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Abstract 

Bioanalysis is a sub-discipline of analytical chemistry that focuses on the identification and 

quantification of small and large molecules (e.g. metabolites and proteins) present in biological 

sample matrices (e.g. blood, urine, saliva, plasma, and tissue) that is concerned with measuring a 

biological state or condition. One of the challenges chemists face in bioanalytical applications 

when using conventional analytical procedures such as liquid chromatography coupled to tandem 

mass spectrometry (LC-MS/MS) is the inability to inject the raw sample directly into the 

instrument. As a result, sample preparation steps are required to isolate target analytes from the 

matrix components present in the sample, providing relatively clean sample extracts and reducing 

matrix interferences. The common limitation associated with the majority of the sample 

preparation techniques used in bioanalytical and clinical applications is their time-consuming 

nature. Thus, there is an urgent need of protocols that decrease the total analysis time. An 

alternative to these conventional procedures is a solid phase microextraction (SPME) based 

technology developed at the University of Waterloo that operates as an ambient mass spectrometry 

(AMS) device. Known as coated blade spray (CBS), it combines in a single device the extractive 

and pre-concentrative nature of SPME, with the ability to be directly coupled to mass spectrometry 

(MS) systems without the need for additional instrumentation (e.g. pumps, desorption chambers, 

heating systems). This thesis focuses on the ongoing development and optimization of CBS for 

quantitative analysis of small molecules in biofluids, as well as an assessment of the CBS platform 

for rapid therapeutic drug monitoring (TDM) of immunosuppressive drugs (ISDs) in whole blood. 

To date, this technology has been used only with Thermo Scientific mass spectrometers. Hence, 

the first objective was to demonstrate the suitability of this technology to effectively operate with 

MS instruments from different vendors (e.g. SCIEX and Waters). To achieve this, the experimental 
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parameters of the CBS technology were optimized on an AB SCIEX API 4000 triple quadrupole 

and Waters XEVO G2-S hybrid quadrupole time of flight (QTOF) mass spectrometers, and the 

benchmark analytical performance of both instruments was established. Following the 

identification of the optimal CBS operating parameters, these conditions were applied for the 

concurrent analysis of fentanyl, and five fentanyl analogs from urine and plasma using the AB 

SCIEX MS. Excellent figures of merit were obtained from both matrices, with limits of 

quantitation for all compounds at 0.5 ng/mL or lower, with less than 60 s of total analysis time per 

sample. In the final data chapter, the suitability of the CBS platform for routine clinical analysis 

of four immunosuppressive drugs (ISDs) in whole human blood was investigated, and rigorously 

validated, using guidelines set by the International Association of Therapeutic Drug Monitoring 

and Clinical Toxicology (IATDMCT). The results verified that the optimized method was highly 

reproducible over a 10-day period, with total inter-day variation less than 5 % for all of the 

compounds at three different concentrations. The functional sensitivity of the method improved 

nearly 4 times from the preliminary proof of concept study published earlier this year by Gomez-

Rios, et al. Likewise, a major decrease in analysis time, from 16 h to 2 h was achieved – besting 

the analysis times of automated immunoassays that are employed in clinical laboratories for 

routine analysis of ISDs. Finally, the concentrations of three immunosuppressive drugs in ~100 

patient samples obtained using the CBS-MS/MS methodology were compared to the Abbot 

Laboratories i2000 ARCHITECT automated immunoassay system. Passing-Bablok regression 

analysis demonstrated significant statistical similarities between both methods. Bland-Altman 

plots identified minimal outliers, with some bias in the measurements that were consistent with 

other MS-based methods that were compared to immunoassays.  
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Chapter 1. Introduction 

1.1 Bioanalysis and sample preparation 

The quantitative analysis of molecules such metabolites and biomarkers from complex 

biological matrices (e.g. urine, saliva, plasma, serum, whole blood, and tissue) is commonly 

referred to as bioanalysis. Bioanalysis is an integral component of pharmaceutical drug 

development, screening assays for prohibited drugs, identification of novel biomarkers and 

metabolites for disease characterization, therapeutic drug monitoring (TDM), along with many 

other applications.1–5 The main challenge that researchers face when attempting to quantify a small 

molecule is the complexity, and in some cases, the variability of the sample matrix itself. All 

biological matrices contain numerous components such as salts, proteins, cellular debris (e.g. lipids 

and lipoproteins), and even intact cells.3,6  

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is the most 

common and widespread two-dimensional analytical technique used for analysis of biofluids due 

to its high sensitivity, specificity, and efficiency.1 However, in almost all cases, the biological 

sample cannot be directly injected into the LC-MS/MS system.1 To ensure reproducible and 

sensitive quantification, sample preparation is used to enrich, and isolate the target analyte(s) from 

the matrix. This ensures cleaner extracts enriched with the analyte(s) of interest and with less 

sample interferences.7 Without adequate sample preparation, LC-MS/MS analysis is beset by a 

host of problems. These problems include matrix effects (ME), which lead to suppression or 

enhancement of analyte ion intensity, the presence of lipids, which can affect space charge density 

and subsequent electrospray ionization (ESI), and increased fouling of the instrument leading to 

instrumental downtime and higher maintenance costs.7,8 Different ionization methods used with 

LC-MS/MS include ESI and atmospheric pressure chemical ionization (APCI). These ionization 
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methods are affected to different degrees by the presence of sample matrix interferences.1 For 

example, ESI is much more susceptible to lipids and phospholipids, which enrich at the surface of 

electrosprayed droplets and suppress the signal of target analytes.8 Conversely, APCI is affected 

less by the presence of lipids because there is no competition for ions to enter the gas phase. 

However the signal intensity is intrinsically lower than ESI, which leads to lower sensitivity for 

particular analytes.7,8 

While there are numerous sample preparation methods employed in bioanalysis, there are 

several approaches that cover the majority of the conventional techniques used.3,9 The simplest 

method is known as “dilute and shoot”, and is often used for analysis of urine.3 It is the fastest 

approach, yet it is also the least effective.3 Diluting the sample and immediately starting 

chromatographic separation decreases the overall matrix concentration, which ideally reduces the 

negative influence of the matrix. Unfortunately, there is no extraction and further enrichment of 

target analytes, so matrix effects can still occur, albeit in a slightly reduced capacity.10 Dilute and 

shoot also leads to reduced sensitivity for target analytes in the sample. A sample pretreatment 

step approach amenable to viscous samples such plasma and whole blood is protein precipitation 

(PPT).3 PPT methods use a small amount of miscible organic solvent or other stressors such as 

heat, strong acids/bases, or various salt solutions to denature and subsequently precipitate proteins 

from the sample, thus releasing bound analytes.2,3 After inducing precipitation, the sample is 

usually centrifuged to separate denatured proteins from the rest of the sample. The protein pellet 

is discarded, and the supernatant, which contains the target compounds, is collected and analyzed. 

PPT is fast and practical in some applications where protein interferences are prevalent, or when 

analytes are heavily bound to the matrix. However, it does not effectively separate compounds 

from endogenous interferences such as neutral and polar lipids.3,11   
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Alternatively, samples can be enriched using more intensive sample preparation techniques 

such as Liquid-Liquid Extraction (LLE). In principle, LLE works by mixing the aqueous biofluid 

with an immiscible organic solvent and selectively extracting target analytes from the matrix. 

Separation occurs due to analytes partitioning into the organic phase, which they prefer versus the 

native aqueous matrix.2 While LLE is an effective method for providing clean sample extracts and 

reducing salt concentration, there are a number of limitations which include: 1) large sample 

volumes, 2) minimal extraction of polar compounds, 3) inability to extract wide range of 

compounds (i.e. unbalanced coverage), 4) large amount of consumed solvent, 5) minimal 

automation potential, and 6) laborious and time consuming workflows. 1–3,7 

Recently, a more robust sample preparation method has overtaken dilute and shoot, PPT 

and LLE as the most popular sample preparation method in bioanalysis: Solid Phase Extraction 

(SPE). SPE relies on affinity-based separation to isolate analytes of interest from the sample 

matrix. The sample is flowed through a sorbent – packed cartridge, and analytes with a higher 

affinity for the sorbent than the matrix are selectively retained within the cartridge.3 Interfering 

matrix components with a lower affinity for the stationary phase are washed from the cartridge 

before target analytes are finally eluted.1,7 Some of the advantages of SPE compared to LLE 

include: 1) increased efficiency, 2) shorter run times, 3) wider range of analyte selectivity, 4) 

higher recoveries, and 5) far lower solvent usage.9 Furthermore, SPE has been successfully 

automated and can be applied on-line before chromatographic separation, allowing the sample 

preparation to be directly interfaced with the LC-MS/MS system for high throughput analysis.12 

While SPE is generally considered the gold standard in bioanalytical sample preparation, it is not 

without its own limitations. Clogging of the SPE cartridge due to high protein content in the 

sample, issues encountered with breakthrough (i.e. incomplete recovery of analytes when sorbent 
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capacity is exceeded) when analyzing large numbers of compounds or when handing large sample 

volumes, as well as interferences from unwanted, co-extracted compounds are some of the main 

concerns encountered with SPE preparation techniques for biological samples.8,13,14 

 

1.2 Ambient mass spectrometry 

The bioanalytical process consists of 5 stages: sampling, sample preparation, 

chromatographic separation, detection, and data processing. In most cases, the most time-

consuming steps are sampling and sample preparation, which can take as much as 80 % of the total 

processing time.3 Although sample preparation has proven indispensable in providing cleaner 

samples with less interferences – a necessity for chromatographic separation – all sample 

preparation methods are afflicted by the same limitation: time-consuming workflows. To address 

this constraint, ambient mass spectrometry (AMS) was conceived to characterize samples in their 

native environment.15 As the name implies, ions are produced under the ambient conditions of the 

laboratory (i.e. sources are not enclosed within the instrument), with no additional sample 

pretreatment. There is also no chromatographic separation prior to mass spectrometric (MS) 

analysis, which expedites the process of sampling to introduction of analytes into the MS.15,16 AMS 

was first conceived by Professor Graham Cook’s research group at Purdue University in 2004, in 

the form of a revolutionary technique called desorption electrospray ionization (DESI), followed 

shortly afterwards by direct analysis in real time (DART) in 2005.17,18 While these techniques were 

the first to use the “ambient” MS terminology, it was several years prior in 1999 that the direct 

electrospray probe (DEP) technology pioneered by Professor Jentai Shiea at the National Sun Yat-

Sen University in Taiwan was reported with the same underlying principle.19 The DEP device used 

a copper wire bent into a ring configuration to directly electrospray small volumes of sample  
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(< 5 µL) into the MS under ambient conditions. In 1999, Shiea’s technique was not referred to as 

AMS, however, in retrospect, it represents one of the first attempts of “true” ambient analysis. 

Since these early breakthroughs, AMS methods have garnered increased attention with techniques 

such as transmission mode - direct analysis in real time (TM-DART), paper spray (PS), open port 

probe (OPP) and microfluidic open interface (MOI), dielectric barrier discharge ionization 

(DBDI), probe electrospray ionization (PESI), and liquid extraction surface analysis (LESA).20–29 

These techniques differ significantly in terms of their instrumentation, ionization mechanisms, 

sample interface, detection limits, and applications. However, they all share the unifying principle 

of analyzing samples in their native condition (i.e. without sample pretreatment) by generating 

ions at ambient conditions.15,16 

The brilliance of AMS technologies centers on rapidly decreasing the time needed to go 

from sampling to sample introduction into the MS. Omitting LC separation reduces dilution of the 

sample, and can increase sensitivity to quantify ultra-low concentration analytes (>1 ng/mL).15,16,30 

By analyzing the sample in its native environment, certain AMS methods are capable of acquiring 

the chemical and spatial information and generating a two-dimensional (2D) or three-dimensional 

(3D) mass spectrometric “image”.31 Eliminating several of the preliminary steps, AMS appears to 

be an excellent candidate for high throughput analysis, point of care (POC) testing or TDM.32 

Unfortunately, few methods have been successfully adapted due to the difficulty in automating the 

entire process - specifically the desorption/ionization stage - into a single, consolidated 

autosampler.33,34 As automation/auto-sampler technologies continue to improve, this limitation 

will slowly be phased out.35 Ultimately, the simplified workflow of direct-coupled AMS methods 

will make high throughput, routine analysis quite practical and feasible.  
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Although there are a number of advantages, there are also several disadvantages associated 

with AMS. Sample preparation is critical in conventional bioanalytical LC-MS/MS applications 

to minimize the influence of the matrix on the analysis of target analytes, thus improving the 

overall reproducibility of quantitative analysis at the cost of increased time. Due to the 

simultaneous analyte extraction and ionization steps, there is inherent irreproducibility in AMS 

techniques. One way to mitigate this issue is the use internal standards (e.g. deuterated analogues 

of the target analyte).36 While internal standards are typically used in LC-MS/MS to ensure high 

precision, it is often not entirely necessary. Conversely, introduction of internal standards is critical 

for acceptable precision with AMS techniques to correct for sample complexity and 

variablility.30,33,36 This necessity for internal standards leads to challenges with incorporation of 

the internal standard into the sample, especially when analysis of small volumes of sample or 

whole tissue is desired.33 There is also variability where the ionization occurs, resulting in 

irreproducible ion formation, and subsequent transport into the MS.37 Furthermore, standard 

atmospheric ionization sources in LC-MS/MS such as ESI and APCI are enclosed within the 

instrument, reducing the effects of varying laboratory conditions. AMS methods are generally 

exposed to the open environment, where air flow currents, temperature and humidity changes can 

affect reproducibility by altering the ionization efficiency and the ion transmission into the MS.33,38 

Finally, the biggest disadvantage of AMS is the potential for ion suppression/enhancement due to 

the complete absence of sample preparation.15,39 Analysis of biofluids using AMS methods is 

especially susceptible to this problem because of the high concentrations of lipids, salts and other 

ionic compounds present in the sample.15,40–42 
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1.3 Substrate-ESI technologies 

One of the limitations of the traditional on-line ESI format is that the analyte solution must 

be continuously pumped into the electrospray tip (e.g. LC-MS/MS), in order to control the flow of 

analyte into the instrument.43 This can be avoided by generating the charged droplets directly off 

a solid substrate using an applied voltage, mimicking the tip of the ESI source.15,44 Several 

publications have reported various solid substrates as the support for ESI under ambient 

conditions, ranging from plant leaves to chromatography paper, sharpened wooden sticks, and 

metal probes.19,21,44,45 Ionization from plant leaves permits direct chemical analysis of pesticides 

and other contaminants from the surface of the plant under ambient conditions.45 Alternatively, 

chromatography paper is both cost – effective and readily available approach, while still providing 

a suitable ESI source.21 The paper support can come in the form of a wipe, or a sampler exposed 

to the sample matrix that has been cut in a triangular shape.15,21 PS, which employs the 

aforementioned triangular paper design, has emerged as one of the premier solid substrate-ESI 

techniques for the analysis of small molecules in biofluids under ambient conditions. This is due 

to low sample consumption (≤ 50 µL), fast analyses, sufficient recoveries and no inter-device 

sample carryover.21 The paper support is extremely inexpensive to produce, so sampler carryover 

is eliminated because each sample can be swabbed or pipetted onto its own paper sampler and then 

discarded.21  

Figure 1.1 depicts a standard PS extraction workflow and ionization source.21,46 Succinctly, 

PS begins with application of the sample onto the surface of the paper. This can be in the form of  

 

Figure 1.1. PS analytical workflow for biofluids analysis. 
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of a biofluid spot, immersion of the paper into a aqueous sample or directly swabbing the paper 

onto the sampling surface.21,46,47 Once the sample has been applied to the paper, the paper is dried, 

followed by application of organic solvent at the back edge. Capillary action pulls the solvent 

through the paper towards the tip, carrying dissolved analytes, and other macromolecules towards 

the tip. Once the electric potential has been applied, ESI occurs and a Taylor cone of aerosolized 

gas phase ions is generated at the apex of the paper.21,48 In order to achieve sufficient ionization, a 

high voltage must be applied to the paper (i.e. 3-5 kV). The high voltage increases the rate of 

evaporation of solvent, leading to a shift from ESI to corona discharge as the primary source of 

ionization once the solvent has evaporated.15,46 This shift from ESI to corona discharge increases 

irreproducibility, as some analytes may not be efficiently ionized during corona discharge. 

