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Abstract

People are often interested in predicting a new or future observation. In clinical pre-

diction, the uptake of Electronic Health Records (EHRs) has generated massive health

datasets that are big in volume and diverse in variety. The outcomes can be of different

types, e.g., continuous, binary, time-to-event, etc., and covariates can be either time-fixed

or longitudinal. These datasets can provide rich and diverse information for modeling and

prediction but also pose challenges to fast and accurate prediction of outcomes of interest.

One challenge of predicting is that when the data are heterogeneous in the relationship

between the covariates and the outcome. In this case, it is quite possible that localizing a

subset of data in an informative manner to aid in making predictions will lead to better

performance than including all information. Chapter 3 deals with a continuous outcome,

and I have developed methodology that gives an interpretable and meaningful definition of

similarity, and an algorithm to uncover the similarity structure to improve the prediction

accuracy by making similarity-based predictions. In Chapter 4, the similarity-based predic-

tion is extended to a survival outcome, with possible independent or dependent censoring.

The algorithm is developed under the random forest framework, and I showed through

both simulations and a real data example that incorporating the similarity structure in-

deed improves prediction accuracy in these cases.

Another challenge in prediction arises when longitudinal covariates are present, and

that there are scenarios when one needs to make an early prediction as soon as practical

and thus cannot monitor the full trajectory of longitudinal covariates (before the prediction

is required). In Chapter 5, I address this concern by quantifying the relationship between

the earliness of prediction and the prediction accuracy. A penalization approach with a

graphical method is introduced to select a monitoring window length given specific predic-
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tion accuracy. Comprehensive simulations are conducted to investigate the performance of

the algorithm in selecting the length of the monitoring window in different scenarios.
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Chapter 1

Introduction

1.1 Statistical Prediction

People are often interested in predicting a new or future observation. In some of the

predictions, statistical inference is made from a sample of a population and is generalized

to the whole population whose outcome is uncertain or unknown. Predictions can also be

made for future outcomes based on history - that is, generalization of a given predictive

model into the future. In e-commerce for example, people are interested in predicting

what a customer might be interested in buying based on the purchasing histories of other

customers (one example is in Wang 2016 [56]). Image recognition is also a prediction

problem. An example is the identification of hand-written digits (for one example, Niu 2012

[36]). Typically, a training set of images with known digits is used to build a prediction

model. Then the digit of a new hand-written digit picture will be identified according

to that model. In clinical decision making, physicians need to know what is the survival

likelihood of a patient after getting a heart transplant. It is important to identify the
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differences between association and prediction. Association is usually model dependent, as

all models are only an approximation of the truth. Predictions can usually be validated,

using a training-test data split for example. A stronger association does not necessarily

imply higher prediction power, as association does not necessarily imply causation.

1.1.1 Prediction Models

I will begin with a brief overview of common types of statistical prediction models. The

simplest model is a linear regression model where a linear relationship is assumed between

outcome Y and input matrix X. If Y is categorical, a multivariate logistic regression model

can be used where the logit of the probabilities P (Y = y) is linear in X.

In many cases, Y is not linear in X, and a more general way of representing the

relationship is needed. This can be accomplished using more flexible model specifications,

for which one example utilizes regression splines. Smoothing splines, a particular form of

penalized spline (e.g., Ruppert , Wand, and Carroll text, 2003 [44]) is another option. This

is done by dividing X into different regions and model Y with polynomials of X within each

region. The order of the spline, the location and number of the knots need to be specified.

Kernel methods are often used as well. Kernel methods estimate the conditional mean

using local information. Larger neighborhoods lead to larger bias and smaller variance,

and smaller neighborhoods lead to smaller bias and larger variance. Common choices of

the kernel includes the Gaussian kernel, the Epanechnikov kernel, and the tri-cube kernel

[14].

K-Nearest-Neighbor methods use the k closest neighbors of x to predict Y , i.e.,

Ŷ (x) = 1/k
∑

xi∈Nk(x)

yi,
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where Nk(x) is the k nearest neighborhood of x and is defined using the Euclidean distance.

Tree-based methods partition the feature space into rectangles by splitting a feature

variable at each node to maximize some similarity measure within each daughter node. To

correct for the over-fitting tendency of a tree, a random forest can be used. A random forest

consists of trees with the splitting feature variables selected from a bootstrap sample of all

features. The average prediction from all trees are combined to make a final prediction.

[30]. Boosting methods are commonly used as well. It combines the outputs of ”weak”

classifiers to form a strong one [14].

1.1.2 Prediction Performance

The performance of prediction models can be assessed by a variety of measures. In gen-

eral, we want to find predictors with low prediction error, high discrimination ability, and

accurate calibration [49]. Often they cannot all be achieved at the same time.

There are two types of statistical predictors, point estimator and probabilistic estimator.

A point estimator Ŷ = f̂(X) is a function of the input covariates and the function is

estimated based on the training data. Probabilistic estimator gives the probabilities that

Y is smaller than a value. If Y is categorical, it gives the probability that Y is equal to

some number, P (Y = a). The accuracy of point estimators is usually measured by loss

functions. Two common choices of the loss functions are the absolute error loss

L(Y, f̂(x)) = |Y − f̂(x)|,

and the squared error loss

L(Y, f̂(x)) = (Y − f̂(X))2.

3



If Y is categorical, the 0-1 loss function,

L(Y, Ŷ ) = I(Y = Ŷ ),

where I is the indicator function, is commonly used. The prediction error is defined as the

expected value over the loss function. For probabilistic estimators, one way of measuring

the prediction error is to dichotomize it into different categories based on a subjectively

selected threshold and apply the loss function for point estimators.

Sensitivity and specificity can be used to quantify the discriminative power of a prob-

abilistic predictor. That is, how many cases with the outcome have a higher predicted

probability of getting that outcome. “Higher probability” can be defined as a probability

that is greater than any chosen threshold between 0 and 1. The area under the ROC curve

eliminates the need to select a threshold subjectively. It summarizes the sensitivity and

specificity of a predictor at all thresholds between 0 and 1. In medical diagnostic testing,

each point on the ROC curve can be interpreted as “being a conditional probability of

a test result from a random diseased subject exceeding that from a random non-diseased

subject” [39]. It can be applied to measure the performance of a survival model as well

[20]. Some newer methods for measuring discriminative ability include variants of the c

statistic for survival models, reclassification tables, net reclassification improvement (NRI),

and integrated discrimination improvement (IDI). NRI was later found to have a high false-

positive rate, and a statistically significant NRI statistic should not be relied on as sufficient

evidence for improved prediction performance in the evaluation of biomarkers [38].

Calibration can be measured using a goodness of fit test. One example that the three

properties cannot be achieved at the same time is, if the data is highly imbalanced between

two classes, classification accuracy might be very high for a model that tends to predict

the major class for all predictions. Such a model is not useful in practice since it does

4



not have any discriminative power. A confusion matrix that display the false-positive and

false-negative rates will provide more informative, and an alternative model with higher

prediction error but better discriminative ability might have better prediction performance.

1.2 Improving Prediction with Similarity Measure

Traditionally, a global model is fitted to the entire dataset to optimize the average model

performance. It is quite possible that the prediction of some subsets of data under the

global model does not perform as well. Moreover, if the size of the subset is small, the

parameter estimates are dominated by the majority cases. It is possible that this group

can be identified using some of the available covariates. If we can use information from

the available features to identify this subgroup, and build separate models for them, the

resulting model will be more useful for that group, and improves prediction performance

of the overall model as well. This motivates my proposal to define similarity based on

the relationship between the covariates of the outcomes instead of just the closeness of

the feature vectors or the outcomes. The idea of using similarity to improve prediction

performance can be seen in a number of papers, some discussed in Subsections 1.2.1, 1.2.2,

and Sections 2.1 and 2.2. Based on how similarity is defined, these methods can be generally

divided into two categories, unsupervised and supervised.

1.2.1 Unsupervised Methods

Liu et al. (2007) [31] applied the similarity-based approach to neural networks. They used

unsupervised clustering to divide sample data into K groups and then trained separately

an RBF network in each cluster. A new case is then assigned to one of the clusters
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for prediction. They showed that when applied to financial time series prediction the

method reduced the computation time and the complexity of the model and improved

trend accuracy in prediction. Lowskey et al. (2013) [32] applied similarity to model the

effect of covariates on a survival outcome. Instead of generating one survival curve for the

entire training dataset, for a new patient j in the test dataset, their algorithm generates a

Kaplan-Meier survival curve based on K-nearest neighbors of that patient in the training

set. The Mahalanobis distance between the covariates was used as the similarity measure

to find the K-nearest neighbors.

Trivedi, Pardos & Heffernan (2015) [53] investigated the utility of clustering in improv-

ing prediction accuracy, and also provided some explanations on why this approach may

increase prediction accuracy. They applied k-means clustering first and then obtained k

sets of predictors for each cluster. The k sets of predictions were then combined using a

naive ensemble for prediction. When similarity measure is defined in an unsupervised way,

it will only depend on the covariates. The relative explanatory ability or the relationship

between the covariates and the outcome is ignored.

1.2.2 Supervised and Semi-Supervised Methods

Ishwaran et al. (2008) [22] extended a random forest model to survival outcomes. By

splitting nodes to maximize survival difference, dissimilar cases will end up in different

nodes while cases in the same node will be more homogeneous. A cumulative hazard

function (CHF) is calculated for each tree and then averaged to obtain the ensemble CHF.

As a result, the CHF obtained from similar cases are used to predict the CHF of a new case.

Xu, Nettleton, & Nordman (2014) [57] developed case-specific random forests (CSRFs).

While the standard random forest (RF) model uses uniform weights in the re-sampling

6



scheme and generates a global random forest for all cases, Xu, Nettleton, & Nordman

(2014) [57] applied weights to assign higher probabilities to cases that are more similar to

the target case. The similarity is defined using bagging of trees, that is, firstly, a standard

RF model is fit to the data. The greater the degree trees group two cases into the same

node, the more similar these two cases are. However, the drawback of applying random

forest models, e.g., either Ishwaran et al. (2008) or Xu, Nettleton & Nordman (2014) [57],

to clinical data is computational burden and a lack of interpretability.

1.3 Thesis Outline

Chapter 2 will discuss general prediction problems in clinical settings and especially the

challenges of predictions in the ICU. The MIMIC-III (Medical Information Mart for In-

tensive Care III) dataset and the motivating study from that dataset will be introduced.

