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Statement of Contributions

1. Introduction

• The plots in fig. 1.8 and the expressions for process matrices in noisy quantum

error correcting codes when no recovery operations are applied (derived in section

1.8.3: Noise on an Unencoded State) and when a syndrome measurement is ap-

plied without a recovery operation (derived in section 1.8.3: Noise on an Encoded

State) are new results, obtained by Stefanie Beale. Any other information in this

section is either common knowledge or attributed to its source.

2. Chapter 2

• The results presented in section 2.1-2.3 are the product of the collaborative ef-

fort of Stefanie Beale, Joel Wallman, Mauricio Gutiérrez, Kenneth R. Brown,

and Raymond Laflamme. The project was initiated by Joel Wallman, Mauricio

Gutiérrez, and Kenneth R. Brown; lemma 14 and theorem 16 were already derived

before Stefanie Beale and Raymond Laflamme joined the project. The analysis of

the scaling of noise at the logical level was developed by Stefanie Beale and Joel

Wallman, and the discovery of theorem 18 followed a discussion with Raymond

Laflamme.

• The results of section 2.4 were a collaborative effort between Joel Wallman and

Stefanie Beale.

• The derivation in section 2.5 was undertaken by Joel Wallman and verified by

Stefanie Beale. Stefanie Beale concluded that noise acting on fewer than d qubits

in a distance d code would result in Pauli noise at the logical level.

3. Chapter 3

• Theorem 21 and corollary 22 were derived by Joel Wallman. Stefanie Beale de-

rived corollary 22 independently, and verified theorem 21.
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• The results presented in section 3.1 resulted from a collaboration between Stefanie

Beale and Joel Wallman. Joel Wallman found some of the permutation operators

that generate symmetries; the remainder were acquired by a script written by

Stefanie Beale.

• The results presented in section 3.2 are a product of collaboration between Stefanie

Beale and Joel Wallman; the analysis in this section was guided by Joel Wallman

while the execution was primarily carried out by Stefanie Beale.
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Abstract

Full accuracy simulations of quantum systems are very costly, and as a result most studies

of quantum error correction assume a probabilistic Pauli error model, largely because such

errors can be efficiently simulated. Therefore, the behaviour of more general noise in a

quantum error correcting code is poorly characterized. In this thesis, we present results which

demonstrate the scaling of the logical noise with respect to the physical fidelity, and argue

that the effective logical noise approaches a Pauli channel as the code distance increases,

even when no recovery operations are applied. As a result, we argue that the average logical

fidelity can be used to accurately quantify the effective logical noise, and to select recovery

operations appropriate to the system. We further demonstrate that when physical noise

acts on fewer than d qubits in an [[n, k, d]] code, the resultant noise is Pauli, and develop

a method for approximating the dominant contributions to the effective logical noise up to

a specified precision in terms of the physical infidelity. We derive conditions under which

sets of recovery operations will produce equivalent logical noise channels, with examples of

equivalencies in the 3 qubit repetition code, the 5 qubit code, the Steane code, and the Shor

code. We also provide a general expression for the effective logical noise when the physical

qubits undergo depolarizing or Pauli noise in a quantum error correcting code, examine the

behaviour of depolarizing noise under concatenation of the 5 qubit and Steane codes, and

present an algorithm for soft decoding which is not subject to statistical sampling, with an

emphasis on the effective behaviour of a concatenated 5 qubit code undergoing depolarizing

noise after applying a specialized version our soft decoding algorithm.
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Chapter 1

Quantum Computation: What are we doing and

how do we model it?

For the past several decades, technology has advanced rapidly, approximately following

Moore’s law, which states that the density of transistors that can be held on an integrated

chip will double approximately every two years [1]. This rapid advancement has allowed

computers to become an integral component of our society, driving research advancements

in medicine, aeronautics, cosmology, and many other vital fields. Unfortunately, in recent

years, this progress has slowed, and soon we will encounter a roadblock to the continuation of

this technological evolution; if the size of transistors continues to decrease, quantum effects

will come into play as transistors become progressively smaller and it will become impossible

to continue to advance using solely classical technologies.

One shortcoming that is already present in traditional computation is that it is pro-

hibitively expensive to simulate quantum systems with classical data. As such, it is difficult

to design medications or simulate chemical reactions using classical computers. An alterna-

tive approach to simulating quantum systems was proposed by Richard Feynmann in 1982

[2]. Feynman suggested that a quantum computer, which would manipulate quantum data

rather than classical data, could significantly outperform its traditional classical counterpart.

The advent of quantum computing would additionally address the issue of quantum effects

coming into play as Moore’s law continues; quantum computers would themselves rely on

these effects. Since 1982, quantum technologies have advanced significantly, and researchers

worldwide are now racing to get as many quantum bits (qubits - see section 1.1) as possible

on a myriad of platforms.