Additional sources of irreproducibility stem from insufficient sharpness of the tip of the paper, and 

the fibrous composition.37 This destabilizes the electrospray, and results in multiple, smaller Taylor 

cones which distort the flow of ions into the MS.48 

 

1.4 Solid phase microextraction: fundamentals and direct coupling to MS 

Solid phase microextraction (SPME) is an alternative sample preparation technique that 

was developed by Pawliszyn and Arthur at the University of Waterloo in the early 1990s.13,49 

SPME was conceived to provide the perfect balance between sampling and sample preparation. 

This balance facilitates the extraction, and enrichment of target analytes with minimal solvent 

usage.50,51 The general SPME device consists of a solid support coated with a sorbent; typically, a 

polymeric extraction phase. Common extraction phases include C18, hydrophilic-lipophilic 

balanced (HLB), or C18 mixed with a strong cation exchanger (SCX) – which is commonly 

referred to as mixed mode (MM).52 The chemical composition of the coating, as well as the 
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geometry of the sampler are dictated by the experimental setup and chemistry of the target 

compounds. These parameters have been extensively studied and discussed in detail in several 

reviews.25,51–53  

The direct immersion (DI) SPME workflow, provided in Figure 1.2, begins with a 

preconditioning step to prime the coating for the extraction by wetting the bonded functional 

groups in the SPME coating.25,54 The sampler is then exposed to the sample matrix, where 

partitioning of analytes between the matrix and the coating begins, initiating the extraction of 

analytes via the free concentration in the sample.55,56  

 

Figure 1.2. Classical DI-SPME workflow using a polymeric coated fiber for analysis of biofluids. 
 
 

Alternatively, depending on the volatility of the analytes, the composition of the sample 

matrix, and the selected coating chemistry, headspace (HS) extraction methodologies can also be 

used.13,56 HS extractions are employed when the analyte easily partitions between the sample and 

the gaseous volume above the liquid or solid sample (i.e. headspace) contained within the sampling 

enclosure, and when the integrity of the SPME coating is irreversibly compromised if it is placed 

into the sample matrix.13,52 Extraction of target compounds from biofluids is generally achieved 
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via DI of the coated sampler into the sample. Following the extraction, the SPME device is briefly 

washed with ultra-high purity (UHP) H2O before the analytes are desorbed from the coated 

sampler. In a typical SPME-Gas Chromatography (GC) – MS system, analytes can be thermally 

desorbed from the fiber directly into the GC injector, or desorbed into an organic solvent 

compatible with the GC system, followed by separation and eventual mass analysis.49,55 In a 

standard SPME-LC-MS/MS system, extracted analytes are desorbed into an organic solvent 

compatible with the chromatographic method followed by separation and mass analysis.52,57,58  

Inspired by other successful AMS technologies, SPME devices have been directly coupled 

to MS instruments under ambient conditions.  Direct coupling of SPME to the MS is a practical 

approach to reduce analysis time and enhance limits of detection, while maintaining excellent 

reproducibility and instrumental lifespan. This alternative approach to AMS seeks to provide an 

effective compromise between sample preparation and ambient ionization. This compromise aims 

to shift the paradigm from truly AMS methods that employ no sample pretreatment to “enhanced” 

AMS methods, such that the fast and selective sample preparation/extraction capabilities of SPME 

can be utilized prior to MS analysis. Three general strategies for directly coupling SPME to MS 

for bioanalytical and clinical applications have been reported over the last decade, with examples 

of each given in parentheses:51,59 

A) Desorption of analytes in a chamber followed by ionization (e.g. OPP and MOI, DBDI, bio-

SPME fibre nanoESI) 

B) Direct ionization/desorption of analytes from the SPME device (e.g. CBS) 

C) Simultaneous surface desorption and ionization of analytes (e.g. SPME-DESI, SPME-TM-

DART) 
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1.5 Coated blade spray - mass spectrometry 

Coated blade spray (CBS) is one of the newest and most revolutionary SPME platforms that 

was conceived to be the perfect compromise between direct coupling to the MS under ambient 

conditions, and minimal sample preparation (see Figure 1.3).24,60 Essentially, CBS consists of a 

stainless steel sheet, laser cut in the shape of a Roman Gladius sword that is coated with a 

polymeric extraction phase.24 As with any ambient SPME-MS technology, analytes are extracted 

directly from the sample matrix onto the coated blade before being desorbed and ionized following 

the application of a high voltage and a small amount of organic solvent.24,60 Ions are generated 

from the tip of the blade via the classical ESI mechanism as charged droplets or droplet clusters, 

exhibiting the characteristic Taylor cone.24,60 The CBS technology was initially conceived to 

merge the rapid sample preparation abilities of SPME with a solid-substrate ESI source, thus 

improving on other solid-substrate ESI technologies such as PS, which offer no such selective 

extraction ability. 

 

Figure 1.3. (A) CBS schematic. The sorbent coating is represented in orange and the blue tear 
drop represents the dual desorption/ionization solvent. (B) Standard “chronogram” to visualize ion 
signal as a function of time. 
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As with any DI-SPME approach, the analytical CBS workflow starts with a fast 

preconditioning step to “prime” the coating of the blade, as well as ensuring maximum wettability 

of the functional groups of the coating (see Figure 1.4).25,54 The extraction follows, and depending 

on the matrix and the analyte concentration, can be as short as few seconds. The extraction can 

either occur via DI of the blade into the sample vial, in the high-throughput 96 well configuration, 

or by spotting a small volume of the sample matrix onto the coated area of the blade.51,60,61  

 

Figure 1.4. CBS workflow with multiple extraction formats. 
 
 

Depending on the level of sensitivity desired and the compounds of interest, some matrices 

may require longer extraction times unless additional steps are taken to improve selectivity and 

sensitivity, such as chemical derivatization or coatings with embedded molecular imprinted 

polymers or aptamers .47,62–65 After the extraction, the blade is quickly rinsed to remove any matrix 

residues before being placed into a custom built holder/ionization interface. The blade holder 

ensures that the point of the blade is optimally positioned for ions to enter the MS inlet and achieve 
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maximum intensity.33,60 A small volume of solvent (5 – 20 µL) is then pipetted onto the blade. The 

applied solvent facilitates the desorption and transfer of extracted analytes to the upper surface of 

the blade from the sorbent coating. After a 10 s “desorption” stage, the analytes are electrosprayed 

towards the MS inlet until all of the desorption solvent has been sprayed/evaporated. 

 CBS technology is a superior technology to other solid substrate-ESI methods because of 

the rigidity of the metal blade, enhanced practicality, and superior selectivity and sensitivity.60 

Using a sturdy metal support as opposed to paper or wood permits the precision etching of the tip 

to a fine point. The precise etching improves the formation and stability of the Taylor cone, 

ensuring a constant and reproducible spray of ions for analysis.24,66,67 In comparison to PS, which 

uses a nonconductive, porous support, the solid metal blade acts as a conductor, ensuring a stable 

electric field gradient is maintained between the tip of the blade and the MS inlet throughout the 

entire spray event. Maintaining the stability of the electric field between the blade and MS inlet 

greatly improves reproducibility and efficiency of ion formation.24  

 The large surface area of the coating on the blade is another unique characteristic of CBS. 

By maximizing the surface area of the coating, while minimizing the thickness, the total extraction 

time can be decreased without sacrificing detection limits.13,68 It was reported by Gomez-Rios et 

al. that an extraction time of 1 min for cocaine spiked into Phosphate Buffered Saline (PBS) 

resulted in detection limits as low as 2 pg/mL24. At such short extraction times (t < 1 min), the 

extraction takes place in the pre-equilibrium phase. During the pre-equilibrium phase, the analyte 

recovery is governed exclusively by analyte chemistry, convection conditions, extraction time and 

coating surface area.13,55 If these parameters are kept constant, the only factors that influence the 

analyte recovery are the surface area of the coating and the intrinsic properties of the analyte of 

interest (e.g. diffusion coefficient).13,24,50,55  
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The most unique feature of the CBS platform is the sorbent coating on the blade, which 

facilitates the selective extraction and enrichment of small molecules from the sample. Solid 

substrate-ESI methods have no extraction capability, so macromolecules and salts deposited onto 

the sampler are directly ionized into the MS alongside target analytes. This leads to MEs which 

suppress target ion intensity, while also decreasing the lifespan of the MS.39 Recent developments 

in coating technologies have improved the coating’s affinity for compounds of interest.51,52,54,69 

Furthermore, new “biocompatible” sorbent coatings have been developed to facilitate in vivo 

sampling without inducing any toxic reactions in the system of study.25,51 

Compared to detection limits from SPME coupled to LC MS/MS, CBS presents a 

significant sensitivity enhancement. Furthermore, with both sides of the blade coated, it is possible 

to perform one desorption/ionization event on one side of the blade, then flip the blade and perform 

a second elution/ionization on the other side. CBS provides an extremely practical and simple 

analytical platform to enrich molecules from a complex matrix prior to MS analysis with superior 

sensitivity and selectivity. Unlike other SPME-MS strategies, there is no additional equipment 

needed for analysis.60 Specifically, with no capillaries or emitters necessary for CBS, the chance 

of clogging the emitter, which is commonly observed in nano-ESI experiments, is completely 

eliminated33,43.  

 

1.6 Rationale for pursuing CBS 

While CBS clearly has a number of promising features and applications, there is still work 

to be done to fully characterize the technology. CBS was conceived, and initially optimized, using 

a custom built blade holder system that interfaced the blade with a Thermo Scientific TSQ Vantage 

and TSQ Quantiva triple quadrupole instruments.24,60 To expand the reach of the technology, it is 
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critical that further development and optimization of CBS is done to effectively interface the 

technology with a wide variety of MS instruments. This will undoubtedly increase the accessibility 

and overall usage of the technology, while further proving the robustness and applicability of 

CBS70. 

CBS provides a tool for rapid analysis of a broad range of compounds including banned 

substances, pesticides, and therapeutics. The ability to tailor the polymeric sorbent coating to a 

specific class of chemicals, or alternatively, to a wide range of polar and non-polar compounds is 

one of the biggest advantages to the SPME technology. Conventional SPME devices coupled with 

LC-MS/MS systems (e.g. fiber, thin-film) or directly to the MS (e.g. DESI, DART, SPME-nano-

ESI) have conclusively shown a wide range of applicability in the quantitative bioanalysis 

field.6,51,59,71 It would appear that CBS also could be capable of achieving this level of analysis and 

achieve even lower levels of detection and quantitation. If a stable spray of ions from the blade 

can be maintained over the entire spray event, multi-residue analysis (i.e. >100 analyzed 

compounds) is feasible. In this type of application, the maximum number of compounds that could 

be analyzed would be solely dependent on the total stable spraying time, the number of scans per 

second on the MS (i.e. dwell time) and most importantly, the number of analytes extracted by the 

blade itself.  

The speed of the entire process can enable CBS to be implemented for personalized 

medicine, TDM and POC treatment. To provide the highest quality of care to patients, it is of the 

utmost importance that the concentration of a drug or targeted metabolite in a biological sample 

can be rapidly and accurately quantified. Health care professionals can use CBS to effectively 

monitor drugs with a very narrow therapeutic range such as immunosuppressive drugs, track the 

spread of a chemotherapeutic as it traverses through the blood stream, monitor the level of a 
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biomarker or metabolite in a biofluid, or screen samples for different classes of pharmaceuticals 

The thesis herein presented aims to address some of the shortcomings of the CBS-MS 

technology, and adapt and validate the novel methodology for quantitative analysis of several 

medically relevant classes of pharmaceuticals. In summary, this thesis is comprised of three 

distinct chapters: 1) characterizing and optimizing the CBS platform on the AB SCIEX API 4000 

triple quadrupole MS and the Waters XEVO G2-S hybrid quadrupole – time of flight MS 

instruments, 2) applying the aforementioned optimizations from the CBS platform on the AB 

SCIEX API 4000 MS for the rapid, concurrent analysis of fentanyl, and five fentanyl analogs from 

urine and plasma, and 3) evaluating the clinical viability of CBS-MS as an alternative technique 

to conventional assays for the concomitant determination of four immunosuppressive drugs (ISD) 

in whole human blood. 
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Chapter 2. Optimization and characterization of mass spectrometric 
parameters for coated blade spray 
 
2.1 Introduction 

To integrate the CBS technology with any mass spectrometer, the blade interface must be 

optimized based on the specifications of the instrument. Every MS instrument has its own design 

features and characteristics, with a large amount of variability between different MS vendors (e.g. 

