
Computational Problems Related to
Open Quantum Systems

by

Chunhao Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

© Chunhao Wang 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Hoi Fung Chau
Professor, Department of Physics, The University of Hong Kong

Supervisor(s): Richard Cleve
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: Debbie Leung
Professor, Department of Combinatorics and Optimization,
University of Waterloo

Internal Member: John Watrous
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Ashwin Nayak
Professor, Department of Combinatorics and Optimization,
University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

A quantum system that has interaction with external resources, such as probability dis-
tribution, dissipation, and noise, is referred to as an open quantum system. Not only
do open quantum systems play a vital role in the field of quantum physics, but they are
also fundamental objects in quantum information and quantum computing. In this thesis,
we focus on computational problems related to open quantum systems. In particular, we
study efficient constructions of open quantum systems and their algorithmic applications.

A unitary 2-design is a quantum analogue of universal 2-hash functions. It is an exam-
ple of open quantum systems in the sense that it is a probability distribution of unitaries.
As unitary 2-designs inherit many properties of the Haar randomness on the unitary group,
they have many applications in quantum information, such as benchmarking and decou-
pling. We study the structures of unitary 2-designs and present efficient methods for their
constructions.

The continuous-time evolution of a closed quantum system can be described by the
Schrödinger equation. A natural generalization of the Schrödinger equation to Markovian
open quantum systems, in the sense of generating dynamical semigroups, is called the
Lindblad equation. We show that it is impossible for a simple reductionist approach to
simulate Lindblad evolution with gate complexity that has linear dependence in evolution
time. Moreover, we use a novel variation of the “linear combination of unitaries” con-
struction that pertains to quantum channels to achieve the desired linear dependence in
evolution time and poly-logarithmic dependence in precision.

Open quantum systems can also be used as building blocks of quantum algorithms. We
present a dissipative query model, which is based on the amplitude damping process. With
this dissipative query model, we provide a quantum algorithm that performs a fixed-point
quantum search while preserving the quadratic speedup against classical algorithms.

iv

Acknowledgements

First of all, I would like to thank my supervisor Richard Cleve for his advice, guidance, and
support during my Ph.D. program. From every single meeting and discussion with him, I
gained knowledge and insight, which are influential in my research and future career.

I want to thank my committee members Hoi Fung Chau, Richard Cleve, Debbie Le-
ung, Ashwin Nayak, and John Watrous for reading my thesis and giving me the valuable
feedback. I am extremely grateful to Richard Cleve, Peter Høyer, Debbie Leung, Ashwin
Nayak, and John Watrous for the discussion and guidance of the research presented in
this thesis. I also would like to thank Li Liu and Leonard Wossnig for the productive
collaborations and fruitful discussions. I am deeply indebted to the faculty members at
IQC and CS who helped me, and to all my friends in Waterloo who enriched my life.

I would like to give special thanks to my wife Chang Liu for her endless support. She
also contributed to this thesis with love and understanding.

v

Dedication

This thesis is dedicated to my grandparents and my wife.

vi

Table of Contents

List of Figures x

1 Introduction 1

1.1 Unitary 2-designs . 2

1.2 Lindblad evolution . 3

1.3 Dissipative quantum search . 5

1.4 Organization of this thesis . 6

2 Notation and Preliminaries 8

2.1 Basics for quantum computing . 8

2.2 Properties of finite fields . 16

3 An Example of Open Quantum Systems: Unitary 2-Designs 20

3.1 Previous work and main results . 20

3.2 Definitions of unitary 2-designs . 22

3.3 Pauli mixing and unitary 2-designs . 31

3.3.1 Pauli mixing implies a unitary 2-design 31

3.3.2 Pauli mixing and SL2(GF(2n)) . 35

3.3.3 A framework for implementing elements of SL2(GF(2n)) 39

3.4 Efficient constructions of unitary 2-designs 42

3.4.1 Near-linear implementation based on self-dual basis for GF(2n) . . . 42

vii

3.4.2 Near-linear implementations based on polynomial basis for GF(2n) . 49

3.4.3 Lower bounds for the size and depth of unitary 2-designs 58

4 Continuous-Time Evolution of Markovian Open Quantum Systems 61

4.1 Macroscopic derivation of the Lindblad equation 62

4.2 Examples of Lindblad evolution . 66

4.3 Lower-bound of simulation as Hamiltonian evolution in a larger Hilbert space 67

5 Quantum Algorithms for Simulating Markovian Open Quantum Systems 75

5.1 Previous work and main results . 75

5.1.1 Previous work . 75

5.1.2 Main results . 76

5.2 Novel techniques . 79

5.2.1 The performance of the standard LCU method on Stinespring dilations 80

5.2.2 Brief summary of novel techniques 81

5.3 New LCU method for channels and completely positive maps 82

5.4 Overview of the algorithm . 85

5.4.1 A linear map that approximates infinitesimal Lindblad evolution . . 87

5.4.2 Implementing the approximation map by the new LCU method . . 90

5.4.3 Simulation with constant success probability 92

5.4.4 Oblivious amplitude amplification for isometries 93

5.4.5 Concentration bound and encoding scheme 96

5.4.6 Total number of gates and proof of the main theorem 100

5.5 Lindbladians with sparse Hamiltonian and Lindblad operators 102

6 Harnessing Open Quantum Systems: Dissipative Quantum Search 104

6.1 Previous work and main results . 105

6.1.1 Previous work . 105

viii

6.1.2 Main results . 106

6.2 Review of Grover’s algorithm . 107

6.3 The dissipative query model . 108

6.4 Dissipative quantum search algorithm . 112

7 Conclusion 120

References 121

ix

List of Figures

3.1 Illustration of a 2-query distinguishing circuit. The first query Q1 can be
U or U †, likewise for the second query Q2. The initial state ρ is arbitrary,
V is an arbitrary unitary, and the final measurement is also arbitrary and
outputs one bit. 23

3.2 Illustration of the bilateral twirl : querying U twice in parallel. The initial
sate ρ is arbitrary. 25

3.3 An illustration of the Pascal’s triangle structure of the matrix L8 . Taking the left

half of an 8-level Pascal’s triangle and rotating counter-clockwise by 90 degrees,

we obtain L8. Note that the block LΓ
4 is the horizontal reflection of the lower-

diagonal block L4 with a downward shift, as described by property 2 of Lk. . . 47

3.4 An example of representation conversion circuit which demonstrates the recursive

structure. 47

3.5 The implementation of Πr for multiplication of a by r where a, r ∈ GF(25). Π̃r

is an implementation of Schönhage’s multiplication algorithm. The input and

output bits are with respect to a self-dual basis. 49

3.6 Illustration of the lower-triangular Pauli mixing within the zero column
(N = 2n). 56

3.7 Illustration of the lower-triangular Pauli mixing within the nonzero columns
(N = 2n). 56

3.8 Illustration of the column Pauli mixing for the zero column (N = 2n). . . . 57

3.9 Illustration of the column Pauli mixing for the nonzero columns (N = 2n). 57

3.10 Illustration of the mixing procedure starting in the zero row (N = 2n). . . 58

3.11 Illustration of the mixing procedure starting in a nonzero row (N = 2n). . . 59

x

4.1 Lindblad evolution for time t approximated by unitary operations. There
are N iterations and δ = t/N . This converges to Lindblad evolution as
N →∞. 68

4.2 N -stage ε-precision discretization of the trajectory resulting from L. For
each k ∈ {1, . . . , N}, after k stages, the channel should be within ε of
exp
(
kT
N
L
)
. 69

4.3 The Local Hamiltonian Approximation lemma. The first register is M -
dimensional, the second register contains n qubits, and the approximation
is within O(δ2) (independent of M and n). 70

4.4 A demonstration of a trajectory simulation H of some Lindbladian L. . . . 73

4.5 Approximating a trajectory simulation H as two stages. 73

4.6 Approximating a trajectory simulation H as a 1
4
-precision N -stage dis-

cretization (N = 1
4ε

). 74

5.1 The circuit W for simulating a quantum channel using the new LCU method. . 84

6.1 The circuit representation of the controlled amplitude damping channel with
damping strength λ. 110

6.2 The circuit representation of the query-controlled amplitude damping chan-
nel with damping strength λ. 111

6.3 Implementing one dissipative query with two standard queries to Qgood and
one c-ADλ. 112

6.4 The quantum circuit for Mλ. 113

6.5 Demonstration of the impact of E0 and E1 in each iteration. 117

6.6 Numerical comparison between the algorithm given in Lemma 6.3 (solid) and
Grover’s algorithm (dashed). The horizontal axis represents the number of
iterations (of Mλ and the Grover iterator, respectively), and the vertical
axis represents the overlap of the current state with the target state. The
size of search space is N = 218 and there is only one marked item. 118

6.7 Numerical comparison between Algorithm 6.1 (solid) and Grover’s algorithm
(dashed). The horizontal axis represents the number of applications of step 6
in Algorithm 6.1 and the Grover iterator in Grover’s algorithm, respectively,
and the vertical axis represents the overlap of the current state with the
target state. The size of search space is N = 218 and there is only one
marked item. 119

xi

Chapter 1

Introduction

A quantum system that is isolated from the environment (i.e., some external system) is
referred to as a closed quantum system. Examples of such quantum systems are Hamilto-
nian evolution and unitary operators, which are fundamental objects in quantum physics
and quantum computing. Open quantum systems can be viewed as an extension of closed
quantum systems by allowing interaction with external resources, such as randomness, dis-
sipation, and noise. Examples of open quantum systems arise in probability distribution
on unitary operators, Lindblad evolution, and quantum channels. Unitary 2-designs are
probability distributions on unitary operators. They serve as a source of randomness in
quantum information, and they have many applications related to estimating properties of
other quantum channels. Lindblad evolution is a generalization of the Schrödinger evolu-
tion to Markovian open quantum systems in the sense of generating dynamical semigroups.

Closed quantum systems are the main objects of interest for solving computational
problems: most quantum algorithms are built based on unitary operators. Open quantum
systems are often related to communication (e.g., quantum channels), and hence a lot
of research has been conducted on the information-theoretical problems related to open
quantum systems, such as estimating the capacity, fidelity, and information complexity of
quantum channels. In this thesis, we focus on the computational problems related to open
quantum systems. In particular, we study efficient quantum algorithms for simulating
Lindblad evolution and constructing open quantum systems such as unitary 2-designs. We
also demonstrate that open quantum systems can be used to design quantum algorithms.
In particular, we present a dissipative quantum search algorithm which achieves properties
that were not achieved with pure unitary operators, e.g., the error-converging fixed-point
property with the quadratic speedup.

1

1.1 Unitary 2-designs

In classical computer science, it has been observed that 2-universal hash functions [CW79]
have the property that, with at most two queries, they cannot be distinguished from random
functions1. Analogues of 2-universal hash functions in quantum computing have recently
received increasing attention. One such analogue is called a unitary 2-design. A unitary
2-design is a probability distribution on some finite subset of the unitary group (the group
of all unitaries of a certain dimension, where the formal definition is in Section 2.1). Sam-
pling from this probability distribution simulates the procedure of sampling from the Haar
measure (i.e., the unique measure that is invariant under right- and left-multiplications of
group elements) of the unitary group in the following sense: if a distinguishing procedure
can query a unitary at most twice, it cannot distinguish whether this unitary is sampled
from a unitary 2-design or sampled from the Haar measure of the unitary group.

The Haar-randomness on the unitary group facilitates many analyses in quantum in-
formation (for example, in [Has09, HHWY08, HLSW04, HLW06, HW08]). In particular,
the full bilateral twirl (applying a Haar-random unitary in parallel on a bipartite system,
introduced in [BBP+96, BDSW96]) appears in various mathematical proofs in quantum in-
formation [HHWY08, SDTR13]; the full channel twirl (applying a Haar-random unitary U
on the input state of some quantum channel and then applying U † on the output state) has
important applications such as estimating the average channel fidelity of quantum devices
[DCEL09] and error estimating in quantum key distribution [Cha05]. Roughly speaking, a
unitary 2-design has the property that, sampling from it implements the full bilateral twirl
and the full channel twirl. Moreover, appropriate notions of approximate unitary 2-designs
in the sense of approximating the full bilateral twirl and the full channel twirl have also
been explored in [DCEL09, DLT02, HL09].

Implementing Haar-random unitaries requires very high computational complexity: it
requires many bits to describe and a lot of randomness to sample due to the fact that
a unitary acting on n qubits has 2n × 2n entries. Since unitary 2-designs inherit many
properties of the Haar randomness on the unitary group, it is desirable to implement
unitary 2-designs with small quantum circuits and a small sampling cost. Unitary 2-
designs are closely related to the Clifford group, which is the subgroup of the unitary
group that permutes Paulis (Definition 3.6). The uniform distribution over the Clifford
group is a unitary 2-design. The unitaries in the Clifford group can be implemented by
a quantum circuit of O(n2/ log n) gates [AG04]. The sampling cost is O(n2) random bits
of entropy. In this thesis, we show three constructions of exact unitary 2-designs of gate

1Here we assume that for any input, the output of a 2-universal hash function is uniformly distributed.

2

complexity (measured by 1- and 2-qubit gates) Õ(n) (where Õ(f(n)) is a shorthand for
O(f(g) logk(f(g))) for some k ≥ 0), that need O(n) random bits of entropy for sampling.
Note that our constructions require ancilla qubits.

Because the constructions presented in this thesis are for exact unitary 2-designs, they
can be used for all notions and definitions of approximate unitary 2-designs. Therefore,
the constructions achieve the best-known gate complexity, circuit depth, and sampling
complexity simultaneously, for both exact and approximate unitary 2-designs.

Efficient constructions of unitary 2-designs have many computational applications in
the context of full bilateral twirl and full channel twirl, such as data hiding [DLT02], design-
ing codes for transmitting data through noisy quantum channels [HHWY08], decoupling
of two systems (breaking coherence between two systems) [SDTR13], estimating the av-
erage channel fidelity of quantum devices [DCEL09] and error estimating in quantum key
distribution [Cha05]. For example, as suggested in [HHWY08], there exists an encoding
operation in any unitary 2-design that achieves the quantum channel capacity when con-
catenated with an appropriate inner code. As a result, the constructions presented in this
thesis automatically imply the existence of such encoding circuits with gate complexity
O(n log n log log n) and circuit depth O(log n).

In some applications such as decoupling, the approximation error ε of an approximate
unitary 2-design (e.g., [DCEL09]) can be amplified by a factor that is exponential in n
(for example., in [SDTR13, Theorem 1]). This issue can be overcome by using exact
constructions of unitary 2-designs. Therefore, for these applications, the constructions
presented in this thesis yield tighter bounds than approximate unitary 2-designs while
maintaining the gate complexity Õ(n).

1.2 Lindblad evolution

The problem of simulating the evolution of closed quantum systems (captured by the
Schrödinger equation) was proposed by Feynman [Fey82] in 1982 as a motivation for build-
ing quantum computers. Since then, several quantum algorithms have appeared for this
problem. However, many quantum systems of interest are open quantum systems but are
well-captured by the Lindblad master equation [GKS76, Lin76]. Examples exist in quan-
tum physics [LCD+87, Wei12], quantum chemistry [MK08, Nit06], and quantum biology
[DGV12, HP13, MRE+12]. Lindblad evolution also arises in quantum computing and quan-
tum information in the context of entanglement preparation [KBD+08, KRS11, RRS16],
thermal state preparation [KB16], quantum state engineering [VWC09], and studying the
noise of quantum circuits [MPGC13].

3

More precisely, the Lindblad equation is the natural generalization of the Schrödinger
equation to the dynamics of Markovian open quantum systems in the sense of generating
dynamical semigroups, and it is defined as

d

dt
ρ = −i[H, ρ] +

m∑
j=1

(
LjρL

†
j −

1

2
L†jLjρ−

1

2
ρLjL

†
j

)
, (1.1)

where H is a Hamiltonian, L1, . . . , Lm are linear operators, and [H, ρ] denotes the operator
Hρ−ρH. We denote the superoperator defined as Eq. (1.1) by L, and call it a Lindbladian
(i.e., d

dt
ρ = L[ρ]). The evolution by L for time t corresponds to a quantum channel eLt.

For example, the depolarizing process can be described by the following Lindblad equa-
tion:

d

dt
ρ =

3∑
j=1

(
LjρL

†
j −

1

2
L†jLjρ−

1

2
ρLjL

†
j

)
, (1.2)

where L1 = X/
√

3, L2 = Y/
√

3, and L3 = Z/
√

3 for Pauli operators X, Y , and Z. The
phase damping process can be described by the following Lindblad equation:

d

dt
ρ =

2∑
j=1

(
LjρL

†
j −

1

2
L†jLjρ−

1

2
ρLjL

†
j

)
, (1.3)

where L1 =
(

1 0
0 0

)
, and L2 =

(
0 0
0 1

)
. The amplitude damping process can be described by

the following Lindblad equation:

d

dt
ρ = LρL† − 1

2
L†Lρ− 1

2
ρLL†, (1.4)

where L =
(

0 1
0 0

)
.

In this thesis, we focus on the methods for simulating Lindblad evolution. By simulating
the evolution, we mean providing a quantum circuit that computes the quantum channel
eLt. We are interested in the cost of the simulation, which is measured by the number of
1- and 2-qubit gates in this circuit.

Lindblad evolution can be intuitively thought of as Hamiltonian evolution in a larger
system that includes an ancilla register, but the ancilla register is being continually reset
to its initial state to preserve its Markov property (i.e., the system state at time t + δ
is completely determined by the system state at time t for any δ > 0). This suggests a

4

reductionist approach to simulate Lindblad evolution as Hamiltonian evolution in a larger
space. However, in this thesis, we show that it is impossible to achieve the gate complexity
with linear dependence in evolution time using this simple reductionist approach.

As an algorithmic contribution, we show a quantum algorithm for simulating the evolu-
tion of an n-qubit system for time t within precision ε. If the Lindbladian consists of poly(n)
operators that can each be expressed as a linear combination of poly(n) tensor products of
Pauli operators then the gate cost of this algorithm is O(t polylog(t/ε)poly(n)). We also
obtain similar bounds for the case where the Lindbladian consists of local operators, and
where the Lindbladian consists of sparse operators. This algorithm is based on a novel
linear combination of unitaries (LCU) for channels and oblivious amplitude amplification
for isometries, where the standard linear combination of unitaries (LCU) and the oblivious
amplitude amplification for unitaries have been used in Hamiltonian simulation algorithms
(as briefly discussed in Section 5.2).

1.3 Dissipative quantum search

Open quantum systems can also be used as building blocks in quantum algorithms. We
demonstrate that, based on the amplitude damping process and Grover’s search algorithm
[Gro96], a quantum search algorithm can achieve the fixed-point property without losing
its quadratic speedup.

Grover’s search algorithm and its generalizations are important tools in quantum com-
puting. These algorithms provide a quadratic speedup against their classical counterparts
for the search problem. As a consequence, classical algorithms for solving NP-complete
problems (which are believed hard to solve unless NP=P) that are based on the obvious
brute-force search gain quadratic speedup by using Grover’s algorithm on a quantum com-
puter. In a general setting of an unordered search problem, there is a search space of
N items, and M of them are marked. A boolean function f : {0, . . . , N − 1} → {0, 1}
determines whether an item j ∈ {0, . . . , N − 1} is marked (f(j) = 1) or not (f(j) = 0).
The goal is to find a marked item using as few queries to f as possible. Both random-
ized and deterministic classical algorithms require Ω(N/M) queries, but Grover’s search
algorithm uses O(

√
N/M) queries. Around the same time when Grover’s search algorithm

was proposed, Farhi and Gutmann [FG98] proposed a search algorithm in the form of
Hamiltonian evolution, which also achieves quadratic speedup over classical algorithms.
Often being viewed as the continuous-time version of Grover’s search algorithm, Farhi and
Gutmann’s algorithm sheds light on quantum algorithms design and provides a different
point of view for quantum search algorithms.

5

There exist other variations of Grover’s search algorithm. In the context of boosting
success probability of some random experiment, suppose the probability that a random
variable takes a certain value is p. In the classical case, Ω(1/p) samples are required
to achieve constant probability that the desired value is observed. However, in a more
generalized Grover’s search algorithm, which is often referred to as amplitude amplification
[BHMT02], only O(

√
1/p) samples suffice.

Despite its ubiquitousness and versatility, a notorious problem of Grover’s search algo-
rithm – the “over-cooking” problem cannot be ignored. In the M -out-of-N search problem,
Grover’s search algorithm detects a marked item in O(

√
N/M) queries with high probabil-

ity. However, when the number of marked items M is unknown, the number of iterations
of Grover’s search algorithm is unknown. If more iterations are applied (even a constant
factor more than optimal), the overlap between the resulting state and the desired state
could be (exponentially!) small, or even zero.

Previous work for solving this “over-cooking” problem is based on unitary operators.
However, to the best of our knowledge, these methods do not possess the desirable error-
converging property, i.e., the error (not necessarily monotonically) decreases with more
iterations (where each iteration requires a constant number of queries), without losing
the quadratic speedup. In this thesis, we propose a query model based on the amplitude
damping process, namely, the dissipative query, and present a dissipative quantum search
algorithm which has the fixed-point property while preserving the quadratic speedup.

1.4 Organization of this thesis

This thesis is organized as follows.

Chapter 2 : We provide the necessary background for this thesis. We first present the
terminologies and notations for quantum information, and then show some properties
of finite fields.

Chapter 3 : We study an example of open quantum systems – unitary 2-designs. The
goal of this chapter is to develop efficient constructions of unitary 2-designs.

Chapter 4 : We study the notion of continuous-time evolution for open quantum systems.
In particular, we show a derivation of the Lindblad equation and prove a lower bound
for simulating Lindblad evolution as Hamiltonian evolution in a larger Hilbert space.

6

Chapter 5 : We present a quantum algorithm for simulating Lindblad evolution, achiev-
ing linear dependence in evolution time and poly-logarithmic dependence in precision.

Chapter 6 : We demonstrate that open quantum systems can be used in quantum algo-
rithms. In particular, we show a fixed-point quantum search algorithm that preserves
the quadratic speedup. This quantum algorithm is built upon a novel dissipative
query model, which is based on the amplitude damping process.

Chapter 7 : We finish this thesis with concluding remarks.

7

Chapter 2

Notation and Preliminaries

2.1 Basics for quantum computing

We assume that readers have a basic knowledge of linear algebra, measure theory, and
group theory. The purpose of this section is to provide the minimum prerequisites to
follow this thesis. We present terminologies and notations that will be used through the
following chapters. To get a more comprehensive background in quantum computing and
quantum information, readers may refer to the book by Nielsen and Chuang [NC00] and
the book by Watrous [Wat18].

Hilbert spaces and quantum states

In this thesis, when we refer to a Hilbert space, we mean a finite-dimensional Hilbert space.
Therefore, it is convenient to use the notation of a complex Euclidean space of dimension
N , CN , to denote a Hilbert space of dimension N . The tensor product for two Hilbert
spaces CN1 and CN2 , denoted by CN1 ⊗ CN2 is defined as the Hilbert space CN1N2 .

We use the bra-ket notation (a.k.a. the Dirac notation) |u〉N ∈ CN to represent a
column vector and use 〈u|N to denote its complex conjugate transpose. The computational
basis for CN , is the set {|0〉N , . . . , |N − 1〉N}, where for all j ∈ {0, . . . , N − 1}, |j〉N is a
column vector where the entry corresponding to position j is 1, and all other entries are
0. For example, when N = 2, |0〉2 =

(
1
0

)
, and |1〉2 =

(
0
1

)
. Note the difference between

notations |u〉N and |j〉N : u is just a symbol and |u〉N is used for any column vector, while
j ∈ {0, . . . , N − 1} is a variable, and |j〉N is used for a computational basis vector. When
the dimension is clear from the context, we omit the subscript from the bra-ket notation,
and simply denote a column vector by |u〉.

8

For any two column vectors |u〉N , |v〉N ∈ CN , we use |u〉〈v|N as a shorthand for |u〉N〈v|N ,
which is an N ×N matrix, and use 〈u|v〉N as a shorthand for 〈u|N |v〉N , which is a complex
number. The subscript N in |u〉〈v|N and 〈u|v〉N are usually omitted if the dimension is
clear from the context.

The quantity 〈u|v〉 is called the inner product of two column vectors |u〉, |v〉 ∈ CN . We
can express |u〉 ∈ CN with respect to the computational basis as

|u〉 = u0|0〉+ u1|1〉+ · · ·+ uN−1|N − 1〉, (2.1)

where uj = 〈j|u〉 for all j ∈ {0, . . . , N − 1}. Let |u〉 ∈ CN1 and |v〉 ∈ CN2 be two column
vectors represented as |u〉 = u0|0〉+ u1|1〉+ · · ·+ uN1−1|N1 − 1〉 and |v〉 = u0|0〉+ v1|1〉+
· · ·+vN2−1|N2−1〉, respectively. The tensor product of column vectors |u〉 and |v〉, denoted
by |u〉⊗|v〉 (or simply |u〉|v〉), is defined as the vector |w〉 ∈ CN1N2 that can be represented
as

|w〉 =

N1−1,N2−1∑
j,k=0

ujvk|j, k〉, (2.2)

where |j, k〉 is defined as |jN2 + k〉.
The Euclidean norm of |u〉 ∈ CN is defined as

‖|u〉‖ =
√
〈u|u〉 =

√√√√N−1∑
j=0

|uj|2. (2.3)

A column vector |u〉 is normalized if ‖|u〉‖ = 1. An n-qubit normalized quantum state is
usually represented as a normalized column vector |u〉 ∈ C2n . A 2n-dimensional quantum
register is a device the can store and process n-qubit quantum states (and therefore can
be associated with a Hilbert space C2n). The operators on a quantum register include
initialization, as well as unitaries and measurements, which are defined in the subsequent
content. In this thesis, all quantum states in the bra-ket notation are normalized unless
otherwise specified.

A measurement on a quantum register that is in some state |ψ〉 ∈ C2n with respect
to a basis {|u0〉, . . . , |u2n−1〉} is a non-reversible operation, after which, the probability of
observing the outcome j is |〈ψ|uj〉|2, and the state of this quantum register collapses to
|uj〉.
Linear operators

9

There are linear operators that map vectors in CN to vectors in CM . We use L(CM ,CN)
to denote the set of all linear operator of the form:

A : CM → CN . (2.4)

If the input space and output space are the same, we use the notation L(CN) as a shorthand
for L(CN ,CN). With respect to the computational basis, we can associate each A ∈
L(CM ,CN) with a matrix M ∈ CN×M as follows

(M)j,k = 〈j|A|k〉, (2.5)

for j ∈ {0, . . . , N − 1} and k ∈ {0, . . . ,M − 1}, where (M)j,k denotes the (j, k)-entry of
M . Due to this association, in this thesis, we do not distinguish an operator from its
matrix representation (with respect to the computational basis), and do not distinguish
the Hilbert space L(CM ,CN) from the set of matrices CN×M if it does not cause ambiguity.
We use the bold symbol 0CN to represent the zero-operator, which is corresponding to the
all-zero matrix (omitting the subscript if it is clear from the context).

The identity operator ICN ∈ L(CN) is the operator satisfying

ICN |u〉N = |u〉N , (2.6)

for all |u〉N ∈ CN . It can also be specified as the matrix:

(ICN)j,k =

{
1 if j = k

0 if j 6= k.
(2.7)

In this thesis, we usually omit the subscript for dimension and simply write I when the
dimension is clear from the context.

For every A ∈ L(CM ,CN), we define three operators AT , A∗, and A† as follows.

1. The operator AT ∈ L(CN ,CM) is the operator obtained by transposing A (with
respect to the computational basis):

(AT)j,k = (A)k,j, (2.8)

for all j ∈ {0, . . . ,M − 1} and k ∈ {0, . . . , N − 1}.

2. The operator A∗ ∈ L(CM ,CN) is the operator obtained by taking entry-wise complex
conjugate of A (with respect to the computational basis):

(A∗)j,k = (A)∗j,k, (2.9)

for all j ∈ {0, . . . , N − 1} and k ∈ {0, . . . ,M − 1}.

10

3. The operator A† ∈ L(CN ,CM) is the operator obtained by performing both of the
operation defined in items 1 and 2 on A:

A† =
(
AT
)∗
. (2.10)

For every A ∈ L(CN), the trace function, denoted by Tr(A), is the linear function defined
as

Tr(A) =
N−1∑
j=0

(A)j,j. (2.11)

For any pair of operators A,B ∈ L(CN), the commutator of A and B, denoted by [A,B]
is defined as

[A,B] = AB −BA. (2.12)

Now, we define some classes of operators that will be used in this thesis:

1. Hermitian operators. An operator A ∈ L(CN) is Hermitian if A = A†.

2. Positive semidefinite operators. An operator A ∈ L(CN) is positive semidefinite if
there exists some operator B ∈ L(CN) such that A = B†B. Every positive semidefi-
nite operator is Hermitian.

3. Density operators. An operator A ∈ L(CN) is a density operator if A is positive
semidefinite and Tr(A) = 1. In this thesis, we usually use Greek letters such as ρ, σ
to denote density operators. We use the notation

D(CN) = {ρ : ρ is positive semidefinite and Tr(ρ) = 1} (2.13)

to denote the set of density operators acting on CN .

4. Isometries. An operator A ∈ L(CN ,CM) is an isometry if it preserves the Euclidean
norm, i.e., ‖A|u〉‖ = ‖|u〉‖ for all |u〉 ∈ CN .

5. Unitaries. An operator A ∈ L(CN) is a unitary if it is an isometry. Every unitary
operator has the property that UU † = U †U = I. We use the notation

U(CN) =
{
A ∈ L(CN) : A†A = I

}
(2.14)

to denote the set of unitaries acting on CN . This set forms a group. When N = 2n

for some integer n, we call U(CN) the unitary group on n qubits.

11

Note that density operators are often used to represent mixed quantum states, i.e., ρ ∈
D(C2n) can be viewed as a probability mixture of quantum states in the following form

ρ = p0|u0〉〈u0|+ · · ·+ p2n−1|u2n−1〉〈u2n−1|, (2.15)

where pj ≥ 0 for all j ∈ {0, . . . , 2n − 1},
∑2n−1

j=0 pj = 1, and |u0〉, . . . , |u2n−1〉 ∈ C2n are
n-qubit quantum states. When it is clear from the context, we also refer to a density
operator ρ as a quantum state.

Now we define some fundamental unitaries acting on one qubit (C2), or two qubits
(C22) that will be used extensively in this thesis.

1. The 1-qubit Paulis are IC2 , X, Y, Z, whose matrix representations are the following

IC2 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
. (2.16)

2. The phase gate acting on one qubit, denoted by S, is defined as

S =

(
1 0
0 i

)
(2.17)

3. The Hadamard gate acting on one qubit, denoted by H, is defined as

H =
1√
2

(
1 1
1 −1

)
(2.18)

4. The controlled-not gate acting on two qubits, denoted by CNOT, is defined as

CNOT|b1〉|b2〉 = |b1〉|b1 ⊕ b2〉, (2.19)

for all b1, b2 ∈ {0, 1}.

5. The swap gate acting on two qubits, denoted by SWAPC2⊗C2 , is defined as

SWAPC2⊗C2|b1〉|b2〉 = |b2〉|b1〉, (2.20)

for all b1, b2 ∈ {0, 1}.

12

The tensor product of operators A ∈ L(CN1 ,CM1) and B ∈ L(CN2 ,CM2), denoted by
A⊗B, is defined as the unique operator in L(CN1 ⊗ CN2 ,CM1 ⊗ CM2) that satisfies

(A⊗B)|u〉|v〉 = A|u〉 ⊗B|v〉, (2.21)

for all |u〉 ∈ CN1 and |v〉 ∈ CN2 . We use the notation A⊗n as a shorthand for the n-fold
tensor product

A⊗ · · · ⊗ A. (2.22)

Two norms of operators will be used extensively in this thesis. We define them as
follows:

1. The spectral norm of an operator A ∈ L(CN), denoted by ‖A‖, is defined as

‖A‖ = max
{
‖A|u〉‖ : |u〉 ∈ CN , ‖|u〉‖ ≤ 1

}
, (2.23)

which is equal to the largest singular value of A.

2. The trace norm of an operator A ∈ L(CN), denoted by ‖A‖1, is defined as

‖A‖1 = Tr
(√

A†A
)
, (2.24)

which is equal to the sum of singular values of A.

For two density operators ρ and σ. The value ‖ρ− σ‖1 is often referred to as the trace
distance between ρ and σ.

Linear maps

Linear maps of the form

M : L(CN)→ L(CM) (2.25)

are often referred to as superoperators. The set of all such linear maps is denoted by
T(CN ,CM). When the input space and the output space are the same, we use the notation
T(CN) as a shorthand for T(CN ,CN). The identity map IL(CN) ∈ T(CN) is the linear map
defined as

IL(CN)[A] = A (2.26)

13

for all A ∈ L(CN). Note that we use square bracket to denote the actions of linear maps
on operators.

