
Abstract1

Visitors can play an important role in the spread of infections. Here, we incorporate an2

epidemic model into a game theoretical framework to investigate the effects of travel strategies3

on infection control. Potential visitors must decide whether to travel to a destination that is4

at risk of infectious disease outbreaks. We compare the individually optimal (Nash equilibrium)5

strategy to the group optimal strategy that maximizes the overall population utility. Economic6

epidemiological models often find that individual and group optimal strategies are very different.7

In contrast, we find perfect agreement between individual and group optimal strategies across a8

wide parameter regime. For more limited regimes where disagreement does occur, the disagreement9

is (1) generally very extreme; (2) highly sensitive to small changes in infection transmissibility and10

visitor costs/benefits; and (3) can manifest either in a higher travel volume for individual optimal11

than group optimal strategies, or vice versa. The simulations show qualitative agreement with the12

2003 Severe Acute Respiratory Syndrome (SARS) outbreak in Beijing, China. We conclude that13

a conflict between individual and group optimal visitor travel strategies during outbreaks may14

not generally be a problem, although extreme differences could emerge suddenly under certain15

changes in economic and epidemiological conditions.16
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Introduction17

Visitors can play an important role in the transmission and spread of infectious diseases.18

They can serve as susceptible hosts and be infected while staying in one place and then act as19

mobile sources of case imports to other populations [1, 2, 3]. On the one hand, more visitors20

can lead to substantial benefits for the local economy and businesses. On the other hand, some21

infectious diseases spread aggressively in major tourism destinations (e.g., Hong Kong, New York,22

Singapore, Toronto, Beijing), and a large number of visitors can have unexpected impacts on23

public health [3, 4, 5]. For example, Severe Acute Respiratory Syndrome (SARS) was introduced24

to Beijing, China by a few infected visitors in early March 2003, resulting in a large epidemic[6, 7,25

8, 9, 10, 11]. Other examples where visitors have played a role in regional or international spread26

include pandemic influenza [12, 13, 14], Ebola fever [15] and Middle East respiratory syndrome27

coronavirus (MERS-CoV) [16]. Enforcing restrictions on incoming visitors could be an efficient28

way to control local disease outbreaks [7, 17, 18, 19], but the decision to restrict visitors must be29

weighed carefully due to the economic and social repercussions.30

Game theory attempts to analyse situations where individuals must make decisions in a group31

environment and where each individual’s decision influences the payoff received by the others in32

the group [20]. Many interventions (such as vaccination and social distancing) create positive33

externalities, i.e., benefits to those who did not participate in the intervention, because of herd34

immunity generated by interruption of transmission. Hence, many previous models have illustrated35

the discrepancy between the optimal individual strategy that maximizes personal interest, and36

the strategy that serves the group best by minimizing the overall health burden on the population37

[21, 22, 23, 24, 25, 26]. Although several factors may alter this picture and have been explored38

in successive work — such as the beneficial effects of social norms and prosocial vaccination39

[51, 50] — these models often illustrate a conflict between group and individual optima across a40

very broad region of parameter space, covering most epidemiologically and economically relevant41

regimes [21, 22, 24, 25].42

However, this previous research has been mostly concerned with individuals making decisions43

in a closed population where the disease is already established and is spreading [21, 22, 23, 24,44

25, 27, 28, 29, 30, 31], and does not consider multipopulation interactions or the strategic con-45

siderations faced by a visitor deciding whether to travel to an affected area during an outbreak.46

In the context of travel decisions, game theory can be used to answer questions such as whether47

travelling or not travelling to a location is optimal according to a criterion of self-interest, and48

the answers it provides can be contrasted with optimal control strategy from the health authority49

perspective, in terms of maximizing overall population utility.50

In this work, we incorporate an epidemic model (based on the classic Susceptible-Infectious-51

Recovered model) into a game theoretical framework to investigate the effects of strategic decisions52

about travel on local disease control. In contrast to many previous game theoretical analyses of53

decision making in epidemiological systems in a closed population, for this visitor’s game we find54

perfect agreement between the individual and group optimal strategies for a range of epidemio-55

logically and economically plausible parameter values. This agreement can be observed in two56

forms: individual and group optimal strategies both completely reject travelling when the real or57

perceived disease risk level are sufficiently high, or both strategies allow free travel when the real58

or perceived disease risk level is sufficiently low. However, disagreement (or conflict) between the59
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individual visitor strategy and the group optimal strategy are observed in two forms: an overload60

or deficit of visitors compared to the group optimum. In regions where disagreement occurs, the61

disagreement between the individual optimum (corresponding to a “voluntary entrance” scheme)62

and the group optimum (corresponding to a “restricted entrance” scheme) is significant. During63

an outbreak, this conflict is likely to occur at any real or perceived disease risk level. More im-64

portantly, in this region, the model outcomes are highly sensitive to small changes in infection65

transmissibility and visitor costs/benefits. For certain parameter regimes, uncontrolled visitor66

inflow could result in unexpected large-scale outbreaks when the disease risk level suddenly in-67

creases by even a small amount, and local health authority’s travel restrictions could effectively68

control disease outbreaks when visitor inflow is considered to be “overloaded” during epidemics.69

Interestingly, the faster the disease risk information is updated, the more likely a discrepancy will70

occur. Moreover, faster disease risk information updating could effectively prevent visitor inflow71

“overload” and therefore stop an outbreak.72

The remaining parts of this work are organized as follows. In the next two sections, we73

establish a game theorerical framework including both travelling and local populations, to model74

the individual decision making process. In the subsequent section, the results are presented along75

with a detailed discussion.76

Travelling Game77

Our game is a population game where players are individuals in a homeland population78

(the “travelling population”) deciding whether or not to travel to an affected destination. These79

individuals can move through the following states:80

individual in homeland→ potential visitor→ visitor outside→ visitor inside→ individual in homeland.
(1)

A certain fraction of individuals in a homeland population are designated as potential visitors,81

who have the economic means and opportunities for travel. A potential visitor may adopt a82

strategy of travelling to the destination and leaves their homeland, becoming a “visitor outside”.83

Upon arrival at the destination, they become a “visitor inside”, and subsequently they become a84

“removed visitor” and re-join the homeland population, again as a potential visitor. A potential85

visitor corresponds to N1 in Table 1, a visitor outside corresponds to ρN1 in the term f(ρ) in86

Eqns. 7, a visitor inside corresponds to (S1 + I1 + R1) in Supplementary Material S3, and an87

individual in homeland means that a visitor has been removed from the system and re-joins88

individuals in the homeland. More details of the steps individuals may take in travelling can89

be found in Supplementary Material S1. Fig. 1 presents the process of a “travelling” individual90

joining the epidemic system (i.e., from “potential visitor” to “individual in homeland”).91

For simplicity, we suppose that every individual receives the same information and picks92

strategies in the same way (i.e., with equivalent preferences and equivalent payoff for the same93

strategy). An individual can decide whether to travel (i.e., the “travelling” strategy) or not to94

travel (i.e., the “non-travelling” strategy) to their destination. We use r1 to denote the perceived95

cost (negative payoff) of morbidity and/or mortality risk (i.e., the risk of disease, or as a term96

of “health cost”) from infection. Similarly, we use r0 to denote the perceived cost of the risk97
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Figure 1: The epidemic model diagram. Black arrows represent infection status transition paths and red

dashed arrows represent transmission paths. The light blue arrows represent natural births and deaths,

and green arrows represent visitor entry and exit. Square compartments represent local classes, circular

compartments represent visitor classes, and the diamond denotes the “decision” process of potential

visitors. Red compartments represent infectious classes. The light grey area (surrounded by a grey

dashed line) represents “inside border”. The horizontal black dashed line separates the total population

into “local population” (or local residents) and “travelling population” (as in Path 1).