Waters, Agilent, Shimadzu, Bruker, Thermo Scientific and AB SCIEX). With that in mind, MS 

manufacturers and end users require a CBS blade holder/ionization source that fits the 

specifications of that particular instrument and which have been rigorously optimized to maximize 

the analytical performance. To date, most experiments on CBS have been focused exclusively on 

the instrumentation of a single MS vendor. In order to demonstrate the versatility of this 

technology, further experimentation with other MS platforms is required. The difficulties that arise 

when coupling CBS with different MS vendors primarily stem from differences in the design of 

the front end of the instruments. Therefore, determining the optimum spatial position in which to 

position the blade in relation to the MS inlet is critical for ensuring the optimal ion transmission. 

Likewise, the presence and velocity of the laminar curtain/sweep gas flowing out of the inlet also 

plays a role in ensuring ion transmission, and as such, this parameter also needs to be evaluated 

before proceeding to future experiments. 

Two instruments were interfaced with the CBS hardware platform for the first time: the 

AB SCIEX API-4000 Triple Quadrupole and Waters XEVO-G2-S QTOF. Due to major technical 

differences between the two instruments, the CBS source needed to be independently optimized 

to accommodate different design features. The API 4000 has several air flow currents originating 

from the vacuum exhaust to the right of the inlet, as well as curtain gas flowing laminarly out of 



 18 

the MS inlet. During routine operation of the instrument, these gases cannot be switched off and 

must be accounted for during the blade position optimization process. In contrast, the XEVO G2-

S MS inlet is placed orthogonal to the electrospray source, requiring an entirely different set of 

operating conditions to accommodate this difference. The optimal placement of the blade in 

relation to the inlet was also investigated on the Thermo Scientific TSQ Quantiva triple quadrupole 

MS, the instrument that has been the most thoroughly characterized and utilized for all of the CBS 

experiments to date.60  

In order to identify the optimal blade position and subsequently evaluate the performance 

of the CBS platform on the AB SCIEX and Waters instruments, seven compounds and five 

deuterated internal standards were chosen for the initial validation. The selected compounds 

spanned a wide range of molecular weights, octanol partitioning coefficients (logP), and protein 

binding affinities, with the physiological properties of each compound summarized in Table 2.1. 

Using the optimized CBS parameters ascertained in the first portion of the work, comprehensive 

calibration curves spanning three orders of magnitude were constructed. These calibration curves, 

as well as external validation points were used to assess the accuracy, precision, linearity, and 

limits of quantitation/detection (LOQ/LOD) of the CBS technology on each instrument in two 

biological matrices (i.e. urine and plasma). 
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Table 2.1. Summary of compounds chosen for CBS characterization and optimization. 
 

Name logP Molecular weight  
(g/mol) 

MRPL* 
(ng/mL) Protein Binding, % 

Buprenorphine 4.63 467.64 5 96 
Clenbuterol 2.94 277.19 0.2 97 
Cocaine 1.97 303.35 100 40 
Fentanyl 4.12 336.48 2 80-85 
Oxycodone 1.07 315.36 50 45 
Salbutamol 0.44 239.30 100 >10 
Sertraline** 5.06 306.23 10 98 

 

All physiochemical data was obtained from NCBI PubChem online database 
(https://pubchem.ncbi.nlm.nih.gov/, Accessed on March 31st 2017). *World Anti-Doping Agency 
(WADA) minimum required performance limits (MRPL) values shown from 2012 report.72 
**Sertraline is not considered a banned substance by WADA standards so there is no MRPL. The 
United Nations Guidelines for the Forensic analysis of drugs facilitating sexual assault and other 
criminal acts report (2011) was used as an alternative to provide a minimum concentration.73 
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2.2 Experimental 

2.2.1 Chemicals, reagents and materials 

Formic acid (FA) and ammonium acetate (AA) were purchased from Sigma-Aldrich (Saint 

Louis, MO, USA), and LC-MS grade methanol (MeOH), acetonitrile (ACN), isopropanol (IPA) 

and water were purchased from Fisher Scientific (Bartlesville, OK, USA). The model compounds 

selected for characterization and optimization: buprenorphine, buprenorphine d4, clenbuterol, 

clenbuterol d9, cocaine, cocaine d3, fentanyl, fentanyl d5, oxycodone, salbutamol, sertraline, and 

sertraline d3, were all purchased from Cerilliant Corporation (Round Rock, TX, USA). For 

compounds that do not have the appropriate matched internal standard (IS), the IS that provided 

the best correction (i.e. the highest precision and accuracy) was used. Individual working stock 

standard solutions were prepared in MeOH at a concentration of 100 µg/mL and stored at -80°C. 

Human plasma (stabilized with K2-EDTA as an anti-coagulant) that had been pooled from 

independent healthy donors was purchased directly from BioIVT (Westbury, New York, USA), 

and used without any further modifications. Urine was collected and pooled from healthy donors 

in the Pawliszyn research group. There were no additional modifications to the urine. All 

biological sample collection was done with the approval of the University of Waterloo Office of 

Research Ethics Board. Matrix-matched calibration curves in urine and plasma were prepared by 

spiking the matrix and storing overnight at 4 °C. This was done to facilitate sufficient binding of 

the analytes with the matrix and simulate physiological binding conditions. Stainless steel blades 

were purchased from Shimifrez Incorporated (Concord, ON, CAN) and used for all experiments 

herein presented. The blades were coated with a slurry of HLB particles and polyacrylonitrile 

(PAN). The procedure to coat the blades was developed in the Pawliszyn research group and 

published recently in Scientific Reports.74 The HLB particles used for the optimization and 
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validation of CBS platform were kindly provided by Waters Corporation. The HLB particles were 

5 µm diameter, the blade coating thickness was 10 µm, and the blade coating length was 15 mm. 

 

2.2.2 Instrumental configuration of AB SCIEX API 4000, Waters XEVO G2-S GTOF and mass 
spectrometric parameters 
 
 All of the experiments described in this chapter were carried out using an AB SCIEX API 

4000 triple quadrupole (Concord, ON, CA), Waters XEVO G2-S QTOF (Wilmslow, UK), or 

Thermo Scientific TSQ Quantiva triple quadrupole MS instruments (San Jose, CA, USA). Data 

acquired from the API 4000 was processed using Analyst 1.6.2 (SCIEX, Concord, ON, CA). Data 

acquired on the XEVO G2-S QTOF was processed using Masslynx 4.1 (Waters Corporation, 

Wilmslow, UK). Data processing on the TSQ Quantiva was done using Thermo Scientific Trace 

Finder v4.1 (San Jose, CA, USA).  

The blades were accurately positioned in front of the entrance of the mass spectrometer 

using different ionization sources built in-house by University of Waterloo Science Technical 

Services. The general system has been described in detail in a previous manuscript.24 

Modifications to the aforementioned ion source were necessary to properly accommodate the 

different source configurations of the MS instruments, primarily in the addition of a separate metal 

plate and locking pin for the XEVO G2-S, and a custom stainless-steel ring and locking pins for 

the API 4000. These modifications are shown in Figure 2.1 and were also built in-house University 

of Waterloo Technical Services. The selected reaction monitoring (SRM) transitions and 

optimized tuning parameters are listed in Table 2.2 and 2.3. Analysis was performed in positive 

ionization mode, and each analyte and deuterated IS were detected as singly charged protonated 

(H+) adducts. MS parameters used for spatial analysis of the Thermo Scientific TSQ Quantiva 

were the same as those used in a previous manuscript by Tascon, et al. in 2017.61  
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Figure 2.1. CBS ionization source interfaced with (A) AB SCIEX API 4000, and (B) Waters 
XEVO G2-S QTOF MS inlets.
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Table 2.2. SRM transitions and optimized tuning parameters for the AB SCIEX API 4000. 
 

Compound 
Precursor 

(m/z) 
Product 

(m/z) 
DP 
(V) 

EP 
(V) 

CE 
(V) 

CXP  
(V) 

Buprenorphine 468.3 396.2 153.3 8.11 51.8 13.1 
Buprenorphine d4 472.3 400.1 174 7.1 54.9 15.3 
Clenbuterol 277.1 202.9 84.6 9.2 23 14.1 
Clenbuterol d9B 286.1 203.9 59.2 8 23.9 16.5 
Cocaine 304.4 182.2 96.2 9.4 28.5 12.4 
Cocaine d3A 307.1 185.1 58.2 8.7 27.9 12.5 
Fentanyl 337.2 188.1 95.2 9.9 31.5 13.6 
Fentanyl d5 342 188.1 117.3 9.2 33.6 20 
OxycodoneA,B 316.2 241.1 84.6 13.2 39.6 17.7 
SalbutamolA,B 240.1 148.1 45.6 6.6 26 9.4 
Sertaline 306.1 275.2 66.4 7.3 17.9 19 
Sertaline d3 309.0 159.0 67.8 4.7 35.3 11.8 

 

DP: Declustering potential; EP: Entrance potential; CE: Collision energy; CXP: Collision exit potential. A corresponds to the internal 
standard used for quantitation of selected compounds from urine. B corresponds to the internal standard used for quantitation of plasma. 
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Table 2.3. SRM transitions and optimized tuning parameters for the Waters XEVO G2-S QTOF. 
 
Compound Precursor (m/z) Product (m/z) CE (V) 
Buprenorphine 468.3146 396.2167 39.5 
Buprenorphine d4 472.3392 400.2427 39.5 
Clenbuterol 277.038 203.0138 15.5 
Clenbuterol d9B 286.1467 204.0209 16.4 
Cocaine 304.1563 182.1185 17.5 
Cocaine d3A 307.179 185.1379 19.1 
Fentanyl 337.2321 188.1456 21.5 
Fentanyl d5 342.2631 188.1456 23 
OxycodoneA,B 316.155 241.1179 26.5 
Salbutamol 240.1607 148.0762 17.5 
Sertaline 306.1614 158.9784 28 
Sertaline D3 309.1006 158.9784 25.7 

 
CE: Collision energy. A corresponds to the internal standard used for quantitation of selected 
compounds from urine. B corresponds to the internal standard used for quantitation of plasma. 
 
 
2.2.3 Blade position optimization parameters 

To identify the optimal blade placement in relation to the MS inlet, a constant flow of 95:5 

MeOH:H2O (v/v) + 0.1% FA spiked with the selected analytes was infused onto the blade using a 

Hamilton auto-sampler syringe (Sigma Aldrich, Saint Louis, MO, USA) directly connected to a 

capillary (Figure 2.2).  

 

Figure 2.2. (A) Delivery of solvent containing selected compounds onto blade. (B) Schematic 
depicting the x,y,z positioning of blade in front of the MS inlet. 
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Using the micro-positioning assembly on the ion source, the blade was moved in 1 mm increments 

in a grid pattern, while a 4.5 kV (API 4000), 5 kV (XEVO G2-S) or 5.5 kV (TSQ Quantiva) electric 

potential was applied to the back of the blade. The application of the high voltage induced an ESI 

event, and the ion signal at that particular coordinate was acquired for 30 s before integrating the 

area under the curve. The concentration of the selected analyte mixture used to identify the 

optimum position of the blade on the API 4000 and TSQ Quantiva was 10 ng/mL, and the flow 

delivered by the syringe pump was 10 µL/min. The concentration of the analyte mixture used for 

identifying the optimum position on the XEVO G2-S was 100 ng/mL, and the flow was 

7.5 µL/min. 

 

2.2.4 Sample preparation and analytical workflow 

The CBS devices used for all experiments were cleaned for 30 min with a MeOH:ACN:IPA 

mixture (40:40:20, v/v) before conditioning for 30 min in a MeOH:H2O solution (50:50, v/v). The 

CBS devices do not have to be wet prior to an extraction event. Therefore, it is practical to clean 

and condition a large number of devices in a batch prior to performing experiments.75 The CBS 

workflow consisted of three stages: 1) high-throughput extraction of target analytes from 300 µL 

of biofluid,61 with 15 min extraction time, 1500 rpm orbital agitation at room temperature, 2) a fast 

H2O rinsing step (5 s) to remove loosely attached matrix constituents, and 3) MS analyses, using 

12 µL of MeOH:H2O (95:5, v/v) desorption/ionization solution spiked with 0.1% FA (FA) and 12 

mM AA was pipetted onto the coating of the blade which had been placed in front of the MS inlet, 

facilitating desorption of analytes into the liquid phase on the surface of the coating. After 10 s of 

static desorption, high voltage was applied to the blade for 20 s, inducing an electrospray event 

that directly introduced the analytes extracted by the coated blade into the MS.  
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2.2.5 Characterization of CBS on AB SCIEX and Waters instruments 

The CBS methodology was characterized in terms of accuracy, precision, linearity and 

sensitivity (i.e. limit of quantitation/detection (LOQ/LOD)). Calibration curves were prepared 

using pooled urine and plasma, with 12 calibration points from 0.05 – 100 ng/mL, plus a matrix 

blank. Three validation points (3, 30 and 90 ng/mL) were analyzed to evaluate the precision and 

accuracy. Four independent replicates were used to determine the imprecision of each 

calibration/validation point. The concentration of the IS in all calibration and validation points was 

10 ng/mL. To account for experimental and instrumental variation, the ion-signal ratio of the 

analyte area under the curve was normalized to the area under the curve of the corresponding 

deuterated IS (A/Is). The LOQ was determined using the following criteria: the lowest calibration 

point that had signal/noise (S/N) ratio > 5, 80 – 120 % back-calculated accuracy using linear 

regression line of best fit, and relative standard deviation < 20 %.  

 

2.2.6 Statistical analysis  

Microsoft Excel v16.14 and Tibco Statistica 13.3 basic academic bundle were used for 

statistical analysis. 
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2.3 Results and discussion 

2.3.1 Optimization of blade position in relation to MS inlet 

In the majority of substrate spray methodologies, there has been minimal importance 

placed on elucidating the optimal position of the device in front of the MS.60,76,77  Furthermore, it 

has previously been reported that the position of the substrate spray device does not have a 

significant effect on the analytical performance for analysis of strongly ionized compounds such 

as cocaine, and so the blade is simply placed several mm back from the center of the inlet.46  

However, this phenomenon has never been thoroughly studied for mixtures of compounds with 

varying physiochemical properties. Therefore, the first stage of the CBS characterization process 

was to identify the position that yielded the best analytical results for the selected compounds. As 

shown below in Figures 2.3, 2.4 and 2.5, each instrument that was investigated had a characteristic 

profile that is generally conserved for all of the studied analytes.  

