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Abstract

Depth information is one of the most fundamental cues in interpreting the geometric re-
lationship of objects. It enables machines and robots to perceive the world in 3D and
allows them to understand the environment far beyond 2D images. Recovering the depth
information of the scene plays a crucial role in computer vision, and hence has a strong
connection with many applications in the fields such as robotics, autonomous driving and
computer-human interfacing.

In this thesis, we proposed, designed, and built a comprehensive system for depth
estimation from a single camera capture by leveraging the camera response to the defocus
effect of the projected pattern. This approach is fundamentally driven by the concept of
active depth from defocus (DfD) which recovers depth by analyzing the defocus effect of
the projected pattern at different depth levels as appeared in the captured images. While
current active DfD approaches are able to provide high accuracy, they rely on specialized
setups to obtain images with different defocus levels, making it impractical for a simple
and compact depth-sensing system with a small form factor.

The main contribution of this thesis is the use of computational modelling techniques
to characterize the camera defocus response of the projection pattern at different depth
levels, a new approach in active DfD that enables rapid and accurate depth inference in
the absence of complex hardware and extensive computing resources. Specifically, different
statistical estimation methods are proposed to approximate the pixel intensity distribution
of the projected pattern as measured by the camera sensor, a learning process that essen-
tially summarizes the defocus effect to a handful of optimized, distinctive values. As a
result, the blurring appearance of the projected pattern at each depth level is represented
by depth features in a computational depth inference model. In the proposed framework,
the scene is actively illuminated with a unique quasi-random projection pattern, and a
conventional RGB camera is used to acquire an image of the scene. The depth map of the
scene can then be recovered by studying the depth feature in the captured image of the
blurred projection pattern using the proposed computational depth inference model.

To verify the efficacy of the proposed depth estimation approach, quantitative and
qualitative experiments are performed on test scenes with different structural character-
istics. The results demonstrate that the proposed method can produce accurate depth
reconstruction results with high fidelity and has strong potential as a cost effective and
computationally efficient mean of generating depth maps.
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Chapter 1

Introduction

Depth carries critical information. Conventional digital cameras translate the 3D world
into 2D images, and the lost of information in depth may seem frivolous for everyday
consumers. However, with advanced computer vision technologies becoming ubiquitous, 2D
information alone is no longer sufficient for tasks such as virtual/augmented reality, facial
recognition, robotic manipulation, and autonomous vehicle navigation. These applications
are performed in the 3D world and thus rely heavily on the depth information of the scene.
As such, making computers perceive the world in 3D is crucial to future computer vision
applications.

1.1 Current Depth Inference Approaches

In recent years, depth cameras have received much attention both academically and in
industry with constant advancements to depth-sensing technologies. Current depth mea-
surement approaches can be generally categorized into passive and active types. Passive
techniques are image-based methods that rely on the analysis of the underlying character-
istics of the images such as texture gradient [4, 59] and distinguishable features [36, 58] in
the scene. They are applicable in a wide range of applications since the scene illumination
is only provided by ambient light. Exceptional results are demonstrated by passive depth
recovery methods based on multiple relative camera capture positions such as stereoscopic
vision [46, 60] and structure from motion [26, 35]. The multi-view passive depth-sensing
methods are geometric triangulation systems of different kinds that address the correspon-
dence problem between captured images [47, 65]. In this approach, depth estimation is
obtained by measuring disparities between matching features in captured images. While
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stereoscopic methods allow us to recover depth information, establishing the correspon-
dence between images is computationally expensive and time-consuming, thus unsuitable
in many scenarios. In addition, a limitation faced by many passive depth estimation meth-
ods is their inability to perform at parts of the image where uniformity of pixel intensity
makes the analysis of texture features impossible.

In the case of active depth estimation, the scene of interests is illuminated by a special-
ized lighting device in a pre-programmed, controlled fashion, and the reflected energy is
detected and analyzed to recover the depth of the scene. The use of active depth-sensing
techniques has been gaining popularity due to its superior performance, efficiency, and
ease of application, and a number of such techniques exist. For example, laser scanners
based on optical time-of-flight estimation are widely used in robotics [28] and autonomous
driving [55] to recover high-resolution depth measurements. In time-of-flight approaches,
pulsed laser light is emitted by the source and is reflected back to the receiver when de-
tecting an object. Knowing the time of flight of the light, the system can calculate the
distance away from the object. Although such technologies have improved over the years,
they remain very expensive and thus not feasible in applications where there are stricter
cost and complexity constraints. Stereo-based structured light systems are another pop-
ular approach due to reduced cost and complexity [9, 48]. The principle behind them is
akin to multi-view passive depth recovery methods, which depth estimation is based on
triangulation. The only difference is that, instead of finding matchable features from two
unknown images, the structured light approach looks for known features in the acquired
image. A comprehensive review of structured light approaches for depth measurement is

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of stereoscopic depth-sensing cameras. The baseline of each camera
is highlighted by the red line. (a): Stereolabs ZED [51], (b): Point Grey Bumblebee [19],
(c): Apple PrimeSense [1], (d): Microsoft Kinect [30], (e): Asus Xtion [3], (f): iPhone X [2]
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provided by Salvi [45]. Furthermore, structured light systems have been widely adopted
in low-cost commercial depth-sensing cameras, such as the Microsoft Kinect [67], Apple
PrimeSense [16], Asus Xtion [57], etc. It is important to realize that the key benefit of
the structured light approach is that they do not rely on studying textures of objects, and
as such, they are particularly effective when imaging scenes with weakly textured objects.
However, a major disadvantage of the stereoscopic systems, including structured light ap-
proaches, is the necessary baseline to operate, which induces a minimum size constrain on
the system that makes it ineffective to utilize for in certain scenarios. Figure 1.1 illustrates
the baseline limitation in stereoscopic systems. The main reason behind the baseline is to
create sufficient disparities between matchable features for an effective stereo triangulation.
In many cases, active depth recovery methods require the scene to be illuminated with a
projection pattern that is high-powered and well-focused, which further increases cost and
hardware complexity. As such, alternative active depth-sensing techniques that address
these challenges are highly desired.

1.2 Motivations: Depth from Defocus

The degree of defocus in images can be an important cue in depth recovery. Since the
level of defocus is a function of the camera settings and the depth of the scene, given the
camera parameters, one can achieve depth estimation by studying the amount of blur in
images. Depth estimation methods based on such techniques can be more effective than
stereoscopic approaches, since they are less affected by occlusions and they do not rely on
a baseline to operate. In depth from focus, depth estimation is performed using a set of
images with incremental focal settings [12, 15, 20]. In contrast, depth from defocus only
requires two images with different defocus effects [25, 39, 40, 52, 53]. By studying the
relative blur difference between two images, depth map of the scene can be obtained. The
method of DfD can be particularly useful when the use of multiple viewpoints is limited,
and thus stereo approach can be ineffective. Depth from defocus can be either passive
or active, which the former considers the texture frequency of the image, and the latter
analyzes the blurring of the projected pattern.

Depth from defocus is elegant and holds a lot of promise due to its simplicity. However, a
primary disadvantage of DfD is its high computational intensity in local blurring estimation
and complex hardware requirements to dynamically change the camera parameters during
the imaging process. As such, we are motivated to leverage the strengths from both passive
and active DfD to design a method that mitigates their individual limitations, thus enabling
systems with a simple setup yet achieve reliable results in the depth measurements.
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1.3 Thesis Contributions

The main contribution of this thesis is an innovative active DfD framework that involves
actively illuminating the scene with a quasi-random projection pattern and assessing the
blurriness of the projection pattern as captured by a camera to recover the depth of the
scene. The proposed method leverages the simplicity of DfD fundamentals and efficacy of
active depth-sensing methods to achieve rapid and accurate depth inference. Unlike pre-
vious approaches, depth estimation is performed using effective computational modelling
techniques to characterize the defocus effect of the projection pattern at different depth
levels. Furthermore, different pattern projection strategies are investigated to increase the
robustness of the proposed pipeline and enhance the fidelity of final depth recovery results.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2, background knowledge
about the problem domain is introduced, including related work in the area of passive and
active DfD. The system overview is presented in Chapter 3, where the establishment of
the inverse model of the depth recovery problem and the design of the projection pattern
are explained in detail. Chapter 4 focuses on the computational modelling approaches
to characterize the defocus effect. Experimental setup and results are reported in Chap-
ter 5. Finally in Chapter 6, conclusions are drawn from current work and future work is
discussed.
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Chapter 2

Background

In this chapter, the background theory behind DfD is discussed, as well as existing methods
of both passive and active DfD approaches. Section 2.1 reviews the principle of DfD, namely
how depth is a function of camera settings and relative blur difference. Following that,
Section 2.2 describes the current state-of-the-art for both passive and active DfD.