of utility loss for adopting the “non-travelling” strategy, since those individuals lose economic98

or social opportunities. Therefore, we write the payoff for an individual following the travelling99

strategy as100

E1 = −α · φ(ρ;P ) · r1, (2)

where α represents the probability that an epidemic occurs at the destination during a traveller’s101

visit (or, α = 1 for an ongoing epidemic that the traveller knows about before departure), φ(ρ;P )102

is the probability that a visitor is infected during the trip (to the epidemic destination) given that103

the pre-existing immunity level in the destination population is P , and ρ is the overall proportion104

of potential visitors who adopted the “travel” strategy.105

To assess the risk of a visitor being infected during the trip, we need to know the basic106

reproduction number of the disease, R0, i.e., the expected number of secondary cases generated107

by a typical primary case during his/her infectious period in an otherwise susceptible population.108

In the case of R0 > 1, we have φ(ρ;P ) = 0 if P >
(

1− 1
R0

)
(see Supplementary Material S2.1).109

This is called perfect herd immunity, i.e., an outbreak cannot occur when the population immunity110

level is greater than
(

1− 1
R0

)
[32, 33]. We denote the payoff of an individual following the non-111

travelling strategy as112

E0 = −r0, (3)

Since this is a population game, we also define a mixed strategy (i.e., “p-strategy”), where players113

follow the travelling strategy with a probability p and follow the non-travelling strategy with a114

probability (1− p). The payoff function is then115
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E(p, ρ;P ) = pE1 + (1− p)E0

= −pαr1 · φ(ρ;P )− (1− p)r0.
(4)

The game remains unchanged if we scale the payoff function by a constant; thus, we eliminate116

one parameter in Eqn. 4 by leaving only the relative risk, r = r0
r1

. Normally, we have 0 < r0 � r1117

since the payoff of utility loss, r0 in Eqn. 3, should be less than that of health loss, r1 in Eqn. 2, if118

the disease is severe or potentially deadly. Hence we assume 0 < r � 1 in general. Furthermore,119

we have120

E(p, ρ;P ) = p · [r − αφ(ρ;P )]− r. (5)

For convenience, we denote φ(ρ;P ) as φ(ρ) and E(p, ρ;P ) as E(p, ρ) and fix P in the rest of this121

work. We can show that the individual equilibrium (p∗) of the game exists, is the unique Nash122

equilibrium, and is stably convergent (see Supplementary Material S2.1).123

We formulate the (scaled) costs of all potential visitors (game players) as124

Υ(ρ) = ρα · φ(ρ) + (1− ρ)r, (6)

where all terms have the same meaning as in Eqn. (5). More details are provided in Supplementary125

Material S2.2. We also define the group (Pareto) optimum ρ∗ as the value of ρ for which the126

population average cost function Υ(ρ) of all potential visitors (i.e., all game players) is minimized.127

Epidemic Model128

Formulation of Epidemic Model129

To specify the infection probability φ(ρ), we adopt the standard susceptible-infectious-removed130

(SIR) model. Individuals of the destination population (excluding visitors) are categorized as131

susceptible to the disease (S, those who may be infected), infectious (I, i.e., those capable of132

transmitting disease), or removed (R, these who are either recovered and immunized or died).133

Similarly, visitors are also categorized as susceptible (S1), infectious (I1), or removed (R1). We134

use S, I, and R (or S1, I1 and R1) to denote the proportions of susceptible, infectious and recovered135

individuals in the destination (visitor) populations, respectively. This patchy population structure136

was proposed previously in [1, 2, 34, 35]. Before taking the trip, visitors are assumed to be totally137

susceptible. We illustrate this “local-and-travelling population” interactive epidemic system in138

Fig. 1. We further assume that the susceptible visitors follow a logistic growth mechanism.139

• The visitor population capacity (e.g., the number beds in hotels) of one place is finite and140

assumed to be a constant.141

• Low (/high) volume of visitors will increase (/decrease) the recruitment effort of travellers142

for a business trip and decrease (/increase) the expense for a recreation trip.143

Thus, logistic growth is a reasonable choice. After eliminating R′ and R′1 (see Supplementary144

Material S3 for details), we formulate the epidemic model as145
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

S ′ = µ · (1−K1 − S)− βS · (I + I1)

I ′ = βS · (I + I1)− (γ + µ)I

S ′1 = fρ ·

[
1−

S1 +
(
1 + γ

ν

)
I1

K1

]
− βS1 · (I + I1)− νS1

I ′1 = βS1 · (I + I1)− (γ + ν)I1

(7)

where fρ = f(ρ) = ρλN1 represents the rate of incoming visitors, K1 is the maximum visitor146

capacity that the destination is willing (or able) to accept, N1 is the number of all players (i.e., all147

potential visitors), and players who adopt the “travel” strategy, travel from the homeland to the148

destination at a rate λ = 1/3 day−1 (see Supplementary Material S6.1). We express both K1 and149

N1 in units of proportion of the population threshold (destination population plus the maximum150

visitor capacity) and we fix N1. We assume that all trips are three days long, hence visitors return151

at rate ν = 1/3 day−1 (see Supplementary Material S6.3). We summarize all model parameters152

in Table 1.153

The contact term β is a function of R0. Using the next generation matrix method [42], we154

derive the basic reproduction number of our epidemic model as155

R0 = β ·
[

(1−K1)

γ + µ
+

K1

γ + ν

]
, (8)

thus, β ∝ R0 when the values of the other parameters are fixed.156

Model Equilibria157

We denote the disease-free equilibrium (DFE) as158

E (1) =
(
S(1), I(1), S

(1)
1 , I

(1)
1

)
=

(
(1−K1), 0,

fρK1

fρ + νK1

, 0

)
,

where I = I1 = 0 and S
(1)
1 < K1. The DFE (E (1)) is globally stable when R0 < 1, whereas it159

is unstable when R0 > 1. When R0 > 1, there is an endemic, i.e., the visitor-absent endemic160

equilibrium ,161

E (2) =
(
S(2), I(2), S

(2)
1 , I

(2)
1

)
=

(
γ + µ

β
, µ ·

(
1−K1

γ + µ
− 1

β

)
, 0, 0

)
,

where S1 = I1 = 0. Specifically, S(1) = γ+µ
β

is the reciprocal of R0 of the standard SIR model162

[33]. E (2) can be realized when fρ in S ′1 (see Eqn. 7) becomes 0 and it is locally stable. When163

R0 > 1, there also exists an endemic equilibrium corresponding to a mixed state of local and164

visitor infections (i.e., infected visitors), denoted as E (3) =
(
S(3), I(3), S

(3)
1 , I

(3)
1

)
. The solution of165

E (3) can be obtained explicitly by taking the nonnegative root of [S ′, I ′, S ′1, I
′
1]
T = 0 (0 represents166

the zero vector) with both I 6= 0 and I1 6= 0.167
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Table 1: Summary table of model parameters. The ranges of the parameters are used for the
sensitivity analysis.