For M1 ∈ T(CN1 ,CM1), . . . ,Mk ∈ T(CNk ,CMk), the tensor product of these linear
maps

M1 ⊗ · · · ⊗Mk ∈ T(CN1 ⊗ · · · ⊗ CNk ,CM1 ⊗ · · · ⊗ CMk) (2.27)

is defined as the unique linear map satisfying

(M1 ⊗ · · · ⊗Mk)[A1 ⊗ · · · ⊗ Ak] =M1[A1]⊗ · · · ⊗Mk[Ak], (2.28)

for all A1 ∈ L(CN1), . . . , Ak ∈ L(CNk).

In this thesis, the following classes of linear maps are considered:

1. Hermitian-preserving maps. A map M ∈ T(CN ,CM) is Hermitian-preserving if it
holds that M[A] is Hermitian for every Hermitian operator A ∈ L(CN).

2. Completely positive maps. A map M ∈ T(CN ,CM) is completely positive if it holds
that (

M⊗IL(CM′)

)
[A] (2.29)

is positive semidefinite for every positive semidefinite operator A ∈ L(CN⊗CM ′ ,CM⊗
CM ′), and for every Hilbert space CM ′ .

3. Trace-preserving maps. A map M∈ T(CN ,CM) is trace-preserving if it holds that

Tr(M[A]) = Tr(A) (2.30)

for all A ∈ L(CN).

The partial trace is a linear map defined as

(Tr⊗ IL(CM))[A⊗B] = Tr(A)B (2.31)

for all operators A ∈ L(CN) and B ∈ L(CM). Here, we consider the trace function as a
linear map: Tr ∈ T(CN ,C). Sometimes, it is fruitful to give Hilbert spaces names. If we
use S to refer to the Hilbert CN of the first system, and use E to refer to the Hilbert space
CM of the second system, the partial trace can be denoted by TrS as

TrS = Tr⊗ IL(CM). (2.32)

14

Similarly, the map TrE can be defined as

TrE = IL(CN) ⊗ Tr. (2.33)

The following two norms of linear maps will be used in this thesis:

1. The induced trace norm of a map M∈ T(CN ,CM) is defined as

‖M‖1 = max
{
‖M[A]‖1 : A ∈ L(CN), ‖A‖1 ≤ 1

}
. (2.34)

This norm is also known as the 1→ 1 norm.

2. The diamond norm of a map M∈ T(CN ,CM) is defined as

‖M‖� =
∥∥M⊗IL(CN)

∥∥
1
. (2.35)

This norm is also known to as the completely bounded trace norm.

Next, we discuss different representations of linear maps. Readers may refer to [Wat18]
for a thorough discussion of these representations such as their existence and their rela-
tionship.

1. Kraus representation. A map M∈ T(CN ,CM) can be represented as

M[A] =
k−1∑
j=0

EjAF
†
j , (2.36)

for all A ∈ L(CN), where the operators Ej, Fj ∈ L(CN ,CM) for j ∈ {0, . . . , k − 1}
are called the Kraus operators.

2. Stinespring representation. A map M∈ T(CN ,CM) can be represented as

M[A] = TrB[EAF †], (2.37)

for all A ∈ L(CN), and for any Hilbert space CM ′ referred to as B, where the operators
E,F ∈ L(CN ,CM ⊗ CM ′) are referred to as the Stinespring dilation.

3. The Choi matrix. A map M ∈ T(CN ,CM) can be associated with a unique matrix
J(M) as

J(M) =
(
M⊗IL(CN)

) [N−1∑
j,k=0

|j〉〈k| ⊗ |j〉〈k|

]
. (2.38)

The matrix J(M) is called the Choi matrix for M.

15

A map M ∈ T(CN ,CM) is a quantum channel if M is completely positive and trace-
preserving. The collection of all such quantum channels is denoted by C(CN ,CM) (and
we use C(CN) as a shorthand for C(CN ,CN). A quantum channel M∈ C(CN ,CM) has a
Kraus representation of the form

M[A] =
k−1∑
j=0

EjAE
†
j , (2.39)

for all A ∈ L(CN), where the Kraus operators E0, . . . , Ek−1 ∈ L(CN ,CM) satisfy

k−1∑
j=0

E†jEj = I. (2.40)

A Stinespring representation of M is of the form

M[A] = TrB[UAU †], (2.41)

for all A ∈ L(CN), and for any Hilbert space CM ′ referred to as B, where U ∈ L(CN ,CM ⊗
CM ′) is an isometry. Quantum channels can be used to model some quantum systems that
has interaction with some external resources, such as probability distribution, dissipation,
and noise.

2.2 Properties of finite fields

In mathematics, a field is informally defined as a set that is closed under addition, mul-
tiplication, subtraction, and division with certain axioms. Examples of fields are real
numbers, rational number, and complex numbers. More formally, we give the following
precise definition:

Definition 2.1. A field is a set F together with two operations, addition (denoted by +)
and multiplication (denoted by ·), such that the following properties are satisfied for all
a, b, c ∈ F:

1. Closure of F under addition and multiplication: a+ b ∈ F and a · b ∈ F.

2. Associativity of addition and multiplication: a+ (b+ c) = (a+ b) + c and a · (b · c) =
(a · b) · c.

16

3. Commutativity of addition and multiplication: a+ b = b+ a and a · b = b · a.

4. Additive and multiplicative identity: there exists an element in F, denoted by 0, such
that a+ 0 = a; there exists an element in F, denoted by 1, such that a · 1 = a.

5. Additive and multiplicative inverse: there exists an element in F, denoted by −a, such
that a+(−a) = 0; there exists an element in F, denoted by a−1, such that a ·a−1 = 1.

6. Distributivity of multiplication over addition: a · (b+ c) = (a · b) + (a · c).

Note that in the above definition, subtraction and division are implicitly defined by
additive and multiplicative inverse. We often use the simplified notation ab instead of a · b
to denote the multiplication of two elements in a field.

A field with finitely many elements is called a finite field (often referred to as Galois
field). More information about these fields can be found in [LN94]. Let GF(2n) denote
the finite field of size 2n. The elements of this field form a vector space over GF(2) so
the notion of a basis of of this field is well-defined: a set {ω1, . . . , ωn} ⊆ GF(2n) is a basis
if the elements in this set are linearly independent and span the field. With a basis, it
is possible to associate the elements of GF(2n) with n-bit strings by taking coordinates
with respect to this basis. For example, if a = a1ω1 + a2ω2 + · · ·+ anωn ∈ GF(2n), where
a1, . . . , an ∈ {0, 1}, we can associate a with the n-bit string a1 · · · an.

A polynomial basis of GF(2n) is a basis that is of the form {1, α, α2, . . . , αn−1} for some
α ∈ GF(2n). The standard constructions of GF(2n) in terms of irreducible polynomials
result in a representation with respect to a polynomial basis. However, there exist bases
that are not necessarily of this form. For instance, a normal basis of GF(2n) has the form
{α20 , α21 , . . . , α2n−1} for some α ∈ GF(2n) which we call a normal element. We define the
field-trace function T : GF(2n)→ GF(2) as

T (a) = a20 + a21 + · · ·+ a2n−1

. (2.42)

The field-trace function is linear in the sense that T (a + b) = T (a) + T (b), for all a, b ∈
GF(2n). In terms of T , we define the field-trace inner product of a, b ∈ GF(2n) as T (ab).
Now, we define a notion of the dual of a basis. For an arbitrary basis {ω1, . . . , ωn} ⊆
GF(2n), that we refer to as the primal basis, we can define its dual basis as the unique
{ω̂1, . . . , ω̂n} ⊆ GF(2n) such that

T (ωjω̂k) =

{
1 if j = k

0 if j 6= k.
(2.43)

17

We use the following notation to distinguish the representations with respect to a
primal basis and its dual basis. With respect to any primal basis {ω1, . . . , ωn} and its dual
{ω̂1, . . . , ω̂n}, for any a ∈ GF(2n),

• dae ∈ {0, 1}n denotes the coordinates of a in the primal basis, i.e., a = dae1ω1 + · · ·+
daenωn, where daej = T (aω̂j) for all j ∈ {1, . . . , n}.

• bac ∈ {0, 1}n denotes the coordinates of a in the dual basis, i.e., a = bac1ω̂1 + · · · +
bacnω̂n, where bacj = T (aωj) for all j ∈ {1, . . . , n}.

When the meaning is clear from the context, it is convenient to write a in place of dae.
Also, it is convenient to identify n-bit binary strings with {0, 1}-valued column vectors
of length n. Thus, we can view dae and bac as binary column vectors of length n. In
this thesis, binary matrices acting on these vectors (in mod 2 arithmetic) are written with
square brackets.

The conversion from primal to dual basis coordinates corresponds to multiplication by
the n× n binary matrix

W =

T (ω1ω1) · · · T (ω1ωn)
...

. . .
...

T (ωnω1) · · · T (ωnωn)

 . (2.44)

That is, bac = W dae (with matrix-vector multiplication in mod 2 arithmetic). This can
be verified by the action of W on each element of the primal basis. Let a = ωj. Then the
vector dae is a vector with 1 in the j-th entry. The k-th entry of W dae is T (ωkωj), and
hence we have W dae = bac. We also note that T (ab) is the dot-product of the coordinates
of a in the primal basis and the coordinates of b in the dual basis:

T (ab) = dae · bbc = dae1bbc1 + · · ·+ daenbbcn mod 2. (2.45)

The dual of the dual basis is the primal basis. A basis is self-dual if ωj = ω̂j for all
j ∈ {1, . . . , n}.

With respect to any basis, multiplication by any particular r ∈ GF(2n) is a linear
operator in the following sense. There exists a binary n × n matrix Mr such that, for
all s ∈ GF(2n), drse = Mrdse (with matrix-vector multiplication in mod 2 arithmetic).
Concretely, this matrix Mr is

Mr =

T (rω̂1ω1) · · · T (rω̂1ωn)
...

. . .
...

T (rω̂nω1) · · · T (rω̂nωn)

 , (2.46)

18

and its transpose MT
r corresponds to multiplication by r in the dual basis (i.e., brsc =

MT
r bsc). It should be noted that the algorithms for multiplication in GF(2n) are basis

dependent; the obvious cost of converting between any two bases is O(n2).

19

Chapter 3

An Example of Open Quantum
Systems: Unitary 2-Designs

In this chapter, we study an example of open quantum systems in the sense of probability
distribution of unitaries: unitary 2-designs. First, we give definitions of unitary 2-designs
and show their connections. Then, we show efficient quantum algorithms for constructing
unitary 2-designs. An overview of this subject is presented in Section 1.1. This chapter is
based on [CLLW16].

3.1 Previous work and main results

Previous research on unitary 2-designs was considered for different applications. In the
context of bilateral twirl (applying a Haar-random bilateral unitary on a bipartite system)
[DLT02] and channel twirl (applying a Haar-random unitary U on the input state of some
quantum channel and then applying U † on the output state) [DCEL09], it has been shown
that the uniform distribution over the Clifford group is an exact unitary 2-design. This
implies a construction of unitary 2-designs with O(n2/ log n) 1- and 2-qubit gates from the
Clifford group [AG04]. Moreover, the sampling cost of this construction is O(n2) bits of
entropy.

Approximate unitary 2-designs were also studied in previous research. Let ε (or ε′)
be the distance of the resulting operation from the ideal one. Based on a certain process
of random circuit generation (introduced in [EWS+03]), Harrow and Low [HL09] gave a

20

construction of ε-approximate unitary 2-designs (in the context of bilateral twirl) of gate
complexity O(n(n+ log 1/ε)).

Dankert et al. [DCEL09] gave another construction of ε′-approximate unitary 2-designs
(in the context of channel twirl) of gate complexity O(n log 1/ε′); however, as pointed out
in [HL09] and [BF15], this construction could potentially incur a blow-up by a factor that
is exponential in n in the context of bilateral twirl, due to the notion of approximation.
To the best of our knowledge, we need ε′ ≤ ε/22n. Thus, the gate complexity of this
construction becomes O(n(n+ log 1/ε)).

In the context of bilateral twirl, all of the above constructions for both exact and
approximate unitary 2-designs incur circuits of size Ω̃(n2) and require Ω(n2) random bits
of entropy.

It is proven by Chau [Cha05] that a small subgroup of the Clifford group is sufficient for
constructing an exact unitary 2-design with a sampling cost of approximately 5n random
bits of entropy; however, other than the O(n2/ log n) bound that holds for constructing a
unitary in the Clifford group, the gate complexity of this construction is unknown. The
necessary and sufficient entropy for exact and approximate unitary 2-designs was studied
by [GAE07] and [RS09]: approximately 4n random bits of entropy are necessary.

Brown and Fawzi [BF15] gave a method to generate random circuits of gate complexity
O(n log2 n) and circuit depth O(log3 n). Although this construction does not imply a uni-
tary 2-design, it can be used for decoupling and building quantum error correcting codes
with small encoding circuits [BF13]. No ancilla qubits are needed in their approach; how-
ever, the circuit depth is higher, and a considerable amount of analysis is required to show
that their construction achieves the tasks with the desired gate complexity and accuracy.
It may require additional analysis to adapt their construction to other applications.

In this remainder of this chapter, we first give a new characterization (Definition 3.2)
of unitary 2-designs in terms of 2-query indistinguishability that may be of independent
interest. Then we present three constructions of exact unitary 2-designs on n qubits with
the following gate complexity:

1. O(n log n log log n) 1- and 2-qubit gates (all Clifford gates) for infinitely many n,
assuming the extended Riemann Hypothesis is true.

2. O(n log n log log n) 1- and 2-qubit gates (including non-Clifford gates) for all n, un-
conditionally.

3. O(n log2 n log log n) 1- and 2-qubit gates (all Clifford gates) for all n, unconditionally.

21

By the fact that efficient multiplication/convolution algorithms can be performed with
circuit depth O(log n) [Sch77], the circuit depth is O(log n) for the first two constructions
and O(log2 n) for the third construction. In Subsection 3.4.3, we show that to construct
any exact or approximate unitary 2-design, a high probability set of unitaries have size
Ω(n) and circuit depth Ω(log n), which implies that the above constructions are nearly
optimal.

For the three above constructions, we need to sample from a uniform distribution on
a set of size 25n − 23n, and hence they use 5n bits of randomness. All three constructions
consist of Clifford unitaries (in the second construction, non-Clifford gates are used to

compute Clifford unitaries efficiently). The circuits use Õ(n) ancilla qubits where the initial
state of each ancilla qubit is |0〉 and it will be restored at the end of the computation. The
cost of the classical process that outputs a description of the quantum circuit is polynomial
in n, which is dominated by the complexity of computing square roots in the finite field of
size 2n.

3.2 Definitions of unitary 2-designs

In this section, we discuss several definitions of unitary 2-designs and the applications
where the corresponding definition arises.

The definitions of unitary 2-designs are closely related to distributions over the unitary
group U(CN), especially the Haar measure on U(CN), which is the unique measure on
U(CN) that is invariant under left and right multiplication by any U ∈ U(CN). For any
U ∈ U(CN), we use µ(U) to denote the Haar measure of U on U(CN).

Sampling from the Haar measure is a powerful tool in quantum information theory. For
example, in applications such as estimating fidelity [DCEL09], and quantum data hiding
[DLT02], a physical procedure that averages over such random choices of unitary operators
is used. In the proof of quantum channel capacity [Dev05, HHWY08, Llo97, Sho], a
randomized argument is used to evaluate the average performance over all possible unitary
encodings.

However, a Haar-random unitary is prohibitively hard to implement, as an exponential
number of random bits are required. There are other resources for implementing a Haar-
random unitary, such as shared randomness, and communication, that are desired to be
reduced. Therefore, we are interested in contexts in which such sampling from the Haar
measure can be replaced by sampling from a probability distribution over a finite set of

22

unitaries {U1, U2, . . . , Uk ∈ U(CN)} with corresponding probability pj with
∑

j pj = 1. We

refer to this probability distribution as an ensemble and denote it by E = {pj, Uj}kj=1.

In the first context, we consider the expected value of polynomials of the entries of
unitary matrices sampled from some ensemble. This gives rise to the original definition
of unitary 2-designs in [DCEL09], and provides results in other contexts. We give the
definition of an ensemble that is degree-2 expectation preserving as the following.

Definition 3.1. We say that an ensemble E is degree-2 expectation preserving if, for
every polynomial γ(U) of degree at most 2 in the matrix elements of U and at most 2 in
the matrix elements of U †, it holds that

k∑
j=1

pjγ(Uj) =

∫
U(CN)

dµ(U)γ(U). (3.1)

The second context is related to the quantum analogue of universal 2-hash functions
[CW79]: we consider the task of distinguishing whether a random sample U is drawn from
the Haar measure or from some ensemble E . We allow an arbitrary distinguishing circuit
that makes a total of at most two queries of U or U †. The most general circuit of this form
is depicted in Figure 3.1.

Figure 3.1: Illustration of a 2-query distinguishing circuit. The first query Q1 can be U
or U †, likewise for the second query Q2. The initial state ρ is arbitrary, V is an arbitrary
unitary, and the final measurement is also arbitrary and outputs one bit.

Let CN and CM be two Hilbert spaces. The 2-query distinguishing circuit consists of
a unitary Q1 ∈ U(CN) which can be either U or U †, an arbitrary unitary V ∈ U(CN ⊗
CM), and a unitary Q2 ∈ U(CN) which can be either U or U †, followed by an arbitrary
measurement. We use the measurement outcome to distinguish whether U is drawn from
the Haar measure or not. For an arbitrary initial state ρ and for any U (either drawn from

23

the Haar measure or from an ensemble) the quantum state right before the measurement,
denoted by σU is

σU = (Q2 ⊗ ICM)V (Q1 ⊗ ICM)ρ(Q†1 ⊗ ICM)V †(Q†2 ⊗ ICM). (3.2)

If U is drawn from an ensemble E , the quantum state right before the measurement is∑k
j=1 pjσU ; similarly, if U is drawn from the Haar measure, the quantum state right be-

fore the measurement is
∫

U(CN)
dµ(U)σU . The outcome of the measurement has the same

distribution regardless of whether U is drawn from a Haar measure or from an ensemble,
if and only if the above two quantum states are equal. In the following definition, we
describe ensembles that cannot be distinguished from the Haar measure by any 2-query
distinguishing circuit.

Definition 3.2. We say that E is 2-query indistinguishable, if, for any 2-query distin-
guishing circuit and for any initial state ρ, it holds that

k∑
j=1

pjσU =

∫
U(CN)

dµ(U)σU . (3.3)

The third context is a special case of a 2-query distinguishing circuit, where U is queried
twice in parallel, as illustrated in Figure 3.2. Let us consider bipartite operations where the
same unitary drawn from some ensemble or the Haar measure is applied on two disjoint
systems. These operations are often called bilateral twirls [BDSW96, DLT02]. The E
bilateral twirl, denoted by TE ∈ T(CN), is a linear map defined as

TE [ρ] =
k∑
j=1

pj(Uj ⊗ Uj)ρ(U †j ⊗ U
†
j). (3.4)

Likewise, the full bilateral twirl, denoted by Tµ ∈ T(CN), is defined as the linear map

Tµ[ρ] =

∫
U(CN)

dµ(U)(U ⊗ U)ρ(U † ⊗ U †). (3.5)

The full bilateral twirl is motivated operationally by applications such as error correcting
[BDSW96] and data hiding [DLT02], and it is used in various mathematical proofs in quan-
tum information [HHWY08, SDTR13]. In the following definition, we describe ensembles
that derandomize the full bilateral twirl.

Definition 3.3. We say that the ensemble E implements the full bilateral twirl if TE [ρ] =
Tµ[ρ] for all ρ ∈ D(CN).

24

Figure 3.2: Illustration of the bilateral twirl : querying U twice in parallel. The initial sate
ρ is arbitrary.

The fourth context arises in the task of averaging any quantum channel with a depo-
larizing channel. This averaging process has many important applications, such as bench-
marking (for estimating average channel fidelity) of quantum devices [DCEL09] and error
estimation (for detecting eavesdropping) in quantum key distribution [Cha05]. This process
can be realized by a quantum channel which is often referred to as a channel twirl.

LetM∈ C(CN) be any quantum channel. An E channel twirl ofM, denoted byME ,
is defined as the quantum channel

ME [ρ] =
k∑
j=i

pjU
†
jM[UjρU

†
j]Uj. (3.6)

Operationally, a random change of basis is applied to the system before applying the
channel M and it is reverted afterward. Likewise, a full channel twirl of M, denoted by
Mµ, is defined as the quantum channel

Mµ[ρ] =

∫
U(CN)

dµ(U)U †M[UρU †]U. (3.7)

In the following definition, we describe ensembles that derandomize the full channel
twirl.

Definition 3.4. We say that E implements the full channel twirl if ME = Mµ for all
M∈ C(CN).

In the following lemma, we show that these four relationships between ensembles and
the Haar measure are equivalent. Therefore, we can think of an ensemble satisfying one of
the conditions in different ways.

25

Lemma 3.1. Let E be any ensemble of unitaries in U(CN). The following statements are
equivalent:

1. E is degree-2 expectation preserving.

2. E is 2-query indistinguishable.

3. E implements the full bilateral twirl.

4. E implements the full channel twirl.

In addition, we have the following corollary of Lemma 3.1, which is not obvious from
Definitions 3.3 and 3.4 alone.

Corollary 3.2. For an ensemble E = {pj, Uj}kj=1, let E† := {pj, U †j }kj=1. The following
statements hold:

1. E implements the full bilateral twirl if and only if E† does.

2. E implements the full channel twirl if and only if E† does.

Due to Lemma 3.1, we can just refer to an ensemble satisfying any one of the four
conditions as a “unitary 2-design” when we do not need to specify the context.

Note that additional definitions have been discussed in literature [GAE07, RS09, HL09,
Low09]. Some equivalence relations in Lemma 3.1 have been proven in previous work
[DCEL09, HL09, Low09]. In particular, the relation between Statements 1, 3, and 4 with
bounds on the approximations has been shown in [Low09]. In the following, we provide a
complete (alternative) proof of Lemma 3.1 and Corollary 3.2.

Proof of Lemma 3.1. We show the following implications of the four statements, which are
sufficient to prove the equivalence:

(1)⇒ (2)⇒ (3)⇒ (1)

(2)⇒ (4)⇒ (3)

(1)⇒ (2): Consider any distinguishing circuit making up to two queries of U or U †. The
output state σU is a product of matrices with at most two factors of U and two factors of
U †. Thus, each entry of σU is a polynomial of degree at most 2 in the matrix elements of

26

U and at most 2 in the matrix elements of U †. By hypothesis, E is degree-2 expectation
preserving. Thus, the following holds entry-wise:

k∑
j=1

pjσUj
=

∫
U(CN)

dµ(U)σU . (3.8)

It follows that E is 2-query indistinguishable.

(2)⇒ (3): This implication follows from the fact that the bilateral twirl circuit is a special
case of a 2-query distinguishing circuit.

(3)⇒ (1): Let {|0〉, . . . , |N−1〉} be the computational basis for CN . Suppose E implements
the full bilateral twirl. Then, we have

k∑
j=1

pjUj ⊗ UjρU †j ⊗ U
†
j =

∫
U(CN)

dµ(U)U ⊗ UρU † ⊗ U †, (3.9)

for all density matrices ρ ∈ D(CN). Since the density matrices span the Hilbert space of
all possible square complex matrices of the same dimension, the above equation holds if
we replace ρ by |a1〉〈a3| ⊗ |a2〉〈a4| for all a1, a2, a3, a4 ∈ {0, . . . , N − 1}. Furthermore, we
left- and right-multiply the above by 〈a5| ⊗ 〈a6| and |a7〉 ⊗ |a8〉, respectively. This gives

k∑
j=1

pj〈a5|Uj|a1〉〈a6|Uj|a2〉〈a3|U †j |a7〉〈a4|U †j |a8〉

=

∫
U(CN)

dµ(U)〈a5|U |a1〉〈a6|U |a2〉〈a3|U †|a7〉〈a4|U †|a8〉. (3.10)

Repeating the above for all possible a1, . . . , a8 and by linearity, Eq. (3.1) follows. Hence,
E is degree-2 expectation preserving.

(2)⇒ (4): This implication follows from the fact that the channel twirl circuit is a special
case of a 2-query distinguishing circuit.

(4)⇒ (3): Suppose for every quantum channelM∈ C(CN),ME =Mµ. Then, they have
the same Choi matrix, i.e., J(ME) = J(Mµ). Rephrasing this equality using Eqns. (3.6)

27

and (3.7), we have

k∑
j=1

pj(U
†
j ⊗ I)

(
M⊗IL(CN)

)(Uj ⊗ I)

N−1∑
`,k=0

|`〉〈k| ⊗ |`〉〈k|

 (U †j ⊗ I)

 (Uj ⊗ I)

=

∫
U(CN)

dµ(U)(U † ⊗ I)
(
M⊗IL(CN)

)(U ⊗ I)

N−1∑
`,k=0

|`〉〈k| ⊗ |`〉〈k|

 (U † ⊗ I)

 (U ⊗ I).

(3.11)

For each side of the above equation, we use three steps to turn the Choi matrix of
the channel twirl into the bilateral twirl of an operator that is closely related to the Choi
matrix of M. First, for the LHS of Eq. (3.11), we apply the transpose trick

(Uj ⊗ I)

(
N−1∑
`,k=0

|`〉〈k| ⊗ |`〉〈k|

)
(U †j ⊗ I) = (I ⊗ UT

j)

(
N−1∑
`,k=0

|`〉〈k| ⊗ |`〉〈k|

)
(I ⊗ U∗j). (3.12)

Second, we commute the conjugation by (I ⊗ UT
j) with M⊗ IL(CN). We apply similar

manipulations on the RHS of Eq (3.11). Then, Eq. (3.11) becomes

k∑
j=1

pj(U
†
j ⊗ UT

j)
(
M⊗IL(CN)

) [N−1∑
`,k=0

|`〉〈k| ⊗ |`〉〈k|

]
(Uj ⊗ U∗j)

=

∫
U(CN)

dµ(U)(U † ⊗ UT)
(
M⊗IL(CN)

) [N−1∑
`,k=0

|`〉〈k| ⊗ |`〉〈k|

]
(U ⊗ U∗). (3.13)

Third, we apply to Eq. (3.13) the partial transpose of the second system: for any A1, A2 ∈
L(CN), this linear map takes A1⊗A2 to A1⊗AT2 . Let SWAPCN⊗CN ∈ L(CN ⊗CN) be the
swap operator, i.e., SWAPCN⊗CN =

∑N−1
k,`=0 |`〉〈k| ⊗ |k〉〈`|. Then, the partial transpose of

(I ⊗ UT
j)

(
N−1∑
`,k=0

|`〉〈k| ⊗ |`〉〈k|

)
(I ⊗ U∗j) =

N−1∑
`,k=0

|`〉〈k| ⊗ (UT
j |`〉〈k|U∗j) (3.14)

is equal to

N−1∑
`,k=0

|`〉〈k| ⊗ (U †j |k〉〈`|Uj) = (I ⊗ U †j)SWAPCN⊗CN (I ⊗ Uj). (3.15)

28

Now, Eq. (3.13) becomes

k∑
j=1

pj(U
†
j ⊗ U

†
j)
(
M⊗IL(CN)

)
[SWAPCN⊗CN](Uj ⊗ Uj)

=

∫
U(CN)

dµ(U)(U † ⊗ U †)
(
M⊗IL(CN)

)
[SWAPCN⊗CN](U ⊗ U), (3.16)

which is equivalent to

TE†
[(
M⊗IL(CN)

)
[SWAPCN⊗CN]

]
= Tµ

[(
M⊗IL(CN)

)
[SWAPCN⊗CN]

]
, (3.17)

which follows from the fact that dµ(U) = dµ(U †). In the above, the transpose trick, the
commutation, and the partial transpose applying on Eq. (3.11) transform the equality of
the Choi matrices of two channel twirls for M into the equality of two bilateral twirls of
the matrix

(
M⊗IL(CN)

)
[SWAPCN⊗CN] in the form of Eq. (3.17).

Now, we apply Eq. (3.17) to a set of carefully chosenM’s to show that TE† [A] = Tµ[A]
for a basis {A} for the input space L(CN⊗CN), which will show that E† implements the full
bilateral twirl. We consider M’s with a specific form. Let R ∈ C(CN) be the completely
depolarizing channel acting on L(CN), i.e., R[ρ] = (Tr(ρ))ICN/N for all ρ ∈ L(CN). Note

that J(R) = (ICN ⊗ ICN)/N . Consider any linear map M̃ that is trace-preserving and

Hermitian-preserving. The latter property implies that J(M̃) is Hermitian. Then, for

sufficiently small and positive λ, the Choi matrix of M = (1 − λ)R + λM̃ is positive
semidefinite, because the Choi matrix of R is proportional to the identity. Therefore, such
M is completely positive (as a linear map is completely positive if and only if its Choi
matrix is positive semidefinite [Cho75, Leu03, Wat18]). BecauseM is completely positive
and trace-preserving, it is a quantum channel. When we apply Eq. (3.17) to such M’s,
the R terms cancel out, because

(
R⊗ IL(CN)

)
[SWAPCN⊗CN] = (ICN ⊗ ICN)/N , which is

invariant under either bilateral twirl. Therefore, Eq. (3.17) holds for all , trace-preserving

and Hermitian-preserving linear maps M̃, which are easier to construct than quantum
channels.

For a basis of the input space L(CN ⊗CN), we take A = G` ⊗Gj where {G`}N
2−1

`=0 is a
basis for L(CN) with the following properties:

1. Each G` is Hermitian.

2. G0 = ICN/
√
N .

29

3. For all `, j ∈ {0, . . . , N2 − 1}, Tr(G`Gj) = 1 if ` = j, and Tr(G`Gj) = 0 otherwise.
In particular, G` is traceless for all ` > 0.

4. The swap operator has a simple representation in this basis:

SWAPCN⊗CN =
N2−1∑
`=0

G` ⊗G`. (3.18)

Such a basis exists for all N . When N = 2n, G` can be taken to be proportional to the
Pauli matrices. For general N , we use the generalized Gell-Mann matrices to construct the
basis as follows. Let G0 = ICN/

√
N . For ` = 1, . . . , N − 1, let G` = D`/

√
`(`+ 1) where

D` is a diagonal matrix with (D`)0,0 = · · · = (D`)`−1,`−1 = 1, (D`)`,` = −`, and (D`)j,j = 0
for all ` + 1 ≤ j ≤ N . For 0 ≤ j1 < j2 ≤ N − 1, let Xj1,j2 = (|j1〉〈j2| + |j2〉〈j1|)/

√
2,

and Yj1,j2 = i(−|j1〉〈j2| + |j2〉〈j1|)/
√

2. Let {GN , . . . , GN2−1} = {Xj1,j2 , Yj1,j2}0≤j1<j2≤N−1

with any ordering. Then {G`}N
2−1

`=0 span L(CN), and each G` satisfy condition (1) and (3).
Finally, the expression for the swap operator SWAPCN⊗CN can be verified by checking that
each of the N4 matrix entries on the RHS has the value given by the LHS. The verification
involves routine arithmetic: each off-diagonal element involves only two terms, and the
diagonal elements can be expressed as simple telescopic sums.

Now, we verify that TE† [G`⊗Gj] = Tµ[G`⊗Gj] for all 0 ≤ `, j ≤ N2− 1 by considering
four cases. First, the equality is immediate for ` = j = 0. Second, for each 0 < j ≤ N2−1,
consider M̃0,j defined by M̃0,j[G0] = G0 + Gj, and M̃0,j[G`] = 0 for all ` 6= 0. We

have that M̃0,j is trace-preserving since each G` is traceless for ` > 0. Furthermore,

(M̃0,j⊗IL(CN))[SWAPCN⊗CN] = (G0 +Gj)⊗G0 and partial transposing the second system

gives J(M̃0,j), which implies that M̃0,j is Hermitian-preserving. Therefore, we apply

Eq. (3.17) to M̃0,j and conclude that TE† [Gj ⊗ G0] = Tµ[Gj ⊗ G0]. Third, because of
the symmetry of the bilateral twirl, we have that TE† [G0 ⊗ Gj] = Tµ[G0 ⊗ Gj]. Fourth,

let 0 < j ≤ ` ≤ N2 − 1 and consider M̃j,` such that M̃j,`[G0] = G0, M̃j,`[Gj] = G`,

and M̃j,`[Gj′] = 0 for all j′ 6= 0 and j′ 6= j. With arguments similar to the second case,
TE† [G` ⊗Gj] = Tµ[G` ⊗Gj].

Finally, because of the implications (1) ⇒ (2) ⇒ (3) ⇒ (1), we have established the
equivalence between (2) and (3). From Definition 3.2, E is 2-query indistinguishable if
and only if E† is. Thus, E implements the full bilateral twirl if and only if E† does. Now,
the relation TE† [G` ⊗ Gj] = Tµ[G` ⊗ Gj] implies that TE [G` ⊗ Gj] = Tµ[G` ⊗ Gj], which
establishes the implication (4)⇒ (3).