In Chapter 3, I will give an interpretable and meaningful definition of neighborhoods and

use simulations to show the idea of building localized models to improve prediction. I will

propose a new method to estimate similarity in a supervised way. In Chapter 4, I will

extend our method to survival analysis where the outcome is the time to occurrence of

some event. In Chapter 5, I will quantify the relationship between prediction accuracy and

the length of the monitoring window of longitudinal covariates.
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Chapter 2

Clinical Prediction

Clinical prediction models provide physicians with evidence-based decision-making by esti-

mating individual probabilities of risks and benefits [11]. The dataset that we mainly focus

on comes from an observational study. Observational studies are used primarily to identify

risk and prognostic factors and in cases where randomized controlled trials would be impos-

sible or unethical. They often have lower costs (than clinical trials), greater follow-up time

for patients, and include a broader range of patients. It has been shown in recent studies

that well-designed observational studies provide results similar to randomized controlled

trials[2, 8].

2.1 Overview of Similarity-based Prediction in Medicine

The uptake of Electronic Health Records (EHRs) has generated massive health data sets

that are big in volume and diverse in variety. Traditional methods assume that all patients

in a given dataset have the same relationship between the outcome and the feature vector,
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and focus on a global model to fit the entire training dataset. However this approach may

not be optimal for big health data, and using all patient data in the prediction might only

be adding computational burden and decreases prediction accuracy.

It has been shown in previous papers that patient similarities from EHR can be utilized

to improve prediction of health risks, and to target medical treatments,. For example, Got-

tlieb et al. (2013) used basic patient-specific information gathered at admission, to identify

similar patients and then predicting the eventual discharge diagnoses[17]. Panahiazar et

al. (2015) used EHR information such as medical co-morbidities, lab measurements, ejec-

tion fraction, vital status and demographics to identify similar patients, and subsequently

assign medication plans based on the similarity index [37].

2.2 MIMIC III Database

MIMIC-III is a freely accessible critical care database for 53,423 distinct hospital admis-

sions for adult patients. It is an update to the MIMIC-II database [27, 46, 45] with added

patients from 2008-2012. Data includes vital signs, medications, diagnostic code, survival

data and high resolution data including lab results and bedside monitoring data [23]. They

can provide rich and diverse information for modeling and prediction but also pose chal-

lenges to fast and accurate prediction of outcome of interest. Sun et al. (2015) used

localized supervised learning to incorporates expert feedback in defining patient similar-

ity, and demonstrated the efficacy of their approach with MIMIC-II data, a precursor to

MIMIC-III[50]. Lee, Maslove & Dubin (2015) [26] showed empirically that using a patient

similarity metric (PSM) to only include a subset of similar patients improves mortality

prediction in the MIMIC-II database.

These work showed that a personalized decision support system is promising. With a
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rich database like MIMIC, and with its large sample size, it is possible to identify similar

patients and then effectively reduce the sample size while improving the patient outcome

performance.

2.3 An Example of a MIMIC Study

One of the studies based on MIMIC database is an Acute Kidney Injury (AKI) study in

the ICU (Intensive Care Unit). Acute kidney injury (AKI) is a sudden episode of kidney

failure or kidney damage that happens within a few hours or a few days [1].There are

various ways to diagnose the onset of AKI, and the most widely adopted definition is an

increase in creatinine measurement of 0.3mg/dl or a 50% increase compared to the baseline

measurement within 48 hours [34]. The definitions of the key concepts and variables are

listed as follows:

Basic definitions:

AKI : An increase in creatinine measurement of 0.3mg/dl or 50% compared to ICU admis-

sion value within 48 hours after ICU admission.

AKI onset time: The time when creatinine exceeds the threshold.

Peak creatinine: The highest creatinine value within 24 hours or 48 hours after AKI onset

for AKI patients

Recovery : Return to below 10% above admission value.

Censoring : Neither recovered from AKI nor died before hospital discharge

Creatinine Percentage Increase Definition1 : The percentage increase of peak creatinine

within 48 hours compared to admission value. (44.51% of patients have peak creatinine is

at AKI onset, 23.39% between 0-24 hours, 32.10% between 24-48 hours)
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Figure 2.1: Percentages of patients that recovered, died or were censored

Creatinine Percentage Increase Definition2 : The percentage increase of peak creatinine

within 24 hours compared to admission value. (57.07% peak at AKI onset, 42.93% peak

between 0-24 hours)

Creatinine Percentage Increase Definition3 : The percentage increase of creatinine at AKI

onset time compared to admission value.

Predictors:

Urine Volume: Total amount in 12 hours just before AKI onset, divided by 12.

Systolic Blood Pressure: Average systolic blood pressurein in 12 hours just before AKI.

Age as a continuous predictor

ICU type: 1-CCU(Coronary Care Unit) 2-CSRU (Cardiac Surgery Recovery Unit) 3-FICU

(Finard Medical Surgical ICU)/MICU (Medical Surgical ICU) 4-SICU (Surgical ICU).

Creatinine Admission: Creatinine at ICU admission.

Creatinine Percentage Increase: Three definitions as shown previously.
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In MIMIC-II, 3599 out of 22136 (approximately 16.26%) of ICU patients developed AKI

after ICU admission, and Figure 2.1 shows the percentages of recovery, death or discharge

from hospital for AKI patients. Previous studies showed that AKI is associated with

increased risk of both the short term and long term mortality among patients [34, 33, 16].

A subset of the patients recovered from AKI during ICU or hospital stay, while others

do not recover. Clinicians are interested in predicting which patient will recover from the

disease and which ones will not, and in developing personalized treatment plans for each

type of patient. We want to identify the variables that have good predictive power for

predicting the outcome of the patient diagnosed with AKI.

It is interesting to see that while some patients recover very quickly, others take a

much longer time to recover, as shown in Figure 2.1. Thus, we want to consider predicting

time to recovery from AKI as opposed to merely predicting a single outcome whether

they recovered or not. And we would like to use a similarity approach to improve the

time-to-event prediction.

Another challenge is that the nature of the urgency in the ICU requires us to start

predicting as soon as possible, in order for medical staff to act quickly. For longitudinal

predictors, it is important to know how long should the follow up time be so that we can

predict as soon as possible without losing potentially critical follow-up information and

deteriorating the accuracy of the prediction. This motivates the method in Chapter 5.
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Chapter 3

Similarity-based Patient Outcome

Prediction for Continuous Data

3.1 Introduction

Traditionally, a global model is fitted to the entire dataset to optimize the average model

performance. It is quite possible that the prediction of some subsets of data under the

global model does not perform as well. Moreover, if the size of the subset is small, the

parameter estimates are dominated by the majority cases. It is possible that this group

can be identified using some of the available covariates. If we can use information from the

available features to identify subgroups, and build separate models for them, the resulting

model should be more useful for that group, and should improve prediction performance

of the overall model as well.

The idea of using similarity to improve prediction performance can be seen in a number

of papers based on how similarity is defined, these methods can be generally divided into
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two categories, unsupervised and supervised, and are discussed in Chapter 1.

In addition to the similarity-based methods, mixture models are commonly used to

represent the heterogeneity in the data as well. For example, FlexMix [28, 18] is a general

framework for fitting discrete mixtures of regression models using EM algorithm, such that

the M-step allows a general specification. Posterior probabilities are used as weights in the

mixture of regression models, and need to be estimated. Mixture of experts models have

also been used in the literature. These models have experts such as regression functions

or classifiers and a gate to soft partition the data into different regions, so that individual

experts will specialize on a smaller problem. The experts and the gate are then combined

by a probabilistic model [59].

The rest of the section is organized as follows. In Section 3.2.1, we will explore the

rationale behind our similarity-based modeling approach. A novel prediction algorithm is

proposed in Section 3.2.2 We will demonstrate the prediction performance of the proposed

method through simulations in Section 3.3. The impact of model misspecification is also

studied.

In Section 3.4, we apply the method to an intensive care unit (ICU) dataset. In Section

3.5, we will summarize our findings and provide discussions on possible future work.

3.2 Methods

It is quite possible that the mixtures can be identified using a portion of the available

covariates. If we can utilize that available information, and build separate models for

different subgroups, the resulting model could very well be more useful for that group, and

improve prediction performance of the overall model as well. That motivates our idea to
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define similarity based on the relationship between the covariates and outcomes instead

of just the closeness of the feature vectors or the outcomes.

3.2.1 Problem Set-up

We will first show how the similarity-based modeling is conducted and the reason that it

generally has more accurate prediction than modeling using all data points.

Without loss of generality, assume there is a mixture of two linear models in the dataset.

Denote the dataset [Y,X∗] = {(Yi,Xi,Si), i = 1, 2, ..., n}, where Y is a continuous out-

come. The columns of X∗i consist of columns of X i and Si, and might have common

elements. The elements in Si are called the similarity variables here and the elements

in X i are called the regression variables. Consider the following linear regression model:

Yi = X iβ+εi if f(Si) ∈ (a, b) and Yi = X iα+εi otherwise, i = 1, 2, ..., n. Yi is the response

variable, and X i = (1, Xi1, Xi2, ..., Xip) is a 1 × (p + 1) vector. β = (β0, β1, ..., βp)
T and

α = (α0, α1, ..., αp)
T are both vectors of (p + 1) × 1 regression coefficients. f is assumed

to be a smooth function of the similarity variables, and maps the similarity variables to a

real number. (a, b) is any open interval on the real line. εi is independently and normally

distributed with mean 0 and variance σ2.

For each case i, i = 1, 2, ...n, using some suitable distance measure, such as Euclidean

distance or Mahalanobis distance, a function D, the distance between i, and any other case

j, j = 1, 2, ...n, j not equal to i, is denoted as D(Si, Sj). The k cases corresponding to the

smallest distances with i will be called the neighborhood of i. Suppose case i corresponds

to the first linear model, that is, Yi = X iβ + εi, with suitable f , it is fair to assume that

when k is sufficiently small, the neighborhood of i also corresponds to the same model. So

if an ordinary linear model is fit to the data using a sufficiently small enough neighborhood
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of i, which consists only of cases from the same distribution, the model estimates will be

unbiased. As we widen the neighborhood, at some point, cases from the second model

Yi = X iα + ε will be included. Fitting an ordinary linear model to all the data in the

widened neighborhood will in general lead to increased mean squared error. Fitting an

ordinary linear model to all the data in the widened neighborhood will lead to biased

estimates of Ŷ and in general increased mean squared error. We will briefly show the proof

as follows.

Depending on f(Si), i = 1, 2, ..., n, partition Xn×(p+1) into two sets, so that X i = (WZ ),

and Y =
(
Wα+ε
Zβ+ε

)
, where W is an n1 × (p + 1) matrix and Z is an n2 × (p + 1) matrix

with n1 + n2 = n. By using all the data in the sample, the OLS estimate of Y , is

Ŷ = X(XTX)−1XTY . It is easy to show that XTX = W TW + ZTZ. Then:

E(Ŷ ) = (WZ )(W TW + ZTZ)−1(W TWα + ZTZβ)

= (WZ )(W TW + ZTZ)−1(W TWα + ZTZα− ZTZα + ZTZβ)

= (WZ )[α− (W TW + ZTZ)−1ZTZ(α− β)].

