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Abstract

Shape memory alloys (SMAs) are materials with extraordinary thermomechanical prop-
erties which have caused numerous engineering advances. NiTi SMAs in particular have
been studied for decades revealing many useful characteristics relative to other SMA
compositions. Their application has correspondingly been widespread, seeing use in the
robotics, automotive, and aerospace industries, among others. Nevertheless, several lim-
itations inherent to SMAs exist which inhibit their applicability, including their inherent
single transformation temperature and their complex hysteretic actuation behaviour.

To overcome the former challenge, one method utilizes high energy laser processing to
perform localized vaporization of nickel and accurately adjust its transformation tempera-
tures. This method can reliably produce NiTi SMAs with multiple monolithic transforma-
tion memories. There have also been attempts to overcome the latter of the aforementioned
challenges by designing systems which model NiTi’s hysteretic behaviour. When applied to
actuators with a single transformation memory, these methods require the use of external
sensors for modeling actuators with varying current and load, driving up the cost, weight,
and complexity of the actuator. Embedding a second transformation memory with differ-
ent phase into NiTi actuators can overcome this issue. By measuring electrical resistance
across the two phases, sufficient information can be extracted for differentiating events
caused by heating from those caused by applied load. The current study examines NiTi
wires with two embedded transformation memories and utilizes recurrent neural networks
for interpreting the sensed data. The knowledge gained through this study was used to
create a recurrent neural network-based model which can accurately estimate the position
and force applied to the NiTi actuator without the use of external sensors.

The first part of the research focused on obtaining a comprehensive thermomechanical
characterization of laser processed and thermomechanically post-processed NiTi wires with
two embedded transformation memories, with one memory exhibiting full SME and the
second partial PE at room temperature. A second objective of this section was to ac-
quire cycling data from the processed wires which would be used for training the artificial
neural networks in the following section of the study. The selected laser processing and
post-processing parameters resulted in a transformation temperature increase of 61.5◦C
and 35.3◦C for Af and Ms, respectively, relative to base metal. Furthermore, the post-
processing was found to successfully restore the majority of the lost mechanical properties,
with the ultimate tensile strength recovered to 84% of its corresponding base metal value.
This research resulted in the fabrication of NiTi wires with two distinct embedded transfor-
mation memories, exhibiting sufficient mechanical and cyclic properties for the next phase
of the research.
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Once an acceptable amount of NiTi actuation cycling data was acquired, the second
part of the research consisted of training multiple recurrent neural network architectures
with varying hyperparameters on the data and selecting the model which achieved the best
performance. The hyperparameter optimization was performed on data with constant
applied load, resulting in a model which successfully estimated the actuator’s position
with 99.2% accuracy. The optimized hyperparameters were then used to create a recurrent
neural network model which was trained to estimate both position and force using the full
acquired data set, capitalizing on the two embedded memories. The model achieved overall
position and force estimation accuracy of 98.5% and 96.0%, respectively, on data used to
train it, and 96.6% and 89.8%, respectively, on data it had never before encountered. The
result of this study was the successful development of an accurate RNN-based position and
force estimation model for NiTi actuators with two embedded phases. Using this model,
a position controller was implemented which resulted in 95.9% position accuracy under
varying applied loads.
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Chapter 1

Introduction

1.1 Background

Shape memory alloys (SMAs) are materials which exhibit fascinating mechanical properties
resulting from reversible lattice structure transformations. These properties, named the
shape memory effect and pseudoelasticity, have been observed and studied as early as
1932 and can be exhibited by alloys with varying compositions. The most widely used
composition is NiTi given its useful characteristics such as superior mechanical properties,
low cost, and safe handleability, as well as up to 10% achievable strain recovery [1, 2]. These
properties, in addition to their high energy density and large actuation stress and strain,
have enabled the widespread applicability of SMAs in the robotics, automotive, aerospace,
and medical fields [3, 4, 5, 6, 7]. However, the complex, stress-dependent behaviour of the
inherent transformation hysteresis present in SMAs limits their use in applications which
require accurate and precise actuation control.

Traditional SMAs contain a single transformation temperature (memory) attributed to
their constant, homogeneous material composition. Embedding multiple transformations
in a monolithic SMA would further broaden its applicability, enabling technologies such
as actuators containing sections with distinct mechanical properties and varying actua-
tion profiles at different temperatures. Past efforts have been taken to induce multiple
transformation temperatures by locally altering SMA properties, resulting in using various
methods such as gradient annealing [8] and laser annealing [9], all of which poorly affect
the mechanical and fatigue properties of SMAs. A promising technology based on localized
composition adjustment using high-powered laser processing has recently been developed
by researchers at the University of Waterloo which yields monolithic NiTi SMAs with
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multiple embedded transformation temperatures and relatively low impact on mechanical
properties [10]. This method has led to novel configurations which have the potential to
greatly improve the controllability of NiTi SMAs without the use of external sensors.

Artificial neural networks are another increasingly popular technology which have found
great success in mathematical modeling and controls applications. Although theorized
as early as 1957 as a computational version of biological neural networks found in the
brain, recent advances in computational power have facilitated the effective use of the
computationally-hungry neural networks [11]. The goal of this work is to create an algo-
rithm for accurately and precisely controlling NiTi SMA wire actuators with two embedded
monolithic transformation temperatures using artificial neural networks. Developing this
fundamental tool will immensely expand the applicability of NiTi SMA wires within actu-
ation applications.

1.2 Objectives

The first goal of this work was to perform an extensive analysis of laser-processed NiTi
SMA wires with two embedded memories, including the effects of processing parameters
on the thermal and mechanical properties of the actuator. Next, the cyclic behaviour of
the processed NiTi actuators was to be fully characterized under varying applied currents
and loads using custom-built tensile testing setups. The final goal was to analyze the cyclic
actuation data acquired from the custom tensile testers and utilize artificial neural networks
to develop an accurate and precise control model for the laser processed NiTi actuators
that successfully models both major and minor hysteresis loops. More specifically, the
following tasks were performed:

1. Mechanical and thermoanalytical characterization of the influence of laser processing
and thermomechanical post-processing operations on NiTi wires.

2. Acquisition and analysis of thermal cycling behaviour of NiTi wire actuator with
two embedded transformation memories, quantifying the effects of varying applied
currents and loads on actuation and transformation behaviour.

3. Development of a neural network-based position and force estimation model for NiTi
actuators using the acquired thermal cycling data.

4. Application of the neural network-based model in a NiTi actuator position controller.
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1.3 Justification

The knowledge, methods, and tools resulting from this work will have a meaningful impact
on the fabrication and implementation of NiTi actuators with multiple embedded memories.
Studying the effects of laser processing will help construct guidelines for the creation of
custom NiTi wires with multiple embedded transformations. Furthermore, exploring the
factors which influence the actuation behaviour of NiTi will lead to a better understanding
of the fundamental mechanisms behind the material. Finally, the developed controls model
will enable the use of laser-processed NiTi actuators within applications requiring high
precision and accuracy. Additionally, the model will be more accurate and adaptable
relative to similar past models. Altogether, the goal of this work is to advance the state of
NiTi actuators toward mass implementation throughout all possible fields.

1.4 Thesis Organization

This thesis is divided into six chapters.

Chapter 1 introduces the work performed in the study while providing the motivation
and justification behind it.

Chapter 2 presents fundamental information about NiTi SMAs, describing their unique
properties and characteristics. The most recent developments in NiTi laser processing are
reviewed. Artificial neural networks are also introduced, including various state-of-the-art
network architectures. The underlying theory behind their application is also discussed.

Chapter 3 outlines the experimental methods and equipment employed in this work.

Chapter 4 discusses the fabrication and characterization of monolithic NiTi wires with
two embedded transformation memories, including results obtained from NiTi laser pro-
cessing, thermomechanical post-processing, training, and cyclic actuation. The results
include differential scanning calorimetry curves for transformation temperature character-
ization, optical microscope images for identification of voids and microstructure features,
and tensile tests for evaluating the mechanical and actuation properties of the wire.

Chapter 5 utilizes the actuation data acquired in Chapter 4 to create a neural network-
based model for position and force estimation of monolithic NiTi wires with two embedded
transformation memories. The application of the best performing model in a position
controller is also discussed.

Finally, Chapter 6 discusses the conclusions reached through this work and provides
recommendations for future study.
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Chapter 2

Literature Review

The unique behaviour exhibited by shape memory alloys (SMAs) can be attributed to
their equally unique properties. This chapter aims to provide the fundamental knowledge
necessary for understanding the functionality of SMAs by examining their microstructure,
phase transformation dynamics, mechanical properties, and processing methods. Several
challenges concerning SMAs relevant to this work are also outlined. In addition, basic
concepts surrounding artificial neural networks are discussed in this chapter in order to
provide insight regarding their use for SMA actuator controls. The following literature
review was invaluable to building the foundation for the research discussed in the remaining
chapters.

2.1 NiTi Shape Memory Alloys

Shape memory alloys are a type of intermetallic compounds which exhibit unique proper-
ties largely attributed to their reversible lattice phase transformation. This diffusionless
temperature-dependent solid-to-solid transformation occurs between two crystal lattice
phases, namely austenite (high temperature cubic phase) and martensite (low temperature
monoclinic phase) [12, 13]. The driving factor behind the phase transformations is the
temperature of the SMA, with each phase occurring within a certain temperature range
in order to minimize the Helmholtz free energy of the system [14]. Phase transformations
occur at specific transformation temperatures which primarily depend on the SMA’s com-
position and thermomechanical processing history. In addition to varying temperature, the
phase transformations can also be induced by applying a load to the SMA which places
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strain on the crystal lattice, causing the martensite phase to be increasingly favourable
[15].

Many different SMA compositions exist, including Cu-Al-Ni, Fe-Mn-Si, Au-Cd, and the
most commonly used NiTi [16]. First discovered in 1962, NiTi was given the commercial
name Nitinol to reflect its location of origin (the Naval Ordinance Laboratory [17]. NiTi
SMAs have a near-equiatomic chemical composition (close to 50 Ni and Ti at.%) at room
temperature, with increasing atomic percentage of either constituent leading to the forma-
tion of non-SMA intermetallic compounds. This effect can be seen in Figure 2.1, which
shows the binary phase diagram for NiTi. The formation of the Ti2Ni phase intermetal-
lic compounds in Ti-rich NiTi is particularly undesirable as it leads to diminished tensile
strength and elongation in NiTi, and as a result the Ti at.% should be kept below the
threshold value for inducing this phase [18, 19]. Compared to other SMA compositions,
NiTi possesses superior mechanical properties, corrosion resistance, biocompatibility, and
higher electrical resistivity, making it a preferable candidate for applications in a variety
of products [1, 20].

2.1.1 Martensitic Phase Transformation

Martensitic phase transformations are a diffusionless process which alters the material’s
phase, resulting in a product phase with identical chemical composition [2, 22]. Marten-
sitic transformations are not exclusive to SMAs, as they also often occur in steel alloys.
However, unlike SMAs, the transformation in steel is not reversible due to large changes
in volume. In order to accommodate such changes in volume, the crystal lattice structure
must accordingly adjust through either slip or twinning (refer to Figure 2.2) [23]. The
first type of self-accommodation is lattice plane slipping, which is an irreversible deforma-
tion generally resulting in broken bonds and rearranged atomic structure. Slipping is able
to accommodate variations in both shape and volume. The martensitic transformation
occurring in steel results in slip deformation, making the process irreversible.

The second self-accommodation process is twinning, which solely accommodates changes
in shape. SMAs experience twinning accommodation during martensitic transformation,
making the transformation a reversible process. Due to twinning during transformation,
SMAs experience a change in shape while maintaining a constant volume. As can be seen
in Figure 2.2, twinning results in mirrored atomic structures with respect to the plane of
deformation. All bonds remain intact during the twinning process, making the process
more energetically favourable than slipping [23]. As a result, twinned lattice structures
can reorient themselves in response to an applied stress, resulting in considerable amounts
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Figure 2.1: Binary phase diagram of NiTi [21].

of strain - this process is called detwinning and is depicted in Figure 2.3 [23]. Further
applying stress after detwinning can result in plastic deformation [24].

As previously mentioned, the SMA phase transformations occur at temperatures char-
acteristic to the individual material. There are four distinct characteristic temperatures,
namely martensite start (Ms), martensite finish (Mf ), austenite start (As), and austenite
finish (Af ) - refer to Figure 2.4. During heating, As and Af represent the temperature
where the martensite-to-austenite transformation begins and ends, respectively. Similarly,
Ms and Mf are the characteristic temperatures during cooling which respecitvely rep-
resent the beginning and ending of the austenite-to-martensite transformation. During
both heating and cooling, the transformation process occurs over a temperature range
which generally spans 5 − 30K [25]. Temperatures within this range represent partial
phase transformations. Another effect visible in Figure 2.4 is that the heating and cooling
transformations do not occur at the same temperatures - Ms usually occurs at a lower tem-
perature than Af . This effect is known as the transformation hysteresis. This temperature

7



Figure 2.2: Illustration of martensitic transformation volume change accommodation by
a) slip and b) twinning.

Figure 2.3: Illustration of shear stress accommodation by detwinning showing a) twinned
(no stress), b) partially detwinned (moderate stress) and c) detwinned (high stress) mi-
crostructure.
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variation between heating and cooling can range between 10-50K and depends on many
factors including chemical composition and thermomechanical processing [25, 17, 26]. Un-
derstanding transformation hysteresis is essential for this work, and so the topic is explored
in detail in Section 2.1.5.

Figure 2.4: Fraction of transformed volume as a function of temperature. Characteristic
transformation temperatures are also shown [25].

The characteristic phase transformation temperatures depend on various factors which
affect the freedom of motion between the crystal lattice structures within the material
[26]. Two common methods for determining the transformation temperatures of SMAs
are differential scanning calorimetry (DSC) and electrical resistance measurement, both
of which are shown in Figure 2.5 [27, 26]. One factor which affects these transformation
temperatures is thermomechanical processing which inhibits twin boundary mobility by
breaking down larger grains, producing a more refined microstructure with an increased
number of twin boundaries [15, 27]. This in turn improves the mechanical properties
of the material, resulting in superior yield strength and fatigue life. Another important
factor is the chemical composition of the SMA. In the case of NiTi, the Ni/Ti ratio has
been shown to have significant impact on its transformation temperature [23, 26]. This
effect is illustrated in Figure 2.6, which shows a significant decrease in Ms transformation
temperature as the Ni at.% increases from 49.7% to 51% [28, 24]. Below Ni 49.7 at.%
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NiTi becomes Ti-rich, resulting in the creation of Ti2Ni intermetallic compounds which
deplete the excess Ti. Unlike Ni3Ti and other Ni-rich intermetallic compounds, Ti2Ni does
not affect the transformation temperature of NiTi. In fact, the introduction of Ti2Ni into
the NiTi microstructure results in a deterioration of mechanical properties such as fatigue
life [18, 19]. Various ways exist for altering the composition of NiTi, including forming of
secondary phases, bulk alloying, and laser processing (discussed in Section 2.1.4).