Parameter Notation Value Range/Remark Source(s)
Basic reproduction number R0 2.5† [1.0, 10.0] [36, 37, 38, 39]

Mean duration that visitors are outside border λ−1 3 days [0.1, 10] S6.1

Ratio: travelling players
population threshold N1 7.5% [5.0%, 15.0%] assumed, S2.2 and S3

Ratio: visitors capacity
population threshold K1 7.0% [5.0%, 15.0%] S6.2

Mean infectious period γ−1 5 days [2.0, 10.0] [40]
Mean human lifespan µ−1 70 years fixed -

Mean duration that visitors are inside border ν−1 3 days [0.5, 15.0] S6.3
Relative risk (as in Eqn. 5) r = r0

r1
10−3 [10−4, 10−2] S6.4

Probability of travelling p - [0.0, 1.0] Eqn. 4
Optimal probability of travelling p∗ - [0.0, 1.0] S2.1

Proportion of visitors ρ - [0.0, 1.0] Eqn. 2
Optimal proportion of visitors ρ∗ - [0.0, 1.0] Eqn. (6) and S2.2

Cost of all game players Υ - - S2.2
Difference between group and individual optima ∆ρ ρ∗ − p∗ [−1.0, 1.0] Eqn. (10)

Probability that disease outbreak occurs α 0.01‡ [0.001, 0.02] assumed

The point values of the disease parameters reflect influenza, and the ranges of the parameters reflect a broad
range of other infectious diseases.
The values and ranges of the parameters related to travel (i.e., K1, r, ν−1 and λ−1) reflect Hong Kong as the
default destination.
† One can determine the function β(R0) explicitly from Eqn. 8, and R0 = 2.5 is also applicable to the 2003 SARS
epidemic according to [6, 7, 9, 10, 11, 41]
‡ α = 1.0 during epidemics.

Probability of Visitors becoming Infected168

Given the model in Eqn. 7 and the assumption that all individuals in a compartment leave169

it at the same rate regardless of how long they have been there, we may take the probability of a170

visitor becoming infected during the trip to be equal to the ratio of the rate at which susceptible171

visitors (S1) are infected to the rate at which susceptible visitors (S1) leave the destination [22],172

φ(ρ) =
βS

(3)
1 (I(3) + I

(3)
1 )

βS
(3)
1 (I(3) + I

(3)
1 ) + νS

(3)
1

= 1− ν

β(I(3) + I
(3)
1 ) + ν

,

and thus, αφ(ρ) = α− να

β(I(3) + I
(3)
1 ) + ν

.

(9)

We present the numerical results of the relationship between φ(ρ) and ρ in Supplementary Mate-173

rial S2.1. Given the relationship between β and R0, one may derive the relationship between R0174

and φ(ρ) explicitly.175
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Results and Discussion176

Individual Equilibrium and Travelling Optimum177

We first explore how the predicted travel strategies depend on the basic reproduction number178

(R0) and the relative risk (r). Many factors, including seasonal (climatic) factors and the evolution179

of viruses, could affect R0. Additionally, media coverage of the risk and relevant educational180

programs [44, 45, 46, 47, 48, 49] could influence visitors’ perception of the risk, thus changing r1181

and r (Eqn. 5). During an ongoing epidemic (α = 1), we find that both r and R0 significantly182

influence the individual equilibrium p∗ and the group optimum ρ∗ (Fig. 2). (The values of the other183

parameters are fixed and listed in Table 1, and small variations in their values do not dramatically184

change the trends of these relationships.) We observe that both the individual and population185

optima have the same qualitative relationship with R0 and r: both optima are monotonically186

decreasing functions ofR0 and monotonically increasing functions of r. This behaviour is expected,187

since an increasing transmissibility should reduce both the individual incentive to travel and the188

group optimal rate of travelling, while a decline in the relative risk of travelling should encourage189

travel, both individually and as a group. More surprisingly, the sudden transition of the individual190

optimum from 0 to 1 (as shown in panel a) is steeper than that of the population optimum (as191

shown in panel b).192
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(b) travelling optimum, ρ∗
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Figure 2: Individual and population optima as functions of the basic reproduction number R0 and
the relative risk r during an epidemic (α = 1). Panel (a) shows the Nash equilibrium proportion of
travellers p∗; panel (b) shows the group optimal proportion of travelllers ρ∗, with colour codes to
indicate magnitude. The range of R0 and the values of the other parameters are listed in Table 1.

To further explore the relationship between the individual and group optimum, we study193

their difference:194

∆ρ = ρ∗ − p∗ (10)

More details are given in Supplementary Material S2. A plot of ∆ρ versus the population optimum195

ρ∗ and the individual equilibrium p∗ during an ongoing epidemic (α = 1) show that they agree196

perfectly for most of the parameter space (Fig. 3). For most of the parameter region, ρ∗ = p∗ = 0197
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or 1 (i.e., the white area in Fig. 3). These two situations can occur when both the disease risk198

(reflected by R0) and perceived risk are (1) either considerably high, i.e., ρ∗ = p∗ = 0, in which199

case no one intends to travel and complete border entrance restrictions are implemented, or (2)200

considerably low, i.e., ρ∗ = p∗ = 1, in which case all individuals intend to travel and border201

entrance is completely unrestricted. Variations in the values of the other parameters do not202

change the trends of these relationships (Table 1).203

However, despite the broad agreement across the parameter plane, the region where ρ∗ and204

p∗ are discrepant reveals interesting findings. During an epidemic, most locations are expected to205

receive fewer visitors (with limited visitor entrance) than usual when there is no epidemic. But206

the model predicts parameter regimes where the group optimal solution requires a higher volume207

of travel than what is individually optimal: in the blue region of the parameter plane, ∆ρ > 0,208

meaning p∗ < ρ∗ (Fig. 3a). In this regime, the health authority would wish to encourage more209

travel than actually occurs. However, if either the disease risk R0 or the perceived payoff of210

disease risk r1 decline even slightly (for instance, due to seasonal factors and/or changing media211

coverage) the situation is reversed, and the discrepancy in interests ∆ρ could change from ∆ρ > 0212

to ∆ρ < 0 (red region in Fig. 3a). When ∆ρ < 0, a health authority restriction on visitors is213

desired and only ρ∗

p∗
of the visitors should be allowed to enter in order to achieve the population214

optimum ρ∗. In summary, Fig. 3 shows a surprising contrast to many game theoretical models215

comparing individual and group optimal outcomes: in large parts of the parameter space, there is216

no discrepancy. However, when a discrepancy does emerge, it can emerge very quickly with small217

changes in parameter values, and moreover, the individual optimal travel rate could exceed the218

group optimal rate, or vice versa.219
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Figure 3: Discrepancy between individual and population optima as a function of the basic re-
production number R0 and relative risk r, during an epidemic (i.e., α = 1). Panel a shows the
relationship among r (Eqn. 5), R0 and ∆ρ (Eqn. 10); and panel b shows the relationship between
r and ∆ρ for R0 = 1.0, 2.5, 5.0, 10.0. In panel a, the colour code quantifies ∆ρ. The white area
represents ∆ρ = 0 under the two cases that ρ∗ = p∗ = 0 or 1. In panel b, ρ∗ is in green, and p∗

is in purple. In both panels, the range of R0 and the values of the other parameters are listed in
Table 1. Please refer to the electronic version for the figure with color.
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Example of the 2003 SARS Outbreak in Beijing220