Figure 2.3. Heat maps for selected compounds on AB SCIEX API 4000. The black circle 
represents the MS inlet (~1.55 mm diameter). Blue points represent acquisition points. (A) 
salbutamol. (B) clenbuterol. (C) oxycodone. (D) buprenorphine. (E) sertraline. (F) fentanyl & 
cocaine. 
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Figure 2.4. Heat maps for selected compounds on Waters XEVO G2-S QTOF. The black circle 
represents the size of the MS inlet (~0.87 mm diameter). Blue points represent acquisition points. 
(A) salbutamol. (B) clenbuterol. (C) oxycodone. (D) buprenorphine. (E) sertraline. (F) fentanyl & 
cocaine. 
 
 

 
Figure 2.5. Heat maps for selected compounds on Thermo Scientific TSQ Quantiva. The black 
rectangle represents the size of the MS inlet (~ 0.40 mm x 1.6 mm). Blue points represent 
acquisition points. (A) salbutamol. (B) clenbuterol. (C) oxycodone. (D) buprenorphine. (E) 
sertraline. (F) fentanyl & cocaine. 
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Interestingly, the API 4000 had the strongest dependence on the blade position to achieve 

acceptable sensitivity and spray stability. This observation suggests that the laminar curtain gas 

flowing out of the inlet has a significant effect on the overall CBS performance. Out of the seven 

compounds that were investigated, salbutamol and oxycodone were considerably affected by the 

position of the CBS in regards to the MS inlet on the AB SCIEX instrument, only producing 

sufficient ion intensity and electrospray stability when the blade was placed several millimeters 

above the inlet. The other 5 compounds showed minimal preference for the blade positioned above 

or below the MS inlet, producing similar intensities in either position. Salbutamol and oxycodone 

were the most polar analytes of interest with logP values of approximately 1 or less. This position 

dependency may be the result of differing proton affinities between compounds; however, this 

hypothesis needs to be investigated further.78 Ultimately, the best results were obtained when the 

blade is positioned ~3 mm above the inlet; this position is high enough that the curtain gas does 

not dry the desorption solvent or affect the electrospray stability, but low enough for a sufficient 

number of ions to reach the entrance.  

As expected, no significant differences in terms of blade placement were observed from 

the analytes of interest on the XEVO G2-S and TSQ Quantiva. Both instruments displayed the 

highest ion intensity and spray stability when the blade was placed directly in line with the inlet, 

with a considerable amount of flexibility in both the x and y dimension. Since neither instrument 

has a laminar curtain gas that is activated during CBS experiments, this further validates the 

hypothesis that the presence or absence of a curtain gas is the main factor that affects the 3D 

placement of the blade.  

The optimized blade placement and CBS conditions for the selected analytes on the AB 

SCIEX API 4000 were determined to be 6.7 mm back from the inlet, 3 mm above, and 4.5 kV 
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applied voltage. The Waters XEVO G2-S QTOF had slightly different parameters, with the 

optimal distance of the tip of the blade to the inlet being 6 mm, with the no offset in the x or y 

dimension. The optimal voltage was established to be 5 kV. Similar parameters were identified on 

the Thermo Scientific TSQ Quantiva, with the only difference being that the tip of the blade should 

be placed 8 mm from the MS inlet. The applied voltage was previously optimized in several 

publications, and was kept constant at 5.5 kV.60,61,79 

 

2.3.2 Characterization of the CBS platform 

Urine and plasma were chosen as representative matrices to assess the suitability of the 

API 4000 and XEVO G2-S as effective instruments to directly couple to CBS. Urine is one of the 

most widely available biological matrices, and the most commonly tested matrix for testing of 

prohibited substances by monitoring agencies such as the World Anti-Doping Agency (WADA).14 

The figures of merit obtained for extractions from urine using the API 4000 are shown in Table 

2.4, and the results are very promising. All of the selected compounds had LOQs lower than the 

minimum required performance level (MRPL) set by WADA, with excellent linearity (R2 

> 0.9989) observed as well. Accuracy values for the three validation points of all seven compounds 

were between 91.0 – 112.9 %. Excellent precision was achieved, with RSD’s between 1.2 – 14.4 %. 

It should also be noted that using the high throughput, 96 well-plate format, total extraction and 

analysis time was less than 60 s per sample, demonstrating the speed, accuracy and sensitivity of 

the technique.61  

Plasma is often used as a complement to urine for banned substance analysis to provide an 

alternative biological snapshot of the subject. Furthermore, plasma is a well-studied matrix that is 

used for the majority of pharmacokinetic (PK) and pharmacodynamic (PD) studies.80,81 The 
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difficulty with using plasma as a biological matrix for SPME is the preferential binding of target 

analytes with proteins present in the matrix.56 This reduces the free concentration of analytes, and 

thus, there is intrinsically less analyte that can be extracted by the SPME device.56 Therefore, 

extraction conditions such as time of extraction, temperature, and agitation must be carefully 

optimized to ensure that maximum sensitivity is achieved when working with matrices with high 

protein content. As seen in Table 2.5, excellent results were obtained for analysis of the selected 

compounds from plasma using CBS on the API 4000. All of the compounds, with the exception of 

clenbuterol, had LOQs that were lower than the MRPL, with linearity (R2) greater than 0.994 for 

the selected compounds. Accuracy of the validation points was between 93.0 – 117.0 %, and 

precision between 0.9 – 24.3 %. In both biological matrices that were evaluated, the figures of 

merit for CBS were comparable to those obtained on the TSQ Quantiva, a much newer and more 

advanced instrument.61  

This is the first instance of a SPME device being directly coupled to a hybrid QTOF MS. 

While these instruments cannot match the sensitivity provided by conventional triple quadrupoles, 

they offer a major increase in selectivity due to their high mass resolution, which can provide 

higher S/N ratios in particular analytical challenges.82,83 In certain applications, high-resolution 

analysis can be incredibly useful in distinguishing between two analytes that have the same 

nominal mass, but different accurate mass. However, historically, the main issue with QTOF 

instruments was their relatively narrow dynamic range, which limited their applicability for 

quantitative applications.83 Therefore, the main objective for coupling CBS with the Waters XEVO 

G2-S was to determine if a linear response could be obtained in complex biological matrices over 

several orders of magnitude. This would permit accurate quantitation of the selected compounds, 

establishing that CBS can be employed for preliminary, high resolution screening methodologies, 
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with confirmation of tentative positive samples with more sensitive assays such as LC-MS/MS. 

Furthermore, this study aims to demonstrate the feasibility of using the CBS device for untargeted 

analyses, where stability and reproducibility of the ion signal is critical for elucidating statistical 

differences between different sample groups. 

The same analytical workflow used for the API 4000 was employed for the characterization 

of the XEVO G2-S, with the figures of merit listed in Tables 2.6 and 2.7. For the analysis of urine, 

all seven compounds of interest were accurately quantitated with LOQs ranging from 0.25 to 

10 ng/mL. Linearity (R2) of the seven compounds was greater than 0.98. Three compounds 

achieved LOQs of < 1 ng/mL, displaying excellent accuracy (92.7 – 112.5 %) and precision (1.8 

– 12.0 %) for the three validation points. The lowest concentration validation point was excluded 

for the compounds that had LOQs higher than 3 ng/mL; however, accuracy (83.4 – 110.9 %) and 

precision (2.6 – 19.4 %) were still acceptable for the two higher concentration validation points. 

Surprisingly, salbutamol could not be corrected using any of the deuterated internal standard due 

to high imprecision and inaccuracy. However, the uncorrected data was satisfactory, with RSD 

values less than 20 % for all calibration points and validation points.  

The quantitation of the selected compounds from plasma using the XEVO G2-S also 

generated superb results, with five of the seven compounds reaching LOQs of at least 0.5 ng/mL, 

and linearity (R2) greater than 0.986.  Accuracy and precision for compounds with < 1 ng/mL 

LOQs demonstrated adequate accuracy (80.3 – 117.4 %) and precision (1.4 – 16.6 %) for the three 

validation points that were tested. Buprenorphine and sertraline displayed poorer figures of merit, 

and the lowest validation point was excluded. Despite this, the accuracy (90.2 – 93.0 %) and 

precision (3.8 – 9.6 %) for the remaining two validation points were excellent. As reported above, 
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none of the deuterated IS’s were capable of precisely correcting salbutamol, and therefore, no IS 

was used for quantitation. 

As expected, the figures of merit obtained on the XEVO G2-S confirmed that the QTOF 

MS was less sensitive than the API 4000 triple quadrupole. However, the matrix played a 

significant role in the LOQs, with lower limits achieved in plasma compared to urine. Interestingly, 

if the traditional 10 times the S/N criterion is used to calculate the LOQs on the XEVO G2-S, it is 

possible to reach concentrations one order of magnitude lower for the selected analytes. This 

observation speaks to the high mass accuracy of the instrument – the observed noise in the matrix 

blanks is so low because the exact mass is used for acquisition in each SRM channel, facilitating 

easy detection at low concentrations. However, the loss of linearity, reflected by the decrease in 

accuracy and precision at the lower concentration calibration points, makes quantitation at ultra-

trace levels unfeasible with the current parameters. If lower LOQs are desired, throughput could 

be sacrificed by increasing the extraction time and/or the sample volume, in an effort to increase 

the amount of analyte extracted by the device. 



 34 

Table 2.4. Figures of merit for characterization of the CBS platform interfaced on the AB SCIEX API 4000 MS – Quantitation of 
selected compounds from pooled human urine. 

 
 
Table 2.5. Figures of merit for characterization of the CBS platform interfaced on the AB SCIEX API 4000 MS – Quantitation of 
selected compounds from pooled human plasma.      

Accuracy (n = 4), % Precision (n = 4), % 

Compound slope intercept R2 
LOQ 

(ng/mL) 
3 

ng/mL 
30  

ng/mL 
90  

ng/mL 
3  

ng/mL 
30  

ng/mL 
90  

ng/mL 
Buprenorphine 0.11 0.010 0.999 0.25 106.7 105.2 99.3 3.7 3.1 2.6 
Clenbuterol 0.17 0.002 0.999 0.05 113.2 100.1 93.6 2.7 3.3 2.3 
Cocaine 0.09 0.010 0.999 0.25 117.0 101.2 94.3 3.2 3.8 1.2 
Fentanyl 0.18 0.007 0.999 0.25 111.1 102.4 95.5 4.2 0.9 1.2 
Oxycodone 0.01 0.000 0.997 0.25 104.9 112.1 99.0 6.5 3.8 11.2 
Salbutamol 0.07 -0.001 0.994 0.25 110.1 102.2 95.3 16.4 7.6 24.3 
Sertraline 0.14 0.000 0.999 0.1 95.3 101.3 97.4 2.0 2.4 2.5 

 
 

     
Accuracy (n = 4), % Precision (n = 4), % 

Compound slope intercept R2 LOQ 
(ng/mL) 

3 
ng/mL 

30 
ng/mL 

90 
ng/mL 

3 
ng/mL 

30 
ng/mL 

90 
ng/mL 

Buprenorphine 0.13 0.009 0.999 0.25 91.0 93.7 102.1 8.0 6.7 3.9 
Clenbuterol 0.19 0.009 0.999 0.1 96.7 97.6 97.4 4.4 4.1 2.0 
Cocaine 0.09 0.000 1.000 0.1 92.8 97.2 100.3 5.7 3.8 2.5 
Fentanyl 0.18 0.002 1.000 0.05 101.9 97.0 103.1 4.7 3.6 2.9 
Oxycodone 0.01 0.001 0.999 0.25 112.9 98.0 95.7 11.1 12.1 11.5 
Salbutamol 0.03 0.004 0.999 0.25 106.0 97.6 105.1 10.8 13.8 14.4 
Sertraline 0.13 0.002 1.000 0.05 105.0 102.1 95.5 4.3 1.2 3.9 
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Table 2.6. Figures of merit for characterization of the CBS platform interfaced on the Waters XEVO G2-S QTOF MS – Quantitation 
of selected compounds from pooled human urine.      

Accuracy (n = 4), % Precision (n = 4), % 

Compound slope intercept R2 
LOQ 

(ng/mL) 
3  

ng/mL 
30  

ng/mL 
90  

ng/mL 
3  

ng/mL 
30  

ng/mL 
90  

ng/mL 
Buprenorphine 0.14 -0.54 0.994 5.00 - 85.4 83.4 - 12.6 15.1 
Clenbuterol 0.10 0.05 0.996 0.25 98.0 107.4 97.8 4.8 4.9 12.0 
Cocaine 0.11 -0.10 0.998 0.50 93.3 92.7 107.0 5.7 4.8 2.7 
Fentanyl 0.09 0.11 0.994 0.25 98.2 112.5 98.1 7.1 4.4 1.8 
Oxycodone 0.01 0.05 0.995 10.00 - 110.9 100.8 - 19.4 6.0 
Salbutamol* 4.91 18.45 0.988 10.00 - 95.3 90.6 - 2.6 4.6 
Sertraline 0.05 1.67 0.980 10.00 - 95.0 107.6 - 5.3 5.0 

* No internal standard correction was applied for quantitation. 
 
Table 2.7. Figures of merit for characterization of the CBS platform interfaced on the Waters XEVO G2-S QTOF MS – Quantitation 
of selected compounds from pooled human plasma.      

Accuracy (n = 4), %, ng/mL Precision (n = 4), %, ng/mL 

Compound slope intercept R2 
LOQ 

(ng/mL) 
3  

ng/mL 
30  

ng/mL 
90  

ng/mL 
3  

ng/mL 
30  

ng/mL 
90  

ng/mL 
Buprenorphine 0.11 0.01 0.998 5.0 - 93.0 90.2 - 3.8 6.5 
Clenbuterol 0.12 -0.11 0.998 0.5 86.6 98.6 100.8 10.7 5.5 5.2 
Cocaine 0.15 -0.14 0.998 0.5 80.3 96.9 107.8 5.7 1.4 1.7 
Fentanyl 0.09 0.10 0.991 0.5 94.7 117.4 97.6 4.5 2.2 4.1 
Oxycodone 0.02 0.00 0.993 0.5 100.5 92.4 87.8 10.9 6.9 4.1 
Salbutamol* 17.19 45.76 0.995 0.1 106.9 114.0 93.8 16.6 16.1 10.8 
Sertraline 0.04 2.10 0.986 25.0 - 90.8 92.1 - 9.6 7.7 

* No internal standard correction was applied for quantitation.
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2.4 Conclusions 

In summary, CBS is a novel SPME device that is directly coupled to the MS, permitting rapid, 

concomitant analysis of a wide range of compounds under ambient conditions. The main objective 

of this chapter was to interface the CBS technology on two instruments: the AB SCIEX API 4000 

and Waters XEVO G2-S QTOF. To achieve this objective, the spatial position of the blade was 

identified on both instruments and compared with the instrument that has been used for the 

majority of CBS experiments (Thermo Scientific TSQ Quantiva), along with determination of 

several other CBS parameters necessary for routine operation. Following the preliminary 

optimization, the analytical performance of the SPME-MS technology was characterized on both 

instruments.  