Thus:

E(Ŷ )−E(Y ) =
(

0
Zα−Zβ

)
− (WZ )(W TW + ZTZ)−1ZTZ(α− β)

= ( 0
Z )(α− β)−X(XTX)−1ZTZ(α− β)

= [( 0
Z )−X(XTX)−1ZTZ](α− β)

We can see that E(Ŷ ) generally does not equal to E(Y ), i.e., the estimated Y is not

unbiased unless the coefficients in the two models are the same.

We will further use simulations from two models, to provide more rationale for similarity-

based predictions. For simplicity, suppose we only have three variables, X1, X2 and

X3. In each of the scenarios, X1 and X3 jointly define the similarity in this model.
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Figure 3.1: Case 1 data, Y vs. X1, X2, X3
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A = {(a, b)|(a − 7)(b + 10) > 0} and IA(Xi1, Xi3) = 1 if (Xi1, Xi3) ∈ A and 0 other-

wise. The following set of simulation cases are for proof of concept purposes, as certainly

for big datasets, the scope of the problem, both for sample size, and covariate space, will

be much larger, in general. Consider the first model:

Yi = (1− IA(Xi1, Xi3))(0.5Xi2 − 6) + IA(Xi1, Xi3)(0.3Xi2 + 6) + εi,

Thus, Y is a continuous mixture, linearly dependent on continuous variable X2 and the

resulting multiplicative interaction between continuous variables X1 and X3. We indepen-

dently generate (Xi1, Xi2, Xi3) from a normal distribution with mean 0 and variance 102,

and the error terms εi are generated from a normal distribution with mean 0 and variance

22. Since pairwise distances need to be calculated, to reduce the computational burden in

the simulation study, and without loss of generality, the sample size n is set to be 1000.

Figure 3.1 shows the univariate association between the outcome Y and each variable X1,

X2 and X3. Just viewing the plots, it appears that X1 and X3 are not very correlated with

the outcome Y . But in fact, they jointly affect the relationship between X2 and Y . For

each sample case j, the distance between j and all other (n− 1) cases are calculated and

the k closest cases are selected to train the case j specific model Ŷ = β1X1 +β2X2 +β3X3;

this model is then used to make a prediction for case j. After iterating through all cases,

n fitted values will be obtained. The residual sum of squares is calculated to measure the

17



Figure 3.2: Case 1 results, average residual sum of squares as the number of similar cases

increases
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performance of the prediction.

The combination of X1 and X3 is the correct similarity measure in this model. But sup-

pose it is unknown which variable(s) define the similarity, and we use Euclidean distances

based on different combinations of X1, X2, X3 to calculate the distance. For example, if

we choose X1 and X2 as the similarity variables, then the distance between case i and

j is Distance(i, j) = D{X1,X2}(i, j) =
√

(Xi1 −Xj1)2 + (Xi2 −Xj2)2. With three vari-

ables, there are seven ways to define distance, i.e., D{X1}(i, j), D{X2}(i, j), D{X3}(i, j),

D{X1,X2}(i, j), D{X1,X3}(i, j), D{X2,X3}(i, j), and D{X1,X2,X3}(i, j). Pairwise distances are

calculated for each case, and the closest k neighbors are then selected for model training.

The performance of seven models using different definitions of similarity will be compared.

By increasing the neighborhood size, i.e., increasing k, the performance also varies. As k

approaches n, the trained individual models will get closer to the global model, that is the

18



Figure 3.3: Case 2 data, Y vs. X1, X2, X3
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model using all the sample points. The above simulation is repeated 100 times to obtain

an averaged residual sum of squares.

As shown in Figure 3.2, as k increases, the performances of all seven models converge.

When k is very small, the model performance deteriorates due to small sample size and

resulting variability issues. The RSS curve shows a skewed U-shape except when X2

was chosen. The residual sum of squares is the smallest when both correct variables for

similarity are chosen, that is, when both X1 and X3 are used in calculation of the distance,

and the neighborhood is sufficiently small to exclude less relevant cases. The second best

case is when all of the variables are used. If the wrong similarity variable X2 is the only

similarity variable used, the performance is the worst among all other scenarios. Also, if

only one of the correct similarity variables is picked, the performance is not much improved,

since the two similarity variables jointly affect the neighborhood.

For the second model,

Yi =(1− IA(Xi1, Xi3))(0.3Xi1 + 0.5Xi2 + 0.1Xi3 − 6)

+ IA(Xi1, Xi3)(0.7Xi1 + 0.3Xi2 − 0.1Xi3 + 6) + εi,

where A = {(a, b)|(a− 7)(b+ 10) > 0}. X1, X2, X3 are normally distributed with mean 0

and variance 102, and the error term is normally distributed with mean 0 and variance 22.

Again, X1 and X3 jointly define the similarity. But a difference from the first model where
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only X2 is in the linear component is that in this case all three variables are in the linear

component. Figure 3.3 shows the plots of Y against each of the three variables. Unlike in

Case 1 where X1 and X3 appear to be uncorrelated with Y , here there is a linear trend

between the two variables and Y. This simulation tries to investigate the behavior of the

similarity-based modeling when the similarity variable is also in the regression component.

Patterns analogous to those seen in Case 1 can also been seen here. Figure 3.4 shows

that when the correct similarity variables are selected, the lowest averaged residual sum

of squares is achieved, when compared both horizontally and vertically. Using all the

variables as similarity variables, the model performance is better than choosing only one

correct similarity variable, but worse than when choosing two correct ones. Again we can

see the U-shape of RSS curve just as in Case 1, which we speculate is due to when the

sample size is very small, increasing the neighborhood includes more cases of the same class

without introducing too many dissimilar cases, and the increase of similar cases reduces

the additional variability from sample size that could take the prediction off target.

3.2.2 Algorithm

The previous two examples showed the importance of identifying similarity variables in

localized prediction.

In this section, we will propose a new method to find similarity variables, and utilize

that information to improve prediction.

We will call it similarityMix. Suppose there are n individuals and K mixture compo-

nents. Let

Yi =
K∑
j=1

If(Si)=j(Xiβj) + εi, i = 1, 2, ..., n
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Figure 3.4: Case 2 results, average residual sum of squares as the number of similar cases

increases
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where εi, i = 1, 2, ..., n are i.i.d Gaussian (0, σ2). f(Si) takes value in 1, 2, ..., K and If(Si)=j

equals 1 if f(Si) = j and 0 otherwise. Xi stands for regression variables and Si stands for

similarity variables for individual i. βj are the regression coefficients for mixture component

j, j = 1, ..., K. Let Y = [Y1, Y2, ...Yn]′, X = [X1
′,X2

′, ...Xn
′]′, and S = [S1

′,S2
′, ...Sn

′]′.

Let Z = X ∪ S be the set of all variables. Then the likelihood is,

L(Y |X,β1, ...,βK , f,S) =
K∏
j=1

n∏
i=1

N(Yi|X i,βj, σ
2)If(S)=j ,

where N(Yi|X i,βj, σ
2) is the density for a Gaussian distribution with mean X iβj and

variance σ2. And the log-likelihood is

logL(Y |X,β1, ...,βK , f,S) =
K∑
j=1

n∑
i=1

If(S)=jlog(N(Yi|X i,βj, σ
2))

.
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The main difference between this model and the mixture of experts model is that a hard

threshold, represented by an indicator function, is used here, and the algorithm is a combi-

nation of an EM type algorithm and an additional step of fitting similarity variables (Step

5).

The algorithm is as follows,

1. f(Si), i = 1, 2, ..., n is the initial guess for mixture assignment.

For t=0 to T,

2. Given f(Si)
t=0, i = 1, 2, ..., n, maximize the likelihood for each mixture j to get the

regression coefficients β̂j
t
. In this step, we will use all variables in Z as X for now.

3. Given β̂j
t
, for i=1,2,...,n, update f(Si)

t to f(Si)
t+1 to maximize the likelihood. That

is, f̂(Si)
t+1 = arg minj(Yi − β̂j

t
Xi)

2.

4. Repeat Step 2 and 3 until convergence of the respective coefficients.

5. After getting estimates for β̂j, j = 1, 2, ..., K, and f̂(Si), i = 1, 2, ..., n, the next step is to

determine similarity variables S and the relationship between the similarity variables and

group assignments f . We first fit a multinomial logistic regression with f̂(Si), i = 1, 2, ..., n

as the outcome and all variables in Z as covariates. To select the similarity variables,

standard variable selecting techniques for logistic regressions can be used. Tree structures

such as classification/decision trees can be used to fit the similarity component as well. For

prediction, a new case will be assigned to one of the components using similarity variables,

then the model for that component will be used for prediction.
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Table 3.1: Estimated coefficients for mixture 1 in Case 1

β0 β1 β2 β3

iteration 2 -0.92 0.78 0.21 -0.41

iteration 5 2.02 0.89 0.24 -0.35

iteration 10 5.05 0.77 0.28 -0.15

Converged at iteration 15 5.74 0.72 0.28 -0.11

True Coefficents 6 0.7 0.3 -0.1

3.3 Simulation Studies

3.3.1 Mixture of Two First-order Polynomials

In the first example, I will look into the convergence of similarityMix when Y is a mixture

of two first-order polynomials, i.e.

Yi =(1− IA(Xi1, Xi3))(0.3Xi1 + 0.5Xi2 + 0.1Xi3 − 6)

+ IA(Xi1, Xi3)(0.7Xi1 + 0.3Xi2 − 0.1Xi3 + 6) + εi,
(3.1)

where A = {(a, b)|(a − 7)(b + 10) > 0}. n = 1000 sample points are generated where X1,

X2, X3 ∼ i.i.d. Gaussian(0,10), and the error terms ε ∼ i.i.d Gaussian(0,2). The updates

of class assignments and the fitted regression curves at each iteration are studied when we

apply the first step of the proposed algorithm. Figure 3.5 plots the class assignments of

each data point from X2 perspective at iteration 2, 5, 10 and 15. Table 3.1 and 3.2 show

that the regression curves converges quickly to the true regression curves. The algorithm

converges at the 15th iteration.