30

Proof of Corollary 3.2. Statement 1 has been implicitly shown at the end of the proof
of Lemma 3.1. From Definition 3.2, E is 2-query indistinguishable if and only if E† is.
Therefore, by the equivalence between statements 2 and 3 of Lemma 3.1, E implements
the full bilateral twirl if and only if E† does.

Statement 2 follows from the equivalence between statements 3 and 4 of Lemma 3.1,
and statement 1 of this corollary.

Alternatively, the implication (4) ⇒ (3) in Lemma 3.1 can be proven in a simpler
way for the special case when E = {pj, Uj} is an ensemble with Clifford unitaries and
N = 2n. We first show that if E implements the full channel twirl, it is Pauli mixing, and
by Lemma 3.3, it follows that E implements the full bilateral twirl.

Consider an ensemble E = {pj, Uj} with Clifford unitaries Uj such that ME = Mµ

for all quantum channels M ∈ C(CN). Define M[ρ] = PρP † for an arbitrary Pauli
P ∈ Q(C2n) with P 6= I and P = P †, where Q(C2n) is the quotient group of the Pauli
group (see Definition 3.5). On the one hand, we have

ME [ρ] =
k∑
j=1

pj(U
†
jPUj)ρ(U †jPUj)

†. (3.19)

On the other hand,

Mµ[ρ] = (1− λ)ρ+
λ

22n − 1

∑
Q∈Q(C2n)\{I}

QρQ† (3.20)

for some 0 ≤ λ ≤ 1. Note that for each j, Uj is a Clifford unitary, so U †jPUj is a Pauli. Thus,
we have two Kraus representations for the same channel twirl, both with Kraus operators
in Q(C2n), which form a basis for L(CN). Now we consider the degrees of freedom over
these Kraus operators. By [NC00, Theorem 8.2], the j-th term of the RHS of Eq. (3.19)
can only contribute to Q in the RHS of Eq. (3.20) if and only if U †jPUj is equivalent to Q in
Q(C2n). Finally, each Q 6= I appears with equal weight in Mµ[ρ]. Thus, the distribution

{pj, U †jPUj} is uniform over Q(C2n) \ {I}, which completes the proof.

3.3 Pauli mixing and unitary 2-designs

3.3.1 Pauli mixing implies a unitary 2-design

In this subsection, we describe a sufficient condition for an ensemble E to be a unitary
2-design, which leads to efficient implementations of unitary 2-designs.

31

Recall the 2×2 Pauli matrices X, Y , and Z defined in Section 2.1. For any a ∈ {0, 1}n,
define the Pauli operators Xa and Za acting on n qubits as Xa = Xa1 ⊗ · · · ⊗ Xan and
Za = Za1 ⊗ · · · ⊗ Zan . We define some notions related to the Pauli group in the following
definition.

Definition 3.5. The Pauli group, denoted by P(C2n), is the set of all operators of the form
ikXaZb, where k ∈ {0, 1, 2, 3} and a, b ∈ {0, 1}n. Let Q(C2n) = P(C2n)/{±1,±i} denote
the quotient group obtained by disregarding global phases in P(C2n) in the sense that each
element of Q(C2n) can be represented as Pa,b = XaZb. We call P0,0 = IC2n the trivial Pauli.

In the following definition, we describe a subgroup of the unitary group, called the
Clifford group.

Definition 3.6. The Clifford group, denoted by CL(C2n), is the set of all unitary operators
that permutes the elements of P(C2n) (and thus Q(C2n)) under conjugation.

Recall the definitions of the 2 × 2 Hadamard matrix H, the phase gate S, and the
controlled-not gate CNOT in Section 2.1. It is proven in [Got99] that these three operators
form a generating set of the Clifford group CL(C2n). The operation of conjugating the
elements in P(C2n) by some U ∈ CL(C2n) yields a permutation on P(C2n), and hence gives
a permutation πU on Q(C2n). In the following definition, we characterize the ensembles of
unitaries in the Clifford group that uniformly mix Paulis.

Definition 3.7. Let E = {pj, Uj}kj=1 be an ensemble of unitaries U1, U2, . . . , Uk ∈ CL(C2n).
We say that E is Pauli mixing, if for all P ∈ Q(C2n) such that P 6= I, the distribution
{pj, πUj

(P)} is uniform over Q(C2n) \ {I}.

For any ensemble E = {pj, Uj}kj=1, define a new ensemble EQ as

EQ = {2−2npj, UjR`}k,2
2n−1

j=1,`=0, (3.21)

where R` ranges over all elements in Q(C2n). Intuitively, EQ is the ensemble where each
element in E is proceeded by a random Pauli drawn from Q(C2n). The ensemble E of
Clifford unitaries being Pauli mixing is a sufficient condition for the ensemble EQ to be a
unitary 2-design, as concluded by the following lemma.

Lemma 3.3. Let E be an ensemble of Clifford unitaries and EQ be defined as above. If E
is Pauli mixing, then EQ implements the full bilateral twirl.

32

Lemma 3.3 was first shown by DiVincenzo et al. [DLT02]. A short proof based on
representation theory is shown by Gross et al. [GAE07]. In the following, we provide an
elementary proof which uses some ideas from [DLT02] but has fewer assumptions. This
new proof does not rely on evaluating the full bilateral twirl (using representation theory
or the double commutant theorem).

Proof of Lemma 3.3. Let N = 2n. The goal is to show that TEQ [ρ] = Tµ[ρ] for all ρ ∈
D(CN ⊗ CN). Note that TEQ , Tµ ∈ T(CN ⊗ CN) are linear maps. It suffices to show that
TEQ and Tµ are identical on a basis for L(CN ⊗ CN). We consider a basis that contains
the identity matrix ICN⊗CN and the swap operator SWAPCN⊗CN , and we complete this
basis with matrices that are trace-orthonormal to ICN⊗CN and SWAPCN⊗CN , i.e., matrices
M such that Tr(ICN⊗CNM) = Tr(SWAPCN⊗CN M) = 0. It suffices to prove the following
claims:

1. TEQ [ICN⊗CN] = Tµ[ICN⊗CN] = ICN⊗CN .

2. TEQ [SWAPCN⊗CN] = Tµ[SWAPCN⊗CN] = SWAPCN⊗CN .

3. If Tr(ICN⊗CNM) = Tr(SWAPCN⊗CN M) = 0, then TEQ [M] = Tµ[M] = 0 for all M in
this basis.

By Eqns. (3.4) and (3.5), as well as the definition of EQ, we have

TEQ [ρ] =

k,N2−1∑
j=1,`=0

pjN
−2(UjR` ⊗ UjR`)ρ(R†`U

†
j ⊗R

†
`U
†
j), and (3.22)

Tµ[ρ] =

∫
U(CN)

dµ(U)U ⊗ UρU † ⊗ U †. (3.23)

The first claim follows trivially. Since SWAPCN⊗CN (A ⊗ B)SWAPCN⊗CN = B ⊗ A for all
A,B ∈ L(CN), we have that SWAPCN⊗CN (A⊗B) = (B⊗A)SWAPCN⊗CN , and the second
claim follows.

Consider the third claim. We fist show that TEQ [M] = 0 for all M satisfying the trace-
orthonormal condition: Tr(ICN⊗CNM) = Tr(SWAPCN⊗CN M) = 0. Observe that the swap
operator acting L(C2⊗C2) can be written as SWAPC2⊗C2 = 1

2
(I⊗I+X⊗X+Y ⊗Y +Z⊗Z),

and thus

SWAPCN⊗CN =
1

N

∑
R`∈Q(CN)

R` ⊗R`. (3.24)

33

As Q(CN) is a basis for L(CN), we write M as

M =
N2−1∑
a,b=0

αa,bRa ⊗Rb (3.25)

where αa,b ∈ C for a, b ∈ {0, . . . , N2 − 1}. Without loss of generality, we take R0 = ICN ∈
Q(C2n). Then, the two conditions on M can be rephrased as α0,0 = 0 and

∑N2−1
a=0 αa,a = 0.

By linearity, we focus on analyzing TEQ [Ra ⊗Rb] for any (a, b) 6= (0, 0). We have

TEQ [Ra ⊗Rb] =
k∑
j=1

pj(Uj ⊗ Uj)

(
N2−1∑
`=0

N−2(R` ⊗R`)(Ra ⊗Rb)(R
†
` ⊗R

†
`)

)
(U †j ⊗ U

†
j).

(3.26)

When a 6= b, there exists an index c ∈ {0, . . . , N2 − 1} such that Rc commutes with Ra

(i.e., RcRaR
†
c = Ra) and anticommutes with Rb (i.e., RcRbR

†
c = −Rb). So, we have

2
N2−1∑
`=0

(R` ⊗R`)(Ra ⊗Rb)(R
†
` ⊗R

†
`)

=
N2−1∑
`=0

(R` ⊗R`)(Ra ⊗Rb)(R
†
` ⊗R

†
`) +

N2−1∑
`=0

(R`Rc ⊗R`Rc)(Ra ⊗Rb)(R
†
cR
†
` ⊗R

†
cR
†
`)

(3.27)

= 0, (3.28)

and it follows that TEQ [Ra ⊗Rb] = 0. When a = b, we have that

N2−1∑
`=0

N−2(R` ⊗R`)(Ra ⊗Ra)(R
†
` ⊗R

†
`) = Ra ⊗Ra, (3.29)

as for all ` ∈ {0, . . . , N2 − 1}, Ra either commutes or anticommutes with R`. Substituting
the above into Eq. (3.26), we have

TEQ [Ra ⊗Ra] =
k∑
j=1

pj(Uj ⊗ Uj)(Ra ⊗Ra)(U
†
j ⊗ U

†
j) (3.30)

=
1

N2 − 1

∑
R`∈Q(C2n)\{I}

R` ⊗R`, (3.31)

34

where the second equality follows from the fact the E is Pauli mixing. Note that the above
equation yields a matrix that is independent of a. Therefore, we have

TEQ [M] =
N2−1∑
a,b=0

αa,bTEQ [Ra ⊗Rb] (3.32)

=
N2−1∑
a=1

αa,aTEQ [Ra ⊗Ra] (3.33)

=

(
N2−1∑
a=1

αa,a

)
TEQ [Ra ⊗Ra] (3.34)

= 0, (3.35)

where the third equality follows from the fact that TEQ [Ra ⊗ Ra] is a matrix independent
of a, as shown in Eq. (3.31).

Now, we show that Tµ[M] = 0. Note that, for all V ∈ U(CN), and for all M ∈
L(CN ⊗ CN), it holds that Tµ[M] = Tµ[(V ⊗ V)M(V † ⊗ V †)]. Apply this equality to each
unitary in EQ and by linearity, we have that Tµ[M] = Tµ[TEQ [M]] = Tµ[0] = 0, which
completes the proof.

3.3.2 Pauli mixing and SL2(GF(2n))

To facilitate the analysis of the Clifford group and its action on the elements XaZb =
(Xa1 ⊗ · · · ⊗ Xan)(Zb1 ⊗ · · · ⊗ Zbn) of the Pauli group, we associate a and b with the
elements of the finite field GF(2n). In addition, we need to represent a and b in different
bases, namely, a primal basis and its dual basis. The preliminaries of finite fields and the
bases are provided in Section 2.2.

In light of Lemma 3.3, to construct a unitary 2-design, it suffices to construct an
ensemble of Clifford unitaries that is Pauli mixing. Recall that with some primal basis, dae
denotes the representation of a, and bbc denotes the representation of b with respect to the
corresponding dual basis. With respect to a (primal) basis, we associate each pair a, b ∈
GF(2n) with the Pauli group element XdaeZbbc = (Xdae1 ⊗· · ·⊗Xdaen)(Zbbc1 ⊗· · ·⊗Zbbcn).
As proven by Chau [Cha05], there is a subgroup of the Clifford group of size 2O(n) such that
sampling uniformly over this subgroup performs Pauli mixing. Now we give an overview
of this approach. This subgroup is isomorphic to the special linear group of 2× 2 matrices

35

over GF(2n):

SL2(GF(2n)) =

{(
α β
γ δ

)
: α, β, γ, δ ∈ GF(2n) such that αδ − βγ = 1

}
. (3.36)

Note that SL2(GF(2n)) has 23n − 2n elements, and it consists of actions on the Pauli
group by conjugation by certain Clifford unitaries. More precisely, we have the following
definition.

Definition 3.8. With respect to a primal basis of GF(2n), we say that a Clifford unitary
U ∈ CL(C2n) induces M ∈ SL2(GF(2n)) if, for all a, b ∈ GF(2n) and(

a′

b′

)
= M

(
a
b

)
, (3.37)

UXdaeZbbcU † ≡ Xda
′eZbb

′c, (3.38)

where ≡ means equal up to a global phase in {±1,±i} that is a function of M , a, and b.

The intuition of the above definition is the following. Let us suppose M =
(
α β
γ δ

)
∈

SL2(GF(2n)). Then, for all a, b ∈ GF(2n), conjugating XdaeZbbc by the Clifford unitary U
results in Xdαa+βbeZbγa+δbc up to a phase.

Through this chapter, we write matrices in SL2(GF(2n)) and vector of length 2 over
GF(2n) using parenthesis (see above) to distinguish the binary matrices and vectors de-
scribed in Section 2.2 which use square brackets.

Note that in [Cha05], the mapping specified in Eq. (3.38) is expressed using different
notation for Paulis: Xa|c〉 = |a + c〉 and Zb|c〉 = (−1)T (bc)|c〉. It is easy to express these
in terms of our notation as Xa = Xdae and Zb = Zbbc, because T (bc) = bbc · dce. The
occurrence of the dual basis in Eq. (3.38) allows us to associate a unitary that induces M :
without the representation in the dual basis, for general M ∈ SL2(GF(2n)) there does not
exist a unitary U that induces M in the sense that UXdaeZdbeU † ≡ Xda

′eZdb
′e. To associate

such a unitary, the following lemma holds in terms of definition 3.8.

Lemma 3.4 ([Cha05]). With respect to any primal basis for GF(2n), there exists an n-qubit
Clifford unitary U ∈ CL(C2n) that induces M , for all M ∈ SL2(GF(2n)).

Consider M ∈ SL2(GF(2n)). Let UM denote a unitary that induces M with respect

to the primal basis. Similarly, let ÛM denote a unitary that induces M with respect to
the dual basis. This UM is unique up to multiplication by a Pauli, which is proven in
[Got97, Got98]. We also prove this uniqueness in the following lemma.

36

Lemma 3.5. Suppose unitaries U and V have the property that they induce the same
permutation on the Pauli group in the sense that, for all a, b ∈ {0, 1}n,

UXaZbU † ≡ V XaZbV †, (3.39)

where ≡ means equal up to a global phase that can be a function of a and b. Then V =
UXcZd for some c, d ∈ {0, 1}n (up to some global phase). (Here a and b are binary strings,
instead of elements of GF(2n), so we do not require the notations dae and bbc.)

Proof. First note that Eq. (3.39) is equivalent to

XaZb(U †V)(XaZb)† = λa,bU
†V (3.40)

for all a, b ∈ {0, 1}n where λa,b is some global phase in Eq. (3.39). The unitary U †V can
be expressed as

U †V =
∑

c,d∈{0,1}n
αc,dX

cZd. (3.41)

The symplectic inner product of (a, b) and (c, d) is defined as (a, b) · (c, d) = (⊕n−1
k=0akdk)⊕

(⊕n−1
k=0bkck). It is easy to verify that XaZb and XcZd either commute (when (a, b)·(c, d) = 0)

or anticommute (when (a, b) · (c, d) = 1). Then, by Eqns. (3.40) and (3.41), we have∑
c,d∈{0,1}n

(−1)(a,b)·(c,d)αc,dX
cZd =

∑
c,d∈{0,1}n

λa,bαc,dX
cZd. (3.42)

Since the Paulis XcZd for c, d ∈ {0, 1}n are linearly independent, the coefficients must
match.

Now, we show that at most one αc,d can be nonzero. Suppose there exist distinct
(c1, d1) and (c2, d2) such that αc1,d1 6= 0 6= αc2,d2 . Then, there exists (a, b) such that
(a, b) · (c1, d1) 6= (a, b) · (c2, d2). From Eq. (3.42), it follows that

(−1)(a,b)·(c1,d1) = λa,b = (−1)(a,b)·(c2,d2), (3.43)

which is a contradiction. Therefore, there is a unique αc,d that can be nonzero. By
Eq. (3.41), we conclude that

V = αc,dUX
cZd. (3.44)

37

In [Cha05], a possible choice of UM for any M ∈ SL2(GF(2n)) is exhibited; however,
other than the fact that such UM is in the Clifford group, it is unclear how to implement
such UM as a small quantum circuit, so its gate complexity is O(n2/ log n) by [AG04]. In
the remainder of this chapter, we aim for an alternative proof of Lemma 3.4 for certain
bases of GF(2n), as well as a modified version of this lemma, which enables us to obtain

constructions of unitary 2-designs with gate complexity Õ(n). The connection between
Lemma 3.4 and unitary 2-designs is based on the fact that the uniform ensemble over
{UM : M ∈ SL2(GF(2n))} is Pauli mixing, which is shown in the following lemma.

Lemma 3.6 ([Cha05]). Let M ∈ SL2(GF(2n)) be chosen uniformly at random. Then, for
any

(
a
b

)
∈ (GF(2n)×GF(2n)) \

(
0
0

)
,(
c
d

)
= M

(
a
b

)
(3.45)

is a uniform distribution over (GF(2n)×GF(2n)) \
(

0
0

)
.

Proof. We first show that SL2(GF(2n)) acts transitively on (GF(2n) × GF(2n)) \
(

0
0

)
.

Let
(
c
d

)
∈ (GF(2n) × GF(2n)) \

(
0
0

)
. If c 6= 0, we have that

(
c 0
d c−1

)(
1
0

)
=
(
c
d

)
. If

c = 0, then d 6= 0, and we have that
(

0 d−1

d 0

)(
1
0

)
=
(
c
d

)
. Thus, we can map any

(c1
d1

)
∈

(GF(2n) × GF(2n)) \
(

0
0

)
to
(

1
0

)
and then to any

(c2
d2

)
∈ (GF(2n) × GF(2n)) \

(
0
0

)
using

elements of SL2(GF(2n)).

Now, we prove the uniform distribution. Suppose there are distinct
(c1
d1

)
and

(c2
d2

)
such

that PrM{M
(
a
b

)
=
(c1
d1

)
} > PrM{M

(
a
b

)
=
(c2
d2

)
}. Since there exists an M ′ ∈ SL2(GF(2n))

such that M ′(c1
d1

)
=
(c2
d2

)
, it follows that PrM{M ′M

(
a
b

)
=
(c2
d2

)
} ≥ PrM{M

(
a
b

)
=
(c1
d1

)
}.

Note that the distribution over M is the same as the distribution over M ′M , so the last
equality implies that PrM{M

(
a
b

)
=
(c1
d1

)
} ≤ PrM{M

(
a
b

)
=
(c2
d2

)
}, which is a contradic-

tion.

The goal is to implement UM for M ∈ SL2(GF(2n)) with quantum circuit of Õ(n) gates.
We use two approaches to address the complication caused by interplaying between the
primal basis and the dual basis. The approach in Subsection 3.4.1 is based on a self-dual
basis for GF(2n) and the structure of SL2(GF(2n)). The approaches in Subsection 3.4.2 are
based on a polynomial basis and its dual for GF(2n) and the structure of two subgroups of
SL2(GF(2n)): the lower-triangular subgroup and the upper-triangular subgroup, which are

38

defined respectively as

∆2(GF(2n)) =

{(
α 0
β α−1

)
: α, β ∈ GF(2n) and α 6= 0

}
, (3.46)

∇2(GF(2n)) =

{(
α β
0 α−1

)
: α, β ∈ GF(2n) and α 6= 0

}
. (3.47)

3.3.3 A framework for implementing elements of SL2(GF(2n))

In this subsection, we first show a generating set of SL2(GF(2n)) such that all elements
of SL2(GF(2n)) can be written as a product of a small constant number of matrices in
this generating set. We also give a more restrictive generating set for ∆2(GF(2n)) and
∇2(GF(2n)). Then we present Clifford unitaries that induce these generating matrices. In

Section 3.4, we show how to implement these Clifford unitaries with Õ(n) gates, which
implements elements of SL2(GF(2n)). To begin with, we have the following lemma.

Lemma 3.7. Every M ∈ SL2(GF(2n)) can be expressed as a product of a constant number
of the following elements of SL2(GF(2n)):(

r 0
0 r−1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
, (3.48)

for some r ∈ GF(2n) that is nonzero.

Proof. For any M =
(α γ
β δ

)
∈ SL2(GF(2n)), we can decompose it as follows:

(
α γ
β δ

)
=



(
1 0

β/α 1

)(
1 αγ

0 1

)(
α 0

0 α−1

)
if α 6= 0(

1 0

δ/γ 1

)(
γ 0

0 γ−1

)(
0 1

1 0

)
if α = 0.

(3.49)

Furthermore, for any nonzero s ∈ GF(2n), there exists t = s2n−1 ∈ GF(2n) such that t2 = s.
This yields the following further decompositions:(

1 s
0 1

)
=

(
0 1
1 0

)(
1 0
s 1

)(
0 1
1 0

)
, and (3.50)(

1 0
s 1

)
=

(
t−1 0
0 t

)(
1 0
1 1

)(
t 0
0 t−1

)
. (3.51)

This completes the proof.

39

We also specialize the above lemma to the lower-triangular and upper-triangular sub-
groups of SL2(GF(2n)) as the following lemma.

Lemma 3.8. Every M ∈ ∆2(GF(2n)) can be expressed as a product of a constant number
of the following elements of ∆2(GF(2n)):(

r 0
0 r−1

)
and

(
1 0
1 1

)
, (3.52)

and every M ∈ ∇2(GF(2n)) can be expressed as a product of a constant number of the
following elements of ∇2(GF(2n)):(

r 0
0 r−1

)
and

(
1 1
0 1

)
, (3.53)

for some r ∈ GF(2n) that is nonzero.

Because of Lemma 3.7, for every M ∈ SL2(GF(2n)), we can find a unitary that induces
M if we find a unitary that induces each of

(
1 0
1 1

)
,
(

0 1
1 0

)
, and

(
r 0
0 r−1

)
for any nonzero r ∈

GF(2n). Similar statements hold for the lower-triangular subgroup and upper-triangular
subgroup of SL2(GF(2n)) with respect to their generating sets shown in Lemma 3.8.

Let us first consider the element of SL2(GF(2n)) of the form
(
r 0
0 r−1

)
for any nonzero

r ∈ GF(2n). Such elements can be induces by a Clifford unitary Πr defined as Πr|dce〉 =
|drce〉, and Πr is referred to as the multiply-by-r (in the primal basis) operator. In the
remainder of this chapter, we use |c〉 to denote |dce〉 to improve readability. For example,
in this notation we have Πr|c〉 = |rc〉. To verify that Πr induces

(
r 0
0 r−1

)
, observe that for

all c ∈ GF(2n),

ΠrX
daeΠ†r|c〉 = ΠrX

dae|r−1c〉 (3.54)

= Πr|r−1c+ a〉 (3.55)

= |c+ ra〉 (3.56)

= Xdrae|c〉. (3.57)

Furthermore, we have

ΠrZ
bbcΠ†r|c〉 = ΠrZ

bbc|r−1c〉 (3.58)

= Πr(−1)bbc·dr
−1ce|r−1c〉 (3.59)

= (−1)T (br−1c)|c〉 (3.60)

= (−1)bbr
−1cdce|c〉 (3.61)

= Zbbr
−1c|c〉, (3.62)

40

where the third and the fourth equalities follow from Eq. (2.45). Therefore, for all a, b ∈
GF(2n), it holds that ΠrX

daeZbbcΠ†r = XdraeZbr
−1bc, and hence we can conclude that Πr

induces
(
r 0
0 r−1

)
.

Recall that we use parentheses to represent elements of SL2(GF(2n)) and use square
brackets to represent their corresponding binary vectors in a primal-dual basis. For any(
a
b

)
∈ GF2(2n)×GF(2n), we represent it in a primal-dual basis as

[dae
bbc
]
∈ {0, 1}2n, where

dae, bbc ∈ {0, 1}n. With this notation, the effect of conjugating a Pauli XdaeZbbc by Πr can
be summarized by the following mapping:

XdaeZbbc 7→ XMrdaeZMT
r−1bbc, (3.63)

where Mr is the linear operator corresponding to multiplication by r in the primal basis, as
defined in Eq. (2.46), and MT

r−1 , the transpose of Mr−1 is the linear operator corresponding
to multiplication by r−1 in the dual basis.

Now we consider the element
(

1 0
1 1

)
∈ SL2(GF(2n)) and find a Clifford unitary that

induces it. This Clifford unitary should perform the following mapping:

XdaeZbbc 7→ XdaeZbac+bbc = XdaeZW dae+bbc, (3.64)

where W is the linear operator corresponding to the primal-to-dual basis conversion, as
defined in Eq. (2.44). In the following, we show that a unitary ΓW that induces such
mapping is defined as

ΓW |c〉 = i
∑n

j=1

∑n
k=1(W)j,kcjck |c〉 = i

∑n
j=1(W)j,jcj(−1)

∑
1≤j<k≤n(W)j,kcjck |c〉, (3.65)

where the second equality follows from the fact that W is symmetric (see Eq. (2.44)). By
Eq. (3.65), one can verify that ΓW is in the Clifford group, as it can be constructed by the
following composition of S gates and controlled-Z gates: an S gate acting on each qubit
j whenever (W)j,j = 1, and a controlled-Z gate acting on qubits j and k for each j < k
whenever (W)j,k = 1 (all these gates commute). This simple construction of ΓW consists
of O(n2) gates. In Subsections 3.4.1 and 3.4.2, we show circuits implementing ΓW with

Õ(n) gates.

To verify that ΓW induces the mapping specified in Eq. (3.64), we first observe that

XdaeZbbcΓ†W |c〉 = XdaeZbbc(−i)
∑n

j=1(W)j,jcj(−1)
∑

1≤j<k≤n(W)j,kcjck |c〉 (3.66)

= (−i)
∑n

j=1(W)j,jcj(−1)
∑

1≤j<k≤n(W)j,kcjckXdae(−1)bbc·dce|c〉 (3.67)

= (−i)
∑n

j=1(W)j,jcj(−1)
∑

1≤j<k≤n(W)j,kcjck+bbc·dce|a+ c〉. (3.68)

41

Furthermore, we have

ΓW |a+ c〉 = i
∑n

j=1(W)j,j(a+c)j(−1)
∑

1≤j<k≤n(W)j,k(a+c)j(a+c)k |a+ c〉 (3.69)

= i
∑n

j=1(W)j,j(aj+cj−2ajcj)(−1)
∑

1≤j<k≤n(W)j,k(aj+cj)(ak+ck)|a+ c〉 (3.70)

= i
∑n

j=1(W)j,j(aj+cj)(−1)
∑n

j=1(W)j,jajcj(−1)
∑

1≤j<k≤n(W)j,k(ajak+ajck+cjak+cjck)|a+ c〉,
(3.71)

where the second equality follows from the fact that, for any a, c ∈ {0, 1}, a⊕c = a+c−2ac.
Combining Eqns. (3.68) and (3.71), we have

ΓWX
daeZbbcΓ†W |c〉 = i

∑n
j=1

∑n
k=1 ajak(−1)

∑n
j=1(W)j,jajcj+

∑
1≤j<k≤n(W)j,k(ajck+akcj)+bbc·dce|a+ c〉

(3.72)

= i
∑n

j=1

∑n
k=1(W)j,kajak(−1)

∑n
k=1

∑n
j=1(W)k,jajck+bbc·dce|a+ c〉 (3.73)

= i
∑n

j=1

∑n
k=1(W)j,kajak(−1)W dae·dce+bbc·dce|a+ c〉 (3.74)

= i
∑n

j=1

∑n
k=1(W)j,kajakXdae(−1)W dae·dce+bbc·dce|c〉 (3.75)

= i
∑n

j=1

∑n
k=1(W)j,kajakXdae(−1)bac·dce+bbc·dce|c〉 (3.76)

= i
∑n

j=1

∑n
k=1(W)j,kajakXdaeZbac+bbc|c〉. (3.77)

This implies that ΓW implies the mapping specified in Eq. (3.64) (up to some global phase).

We also need to find the Clifford unitary that induces the element
(

0 1
1 0

)
∈ SL2(GF(2n)).

This is addressed in Subsections 3.4.1 and 3.4.2 in different ways, which yield different
constructions for unitary 2-designs.

3.4 Efficient constructions of unitary 2-designs

Now, the construction of a unitary 2-design reduces to implementing unitaries that induce
the generators of SL2(GF(2n)). The goal of this section is to find Õ(n)-sized circuits to
implement these unitaries.

3.4.1 Near-linear implementation based on self-dual basis for
GF(2n)

The first approach is to represent the elements in GF(2n) with respect to a self-dual basis.
The advantage of using a self-dual basis is that, the change of basis operation defined in

42

Eq. (2.44) is trivial. In this subsection, we omit the d e and b c notations because the
dual of a self-dual basis is itself. For all n-bit binary strings a, b ∈ {0, 1}n, it holds that
S⊗nXaZb(S†)⊗n = ia1+···+an mod 4XaZa+b and H⊗nXaZbH⊗n = (−1)a·bXbZa. Therefore,
S⊗n induces

(
1 0
1 1

)
and H⊗n induces

(
0 1
1 0

)
.

It remains to implement the unitary Πr (multiply-by-r operator) that induces
(
r 0
0 r−1

)
.

Fast multiplication methods with respect to a polynomial basis are known; however, no
polynomial basis of GF(2n) is also self-dual if n ≥ 2 [Haz96]. Here, we use special self-dual
bases that can be efficiently converted to and from polynomial bases. These special self-dual
bases are constructed with Gauss periods and exist for admissible n’s (see Definition 3.9
below). According to [vzGP01], there are infinitely many admissible n’s under the extended
Riemann Hypothesis. Our implementation in this subsection is restricted to the values of
n defined as follows.

Definition 3.9. A natural number n is called admissible if the following two conditions
hold:

1. 2n+ 1 is prime

2. gcd(e, n) = 1, where e is the index of the subgroup generated by 2 in Z∗2n+1,

where Z∗2n+1 denotes the multiplicative group of Z2n+1. Since Z∗2n+1 has 2n elements when
2n+ 1 is prime, e = 2n

|〈2〉| .

In the remainder of this subsection, we first describe the procedure of finding a self-dual
basis using Gauss periods and explain the efficient conversion between the two represen-
tations with respect to a self-dual basis and a polynomial basis. Then we describe the
implementation of Πr.

Since, for an admissible n, 2n+1 is prime, it holds that 22n ≡ 1 mod 2n+ 1 by Fermat’s
Little Theorem. So 2n+1 divides 22n−1, which implies that there is a primitive (2n+1)-th
root of unity β ∈ GF(22n). One way to obtain such β is the following. Let ξ be a generator
of the multiplicative group of GF(22n). Because ξ22n−1 = 1, we can take β = ξ(22n−1)/(2n+1).
Consider the set

S = {β + β−1, β2 + β−2, . . . , βn + β−n}. (3.78)

We first show that S is a self-dual normal basis of GF(2n) over GF(2) (as defined in
Section 2.2). Then we show how to efficiently convert between S and a polynomial basis.

To show that S is a self-dual normal basis, we first argue that for an admissible n, 2
and −1 generate Z∗2n+1 (i.e., 〈2,−1〉 = Z∗2n+1). A proof is given in [GvzGPS00], and it

43

can be rephrased as follows. Let γ generate the cyclic group Z∗2n+1. If e is the index of
〈2〉 in Z∗2n+1, then 2 = γe. Furthermore, γn = −1. Since gcd(e, n) = 1, there are integers
k1, k2 such that 1 = ek1 + nk2 and therefore, γ ∈ 〈2,−1〉, so Z∗2n+1 = 〈2,−1〉. This further
implies that

{20,−20, 21,−21, . . . , 2n−1,−2n−1} ≡ {1,−1, 2,−2, . . . , n,−n} mod 2n+ 1. (3.79)

Note that the RHS of the above equation is equivalent to the whole group of Z∗2n+1. Then,
we can reorder the elements of S as

{β20 + β−20 , β21 + β−21 , . . . , β2n−1

+ β−2n−1}. (3.80)

The set in Eq. (3.80), as a subset of GF(2n), is equal to {α20 , α21 , · · · , α2n−1} where α =
β + β−1 is called a Gauss period of type (n, 2) over GF(2). It is easy to see that β +
β−1 ∈ GF(2n), for one can verify that (β + β−1)2n = β + β−1. To argue that the set
{α20 , α21 , · · · , α2n−1} is linearly independent, suppose there exists a0, . . . , an−1 ∈ GF(2)
that are not all zero such that

0 = a0α
20 + · · ·+ an−1α

2n−1

(3.81)

= a0(β + β−1)20 + · · ·+ an−1(β + β−1)2n−1

(3.82)

= a0(β20 + β−20) + · · ·+ an−1(β2n−1

+ β−2n−1

). (3.83)

Because of Eqns. (3.79) and (3.83), there exist b1, . . . , b2n ∈ GF(2) that are not all zero
such that

0 = b1β + · · ·+ b2nβ
2n = β(b1β

0 + · · ·+ b2nβ
2n−1) mod 2n+ 1. (3.84)

The above equation holds for all (2n + 1)-th root of unity of GF(22n), and β can be
substituted by βr for r ∈ {1, . . . , 2n}. It follows that the polynomial f(x) = u1x

0 + · · · +
u2nx

2n−1 has 2n roots, which is a contradiction with that fact that f(x) has degree at most
2n − 1. As a result, the set {α20 , α21 , . . . , α2n−1} (as well as S) forms a normal basis and
α is a normal element in GF(2n). Then, by [GvzGPS00, Corollary 3.5], it holds that any
normal basis of Gauss period of type (n, 2) over GF(2) is self-dual when n > 2. Therefore,
S is a self-dual normal basis as claimed.