The epidemic patterns predicted by our model under a manipulation of the group optimal221

strategy ρ are qualitatively similar to the epidemic curve during the 2003 SARS outbreak in222

Beijing, China, resulting from the timing of certain travel-related events during the outbreak.223

Fig. 4a (adapted from Ref. [11]) shows weekly reported cases in Beijing during the outbreak.224

Data are available from the electronic supplementary material. The time point when knowledge225

of the epidemic was first made public, e.g., “SARS made reportable (Apr 10)” in Fig. 1 of Ref. [11],226

refers to the date of news press [52]. The time point of the official start of restrictions on travel227

refers to the events “outbreak announced publicly by government (Apr 20)” and “fever check at228

airport begin (Apr 22)” in Fig. 1 of Ref. [11]. We note that these two events resulted in almost229

no one travelling to Beijing, i.e., ρ = 0, until the end of the SARS epidemic [53].230

We also note that, although the Beijing SARS outbreak was initially sparked by travellers,231

the proportion of cases in Beijing caused by travellers over the entire outbreak is thought to be232

small, especially after fever screening began [54]. Also, the United States Centers for Disease233

Control suggests that travellers to SARS-affected destinations take precautions to avoid infection,234

suggesting a nontrivial infection risk for travellers [55]. The latter two features of the Beijing235

SARS outbreak are consistent with our model assumptions.236

Fig. 4b shows a model-simulated epidemic curve that largely matches the observed epidemic237

curve. To generate this curve we focus on changes in R0 (disease transmissibility) and ρ (pro-238

portion of players adopting the “travel” strategy). We decrease ρ from 0.5 to 0.25 at the time239

indicated by the blue dashed vertical line in Fig. 4b. This decrease is associated with the start of240

public awareness of the SARS risk in Beijing after it was revealed to the public [52]. Similarly, the241

decrease in R0 from 2.5 to 1.75 as also indicated by the blue dashed vertical line would correspond242

to an accompanying reduction of the effective contact rate due to the onset of public awareness of243

SARS. (The effective contact rate is defined as the product of the contact rate and transmission244

probability per contact. It is believed, and is modelled, to be negatively, or at least non-positively,245

related to reported disease incidence [34, 45, 46, 47, 56].) The time lag, i.e., the gap between the246

pairs of vertical solid and dashed lines of the same colour in Fig. 4, is fixed at three days due to247

the mixed effects of the incubation period (or the latent period) of SARS infection and the delay248

of human reaction to the outbreak. The model simulation largely captures the observed SARS249

epidemic between March and May 2003, as shown in Fig. 4a-b and Fig. 8 of [57].250

The model-predicted outcome of an earlier implementation of travel restrictions (see blue and251

red dashed lines in Fig. 4b) are obtained by fixing the combinations of R0 and N1, and setting252

ρ = 0 (i.e., nobody is able or willing to enter due either to travel restrictions or cautious behaviour253

due to SARS risk). We found that the earlier the travel restrictions are implemented, the more254

effectively the disease outbreak level is reduced. By contrast, an uncontrolled and sudden increase255

in the proportion of visitors (e.g., increasing ρ from 0.5 to 0.75) could yield a larger outbreak, as256

indicated by the gold dashed lines in Fig. 4b.257

We note that our objective in Figure 4 is to convey how the model framework applies during258

an unfolding epidemic where travel restrictions are put in place partway through the epidemic.259

Hence, although the starting value of R0 is epidemiologically plausible for SARS [58, 59], the260

parameters were chosen for convenience rather than being fitted systematically. However, slight261

changes in the parameter values away from this parameter regime do not change the outcomes.262
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(a) The 2003 SARS outbreak in Beijing, China
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(b) numerical results
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Figure 4: The 2003 SARS outbreak in Beijing, China. Panel a shows the reported cases during
2003 SARS outbreak in Beijing, China (adapted from Ref. [11]); and panel b shows the numerical
results of the epidemic model (see Eqns. 7). In both panels, the vertical lines represent the
starting points of events, and the vertical dashed lines represent the time points with lag of three
days. In panel a, the SARS epidemic and government intervention are given on timeline from
Mar 05 to May 29, 2003. The back dashed line is the time series smoothed by using the LOESS
function (R version 3.4.3 ). In panel b, the initial states are set as [S(0), I(0), S1(0), I1(0)] =
[(1−K1), 0, (K1 − 1× 10−8) , 1× 10−8], with R0 = 2.5, N1 = 15% and ρ = 0.5 (see grey parts of
the bars on the top). The blue and red dashed lines are the simulations under “what if” scenarios
in which travel restriction policies were implemented earlier. The black and gold dashed lines
are under “what if” scenarios in which travel restriction (or reduction) failed and travel input
suddenly increased respectively. The values of the other parameters are assumed to be the same
as those in Table 1, and the changes in parameters are marked at the top of the panel. Note that
the timelines are the same in panels a and b.

Also, additional numerical results for wider parameter variations in Supplementary Material S4263

show the range of possible dynamics exhibited by the model.264

11



Additional Sensitivity Analysis265

The sensitivity analysis of the baseline model (Supplementary Material S5) shows that the266

results are most sensitive to the relative risk (r), basic reproduction number (R0), and the rate267

at which individuals leave the destination (ν). More detailed discussion of the influence of these268

model parameters on model predictions are given in Supplementary Material S7.269

In the baseline model, for simplicity, we assume that visitors do not bring infection back270

to their home country. To amend this shortcoming, we introduce an additional probabilistic271

case importation risk level into an extended model (see parameters in Table 1). Under this272

extension, our main results are unchanged. Please refer to Supplementary Material S9 for a273

detailed discussion. We also included pre-existing immunity among visitors in an extended model,274

and also found that our main results were unchanged. A detailed discussion can be found in275

Supplementary Material S8.276

Model Limitations and Future Research277

In this subsection, we discuss possible model extensions and some limitations. In the baseline278

model, we assume individuals have accurate knowledge of the real basic reproduction number R0.279

However, an imbalance between the perceived and actual R0 could exist [60, 61, 62]. We denote280

R̃0 as the perceived R0. We expect the perceived R̃0 to correlate positively with the actual281

R0. Thus, we assume R̃0(R0) is a nondecreasing function of R0. Given the perceived disease282

risk R̃0, the payoff of the disease risk r1

(
R̃0

)
, i.e., r1 as a function of R̃0 given in Eqn. 2, is a283

nondecreasing function of R̃0 and a nondecreasing function of R0. One of the simplest forms of284

r1

(
R̃0

)
is r1 ∝ R̃0 with a positive scalar. Future research should explore the impact of such a285

difference between R0 and R̃0.286

In addition, travelling players may not always be informed about outbreak events in a timely287

manner. Thus, a time delay between R0 and R̃0 could exist. We denote R̃0(t; τ) = R̃0(R0(t−τ)),288

where τ > 0 is the time lag between the occurrence of infection risk and the perception of infection289

risk. If we set τ = 0 for all t by assuming humans receive accurate knowledge of a risk when it290

emerges, we have limτ→0+ R̃0(t; τ) = R̃0(R0(t)). In this work, we consider a limiting case of τ = 0.291

In reality, this assumption can be relaxed, and a reasonable estimate can be used. The value of292

τ depends on the impacts of the risk and the efficiency of the media and relevant programs (e.g.,293

news press coverage [22, 34, 45, 47], education programs [22, 49, 63], communication effectiveness294

in social networks [48, 49, 64, 65, 66, 67] and pre-existing public health awareness [14, 48, 65]).295