2.1 Principle of Depth from Defocus

As a scene is captured, objects imaged on the focal plane of the camera are accurately
presented as a clear and sharp image. A simplified geometry of the basic image formation
process using a convex lens is illustrated in Figure 2.1. Reflected light rays from the object
point P are refracted by the lens and converge to a single point p on the sensing element,
resulting a focused image to be formed. Conversely, if the placement of the sensor plane
does not coincide with the focal plane, the light rays are distributed over a patch on the
image sensor, causing a blurred image. Instead of perfectly reconstructing the object point,
the light rays form a blurred patch with diameter d on the sensor plane. In optics, for a lens
of negligible thickness, the relationship between the object distance u, the image distance
v, and focal length f is governed by the thin lens equation:

1

u
+

1

v
=

1

f
(2.1)

Ultimately, the goal of DfD is to recover the depth of the object with respect to the
imaging system. This depth measurement is essentially the distance from the object point
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Figure 2.1: A simplified image formation process of object point P . When the imaging
sensor is not placed in focal plane If , the light rays are distributed over a patch on the
sensing element, resulting a blurred reconstruction of the object point.

to the lens, indicated as u in Figure 2.1. Additionally, there are two camera parameters
that play a key role in the imaging process: aperture size D and focal length f , and
their involvement in DfD methods will be further explained in this chapter. Depth from
defocus achieves depth estimation by examining the degree of blur in images, therefore
the mathematical relationship between depth and blurriness must be formally established.
Using the property of similar triangles, the diameter of the blur patch d can be computed:

D

v
=

d

s− v
⇒ d = Ds(

1

v
− 1

s
) (2.2)

Substituting for 1
v

using 2.1, the diameter can be formulated as:

d = Ds(
1

f
− 1

u
− 1

s
) (2.3)

Another key point in the depth estimation process is the precise modeling of the blurry
patch. The point spread function describes the image intensity caused by a single point
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light source. Two-dimensional Gaussian blur model [7, 11, 29, 40, 52] and the pillbox blur
model [5, 23, 56, 62] are frequently used by researchers to approximate blurring-related
pixel intensity distribution in camera systems. For example, a 2D Gaussian blur model is
defined as:

h(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.4)

where σ is the standard deviation of the Gaussian distribution, and it is also referred to
as the spread parameter, proportional to the diameter of the blurred patch d:

σ ∝ d (2.5)

It is important to realize that the object distance is directly related to the degree of
defocus which is determined by the size of the blurring patch. In equation 2.3, aperture size
D, focal length f and the placement of the sensor plane s are known camera characteristics.
Since d and u are both unknown, a single image is not sufficient for depth estimation.
Therefore, minimum two images with different blurring levels are required to obtain u for
any given scene. The variation in blurring levels causes change in the diameter of the blur
patch, and it can be achieved by either maintaining a constant aperture and modifying the
sensor distance or fixing the sensor and changing the aperture. Given the above setting, it
can be concluded that DfD algorithms recover depth of the scene as a function of camera
settings and relative blur difference between the defocused images.

2.2 Related Work

Depth from defocus relies on the relationship between the depth, parameters of the imaging
system, and the relative degree of blurring. By comparing regional blurring disparity
between defocused images, the 3D structure of the scene can be recovered. Systems based
on DfD can be either passive or active, and the main difference is that the former studies
relative blur difference using texture frequency of the defocused images, and the latter
analyzes the change in defocus level of the projected pattern. Regardless, they are based
on the same theoretical framework as discussed previously. In this section, passive DfD
and its existing work are presented firstly to provide an insight on the limitation of general
DfD approaches. Following that, examples of active DfD techniques are discussed, as well
as how they address some of the issues of the passive methods.

A number of methods for depth recovery using defocused images have been proposed in
the literature, and the passive DfD framework proposed by Subbarao et al. [52] remains as
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the most classical and popular approach. In the previous section, d1 and d2 are connected by
equation 2.3 in terms of camera parameters, whereas Subbarao’s work focuses on evaluating
the regional blurring difference between the defocused images, which eventually leads to
depth recovery of the scene. Similar to equation 2.3, given two images with different
defocus levels, the diameter of the blur patch can be defined:

dm = Dmsm(
1

fm
− 1

u
− 1

sm
),m = 1, 2 (2.6)

Since the object distance u is identical in the above equation, the following relation can be
obtained:

d1 = αd2 + β (2.7)

where α = D1s1
D2s2

and β = D1s1( 1
f1
− 1

s1
− 1

f2
+ 1

s1
). To evaluate the local blurring difference,

the blurring effect centered at location (x, y) in the defocused images gm(x, y) can be
expressed as a convolution operation between the perfectly focused image f(x, y) and a
blurring model such as 2.4:

gm(x, y) = hm(x, y) ∗ f(x, y),m = 1, 2 (2.8)

where ∗ denotes the convolution operation. It is worth mentioning that hm is the point
spread function (PSF) associated to the depth of the scene at a specific pixel location in
the defocused image. The frequency domain representation of 2.8 is

Gm(ω, ν) = Hm(ω, ν)F (ω, ν) (2.9)

where Gm(ω, ν), Hm(ω, ν) and F (ω, ν) are the Fourier transforms of gm(x, y), hm(x, y) and
f(x, y) respectively. Next, the following ratio can be obtained by eliminating F (ω, ν):

G1(ω, ν)

G2(ω, ν)
=
H1(ω, ν)

H2(ω, ν)
(2.10)

Replacing Hm(ω, ν) with the 2D Gaussian blurring model, this results in:

G1(ω, ν)

G2(ω, ν)
= e−

1
2

(ω2+ν2)(σ2
1−σ2

2) (2.11)

The above equation can be further simplified by taking the logarithm on both sides and
rearranging terms:

σ2
1 − σ2

2 = − 2

ω2 + ν2
log

G1(ω, ν)

G2(ω, ν)
(2.12)
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By evaluating the right-hand side of the above equation at (ω, ν), the value of σ2
1 − σ2

2

can be determined. Furthermore, since the spread parameter of the blurring model is
proportional to the diameter of the blurred patch, for any given defocused image pair, the
blurring disparity can be computed as:

σ2
1 − σ2

2 = C ⇒ d2
1 − d2

2 = C (2.13)

Together with equation 2.7, there are two equations in two unknowns: d1 and d2. As such,
the relative degree of blurring around (x, y) can be estimated, and are then used to solve
for d1 or d2. With a knowledge of the camera parameters, depth of the scene corresponding
to that local region can be recovered using equation 2.6.

Given just two images with different camera settings, DfD approaches can recover depth
of the scene with no image searching or correspondence matching. Schechner et al. [49]
provided a fair and comprehensive performance comparison between DfD and state-of-the-
art stereo algorithms. He stated that the main advantage of DfD methods over stereo
approaches is that they are not confronted with the missing part and occlusion problems.
The absence of the occlusion problem in DfD can potentially enable a simple and compact
depth-sensing device with a small form factor. However, a major shortcoming of the DfD
method is the requirement of extensive computational resources to obtain a reliable depth
map [17]. This is because depth estimation must be performed at every pixel location to
obtain a high-resolution reconstruction result, so its computational efficiency over stereo
approaches is sacrificed. For example, in the above-mentioned algorithm, the repeated
Fourier transform at each pixel location can be computationally intensive. Subbarao et
al. [52] implemented an efficient window-based method to analyze local blurring levels for
depth estimation. Though this approach can result in increased computational efficiency,
it only produces reasonable depth estimation for scenes with large planar surfaces, which
makes the method ineffective for scenes with fine-grained texture detail.

In general, the majority of previous work on passive DfD focused on developing more
computationally efficient means of estimating local blurring levels while retaining a high-
resolution depth reconstruction result [39, 40, 56, 61, 69]. Pentland et al. [40] suggested
to use known structural characteristics in the image for blur estimation. Features such as
edges, corners, and distinct textures can provide prior information on the frequency spectra
of neighbouring pixels, leading to a faster estimation of local blur difference. However,
the method requires scene characteristics to be known which often involves additional
computing resources. The use of Markov random field (MRF) has emerged recently as a
way to improve local blurring estimation [6, 43]. The blur model and the image formation
process are approximated as separate MRFs, and a computational model is leveraged to
recover depth of the scene. Furthermore, several spatial-domain approaches have been
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proposed to avoid repeated Fourier transform. Generally, frequency domain operations
require more computation than spatial domain methods [63]. Surya et al. [56] proposed
to fit the 2D defocused images by a third-order polynomial to compute the difference in
blurriness between images. The algorithm does not impose any assumptions on the form
of the PSF, and thus provides more robust depth estimation results. Similarly, Ziou et
al. [69] proposed to decompose the image using Hermite polynomials and compute the
relative blur by solving a system of equations. Xiong et al. [64] proposed a unique method
to improve the spatial resolution of depth map in DfD. The difference in regional blur
levels is sought by iteratively blurring one of the defocused images using a bank of narrow-
band filters to achieve maximum resemblance to the other. Despite its novelty, the method
involves over 200 convolutions to recover the depth of the scene, which makes the operation
computationally costly.