Figure 2.5: Determination of characteristic transformation temperatures using a) DSC [26]
and b) electrical resistance measurement [27].

Other factors affecting the transformation temperature of SMAs are thermal/mechanical
cycling and applied stress. Thermal cycling leads to the creation of dislocations as a result
of incomplete transformation accommodation [29, 30]. This effect, called transformation
induced plasticity, results in an increased phase transformation driving force, effectively
lowering the transformation temperature. Transformation induced plasticity also leads to
unrecoverable plastic strain and lower actuation strain [31]. Additional effects of thermal
cycling are decreasing actuation strain and permanent (plastic) elongation. Figure 2.7
shows the thermal cycling of a NiTi wire under constant load. The application of stress on
SMAs also influences their transformation temperature - this results in the effect known
as pseudoelasticity which is further discussed in Section 2.1.2.
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Figure 2.6: Effect of NiTi composition on Ms transformation temperature as reported by
a) Duerig et al [23] and b) Tang et al [26].

Figure 2.7: Thermal cycling of NiTi SMA wire with constant applied load of 150 MPa [31].
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2.1.2 Pseudoelasticity

As mentioned in Section 2.1.5, the application of stress on SMAs causes an increase in
their characteristic transformation temperatures. The application of stress adds energy to
the material, effectively lowering the amount of energy needed to achieve the martensite
phase [44]. If sufficient stress is applied, assuming constant temperature, an SMA’s phase
can be fully transformed from austenite to martensite [45]. Removal of the applied stress
causes the transformation temperatures to decrease to their original values, causing the
material to return to the austenite phase and effectively reverting the transformation. Two
criteria must be met for stress-induced martensite to occur, the first being application of
sufficient stress. The second criterion is that the SMA must be in the austenite phase
at the temperature of interest, meaning the testing temperature T must fall within the
Af < T < Md temperature range for the specific SMA. Md represents the temperature
above which stress-induced martensite is no longer observed and is known as the intersec-
tion of critical stresses between slip and martensitic transformation [46, 47]. If T < Af ,
the SMA phase will not be fully austenite and so only the austenite portion will experience
the stress-induced martensite transformation. On the other hand, if T > Md, because
the critical stress exceeds stresses which would cause plastic deformation in austenite, the
SMA will behave like a regular material exhibiting plastic deformation [48].

The typical stress-strain curve of a pseudoelastic NiTi material is illustrated in Fig-
ure 2.8. Pseudoelastic (PE) NiTi behaves very differently compared to conventional elastic
materials as a result of stress-induced martensite. Firstly, due to the hysteretic nature of
NiTi, two stress-strain curves are necessary in order to fully characterize its tensile prop-
erties: a loading curve (application of stress) and an unloading curve (removal of stress).
The loading curve occurs at a higher stress than the unloading curve, as shown in Fig-
ure 2.8. The relatively flat region in both the loading and unloading stress-strain curves
around 2 − 4% strain corresponds to the stress-induced phase transformation. During
loading, stress-induced martensite occurs at a sufficiently high applied stress - the stresses
at which the stress-induced martensite transformation begins and ends are σMs and σMf ,
respectively. Similarly, during stress unloading, the reverse transformation occurs from
martensite to austenite at the characteristic stresses σAs and σAf for the start and finish
of the transformation, respectively. For a specific NiTi composition, these values are easily
obtained from the material’s stress-strain curve as shown in Figure 2.8.

Pseudoelasticity is a very useful property in practice, as it results in a high-strain region
while maintaining a relatively constant stress. Compared to conventional elastic materials,
applying a stress equal to or greater than σMf to NiTi results in significantly greater strain
due to the austenite-to-martensite transformation. NiTi can reach maximum PE strain of
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Figure 2.8: Typical pseudoelastic stress-strain curve of NiTi depicting the location of
critical stresses for inducing martensite. The loading curve is labeled as A→ B → C → D,
whereas the unloading curve is labeled as D → E → F → A [31].

13% before inducing plastic deformation [49].

2.1.3 Shape Memory Effect

While in the austenite phase, NiTi SMAs experience pseudoelasticity with sufficient ap-
plied force - this effect is not observed for martensitic NiTi. The equivalent effect for NiTi
in the martensite phase results in the shape memory effect (SME) [16]. Applying sufficient
stress to twinned martensitic NiTi causes detwinning to occur, leading to a stress plateau
exhibiting large amounts of strain at relatively constant stress. However, unlike pseudoe-
lasticity, unloading the stress does not cause the material to return to its original shape.
Instead, the martensite lattice remains detwinned upon unloading, resulting in a signifi-
cant amount of unrecovered strain. This effect is shown in Figure 2.9, which compares the
stress-strain curves of PE and SME NiTi [50]. Once the detwinned NiTi is heated past Af ,
transformation to the austenite phase causes the material to return to its original length,
effectively recovering the detwinning strain. The cycle of loading, straining, unloading,
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and finally heating to induce and recover large amounts of strain in NiTi is known as the
shape memory effect.

Figure 2.9: Illustration of NiTi stress-strain curves exhibiting a) plastic deformation
(T > Md), b) shape memory effect (T < Mf ), and c) pseudoelasticity (Af < T < Md)
[50].

2.1.4 Multiple Embedded Memory NiTi

Traditional NiTi SMAs are composed of a constant Ni/Ti ratio within the monolithic
material, resulting in a single set of characteristic transformation temperatures. In order
to further advance the functional properties of NiTi, efforts have been made to create
a monolithic material with multiple sets of transformation temperatures resulting from
multiple chemical compositions at different locations in the material. Methods used to
achieve this feat include joining of multiple alloys [51, 52, 53], powder metallurgy [54,
55], laser annealing [9], and gradient annealing [8], among others. Despite the list of
possible methods for achieving this feat being extensive, each of these methods faces unique
challenges which limits their ability to effectively produce monolithic multiple memory
NiTi. Although effective for simple geometries with similar compositions, joining alloys
has proven to be difficult for complex shapes and differing compositions, leading to the
creation of undesirable intermetallic compounds. The heat treatment methods come with
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their own set of drawbacks, including poor controllability of resulting properties and large
time requirements.

A novel, recently-developed technique is able to embed multiple transformation temper-
atures in monolithic NiTi SMAs through localized composition changes induced by laser
beam processing [10, 56]. This method is made possible by the dissimilar vapour pressures
of Ni and Ti as shown in Figure 2.10. It can be seen that the vapour pressure of Ni is
significantly larger than that of Ti, especially in the temperature range of 1700 − 2500K
where Ti does not experience noticeable vaporization. Due to these characteristics, the
localized laser processing of near-equiatomic NiTi yields a greater vaporization flux of Ni
than that of Ti, resulting in controlled removal of Ni from the local alloy composition
through vaporization. As discussed in Section 2.1.1, the phase transformation tempera-
tures of NiTi closely follow the ratio of Ni to Ti within the material composition. As a
result, this method can locally vaporize Ni in order to change the Ni/Ti ratio, effectively
adjusting the transformation temperatures of the NiTi SMA [57, 58].

Figure 2.10: Vapour pressures of Nickel and Titanium from equiatomic NiTi [10].

According to Figure 2.6, reducing the Ni content yields increased transformation tem-
peratures until 49.7at.% Ni is reached. Below 49.7at.%, the material becomes Ti-rich and
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does not experience further rise in transformation temperatures through changes in compo-
sition. The Ti-saturation therefore acts as an upper limit for transformation temperatures
achievable through this method. This upper limit was experimentally found to be 340K
for the particular tested NiTi composition [10].

The degree of Ni vaporization can be controlled by adjusting various laser parameters,
including the number of pulses per location and pulse duration. Increasing both the num-
ber and duration of pulses has been shown to increase the NiTi transformation temperature
[10]. Figure 2.12 a) illustrates the effect of number of pulses on the transformation temper-
ature. As the number of pulses increases, the second transformation peak in the differential
scanning calorimetry curves becomes more intense and its peak shifts toward higher tem-
peratures, whereas the base metal peak appears to shrink while remaining at the same
temperature. The effect of pulse duration on transformation is shown in Figure 2.12 b),
and it can be seen that increased duration also results in an increased processed NiTi peak
intensity. Additionally, it was found that shorter pulse duration results in larger transfor-
mation temperature compared to longer duration due to vaporization flux decreasing with
pulse duration [59]. Using this technology, monolithic NiTi SMAs which contain multiple
transformation memories have been successfully produced [57, 60, 61, 62, 63]. The proof
of concept for the technology is shown in Figure 2.11, which shows two separate memories
achieved at different applied temperatures.

Figure 2.11: Proof of concept showing a) schematic illustration and b) actual images of
two transformation temperatures (T1, T2 where T2 > T1) embedded into a monolithic NiTi
wire heated to two different temperatures (T1 > T > T2 and T > T2) [10].
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Figure 2.12: Effect of a) number (0.6 kW peak power with 30 ms pulse duration) and b)
length (single pulse) of laser processing pulses on the DSC curves of NiTi [10].
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2.1.5 Transformation Hysteresis

The existence of the transformation hysteresis curves in the temperature-related actuation
behaviour of SMAs introduces a significant level of complexity for the creation of accurate
and precise control models. During phase transformations, the crystal lattice moves in order
to accommodate changes in the SMA’s shape. The motion of the austenite-martensite and
martensite-martensite phase interfaces results in frictional effects which are the main cause
of transformation hysteresis [17]. In addition, since the distribution of defects in the lattice
affects the transformation hysteresis, the cyclic loading history experienced by an SMA also
influences its hysteretic behaviour.

Stress applied to the SMA also significantly alters its transformation characteristics as
shown in Figure 2.13, where the four lines corresponding to As, Af , Ms, and Mf show
how NiTi’s transformation temperatures change with varying applied loads [32, 33]. All
four characteristic temperatures exhibit an increase in transformation temperature with
increased applied load. The application of load to SMAs also introduces further complexity
in the hysteretic behaviour of SMAs. From Figure 2.13 it can be seen that the slopes of
As and Af lines are larger than those of Ms and Mf , meaning that applied stress causes
a larger increase in the austenite-to-martensite cooling transformation temperatures than
their heating counterparts. As a result, the hysteresis curve shrinks with respect to tem-
perature as stress increases. This effect occurs up to a certain limit (in terms of both stress
and temperature), after which permanent deformation occurs [34]. As SMA actuators will
likely experience varying stresses within their applications, this stress-dependent hysteretic
behaviour acts as a major hurdle for the creation of accurate SMA control models.

Despite the aforementioned challenges, many attempts have been made to create a
control system for SMAs which accurately takes into account their hysteretic behaviour. Bo
and Lagoudas proposed a thermomechanical model based on the Preisach hysteresis model
which resulted in good estimation of minor SMA hysteresis loops [35]. Madill and Wang
expand on the traditional proportional-integral-derivative (PID) controller by including
the theoretical stability of SMAs, resulting in the ability to model minor hysteresis loops
[36]. Numerous attempts have been made to create a neural network-based model with
varying architectures including feed-forward neural network [37], nonlinear autoregressive
model with exogeneous inputs (NARX) recurrent neural network [38], hysteresis functional
link artificial neural network (HFLANN) [39], and more [40, 41, 42, 43]. Although many of
these neural network-based control models succeeded in achieving accurate SMA control
with various applied loads, they were performed on traditional NiTi with a single embedded
memory therefore limiting the amount of information that can be obtained without the
use of secondary sensors.
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Figure 2.13: The effect of applied stress on the characteristic transformation temperatures
of NiTi [33].

A recently developed model performs position estimation of NiTi actuators with two
distinct monolithic phases (martensite and austenite) by measuring the electrical resis-
tance across each phase [100]. Position estimation of the actuator was performed using a
mathematical model based on the unique thermomechanical properties of each wire sec-
tion. Despite reportedly achieving accurate sensor-less position estimation, several key
disadvantages were identified which limit the model’s applicability. Firstly, no physical
model is able to perfectly capture reality, resulting in estimation errors. In the case of this
model, significant deviations from reality were observed at the end of the heating cycle,
which would significantly lower the model’s accuracy. Furthermore, the model greatly re-
lies on the material properties of the actuator, as it assumes that the two embedded phases
perfectly exhibit PE and SME behaviour. Any deviations from ideal properties will cause
more inaccuracies in the model. Due to this, the model is restricted to modeling pure PE
and SME NiTi actuators. Differences in material composition would also cause the model
to break down, as different hysteretic behaviour would be exhibited by the actuator. In
order to be used universally for SMA actuators, unique models would have to be developed
for each individual actuator material. The control method developed through this research
addresses all of these drawbacks, improving the applicability of SMA actuators.
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2.1.6 Post-Processing

In order to successfully vaporize Ni, laser processing must locally increase the temperature
of the processed region to upwards of 1700◦C (see Figure 2.10). This rapid heating and
subsequent cooling of the metal leads to the creation of coarse grains across the heat-
affected zone in addition to solidification fronts, both of which allow cracks to propagate
more easily. Another effect caused by laser processing is the creation of intermetallic
phases throughout the wire due to the localized increase in temperature required for nickel
vaporization [18, 10]. Both of these effects are detrimental to the mechanical properties of
the wire. In order to recover the properties of base NiTi, sufficient thermomechanical post-
processing treatment was performed on the wire to prevent the generation and propagation
of cracks [64].

Wire Drawing

Stock NiTi wires are not commercially available in any desired diameter, and so wire
drawing can be performed to obtain wires with diameters specific for their corresponding
applications [65]. The typical wire drawing process is depicted in Figure 2.14, where a wire
(in this case of circular cross-section) passes through a die with a decreasing diameter.
This process consequently reduces the wire’s cross-sectional area and increases its length
through conservation of volume. Another side effect of wire drawing is the breaking down
of the metal’s crystal lattice into very fine structures and eliminating large grains and
solidification fronts created by the laser processing. This effect results in the loss of NiTi’s
unique lattice-dependent properties such as pseudoelasticity and shape memory effect [66,
67].

As the wire passes through the die, it experiences three types of stress: uniform work
(WU), redundant work (WR), and frictional work (Wfriction). The useful work necessary for
achieving wire elongation and diameter reduction is WU , whereas WR and Wfriction result
from the material flow change through the die and the friction between the wire and die
surface, respectively. Both WR and Wfriction are detrimental to the wire drawing process
and impose an upper limit of 30 − 35% on the achievable area reduction with a single
pass. The total stress experienced by the wire (D) is the sum of WU , WR and Wfriction

as shown in Equation 2.1 [68, 65]. High drawing stresses can fracture the wire during
area reduction, and so appropriate precautions must be taken to prevent this including
lubrication, intermediate thermal annealing, and limiting area reduction.