The CBS positioning experiments identified the optimal position of the blade, with each 

instrument exhibiting a distinct spatial profile when the blade was moved in relation to the MS 

inlet. An important finding to emerge from this study was that the AB SCIEX instrument was the 

most sensitive to the position of the blade, due to the presence of a curtain gas flowing laminarly 

out of the MS inlet. After completing the initial optimization, the ideal parameters were 

implemented to assess the analytical capabilities of CBS on each instrument. Excellent figures of 

merit were obtained on the AB SCIEX API 4000 MS, matching the results obtained using a more 

advanced instrument (Thermo Scientific TSQ Quantiva). The figures of merit for the Waters 

XEVO G2-S QTOF was also quite respectable, with LOQs for most of the analytes surpassing the 

1 ng/mL level. Ultimately, these findings establish CBS as a versatile technology that is capable 

of being interfaced with a variety of different instruments, increasing the potential for future 

projects and applications.  
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Chapter 3. Quantitative analysis of fentanyl, and five related analogs 
using coated blade spray – mass spectrometry 
 
3.1 Introduction 

Fentanyl is a potent opioid analgesic that primarily interacts with opioid µ-receptors that 

are distributed throughout the central nervous system (CNS).84–86 First released to the medical 

community in the 1960 by Dr. Janssen of Janssen pharmaceuticals in Belgium, it was marketed for 

chronic pain management and palliative care.85,86 In recent years, more potent fentanyl analogs 

have been synthesized for medical and veterinary applications, with structures of some of these 

analogs shown below in Figure 3.1. The most powerful fentanyl analogs, such as carfentanil, have 

been deemed to have no medical use in humans, and have been heavily regulated and restricted as 

Schedule I and II compounds by the United States Drug Enforcement Agency (DEA).86  

 

Figure 3.1. Structures of selected fentanyl analogs. Structures obtained from NCBI PubChem 
online database (https://pubchem.ncbi.nlm.nih.gov/, Accessed on June 12th, 2018) 
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Due to their potency, relative ease of access, and low cost, fentanyl and its related analogs 

can be easily abused, resulting in overdoses and potential fatalities. There have also been reports 

of recreational drugs that have been laced with these compounds, leading to accidental 

consumption, and adding to the growing fentanyl epidemic worldwide.86 Since the late 1990’s, 

there has been a massive spike in fatal overdoses attributed to these potent opioids, with over 

16,000 deaths reported in 2013.85 To mitigate this growing epidemic, it is critical that analytical 

methods for POC testing and harm reduction strategies are capable of detecting these compounds 

quickly, reliably, and sensitively, in a variety of biological matrices (e.g. urine, plasma or whole 

blood).  

Before the emergence of MS/MS as the gold standard for analytical quantitation, the 

majority of analytical methods for analysis of fentanyl and its related analogs employed different 

immunoassays, followed by confirmation with GC-MS. The biggest limitation to this approach is 

the poor sensitivity of the immunoassays, and cross reactivity of the antibodies and between drugs 

and their metabolites.87 More recently, LC-MS/MS methodologies have prevailed due to their 

increased sensitivity and selectivity for the target analytes.87 Furthermore, these conventional 

methodologies all require sample preparation prior to analysis, with SPE being the most common 

approach.87  

Unfortunately, the necessary sample preparation and chromatographic separation steps are 

time consuming and laborious, and they can sometimes require expensive reagents or specialized 

hardware, making conventional techniques impractical for rapid diagnostics and POC testing. 

Direct to MS methodologies are a superior alternative, as they improve patient care and healthcare 

outcomes by providing critical information faster, and more easily to frontline healthcare 

professionals.15,16 CBS should be an ideal analytical technique for the determination of fentanyl 
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and fentanyl analogs from various biofluids, primarily due to its intrinsic combination of the 

sampling and sample preparation stages.60 The practical and stream-lined analytical workflow of 

CBS-MS/MS is conducive for untrained personnel to operate, thus providing health care 

professionals with reliable, clinically relevant information.60 Finally, the polymeric coating on the 

surface of the blade adds an increased level of selectivity that other direct to MS methods such as 

PS cannot match.77,88  

This chapter focuses on applying the optimized CBS parameters that were identified on the 

AB SCIEX API 4000 MS in Chapter 2 for the concurrent analysis of fentanyl, as well as five 

related fentanyl analogs from human plasma and urine. The optimum extraction time for the 

selected compounds was determined, and the method was characterized by constructing calibration 

curves in both matrices to evaluate the accuracy, precision, linearity and LOQs/LODs in both 

matrices. Ultimately, this work serves to demonstrate CBS as a suitable high-throughput 

technology for rapid therapeutic diagnostics and POC applications. 
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3.2 Experimental 

3.2.1 Chemicals, reagents and materials 

FA and AA were purchased from Sigma-Aldrich (Saint Louis, MO, USA), and LC-MS 

grade MeOH, ACN, IPA and water were purchased from Fisher Scientific (Bartlesville, OK, 

USA). Fentanyl, fentanyl d5, acetyl fentanyl, acetyl fentanyl 13C6, sufentanil, sufentanil d5, 

carfentanil, carfentanil d5, alfentanil, and 4-Aminophenyl-1-phenethylpiperidine (4-ANPP) were 

all purchased from Cerilliant Corporation (Round Rock, TX, USA). For compounds that do not 

have the appropriate matched IS, the IS that provided the best correction (i.e. the highest precision 

and accuracy) was used. Individual working stock standard solutions were prepared in MeOH at a 

concentration of 100 µg/mL and stored at -80 °C. Human plasma with K2-EDTA that had been 

pooled from independent healthy donors was purchased directly from BioIVT (Westbury, New 

York, USA) and used without any further modifications. Urine was collected and pooled from 

healthy donors in the Pawliszyn research group. There were no additional modifications to the 

urine. All biological sample collection was done with the approval of the University of Waterloo 

Office of Research Ethics Board. Matrix-matched calibration curves, as well as samples used for 

constructing the extraction time profiles in urine and plasma were prepared by spiking the matrix 

and storing overnight at 4 °C. This was done to allow sufficient binding equilibrium of the analytes 

with the matrix. Stainless steel blades were purchased from Shimifrez Incorporated (Concord, ON, 

CAN) and used for all experiments herein presented. The blades were coated with a slurry of HLB-

PAN. The HLB particles used for all experiments in this chapter were synthesized in-house by Dr. 

Varoon Singh.89 Scanning electron microscopy (SEM) imaging was used to characterize the 

physical characteristics of the particles, and the average particle dimeter was determined to be 

~ 7.5 µm (Figure 3.2). The procedure to coat the blades was developed in the Pawliszyn group and 
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published recently in Scientific Reports.74 The coated blades had a coating thickness of ~ 15 µm, 

and a coating length of 10 mm. 

 
 
Figure 3.2. SEM image of in-house synthesized HLB particles. 
 

3.2.2 Instrumentation 

All of the experiments described in this chapter were carried out using an AB SCIEX API 

4000 triple quadrupole mass spectrometer (Concord, ON, CA), implementing the optimized 

parameters identified in Chapter 2. Data processing was completed using Analyst 1.6.2 (SCIEX, 

Concord, ON, CA). The blades were accurately positioned in front of the entrance of the mass 

spectrometer using an ionization source built in-house by the University of Waterloo machine 

shop. This system has been described in detail in a previous manuscript, as well as in Chapter 2.24 
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The SRM transitions and optimized tuning parameters for the selected compounds are listed in 

Table 3.1. Analysis was performed in positive ionization mode, and each analyte and deuterated 

IS were detected as singly charged protonated (H+) adducts. 

 
Table 3.1. SRM transitions and optimized tuning parameters 
 

Compound logP 
Precursor 

(m/z) 
Product 

(m/z) 
DP 
(V) 

EP 
(V) 

CE 
(V) 

CXP  
(V) 

4-ANPP * 3.49 281.2 188.2 66.0 10.5 24.3 12.7 
Acetyl fentanyl  3.11 323.2 188.2 102.2 10.0 32.7 14.1 
Acetyl fentanyl 13C6 **  329.2 188.2 90.9 11.3 30.8 17.8 
Alfentanil ** 2.81 417.2 165.1 95.2 8.9 35.9 17.0 
Carfentanil 3.67 395.4 335.2 90.0 11.2 25.0 9.6 
Carfentanil d5  400.2 340.2 87.8 11.0 25.9 10.1 
Fentanyl 4.05 337.3 188.3 99.1 11.2 30.7 12.4 
Fentanyl d5 *  342.2 188.2 98.9 10.8 32.2 14.3 
Sufentanil 3.95 387.4 238.2 93.8 13.1 25.2 20.8 
Sufentanil d5  392.3 238.2 90.0 13.1 26.7 16.6 

 
* Fentanyl d5 was used as the internal standard for 4-ANPP. ** Acetyl fentanyl 13C6 was used as 
the IS for alfentanil. All physiochemical data was obtained from NCBI PubChem online database 
(https://pubchem.ncbi.nlm.nih.gov/, Accessed on March 31st 2017).  
 

3.2.3 Sample preparation and analytical workflow 

The CBS devices used for all experiments were cleaned for 30 min with a MeOH:ACN:IPA 

mixture (40:40:20, v/v), before conditioning for 30 min in a MeOH:H2O solution (50:50, v/v). The 

CBS devices do not have to be wet prior to an extraction event, therefore, it is practical to batch 

clean and condition a large number of devices prior to performing experiments.75 The CBS 

workflow consisted of three stages: 1) high-throughput extraction of target analytes from 300 µL 

of biofluid,61 15 or 20 min extraction time (plasma and urine, respectively), 1500 rpm orbital 

agitation at room temperature, 2) a fast H2O rinsing step (5 s) to remove loosely attached 

macromolecules, salts, and cellular debris, and 3) MS analyses, whereby 12 µL of MeOH:H2O 
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(95:5, v/v) desorption/ionization solution spiked with 0.1 % FA and 12 mM AA was pipetted onto 

the coating of the blade which had been placed in front of the MS inlet. After 10 s of static 

desorption to allow extracted analytes to partition from the coating into the desorption/ionization 

solution on the surface, a 4.5 kV high voltage was applied to the blade for 20 s, inducing an 

electrospray event that directly introduced the analytes extracted by the coated blade into the MS. 

 

3.2.4 Extraction time profiles 

Five extraction times between 5 – 25 mins were evaluated to identify the optimal extraction 

time in each matrix. The extraction time that provided the highest S/N and integrated area was 

chosen for the method characterization stage. Concentration of the target analytes and ISs in both 

matrices were kept constant at 10 ng/mL, with corresponding matrix blanks evaluated at each time 

point. Four individual replicates were analyzed, and the area under the curve of the spiked sample 

was compared to the matrix blank signal to determine the S/N at each time point. 

  

3.2.5 CBS method evaluation 

The performance of the CBS method for analysis of fentanyl and 5 fentanyl analogs was 

evaluated in terms of accuracy, precision, linearity and sensitivity (i.e. LOQ and LOD). Calibration 

curves were prepared in pooled human urine and plasma, with nine calibration points from 0.1 – 

100 ng/mL, as well as a blank. Two validation points (7.5 and 75 ng/mL) were analyzed to evaluate 

the precision and accuracy. Four independent replicates were used to determine the imprecision of 

each calibration/validation point. The concentration of the ISs in all calibration and validation 

points was 10 ng/mL. To account for experimental and instrumental variations, the ion-signal ratio 

of the analyte area under the curve was normalized to the area under the curve of the isotopically 
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labelled internal standard (A/Is). The LOD was estimated as the lowest concentration with S/N 

> 3. The LOQ was calculated using the following criteria: the lowest calibration point that had 

signal/noise (S/N) ratio > 5, 80 – 120 % back-calculated accuracy using linear regression line of 

best fit, and relative standard deviation < 20 %.  

 

3.2.6 Statistical analysis 

Microsoft Excel v16.14 was used for all statistical analyses. 
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3.3 Results and discussion 

3.3.1 Determination of optimal extraction time 

The extraction time was optimized to obtain maximum sensitivity for five of the six 

fentanyl analogs. Extractions from urine and plasma spiked with a 10 ng/mL mixture of the 

selected compounds were performed at the following time points: 5, 10, 15, 20, and 25 min. 

Individual extraction time profiles (ETP) for each compound in both matrices are shown below in 

Figures 3.3 to 3.7. The ETPs from plasma (A) determined that the optimal time (i.e. the highest 

signal with the lowest noise) was achieved after a 15 min extraction with 1500 rpm agitation. 

Likewise, the ETPs from urine (B) demonstrated that a longer extraction time was needed to reach 

the optimal conditions. In this case, a 20 min extraction with 1500 rpm was deemed to provide the 

best results. Beyond determining the optimum extraction time, the ETPs with corresponding 

matrix blanks serve a secondary purpose: to assess how the noise increases as a function of 

extraction time. In some instances, longer extractions may appear to extract more analyte. 

However, if the noise associated with the co-extraction of other substances with the same SRM 

transition is also increasing, then there is no improvement in the overall sensitivity of the method, 

and the longer extraction time serves only to decrease the throughput of the method. 

 

Figure 3.3. Extraction time profiles for acetyl fentanyl from (A) plasma and (B) urine. Four 
individual replicates with different CBS devices were analyzed at each time point. 
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Figure 3.4. Extraction time profiles for fentanyl from (A) plasma and (B) urine. Four individual 
replicates with different CBS devices were analyzed at each time point. 
 
 

 
Figure 3.5. Extraction time profiles for sufentanil from (A) plasma and (B) urine. Four individual 
replicates with different CBS devices were analyzed at each time point. 
 
 

 
Figure 3.6. Extraction time profiles for carfentanil from (A) plasma and (B) urine. Four individual 
replicates with different CBS devices were analyzed at each time point. 
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Figure 3.7. Extraction time profiles for alfentanil from (A) plasma and (B) urine. Four individual 
replicates with different CBS devices were analyzed at each time point. 
 

