through a monolithic square column stub. The three slabs in each
of the test series were 250mm, 300mm and 350mm thick respectively. The slabs with shear
reinforcement were designed to fail either inside or outside the shear reinforced zone. A severe
decrease in nominal shear stress capacity at the critical perimeter located at d/2 from the column face
was found as the slab thickness increased for the unreinforced slabs. A similar trend was observed for
the slabs with shear reinforcement, although the decrease was not as severe. The use of shear studs
was also found to greatly increase the punching and ductility capacity of the slab-column connection

compared to the unreinforced specimens (Birkle & Dilger, 2008).

Alam, Amanat and Seraj (2009) tested fifteen isolated interior slab-column connections to
investigate the influence of boundary restraint, flexural reinforcing ratio and slab thickness on
punching shear behaviour. Twelve of the fifteen slabs were cast with edge beams of varying widths to
provide edge restraint. The slabs were supported on steel blocks at each corner of the slab, and
concentrated loading was applied through a central square steel plate with side lengths of 120mm.
The punching capacity was found to increase as the width of the edge beams increased. Additionally,

as the flexural reinforcing ratio was increased from 0.5% to 1%, and the slab thickness was increased

17



from 60mm to 80mm, the nominal shear capacity along the critical perimeter located at d/2 from the

column face was found to increase (Alam, Amanat, & Seraj, 2009).

Unlike other researchers who tested slabs isolated slab-column connections with square columns,
Vaz Rodrigues, Fernandez Ruiz and Muttoni (2008) tested cantilever slabs subjected to concentrated
loads. The tested specimens were ¥ scale typical box-girder deck slabs and concentrated loads were
applied through 30mm thick square steel plates with side lengths of 300mm. Each slab was tested to
failure three times under different load layouts. The thickness of the cantilever deck varied from
380mm at the supported end to 190mm at the free end. All slabs were found to fail in punching shear,
and for tests with the same loading layout but different reinforcing ratios the punching shear capacity
was found to decrease as the reinforcing ratio decreased. A linear elastic FEA using shell elements
was also conducted to estimate the effective critical perimeter length around the concentrated loads
(Vaz Rodrigues, Fernandez Ruiz, & Muttoni, 2008).

All of the studies outlined above were conducted on isolated slab-column specimens or isolated
cantilever spans. The use of isolated specimens is common due to their lower space and material
requirements compared to continuous slabs. However, the use of isolated slab-column specimens
neglects the impact of compressive membrane forces present in continuous slabs (Alam, Amanat, &
Seraj, 2009; Mowrer & Vanderbilt, 1967; Genikomsou & Polak, 2017a), which can improve the
punching capacity (Alam, Amanat, & Seraj, 2009; Genikomsou & Polak, 2017a).

One of the few experimental studies of punching shear using a continuous slab specimen was
conducted by Gardner and Shao (1996). In this study, a half-scale two bay by two bay slab system
with four edge columns, four corner columns and one interior column was loaded to failure to study
the behaviour of reinforced concrete flat slabs with temporary construction shores installed around the
columns. The slab span between the column centerlines was equal to 2743mm and the slab was
140mm thick. Of the nine columns, seven were square, with side lengths of 254mm, and two were
circular, with diameters of 254mm. To simulate a uniformly distributed load, forty concentrated
loads, whose magnitudes were dependent on their tributary area, were applied to the slab surface. To
avoid premature failure the load was applied in increments with the temporary shores in place. The
slab was then unloaded, and the shores were removed. The slab was then loaded and unloaded again
with the shores removed. The shores were reinstalled before the start of the next load increment.
Punching shear failure around the interior column was the first failure to occur during testing. To

continue testing, this portion of the slab was shored permanently and loading was applied until two
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edge columns, one circular and one square failed. These areas were then shored, and the slab was
loaded until a corner column and another edge column failed. The use of temporary shoring was
found to increase the punching capacity of the connections by taking a portion of the applied load
(Gardner & Shao, 1996).

2.3.3 Rectangular Columns

One of the first experimental programs focused on investigating the impact of column rectangularity
on punching shear behaviour was conducted by Hawkins, Fallsen and Hinojosa (1971). In this
experimental program, nine isolated interior slab-column connections were tested. The slabs were
supported on a central column stub with an aspect ratio between 1 and 4.33. Loading was applied at
discrete points along the slab edges. In six of the nine tests only two slab edges were loaded, and in
the remaining three tests all four slab edges were loaded (Hawkins, Fallsen, & Hinojosa, 1971). Based
on the results of this testing program, the ACI 318 provisions were modified to account for column
rectangularity based on a simple relationship dependent on the column aspect ratio (Al-Yousif &
Regan, 2003). The nine slabs tested by Hawkins, Fallsen and Hinojosa were modelled during the
calibration of the finite element model used in this thesis, and as such, this experimental program is
discussed in more detail in Section 4.3.2.

Since the study by Hawkins, Fallsen and Hinojosa (1971), many researchers have investigated the
impact of column rectangularity on the punching shear behaviour of slab-column connections. Most
of the experimental research has been conducted using isolated slab-column connections which are
supported on the slab edges or a central column. Other researchers have focused on the punching
shear behaviour of one-way slabs subjected to concentrated loads, while some have tested multi-bay

continuous slab systems.

Al-Yousif and Regan (2003) tested four isolated interior slab-column connections to investigate the
impact of column aspect ratio and flexural loading conditions on punching shear behaviour. The
tested slabs were 100mm thick and concentric loads were applied through a column stub. Three of the
tested slabs had a 500x100mm column stub and the fourth had a 300mm square column stub. Two of
the four tests were supported on all four sides and the remaining two were supported on two sides
only. The slabs supported on two sides only were supported on the slab sides parallel to long side of
the column or parallel to the short side of the column. All four slabs failed in punching shear. Shear
force concentrations near the column corners were observed in the three tests with the 500x100mm

columns. It was noted that the concentration of shear forces at the column corners is dependent on the
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ratio of the column side dimensions to the effective slab depth and flexural deformations of the slab.
When the slab is predominately bent in one direction, the impact of the ratio of the column dimension

to the effective slab depth is more severe (Al-Yousif & Regan, 2003).

Filatov and Bubnov (2016) tested three isolated interior slab-column specimens which were loaded
through a central column stub and supported at 8 discrete points along the radius of contraflexure to
study the impact of column rectangularity on punching shear behaviour. Three column sizes,
200x200mm, 200x500mm and 200x800mm, were investigated. All three slabs were 140mm thick
(Filatov & Bubnov, 2016). Filatov (2017) added a fourth specimen to the study, which was loaded
through a circular column with a diameter of 210mm. All four slabs failed brittlely due to punching
shear. For the slabs loaded through rectangular columns the maximum concrete strains were observed
near the column corners. The measured tangential concrete strains along the long side of the column
decreased from a maximum at the corners to a minimum near the center of the column. Similar trends
were observed in the measured flexural reinforcing strains. The strains in the flexural reinforcement
were also found to be highest along the column perimeter and deceased in magnitude as the distance
from the column perimeter was increased (Filatov, 2017). The largest deflections for the slabs
supported on rectangular columns were measured perpendicular to the short side of the column and

along a diagonal line whose origin is the column corner (Filatov & Bubnov, 2016).

Tan and Teng (2005) tested five % scale interior slab-column connections with rectangular columns
subjected to combined gravity and biaxial lateral loads. The study was focussed on investigating the
impact of biaxial lateral load and the use of shear stud reinforcement on the performance of slab-
column connections with column aspect ratios of five. The slabs, which had a thickness of 150mm,
were supported along their edges and loaded through a 180x900mm column stub. Tan and Teng
concluded that slab-column connections with a column aspect ratio of five may not be able to sustain
a 1.5% lateral drift even when the ratio between gravity and lateral loads is small. They recommended
that the gravity to shear force ratio be limited to a value of 0.28 to ensure that the connections have
sufficient drift capacity. The stiffness of the slab-column connection was found to be influenced by
column rectangularity, and the connection strength was higher in the direction perpendicular to the
short side of the column (Tan & Teng, 2005).

Erdogan, Binici and Ozcebe (2011) tested seven % scale isolated specimens representing interior
slab-column connections supported on rectangular columns with aspect ratios between one and three.

The column sizes were chosen so that each column had a similar critical perimeter length. Three of
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the tested slabs did not include any shear reinforcement and four were reinforced with carbon fibre
reinforced polymer (CFRP) dowels. The slabs were simply supported, and the load was applied
through the column stub. All seven slabs failed in punching shear. In both the unreinforced and shear
reinforced specimens, the punching capacity decreased as the column rectangularity increased. Since
the critical perimeter length was kept approximately constant between the specimens, an increase in
column rectangularity corresponds to a reduced column area. The energy absorption capacity of each
connection, which was defined as the area under the load deflection curve, was also found to decrease
as the column rectangularity was increased (Erdogan, Binici, & Ozcebe, 2011).

Borges, Melo and Gomes (2013) tested thirteen isolated slab-column connections with and without
openings and stud rail shear reinforcement supported on 200x600mm steel plates. Loads were applied
to the slab through the steel plate and the slabs were supported along their edges by a series of plates
and rods tied to the laboratory floor. For the tests with openings, one or two openings with widths
equal to the minimum dimension of the steel plate were located adjacent to the short side of the steel
plate. The experimental results were compared to predictions from ACI 318-11 and Model Code
1990. Both codes were found to be generally conservative although the authors recommended using
straight projections instead of radial projections, which are specified in ACI 318, when reducing the

effective critical perimeter length (Borges, Melo, & Gomes, 2013).

Eom, Song, Song, Kang, Yoon and Kang (2017) studied the influence of uneven shear transfer
caused by unequal span lengths and the use of pre-assembled bar trusses as shear reinforcement on
punching shear behaviour of slab-column connections. Four isolated slab-column connections
representing interior columns were tested. One slab included no shear reinforcement, one was
reinforced with conventional stirrups, and two were reinforced with pre-assembled bar trusses. The
trusses did not intercept the flexural reinforcement and both orthogonal and radial layouts around the
column were investigated. The slabs were loaded through a precast column with an aspect ratio of
2.67 and were supported along their edges. The use of pre-assembled bar trusses in the orthogonal
and radial layouts was found to increase the punching capacity by 42% and 49% respectively
compared to the unreinforced specimen. This capacity increase was much higher than the 13%
increase observed in the slab reinforced with stirrups. The use of a radial truss layout was determined
to be more beneficial compared to the orthogonal layout when uneven shear transfer is anticipated
(Eom, et al., 2017).
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Sherif, Emara, Ibrahim and Magd (2005) tested five half scale slab-edge column connections to
investigate the impact of column rectangularity and the ratio of the critical perimeter length, b,, to the
effective slab depth, d, on punching shear behaviour. The column aspect ratio was varied from 1 to
2.5 and the ratio of the critical perimeter length to the effective slab depth ranged from 6.5 to 11. The
slabs were 120mm thick and supported on three sides. The load was applied with an eccentricity of
300mm with regards to the column center to simulate the behaviour of a continuous slab system
under gravity loads. All five specimens failed in punching shear and shear stress concentrations near
the column corners were observed. It was concluded that the punching capacity decreases as the b, /d
ratio increases due to a decreased level of confinement on the failure surface provided by the in-plane
stresses in the slab. The ductility of the slab-edge column connections was found to decrease as the
b,/d ratio was decreased and increased as the column rectangularity was increased. No clear trends
in deflection were observed in regards to varying column aspect ratios (Sherif, Emara, lbrahim, &
Magd, 2005).

Anggadjaja and Teng (2008) tested fifteen 135mm thick slabs loaded through 180x900mm
columns to investigate the impact of column rectangularity, gravity load level and cyclic biaxial
loading on the connection strength, stiffness, ductility and drift capacity of slab-edge column
connections. One slab was tested under gravity load only, two were tested under combined gravity
and uniaxial lateral load, and two were tested under combined gravity and biaxial lateral load. It was
observed that shear stresses concentrated around the short side of the column, and the shear stress
magnitude decreased as the distance from the short side increased. The slab-edge column connections
were found to behave more brittlely when the lateral load was applied perpendicular to the short side
of the column. The use of rectangular columns was found to allow a larger moment to be transferred
along the strong-axis of the column. However, it was observed that the stiffness in the weak column

direction was lower than in the strong direction.

Himawan and Teng (2014) studied the behaviour of post-tensioned slab-rectangular column
connections under cyclic loading. Three slab specimens, loaded through a 180x900mm rectangular
column, were tested. One slab was subjected to concentric punching only, whereas the remaining two
specimens were subjected to lateral load in one or two directions respectively. The increase in shear
strength due to prestressing for slabs supported on rectangular columns was found to be lower than
that observed for slabs supported on square or circular columns (Himawan & Teng, 2014). As was

observed by Anggadjaja and Teng (2008) the stiffness of the slab-column connections along the
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strong direction, which is perpendicular to the short side of the column, was found to be higher than

that perpendicular to the short side (Himawan & Teng, 2014).

Oliveira, Regan and Melo (2004) tested fifteen reinforced concrete slabs cast from high strength
concrete, which were supported on rectangular steel plates, with aspect ratios ranging from one to
five, under different loading conditions. In five of the tests, loading was applied on all four slab edges
and in the other ten tests, the loading was applied on two edges only. All fifteen slabs failed in
punching shear, but the shape of the failure surface was found to be dependent on the load conditions.
For slabs supported on a steel plate with an aspect ratio greater than or equal to three and loaded
along the two slab edges perpendicular to the short side of the supported area, the failure surface did
not extend around the longer side of the steel plate. Based on the experimental results, and a finite
element analysis in SAP 2000, which is discussed in Section 2.6.3, it was concluded that the effective
critical perimeter length is dependent on the column rectangularity and flexural loading conditions of
the slab (Oliveira, Regan, & Melo, 2004).

Sagaseta, Tassinari, Fernandez Ruiz and Muttoni (2014) tested four slabs supported on
260x780mm steel plates to investigate the influence of loading conditions on the punching shear
capacity of reinforced concrete slabs supported on rectangular columns. All slabs except for one, in
which the loading was applied on the two slab edges perpendicular to the long side of the steel plate,
failed in punching. The load layout was found to have a significant impact on the punching capacity
and overall behaviour of the slabs. During testing, the measured reaction forces were found to
concentrate around the short sides of the steel plate (Sagaseta, Tassinari, Fernandez Ruiz, & Muttoni,
2014). The four slabs in this test series were used to calibrate the finite element model used in the
parametric study presented in Chapter 5, and as such, a detailed discussion of this experimental

program is provided in Sections 4.3.3.1 and 4.5.1.1.