D = WU +WR +Wfriction (2.1)
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Figure 2.14: Illustration of wire passing through a wire drawing die [68].

Heat Treatment

As mentioned in Section 2.1.6, wire drawing breaks down the crystal lattice of the NiTi
wire into a very fine microstructure, effectively eliminating the shape memory effect and
pseudoelasticity. In order to recover NiTi’s characteristic properties, heat treatment must
be performed immediately after wire drawing. Heat treatment causes the material’s grain
structure to grow and form large crystal lattice capable of exhibiting macroscopic amounts
of strain upon phase transformations. Other benefits of heat treatment after cold working
are resistance to crack evolution and propagation and strengthening through formation
of Ni-rich precipitates [69]. Heat treatment temperatures of 350 − 475◦C have found to
result in maximized formation of Ni-rich precipitates through optimization of diffusion and
nucleation processes [70].

2.2 Artificial Neural Networks

The human brain is made up of billions of neurons connected together in a complex net-
work resulting in functionality beyond our full understanding [71]. Neurons are cells which
transmit and receive electrical impulse signals to and from neighbouring neurons. The
structure of a neuron is shown in Figure 2.15. As shown in the illustration, each neuron
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contains multiple branches called axons which further branch out many times into den-
drites. The connections of neurons terminate at synapses, which are nodes where neurons
connect to other neurons. As each neuron has many connections to neighbouring neurons
(ranging from tens to several thousand synapses), the various inputs are merged into a
single input detected by the neuron. In order for a signal to be produced within the axon
of a neuron, the combined signals from each dendrite must surpass a certain threshold
value. If an electrical pulse is received by the neuron, its output depends non-linearly on
this combined input. The synaptic connections between neurons can vary in strength and
can be chemically adjusted by the brain through exposure to appropriate stimuli, and this
process occurring at a large scale is thought to result in learning.

Figure 2.15: Structure of a biological neuron found in the brain [71].

Artificial neural networks (ANNs) are designed to mimic many of the aforementioned
characteristics found in biological neural networks [72, 73]. Similarly to the brain, ANNs
are made up of networks of many individual processing units (artificial neurons) linked with
varying connection strengths. The processing unit which represents an artificial neuron in
ANNs is shown in Figure 2.16 [74]. Each artificial neuron (also known as perceptron) can
accept multiple numerical inputs which are summed together and passed into the neuron,
analogous to their cell counterparts. If this summed input is significant relative to a certain
threshold, a nonlinear activation function is applied to the input summation in order to
transform the sum and generate the neuron’s output value.

As is the case with synapses in biological neurons, the connection strength between
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Figure 2.16: Structure of an artificial neuron found in artificial neural networks [74].

neighbouring artificial neurons can vary. ANNs emulate the variable synapse connections
by assigning a weight to each artificial neural connection and multiplying each input passed
to the neuron through the input’s corresponding connection weight [74, 71]. The weight
values fall in the range of [0, 1], where a weight of 0 is effectively equal to no connection
existing between the two adjacent neurons whereas a weight of 1 transmits the entire
input value to the neuron. Once the input values are summed, a non-linear function
(called the activation function) is applied to the sum in order to generate the input [74].
Figure 2.17 shows various activation functions commonly used in ANNs, with the most
common functions being sigmoid and rectified linear unit (ReLU) [75]. In order for an
output to be generated by the neuron, the input sum must produce a value after application
of the activation function. For example, the sum of inputs must be greater than zero when
using the ReLU activation function, otherwise no output will be generated by the neuron.
This information transfer process through each neuron is mathematically represented by
Equation 2.2 for k inputs, where x1,n, x2,n, ..., xk,n are the inputs received by the neuron,
w1,n, w2,n, ..., wk,n are the weights of each connection to adjacent neurons, yn is the output,
and fn() is the activation function.

yn = fn(w1,nx1,n + w2,nx2,n + ...+ wk,nxk,n) (2.2)
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Figure 2.17: Various activation functions commonly used in neural networks [75].

Although neurons do not appear impressive when examined in isolation, their capability
vastly increases when a larger number are used to create an interconnected network [71, 74].
These networks of neurons are known as neural networks (or NNs) and consist of layers of
neurons as shown in Figure 2.18. Neurons in each layer are only connected to neurons in
adjacent layers, with varying degrees of connectivity depending on the network architecture.
One such network configuration is the fully connected NN, where each neuron is connected
to all neurons in the adjacent layers as shown in Figure 2.18.

Figure 2.18: Image depicting a fully connected neural network with one hidden layer where
x1, x2, x3, x4 are the inputs and y1, y2 are the outputs [76].

The first layer in a NN is known as the input layer, which is where the input data enters

24



the network. Similarly, the final layer yields the outputs calculated by the network and is
known as the output layer. All other layers found between the input and output are known
as hidden layers. Any NN which contains more than one hidden layer is known as a deep
neural network (DNN) [71]. In traditional feed-forward NNs, the data propagates forward
through the network until the output layer is reached. During the forward propagation,
each neuron in the current layer sums its weighted inputs and applies its activation function,
passing on the value to all neurons in the following layer to which a connection exists. This
process continues until the final layer is reached, where each output neuron produces an
output for the network.

It is important to recall that each propagation through a node results in the mul-
tiplication of data with the corresponding node’s weight. In fact, NNs are trained to
produce specific outputs from selected input data by appropriately adjusting the weights
of all connections between the neurons. One fundamental method for weight adjustment
is backpropagation using gradient descent, where the difference between the expected and
calculated value is obtained and propagated backward through the network in the direc-
tion of the maximum cost gradient with respect to any weight [77, 78]. Recently, gradient
descent has been replaced by faster, more efficient methods such as Adam and AdaGrad
[79]. Using backpropagation (or other similar algorithms), the NN weights are adjusted in
order to minimize the difference between the predicted and actual outputs. This process
is called training and continues until the NN’s calculated output is within a desired error
margin compared to the expected output.

2.2.1 Recurrent Neural Networks

It is well-known that a multilayer NN can model any multiple input nonlinear function
with arbitrary precision [73]. This property makes NNs a prime candidate for modeling
the hysteresis behaviour of SMAs. However, feed-forward NNs are structured for function
approximation and therefore poorly model dynamic and temporal-based systems [80]. It
is important in real-time controls for the NN to be able to predict sequences of future
output values based on inputs and previous outputs. A special class of NNs called re-
current neural networks (RNNs) take into account the state from previous outputs and
effectively incorporate a temporal aspect to traditional feed-forward NNs [81]. As a result,
RNNs are ideal for modeling time series and forecasting future function behaviour based
on historical data. These properties make RNNs ideal for modeling and predicting SMA
behaviour. Figure 2.19 depicts how RNNs function over time, with xt representing the
input, A representing the RNN state, and ht representing the output, all occurring at time
t.
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Figure 2.19: Illustration showing a single looping (left) and unrolled (right) recurrent neural
network cell [82].

Conventional RNNs use feedback connections to effectively remember recent inputs by
storing their representations in the form of activation functions. However, this gradient-
based backpropagation through time tends to yield either vanishing or exploding gradients.
This behaviour makes it difficult for RNNs to backpropagate through longer periods of time,
limiting the networks’ modeling capabilities to 5-10 time steps [83].

One method for overcoming this backpropagation limit is the use of an RNN archi-
tecture called long short-term memory (LSTM) [80]. The LSTM architecture consists of
memory blocks, which are units found in the recurrent hidden layer. In order to recall
previous network states, the memory blocks contain self-connected memory cells. The flow
of information into and out of the LSTM memory blocks is controlled by three types of
gates, namely the input, output, and forget gates. The input gate handles activation in-
formation being input into the memory block, and similarly, the output gate handles the
activation information flowing out of the memory block and into the rest of the network.
Early LSTM architectures did not include the forget gate and suffered from the inability
to process continuous inputs which were not split into subsequences. The forget gate was
added to address this issue, allowing the memory block to reset its state at the beginning
of subsequences [83]. In addition to these, peephole connections were added in order to
learn precise output timings. The standard LSTM cell is shown in Figure 2.20.

Another recently proposed architecture for RNNs is the gated recurrent unit (GRU),
which is a simplified variation of the LSTM architecture [84]. The GRU only contains one
reset and one update gate, compared to the more complex LSTM cell which contains three
gates - see Figure 2.21 [85]. Furthermore, the GRU does not incorporate the LSTM memory
cell. Even with these simplifications, it has been found that GRUs exhibit comparable
performance to LSTM units for polyphonic music modeling and speech signal modeling
[84]. In addition, both LSTM and GRU were found to outperform traditional tanh cell
RNNs in the aforementioned modeling tasks.
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Figure 2.20: Standard LSTM memory cell containing input, forget, and output gates [81]

Figure 2.21: Standard GRU cell containing reset gate r and update gate z [84]

By applying the LSTM or GRU architectures, the RNN can be trained on many input
sequences in order to learn the function shape and can predict future outputs based on
historic output sequences. Using this trained network, the actuation behaviour of SMA
wires can be estimated in the present and predicted several time steps into the future
according to previous inputs and outputs which are stored in the RNN’s internal memory
states. In practical terms, for example, the model can estimate the current position of the
NiTi actuator given past current and electrical resistance values. Furthermore, the model
can also predict future position values based on its historic position profile. RNN-based
controls methods have the potential to enable accurate control of SMA actuators, greatly
increasing their versatility and applicability.
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Chapter 3

Experimental Methods and
Conditions

3.1 Materials

The material examined in this study was commercially available (item WSE001550000SG)
pseudoelastic 0.0155” (0.394 mm) dia. mechanically polished Nitinol wire obtained from
Confluent Medical Technologies in a straight, mechanically polished condition. The com-
position of the wire was 50.6 − 51wt.% Ni. The as-received base metal wire was cleaned
from impurities using ethanol in order to minimize their incorporation during laser pro-
cessing. The DSC curves of the base metal wire are shown in Figure 3.1. From the results,
it can be seen that the Ms and Af transformation temperatures are 17.4◦C and 21.1◦C,
respectively, meaning that the wire exhibits pseudoelastic properties at room temperature.

Cross-sectional images of the wire were obtained as per the procedure discussed in
Section 3.2. The base metal NiTi wire lengthwise cross-section is shown in Figure 3.2.
It can be seen that the base metal wires consist of a homogeneous microstructure which
appears to lack voids or other imperfections. This image is assumed to be representative
of the entire wire length, as no imperfections were observed in any base metal cross-section
sample.

Tensile testing was also performed on the base metal NiTi to characterize its stress-
strain properties prior to laser processing. As the base metal wire is austenite at room
temperature, the stress plateau observed in the stress-strain curve corresponds to the
induction of stress-induced martensite. It can be seen in Figure 3.3 that the stress plateau
of the as-received base metal wire occurs at 537MPa.
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Figure 3.1: DSC plot of base metal NiTi wire used in this study.

100 m

Figure 3.2: Optical microscope image of the base NiTi wire lengthwise cross-section.

3.2 Characterization

As mentioned in Section 2.1.1, DSC was used for thermal characterization of the NiTi
wires. A TA Instruments Discovery series DSC was used in this study to determine the
transformation temperatures of base, processed, and post-processed NiTi wires by cycling
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Figure 3.3: Stress-strain curve of base NiTi wire to 8% strain. Stress-induced martensite
is observed at stress of 537MPa.

between −50◦C and 120◦C at a rate of 5◦C/min. The DSC was equipped with a TA In-
struments Refrigerated Cooling System capable of reaching temperatures as low as −75◦C.
Ultra high purity (grade 5.0) nitrogen gas was connected to the refrigerated cooling system
in order to cool the DSC sample.

Physical characterization of the NiTi wires was performed using an Olympus BX51M
optical microscope with up to 40x magnification capability. The microscope was primarily
used to acquire images of the lengthwise cross-section of the wire in order to spot imper-
fections such as voids. Sample wires were cut to size and fastened using a sample holder,
which was placed in a sample mold filled with a 7 to 1 weight ratio of EpoFix epoxy resin
to hardener (triethylenetetramine). The resin hardened after 24 hours, resulting in a hard,
transparent sample. In order to image the cross-section of the wires, the hardened resin
sample was sanded and polished using 600, 1200 coarse, and 1200 fine grit sandpaper discs
(in that order) on a Struers LaboPol-1 grinding machine until the desired cross-section lo-
cation was reached. Figure 3.4 shows a polished sample prepared for microscopy imaging.

Finally, the stress-strain characteristics of the NiTi wires were evaluated using an In-
stron 5565 Advanced Tensile Tester with a 500N load cell, as the custom-built tensile
testing setups were not able to apply sufficient stress to reach the austenite plateau of the
394µm wires [86]. The wires were loaded until reaching 7 − 8% strain, after which the
stress was removed and the wire elastically recovered part (or all, in the case of PE) of
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Figure 3.4: Optical imaging sample showing five NiTi wires with visible cross-sections
ready for optical imaging after mounting and polishing.

its strain. These tests were performed to compare the shape of the stress-strain curves
and location of the stress plateaus for the base metal and post-processed wires in order to
determine the effect of laser processing on their mechanical properties.

3.3 Laser Processing

The base NiTi wires were processed using an IPG Photonics Ytterbium rack-mount fiber
laser with quasi-continuous 3kW peak power, 400µm fiber diameter, and 1, 070nm wave-
length. The laser was incorporated into a custom system designed for laser processing of
wires (shown in Figure 3.5). The system includes 3-axis (XYZ) laser head control with a
built-in camera for laser head alignment assistance and a live view of the wire processing.
The system is capable of automatic wire feeding, which is useful for processing any desired
lengths of wire in addition to remote process parameter programming and operation. Ar-
gon gas with flow rate of 5L/min was used to shield the NiTi wire with nozzles releasing
gas from the bottom and side simultaneously in order to prevent exposure to air during
processing, minimizing oxidation. A schematic depicting the main functionality of the wire
processing system is shown in Figure 3.6.
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Figure 3.5: System used for producing laser processed NiTi wires.

The final laser parameters used to process the wires were selected on the basis of
achieving full laser depth of penetration in addition to significant nickel vaporization,
leading to drastic changes in the transformation temperatures. Full penetration of the
laser into the wire diameter was required during processing to vaporize nickel from the
entire cross-sectional area of the wire. Achieving partial penetration was undesirable as it
results in a combination of base and processed NiTi properties. Although full penetration
is necessary, it is more difficult to practically achieve compared to partial penetration due
to the momentary wire separation caused by the melting of the full wire cross-section. In

32



order to overcome this issue, springs were used to hold the separated wire pieces in place
(as shown in Figure 3.6), eliminating relative motion between the wire sections during
nickel expulsion and solidification of the processed region. Incorporating this feature into
the laser processing system enabled continuous full penetration processing of NiTi wires.