23



Figure 3.5: Mixture of two first-order polynomials: Blue and red dots correspond to dif-

ferent class assignments at each iteration
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Table 3.2: Estimated coefficients for mixture 2 in Case 1

β0 β1 β2 β3

iteration 2 -1.70 0.78 0.58 -0.35

iteration 5 -4.50 0.56 0.54 0.36

iteration 10 -6.03 0.34 0.49 0.09

Converged at iteration 15 -5.96 0.34 0.49 0.09

True Coefficents -6 0.3 0.5 0.1
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Figure 3.6: Mixture of first-order polynomial and second-order polynomial: Blue and red

dots corresponds to different class assignments at each iteration
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Table 3.3: Estimated coefficients for mixture 1 in Case 2

β0 β1 β2 β3 β4

iteration 1 -5.86 -0.67 0.34 0.32 0.40

iteration 2 -6.38 -0.04 0.47 -0.07 0.50

iteration 3 -5.77 0.01 0.50 -0.04 0.50

Converged at iteration 4 -5.96 0.02 0.50 0 0.50

True Coefficents -6 0 0.5 0 0.50

3.3.2 Mixture of first-order and second-order polynomials

For the second example, the mixture of a linear and a quadratic function is considered,

with

Yi =(1− IA(Xi1, Xi3))(0.5X
2
i2 + 0.5Xi2 − 6)

+ IA(Xi1, Xi3)(0.3Xi2 + 0.1Xi3 + 6) + εi.
(3.2)

where A = {(a, b)|(a − 7)(b + 10) > 0}. Again, n = 1000 sample points are generated

with X1, X2, X3 ∼ i.i.d. Gaussian(0,10), and the error terms ε ∼ i.i.d Gaussian(0,2). Two

quadratic functions of X1, X2, X3 are fitted. Table 3.3 and 3.4, and Figure 3.6 show that

the two fitted regression curves at each iteration converge quickly to the true components,

faster than in the first example. To check for the robustness of the algorithm with respect

to intial assignments, different starting values of the regression coefficients are chosen. In

these examples, the coefficients converge to the same values regardless of the choice of the

initial values.
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Table 3.4: Estimated coefficients for mixture 2 in Case 2

β0 β1 β2 β3 β4

iteration 1 -0.41 -1.04 0.51 0.67 0.31

iteration 2 15.17 -1.06 0.51 0.97 0.01

iteration 3 9.20 -0.25 0.30 0.33 0.00

Converged at iteration 4 6.10 0 0.28 0.12 0.00

True Coefficients 6 0 0.3 0.1 0

3.3.3 Prediction Performance

I will illustrate the prediction performance of similarityMix using simulated data with three

variables and 2, 3 or 5 mixture components. For each case, n = 1000 samples are generated

according to (3.3)-(3.7) and Table 3.5, and we will use 5-fold cross-validation. For the first

step, correct number of components are fitted to the data to obtain the class assignment

for each training sample. At the second step, a classification tree with class assignments

as the outcome and all three variables is used to find the similarity variables. The test

data are assigned into one of the components via the classification tree for prediction. For

each simulation, the residual sum of squares of the predicted test data are averaged over

the 200 test samples. The simulation is repeated 100 times, and the averaged residual

sum of squares for 100 simulations are calculated. In applications, the true number of

mixture components are usually unknown, therefore we will also investigate the scenario

where robustness of the prediction performance when incorrect number of mixtures are

fitted. The results are compared with KNN regression with K=1, 2, ..., 500, and FlexMix

[28, 18], and presented in Table 3.6. R package Flexmix is used for the comparison. The

result of KNN regression are shown only at optimum K (i.e. K-opt) that corresponds to
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Table 3.5: Simulation functions

X1i, X2i, X3i i.i.d. ∼ Gaussian(0, 10) ; εi i.i.d. ∼ Gaussian(0, 2) ; i = 1, ..., 1000

Number of

Components
2 3

Conditions
X1i ≤ 0,

and X2i ≤ 0
else

X1i ≤ 0

and X2i ≤ 0

X1i ≤ 0

and X2i > 0
else

Function (3.3) (3.4) (3.3) (3.4) (3.5)

Number of

Components
5

Conditions
X1i ≤ −5

and X2i ≤ −5

X1i ≤ −5 and

−5 < X2i ≤ 5

X1i ≤ −5

and X2i > 5

X1i > −5

and X2i ≤ −5
else

Function (3.3) (3.4) (3.5) (3.6) (3.7)

the lowest residual sum of squares for KNN

Yi = −0.2Xi1 − 0.8Xi2 − 0.4Xi3 + 6 + εi (3.3)

Yi = 0.2Xi1 − 0.2Xi2 + 0.1Xi3 − 7 + εi (3.4)

Yi = −0.8Xi1 − 0.8Xi2 − 0.9Xi3 + 6 + εi (3.5)

Yi = 0.7Xi1 − 0.2Xi2 +Xi3 − 7 + εi (3.6)

Yi = 0.6Xi1 + 0.2Xi2 − 0.8Xi3 − 9 + εi (3.7)

When model is correctly specified, similarityMix outperforms KNN at K-opt for 2, 3,

and 5 mixtures, and slightly better than FlexMix. When insufficient number of mixture
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Table 3.6: Simulation results

True number of

components
2 3 5

Fitted # of components 2 3 2 3 5 3 5

RSS: KNN with K-opt 12.21 5.7 11.97

RSS: FlexMix 9.146 8.145 5.054 3.793 2.285 6.734 3.943

RSS: similarityMix 8.895 8.094 7.230 2.514 2.316 6.981 3.861

components are fitted, the residual sum of squares is higher, but less than KNN in the five

components case. The only case where it has higher residual sum of squares is when fitting

2 components to a 3 component model, but not much higher. The performance is similar

to that of FlexMix. Unlike FlexMix (or mixture of experts model), a hard threshold is

used to assign cases into different groups. The advantage of the hard threshold approach

is that for each case, we are able to identify its similar cases, and use information from the

similar cases to make predictions. Specifying more components than needed does seem to

decrease the residual sum of squares of the prediction, but not by too much. In fact, the

decrease in residual sum of squares when we increase from insufficient to correct number

of components is much larger than that when we increase from correct to excess number of

components. This could potentially be used to find the optimum number of components

to balance between parsimony and goodness-of-fit, that is, an elbow in RSS vs. fitted

number of components plot would indicate the true number of component for the data.

We will give an example of finding the optimum number of components using this heuristic

in Section 3.4.
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3.4 Application to an ICU dataset

3.4.1 MIMIC-III

MIMIC-III (Medical Information Mart for Intensive Care III) is a freely accessible critical

care database for 53423 distinct hospital admissions for adult patients (aged 16 and above).

Data includes vital signs, medications, diagnostic code, survival data and high resolution

data including lab results and bedside monitoring data [23]. The goal is to predict patient

hospital length of stay (with a log transformation) with their age, gender, ICU type,

admission type, SAPS-II score. ICU type includes CCU (Coronary Care Unit), CSRU

(Cardiovascular Intensive Care Unit), MICU (Medical Intensive Care Unit), SICU (Surgical

Intensive Care Unit) and TSICU (Trauma Surgical Intensive Care Unit). Admission type

includes elective, emergency and urgent. Only the first hospital admission of adult patients

(older than 15 years of age) are included in our study.

3.4.2 Methods

We compared the residual sum of squares of similarityMix with FlexMix [28, 18] for spec-

ified number of mixture components varying from 1 to 15. The maximum number of

components for this analysis is chosen to be 15 because of computational considerations.

For similarityMix, we use linear regression for the regression component. Multinomial lo-

gistic regression, or classification/decision trees are used for the similarity part. In FlexMix,

mixtures of multivariate Gaussian distributions is specified, so the standard M-step is used

in the EM algorithm. Then, as a demonstration of the graphical method of determining

the optimum number of components mentioned in Section 3.3, we stratify data into more

homogeneous subsets of the population based on ICU type, namely CCU, CSRU, MICU,
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SICU and TSICU patients. This is because there seems to be more than 15 mixtures in the

entire dataset. Then we run similarityMix and FlexMix within each stratum but with only

age, gender, admission type and SAPS-II score as predictors, and the results are shown in

Figure 3.8-.

3.4.3 Results and interpretation

Figure 3.7 shows that the residual sum of squares decreases as we increase the specified

number of mixtures for both methods, and our method yields close results as the FlexMix

in terms of prediction performance. This is also observed in Figure 3.8-. Compared to

FlexMix, our method fitted both the regression component as well as the similarity com-

ponent. In Figure 3.7, we did not see the elbow in RSS as we increase the number of

mixtures up to 15, which is possibly because of the heterogeneity of the data, that is, there

might be more than 15 mixtures in the data. In Figure 3.8-, we can see the drop in RSS

flattens out. For example in Figure 3.8, the biggest drop in RSS is seen at number of

mixtures from 1 to 4. This possibly indicates that the optimum number of components is

4.

3.5 Discussion

In this section, a meaningful definition of neighborhood based on the relationship between

the outcome and the covariates is provided. A method of uncovering that difference in

that relationship is presented. Simulations showed that our algorithm converges quickly

to the true relationships when the number of features is three and there are two similarity

variables. The proposed algorithm improves prediction performance and outperforms KNN
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Figure 3.7: Real data analysis: Comparison between similarityMix and FlexMix
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Figure 3.8: Real data analysis: CCU patients
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Figure 3.9: Real data analysis: CSRU patients
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Figure 3.10: Real data analysis: MICU patients
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Figure 3.11: Real data analysis: SICU patients
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Figure 3.12: Real data analysis: TSICU patients
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regression when the true number of mixtures is used in the model fitting, and that it is

robust to excess number of mixtures specified.

The result is also consistent with the findings in the empirical study of Lee, Maslove &

Dubin (2015) [26] which showed that using a patient similarity metric (PSM) to only include

a subset of similar patients improves mortality prediction in the MIMIC-II database.

Similar results can be seen when the number of variables increases to 20, with sample

size 1000, but further investigation is still needed in high dimensional cases, that is, when

the number of covariates p, is close to, or even greater than the number of samples n

in which dimension reduction is required. Localized methods such as KNN are known

to suffer from curse of dimensionality since the local points in lower dimensions are no

longer local in higher dimensions [15]. A definition of “local” such as the one discussed in

this section might be more meaningful than the distance of the covariates. But problems

such as over-fitting on the training dataset might be pronounced, since a large number of

covariates will be used in both the first step of fitting the model and in the second step

of finding similarity variables. Therefore, under the high dimensional setting, an effective

variable selection method for both the first and the second step of the algorithm is needed.

In Section 3.3, I briefly mentioned a possible heuristic for selecting the number of

mixtures by finding an elbow in the RSS vs. number of components plot and demonstrated

this method in real data analysis in Section 3.4. It might be advantageous to have a large

number of specified mixture components. Then the components can be examined, and the

similar ones can be combined into one component. Finding more comprehensive ways of

selecting the number of mixture components in this context is an area of future work.

Although our similarity-based prediction method is developed on mixture of linear

models, it can be generalized to mixture of generalized linear models and regression trees.
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Mixture of survival models can be considered too, as people have studied the problem

of mixture models in the context of survival data. For one example, Farewell (1982)

[12] proposed to model both “long-term survivors” and “short-term survivors ” in the

population. In the ideal case with independent censoring and with parametric assumption

(such as Weibull distributions), the algorithm can be adapted to a survival outcome by

replacing the mixture of Gaussian likelihood with the (partial) likelihood function of the

mixture of survival model. One of the challenges with survival data is, with localized

models, especially with the existence of censoring, there might be an insufficient number

of events of interest to get a reasonable estimate for the model. Therefore, the modified

algorithm needs to balance between the number of events occurring and the homogeneity

of the data.