Teng, Cheong, Kuang and Geng (2004) investigated the punching shear behaviour of slab-column
connections with rectangular columns and openings in the slab. Twenty isolated slab-column
connections representing interior columns were tested. The slabs were loaded along the slab edges
and supported on central column stubs. Three column sizes, 200x200mm, 200x600mm and
200x1000mm, were investigated. The impact of different loading ratios in the two orthogonal
directions was also studied. All twenty slabs failed in punching shear. It was observed that the
punching capacity was reduced due to the presence of openings in the slab or if the load in the

orthogonal direction perpendicular to the short side of the column was larger than the load
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perpendicular to the long side. It was concluded that the assumption of uniform stress on the critical
perimeter at d/2 from the column face is reasonable for slabs supported on square columns, but is

unreasonable for slabs supported on rectangular columns (Teng, Cheong, Kuang, & Geng, 2004).

Oliveira, Gomes and Melo (2014) also investigated the impact of openings on the punching shear
capacity of slabs supported on rectangular columns in addition to the impact of unbalanced moments.
Seven slabs supported on 200x500mm prestressed concrete columns were tested to failure. The slabs
were loaded at discrete points along the slab edges and unbalanced moments were imposed by
increasing the load magnitude on one side of the connection. All seven slabs failing in punching
shear. It was concluded that the use of two 300x200mm openings along the long side of the column
was less detrimental to the punching capacity than the use of one 400x400mm opening adjacent to the
shorter column side when the moment was applied to the shorter column side. The inclusion of
unbalanced moments in addition to gravity loads resulted in a 38% capacity loss for the slabs without
openings compared to the slab subjected to concentric punching only. (Oliveira, Gomes, & Melo,
2014).

Habibi, Redl, Egberts, Cook and Mitchell (2012) evaluated the adequacy of the punching shear
integrity reinforcement provisions in CSA A23.3-04. Seven specimens were tested to investigate the
influence of slab thickness, integrity reinforcement length, integrity reinforcement distribution in
slabs supported on rectangular columns and integrity reinforcement placement in slabs with drop
panels. The slabs were loaded at eight discrete points along the radius of contraflexure and supported
on a central column. Two of the seven specimens were supported on rectangular columns with
dimensions of 200x300mm and 180x270mm respectively. Column rectangularity and the use of three
times the amount of integrity reinforcement in one direction compared to the other was found to have
an insignificant impact on the post-punching strength. However, the ultimate displacements of the
slab column connections reinforced in this way, and supported on rectangular columns, were found to
have lower ultimate deflections compared to the other specimens (Habibi, Redl, Egberts, Cook, &
Mitchell, 2012).

Teng, Chanthabouala, Lim and Hidayat (2018) investigated the punching shear behaviour of slabs
cast from concrete with compressive strengths around 100MPa and with reinforcing ratios between
0.28% and 1.43%. The slabs were loaded at eight discrete points and supported on column stubs
which had sizes of 200x200mm, 200x600mm or 200x1000mm. The ACI 318-14 provisions were

found to be unconservative for slabs with low reinforcement ratios (i.e. <0.7%). During the tests,
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these slabs failed in punching after an initial flexural failure (Teng, Chanthabouala, Lim, & Hidayat,
2018). Based on the results of this test program, and previous results from the authors and other
researchers, a modified version of the empirical equation to estimate punching capacity proposed by

Teng, Cheong, Kuang and Geng (2004) was proposed (Teng, Chanthabouala, Lim, & Hidayat, 2018).

Regan and Rezai-Jorabi (1988) studied the punching shear behaviour of one-way slabs subjected to
concentrated loads. Twenty-nine 100mm thick slabs were tested. Twenty-three of the slabs were
supported at their ends and subjected to two central concentrated loads applied through plates. The
aspect ratio of these load plates varied from one (75x75mm) to ten (1000x100mm). Most of the tests
failed in one-way shear, but three failed in punching around one or both loads, or in a combination of
one-way and punching shear. The final six tests reused some of the original twenty-three slabs. The
location of one support was moved closer to the other and the slabs were subjected to one central
concentrated load. The aspect ratio of the load plates in these six tests ranged from 1.33 (100x75mm)
to 6 (600x100mm). Four of the six slabs failed in punching shear. The orientation of the load plates
was found to affect the observed capacity. In cases where the longer plate dimension was parallel to
the slab span a higher capacity was observed compared to when the longer plate dimension was
perpendicular to the slab span. For small loaded areas the failure surface was similar to those
observed in pure punching and the slab capacity was found to increase as the distance between the
loads was increased. The one-way shear capacity of a reinforced concrete slab subjected to
concentrated loads was found to be different than when the slab is subjected to a uniformly
distributed load (Regan & Rezai-Jorabi, 1988).

Simmonds (1970) conducted an in-depth analysis of the structural behaviour of flat slabs supported
on rectangular columns using a combination of linear elastic analysis, which is discussed in Section
2.6.3, and an experimental test of a one-third scale three bay by three bay continuous flat slab. The
slab was supported on rectangular columns with a maximum column dimension equal to 40% of the
distance between the column centerlines. This maximum column dimension was chosen since it
marked the transition point from two-way to one-way slab action based on the results of the linear
elastic analysis. In total, eight separate tests with different load magnitudes and locations were
completed. Testing was stopped when one of the corner columns connections failed in punching. The
structure was found to be stiffer in the direction of the maximum column dimension. The crack
patterns of the slab confirmed that the behaviour of the slab was predominantly one-way. Based on

the results of the analytical and experimental study, Simmonds concluded that the maximum
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deflection and bending moments in a flat slab are reduced as the column cross-section is elongated in
one direction (1970).

2.4 Mechanical Models

In addition to the numerous experimental and finite element studies of punching shear behaviour,
many researchers have presented mechanical models to estimate the punching capacity of slab-
column connections. In this section, some of the most popular mechanical models will be briefly
summarized. Many additional models such as the model by Bazant and Cao (1987), which is based on
fracture mechanics, and many modified versions of the Kinnunen and Nylander model, such as those
proposed by Georgopoulos (1988, 1989) and Broms (1990) exist, but are not presented here. Many of
these additional models, and the models discussed in this section are summarized in CEB Bulletin
168 (1985) and fib Bulletin 12 (FIB, 2001).

2.4.1 Kinnunen and Nylander

The model presented by Kinnunen and Nylander is a plasticity-based model which was derived from
tests of circular isolated slab-column specimens with slab ring reinforcement. The original model was
proposed in 1960, and later modified in 1963 to account for flexural reinforcement installed in two
orthogonal directions, and to account for dowel action. The model, which is shown in Figure 2-6,
assumes that a truncated cone of concrete is bounded by a shear crack. Beyond this shear crack, the
slab is divided into segments which are assumed to rotate rigidly. These slab segments are assumed to
be supported by a fictitious conical shell, which is subjected to compressive stresses, between the
column face and base of the shear crack. To estimate the ultimate capacity of the slab-column
connection the equilibrium of the internal forces, which are dependent on the slab rotation, and a
failure criterion are used (Regan & Braestrup, 1985). The failure criterion is based on two conditions,
a maximum value of the inclined compressive stress and a maximum value of the tangential
compressive strain at the shear crack (FIB, 2001; Menétrey P. , 1996). The assumed failure mode is a
compression failure of the conical shell. The assumed failure mode does not match experimental
observations since punching capacity has been shown to be related to the concrete’s tensile capacity

(Menétrey P. , 1996).

However, the model presented by Kinnunen and Nylander was the first mechanical model for
punching shear which resulted in capacity predictions that agreed well with available experimental

results and allowed for visualization of the flow of forces in the vicinity of the slab-column
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connection (FIB, 2001). Additionally, the model allowed the failure mode, either flexural or
punching, to be determined, and allowed the slab deformations to be approximated (Regan &
Braestrup, 1985).
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Figure 2-6: Punching Shear Model by Kinnunen and Nylander (1960), Adapted from (Kinnunen
& Nylander, 1960), Reproduced with Permission

2.4.2 Upper Bound Plasticity Approach

Braestrup, Nielsen, Jensen and Bach proposed an upper bound plasticity solution to estimate the
punching capacity of reinforced concrete slabs in 1976. The punching capacity was calculated by
equating the rate of external work due to the applied load to the internal work dissipated to create the
failure surface shown in Figure 2-7. To derive the equations used in the model, it was assumed that all
deformation occurred within the rotation symmetric failure surface around the slab-column
connection (Menétrey P. , 1996). The concrete contained within the failure surface was assumed to
punch out of the slab while the remaining concrete was assumed to remain rigid. The yield criterion
used in the model was based on the modified Coulomb failure criterion and the associated flow rule.
The concrete was also assumed to be a rigid, perfectly plastic material. The impact of dowel action
was neglected resulting in the flexural reinforcing ratio having no impact on the predicted punching
strength. The predicted punching capacity was found to be strongly dependent on the assumed

concrete tensile strength (Regan & Braestrup, 1985).
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Figure 2-7: Failure Surface Considered by Braestrup et al. Reproduced from CEB Bulletin 168:-
Punching Shear in Reinforced Concrete a state of art report by P.E. Regan and M.W. Braestrup
(January 1985) with permission from the International Federation for Structural Concrete (fib)

2.4.3 Nolting Model

In 1984, Nolting proposed a method for estimating the punching shear capacity of flat slabs, one-way
slabs, footings and slabs with eccentrically loaded columns based on an inclined compression
approach. In the model, all inclined cracks near the location of concentrated loads or supports were
assumed to be due to punching shear regardless of the slab reinforcement. Failure was assumed to
occur when the compressive diagonal strain in the concrete reached a value of -4.5%. The magnitude
of this diagonal strain was dependent on the applied load level and considered the relationship
between the load and the critical moment at the column or loaded area, the moment and the horizontal
strain in the concrete, and the horizontal and inclined strains in the concrete. Due to the difficulty of
using the model, Nélting provided tabulated moments for certain typical slab types and for all others
numerical coefficients derived from FEA were provided (Regan & Braestrup, 1985).

2.4.4 Models by Alexander and Simmonds

In 1987, Alexander and Simmonds proposed the first of their two models to estimate the punching
capacity of slab-column connections. The first model they proposed, shown in Figure 2-8, was based
on a three-dimensional truss which was made up of linear concrete compressive struts and steel
tension ties. The model was an expansion of the truss model for edge slab-column connections
conceptualized, but never fully developed, by Van Dusen in 1985. Two types of compression struts

were assumed, those parallel to the plane of the slab, referred to as anchoring struts, and those
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inclined with regard to the plane of the slab, referred to as shear struts. Both types of struts were tied

to the column by the strut steel (Alexander & Simmonds, 1987).

Figure 2-8: Alexander and Simmonds Truss Model, (Alexander & Simmonds, 1987) Authorized
Reprint from ACI Structural Journal, Volume 84, Issue 3 (1987)

To estimate the punching capacity, it was assumed that the strut steel yielded. Based on this
assumption, it was then assumed that the compressive capacity of the concrete struts in plane would
never be exceeded. Therefore, failure of the slab-column connection was assumed to occur when the
concrete could no longer resist the out of plane force component in the compression strut. This out of
plane force is a measure of the slab’s ability to confine the flexural reinforcing bars, and is a function
of the tributary width of each bar, the reinforcing cover and the tensile strength of the concrete. The
advantages of the truss model were that it explained the load path around a slab-column connection, it
explained the role of the flexural reinforcement on the punching capacity, and the model was capable
of accounting for column rectangularity if modification factors were applied and each face of the

column was considered individually (Alexander & Simmonds, 1987).

Based on the results of experimental tests conducted after the truss model was published,
Alexander and Simmonds determined that the radial compression struts were curved, as shown in
Figure 2-9, instead of linear as originally assumed. To account for the struts being curved,
modifications to the mechanics used in the truss model were required. In 1992, Alexander and

Simmonds proposed an improved version of the truss model based on the shear stress on a critical
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section and radial arching action, which was referred to as the bond model (Alexander & Simmonds,
1992; Lantsoght, van der Veen, Walraven, & de Boer, 2015).

Reinforeing Bar 7

Figure 2-9: Curved Compression Strut Used in Bond Model (Alexander & Simmonds, 1992),
Authorized reprint from ACI Structural Journal, Volume 89, Issue 3 (1992)

The bond model is only applicable for slabs with orthogonal reinforcing layouts and assumes that
all load is carried from the slab to the column by radial strips. The shear forces are assumed to be
transferred from the slab to the column by the radial compression arches. The minimum force in each
arch occurs where the arch intersects the flexural reinforcing and the maximum force occurs at the
column face. Equilibrium of the radial strips is considered in the bond model and the model considers
both the flexural capacity of the radial strips and the shear capacity of the slab quadrants adjacent to
the radial strips. Punching failure is assumed to occur due to the slab’s inability to sustain the force
gradients present in the flexural reinforcement in the area near the slab-column connection. These
force gradients are assumed to be limited by either the bond between the reinforcing bars and the
concrete or the extent of yielding along the reinforcement length. Unlike the truss model, which was
capable of accounting for column rectangularity, the bond model does not properly account for
column rectangularity as the model assumes all force is carried by arching action. As the column
width increases, there is a transition from two-way to one-way shear action which results in the force
being carried by a combination of arching and beam action. However, Alexander and Simmonds
stated that the bond model should be conservative if the effect of rectangularity is neglected for slabs

which were commonly used in practice at the time of its derivation (Alexander & Simmonds, 1992).

2.4.5 Rankin and Long Yield Line Model

In 1987, Rankin and Long presented a model to estimate the punching capacity of slab-column

connections based on three failure modes, yielding of reinforcement, crushing of concrete or internal
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diagonal cracking. Failures due to reinforcement yielding or concrete crushing were defined as
flexural failures and failures due to internal inclined cracking were defined as shear failures. The
model related the punching capacity of the slab to the flexural behaviour of the slab. For lightly
reinforced slabs the final failure mode approaches that assumed in the yield line method as the
reinforcing ratio is reduced since failure occurs after extensive yielding of the flexural reinforcement.
In heavily reinforced slabs, the extent of yielding becomes localized, and the failure mode becomes
similar to that of a localized concrete compression failure near the column. As such, the punching
capacity should lie somewhere between the extremes of localized compression failure and the full
yield line pattern, shown in Figure 2-10 (Rankin & Long, 1987).

x

Figure 2-10: Yield Line Pattern for Isolated Slab-Column Specimen (taken from Rankin & Long,

1987), Reproduced with Permission from Institution of Civil Engineers

The shear capacity of the slab at flexural failure, Py, (N), assuming the full yield line pattern

shown in Figure 2-10 can be calculated using equation 2.1.