Figure 3.6: Schematic of the system used for laser processing NiTi wires.

The NiTi wires used in this study contained a processed and non-processed region,
resulting in a monolithic wire sample with two separate phases (martensite and austenite).
Processing part of an austenite wire can locally increase the transformation temperatures
so that the processed part of the wire more favourably adopts the martensite phase. This
results in a NiTi wire which can contain both martensite and austenite phases at a single
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temperature. The goal was to produce monolithic NiTi actuators containing two embedded
memories, with one exhibiting SME and the other PE at room temperature. Each wire
sample was 7cm in length before post-processing, with 5cm processed NiTi (high transfor-
mation temperatures) and 2cm base metal NiTi (low transformation temperatures). This
configuration was selected in order to maximize the amount of strain recovery from the
SME section while ensuring that sufficient PE section length is present for obtaining a
significant drop in electrical resistance.

Due to dissimilar electrical resistivities and transformation properties in the austenite
and martensite phases, having a single wire with both phases proves to be useful for
controls purposes as separate resistance values can be measured across each phase and
used to estimate the stress and position of the NiTi wire. As a result, using electrical
resistance measurements across both phases of the NiTi wire, the PE section of the wire
acted like a built-in force gauge, obviating the need for external position or force sensors.

3.4 Post-Processing

3.4.1 Wire Drawing

Immediately after laser processing the wires were solutionized by applying 5A of current,
after which they were left to cool in an ambient environment. According to the phase di-
agram of Ni and Ti shown in Section 2.1, heating the metal to temperatures above 750◦C
produces an equiatomic NiTi phase. Resistive heating using 5A applied current caused
yellow/red light to be emitted from the wire, corresponding to temperatures exceeding
750◦C, as traditional solutionization was performed at 750◦C in a furnace without observ-
ing any visible light emission. In addition to growing the grains and lowering the wire
drawing forces, solutionization is performed to dissolve intermetallic phases present in the
wire and break them down into the fundamental NiTi phase. Eliminating intermetallic
phases improves the mechanical properties of the wire, allowing it to withstand the large
stresses experienced during wire drawing.

A custom wire drawing setup was built for assisting with the wire drawing process. The
wire drawing setup includes a steel spool attached to a large servo motor for pulling the
wire through the die, a smaller servo motor for reciprocating the die holder along the length
of the spool to wind the wire as it is drawn, and an electric oil dispensing system containing
a pump with adjustable flow rate for constant pumping of lubricant to the wire prior to
passing through the die. Using this setup, wires of arbitrary length can be continuously
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drawn to any desired diameter simply by changing the dies in the die holder. A schematic
of the wire drawing setup is shown in Figure 3.7. The dies used were purchased from
Advanced Wire Die Limited and were fabricated from polycrystalline diamond in order to
minimize die wear and maintain constant wire drawing properties throughout the length
of the study.

Figure 3.7: Schematic showing the wire drawing setup.

Sharpening of the front end of the wire must be performed in order to feed an initial
section through the die and commence drawing. Tip sharpening is traditionally performed
by swaging the tip of the wire, resulting in a reduction in cross-sectional area sufficient for
entering the die [65]. Since no such equipment was available for use, the tip sharpening was
performed by placing the wire in the Instron tensile tester, applying 8A of current through
the clamped section of the wire, and performing a constant extension of 2mm/min. As the
wire is extended, necking begins to occur at some point along the heated section of the wire,
causing a decrease in the cross-sectional area and a direct increase in the local electrical
resistance. The larger resistance results in locally increased Joule heating, dramatically
increasing the ductility of the wire and causing the extension to create a sharp tip upon
breakage. The wire breaking setup is shown in Figure 3.8, with the electrical contacts
fastened to the tensile tester clamps rather than the wire itself in order to avoid passing
current through the wire at a concentrated contact point.
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Figure 3.8: Setup used for breaking the wire, creating a sharp tip that can be fed through
the wire drawing dies. Current is passing through the wire, causing it to glow due to Joule
heating.

After passing the tip of the wire through the die, the initial 4 − 5 inches of wire are
manually pulled through the die using wire drawing tongs. Once a sufficient length of wire
has been pulled through the die, the wire is fed through the oil pump channel and clamped
to the wire drawing spool. The wire drawing servo motor was set to a constant speed of
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2RPM . This process was repeated for each die until the desired final wire diameter was
reached.

The wires were drawn from 394µm to the final diameter of 310µm, resulting in a total
area reduction of 38.1%. Each wire drawing pass was limited to 10−20% area reduction in
order to minimize both the number of passes (time) and the stress experienced by the wire.
Machining lubricant was used to minimize the Wfriction stress component experienced by
the wire in order to prevent breakage [87]. The wire drawing sequence for achieving each
of the three aforementioned diameters is shown in Table 3.1.

Table 3.1: Die diameter sequence used for wire drawing NiTi samples.
Diameter Step Area Reduction (%) Total Area Reduction (%)
394µm / /
370µm 11.8 11.8
340µm 15.6 25.5
310µm 16.9 38.1

3.4.2 Heat Treatment

Numerous studies have been performed to determine heat treatment parameters which re-
sult in optimal mechanical properties after wire drawing [88, 89]. For samples cold worked
by 30% it was found that heat treatment at temperatures in the range of 400 − 450◦C
resulted in the largest ultimate tensile stress and lowest stress plateau compared to tem-
peratures exceeding 450◦C - refer to Figure 3.9 [88, 90]. In addition, heat treatments
performed at larger temperatures were found to result in increased transformation tem-
peratures. Using these values as a guideline, the final wire heat treatment was selected
based on the trade-off between mechanical properties and characteristic transformation
temperatures of the processed, cold-worked wire. The wire was quenched immediately af-
ter heat treatment in order to increase surface hardness and minimize phase transformation
hysteresis by preventing the formation of Ni3Ti [91].

3.5 Mechanical Testing

The Instron tensile tester was used to evaluate the mechanical properties of the base,
processed, and post-processed wires, including stress-strain curves and tensile failure tests
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Figure 3.9: The effect of heat treatment at varying temperatures on the UTS of 30% cold
worked NiTi wires [92]. The dashed line represents the UTS of the cold worked material
prior to heat treatment.

to calculate the ultimate tensile strength (UTS) of the wires. As mentioned previously,
the stress-strain curves provide useful information such as phase information (austenite
vs. martensite) and identifying the stress necessary for reaching the characteristic stress-
strain plateau. Furthermore, the tensile failure tests will gauge the ability of the processed
and post-processed wires to endure applied stress in comparison to the base metal wires,
determining the degree of mechanical property recovery through post-processing.

The variety and quantity of data required for properly training neural networks ex-
ceeds what a traditional tensile tester can acquire within a practical amount of time. In
order to circumvent this obstacle, three custom tensile testing setups based on the design
proposed by Zamani et al. were redesigned and built for the purpose of data acquisition
[100]. Several improvements to the design were made, including incorporation of air bush-
ings to eliminate noise caused by ball bearings, servo motors for programatically applying
variable load, and custom control boards for improved controllability and data acquisition
performance. Each of the three tensile setups were identical and included the features de-
scribed in Table 3.2. In addition to these commercially available features, a custom control
printed circuit board (PCB) was designed and fabricated specifically for the tensile setups,
with the schematic shown in Figure 3.11. The custom PCB enables functionality such as
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controlling output current and voltage, sending outputs to the servo motor, reading data
from the load cell, position encoder, and temperature sensor, and sensing two separate
resistance values. The top wire clamp and load cell were attached to a linear ball bearing
shaft with a threaded knob for vertical adjustability. Altogether, the tensile setup enabled
all required functionality for acquiring the necessary NiTi wire actuation data. The tensile
testers, along with a corresponding schematic depicting their major features, are shown
in Figure 3.10. The wires were fastened to the tensile testers using stainless steel clamps
to which electrical contacts were also connected. Copper crimps with a through hole were
machined and crimped at the PE/SME boundary of the wire to allow for an electrical con-
nection to be made. This electrical contact at the boundary allows for separate resistance
values to be measured for the two distinct memories. Plexiglas tubes were also placed
around the wire samples in order to isolate them from air streams which may affect its
thermal state. Appendix A shows detailed images of various aforementioned tensile tester
characteristics.

Figure 3.10: Schematic (left) and image (right) of the three custom built tensile testers
with samples set up for data acquisition.

The load cell was calibrated using 500 ± 0.3g and 1, 000 ± 0.47g stainless steel test
weights (meeting Class 7 ASTM and ANSI tolerances) by fitting a linear equation relating
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Figure 3.11: Electrical schematic of PCB used in custom tensile testers for actuation and
data acquisition.

the load cell’s voltage output to the measured weight. The current and voltage outputted
by the control board were calibrated through measurement across a 1Ω resistor with 0.1%
tolerance using an Agilent 34401A 61

2
digit multimeter. The actual resistance (including

wires) of the resistor was measured using the four-point resistance measurement technique
in order to maximize measurement accuracy. Since the sensed resistance is calculated
by taking current and voltage measurements, the sensed current and voltage were both
calibrated by measuring the voltage and current across the PCB terminals using the afore-
mentioned DMM and fitting a corresponding linear function relating the measured current
and voltage to the PCB’s sensed current and voltage, respectively. The servo motor was
set to constant torque mode, controlled by the PCB using pulse width modulation (PWM)
with maximum applied load limited to 20N in order to avoid accidental overloading and
possible breaking of the NiTi wire samples. The servo motor was also tuned to account for
any mechanical attachments placed on the shaft in order to ensure correct load application
on the wire.
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Table 3.2: Features included in the custom-built tensile testing setups.

Feature Item # Description

Load Cell LCMFD-500N
±500N range with ±0.15% combined

linearity and hysteresis accuracy

Air Bushing S301301 Eliminate noise caused by ball bearings

Linear Position Encoder EM2-0-2000-N
Achievable 3.175µm resolution using 2000
lines/inch strip and x4 quadrature mode

Temperature Sensor Calibrated to ±0.1◦C

Servo Motor
CPM-MCPV-
2310S-RLN

1.6 N ·m peak torque with 0.375”
shaft diameter. Applies force to wire.

Air Pressure Sensor Ensures air is flowing into bushing.

3.5.1 Training

Each processed NiTi wire was thermally cycled with an applied load to ensure consistent
behaviour during data acquisition. This process is useful for aligning the grains in the
desired direction of actuation, resulting in repeatable actuation behaviour [93, 94]. This
behaviour can be observed in Figure 3.12, which shows 30 cycles of mechanical training
performed on a base metal NiTi wire using the Instron tensile tester. It can be seen that
the stress-induced martensite plateau initially occurs at 560MPa, with the plateau stress
decreasing to a value of 346MPa as the wire is trained further. Another effect resulting
from training is the presence of residual strain (around 1% in Figure 3.12) which cannot
be recovered by the wire’s pseudoelastic properties.

Training was performed on the three custom-built tensile testers using the custom
developed training control program shown in Figure 3.13 [16]. The applied load and current
along with stop conditions are specified in the program, allowing the user to adjust the
training procedure accordingly. The wire training parameters and stop criteria used in this
study are shown in Table 3.3. Wire training was stopped when the wire position threshold
(δpos) between cycles was reached during both heating and cooling for a consecutive number
of cycles.
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Figure 3.12: Mechanical cycling performed on base NiTi wire for 30 cycles.

Figure 3.13: Program used to perform thermal cycling of NiTi wires using the custom-built
tensile setups.
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Table 3.3: Parameters used during wire training.
Parameter Value
Load (N) 20
Current - High (A) 0.8
Current - Low (A) 0.15
Position threshold δpos (mm) 0.1

3.5.2 Data Acquisition

A custom software controller was developed specifically for data acquisition and actuation
of NiTi wires. In order for the neural network controller to learn the hysteretic behaviour of
NiTi wires with varying load and heating (including major and minor hysteresis loops), data
was acquired over a range of applied forces and currents. The data acquisition program
developed for this study accepts a number of inputs including minimum and maximum
current, maximum load (with minimum being zero load), number of applied loads, and
number of applied currents. The parameters used for data acquisition in this study are
shown in Table 3.4.

By specifying the maximum load and number of loads to be tested, the software evenly
interpolates between the minimum and maximum load values in order to generate the ap-
plied loads. However, the same is not true for current - instead, in order to randomize
the testing procedure experienced by each NiTi wire, a mean and standard deviation are
specified for the heating and cooling values. The software then randomly generates the
desired number of data points following a normal distribution based on the corresponding
mean and standard deviation values. To add to the randomization, the order of the in-
terpolated load values is also randomized during data generation. The randomization of
the actuation schedule experienced by each wire is important, as the data will be used to
train neural networks. Training a neural network with data which has inherent patterns
(such as steadily increasing load or predictable applied currents) may result in the neu-
ral network detecting these patterns and treating them as a characteristic of the inherent
data set. This is undesirable, as the neural network is meant to be a universal model
capable of achieving accurate NiTi wire control which follows any desired actuation path.
Randomization greatly helps prevent overfitting and achieve controller universality [95].

The controller was run after data generation, applying the first load to the wire. The
servo is placed in constant torque mode and ensure that the desired force is constantly
applied to the wire. A different list of currents is generated for each load, and the load is
kept constant until the software has applied each of the currents. After each load or current
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change, the software ensures that the wire position reaches steady-state before moving on
to the next current or load. Steady state position is reached by remaining within a defined
position range for a certain number of time steps. In addition, when a new load is applied,
the current is initially set to the minimum value to act as a reference between varying
loads.

The controller takes various input values (such as applied current ranges, loads, etc.)
and displays the generated current and load cycling recipe as shown in Figure 3.14. The
generated currents are graphed in the top plot, with a green bar representing the overall
controller progress. Similarly, the loads are shown in the bottom plot as a bar graph with
a green overlaid bar representing the current applied load.

Figure 3.14: Program used to generate random current and load values for data acquisition
using the custom-built tensile testers.

Table 3.4: Parameters used for data acquisition of NiTi actuation.
Parameter Value
Maximum load (N) 20
Minimum current (A) 0.15
Maximum current (A) 0.8
Mean current - heating (A) 0.6
Standard dev. current - heating (A) 0.15
Mean current - cooling (A) 0.3
Standard dev. current - cooling (A) 0.15
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3.6 Neural Networks

Python 3.5.4 was the language of choice for programming the neural network-based model.
The development of various types of neural networks was simplified through the use of the
Python machine learning library TensorFlow 1.1.0 with graphics processing unit (GPU)
support, which provides native implementations of multiple neural network architectures
including traditional deep neural networks, recurrent neural networks (with regular, LSTM,
and GRU cells), and convolutional neural networks [96]. In order to accelerate the training
of neural networks, an NVIDIA GeForce GTX 1060 GPU was used along with NVIDIA’s
parallel computing platform CUDA 9.0 and the corresponding deep neural network library
cuDNN 7.1. Since the training of neural networks consists of massive numbers of simple
mathematical evaluations (such as addition and multiplication), GPUs have been shown to
increase training speed by an order of 10 compared to performing sequential mathematical
evaluations using the computer’s central processing unit (CPU) [97]. The reason for this
performance discrepancy is that GPUs can contain thousands of cores with small amounts
of processing power sufficient for parallel computation of the simple mathematical expres-
sions present in neural network training. In contrast, CPUs generally contain 4-8 cores,
significantly decreasing the number of operations which can be performed in parallel. The
GeForce GTX GPU contains 1152 CUDA cores compared to the 4 cores or (8 threads)
found in the Intel i7-6700 3.40GHz CPU present in the same computer.