Next, we show how to efficiently convert between S and a polynomial basis. We define
a map from GF(2n) to {0, 1}n+1 as follows. If a ∈ GF(2n), then it is mapped to the vector
a′ = (0, a1, . . . , an), where a = a1(β + β−1) + · · · + an(βn + β−n). In other words, a′ is
the coordinate of a with respect to the spanning set {1, β + β−1, β2 + β−2, . . . , βn + β−n}.

44

Including the element 1 makes this spanning set not a basis, but significantly simplifies the
conversion between the following two spanning sets:

S′ = {1, β + β−1, β2 + β−2, . . . , βn + β−n} , (3.85)

M = {1, β + β−1, (β + β−1)2, . . . , (β + β−1)n}. (3.86)

Note that the set M arises from adding 1 to a polynomial basis. We call S′ a self-dual
spanning set and M a polynomial spanning set. The fact that M is not a basis does not affect
how we represent a field element as a polynomial based on M, i.e., a =

∑n
j=0 aj(β + β−1)j,

and fast multiplication of two polynomials of this form still works.

For j ∈ {1, . . . , n}, let sj = βj + β−j, tj = (β + β−1)j, and let s′j and t′j be the
(n + 1)-bit string output by the map defined earlier. In the following, we describe the
linear transformation Ln+1 that maps s′j to t′j for all j (by right multiplication). The
transformation Ln+1 is not unique. A simple choice for Ln+1 is based on the binomial
expansion (β + β−1)j =

∑j
`=0

(
j
`

)
βj−2`. More precisely, for general k, we can choose Lk as

(Lk)`,j =

{
0 if ` > j or j − ` is odd,(

j
(j−`)/2

)
mod 2 otherwise,

(3.87)

where 0 ≤ `, j < k. The operation Lk is upper-triangular with 1’s on the diagonal, which
implies det(Lk) = 1, so Lk is invertible.

Now, we find a unitary Λk that induces Lk. (More precisely, Λk induces the matrix with
identical diagonal blocks that is the (k−1)× (k−1) submatrix of Lk with the first row and
column omitted.) The unitary Λn also induces a conversion from S′ to M. In [vzGSS07],
the following theorem is proven.

Theorem 3.9 ([vzGSS07]). Right multiplying Ln+1 (L−1
n+1 respectively) by the vector rep-

resentation (a′) of an element a ∈ GF(2n) described above can be done using O(n log n)
operations (additions and multiplications) in GF(2).

From this theorem, an efficient (classical) circuit that induces Ln+1 can be built with
O(n log n) CNOT gates. The intuition is that Ln+1 can be decomposed as a product of
O(log n) matrices, each with O(n) 1’s, as shown in [vzGSS07]. Since the linear transforma-
tion can be done with GF(2) additions, this circuit contains only CNOT gates. A circuit
for L−1

n+1 can be obtained by running the circuit for Ln+1 backward.

In the following, we present a different circuit that induces Ln+1 – a recursive con-
struction that also requires O(n log n) CNOT gates, which yields a different proof of The-
orem 3.9. First consider Lk as defined in Eq. (3.87) where k is a power of 2. Taking k = 8

45

as an example,

L8 =



1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (3.88)

We use two properties of Lk when k is a power of 2 (see L8 above for an illustration):

1. Each Lk consists of three nonzero blocks: two identical diagonal blocks which is Lk/2
and a block above the diagonal which we call LΓ

k/2 (which is almost like Lk/2 turned

upside down).

2. The first row of LΓ
k/2 contains only zeros. The (`+2)-th row of LΓ

k/2 is the
(
k
2
− `
)
-th

row of Lk/2 (where 0 ≤ ` ≤ k/2− 2).

An illustration of the two properties is shown in Figure 3.3. Take the Pascal’s triangle
(mod 2) with k rows, and rotate the entries 90 degrees counter-clockwise. This gives the
(`, j) entries of Lk when ` ≥ j and `− j is even. The above two properties for Lk primarily
come from the fact that Pascal’s triangle (mod 2) with k rows consists of 4 triangles of
k/2 rows, the middle one only has zero entries, and the other three are identical copies of
Pascal’s triangle (mod 2) with k/2 rows. Also, the triangle is always left-right symmetric.
Proofs of these are readily obtained from Lucas’ Theorem 1 [Fin47] (a more accessible proof
can be found online at [Rid]).

A left-multiplication of a vector by Lk yields[
Lk/2 LΓ

k/2

0 Lk/2

] [
v1

v2

]
=

[
Lk/2 v1 + LΓ

k/2 v2

Lk/2 v2

]
. (3.89)

Due to the relation between LΓ
k/2 and Lk/2, the above map can be induced by the unitary

Λk implemented by the circuit in Figure 3.4. Using standard recursion analysis, the circuit
contains O(k log k) CNOT gates.

1Consider the base-p representation of integers m and n, where m ≥ n ≥ 0, and p is prime: m =
m0 +m1p+ · · ·+mkp

k, n = n0 + n1p+ · · ·+ nkp
k. Then,

(
m
n

)
≡
(
m0

n0

)(
m1

n1

)
· · ·
(
mk
nk

)
mod p

46

1
1 1

1 0 1
1 1 1 1

0 0 0
0 0

0

1
1 1

1 0 1
1 1 1 1

1
1 1

1 0 1
1 1 1 1

90 degrees 1 00 0
1 1 0 1

1 0 1
1 1 1

1 0
1

1
1

1

Figure 3.3: An illustration of the Pascal’s triangle structure of the matrix L8 . Taking the left
half of an 8-level Pascal’s triangle and rotating counter-clockwise by 90 degrees, we obtain L8.
Note that the block LΓ

4 is the horizontal reflection of the lower-diagonal block L4 with a downward
shift, as described by property 2 of Lk.

Λk

Λk/2
...

...
...

...
≡

Λk/2

•
...

...
...

...
. . .

•
•

Figure 3.4: An example of representation conversion circuit which demonstrates the recursive
structure.

For general values of k, we apply the above construction to obtain L2dlog2 ke . We restrict
the circuit for L2dlog2 ke to a sub-circuit with the first k registers and the CNOT gates
between them to obtain a circuit for LΓ

k that still has size O(k log k).

The circuit for Λ−1
k that converts a vector from the self-dual representation to the

polynomial representation can be obtained by running the circuit for Λk backward. The
first qubit which corresponds to the additional “1” in S′ is always |0〉 and it remains intact
during the computation, and therefore can be safely removed in the circuit. It is kept in
the analysis for conceptual simplicity.

Finally, we are ready to give the recipe for the fast multiplication of two elements
a, r ∈ GF(2n) represented with respect to S′:

47

1. Insert a zero at the beginning of the vector representations of a and r to get the
vectors a′ and r′ with respect to the spanning set S′.

2. Convert a′ and r′ to new representations ã and r̃ with respect to the polynomial
spanning set M, using the circuit for Λ−1

n+1.

3. Multiply ã by r̃ using Schönhage’s multiplication algorithm [Sch77] (denoted by Π̃r

in Figure 3.5). The result is a vector with respect to the polynomial spanning set
{1, β + β−1, (β + β−1)2, . . . , (β + β−1)2n}.

4. Apply the unitary Λ2n+1 to the vector above so it is represented in the spanning
set {1, β + β−1, β2 + β−2, . . . , β2n + β−2n}. Then, discard the first element which is
always 0. The result is the vector representation with respect to the spanning set
{β+β−1, β2 +β−2, . . . , β2n+β−2n}. Since β is the (2n+1)-th root of unity in GF(22n)
(i.e., β2n+1 = 1), we have β + β−1 = β2n + β−2n, β2 + β−2 = β2n−1 + β−2n+1,
Therefore with n additional GF(2) CNOT gates, the resulting vector can be reduced
to the one with respect to the permuted self-dual normal basis S.

In step 3, Schönhage’s multiplication algorithm [Sch77] uses a radix-3 FFT algorithm to
do fast convolution. Readers may refer to [vzGG13] for another description of Schönhage’s
algorithm. This multiplication algorithm requires O(n log n log log n) operations (addi-
tions and multiplications). Additions can be implemented with CNOT gates. Multipli-
cations involved in this radix-3 FFT are the ones between an element of the polynomial
ring GF(2)[x]/ 〈x2m + xm + 1〉 (for certain m) and x (which is a 3m-th root of unity in
GF(2)[x]/ 〈x2m + xm + 1〉). The result of this kind of multiplications is a shift of coeffi-
cients and it can be implemented by SWAP gates. Therefore, the whole multiplication
method can be implemented with O(n log n log log n) CNOT gates. As an example, Fig-
ure 3.5 shows the implementation of Πr in GF(25).

We show that the radix-3 FFT algorithm has logarithmic depth: if the current step
of this algorithm is working on a polynomial of degree k, in the next recursion step, it
will work in parallel on three polynomials of degree dk/3e. The total number of steps
(i.e., the depth of the circuit) is, therefore, O(log n) for a polynomial of degree n. To
multiply two polynomials of degree at most n, each recursion step essentially consists of
three components: computing the radix-3 FFT, recursively doing d

√
n e multiplications

of polynomials of degree at most d
√
n e (in parallel), and computing the inverse radix-

3 FFT. Using a similar analysis, the depth of the polynomial multiplication circuit is
O(log(n) + log(n1/2) + log(n1/4) + · · ·+ 1) = O(log n). The logarithmic depth of the basis
conversion circuit can be shown by its recursive structure (e.g., Figure 3.4). Therefore, the
depth of the circuit for Πr is O(log n).

48

|0〉

Λ−1
6

Π̃r

Λ11

|0〉
|a1〉 |(ra)1〉
|a2〉 |(ra)2〉
|a3〉 |(ra)3〉
|a4〉 |(ra)4〉
|a5〉 |(ra)5〉
|0〉 •
|0〉 •
|0〉 •
|0〉 •
|0〉 •
|0〉

...
...

|0〉

Figure 3.5: The implementation of Πr for multiplication of a by r where a, r ∈ GF(25). Π̃r is
an implementation of Schönhage’s multiplication algorithm. The input and output bits are with
respect to a self-dual basis.

The ancilla qubits can be reset to |0〉 using standard techniques in reversible computing.
The result is a circuit for Πr for any nonzero r ∈ GF(2n) with O(n log n log log n) CNOT
gates.

3.4.2 Near-linear implementations based on polynomial basis for
GF(2n)

In this subsection, we present two alternative constructions for unitary 2-designs based on
polynomial bases for GF(2n). The benefit of using polynomial bases is that the unitary
that induces

(
r 0
0 r−1

)
for r 6= 0 (which is a generator of SL2(GF(2n))) is straightforward to

implement with O(n log n log log n) Clifford gates and circuit depth O(log n), as described

in Subsection 3.4.1. For the generator
(

1 0
1 1

)
, we provide two different Õ(n) circuit im-

plementations in this subsection. However, an efficient implementation of the generator(
0 1
1 0

)
with respect to a polynomial basis is not known. Instead of implementing every

element of SL2(GF(2n)), we implement its lower-triangular subgroup ∆2(GF(2n)) based
on the primal basis, and its upper-triangular subgroup ∇(GF(2n)) based on the dual basis.
At the end of this subsection, we show how to combine the implementations of the two

49

subgroups to achieve Pauli mixing, which results in an exact unitary 2-design with the
desired complexity. Note that Lemma 3.8 gives the necessary elements (generating set) we
need to implement for both the lower- and the upper-triangular subgroups.

In the following, we give two different implementations of the unitary that induces(
1 0
1 1

)
. Together with the implementation of the unitary Πr that induces

(
r 0
0 r−1

)
, we can

implement the lower-triangular subgroup ∆2(GF(2n)) because of Lemma 3.8. The upper-
triangular subgroup ∇2(GF(2n)) can be implemented with respect to the dual basis by
conjugating the unitaries for ∆2(GF(2n)) by H⊗n.

Implementation with O(n log n log log n) non-Clifford gates

Now, we show how to implement the generator
(

1 0
1 1

)
using O(n log n log log n) gates with

depth O(log n). This construction contains non-Clifford gates, but they compose to a
Clifford unitary.

We need to implement the unitary ΓW , which is defined in Eq. (3.65), and W is the
primal-to-dual basis conversion matrix defined in Eq. (2.44). Since the primal basis is a
polynomial basis, W has the property that if j + k = j′ + k′ then (W)j,k = (W)j′,k′ for all
j, k, j′, k′. Such a matrix is referred to as a Hankel matrix. Recall that ΓW is defined as

ΓW |c〉 = i
∑n

j=1

∑n
k=1(W)j,kcjck |c〉. (3.90)

To implement ΓW , it suffices to compute the exponent of i using mod 4 arithmetic, and
the exponent can be written as

[
c1 · · · cn

]
W

c1
...
cn

 . (3.91)

The computation of Eq. (3.91) is related to the problem of computing convolutions. The
convolution of two d-dimensional vectors u and v is defined as the (2d − 1)-dimensional
vector w satisfying

w0 + w1T + w2
2T

2 + · · ·+ w2d−2T
2d−2 (3.92)

=
(
u0 + u1T + u2

2T
2 + · · ·+ ud−1T

d−1
) (
v0 + v1T + v2

2T
2 + · · ·+ vd−1T

d−1
)
, (3.93)

for polynomials over T . The product of a Hankel matrix with a vector reduces to convo-
lution, as shown in the following proposition.

50

Proposition 3.10. The product of an n× n Hankel matrix with an n-dimensional vector
reduces to the problem of computing the convolution of two (2n− 1)-dimensional vectors.

Proof. Suppose we compute the production of a Hankel matrix with some vector:
x1 x2 · · · xn
x2 x3 · · · xn+1
...

...
. . .

...
xn xn+1 · · · x2n−1



y1

y2
...
yn

 . (3.94)

This can be computed from the convolution of [x1, . . . , x2n−1] and [0, . . . , 0, yn, . . . , y1]: this
convolution is a (4n − 2)-dimensional vector that is the vector in Eq. (3.94) padded with
2n− 2 components on the left and n− 1 components on the right.

To compute Eq. (3.91), we first compute e1, . . . , en ∈ Z4 satisfyinge1
...
en

 = W

c1
...
cn

 , (3.95)

with a fast algorithm for polynomial multiplication over Z4 using O(n log n log log n) gates
(e.g., [vzGG13, Theorem 8.23]). Then the value of Eq. (3.91) for the exponent for i in
Eq. (3.65) can be obtained from the 2n ancilla qubits containing e1, . . . , en (as each ej is a
two-bit string) and the n qubits containing c1, . . . , cn as follows. For each j ∈ {1, . . . , n},
apply a controlled-Z gate between the high order bit of ej and cj, and apply a controlled-S
gate between the low order bit of ej and cj.

Note that this construction uses controlled-S gates, which are not in the Clifford group.
It is not straightforward to circumvent as the underlying ring is Z4 and addition mod 4
requires non-Clifford gates. The construction uses polynomial multiplications. Therefore,
using the similar circuit depth analysis in Subsection 3.4.1, the circuit depth of this con-
struction is O(log n).

Implementation with O(n log2 n log log n) Clifford gates

Now, we show how to implement the generator
(

1 0
1 1

)
using O(n log2 n log log n) Clifford

gates with circuit depthO(log2 n). In the previous construction, the computation is reduced
to a convolution in mod 4 arithmetic, which can be computed efficiently with non-Clifford

51

gates. In this construction, we use a recursive procedure that is based on convolutions in
mod 2 arithmetic, which can be computed efficiently with Clifford gates.

Without loss of generality, we assume that n is a power of 2. (In general, an arbitrary
n is divided unevenly in the recursive step, as n = bn

2
c + dn

2
e.) We divide W into four

n
2
× n

2
blocks:

W =

[
W (11) W (12)

W (21) W (22)

]
, (3.96)

where W (11),W (12),W (21), and W (22) are n
2
× n

2
Hankel matrices, and W (12) = W (21). Define

block matrices A,B, and C as

A =

[
0 W (12)

W (21) 0

]
, B =

[
W (11) 0

0 0

]
, and C =

[
0 0
0 W (22)

]
. (3.97)

Clearly, W = A+B + C. If we treat A, B, and C as basis conversion matrices, we define
ΓA, ΓB, and ΓC as in Eq. (3.65) (with W replaced to A, B, and C, respectively). Then
ΓW can be implemented with ΓAΓBΓC as

ΓAΓBΓCX
daeZbbcΓ†CΓ†BΓ†A = ΓAΓBX

daeZCdae+bbcΓ†BΓ†A (3.98)

= ΓAX
daeZ(B+C)dae+bbcΓ†A (3.99)

= XdaeZ(A+B+C)dae+bbc (3.100)

= XdaeZW dae+bbc (3.101)

= ΓWX
daeZbbcΓ†W . (3.102)

We first show how to implement ΓA using O(n log n log log n) gates. Similar to the
definition of ΓW in Eq. (3.65), we have

ΓA|c〉 = (−1)
∑n/2

j=1

∑n
k=n/2+1(W)j,kcjck |c〉. (3.103)

To implement ΓW , it suffices to compute the exponent of −1 using mod 2 arithmetic, and
the exponent can be written as

[
c1 · · · cn

2

]
W (12)

cn
2

+1

...
cn

 . (3.104)

52

Again, by Proposition 3.10, the multiplication of a Hankel matrix with a vector reduces to
computing a convolution. We first compute en

2
+1, . . . , en ∈ Z2 satisfyingen

2
+1

...
en

 = W (12)

cn
2

+1

...
cn

 (3.105)

with a fast algorithm for polynomial multiplication over Z2 using O(n log n log log n) gates.
Since the convolution is with respect to the entries of W , which are constants in our setting,
the multiplication can be implemented using Clifford gates (in fact, CNOT gates). Then
the phase in Eq. (3.65) can be computed by applying O(n) controlled-Z gates between the
bits en

2
+1, . . . , en and c1, . . . , cn

2
, respectively.

The implementation of ΓB and ΓC are equivalent to the implementations of the original
instance of size n/2. For the base case of the recursion (where W is a 1 × 1 matrix), a
single S gate implements ΓW . The gate cost G(n) of the recursive implementation satisfies
the recurrence relation:

G(n) = 2G(n/2) +O(n log n log log n). (3.106)

It follows that

G(n) ∈ O(n log2 n log log n). (3.107)

This recursive construction uses polynomial multiplication in each recursion step. There-
fore, it follows from the circuit depth analysis for polynomial multiplication in Subsec-
tion 3.4.1 that circuit depth of this construction is O(log n+ log n

2
+ · · ·+ 1) = O(log2 n).

Pauli mixing from ∆2(GF(2n)) and ∇2(GF(2n)) in different bases

Now, we show how to achieve Pauli mixing by implementing UM that induces M ∈
∆2(GF(2n)) and ÛM that induces M ∈ ∇2(GF(2n)). In the following, we first show how to
generate and construct an element of an ensemble of unitaries, which no longer corresponds
to SL2(GF(2n)). Then, we prove that this ensemble is Pauli mixing, and hence a unitary
2-design.

The construction is based on the following decomposition of elements of SL2(GF(2n)),

53

which follows from Eq. (3.108):

(
α γ
β δ

)
=



(
1 0

β/α 1

)(
α γ

0 α−1

)
if α 6= 0(

γ 0

δ γ−1

)(
0 1

1 0

)
if α = 0.

(3.108)

All matrices in this decomposition are lower-triangular, upper-triangular, or
(

0 1
1 0

)
. Uni-

taries that induce lower-triangular matrices can be implemented in the primal basis; uni-
taries that induce upper-triangular matrices can be implemented in the dual basis, and the
unitary that induces

(
0 1
1 0

)
can be implemented in any self-dual basis (by H⊗n).

The procedure to generate an element of the ensemble is as follows.

Procedure 3.1: Generation procedure

1 Sample
(α γ
β δ

)
∈ SL2(GF(2n)) uniformly at random;

2 if α 6= 0 then
3 M1 ←

(α γ
0 α−1

)
;

4 M2 ←
(

1 0
β/α 1

)
;

5 Construct the Clifford unitary UM2ÛM1 (composition of two circuits);

6 end
7 else if α = 0 then

8 M ←
(γ 0
δ γ−1

)
;

9 Construct the Clifford unitary UMH
⊗n (composition of two circuits);

10 end

Note that the construction in steps 2-5 of Procedure 3.1 corresponds to the first case of
Eq. (3.108), and the construction in steps 7-9 corresponds to the second case of Eq. (3.108).
Either case results in a Clifford unitary that can be implemented with O(n log n log log n)
gates (including non-Clifford gates), or with O(n log2 n log log n) Clifford gates. Although
the subset of all Clifford unitaries that can be generated by Procedure 3.1 does not have
the structure of SL2(GF(2n)) because different bases are used for the components, we show
in the following that this ensemble is indeed Pauli mixing.

First, we consider the mixing property over the Paulis that result from conjugating by
UM for a random M ∈ ∆2(GF(2n)). Partition the nonzero elements of GF(2n) × GF(2n)

54

into the following disjoint subsets:

R1 =
{(

a
b

)
∈ GF(2n)×GF(2n) : a = 0 and b 6= 0

}
, (3.109)

R2 =
{(

a
b

)
∈ GF(2n)×GF(2n) : a 6= 0

}
. (3.110)

A random element M ∈ ∆2(GF(2n)) uniformly mixes elements in R1 as well as in R2 in
the following sense. (A similar result holds for ∇2(GF(2n)) with a and b switched in the
definitions of R1 and R2.)

Lemma 3.11. Let M ∈ ∆2(GF(2n) be chosen uniformly at random. Then, for any
(
a
b

)
∈

R1, the distribution M
(
a
b

)
is uniform over R1; for any

(
a
b

)
∈ R2, the distribution M

(
a
b

)
is uniform over R2.

Proof. First, we consider R1. Note that
(
d−1 0

0 d

)(
0
1

)
=
(

0
d

)
. It follows that any element(

0
b

)
∈ R1 can be mapped to

(
0
d1

)
and then mapped to any

(
0
d2

)
∈ R1 by elements in

∆2(GF(2n)). Suppose there exist distinct
(

0
d1

)
and

(
0
d2

)
such that PrM{M

(
0
b

)
=
(

0
d1

)
} >

PrM{M
(

0
b

)
=
(

0
d2

)
}. There exists M ′ ∈ R1 such that M ′(0

d1

)
=
(

0
d2

)
. Then, we have

PrM{M ′M
(

0
b

)
=
(

0
d2

)
} ≥ PrM{M

(
0
b

)
=
(

0
d1

)
}. Since the distribution over M ′M is the

same as the distribution over M , the last inequality implies that PrM{M
(

0
b

)
=
(

0
d1

)
} ≤

PrM{M
(

0
b

)
=
(

0
d2

)
}, which is a contradiction.

Similarly, we consider R2. Note that
(
c 0
d c−1

)(
1
0

)
=
(
c
d

)
. It follows that any element(

a
b

)
∈ R1 can be mapped to

(c1
d1

)
and then mapped to any

(c2
d2

)
∈ R2 by elements in

∆2(GF(2n)). Suppose there exist distinct
(c1
d1

)
and

(c2
d2

)
such that PrM{M

(
a
b

)
=
(c1
d1

)
} >

PrM{M
(
a
b

)
=
(c2
d2

)
}. There exists M ′ ∈ R2 such that M ′(c1

d1

)
=
(c2
d2

)
. Then, we have

PrM{M ′M
(
a
b

)
=
(c2
d2

)
} ≥ PrM{M

(
a
b

)
=
(c1
d1

)
}. Since the distribution over M ′M is the

same as the distribution over M , the last inequality implies that PrM{M
(
a
b

)
=
(c1
d1

)
} ≤

PrM{M
(
a
b

)
=
(c2
d2

)
}, which is a contradiction.

It is fruitful to organize the n-qubit Paulis in Q(C2n) into rows and columns where
XdaeZbbc is in column a and row b. The first column and row are labeled by a = 0 and
b = 0, and they are referred to as the zero column and the zero row, respectively. The
remaining rows and columns are referred to as the nonzero rows and the nonzero columns.
The relative ordering of the nonzero rows and nonzero columns does not affect the analysis.
An example of such an organization for n = 2 is shown as the following:

IX XI XX
IZ IY XZ XY
ZI ZX Y I Y X
ZZ ZY Y Z Y Y

(3.111)

55

where the identity Pauli (in the upper-left corner) is excluded. In this example, we need
the uniform distribution on the 15 items to achieve Pauli mixing.

According to Lemma 3.11, conjugating by UM for a uniformly sampledM ∈ ∆2(GF(2n))
results in a uniform mixing of the zero column (as illustrated in Figure 3.6) and a uni-
form mixing of all nonzero columns (as illustrated in Figure 3.7). We refer to this mix-
ing as the lower-triangular Pauli mixing. Similarly, we define the upper-triangular Pauli
mixing, which is corresponding to a transposed versions of Figures 3.6 and 3.7. The
upper-triangular Pauli mixing can be achieved by conjugating ÛM for uniformly sampled
M ∈ ∇2(GF(2n)).

Figure 3.6: Illustration of the lower-triangular Pauli mixing within the zero column (N =
2n).

Figure 3.7: Illustration of the lower-triangular Pauli mixing within the nonzero columns
(N = 2n).

Now, we consider another form of mixing, which is referred to as the column Pauli
mixing, that is achieved by choosing M =

(
1 0
β 1

)
for a uniformly sampled β ∈ GF(2n), and

then conjugating by the UM . The effect of the column Pauli mixing is that the Paulis in
the zero column do not change (as illustrated in Figure 3.8), and any Pauli in a nonzero
column mixes within its column (as illustrated in Figure 3.9).

It follows from Eq. (3.108) that Procedure 3.1 is equivalent to applying a probabilistic
mixture of the two procedures below: with probability 2n

2n+1
, Procedure 3.2 is applied; with

56

Figure 3.8: Illustration of the column Pauli mixing for the zero column (N = 2n).

Figure 3.9: Illustration of the column Pauli mixing for the nonzero columns (N = 2n).

probability 1
2n+1

, Procedure 3.3 is applied. The probability 1
2n+1

is the probability that

α = 0 for a random
(α γ
β δ

)
∈ SL2(GF(2n)).

Procedure 3.2:
1 Apply an upper-triangular Pauli mixing operation;
2 Apply a column Pauli mixing operation (independently from the first step);

We prove that the above probabilistic mixture of Procedure 3.2 and Procedure 3.3
results in Pauli mixing as in the following lemma.

Lemma 3.12. The stochastic process of applying either Procedure 3.2 with probability 2n

2n+1

or Procedure 3.3 with probability 1
2n+1

is Pauli mixing.

Proof. To simplify the presentation, assume N = 2n. First, consider the case where an
initial Pauli is in the zero row (i.e., b = 0 and the Pauli is of the form Xdae for some a 6= 0).
Then, as illustrated in Figure 3.10, if Procedure 3.2 is applied, it results in a uniform
distribution over the Paulis in the nonzero columns, and the probability for each Pauli is

1
N(N−1)

; if Procedure 3.3 is applied, it results in a uniform distribution of the Paulis in the

zero column, and the probability for each Pauli is 1
N−1

. Consider the probabilistic mixture

57

Procedure 3.3:
1 Apply H⊗n (to transpose the layout of Paulis);
2 Apply a lower-triangular Pauli mixing operation;

of the two procedures. Since N
N+1
· 1
N(N−1)

= 1
N2−1

and 1
N+1
· 1
N−1

= 1
N2−1

, it implies the
uniform distribution.

Figure 3.10: Illustration of the mixing procedure starting in the zero row (N = 2n).

Next, consider the case where an initial Pauli is not in the zero row (i.e., b 6= 0 and
the Pauli is of the form XdaeZbbc). Then, as illustrated in Figure 3.11, if Procedure 3.2 is
applied, it results in a two-level distribution of Paulis: either a uniform distribution over
the Paulis in the zero column where the probability of each Pauli is 1

N(N−1)
, or a uniform

distribution over the Paulis in the nonzero columns where the probability of each Pauli
is 1

N2 ; if Procedure 3.3 is applied, it results in a uniform distribution over the nonzero
columns, and the probability of each Pauli is 1

N(N−1)
. Consider the probabilistic mixture

of the two procedures. Since N
N+1
· 1
N(N−1)

= 1
N2−1

and N
N+1
· 1
N2 + 1

N+1
· 1
N(N−1)

= 1
N2−1

, it
also implies the uniform distribution.

3.4.3 Lower bounds for the size and depth of unitary 2-designs

Let E = {pj, Uj}kj=1 be any exact unitary 2-design on n qubits. In the following, we show
that with constant probability, the set of unitaries has circuit size Ω(n) and depth Ω(log n),

58

Figure 3.11: Illustration of the mixing procedure starting in a nonzero row (N = 2n).

assuming a universal gate set consisting of 1- and 2-qubit gates. This proof also applies
to unitary 2-designs that approximate the exact operation under Definition 3.2 or 3.3 in
terms of the diamond norm.

For the circuit size, suppose that the circuit for Uj acts nontrivially on sj qubits.

We show that
∑k

j=1 pjsj ≥ n/2, so the circuit size is at least n/2 on average. Since E
is a unitary 2-design, it implements the full bilateral twirl. Therefore, the linear map

ρ 7→
∑k

j=1 pjUjρU
†
j =

IC2n

2n
is the completely depolarizing channel on n qubits. For each

`, consider the input state |0〉〈0|C2 on the `-th qubit, and the output on this qubit is
IC2
2

.
Then, the cumulated probability of one of the unitaries Uj’s acting on this qubit is at
least 1/2. Define a matrix M with rows labeled by j = 1, . . . , k and columns labeled by
` = 1, . . . , n, and (M)j,` = pj if Uj acts nontrivially on the `-th qubit. It implies that the
sum of each column of M is at least 1/2. Also, the sum of the j-th row is sjpj. The total of

the row sums is equal to the total of column sums, and thus we have that
∑k

j=1 pjsj ≥ n/2.

Furthermore, if
∑

j:sj<n/4
pj > 2/3, then

∑k
j=1 pjsj 6≥ n/2. Therefore, with probability at

least 1/3, the circuit has size at least n/4.

For the circuit depth, consider the bilateral twirl TE on Z ⊗ I⊗n−1 ⊗ Z ⊗ I⊗n−1:

TE [Z ⊗ I⊗n−1 ⊗ Z ⊗ I⊗n−1] =
k∑
j=1

pj(Uj(Z ⊗ I⊗n−1)U †j)⊗ (Uj(Z ⊗ I⊗n−1)U †j). (3.112)

Express each Uj(Z ⊗ I⊗n−1)U †j as a linear combination of Paulis, and define tj as the
number of qubits that are acted on nontrivially by at least one of the terms in this lin-

59

ear combination of Paulis. Intuitively, tj is the number of qubits that Uj(Z ⊗ I⊗n−1)U †j
nontrivially acts on. Since each gate interacts with at most two qubits, the depth of the
circuit for Uj is at least log tj. This is because Z ⊗ I⊗n−1 nontrivially acts on only one
qubit, and conjugating by each layer of the circuit for Uj can at most double the qubits it

acts on. Now we show that for most Uj(Z⊗ I⊗n−1)U †j it holds that tj ≥ n/2. By the proof
of Lemma 3.3, we have

TE [Z ⊗ I⊗n−1 ⊗ Z ⊗ I⊗n−1] =
1

22n − 1

∑
R`∈Q(C2n)\{I}

R` ⊗R`. (3.113)

The fraction of R`’s that nontrivially act on less than n/2 qubits is equal to

4−n
bn/2c∑
`=0

(
n

`

)
3` ≤ 4−n

bn/2c∑
`=0

(
n

`

)
3n/2 ≤ 4−n · 1

2
· 2n · 3n/2 ≈ 1

2
· 0.866n. (3.114)

Therefore, we have
∑

j:tj≥n/2 pj → 1. In particular, we have
∑

j:tj≥n/2 pj ≥ 1/2, since

otherwise, the RHS of Eqns. (3.112) and (3.113) cannot be equal.