Priex = 8 ( - 0.172) M, 2.1)

a—~c¢
where s is the side length of a conventional isolated slab-column specimen (mm), c is the length of

the column dimension (mm), and a is the distance between supports in a conventional isolated slab-

column specimen (mm, typically assumed as 0.4L) (Rankin & Long, 1987).
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The shear capacity of a slab failing due to localized compression at the column face can be
calculated using equation 2.2

25 o

where 0.333f;d? represents the balanced moment of resistance and is taken from an empirical
equation by Whitney (1937) (Rankin & Long, 1987).

The punching capacity of the slab is calculated as the minimum of two equations. One equation is
used to estimate the capacity of a slab-column connection failing in flexural punching, which is
characterized as a punching failure where partial yielding of the slab reinforcement has occurred. The
second equation is used to estimate the “shear” punching capacity of slabs which fail before the
reinforcement yields, or the concrete crushes (Rankin & Long, 1987).

The flexural punching capacity of a slab-column connection, P, ¢ (N), is calculated using equation

2.3 and must be less than a maximum value computed with equation 2.4.

25
B B 3 _ (n(25a/c)t® M,
P = 8(a_c 0172) 8(—_C 0.172) - o333 | M (2.3)
25
In(2.5a/c))15 ,
Pyfmax = (In( rf/ D™ 10333£/q2 (2.4)

where 7y is a column shape factor to account for stress concentrations, £ is the concrete compressive

strength, and M, is the flexural capacity of the slab (Nmm). The column shape factor is equal to 1 for

circular columns and 1.15 for square columns (Rankin & Long, 1987).
The “shear” punching capacity, P, (N), is calculated using equation 2.5

P,s = 1.66:/f,(c + d) d (100p)°25 (2.5)

where d is the effective slab depth, and p is the flexural reinforcement ratio (Rankin & Long, 1987).

2.4.6 Shehata and Regan Model

Shehata and Regan proposed an improved version of the Kinnunen and Nylander model in 1989. As
with the model proposed by Kinnunen and Nylander (1960), the slab was assumed to be divided into
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rigid segments which rotate about a point, denoted the center of rotation, located at the neutral axis of
the slab at the column face. Before failure, it was assumed that a rigid wedge element, which is
bounded by the inclined cracks in the slab, and the initial circumferential crack around the column on
the slab surface, breaks away from reach rigid segment and rotates independently about the center of
rotation. Three equilibrium states in the radial plane are used to relate the slab rotation, neutral axis
depth and inclination of the compressive force at the column face to the applied load. Failure is
defined as one of three states:

1. When the inclination of the compressive force reaches 20 degrees the front portion of the
radial segment, which is in compression, fails due to tensile splitting.

2. Radial crushing of the concrete is assumed to occur if the average radial strain on the
compressed face equals 0.0035.

3. Tangential crushing of concrete is assumed to occur if at a distance x from the column face,
where X is equivalent to the neutral axis depth, the tangential strain reaches 0.0035
(Shehata & Regan, 1989).

The model proposed by Shehata and Regan is an improvement over that proposed by Kinnunen and
Nylander since the dowel action forces are calculated from equilibrium instead of assumed, the slab
deformation on top of the column and bounded by the shear crack is accounted for, and a more

complete failure definition is used (Shehata & Regan, 1989).

2.4.7 Critical Shear Crack Theory (CSCT)

The Critical Shear Crack Theory (CSCT) is a more recent mechanical model for punching shear
proposed by Muttoni (2008). Like the model developed by Kinnunen and Nylander, the CSCT relates
punching capacity to slab rotation. The CSCT assumes that the punching capacity of a slab-column
connection decreases as the slab rotation increases. The CSCT assumes that the shear strength of a
slab-column connection is decreased due to the existence of a critical shear crack which propagates
through the slab and intersects the inclined compression strut transferring shear forces from the slab
to the column. As this critical shear crack opens the strength of the inclined compression strut is
decreased until punching failure occurs. Muttoni and Schwartz (1991) assumed that the width of this
critical shear crack is proportional to the product of the slab rotation, i, and the effective slab depth,

d, as shown in Figure 2-11.
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Figure 2-11: Relationship between the critical shear crack width and slab thickness and rotation
(Muttoni, 2008), Authorized reprint from ACI Structural Journal, Volume 105, Number 4, 2008)

The amount of shear which can be transferred across the critical crack is assumed to be dependent
on the crack roughness, which is estimated using as a function of the maximum aggregate size. Based
on research by Walraven (1981) and Vecchio and Collins (1986) the capacity of the critical shear
crack to transfer shear force is approximated by dividing the nominal crack width, ¥d, by dg + dg,
where d is the maximum aggregate size (mm), and d, is the reference aggregate size of 16mm.
Multiplying the slab rotation, ¥, by d/(dg4o + dg) has the additional benefit of cancelling out the
effects of slab thickness and aggregate size in the model formulation. Using the assumptions and
factors discussed above an improved version of the CSCT failure criterion was published in 2003 by
Muttoni (Muttoni, 2008). The improved version of the CSCT failure criterion is discussed in
Subsection 2.5.5.

To apply the CSCT, the designer must estimate the load-rotation response of the slab. When
evaluating experimental tests, the rotations can be directly measured or can be calculated from
measured deflections by assuming a conical deformation pattern of the slab beyond the column
region. In design, the load rotation relationship can be estimated using nonlinear finite element
analysis or simplified design equations. If different reinforcing ratios are used in each orthogonal
direction, the maximum rotation of the slab should be used to estimate the punching capacity of the

slab-column connection (Muttoni, 2008).

The CSCT is used as the basis of the current punching provisions in Model Code 2010 (Muttoni,
Fernandez Ruiz, Bentz, Foster, & Sigrist, 2013). Earlier versions of the CSCT were also adopted in
the Swiss concrete design codes SIA 262 (2003) (Muttoni, Fernandez Ruiz, Bentz, Foster, & Sigrist,
2013) and SIA 162 (1993) (Muttoni & Fernandez Ruiz, 2008). The CSCT has also proven to be
applicable to other reinforced concrete members without shear reinforcement with minor

modifications. For example, it can be used to estimate the shear capacity of one-way slabs and beams
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without transverse reinforcement by assuming the crack width is proportional to the product of the
effective slab depth, d , and the longitudinal strain at a depth of 0.6d from the compression surface, ¢
(Muttoni & Fernandez Ruiz, 2008). The CSCT has also been expanded to estimate the punching

capacity of slabs which have transverse (shear) reinforcement (Fernandez Ruiz & Muttoni, 2009).

2.5 Code Provisions

In this section a detailed discussion of the current punching shear design code provisions from ACI
318M-14, Eurocode 2 (EC2) 2004 and Model Code 2010 will be provided. The historical
development of each of the above codes is also briefly discussed. Finally, a discussion of the design
equations derived from the Critical Shear Crack Theory (CSCT) presented in Subsection 2.4.7 is
provided. Most of the provisions discussed will be focused on interior slab-column connections

subjected to concentric punching shear without shear reinforcement.

Many parameters such as the concrete compressive strength, slab flexural reinforcement ratio, slab
effective depth, ratio of column perimeter length to slab depth, and shear span ratio to effective depth
have been found to influence the punching capacity of slab-column connections (Kueres, Siburg,
Herbrand, Classen, & Hegger, 2017). Other research has shown that additional factors such as
restraint forces due to frame action and column shape also have a significant impact on the punching
capacity of slab-connections (ASCE-ACI Committee 426, 1974). However, current codes of practice

differ in their treatment of many of these parameters or do not account for them at all.

2.5.1 Critical Perimeter Concept

Current and historical design codes have many fundamental differences in their treatment of punching
shear of reinforced concrete flat slabs. For example, some codes, such as Eurocode 2 (2004), account
for the impact of the flexural reinforcing ratio on the impact of punching capacity, whereas others,
such as ACI 318M-14, do not. However, all current major design codes for punching shear of
reinforced concrete slabs are based on the same fundamental concept, which is the critical perimeter
concept. Each code uses a critical perimeter where the shear stresses are typically assumed to be
uniform, and these stresses, along with an effective critical perimeter length, are used to estimate the

punching capacity of the slab-column connection being designed.

When designing a reinforced concrete beam the nominal shear stresses on a cross-section are used
to arrive at a shear design for the beam. The punching shear design of two-way slabs can be

completed using a similar methodology if the total punching load is divided by the area of an assumed
35



control surface or critical perimeter. The critical perimeter assumed in current design codes are
typically vertical rectangular or cylindrical surfaces around the slab-column connection. These
perimeters are assumed at a set distance from the face of the column or loaded area based on
experimental observations or the chosen mechanical model from which the code provisions are
derived. The critical perimeter concept was introduced in 1913 by Talbot, based on his observations
from tests of square footings loaded through square columns. Talbot found that the shear capacity of
the footings could be accurately predicted by considering the nominal shear stresses on a critical
perimeter located at a distance of d from the column face, where d is the effective flexural depth of
the footing (Regan & Braestrup, 1985).

To make use of the critical perimeter concept in design, the nominal shear stress on the assumed
critical perimeter is compared to a fraction of the concrete tensile strength, since the tensile strength
of concrete has been found to be related to the shear strength of concrete. The critical perimeter
concept is a helpful assumption to simplify design codes but does not necessarily represent the
mechanical behaviour of a reinforced concrete flat slab failing in punching shear. Even though it does
not represent the complex mechanics of a slab-column connection, the critical perimeter concept has
been found by many researchers to lead to reasonable predictions of punching capacity if proper
factors are applied (Regan & Braestrup, 1985). Due to its simplicity, the critical perimeter concept is
used in all major design codes, through the shape and assumed location of the perimeter varies

between codes.

2.5.2 ACl 318M-14
The current version of the ACI 318 code, ACI 318M-14, is the result of over 100 years of research

and practical engineering experience regarding the behaviour of concrete. The first official American
concrete code was published in 1908 by the National Association of Cement Users (NACU), who by
1920 were known as the American Concrete Institute (ACI) (Committee of Laws and Ordinances,
1908). The first punching shear design provisions were included in ACI Standard Specification
Number 23, which was released in 1920. The punching provisions were based on a working stress
design methodology considering two critical sections, one vertical surface at the edge of the column
capital, and one surface inclined at 45 degrees from the edge of the column capital carrying shear via
diagonal tension. The stresses on these two surfaces were compared to maximum values which were
fractions of the concrete compressive strength (American Concrete Institute, 1920). In the 1927
edition of the code only one critical section was used instead of two. The new critical section was
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assumed to be vertical and located at a distance d from the face of the column capital or drop panel
(ACI Committee E-1, 1927). Between 1936 and 1956, the punching provisions were largely
unchanged, as only minor modifications were made to maximum allowable stresses and the detailing
requirements (ACI Committee 501, 1936; ACI Committee 318, 1956).

The 1963 edition of ACI 318 represented a large change from the previous codes. The 1963 edition
of ACI 318 was the first ACI code to include punching provisions for both working stress and
ultimate stress design methods. The biggest changes in this code compared to previous versions were
in regard to the assumed critical perimeter and maximum allowable stresses. Based on research
completed before 1962, ASCE-ACI Committee 326, which is now known as ASCE-ACI Committee
426, recommended the critical perimeter be located at a distance of d/2 from the face of the column or
drop panel, which differed from Moe’s recommendations. The committee made this recommendation
since most of the experimental punching shear test results available at the time displayed a pyramid
shaped failure surface with an angle of approximately 45 degrees. This failure surface is under a
complex state of stress due to combined bending and shear stresses and starts at the neutral axis of the
slab. The committee believed that the use of the failure surface located at d/2 from the face of the
column was simpler than using a failure surface at the column perimeter, as recommended by Moe.
The design equation presented by Moe, which was derived assuming the critical perimeter to be the
column perimeter, required a parameter that accounted for the ratio of the column size, c, to the
effective depth of the slab, d (Moe, 1961; ACI Committee 318, 1965). The committee believed that
the impact of ¢/d could be accounted for by using a vertical critical perimeter located at d/2 from the
column face. It was assumed that the use of the perimeter at d/2 resulted in a shear stress distribution
which was independent of the c/d ratio since the assumed critical surface shared a point with the
actual failure surface, and had an area which was proportional to that of the actual failure surface

(ACI Committee 318, 1965). The ultimate stress on the chosen failure surface was assumed equal to
4\/ﬁ (imperial units, where £ is in psi) or 0.33\/ﬁ (SI units, where f, is in MPa) even for
irregularly shaped columns (ACI Committee 318, 1965). The use of \/E to estimate shear capacity of
reinforced concrete was a change from the previous versions of the code which is still used in the
current ACI provisions. Finally, ACI 318-63 also added provisions requiring designers to check both
one-way and two-way shear capacity, provisions for shear reinforced slabs, provisions for the design

of slabs with openings near the slab-column connection and mentioned that the negative impact of
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unbalanced moments on punching capacity needed to be accounted for, although no specific
provisions were provided (ACI Committee 318, 1963; ACI Committee 318, 1965).

The assumption that the use of a critical perimeter located at d/2 resulted in uniform shear stress
distributions for any size column was later found to be invalid, but researchers have shown that the
use of a critical perimeter at d/2 leads to the most accurate estimation of punching capacity. Many
current codes other than ACI 318M-14 including Model Code 2010, and SIA 232:2013 (Switzerland)
and many historical codes such as Model Code 1978 and DIN 1045 (Germany) have used a critical
perimeter located at d/2 from the column face (Kueres, Siburg, Herbrand, Classen, & Hegger, 2017).
The critical perimeter assumed in ACI 318M-14 is shown in Figure 2-12.

d/2~— d/2—

Cmax

Cmin

Figure 2-12: Critical Perimeter Assumed in ACI 318M-14 (ACI Committee 318, 2014)

The current ACI 318M-14 provisions for punching shear are very similar to those in ACI 318-63
for concentric punching around square columns. However, the assumption of the shear stress on the
critical perimeter being independent of column size was incorrect and as such two additional
equations for the shear capacity along the critical perimeter were added. The two-way shear capacity
for a slab without shear reinforcement along the critical perimeter, v, (MPa), is the minimum of

equations 2.6, 2.7 and 2.8,

0.331\/f, (2.6)
0.17 (1 + 2/ﬁ,)a 1A (2.7)
0.083(2 +a, d/bo) MWE (2.8)

where A is a term to account for the density of concrete, £, is the concrete compressive strength

(MPa), B is the ratio of the length of the long and short sides of the column, «; is a constant
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dependent on the column location (which equals 40 for interior columns (Sl units)), d is the average
effective depth (mm), and b,, is the length of the critical perimeter (mm). Equations 2.7 and 2.8 were
added in 1977 and 1989 respectively to account for cases where the assumption of uniform stress on
the critical perimeter for all column sizes and shapes (equation 2.6) was found to be unconservative.
Equation 2.7 is largely derived from experimental results published in 1971 by Hawkins, Fallsen and
Hinojosa and accounts for stress concentrations at the corners of rectangular or oddly shaped columns
(ACI Committee 318, 2014; ASCE-ACI Committee 426, 1974; Al-Yousif & Regan, 2003; Mitchell,
Cook, & Dilger, 2005). As discussed in Subsection 2.3.3, many other researchers have also observed
a negative impact of column rectangularity on punching capacity (Oliveira, Regan, & Melo, 2004;
Himawan & Teng, 2014; Paiva, Ferreira, Oliveira, Lima Neto, & Teixeira, 2015; Filatov, 2017; Shu,
Belletti, Muttoni, Scolari, & Plos, 2017). Equation 2.8 was added based on tests by Vanderbilt (1972)
that indicated that the maximum nominal shear stress on the critical perimeter at d/2 from the column
face decreased as the ratio of the critical perimeter length, b,, to the effective slab depth, d, increased
(ACI Committee 318, 2014)

After determining the governing shear stress along the critical perimeter, the punching capacity of

the slab-column connection, V' (kN), is calculated according to equation 2.9.
V =V minbod + 1000 (2.9)

where v.,,in IS the governing shear stress along the critical perimeter which is the minimum of

equation 2.6, 2.7, and 2.8 (MPa) and b, and d are as previously defined (mm).