3.3.2 Evaluation of CBS method for quantitative analysis 

Shown below in Figure 3.8, the matrix matched calibration curves displayed excellent 

linearity (R2 > 0.997) for all six of the fentanyl analogs that were analyzed. For the quantitation of 

the selected analytes from plasma (Figure 3.8 (A)), very respectable figures of merit were attained, 

as seen in Table 3.2. The LOQs for all of the target analytes were determined to be 0.5 ng/mL. 

These LOQs were lower than the concentrations reported in overdose cases and fatal poisonings 

in whole blood, which ranged from 1.4 ng/mL to 386 ng/mL.85,90–92 Precision and accuracy of the 

two validation points were between 97.6 – 112.3 %, and 2.7 – 13.7 % respectively. The figures of 

merit obtained for quantitation from human urine were also quite promising (Figure 3.8 (B), with 

LOQs as low as 0.1 ng/mL for the majority of the compounds, as noted in Table 3.3. Accuracy of 

the two validation points ranged from 93.5 – 109.7 %, with precision between 1.2 – 7.8 %. 

Furthermore, using the classical S/N > 3 criteria to estimate the LOD, the CBS methodology was 

capable of detecting some of the selected compounds in the low pg/mL range. To reach ultra-low 

detection limits for all of the fentanyl analogs, more advanced MS techniques such as differential 

mobility spectrometry (DMS) – MS or multistage MSn are needed to decrease the background 
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noise from the SRM channels of carfentanil and alfentanil, effectively increasing the selectivity 

and S/N. 

A. 

 

B. 

 
 
Figure 3.8. Quantitative analysis of fentanyl, and five fentanyl analogs in (A) human plasma and 
(B) human urine. Blue markers represent calibration points, and orange markers represent 
validation points. The following extraction parameters were used: 15 or 20 min extraction time 
from plasma and urine, respectively, 1500 rpm orbital agitation, and room temperature.  
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Table 3.2. Figures of merit for the quantitation of fentanyl, and five related fentanyl analogs from pooled human plasma 

 

Table 3.3. Figures of merit for the quantitation of fentanyl, and five related fentanyl analogs from pooled human urine 

 
 

    
 

 
Accuracy (n = 4), % Precision (n = 4), % 

Compound slope intercept R2 LOD 
(ng/mL)  

LOQ 
(ng/mL) 7.5 ng/mL 75 ng/mL 7.5 ng/mL 75 ng/mL 

4-ANPP 0.174 0.0597 0.999 0.012 0.5 106.5 91.7 6.1 5.1 
Fentanyl 0.117 0.0270 0.999 0.016 0.5 102.9 91.3 5.5 4.4 
Acetyl 
fentanyl 0.093 0.0132 1.000 0.006 0.5 106.6 95.8 3.9 2.0 

Sufentanil 0.100 -0.0090 0.999 0.042 0.5 102.7 92.4 2.6 5.0 
Carfentanil 0.115 -0.0143 0.998 0.100 0.5 101.4 90.0 9.0 3.2 
Alfentanil 0.009 -0.0020 0.998 0.100 0.5 104.0 93.1 4.5 5.5 

      Accuracy (n = 4), % Precision (n = 4), % 

Compound slope intercept R2 LOD 
(ng/mL) 

LOQ 
(ng/mL) 7.5 ng/mL 75 ng/mL 7.5 ng/mL 75 ng/mL 

4-ANPP 0.141 -0.1010 0.997 0.017 0.5 87.7 81.1 5.0 9.9 
Fentanyl 0.123 -0.0100 1.000 0.021 0.1 94.8 81.1 2.6 3.6 
Acetyl 
fentanyl 0.098 -0.0300 0.999 0.042 0.1 91.7 80.5 4.5 1.5 

Sufentanil 0.106 -0.0410 0.998 0.042 0.1 95.1 85.7 4.0 2.5 
Carfentanil 0.126 -0.0440 0.998 0.250 0.5 98.1 87.6 4.5 2.5 
Alfentanil 0.024 0.0000 0.999 0.188 0.5 92.3 80.6 3.1 6.6 
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3.4 Conclusions 

In conclusion, the optimized CBS parameters elucidated in Chapter 2 were successfully 

implemented for the concomitant analysis of fentanyl, as well as five fentanyl analogs on the AB 

SCIEX API 4000 MS. ETPs were constructed for the target analytes in plasma and urine to 

determine the optimal extraction time. In plasma, the extraction time that yielded the highest S/N 

ratio was 15 mins, while in urine, 20 mins was deemed to be best. Following the extraction time 

optimization, the CBS method was characterized in terms of accuracy, precision, linearity and 

LOQs/LODs. In both matrices, adequate sensitivity was attained, with LOQs ranging from 0.1 – 

0.5 ng/mL. In most clinical applications, 0.5 ng/mL is regarded as the minimum required LOQ. 

Excellent linearity, as well as accuracy and precision, were achieved for all of the compounds. 

The total per sample analysis time was ~ 60 s using the high-throughput configuration, 

with the results clearly highlighting the capabilities of CBS to effectively quantitate fentanyl and 

several of its analogs in a rapid, yet highly accurate manner. Furthermore, these results also verified 

that HLB particles produced in-house could be used as a substitute to commercial particles. This 

would dramatically reduce the manufacturing cost of the devices, and consequentially the per 

sample cost of the analysis, without sacrificing the analytical performance. These attractive 

features outlined above further emphasize the applicability of CBS for POC applications, and 

clinical harm reduction strategies in emergency healthcare settings. Although this chapter presents 

a proof of concept for quantitation of fentanyl and several fentanyl analogs, the logical next step 

is to apply the optimized method for analysis of clinical patient samples to evaluate matrix effects 

and identify potential biological interferences in real samples. Furthermore, a rigorous cross 

validation with a gold standard LC-MS/MS method is also required to fully establish the CBS 

methodology as a viable alternative to conventional techniques. 
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Chapter 4. Clinical evaluation of coated blade spray – mass 
spectrometry for concomitant determination of four 
immunosuppressive drugs in whole human blood 
 
4.1 Introduction 

Immunosuppressive drugs (ISDs) are prescribed to inhibit the activity of the immune 

system, and are administered specifically to patients who have undergone solid organ 

transplantation or for treatment of a variety of autoimmune conditions.93,94 Despite the fact that 

ISDs are very effective at minimizing the rate of organ rejection, they have powerful side effects 

and are known to increase the susceptibility of dangerous postoperative infections. The most 

common ISDs prescribed for transplant patients are cyclosporine A (CYCA), tacrolimus (TAC), 

sirolimus (SIR), and everolimus (EVER).93,95,96 These compounds can be further separated into 

two distinct categories: calcineurin inhibitors (CYCA and TAC), and mammalian target of 

rapamycin (mTOR) inhibitors (SIR and EVER).96 

CYCA is a cyclic polypeptide comprised of 11 amino acids that binds to cyclophilin, 

forming a complex which inhibits calcineurin.96 TAC is a macrolide lactone that binds to FK506 

binding protein 12 (FKBP-12), forming a complex that also inhibits calcineurin.96 Calcineurin 

functions as a serine/threonine phosphatase enzyme that plays a key role in the mammalian 

immune response. Inhibition of calcineurin results in decreased T-cell activation and 

downregulation of anti-inflammatory response related genes, specifically interleukin factor 2 (IL-

2).94,96 SIR (otherwise known as rapamycin), is a macrocyclic lactone that also binds to FKBP-12, 

however the resulting complex does not interact with calcineurin. Instead, it inhibits a protein 

kinase (mTOR) that functions as a key player in cell cycle progression from the G1 to S phases, 

effectively circumventing IL-2 induced T-cell activation.96 EVER is another macrocyclic lactone 

that is very similar, chemically and therapeutically, to SIR. The main difference between SIR and 
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EVER is the distinct pharmacokinetic (PK) properties of the two compounds, with EVER 

displaying a shorter half-life, allowing it to reach a steady state faster than SIR.96 

 Therapeutic Drug Monitoring (TDM) is a multidisciplinary clinical specialty used to 

improve patient treatment by individually quantitating and adjusting the concentration of an 

administered drug.5 TDM, as defined by the International Association of Therapeutic Drug 

Monitoring and Clinical Toxicology (IATDMCT) “can be based on a priori pharmacogenetic 

(PG), demographic or clinical information and/or on the a posteriori measurement of blood 

concentrations of drugs (PK monitoring) and/or biomarkers (PD monitoring)”.5,97 Due to a variety 

of factors such as narrow therapeutic range, high inter-patient PK and PG variability, and serious 

toxic effects if left unregulated, TDM of ISDs is critical for ensuring that the concentrations remain 

within the accepted target range. 93,94,98,99 If the ISD concentration falls into the subtherapeutic 

range, there is an increased risk of total organ rejection. Conversely, administration of CYCA or 

TAC above the recommended therapeutic dosage can lead to nephrotoxicity, hypertension and 

neurotoxicity, while elevated levels of SIR and EVER are associated with increased prevalence of 

leukopenia, thrombocytopenia and dyslipidemia.94,98,100 

 Historically, TDM of ISDs is performed using a variety of immunoassays, including 

enzyme linked immunosorbent assay (ELISA), electrochemiluminescence immunoassay 

(ECLIA), and chemiluminescent microparticle immunoassay (CMIA).93 However, in more recent 

years, LC-MS/MS methods have become more established, with ~ 50 % assays for CYCA, and 

~ 70 % of assays for TAC, SIR and EVER employing an LC-MS/MS system.5,101 While the upfront 

costs of purchasing an LC-MS/MS system along with the requisite service contract are high, the 

low reagent and consumable costs, faster analysis times, and higher sensitivity and selectivity have 
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shifted the paradigm in TDM of ISDs from immunoassays towards mass spectrometric 

approaches.101 

 Despite the exceptional analytical performance afforded by modern LC-MS/MS systems, 

the complexity and variability of whole blood remains a challenging problem for accurate 

quantitation of ISDs in a clinical setting. More specifically, any analytical method used for TDM 

must be capable of releasing the heavily bound ISDs (i.e. ~ 99 % binding) from the erythrocytes 

that comprise 35 – 60 % of the matrix,102 as well as accounting for inter-patient differences in 

hematocrit levels and minimizing matrix effects.75 These challenges ultimately necessitate 

extensive sample preparation steps, with methods consisting of an SPE or LLE extraction preceded 

by a PPT to release the bound analytes into the free fraction of the sample.70,75,100 In recent years, 

these tedious sample preparation protocols have been streamlined and automated by technologies 

such as the Phytronix Technologies Luxon™ laser diode thermal desorption (LDTD) system and 

the Agilent RapidFire™ SPE system, both of which can be directly interfaced with the MS.103–105 

Some drawbacks of these devices include the inability to monitor multiple ISDs concomitantly, 

the requirement for overnight incubation of samples with ISs prior to analysis, and high costs 

associated with the initial purchase, maintenance, and routine operation of these systems.75,104,105  

 The work discussed in this chapter encompasses the method development protocol, and 

subsequent clinical evaluation of CBS-MS/MS for concomitant analysis of four ISDs from whole 

human blood, building off of the original methodology published by Gómez-Ríos, et al. in 2018.75 

Moreover, using whole blood samples from patients undergoing immunosuppressant therapy at 

Toronto General Hospital (Toronto, ON, CAN), a statistical comparison between concentrations 

obtained using the optimized CBS-MS/MS method and those acquired from the Abbot 

Laboratories ARCHITECT™ i2000 automated CMIA is described. The aim of this work is to 
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assess CBS-MS/MS as a viable alternative to conventional assays for TDM of ISDs, due to its 

capacity to deliver total turn-around times per sample of < 2 h, while exhibiting satisfactory inter-

day precision, high sensitivity, and accurate quantitation to surpass the clinical criteria set by the 

IATDMCT. 
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4.2 Experimental 

4.2.1 Chemicals, reagents and materials 

 FA and AA were purchased from Sigma-Aldrich (Saint Louis, MO, USA).  LC-MS grade 

MeOH, ACN, IPA and water were purchased from Fisher Scientific (Bartlesville, OK, USA). 

TAC, SIR, EVER and CYCA analytical standards were acquired from Cerilliant Corporation 

(Round Rock, TX, USA). Three isotopically labelled internal standards, namely EVER d4, CYCA 

15N11 and TAC 13C, d2 were procured from Cerilliant Corporation (Round Rock, TX, USA). CYCA 

d4 was acquired from Toronto Research Chemicals (Toronto, ON, CA). Individual stock standard 

solutions were prepared in MeOH at a concentration of 100 µg/mL and stored at -80 °C.  ClinCal® 

whole blood immunosuppressant quality control calibrators (Blank, Levels 1 – 6) were purchased 

from Recipe (Munich, Germany). Liquichek™ whole blood immunosuppressant quality control 

calibrators (Levels 1 – 4) were purchased from Bio-Rad (Mississauga, ON, CAN). Pooled human 

whole blood (with K2-EDTA added as stabilizer/anti-coagulant) was purchased directly from 

BioIVT (Westbury, NY, USA). Residual EDTA human whole blood specimens were obtained 

from patients undergoing immunosuppressant therapy (CYCA – 94 patients, SIR – 97 patients, 

TAC – 93 patients) at the University Health Network (Toronto, ON, CAN). All blood samples that 

were prepared during the method development stage were spiked and stored at 4 °C overnight, 

prior to further sample preparation and analysis to facilitate physiological drug-erythrocyte binding 

conditions. HLB particles (5 µm diameter) were kindly provided by Waters Corporation 

(Wilmslow, UK). Stainless steel blades were purchased directly from Shimifrez Incorporated 

(Concord, ON, CAN) and coated using a slurry of HLB-PAN. The coating procedure used in this 

work was the same as the method developed and reported by Gómez-Ríos, et al. in 2017.74 
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4.2.2 Instrumental configuration and mass spectrometric parameters 

 All of the experiments reported in this chapter were performed on a Thermo Scientific TSQ 

Quantiva triple quadrupole mass spectrometer (San Jose, CA, USA). Following data acquisition, 

data processing was done using Thermo Scientific Trace Finder v4.1 (San Jose, CA, USA). The 

blades were accurately positioned in front of the entrance of the TSQ Quantiva mass spectrometer 

using an ionization source built in-house by the University of Waterloo machine shop (Figure 4.1).  

 

Figure 4.1. Custom manufactured CBS ion source directly interfaced with the TSQ Quantiva. 
 

SRM transitions are listed in Table 4.1. Each ISD and deuterated IS were detected as singly 

charged ammonium (NH4+) adducts.75,106 Analysis was performed in positive ionization mode. 

Instrumental dwell time was 50 ms, and the capillary temperature was held constant at 350 °C. 
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Table 4.1. Physiochemical properties, SRM transitions and optimized MS parameters.  
 