Our work has connected similarity-based prediction with mixture models, and we have

showed that localizing using a meaningful definition of similarity based on the covariates

and the outcome could improve prediction performance when there is a mixture of regres-

sion functions in the dataset.
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Chapter 4

Extending Similarity-based

Prediction to Time-to-event Data

4.1 Introduction

Electronic Health Records (EHRs) have generated health data sets that provide rich and

diverse information for modeling and prediction. Survival analysis has been essential in

clinical and epidemiological studies, and both parametric and semiparametric modeling

have been utilized in the literature. With big dataset, patients can be heterogeneous,

which pose challenges to accurate prediction of outcome of interest. Conditioning on a more

relevant subset where the cases are more similar to the point of prediction might improve

prediction. Similarity-based prediction in other prediction context has been focused upon

by Lee, Maslove & Dubin (2015) [26]. The concept of similarity using random forests idea

is seen in Xu, Nettleton & Nordman (2016) [57] paper for regression and classification. Lee

(2017) [25] applied the case-specific random forests of Xu, Nettleton & Nordman (2016)
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[57] to MIMIC data.

In survival analysis, the idea of similarity is seen in cure models. These models assume

that while some cases will die from a disease or experimental stress, a sub-population will

survive for a long time. Although the term similarity is not specifically mentioned in the

literature, the sub-population of long-term survivors can be considered as a group of similar

cases. Early studies on such models include Boag (1949) [5], Berkson and Gage (1952) [3]

and Haybittle (1965) [19]. Pierce, Stewart & Kopecky (1979) [40] suggested a computa-

tionally easy method to deal with grouped survival data based on Cox proportional-hazard

model. V. T. Farewell (1982) [12] and Kuk & Chen (1992) [24] used a mixture model

representation for the two populations, which models the probability of being a long term

survivor with a logistic regression and the time to event for those that would experience

the event with survival models. Many variations of mixture cure model can be seen in

literature. Tsodikov, Ibrahim and Yakovlev (2003) [54] provided an alternative to two-

component mixture models in estimating cure rate by using bounded cumulative hazard

function. These models focus on modeling rather than prediction.

We take a rather different approach to model and predict survival data when there

is one or more sub-populations in the dataset, that is, when the relationship between

the time-to-event outcome and the explanatory variables are the same within groups and

different between groups. This is a more general case than the cure model as there can

be more than two groups in the population, and the number of groups is unknown. Note

that the similarity is not just based on the grouping of the survival time, or the closeness

of the explanatory variables, but depends on the relationship between the two. Tree-based

method such as random forests [7] are a natural way of incorporating both outcome and

covariate information, and can be utilized to characterize similarity as cases in the same

terminal node can be considered as similar to each other. Random forests methods have
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been extended to survival data as well, as in Ishwaran et al. [22], and our approach is

essentially combining the case-specific random forests model in Xu, Nettleton & Nordman

(2016) [57] with random survival forests model [22]. Methods for dealing with dependent

right censoring will be discussed as well.

In Section 4.2.1, we will first review the basic concepts and techniques in survival analy-

sis. Then we introduce the similarity-based prediction in survival analysis by an illustration

in Section 4.3. In Section 4.4.1, we will discuss the similarity-based random survival forests

algorithm with independent right censoring, and methods to adjust for dependent censor-

ing. Time-varying AUC is used as the criterion for prediction performance. Section 4.5 and

4.6 are applications of the algorithm to both simulated and a real dataset. In Section 4.7,

we will summarize our methodology and findings from simulated and real data analysis.

4.2 Introduction to Survival Analysis

This section will provide an overview of the basic concepts of the analysis of survival data.

Let Ti denote the non-negative random variable of survival time under study of subject i,

where i = 1, 2, ..., n. The survival function describes the probability that the survival time

is greater than t, i.e., the distribution of Ti. Assuming that survival time is continuous,

the survival function is defined as

S(t) = Pr(Ti > t) =

∫ ∞
t

p(s)ds

where p(s) = dF (s)/ds is the corresponding probability density function. S(t) must be

non-increasing with S(t = 0) = 1. Another important function is the hazard function λ(t),

which is the instantaneous risk for an event in the interval [t, t + δt] provided that the

individual did not experience an event prior to time t. It is defined as
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λ(t) =
limdt→0 Pr(t ≤ Ti < t+ dt|Ti ≥ t)

dt
, t > 0

The survival function can also be written in terms of the hazard function as

S(t) = exp{−Λ(t)} = exp{−
∫ t

0

λ(s)ds}

where Λ(t) is the cumulative hazard function, which describes the accumulated hazard up

to time t.

Survival times are often subject to censoring. In follow-up studies for example, par-

ticipants might drop out of study before experiencing the event of interest. Generally

speaking, censoring occurs when the event is only known to have occurred inside a time

interval instead of at a known time. With regard to the relative position of the time of

censoring and the time of the occurrence of the event, censoring can be classified into three

categories, right censoring, left censoring and interval censoring. For right censoring, the

event is only known to have occurred after a certain time point. If we denote the censoring

time by Ci, then the observed time Xi will be the minimum of the event time and the

censoring time, i.e., Xi = min(Ci, Ti). Denote the event indicator by δ, which indicates

the observed time corresponds to the true event time. Then δ = I(Ti ≤ Ci), which is

1 if the event occurs before censoring, and 0 otherwise. For left censoring, the event is

only known to have occurred before a certain time point. That is, Xi = max(Ci, Ti), and

δ = I(Ti > Ci) . For interval censoring, the event time is only known to be inside a time

interval (Cil, Cir]. The event indicator δ = I(Cil < Ti ≤ Cir).

Censoring can also be classified into informative censoring and non-informative censor-

ing according to whether or not the censoring depends on the event process. In informative

censoring, whether the censoring happens directly relates to the expected time to event.
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On the other hand, for non-informative censoring, the censoring does not directly depend

on the time to event process, although it can depend on some covariates. In this chapter

we will mainly focus on right censoring and non-informative censoring.

In survival analysis, one is interested in estimating the survival function or the hazard

function with available information. The data is usually of the form {Ti, δi}. The most

well-known nonparametric methods include the Kaplan-Meier estimator for estimating the

survival function

ŜKM =
∏
i:ti≤t

ri − di
ri

,

where ri denotes the number of subjects in the risk set at time ti, and di denotes the

number of events at ti; and the Nelson-Aalen estimator for estimating the cumulative

hazard function

ĤNA =
∏
i:ti≤t

di
ri
.

If we assume a parametric form for the survival function, then maximum likelihood

methods can be used, and the log-likelihood function is

l(θ) =
n∑
i=1

[δi log h(Ti; δ) + (1− δi) logS(Ti; δ)].

We are generally interested in modeling the effect of covariates on the risk as well. If

we assume a multiplicative effect of the covariates on the hazard for an event, we will have

a Cox proportional hazard model. The hazard function is formulated as

λi(t|wi) = λ0(t)exp(γ
Twi),

where wi denotes the p-dimensional vector of covariates that are assumed to be associated

with the risk, and function λ0(t) is called the baseline hazard function. If the baseline

hazard assumes a parametric form, then a parametric PH model can be obtained. For
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Figure 4.1: Under Survival Analysis Setting

example, if λ0(t) = κρ(ρt)κ−1, where κ is the shape parameter and ρ is the scale parameter

of a Weibull distribution, we have a Weibull proportional hazards model.

4.3 An illustration

We will first use a simulation example to illustrate the similarity-based approach in survival

data.

We consider Yi to be a time-to-event outcome that follows a Weibull distribution with

shape = 2 and

log(scale) =IA(X1, X3)(0.2X2 + 0.2)

+ (1− IA(X1, X3))(0.07X2 + 0.04).

X1, X2, X3 are independently and uniformly generated from (−15, 15), and uniform and

independent right-censoring is implemented. Figure 5.1 shows the plots of the time-to-

event outcome Y vs each predictor. Similarly, we fit different survival models for each

case j using only the k neighborhood cases and look at the residuals between the true
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Figure 4.2: Survival Model Results

event time and the predicted. We want to see if similar patterns can be seen when Y is a

time-to-event outcome.

Figure 5.2 shows the averaged residual sum of squares for a time-to-event outcome. In

this case, we have to choose a bigger k than that used in the previous two cases simply

because when k is too small, there are an insufficient number of events to get a reasonable

estimate of the model. As a result, we do not see the U-shape in the averaged residual

sum of squares for smaller k, as we did in Cases 1 and 2 in Chapter 3 (see Figures 3.2 and

3.4, respectively). Similar to the previous two cases, if we choose the correct combination

of similarity variables the model performance is significantly better, and consideration of a

lower number of similar cases (i.e., smaller neighborhood) leads to better results than for

a larger neighborhood.
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4.4 Similarity-based Random Survival Forest

In this section, we will introduce the algorithm for the similarity-based random survival

forests. The idea is to build different random survival forests for prediction for each test

case, giving more weights to the training cases that are in more close proximity of the test

case, and using less information from those that merely add more noise to prediction. We

will discuss independent censoring case in Section 4.2.1 and dependent censoring in Section

4.4.2. In Section 4.4.3, we will talk about using time-varying AUC for model comparison.

4.4.1 With Independent Censoring

We will assume independent censoring for now. Methods to incorporate dependent censor-

ing will be discussed in Section 4.4.2.

• 1. Construct a regular random survival forests model for a training dataset that has

sample size Ntrain.

– (a) Draw B bootstrap samples from the training data. Uniform sampling is

used.

– (b) Grow a survival tree for each bootstrap sample under the constraint that it

should have d0 > 0 unique deaths.

• 2. For each point in the test dataset of size Ntest, obtain a weight vector based on

the random survival forest in the first step.

– (a) Pass a test data point down each tree in the random survival forest, and

keep track of how many terminal nodes group a training data point with the

test point.
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– (b) Assign a weight vector of length Ntrain to each test data point based on how

many terminal nodes group a training data with that test data point.

– (c) Iterate through each test data point, and obtain a weight matrix of size

Ntrain ×Ntest. Normalize each row of the weight matrix so that each row sums

to 1.

• 3. Build different similarity-based random survival forest for each test data.

– (a) For a test data, build a random survival forest model with the weight vector

as the sampling probability vector in the bootstrap.

– (b) Pass down the test data in each tree, and calculate the CHF of the the

terminal node to which the test data point belongs.

– (c) Average among all trees to get an ensemble CHF for that test data.