The two RNN architectures tested were LSTM and GRU. Due to the large sequences of
past data required for describing the hysteresis of NiTi, regular RNNs were not examined
as they would likely suffer from vanishing/exploding gradients. The accuracy of the neural
network predictions was evaluated by calculating the mean of the sum of squared errors,
also known as the mean squared error (MSE). The sum of squared errors calculation is
shown in Equation 3.1, where R(θ) represents the measure of fit for the weights, K is the
number of output neurons, M is the number of vectors of unknown parameters (weights),
fk(xi) is the output predicted by output neuron k, and yik is the desired output value [98].
The Adam optimizer was used for stochastic optimization of the neural network weights and
biases, as this method has been found to be more effective than other popular techniques
such as stochastic gradient descent and AdaGrad [79]. A constant learning rate of 0.01
was used for all neural network training. The data set used for training was normalized
to the range [0, 1] in order to improve the neural network performance [99]. In addition,
the data point batches (chunks of past values) were fed into the neural network in random
order during training in order to prevent the neural networks from learning any patterns
originating from the data acquisition process which may not be present during actuation.
The training process was repeated for a predetermined number of training epoch, with
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each epoch representing a full training cycle using the entire training data subset.

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))
2 (3.1)

The acquired data was split into training (70%), validation (10%), and testing (20%)
subsets for the purpose of evaluating the models’ performance on data it has previously
not encountered. The model is expected to perform well on data it has previously seen,
but how well it generalized to data never before encountered was evaluated using the
validation and testing data subsets. The performance of the model on the validation data
set is evaluated at the end of each training epoch, and on the testing data set after training
has fully concluded. The data splitting was performed individually for each applied load
to ensure that a sufficient number of data points were used for training at each load. The
data sets were split randomly, and each resulting subset was randomized so that training
is performed in random order. Each position and force data point fed into the RNN was
accompanied by a number of past measured current and resistance values equal to the look
back length of the current experiment.

Due to the sheer amount of data used in the study (over 1 million data points for
each measured parameter), training the neural networks required a significant amount of
time. As a result, the neural network optimization described in Section 5.1 was performed
under constant load of 10N , which significantly speeds up the training time by using less
data. All parameter variations performed during optimization are summarized in Table 3.5
along with the base parameters kept constant across all tests. Section 5.1.7 describes
position estimation performed using constant load, evaluating the best performing models
from the hyperparameter optimization on the entire data set. Finally, position and load
estimation was carried out under varying load using the best performing RNN, with the
results detailed in Section 5.2. As the resistances across both actuator phases were used as
inputs in the variable load model evaluation, the RNN architecture was adjusted to have
3 inputs (measured RSME, RPE, and current) as well as two outputs (predicted position
and load).

The activation function and number of hidden units are parameters which directly
affect the structure of the RNN. Details regarding the activation functions used can be
found in the TensorFlow library documentation [96]. The number of epochs represents the
number of times the network is trained on the entire training data set. Look back length
refers to the number of past time steps fed into the RNN when the force and position at
the current time step - the larger the number, the more resource-intensive the position
estimation. Training is performed in batches with multiple data points fed at the same
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Table 3.5: Parameters used for optimization of the position estimation RNN.
Parameter Base Variations
Activation Function ReLU tanh sigmoid softplus ReLU6 elu
Batch Size 256 128 512
# Hidden RNN States 100 50 125
# Epochs 20 1 5 10 30
Look back length 1500 500 2000
Sparsity 3 5 10

time, and so the batch size explores the effect of different batch sizes on the RNN training
performance. Finally, the sparsity represents skipping data points - a sparsity of 2 leads
to the use of one in every two points, effectively reducing the number of past data points
used for estimation in half. Because data acquisition was performed at 50 data points per
second, the acquisition speed may be too high relative to the speed of the actuator, and
therefore skipping points may result in comparable training performance while immensely
increasing training speed. The RNN with optimized parameters was then used in Section
5.2 to perform position and force estimation using two measured resistances.
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Chapter 4

Thermomechanical Properties of
Laser-Processed NiTi

Before performing data acquisition and developing control algorithms, a thorough investi-
gation of the thermal and mechanical properties of laser processed NiTi with two embedded
memories was performed. This chapter explores the effects of varying laser processing and
thermomechanical post-processing parameters on the final NiTi wire characteristics. The
choice of laser processing parameters had a significant effect on both the characteristic
transformation properties and the surface morphology of the processed wires. Optimiza-
tion of laser processing parameters led to increased transformation temperatures without
the creation of Ti-rich intermetallics as well as a smooth morphology, both of which are
important for successful wire drawing of the processed wire. Tuning the thermomechanical
post-processing treatment also proved to be key for recovering mechanical performance lost
during laser processing.

4.1 Metallurgical Properties

Compared to the smooth base metal morphology, NiTi laser processing produces a rough
surface morphology such as the one shown in Figure 4.1. The rough surface morphology of
the laser processed wire stems from the turbulent nature of the Ni vaporization expulsion.
The surface roughness was found to be controllable through laser processing parameters to
an extent, with an increase in parameters such as laser power and pulse frequency resulting
in significantly more textured morphology. As a result, the laser properties were selected
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with the goal of minimizing the surface roughness present at the laser processed region in
order to reduce the stress experienced by the wire during wire drawing.

100 m

Figure 4.1: Boundary of base metal and processed NiTi wire showing difference in surface
morphology.

The optical images of the lengthwise cross-section of the as-processed and wire drawn
wires are shown in Figure 4.2. The as-processed wire was observed to have various visible
defects throughout its cross-section, including what appear to be voids. In contrast, the
microstructure of the post-processed wire appears to be significantly more homogeneous,
with slight imperfections still present sparsely throughout the wire. Nevertheless, there is a
discernible difference between the as-processed and post-processed wires likely due to wire
drawing breaking down the microstructure and filling in most voids or other imperfections
resulting from laser processing. The microstructural defects translate into poor mechanical
properties for the as-processed wire as discussed in Section 4.3, with post-processing leading
to considerable recovery of mechanical properties through elimination of such defects.

4.2 Thermal Properties

A comprehensive DSC study was performed to determine and confirm the effects of various
laser processing parameters on the transformation characteristics of the laser processed
NiTi wires. For reference, the transformation temperatures for each of the DSC studies
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100 μm 

Figure 4.2: Cross-sectional images of a) as-processed and b) wire drawn wires.

performed in this section are listed in Table 4.2. Figure 4.3 shows the effect of laser power on
the transformation properties, and a clear rise in transformation temperatures is observed
as laser power is increased from 370W to 410W with other parameters held constant.
These results are in accordance with those reported by Zamani et al [100]. Furthermore,
the high temperature section of the heating curve appears somewhat sharper for the wire
processed with 410W , hinting that the transformation temperature increase caused by Ni
vaporization may be beginning to reach saturation. Further increase in processing power
may yield negligible changes in transformation temperature while further reducing the Ni
composition, causing the formation of undesirable Ti intermetallics. As a result, laser
processing power of 410W was selected for the study.

The effect of pulse duration on the transformation temperatures of processed NiTi wire
is examined in Figure 4.4 using power of 390W . As reported by Khan et al, an increase in
the laser processing pulse duration causes the transformation temperatures to rise, even-
tually plateauing as the material becomes Ti-rich [10]. The largest rise in transformation
temperatures is seen in the increase from 5ms to 6ms, with further increases in pulse du-
ration causing marginal transformation changes. Given the selected laser power of 410W ,
a pulse duration of 5ms was found to result in maximized transformation temperatures
while remaining on the verge of becoming Ti-rich and was therefore selected for the study.
The remaining laser processing parameters used for fabricating the samples examined in
the following sections are outlined in Table 4.1.

Solutionization was performed immediately after laser processing as per the procedure
discussed in Section 3.4. It was found that the number of solutionization cycles had no
significant effect on the transformation properties of the wire, meaning that the majority of
grain growth and intermetallic dissolution occurred during the first solutionization cycle.
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Figure 4.3: DSC plots of NiTi wires as-processed with laser powers of 370W, 390W, and
410W.
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Figure 4.4: DSC plots of NiTi wires as-processed with laser pulse duration of 5, 6, 7, and
8 ms.
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Table 4.1: Parameter used for laser processing of NiTi wires in order to achieve full pene-
tration and Ni vaporization.

Parameter Value
Power (W ) 410
Overlap (%) 85
Spot size (µm) 1000
Pulse time (µs) 5000
Pulse frequency (Hz) 1
Pulses per spot 1

However, each solutionization cycle performed in an ambient environment contributed to
the thickness of the oxide layer grown on the NiTi wires. As a result, increasing the
number of solutionization cycles led to a direct increase in the oxide layer thickness. It was
found that performing 10 solutionization cycles with 5A of current severely deteriorated
the mechanical properties of the NiTi wire compared to 1-4 cycles, causing the wire to
fracture when experiencing relatively small bend radii. This result may be attributed to
the significant growth of the brittle oxide layer, consuming the malleable NiTi metal.

The heat treatment performed on the cold worked wires was also found to have a
significant effect on the transformation properties of both the base metal and processed
regions of the NiTi wire. As is visible in Figure 4.5, increasing the heat treatment tem-
perature causes a rise in transformation temperatures for the laser processed NiTi wire.
Although heat treatment at 500◦C yielded transformation property improvements com-
pared to 450◦C, the final wires broke during training. Interestingly, heat treatment at
480◦C yielded larger Af than at 500◦C.

The effect of heat treatment on the unprocessed base metal section of the wire was
also studied, as heat treatment of cold worked Ni-rich NiTi has been shown to significantly
increase the material’s transformation temperatures through the formation of nickel pre-
cipitates [92]. The DSC plots of base metal post-processed wires heat treated for 2 hours
at temperatures of 480◦C and 500◦C are shown in Figure 4.6. Compared to the as-received
base metal NiTi, the post-processed base metal sections saw a significant increase in trans-
formation temperatures. However, heat treatment at 500◦C yields lower Af than at 480◦C.
This effect is due to the presence of R-phase - increasing heat treatment temperature ap-
pears to cause the R/martensite peak to increase while the R/austenite peak simultaneously
decreases. At 500◦C, the R/martensite and R/austenite peaks appear to have combined,
resulting in a taller, narrower peak than those acquired from heat treatment at 480◦C. The
transformation temperatures for the base metal heat treated at 480◦C are around room
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Figure 4.5: DSC plots of processed NiTi wires cold worked to 310µm and heat treated at
various temperatures for 2 hours.
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Figure 4.6: DSC plots of base metal NiTi wires cold worked to 310µm and heat treated at
various temperatures for 2 hours.
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temperature, which yields partial transformation and therefore mixed PE/SME behaviour
rather than pure PE. However, training and applied stress should both cause a significant
enough decrease in the transformation temperatures to differentiate the distinct electrical
and mechanical properties of the processed and unprocessed memories.

Table 4.2: DSC temperatures for all NiTi wire processing and post-processing studies
discussed in this section.

Study Value As Af Ms Mf

Pulse Power (W )
370 35.2 68.4 38.8 9.79
390 48.0 89.0 54.1 19.2
410 63.1 98.7 69.4 34.7

Time (ms)
5 48.5 87.4 53.7 20.1
6 65.2 92.1 58.3 25.9
7 63.0 96.7 63.6 33.8
8 67.7 98.3 65.8 38.5

Heat Treatment
Temperature

(◦C)

450 51.8 92.3 63.1 3.7
480 59.2 97.1 64.5 23.3
500 66.5 100.3 65.8 40.8

Heat Treatment
Temperature, Base Metal

(◦C)

480 17.3 35.6 29.2 23.7
500 17.3 32.4 22.5 18.4

The process discussed in this section produced monolithic wires containing two distinct
sets of transformation temperatures, with one section exhibiting full SME and the other
mainly PE at room temperature. DSC curves corresponding to the final processing and
post-processing parameters for the base metal, as-processed, solutionized, and heat treated
NiTi wires are shown in Figure 4.7. DSC characterization on the final wire was also
performed after training, with the results shown in Figure 4.8. It is apparent that training
has led to the sharpening of the transformation peaks, along with translating toward lower
transformation temperatures.
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Figure 4.7: DSC plot of base metal, laser processed, solutionized, and heat treated NiTi
wires corresponding to the final properties used to fabricate wires for data acquisition.

4.3 Mechanical Properties

The forces required to pull the processed wire through each die during wire drawing are
displayed in Figure 4.9. The drawing stresses experienced during the first wire drawing
pass remained below the recommended upper stress limit of 0.6 times the UTS of the wire
(upper limit of 351MPa for the as-processed wire) [101]. As the area reduction increased
with each step, the wire experienced increasing stresses. Furthermore, due to the textured
morphology of the processed area, the wire drawing forces fluctuated significantly more at
the processed region compared to the base metal region. However, the textured morphology
slowly disappeared with each wire drawing pass, which is evident from the drop in drawing
stress fluctuations. The rough laser processing morphology was fully eliminated in the final
wire drawn product, resulting in a wire with smooth morphology.
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Figure 4.8: DSC plots of base metal and processed NiTi wires after heat treating and
training.
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Figure 4.9: Wire drawing forces of base metal and laser processed sections of a monolithic
NiTi wire sample through die diameters of 0.37mm, 0.34mm, and 0.31mm.
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The tensile tests performed on the heat treated wires are shown in Figure 4.10. Unlike
the base metal NiTi, straining the fully laser processed and post-processed wires did not
result in a significant amount of strain recovery due to the wires exhibiting SME at room
temperature. Accordingly, the tensile results prove that the laser processing and post-
processing successfully altered the room temperature microstructure of the NiTi wires
from austenite to martensite. The detwinning plateau stress also appears to depend on
the heat treatment temperature, with increasing temperature resulting in a lower stress
plateau. This effect is visible in Figure 4.10, with the stress plateau dropping from an
average of 202.0MPa to 183.9MPa as heat treatment temperature increases from 450◦C
to 500◦C, respectively.
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Figure 4.10: Stress-strain curves of laser processed and post-processed wires with heat
treatment time of 2h and temperatures of 450◦C, 480◦C, and 500◦C.