Passive DfD methods can be computationally expensive to obtain a reliable depth es-
timation. This fundamental trade-off between spatial resolution and computational com-
plexity is primarily due to the spatially-variant nature of the blurring effect in the defocused
images [61]. Frequency characteristics of scene textures are intricate and unpredictable.
Depth estimation can be unreliable in a number of different situations, especially when
dealing with scenes defined by weakly textured or textureless objects. The method relies
on the measurement of relative defocus level to estimate depth. There is little to no vari-
ation in blurriness to be detected in regions with uniform pixel intensities, which can lead
to erroneous results. In the existing literature, rotationally symmetric circular blurring
models are inevitably sensitive to local scene textures [54], therefore they are not sufficient
to provide an accurate depth estimation. Despite recent DfD implementations (no prior
PSF assumption, spatial-domain operation, MRF models, etc.) significantly increased the
fidelity of the reconstruction results, they are difficult to optimize and parallel.

The limitation of passive DfD in untextured regions of the image is mitigated in active
DfD. Pentland was one of the first to introduce the notion of active DfD [38]. In active DfD,
the scene is illuminated using a projection pattern, and depth estimation is performed by
analyzing the degree of blurring of the projected pattern captured with different camera
settings. Pentland et al. [38] proposed a low-resolution depth estimation method based
on the line spread of the evenly-spaced line projections. Using active illumination, depth
estimation can be performed even in homogeneous regions of the scene. Ghita et al. [17]
suggested projecting a dense projection pattern onto the scene and using a local operator
designed for finding the relationship between blur and depth. The focus operator was
tuned that it only responds strongly to the frequency derived from the projection pattern.
Moreno et al. [32] proposed the use of an evenly spaced point pattern with defocus to
approximate depth in the context of automatic image refocusing. Unlike other active
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(a)

(b)

(c)

Figure 2.2: Examples of DfD setups. (a): Ghita’s implementation consists of two CMOS
sensors and a beam splitter to create shifts in camera focal length [17]. (b): Subbarao’s
setup involves mechanically shifting the lens with a software controlled motor [53]. (c):
Zhou designed a pair of specialized apertures for enhanced depth estimation results [68].
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DfD methods, the projected dots can be removed from the captured image and depth
information obtained from the process can be used to simulate realistic depth of field
effects when refocusing the acquired image. To summarize, the use of an active projection
pattern effectively addressed the problem of passive DfD in untextured areas.

Nevertheless, another major drawback in both passive and active DfD approach is the
complex hardware requirement to simultaneously capture images of the scene with different
blurriness. The defocus level between images can be varied by adjusting camera parame-
ters which involves moving the image sensor with respect to the lens, or by changing the
aperture size. For example, Ghita et al. [17] used two complementary metal oxide semi-
conductor (CMOS) sensors and a beam splitter to create shifts in camera focal settings.
Subbarao et al. [53] proposed a method which involves a multi-lens setup with mechanical
components to relocate the lens during imaging. Zhou et al. [68] implemented a pair of
coded apertures and demonstrated enhanced reconstruction results over conventional cir-
cular apertures. Additionally, the necessary camera settings such as focal length, aperture
size, and position of the sensor plane must be precisely calibrated for an accurate depth
recovery of the scene. This hardware requirement makes DfD difficult to apply in prac-
tice, and creates a bottleneck to a self-contained depth inference system with a small form
factor. As such, an alternative depth-sensing techniques that address the aforementioned
challenges are highly desired.
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Chapter 3

System Overview

In this chapter, an overview of the proposed method for inferring depth by analyzing the
blurriness of the projection pattern at different depth levels caused by camera defocus
is presented. A comprehensive depth inference system is developed based on DfD via
active quasi-random pattern projection. We propose the use of computational modelling
techniques as the basis of the inference model to characterize the blurring appearance
associated with projected pattern at different depth levels as it appears to the camera.

The main concept behind the proposed system is that the camera response to the out-
of-focus projection pattern is dependent on the depth of the surface. By characterizing
the camera measurement of the projected pattern at different depth levels, one can then
reconstruct the depth map of the object by assessing the blurring effect of the pattern in
the illuminated scene.

The proposed depth inference approach can be summarized as follows. First, the scene
is actively illuminated with a quasi-random projection pattern consisting of numerous
one-pixel point, and a conventional RGB camera is used to acquire a single image of the
projected pattern. The projected point light is extracted from the captured image and
then are analyzed using a computational depth inference model to estimate the depth at
the location of the point. A final depth map is then reconstructed algorithmically based
on the sparse depth estimates.

The following sections of the chapter introduce the proposed depth inference framework
and the design of the projection pattern. Section 3.1 presents the problem formulation for
a computational active DfD method. An overview of depth inference pipeline is given in
Section 3.2, where the three main stages involved in the proposed framework are discussed.
Following that, the design of the projection pattern is discussed in Section 3.3.
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3.1 Problem Formulation and Depth Inference Model

Given a scene actively illuminated with a point projection pattern, a model of a forward
problem is considered: when capturing the scene using a camera, projected point patterns
reflected off of objects in the scene at different depths will result in observations with
varying blurriness in the acquired image. The defocus effect of a projected point at different
depth levels is visualized in Figure 3.1.

38 cm 39 cm 40 cm 41 cm 42 cm

43 cm 44 cm 45 cm 46 cm 47 cm

Figure 3.1: Visualization of the defocus effect of a one-pixel pattern projected onto surfaces
at various distance away from the setup, as captured by the camera

With a fixed camera focal setting, if the object to be imaged is placed in or very close
to the surface of the best focus, the reflected pattern formed on the camera image sensor
is sharp and the light is imaged by the lens into a point on the sensor plane. Conversely, if
the object is shifted from the surface of the best focus, the reflected pattern is distributed
over a blurry patch on the surface of the sensing element. The blurring level of the patch
is proportional to the distance which the object is away from the focal plane. Here, this
relationship is represented by a forward model which maps the incoming light reflected
from different depth levels to the sensor measurements made by the camera image sensor.
The forward model can be formulated mathematically as: C = f(D), where C represents
the camera measurement data of the projected pattern at depth D.

As such, the depth inference model is formulated as an inverse problem of the forward
model, with the goal of determining the depth D of the scene associated to the given
the blurry observations C at the particular location: D = f−1(C). Here f−1(·) is an
inversion operator that maps the camera captured images of the projected pattern to depth
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estimation in the corresponding locations of the scene. In this thesis, three computational
modelling methods are implemented to construct the depth inference function f−1(·).

• Circularly-symmetric 2D Gaussian: The blurring response of the defocused
point projection pattern is approximated using a circularly-symmetric 2D Gaussian
PSF. The standard deviation of the Gaussian distribution is used as a descriptive
depth feature to summarize the degree of blurring of the projected pattern at different
depth levels.

• Elliptical 2D Gaussian: The problem of aberrations is common in projectors. Dis-
tortion in projected pattern can easily throw off the symmetric Gaussian assumption.
As such, an elliptical 2D Gaussian is proposed as an enhanced blurring model. The
minimum eigenvalue of the Gaussian covariance is used to characterize depth.

• Convolutional Neural Networks: A non-parametric, deep learning-driven ap-
proach is implemented to directly estimate f−1(·) using convolutional neural networks
(ConvNets). Unlike the previous two methods, the network learns a function that
maps pixel intensity distributions to depth values without imposing any assumptions
about the nature of the relationship.

An important step in constructing the computational depth inference model is to collect
a sufficient dataset of camera measurement of the blurry projection pattern and the asso-
ciated depth values. A one-time calibration stage is proposed, where images of the quasi-
random point pattern projected at different depth levels are obtained, and blurry point
patterns are extracted from the image. The three computational modelling approaches
and their calibration procedures will be explained further in Chapter 4.

3.2 Method Overview

The proposed depth inference framework involves actively illuminating a quasi-random
point pattern onto the scene of interest. The projected scene is captured using a RGB
camera, and a computational model is used to estimate point-wise depth based on the
captured point pattern. The final depth map is then reconstructed algorithmically based
on the sparse depth estimation results. The overall pipeline of the proposed depth inference
framework is shown in Figure 3.2.