– (d) Repeat it for each test data. Note that a different survival forest is built for

each test data.

4.4.2 Adjusting for Dependent Censoring

Dependent censoring for right censored data is common in epidemiological studies. For

right censoring, the event is only known to have occurred after a certain time point. De-

noting the censoring time by Ci, the observed time Xi will be the minimum of the event

time and the censoring time, i.e., Xi = min(Ci, Ti). Denote the event indicator by δ, which

indicates the observed time corresponds to the true event time, then δ = I(Ti ≤ Ci), which

is 1 if the event occurs before censoring, and 0 otherwise. For non-informative censor-

ing, the censoring process does not directly depend on the event process, although it can

depend on some covariates. With informative censoring, the censoring happens directly
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relates to the expected time to event. Inverse probability-of-censoring weights (IPCW) has

been shown to account for the bias [21, 35]. The algorithm is modified as follows.

• 1. Use K-M estimator with censoring time as the event time to get the probability

Pi(C) of getting censored.

• 2. Calculate the IPC weights for each training case as IPCWi = 1/(1 − Pi(C)), ie.

the weights are equal to the inverse probability of not getting censored.

• 3. Calculate the similarity weights for a training case i and test case j as SWi, j

as described in Section 4.4.1. The sampling weights for use in the similarity-based

random survival forests for i and j will be proportional to IPCWi ∗ SWi,j.

The intuition behind the multiplication of the weights is that, the algorithm now gives

greater sampling weight to those data points that are more likely to be censored.

4.4.3 Prediction Accuracy

We will be using time-varying area-under-the receiver operating characteristic curve ROC

curve (AUC) for model comparison. For binary outcomes, the prediction accuracy can be

characterized by ROC, which plots the sensitivity against (1−specificity) for all different

threshod values. And the area under ROC (AUC) represents a measure of prediction

accuracy.

For time-to-event outcome, there are a few proposals to generalize the concept of sensi-

tivity and specificity [20]. One way is to look at sensitivity and specificity at each time of

interest t. The survival probability up to tk of a test case i, i.e., Si(t) can be derived from

its cumulative hazard Ĥi(t). Then, AUC(t) can be calculated at each t. In this chapter,

we will consider the AUC over a dense grid of times.
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4.5 Simulations

We use two simulated examples to further explain what similarity means in the model and

demonstrate the prediction performance of the algorithm.

4.5.1 Example 1

In a simple example, each case has a 3-dimensional covariate {x1, x2, x3} that links directly

to the survival outcome. Two of the covariates are linked to similarity as well. In this case,

S is a survival outcome that follows a Weibull distribution with shape=2, and log(scale)

mapped to linear predictor Y .Y = 0.2X1 − 0.1X2 + 0.5X3, if (X1 + 7) ∗ (X3 − 10) > 0

Y = 0.3X1 + 0.1X2 − 0.3X3, otherwise

(4.1)

Note that (X1 + 7) ∗ (X3 − 10) <= 0 and (X1 + 7) ∗ (X3 − 10) > 0 describes a binary tree

structure that clusters cases into two subspaces. Within each subspace, the relationship

between the survival outcome and the covariates are the same. 1000 cases are generated,

where X1, X2, X3 are independently and uniformly generated from (-15,15). Uniform right

censoring (independent for now) is considered. Tuning parameters are chosen from a grid

of parameter values, and are determined from the entire dataset. Figure 1 summarizes the

comparison between the prediction performance of similarity-based random survival forests

and the regular random survival forest. The red dots represents the time-varying AUC for

the similarity-based random survival forests and the black dots are for the regular random

survival forests. The AUCs are evaluated at each day from day 1 to day 20. At each day,

the AUC of the similarity-based method exceeds the regular random survival forests by

around 0.02.
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Figure 4.3: Time-varying AUC for simulated data in Example 1
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Figure 4.4: Time-varying AUC for simulated data in Example 2

4.5.2 Example 2

In the second model, each case has a 5-dimensional covariate {x1, x2, x3, x4, x5}, where

three of them also explains similarity. Again we will use a binary tree structure to define

subspaces. In this case, we will prune the tree until there are four terminal nodes, i.e., four

subspaces. Within each subspace, the relationship between Y and the covariates are the

same.

The result in Figure 2 is similar to the first case. Giving more weights in the sampling to

similar cases yields better prediction performance in the random survival forests framework.
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4.6 Application to an ICU dataset

4.6.1 MIMIC-III

MIMIC-III (Medical Information Mart for Intensive Care III) is a freely accessible critical

care database for 53423 distinct hospital admissions for adult patients (aged 16 and above).

Data includes vital signs, medications, diagnostic code, survival data and high resolution

data including lab results and bedside monitoring data [23]. This large dataset provides

rich information for modeling and prediction, but the diversity of the patients also poses

challenges to accurate prediction of outcome of interest. To illustrate the the goal is to

predict ICU patient survival with their age, gender, ICU type, admission type, SAPSII

score as predictors. ICU type includes CCU (Coronary Care Unit), CSRU (Cardiovascular

Intensive Care Unit), MICU (Medical Intensive Care Unit), SICU (Surgical Intensive Care

Unit) and TSICU. And admission type includes Elective, Emergency, Urgent. Only the

first hospital admission of adult patients (older than 15 years of age) are included in our

study. Excluding cases with missing data in one or more of the variables or outcome, the

sample size is 38604. In this dataset , 80% of the cases are right censored at 90 days after

for de-identification purposes.

4.6.2 Results

Figure 4.5(a) compares the time-varying AUC for the algorithm in Section 2.1 with the

random survival forests method. The time-varying AUC from our proposed method out-

performs that of the regular random survival forest at the beginning of the prediction and

after day 20, the gap between the two lines increases as we predict further into the future.

Figure 4.5(b) shows the result when considering possible dependency in the censoring.
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Figure 4.5: Time-varying AUC for application to MIMIC III dataset. (a) Ignoring the

dependency in censoring (b) Adjusted for dependent censoring

The result is much similar to that in Figure 4.5(a). It is possible that for this dataset,

there is not much dependency in the censoring and thus the calculation of the weights did

not have a big impact on the result.

4.7 Discussion

In this study we proposed to improve the random survival forests by incorporating the

similarity structure between a test data point and training data point. Instead of building

a global random survival forests for each test case, we construct similarity-based random

survival forests for each one of them, by giving more weights to the training cases that are

in closer proximity to the test case. Proximity is measured using a regular random survival

forests model. We also developed algorithm to account for dependent censoring which is
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common in survival data.

Both simulations and a real data example shows promising result that in general, that

the similarity-based prediction improves prediction performance of random survival forests

in terms of time-varying AUC. This result is also consistent with other findings using

similarity structure outside of the random forests model [26].

This method requires building a random survival forest for every test data point and

requires a few tuning parameters. Specifically, the tuning parameters are the depth of the

tree (represented by the number of unique deaths in the terminal nodes), and the number

of trees in the forests. This can be computationally intensive when the size of the test data

size is large. Future work is necessary to investigate the robustness of their choices. One

way of reducing computation time is to use a hard threshold for sampling, that is, giving

0 weights to cases that are too far away from the test case. The tuning parameters for the

simulations are selected based on the entire dataset. However, if they are determined from

a smaller subset of the dataset, the computational time might be greatly reduced.

For future work, methods other than random forests may be utilized for similarity-

based prediction for survival outcomes. One possible extension is the joint modeling of

longitudinal covariates and time-to-event outcome [42]. One might be able to identify

similar cases based on longitudinal covariates as well as time-fixed covariates.
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Chapter 5

Determining the length of

monitoring window for longitudinal

covariates in prediction models from

follow-up studies

5.1 Introduction

In biomedical health studies, covariates, such as blood pressure, blood glucose, pulse,

etc. are often measured repeatedly over time. Predicting a future outcome with such

longitudinal covariates usually requires a monitoring window on covariate trajectories.

Generally speaking, the values of longitudinal covariates that are observed more recently

are more correlated with the outcome, and therefore monitoring the covariates long enough

up until the most recent time point provides additional, possibly valuable, information to
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make more accurate predictions of near-future outcomes.

In addition, the dependent variable can be a survival outcome, in which case joint

models of longitudinal covariates and survival outcome are usually preferred. In joint

modeling, the longitudinal covariates are usually followed up to the time when prediction

of the survival outcome is needed. For example, Rizopoulos [41] proposed a Monte Carlo

approach to estimate risk of a target event and shows how it can be dynamically updated.

Taylor et al. (2013) [51] developed a Bayesian method with a Markov chain Monte Carlo

(MCMC) algorithm to dynamically predict both the longitudinal PSA measures and the

recurrence rate. Blanche et al.(2015) extended the survival submodel to account for com-

peting events [4]. Rizopoulos et al. (2013) [43] compared joint models for longitudinal and

time-to-event data and landmark analysis (van Houwelingen, 2007 [55]), an alternative

approach for dynamically updating survival probabilities. In these papers, the predictor

can be dynamically updated as new longitudinal measurements become available for the

target subjects, which provides updated risk assessment.

However, there are some scenarios where prediction would be more useful to be made

at an earlier point, before the full trajectories of the longitudinal covariates are observed.

A simple example is that in weather forecasting, monitoring relevant covariates up to an

hour before the time of prediction will give quite accurate weather predictions at the end

of the hour, but that result is not that useful because people generally would like to know

the weather a few days in advance. On the other hand, predicting weather a month from

now is usually not that accurate because of the lack of recent covariate information.

This can also be “early warnings” of a “tipping point” in some complex dynamic systems

[47]. For example, in the financial market, one would like to have an early warning of

systematic market crashes [9], or in Earth science, an early warning system that detects

some tipping point of climate change is useful[29].
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In health/medical data analysis, patients get censored due to a variety of reasons, such

as hospital discharge as a result of recovery from a disease, or death. Waiting too long

before making a prediction will exclude these patients from the study and the result might

not be generalized to the patient population. One example comes from the AKI study

introduced in Chapter 2. After AKI onset, patients can either recover from the disease,

die, or get discharged from the hospital without recovering. In that study, among the 3599

patients that developed AKI, 189 died, 531 recovered from AKI, and 109 were discharged

from hospital within 24 hours after AKI onset. Monitoring the peak creatinine value after

AKI onset(which is an important predictor of the recovery from AKI) for 48 hours yields

better predictive power than monitoring it for only 24 hours. But the downside of the

approach is that a prediction can only be made after 48 hours after AKI onset, and will

exclude all the patients that experienced an event (Recovery/Death/Censoring) in this 48-

hour observation window. More importantly, physicians logically like to know, sooner than

later, if a patient is at elevated risk of a future event, so that an appropriate treatment

course can be provided as soon as deemed necessary.