2.5.3 Eurocode 2 (2004)

The primary reason for the development of the Eurocodes was to harmonize the multiple national
design codes used in the different European nations. The adoption of the Eurocodes allowed the same
design code framework to be used throughout Europe, while allowing the individual nations to retain

control of certain parameters, such as load levels (Johnson, 2009).

As with the 2004 edition of Eurocode 2 (EC2), which was primarily based on Model Code 1990
(European Concrete Platform ASBL, 2008), the original draft of Eurocode 2, released in 1991,
ENV1992-1-1, was greatly influenced by the most recent Model Code available at the time. In
addition to Model Code 1978, ENV1992-1-1 was also influenced by four British Standards, BS 8110
— Structural Use of Concrete: Parts 1-3 (1985) and BS 5400-4 — Steel, Concrete and Composite
Bridges: Part 4 (1984) (The Concrete Centre, part of the MPA, n.d.). Unlike EC2 (2004), which does
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not account for column rectangularity when calculating the punching resistance of concentrically
loaded slab-column connections, ENV 1992-1-1 accounted for column rectangularity by reducing the
effective critical perimeter length if the column dimensions exceeded specific values (Al-Yousif &
Regan, 2003; Teng, Cheong, Kuang, & Geng, 2004). The lengths of the straight portions of the
effective critical perimeter in ENV 1992-1-1 matched the lengths of the straight portions of the
critical perimeter assumed to carry two-way shear in Model Code 1978. However, the critical
perimeter assumed in ENV 1992-1-1 had two major differences compared to that used in Model Code
1978. Firstly, the portion of the critical perimeter assumed to carry one-way shear in Model Code
1978 was neglected in the ENV 1992-1-1. Secondly, even though the same lengths for the straight
portions were assumed in both codes the critical perimeters were located at different distances. The
critical perimeter was located at a distance of d/2 from the column face in Model Code 1978, and at a
distance of 1.5d from the column face in ENV 1992-1-1, which matched the critical perimeter
assumed in the British design standards. Examples of the critical perimeters assumed in ENV 1992-1-

1 around typical columns and large rectangular columns are shown in Figure 2-13.

a) 1.5d

Typical

al/2 al/2

I]»bh?
I’bh‘?

a>b

Large
Rectangular

Columns

a>b

Two-way Shear b1= min (b, 2.8d)
al= min (a, 2b, 5.6d-b1)

Figure 2-13: Critical Perimeters Assumed in ENV 1992-1-1 (European Comittee for
Standardization (CEN), 1993)
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EC2 (2004), also known as EN 1992-1-1 (2004) was primarily based of Model Code 1990, and
included many changes compared to its draft form, ENV 1992-1-1 (European Concrete Platform
ASBL, 2008; Ricker & Siburg, 2016; Walraven & Bigaj, 2011; Gardner N. J., 2011). Firstly, the
critical perimeter location was moved from a distance of 1.5d to 2d from the column face to match the
critical perimeter used in Model Code 1990. Secondly, the reductions in the effective critical
perimeter length to account for column rectangularity were removed (European Commitee For
Standardization, 2004; European Concrete Platform ASBL, 2008). The assumed critical perimeter
was modified from 1.5d to 2d since the further perimeter was found to result in a more uniform shear
stress distribution even for different column sizes. The use of the critical perimeter at 2d also allowed
the same methodology used to calculate shear in members without shear reinforcement to be used for
slabs (European Concrete Platform ASBL, 2008; FIB, 2010). Secondly, the punching capacity
equation was modified to resemble that used in Model Code 1990, since an error was found in the
derivation of the ENV 1992-1-1 equation which resulted in unconservative predictions for high
strength concretes (European Concrete Platform ASBL, 2008).

According to EC2 (2004), the nominal punching capacity along the critical perimeter, vg4 . (MPa),

can be calculated according to equation 2.10

Vga,c = Cra,c k (100 p; fck)% (2.10)

where f, is the characteristic concrete strength (MPa), k is a size effect factor which is equal to
1+/200/d < 2.0 where d is the average effective depth (mm), p, is a term based on the flexural
reinforcement ratio in each orthogonal direction which is equal to \/p,, p;; < 0.02 where p;,, and p;,
are the reinforcement ratios for a slab width equal to the column width plus 3d on each column side
in each orthogonal direction, and Cr4  is a constant equal to 0.18/y,, where y, is a safety factor
found in the national annexes that typically equals 1.5 (European Commitee For Standardization,
2004). Since equation 2.10 tends to 0 as the reinforcing ratio approaches 0, which was also the case
in Model Code 1990, an equation was added to calculate a minimum punching resistance around the
critical perimeter (European Concrete Platform ASBL, 2008). The minimum punching resistance
around the critical perimeter, v,,,;,, (MPa), is calculated using equation 2.11 (European Commitee For

Standardization, 2004).

3 1
Vmin = 0.035 k2 fj{ (2.11)
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EC2 (2004) also requires the designer to check the punching capacity based on a maximum stress
around the column perimeter. The resistance of the slab-column connection along the column

perimeter, vrq max (MPa), is calculated according to equation 2.12.

URd,max = 0.4[0.6 (1— fck/250)] fea (2.12)

where f.4 is the design concrete strength (MPa) which is calculated as a .. f.«/v. Where a.. is a
factor to account for long term effects with a recommended value of 1 (European Commitee For
Standardization, 2004). In equation 2.12 the (1 — f,,/250) term accounts for reduced strength of the
compression struts in cracked concrete due to lateral tensile stresses (Kueres, Siburg, Herbrand,
Classen, & Hegger, 2017; Ricker & Siburg, 2016).

The punching capacity of the slab-column connection according to EC2 (2004) is determined as the
minimum of the capacity based on the shear stress along the critical perimeter at 2d and along the
column perimeter. To compute the punching capacity based on the column perimeter vgg 1max IS
multiplied by the column perimeter and the average effective depth. The punching capacity based on

the shear stress at the critical perimeter is calculated using equation 2.13
Vou=vu d (2.13)

where 1, is the punching capacity (N), v is maximum of the shear stresses calculated from
equations 2.10 and 2.11 (MPa), d is the average effective slab depth (mm) and w, is the length of the
critical perimeter located at 2d from the column face. The critical perimeter assumed in EC2-2004 is
shown in Figure 2-14.

Figure 2-14: EC2 (2004) Critical Perimeter (European Commitee For Standardization, 2004)
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As previously mentioned EC2 (2004) does not account for column rectangularity when calculating
the punching resistance of slabs subjected to concentric loading. However, EC2 does account for

column rectangularity in cases where unbalanced moments are transferred to the column.

In cases where the support reaction is eccentric with regards to the critical perimeter or column

perimeter, the shear stress due to the applied loading, vz, (MPa), is calculated using equation (2.14)

VEa
=p = 2.14
vea =B g (2.14)
where Vg, is the applied shear force (N) and £ is calculated using equation 2.15 (European
Commitee For Standardization, 2004)

1

where k is a coefficient which depends on the ratio of the minimum column dimension to the
maximum column dimension, Mg, is the design value of the applied internal bending moment
(Nmm) and W; is a term to account for the distribution of shear on the critical perimeter (European
Commitee For Standardization, 2004). For a rectangular column W; is calculated according to

equation 2.16.

2

C
Wl = 71 + C162 + 462d + 16d2 + ancl (2 16)

where ¢, is the column dimension parallel to the load eccentricity and c, is the column dimension

perpendicular to the load eccentricity (European Commitee For Standardization, 2004).

For interior columns with rectangular cross-sections where the reaction is eccentric about both axes

an approximate expression for 8, shown in equation 2.17, is provided.

2
Bp=1+18 (Z—y)z + (Z—Z> (2.17)

y

where e, and e, are the eccentricities along the y and z axes respectively and b,, and b, are the
dimensions of the control perimeter as shown in Figure 2-14 (European Commitee For
Standardization, 2004).
In the case of edge columns, alternative definitions for g and W; are provided, but are not
discussed in detail here, as the work in this thesis is focused on interior slab-column connections.
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2.5.4 Model Code 2010

Model Code 2010 is the most recent model code published by the International Federation for
Structural Concrete (fib). It is not a legally binding code but instead is intended to serve as a starting
point from which other nations and code committees can create a design code for structural concrete.
Model Code 2010 is meant to provide code creators with state-of-the-art knowledge in terms of the
material behaviour and analysis/design of concrete structures (fédération internationale du béton (fib),
2013; Walraven & Bigaj, 2011).

Model Code 2010 differs from the two previous Model Codes, Model Code 1978 and Model Code
1990, in two significant areas. Firstly, Model Code 2010 introduced the Level of Approximation
(LoA) approach. This approach is meant to provide designers with simplified design procedures that
can be used in preliminary design stages, or for the design of non-critical elements while allowing
them to use state-of-the-art approaches to assess existing structures or design critical members. Four
levels of approximation are provided for punching shear. As the level of approximation is increased
more time is required to perform the analysis, but the final results should be more accurate and less
conservative. The use of the LoA approach requires the code provisions to be based on sound
physical models so that designers can see the relation between the simplified and complicated models
through simple assumptions (Belletti, Pimentel, Scolari, & Walraven, 2015). The second fundamental
difference between the two previous Model Codes and Model Code 2010 is that the punching
provisions for Model Code 2010 are based on the Critical Shear Crack Theory (CSCT), which is a
mechanical model, whereas the two previous Model Codes were empirically based (Muttoni &
Fernandez Ruiz, 2012; Muttoni, Fernadndez Ruiz, Bentz, Foster, & Sigrist, 2013; Ricker & Siburg,
2016; Soares & Vollum, 2015).

The punching shear capacity of slab-column connection without shear reinforcement is calculated
according to equation 2.18.

Vre = ky ferbod (2.18)

where b, is the length of the effective control perimeter at located at 0.5d from the column face
(mm), d is the effective depth of the slab (mm), £, is the characteristic compressive strength of
concrete (MPa) and k., is a parameter that is related to the slab rotation and calculated using equation

2.19.
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1
ky = <06 2.19
YT 15+ 0.9¢dky, (219

where 1 is the slab rotation and k4 is a factor depending on the maximum aggregate size calculated

according to equation 2.20

= > 0. .
kag 16+dg_075 (2.20)

where d; is the maximum aggregate size (mm).

Four levels of approximation are provided to estimate the slab rotation, 1. LoA | is meant to be
used for preliminary design and is based on the assumption that all flexural reinforcement in the
support strip width yields at failure. This assumption results in very large crack widths, which
decreases the predicted punching capacity according to the CSCT. LoA | is a very safe estimation
technique since if the finalized design meets this criteria the strength of the slab will be governed by
bending and no further punching checks are required. Designs according to LoA | will have very
ductile failures (Muttoni & Fernandez Ruiz, 2012) and will be very conservative. According to LoA I,
the slab rotation can be calculated according to equation 2.21.

Ts fyd

=1
V=15 7E,

(2.21)

where 15 is the location where the radial bending is equal to zero (mm, typically 0.22 times the clear
span), f,q is the yield strength of the reinforcement (MPa), and Ej is the elastic modulus of the
reinforcement (MPa) (fédération internationale du béton (fib), 2013).

LoA 11, which is recommended for the design of new structures (Genikomsou A. , 2015; Paiva,
Ferreira, Oliveira, Lima Neto, & Teixeira, 2015), uses a simplified estimate of the moment capacity
per unit length of support strip. The moment capacity of the support strip is calculated using an
analytical equation which relates the moment in the support strip to the shear force acting in this strip
and the moment transferred from the slab to the support region accounting for eccentricity (Muttoni &
Fernandez Ruiz, 2012). Predictions according to LoA Il have been found to be fairly accurate by
numerous researchers (Muttoni & Fernandez Ruiz, 2012; Muttoni, 2008; Muttoni, Fernandez Ruiz,
Bentz, Foster, & Sigrist, 2013). According to LoA 11, the slab rotation can be calculated according to
equation 2.22.
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Ts fyd (mEd)1'5

=1.5
1:[) d Es MRa

(2.22)

where mg, is the average moment per unit length for calculation of the flexural reinforcement in the
support strip (Nmm/mm) and mg, is the design average flexural strength per unit length in the
support strip (Nmm/mm). To apply LoA I, the rotation must be calculated in both orthogonal
directions (fédération internationale du béton (fib), 2013).

LoA Il is recommended for use in special cases or to analyze existing structures (Genikomsou A. ,
2015; Paiva, Ferreira, Oliveira, Lima Neto, & Teixeira, 2015). Like LoA 1I, LoA 11 uses an analytical
equation to estimate the slab rotation. However, LoA 111 allows the designer to improve the estimate
of the slab rotation, and the estimate of punching capacity, by using linear elastic FEA to estimate the
moment field in the slab. Since a more accurate method is used to estimate the moment, the
coefficient of 1.5 in equation 2.22 is reduced to 1.2 (Muttoni & Fernandez Ruiz, 2012; fédération
internationale du béton (fib), 2013). Reducing this coefficient is equivalent to assuming a stiffer slab
response since the calculated slab rotation is lower. Based on the assumptions in the CSCT, the
critical crack width is reduced (since rotations are reduced) leading to a higher estimated punching
capacity (Muttoni & Fernandez Ruiz, 2012).