The tensile failure curves of the heat treated wires are shown in Figure 4.11. As expected
from literature, increasing the heat treatment temperature appears to lower the UTS of the
wire from 1, 073MPa to 1, 027MPa [92]. Increasing the heat treatment time from 450◦C
to 480◦C led to a relatively negligible UTS decrease of 2MPa. There did, however, appear
to be a significant effect on ductility, with the wires reaching strain values of 13.3%, 26.3%,
and 38.5% as heat treatment temperatures increased from 450◦C to 500◦C.

The failure characteristics of the 480◦C heat treatment wire selected for the study were
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Figure 4.11: Tensile failure curves of laser processed and post-processed wires with heat
treatment time of 2h and temperatures of 450◦C, 480◦C, and 500◦C.

also compared to those of the base metal and as-processed wires in Figure 4.12. Laser
processing causes a significant drop in mechanical properties, with the as-processed wire
retaining only 46% of its base metal UTS while gaining some ductility. Cold working
and heat treatment at 480◦C of the laser processed wire increased the UTS to 84% of
the base metal value, which is a substantial improvement. Compared to the base metal
and as-processed variants, the heat treated wire also saw an increase in ductility. The
mechanical properties resulting from processing and post-processing as discussed in this
section are summarized in Table 4.3. Due to the aforementioned trade-off between rise in
transformation temperatures and decay of mechanical properties caused by increased heat
treatment temperatures, a heat treatment of 480◦C was found to result in optimal thermal
and mechanical properties relative to the base metal. As a result, the samples examined
in the following sections of this study were heat treated at 480◦C for 2hrs following cold
working.

4.4 Cyclic Properties

The results of 35 cycles of thermal cycling with 18N(238.5MPa) applied load performed
on a final laser processed, heat treated multiple embedded memory wire sample are shown

58



1273 MPa

585 MPa

1071 MPa

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

S
tr

e
s
s
 (

M
P

a
)

Strain

Base

Processed

480C

Figure 4.12: Tensile failure curves of base metal, as-processed, 480◦C heat treated NiTi
wires.

Table 4.3: UTS and ductility comparison of as-processed and heat treated wires relative
to base metal NiTi.

Wire UTS(%) Ductility (%)
As-processed 46.0 134.7

450◦C 84.3 88.7
480◦C 84.1 175.3
500◦C 80.7 256.7

in Figure 4.14. The steady-state position of the training cycles is also shown in Figure 4.13.
The thermal training resulted in an unrecoverable extension of 3.9mm, which corresponds
to residual strain of 2.6% relative to the sample length of 15.2cm. However, the residual
strain appeared to plateau relatively quickly, reaching steady-state behaviour in as little
as 20 thermal cycles. This performance is also reflected in Figure 4.14, which shows
the resistance vs. position curves converging to a stable, repeatable cycle after about
20 cycles for both the PE and SME sections of the wire. The PE section of the wire
exhibited distinct resistance behaviour relative to the SME section, likely due to partial
transformation at room temperature as predicted from the DSC analysis. Nevertheless, the
electrical resistance properties of the two memories differ greatly under identical applied
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load and current. Thermal cycling appears to have a more significant effect on the resistance
properties of the SME section, causing an increase of more than 0.15Ω. In contrast, the
resistance properties of the PE section remained relatively constant throughout the thermal
cycling.
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Figure 4.13: Steady-state position during heating and cooling cycles of multiple memory
wire training.

As mentioned in section 2.1.5, the hysteretic nature of NiTi is complex and depends on
many factors including applied stress. The cyclic behaviour of the multiple memory wire at
various applied stresses is shown in Figure 4.15 for both the PE and SME sections with low
and high applied currents of 0.15A and 0.8A, respectively. Increase in stress applied to the
wire causes a rise in the measured resistance, likely due to reduction in the cross-sectional
area of the wire from increased extension. As this effect is based on physical deformation
of the material, it is visible in both the PE and SME sections. Another consequence
is the elongation of the hysteresis curve with increased stress. As the stress increases
from 35.5MPa to 197.1MPa, the positional length of the SME hysteresis curve effectively
doubles likely due to an increased amount of detwinning. This effect is also observed in
the partial PE section, although it is not as pronounced. Finally, increased applied stress
causes the resistance range of the top and bottom of the hysteresis loops (corresponding
to the temperature-induced change in resistance) to shrink only for the SME section while
remaining somewhat constant for the PE section.
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Figure 4.14: Thermal cycling of post-processed multiple memory wire showing resulting
resistance vs. position curves of the SME (top) and partial PE (bottom) sections on the
monolithic multiple memory wire.
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Figure 4.15: Cyclic behaviour of SME (top) and partial PE (bottom) sections of the
fabricated multiple memory wire at various applied loads.
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4.5 Chapter Summary

This chapter analyzed various thermomechanical properties of base metal and laser pro-
cessed NiTi SMAs prior to and following post-processing. The effects of various laser
processing parameters, including laser power and pulse time, on the transformation prop-
erties of NiTi were explored and optimized to successfully embed a second SME memory
into PE NiTi wire. The post-processing techniques, including wire drawing and heat treat-
ment, were also tuned to produce a final monolithic NiTi wire with one fully SME section
and one partially PE section at room temperature. Furthermore, it was found that various
metallurgical imperfections (such as voids) observed immediately after processing were not
present after wire drawing and heat treatment. Compared to the base metal, the laser
processed section of the final wire heat treated at 480◦C for 2hrs exhibited Ms and Af

transformation temperature increases of 61.5◦C and 35.3◦C, respectively.

Mechanical evaluation of the actuators was also performed, and it was found that laser
processing causes a significant decrease in ultimate tensile strength. Using the optimal heat
treatment of 480◦C at 2hrs, 84% of the base metal UTS was recovered. The mechanical
stability of the actuator was apparent also during thermal cycling with applied load, with
the actuator’s cyclic behaviour stabilizing after about 15 cycles. Once the cyclic behaviour
became fully stable, sufficient amounts of data were acquired which characterized the cyclic
profile of the multiple memory NiTi actuator at varying loads and currents.
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Chapter 5

Neural Network Position and Force
Estimation of Multiple Memory
Shape Memory Alloys

The complex, hysteretic, load-dependent behaviour of NiTi SMAs was demonstrated and
characterized in Chapter 4. From the acquired results, it is evident that achieving accurate
control of such an actuator is far from intuitive. This chapter will explore the use of
recurrent neural networks with various architectures and hyperparameters for estimating
the present position and load state of a NiTi actuator with two embedded memories using
only the applied current and resistances across each memory. This method preserves the
inherent benefits of SMA actuator - such as low cost and weight - by eliminating the use of
external sensors within the actuator control system. The neural networks will be trained
using the data acquired in the previous chapter. Two scenarios will be explored in this
chapter: position estimation of a single embedded memory NiTi actuator with constant
force, and force and position estimation of a NiTi actuator with two embedded memories
and varying applied force.

5.1 Constant force position estimation using single re-

sistance measurement

As previously mentioned, this section will focus on optimizing the hyperparameters of the
RNN model performing position estimation with a constant applied force. Figure 5.1 illus-
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trates the system into which the RNN was incorporated for performing position estimation.
Due to time constraints, given the length of time necessary for training neural networks on
such a large data sets, a limited number of variations were performed on each hyperparam-
eter. Memory was a limiting factor in hyperparameter selection as well, as it was found
that certain hyperparameter combinations required more memory than the system allowed
(such as the combination of batch size of 1, 024, look back length of 1500, sparsity of 3, and
100 hidden RNN states, requiring the storage of 51, 200, 000 points in a [1, 024×500×100]
tensor). As a result, large batch sizes had to be balanced by smaller numbers of past time
step data points and less hidden RNN states, and vice-versa.

RNN

SME
Resistance

Measured
Current

Estimated Position

Figure 5.1: Schematic showing RNN inputs and outputs (left) and position estimation
setup using single resistance RNN with constant applied load (right).

Each set of hyperparameter variations was performed on both the LSTM and GRU
RNN architectures in an effort to find the optimally performing model. The base RNN
model was also considered, although it was found to exhibit unstable gradient behaviour
during backpropagation due to the large number of look back values necessary for this
type of data. This behaviour was somewhat expected, as one of the main benefits of using
LSTM and GRU is the reduction of this vanishing/exploding gradient problem [83]. Other
ways of overcoming this challenge are to lower the learning rate, normalize the data to
lower the difference between time steps, and decrease the look back length. Lowering the
learning rate to as low as 0.0001 was found to still result in NaN loss values during model
training (hinting at unstable gradients), with the data normalized and the large look back
length necessary for properly capture the hysteretic behaviour of the NiTi actuator. As a
result, the base RNN architecture was not considered in this hyperparameter optimization
study.
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Another discovery during the initial stages of the RNN optimization study was that,
given the large number of look back points, the LSTM architecture also exhibited unstable
gradients when attempting to use relatively higher learning rates (such as 0.01 or 0.001).
In order for the LSTM architecture to properly train, the learning rate had to be lowered
to 0.0001. On the other hand, the GRU architecture successfully trained with a learning
rate of 0.01. As this is an important difference between the two neural network architec-
tures, learning rates of 0.0001 and 0.01 were used for the LSTM and GRU architectures,
respectively. Due to gradient stability with larger learning rates, the GRU architecture was
found to generally converge to its minimum loss value significantly faster than the LSTM
architecture, resulting in better performance in the same number of training epochs. The
results comparing LSTM and GRU will be discussed in the following subsections, along
with each hyperparameter variation.

5.1.1 Activation Function

The effect of various activation functions on the MSE during training of the RNN is shown
in Appendix B.1 for both GRU and LSTM architectures. Figure 5.2 also shows the variance
of each corresponding training curve for GRU and LSTM. The variance is calculated after
1000 training steps in order to circumvent the initial noise inherent to the training process.
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Figure 5.2: Variance of training curves for GRU and LSTM architectures using various
activation functions.

For the GRU architecture, it is immediately visible that the softplus activation function
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performs significantly worse than the others. ELU also stands out, as it appears to converge
to the minimum MSE after 3000 − 4000 training steps, which is significantly longer than
the remaining activation functions. ReLU , ReLU6, sigmoid, and tanh all showed similar
convergence characteristics, with MSE reaching its minimum value after only 1000 training
steps. Softplus was also found to have the largest observed variance, more than two orders
of magnitude larger than the variances of tanh, sigmoid, and ReLU6. ELU and ReLU
also showed relatively high variance, hinting at lower training stability.

Similar observations can be made for the LSTM architecture, with tanh, sigmoid, and
ReLU6 showing the fastest convergence. Training was not possible using softplus, as
it resulted in NaN MSE values. Sigmoid also performed significantly worse, with MSE
orders of magnitude larger than the remaining functions. As a result, the sigmoid curves
were not visible in the results as their MSE was too high. It also appears that the LSTM
RNNs are converging to larger minimum MSE values for each activation function compared
to their GRU counterparts.

Aside from the differences between individual activation functions, the training be-
haviour of the LSTM architecture differs significantly from that of GRU. It can be seen
that convergence did not occur until around 3000 − 4000 training steps for the best per-
forming activation functions, showing significantly slower convergence compared to GRU.
This effect was likely caused by the slower learning rate used for LSTM in order to enable
training. Furthermore, the variance for each activation function’s training curve is about
one order of magnitude larger relative to their GRU counterpart. Overall, the training
behaviour was slower and more unstable using the LSTM architecture.

The performance of the RNN was also validated on previously unseen data during
training for each activation function. The results of this analysis are shown in Appendix C.1
for both GRU and LSTM. For the GRU architecture, tanh, sigmoid, ReLU6, and ReLU
showed similar performance, reaching the minimum MSE within 10 training epochs and
maintaining a fairly constant value throughout the remainder of the RNN training. The
poorest performance activation function was softplus, with ELU showing initially poor
performance and later recovering to converge after 15 epochs. For the LSTM architecture,
ReLU6 and ReLU appeared to be the most stable activation functions in addition to
converging to a relatively low MSE. ELU and tanh had comparatively good performance
compared but were less stable than ReLU and also converged more slowly. Due to the poor
performance of sigmoid, its MSE is so massive that it is not visible in the plot. Altogether,
as was the case for training behaviour, the GRU architecture yielded significantly more
desirable training results than LSTM when observing validation performance.

Finally, the performance of the activation functions after fully completing RNN training
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was also evaluated, and the results are summarized in Figure 5.3. The overall best perfor-
mance was shown by tanh using the GRU architecture for training, validation, and testing
MSE. ReLU , ReLU6, and sigmoid exhibited comparable results, with only marginally
higher MSE values. As expected from the training behaviour, softplus proved to be the
worst performing activation function, which was observed across both RNN architectures.
GRU was also found to consistently outperform LSTM across all activation functions.
Furthermore, the training, validation, and testing MSE for the best performing activation
functions (tanh, sigmoid, and ReLU6) appeared to be relatively equal, meaning the RNNs
trained using the training data subset can successfully generalize to data they have never
previously seen and produce low MSE values. Taking everything into account, tanh and
ReLU activation functions using GRU architecture were selected to be used in the final
position prediction RNN testing. Of these two functions, the one which performed best
with the remaining optimal hyperparameters was selected for the final position prediction
model.
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Figure 5.3: Performance of fully trained RNNs with various activation functions on train-
ing, validation, and testing data sets.

5.1.2 Batch Size

The size of batches used during training was the second hyperparameter optimized during
this study. The training behaviour of each batch size for GRU and LSTM architectures is
shown in Appendix B.2. Compared to the activation function variation previously studied,
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the behaviour of all three batch sizes appeared to be comparable. However, some differences
were still observed, one of which is that larger batch sizes converged in less training steps
than smaller batch sizes. This observation is expected, as larger batch sizes result in
training on larger amounts of data within one training step. A batch size of 512 contains
twice as many data points as a batch size of 256, meaning that an RNN with 512 batch size
will have been trained on twice as many data points as one with 256 batch size after the
same number of training steps. As a result, larger batch sizes are expected to lead to faster
convergence. In addition, because more data is used per training step and the arithmetic
operations calculated during each training step should be performed in parallel on the
GPU, less overall training time should be required for larger batch sizes. As can be seen
in Figure 5.4, larger batch size did indeed significantly lower the required training time for
both GRU and LSTM. This effect did not appear to be linear, as lowering the batch size
from 256 to 128 increased training time from 3.5hrs to 9.6hrs for the GRU architecture.
The LSTM architecture saw a less dramatic increase in training time, increasing from
4.2hrs to 7.4hrs for the same change in batch size.
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Figure 5.4: Training time of RNNs with GRU and LSTM architectures using varying batch
sizes.