In this chapter, predicting a continuous outcome at future time is considered. I will

quantify the trade-off between prediction accuracy and early prediction, and identify sce-

narios where an early prediction can be made, particularly through a comprehensive sim-

ulation study. In Section 5.2.1, I will define the problem and introduce all notation. In

Section 5.2.2, I propose an algorithm to select the length of the monitoring window. A

comprehensive simulation study is conducted in Section 5.3 to further explain how this

method works and demonstrate the performance of the algorithm in various scenarios. In

Section 5.4, a detailed discussion is provided of the methodology.
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5.2 Methods and Algorithm

5.2.1 Problem set-up and notations

The model considered here is similar to a finite distributed-lag model, where both the

current and lagged values of explanatory variables are being used in a linear regression

model to predict the outcome. I will focus on the case of one explanatory variable. It is

assumed that the variables for different individuals are taken at the same time, and are

independent of each other. For N individuals with up to a maximum of p lagged values of

the explanatory variables, at a given time J where a prediction is needed,

Yi(J) = β0 +
P∑
p=1

βpXi(J − p+ 1) + εi(J), i = 1, 2, ..., N (5.1)

where P ≤ J , εi(j) ∼ i.i.d.N(0, σ2
e), Xi(j) ∼ N(0, σ2) and, in general, Xi(j) and Xi(j

′)

are independent for all time points 0 ≤ j, j′ ≤ J , when i 6= i′. In the finite distributed-lag

model, the regression coefficients are usually either truncated to a maximum lag if the lag

distribution is effectively 0 after a certain number of lags, or using a functional form to allow

the coefficients to gradually reduce to 0. Unlike that, the set-up here is that Xi(J −P + 1)

is the first available variable value for individual i, and Xi(J − p + 1), p = 1, 2, ..., P are

stochastic. To predict the outcome at a future time J , one has to decide how long to monitor

the value of X. Ideally, one would like to make that prediction at time J−P +1, i.e. P −1

steps ahead, while having good prediction accuracy. That means setting β̂1, β̂2, ..., β̂P to

zero. Making such restrictions on the coefficients when the true coefficients are not close to

zero will lead to biased estimation and likely diminished prediction performance. On the

other hand, monitoring the values of X up to time J will give more accurate predictions,

but the prediction might not be useful because it is generated too late to be practically

useful. While sometimes there is just not enough information to make predictions ahead of
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time, there are scenarios where an early prediction can be made with adequate accuracy.

This is essentially a variable selection problem with an additional objective, that is to use

as little longitudinal information as possible as we get closer to the time of the future

predicted event. In other words, the goal is to estimate βp, p = 0, ..., P to get accurate

predictions while also maximizing max(p|p ∈ [0, P ], β̂p = 0).

Generally speaking, as discussed above, there is trade-off between how early one makes

prediction and how accurate that predicted value is. Sometimes monitoring the covariate

for an additional time period does not improve the prediction performance by much, or

that early prediction is needed (for example if one knows that a prediction must be made

several days ahead). In these cases, OLS estimates of the coefficients are not optimal.

In the next section, an algorithm for selecting the monitoring window length will be

introduced.

5.2.2 Algorithm

In order to select variables that are recorded earlier in time and more relevant to the

outcome, a LASSO type penalty (Tibshirani 1996 [52]) with modified weights is used. For

estimating the coefficients for model (5.1), the objective function to minimize is as follows,

min
β0,β
{ 1

N

N∑
i=1

[yi(J)− β0 −
P∑
p=1

βpxi(J − p+ 1)]2} subject to ωT |β| ≤ l. (5.2)

where β = (β1, β2, ...βP ), and ω = (ω1, ω2, ..., ωP ) is a vector of penalty weights. In

Lagrangian form, the objective function can be rewritten as

min
β0,β
{ 1

N

N∑
i=1

[yi(J)− β0 −
P∑
p=1

βpxi(J − p+ 1)]2 + λωT |β|. (5.3)
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For a given λ, denote the solution to (5.3) as

β̂λ = {β̂0,λ, β̂1,λ...β̂P,λ} = arg min
β0,β

{ 1

N

N∑
i=1

[yi(J)−β0−
P∑
p=1

βpxi(J−p+1)]2 +λωT |β| (5.4)

and predicted outcome at time J corresponding to λ to be Ŷ λ(J) = Ŷ λ = {ŷ1, ŷ2, ..., ŷN}.

Denote the true outcome as Y = (y1, y2, ..., yN). Then the mean squared error of the

prediction is MSEλ = ||Ŷ λ−Y ||2. In order to make predictions earlier, the coefficients of

the variables that are recorded more recently will be penalized more compared to that of

the variables that are farther ahead of time. With suitable penalty weights, and by varying

λ, the time when an adequate prediction can be made is effectively controlled. One choice

of the weights that satisfies our objective is

ωp = 1/p, p = 1, 2, ...P.
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The weights are then normalized to sum up to 1. The algorithm is presented in Algorithm

1.

Algorithm 1:

1 For a given set of the tuning parameter values Λ, partition the dataset into K

subsets with equal sample size for K-fold cross-validation;

2 for each λ ∈ Λ do

3 On the entire dataset, solve β̂λ with ωp = 1/p, p = 1, 2, ...P ;

4 Calculate Monitoring window lengthλ = P −max(p|p ∈ [0, P ], β̂p = 0);

5 for each pair of training and test dataset do

6 Solve β̂λ with ωp = 1/p, p = 1, 2, ...P on the training dataset;

7 Calculate the mean squared error of prediction on the corresponding test

dataset.

8 end

9 Average the mean squared error from the K subsets to get MSEλ.

10 end

11 Plot MSEλ against Monitoring window lengthλ for each value of λ.
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For fitting this linear model with penalties on the coefficients, R package glmnet [13]

is used. glmnet fits generalized linear models via penalized maximum likelihood, which is

equivalent to (5.2) under the linear setting. Monitoring window lengthλ = P−max(p|p ∈

[0, P ], β̂p = 0) indicates how late a prediction is made (longer monitoring window). For

example, Monitoring window lengthλ = 1 means one makes a prediction at time 1, with

the first available covariate value only.

From the plot generated from Algorithm 1, one will be able to see how prediction

accuracy (in terms of K-fold cross validation MSE) changes with when a prediction is

made. The simulations in the next section show that when there is a trade-off between

prediction accuracy and how early a prediction is made (i.e. shorter monitoring window),

one can decide where a decrease in the length of the monitoring window results in an

acceptable deduction in prediction accuracy.

In addition, one could also specify a cost function, with C1 as the cost of a unit decrease

in prediction accuracy and C2 as the cost of a unit increase in making late predictions

(longer monitoring window). The total cost C is then C = f(C1 ×MSEλ, C2 × lengthλ).

Suppose MSE = h(length) from the plot, then the total cost is

C = f(C1 × h(length), C2 × length),

and

Optimum monitoring window length = arg min
length

(f(C1 × h(length), C2 × length)).

In the special case where C2 is zero, early prediction is not important, and one will

select the monitoring window length that corresponds to the lowest MSE. If C2 is very large

compared to C1, one would choose the monitoring window to be 1. We will not discuss

further in details how C1 and C2 are chosen as the values of C1 and C2 are problem-specific.
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5.3 Simulations

In this section, simulations are conducted to investigate the performance of the proposed

method in selecting the length of the monitoring window. The results from weight function

ωp = 1/p, p = 1, 2, ...P (normalized to 1) and the uniform weight function ωp = 1/P, p =

1, 2, ...P are compared.

Although one would expect that early prediction is more realistic in the case where

there is some memory in the covariates instead of the covariates being independent, we first

assume (in Section 5.3.1) that the covariates for the same individual are independent just

for comparison purposes. Of course, it is much more reasonable to consider dependency

for the covariate across time points within a person, as these lagged values are usually

repeated measures of the same covariate for the same person. This more realistic case will

be considered in Section 5.3.2.

5.3.1 Independent covariates

In the first case, 1000 cases are generated from a linear model.

Yi(J) = β0 +
6∑
p=1

βpXi(J − p+ 1) + εi(J), i = 1, 2, ..., 1000 (5.5)

Xi(J − p + 1), p = 1, ..., 6 are measures of the covariate for individual i from J − 5 to

time J . Xi(J)
i.i.d.∼ N(0, 1) and εi(J)

i.i.d.∼ N(0, 1), i = 1, 2, ..., 1000. The coefficients used

for simulation are found in Table 5.1, Scenario 1 through Scenario 5. These coefficients

are selected so that the relationship between the outcome and the lagged terms of the

explanatory variable X varies from highly dependent of recent values of X (as in Scenario

1) on the outcome to similarly dependent on all 5 lagged terms of X (as seen in Scenario
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4), and Scenario 5 is a special case where the dependency increases and then decreases.

Intuitively, one would not be able to make meaningful predictions three steps ahead (mon-

itoring window length has to be longer than 3) for Scenario 1, but might be able to make

early predictions for Scenario 3, 4 and 5.

We will show partial results here and the remainder of the results in the Appendix.

Figure 5.1 shows the change in each estimated coefficient with varying λ, and Figure 5.2

plots the change in 10-fold CV MSE when the length of the monitoring windows varies.

The black line in Figure 5.2 denotes the results from the proposed weight function and

the red line shows the results of applying uniform weights on all coefficients (excluding

intercept). The lowest value of both the black and red line are above 3. This means that

early prediction is not available at time j = 3 or before. For monitoring window length

from 4 to 6, the black line is always lower than or equal to the red line, meaning that if

one makes a prediction at time 4, 5 or 6, the proposed method yields better prediction

performance than using a regular LASSO regression. Another purpose of this approach is

to show that given an acceptable prediction accuracy (in terms of MSE), one is able to

make earlier predictions with the proposed weights than using the uniform weights.

For Scenario 4, in Figure 5.6, the black line remains lower than the red line given any

MSE. This means that one can have a shorter monitoring window for making a prediction

at time J without losing prediction accuracy. In this case, one can choose to monitor the

covariates up to time 4 or 5.

Similar results can be seen for Scenarios 2, 3 and 5 in Figure 5.3, 5.4 and 5.7 respectively,

i.e., that the proposed method gives higher prediciton accuracy given a certain length of

the monitoring window.
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Table 5.1: Coefficients for simulation

β0 β1 β2 β3 β4 β5 β6

Scenario 1 5 1 1 1 0 0 0

Scenario 2 5 1 1 1 0.2 0.2 0.2

Scenario 3 5 1 0.8 0.5 0.3 0.2 0.1

Scenario 4 5 0.3 0.3 0.3 0.3 0.3 0.3

Scenario 5 5 0.1 0.1 0.5 0.4 0.3 0.1

Table 5.2: Penalty weight functions

β0 β1 β2 β3 β4 β5 β6

Penalty factor 0 1 1/2 1/3 1/4 1/5 1/6

Uniform penalty(regular Lasso) 0 1 1 1 1 1 1

5.3.2 Dependent covariates

In real applications, the longitudinal covariates are seldom independent of their lagged

values. This is especially true for repeated measurements within the same individual.