In this work, we assumed the same information availability and the same strategic response296

for the entire visitor population (see Eqns. 2 and 3). However, different groups of people could have297

different risk perceptions or risk preferences, hence the payoffs could differ between individuals.298

This has been demonstrated in previous game theoretical models to lead to different equilibria299

and optima regarding the human response to epidemics [26, 68]. Consider the situation where300

E1 = E0 (see Eqns. 2 and 3). In this case, some individuals may prefer the travelling strategy301

(i.e., risk-seeking preference), while others may prefer the non-travelling strategy (i.e., risk-averse302

preference).303

Future models including a heterogeneous population could improve the realism of the model304
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and help test the robustness of our predictions. One way this could be done is by allowing the305

disease natural history and economic parameters to vary between individuals (as noted in the306

foregoing paragraph), to reflect varying health conditions and socio-economic status. Another307

way to account for heterogeneity at a larger scale is to allow for a patchy environment [1] where308

different sub-populations are subject to different conditions. Under such circumstances, we expect309

that the boundaries in Fig. 2) would probably become less sharp, although it is not clear a priori310

how large the effect would be. We expect that most forms of heterogeneity would not change311

our finding that the individual and group optima tend to agree in this kind of game theoretical312

framework, although the regime shifts implied by Fig. 2) would probably be less dramatic if313

heterogeneity were included.314

Conclusions315

Many game theoretical studies of closed socio-epidemiological systems find a significant dis-316

crepancy between individual and group (Pareto) optima in a broad range of economic and epidemi-317

ological parameters. In this work, we studied an open socio-ecological system in which visitors318

decide whether to travel to a location with an ongoing outbreak. Surprisingly, we found perfect319

agreement between the individual and group optimal strategies for broad ranges of parameter320

values. When a disagreement between the individual and group optimal strategies occurs, the321

discrepancy was very large and highly sensitive to small changes in disease transmissibility and322

visitor costs/benefits. For instance, if disease transmissibility increases by even a small amount,323

the uncontrolled incoming visitors are capable of causing an unexpected outbreak. This suggests324

that a discrepancy between the individual and group optima could emerge suddenly in real-world325

settings, provided that slight changes in economic and epidemiological factors (parameters) occur.326

However, timely implementation of travel restrictions by health authorities may effectively prevent327

large-scale outbreaks.328
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S1 More Explanation of the Travelling Procedure

In this work, the game players are potential visitors who have a plan to visit a travel destina-
tion. Potential visitors will end up in two categories: those who take the trip and those who cancel
the trip (see path (1) in main text). Any individual of the home country of visitors may become
a potential visitor at any time. The number of potential visitors (or N1 as the ratio in the model,
see Table 1 in main text) is mainly dependent on the travelling pattern (or seasonality) of the
destination. A potential visitor may decide to travel (i.e., become a “visitor outside”) according
to his/her knowledge on the disease risk at the very moment the decision being made. Thus, there
are three cases regarding to the different travelling decisions.

• A potential visitor decides to travel and successfully completes the trip. Since the trip
is short (three days), we assume that the visitor does not change his/her travel decision.
Finally, s/he returns to his/her home population after the trip.

• A potential visitor decides to travel but fails to complete it due to travel restriction at the
destination. In this case, the visitor returns to his/her home population.

• A potential visitor voluntarily cancels the trip and stays at his/her home population.

Therefore, in any case, the decision making process of the proposed travelling game follows the
sequential game scheme (i.e., the decision is “renewable” for every participant in this game). We
note that local “travel restriction” only has its effects on these potential visitors who decide to
travel; and the potential visitors is mainly influenced by the travelling pattern to the destination.

S2 Individual Equilibrium and Group Optimum

S2.1 Individual Equilibrium

We assume that a proportion ε (0 < ε < 1) of potential visitors will take the trip with a
probability p (i.e., playing p strategy) and the rest of potential visitors (1 − ε) will take the trip
with probability q, where q 6= p. Then, the overall proportion of visitors (ρ̄) who will take the trip
among all game players is

ρ̄ = εp+ (1− ε)q. (S1)

Therefore, the payoff to individuals playing p-strategy and q-strategy are E(p, ρ̄) and E(q, ρ̄),
respectively. The payoff gain (or loss if negative) of an individual playing p strategy against q
strategy is the difference of two payoff functions,

∆E = E(p, ρ̄)− E(q, ρ̄) = (p− q) [r − αφ(ρ̄)] . (S2)

where the parameters have the same meaning as in the main text.
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Figure S1: Schematic diagram of Nash equilibria under three “existence” situations (panel (a) and
(b)) and numerical results of the relation between φ(ρ) and ρ (panel (c)). In order to have a clear
demonstration of three kinds of Nash equilibria, panel (a) and (b) show the trends of φ(ρ;P )
against ρ and P . Panel (c) shows the relation between scaled φ(ρ) and ρ. The scaled φ(ρ) =
1000 × φ(ρ). In panel (c), the transparently blue line are from 1,000 random samples with
parameter sets, and the black dotted line is the result with fixed parameter values. The parameters’
values and ranges can be found in Table 1.

Existence of Nash Equilibria The probability of a visitor becomes infected during the trip
(0 < φ(ρ) < 1) must increase strictly (which is in line with [?], as explained in Epidemic Model
section) when a proportion ρ of game players choose the travelling strategy (see Fig. S1). Hence,
when P is fixed, the minimum of φ(ρ) occurs at ρ = 0 and the maximum of φ(ρ) occurs at ρ = 1.
Here, we show the existence of the unique Nash equilibria by achieving ∆E > 0 in Eqn. (S2)
under three situations.

• If α · min{φ(ρ)} = αφ(ρ = 0) > r, αφ(ρ) > r for all 0 < ρ < 1, so for any 0 < ε < 1 of
Eqn. (S1), ∆E > 0 for any q 6= p if and only if p = 0 (such that p− q < 0 for all 0 < q < 1),
thus, p∗ = 0 is the unique Nash equilibrium.

• If α · max{φ(ρ)} = αφ(ρ = 1) 6 r, αφ(ρ) < r for all 0 < ρ < 1, so for any 0 < ε < 1 of
Eqn. (S1), ∆E > 0 for any q 6= p if and only if p = 1 (such that p− q > 0 for all 0 < q < 1),
thus, p∗ = 1 is the unique Nash equilibrium.

• If α · max{φ(ρ)} = αφ(ρ = 1) > r > αφ(ρ = 0) = α · min{φ(ρ)}, there exist one and only
one p∗ such that αφ(ρ = p∗) = r. For all q < p, we have ρ̄ < p (according to Eqn. (S1)) for
any 0 < ε < 1 and, similarly, for all q > p, we have ρ̄ > p for any 0 < ε < 1. Hence, for
αφ(ρ = 1) > r > αφ(ρ = 0), we always have ∆E > 0 for all q 6= p if and only if p = p∗, so
p∗ is the unique Nash equilibrium such that αφ(p∗) = r.

These different situations of the relationship between αφ(ρ) and r are due to different values
of the pre-existing immunity level (i.e., P , Fig. S1) and different values of parameters (Table 1).