Stage 1: Active Quasi-random Pattern Projection: A quasi-random pattern
consisting of numerous one-pixel points is projected onto the scene. Poisson disk sampling
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Projection Localization Depth Inference

Figure 3.2: Illustration of the proposed depth inference pipeline. The scene is actively
illuminated with a quasi-random projection pattern and a RGB camera is used to capture
an image of the scene. The computational model then analyses the captured image and
predict point-wise depth value corresponding to each point in the projected pattern. With
the sparse depth measurements at all locations predicted using the model, a triangulation-
based interpolation is performed to generated the final depth map. Here, the projection
pattern shown above is a multispectral quasi-random projection pattern consisting of com-
plex subpatterns, and depth reconstruction is performed using a non-parametric, deep
learning-driven depth inference model.

(PDS) method was utilized to generate the location of the point in the projection pattern.
In Section 3.3, the PDS algorithm, a multispectral quasi-random projection pattern, and
multispectral quasi-random projection pattern with complex subpatterns are discussed in
detail:

• Multispectral Quasi-random Point Projection Pattern: One can achieve
higher spatial resolution in the reconstructed depth map by interspersing points at
different wavelengths in a quasi-random manner within a single active projection.

• Multispectral Quasi-random Projections with Complex Subpatterns: In-
stead of using one-pixel point as the basis of the quasi-random projection pattern, a
multispectral quasi-random projection pattern consisting of numerous complex sub-
patterns is proposed.

Stage 2: Point Localization: After the projected pattern has been captured by
the camera, Otsu’s method is applied to the captured image to obtain a binary map of
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the projected point pattern [24]. With the centroid of each point pattern computed, the
individual blurry point pattern can be extracted from the captured image.

Stage 3: Depth Inference and Depth Image Reconstruction: After identify-
ing the projected point pattern in the acquired scene, the computational depth inference
model can then be used to predict the depth corresponding to that projected point. By
performing this on all projected point in the quasi-random projection pattern, the sparse
depth estimation can be obtained. With depth measurements at all detected locations,
triangulation-based linear interpolation is performed to reconstruct the final depth map.

3.3 Projection Pattern Design

In the proposed depth estimation system, the scene is actively illuminated using a projec-
tion pattern, and the depth is estimated by assessing the blurriness of the projected pattern
as captured by the camera. As such, the design of the projection pattern is a key factor in
the ability to achieve depth recovery with high fidelity. In the following subsections, the
sampling algorithm for generating the quasi-random sequence is discussed in detail, as well
as different pattern projection strategies.

3.3.1 Quasi-random Point Projection Pattern

Active coded structured light pattern projection is considered one of the most reliable
techniques for depth sensors [45]. Various coded light patterns have been proposed in the
literature. Among all pattern codification strategies, point projection patterns generated
by folding a pseudo-random sequence has been widely used in stereoscopic depth-sensing
cameras [31, 33]. In a pseudo-random point pattern, the location of every point can be
determined with the aid of its spatial neighbourhood. This unique property significantly
increases the robustness of stereoscopic systems, which rely on finding the correspondence
between the original coded pattern and the captured image of the illuminated scene to
triangulate the depth of the scene.

Figure 3.3 shows a pseudo-random point pattern. It can be seen that clusters of points
appear at random locations over the pseudo-random point pattern. While in other regions,
there is no point being generated. In the proposed approach, the ease of extracting individ-
ual projection point is crucial to the success of depth inference. Evidently, pseudo-random
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Figure 3.3: Example of a point pattern generated using pseudo-random sequence. The
clustering effect can be observed in the red circle. In contrast, there is almost no point
generated in the blue circle.

point pattern creates an undesired clustering effect that can cause overlapping of projection
points and lead to erroneous inference results.

Intuitively, a desired pattern codification strategy needs to generate the location for
the point such that they are tightly packed together, but no closer than a specified min-
imum distance to avoid clustering effect. This type of distribution that fills the space
more uniformly than completely uncorrelated random points is called the low-discrepancy
sequence [14]. Formally, discrepancy DN for a sequence { s1, . . . , sN } with respect to the
interval [a, b] is defined as:

DN = sup
a≤c≤d≤b

∣∣∣∣ |{ s1, . . . , sN } ∩ [c, d]|
N

− d− c
b− a

∣∣∣∣ (3.1)

The notation |{s1, ..., sn} ∩ [c, d]| denotes the number of elements, out of the first n
elements of the sequence, that are between c and d. A sequence with low discrepancy
exhibits a unique equidistributed pattern, where the portion of the first n elements of
the sequence that fall between an arbitrary subinterval [c, d] is equal to the portion of
the subinterval with respect to the entire interval [a, b]. Low-discrepancy sequences are
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also referred as quasi-random sequences, due to their common use as a replacement of
uniformly distributed random sequences [34]. A popular approach for obtaining a non-
clustered, quasi-random sequence of points is PDS [34]. In this thesis, an efficient O(N)
algorithm proposed by Bridson is implemented to generate the 2D quasi-random point
pattern [8].

Compared to other popular low-discrepancy sampling methods such as Sobol sequence [50]
and Halton sequence [21], PDS approach guarantees that every two points are separated
by at least the specified minimum distance; hence it significantly reduces the chances of
having overlaps between blurred projected subpattern, which would result in erroneous
depth recovery.

Figure 3.4: Example of a quasi-random point pattern generated using PDS method. The
point density with respect to the area of the pattern is the same as Figure 3.3
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3.3.2 Multispectral Projection Pattern

Figure 3.5 illustrates the blurring effect of the same one-pixel point pattern projected
in different wavelengths, onto surfaces at different depth levels. Despite that the pixel
location relative to the projector resolution is identical, the camera defocus response can
be drastically different for the two wavelengths. As such, the use of projection pattern with
different wavelengths can provide increased spatial resolution beyond single-wavelength
approaches. Conventional RGB camera sensor captures images in three unique ranges of
the visible spectrum: red, green and blue. The red and blue channels lie the furthest
apart in the spectrum among the three channels, which makes them easily separable from
each other. For this reason, the red and blue projection patterns are selected to achieve

38 cm 39 cm 40 cm 41 cm 42 cm

43 cm 44 cm 45 cm 46 cm 47 cm

38 cm 39 cm 40 cm 41 cm 42 cm

43 cm 44 cm 45 cm 46 cm 47 cm

Figure 3.5: Visualization of the camera defocus response to a one-pixel pattern projected
in different wavelengths, onto surfaces at various distance away from the setup.
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improved reconstruction results with an accurate point localization.

By interspersing points at different wavelengths in a quasi-random manner within a
single active projection, one can achieve higher spatial resolution in the reconstructed depth
map. Additionally, the use of multiple wavelengths can be easily separated when captured
using a conventional RGB camera, which retains the simplicity and low complexity of the
approach. To generate the multispectral quasi-random pattern, PDS is performed once
for each wavelength and the results are concatenated into a single projection pattern, as
shown in Figure 3.6

Figure 3.6: Concatenating the two quasi-random patterns with different wavelength into
a single multispectral projection pattern.

3.3.3 Complex Subpattern Designs

The blurring effect of an one-pixel point pattern can be characterized using meaningful
associated depth features such as standard deviation of a Gaussian distribution. In a
non-parametric depth inference model which will be discussed more in Chapter 4, a deep
ConvNet is leveraged to automatically extract depth features from images of the projected
pattern. Since no assumption is imposed on the defocus effect, the network can learn a
number of features that lead to an extremely flexible functional form of the pixel inten-
sity distribution. As a result, it enables us to explore unconventional geometry for the
projection pattern beyond just one-pixel point patterns.

As an extension of the quasi-random projection pattern, the use of a new quasi-random
projection pattern consisting of complex subpatterns instead of points is introduced. To
avoid confusion, the term subpattern is used to denote the individual element that forms
the overall projection pattern. Throughout this thesis, if the concept of subpattern is
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not specified when the projection pattern is mentioned, then it is referred to the quasi-
random pattern consisting of one-pixel projection point. The main motivation is that
complex subpatterns can contribute to increased variation in the camera measurement data,
leading to a significant increase in the number of useful features. As such, by leveraging
non-parametric modelling approaches with complex subpatterns, one can achieve higher
fidelity in the depth reconstruction results.