Compound logP 
Therapeutic 

range 
(ng/mL)70 

Mass 
(g/mol) 

Precursor 
(m/z) 

Product 
(m/z) 

Collision 
Energy (V) 

RF Lens 
(V) 

Tacrolimus 5.59 3-15 804.03 821.5 768.4 19.86 85 
Tacrolimus 13C,d2 

  
807.02 824.5 771.5 20.42 85 

Sirolimus* 7.45 3-20 914.19 931.5 864.4 16.52 85 
Everolimus* 7.4 3-15 958.24 975.6 908.5 16.42 87 
Everolimus d4* 

  
962.25 979.6 912.5 15.51 88 

CylosporineA 3.64 50-350 1202.64 1219.8 1202.7 16.32 96 
Cyclosporine A d4 

  
1206.64 1223.9 1206.9 11.4 97 

Cyclosporine A 15N11 
  

1213.54 1231.1 1213.8 16.52 104 
*Everolimus D4 was used as the matched internal standard for Sirolimus and Everolimus. All 
physiochemical data was obtained from NCBI PubChem online database 
(https://pubchem.ncbi.nlm.nih.gov/, Accessed on June 12th, 2017) 
 
 
4.2.3 Sample preparation and analytical workflow 

 The CBS devices used for each experiment were cleaned for 30 min with a 

MeOH:ACN:IPA mixture (40:40:20, v/v), before conditioning for 30 min in a MeOH:H2O 

solution (50:50, v/v). It is not necessary for the CBS devices to be wet prior to an extraction event, 

making it practical to batch clean and condition a large number of devices prior to performing 

experiments.75 The analytical workflow originally reported by Gómez-Ríos, et al. and Tascon, et 

al. was used as a starting point for the experiments. Several optimizations were made to improve 

the inter-day stability and sensitivity of the method, while also reducing the per sample turn-around 

time.28,75 These are addressed in detail in the Results and Discussion section. In general, the 

extraction protocol consisted of: 1300 µL of erythrocyte lysis solution, comprised of 0.1M Zinc 

sulfate (ZNSO4):ACN:H2O (60:30:10, v/v) and 1.15 ng/mL of selected ISs, was added to 200 µL 

whole blood. The CBS device was introduced to the mixture, and the extraction was performed. 

Inter-day stability and imprecision was evaluated using the following extraction parameters: 1.5 h 

extraction time, 1500 rpm agitation speed at room temperature. Functional sensitivity evaluation, 
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analysis of patient samples, and evaluation of accuracy and precision using third party calibrators 

was accomplished with the following extraction parameters: 1 h extraction time, 2200 rpm 

agitation speed and 55 °C temperature.   

The CBS workflow consisted of three stages: 1) extraction of target analytes from the 

matrix as described above, 2) two fast H2O rinsing steps (5 s) to remove loosely attached 

macromolecules, salts, and cellular debris, followed by a light wipe with a Kimwipe, and 3) MS 

analyses, whereby 8 µL of MeOH:H2O (95:5, v/v) spiked with 0.1 % FA and 12 mM AA was 

pipetted onto the coating of the blade which had been placed in front of the MS inlet. After 10 s of 

static desorption to facilitate transport of extracted analytes from the coating to the surface of the 

blade, a 5.5 kV high voltage was applied to the blade for 5 s, inducing an electrospray event that 

directly introduced the extracted analytes into the MS.  

 

4.2.4 Inter-day stability and imprecision 

To evaluate the inter-day stability and precision of the CBS methodology, extractions at 

three quality control (QC) levels (50, 150, and 300 ng/mL for CYCA; 2.5, 7.5, and 15 ng/mL for 

SIR, EVER, and TAC) were performed in triplicate. Measurements were taken once per day, for 

10 days. These multi-analyte QC samples were prepared by spiking the working stock ISD 

standard solutions directly into the pooled whole human blood, keeping the organic solvent content 

< 1 %. The spiked QC calibrators were then incubated overnight at 4 °C, and on the following day, 

were aliquoted into 200 µL volumes to be used for the duration of the 10-day period. The details 

of each sample preparation strategy that was evaluated are outlined below in Results and 

Discussion section 4.3.1. The ion-signal ratio of the analyte area under the curve normalized to the 

area under the curve of the matched internal standard (A/Is) was used to account for experimental 
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and instrumental variations.   The acceptance criterion for the total imprecision was < 10 %, based 

on the recommendation by the IATDMCT.70  

 

4.2.5 Functional sensitivity and quantitation 

To assess sensitivity of the method, and to serve as a reference set for comparison with the 

single replicate calibration curves used during quantitation of real patient samples, matrix matched 

multi-analyte calibration curves were prepared. These calibration curves consisted of nine 

calibrators in quadruplicate between 2.5 – 1000 ng/mL for CYCA, and 0.25 – 100 ng/mL for SIR, 

EVER, and TAC, along with a blank in pooled whole human blood. The calibration curves were 

prepared using the same protocol outlined in 4.2.4 for the QC calibrators. Matrix-matched whole 

blood calibration curves were used to quantify the concentration of the ISDs in the sample.  The 

ion-signal ratio (A/Is) of the analyte area under the curve normalized to the area under the curve 

of the matched internal standard accounted for experimental and instrumental variations.  The 

same in-house QC calibrators were used to evaluate the accuracy and precision of the assay. The 

calibrators and QC levels were prepared with different lots to ensure method robustness and meet 

IATDMCT requirements.70 The LOQ was determined using the following criteria: the lowest 

calibration point that had a S/N ratio > 5, 80 – 120 % back-calculated accuracy using the linear 

regression line of best fit, and relative standard deviation (RSD) < 20 %.  

 

4.2.6 Analysis of patient samples, and inter-day accuracy and precision evaluation using third 
party calibrators 
 

The quantitation of ISD concentrations in anonymized patient samples was performed 

using a single replicate calibration curve run at the beginning of the sequence, followed by in-

house QC calibrators, Bio-Rad Liquichek™ whole blood immunosuppressant quality control 
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calibrators (Levels 1 – 4), and Recipe ClinCal® whole blood immunosuppressant quality control 

calibrators (Blank, Levels 1 – 6), and then the entire set of patient samples – all with single 

replicate. This particular sequence of calibrators, third party QCs and samples were chosen to 

mimic the workflows used in routine clinical analysis. One set of patient samples was run per day 

for three days, either CYCA, TAC or SIR. However, the standard calibration curves, as well as 

both internal and external calibrators contained all of the ISDs. Therefore, the inter-day (n = 3) 

accuracy and precision of the Bio-Rad and Recipe QC calibrators were evaluated using the mean 

A/Is ratio of each level and the relative standard deviation following analysis of all of the samples. 

The acceptance criteria were: < 20 % RSD, and 80 – 120% back-calculated accuracy for the 

reported nominal concentration. 

 

4.2.7 Method comparison 

 Method comparison evaluation was performed using the single replicate measurement 

from the patient samples compared to concentrations obtained by the ARCHITECT™ i2000 

automated CMIA.94 CYCA patient concentrations ranged from 74.0 – 606.0 ng/mL (n = 94), SIR 

ranged from 1.8 – 27.6 ng/mL (n = 97), and TAC ranged from 1.8 – 16.0 ng/mL (n = 93). The 

slope, intercept, and correlation coefficient were calculated using the Passing-Bablok regression 

analysis with 95 % confidence interval. The method bias and identification of outliers were 

assessed using Bland-Altman plots. 

 

4.2.8 Statistical analysis  

 Microsoft Excel v16.14 and the XLSTAT student package v2018.4 were used for statistical 

analysis. 
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4.3 Results and discussion 

4.3.1 Total inter-day imprecision  

The major bottleneck in clinical analysis of real patient samples is the practical introduction 

of the IS to the sample during sample preparation, and subsequent incubation period that is 

required.107 However, this requisite incubation period make total turnaround times of < 2 h nearly 

impossible to attain. To address this limitation, and decrease the per sample analysis time below 

2 h, a novel sample preparation methodology was implemented to introduce the IS into the sample 

prior to extraction. Instead of spiking the IS mix directly into the whole blood and equilibrating 

overnight, the IS was spiked into the erythrocyte lysis solution – vastly increasing the method 

throughput from the original 16 h analysis time. This unconventional approach had the added 

benefit of decreasing experimental error, because the lysis reagent was prepared and spiked in bulk 

before aliquoting and storing the solution at -80 °C. Until now, the majority of published methods 

for TDM of ISDs have relied on specific reagents for analysis of a particular ISD, especially 

immunoassays such as CMIA and ECLIA, as well as other direct to MS approaches such as 

PS.70,94,103,108 However, in the method presented herein, only one sample preparation reagent that 

is compatible with all four of the selected ISDs is needed for analysis. Coupled with the intrinsic 

advantages of SPME-MS technologies, specifically, the absence of any chromatographic 

separation, and combined sampling and sample preparation steps which yield a clean sample void 

of interfering matrix components, the innovative CBS-MS/MS technology is an efficient and 

robust technique for TDM of ISDs 

To ensure that the ISs spiked into the lysis solution were capable of correcting variances in 

whole blood, three calibration curves with three replicates were prepared in different lots of blood 

with varying hematocrit levels. The imprecision (i.e. RSD) of the three calibration curve slopes 
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were compared, and total imprecision was determined to be < 5.0 % for CYCA, < 4.9 % for SIR, 

< 8.4 % for EVER, and < 3.6 % for TAC. These results demonstrated that the combined lysis 

solution along with the IS mixture could correct for inter-sample matrix variations and 

experimental error, differing from the conventional matrix matched SPME calibration methods, in 

which the IS must be equilibrated with the sample matrix prior to the extraction and subsequent 

analysis.36,102 

 Once it had been confirmed that spiking the ISs into the erythrocyte lysis solution was a 

viable alternative for introducing the ISs into the sample, the CBS-MS/MS assay stability and total 

imprecision over a ten-day period was evaluated. QC calibrators were prepared as outlined in 

section 4.2.4, and measured in triplicate, one run per day over 10 days. In total, three modified 

methods and one control method were investigated to determine which method would meet the 

requisite < 10 % total imprecision set by IATDMCT.70 The experimental details are outlined 

below: 

1) QC calibrators stored for first four days at 4 °C, followed by storage at -80 °C for the 

remaining six days. Erythrocyte lysis solution was prepared fresh each day and spiked with 

the IS mixture (final concentration 1.15 ng/mL). 

2) QC calibrators were flash frozen three times, alternating between liquid N2 and ice for 1 min 

each, before storage at -80 °C for duration of 10-day time course. Erythrocyte lysis solution 

was prepared fresh each day and spiked with the IS mixture (final concentration 1.15 ng/mL). 

3) QC calibrators were flash frozen three times, alternating between liquid N2 and ice for 1 min, 

before storage at -80 °C for duration of 10-day time course. Erythrocyte lysis solution was 

prepared in bulk and spiked with IS mixture (final concentration 1.15 ng/mL). 10 aliquots 

were made, and were individually stored at -80 °C. 
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4) The control method followed the protocol outlined by Gómez-Ríos, et al. in 2018.75 The ISDs 

and corresponding ISs were spiked directly into the whole blood, equilibrated overnight and 

aliquoted, before being stored at -80 °C. Erythrocyte lysis solution was made fresh each day. 

 

The total imprecision of each method over the 10-day period is shown below in Table 4.2. 

The only method that met the required < 10 % total imprecision criteria was Method 3, and 

consequently, this sample preparation strategy was employed for the remainder of the clinical 

evaluation.  

Table 4.2. Total inter-day IS corrected imprecision for cyclosporine A (CYCA), sirolimus (SIR), 
Everolimus (EVER), and tacrolimus (TAC), determined by four CBS-MS/MS methods (triplicate 
per run, 1 run per day for 10-days). 
 

Compound QC 
Level 

Method 1* 
RSD (%) 

Method 2* 
RSD (%) 

Method 3** 
RSD (%) 

Control* 
RSD (%) 

CYCA 
1 29.0 48.8 4.6 49.3 
2 25.6 46.7 4.6 49.1 
3 26.8 46.8 5.1 48.8 

SIR 
1 10.3 8.6 2.2 13.2 
2 7.7 3.4 2.9 5.1 
3 6.4 3.2 3.4 3.3 

EVER 
1 9.0 4.1 3.5 5.9 
2 7.6 3.0 2.0 2.6 
3 7.7 4.2 2.2 3.2 

TAC 
1 20.3 14.9 2.5 2.7 
2 21.5 15.9 2.0 1.9 
3 20.4 14.5 1.6 2.4 

*Methods 1,2 and control used CYCA 15N11 as the matched IS. ** Method 3 used CYCA d4 as the 
matched internal standard. 
 

The rationale for implementing several deep-freezing cycles was to assist in lysing the 

erythrocytes, resulting in the heavily bound ISDs being released from cells and proteins, and 

effectively “normalizing” the matrix.109 This was coupled with the bulk preparation and spiking of 

the erythrocyte lysis solution, which ultimately delivered excellent results. Surprisingly, Method 2, 
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which had the same deep-freezing protocol, resulted in poorer inter-day precision than Method 3 

for all four ISDs. This observation suggests that bulk preparation of the lysis solution was crucial 

in minimizing the experimental error, as well as increasing the reliability of the measurements. 

This was due to the composition of the lysis solution and concentration of the IS remaining 

constant for all of the analyses over the 10-day period. Additionally, the low imprecision obtained 

for Method 3 established that the IS’s were stable in the lysis solution at -80 °C, with no noticeable 

decrease in performance due to degradation or precipitation after prolonged storage.  