60

Chapter 4

Continuous-Time Evolution of
Markovian Open Quantum Systems

In this chapter, we study a description of the continuous-time evolution of Markovian
open quantum systems. A quantum system is closed when it has no interaction with the
environment (i.e., some external system). Consider the Hilbert space CN . The continuous-
time evolution of a closed quantum system can be described by the Schrödinger equation:

d

dt
|ψt〉 = −iH|ψt〉, (4.1)

where H ∈ L(CN), referred to as the Hamiltonian, is a Hermitian matrix. In the following,
we assume that H is time-independent. The solution to the Schrödinger equation is

|ψt〉 = e−iHt|ψ0〉, (4.2)

which is a time-dependent unitary operation. If a quantum system has interaction with
the environment, it is called an open quantum system. In this thesis, we consider a class
of open quantum systems where ρt+δ is completely determined by ρt for any δ > 0. These
open quantum systems are often referred to as Markovian open quantum systems. It should
be noted that, technically, these are open systems in an idealized sense, that assumes there
is no transfer of information from the environment back to the system (which can lead to
good approximations if the backward flow of information is very small). Markovian open
quantum system dynamics are expressed (without any reference to an environment) in
terms of dynamical semigroups that are generated by the following elegant generalization
of the Schrödinger equation

d

dt
ρt = L[ρt], (4.3)

61

where L ∈ T(CN), called the Lindbladian, is a superoperator defined as

L[ρ] = −i[H, ρ] +
m∑
j=1

(
LjρL

†
j −

1

2
L†jLjρ−

1

2
ρL†jLj

)
(4.4)

for all ρ ∈ D(CN), where H ∈ L(CN) is a Hamiltonian, L1, . . . , Lm ∈ L(CN) are linear
operators, and recall that [H, ρ] denotes the operator Hρ − ρH. Eq. (4.4) is called the
Lindblad equation. The solution to the Lindblad equation is

ρt = eLt[ρ0], (4.5)

which is a time-dependent quantum channel (again, assuming that H,L1, . . . , Lm are time-
independent). Note that in the special case where L1 = · · · = Lm = 0, Eqns. (4.3) and
(4.4) become d

dt
ρ = −i[H, ρ], which is equivalent to the Schrödinger equation.

Hamiltonian evolution can be viewed as a semigroup of unitaries {Ut ∈ U(CN) : t ≥ 0}
generated by H in the sense that Ut = e−iHt. Similarly, Lindblad evolution can be viewed
as a semigroup of quantum channels {Mt ∈ C(CN) : t ≥ 0} generated by L in the sense
that Mt = eLt.

In the remainder of this chapter, we first show a derivation of Lindblad equation and
then present some examples of Lindblad evolution. Finally, we show that Lindblad evo-
lution can be simulated as Hamiltonian evolution in a larger Hilbert space, and we prove
a lower bound for these simulation methods. In this chapter, Sections 4.1 and 4.2 con-
tain introductory material. In Section 4.3, Theorem 4.1 is based on [CW17]; however,
Theorem 4.3 is not previously published.

4.1 Macroscopic derivation of the Lindblad equation

There exist microscopic derivations of the Lindblad equation based on the Schrödinger
equation in a larger Hilbert space and imposing the Born-Markov approximation and the
weak-coupling limit, for example, in [BP07]. In this section, we present a macroscopic
derivation of the Lindblad equation, which is closely connected to the Kraus operators of
quantum channels. This derivation is based on Preskill’s lecture notes [Pre, Chapter 3].

The goal is to obtain an expression of the following linear map:

d

dt
ρt = L[ρt]. (4.6)

62

The definition of the derivative implies that

lim
δ→0

ρt+δ − ρt
δ

= L[ρt], (4.7)

which implies that, after small time δ, the state ρt evolves to

ρt+δ = ρt + δL[ρt] + o(δ), (4.8)

where the error o(δ) is with respect to the trace norm. In the following, we derive an
expression of L by looking at the Kraus operators of the linear map that is an approximation
of the above equation (by omitting the o(δ) term).

To begin with, let us consider the following Kraus representation:

ρt+δ =
m+1∑
j=0

EjρtE
†
j , (4.9)

where E0, . . . , Em ∈ L(CN) are linear operators. The linear map specified in Eq. (4.8)
suggests that one of the Kraus operators can be in the form of I + O(δ) (with respect
to the spectral norm) and the spectral norms of the others Kraus operators are in the
order of O(

√
δ). In the following, we argue that any Kraus representation for Eq. (4.8)

can be converted to this form. First consider a general Kraus representation with m Kraus
operators {F0, . . . , Fm−1}. We express Fj as a polynomial in

√
δ:

Fj = Fj0 +
√
δFj1 + δFj2, (4.10)

and we have

FjρF
†
j = Fj0ρF

†
j0 +
√
δ(Fj0ρF

†
j1 + Fj1ρF

†
j0) + δ(Fj1ρF

†
j1 + Fj0ρF

†
j2 + Fj2ρF

†
j0). (4.11)

Compare the above equation to Eq. (4.8), we have

m−1∑
j=0

Fj0ρF
†
j0 = ρ. (4.12)

By [NC00, Theorem 8.2], there exist α0, . . . , αm−1 ∈ C such that

Fj0 = αjI, (4.13)

63

for all j ∈ {0, . . . ,m− 1}. Moreover, it holds that
∑m−1

j=0 |αj|2 = 1. Invoking [NC00, Theo-
rem 8.2] again, this Kraus representation can be converted to another Kraus representation
with Kraus operators {E0, . . . , Em−1} such that

E00 = I and (4.14)

Ej0 = 0 for all j ∈ {1, . . . ,m− 1}. (4.15)

Now, Eq (4.11) can be rewritten as

E0ρE
†
0 = ρ+

√
δ(ρE†01 + E01ρ) + δ(E01ρE

†
01 + ρE†02 + E02ρ), and (4.16)

EjρE
†
j = δ(Ej1ρE

†
j1) for all j ∈ {1, . . . ,m− 1}. (4.17)

Comparing the above two equations to Eq. (4.8), we have that

ρE†01 + E01ρ = 0, (4.18)

for all ρ ∈ D(CN). There are two cases for the above equation to hold. First, E01 = 0 and
we are done. Second, E01 = αiI for some nonzero α ∈ R. In this case, the action of the
Kraus operator E0 = I +

√
δαiI is equivalent to the action of two Kraus operators I and

α
√
δI.

Therefore, let L0, . . . , Lm ∈ L(CN) arbitrary linear operators acting on CN , and we
write

E0 = I + δL0, (4.19)

Ej =
√
δLj, for j ∈ {1, . . . ,m}. (4.20)

It is fruitful to write L0 in the form L0 = −iH +K for Hermitian operators H and K. We
can determine K by the normalization condition for Kraus operators. In fact, we have

I =
m∑
j=0

E†jEj (4.21)

= (I + δ(iH +K))(I + δ(−iH +K)) +
m∑
j=1

δL†jLj (4.22)

= I + δ(2K +
m∑
j=1

L†jLj) +O(δ2). (4.23)

64

This implies that

K = −1

2

m∑
j=1

L†jLj +O(δ). (4.24)

The big-O notations in the above equations are with respect to the spectral norm. Then
Eq. (4.19) can be written as

E0 = I + δ

(
−iH − 1

2

m∑
j=1

L†jLj

)
+O(δ2). (4.25)

Now we are ready to derive the Lindblad equation. Consider the expressions of ρt+δ in
Eq. (4.8), and the Kraus operators in the form of Eqns. (4.20) and (4.25). We have

ρt+δ =
m∑
j=0

EjρtE
†
j (4.26)

= ρt + δ

(
−i[H, ρt] +

m∑
j=1

(
LjρtL

†
j −

1

2
L†jLjρt −

1

2
ρtL

†
jLj

))
+O(δ2). (4.27)

It follows that

d

dt
ρt = lim

δ→0

ρt+δ − ρt
δ

= −i[H, ρt] +
m∑
j=1

(
LjρtL

†
j −

1

2
L†jLjρt −

1

2
ρtL

†
jLj

)
, (4.28)

for all t ≥ 0. This is the Lindblad equation as in Eq. (4.4)

The first term of the Lindblad equation, d
dt
ρ0 = −i[H, ρ0], is a generalization of the

Schrödinger equation to apply to density operators, and it describes the unitary part of
the Lindblad evolution. Intuitively, the other terms correspond to the interaction with the
environment. Each Lj is called a jump operator or a Lindblad operator. The LjρL

†
j terms

can be interpreted as one of the possible jumps. The −1
2
L†jLjρ − 1

2
ρL†jLj terms can be

interpreted as the (non-unitary) evolution when no jump occurs.

The Lindblad equation can be viewed as an idealization of the frequently occurring
physical scenario where a quantum system evolves jointly with a large external environ-
ment in a manner where information dissipates from the system into the environment. In
quantum information theoretic terms, Lindblad evolution is a continuous-time process that,
for any evolution time, is a quantum channel. Moreover, Lindblad evolution is Markovian
in the sense that, for any δ > 0, the state at time t+ δ is a function of the state at time t
alone (i.e., is independent of the state before time t).

65

4.2 Examples of Lindblad evolution

In this section, we present the Lindblad evolution for three quantum channels: the depo-
larizing channel, the phase damping channel, and the amplitude damping channel.

The depolarizing channel can be used to model a system that undergoes some noisy
process. It can be described as the following process. With probability 1 − p, the state
remains the same; with probability p, one of the three errors will occur with equal prob-
ability: the bit flip error (applying X gate), the phase flip error (applying Z gate), and
both bit flip error and phase flip error (applying Y gate). This quantum channel can be
described by the Kraus representation:

ρ 7→ (1− p)ρ+
p

3
XρX +

p

3
Y ρY +

p

3
ZρZ, (4.29)

for all ρ ∈ D(C2). It has four Kraus operators,
√

1− pI,
√
p/3X,

√
p/3Y , and

√
p/3Z.

When p→ 0, repeatedly applying this quantum channel yields a continuous-time pro-
cess, which we call the depolarizing process, and it can be described by the Lindblad
evolution. Following the steps in Section 4.1 (setting δ = p), we obtain the Lindblad
operators L1 = X/

√
3, L2 = Y/

√
3, and L3 = Z/

√
3, and the Lindblad equation of the

depolarizing process can be written as

d

dt
ρ =

3∑
j=1

(
LjρL

†
j −

1

2
L†jLjρ−

1

2
ρL†jLj

)
=

1

3
(XρX† + Y ρY † + ZρZ†)− ρ. (4.30)

The phase damping channel (a.k.a. the dephasing channel) can be used to model a
system that is probabilistically losing coherence (its density operator becomes diagonal):
with probability 1−p, the state remains intact; with probability p, the state loses coherence
(as an effect of measurement). This process can be described by the Kraus representation:

ρ 7→ (1− p)ρ+ pA1ρA
†
1 + pA2ρA

†
2, (4.31)

where A1 =
(

1 0
0 0

)
and A2 =

(
0 0
0 1

)
.

Similarly, when p→ 0, repeatedly applying this quantum channel yields a continuous-
time process, which we call the phase damping process. It can be described by a Lindblad
equation. Following the steps in Section 4.1 (setting δ = p), we obtain the Lindblad
equation for the phase damping process as:

d

dt
ρ =

2∑
j=1

(
LjρL

†
j −

1

2
L†jLjρ−

1

2
ρL†jLj

)
, (4.32)

66

where L1 =
(

1 0
0 0

)
and L2 =

(
0 0
0 1

)
.

The amplitude damping channel can be used to model a physical process called “spon-
taneous emission” (where a system transitions from a higher energy state to a lower energy
state and emits a photon). In this thesis, we focus on its information-theoretical point
of view and computational applications. This channel can be described by the Kraus
representation:

ρ 7→ A1ρA
†
1 + A2ρA

†
2, (4.33)

where A1 =
(

1 0
0
√

1−p
)

and A2 =
(

0
√
p

0 0

)
are the Kraus operators1.

Again, when p→ 0, repeatedly applying this quantum channel yields a continuous-time
process, which we call the amplitude damping process. It can be described by a Lindblad
equation. Following the steps in Section 4.1 (setting δ = p), we obtain the Lindblad
equation for the phase damping process as:

d

dt
ρ = LρL† − 1

2
L†Lρ− 1

2
ρL†L, (4.34)

where L =
(

0 1
0 0

)
.

Note that the depolarizing channel defined in Eq. (4.29) is a mixed unitary channel : it
can be written as a probability distribution of unitary operations. The amplitude damp-
ing channel defined in Eq. (4.33) is not unital2, and thus is not a mixed unitary chan-
nel. Actually, it cannot be written as any linear combination of other quantum chan-
nels. To see why this is so, first observe that for A1 and A2 defined in Eq. (4.33), the
set {A†1A1, A

†
1A2, A

†
2A1, A

†
2A2} is linearly independent. Then, the statement follows from

[Wat18, Theorem 2.31]. Such quantum channels are called extremal channels.

4.3 Lower-bound of simulation as Hamiltonian evolu-

tion in a larger Hilbert space

Lindblad evolution can be intuitively thought of as Hamiltonian evolution in a larger system
that includes an ancilla register, but where the ancilla register is being continually reset

1In Chapter 6, we use another form of Kraus operators
(
1 0
0 e−λ/2

)
and

(
0
√

1−e−λ
0 0

)
for the amplitude

damping channel. Note that these two forms of Kraus operators are equivalent by setting p = 1− e−λ. In
particular, when λ→ 0, λ ≈ 1− e−λ.

2A linear map M∈ T(CN ,CM) is unital if M[ICN] = ICM .

67

to its initial state. To make this more precise, consider a time interval [0, t], and divide it
into N subintervals of length δ = t

N
each. At the beginning of each subinterval, reset the

state of the ancilla register to its initial state, and then let the joint system-ancilla evolve
under a Hamiltonian J and the system itself evolve under H. Let the evolution time for
J be

√
δ =

√
t/N and the evolution time for H be δ = t/N . This process, illustrated in

Figure 4.1, converges to the true Lindblad evolution as N approaches ∞. For the specific
evolution described by Eq. (4.4), it suffices to set the ancilla register to Cm+1 (with initial
state |0〉) and the Hamiltonian J to the block matrix

J =


0 L†1 · · · L†m
L1 0 · · · 0
...

...
. . .

...
Lm 0 · · · 0

 . (4.35)

|0〉

e−iJ
√
δ

trace
|0〉

e−iJ
√
δ

trace
|0〉

e−iJ
√
δ

trace
out out out...

...
...

...
...

...

. . .

|ψ〉 e−iHδ e−iHδ

. . .

e−iHδ
. . .

...
...

...
...

...
...

.... . .












Figure 4.1: Lindblad evolution for time t approximated by unitary operations. There are
N iterations and δ = t/N . This converges to Lindblad evolution as N →∞.

A remarkable property of this way of representing Lindblad evolution is that the rate
at which the Hamiltonian J evolves is effectively infinite: Lindblad evolution for time t/N
is simulated by a process that includes evolution by J for time

√
t/N , so the rate of the

evolution scales as √
t/N

t/N
=

√
N

t
, (4.36)

which diverges as N → ∞. Moreover, the total Hamiltonian evolution time of J in Fig-
ure 4.1 is N

√
t/N =

√
Nt, which also diverges. We are interested in whether much more

efficient simulations of Lindblad evolution are possible, such as O(t polylog(t/ε)). This
problem is addressed in Chapter 5.

In the following, we prove that, in general, the above scaling phenomenon is necessary
for simulating time-independent Lindblad evolution in terms of time-independent Hamil-
tonian evolution along the lines of the overall structure of Figure 4.1. In this sense, exact

68

Lindblad evolution for finite time does not directly correspond to Hamiltonian evolution
for any finite time. On the other hand, it can be shown that if the scaling of N is at least
t2/ε then the final state is an approximation within ε. Note that then the corresponding
total evolution time for J scales as

√
(t2/ε)t = t1.5/

√
ε. Therefore, quantum algorithms

that simulate Lindblad evolution by first applying the above reduction to Hamiltonian evo-
lution and then efficiently simulating the Hamiltonian evolution are likely to incur scaling
that is at least t1.5/

√
ε.

Let L ∈ T(C2n) be a Lindbladian acting on n qubits over a time interval [0, T]. For each
initial state, L associates a trajectory, consisting of a density operator ρt for all t ∈ [0, T].
Here we show that if this is simulated by Hamiltonian evolution in a larger system with an
ancilla register that is continually reset (expressed as a limiting case when N →∞ in the
process illustrated in Figure 4.2) then the total evolution time for this Hamiltonian can be
necessarily infinite.

|0〉

e−iHδ

trace
|0〉

e−iHδ

trace
|0〉

e−iHδ

trace
out out out...

...
...

...
...

...

. . .

|ψ〉
. . .
. . .

...
...

...
...

...
...

.... . .












Figure 4.2: N -stage ε-precision discretization of the trajectory resulting from L. For each
k ∈ {1, . . . , N}, after k stages, the channel should be within ε of exp

(
kT
N
L
)
.

Definition 4.1. Define an N -stage ε-precision discretization of L for interval [0, T] as an
ancilla register (Hilbert space CM), referred to as E, a Hamiltonian H acting on the joint
system CM ⊗ C2n, and δ ≥ 0 such that the channel NHδ, defined as

NHδ[ρ] = TrE

[
e−iHδ(|0〉〈0| ⊗ ρ)eiHδ

]
(4.37)

for all ρ ∈ D(C2n), has the following property. NHδ approximates evolution under L in the
sense that, for each k ∈ {1, . . . , N},∥∥(NHδ)k − exp

(
kT
N
L
)∥∥
� ≤ ε. (4.38)

That is, the N points generated by NHδ, (NHδ)2, . . . , (NHδ)N approximate the corresponding
points on the trajectory determined by L.

69

Our lower bound is for the amplitude damping process on C2 which is the time-evolution
described by the Lindbladian L, where

L[ρ] = LρL† − 1
2
(L†Lρ+ ρL†L), (4.39)

and L =

(
0 1
0 0

)
.

Theorem 4.1. Any 1
4
-precision N-stage discretization of the amplitude damping process

over the time interval [0, ln 2] has the property that the total evolution time t of H satisfies
t‖H‖ ∈ Ω(

√
N). (Note that this lower bound is independent of the dimension of the

ancillary system.)

Although the above theorem is stated specifically for the amplitude damping process,
one can prove similar results for many other Lindblad processes.

To prove Theorem 4.1, we first prove the following Local Hamiltonian Approximation
lemma. This concerns a scenario where H is a Hamiltonian acting on a joint system of
two registers, a system register (the Hilbert space C2n) and an ancilla register (the Hilbert
space CM) referred to as E, and where E is traced out after this evolution. Informally, the
lemma states that, if the initial state is a product state and the evolution time is short,
then this process can be approximated by the evolution of another Hamiltonian G that
acts on C2n alone. This is illustrated in Figure 4.3.

|0〉
e−iHδ

trace out
≈

input output

|0〉 trace out

input e−iGδ output

Figure 4.3: The Local Hamiltonian Approximation lemma. The first register is M -
dimensional, the second register contains n qubits, and the approximation is within O(δ2)
(independent of M and n).

Lemma 4.2 (Local Hamiltonian Approximation). Consider a joint system CM ⊗C2n. We
refer to the first register CM as E. Let H ∈ L(CM ⊗ C2n) be a Hamiltonian. Define the
quantum channel NHδ ∈ C(C2n) as

NHδ[ρ] = TrE

[
e−iHδ(|0〉〈0| ⊗ ρ)eiHδ

]
. (4.40)

70

Then there exists a Hamiltonian G ∈ L(C2n) (with ‖G‖ ≤ ‖H‖), such that NGδ ∈ C(C2n)
defined as

NGδ[ρ] = e−iGδρ eiGδ (4.41)

satisfies ‖NHδ −NGδ‖1 ∈ O(δ2‖H‖2).

Proof. Viewing H as a d× d block matrix (where d = 2n), we have

H =
d−1∑
j=0

d−1∑
k=0

|j〉〈k| ⊗Hjk (4.42)

and we refer to Hjk as the (j, k)-block. Define D as the diagonal blocks of H, namely

D =
d−1∑
j=0

|j〉〈j| ⊗Hjj, (4.43)

and set J = H − D (the off-diagonal blocks). Note that ‖D‖ ≤ ‖H‖ , ‖J‖ ≤ 2 ‖H‖, and
‖e−iHδ − e−iDδe−iJδ‖ ≤ δ2‖H‖2, for δ > 0, which permits us to consider the effect of J and
D separately.

Now consider the state e−iJδ(|0〉 ⊗ |ψ〉). We will show that, if the measurement corre-
sponding to projectors |0〉〈0| and I − |0〉〈0| is performed on E, then the residual state has
trace distance O(δ2) from |0〉 ⊗ |ψ〉. Since the (0, 0)-block of J is 0,

Jδ (|0〉 ⊗ |ψ〉) = ‖J‖δ′|Ψ⊥〉, (4.44)

where |Ψ⊥〉 is a state such that (|0〉〈0| ⊗ I)|Ψ⊥〉 = 0 and 0 ≤ δ′ ≤ δ. Therefore,

e−iJδ(|0〉 ⊗ |ψ〉) =
∞∑
r=0

(−iJδ)r

r!
(|0〉 ⊗ |ψ〉) (4.45)

= |0〉 ⊗ |ψ〉 − i‖J‖δ′|Ψ⊥〉+ δ′′|Φ〉, (4.46)

where 0 ≤ δ′′ ≤ eδ‖J‖ − 1 − δ‖J‖ ∈ O(δ2‖J‖2). It follows that, if the above measurement
is performed on register E, then the probability of measurement outcome corresponding
to I − |0〉〈0| is at most (δ′‖J‖)2 + (δ′′)2 ∈ O(δ2‖J‖2) ∈ O(δ2‖H‖2). This implies that the
state after E is traced out from e−iJδ(|0〉 ⊗ |ψ〉), namely

TrE

[
e−iJδ(|0〉〈0| ⊗ |ψ〉〈ψ|)eiJδ

]
, (4.47)

71

has trace distance O(δ2‖H‖2) from the original state |ψ〉〈ψ|.

Therefore, for states of the form |0〉⊗ |ψ〉, the operation e−iHδ can be approximated by
e−iDδ at the cost of an error of O(δ2‖H‖2) in trace distance. The result follows by setting
G = H00 (the (0, 0)-block of D).

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. It is straightforward to check that, starting with the initial state
|1〉〈1| and evolving by the amplitude process for time T = ln 2 produces the maximally
mixed state.

Consider any 1
4
-precision N -stage discretization of this process, with Hamiltonian H

and δ > 0. We can apply the Local Hamiltonian Approximation lemma (Lemma 4.2) to
approximate each of the N evolutions of H with evolution by a Hamiltonian G that is
local to the register C2n . The result is unitary evolution on C2n that approximates the
amplitude damping process within trace distance error at most O(Nδ2‖H‖2).

Unitary evolution applied to |1〉〈1| results in a pure state, and the trace distance between
any pure state and the maximally mixed state is 1

2
. Therefore, to avoid a contradiction, we

must have Nδ2‖H‖2 ∈ Ω(1), which implies that δ ∈ Ω
(

1√
N‖H‖

)
. Thus, the total evolution

time of H is t = Nδ ∈ Ω(
√
N/‖H‖), and we conclude that t‖H‖ ∈ Ω(

√
N).

Note that TrE[e−iHt(|0〉〈0| ⊗ ρ)eiHt] defines a continuous-time output for all t ≥ 0. It is
natural to consider a simulation of L by a Hamiltonian H in a larger Hilbert space such
that this continuous-time output is always close to eLt[ρ] for all t ≥ 0. We refer to this
type of simulation as the trajectory simulation of L. More precisely, we have the following
definition.

Definition 4.2. A Hamiltonian H is an ε-precision trajectory simulation of a Lindbladian
L for time interval [0, T], if for any state ρ and t ∈ [0, T], it holds that∥∥TrE

[
e−iHt(|0〉〈0| ⊗ ρ)eiHt

]
− eLt[ρ]

∥∥
1
≤ ε. (4.48)

A lower bound corresponding to the trajectory simulation is given by the following
theorem.

Theorem 4.3. Any ε-precision trajectory simulation H of the amplitude damping process
for time interval [0, T] for any T ≥ ln 2 has the property that ‖H‖ ∈ Ω(

√
1/ε).

72

Again, the above theorem is stated specifically for the amplitude damping process, but
one can prove similar results for many other Lindblad processes.

Proof of Theorem 4.3. Let N be the smallest power of 2 that is larger than 1
8ε

. We have
1
8ε
≤ N ≤ 1

4ε
. Given ε, let H be an ε-precision trajectory simulation for the amplitude

damping process for time interval [0, T], as shown in Figure 4.4.

trace
out

Figure 4.4: A demonstration of a trajectory simulation H of some Lindbladian L.

Note that by Definition 4.2, H is also an ε-precision trajectory simulation for the
amplitude damping process for the subinterval [0, ln 2]. This trajectory simulation process
for time interval [0, ln 2] can be approximated by a 2-stage discretization as shown in
Figure 4.5, where the evolution time for each piece is ln 2/2. In Figure 4.5, the state at 1
is

TrE
[
e−iH ln 2/2(|0〉〈0| ⊗ ρ)eiH ln 2/2

]
. (4.49)

trace
out

trace
out

① ②

Figure 4.5: Approximating a trajectory simulation H as two stages.

By Definition 4.2, the trace distance between this state and eL ln 2/2[ρ] is at most ε. Then,
at 2 , the accumulated error is bounded by 2ε. Continue this approximation recursively
until there are N = 1

4ε
pieces, where the evolution time for each piece is at most ln 2/N ,

as shown in Figure 4.6. By Definition 4.2, the error for each piece is at most ε. It follows

73

that the accumulated approximation error is upper-bounded by εN ≤ ε · 1
4ε

= 1
4
, and the

total evolution time is ln 2. This is a 1
4
-precision N -stage approximation of the amplitude

damping process. By Theorem 4.1, ‖H‖ ln 2 ∈ Ω(
√
N) ∈ Ω(

√
1/ε), and therefore ‖H‖ ∈

Ω(
√

1/ε).

trace
out

trace
out

trace
out

Figure 4.6: Approximating a trajectory simulation H as a 1
4
-precision N -stage discretiza-

tion (N = 1
4ε

).

74

Chapter 5

Quantum Algorithms for Simulating
Markovian Open Quantum Systems

The dynamics of Markovian open quantum systems is captured by Lindblad evolution,
which is discussed in Chapter 4. In the problem of simulating a Lindbladian L for time
t, the objective is to build quantum circuits to simulate the quantum channel eLt with
small error. This problem is briefly discussed in Section 1.2, and a lower bound is given
in Section 4.3 if this Lindblad evolution is simulated as Hamiltonian evolution in a larger
Hilbert space. In this chapter, we give more efficient quantum algorithms for simulating
Lindblad evolution. This chapter is based on [CW17] (not including the appendix, whose
content is in the previous chapter).

5.1 Previous work and main results

5.1.1 Previous work

As presented in Section 4.1, Hamiltonian evolution is the special case of Lindblad evolution
where Lj = 0 for all j. Feynman [Fey82] proposed the Hamiltonian simulation problem
as a motivation for building quantum computers. Since then, the problem has received
considerable attention [ATS03, BCC+15, BCC+17, BCK15, BCG14, BN16, Chi04, Kot14,
Llo96, LC17, PP17]. A series of recent algorithms has been discovered that achieve a
scaling that is O(t polylog(t/ε)poly(n)), thereby outperforming what can be accomplished
by the longstanding Trotter-Suzuki methods [Suz91].

75

The problem of simulating Lindblad evolution, which is the natural generalization from
closed systems to Markovian open systems has received much less attention. Kliesch et
al. [KBG+11] gave a quantum algorithm for simulating Lindblad evolution in the case
where each of H, L1, . . . , Lm can be expressed as a sum of local operators (i.e., acting on
a constant number of qubits). The cost of this algorithm with respect to t and ε (omitting
factors of poly(n) and poly(m)) is O(t2/ε). Recently, Childs and Li [CL17] improved this
to O(t1.5/

√
ε) and also gave an O((t2/ε) polylog(t/ε)) query algorithm for the case where

each of H and L1, . . . , Lm is sparse and represented in terms of an oracle (i.e., a black-box
that accepts a row index j and an integer k, and outputs the position and value of the k-th
nonzero entry on row j of a matrix). Another result in [CL17] is an Ω(t) lower bound for
the query complexity for time t when H = 0 and m = 1.

To the best of our knowledge, none of the previous algorithms for simulating Lindblad
evolution has cost O(t polylog(t/ε)poly(m,n)), which is the performance of the algorithm
presented in this chapter.

Note that there are simulation algorithms that solve related problems, for example, in
[CPdC+15], where the final state is not produced; instead, it simulates the expectation of
an observable applied to the final state. There are also interesting classical algorithmic
techniques for simulating Lindblad evolution that are feasible when the dimension of the
Hilbert space (which is 2n for n qubits) is not too large. In the classical setting, since the
state is known (and stored) explicitly, some “unravellings” of the process (that are state-
dependent in general) can be simulated. For example, the random variable corresponding
to “the next jump time” (which is highly state-dependent) can be simulated. In the context
of quantum algorithms, the current state (even the input state) is unknown and cannot be
measured without affecting it.

5.1.2 Main results

Evolution under Eq. (4.4) for time t corresponds to the linear map eLt (which is a quantum
channel for any t ≥ 0).

Each of the operators H,L1, . . . , Lm ∈ L(C2n) corresponds to a 2n × 2n matrix. The
simulation algorithm is based on a succinct specification of these matrices. Our succinct

76

specification is as a linear combination of q Paulis, defined as

H =

q−1∑
k=0

β0kV0k (5.1)

Lj =

q−1∑
k=0

βjkVjk, (5.2)

where, for each j ∈ {0, . . . ,m} and k ∈ {0, . . . , q − 1}, Vjk is an n-fold tensor product of
Paulis (I, X, Y , Z) and a scalar phase eiθ (θ ∈ [0, 2π]), and βjk ≥ 0.

In the evolution eLt, it is possible to scale up L by some factor while reducing t by the
same factor, i.e., eLt[ρ] = e(cL) t

c [ρ] for any c > 0, where cL denotes the linear map obtained
from L with H multiplied by c and each Lj multiplied by

√
c. This reduces the simulation

time but transfers the cost into the magnitude of L. To normalize this cost, we define a
norm based on the specification of L.

Define the norm of a specification of a Lindbladian L as a linear product of Paulis as

‖L‖pauli =

q−1∑
k=0

β0k +
m∑
j=1

(q−1∑
k=0

βjk

)2

. (5.3)

For simplicity we use the terminology ‖L‖pauli even though the quantity is not directly a
function of the linear map L. However, ‖cL‖pauli = c‖L‖pauli if cL denotes the expression
in Eq. (4.4) with the factor c multiplied through.

Our main result is the following theorem.

Theorem 5.1. Let L be a Lindbladian presented as a linear combination of q Paulis.
Then, for any t > 0 and ε > 0, there exists a quantum circuit of size

O

(
m2q2τ

(log(mqτ/ε) + n) log(τ/ε)

log log(τ/ε)

)
(5.4)

that implements a quantum channel N , such that
∥∥N − eLt∥∥� ≤ ε,where τ = t ‖L‖pauli and

m is the number of jump operators in L.

Remarks:

1. The proof of Theorem 5.1 is in Section 5.4. A main novel ingredient of the proof is
Lemma 5.3, concerning a variant of the “linear combination of unitaries” construction
that is suitable for quantum channels (explained in Sections 5.2 and 5.3).

77

2. The factor ‖L‖pauli corresponding to the coefficients of the specification as a linear
combination of Paulis is a natural generalization to the case of Lindbladians of a
similar factor for Hamiltonians that appears in [BCC+15].

3. When m, q ∈ poly(n), the gate complexity in Theorem 5.1 simplifies to

O

(
τ

log(τ/ε)2

log log(τ/ε)
poly(n)

)
. (5.5)

4. A Lindbladian L is local if

H =
m′∑
j=1

Hj, (5.6)

where H1, . . . , Hm′ and also L1, . . . , Lm are local (i.e., they each act on a constant
number of qubits). A local specification of L is as H1, . . . , Hm′ , L1, . . . , Lm and we
define its norm as

‖L‖local =
m′∑
j=1

‖Hj‖+
m∑
j=1

‖Lj‖2. (5.7)

For local Lindbladians, Theorem 5.1 reduces to the following.

Corollary 5.2. If L is a local Lindbladian then the gate complexity for simulating
eLt with precision ε is

O

(
(m+m′)2 τ

log((m+m′)τ/ε) log(τ/ε)

log log(τ/ε)

)
, (5.8)

where τ = t ‖L‖local.