Compared to the basic one-pixel point subpattern, subpatterns with unconventional
designs involve using additional projector pixels. Consequently, it greatly increases the
chance of having overlapped blurring subpatterns within the same wavelength, resulting
in erroneous depth estimate. With this in mind, the size of the subpattern is limited to be
within a 3 × 3 pixel region, so the quality of the captured images of subpatterns can be
retained. The proposed complex subpattern designs together with the one-pixel projection
point pattern are illustrated in Figure 3.7

(a) (b) (c)

(d) (f)

Figure 3.7: Illustration of quasi-random patterns consisting of the proposed complex sub-
pattern designs. (a): One-pixel, (b): X, (c): Triangle, (d): Square, (f): Cross
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Chapter 4

Computational Depth Inference
Model

In traditional DfD approaches, the complex and costly hardware setup required to acquire
images with different focus levels simultaneously is the bottleneck to a self-contained depth
inference system with a small form factor. In this thesis, this issue is addressed by lever-
aging a depth inference model based on computational modelling methods to characterize
camera response of the out-of-focus patterns at different depth levels. Given the complex
nature of the blurry camera measurements, an inference model based strictly on mathe-
matical formulation are not readily available. Therefore, instead of deriving a complete
mathematical solution to estimate depth from camera measurements, a computational in-
ference model is parameterized by features that are estimated from the data. The feature
can be either in the form of a single feature capturing everything there is throughout the
entire depth inference model, or a series of well-defined filters and operations that precisely
maps images of blurry pattern to depth levels.

In this chapter, the problem of estimating or learning the characteristics of the compu-
tational depth inference model is considered. Section 4.1 presents the parametric estima-
tion method, specifically the two Gaussian-based approach to approximate the PSF of the
blurring effect. Section 4.2 introduces a deep learning-driven, non-parametric estimation
approach to the computational model. The methods described in this chapter are different
means of realizing the depth inference function f−1(·) discussed in Section 3.1.

23



4.1 Parametric Depth Inference Model

Assumptions can greatly simplify the process of estimation and learning. The point spread
function is widely used to measure the degree of spreading of a point light source. Similarly,
in our application, the concept of the PSF is leveraged to describe the pixel intensity
distribution of the blurry pattern. That is, the PSF encapsulates the general intensity
distribution of the camera response to the defocused pattern, with varying parameters at
different depth levels. In the parametric estimation approach, the functional form of the
PSF is assumed known, and the goal is to estimate the necessary parameters from the
data. The parameters of the PSF can be further leveraged to derive depth features which
essentially summarize the camera captured image of the blurring pattern to a descriptive
value.

As such, the general strategy of developing a computational depth inference model
using parametric estimation can be defined as follows:

1. In a one-time calibration stage, images of the quasi-random point pattern projected
at different depth levels are obtained, and blurry point patterns are extracted from
the image. Let Cd =

{
Cd
i

}
i=1...N

, Cd
i = [xdi , y

d
i ]
T ∈ R2 represents sample population

generated based on an intensity-weighted approach using one image of the blurry
point pattern associated with depth d. Specifically, the number of samples at each
location is approximated by multiplying the pixel intensity by a factor of 10,000.

2. An assumption is imposed on the general form of the PSF: p(Cd | θd). At each depth
level, the parameters θd of the PSF are treated as fixed but unknown quantities.
Then, values of the parameters θd is estimated to maximize the probability that the
given data came from the resulting PSF p(Cd | θd). The estimation is repeated, and
the final value of θd is averaged over all extracted images of blurry point patterns at
the same depth level.

3. In the case when θd is not directly used as features to characterize depth, after θd is
determined, depth features fd can be derived based on the choice of the PSF. Then,
a series of depth features corresponding to their depth levels can be established: F =
{fi}i=1...M and D = {di}i=1...M , where M indicates the number of calibrated depth
levels. Finally, since Θ and D obtained above are both discrete values, regression
techniques are performed to establish a continuous depth inference model.
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4.1.1 Calibration - Generating Sample Population

A crucial step in the development of the computational depth inference model is the one-
time calibration procedure, which images of the blurry point patterns at different depth
levels are collected. The operating range of the depth inference model is divided into M
evenly spaced intervals: D = {di}i=1...M . The quasi-random point pattern is projected
onto a vertical surface placed at di distances away from the projector-camera setup, as
shown in Figure 4.1. The projected points are extracted from the acquired images, and a
30×30 image patch of pixels is formed at each point location. In the proposed framework,
the operation range of the depth inference framework is between 36cm to 44cm since it
is approximately equal to the arm length. The focus of the camera is placed at 50cm
away from the setup to ensure sufficient blurriness in the captured image of the projected
pattern.

Figure 4.1: Visualization of the calibration procedure. The quasi-random pattern is pro-
jected onto a vertical surface placed at known distances away from the projector-camera
setup. The projected subpatterns are extracted from the acquired images and a 30 × 30
image patch of pixels is formed at each point location and labelled accordingly.

For each image of blurry point projection, an intensity-weighted approach to generate
sample population is leveraged, where the number of samples at each location is approxi-
mated by multiplying the pixel intensity by a factor of 10,000. For example, with a pixel
intensity value of 0.1 at position [1, 1] of an image of the blurry point pattern at depth d,
this results in: {

Cd
i

}
i=1...1000

=

[
1
1

]
(4.1)
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4.1.2 Blurring Model I: Circularly-symmetric 2D Gaussian

Gaussian distribution is used extensively in the domain of computer vision to model and
synthesize blurring effect [11, 7, 29]. Due to its efficient implementation and remarkable
versatility, Gaussian-based blurring remain as the most prevalent one among all the blur
models in the development of many sophisticated algorithms for analyzing the behavior of
blurring in complex situations such as depth-of-field or heat haze.

Figure 4.2: Visualization of a projected point pattern as approximated by a circularly-
symmetric 2D Gaussian PSF. The red arrow illustrates the standard deviation of the
Gaussian distribution as the depth feature to characterize the spread of blurring.

The underlying principle of the proposed depth inference approach is that when out-
of-focus, a projected point will appear blurred, with the degree of blurriness correlated
with the depth of the scene at that point. In the first blurring model, the blurry projected
points as captured by the camera are modelled using a circularly-symmetric 2D Gaussian
PSF, and the standard deviation σd is used to characterize the depth. The parameter θd
is a vector:

θd =

µxµy
σd

 (4.2)

The circularly-symmetric 2D Gaussian for uncorrelated variates x and y is formulated as:

p(Cd | θd) =
I

2πσ2
d

e
− (x−µx)2+(y−µy)2

2σ2
d (4.3)

Essentially, the pixel intensity values of the camera captured image of the projected pattern
is assumed to exhibits a bivariate Gaussian distribution with equal standard deviation
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σd = σx = σy. At each depth level, a unique σd exists to characterize the degree of
spreading of the distribution, as shown in Figure 4.2. Following the above assumption, the
purpose of the parametric estimation stage is to estimate the value of standard deviation
σd that maximize the probability that the given camera measurement data came from
the resulting Gaussian distribution. As such, the standard deviation of the circularly-
symmetric 2D Gaussian blurring model at each depth is estimated by using Maximum
Likelihood Estimation approach:

argmax
θd

p(Cd | θ) (4.4)

The complete derivation for θd is beyond the scope of the thesis. To summarize, the sample
mean of

{
Cd
i

}
i=1...N

can be calculated as:[
µx
µy

]
=

1

N

N∑
i=1

Cd
i (4.5)

Then, the standard deviation can be obtained:

σd =

√√√√ 1

N

N∑
i=1

((xdi − µx)2 + (ydi − µy)2) (4.6)

For the circularly-symmetric 2D Gaussian blurring model, the standard deviation σd is used
as the depth feature fd to characterize camera response to the defocus effect at different
depth levels:

fd = σd (4.7)

4.1.3 Blurring Model II: Elliptical 2D Gaussian

The circularly-symmetric assumption of the PSF in the previous blurring model is rather
ideal. In projectors, it occurs that one-pixel point light source from the projector does not
converge into an ideal circular point after transmission through the projector-lens system.
Consequently, this causes skewness of the projected point, especially at regions away from
the center of the projector, as seen in Figure 4.3.

It can be observed that the entire projection pattern exhibit a very mild radial dis-
tortion centered around the bottom-middle part of the captured image. Unfortunately, it
is not feasible to regulate the distortion, since it would require additional hardware such
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Figure 4.3: Image of a vertical surface illuminated using the quasi-random point pattern,
obtained during the calibration procedure. The extracted projection point shown on the
bottom right is well suited for the circularly-symmetric assumption. However, regions
away from the projector center experience an undesired radial distortion effect, which can
be seen from the extracted projection point shown on the top right. Note: images shown
above are enhanced by adjusting contrast to better demonstrate the distortion effect.

as a correction lens that increases the cost and complexity of the system. Contradicting
the circularly-symmetric geometry of the previous blurring model, the distortion of the
projection point become the major cause of the erroneous depth inference results. As such,
an enhanced blurring model that addresses this issue is highly desired.