One interesting observation was the major difference of CYCA 15N11 compared to CYCA 

d4 for accurately correcting CYCA. Methods 1, 2 and the control all used CYCA 15N11 for 

correction of CYCA. As seen in Table 4.2, it is apparent that the 15N11 IS was unable to correct for 

changes in the matrix over the 10-day time course. This would justify why the total imprecision 

for CYCA was significantly greater than the imprecision of the other ISDs, particularly in Methods 

2 and 4. After consistently observing this result, CYCA d4 was added to the IS mixture during the 

evaluation of Method 3. The resultant total imprecision for CYCA decreased nearly 5 times. As 

seen below in Figure 4.2, a direct comparison of analysis of CYCA corrected with CYCA 15N11 

and CYCA d4 illustrates the stark differences in performance between the two IS analogs. While 

the total imprecision of the area counts of CYCA 15N11 and CYCA d4 over 10 days were similar, 

17.6 % and 15.4 % respectively, there was a clear difference in their ability to correct CYCA 

signal. Upon literature review, one postulation to account for these differences is “isotope effects”, 

a term which describes variations in physiochemical behavior, and ultimately, ionization 

efficiencies between labelled and unlabeled molecules.110 This finding, while preliminary, 

suggests that the CYCA d4 mirrors the ionization of the unlabeled CYCA more similarly than 

CYCA 15N11, resulting in vastly lower imprecision. Furthermore, differences in clustering of 
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ammonium or formate ions could also explain some of the variances between the performance of 

the two ISs.110  

 
 
Figure 4.2. Comparison of performance of CYCA d4 and CYCA 15N11 for correction of CYCA 
over 10-day time course using Method 3. CBS analysis consisted of the following extraction 
parameters: 1.5 h extraction time, 1500 rpm agitation speed at room temperature. The graphs on 
the left track the average area (n = 3) of each IS over 10 days. The graphs on the right illustrate the 
average A/Is over 10 days for both ISs. QC level 1 is marked as the grey circle, QC level 2 is 
marked as an orange triangle, and QC level 3 is marked as a blue square. 
 

4.3.2 Functional sensitivity and quantitation 

After confirming that Method 3 met the clinical imprecision requirements recommended 

by the IATDMCT, the functional sensitivity of the CBS-MS/MS assay was established for each of 

the ISDs. In order to ensure that the LOQs were lower than the concentrations recommended for 

TDM, the extraction protocol was modified such that the agitation speed was increased from 

1500 – 2200 rpm, and the extraction temperature was increased from room temperature (~ 20 °C) 

to 55°C. These changes to the protocol had the added benefit of decreasing the extraction time 

from 1.5 h to 1 h, which further increased the assay throughput. The data presented in Figure 4.3 
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displays the linear calibration curve obtained for each of the studied ISDs. The LOQs obtained 

using the optimized methodology were 2.5 ng/mL for CYCA, 0.5 ng/mL for SIR, 0.25 ng/mL for 

EVER and 0.5 ng/mL for TAC (see Table 4.3). Based on the recommendation by the IATDMCT 

expert consensus group, the LOQ for each ISD “should be at least one-third to one-half of the 

lower limit of the concentration window”, corresponding to minimum LOQs for CYCA, SIR, 

EVER and TAC of 20 ng/mL, 1.0 ng/mL, 1.0 ng/mL and 1.0 ng/mL, respectively.70  

 
Figure 4.3. Quantitative analysis of cyclosporine A (CYCA), sirolimus (SIR), everolimus (EVER) 
and tacrolimus (TAC) in whole blood. The following extraction parameters were used: 1 h 
extraction time, 2200 rpm orbital agitation, 55 °C The shaded blue region corresponds to the 
typical concentrations in ISD-TDM samples.70 Blue circles correspond to individual calibration 
points, and orange circles represent the internal QC levels.  
 
Table 4.3. Figures of merit for the determination of ISDs in whole human blood.    

Accuracy (n = 4), % Precision (n = 4), % 

Compound LDR* 
(ng/mL) 

LOQ 
(ng/mL) QC 1 QC 2 QC 3 QC 1 QC 2 QC 3 

Everolimus 0.25-100 0.25 107.7 102.2 104.9 6.3 3.8 5.2 
Sirolimus 0.5-100 0.5 110.5 108.4 106.7 7.5 2.3 3.2 
Tacrolimus 0.5-50 0.5 118.1 113.0 108.5 5.1 1.8 3.1 
CyclosporineA 2.5-1000 2.5 89.4 101.0 106.1 2.7 1.6 1.1 

*LDR: linear dynamic range 
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The CBS-MS/MS method provides considerably better sensitivity than the recommended 

LOQs, with no compromises in terms of sample volume or throughput. Furthermore, strong 

linearity was obtained for each of the compounds of interest, with the linear dynamic range far 

exceeding the therapeutic concentration window for each ISD. Finally, as shown in Table 4.3, 

excellent accuracy and precision values were obtained for the in-house prepared QC calibrators, 

surpassing the < 10 % cut-off value set by the IATDMCT.70 

 

4.3.3 Method comparison 

For method comparison, anonymized samples from patients undergoing 

immunosuppressive therapy were measured using the same method employed for the functional 

sensitivity evaluation. The results were then compared to concentrations obtained from the Abbot 

Laboratories ARCHITECT i2000 automated CMIA. The acceptance criteria were defined as a 

regression slope of 1.0 +/- 0.2 and an R2 of > 0.9. Figure 4.4 shows the Passing-Bablok regression 

and Bland-Altman analysis for CYCA, SIR and TAC. Passing-Bablok analysis is preferable for 

comparison of clinical methods because it does not assume that the measurement error is normally 

distributed and is more robust against outliers.111  

CBS-MS/MS showed good agreement with the CMIA for CYCA (Figure 4.4. (A)), with a 

slope of 1.149 (1.083 to 1.226), intercept of -3.81 (-15.36 to 8.909) and an R2 = 0.92. Bland-

Altman analysis identified that 95.7 % (90/94 samples) fit within the 95 % confidence interval. 

The average bias of the measurements was determined to be -37.2 ng/mL or ~ -14.9 %. For SIR, 

slightly worse agreement between the two methods was observed (Figure 4.4. (B)), with slope of 

1.228 (1.175 to 1.292), intercept of -0.025 (-0.607 to 0.481), and an R2 = 0.95. The Bland-Altman 

analysis identified that 96.9 % (94/97 samples) fit within the 95 % confidence interval. The average 



 68 

bias for CBS-MS/MS analysis of SIR was determined to be -2.32 ng/mL. The average percent bias 

of the method was ~ -18.6 %. Finally, analysis of TAC via CBS-MS/MS showed acceptable 

agreement with CMIA (Figure 4.4. (C)), with a slope of 0.951 (0.898 to 1.007), intercept of -0.870 

(-1.33 to -0.387), and an R2 of 0.94. Bland-Altman analysis identified 5 outliers, with 94.6 % 

(88/93 samples) fitting within the 95 % confidence interval. The average bias of the measurements 

was determined to be 1.35 ng/mL. The average percent bias of the measurements was calculated 

to be 16.95 %. Overall, all three of the ISDs that were quantified using the innovative CBS-MS/MS 

method met the acceptance criteria, with the slope for SIR slightly exceeding the limit. 

In general, a small, systematic difference between the two methods was observed for 

CYCA and TAC, because the 95 % confidence interval for the y-intercept of the Passing-Bablok 

regression analyses did not include 0. A slight proportional difference between the methods was 

observed for the measurements for CYCA and SIR since the 95 % confidence interval for the slope 

did not include 1. These observations are consistent with other comparisons reported in literature 

for immunoassays versus MS-based assays for ISD determination.70,93 In particular, higher 

concentrations of ISDs determined by immunoassays can be attributed to the metabolism of the 

drugs in the body: the ISDs that are being monitored here are extensively metabolized, and 

immunoassays may not distinguish some of the metabolite artifacts from the parent 

compounds.93,112 Furthermore, the bias in the measurements of the ISDs was also similar to other 

comparison studies in literature, further demonstrating the superior performance of MS-based 

assays over immunoassays for accurate determination of ISDs.70,93,112  
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A. 

 
 
B. 

 
 
C. 

 
Figure 4.4. Passing-Bablok regression analyses and Bland-Altman plots for (A) cyclosporine A 
(CYCA), (B) sirolimus (SIR), (C) tacrolimus (TAC) between CBS-MS/MS and Architect CMIA 
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4.3.4 Inter-day accuracy and precision evaluation using third-party calibrators 

Over three consecutive days, the third-party QC calibrators from Bio-Rad and Recipe were 

analyzed with single replicate measurements, and the inter-day precision and accuracy of the CBS-

MS/MS methodology was evaluated. The results are summarized in Tables 4.4 and 4.5. Overall, 

excellent inter-day reproducibility was observed, with accuracy between 82.1 – 118.0 % obtained 

for all of the studied compounds from both sets of calibrators. Furthermore, the IADTMCT criteria 

of < 10 % total imprecision was obtained for almost all of the compounds and calibrators evaluated, 

with EVER in Recipe ClinCal® QC1 being the only exception.70 

 
Table 4.4. Inter-day accuracy and precision of the CBS-MS/MS protocol using Bio-Rad 
Liquichek™ QC calibrators (Levels 1-4). 
  

Accuracy (n=3), % Precision (n=3), % 
Compound QC 1 QC 2 QC 3 QC 4 QC 1 QC 2 QC 3 QC 4 
CYCA 84.9 101.6 107.8 108.7 2.7 8.3 7.0 4.8 
SIR 94.4 99.1 93.5 N/A 2.8 8.5 6.4 N/A 
TAC 103.8 91.9 87.0 86.1 3.1 3.7 2.6 2.3 
EVER N/A 118.0 94.6 107.5 N/A 5.1 1.5 1.8 

 
 
Table 4.5. Inter-day accuracy and precision of the CBS-MS/MS protocol using Recipe ClinCal® 
QC calibrators (Levels 1-6). 
  

Accuracy (n=3), % Precision (n=3), % 
Compound QC 1 QC 2 QC 3 QC 4 QC 5 QC 6 QC 1 QC 2 QC 3 QC 4 QC 5 QC 6 
CYCA 83.5 82.1 84.3 98.1 105.3 102.0 5.2 9.3 2.8 2.7 6.0 6.6 
SIR 115.0 113.4 101.5 93.8 96.4 93.9 5.6 8.3 4.9 2.2 3.1 2.1 
TAC 100.3 105.2 88.7 87.3 86.2 83.3 8.8 7.2 4.3 1.2 3.3 4.8 
EVER 93.1 103.1 101.7 92.2 97.6 96.2 11.5 4.4 7.2 4.7 5.3 0.9 
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4.4 Conclusions 

The method development and subsequent clinical evaluation presented in this chapter 

resulted in an improved method for TDM of ISDs from whole human blood using the CBS-MS/MS 

technology. This methodology was validated for use in a clinical setting using recommendations 

from the IATDMCT. By implementing an unorthodox sample preparation approach, the total per 

sample turnaround time of < 2 h was achieved. To the best of our knowledge, this is one of the 

highest throughput methods currently available for monitoring ISDs from whole blood.  The 

optimized method demonstrated outstanding long-term stability, with total imprecision < 10 % for 

each of the selected ISDs over the 10-day time course. The LOQs obtained for CYCA, SIR, EVER 

and TAC were 2.5, 0.5, 0.25 and 0.5 ng/mL, respectfully, with excellent linearity (R2 > 0.99). A 

method comparison between CBS-MS/MS and the Abbot Architect i2000 CMIA showed good 

agreement between both methods for CYCA, SIR and TAC, with observed differences consistent 

with those presented in literature. Lastly, the inter-day precision and accuracy of CBS-MS/MS was 

evaluated using third party QC calibrator kits from Bio-Rad and Recipe, with results exceeding 

the stringent clinical guidelines.  
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Chapter 5. Summary. 

In conclusion, CBS is a novel SPME device that is directly coupled to the MS, permitting 

rapid and accurate determination of a wide range of compounds under ambient conditions. Initial 

experiments have optimized the ideal position for the blade on three MS instruments in regards to 

ion intensity and spray stability. The three instruments that were evaluated were the AB SCIEX 

API 4000 triple quadrupole, the Waters XEVO G2-S hybrid QTOF, and the Thermo Scientific 

TSQ Quantiva triple quadrupole. Spatial signal intensity profiling of the MS inlet revealed that the 

AB SCIEX instrument was the most sensitive to the blade position, whereas the other two 

instruments had a much larger spatial window where optimal intensity and stability were observed. 

Characterizing the analytical performance established that the AB SCIEX MS was capable of 

delivering comparable figures of merit that had been previously reported for the TSQ Quantiva for 

the selected compounds, in both plasma and urine. The figures of merit for the Waters QTOF were 

also quite promising, with respectable sensitivity obtained for the majority of the compounds that 

were evaluated. Ultimately, this was the first instance of an SPME device being directly coupled 

to a hybrid QTOF instrument, and the results obtained in these experiments will serve as a 

benchmark for future investigations. 

Following the identification of the optimal CBS operating parameters, these conditions 

were applied for the concurrent analysis of fentanyl, and five fentanyl analogs from urine and 

plasma using the AB SCIEX MS. ETPs were used to determine the optimal extraction time in both 

urine and plasma for the selected compounds. The performance of the CBS method was then 

characterized by constructing matrix matched calibration curves in both matrices to evaluate the 

accuracy, precision, linearity and LOQs/LODs in both matrices.  Excellent figures of merit were 
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obtained from both matrices, with limits of quantitation for all compounds at 0.5 ng/mL or lower, 

with less than 60 s of total analysis time per sample. 

Finally, the clinical viability of CBS-MS as an alternative technique to conventional assays 

for the concomitant determination of 4 ISDs in whole human blood was investigated. This was the 

first instance of an SPME-MS technology being rigorously evaluated using clinical chemistry 

criteria recommended by the IATDMCT. The results demonstrated that the optimized method 

provided extremely reproducible results over a 10-day period, with total inter-day precision less 

than 5 % for all of the compounds at three different concentrations. The sensitivity of the method 

improved nearly 4 times from the preliminary proof of concept study published earlier this year, 

with a major increase in throughput capacity from 16 h to 2 h – besting the analysis times of 

automated immunoassays that are employed in clinical laboratories for routine analysis.75,94 

Finally, the concentrations of the selected immunosuppressive drugs in ~ 100 patient samples 

obtained using the CBS-MS/MS methodology were compared to the Abbot Laboratories 

ARCHITECT™ i2000 automated immunoassay system. Passing-Bablok regression analysis 

demonstrated significant statistical similarities between both methods. Bland-Altman plots 

identified minimal outliers, with some bias in the CBS measurements that was consistent with 

other MS-based methods. 

In conclusion, some of the biggest limitations of the CBS platform have been addressed 

herein; specifically, the lack of implementation on non-Thermo Scientific instruments and 

evaluation of the technology for routine clinical analysis (i.e. TDM). The results established CBS 

could be interfaced with other MS vendors, with analytical figures of merit comparable to those 

already reported on Thermo Scientific instruments. Furthermore, it was noted that the CBS 

technology could also be implemented on hybrid QTOF instruments with satisfactory 
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performance. Lastly, a thorough clinical evaluation determined that CBS could be applied as an 

effective alternative methodology for determining the concentration of four immunosuppressive 

drugs in whole blood, with turn-around times and overall performance on par with automated 

immunoassays. 
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