Convergent Stability Follow the previous work [3], let p be closer to p∗ than q (i.e., the
unique Nash equilibrium of Eqn. (S2)), which means q < p 6 p∗ or q > p > p∗ (note that p is not
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necessarily equal to p∗). Given φ(ρ) increases with respect to ρ, if q < p 6 p∗, (r − αφ(ρ̄)) > 0 for
all ε in Eqn. (S1), we have ∆E > 0. Similarly, we can also have ∆E > 0 if q > p > p∗ as desired.
Therefore, the Nash equilibria in all of the three scenarios are convergently stable.

S2.2 Group Optimum
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Figure S2: The optimal proportion of travelling-players becoming visitors (i.e., ρ∗ corresponding
to Eqn. (S4)) during epidemic (i.e., α = 1). Panel (a)-(c) corresponds to R0 = 1.0, 2.5 and 10.0
respectively. Blue lines are Υ(ρ) in Eqn. (S4) with respect to different values of r and red dots
are the minima (when ρ = ρ∗) of Υ(ρ), of which ρ ∈ [0, 1]. The values of r are shown on each blue
line. The range of R0 and values of other parameters are on Table 1.

For all potential visitors, we aim to minimize the overall cost (negative payoff) of all players,
which also appears to be the goal of governmental control. We further ignore the possibility that
infected visitors bring the disease back to their home population. We can express the expected
cost in term of ρ (i.e., the overall proportion of all players who choose to travel),

Υ(ρ) = N1 · [ρα · φ(ρ) · r1 + (1− ρ)r0] . (S3)

Here, N1 is the ratio of total number of players to the total local population capacity (i.e., sum of
local visitors capacity and number of population). The other terms have the same meaning as in
Eqn. (S2). We further scale Υ(ρ) by eliminating N1 (because N1 can be fixed as a constant) and
one risk term (replacing r0 and r1 by r = r0

r1
[2, 6]. Thus, the (scaled) cost of potential visitors is

Υ(ρ) = ρα · φ(ρ) + (1− ρ)r, (S4)

where all terms have the same meaning as in Eqn. (S2). The optimal travelling proportion is
the optimal ratio of successful visitors over all game players, which is denoted by ρ∗. ρ∗ can be
obtained by minimizing Υ(ρ) (see Fig S2 as numerical examples).
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S3 Simplification of the Epidemic Model: Elimination of

R and R1

Based on the framework of the standard SIR compartmental model (see “Epidemic Model”
section in the main text), we write the original epidemic model as:

S ′ = µ · (1−K1 − S)− βS · (I + I1),

S ′1 = fρ ·
(

1− S1 + I1 +R1

K1

)
− βS1 · (I + I1)− νS1,

I ′ = βS · (I + I1)− (γ + µ)I,

I ′1 = βS1 · (I + I1)− (γ + ν)I1,

R′ = γI − µR,
R′1 = γI1 − νR1.

(S5)

Here, fρ = f(ρ) = ρλN1 represents the rate of incoming visitors. K1 is the ratio of maximum
capacity of visitors to the total population capacity. K1 controls the upper bound of the magnitude
of visitors in the model system (thus, generally, K1 is fixed) S6.2. N1 has the same meaning as in
Table 1 and Eqn. (S3). N1 is the ratio of total number of potential visitors (i.e., travelling-players)
to the total population capacity (i.e., the sum of maximum visitors capacity and the size of local
population, see Table 1, (S + I + R + K1) in model (S5)) For simplicity, we fix N1 in this work.
Model parameters are summarized in Table 1 in the main text.

Most visitors stay inside border (i.e., in the destination) for a considerably short period (three
days, ν−1 in Table 1 and S6.3). Since (S + I +R) +K1 ≡ 1 (i.e., the total population capacity, is
scaled to unity) and S1 + I1 +R1 6 K1 < 1, we have (S + I +R) + (S1 + I1 +R1) 6 1.

Under the quasi-steady-state assumption, which is widely adopted in within-host modelling

studies [7, 5], we replace the term S1+I1+R1

K1
(in model (S5)) by

S1+(1+ γ
ν )I1

K1
(by forcing R′1 = 0) in

order to eliminate equation of R1. This approximation can be interpreted as that all R1 come
from I1 and only γ

γ+ν
of I1 could transit to R1 at any time (other part of I1 simply leaving the

system at rate ν). Thus, R1 6
γ

γ+ν
I1 6

γ
ν
I1 (both γ and ν are positive), and then, S1 + I1 +R1 6

S1+
(
1 + γ

ν

)
I1. Since infected (I1) visitors will quickly joinR1 class at the rate γ and the proportion

of recovered visitors are relatively small, term S1 + I1 +R1 is very close to S1 +
(
1 + γ

ν

)
I1. Note

that γ
ν
I1 is simply the upper bound of R1, and, after all, the effects of both I1 and R1 are little

(compared with S1) regarding to the visitors input.
After eliminating R′ and R′1, we reformulate the epidemic model as,

S ′ = µ · (1−K1 − S)− βS · (I + I1),

I ′ = βS · (I + I1)− (γ + µ)I,

S ′1 = fρ ·

[
1−

S1 +
(
1 + γ

ν

)
I1

K1

]
− βS1 · (I + I1)− νS1,

I ′1 = βS1 · (I + I1)− (γ + ν)I1.

This version is used in the main text.

5



For mathematical convenience, we fix (S + I + R) + K1 ≡ 1 (i.e., the population threshold,
or the total population capacity, is scaled to unity, 1). We also let S1 + (1 + γ/ν)I1 6 K1, thus,
S1 + I1 + R1 6 K1 is guaranteed. Therefore, we have (S + I + R) + (S1 + I1 + R1) < 1 in our
complete model (see S3).

S4 Some Numerical Examples

The epidemics could be amplified by the uncontrolled visitor inflow, even when the basic
reproduction number is low. Fig. S3(a) shows an epidemic becoming out of control withR0 declines
(from 2.5 to 2.4) while the incoming visitor restriction fails (red line). The disease outbreaks can
be controlled if the incoming visitors are restricted (i.e., by holding ρ = 0.1 unchange, see the
green line). Since ρ∗ is sensitive in a narrow range of R0 and r (see section “Results of Individual
Equilibrium and Travelling Optimum” in main text), ρ∗ could have very large change (e.g., from
0.1 to 0.99) with slight change on R0 (e.g., from 2.5 to 2.4 in Fig. S3(a)). The large variation in
ρ∗ could lead to the discrepancy between ρ∗ and p∗. The decline of disease risk (R0) could avoid
this discrepancy (by achieving p∗ = ρ∗ = 1). The increase of disease risk (R0) might also avoid
this discrepancy (by achieving p∗ = ρ∗ = 0).

When the risk of disease (in term of R0) is higher than the perceived risk (i.e., the perceived
risk is low), the local government is suggested to restrict visitor entrance. Otherwise, the actual
proportion of the incoming visitor is likely to be greater than the optimal level (ρ∗). Fig. S3(b)
shows the epidemic becoming out of control when R0 slightly rises and incoming visitors are not
controlled (green line). The disease outbreak can be controlled by visitors entrance restriction
(red and purple lines).

Fig. S3(c) shows the similar trend as the early stage of SARS epidemic (in Jan - Feb, 2003).
The rapid increasing could be mainly due to the increased visitors during Chinese new year (see
Fig. 2(a) of Ref. [10]). Namely the increase of visitors could lead to a disease outbreak.