The primary constrain of the circularly-symmetric Gaussian blurring model is its lack
of flexibility to overcome the skewed geometry of the distorted projected pattern. With
this in mind, in the second blurring model, the use of an elliptical 2D Gaussian as the PSF
is proposed to better approximate the pixel intensity distribution of the projected points
under distortion. The parameter θd consists of the mean and covariance matrix:

θd =

[
µd
Σd

]
(4.8)
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Figure 4.4: Visualization of a skwed projection point as approximated by an Elliptical 2D
Gaussian PSF. Directions of the arrow represent eigenvectors of the Gaussian covariance,
and their lengths are proportional to their eigenvalues. The minimum eigenvalue (length
of the red arrow) is used as the depth feature, since it is less affected by the distortion.

The elliptical 2D Gaussian is given by:

p(Cd | θd) =
1

2π |Σd|
1
2

e−
1
2

(Cd−µd)TΣ−1
d (Cd−µd) (4.9)

In the previous model, variates x and y are uncorrelated due to the circularly-symmetric
assumption. However, it can be observed in Figure 4.4 that, the x and y components co-
vary under distortion, and thus using variance σx and σy alone does not fully capture
the pixel intensity distribution. Therefore, a 2 × 2 covariance matrix is required. Images
of the projected blurry point at each depth levels are obtained in the same calibration
stage as described earlier and sample populations are generated from the images. Using
Maximum Likelihood Estimation, the covariance matrix that maximizes p(Cd | θ) can be
approximated as:

Σ =
1

N

N∑
i=1

(Cd
i − µd)(Cd

i − µd)T (4.10)

where µd can be solved using equation 4.5. In Figure 4.4, directions of the arrow correspond
to the eigenvectors of the covariance matrix, and lengths of the arrow are proportional to the
corresponding eigenvalues. Instead of using standard deviation, the minimum eigenvalue
of the elliptical Gaussian covariance is used to characterize the depth. It can be observed
that the maximum eigenvalue of the covariance matrix corresponds to the magnitude of
the skew caused by projector distortion, whereas the minimum eigenvalue is significantly
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less affected under the distortion, as shown in Figure 4.4. Hence, the minimum eigenvalue
of the Gaussian covariance is better suited for preserving the geometric information of
the actual projected points across each depth level. To find the the eigenvalues λd, the
characteristic equation of the matrix Σd can be solved, namely those values of λd for which:

det(Σd − λdI) = 0 (4.11)

Finally, the depth feature for the elliptical Gaussian is:

fd = min(λd,1, λd,2) (4.12)

4.1.4 Establishing the Depth Inference Model

After parametric estimation, the pixel intensity distribution of the blurring projected point
can be summarized into a single descriptive depth feature. As a result, a series of discrete
depth features with their matching depth levels is obtained:

F =

 f1
...
fM

 −→ D =

 d1
...
dM

 (4.13)

To obtain a continuous parametric depth inference model, regression with a third order
polynomial function is used to fit the data points:

M(F ) = a3 ∗ F 3 + a2 ∗ F 2 + a1 ∗ F + a0 (4.14)

and the regression is sought by least square fitting:

argmin(
M∑
i=1

(di −M(fi))
2) (4.15)

4.1.5 Discussion

The approach to use parametric estimation to obtain depth features in the computational
depth inference model is highly appealing in suitable scenarios as it greatly decreases the
complexity of the traditional setup, and still retain the simplicity of the DfD concept.
There are three main benefits of the parametric depth inference model:
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(a) (b)

Figure 4.5: The parametric depth inference model constructed for the one-pixel point
pattern using (a): circularly-symmetric 2D Gaussian blurring model and (b): elliptical 2D
Gaussian blurring model.

1. Simplicity/Interpretability: The parametric approach is developed based on intu-
itive blurring models with concrete mathematical forms. The depth features derived
from the assumed PSFs are meaningful and interpretable values.

2. Speed/Storage: Parameters and depth features are very fast to learn from the
extracted blurring projection patterns. Often, a few images of the blurring point are
sufficient to approximate the parameters.

3. Continuous Model: By leveraging regression techniques on the discrete features-
depth pairs, a continuous depth inference model can be easily established.
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4.2 Non-parametric Depth Inference Model

Assumptions can also limit what can be learned. By imposing assumptions about the pixel
intensity distributions, the previous parametric estimation method is highly constrained to
the specific form. Additionally, the use of a single depth feature as a descriptive measure
for the blurring effect is rather ideal. In practise, the parametric depth inference model
remain highly sensitive to spatially-variant pixel distortions, and thus unlikely to effectively
characterize the blurring effect across the entire pattern. As such, we are motivated to
explore alternative computational depth inference methods that do not rely on the choice
of assumptions and parameters. In many pattern recognition problems, the parameterized
form of the distribution is unknown:

p(Cd | θ) (4.16)

The goal is to directly estimate the functional form of the distribution or the parameters
from samples Cd in the absence of any guidance or constraints from the theory, and such
method is called non-parametric estimation. Consequently, the process of non-parametric
estimation can have no meaningful associated parameters. This differs from the parametric
depth inference model which aims to learn a meaningful depth feature that summarize the
blurring effect using camera measurement data. A key advantage of using non-parametric
estimation approach to construct the depth inference model is that it allows for reliable and
flexible modeling of the mapping function from extracted images of the projected pattern
to their corresponding depth value without imposing any assumptions about the nature
of the relationship. In the rest of this section, the use of ConvNets as a non-parametric
approach to the computational depth inference model is presented.

4.2.1 Convolutional Neural Network

Convolutional neural networks are a class of deep neural networks that have proven very
effective in analyzing visual imagery [27]. They have been widely used in computer vision
applications such as facial recognition, image classification and scene understanding [27,
37, 44, 18].

Convolutional neural networks model an unknown function by expressing it as a se-
ries of operation using filters that have learnable weights and biases. A typical ConvNet
has multiple layers, where each layer defines the particular operation that is performed
onto the filters. The filters are typically high-dimensional matrices, and are often referred
as features. Each ConvNet layer receives some inputs from the previous layer, performs
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convolution operation using the filters and often follows it with a non-linear activation
function. The network is evaluated with an entropy-based loss function to compute dif-
ference between the true and predicated labels at the output layer. Finally, the network
optimizes iteratively by computing the gradients of the loss function with respect to all
the filters in the network, and use gradient descent to update all filter values to minimize
the output error. As a result, ConvNets produce a number of optimized filters that enable
learning of an extremely flexible functional form of the distribution.

It is worth mentioning that there are different interpretations to whether ConvNets
are parametric or non-parametric estimation approaches, and resolving this terminologi-
cal question would involve rigorous definition of ConvNets. In this thesis, ConvNets are
leveraged as a non-parametric estimation method because they do not assume a particular
family of distributions with interpretable parameters. Instead, the aim of ConvNets in
our application is to directly learn features that leads to a good engineering estimation
of the depth inference model, and most importantly, and the features can be completely
uninterpretable.

The non-parametric depth inference model using ConvNets consists of two steps:

1. In a similar calibration procedure, images of the quasi-random point pattern pro-
jected at different depth levels are obtained, and blurry point patterns are extracted
from the image. To achieve a generalized ConvNet model, in addition to the original
quasi-random point pattern, three one-pixel shifted versions of the point pattern are
projected to augment the dataset.

2. A 70%/15%/15% ratio is used to split the dataset into training/validation/testing
set. That is, 70% of the dataset is used to train the ConvNet, 15% of the dataset
is used to tune the hyperparameters of the network and the rest 15% is used to
quantitatively measure the performance of the network.

4.2.2 Calibration - Collecting the Image Dataset

Images of the projected pattern are collected using the same setup as previously described
in Figure 4.1. Unlike the parametric estimation approach which depth features can be
quickly learned from just a handful of data, a sufficient number of images of the blurring
point pattern at each depth level is the key to an accurate ConvNet-driven depth inference
model [22]. As such, dataset augmentation is performed by projecting a total of four
quasi-random projection patterns at every depth level, as shown in Figure 4.6.
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Figure 4.6: Illustration of the four quasi-random point patterns used for training the
network. Pattern 2, 3, 4 are one-pixel-shifted versions of pattern 1.