That is, the covariates will usually have some memory of the previous values. AR and

MA models for covariates are popular in modeling such relationships, and we will use the

ARMA(p,q) notation to specify such models; e.g., ARMA(1,0) is AR(1), ARMA(0,1) is

MA(1), and so on.. The simulations scenarios are the same as in the independent case,

except that for each individual, Xi(J) follows an ARMA(2,1) process with coefficients for

AR to be (0.5, 0.2) and MA coefficient being 0.3. Figure A.1 in the Appendix shows the

ACF plot for an ARMA(2,1) process up to lag 5.

Figure 5.8-5.12 show similar results to the independent case, where the proposed method
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Figure 5.1: Scenario 1 with independent covariates: left figure plots the change in estimated

coefficients with tuning parameter λ; right figure plots the 10-fold CV MSE vs.λ, the top

is showing the number of coefficients that are non-zero.

is capable of making earlier predictions given a specific prediction accuracy. For example,

in Figure 5.11, monitoring window length can be 4 with adequate prediction accuracy.

In addition, an ARMA(3,0) with AR coefficients (0.3, 0.2, 0.1) and an ARMA(0,3) with

MA coefficients (0.3, 0.2, 0.1) for the covariates are simulated as well, and the results are

shown in the Appendix, Figure A.1-A.13.

5.4 Discussion and future work

Early prediction is quite useful in many cases. However, the earlier one makes a predic-

tion, the more uncertainty there will be in the true outcome and hence generally leads to
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decreased prediction performance. When the trade-off between the need/desire to make

an early prediction and the level of prediction accuracy exists, quantifying this relation-

ship helps one to decide how long to monitor the longitudinal covariates and how early a

prediction can be made without sacrificing too much accuracy. In this chapter, a graphical

method utilizing the LASSO regularization (Tibshirani 1996 [52]) to select the length of

monitoring window is introduced. This is further compared with a regular LASSO regres-

sion and simulations showed that the proposed method seems to have better prediction

performance given any length of the monitoring window. That is, for example, if both

methods are to make a prediction four days ahead, the proposed method yields a better

accuracy. Also, shown through simulation, the proposed method works well whether the

covariates are independent or dependent, the latter the more realistic scenario for real

data applications. In addition, a cost function can be specified to calculate the optimum

monitoring window length.

The simulations are limited to five lagged terms of one covariate. However, when

there exist more lagged terms, the penalty weight function will decrease to 0 quickly with

additional lags. Therefore, it requires a modification to the weight function. A decreasing

function with respect to p that decreases to 0 much slower is needed. This can be problem

specific and needs more investigation. Group lasso [58] can be applied here as well, where

groups of lagged terms of covariates, as opposed to individual variables, can be selected

out of the model for early prediction.

Prediction of a future continuous response can be made from a Bayesian point of view

as well [60, 10, 6], using the predictive density that follows from the posterior distribution.

Though this will lead to more computational complexity, it will also lead to the advantage

of being able to quantify the uncertainty in our predictions.

The proposed method only focuses on modeling a continuous response measured at a
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specific index time point in the future. However, predicting a future trend over time or

a time-to event outcome is often of interest to physicians as well. Future work includes

extending the method to a longitudinal or a survival outcome.

In spite of these limitations, I have developed methods that quantify the relationship

between when a prediction is made and the prediction performance, and allows for a

selection of the length of monitoring window given a pre-determined prediction accuracy.
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Figure 5.2: Scenario 1 with independent covariates: Shows the change in 10-fold CV MSE

when the length of the monitoring windows varies
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Figure 5.3: Scenario 2 with independent covariates: Shows the change in 10-fold CV MSE

when the length of the monitoring windows varies
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Figure 5.4: Scenario 3 with independent covariates: Shows the change in 10-fold CV MSE

when the length of the monitoring windows varies
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Figure 5.5: Scenario 4 with independent covariates: left figure plots the change in estimated

coefficients with tuning parameterλ; right figure plots the 10-fold CV MSE vs.λ, the top

is showing the number of coefficients that are non-zero.
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Figure 5.6: Scenario 4 with independent covariates: Shows the change in 10-fold CV MSE

when the length of the monitoring windows varies
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Figure 5.7: Scenario 5 with independent covariates: Shows the change in 10-fold CV MSE

when the length of the monitoring windows varies
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Figure 5.8: Scenario 1 with covariates following ARMA (2,1): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure 5.9: Scenario 2 with covariates following ARMA (2,1): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies

74



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ● ● ● ● ●

1.0 1.5 2.0 2.5

0
1

2
3

4
5

6

10−fold CV MSE

M
on

ito
rin

g 
w

in
do

w
 le

ng
th

● Proposed weights
Uniform weights

Figure 5.10: Scenario 3 with covariates following ARMA (2,1): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure 5.11: Scenario 4 with covariates following ARMA (2,1): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure 5.12: Scenario 5 with covariates following ARMA (2,1): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Chapter 6

Discussion and Future Research

6.1 Summary

In this thesis, I have proposed methods to improve prediction accuracy for three predictive

modeling problems. In Chapter 3, a similarity-based algorithm for improving prediction

performance for continuous outcome, when there is heterogeneity in the relationship be-

tween the outcome and the covariates in the data, is developed. Existing methods that

utilize similarity to improve prediction can be seen in a number of papers, and can be

summarized into unsupervised methods, such as in Liu et al. (2007) [31], Lowsky et al.

(2013) [32], Trivedi, Pardos & Heffernan (2015) [53] and Panahiazar et al. (2015) [37], and

supervised/semi-supervised methods, such as in Ishwaran et al. (2008) [22], Xu, Nettle-

ton, & Nordman (2016) [57] for survival outcomes. Mixture models are commonly used

to represent the heterogeneity as well. In this thesis, a different approach is taken. The

concepts of similarity and similarity variable are introduced. Similarity is defined on the

relationship between the outcome and the covariate. The first set of simulations show that
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localizing on the similarity variables instead of on all of the covariates and use only the

similar cases for regression leads to better prediction accuracy, and provides rationale for

the proposed algorithm, similarityMix, that determines similarity cases and models within

each subset of similar ones. The second set of simulations demonstrated the prediction

performance for similarityMix. A real data analysis is provided as well.

In Chapter 4, prediction for a survival outcome is considered. In survival analysis, the

idea of similarity is seen in cure models such as V. T. Farewell (1982) [12], Kuk & Chen

(1992) and Tsodikov, Ibrahim and Yakovlev (2003) [54]. This chapter deals with a more

general case than the cure model, that heterogeneity is not just based on the grouping of

the survival time, as with cure models, but on the relationship between the outcome and

the explanatory variables. Therefore, a random forest model is considered as trees in the

forest group similar cases together with both the outcome and covariate information. I

have improved the random survival forest model by incorporating the similarity structure

between a test data point and training point. The algorithm first considers independent

censoring data, then is extended to account for independence censoring which is common in

survival data, the latter a more general setting. Both simulations and a real data example

shows that in general, the similarity-based prediction improves prediction performance of

a random survival forest in terms of time-varying AUC.

In Chapter 5, I investigate a different aspect of improving prediction when one or more

covariates are longitudinal, that is, how long should one monitor these covariates before

an accurate prediction can be made. The main motivation is to balance the common need

to make an early prediction (e.g., for a future outcome of a patient in the ICU) with

the desire to have inaccurate predictions. The relationship between prediction accuracy

and early prediction is quantified, and graphical method is proposed that allows for the

selecting of a monitoring window given a specific prediction accuracy.

79



6.2 Future work

The current work of this thesis can be extended in several directions.

In Chapter 3, a heuristic for finding optimum number of components is mentioned.

Finding more comprehensive ways of selecting the number of mixture components in this

context is an area of interest. In addition, further investigation is needed in high dimen-

sional cases, that is, when the number of covariates p, is close to, or even greater than the

number of samples n. In this scenario, problems such as over-fitting on the training dataset

might be pronounced, since a large number of covariates will be used in both the first step

of fitting the model and in the second step of finding similarity variables. Therefore, under

the high dimensional setting, an effective variable selection method for both the first and

the second step of the algorithm is needed.

In Chapter 4, the computational time for the similarity-based random survival forest

can be large as the algorithm is building a random survival forest for each test data point,

and there are a number of tuning parameters to choose from. This time complexity may

be reduced by determining the tuning parameters from a subset of the entire population,

however, the robustness of this approach requires further investigation. Using a hard

threshold in the sampling may also reduce computation time. In addition, similarity-

based approach on other types of models instead of the random forest model may be

considered. One interesting area would be joint modeling of longitudinal covariates and

survival outcome, where the longitudinal information for the subjects can be utilized to

define similarity and improve survival prediction.

In Chapter 5, predicting a continuous outcome at a specific future time point is con-

sidered. Predictions can also be made from a Bayesian point of view [60, 10, 6], utilizing

the predictive density that follows from the posterior distribution. Although inference is
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not focused upon in this chapter, there are many potential possibilities. For example, one

might be able to specify how confident a prediction is, or construct prediction intervals,

and then choose when to make a prediction based on that. This problem can possibly be

set up as an optimum stopping problem [48] as well. In addition, there are many cases, in

biomedical studies or other domains, where predicting a future trend, or a time-to-event

outcome is of interest. An interesting future area of research is developing methods that

finds an optimum monitoring window for these different types of outcome. For predicting

future trend, it would be helpful if the prediction can be dynamically updated as more

information becomes available while still keeping the monitoring window as short as pos-

sible. In addition, similarity-based approach in Chapter 3 and 4 can be extended to the

early prediction problem in Chapter 5 as well. By utilizing similar cases’ information, one

might have a better idea of how early a prediction for a specific case can be made.
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Figure A.1: ACF plot for ARMA (2,1)
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Figure A.2: ACF plot for an ARMA (3,0)
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Figure A.3: Scenario 1 with covariates following ARMA (3,0): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.4: Scenario 2 with covariates following ARMA (3,0): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.5: Scenario 3 with covariates following ARMA (3,0): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.6: Scenario 4 with covariates following ARMA (3,0): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.7: Scenario 5 with covariates following ARMA (3,0): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.8: ACF plot for ARMA (0,3)
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Figure A.9: Scenario 1 with covariates following ARMA (0,3): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.10: Scenario 2 with covariates following ARMA (0,3): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.11: Scenario 3 with covariates following ARMA (0,3): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.12: Scenario 4 with covariates following ARMA (0,3): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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Figure A.13: Scenario 5 with covariates following ARMA (0,3): Shows the change in 10-fold

CV MSE when the length of the monitoring windows varies
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