Despite the numerous benefits acquired from increasing the batch size, there is also a
major drawback. Because more data points are used during each training step, less overall
training steps are performed on the RNN. This means that large batch sizes may deteriorate
the final performance of a neural network. There is therefore a trade-off between training
speed and final neural network performance. This effect is visible in the training behaviour
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for both GRU and LSTM architectures, as the 512 batch sizes appeared as though they
would have continued converging to a smaller MSE value like the lower batch sizes had there
been more training steps. Although the RNNs appeared to perform somewhat similarly
across all batch sizes during training, this was not true when evaluating their performance
on validation data as can be seen in Appendix C.2. From the results, it appears that
increase in batch size resulted in larger validation MSE for both GRU and LSTM. The batch
sizes of 128 and 256 yielded similar MSE, whereas batch size of 512 caused a considerable
increase in MSE. The performance of LSTM compared to GRU was again inferior, with
significantly larger final MSE values and much slower convergence. Furthermore, as is
visible in both training and validation curves for LSTM, the training cycle with batch size
of 128 did not fully complete as the system ran out of memory after 17 training epochs.

The performance of the fully trained GRU and LSTM RNNs with varying batch sizes is
shown in Figure 5.5 on training, validation, and testing data sets. For both architectures,
the previously described effect holds for the testing evaluation. Increasing batch size caused
the resulting MSE to also increase, with the effect appearing to have exponential behaviour.
For GRU, increasing batch size from 256 to 512 caused a MSE increase of more than 3
times the one resulting from increasing batch size from 128 to 256. Taking all factors
into account, lowering batch size to 128 yielded marginal improvements in MSE while
significantly increasing training time for GRU. For LSTM, slightly larger improvements
in MSE were attained for the same batch size adjustment. On the other hand, for both
architectures, increasing the batch size to 512 caused a considerable rise in MSE while
lowering the training time by a less significant amount. The optimal choice in this scenario
was a batch size of 256, which was used in the final position estimation model. This batch
size balances training cycles steps with training time in order to produce low MSE and
reduced training time.

5.1.3 Number of Hidden RNN States

The third hyperparameter analyzed was the number of hidden states in the GRU/LSTM
recurrent cells, with the training performance for each variation outlined in Appendix B.3.
After sufficient training steps, RNN state sizes converged to virtually the same final MSE
value. For GRU, state size of 50 converged rather quickly but spiked after 2, 000 iterations
which may hint at training instability. Variance of the 125 state size RNN also appeared
to be higher than the other sizes. On the other hand, for LSTM, the 125 state size saw the
fastest convergence and smallest variance. However, a state size of 125 caused the system
to run out of memory after 17 training epochs, ending training prematurely. It was also
found that changing the number of hidden states did not result in significant change in
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Figure 5.5: Performance of fully trained RNNs with varying batch sizes on training, vali-
dation, and testing data sets.

training time due to parallelization. Overall, the RNN with hidden state size of 100 with
GRU shows the best stability and convergence behaviour.

The validation performance shown in Appendix C.3 echoed the previously mentioned
observations in that the final MSE value reached was practically equal for all state sizes.
For GRU, the 125 state size RNN required longer training time to converge and exhib-
ited unstable behaviour during the initial training epochs but stabilized after 10 epochs.
In contrast, the 50 state size RNN converged relatively quickly but appeared somewhat
unstable. For LSTM, 125 neurons yielded fastest convergence but prevented the network
from fully training, with 50 hidden states resulting in slowest and least stable convergence.
The fastest convergence and largest stability were exhibited by the 100 state size RNN.

The fully trained RNNs’ performance with varying state sizes is displayed in Figure 5.6.
Again, constant MSE performance was observed over all hidden state variations. Further-
more, the train, validation, and test MSE were approximately constant relative to each
other, meaning that the network has good generalizability. Taking into account the slight
performance differences observed during validation and the lack of other major discrep-
ancies between the state sizes, the final RNN used for position prediction was selected to
have a hidden state size of 100 using the GRU architecture.
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Figure 5.6: Performance of fully trained RNNs with varying numbers of hidden RNN states
on training, validation, and testing data sets.

5.1.4 Number of Epochs

The result of varying the number of training epochs on the RNNs’ training performance
is illustrated in Appendix B.4 for both GRU and LSTM architectures. Because the re-
maining hyperparameters are identical, virtually the same performance was observed over
all numbers of epochs for GRU. However, significant differences were observed in LSTM,
possibly due to instabilities in the model. The GRU RNNs trained stably to the minimum
MSE value, with the number of training epochs determining the MSE that is ultimately
reached. As the number of epochs increases from 1 to 30, the minimum MSE continued to
fall during training. As training continued, the training stability also improved, especially
after 10 epochs - this can be seen from the decreasing variance in MSE. As for LSTM,
all curves eventually converged to the identical MSE value, as expected. Other than the
initial differences, similar behaviour was observed as for the GRU architecture, although
with significantly more spikes in MSE.

When observing the RNNs’ behaviour on validation data in Appendix C.4, similar
conclusions were made as for the training data. As the number of epochs increased, the
RNNs’ performance on never before seen data also significantly improved. Although this
is expected to plateau after a large enough number of epochs, a significant drop in MSE
was obtained by raising the number of epochs to 30 for both GRU and LSTM. Additional
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improvements in MSE are likely attainable by further increasing the number of epochs,
but as is visible in Figure 5.7, increasing the number of epochs caused an exponential rise
in training time. An increase from 20 to 30 epochs caused training time to increase from
3.5hrs to 7.9hrs for GRU and from 4.2 to 8.5 hours for LSTM. This trend is expected to
continue, so an increase to 40 epochs may require upwards of 16 hours to train. Of course,
the improvements in MSE are also expected to eventually plateau, meaning any gains in
model performance would be marginal after an adequate number of epochs.
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Figure 5.7: Training time of RNNs with GRU and LSTM architectures for various numbers
of training epochs.

Finally, the performance of the fully trained model on training, validation, and testing
data sets is shown in Figure 5.8. Again, increasing the number of training epochs caused
the final MSE to drop in the case of all three data sets. The effect appears to be most dra-
matic when increasing from 1 to 5 epochs, after which marginal gains in performance were
acquired. Comparing the two architectures, it can be seen that LSTM showed much higher
MSE values at low numbers of epochs, meaning GRU has superior training performance at
low epochs. Increasing to 30 epochs caused a significant drop in MSE relative to 20 epochs
for all three data sets. Furthermore, the training, validation, and testing MSEs were fairly
constant, with some variations in the training MSE for lower epoch numbers likely caused
by the increased variance observed early in the training. Still, this means that the RNNs
can generalize well to new data. Overall, 30 epochs resulted in the best performance while
maintaining acceptable training time. As a result, the final position estimation RNN was
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trained for 30 epochs.
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Figure 5.8: Performance of fully trained RNNs with varying numbers of training epochs
on training, validation, and testing data sets.

5.1.5 Data Sparsity

The effect of adjusting the look back data sparsity on the RNN performance is examined
in this section, with the training curves for various levels of sparsity used during training
shown in Appendix B.5 for both GRU and LSTM. For GRU, all levels of sparsity resulted
in similar convergence behaviour. However, using every 3rd data point was shown to
result in a significantly more stable MSE training curve than using every 5th or 10th data
point. Nevertheless, as training progressed, all sparsities reached a fairly constant training
MSE variance. The LSTM architecture showed somewhat different training behaviour,
with slower MSE convergence exhibited by using every 3rd data point compared to the
remaining levels of sparsity. The variance behaviour of the aforementioned sparsity was
also significantly worse than the GRU counterpart. Furthermore, all levels of sparsity
converge more slowly in LSTM than GRU and ultimately reached a larger MSE value. It
was also found that the level of sparsity did not significantly affect RNN training time, as
all data points were processed in parallel. However, lower levels of sparsity required the
simultaneous storage of much larger amounts of data, so a sparsity of 1 (using every data
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point) was not achievable using the base batch size of 256 and look back length of 1, 500
due to limited computational processing power.

Looking at the validation MSE of GRU in Appendix C.5, it is clear that using every 10th

data point for training does not translate well to data never previously encountered. The
MSE of the 10th data point sparsity showed greater instability, especially between 5 − 15
epochs. Furthermore, the final MSE value reached was significantly higher than using every
3rd or 5th data point. This poor model performance may be caused by the RNN’s failure
of capturing the actuator behaviour when trained with highly sparse data. A similar effect
is observed in the LSTM architecture, with unstable behaviour observed between 5 − 10
epochs for the 10th data point sparsity. Nevertheless, the 3rd data point results in larger
MSE, possibly due to training instabilities during the final training epochs. LSTM was in
general less stable and again arrived at a larger MSE than GRU. Furthermore, due to the
slower convergence behaviour of LSTM, it appears that increasing the number of training
epochs would yield further MSE improvements given the downward trend of the validation
MSE curves.
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Figure 5.9: Performance of fully trained RNNs with varying levels of look back sparsity on
training, validation, and testing data sets.

Evaluation of the fully trained RNNs on the training, validation, and testing data sets
was also performed, and the results are displayed in Figure 5.9. Overall, LSTM shows poor
MSE performance relative to GRU. For the GRU architecture, the 3rd and 5th data point
levels of sparsity yielded similar MSE results, with constant MSE across the three data
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sets showing good model generalizability. However, increasing the sparsity to every 10th

data point not only caused the MSE to increase, but also resulted in larger testing and
validation MSE compared to the training MSE. This shows that the model with the largest
level of sparsity was not able to generalize well to new data, which is highly undesirable.
As for LSTM, using every 5th data point yielded the lowest MSE, with significant increases
in MSE when either lowering or increasing the training data sparsity. These effects are
believed to result from model instability caused by the LSTM architecture. As the GRU
architecture showed better overall performance, the 3rd data point level of sparsity was be
used in the final position estimation RNN architecture.

5.1.6 Look Back Length

The final hyperparameter optimized in this study is the look back length during position
estimation, and the results for this optimization are displayed in Appendix B.6. In the
case of GRU, look back length of 500 yielded greatly more unstable behaviour relative
to the other values. Interestingly, look back length of 2, 000 also appeared slightly more
unstable than look back length of 1, 500. The reason for this may be the fact that such a
large look back may be exiting the current hysteresis loop and entering the previous loop,
misleading the RNN and producing lower prediction accuracy. As for LSTM, look back
lengths of 1, 500 and 2, 000 exhibited similar training performance, with 500 clearly showing
comparatively poor performance. Altogether, the look back length of 1, 500 yielded best
training performance.

The RNNs’ performance was also evaluated on validation data during training, and the
results are shown in Appendix C.6. For GRU look back length of 1, 500 yielded the best
results - it was the most stable and converged to the lowest MSE after 20 epochs. Look
back of 2, 000 was slightly more unstable and yielded a relatively small increase in MSE.
The opposite was true for LSTM, with look back of 2, 000 showing superior performance
and 1, 500 closely trailing. From the results, it is also clear that look back length of 500
was not enough to properly capture the hysteretic behaviour of the actuator - for both
architectures, the validation convergence was significantly slower and more unstable than
the larger look back lengths.

The results of evaluating the fully trained RNNs on the training, validation, and testing
data sets are summarized in Figure 5.10. For GRU, the best performance resulted from
look back length of 1, 500 with a low MSE consistent over all data sets. Look back length
of 2, 000 yielded slightly worse MSE while also somewhat maintaining model generalizabil-
ity. As previously discussed, a look back length of 500 showed significantly deteriorated
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performance, especially on the validation and testing data sets. LSTM saw best MSE
performance from look back of 2, 000, although GRU performed better overall for all look
back lengths. Altogether, the look back length of 1, 500 for the GRU architecture yielded
optimal MSE and stability across the three data sets.
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Figure 5.10: Performance of fully trained RNNs with varying look back lengths on training,
validation, and testing data sets.
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5.1.7 Position Estimation Results

Taking all previously examined factors into account, it was found that the RNN model
hyperparameters listed in Table 5.1 resulted in the best position estimation performance
on the acquired NiTi actuator cycling data. Using these hyperparameters, two separate
models (one for each activation function) were trained on the training data set used in
Section 5.1.1.

Table 5.1: RNN model hyperparameters resulting in best position estimation model per-
formance.

Hyperparameter Value
Activation Functions tanh and ReLU
Batch size 256
Hidden RNN States 100
Number of Epochs 30
Data Sparsity 3
Look Back Length 1500

The position estimation results for the two RNN models are shown in Figure 5.11 on
a subsection of the entire 10N applied force data set. It can be seen that both models are
able to successfully estimate the real position of the actuator with excellent performance.
Furthermore, it is clear that the RNN models have truly captured the hysteretic behaviour
of the NiTi actuator, successfully predicting both major and minor hysteresis loops. Al-
though a small subset of data is shown, this estimation performance persisted throughout
the entire data set. Modeling of the major and minor hysteresis loops is also shown in
Figure 5.12, which again shows the models’ success in learning NiTi’s hysteretic nature.

From the accuracy plot shown in Figure 5.11, it is clear that the RNN models almost
perfectly estimate the actuator’s position given past measured current and RSME data. In
fact, across the entire data set, the average accuracy for the ReLU position estimation
model was 99.2%, with the tanh model trailing slightly at 98.7%. Even though the models
perform almost identically, due to the slight edge in accuracy, the optimal final RNN model
for constant load position estimation of a NiTi actuator with arbitrary applied current was
the model using ReLU along with the remaining optimized hyperparameters.
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Figure 5.11: Starting at the top: position estimation of RNN models with tanh and ReLU
activation functions vs. real position, along with corresponding applied current, measured
RSME, and prediction accuracy of both models, all with respect to time.
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Figure 5.12: Position estimation using tanh and ReLU RNNs resulting in successful track-
ing of NiTi hysteresis curves.

5.2 Position and Force Estimation Using Dual Resis-

tance Measurements

The system used for performing dual resistance RNN position and force estimation is
illustrated in Figure 5.13. As the models analyzed in Section 5.1.7 exhibited essentially
identical position estimation performance, only the ReLU activation function RNN was
studied in this section due to achieving marginally higher accuracy. The position and
load estimation results under two applied loads (4N and 12N) using the training data are
shown in Figure 5.14. As before, it is apparent that the RNN model can effectively perform
estimation of both force and position on data used for training, which is reflected in the
high accuracy values. Other parameters corresponding to these actuation cycles (such as
current and measured resistances) can be found in Appendix D.1.

The estimation accuracy for each applied load data set is shown in Table 5.2. It can
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Figure 5.13: Schematic showing RNN inputs and outputs (left) and position estimation
setup using single resistance RNN with variable applied load (right).

be seen that the overall estimation accuracy is 98.5% and 96.0% for position and force,
respectively. It appears that position estimation consistently outperforms force estimation,
albeit by only a few percent accuracy. Overall, the RNN model achieves excellent prediction
performance on training data with varying applied loads. Figure 5.15 shows the prediction
of the minor and major hysteresis loops for 4N and 12N applied loads using training data.
Again, the model appears to successfully capture the hysteretic behaviour of NiTi even
with varying applied load. Furthermore, several position prediction imperfections can be
seen from the hysteresis loops which are not expected to significantly hurt the actuator
performance in practice as the estimated value eventually recovers to the true position.