The four projection patterns consist of the actual quasi-random projection pattern, and
three one-pixel-shifted versions (horizontal, vertical, and diagonal) of the actual pattern
which closely resembles the blurriness of the original pattern. There are 3,883 point pat-
terns in the original quasi-random pattern. The three shifted versions of the projection
pattern result in a total of 11,649 images for each depth level. The image dataset is split
into training/validation/testing sets following the 70%/15%/15% ratio respectively. An-
other key difference from the calibration procedure for the parametric method is that the
images of the blurring point pattern are not converted to sample populations. Instead,
images and their corresponding depth values are directly used to train the ConvNet.

Table 4.1: Summary of the network architecture for inferring depth using extracted images
of the blurring projection pattern.

Layer Description Output Tensor Dim.

Input image 30× 30× 1
1 5× 5 conv, 16 filters 26× 26× 16
2 5× 5 conv, 32 filters 22× 22× 32
3 5× 5 conv, 64 filters 18× 18× 64

4-5 Fully-connected 20736× 1

Output depth 1× 1
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4.2.3 Network Architecture

The goal of the ConvNet is to directly learn a deep representation of the projected pattern
as captured by the camera in the absence of any assumptions on the knowledge of the
blurring effect. Given images of the blurry projected pattern, the ConvNet is trained to
map the input images to their associated depth levels. In particular, this network was
trained using Adadelta [66] optimization scheme and the feature kernels are fine-tuned by
backpropagating the gradient through the multiple convolution and pooling layers. The
network architecture was implemented using Keras[10] with Tensorflow backend, and the
experiment was performed on Microsoft Azure virtual machine with 6 virtual CPU, 1
Nvidia Testla P100 GPU and 112 GB of memory. The network architecture is illustrated
in Figure 4.7, with a more detailed layer-by-layer definition in Table 4.1.

It is worthwhile to mention that in an active multispectral quasi-random pattern projec-
tion approach, an ensemble of ConvNets is leveraged, which each network in the ensemble is
responsible for estimating the depth of a projected point at a different spectral wavelength.

Figure 4.7: Illustration of the ConvNet depth inference model. Given extracted images of
the projection pattern as inputs, the network predicts point-wise depth estimation results.
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4.2.4 Discussion

The non-parametric estimation approach using ConvNets mainly addresses the inflexibil-
ity issue of the parametric model, which the depth features are constrained by a weak
assumption on the PSF of the defocus effect. The deep learning approach is particularly
suitable when a lot of training data is available. In summary, there are two advantages of
a non-parametric depth inference model using ConvNets:

1. Flexibility: Since no assumption are imposed about the camera response to the
defocus effect, ConvNets can learn a direct mapping from images to depth values
without any constrains.

2. Performance: Convolutional neural networks are able to generalize for distorted
projection patterns and thus provide more robust depth inference results.
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Chapter 5

Experimental Results

In this chapter, three different sets of experiments are performed to assess the feasibility of
the proposed depth inference framework. The main goal of this current realization of the
proposed technique is to build a compact, inexpensive and portable system to obtain depth
map of the scene. For this purpose, the scene is imaged using a Raspberry Pi camera [41]
(resolution: 2592×1944 ) and the quasi-random pattern is projected using a BENQ MH630
Digital Projector [42] (resolution: 1440× 900).

Figure 5.1: Experimental setup for the proposed depth inference framework. The Rasp-
berry Pi board and the camera module are highlighted in the red box.
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Table 5.1: Configurations of the three sets of experiments.

Exp
Depth Inference Model Projection Pattern Design Evaluation

Circularly-
symmetric

2D Gaussian

Elliptical
2D Gaussian

ConvNet
Monospectral
Quasi-random

Pattern

Multispectral
Quasi-random

Pattern

Complex
Subpattern

Qualitative Quantitative

1 • • • • • •
2 • • • •
3 • • • • •

The three experiments are outlined in Table 5.1 and summarized as follows:

• Experiment I: Quantitative and qualitative evaluations are performed to com-
pare the three computational depth inference models via active monospectral quasi-
random point pattern projection.

• Experiment II: Based on a ConvNet depth inference model, the difference between
depth maps generated via active monospectral and multispectral quasi-random point
pattern projection is compared.

• Experiment III: The performance of a depth inference framework based on an
ensemble of ConvNet via active multispectral quasi-random projection pattern with
complex subpatterns is evaluated.

5.1 Experiment I

In the first experiment, a comprehensive performance assessment of the proposed frame-
work is performed using the three computational depth inference models. The goal of this
experiment is to compare the depth estimation accuracy of the three methods under both
quantitative and qualitative evaluations. A monospectral quasi-random projection pattern
is used throughout the experiment. The two parametric depth inference models are con-
structed using methods described in Section 4.1, with their feature-to-depth relationships
illustrated in Figure 4.5. For the non-parametric approach, a ConvNet depth inference
model is trained based on the architecture defined in Table 4.1.

5.1.1 Quantitative Evaluation

To quantitatively evaluate the three computational depth inference models, depth recon-
struction is performed on a two-way staircase with 1cm step-size. The predicted sparse
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Figure 5.2: The two-way staircase test scene.

depth values are then compared quantitatively against the ground truth surface using the
root mean square error (RMSE) to assess the fidelity of depth reconstruction results.

The isometric view of the reconstructed staircase is shown in Figure 5.3, along with
the top view of the sparse depth maps. First thing to notice is that the sparse depth
estimation results from the two parametric depth inference models do not tightly follow the
ground truth depth values, whereas results from the ConvNet model exhibit a significant
improvements over the other two methods. Comparing the top view illustrations of the
two parametric approaches, it can be observed that the estimated depth values trace the
ground truth staircase relatively close for the elliptical model, while the results are scattered
loosely around ground truth values for the circularly-symmetric model. This confirms that
depth inference using an elliptical 2D Gaussain blurring model provides greater flexibility
to overcome the skewed geometry of the distorted projected pattern, and the minimum
eigenvalue of the elliptical Gaussian covariance is better suited as a depth feature for the
parametric depth inference model.

The RMSE of the circularly-symmetric 2D Gaussian model, the elliptical 2D Gaussian
model, and the ConvNet model for the two-way staircase are 1.286cm, 0.980cm, and
0.484cm, respectively. The elliptical Gaussian blurring model achieves a significant RMSE
improvement over the traditional circularly-symmetric model, with the ConvNet model
exhibiting significant RMSE improvements over the other two methods. While the ConvNet
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Figure 5.3: Sparse depth estimation results of the two-way staircase test scene using the
three proposed computational depth inference models
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model achieves the highest RMSE in this set of experiments, it is important to note that
the primary reason why it is able to achieve this level of performance is that the ConvNet
depth inference model predicts discrete depth values at an integer-level which are strongly
favored in the two-way staircase test, since the ground truth depth values are also integer-
level discrete values. Nevertheless, ConvNets can automatically learn a non-parametric
model that can generalize the blurring effect of the projected pattern at different depth
levels as captured by camera.

5.1.2 Qualitative Evaluation

As a qualitative evaluation, the proposed depth inference framework is performed on a
LEGO smiley face and reconstructed its 3D depth map using the three computational
inference models. Figure 5.5 illustrates the LEGO smiley face test scene. Unlikely the
quantitative evaluation where sparse depth values are directly used to compare against
ground truth values, a triangulation-based linear interpolation is applied on point estima-
tion results to generate the full depth map of the test scene.

Figure 5.4: The smiley LEGO face test scene.

It can be observed that the proposed depth inference framework can also achieve accu-
rate results when imaging complex geometric shapes and objects. The fidelity of the depth
maps are consistent with the results from the previous quantitative evaluation. Compared
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(a) (b) (c)

Figure 5.5: A grayscale representation of the reconstructed depth maps for the LEGO
smiley face using: (a): Circularly-symmetric 2D Gaussian, (b): Elliptical 2D Gaussian and
(c): ConvNet Modelling

to Figure 5.5a, the rectangular shape of the nose, the mouth and the right eye are more
defined in Figure 5.5b. However, the background of the LEGO face are poorly estimated
using both parametric models. In contrast, the depth estimation for the background depth
level is drastically improved in Figure 5.5c. The eyes, nose and the mouse can be easily
distinguished from each other, as well as from the background. Especially, the gap between
the nose and the mouth can be clearly observed in Figure 5.5c.

5.1.3 Discussion

The three computational depth inference models are evaluated using two test scenes to
determine the relative performance of each approach. The tests are run to determine both
the quantitative and qualitative performance of each method.