LoA IV represents the highest level of approximation and is recommended for special cases and for
accurate assessments of existing structural capacity (Genikomsou A. , 2015). LoA IV allows the
designer to use NLFEA to estimate the slab rotation to be used in equation 2.19 (fédération
internationale du béton (fib), 2013). Typically, analyses according to LoA IV are very time
consuming and in most cases the increase in capacity between LoA Il and LoA IV will be small.
Only in cases with low reinforcing ratios, or where significant moment redistribution is expected, will
predictions from LoA 1V differ greatly compared to those from LoA I1l. LoA IV also requires an
experienced designer as NLFEA is greatly affected by modelling choices. The model used to estimate
slab rotations should be verified or calibrated based on experimental results (Muttoni & Fernandez
Ruiz, 2012).

The basic critical perimeter in Model Code 2010 is located at a distance of d/2 from the column
face and has curved corners as shown in Figure 2-15. However, before the punching capacity can be
estimated using equation 2.18 the effective critical perimeter length must be calculated. The first
reduction in critical perimeter length accounts for large columns. For columns with side lengths

greater than 3d the effective length of the critical perimeter is reduced to a length of 3d on each
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respective side where the length exceeds 3d, as shown in Figure 2-15. Additional reductions in
effective critical perimeter length account for accidental eccentricities and the impact of unbalanced
moments. However, all slabs in this thesis were concentrically loaded and were based on carefully
tested experimental specimens. Therefore, the additional reductions were neglected when evaluating

the adequacy of the Model Code 2010 provisions.

;"‘/,/ 05dv ."‘\\‘l‘l ;._-"/ 105dv __ \.."‘.
‘ "/ _[1.5dv
o5 ) . / e
! / // j1.5dv
2) — b)  1.5d, 1.5dy

Figure 2-15: Critical Perimeters Assumed in MC 2010, a) Unreduced b) Reduced effective
perimeter length (3d method) (fédération internationale du béton (fib), 2013)

It is interesting to note that a similar reduction in the critical perimeter length to account for large
or rectangular columns was included in Model Code 1978. The commentary to Model Code 1978,
contained in CEB Bulletin 137 (Comite Euro-International Du Beton, 1980), states that the use of a
critical perimeter at a distance of d/2 from the column face leads to unconservative punching
estimates for large columns. Unlike Model Code 2010, where portions of the critical perimeter are
assumed to have zero capacity, the critical perimeter in Model Code 1978 was divided into two
portions if the column side lengths exceeded certain dimensions as shown in Figure 2-16, one which
carried shear through two-way (punching) shear, and one which carried shear through one-way shear.
The nominal capacity in one-way shear was assumed to be lower than that in two-way shear in Model
Code 1978 (Comité Euro-International Du Béton, 1978).
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a>b
——————— One-way Shear b1 = min (b, 2.8d)
Two-way Shear al= min (a, 2b, 5.6d-b1)

Figure 2-16: Critical Perimeter Around Large or Rectangular Columns Assumed in Model Code
1978 (Comité Euro-International Du Béton, 1978)

The punching shear provisions in Model Code 1990 are extremely similar to those in Eurocode 2
(2004) since Eurocode 2 was derived from Model Code 1990 (European Concrete Platform ASBL,
2008). As such, the punching provisions from Model Code 1990 will not be discussed in detail.
However, it is interesting to note that unlike the other two Model Codes, Model Code 1990 did not
directly account for column rectangularity in concentric punching. As with Eurocode 2 (2004), the
critical perimeter was assumed to be located at a distance of 2d from the column face as it was found
to result in a more uniform stress distribution around columns of any size (Comité Euro-International
du Béton, 1993).

2.5.5 Critical Shear Crack Theory (CSCT)

Based on the CSCT, the punching shear capacity of a slab-column connection without shear

reinforcement, Vy, can be calculated using equation 2.23.

bodyfe

3
4 vd )
s (2
dgo + d,

Ve = (2.23)

where b, is the critical perimeter length (mm), d is the effective slab depth (mm), £, is the concrete
compressive strength (MPa), d is a reference aggregate size (16mm), d, is the maximum aggregate

size (mm) and ¥ is the slab rotation (Muttoni, 2008). The slab rotation can be estimated through the

48



use of FEA or can be calculated using a simplified equation proposed by Muttoni, which is provided

in equation 2.24.

3/2
Ts fy( %4 )
=15—+ (2.24)
l/) dEs Vflex

where 7 is the distance to the radius of contraflexure (mm, typically taken as 0.22L), f;, is the yield
strength of the flexural reinforcement (MPa), E is the modulus of elasticity of the flexural
reinforcement (MPa), V' is the applied shear force (N) and Vy,,, is the shear force associated with the
flexural capacity of the slab (N) (Muttoni, 2008). Muttoni (2008) states that the slab’s flexural
strength is reached when the radius of the zone where the flexural reinforcement has yielded ()
equals the radius of an isolated-slab column connection (7;). Based on this definition V., can be

calculated using equation 2.25.

T
Vilex = 2mmg (T = . > (2.25)
q c

where my, is the nominal moment capacity per unit width (Nmm/mm), , is the radius of the load
introduction at the perimeter (mm), and 7. is the radius of the circular column (mm) (Muttoni, 2008).

In the case of rectangular columns, the punching capacity can be calculated using one of two
methods. The first method involves using one maximum rotation to calculate a nominal stress
assumed to act over the effective critical perimeter length. The second method, presented by Sagaseta
et al. (2014), accounts for the redistribution of shear around the critical perimeter and involves
dividing the effective critical perimeter into X and Y components as shown in Figure 2-17. In order to
apply this method, the maximum slab rotation in each orthogonal direction is used. Using both

maximum rotations the total capacity of the slab-column connection is calculated using equation 2.26

% v,
%bx + - p, (2.26)
o

VR = vabx + vRyby = b
o

where Vg, and Vg, are the punching capacities calculated using equation 2.23 based on the entire
effective critical perimeter length and the maximum rotation in the X and Y-directions respectively
(N), and b, and b,, are the lengths of the critical perimeter in the X and Y-directions respectively

(Sagaseta, Tassinari, Ferndndez Ruiz, & Muttoni, 2014).
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Figure 2-17: Breakdown of Critical Perimeter into X and Y Components
2.6 Review of Previous Finite Element Analysis

2.6.1 Introduction

Similar to the experimental database for punching shear, the majority of previous finite element
studies have focused on slabs supported on square or circular columns. The finite element studies for
slabs supported on square or circular columns are typically nonlinear and focus on predicting the full
response of isolated slab-column connections or continuous slab systems. Finite element studies for
slabs supported on rectangular columns are typically linear elastic and focused on estimating the
elastic shear stress distribution around the column or critical perimeter. These elastic shear stress
distributions are typically used to estimate the effective critical perimeter length which can be
combined with code provisions to estimate the punching capacity of slabs supported on rectangular

columns.

Some early attempts to use FEA to analyze slab-column connections were conducted by Hawkins,
Fallsen and Hinojosa (1971) and Masterson and Long (1974). As part of their detailed study of
column rectangularity Hawkins, Fallsen and Hinojosa (1971) conducted two-dimensional finite
element analysis to estimate the deflection of the tested isolated slab-column specimens. Masterson
and Long (1974) proposed equations to estimate the capacity of slab-column connections, including

those with rectangular columns, based on the results of a linear two-dimensional finite element
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analysis based on elastic thin plate theory. Since these early attempts to use FEA to analyze the

punching shear behaviour of slab-column connections the use of NLFEA has grown in popularity.

The popularity of NLFEA has grown due to the desire of engineers to realistically model structural
behaviour under various loading conditions. Nonlinear numerical analyses based on the finite element
method have proven to be capable of providing a virtual testing scheme which can be used to simulate
structural behaviour and determine the impact of parameters which are difficult to investigate
experimentally (Alam & Amanat, 2012). However, simulating the phenomenon of punching shear in
reinforced concrete slabs using NLFEA is not trivial due to the interaction between shear and flexure
and the development of localized fracture zones as the load is applied to the slab (Wosatko, Pamin, &
Polak, 2015; Shu, Belletti, Muttoni, Scolari, & Plos, 2017).

As previously mentioned, early finite element research of reinforced concrete slabs supported on
columns was done using two-dimensional elements. As time has passed, the use of three-dimensional
models based on shell or continuum (solid) elements has become more popular. Three-dimensional
models offer increased flexibility and accuracy in capturing the out-of-plane behaviour of reinforced
concrete structures compared to their two-dimensional counterparts (Shu, Plos, Zandi, Johansson, &
Nilenius, 2016). Models based on shell elements are typically less detailed than those based on
continuum elements since they are based on a smeared cracking approach and consider the
reinforcement as a layer within the concrete or account for the reinforcement by modifying the
concrete stiffness. Shell element-based models are typically used to conduct a global analysis of a
structure, as they use less degrees of freedom and require less computational time compared to
models using three-dimensional continuum elements. Three-dimensional solid elements are the ideal
choice when a detailed analysis of a small portion of a structure is required (Polak, 1998). Models
based on three-dimensional solid elements can be used to conduct detailed studies of cracking and
damage in small portions of a structure (Guan & Polak, 2007), such as a slab-column connection.
However, skilled practitioners are required to conduct meaningful FEA based on three-dimensional
solid elements due to the large impact modelling choices can have on the predicted response (Shu,
Fall, Plos, Zandi, & Lundgren, 2015).

In this section, previous finite element studies of slabs supported on square or circular columns and
rectangular columns using two-dimensional elements, or three-dimensional shell and solid elements

will be discussed.
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2.6.2 Square or Circular Columns

2.6.2.1 Two-dimensional Finite Element Analyses

Gonzalez-Vidosa, Kotsovos and Pavlovic (1988) conducted a NLFEA of axisymmetric slabs based on
a two-dimensional plane stress model by Bédard and Kotsovos (Bédard & Kotsovos, 1985). Two
series of isolated slab-column connections were modelled. The first series of slabs were four circular
slabs tested by Kinnunen, Nylander and Tolf (1978). The second series of slabs, chosen since the
reinforcing ratios range between 0.5% and 3%, were five square slabs tested by Elstner and
Hognestad (1956). Due to the formulation of the model, the square slabs were approximated through
equivalent circular slabs. Eight node and three node isoparametric elements were used to model the
concrete and the flexural/shear reinforcement respectively. Concrete cracking was accounted for by
using a modified Newton-Raphson method and the residual force concept. The finite element model
was found to accurately predict the load deflection curve of the circular slabs and predicted the
punching capacity within 10%. The predicted capacities for the square slabs were within 20% of the
experimental values, but the predicted stiffness was much higher, likely due to the use of the
equivalent circular slab (Gonzalez-Vidosa, Kotsovos, & Pavlovic, 1988).

Menétrey, Zimmerman, Willam and Regan (1997) modelled isolated slab-circular column
connections with four node quadrilateral axisymmetric elements. Concrete cracking was accounted
for using a smeared crack model and a strain-softening formulation. The crack width was related to
the concrete tensile stress through the fictitious crack model developed by Hillerborg et al. (1976). To
overcome mesh locking the mean dilation formulation proposed by Hughes (1980) was used. The
model was used to investigate the impact of concrete tensile strength, concrete compressive strength,
orthogonal reinforcing layouts, reinforcing ratio and size effect on punching shear behaviour. It was
concluded that punching failures are related to the concrete tensile strength and that increasing the
flexural reinforcement ratio reduces cracking and increases the punching capacity. The numerical
model also predicted a size effect similar to that observed experimentally by others (Menétrey,
Walther, Zimmermann, Willam, & Regan, 1997).

Hallgren and Bjerke (2002) simulated experimental tests of two circular column footings in
SBETAX 1.2, which is two-dimensional nonlinear analysis program for reinforced concrete
structures. The model was based on nonlinear fracture mechanics and used a smeared rotated crack
model. Two-dimensional four node isoparametric elements with additional degrees of freedom in the

out-of-plane direction were used. Reinforcement was included in a band of elements through a
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smeared method. The impact of slab slenderness, concrete compressive strength, concrete tensile
strength and assumed concrete fracture energy on the finite element predictions were investigated.
The punching capacity of footings was found to be greatly influenced by the slenderness and concrete

compressive strength (Hallgren & Bjerke, 2002).

2.6.2.2 Three-dimensional Finite Element Analyses — Shell Elements

Polak (1998) demonstrated the capability of the finite element method for global analyses of
reinforced concrete slabs subjected to large concentrated transverse loads using three-dimensional
layered shell element formulations based on quadratic, degenerate isoparametric elements which
allowed the out-of-plane shear response of the slab to be approximated. The model was formulated
based on the Modified Compression Field Theory (MCFT) by Vecchio and Collins (1986). In plane
reinforcement was modelled as a layer within each element whereas transverse reinforcement was
accounted for by modifying the concrete properties in each layer. A smeared rotating crack approach
where the crack direction is assumed to be perpendicular to the direction of the principal tensile strain
was used. The model was able to accurately capture transverse shear behaviour and predict the
location of flexural or punching failures in structures (Polak, 1998).

Guan and Polak (2007) also used layered shell elements to model punching shear behavior, but
their study was focused on slab-edge column connections with openings and the impact of shear
reinforcing. Twelve specimens, ten of which were tested experimentally by El-Salakawy, Polak and
Soliman (1999, 2000), were modelled using layered shell elements and the layered finite element
method (LFEM) presented by Guan and Loo (1997). The use of LFEM allowed the model to account
for both flexural and transverse shear cracking until failure. The presented model accurately predicted
the slab deflections at failure, load capacity and crack patterns of the experimental specimens. The
inclusion of openings was found to reduce both the punching capacity and stiffness of the connection.
In cases where the connection was subjected to unbalanced moments, a smaller reduction of punching
capacity was observed when the opening was not located in the same direction as the unbalanced
moment (Guan & Polak, 2007).