The performance of the RNN model was also evaluated on varying applied load data
sets which the model had never previously seen (testing data), and the results for applied
loads of 4N and 9N are shown in Figure 5.16. The model performed very well given
that it had not previously the sequence of applied currents and measured resistances given
in the test data sets. As can be seen, the force estimation for 4N applied load yielded
significantly lower accuracy than for 9N . This hints that the actuation sequences uti-
lized for model training may not be long enough to fully characterize the actuator’s cyclic
behaviour. Therefore the discrepancy between 4N and 9N may be due to the data set
randomness. Acquiring more data or adjusting the model architecture may result in signif-
icant performance improvements. On the other hand, the position estimation performance
was excellent in both scenarios. Other parameters corresponding to these actuation cycles
(such as current and measured resistance) can be found in Appendix D.2.
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Figure 5.14: Starting at the top: position estimation of RNN model vs. real position under
4N and 12N applied load along with corresponding position estimation accuracy, and force
estimation of RNN model vs. real 4N and 12N applied loads along with force estimation
accuracy. Evaluation was performed using training data sets.
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Figure 5.15: Position hysteresis curve estimation results on training data with 4N and
12N applied force.

Table 5.2: Position and force estimation accuracy of RNN model on the entire varying load
training data sets.

Data Set
Applied Load (N)

Position Accuracy (%) Force Accuracy (%)

3 98.3 92.9
4 98.6 93.6
5 99.0 97.3
7 98.3 97.2
8 98.6 97.5
9 98.4 97.2
12 98.4 96.6

Overall: 98.5 96.0
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Figure 5.16: Starting at the top: position estimation of RNN model vs. real position under
4N and 12N applied load along with corresponding position estimation accuracy, and force
estimation of RNN model vs. real 4N and 12N applied loads along with force estimation
accuracy. Evaluation was performed using testing data sets.
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The calculated prediction accuracy values for each testing data set are shown in Ta-
ble 5.3. Significant variations in accuracy are visible, especially for force estimation. Nev-
ertheless, the model successfully estimated the NiTi actuators’ position (including minor
loops) as well as the applied load. The overall model accuracy on testing data was 96.6
and 89.8 for position and force estimation, respectively. The performance is not as high
as that of training data, meaning the model does not perfectly generalize to new data.
Still, the model generalization is sufficient for accurate position control and rough force
estimation. Figure 5.17 also illustrates the model’s ability to estimate the actuator’s minor
hysteresis loops at different applied loads. The aforementioned changes (longer cycling se-
quences, optimized RNN architecture for varying loads) may further improve the model’s
estimation performance.

Compared to the mathematical model proposed by Zamani et al. ([100]) which requires
ideal PE and SME phases, not only does the RNN model achieve higher accuracy on a
significantly larger set of actuation data by capturing the full actuator behaviour, but it
was also able to utilize a partially transformed PE phase to successfully perform position
estimation. Consequently, the optimized RNN architecture can be trained on data acquired
from SMA actuators with varying compositions, geometries, and phases and likely result
in accurate position and force estimation models. It can therefore be concluded that the
RNN model exhibits better performance and generalizability relative to the mathematical
model.

Table 5.3: Position and force estimation accuracy of RNN model on the varying load testing
data sets.

Data Set
Applied Load (N)

Position Accuracy (%) Force Accuracy (%)

3 98.3 83.9
4 88.7 84.4
5 99.1 96.8
7 98.4 96.6
8 98.4 91.9
9 98.4 94.4
12 94.8 80.4

Overall: 96.6 89.8
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Figure 5.17: Position hysteresis curve estimation results on testing data with 4N and 9N
applied force.

5.3 Position Control Using RNN Model Under Vary-

ing Applied Force

Using the model discussed in Section 5.2, the estimated position and force of the dual
resistance NiTi actuator can be used to control the actuator’s position under varying load
by adjusting the applied current. In order to demonstrate the model’s use in practice, a
proportional integral derivative (PID) controller was implemented into the custom tensile
tester control software. Figure 5.18 illustrates the PID controller used for position control
under varying forces (the system disturbance). The controller calculated the error value
e(t) by subtracting the estimated from the desired position value. Following partial opti-
mization, the PID controller constants used were Kp = 2.0, Ki = 0.0005, and Kd = 0.001.
These constants resulted in relatively fast, stable actuator response.

The results of the RNN position estimator-based PID controller are shown in Fig-
ure 5.19. The controller attempted to accurately set the position of the NiTi actuator
under varying applied forces by accordingly adjusting the applied current. It can be seen
that the largest position control inaccuracies are observed when the force applied to the
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Figure 5.18: Schematic of the implemented PID controller.

actuator is changed. Furthermore, many of the inaccuracies result from the controller’s
inability to rapidly cool the wire. When the applied force is decreased, the controller re-
sponds by decreasing the applied current. Once the current reaches the minimum value of
0.15A, which results in passive cooling dictated by conduction and convection, the cooling
rate is maximized and the controller must wait until the desired actuator temperature is
reached. This effect resulted in larger errors when the applied force was lowered. Given all
of these inaccuracies, the model achieved accurate position control of the dual resistance
NiTi actuator, resulting in an average position accuracy of 95.9%.
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Figure 5.19: PID controller results using RNN position estimation model. Starting from
top: actual, estimated, and control (desired) position during PID control, estimated vs.
control position error, current applied by the controller, and force experienced by the
actuator.
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5.4 Chapter Summary

This chapter utilized the cycling data acquired in Chapter 4 in order to create a multiple
memory SMA actuator control model based on recurrent neural networks for position and
force estimation. The neural network architecture was optimized by individually examining
six model hyperparameters, resulting in a final RNN with maximized achievable accuracy.
This model was then used to successfully perform position estimation on an a multiple
memory SMA actuator with constant applied load using only the input current and mea-
sured SME resistance as model inputs, resulting in prediction accuracy of 99.2%. Finally,
the model was adapted to predict both position and force using a second input resistance
across the PE section of the actuator, resulting in successful predictions with 98.5% and
96.0% overall estimation accuracy for training data position and force, respectively. The
model also achieved 96.6% and 89.9% position and force estimation accuracy, respectively,
on never before seen data, showing successful generalization and good understanding of
the inherent nature of the actuator. The RNN model was successfully applied in a PID
controller which yielded 95.9% position control accuracy under varying applied forces.
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Chapter 6

Conclusions and Future Outlook

The following sections summarize the main conclusions resulting from this work and build
on them by providing several recommendations for future work.

6.1 Conclusions

6.1.1 Thermomechanical Properties

During the thermomechanical processing, post-processing, training, and data acquisition of
the NiTi actuators with two embedded memories, the following conclusions were reached:

1. Thermal characterization of the laser processed NiTi revealed significant increases
in transformation temperature, with the final selected laser parameters caused Af

and Ms to increase by 77.6◦C and 52.0◦C, respectively. Increases in pulse power and
pulse time were also shown to cause transformation temperatures to rise.

2. Evaluation of UTS showed a deterioration in mechanical properties resulting from
laser processing, with the NiTi processed using the selected laser parameters main-
taining only 46% of the corresponding base metal UTS. Optical images of the wire’s
cross section revealed the presence of defects in the processed wire, most of which
were shown to be eliminated by cold working. Thermal cycling was performed on
the post-processed wire, showing positional actuation stabilization within 20 cycles.
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3. Larger heat treatment temperatures increased transformation temperatures while
lowering the detwinning stress plateau and UTS, confirming the trade-off between
mechanical and thermal properties. Heat treatment temperature of 480◦C resulted
in a good balance between thermal and mechanical properties, increasing Af and Ms

by 61.5◦C and 35.3◦C, respectively, while retaining 84.1% of UTS relative to base
metal.

4. The base metal and processed NiTi sections were found to have drastically different
mechanical and electrical characteristics during cycling caused by dissimilar phases at
room temperature. The processed section showed full transformation in response to
applied heat and load due to increased transformation temperatures, whereas the base
metal only achieved partial transformation. This difference in properties confirmed
the successful embedding of a second transformation memory into the monolithic
actuator.

6.1.2 Neural Network Position and Force Estimation of Multiple
Memory NiTi

Using the acquired NiTi cycling data, various recurrent neural network-based models were
developed for predicting the position of the NiTi actuator with two embedded memories.
The following conclusions can be made from analyzing the optimization and performance
of the neural networks:

1. The GRU architecture was found to result in greatly improved performance relative
to the LSTM architecture after equal training steps. LSTM proved to be unstable
during training, requiring learning rate several orders of magnitude lower than that of
GRU in order to successfully train. As a result, GRU resulted in lower MSE, faster
convergence, and more stable training behaviour. Multiple hyperparameters were
optimized for GRU, leading to a final RNN model with good training characteristics
and excellent generalizability to unseen validation and testing data.

2. Using the optimized hyperparameters, an RNN model was trained on NiTi actua-
tor cycling data at a constant load. The model successfully learned the actuator’s
hysteretic behaviour, including major and minor hysteresis loops. The final model
achieved average position prediction accuracy of 99.2% across the entire data set.

3. The RNN with same architecture and hyperparameters was successfully trained to
predict position and force under varying applied loads. The model achieved overall
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accuracy of 98.5% and 96.0% for position and force estimation, respectively, across
all training data sets. Performance evaluation was also performed using testing data
never before seen by the model, resulting in accuracy of 96.6% and 89.8% for position
and force estimation, respectively. Overall, an accurate RNN-based NiTi actuator
position and force estimation model for varying loads was successfully developed.
The RNN model was successfully applied by developing a PID position controller
which achieved position accuracy of 95.9% under varying applied loads.

6.2 Future Work

Based on the results of this study, several recommendations for future research can be
made:

1. This study achieved successful, repeatable fabrication of NiTi wires with two distinct
embedded memories. However, due to cold working and heat treatment, the unpro-
cessed section of the actuator also saw an increase in transformation temperatures.
Further laser processing optimization should be performed in the future to minimize
the required post-processing, reducing the magnitude of the base metal transforma-
tion temperature increase. Ideally, an actuator with two memories exhibiting full
SME and full PE behaviour should be processed in order to better emphasize the
difference in transformation properties between the two sections.

2. Rather than performing heat treatment on the full wire after cold working, methods
(such as Joule heating) for selectively heat treating only the processed sections of the
wire should be explored. By selectively heat treating the laser processed sections, the
cold worked base metal sections will not recover their transformation properties and
will therefore act like a regular material. As a result, the electrical resistance of the
base metal will directly reflect the temperature of the material, whereas the processed
section will exhibit rises and falls in resistance depending on transformation.

3. Although the RNN architectures and hyperparameters used were found to success-
fully perform position and force estimation on the multiple memory NiTi actuators,
more complex models exist which were not thoroughly explored due to time con-
straints. More advanced architectures (such as multilayer GRU and LSTM neural
networks), different optimizers (AdaGrad, Ftrl, RMSProp, Gradient Descent), and
other advanced training strategies (batch normalization, simulated annealing) should
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be explored as they may further improve the RNN performance. Furthermore, vari-
ous other inputs (such as ambient temperature, wire geometry, and wire composition)
can be introduced to the neural network to produce a more advanced model which
works in diverse environments with any NiTi wire geometry and composition.

4. Using the estimated position and force values, along with past current and measured
resistance values, an additional neural network can be developed which predicts the
future position of the NiTi actuator. Position control systems for such a NiTi actuator
would greatly benefit from this model by gaining the ability to predict and correct
the actuator’s position trajectory.
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Appendix A

Custom Tensile Tester Images
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Figure A.1: Image of custom tensile tester showing copper crimp on NiTi actuator with
PE and SME sections above and below the crimp, respectively.
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Figure A.2: Image of custom tensile tester showing air bushing with bottom clamp attached
to the shaft.
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Figure A.3: Image of custom tensile tester showing optical encoder and corresponding
encoder strip.
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Figure A.4: Image of custom tensile tester showing load-applying servo connected to the
bottom shaft.
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Figure A.5: Image of custom tensile tester control board.
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Appendix B

RNN Training Performance on
Constant Load Data
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B.1 Activation Functions
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Figure B.1: Training curves for GRU (top) and LSTM (bottom) RNN architectures using
various activation functions.
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B.2 Batch Sizes
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Figure B.2: Training curves for GRU (top) and LSTM (bottom) RNN architectures using
various batch sizes.
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B.3 Number of Hidden RNN States
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Figure B.3: Training curves for GRU (top) and LSTM (bottom) RNN architectures using
varying numbers of hidden RNN states.
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B.4 Number of Epochs
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Figure B.4: Training curves for GRU (top) and LSTM (bottom) RNN architectures trained
for varying numbers of epochs.
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B.5 Levels of Sparsity
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Figure B.5: Training curves for GRU (top) and LSTM (bottom) RNN architectures using
various levels of look back sparsity.
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B.6 Look Back Length
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Figure B.6: Training curves for GRU (top) and LSTM (bottom) RNN architectures using
varying look back lengths.
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Appendix C

RNN Validation Performance on
Constant Load Data
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C.1 Activation Functions

Figure C.1: Validation MSE curves during training for GRU (top) and LSTM (bottom)
architectures using various activation functions.
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C.2 Batch Sizes

Figure C.2: Validation MSE curves during training for GRU (top) and LSTM (bottom)
architectures using varying batch sizes.
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C.3 Number of Hidden RNN States

Figure C.3: Validation MSE curves during training for GRU (top) and LSTM (bottom)
architectures using varying numbers of hidden RNN states.
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C.4 Number of Epochs

Figure C.4: Validation MSE curves during training for GRU (top) and LSTM (bottom)
architectures using varying numbers of training epochs.
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C.5 Levels of Sparsity

Figure C.5: Validation MSE curves during training for GRU (top) and LSTM (bottom)
architectures using varying levels of look back sparsity.
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C.6 Look Back Length

Figure C.6: Validation MSE curves during training for GRU (top) and LSTM (bottom)
architectures using varying look back lengths.
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Appendix D

Applied Current and Measured
Resistance for RNN Model
Estimation Data
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D.1 Position and Force Estimation on Training Data

Figure D.1: Starting at the top: Current applied to variable load NiTi actuators modeled
using RNN in Section 5.2, along with measured SME and PE resistances. Training data
set was used for all model estimations.
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D.2 Position and Force Estimation on Testing Data

Figure D.2: Starting at the top: Current applied to variable load NiTi actuators modeled
using RNN in Section 5.2, along with measured SME and PE resistances. Testing data set
was used for all model estimations.
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