S5 Sensitivity Analysis of Payoffs

Partial rank correlation coefficient (PRCC) analysis is deployed to assess the dependence
of the model results on the parameters [7, 8, 9]. The ranges of model parameters used for the
sensitivity analysis are summarized in Table 1 in the main text.

Fig. S4 shows the PRCCs between model parameters and individual payoff (E, see Eqn. (5)),
and population risk level (Υ, Table 1 and S2.2) respectively. The ranges of model parameters are
given in Table 1. Since “payoff” (the term in Fig. S4(a)) is the defined as the opposite number of
“risk level” (the term in Fig. S4(b)), some model parameters have symmetric PRCC result with
respect to level “0” (see the vertical grey dashed line in Fig. S4) on both panels. The PRCCs
show that the results are most sensitive to the group of the relative risk (r), the basic reproduction
number (R0), and the rate at which individuals leave the destination country (ν). Hence, these
parameters should be the focus of data collection efforts during outbreaks when a travel policy
must be decided. In Fig. S4(b), the basic reproduction number (R0) and relative risk (r) is
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Figure S3: The simulation results of local infections (I) of epidemic model (panel (a) and (b), see Eqns. (S3))

and the SARS epidemic of China in 2002-03 (panel (c)). The baseline scenario contains that initial states are set as

[S(0), I(0), S1(0), I1(0)] =
[

1
R0
, 1× 10−4,

(
K1 − 5× 10−6

)
, 5× 10−6

]
; with R0 = 2.5 and ρ = 0.1 for panel (a) and

(c), and R0 = 1.1 and ρ = 0.99 for panel (b). Values of other parameters are on Table 1. In panel (a), the blue

line is the simulation results under baseline scenario of panel (a); the green line is of basic reproduction number

(R0) decreasing to 2.4 since the 201-st day (vertical green dashed line); based on the change of green line, the red

line is of travelling proportion (ρ) increasing to 0.99 since the 301-st day (vertical red dashed line). In panel (b),

the blue line is the simulation results under baseline scenario of panel (b); the green line is of basic reproduction

number (R0) increasing to 1.2 since the 701-st day (vertical green dashed line); based on the change of green line,

the red line is of travelling proportion (ρ) decreasing to 0.50 since the 751-st day (vertical red dashed line); based

on the change of red line, the purple line is of travelling proportion (ρ) continually decreasing to 0.10 since the

801-st day (vertical purple dashed line). In panel (c), the blue line is the simulation results under baseline scenario

of panel (c); the green line is of travelling proportion (ρ) increasing to 0.99 since the 301-st day (vertical green

dashed line).

strongly positively related to the population risk level (Υ), and the visitors leaving rate (ν) is
negatively related to Υ. Opposite results can be seen in Fig. S4(a) for the individual payoff.

S6 Interpretation and Value of Some Model Parameters

S6.1 Rate of visitors moving from outside status to inside status λ

The value of the mean period of a traveler stay outside border (λ−1) can be estimated by
referring to the “deadline” of cancellation of hotel room, flight or even car-rent for travelling
usage. For example, according to cancellation policies of Airbnb (https://www.airbnb.com/home/
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Figure S4: Sensitivity analysis results of (PRCCs) between model parameters and individual payoff
(panel (a), see Eqn. (5)), and population risk level (Υ, in panel (b), see Table 1). The black dots
are the estimated correlations and the bars represent 95% C.I.s. The ranges of model parameters
are summarized on Table 1.

cancellation_policies), the waiver of refund charges can be considered for room-cancellation at
least 1 day (with “flexible” policy) or 5 days (with “moderate” policy) in advance, thus we can
make a rough estimation that λ−1 ≈ 1

2
× (1+5) = 3 days. According to Hong Kong Airline refund

policies (http://www.hongkongairlines.com/en_HK/flight/refund), λ−1 > 2 days.

S6.2 Visitor capacity at destination K1

According to the monthly travelling statistics (http://partnernet.hktb.com/en/research_
statistics/latest_statistics/index.html) and travelling summary sheet (http://partnernet.
hktb.com/en/research_statistics/index.html) from PartnerNet—Hong Kong tourism website
for travel trade partners, there were approximate 58,000,000 travelers in Hong Kong of 2015
or 2016, and the local hotel room occupancy is roughly 87% over the whole period of time.
Provided the information in S6.3, the local tavelling capacity of Hong Kong can be estimated as
NK1 = (58000000/87%)×3

365
≈ 550000, hereN denotes the number of total population capacity in Hong

Kong (i.e., the sumation of upper bound of the number of travelers and local population, N =
NK1+N·(S+I+R)). Given the popualtion statistics from World Bank (https://data.worldbank.
org/indicator/SP.POP.TOTL?locations=HK), 7,300,000 is the number of local population in Hong
Kong in 2015-16, thus N = NK1 + N · (S + I + R) = 550000 + 7300000 = 7850000, and
K1 = 550000

7850000
≈ 7.0%.

S6.3 Rate of visitors leaving destination ν

Referring to immigration department of the government of Hong Kong (http://www.immd.
gov.hk/eng/services/visas/visit-transit/visit-visa-entry-permit.html), Chinese citizens
can stay in Hong Kong for at maximal 7 days, and the majority of non-Chinese citizens can stay
for roughly at maximal 15 days. According to the monthly travelling statistics from PartnerNet -
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Hong Kong tourism website for travel trade partners (http://partnernet.hktb.com/en/research_
statistics/latest_statistics/index.html), averagely, 75% of travelers are from mainland China
and 25% are from other regions; for Chinese travelers, 50% of them are overnight passengers (ex-
pected to stay for 1

2
× (7 + 1) = 4 days) and 50% them are one day visitors (expected to stay

for 1
2
× (0 + 1) = 0.5 day); for non-Chinese travelers, 66.67% of them are overnight passengers

(expected to stay for 1
2
× (15 + 1) = 8 days) and 33.33% them are one day visitors (expected to

stay for 1
2
× (0 + 1) = 0.5 day). Therefore, on average, one random-selected traveler would be

expected to stay in Hong Kong for ν−1 = 75%×(50%×4+50%×0.5)+25%×(2
3
×8+ 1

3
×0.5) ≈ 3

days (thus, ν−1 = 3 days).

S6.4 Relative risk r

The range of relative risk (r) can be approximated by simply checking the claim settle-
ment odds of the travel insurance corresponding to the target place. For an example, according to
travel insurance premium and coverage websites of Hang Seng Bank (https://bank.hangseng.com/
1/2/personal/insurance/travel-leisure/travel-insurance/travel-premium and https://bank.

hangseng.com/1/2/personal/insurance/travel-leisure/travel-insurance/travel-coverage), r ≈
10−3.

S7 Further Discussion of Model Parameters

Relative risk r = r0
r1

(see Eqn. (S2) and Table 1) is the ratio of the “non-travelling” payoff
(E0 = −r0, see main text) to the upper bound of the “travelling” payoff (i.e., E1 = −r1, see
main text). The range of r could be obtain by referring to the claim-settlement-odds of the travel
insurance with regard to the travelling destination (normally, r ≈ 10−3, see S6.4).

Number of visitors N1 is the ratio of total number of potential visitors (i.e., game players)
to the total population capacity. Provided total population capacity can be fixed in short term,
the magnitude of N1 is proportional to the number of potential visitors. We fix N1 in this work.
However, the number of potential visitors could be affected by seasonal factors (such as weather,
school terms, holidays, etc.) and economic and politic factors (such as traffic expenditures, hotel
fees, travelling policies [1], etc.), thus N1 could be time-dependent in reality.