5. We also consider sparse Lindbladians (see [CL17] for various definitions, extending
definitions and specifications of sparse Hamiltonians [ATS03]). Here, we define a
Lindbladian to have d-sparse operators if H,L1, . . . , Lm each have at most d nonzero
entries in each row/column. A sparse specification of such a Lindbladian L is as
a black-box that provides the positions and values of the nonzero entries of each
row/column of H,L1, . . . , Lm via queries.

78

Define the norm of any specification of a Lindbladian in terms of the norm of operators
H,L1, . . . , Lm as

‖L‖ops = ‖H‖+
m∑
j=1

‖Lj‖2. (5.9)

The query complexity and gate complexity for simulating d-sparse Lindbladians L
are

O (τ polylog(mqτ/ε)poly(d, n)) , (5.10)

where τ = t‖L‖ops. We sketch the analysis in Section 5.5.

6. We expect some of the methodologies in [BCC+15, BCK15, LC17, PP17] to be adapt-
able to the Lindblad evolution simulation problem (in conjunction with our variant
of the LCU construction and oblivious amplitude amplification), but have not inves-
tigated this.

5.2 Novel techniques

As noted in Section 5.1, for the Hamiltonian simulation problem, several recent meth-
ods have achieved the scaling that is O(t polylog(1/ε) poly(n)) which improve on what
has been accomplished using the longstanding Trotter-Suzuki decomposition [Suz91]. One
of the main tools of these algorithms is a remarkable circuit construction to implement
certain unitary operators (or near-unitary operators) that can be decomposed into a lin-
ear combination of unitaries. We refer to this construction as the standard LCU method
[BCC+15, Kot14]. For a unitary V that is a linear combination of unitaries as V =
α0U0 + · · ·+αm−1Um−1, the standard LCU method is a circuit construction W (consisting
of the implementations of U0, . . . , Um−1) that performs the following mapping:

W |0〉|ψ〉 =
√
pV |ψ〉+

√
1− p|Φ⊥〉, (5.11)

where |Φ⊥〉 is some state such that (|0〉〈0| ⊗ I)|Φ⊥〉 = 0 and

p =
1(∑m−1

j=0 αj

)2 (5.12)

79

is the success probability (that arises if the first register is measured).

Another technique used in previous Hamiltonian simulation algorithms is oblivious
amplitude amplification for unitaries (introduced in [BCC+15] and originally inspired
by [MW05]), which is a generalization of amplitude amplification for unitaries [BH97,
BHMT02]. Suppose a unitary V produces the desired state |ψ〉 with probability p in the
following sense

V |0〉 =
√
p|ψ〉+

√
1− p|Φ⊥〉, (5.13)

where |Φ⊥〉 is some state that is orthogonal to |ψ〉. Amplitude amplification for unitaries
can be viewed as a generalization of Grover’s algorithm [Gro96] in the sense that when
the reflection about |ψ〉 (i.e., 2|ψ〉〈ψ| − I) and the reflection about the input state (i.e.,
2|0〉〈0|−I) are available, only O(

√
1/p) applications of V is sufficient to obtain the desired

state |ψ〉 with almost certainty. In a more general case, the reflection about the input
state is unavailable. Then the technique of oblivious amplitude amplification for unitaries
can be applied to boost the success probability with the same performance as amplitude
amplification for unitaries.

In the remainder of this section, we first demonstrate that the standard LCU method
performs poorly on Stinespring dilations. Then, we briefly summarize the two novel tech-
niques, namely, LCU for channels, and oblivious amplitude amplification for isometries.

5.2.1 The performance of the standard LCU method on Stine-
spring dilations

For the case of Lindblad evolution, the operations that arise are quantum channels that are
not generally unitary. One method to implement a quantum channel is to consider a larger
Hilbert space by Stinespring dilations and use the standard LCU method to implement
the evolution in the larger Hilbert space. In this subsection, we show in some technical
detail why the standard LCU method performs poorly for Stinespring dilations of quantum
channels.

Let us consider the amplitude damping channel defined by Eq. (4.33), whose two Kraus
operators have the following LCU decompositions:

E0 =

(
1 0

0
√

1− δ

)
= α00

(
1 0
0 1

)
+ α01

(
1 0
0 −1

)
(5.14)

E1 =

(
0
√
δ

0 0

)
= α10

(
0 1
1 0

)
+ α11

(
0 1
−1 0

)
, (5.15)

80

where α00 = 1+
√

1−δ
2

, α01 = 1−
√

1−δ
2

, and α10 = α11 =
√
δ

2
. Evolving the amplitude damping

process defined by Eq. (4.34) for time t yields this quantum channel with δ = 1 − e−t.
When t� 1, we have δ ≈ t, α00 ≈ 1− t/4, and α10 ≈ t/4.

A Stinespring dilation of this quantum channel (denoted by V) and its LCU decompo-
sition can be derived from the above LCU decompositions of E0 and E1 as

V =


1 0 0 0

0
√

1− δ −
√
δ 0

0
√
δ

√
1− δ 0

0 0 0 1

 = α00


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ α01


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (5.16)

+ α10


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

+ α11


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 . (5.17)

Applying the standard LCU method and using Eq. (5.12) , the success probability is

1

(α00 + α01 + α10 + α11)2
=

1

(1 +
√
δ)2

= 1− 2
√
δ + Θ(δ). (5.18)

It implies that for small time evolution t, the failure probability is Θ(
√
t), which is pro-

hibitively expensive: the process can be repeated at most Θ(1/
√
t) times until the cumu-

lative failure probability becomes a constant. This process corresponds to the amplitude
damping process of total evolution time

Θ

(
1√
t

)
· t = Θ(

√
t), (5.19)

which is subconstant as t→ 0. This causes a problem in the general Lindblad simulation.

5.2.2 Brief summary of novel techniques

Some quantum channels are mixed unitary channels, which means they can be expressed
as a probability distribution of unitary operations (e.g., with probability p0, . . . , pm−1 on
unitaries U0, . . . , Um−1). To simulate such channels, one can first randomly sample j ∈
{0, . . . ,m − 1} and then apply the standard LCU method to each unitary Uj. However,
there are quantum channels that are not mixed unitary – and such channels can arise from
the Lindblad evolution, such as the amplitude damping process we examined in Section 4.2.

81

As demonstrated in Subsection 5.2.1, a simple reductionist approach, namely, express-
ing these quantum channels in the Stinespring form and then applying the standard LCU
method in the larger Hilbert space, performs poorly. Instead, we take a different approach
that does not involve a reduction to the unitary case: we develop a new variant of the LCU
method for channels. Using this new LCU method, to implement the amplitude damping
process with the Kraus operators specified in Eqns. (5.14) and (5.15), a higher success
probability

1

(α00 + α01)2 + (α10 + α11)2
=

1

1 + δ
= 1− δ + Θ(δ2) (5.20)

can be achieved compared to the success probability in Eq. (5.18). For small time evolution
t, the failure probability is Θ(t). Now, the process can be repeated Θ(1/t) times until the
cumulative failure probability becomes a constant. This implementation corresponds to
the amplitude damping process of total evolution time

Θ

(
1

t

)
· t = Θ(1), (5.21)

which is constant as t→ 0. This is consistent with the algorithms of simulating Hamilto-
nian evolution in [BCC+15, BCC+17]. Therefore the methodologies used therein can be
used with various adjustments to obtain the similar simulation bounds.

Another new technique that we employ is an oblivious amplitude amplification algo-
rithm for isometries (as opposed to unitaries), which is noteworthy because a reductionist
approach based on extending isometries to unitaries does not work. Intuitively, this is
because the new LCU construction for channels turns out to produce an isometry that
corresponds to a purification of the quantum channel, and it does not produce a unitary
extension of that isometry.

5.3 New LCU method for channels and completely

positive maps

Let A0, . . . , Am−1 ∈ L(C2n) be the Kraus operators of a quantum channel. Suppose that,
for each j ∈ {0, . . . ,m − 1}, we have a decomposition of Aj as a linear combination of
unitaries in the form

Aj =

q−1∑
k=0

αjkUjk, (5.22)

82

where, for each j ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , q − 1}, αjk ≥ 0 and Ujk is unitary.

The objective is to implement the quantum channel in terms of the implementations of
Ujk’s. We will describe a circuit W and a fixed state |µ〉 such that, for any n-qubit state
|ψ〉,

W |0〉|µ〉|ψ〉 =
√
p|0〉

(
m−1∑
j=0

|j〉Aj|ψ〉

)
+
√

1− p|Φ⊥〉, (5.23)

where (|0〉〈0| ⊗ I ⊗ I)|Φ⊥〉 = 0 and

p =
1∑m−1

j=0 (
∑q−1

k=0 αjk)
2

(5.24)

is called the success probability parameter (which is realized if the first register is measured).
Note that the isometry |ψ〉 7→

∑m−1
j=0 |j〉Aj|ψ〉 is the quantum channel in purified form.

The circuit W is in terms of two gates. One gate is a multiplexed-U gate, denoted by
multi-U such that, for all j ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , q − 1},

multi-U |k〉|j〉|ψ〉 = |k〉|j〉Ujk|ψ〉. (5.25)

The other gate is a multiplexed-B gate, denoted by multi-B. It performs the following
mapping for all j ∈ {0, . . . ,m− 1}:

multi-B|0〉|j〉 =

(
1
√
sj

q−1∑
k=0

√
αjk|k〉

)
|j〉, (5.26)

where

sj =

q−1∑
k=0

αjk. (5.27)

Define the state |µ〉 (in terms of s0, . . . , sm−1 from Eq. (5.27)) as

|µ〉 =
1√∑m−1
j=1 s2

j

m−1∑
j=0

sj|j〉. (5.28)

Define the unitary W ∈ U(Cq ⊗ Cm ⊗ C2n) as

W = (multi-B† ⊗ I)multi-U(multi-B ⊗ I). (5.29)

83

|0〉 B B†

|µ〉

|ψ〉 U

Figure 5.1: The circuit W for simulating a quantum channel using the new LCU method.

The LCU construction with the circuit of W with its initial state |0〉⊗|µ〉⊗|ψ〉 is illustrated
in Figure 5.1. In this figure, we refer to the first register as the indicator register (as it
indicates whether the computation succeeds or not at the end of this operation), the
second register as the purifier register (as it is used to purify the quantum channel when
the computation succeeds), and the third register as the system register (as it contains the
state being evolved).

In the following lemma, Eq. (5.23) is shown to apply where A0, . . . , Am−1 ∈ L(C2n)
are arbitrary linear operators (i.e., Kraus operators of a completely positive map that is
not necessarily trace-preserving). If the map is also trace-preserving, then it holds that∑m−1

j=0 |j〉Aj|ψ〉 and |Φ⊥〉 are normalized states, and the success probability parameter p
is the actual success probability realized if the first register is measured; otherwise, these
need not be the case. In subsequent subsections, we will apply this lemma in a context
where the trace-preserving condition is approximately satisfied.

Lemma 5.3. Let A0, . . . , Am−1 be the Kraus operators of a completely positive map. Sup-
pose that each Aj can be written in the form of Eq. (5.22). Let multi-U , multi-B, W , and
|µ〉 be defined as above. Then applying the unitary W on any state of the form |0〉|µ〉|ψ〉
produces the state

√
p|0〉

(
m−1∑
j=0

|j〉Aj|ψ〉

)
+
√

1− p|Φ⊥〉,

where (|0〉〈0| ⊗ I ⊗ I)|Φ⊥〉 = 0, and

p =
1∑m−1

j=0

(∑q−1
k=0 αjk

)2 .

Proof. First consider the state |0〉|j〉|ψ〉 for any j ∈ {0, . . . ,m − 1}. Applying W on this

84

state is corresponding to the standard LCU method [Kot14]:

W |0〉|j〉|ψ〉 = (multi-B† ⊗ I)multi-U(multi-B ⊗ I)|0〉|j〉|ψ〉 (5.30)

=
1
√
sj

(multi-B† ⊗ I)multi-U

(
q−1∑
k=0

√
αjk|k〉

)
|j〉|ψ〉 (5.31)

=
1
√
sj

(multi-B† ⊗ I)

(
q−1∑
k=0

√
αjk|k〉|j〉Ujk|ψ〉

)
(5.32)

=
1

sj
|0〉|j〉

(
q−1∑
k=0

αjkUjk|ψ〉

)
+
√
γj|Φ⊥j 〉 (5.33)

=
1

sj
|0〉|j〉Aj|ψ〉+

√
γj|Φ⊥j 〉, (5.34)

where |Φ⊥j 〉 is a state satisfying (|0〉〈0|⊗I⊗I)|Φ⊥j 〉 = 0 and γj is some normalization factor.

Up to this point, if the indicator register were measured and |0〉 were observed as the
“success” case as in the standard LCU method, then the state of the purifier and the
system register collapses to |j〉Aj|ψ〉. However, this is not a meaningful quantum state, as
it only captures one Kraus operator of a linear map. Now we use this specially designed
quantum state |µ〉 to obtain the desired purification state. We use the superposition |µ〉
instead of |j〉 in the purifier register then, by linearity, we have

W |0〉|µ〉|ψ〉 =
√
p|0〉

(
m−1∑
j=0

|j〉Aj|ψ〉

)
+
√

1− p|Φ⊥〉, (5.35)

where (|0〉〈0| ⊗ I ⊗ I)|Φ⊥〉 = 0 and p = 1∑m−1
j=0 s2j

.

5.4 Overview of the algorithm

In this section we show how to apply our new LCU method in order to prove the main
result, Theorem 5.1.

We first show that, for Lindbladians specified by Eqns. (4.4), (5.1) and (5.2), the
quantities ‖L‖pauli (defined in Eq. (5.3)) and ‖L‖ops (defined in Eq. (5.9)) satisfy

‖L‖� ≤ 2‖L‖ops ≤ 2‖L‖pauli. (5.36)

85

For the first inequality in Eq. (5.36), note that ‖L‖1 ≤ 2‖L‖ops holds by the triangle
inequality and the fact that, for any M ∈ L(C2n) such that ‖M‖1 = 1,

‖[H,M]‖1 ≤ 2‖H‖, (5.37)∥∥LjML†j
∥∥

1
≤
∥∥Lj∥∥∥∥M∥∥1

∥∥L†j∥∥=
∥∥Lj∥∥2

. (5.38)

Then, since ‖M ⊗ IC2n‖ = ‖M‖ for any M ∈ L(C2n), the first inequality in Eq. (5.36) fol-
lows. The second inequality in Eq. (5.36) follows from the fact that, if H and L0, . . . , Lm−1

are specified as in Eqns. (5.1) and (5.2), then

‖H‖ ≤
q−1∑
k=0

β0k and, ‖Lj‖ ≤
q−1∑
k=0

βjk, for all j ∈ {1, . . . ,m}. (5.39)

Now, we are ready to present the details of our construction for the proof of Theorem 5.1.
The overall structure is similar to that in [BCC+15] and [BCC+17], with the main novel
ingredient being our variant of the LCU construction (explained in Section 5.3) and also
a variant of oblivious amplitude amplification for isometries. For clarity, the details are
organized into the following subsections, whose content is summarized as:

1. In subsection 5.4.1, we describe a simple linear mapMδ in terms of Kraus operators
that are based on the operators in L. For small δ, Mδ is a good approximation of
eLδ.

2. In subsection 5.4.2, we show how to simulate the linear map Mδ in the sense of
Lemma 5.3, with success probability parameter 1−O(δ).

3. In subsection 5.4.3, we show how to combine r simulations ofMO(1/r) so as to obtain
cumulative success probability parameter 1/4. Conditioned on success, this produces
a good approximation of constant-time Lindblad evolution.

4. In subsection 5.4.4, we show how to apply a modified version of oblivious ampli-
tude amplification to unconditionally simulate an approximation of constant-time
Lindblad evolution.

5. In subsection 5.4.5, we show how to reduce the number of multiplexed Pauli gates
by a concentration bound on the amplitudes associated with nontrivial Pauli gates.

6. In subsection 5.4.6, we bound the total number of gates and combine the simulations
for constant-time evolution to simulate arbitrary time evolution, which completes the
proof of Theorem 5.1.

86

5.4.1 A linear map that approximates infinitesimal Lindblad evo-
lution

In this subsection, we show how to approximate Lindblad evolution for small time δ, namely
eLδ, by a linear map Mδ that can be described in terms of m+ 1 Kraus operators, where
the precision of the approximation is O(δ2).

We first bound the error of an approximation of eLδ for small δ. In particular, we prove
the following lemma.

Lemma 5.4. Let L ∈ T(CN) be a Lindbladian. Then, the following holds:∥∥(IL(CN) + δL)− eLδ
∥∥
� ≤ (δ ‖L‖�)

2. (5.40)

Proof. Assume that 0 ≤ δ ‖L‖� ≤ 1. Then, for any M ∈ L(CN) such that ‖M‖1 ≤ 1, we
have

∥∥(eδL − (IL(CN) + δL))[M]
∥∥

1
=

∥∥∥∥∥
∞∑
s=2

δs

s!
Ls[M]

∥∥∥∥∥
1

(5.41)

≤
∞∑
s=2

δs

s!
‖Ls[M]‖1 (5.42)

≤
∞∑
s=2

δs

s!
(‖L[M]‖1)s (5.43)

≤ (δ ‖L[M]‖1)2 (5.44)

≤ (δ ‖L‖1)2, (5.45)

where we are using the fact that ez − (1 + z) ≤ z2 when 0 ≤ z ≤ 1.

To extend this from the induced trace norm to the diamond norm, we consider an
arbitrary Hilbert space CN ′ with N ′ ≥ N . Note that

(eδL − (IL(CN) + δL))⊗ IL(CN′)

= exp
(
δ
(
L ⊗ IL(CN′)

))
−
(
IL(CN⊗CN′) + δ

(
L ⊗ IL(CN′)

))
. (5.46)

Also, L ⊗ IL(CN′) is a Lindbladian with
∥∥∥L ⊗ IL(CN′)

∥∥∥
1

= ‖L‖� when N ′ ≥ N . Therefore,

87

we have∥∥eδL − (IL(CN) + δL)‖�
=
∥∥∥(eδL − (IL(CN) + δ(L))⊗ IL(CN′)

∥∥∥
1

(5.47)

=
∥∥∥exp

(
δ
(
L ⊗ IL(CN′)

))
−
(
IL(CN⊗CN′) + δ

(
L ⊗ IL(CN′)

))∥∥∥
1

(5.48)

≤
(
δ
∥∥∥L ⊗ IL(CN′)

∥∥∥
1

)2

(5.49)

= (δ ‖L‖�)
2. (5.50)

Following the approach described in Section 4.1, define the linear map Mδ as

Mδ[Q] =
m∑
j=0

AjQA
†
j, (5.51)

where

A0 = I − δ

2

m∑
j=1

L†jLj − iδH and, for j ∈ {1, . . . ,m}, Aj =
√
δLj. (5.52)

Note that, in general,Mδ does not satisfy the trace-preserving condition for a quantum
channel; however, it satisfies an approximate version of it:∥∥∥∥∥

m∑
j=0

A†jAj − I

∥∥∥∥∥ =

∥∥∥∥∥∥δ
2

4

(
m∑
j=1

L†jLj

)2

+ δ2H2

∥∥∥∥∥∥ (5.53)

≤ δ2

4

∥∥∥∥∥∥
(

m∑
j=1

L†jLj

)2
∥∥∥∥∥∥+ δ2

∥∥H2
∥∥ (5.54)

≤ δ2

∥∥∥∥∥
m∑
j=1

L†jLj

∥∥∥∥∥
2

+ δ2 ‖H‖2 (5.55)

≤ δ2

(
m∑
j=1

∥∥∥L†jLj∥∥∥+ ‖H‖

)2

(5.56)

= (δ ‖L‖ops)
2. (5.57)

88

Now, we show that

‖Mδ − eLδ‖� ≤ 5(δ ‖L‖ops)
2. (5.58)

To do this, we introduce an intermediate linear map, I+ δL (mapping ρ to ρ+ δL[ρ]), and
show that

‖Mδ − (I + δL)‖� ≤ (δ ‖L‖ops)
2 (5.59)

and then Eq. (5.58) follows from the fact that∥∥(I + δL)− eLδ
∥∥
� ≤ (δ ‖L‖�)

2 (5.60)

≤ (2δ ‖L‖ops)
2, (5.61)

where the first inequality follows from Lemma 5.4. In order to show Eq. (5.59), note that
for any operator Q ∈ L(CN ⊗ CN ′) with ‖Q‖1 = 1 and N ′ ≥ N , we have∥∥∥(Mδ ⊗ IL(CN′) − (IL(CN) + δL)⊗ IL(CN′)

)
[Q]
∥∥∥

1

=

∥∥∥∥∥
m∑
j=0

(Aj ⊗ I)Q(Aj ⊗ I)† − (Q+ δ(L ⊗ IL(CN′))[Q])

∥∥∥∥∥
1

(5.62)

=

∥∥∥∥∥δ2

4

(m∑
j=1

L†jLj ⊗ I
)
Q
(m∑
j′=1

L†j′Lj′ ⊗ I
)
− δ2

2
i
m∑
j=1

(L†jLj ⊗ I)Q(H ⊗ I) (5.63)

+
δ2

2
i(H ⊗ I)Q

m∑
j=1

(L†jLj ⊗ I) + δ2(H ⊗ I)Q(H ⊗ I)

∥∥∥∥∥
1

(5.64)

≤ δ2

(∥∥∥ m∑
j=1

L†jLj ⊗ I
∥∥∥2

+ 2
∥∥∥H ⊗ I∥∥∥∥∥∥ m∑

j=1

L†jLj ⊗ I
∥∥∥+

∥∥∥H ⊗ I∥∥∥2
)

(5.65)

≤ δ2

(∥∥∥ m∑
j=1

L†jLj ⊗ I
∥∥∥+

∥∥∥H ⊗ I∥∥∥)2

(5.66)

≤ δ2

 m∑
j=1

‖Lj‖2 + ‖H‖

2

(5.67)

≤ δ2 ‖L‖2ops . (5.68)

This completes the proof of Eq. (5.58).

89

5.4.2 Implementing the approximation map by the new LCU
method

Here we show how to construct a quantum circuit that computes an approximation ofMδ

along the lines of Eq. (5.23) using the new LCU method.

By substituting Eqns. (5.1) and (5.2) into Eq. (5.52), we have

Aj =
√
δ

q−1∑
k=0

βjkVjk, for j ∈ {1, . . . ,m}, and (5.69)

A0 = I − δ

2

m∑
j=1

(
q−1∑
k=0

βjkVjk

)†(q−1∑
l=0

βjlVjl

)
− iδ

q−1∑
k=0

β0kV0k (5.70)

= I +
δ

2

m∑
j=1

q−1∑
k=0

q−1∑
l=0

βjkβjl

(
−V †jkVjl

)
+ δ

q−1∑
k=0

β0k (−iV0k) . (5.71)

Note that Eqns. (5.69) and (5.71) are expressing the Kraus operators A0, . . . , Am as tensor
products of Paulis (i.e., they are of the form of Eqns. (5.1) and (5.2)). Therefore, by
Lemma 5.3, the circuit construction of W in Figure 5.1 and the state |µ〉 from Eq. (5.28)
satisfy the following property. For any state |ψ〉,

W |0〉|µ〉|ψ〉 =
√
p|0〉

(
m∑
j=0

|j〉Aj|ψ〉

)
+
√

1− p|Φ⊥〉, (5.72)

where |Φ⊥〉 satisfies (|0〉〈0| ⊗ I ⊗ I)|Φ⊥〉 = 0 and

p =
1∑m
j=0 s

2
j

, (5.73)

where

sj =
√
δ

q−1∑
k=0

βjk, for j ∈ {1, . . . ,m}, and (5.74)

s0 = 1 +
δ

2

m∑
j=1

q−1∑
k=0

q−1∑
l=0

βjkβjl + δ

q−1∑
k=0

β0k. (5.75)

(The values of s0, . . . , sm are directly from Eqns. (5.69) and (5.71).)

90

To simplify the expression for the success probability parameter, define

cj =

q−1∑
k=0

βjk, (5.76)

for j ∈ {0, . . . ,m}. Then we can rewrite Eqns. (5.74) and (5.75) as

sj =
√
δcj, for j ∈ {1, . . . ,m}, and (5.77)

s0 = 1 +
δ

2

m∑
j=1

c2
j + δc0 (5.78)

and

p =
1∑m
j=0 s

2
j

(5.79)

=
1(

1 + δ
2

∑m
j=1 c

2
j + δc0

)2

+
∑m

j=1 c
2
jδ

(5.80)

=
1

1 + 2δ
∑m

j=1 c
2
j + 2δc0 + δ2

(
1
2

∑m
j=1 c

2
j + c0

)2 (5.81)

=
1

1 + 2δ
(∑m

j=1 c
2
j + c0

)
+ δ2

4

(∑m
j=1 c

2
j + 2c0

)2 (5.82)

=
1

1 + 2δ ‖L‖pauli + δ2

4

(
‖L‖pauli + c0

)2 (5.83)

= 1− 2δ ‖L‖pauli −O
(
δ2 ‖L‖2

pauli

)
. (5.84)

Note that, sinceMδ is only an approximate channel, the success probability parameter
p does not correspond to the actual probability of outcome 0 if the indicator register is
measured; however, it can be shown that p is within O(δ2) of the actual success probability.
We do not show this here; our analysis will be in terms of the cumulative error arising in
circuit constructions in the subsequent subsections (which consist of several instances of
the construction from this subsection).

91

5.4.3 Simulation with constant success probability

In this subsection we iterate the construction from the previous subsection r times, with
δ = O(1/r).

The resulting success probability parameter associated withMr
δ is pr = (1−O(1/r))r,

which converges to a constant. We can tune the parameter δ so that pr = 1/4 holds exactly.
This is accomplished by setting p = 4−1/r and then solving for δ in Eq. (5.83), yielding the
positive solution

δ =
−‖L‖pauli +

√
‖L‖2

pauli + 1
4

(
‖L‖pauli + c0

)2

(41/r − 1)

1
4

(
‖L‖pauli + c0

)2 (5.85)

=

(
ln(2)

‖L‖pauli

)
1

r
+O

(1

r2

)
. (5.86)

The circuit that implements Mr
δ uses an initial state (|0〉|µ〉)⊗r|ψ〉, which can be re-

ordered to |0〉⊗r|µ〉⊗r|ψ〉. It consists of r instances of W , each with separate indicator and

purifier registers, but with the same system register. Let Ŵ denote this unitary operator
(consisting of r applications of W on different indicator and purifier registers). For each

̂ = j0 · · · jr−1 ∈ {0, . . . ,m}r, define Â̂ as

Â̂ = Aj0 · · ·Ajr−1 . (5.87)

We can conclude that

Ŵ
(
|0〉⊗r|µ〉⊗r|ψ〉

)
=
√
pr|0〉⊗r

(∑
̂∈{0,...,m}r

|̂〉Â̂|ψ〉

)
+
√

1− pr|Φ̂⊥〉 (5.88)

=
1

2
|0〉⊗r

(∑
̂∈{0,...,m}r

|̂〉Â̂|ψ〉

)
+

√
3

2
|Φ̂⊥〉, (5.89)

where |Φ̂⊥〉 satisfies (|0〉〈0|⊗r ⊗ I⊗r ⊗ I)|Φ̂⊥〉 = 0.

Note that this conditionally simulates Mr
δ, and Mr

δ approximates eLt, for

t = rδ =
ln(2)

‖L‖pauli
+O

(1

r

)
. (5.90)

92

The approximation is in the sense that∥∥Mr
δ − eLt

∥∥
� = O

(1

r

)
. (5.91)

If the desired evolution time is such that t ‖L‖pauli < ln(2) then the success probability
parameter resulting from this approach is larger than 1/4; however, it can be diluted to
be exactly 1/4 using a method described in [BCC+17] that employs an additional qubit as
part of the indicator register.

In the next subsection, we show how to use oblivious amplitude amplification to achieve
perfect success probability.

5.4.4 Oblivious amplitude amplification for isometries

There are two hurdles for applying oblivious amplitude amplification in our construction.
First, the purified quantum state corresponding to the success case is not a normalized
quantum state, as the Kraus operators ofMr

δ do not satisfy the trace-preserving condition.
Second, the operation corresponding to the success case is an isometry (rather than a
unitary), because part of the registers in the initial state is restricted to (|µ0〉 · · · |µm−1〉)⊗r.

The second hurdle is resolved by using different projectors in the amplitude amplifica-
tion operator. For the first hurdle, we show that it only causes a small error. To begin with,
we examine how far it is for the Kraus operators to satisfy the trace-preserving condition,
and this quantity will be used later in the proof. By repeatedly applying Eq. (5.57), we
have ∥∥∥∥∥ ∑

̂∈{0,...,m}r
Â†̂Â̂ − I

∥∥∥∥∥ =

∥∥∥∥∥ ∑
j0···jr−1∈{0,...,m}r

(A†jr−1
· · ·A†̂0)(Aj0 · · ·Ajr−1)− I

∥∥∥∥∥ (5.92)

≤ r
(
δ ‖L‖pauli

)2

(5.93)

= (ln(2))2/r +O(1/r2), (5.94)

where the second equality follows from substituting the value of δ from Eq. (5.85).

Before we present the oblivious amplitude amplification construction, we introduce
more notations for convenience. For any |ψ〉, let |Ψ〉 denote the initial state

|Ψ〉 := |0̂〉|µ̂〉|ψ〉, (5.95)

93

where |0̂〉 = |0〉⊗r, and |µ̂〉 = |µ〉⊗r. Let |Φ〉 denote the desired purification state, i.e.,

|Φ〉 = |0̂〉

 ∑
̂∈{0,...,m}r

|̂〉Â̂|ψ〉

 . (5.96)

Let P0 := |0̂〉〈0̂| ⊗ I ⊗ I and P1 := |0̂〉〈0̂| ⊗ |µ̂〉〈µ̂| ⊗ I be two projectors. By Eq. (5.89), we
have

Ŵ |Ψ〉 =
1

2
|Φ〉+

√
3

2
|Φ⊥〉, (5.97)

for some state |Φ⊥〉 satisfying P0|Φ⊥〉 = 0. Define the unitary operator

F = −Ŵ (I − 2P1)Ŵ †(I − 2P0)Ŵ (5.98)

as the oblivious amplitude amplification operator. We summarize the result in the following
lemma.

Lemma 5.5. For any state |ψ〉, Let |Ψ〉, |Φ〉, and F be defined as above. Then

‖F |Ψ〉 − |Φ〉‖ = O(1/r).

To prove this lemma, we need the following lemma, which slightly extends the results
of [Kot14, Lemma 2.3].

Lemma 5.6. For any |ψ〉, let |Ψ〉, |Φ〉, |Φ⊥〉, P0, and P1 be defined as above. Let |Ψ⊥〉 be
a state satisfying the equation

Ŵ |Ψ⊥〉 =

√
3

2
|Φ〉 − 1

2
|Φ⊥〉. (5.99)

Then P1|Ψ⊥〉 = O(1/r).

Proof. Define the operator

Q =
(
〈0̂|〈µ̂| ⊗ I

)
Ŵ †P0Ŵ

(
|0̂〉|µ̂〉 ⊗ I

)
. (5.100)

For any state |ψ〉,

〈ψ|Q|ψ〉 =
∥∥∥P0Ŵ

(
|0̂〉|µ̂〉|ψ〉

)∥∥∥2

=

∥∥∥∥∥P0

(
1

2
|Φ〉+

√
3

2
|Φ⊥〉

)∥∥∥∥∥
2

=

∥∥∥∥1

2
|Φ〉
∥∥∥∥2

=
1

4
+O(1/r).

(5.101)

94

The last equality holds because ‖|Φ〉‖2 = 1 + O(1/r), which follows from Eq. (5.94).
Therefore, all the eigenvalues of Q are 1

4
+O(1/r), and we can write

Q =
1

4
I +O

(1

r

)
, (5.102)

where the big-O notation is with respect to the spectral norm. Now, for any |ψ〉, we have

Q|ψ〉 =
(
〈0̂|〈µ̂| ⊗ I

)
Ŵ †P0Ŵ

(
|0̂〉|µ̂〉|ψ〉

)
(5.103)

=
1

2

(
〈0̂|〈µ̂| ⊗ I

)
Ŵ †|Φ〉 (5.104)

=
1

2

(
〈0̂|〈µ̂| ⊗ I

)(1

2
|Ψ〉+

√
3

2
|Ψ⊥〉

)
(5.105)

=
1

4
|ψ〉+

√
3

4

(
〈0̂|〈µ̂| ⊗ I

)
|Ψ⊥〉. (5.106)

The third equality follows from Eqns. (5.97) and (5.99). On the other hand, by Eq. (5.102),
we have

Q|ψ〉 =
1

4
|ψ〉+O

(1

r

)
. (5.107)

By Eqns. (5.106) and (5.107), we have(
〈0̂|〈µ̂| ⊗ I

)
|Ψ⊥〉 = O

(1

r

)
, (5.108)

which implies P1|Ψ⊥〉 = O(1/r).