Throughout the experiment, the test scenes are illuminated using the same monospec-
tral quasi-random point projection pattern to establish a controlled evaluation environment
demonstrate the efficacy of the proposed framework. The qualitative and quantitative re-
sults highlight the strong potential of the proposed computational approach for enabling
active depth inference in a simple, efficient manner. Among the three depth inference mod-
els under evaluation, the non-parametric ConvNet model produces the best depth inference
results.
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5.2 Experiment II

In the second experiment, we investigate the performance of the proposed depth estima-
tion method with two different active pattern projection strategies: monospectral and
multispectral quasi-random point pattern. Three separate ConvNet-driven depth infer-
ence models are trained, where the first two follow a standard network structure trained
using monospectral (red) point pattern and monospectral (blue) point pattern. The third
depth inference models leverages an ensemble of ConvNets for the multispectral (red and
blue) quasi-random point projection pattern. Depth inference is performed on two different
scenes processing different types of structural details: smooth 3D-printed hemisphere and
complex human hand.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 5.6: The test scenes illuminated using the multispectral quasi-random point projec-
tion pattern are illustrated in (a). A grayscale representation of the reconstructed depth
maps generated by a ConvNet inference model using: (b): blue projection points, (c): red
projection point and (d): projection points from both wavelengths

5.2.1 Qualitative Evaluation

It can be observed in the hemisphere reconstruction results that the depth maps produced
using monospectral pattern fail to accurately distinguish measurement data from first two
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depth labels. In contrast, the multispectral approach produces a smoother reconstruction
results around the hemisphere surface, especially at the first two depth levels. The reason
is that by using projection points from two wavelengths, the resulting inference model
takes the average of the estimation values from using the two monospectral patterns, and
ultimately leads in a smoother surface. Similar improvements can be seen in the hand
depth map, where the proposed method produced a significantly improved depth map
with clearer depth discrimination in the gap between middle finger and ring finger. It can
be further observed that in the hand depth map, the five fingers are clearly more visible
in the depth map produced by the multispectral approach.

5.2.2 Discussion

In this experiment, the pattern projection strategies in the proposed depth inference
pipeline is investigated. Using three ConvNet-driven depth inference models, the fidelity
of the reconstructed depth maps of the test scene illuminated using monospectral and
multispectral quasi-random point projection patterns are compared.

The use of multiple wavelengths that can be separated when captured using a con-
ventional RGB camera has the potential to increase the spatial resolution of depth mea-
surements made while retaining the simplicity and low complexity of the approach. The
results demonstrate that by using multispectral quasi-random projection patterns, depth
estimation are significantly enhanced compared to the monospectral projection patterns.

5.3 Experiment III

In the final experiment, we evaluate the performance of a depth inference framework based
on an ensemble of ConvNet via active multispectral quasi-random projection pattern with
complex subpatterns. Unlike the one-pixel point projection pattern from the previous two
experiments, in this experiment, the quasi-random projection patterns consist of numerous
complex subpatterns with unconventional geometries. The aim of this experiment is to
compare the efficacy of the proposed complex subpatterns in active illumination of the test
scene.
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5.3.1 Quantitative Evaluation

Five independent ensembles of the ConvNet depth inference model are trained, and each
ensemble is responsible for a particular subpattern design. It is important to remember
that the captured images of the quasi-random pattern projected at various vertical surfaces
are used to train the ConvNet model. Therefore, the network depth inference accuracy can
be used as a mean of quantitative evaluation. The results of the experiment are shown in
Table 5.2. It includes the mean square error, in cm, of the depth inference results for each
subpattern, and the % of the captured subpatterns that are correctly predicted. Evidently,
the use of subpatterns with complex designs leads to a significant improvement in the
inference model, which can be seen from the increase in the inference accuracy and the
decrease in the mean square error.

Table 5.2: Quantitative results of the ConvNet ensembles for different subpattern designs

Subpattern Inference accuracy (%) MSE (cm)

Point 70.28 0.32
Square 77.19 0.26
Cross 79.80 0.21

Triangle 77.33 0.24
X 76.25 0.26

5.3.2 Qualitative Evaluation

In order to evaluate the performance of depth inference model with different subpatterns, it
is necessary to observe the reconstruction of certain surfaces and analyze from a qualitative
point of view. The difference between depth maps generated using different subpattern
designs is illustrated in Figure 5.7. The test surface is a Styrofoam mannequin head of
dimensions 30 × 15 × 15 cm, placed at a distance about 36 cm to the setup. The depth
inference results are presented as a rendered depth map.

The result from qualitative evaluation is consistent with the findings from the quan-
titative evaluation. It is obvious that subpattern with complex designs enable details of
the mannequin head to be distinguished, while the traditional one-pixel subpattern is only
able to obtain the basic geometry of the mannequin head. It is interesting to note that
the depth reconstruction with square subpattern does not perform as well compare to the
other proposed subpatterns. One possible explanation for this result is that the square
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(a) (b) (c) (d) (e) (f)

Figure 5.7: The Styrofoam mannequin head as captured by camera is shown in (a). A
grayscale representation of the reconstructed depth maps using: (b): original one-pixel
point subpattern, (c): square subpattern, (d): cross subpattern, (e): triangle subpattern
and (f): X subpattern.

subpattern occupies the most number of pixels among the proposed subpatterns, result-
ing in extra brightness when being projected. This greatly increases the chance of having
overlapped burring subpatterns, and can directly lead to erroneous depth inference results
as shown in the black and white spots in the reconstructed depth map.

5.3.3 Discussion

In this experiment, an ensemble of ConvNets is leveraged to automatically extract opti-
mal features in complex subpatterns, leading to improved fidelity of the 3D reconstruction
result than previous implementations with point subpatterns. Results using quasi-random
projection patterns composed of a variety of unconventional subpattern designs on complex
surfaces demonstrate that the use of complex subpatterns in the quasi-random projection
pattern can significantly improve depth reconstruction quality compared to a point pat-
tern.
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Chapter 6

Conclusions

In this thesis, a novel approach for inferring depth measurements via active DfD and
computational modelling has been designed, implemented, and successfully tested. The
proposed depth inference framework involves actively projecting a quasi-random pattern
onto an object and assessing the camera response to the defocused pattern to recover the
depth of the scene.

Traditional active DfD methods have a very complex and costly setup to dynamically
change the camera parameters during the imaging process. This hardware requirement
creates a bottleneck to a self-contained depth inference system with a small form factor.
In this thesis, this issue is addressed by leveraging a depth inference model based on com-
putational modelling methods to characterize the camera defocus effect at different depth
levels. The results demonstrate that the proposed depth inference system can produce
accurate depth reconstruction results with high fidelity and has strong potential as a cost
effective and computationally efficient means of generating 3D depth map.

In Chapter 3, the proposed approach is formulated as an inverse problem, which the
depth estimation is sought from the camera observation of the defocused projection pattern.
Additionally, we discuss the active pattern projection strategy which is an essential part of
the proposed depth inference method. In particular, we explain the rational behind a quasi-
random pattern generation algorithm, a multispectral projection pattern and complex
subpattern designs. In Chapter 4, the proposed computational depth inference models are
properly formulated.

The main contribution of this thesis is to present a novel depth inference framework
that has lower cost and lower hardware complexity than existing state-of-the-art while
maintaining high accuracy. The main findings are summarized as follows:
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1. The approach to use computational modelling methods to approximate the camera
defocus effect when imaging the projected pattern at different depth levels is highly
appealing in suitable scenarios. The proposed technique greatly decreases the com-
plexity of the traditional setup and still produces depth estimation results with high
fidelity.

2. Among the three proposed computational models, the non-parametric ConvNet depth
inference model is able to generalize for distorted projection patterns and thus provide
the most robust depth inference results among the three methods.

3. Coupled with a multispectral quasi-random projection pattern consisting of com-
plex subpatterns, depth estimation using a non-parametric ConvNet depth inference
model provides the best reconstruction results overall.

6.1 Future Work

Despite the strong potential of the proposed depth inference framework, there are still a
number of aspects in which the current method can be improved. Items to consider for
future research are listed below:

1. In the thesis, the projector-camera combination serves well as a proof-of-concept
setup to verify the efficacy of the proposed depth inference system. However, the
current setup is still cumbersome. In particular, the overhead projector is unsuitable
for a portable depth inference system. As such, an alternative pattern projection
method is highly recommended. For example, the quasi-random point pattern can
be generated by using a light source with a point pattern mask, resulting in much
simpler and cheaper hardware configuration.

2. The proposed method is based on an active projection of visible patterns. The
advantage of using visible patterns is that the defocus effect can be observed by
human eyes, which can be efficient in many scenarios. For example, the distortion
of the one-pixel projected pattern can be easily detected when using visible light
patterns. While the main limitation of the visible light arises from the vulnerability
to ambient light conditions and the color of the imaged object. This limitation can
be mitigated by incorporating an infrared projection pattern, which can significantly
increase the robustness of the proposed method in complex real-life environment.
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