Agreement and conflict between ρ and p In Eqns. (S5) (and the epidemic model in the
main text), fρ

λ
= ρN1 is the proportion of visitors (outside border and about to be inside border

shortly) to the total population capacity. ρ (see Table 1) is the proportion of potential visitors
eventually becoming visitors correspond to the optimal travelling strategy selection. Therefore,
we have ρ = p∗ (where p∗ is individual’s optimal travelling probability) under normal scenario
(i.e., no serious disease outbreak, of which no restriction on travelling entry). However, during a
serious disease outbreak, the local government will consider restricting travelling entry (in order to
lower the number of visitors inside border) according to population’s optimal travelling proportion
(i.e., ρ∗), and this would change ρ = min{p∗, ρ∗}. Numerical examples of local governmental
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intervention on travelling entry (i.e., ρ) are discussed in section S4. Note that, under governmental
intervention scenario, ρ should only equal to ρ∗ if ρ∗ < p∗ (otherwise ρ∗ > p∗, ρ = p∗ is equivalent
to normal scenario).

Period of visitors staying outside the border λ−1 is defined as the mean period for a visitor
used to get inside the border (see Table 1). We stepwise the “visiting” population as in Path (1)
in main text. The λ−1 is the mean period for a visitor evolving from a “visitor outside” border to
a “visitor inside” border. Note that a “potential visitor” can only become a “visitor outside” if he
has finished his final travelling decision (see S1). The knowledge of the range of λ−1 can be learnt
by referring to the “deadline” of withdrawal of various travelling “services” (e.g., hotel, flight,
etc., see S6.1). Therefore, the speed of health information spread could be related to λ−1 because
that the updating of relevant information can “renew” individual’s final decision (i.e., re-choose
strategy). Therefore, higher speed of information spread is corresponding to lower value of λ−1.
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Figure S5: The relations among r, λ and ∆ρ (see main text) during epidemic (i.e., α = 1) with
R0 = 1.0, 2.5, 5.0, 10.0 for panel (a)-(d) respectively. The values of r and λ are in “log10” form.
The color code of the difference of individual and population strategy, ∆ρ, is shown on the color
key. The white area (in each panel) represents ∆ρ = 0 under two situations that ρ∗ = p∗ = 0 or
1. The values of other parameters are on Table 1.

Fig. S5 shows the relations among relative risk (r), rate of visitors pass border (λ) and ∆ρ
during an epidemic. When λ increases, the discrepancy (∆ρ) of individual (p∗) and group optimum
(ρ∗) appears under a wider range of relative risk (r). The discrepancy (∆ρ) shifts leftwards (the
direction r increases) asR0 increasing. Particularly, p∗ and ρ∗ meet agreement (i.e., no discrepancy
as ρ∗ = p∗ = 1) when R0 = 1.0 (which means disease cannot spread).
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S8 Pre-existing immunity among visitors

For the model in the main text, we assume that all visitors are susceptible when entering the
travel destination. In reality, this is not true. Pre-existing immunity of visitors could exist (e.g.,
the health authority of the visitors’ home could recommend vaccination for visitors planning to go
to a certain region where an epidemic is ongoing). The immunity level of the visitor population
is dependent on a number of factors, including previous outbreaks, vaccination program policy
and coverage, and the infection or vaccination history of the visitors, and may be estimated if the
information is available. Thus, we denote

• PT as the immunity level of the visitor population of a country;

• PO as the immunity level of the rest of the population of the home countries of the visitors;

• PD (i.e., term P in main text) as the immunity level of the local population of travel desti-
nation.

Then, the assumption PD = PT or PD = PO, i.e., the immunity levels of local and origin
populations are uniform, is unnecessary and can be relaxed. Moreover, the assumption PT = PO

can also be relaxed. In reality, PT > PO could be common because (i) health authority of the
visitors’ home could recommend vaccination for visitors planning to go to an epidemic region; and
(ii) vaccinated visitors are more likely to travel to an epidemic region.

After including PT, the revised epidemic model becomes:

S ′ = µ · (1−K1 − S)− βS · (I + I1),

S ′1 = (1− PT)fρ ·
[
1− S1 + I1 +R1

(1− PT)K1

]
− βS1 · (I + I1)− νS1,

I ′ = βS · (I + I1)− (γ + µ)I,

I ′1 = βS1 · (I + I1)− (γ + ν)I1,

R′ = γI − µR,
R′1 = γI1 − νR1,

with all the terms remaining unchanged, except for inclusion of (1−PT) in (1−PT)fρ·
[
1− S1+I1+R1

(1−PT)K1

]
.

We note that we could include one more equation,

X ′1 = PTfρ ·
[
1− S1 + I1 +R1 +X1

(1− PT)K1

]
− νX1,

where the additional state X1 denotes visitors being protected against the disease, and the term
S1+I1+R1

(1−PT)K1
(in the revised model) should originally be written as S1+I1+R1+X1

K1
(the same as in

Eqn. X ′1). Since the magnitudes of both I1 and R1 are relatively small with respect to S1 and X1,
we ignore the effects of I1 and R1 on the incoming visitors rate. Thus we have

S ′1 ≈ (1− PT)fρ ·
[
1− S1 + I1 +R1 +X1

K1

]
− νS1.
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We can easily see that PT of fρ joins in X1, (1−PT) of fρ joins in S1, and the leaving rates of X1

and S1 are the same as ν. To eliminate term X1, we have X1 ≈ PTS1

(1−PT )
; therefore,

S1 + I1 +R1 +X1

K1

≈ S1 + I1 +R1

(1− PT )K1

,

as shown in the above revised model.
The term (1 − PT) can be interpreted to mean that the protected visitors (PT) are directly

removed from the system (not by joining R1, but by being “completely” removed from the model
system), and the effect on the visitor input rate is partly reflected by “reducing” the local visitor
capacity (i.e., replacing K1 by (1−PT)K1). In this work, PT is fixed to 0. Then, a new simplified
model can be derived (from the revised model) by following the same method in S3 (by eliminating
R and R1). Since we regard PT as a fixed nonzero constant (i.e., PT 6= 0) during a short time
period, and mathematically speaking, the effect of PT can be transformed into a reduction of the
magnitudes of fρ and K1 [11], the main results in this work will hold for the revised epidemic
model.

S9 Risk of visitors bringing the disease back to their home

country

For the analysis in main text, for simplicity, we assume that visitors do not bring diseases back
to their home country. This assumption is clearly overly optimistic. To amend this shortcoming,
we may introduce one additional probabilistic factor of the risk level and obtain an improved
travelling risk function

Υ = Υ(ρ, π) = N1 ·
[
ρ · αφ(ρ) · (1 + π · %

r1
) · r1 + (1− ρ)r0

]
,

where π is the average probability that the disease is brought back to the home country of a
traveller, and % is the average payoff of the disease spreading in a randomly selected home country.

Generally, we note that % > r1, since the consequences of a disease spreading in a region are
presumed to be more serious than the consequences of a single individual being infected from a
utilitarian point of view. We fix the ratio of %

r1
and use a similar idea as r = r0

r1
. We view (1+π · %

r1
)

as a scaler and assign a value to π. Thus the results of our original framework still hold, namely,
the epidemic risk level of the travelling population, as listed in Table 1 in main text is a simplified
version when π = 0.
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