Plos, Shu, Zandi and Lundgren (2017) proposed a multi-level assessment strategy based on
successively improved analysis techniques that could be used to evaluate existing reinforced concrete
bridge deck slabs. The second and third levels of the assessment strategy use linear elastic and
nonlinear three-dimensional shell element models respectively. Level Il analyses are based on shell or

plate bending theory and the impact of different load cases is analyzed using superposition. A level I11
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analysis involves a nonlinear finite element study using shell elements where the loads are increased
until structural failure is predicted. Level Il analyses include reinforcing based on the assumption of
perfect bond. Models meeting level 111 requirements are not capable of capturing out-of-plane shear
failures such as punching, and these failure modes must be checked through other methods. Three-
dimensional NLFEA based on continuum elements are used for the highest analysis levels, level IV
and V respectively. (Plos, Shu, Zandi, & Lundgren, 2017). The assumptions for levels IV and V are
discussed in Section 2.6.2.3

2.6.2.3 Three-dimensional Finite Element Analyses — Solid Elements

Alam and Amanat (2012) calibrated a three-dimensional finite element model based on a total strain
crack approach based on the experimental results of fifteen slab-column tests conducted by Alam,
Amanat and Seraj (2009). The finite element model was implemented in TNO DIANA and was based
on the MCFT by Vecchio and Collins (1986) and the three-dimensional extension proposed by Selby
and Vecchio (1993). Twenty node isoparametric solid brick elements were used to model the
concrete. The flexural reinforcement was assumed to be perfectly bonded to the concrete and was
embedded in the concrete elements. The calibrated model was found to accurately predict the load
deflection response and crack pattern of the tested slabs (Alam & Amanat, 2012).

Alam and Amanat (2014; 2015) used the model calibrated by Alam and Amanat (2012) to
investigate the punching shear behaviour of slab-column connections in continuous multi-panel
specimens. The continuous model was a two bay by two bay flat slab system with a thickness of
200mm and with columns spaced at 6000mm on center in both directions. To simulate continuous
action the slab was extended 1500mm beyond the column centerlines in all directions. In the 2014
study a total of thirty simulations were completed. In these simulations a constant column size of
400x400mm was used and the concrete compressive strength and reinforcing ratio ranged between
24-60MPa and 0.15-2% respectively (Alam & Amanat, 2014). In the 2015 study a total of seventy-
five simulations were presented considering three column sizes, 400x400mm, 600x600mm and
800x800mm. In these seventy-five simulations the concrete strength and flexural reinforcing ratio
were varied between 24-60MPa and 0.25-2% respectively for each column size (Alam & Amanat,
2015). In both studies, the punching capacity was found to increase with increasing flexural
reinforcing ratio and concrete compressive strength (Alam & Amanat, 2014; Alam & Amanat, 2015).

In the 2015 study the nominal shear capacity around the critical perimeter at d/2 from the column face
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was found to decrease as the column size, and ratio of column size to slab depth, was increased (Alam
& Amanat, 2015).

Eder, Vollum, Elghazouli and Abdel-Fattah (2010) also conducted NLFEA of reinforced concrete
flat slabs in DIANA using a total strain crack approach. As with the studies by Alam and Amanat
(2012; 2014, 2015), the model was based on MCFT (Vecchio and Collins, 1986) and the three-
dimensional extension by Selby and Vecchio (1993). The numerical model was calibrated based on
the test of an isolated slab-column connections without shear reinforcement published by the authors
(2009). The slab and loading plates were modelled with twenty node isoparametric brick elements
and the reinforcement was modelled with three node three-dimensional truss elements, which were
assumed to be perfectly bonded to the concrete. To improve the numerical efficiency, a fine mesh was
used near the slab-column connection and a coarse mesh was used towards the slab edges. The
calibrated model was also used to analyze four slabs, three of which were reinforced with steel
shearheads. To accurately predict the structural behaviour of the slab-column connections, it was
found that a fine mesh should be used for the portion of the slab extending a distance of twice the slab
depth from the end of the shearheads (Eder, Vollum, Elghazouli, & Abdel-Fattah, 2010).

In addition to their experimental study of punching shear of connections with high strength
concretes, which was discussed in Section 2.3.2, Moreno and Sarmento (2013) also conducted a
three-dimensional NLFEA of isolated slab-column connections in DIANA. The investigated slabs
were modelled with 1600 twenty node isoparametric solid elements. The flexural and shear
reinforcement was modelled using distributed finite elements, which were embedded in the concrete
elements, and bar elements respectively. The finite element model used a smeared crack model based
on a strain decomposition concept and a total strain concept. Fixed orthogonal cracks were assumed
in the total strain concept, and as such, the decrease in elastic strains that occurs with decreased
orthogonal strains was not accounted for. This strain reduction was approximated by setting the
Poisson ratio to 0. Good agreement between the experimental results and finite element predictions
was observed. However, the finite element results were found to be strongly dependent on the value

assumed for the shear retention factor (Moreno & Sarmento, 2013).

Mahmoud (2015) developed a three-dimensional nonlinear finite element model in ANSY'S 10 to
investigate the impact of shear reinforcement on punching shear behaviour. Sixteen slabs, which were
tested by Lips et al (2012), and discussed in Section 2.3.2, were modelled. Eight node elements with

three translational degrees of freedom at each node were used to model the concrete. A two node

55



element with three translational degrees of freedom and a beam element were used to model the steel
reinforcing, which consisted of rebar and continuous stirrup cages, and steel shear studs respectively.
The model was found capable of predicting the punching capacity within approximately 20% of the
experimental values, but greatly underpredicted the observed rotations. The maximum error in the
predicted rotations was 65% (Mahmoud, 2015).

Winkler and Stangenberg (2008) presented a preliminary finite element model of slabs failing in
punching shear in the commercial finite element software ABAQUS. They stated that the “Concrete
Damaged Plasticity” (CDP) model available in ABAQUS must be used when simulating the complex
three-dimensional stress state corresponding to punching shear failures of a slab-column connection.
The uniaxial tensile stress-strain curve for the concrete was assumed to be linear elastic until the
maximum tensile capacity was reached. The post peak response was based on a tensile stress crack
opening relationship proposed by Hordijk (1992), which was based on the fictitious crack model by
Hillerborg (1983). Eight node or twenty node solid elements were used to model the concrete and
eight node three-dimensional truss elements were used to model the reinforcement. The preliminary
model was used to simulate previously tested square slabs supported on square columns. The model
was found to accurately predict the ultimate load capacity and crack pattern, but the predicted
stiffness and overall load deflection response were different than that observed experimentally
(Winkler & Stangenberg, 2008).

Bompa and Onet (2016) conducted a three-dimensional NLFEA of isolated slab-column
connections in ABAQUS 6.10 to investigate the effect of slab thickness on the angle of the
compressive stress field. The triaxial behaviour of concrete was modelled using the CDP model
available in ABAQUS. Eight node brick elements were used to model the slab and loading plates and
three-dimensional wire elements were used for the flexural reinforcement. The best correlation with
the test results was observed for a mesh size of 19mm and a dilation angle of 40 degrees. The other
parameters used in the CDP, which control the shape of the deviatoric plane and the eccentricity of
the yield surface, were set to the default values of 2/3 and 0.1. The angle of the compressive stress
field was found to increase proportionally as the slab thickness was increased from 150mm to 500mm
(Bompa & Onet, 2016).

Wosatko, Pamin and Polak (2015) presented two preliminary finite element models of an isolated
slab-column connection without shear reinforcement tested by Adetifa and Polak (2005). The first

model, implemented in FEAP, was based on a gradient-enhanced damaged plasticity model. The
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second model, implemented in ABAQUS was based on the CDP model, which is a rate dependent
damaged plasticity model. Both models were nonlinear and used three-dimensional elements to
discretize the slab geometry. Perfect bond between the rebar and concrete was assumed. Both models
were found to be very sensitive to the assumed concrete tensile behaviour. Premature failures were
also predicted due to localized deformation caused by extensive flexural and shear cracking. To avoid
these zones of localized deformation regularization was used, which effects the predicted crack
pattern (Wosatko, Pamin, & Polak, 2015).

Genikomsou and Polak (2015) proposed an alternate version of the finite element model in
ABAQUS proposed by Wosatko, Pamin and Polak (2015). The alternate model was still based on the
CDP model, and was calibrated based on the same specimen analyzed by Wosatko, Pamin and Polak
(2015). The model was later extended to account for slabs reinforced with shear bolts by Genikomsou
and Polak (2016). The calibrated model was also used to investigate numerous other parameters such
as the impact of compressive membrane action (Genikomsou & Polak, 2017a), openings around the
slab-column connection (Genikomsou & Polak, 2017b), and shear bolt layout and quantity
(Genikomsou & Polak, 2017¢). Genikomsou and Polak’s model (2015), described in more detail in

Section 4.2, forms the basis of the model used in this thesis.

Navarro, Ivorra and Varona (2016) also used ABAQUS to simulate the punching shear behaviour
of the slab-column connection without shear reinforcement tested by Adetifa and Polak (2005). The
ABAQUS model was calibrated following a procedure similar to that presented by Genikomsou and
Polak (2015). The flexural reinforcing was modelled using four node reduced integration shell
elements instead of the two node truss elements used by Genikomsou and Polak (2015). Good
agreement with the experimental results was found and the calibrated model was used to investigate
the impact of concrete compressive strength, flexural reinforcement yield strength, reinforcing ratio,
ratio of column width to slab width and ratio of column width to slab thickness (c/d). The finite
element model predicted a decrease in the nominal shear capacity along the critical perimeter at d/2 as

the c/d ratio increased (Navarro, Ivorra, & Varona, 2016).

Shu, Fall, Plos, Zandi and Lundgren (2015) developed a nonlinear finite element model based on
three-dimensional continuum elements in DIANA to analyze the structural behaviour of reinforced
concrete slabs in bending. The model used a total strain rotating crack model and was based on the
MCFT (Vecchio and Collins, 1986) and the three-dimensional extension by Selby and Vecchio

(1993). An isotropic damage constitutive law was used to describe the concrete compressive
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behaviour and the flexural rebar was assumed to be fully bonded to the concrete. Large displacement
theory was used since the expected displacements exceeded the slab thickness. A convergence study
showed that at least eight elements were required through the slab depth to avoid shear locking
effects. The predicted load capacity and deflection were found to not be affected by modelling the

rebar as a grid or with discrete bar elements (Shu, Fall, Plos, Zandi, & Lundgren, 2015).

As previously discussed, Plos, Shu, Zandi and Lundgren (2017) developed a multi-level structural
assessment strategy for reinforced concrete bridge deck slabs. Level 11 and 111 of this assessment
strategy were based on linear elastic and nonlinear FEA conducted using three-dimensional shell
elements. Level IV and V, which represent the highest assessment levels, are based on three-
dimensional NLFEA using continuum elements. In level IV, the flexural rebar is assumed to be fully
bonded to the concrete, whereas in level V, bond slip models between the rebar and concrete are used.
Models implemented according to level 1V and V have the advantage of capturing shear type failures
without the need for additional analysis, as was required for levels Il and Il (Plos, Shu, Zandi, &
Lundgren, 2017).

Shu, Plos, Zandi, Johanssson and Nulenius (2016) modelled eleven isolated slab-column
connections with square columns and without shear reinforcement, which were tested by Guandalini
and Muttoni (2009), to analyze the impact of slab dimensions, concrete compressive strength and
flexural reinforcement ratio on punching capacity. The slabs were modelled in DIANA and
discretized using three-dimensional four node tetrahedron elements. Models using first order brick
elements were found to result in similar predictions to models using first order tetrahedron elements.
The use of second order brick elements resulted in a softer predicted behaviour and lower load
capacity. The reinforcement was assumed to be fully bonded to the concrete, which is in line with the
level 1V analysis later proposed by Plos, Shu, Zandi and Lundgren (2017). The steel plates used to
load the slab in the experiments were included in the finite element model and interface elements,
based on a Mohr-Coulomb friction model, were used to model the interaction between the plate base
and top of the slab. The model was found to accurately predict the experimentally observed structural

response. (Shu, Plos, Zandi, Johansson, & Nilenius, 2016).

2.6.3 Rectangular Columns

The purpose of this section is to briefly summarize the previous finite element work for slabs

supported on rectangular columns. Most of the previous studies have been focused on isolated slab-
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column connections and use three-dimensional elements. The remaining studies have been conducted

on multi-bay continuous slabs.

2.6.3.1 Isolated Slab-Column Connections

In addition to their experimental study of column rectangularity, Oliveira, Regan and Melo (2004)
also conducted a linear elastic finite element analysis of slabs supported on rectangular columns
under different loading conditions using four node shell elements in SAP2000. Their analysis was
focused on analyzing the shear force distribution around the column and critical perimeters. Shear
force concentrations along the column perimeter near the column corners for columns with aspect
ratios exceeding one were predicted. Shear force concentrations were not visible along the control
perimeter used in Model Code 1990, which is located at a distance of 2d from the column face. Based
on the experimental and finite element results, modification factors to be used in conjunction with the
Model Code 1990 punching provision to account for column rectangularity and one-way or two-way
shear behaviour were proposed. The modification factors were functions of the ratio of the maximum

column dimension, cma, to the effective slab depth, d (Oliveira, Regan, & Melo, 2004).

Sagaseta, Tassinari, Fernandez Ruiz and Muttoni (2014) also conducted a linear elastic finite
element analysis of slabs supported on rectangular columns in addition to their experimental work.
Like Oliveira, Regan and Melo (2004), the finite element analysis used shell elements and was used
to investigate the shear stress distribution along the critical perimeter located at d/2 from the column
face. Sagaseta et al. (2014) used a methodology proposed by VVaz Rodrigues, Fernandez Ruiz and
Muttoni (2008) to estimate the effective critical perimeter length. Based on their finite element
results, they proposed an alternative method to estimate the effective critical perimeter length based
on the predicted contact pressures on the support plate under the slab. Good correlation between the
alternative method, the Vaz Rodrigues et al. method and the simplified critical perimeter reduction

using in Model Code 2010 was found (Sagaseta, Tassinari, Fernandez Ruiz, & Muttoni, 2014).

Shu, Belletti, Muttoni, Scolari and Plos (2017) conducted a detailed study of the punching shear
behaviour of reinforced concrete slabs using the finite element method. Their study was focussed on
the impact of support geometry, slab geometry, and rebar layout on the shear stress distribution
around the critical perimeter. Like Sagaseta et al. (2014), the authors applied the methodology and
equation proposed by Vaz Rodrigues et al. (2008) to estimate the effective critical perimeter length.
Unlike Sagaseta et al. (2014) and Vaz Rodrigues et al. (2008), they applied the methodology to both

the linear elastic and non-linear portion of the predicted slab response. Four slabs, which were tested
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between 2004 and 2015 were modelled in Diana (Shu, Belletti, Muttoni, Scolari, & Plos, 2017). Slab
PG1 was supported on a square column and tested by Guandalini et al. (2009). Slab PT32 was tested
by Sagaseta, Muttoni, Fernandez Ruiz, and Tassinari (2011) and was supported on a square steel plate
and had a different reinforcing ratio in each orthogonal direction. An octagonal slab tested by Einpaul
et al. (2016), PE7, was the third slab modelled. Finally, slab AMO04, which was supported on a steel
plate with an aspect ratio of three and subjected to two-way loading, was the final slab modelled. Slab
AMO04 was tested by Sagaseta et al. (2014) and was also modelled in this thesis. Shu et al. (2017)
found that the experimentally observed behaviour of all four slabs could be accurately predicted using
three-dimensional models based on shell or continuum elements, which correspond to level Il and IV
analyses in the multi-level assessement strategy proposed by Plos et al. (2017) respectively. Shu et al.
(2017) undertook a detailed study of the support conditions assumed in the finite element model and
analyzed the shear strress distributions around the critical perimeter. The findings of their support
condition study are similar to those described in Section 4.4.