Now we are ready to prove Lemma 5.5. The proof uses the methods in [BCC+15].

Proof of Lemma 5.5. First consider the operator P1Ŵ
†P0Ŵ . We have

P1Ŵ
†P0Ŵ |Ψ〉 =

1

2
P1Ŵ

†|Φ〉 =
1

2
P1

(
1

2
|Ψ〉+

√
3

2
|Ψ⊥〉

)
=

1

4
|Ψ〉+O

(1

r

)
, (5.109)

where the second equality follows from Eqns. (5.97) and (5.99) and the last equality follows
from Lemma 5.6. Then we have

F |Ψ〉 = (−Ŵ (I − 2P1)Ŵ †(I − 2P0)Ŵ |Ψ〉 (5.110)

= (2P0Ŵ + Ŵ − 4ŴP1Ŵ
†P0Ŵ)|Ψ〉 (5.111)

= |Φ〉+O(1/r). (5.112)

Therefore, ‖F |Ψ〉 − |Φ〉‖ = O(1/r).

95

Since |Φ〉 is a purification of Mr
δ[|ψ〉〈ψ|], Lemma 5.5 implies that the circuit for F

simulates a Stinespring dilation of Mr
δ with error O(1/r). This further implies that∥∥N −Mr

δ

∥∥
� = O(1/r), (5.113)

where N is the quantum channel that F implements by tracing out indicator and purifier
registers.

5.4.5 Concentration bound and encoding scheme

From the previous subsections, r is a parameter that determines the precision, which is
O(1/r). Up to this point, to simulate constant-time Lindblad evolution, the number of
occurrences of the multiplexed-U gate in our construction is O(r). In this subsection, we

show how to reduce this to O
(log(1/ε)

log log(1/ε)

)
while only introducing an additional error of ε.

It is important to note that, in light of Eqns. (5.69) and (5.71), there are O(m) Kraus
operators for Mδ and each can be expressed as an LCU of O(mq2) terms.

Consider the initial state (|0〉|µ〉)⊗r of the indicator and purifier registers. At the
beginning of the algorithm, the multiplexed-B gates applied on this state are multi-B⊗r.
Note that the first term in Eq. (5.71) corresponds to the unitary I, which need not be
performed. The circuit can be rearranged to bypass these operations, as in earlier papers
on Hamiltonian evolution (see, for example, [BCC+17]).

More precisely, we compute the amplitude associated with this I being performed.
For each instance of W acting on |0〉|µ〉|ψ〉, consider the state of indicator and purifier
registers which control the multiplexed-U gates (i.e., the state multi-B|0〉|µ〉). The state
|0〉|0〉 corresponds to unitary I. The amplitude of |0〉|0〉 is

s0√∑m
j=0 s

2
j

1
√
s0

=

√
s0∑m
j=0 s

2
j

(5.114)

=

√
1 + δ/2

∑m
j=1 c

2
j + δc0

1 + 2δ
∑m

j=1 c
2
j + 2δc0 + Θ(δ2(

∑m
j=1 c

2
j + c0)2)

(5.115)

=

√√√√1− 3δ

2

m∑
j=1

c2
j − δc0 + Θ

(
δ2
(m∑
j=1

c2
j + c0

)2
)
, (5.116)

96

where sj and cj are defined in Eqns. (5.74), (5.75), and (5.76) (j ∈ {0, . . . ,m}), and δ is
defined in Eq. (5.85).

If this indicator and purifier registers are measured in the computational basis then the
probability that the outcome is not (0, 0) is

3δ

2

m∑
j=1

c2
j + δc0 + Θ

(
δ2
(m∑
j=1

c2
j + c0

)2
)
≤ 3

2
δ ‖L‖pauli + Θ

(
δ2 ‖L‖2

pauli

)
(5.117)

=
3

2r
+ Θ

(1

r2

)
. (5.118)

Therefore, after the multi-B acting on |0〉|µ〉|ψ〉, if the indicator and purifier registers are
measured, then the probability that the outcome is not (0, 0) is upper-bounded by 3

2r
.

Roughly speaking, this is qualitatively the same scaling that arises in Hamiltonian
evolution simulation [BCC+17], hence the same so-called Hamming weight cut-off applies.
Below is a more precise explanation of this.

In the indicator and purifier registers, after applying multi-B, the computational basis
states of the indicator and purifier registers are of the form |k0, l0〉 · · · |kr−1, lr−1〉. Define
the Hamming weight of such a state as the number of j ∈ {0, . . . , r−1} such that (kj, lj) 6=
(0, 0). If the indicator and purifier registers are restricted to states that have Hamming
weight at most h then the circuit can be restructured so that there are only h occurrences
of the multiplexed-U gates.

Let X1, . . . , Xr be r independent random variables with Pr[Xj = 1] = 3
2r

and Pr[Xj =
0] = 1− 3

2r
for all j ∈ {1, . . . , r}. Consider the state of the indicator and purifier registers

right before multiplexed-U gates are applied (i.e., the state (multi-B|0〉|µ〉)⊗r). We are
interested in how much amplitude is associated with the low Hamming weight states. This
is related to the Chernoff bound (see [MR95]), i.e., for all δ > 0, it holds that

Pr

[
r∑
j=1

Xj > (1 + δ)µ

]
<

eδµ

(1 + δ)(1+δ)µ
, (5.119)

where µ =
∑r

j=1 Pr[Xj = 1] = 3
2
. Letting h = (1 + δ)µ, we have

Pr

[
r∑
j=1

Xj > h

]
<
eh−µµh

hh
≤ (eµ)h

hh
=

(3e/2)h

hh
. (5.120)

97

Therefore, the probability of the Hamming weight being larger than h is upper bounded
by ε2 provided

h ∈ O
(

log(1/ε)

log log(1/ε)

)
. (5.121)

From this, we conclude that the occurrences of the multiplexed-U gates can be reduced to

O
(

log(1/ε)
log log(1/ε)

)
with error ε.

Now, the number of qubits for indicator and purifier registers in a segment is still
O(r log(mq)). We use the similar compression scheme as in [BCC+17] to reduce the number
of qubits for indicator and purifier registers. The intuition is to only store the positions of
components with nonzero Hamming weight, and we also need two other registers to store
the actual state in this position.

The compression scheme works as follows. First note that the multiplex-B gate acts
on |0〉|µ〉 as

multi-B|0〉|µ〉 =
1√∑m−1
j=0 s2

j

m−1∑
j=0

mq2∑
k=0

√
sj
√
αjk|k〉|j〉. (5.122)

We consider the initial sate (|0〉|µ〉)⊗r. After applying the multiplexed-B gates (before
applying the multiplexed-U gates), the state becomes (multi-B|0〉|µ〉)⊗r, which is

(multi-B|0〉|µ〉)⊗r =

√s0
√
α00|0〉|0〉+

∑m−1
j=1

∑mq2

k=1

√
sj
√
αjk|k〉|j〉√∑m−1

j=0 s2
j

⊗r (5.123)

=

κ|0〉|0〉+ σ

∑m−1
j=1

∑mq2

k=1

√
sj
√
αjk√∑m−1

j=0 s2
j − s0α00

|k〉|j〉

⊗r , (5.124)

where

κ =

√
s0α00∑m−1
j=0 s2

j

, and σ =

√√√√∑m−1
j=0 s2

j − s0α00∑m−1
j=0 s2

j

. (5.125)

The compressed encoding is performed in two steps. First, we prepare the state∑
j∈G

κr−|g|σ|g||g〉+ η|⊥〉, (5.126)

98

where | · | denotes the Hamming weight, G = {(g1 . . . , gh′) : 1 ≤ h′ ≤ h, g1 + · · · + gh′ ≤
r − h′}, and |⊥〉 (with amplitude η) is some state that is orthogonal to all terms in the
first sum. It is shown in [BCG14, Section 4.2–4.4] that this state can be prepared with
O(h(log(r) + log log(1/ε))) 1- and 2-qubit gates so that |η|2 ≤ ε. Second, we add one
register to prepare the state(∑

j∈G

κr−|g|σ|g||g〉+ η|⊥〉

)∑m−1
j=1

∑mq2

k=1

√
sj
√
αjk|k〉|j〉√∑m−1

j=0 s2
j − s0α00

 , (5.127)

where the state in the second register can be prepared by a slightly modified multiplex-B
gate and state |µ〉, and it can be implemented with O(m2q2) 1- and 2-qubit gates.

Note that there is a natural one-to-one correspondence between the set G and the set
of binary strings with Hamming weight at most h as

g1 . . . , gh′ ↔ 0g110g210g3 . . . 0gh′10r−h−g1−...−gh′ . (5.128)

To see that Eq. (5.127) encodes the state (multi-B|0〉|µ〉)⊗r for the terms with Hamming
weight at most h, observe that the state

|(g1, . . . , gh′)〉

∑m−1
j=1

∑mq2

k=1

√
sj
√
αjk|k〉|j〉√∑m−1

j=0 s2
j − s0α00

 (5.129)

corresponds to

(|0〉|0〉)⊗g1|ν〉 . . . (|0〉|0〉)⊗g2 |ν〉(|0〉|0〉)⊗(r−h−g1−...−gh′) (5.130)

where

|ν〉 =

∑m−1
j=1

∑mq2

k=1

√
sj
√
αjk|k〉|j〉√∑m−1

j=0 s2
j − s0α00

. (5.131)

It follows that Eq. (5.127) has the desired amplitudes for the terms with nonzero Hamming
weight in Eq. (5.124).

In this encoding scheme, the register for |g〉 requires O(log(r)h) qubits. The two ad-
ditional registers require O(h log(mq)) qubits. If we prepare the indicator and purifier
registers in this encoded representation, the number of qubits is

O((log(r)h+ log(mq)h)) = O((log(1/ε) + log(mq))h). (5.132)

99

We summarize this encoding scheme as follows. In the original representation, the
initial state of the indicator and purifier registers is (|0〉|µ〉)⊗r, and we apply multiplexed-
B gates multi-B⊗r on this state before applying multiplexed-U gates. In the encoded
representation, the initial state is |0a〉|0b〉|0c〉, where a = O(log(r)h), b = O(log(mq)h),
and c = O(log(m)h); the first and second registers correspond to the indicator register
in the original representation, and the third register corresponds to the purifier register
in the original representation. We denote the encoding operator by E. The operator E
corresponds to the multiplexed-B gates in the original representation, as we apply E on
the encoded initial state before applying multiplexed-U gates.

5.4.6 Total number of gates and proof of the main theorem

In this subsection, we count the number of 1- and 2-qubit gates in our construction. There
are three parts that we need to consider: the implementation of the encoding operator E,
the implementation of the reflections in the oblivious amplitude amplification operator,
and the implementation of the multiplexed-U gates. To complete the proof of the main
theorem, all that remains is to bound the number of these gates.

Proof of Theorem 5.1. We first consider the case where t is as defined in Eq. (5.90), so
t ‖L‖pauli = ln(2) + O(1/r). The quantum circuit is based on the oblivious amplitude
amplification operator F , whose correctness is shown by Lemma 5.5. We modify the
quantum circuit of F by applying a concentration bound and the encoding scheme on the
indicator and purifier registers as shown in Subsection 5.4.5. In the following, we show
that this quantum circuit achieves the desired gate complexity.

For the encoding operator E, we first apply the techniques in [BCG14] for (|0〉|µ〉)⊗r to
prepare the state as in Eq. (5.126). This can be done with O (h(log(r) + log log(1/ε))) ∈
O(log(r)h) gates. In addition, we need prepare a superposition of the basis states with
nonzero Hamming weight in the second and third registers as in the second register in
Eq. (5.127). This can be done with a slightly modified multiplex-B gate and state |µ〉 with
gate cost O(m2q2). Thus, the number of 1- and 2-qubit gates required for the encoding
operator E is O(log(r)h+m2q2) = O(log(1/ε)h+m2q2).

In the oblivious amplitude amplification operator F , there are two reflections, I − 2P0

and I − 2P1, between Ŵ and Ŵ †. If we look into the constructions for Ŵ , the two
reflections are between multiplexed-B gates. To translate the operator (multi-B⊗r) (I −
2P1)

(
multi-B†

⊗r
)

to the encoded representation, note that the multiplexed-B gates corre-

spond to the encoding operator E in the encoded representation, and the reflection I−2P1

100

is the reflection about the initial state |0〉⊗r|µ〉⊗r. Hence in the encoded representation,
the corresponding operation is first applying E†, reflecting about the encoded initial state
|0a〉|0b〉|0c〉, where a, b, and c are defined in the last paragraph of Subsection 5.4.5, and
then applying E.

A similar method applies to the operation (multi-B⊗r) (I − 2P0)
(

multi-B†
⊗r
)

. The

only difference is that the reflection I − 2P0 is reflecting about the subspace where the
state of the indicator register is |0〉⊗r. In the encoded representation, the corresponding
reflection in the encoded representation should be about the subspace where the first two
registers is in the state |0a〉|0b〉. Therefore, the corresponding operation in the encoded
representation is first applying E†, then applying the reflection about the encoded state
|0a〉|0b〉 on the first two registers, and last applying E.

The number of 1- and 2-qubit gates involved in the two reflections consists of the
implementation of the encoding operator E, and two reflections. The number of gates for
the reflections is of the same order of the number of qubits for the encoded representation.
Therefore the number of 1- and 2-qubit gates in this part is O(log(1/ε)h+m2q2).

Each multiplexed-U gate costs O(mq2(log(mq) + n)) of 1- and 2-qubit gates, as each
controlled-U requires log(mq) qubits for multiplexing and O(n) Paulis, and we have to im-
plement O(mq2) these controlled-U gates. Since the number of occurrences of multiplexed-
U gates is h, the gate cost for this part is O(mq2h(log(mq) + n))

Therefore, the total number of 1- and 2-qubit gates is

O(m2q2 + log(1/ε)h+mq2(log(mq) + n)h) ∈ O
(
m2q2 (log(mq/ε) + n) log(1/ε)

log log(1/ε)

)
.

(5.133)

For arbitrary evolution time t, let τ := t ‖L‖pauli. Divide the normalized evolution time
into O(τ) segments. Then run this quantum circuit for a segment with precision ε/τ and
trace out the indicator and purifier registers. Repeat this O(τ) times and this evolution is

simulated with total number of 1- or 2-qubit gates O
(
m2q2τ (log(mqτ/ε)+n) log(τ/ε)

log log(τ/ε)

)
.

The distance between N and eLt in terms of the diamond norm is established by
Eqns. (5.91) and (5.113). Choosing r large enough (i.e., r = 1/ε), the error of the simulation
is within ε. Note that the concentration bound and encoding scheme only cause O(ε)
error.

101

5.5 Lindbladians with sparse Hamiltonian and Lind-

blad operators

In this subsection, we sketch the analysis of the simulation of Lindbladians with d-sparse
Hamiltonian and Lindblad operators. Without loss of generality, we assume ‖H‖ ≥ 1 and
‖Lj‖ ≥ 1 for j ∈ {1, . . . ,m}. We first describe a method to approximate H and Lj as
a linear combination of unitaries. Then we sketch the analysis of two key quantities: the
normalized evolution time t ‖L‖pauli, and the number of unitaries q in this approximation

We consider the case where H is d-sparse and each Lj is both column and row d-sparse

given by an oracle. Each Lj can be decomposed as Lj =
Lj+L†j

2
+ i

Lj−L†j
2i

, where
Lj+L†j

2
and

Lj−L†j
2i

are Hermitian. Let the max norm of an operator A ∈ L(C2n), denoted by ‖A‖max, be

defined as ‖A‖max = maxj,k |〈j|A|k〉|. For each
Lj+L†j

2
,
Lj−L†j

2i
, and H, we use the methods in

[BCC+15] to approximate them as a linear combination of unitaries with equal coefficient
γ. In particular, for any H ∈ L(CN) that is Hermitian and is d-sparse, this approximation
can be accomplished in the following two steps:

1. Obtain a decomposition H =
∑d2

j=1Hj, where each Hj is 1-sparse and a query to Hj

can be simulated with O(1) queries to H. [BCC+15, Lemma 4.4]

2. Further decompose each 1-sparse Hamiltonian Hj into O(‖Hj‖ /γ) unitary Hamilto-
nians Hjk such that ‖Hj − γ

∑
kHjk‖max ≤

√
2γ. [BCC+15, Lemma 4.3]

The above approximation also works for each
Lj+L†j

2
and

Lj−L†j
2i

. The error of the approxima-
tion is O(d2γ) in terms of the max norm, and the number of unitaries in the approximation
is O

(
d2 ‖H‖ /γ

)
for H and O (d2 ‖Lj‖ /γ) for Lj. Let c0 be the sum of coefficients in the

LCU approximation of H, and cj be the sum of coefficients in the LCU approximation of
Lj for j ∈ {1, . . . ,m}. It is easy to see that c0 = O (d2 ‖H‖) and cj = O (d2 ‖Lj‖) for
j ∈ {1, . . . ,m}. We have t ‖L‖pauli = t

(
c0 +

∑m
j=1 c

2
j

)
∈ O

(
td4 ‖L‖ops

)
.

To bound q, which is the number of terms in the LCU decomposition for each of
H and Lj, we consider the error of this approximation. As each of H and Lj can be
approximated with error O(d2γ) in terms of the max norm, L can be approximated with
error O

(
d3 ‖L‖ops γ

)
in terms of the diamond norm. To see this, for all ρ ∈ D(C2n), let

L′[ρ] = −i[H ′, ρ] +
m∑
j=1

(
L′jρL

′†
j −

1

2
L′†j L

′
jρ−

1

2
ρL′†j L

′
j

)
, (5.134)

102

with ‖H −H ′‖max ∈ O(d2γ) and
∥∥Lj − L′j∥∥max

∈ O(d2γ) for all j ∈ {1, . . . ,m}. For all

d-sparse operator A ∈ L(C2n), it holds that ‖A‖ ≤ d ‖A‖max [CK10]. Hence, ‖H −H ′‖ ∈
O(d3γ) and

∥∥Lj − L′j∥∥ ∈ O(d3γ) for all j ∈ {1, . . . ,m}. We have

(L′ − L)[ρ] = −i[(H ′ −H), ρ]

+
m∑
j=1

(
L′jρL

′†
j − LjρL

†
j −

1

2

(
L′†j L

′
jρ− L

†
jLjρ

)
− 1

2

(
ρL′†j L

′
j − ρL

†
jLj

))
, (5.135)

for all ρ ∈ D(C2n). Furthermore,

‖(L′ − L)[ρ]‖1 ≤ 2 ‖H ′ −H‖+
m∑
j=1

(
2 ‖Lj‖

∥∥L′j − Lj∥∥+ 2
∥∥L′j∥∥∥∥L′j − Lj∥∥) (5.136)

∈ O
(
d3γ ‖L‖ops

)
. (5.137)

The bound ‖L′ − L‖� ∈ O(d3γ ‖L‖ops) follows from an extension of the above inequality
to a larger Hilbert space by considering the operator H ′ ⊗ IC2n , H ⊗ IC2n , L′j ⊗ IC2n and
Lj⊗IC2n for all j ∈ {1, . . . ,m}. To restrict the simulation error within ε for evolution time
t, γ can be chosen so that γ = O

(
ε/(td3 ‖L‖ops)

)
. Therefore, the number of unitaries in

the decomposition is bounded by q = O
(
td5 ‖L‖2

ops /ε
)
.

In the implementation of the multiplexed-U gates, we no longer need to implement
all the O(mq2) unitaries, since the oracles for H and Lj are given. Also, the cost for
implementing the encoding scheme becomes O(log(1/ε)h + poly(n)) as the coefficients in
the LCU for each H and Lj are the same, which saves the O(m2q2) factor. Thus the m
and q factor in the gate complexity can be eliminated. (The log(m) and log(q) factor will
be preserved.) Let τ = t ‖L‖ops. By our construction, the gate complexity is

O (τ polylog(mqτ/ε) poly(n, d)) .

The query complexity is the number of occurrences of the multiplexed-U gates, which
is

O

(
τ

log(τ/ε)

log log(τ/ε)
poly(d)

)
.

103

Chapter 6

Harnessing Open Quantum Systems:
Dissipative Quantum Search

In this chapter, we provide methods for solving the “over-cooking” problem of Grover’s
algorithm (briefly discussed in Section 1.3): if the number of marked items M is unknown,
how to produce a marked state while preserving the quadratic speedup.

A search problem can be modeled as in a search space ofN items with a boolean function
f to partition a set of N items. Without loss of generality, assume N is a power of 2. This
set can be labeled by natural numbers so that we can refer to this set as {0, . . . , N − 1}.
We call an item marked if f(j) = 1. Otherwise, we call it non-marked. The goal is to
find a marked item with as few queries to f as possible. All classical algorithms need
to make Ω(N/M) queries to f , where M = |{j : f(j) = 1}| is the number of marked
items. Remarkably, quantum algorithms permit a quadratic speedup: O(

√
N/M) queries

are sufficient. This quadratic speedup is achieved by Grover’s algorithm. We give a brief
overview of this algorithm in Section 6.2. In this chapter, we consider a more general search
problem where only one copy of a non-trivial initial state is given, which is discussed in
detail in Subsection 6.1.2. The results in this chapter are not previously published.

104

6.1 Previous work and main results

6.1.1 Previous work

Methods have been proposed to address this over-cooking problem. One representative
of these methods is shown in [BBHT98], where a trial-and-error approach is used: one
first apply a small number of iterations; if a marked item is not found, keep increasing
the number of iterations. As presented in [BBHT98], this trial-and-error approach uses
multiple copies of the initial state. It is possible to use only one copy of the initial state:
if a marked item is not found, the state collapses to the superposition of the unmarked
states, where the next trial can start with, and the query complexity is still O(

√
N/M).

Other techniques such as quantum counting [BHT98] and quantum amplitude estima-
tion [BHMT02] can also be used to address this over-cooking problem. These approaches
consist of two steps: first estimate M ; then apply Grover’s algorithm for a desired number
of iterations. With these two-step approaches, at least two copies of the initial state are
required.

Although the above approaches perform well, there is some aesthetic appeal in the
possibility of an algorithm that naturally converges to the target stage through its iterative
process, without extra intermediate steps such as measurements and classical randomness.
This is usually called the fixed-point property. Grover et al. [Gro05, GPT06] proposed the
π/3-search algorithm where a sequence of operators (which are more generalized version
of the Grover iterator) is built in a recursive manner. After applying these operators, the
state becomes monotonically closer to the target state but never passes the target state.
This algorithm perfectly solves the over-cooking problem. However, the quadratic speedup
is lost [CRR05].

Yoder et al. [YLC14] proposed the first fixed-point quantum search algorithm which
preserves the quadratic speedup. The fixed-point property of this algorithm is presented
in the following sense: for any N , Mmin, and a desired error tolerance ε, a sequence of
O(
√
N/Mmin log(1/ε)) unitaries (which are more generalized version of the Grover iterator)

is constructed such that for any instance of the search problem with N items and M marked
items (with M ≥Mmin), this sequence of unitaries yields a state that is ε-close to the target
state (in terms of the Euclidean norm). As each unitary in this sequence uses O(1) queries
to f , the query complexity of this algorithm is O(

√
N/Mmin log(1/ε)). This sequence of

operators can be extended to obtain better results (in terms of ε). However, the complexity
of this sequence extension is multiplicative, and the quadratic speedup is likely to be lost.

105

6.1.2 Main results

In this chapter, we present a novel fixed-point approach for solving the search problem
that preserves the quadratic speedup against classical algorithms. Our algorithm works
in a natural fixed-point manner: the error (in terms of the trace-distance between the
current state and the target state) converges with more iterations, though not necessarily
monotonically. Moreover, only one copy of the initial state suffices and no intermediate
measurement or classical randomness is required.

Instead of working on the search problem for N items, we define the search problem
abstractly in terms of amplitude amplification, and in a context where the initial state can
be nontrivial.

Definition 6.1. In this general search problem, let G ⊆ CN be an unknown subspace of
CN . We are given one copy of an initial state |ψinit〉 ∈ CN and the following oracles:

• An initial state verification oracle Qinit ∈ U(C2) that performs the following mapping

Qinit|ψinit〉 = −|ψinit〉, and (6.1)

Qinit|ψ⊥init〉 = |ψ⊥init〉, (6.2)

where |ψ⊥init〉 ∈ CN is a state that is orthogonal to |ψinit〉. A controlled-Qinit is also
available.

• A solution verification oracle Qgood ∈ U(CN⊗C2) that performs the following mapping

Qgood|ψ〉|b〉 =

{
|ψ〉|b⊕ 1〉, if |ψ〉 ∈ G,

|ψ〉|b〉, if |ψ〉 is orthogonal to G.
(6.3)

A controlled-Qgood is also available.

• A guessing oracle R, which is a unitary that, starting in state |ψinit〉, yields a guess
of a state in the target space with probability p in the sense that

max
|ψ〉∈G

|〈ψ|R|ψinit〉|2 = p. (6.4)

We assume that p is unknown.

Let |ψgood〉 be the projection of |ψinit〉 on G. The goal is to create the state |ψgood〉 with as
few queries to Qgood and Qinit as possible.

106

One of the main results of this chapter is stated in the following theorem.

Theorem 6.1. Consider the general search problem defined in Definition 6.1. Assume
p ≤ 1/4. Fix an ε > 0. There exists a quantum algorithm acting on two registers C2⊗C2n,
where the state in the second register (C2n) after a total number of j steps starting from
|ψinit〉〈ψinit| is denoted by ρj, such that ‖ρj − |ψgood〉〈ψgood|‖1 ≤ ε for all j ≥ c · 1√

p
log(1/ε),

where c is some constant independent of p and ε. Moreover, each step of this quantum
algorithm can be implemented using a constant number of queries to Qgood and Qinit.

We prove Theorem 6.1 in Section 6.4.

6.2 Review of Grover’s algorithm

In this section, we give a brief review of Grover’s algorithm [Gro96] for solving the search
problems in a more general model. For a more comprehensive review of these algorithms,
readers may refer to the book by Nielsen and Chuang [NC00].

We first consider the more general search problem defined in Definition 6.1. Here, we
assume that p is known. Recall the solution verification oracle Qgood ∈ U(CN⊗C2) defined
in Eq. (6.3). It is convenient to conjugate the second register by the Hadamard gate H,
and set b = 1. This yields a unitary (I ⊗ H)Qgood(I ⊗ H) that performs the following
mapping

(I ⊗H)Qgood(I ⊗H)|ψgood〉|1〉 = −|ψgood〉|1〉, and (6.5)

(I ⊗H)Qgood(I ⊗H)|ψ⊥good〉|1〉 = |ψ⊥good〉|1〉, (6.6)

where |ψ⊥good〉 is a state that is orthogonal to G. Effectively, this is equivalent to a unitary

Q̂good ∈ U(CN) that flips the phase of marked states as

Q̂good|ψgood〉 = −|ψgood〉, and (6.7)

Q̂good|ψ⊥good〉 = |ψ⊥good〉. (6.8)

The Grover iterator is defined as

G =
(
RQinitR

†) Q̂good. (6.9)

To view Grover’s algorithm in a geometric way, let θ be the angle such that sin(θ/2) =√
p and cos(θ/2) =

√
1− p. Write R|ψinit〉 = cos(θ/2)|ψ⊥good〉+sin(θ/2)|ψgood〉, where |ψ⊥good〉

107

is some state orthogonal to G. Then, we conduct the analysis with respect to the basis
{|ψ⊥good〉, |ψgood〉}. The operator G can be represented as

G =

(
cos θ − sin θ
sin θ cos θ

)
. (6.10)

Starting with the state R|ψinit〉, each application of G rotates the angle by θ. After O(1/
√
p)

applications of G, the state will be close to |ψgood〉.
Remark. The search problem that was considered by Grover [Gro96] is a special case
of the more general search problem defined in Definition 6.1 in the following sense. Let
the set {0, . . . , N − 1} be a search space of N items. Assume N = 2n is a power of 2. A
boolean function f : {0, . . . , N − 1} → {0, 1} is used to determine whether an item j is
marked (f(j) = 1) or not (f(j) = 0). The target state is defined as

|ψgood〉 =
1√
M

∑
j:f(j)=1

|j〉, (6.11)

where M = |{j : f(j) = 1}|. The initial state is |0〉N , and the guessing oracle is the
n-fold Hadamard gate H⊗n. The initial state verification oracle is simply the unitary
ICN − 2|0〉〈0|N . The solution verification oracle is defined as

Qgood|j〉|b〉 = |j〉|b⊕ f(j)〉, (6.12)

for b ∈ {0, 1}. We have that |〈ψgood|H⊗n|ψinit〉|2 = M/N . Therefore, the number of queries

is O(
√
N/M).

6.3 The dissipative query model

In this section, we present a gadget for the dissipative quantum search algorithm, namely,
the dissipative query model. In Section 6.2, we have reviewed the standard query model,
which performs the maps |ψgood〉|b〉 7→ |ψgood〉|b ⊕ 1〉 and |ψ⊥good〉|b〉 7→ |ψ⊥good〉|b〉. For the
dissipative query model, the intuition is to non-reversibly change the state of the second
register via the amplitude damping process.

To begin with, we first define a parameterized amplitude damping channel.

Definition 6.2. The amplitude damping channel with damping strength λ ≥ 0, denoted
by ADλ, is a quantum channel acting on L(C2) that performs the following mapping.

ADλ[ρ] = A0ρA
†
0 + A1ρA

†
1, (6.13)

108

for all ρ ∈ D(C2) where

A0 =

(
1 0
0 e−λ/2

)
, and A1 =

(
0
√

1− e−λ
0 0

)
. (6.14)

Note that when λ → ∞, AD∞ is the completely amplitude damping channel, and
when λ = 0, AD0 is the identity channel. The amplitude damping channel with damping
strength λ can be viewed as a continuous-time process in terms of λ, as

ADλ1 ◦ ADλ0 = ADλ0+λ1 , (6.15)

for all λ0, λ1 ≥ 0. Moreover, this continuous-time process is Markovian and thereby can
be described by a Lindblad equation specified as follows:

Lad[ρ] = LadρL
†
ad −

1

2

(
L†adLadρ+ ρL†adLad

)
, (6.16)

where the jump operator Lad is defined as

Lad =

(
0 1
0 0

)
. (6.17)

The Lindbladian Lad generates ADλ in the sense that

ADλ = eLadλ. (6.18)

Next, we extend the amplitude damping channel with damping strength λ to a con-
trolled channel. More formally, we have the following definition:

Definition 6.3. The controlled amplitude damping channel with damping strength λ ≥ 0,
denoted by c-ADλ, is a quantum channel acting on L(C2⊗C2) that performs the following
mapping:

c-ADλ[ρ] = B0ρB
†
0 +B1ρB

†
1, (6.19)

for all ρ ∈ D(C2 ⊗ C2), where

B0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−λ/2

 , and B1 =


0 0 0 0
0 0 0 0

0 0 0
√

1− e−λ
0 0 0 0

 . (6.20)

109

It can be verified that the controlled amplitude damping channel with damping strength
λ performs the following mapping

|b〉〈b| ⊗ ρ 7→

{
|b〉〈b| ⊗ ADλ[ρ], when b = 1

|b〉〈b| ⊗ ρ, when b = 0.
(6.21)

We use the circuit in Figure 6.1 to represent such a channel.

Figure 6.1: The circuit representation of the controlled amplitude damping channel with
damping strength λ.

Now, we use a standard query oracle, instead of a single qubit, to control the amplitude
damping channel. To do this, we consider a 2-dimensional subspace for the n-qubit register
CN (where N = 2n). Define the state |r〉 as

|r〉 =
1√

1− p
(|ψinit〉 −

√
p|ψgood〉). (6.22)

Then the set {|r〉, |ψgood〉} forms an orthonormal basis for the 2-dimensional subspace
spanned by |ψinit〉 and |ψgood〉. In the following definition, we only consider the case where
the state of the first register is in the 2-dimensional subspace spanned by |ψinit〉 and |ψgood〉.

Definition 6.4. Provided the state in C2n is in the 2-dimensional subspace spanned by
|ψinit〉 and |ψgood〉, the query-controlled amplitude damping channel with damping strength
λ ≥ 0, denoted by q-ADλ, is a quantum channel acting on L(C2n ⊗ C2) that performs the
following mapping:

q-ADλ[ρ] = E0ρE
†
0 + E1ρE

†
1, (6.23)

for all ρ ∈ D(C2n ⊗C2). With respect to the basis {|r〉, |ψgood〉} for the C2n, E0 and E1 are
defined as

E0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−λ/2

 , and E1 =


0 0 0 0
0 0 0 0

0 0 0
√

1− e−λ
0 0 0 0

 . (6.24)

110

It is easy to verify that the query-controlled amplitude damping channel with damping
strength λ performs the following mapping:

|ψ〉〈ψ| ⊗ ρ 7→

{
|ψ〉〈ψ| ⊗ ADλ[ρ], when |ψ〉 ∈ G

|ψ〉〈ψ| ⊗ ρ, when |ψ〉 is orthogonal to G.
(6.25)

We use the circuit shown in Figure 6.2 to denote the query-controlled amplitude damping
channel with damping strength λ.