Megally and Ghali (2000) investigated the punching shear behaviour of slab-column connections
subjected to unbalanced moments using NLFEA in ANACAP. Their model was based on the
incremental theory of plasticity and a cracking criterion based on principal stresses and strains was
used. Three-dimensional solid elements were used to model the concrete. The slabs were simply
supported along their edges and loads were applied through the column stub. The model was verified
based on the experimental results of interior and edge-column connections. Some of the specimens
used to verify the finite element model also included column capitals or drop panels. Most of the
modelled slabs were found to fail in punching shear, and different crack patterns were in observed in
each direction due to the unbalanced moment. The predicted shear stress distribution around the
column did not match that assumed in the ACI or CSA codes, but the code assumed distributions
were found to be reasonable. The finite element model was used to conduct studies to calibrate the yy
term used in the ACI or CSA codes. This yy term is used in conjunction with the assumed linear shear
stress distribution when unbalanced moments are present. The FEA results showed that the amount of
unbalanced moment transferred to the column through shear is dependent on the aspect ratio of the
column (Megally & Ghali, 2000).

Erdogan, Binici and Ozcebe (2011) conducted a three-dimensional NLFEA of their experimental
specimens which were supported on rectangular columns and reinforced with CFRP dowels in
DIANA. The model was based on the total strain fixed crack concept by Selby and Vecchio (1993).
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Eight node isoparametric elements were used to model the concrete and the reinforcement was
assumed to be perfectly bonded to the concrete. Two additional slabs, tested by Binici and Bayrak
(2003), were also modelled to verify the applicability of the FEA results for different slab dimensions,
reinforcing ratios and shear reinforcing methods. The proposed model was found to accurately predict
the experimental load-deflection behaviour and measured stress and strain values in the concrete and
shear reinforcement (Erdogan, Binici, & Ozcebe, 2011).

2.6.3.2 Multi-panel Continuous Slab Systems

In addition to the experimental test of a one-third scale three bay by three bay multi-panel system,
Simmonds (1970) also conducted a linear elastic finite difference analysis of a typical interior panel
supported on rectangular columns assuming the slab to be an elastic medium thick plate. It was also
assumed that the columns did not deflect over their cross-section and the slope of the slab at the
column face was zero. The analytical study was focusing on analyzing the impact of column
elongation, the slab bay aspect ratio and the assumed Poisson ratio. The slab bay aspect ratio was
varied between one and five with the longer span parallel to the direction of the longer column
dimension. The minimum column dimension was fixed at a width corresponding to a c/L ratio of
0.05, where c is the column width (mm) and L is the centerline distance between the columns (mm).
The maximum column dimensions studied corresponded to c/L ratios of 0.05, 0.2, 0.4, 0.6 and 0.8.
Solutions for a c¢/L ratio of 1.0 were derived from beam theory, as this condition was assumed to be a
one-way slab supported on continuous walls. Poisson’s ratio of 0 and 0.2 were considered. The
magnitude of the negative moments in both directions greatly decreased as the column elongation
increased. Additionally, as the column aspect ratio was increased the maximum positive moment in
the slab in the direction parallel to the elongated column dimension were found to decrease, while the
maximum positive moment in the other orthogonal direction slightly increased. This behaviour can be
understood as a transition from two-way to one-way behaviour and was found to occur at a c/L ratio
of 0.4. (Simmonds, 1970). Simmonds also analyzed the shear stress distribution around the column
perimeter, but the assumption of zero deflection over the column cross-section increased the shear
stress concentrations at the column corners. Based on the finite difference results, it was found that
most of the shear was carried within a distance equal to the column width from the corners for c/L
ratios less than 0.3 (Simmonds, 1970).

Hartley and EI Kafrawy (1984) simulated a single floor of a flat slab building using a linear elastic
finite element model based on eighteen degree of freedom bending elements. The model was used to
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study the impact of column elongation and column offsets on the bending moments and punching
shear behaviour of reinforced concrete flat slabs. Similar to Simmonds (1970), the minimum column
dimension was maintained at a constant value, in this case corresponding to a c/L ratio of 0.06, while
the maximum column dimension was varied corresponding to c/L ratios between 0.06 and 0.5. As
was observed by Simmonds (1970), one-way behaviour was found to become more prevalent as the
maximum column dimension was increased. Hartley and EI Kafrawy found that the impact of column
elongation on the total positive and negative moments in the direction perpendicular to the maximum
column dimension was minimal but was quite significant in the direction parallel to the longer
column dimension. The punching shear portion of their study was limited to analyzing the impact of
column offset for slabs supported on square columns. As the column offset was increased, the shear
forces around the adjacent columns was found to increase, however this effect was found to decrease

with increasing column size (Hartley & El Kafrawy, 1984).
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Chapter 3: Overview of Mechanical Behaviour of Concrete

In this section, a brief discussion of the short term behaviour of concrete subjected to compressive
and tensile loads is discussed. For discussion of the long-term behaviour of concrete, including
shrinkage and creep, the reader is referred to Reinforced Concrete: Mechanics and Design (1°
Canadian Edition) by MacGregor and Bartlett (2000).

3.1 Uniaxial Compressive Behaviour

Concrete is a mix of cement paste and aggregate, both of which are essentially linear elastic brittle
materials in compression. In brittle materials, fractures typically occur perpendicular to the direction
of the principal tensile strain. Since concrete’s primary constituents are brittle materials, cracks are
formed parallel to the direction of the applied load in a uniaxial compression test. Even though its two
primary constituents are approximately linear elastic brittle materials, the uniaxial compressive stress-
strain curve of concrete is nonlinear and displays some ductility. This ductility and nonlinearity is due
to the development of microcracks in the concrete and the stress redistribution to uncracked regions
after cracking. There are two primary types of microcracks, those which occur along the interface of
the aggregate and cement paste (bond cracks), and those which occur in the mortar between
aggregates (mortar cracks) (MacGregor & Bartlett, 2000). The four main stages of microcracking for

concrete subjected to uniaxial compression are summarized below.

During curing of the concrete, shrinkage of the cement paste is restrained by the aggregates. This
restraint creates internal tensile stresses which cause cracks, referred to as no-load bond cracks,
before the concrete is loaded. No-load bond cracks have minimal impact on the uniaxial compressive
behaviour of the concrete at low load levels. The initial portion of the uniaxial compressive stress-
strain response is still approximately linear until the stress reaches approximately 30% of the uniaxial

compressive strength, .’ (MacGregor & Bartlett, 2000).

When the applied loading results in stress magnitudes which exceed 30-40% of £ bond cracks
begin to develop. Bond cracks occur when the tensile and shear stresses on inclined planes along the
interface of the aggregate and cement paste exceed the tensile and shear stress capacity of the
interface. At this load level, the crack propagation is stable, and the crack size only increases when
the load is increased. The formation of these bond cracks coincides with the stress-strain response
becoming nonlinear as stresses are redistributed to the uncracked portions of the concrete (MacGregor
& Bartlett, 2000).
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Localized mortar cracks parallel to the applied compressive load develop between the previously
formed bond cracks due to transverse tensile strains as the magnitude of the applied load reaches 50-
60% of the ultimate compressive capacity of the concrete. The crack propagation during this stage of
cracking is still stable and the cracks do not grow in size unless the load is increased. This stage of

concrete cracking is referred to as the discontinuity limit (MacGregor & Bartlett, 2000).

When the applied load reaches 75-80% of the ultimate load capacity, which is referred to as the
critical stress, the nonlinearity of the uniaxial compressive stress-strain curve increases as the number
of mortar cracks increases and a continuous microcracking pattern is formed. At this point, the
amount of cracking and lateral tensile strains experienced by the concrete increase rapidly. At the
same time, the volumetric strains, which are a function of the compressive axial strain and the tensile
lateral strain, also increase rapidly. For confined concrete, these increased volumetric strains cause
outward pressures on the confining reinforcement, which resist the lateral expansion of the concrete,
delaying failure. At the critical stress level, the crack propagation becomes unstable, and cracks
continue to grow in size even when the magnitude of the applied load is not increased. The ultimate
compressive capacity of the concrete is reached when the uncracked portions of the concrete can no
longer carry additional load. Further loading beyond this point coincides with a reduced stress
capacity for an increased strain. For concrete which is subjected to a compressive stress gradient
instead of a uniform compressive strain, such as the concrete in the compressed zone of a beam, the
onset of unstable crack propagation is delayed because as the portion of the concrete under the

highest strain cracks, load is redistributed to the portions subjected to a lower strain.
Some general notes on the uniaxial compressive behaviour of concrete are as follows:

1. The initial modulus of elasticity has been found to increase as the compressive strength, f,,

is increased.

2. The ascending portion of the uniaxial compressive stress-strain curve can be approximated

using a parabola. However, as f, increases the ascending branch becomes more linear.

3. The strain at the maximum stress, &;, increases as f,’ increases, but the maximum strain at

failure, g, decreases as f,’ increases.

4. The slope of the descending portion of the stress-strain curve increases as f, increases. If

f is less than or equal to approximately 40MPa, the slope of the descending portion is
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flatter than the ascending portion. If £,/ exceeds 70MPa, the descending branch is nearly

vertical (MacGregor & Bartlett, 2000), which denotes a very brittle failure.

3.2 Uniaxial Tensile Behaviour

The uniaxial tensile strength of concrete is typically only 8-15% of its compressive strength. The
stress-strain behaviour of concrete subjected to uniaxial tension is slightly curved but typically
approximated as linear elastic until the tensile capacity (MacGregor & Bartlett, 2000). According to
MacGregor and Bartlett (2000), “After the tensile capacity is reached microcracks are formed in a
fracture process zone adjacent to the point of the highest tensile stress, and the tensile capacity of the
concrete drops very rapidly with increasing [crack] elongation” (p. 64). At the same time, the
concrete beyond the fracture process zone unloads elasticity and the elongations are concentrated in
the fracture process zone. The tensile response of concrete is typically modelled with a tensile stress-
crack opening relationship as discussed in Section 4.2.2.2, and the tensile capacity is equal to zero
when a crack is fully formed (MacGregor & Bartlett, 2000).

3.3 Behaviour Under Biaxial or Triaxial Loads

The behaviour of concrete under biaxial and triaxial loading in compression or tension is typically
different than the uniaxial loading case. Detailed investigations focused on the mechanical behaviour
of concrete under biaxial loading have been completed by many researchers including Kupfer,
Hilsdorf and Risch (1969) (MacGregor & Bartlett, 2000). A summary of the findings of these studies

based on information presented in MacGregor and Bartlett (2000) is presented below.

For concrete specimens subjected to biaxial tension, the biaxial tensile strength is similar to the
uniaxial tensile strength. In this case, failure occurs perpendicular to the direction of maximum tensile
stress. Concrete which is subjected to compression in one direction and tension in the other typically
fails on planes perpendicular to the maximum tensile stress at a compressive or tensile strength lower

the respective uniaxial strength (MacGregor & Bartlett, 2000).

As discussed in Section 3.1, the failure of concrete in uniaxial compression is caused by tensile
cracks which form parallel to the direction of the applied load. Under biaxial or triaxial compression,
the onset of unstable crack propagation takes longer as the compressive loads delay the formation of
cracking, leading to a stronger and more ductile response compared to the uniaxial case (MacGregor
& Bartlett, 2000).
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Chapter 4: Finite Element Model Calibration

4.1 Introduction

The purpose of this chapter is to outline the process used to calibrate the finite element model used in
the parametric study presented in Chapter 5. First, an overview of the previous finite element research
focused on the punching shear behaviour of reinforced concrete flat slabs completed at the University
of Waterloo is presented. The calibrated model from this previous research by Genikomsou (2015)
served as the starting point for the research summarized in this thesis. Next, the results of three
preliminary finite element studies created using slightly modified versions of the model calibrated by
Genikomsou (2015) are presented. These preliminary studies were completed to verify ABAQUS’
capability to predict the impact of column rectangularity on the punching shear behaviour of
reinforced concrete slabs. The first preliminary study was a hypothetical extension of the
experimental program by Adetifa and Polak (2005). Five slabs supported on rectangular columns
were modelled and the predictions were compared to the results for slab SB1, which was a slab
without shear reinforcement and supported on a 150mm square column (Adetifa & Polak, 2005).
Next, the nine slabs tested by Hawkins, Fallsen and Hinojosa (1971) to study the impact of column
rectangularity were modelled. Finally, slab AMO04, tested by Sagaseta et al. (2014) was modelled. In
all three studies the finite element predictions were compared to available experimental results and
code predictions. The results of the capability study confirmed that ABAQUS can be used to
accurately estimate the punching shear behaviour of slabs supported on square or rectangular
columns. However, a recalibration of the parameters used in the finite element model is required to

account for the differences between the experimental setups compared to the SB specimens.

The recalibration of the finite element model considered slab AMO04 instead of the Hawkins’ slabs
due to the level of detail about the experimental program and results provided by Sagaseta et al.
(2014). The calibration methodology was similar to that used by Genikomsou (2015). The calibration
was verified by modelling six additional slabs from literature. Firstly, the other three slabs in the AM
test series by Sagaseta et al. (2014), which were geometrically similar to slab AMO04, but loaded along
two slab edges only instead of all four, were modelled. Then, three slabs supported on square steel
plates, and tested by Sagaseta et al. (2011), were modelled. These three slabs were also geometrically
similar to AMO04, and were loaded along all four slab edges, but had different concrete strengths and
reinforcing ratios than the slabs in the AM series. One of the selected slabs also had different

reinforcing ratios in the two orthogonal directions. Based on the results of these analyses, it was
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concluded that the calibrated finite element model is capable of accurately predicting the punching
shear behaviour of slabs supported on square or rectangular columns and with different reinforcing

layouts.

4.2 Overview of Previous Work at the University of Waterloo

Genikomsou (2015) conducted an extensive finite element analysis of punching shear of reinforced
concrete slabs supported on square columns in ABAQUS using the “Concrete Damaged Plasticity”
(CDP) model. The CDP model available in ABAQUS was chosen for the simulations due to its
ability to model concrete under arbitrary loading states, including cyclic loading, and because it has
been successfully applied to numerous applications by other researchers, some examples of which
were discussed in Sections 1.1 and 2.6. The CDP is a continuum, plasticity, damage-based model that
considers tensile cracking and compressive crushing of the concrete (Genikomsou A. , 2015). The
finite element model, and the CDP parameters, were calibrated based on published experimental
results from numerous testing programs. A brief summary of the work completed by Genikomsou is
provided in this section. For a detailed discussion of the mechanics of the CDP, and the finite element
models discussed in this section, the reader is referred to the dissertation by Genikomsou (2015).

4.2.1 Calibration of the “Concrete Damaged Plasticity” Model

Before using the CDP to model the punching shear behaviour of reinforced concrete slabs in
ABAQUS, Genikomsou verified the ability of the CDP to model concrete behaviour under different

loading conditions.

The first specimens considered in the calibration of the CDP were plain concrete specimens tested
under combinations of uniaxial/biaxial compression, uniaxial/biaxial tension and combinations of
tension and compression by Kupfer et al. (1969). Based on the simulations of the specimens subjected
to uniaxial or biaxial compression, Genikomsou concluded that the assumed dilation angle has no
impact on the predicted response in the loaded direction, but has a significant impact on the predicted
response in the unloaded directions. The dilation angle in the CDP is used to measure the dilatancy of
the concrete. Dilatancy is a measure of the volume change caused by the inelastic strains experienced
by the concrete due to its brittle nature. As the dilation angle was increased, the ductility of the
predicted response was found to increase. The impact of dilation angle observed for specimens
subjected to uniaxial or biaxial tension were found to be consistent with those subjected to uniaxial or

biaxial compression. However, unlike the specimens loaded in compression, the predicted stiffness of
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the specimens loaded in tension was found to increase as the dilation angle was increased. For the
specimens subjected to combination of compressive and tensile loads, the chosen dilation angle was
found to impact the predicted response in all directions. As the assumed dilation angle was increased,

the ultimate stress capacity predicted by the FEM increased (Genikomsou A. , 2015).

The next specimen modelled by Genikomsou was a reinforced concrete shear panel tested by
Vecchio (1999) under monotonically increasing biaxial compression and shear loads in proportions of
(-0.4:-0.4:1) to analyze the accuracy of the CDP when simulating shear stresses and strains. The
predicted crack pattern and shear strain versus shear stress response were found to correlate well with
the experimental results verifying the capability of the CDP to accurately model the behaviour of
concrete in shear (Genikomsou A. , 2015).

Next, a simply supported beam subjected to four point bending without transverse reinforcement
tested by Leonhardt and Walther (1962), which failed in shear, was modelled to determine the impact
of dilation angle on a reinforced concrete member. Three dilation angles, 20°, 30° and 40° were
investigated with the best correlation to the experimental load-displacement response and crack

pattern found for a dilation angle of 30° (Genikomsou A. , 2015).

Finally, two reinforced concrete beams, one with transverse reinforcement, and one without
transverse reinforcement, tested by Aoude et al. (2012) were analyzed by Genikomsou using the
CDP. The use of dilation angles of 30° and 42° were found to lead to the best correlation between the
experimental results and finite element predictions for the beams without and with transverse
reinforcement respectively. From this final study, Genikomsou concluded that an increased dilation
angle is required when modelling confined concrete members or members with large amounts of

reinforcement (Genikomsou A. , 2015).

After verifying the ability of the CDP to accurately capture the behaviour of different plain and
reinforced concrete specimens under different loading conditions, Genikomsou conducted an
extensive study of punching shear of reinforced concrete slabs supported on square columns. The
model calibrated by Genikomsou, which is summarized in the following section, formed the basis of

the finite element model used in this thesis.
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4.2.2 Discussion of Calibrated Finite Element Model for Studying Punching Shear by

Genikomsou

The calibrated model by Genikomsou (2015) was used to analyze the impact of numerous parameters
related to punching shear behaviour including unbalanced moments (Genikomsou & Polak, 2015),
compressive membrane action (Genikomsou & Polak, 2017a), openings in the slab (Genikomsou &
Polak, 2017b) and shear reinforcement (Genikomsou & Polak, 2016; 2017c). However, in this thesis
the discussion will focus on the model calibration and results for slab SB1 only. The reader is referred
to the papers referenced above or the dissertation by Genikomsou (2015) for details of these

additional analyses.

4.2.2.1 Experimental Program

Slab SB1 was one of the six isolated slab-column connections tested by Adetifa and Polak (2005) to
study the impact of shear bolt reinforcing on punching shear behaviour and was used by Genikomsou
to calibrate the ABAQUS model. Specimen SB1 represented an interior slab-column connection
without shear reinforcement and was 1800mm square in plan and was simply supported along lines
located at 1500mm. The slab was 120mm thick and had an average effective flexural depth of 90mm.
SB1 was loaded through a square column stub, with 150mm long sides, which extended 150mm
above and below the slab faces. The concrete used in slab SB1 had an average compressive strength
of 44MPa and a maximum aggregate size of 10mm. The flexural reinforcement, which consisted of
10M bars spaced at 100mm and 200mm on the tension and compression sides respectively, had a
yield strength of 455MPa (Genikomsou A. , 2015; Adetifa & Polak, 2005).

4.2.2.2 Material Modelling

As discussed in Chapter 3, the uniaxial compressive stress-strain relationship for concrete is
nonlinear. In Genikomsou’s model the uniaxial behaviour of concrete in compression was modelled
using the Hognestad parabola shown in Figure 4-1. The linear elastic portion of the compressive
stress-strain response was assumed to have an initial modulus of elasticity, E,, equal to 5500\/]?
(MPa) and was assumed to end at a stress equal to 40% of the concrete compressive strength, f.. The
second region of the stress-strain curve represents the ascending portion up to the peak strain, &,,
which is equal to 2f, /E,.., Where E,. is equal to SOOOJE (MPa). The third region represents the
post peak response and extends until the ultimate compressive strain, &,. As shown in Figure 4-1 the

equation for regions 2 and 3 is the same (Genikomsou A. , 2015).
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Figure 4-1: Hognestad Parabola (reproduced with permission, (Genikomsou A. , 2015))

Genikomsou (2015) assumed that concrete in tension is linear elastic until the tensile strength, £,
was reached. As discussed in Chapter 3, the actual uniaxial tensile stress-strain relationship is slightly
curved (MacGregor & Bartlett, 2000), but the error introduced by using a linear elastic relationship is
minimal in many applications. Due to the inclusion of flexural reinforcement in the model and
specimen, the concrete’s tensile capacity does not go immediately to zero after cracking, and the post
peak response is modelled using a softening process which ends at an ultimate tensile strain where
zero residual tensile capacity exists. Due to the brittle nature of concrete in tension, and to limit the
mesh sensitivity of the finite element model, the uniaxial tensile behaviour of concrete was
characterized through a tensile stress-crack width response instead of a tensile stress-strain response
(Dassault Systemes Simulia Corp., 2012; Genikomsou A. , 2015). Genikomsou found that the bilinear
tensile stress-crack width relationship proposed by Petersson (1981), shown in Figure 4-2, led to
sufficiently accurate results and was more computationally efficient than the exponential tensile

stress-crack width relationship proposed by Cornelissen et al (1986).
The bilinear response proposed by Petersson (1981) is dependent on the concrete tensile strength,

f¢, which was approximated as 0.33\/ﬁ , and the concrete fracture energy, G (N/mm), which was

calculated according to Model Code 1990 using equation 4.1

Gr = Gfo(fcm/fcmo)o'7 (4.1)

where Gy, is the base fracture energy which is dependent on the maximum aggregate size (N/mm),

fem 15 the mean value of the concrete compressive strength calculated using equation 4.2 (MPa) and

femo €quals 10MPa according to Model Code 1990 (Comité Euro-International du Béton, 1993).
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fom = for + 8MPa (4.2)

where f. is the characteristic compressive strength (MPa). According to Model Code 1990, Gy, is
equal to 0.026N/mm for a maximum aggregate size of 10mm (Comité Euro-International du Béton,

1993).

aTe nsile stress (MPa)

o-f
fFI G
w,=0.8-1
t
G G
/ w,=3.6-1
f'e
r
3 |-
W1 Crack width (mm) Wau w

Figure 4-2: Bilinear Tensile Stress-Crack Width Relationship Proposed by Petersson (1981),

(reproduced with permission, Genikomsou (2015))

The tensile stress-crack width relationship is then converted to a tensile stress-strain relationship by
dividing the cracking displacement by the characteristic element length, which is equal to the cubic
root of the element volume for 3D first order solid elements. This conversion results in the uniaxial

tensile stress-strain relationship is shown in Figure 4-3.

o, 4 Tensile stress (MPa) 3D Element

vjj=> =W

ESBC

el

f'e=0.33/f",
G/l fle=E, "€,

Slzscr+w1/1c
£, =&, +wy, /[l

f
3

or €1 Tensile strain  &u €

Figure 4-3: Uniaxial Tensile Stress-Strain Curve (reproduced with permission Genikomsou
(2015))
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An isotropic elasticity definition was used to define the linear elastic portion of the concrete

response in tension and compression. This material definition requires two parameters, the elastic

modulus and Poisson’s ratio. The elastic modulus was inputted as 5500,/f, to match the assumed
Hognestad parabola. Since the CDP only allows the user to define one value for Poisson’s ratio, even
for cracked concrete, a value of 0 was used (Genikomsou & Polak, 2015). For the reinforcing steel a
simplified linear elastic perfectly plastic stress-strain response in tension and compression was used.
The elastic modulus and Poisson ratio of the flexural reinforcement were inputted as 200000MPa and

0.3 respectively (Genikomsou A. , 2015).

4.2.2.3 Summary of Calibrated Model Parameters

In the analysis of SB1, Genikomsou considered the impact of numerous parameters including the
boundary conditions, analysis type, element type, element (mesh) size, use of damage parameters,
concrete fracture energy, yield surface shape and dilation angle.

The mesh sensitivity study was of particular importance since the CDP is based on a smeared
cracked model which makes the results mesh dependent. In a smeared crack model, cracking is
modelled by reducing the concrete stiffness in the direction of the principal stresses. The concrete is
assumed to remain a continuum but becomes orthotropic or transversely isotropic (Genikomsou A. ,
2015; Chen W. , 1982). The advantage of a smeared crack model is that a new mesh is not required
after cracks form. However, the main disadvantage is that cracking can localize into a single row of
elements, leading to mesh sensitivity and potentially incorrect results. Genikomsou noted that the
chosen mesh size should be larger than the maximum aggregate size. Since reduced integration
elements were used in Genikomsou’s calibrated model, an upper limit on the chosen mesh size was
also imposed. In order to avoid numerical effects such as hourglassing, and distortion of the three-
dimensional solid reduced integration elements, at least 5 elements through the specimen depth are
needed. Based on a comparison of the experimental and predicted load-displacement response and

crack patterns, a 20mm mesh size was found to be adequate (Genikomsou A. , 2015).

Genikomsou also conducted a detailed study investigating the ideal element type to be used when
analyzing punching shear in ABAQUS. Since a quasi-static analysis in ABAQUS/Explicit was used
for all simulations to maximize computational efficiency, three element types were considered, three-
dimensional linear eight node hexahedral reduced integration elements (C3D8R), three-dimensional

four node linear tetrahedral elements (C3D4) and three-dimensional ten node quadratic tetrahedral
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modified elements (C3D10M). Both C3D8R and C3D10M elements were found to accurately capture

the experimental results, but C3D8R elements were much more computationally efficient and were

used for all analyses (Genikomsou A. , 2015).

A summary of calibrated model by Genikomsou (2015) is provided in Table 4-1 and the boundary

conditions and displacement measurement location used by Genikomsou (2015) are shown in Figure

4-4. The boundary conditions used by Genikomsou (2015) are similar to those used in the SB1

rectangularity study discussed in Section 4.3.1.

Table 4-1: Summary of Calibrated Model by Genikomsou (2015)

Concrete

ABAQUS Material Model
Compression Model
Tension Model

Fracture Energy (Gy)
Dilation Angle
Eccentricity (&)

Viscosity (u)*

Opo/Oco

Damage Parameters
Element Type
Approximate Element Size
Modulus of Elasticity (E,)

Poisson’s Ratio (v)

Concrete Damaged Plasticity
Hognestad Parabola (see Figure 4-1 for general equations)
Bilinear tensile stress-crack width (Petersson, 1981)
0.082N/mm (Calculated from Model Code 199)
40°
0.1 (ABAQUS Default)
1.0x107° (not used in ABAQUS/Explicit)
1.16 (ABAQUS Default)
Not Included
C3D8R

20mm

36483MPa, Calculated as (5500+/f)
0

Steel — Flexural Rebar

Material Model

Modulus of Elasticity
Poisson’s Ratio (V)

Yield Strength (f;,)
Element Type
Approximate Element Size

Linear elastic, perfectly plastic (see Figure 4-24)
200000MPa
0.3
455MPa
T3D2 (embedded into concrete elements)

20mm
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Uniform Displacement Load
on Column Top (Uz=-19mm) X-Axis Symmetry BC
(Ux=URy=URz=0) z

Displacement
Measurement Roller Support BC (Uz=0)

Location Y-Axis Symmetry BC Also RF3 Measurement
(Uy=URx=URz=0) Location

Figure 4-4: Boundary Conditions and Measurement Locations in Genikomsou Model (2015)
4.3 Capability Study
4.3.1 SB1 Rectangularity Study

4.3.1.1 Investigated Specimens

The first column rectangularity investigation was a hypothetical extension of the testing program by
Adetifa and Polak (2005). The hypothetical program included slab SB1, tested by Adetifa and Polak
(2005), and five hypothetical specimens supported on increasingly rectangular columns with constant
critical perimeter lengths according to ACI 318M-14. The column dimensions, column aspect ratios
and ratio of the minimum column dimension to the effective slab depth (cmin/d) are summarized in
Table 4-2. Other than the column dimensions and longitudinal column reinforcement, the slabs were
identical to SB1.

Table 4-2: Summary of Column Sizes Considered in SB1 Rectangularity Study

Slab Cmin (MM) Cmax (MM) B (cmax/Cmin) Cmin/d
SB1 (Control) 150 150 1.0 1.7
C1 125 175 14 14
C2 100 200 2.0 1.1
C3 75 225 3.0 0.8
C4 50 250 5.0 0.6
C5 25 275 11.0 0.3
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4.3.1.2 Finite Element Model

The ABAQUS model used to analyze the six slabs was based on the calibrated finite element model
by Genikomsou (2015) with one minor change. To 