Figure 6.2: The circuit representation of the query-controlled amplitude damping channel
with damping strength λ.

In this thesis, we refer to an application of q-ADλ for any λ > 0 as a dissipative query.
The dissipative query and the standard query are closely related: one dissipative query can
be implemented by two standard queries together with one controlled amplitude damping
channel. We have the following proposition, which is straightforward.

Proposition 6.2. For all λ > 0, one application of q-ADλ can be implemented by two
standard queries to Qgood and one c-ADλ by the circuit shown in Figure 6.3.

A notable property for both c-ADλ and q-ADλ is the continuous-time property, which
is inherited from ADλ. In particular, it holds that

c-ADλ1 ◦ c-ADλ0 = c-ADλ0+λ1 , and (6.26)

q-ADλ1 ◦ q-ADλ0 = q-ADλ0+λ1 , (6.27)

for all λ0, λ1 ≥ 0. When λ → 0, repeatedly applying q-ADλ yields a continuous-time
process, which is Markovian and can be described by the following Lindblad equation

L[ρ] = LρL† − 1

2

(
L†Lρ+ ρL†L

)
. (6.28)

111

Figure 6.3: Implementing one dissipative query with two standard queries to Qgood and
one c-ADλ.

When the state of the first register is in the 2-dimensional subspace spanned by |ψinit〉 and
|ψgood〉, with respect to the basis {|r〉, |ψgood〉} for the first register, the jump operator L is
defined as

L =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 . (6.29)

Evolving by this Lindblad equation for time λ is equivalent to applying a dissipative query
with damping strength λ, i.e.,

eLλ = q-ADλ. (6.30)

6.4 Dissipative quantum search algorithm

The building block of this algorithm is a quantum channel Mλ, which is demonstrated in
Figure 6.4. The channel Mλ is a composition of two quantum channels q-ADλ, which is
defined in Definition 6.4, and c-G, which is the controlled-Grover iterator in the form of
a quantum channel. Note that in Definition 6.4, the query-controlled amplitude damping
channel with damping strength λ is acting on L(C2n ⊗ C2), whereas in this section, we
swap the two Hilbert spaces so that q-ADλ is acting on L(C2 ⊗ C2n). This results in a

112

|1〉〈1| ADλ •

|ψinit〉〈ψinit| Q G...

q-ADλ c-G




Figure 6.4: The quantum circuit for Mλ.

slight change of the Kraus operators:

Eλ,0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−λ/2

 , and Eλ,1 =


0 0 0 0

0 0 0
√

1− e−λ
0 0 0 0
0 0 0 0

 , (6.31)

again, assuming that the state in C2n is in the 2-dimensional subspace spanned by |ψinit〉 and
|ψgood〉. Under the same assumption, the matrix representation of the controlled-Grover
iterator is

c-G =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 . (6.32)

The channel c-G is specified as

c-G[ρ] = c-Gρc-G†, (6.33)

for all ρ ∈ D(C2 ⊗ C2n). It follows that the channel Mλ can be specified as

Mλ[ρ] = c-G(Eλ,0ρE
†
λ,0 + Eλ,1ρE

†
λ,1)c-G† (6.34)

= c-GEλ,0ρE
†
λ,0 c-G† + c-GEλ,1ρE

†
λ,1 c-G†. (6.35)

Let |ψinit〉 and |ψgood〉 be defined as in Definition 6.1. Now, we present the algorithm in
Algorithm 6.1.

To show that Algorithm 6.1 has the desired property for Theorem 6.1, we need the
following lemma.

113

Algorithm 6.1: Dissipative quantum search procedure

1 ρ← |1〉〈1| ⊗ |ψinit〉〈ψinit|;
2 λ← 1;
3 k ← 1;
4 Loop
5 λ← λ/2;
6 for j ← k to k + 2d 1

λ
log(1

ε
)e do

7 ρj+1 ←Mλ[ρj];

8 end
9 k ← j;

10 EndLoop

Lemma 6.3. Assume p ≤ 1/4. Let |ψ〉 be any state in the 2-dimensional subspace spanned
by |ψgood〉 and |ψinit〉 with nonzero overlap with |ψgood〉, and let σ be a mixture of |1〉〈1| ⊗
|ψ〉〈ψ| and |0〉〈0|⊗ |ψgood〉〈ψgood|. LetMλ be a quantum channel parameterized by λ defined
in Eq. (6.35). If 2

√
p ≤ λ ≤ 4

√
p, then for any ε > 0, it holds that∥∥Mj

λ[σ]− |0〉〈0| ⊗ |ψgood〉〈ψgood|
∥∥

1
≤ ε, (6.36)

for all j > 2d 1√
p

log(1/ε)e.

Before proving Lemma 6.3, we first analyze Mλ. Let us first focus on the operator
c-G ·Eλ,0. To simplify the analysis, we only consider the lower-right block (as the operator
c-G · Eλ,0 keeps the first register intact if the state in this register is either |0〉 or |1〉).
Define the operator Aλ as

Aλ =

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 e−λ/2

)
. (6.37)

For an angle ϕ, we use the shorthand |ϕ〉 to denote the vector
(cosϕ

sinϕ

)
. For the operator

Aλ, we have the following lemma.

Lemma 6.4. Let a|ϕ1〉 = Aλ|ϕ0〉, where we choose the amplitude a ≥ 0 to be non-negative,
and the angle ϕ1 ≥ ϕ0 to be the smallest possible such angle no smaller than ϕ0. Then, the
following holds.

1. If 0 ≤ λ ≤ 1, then a2 ≤ 1− λ
4

whenever π
4
≤ (ϕ0 mod π) ≤ 3π

4
.

114

2. If 0 ≤ λ ≤ 4 sin θ
2
, then θ

2
≤ ϕ1 − ϕ0 ≤ 3θ

2
.

The main idea of this lemma is to show that the amplitude of the state is contracted
by the applications of Aλ. In particular, there exists an interval of ϕ that permits this
contraction (statement 1), and the angle ϕ rotates with certain speed (statement 2).

Proof of Lemma 6.4. Consider statement 1. Suppose π
4
≤ (ϕ0 mod π) ≤ 3π

4
. Then we

have | cosϕ0| ≤ 1√
2
≤ | sinϕ0|, and hence a2 = cos2 ϕ0 + e−λ sin2 ϕ0 ≤ 1

2
(1 + e−λ). It is easy

to verify that the function

g(λ) = 1− λ

4
− 1

2
(1 + e−λ) (6.38)

is monotonically decreasing in λ. In the interval [0, 1], the function g takes its minimum
value when λ = 1, where g(1) = 1− 1

4
− 1

2
(1 + e−1) > 0. We have

1

2
(1 + e−λ) ≤ 1− λ

4
, (6.39)

for all λ ∈ [0, 1]. It follows that a2 ≤ 1− λ
4
, which proves statement 1.

Now, consider statement 2. We first analyze the action of the operator of Aλ. Let ϕ′

be an angle such that(
1 0
0 e−λ/2

)(
cosϕ0

sinϕ0

)
=

(
cosϕ0

e−λ/2 sinϕ0

)
= a′

(
cosϕ′

sinϕ′

)
, (6.40)

for some a′ > 0. The last equality implies that tanϕ′ = e−λ/2 tanϕ0, and therefore

tanϕ′

tanϕ0

= e−λ/2. (6.41)

By the laws of tangents and sines, we have

sin(ϕ0 − ϕ′)
sin(ϕ0 + ϕ′)

=
1− e−λ/2

1 + e−λ/2
= tanh

(
λ

4

)
≥ 0, (6.42)

for all λ ≥ 0. It follows that

| sin(ϕ0 − ϕ′)| ≤ tanh

(
λ

4

)
| sin(ϕ0 + ϕ′)| ≤ tanh

(
λ

4

)
. (6.43)

115

By the fact that tanh(λ) ≤ sin(λ) for all λ ∈ [0, 1), as shown in [KVV10, Eq. (2.13)], we
have

| sin(ϕ0 − ϕ′)| ≤ sin

(
λ

4

)
. (6.44)

By the monotonicity of sine, we obtain

|ϕ0 − ϕ′| ≤
λ

4
. (6.45)

Therefore, when 0 ≤ λ ≤ 4 sin(θ
2
), we have

|ϕ0 − ϕ′| ≤
θ

2
. (6.46)

Now, let us analyze the action of the second operator of Aλ, which rotates the state by
an angle θ. It implies that ϕ1 − ϕ′ = θ. Together with Eq. (6.46), we have

θ

2
≤ ϕ1 − ϕ0 ≤

3θ

2
, (6.47)

which concludes statement 2.

In the following, we use Lemma 6.4 to prove Lemma 6.3.

Proof of Lemma 6.3. To understand the impact of repeatedly applying Mλ, we consider
the impact of applying the operators c-G · Eλ,0 and c-G · Eλ,1 separately.

For any state σ specified in the lemma, applying Eλ,1 on it yields |0〉〈0| ⊗ |ψgood〉〈ψgood|,
which will be invariant for any subsequent operations such as c-G, Eλ,0, and Eλ1 . Ap-
plying c-G · Eλ,0 on σ results in some state σ1, which is a mixture of |1〉〈1| ⊗ |ψ1〉〈ψ1|
and |0〉〈0| ⊗ |ψgood〉〈ψgood|, where |ψ1〉 is some state in the 2-dimensional subspace spanned
by |ψgood〉 and |ψinit〉. After j application of Mλ, the resulting state σj will always be
a mixture of |1〉〈1| ⊗ |ψj〉〈ψj| and |0〉〈0| ⊗ |ψgood〉〈ψgood|, where |ψj〉 is a state in the 2-
dimensional subspace spanned by |ψgood〉 and |ψinit〉. To bound the distance betweenMj

λ[σ]
and |0〉〈0| ⊗ |ψgood〉〈ψgood|, it suffices to bound the amplitude of (c-G · Eλ,0)j|1〉|ψ〉, where
|ψ〉 can be any state in the 2-dimensional subspace spanned by |ψgood〉 and |ψinit〉. This
can be demonstrated in Figure 6.5.

The impact of the operator c-G ·Eλ,0 is shown in Lemma 6.4. Note that both c-G and
Eλ,0 do not affect the first register if the state in this register is either |0〉 or |1〉, so it

116

suffices to consider the operator Aλ defined in Eq. (6.37). Take 2
√
p = 2 sin(θ/2) ≤ λ ≤

4 sin(θ/2) = 4
√
p. By statement 1 of Lemma 6.4, it is guaranteed that the amplitude of

the state will be contracted by 1 − λ/2 = 1 − √p/2 when π
4
≤ (ϕ0 mod π) ≤ 3π

4
. When

p ≤ 1/4, we have

0.3 < (1−√p/2)
2√
p ≤ 1

e
. (6.48)

As the interval [π
4
, 3π

4
] is half of the interval [0, π], to ensure the desired constant-contraction,

the number of iterations should be 4/
√
p. Statement 2 of Lemma 6.4 ensures that the

rotation speed of ϕ is at least
√
p/2, which implies that even if the algorithm is started

with some ϕ < π
4

or ϕ > 3π
4

, with an additional
√
p/2 iterations, the angle ϕ will be in the

interval [π
4
, 3π

4
]. Therefore, when j > 4d 1√

p
log(1/ε)e, the state is contracted by at least

√
ε,

and the trace-distance will be upper-bounded by ε, which proves the lemma.

first
iteration

second
iteration

Figure 6.5: Demonstration of the impact of E0 and E1 in each iteration.

In Figure 6.6, we show a numerical comparison between the algorithm in Lemma 6.3
and Grover’s algorithm. This numerical comparison illustrates that the error converges
(though not monotonically) with more iterations of Mλ.

Now, we are ready to prove Theorem 6.1.

117

13 22
1
42

9
63

7
84

5
10

53
12

61
14

69
16

77
18

85
20

93
23

01
25
09
27

17
29

25
31
33
33

41
35

49
37

57
39

65
41

73
43

81
45
89
47

97
50

05
52

13
54

21
56

29
58
37

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

o
ve

rl
a
p

w
ith

th
e

ta
rg

e
ts

ta
te

Figure 6.6: Numerical comparison between the algorithm given in Lemma 6.3 (solid) and
Grover’s algorithm (dashed). The horizontal axis represents the number of iterations (of
Mλ and the Grover iterator, respectively), and the vertical axis represents the overlap of
the current state with the target state. The size of search space is N = 218 and there is
only one marked item.

Proof of Theorem 6.1. We use Algorithm 6.1. For each trial of λ, if 2
√
p ≤ λ ≤ 4

√
p, then

by Lemma 6.3, the error bound is satisfied. Otherwise, the resulting state is in the form
of σ specified in Lemma 6.3, and this state can be the input state of the iterations for the
next trial of λ. To obtain error bound ε, the total number of iterations is

4d2 log(1/ε)e+ 4d4 log(1/ε)e+ · · ·+ 4d 1

λ′
log(1/ε)e ≤ 8

λ′
log(1/ε). (6.49)

Since 2
√
p ≤ λ′ ≤ 4

√
p, the above quantity is upper-bounded by 4√

p
log(1/ε). The fact that

each application of Mλ can be implemented using a constant number of queries to Qgood

and Qinit follows from Proposition 6.2.

The numerical comparison between Algorithm 6.1 and Grover’s algorithm is shown in
Figure 6.7. Note that the error convergence is not monotonic as it appears in the figure.
There exits tiny increasing of error during the applications ofMλ that cannot be observed
due to the limited scale of this plot.

118

10 17
0
33

0
49

0
65

0
81

0
97
0
11

30
12

90
14

50
16

10
17

70
19

30
20
90
22

50
24

10
25

70
27

30
28
90
30

50
32

10
33

70
35

30
36

90
38

50
40

10
41

70
43

30
44

90
46

50
48

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

steps

o
ve

rl
a
p

w
ith

th
e

ta
rg

e
ts

ta
te

Figure 6.7: Numerical comparison between Algorithm 6.1 (solid) and Grover’s algorithm
(dashed). The horizontal axis represents the number of applications of step 6 in Algo-
rithm 6.1 and the Grover iterator in Grover’s algorithm, respectively, and the vertical axis
represents the overlap of the current state with the target state. The size of search space
is N = 218 and there is only one marked item.

119

Chapter 7

Conclusion

In this thesis, we studied computational problems related to open quantum systems. In
Chapter 2, we provided the necessary background for this thesis, including the termi-
nologies and notations for quantum information and some properties of finite fields. In
Chapter 3, we studied an example of open quantum systems – unitary 2-designs. We
gave three constructions of unitary 2-designs on n qubits. The first construction re-
quires O(n log n log log n) Clifford gates, and it works for infinitely many n under the
extended Riemann Hypothesis. The second construction requires O(n log n log log n) gates
(including non-Clifford gates), unconditionally for all n. The third construction requires
O(n log2 n log log n) Clifford gates, unconditionally for all n. In Chapter 4, we studied the
Lindblad evolution, which captures the dynamics of Markovian open quantum systems.
We first gave a macroscopic derivation of the Lindblad equation. Then, we showed a lower
bound for simulating Lindblad evolution as Hamiltonian evolution in a larger Hilbert space.
In Chapter 5, we presented an efficient quantum algorithm for simulating Lindblad evolu-
tion for time t and error ε with gate complexity (in a simplified form) O(t polylog(t/ε)),
which cannot be achieved if the Lindblad evolution is simulated as Hamiltonian evolution
in a larger Hilbert space (because of the lower bound shown in Chapter 4). In Chapter 6,
we demonstrated that open quantum systems can be used as building blocks for other
quantum algorithms. In particular, we introduced a novel query model – the dissipative
query model, which can be implemented by the standard query model with the amplitude
damping process. With this dissipative query model, we showed a fixed-point quantum
search algorithm that preserves the quadratic speedup.

120

References

[AG04] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer
circuits. Physical Review A, 70(5), 2004.

[ATS03] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation
and statistical zero knowledge. In Proceedings of the Thirty-fifth ACM Sym-
posium on Theory of Computing - STOC '03. ACM Press, 2003.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds
on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4-
5):493–505, 1998.

[BBP+96] Charles H. Bennett, Gilles Brassard, Sandu Popescu, Benjamin Schumacher,
John A. Smolin, and William K. Wootters. Purification of noisy entangle-
ment and faithful teleportation via noisy channels. Physical Review Letters,
76(5):722–725, 1996.

[BCC+15] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. Simulating Hamiltonian dynamics with a truncated
Taylor series. Physical Review Letters, 114(9), 2015.

[BCC+17] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. Exponential improvement in precision for simulating
sparse Hamiltonians. Forum of Mathematics, Sigma, 5, 2017.

[BCG14] Dominic W. Berry, Richard Cleve, and Sevag Gharibian. Gate-efficient dis-
crete simulations of continuous-time quantum query algorithms. Quantum
Information & Computation, 14(1-2):1–30, 2014.

[BCK15] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian
simulation with nearly optimal dependence on all parameters. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science. IEEE, 2015.

121

[BDSW96] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K.
Wootters. Mixed-state entanglement and quantum error correction. Physical
Review A, 54(5):3824–3851, 1996.

[BF13] Winton Brown and Omar Fawzi. Short random circuits define good quantum
error correcting codes. In 2013 IEEE International Symposium on Informa-
tion Theory. IEEE, 2013.

[BF15] Winton Brown and Omar Fawzi. Decoupling with random quantum circuits.
Communications in Mathematical Physics, 340(3):867–900, 2015.

[BH97] Gilles Brassard and Peter Høyer. An exact quantum polynomial-time algo-
rithm for Simon’s problem. In Theory of Computing and Systems, 1997.,
Proceedings of the Fifth Israeli Symposium on, pages 12–23. IEEE, 1997.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplification and estimation. Contemporary Mathematics, 305:53–
74, 2002.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum counting. In Pro-
ceedings of the 25th International Colloquium on Automata, Languages, and
Programming - ICALP '98, pages 820–831. Springer, 1998.

[BN16] Dominic W. Berry and Leonardo Novo. Corrected quantum walk for optimal
Hamiltonian simulation. arXiv preprint arXiv:1606.03443, 2016.

[BP07] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum
Systems. Oxford University Press, 2007.

[Cha05] Hoi Fung Chau. Unconditionally secure key distribution in higher dimensions
by depolarization. IEEE Transactions on Information Theory, 51(4):1451–
1468, 2005.

[Chi04] Andrew M. Childs. Quantum Information Processing in Continuous Time.
PhD thesis, Massachusetts Institute of Technology, 2004.

[Cho75] Man-Duen Choi. Completely positive linear maps on complex matrices. Lin-
ear Algebra and its Applications, 10(3):285–290, 1975.

[CK10] Andrew M. Childs and Robin Kothari. Limitations on the simulation of non-
sparse Hamiltonians. Quantum Information & Computation, 10(7&8):0669–
0684, 2010.

122

[CL17] Andrew M. Childs and Tongyang Li. Efficient simulation of sparse markovian
quantum dynamics. Quantum Information & Computation, 17(11&12):0901–
0947, 2017.

[CLLW16] Richard Cleve, Debbie W. Leung, Li Liu, and Chunhao Wang. Near-linear
constructions of exact unitary 2-designs. Quantum Information & Computa-
tion, 16(9-10):721–756, 2016.

[CPdC+15] Roberto Di Candia, Julen S. Pedernales, Adolfo del Campo, Enrique Solano,
and Jorge Casanova. Quantum simulation of dissipative processes without
reservoir engineering. Scientific Reports, 5(1), 2015.

[CRR05] Sourav Chakraborty, Jaikumar Radhakrishnan, and Nandakumar Raghu-
nathan. Bounds for error reduction with few quantum queries. In Approxima-
tion, Randomization and Combinatorial Optimization. Algorithms and Tech-
niques, pages 245–256. Springer, 2005.

[CW79] John L. Carter and Mark N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143–154, 1979.

[CW17] Richard Cleve and Chunhao Wang. Efficient quantum algorithms for simulat-
ing Lindblad evolution. In Proceedings of the 44th International Colloquium
on Automata, Languages, and Programming - ICALP '17, pages 17:1–17:14.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[DCEL09] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact
and approximate unitary 2-designs and their application to fidelity estima-
tion. Physical Review A, 80(1), 2009.

[Dev05] Igor Devetak. The private classical capacity and quantum capacity of a quan-
tum channel. IEEE Transactions on Information Theory, 51(1):44–55, 2005.

[DGV12] Ross Dorner, John Goold, and Vlatko Vedral. Towards quantum simulations
of biological information flow. Interface Focus, 2(4):522–528, 2012.

[DLT02] David P. DiVincenzo, Debbie W. Leung, and Barbara M. Terhal. Quantum
data hiding. IEEE Transactions on Information Theory, 48(3):580–598, 2002.

[EWS+03] Joseph Emerson, Yaakov S. Weinstein, Marcos Saraceno, Seth Lloyd, and
David G. Cory. Pseudo-random unitary operators for quantum information
processing. Science, 302(5653):2098–2100, 2003.

123

[Fey82] Richard P. Feynman. Simulating physics with computers. International Jour-
nal of Theoretical Physics, 21(6-7):467–488, 1982.

[FG98] Edward Farhi and Sam Gutmann. Analog analogue of a digital quantum
computation. Physical Review A, 57(4):2403–2406, 1998.

[Fin47] Nathan J. Fine. Binomial coefficients modulo a prime. The American Math-
ematical Monthly, 54(10):589, 1947.

[GAE07] David Gross, Koenraad Audenaert, and Jens Eisert. Evenly distributed uni-
taries: on the structure of unitary designs. Journal of Mathematical Physics,
48(5):052104, 2007.

[GKS76] Vittorio Gorini, Andrzej Kossakowski, and Ennackal C. G. Sudarshan. Com-
pletely positive dynamical semigroups of n-level systems. Journal of Mathe-
matical Physics, 17(5):821–825, 1976.

[Got97] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD
thesis, California Institute of Technology, 1997. arXiv preprint quant-
ph/9705052.

[Got98] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical
Review A, 57(1):127–137, 1998.

[Got99] Daniel Gottesman. The Heisenberg representation of quantum computers.
In Proceedings of the XXII International Colloquium on Group Theoretical
Methods in Physics, pages 32–43, Cambridge, MA, USA, 1999. International
Press.

[GPT06] Lov K. Grover, Apoorva Patel, and Tathagat Tulsi. Quantum algorithms
with fixed points: the case of database search, 2006. arXiv preprint quant-
ph/0603132.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-eighth ACM Symposium on Theory of Computing
- STOC '96. ACM Press, 1996.

[Gro05] Lov K. Grover. Fixed-point quantum search. Physical Review Letters, 95(15),
2005.

124

[GvzGPS00] Shuhong Gao, Joachim von zur Gathen, Daniel Panario, and Victor Shoup.
Algorithms for exponentiation in finite fields. Journal of Symbolic Computa-
tion, 29(6):879–889, 2000.

[Has09] Matthew B. Hastings. Superadditivity of communication capacity using en-
tangled inputs. Nature Physics, 5(4):255–257, 2009.

[Haz96] Michiel Hazewinkel. Handbook of Algebra, volume 1. Elsevier, 1996.

[HHWY08] Patrick Hayden, Micha l Horodecki, Andreas Winter, and Jon Yard. A de-
coupling approach to the quantum capacity. Open Systems & Information
Dynamics, 15(01):7–19, 2008.

[HL09] Aram W. Harrow and Richard A. Low. Random quantum circuits are approx-
imate 2-designs. Communications in Mathematical Physics, 291(1):257–302,
2009.

[HLSW04] Patrick Hayden, Debbie W. Leung, Peter W. Shor, and Andreas Winter. Ran-
domizing quantum states: constructions and applications. Communications
in Mathematical Physics, 250(2):371–391, 2004.

[HLW06] Patrick Hayden, Debbie W. Leung, and Andreas Winter. Aspects of generic
entanglement. Communications in Mathematical Physics, 265(1):95–117,
2006.

[HP13] Susana F. Huelga and Martin B. Plenio. Vibrations, quanta and biology.
Contemporary Physics, 54(4):181–207, 2013.

[HW08] Patrick Hayden and Andreas Winter. Counterexamples to the maximal p-
norm multiplicativity conjecture for all p > 1. Communications in Mathe-
matical Physics, 284(1):263–280, 2008.

[KB16] Michael J. Kastoryano and Fernando G. S. L. Brandão. Quantum Gibbs
samplers: the commuting case. Communications in Mathematical Physics,
344(3):915–957, 2016.

[KBD+08] Barbara Kraus, Hans P. Büchler, Sebastian Diehl, Adrian Kantian, An-
drea Micheli, and Peter Zoller. Preparation of entangled states by quantum
Markov processes. Physical Review A, 78(4), 2008.

125

[KBG+11] Martin Kliesch, Thomas Barthel, Christian Gogolin, Michael J. Kastoryano,
and Jens Eisert. Dissipative quantum Church-Turing theorem. Physical Re-
view Letters, 107(12), 2011.

[Kot14] Robin Kothari. Efficient Algorithms in Quantum Query Complexity. PhD
thesis, University of Waterloo, 2014.

[KRS11] Michael J. Kastoryano, Florentin Reiter, and Anders S. Sørensen. Dissipa-
tive preparation of entanglement in optical cavities. Physical Review Letters,
106(9), 2011.

[KVV10] Riku Klén, M. Visuri, and Matti Vuorinen. On Jordan type inequalities for hy-
perbolic functions. Journal of Inequalities and Applications, 2010(1):362548,
2010.

[LC17] Guang Hao Low and Isaac L. Chuang. Optimal Hamiltonian simulation by
quantum signal processing. Physical Review Letters, 118(1), 2017.

[LCD+87] Anthony J. Leggett, Sudip Chakravarty, Alan T. Dorsey, Matthew P. A.
Fisher, Anupam Garg, and Wilhelm Zwerger. Dynamics of the dissipative
two-state system. Reviews of Modern Physics, 59(1):1–85, 1987.

[Leu03] Debbie W. Leung. Choi’s proof as a recipe for quantum process tomography.
Journal of Mathematical Physics, 44(2):528, 2003.

[Lin76] Goran Lindblad. On the generators of quantum dynamical semigroups. Com-
munications in Mathematical Physics, 48(2):119–130, 1976.

[Llo96] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078,
1996.

[Llo97] Seth Lloyd. Capacity of the noisy quantum channel. Physical Review A,
55(3):1613–1622, 1997.

[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their
Applications. Cambridge University Press, 1994.

[Low09] Richard A. Low. Pseudo-randomness and Learning in Quantum Computation.
PhD thesis, University of Bristol, 2009. arXiv preprint arXiv:1006.5227.

[MK08] Volkhard May and Oliver Kühn. Charge and Energy Transfer Dynamics in
Molecular Systems. John Wiley & Sons, 2008.

126

[MPGC13] Easwar Magesan, Daniel Puzzuoli, Christopher E. Granade, and David G.
Cory. Modeling quantum noise for efficient testing of fault-tolerant circuits.
Physical Review A, 87(1), 2013.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995.

[MRE+12] Sarah Mostame, Patrick Rebentrost, Alexander Eisfeld, Andrew J Kerman,
Dimitris I. Tsomokos, and Alán Aspuru-Guzik. Quantum simulator of an
open quantum system using superconducting qubits: exciton transport in
photosynthetic complexes. New Journal of Physics, 14(10):105013, 2012.

[MW05] Chris Marriott and John Watrous. Quantum Arthur–Merlin games. Compu-
tational Complexity, 14(2):122–152, 2005.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge University Press, 2000.

[Nit06] Abraham Nitzan. Chemical Dynamics in Condensed Phases: Relaxation,
Transfer and Reactions in Condensed Molecular Systems. Oxford University
Press, 2006.

[PP17] Apoorva Patel and Anjani Priyadarsini. Optimization of quantum Hamilto-
nian evolution: from two projection operators to local Hamiltonians. Inter-
national Journal of Quantum Information, 15(02):1650027, 2017.

[Pre] John Preskill. Lecture notes for Quantum Computation. Available online at
http://theory.caltech.edu/people/preskill/ph229/, visited on 2018-
06-15.

[Rid] Larry Riddle. Unpublished manuscript. Available online at http://

ecademy.agnesscott.edu/~lriddle/ifs/siertri/Pascalmath.htm, vis-
ited on 2018-06-15.

[RRS16] Florentin Reiter, David Reeb, and Anders S Sørensen. Scalable dissipative
preparation of many-body entanglement. Physical Review Letters, 117(4),
2016.

[RS09] Aidan Roy and A. J. Scott. Unitary designs and codes. Designs, Codes and
Cryptography, 53(1):13–31, 2009.

127

http://theory.caltech.edu/people/preskill/ph229/
http://ecademy.agnesscott.edu/~lriddle/ifs/siertri/Pascalmath.htm
http://ecademy.agnesscott.edu/~lriddle/ifs/siertri/Pascalmath.htm

[Sch77] Arnold Schönhage. Schnelle multiplikation von polynomen über körpern der
charakteristik 2. Acta Informatica, 7(4):395–398, 1977.

[SDTR13] Oleg Szehr, Frédéric Dupuis, Marco Tomamichel, and Renato Renner. De-
coupling with unitary approximate two-designs. New Journal of Physics,
15(5):053022, 2013.

[Sho] Peter W. Shor. The quantum channel capacity and coherent information. Lec-
ture notes, MSRI Workshop on Quantum Computation, 2002. Available on-
line at http://www.msri.org/realvideo/ln/msri/2002/quantumcrypto/

shor/1/, visited on 2018-06-15.

[Suz91] Masuo Suzuki. General theory of fractal path integrals with applications to
many-body theories and statistical physics. Journal of Mathematical Physics,
32(2):400–407, 1991.

[VWC09] Frank Verstraete, Michael M. Wolf, and Juan Ignacio Cirac. Quantum compu-
tation and quantum-state engineering driven by dissipation. Nature Physics,
5(9):633–636, 2009.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, 2013.

[vzGP01] Joachim von zur Gathen and Francesco Pappalardi. Density estimates related
to Gauß periods. In Cryptography and Computational Number Theory, pages
33–41. Birkhuser Basel, 2001.

[vzGSS07] Joachim von zur Gathen, Amin Shokrollahi, and Jamshid Shokrollahi. Ef-
ficient multiplication using type 2 optimal normal bases. In Arithmetic of
Finite Fields, pages 55–68. Springer Berlin Heidelberg, 2007.

[Wat18] John Watrous. The Theory of Quantum Information. Cambridge University
Press, 2018.

[Wei12] Ulrich Weiss. Quantum Dissipative Systems. World Scientific, 2012.

[YLC14] Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point
quantum search with an optimal number of queries. Physical Review Letters,
113(21), 2014.

128

http://www.msri.org/realvideo/ln/msri/2002/quantumcrypto/shor/1/
http://www.msri.org/realvideo/ln/msri/2002/quantumcrypto/shor/1/

	List of Figures
	Introduction
	Unitary 2-designs
	Lindblad evolution
	Dissipative quantum search
	Organization of this thesis

	Notation and Preliminaries
	Basics for quantum computing
	Properties of finite fields

	An Example of Open Quantum Systems: Unitary 2-Designs
	Previous work and main results
	Definitions of unitary 2-designs
	Pauli mixing and unitary 2-designs
	Pauli mixing implies a unitary 2-design
	Pauli mixing and the special linear group over finite field
	A framework for implementing elements of the special linear group over finite field

	Efficient constructions of unitary 2-designs
	Near-linear implementation based on self-dual basis for finite field
	Near-linear implementations based on polynomial basis for finite field
	Lower bounds for the size and depth of unitary 2-designs

	Continuous-Time Evolution of Markovian Open Quantum Systems
	Macroscopic derivation of the Lindblad equation
	Examples of Lindblad evolution
	Lower-bound of simulation as Hamiltonian evolution in a larger Hilbert space

	Quantum Algorithms for Simulating Markovian Open Quantum Systems
	Previous work and main results
	Previous work
	Main results

	Novel techniques
	The performance of the standard LCU method on Stinespring dilations
	Brief summary of novel techniques

	New LCU method for channels and completely positive maps
	Overview of the algorithm
	A linear map that approximates infinitesimal Lindblad evolution
	Implementing the approximation map by the new LCU method
	Simulation with constant success probability
	Oblivious amplitude amplification for isometries
	Concentration bound and encoding scheme
	Total number of gates and proof of the main theorem

	Lindbladians with sparse Hamiltonian and Lindblad operators

	Harnessing Open Quantum Systems: Dissipative Quantum Search
	Previous work and main results
	Previous work
	Main results

	Review of Grover's algorithm
	The dissipative query model
	Dissipative quantum search algorithm

	Conclusion
	References