There are a few significant barriers to the successful implementation of a scalable quantum
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computer. Among them, the high sensitivity of quantum systems to interactions with the

surrounding environment; any interaction of the quantum system with the environment

can introduce errors. In this thesis, we delve into methods for characterizing and treating

errors in quantum systems. We begin this introductory chapter by reviewing quantum states

and methods for describing their evolution. Then, we examine error correcting codes and

the stabilizer formalism, before exploring methods for calculating and representing a noisy

quantum channel.

1.1 Quantum States

The most common base element of quantum information used in quantum computing is a

quantum bit, or qubit. A qubit is a two-level quantum system that can be used to store

information. Alternatively, a d-level quantum system is referred to as a qudit. We define

the computational basis for a single qubit, {|0〉, |1〉},

|0〉 =

[
1

0

]
and |1〉 =

[
0

1

]
, (1.1)

The protocols introduced in this section for qubit systems can be trivially extended, e.g. by

letting |i〉 = ei, where {ei} is the canonical basis, to span the space of a qudit. The |0〉 and |1〉
states typically correspond to a ground and excited state, respectively, in a physical system.

An arbitrary pure single qubit state, |ψ〉 ∈ C2, can be expressed in the computational basis

as

|ψ〉 = α|0〉+ β|1〉, (1.2)

where α, β ∈ C are referred to as probability amplitudes, and |α|2 and |β|2 give the proba-

bility of measuring 0 and 1, respectively, when the state is projected onto the computational

basis (see section 1.3). Alternatively, we can write a single qubit state in terms of a density

matrix, ρ1. For a pure state, ρ = |ψ〉〈ψ|, where 〈ψ| is the conjugate transpose of |ψ〉. A

mixed state is a probabilistic combination of pure states,

1 In this thesis, we will follow the convention of referring to a state in ψ ∈ Cm (or ρ ∈ Cm×m) as an

m-dimensional state.
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ρ =
∑

k

pk|ψk〉〈ψk|. (1.3)

An arbitrary single-qubit state can be expressed in the form of a density matrix as a linear

combination of basis elements of hermitian matrices in C2×2. An n-qubit state can be

expressed as a density matrix in C2n×2n.

1.2 Quantum Channels

The evolution of quantum states is described by quantum channels. A state can evolve

via deliberate operations or from the effects of noise introduced by poorly implemented

operations or interaction with its surroundings.

Definition 1. A quantum channel is a completely positive and trace-preserving (CPTP)

linear map that maps quantum states to quantum states.

An arbitrary linear map, Φ, acting on a matrix, ρ, can be described in the Kraus formalism

as follows2

Φ[ρ] =
∑

k

AkρK
†
k (1.4)

where {Ak} and {Kk} are known as Kraus operators. If Φ is completely positive, Ak = Kk

∀k. So for all quantum channels (hereafter channels), Ak = Kk∀k. The selection of Kraus

operators is non-unique for a given map.

1.2.1 Common Errors and Operations on Quantum States

Classical Errors

In classical systems, after a system is sampled from an analog to a digital signal, the net

effect of any errors will be that some bits flip (that is, some desired 0s will appear as 1s

and vice versa); the exact mechanisms for data processing in classical systems will not be

explored in this thesis.

2 Throughout this document, when a channel acts on a state, the state will be enclosed in square braces.

When a channel depends on some parameter(s), the parameter(s) will be enclosed in round braces.
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Quantum Errors

In quantum systems, states are more complex and thus, single bit errors can take a much

more complicated form. Let |φ〉 = α|0〉+ β|1〉. The quantum analog of a bit flip operator is

denoted by X, and maps

|φ〉 → α|1〉+ β|0〉, (1.5)

or, equivalently, X|φ〉 = α|1〉+ β|0〉, where X is the Pauli matrix

X =

[
0 1

1 0

]
. (1.6)

Quantum systems can also undergo phase flips, which map

|φ〉 → α|0〉 − β|1〉. (1.7)

Phase flips are denoted Z, and the combination of a bit flip error and phase flip error is

written Y = iXZ, where Z and Y are Pauli matrices,

Z =

[
1 0

0 −1

]
Y =

[
0 −i
i 0

]
. (1.8)

Together with the identity matrix, I, the Pauli matrices form a complete basis over hermitian

matrices in C2×2, so that any single qubit operation or error can be represented as a linear

combination of these matrices. We define the single qubit Pauli group, P = {I,X, Y, Z},
and the n-qubit Pauli group, Pn = {I,X, Y, Z}⊗n.

The evolution of a quantum system can be described by unitary operations, ie operations,

U , for which U †U = I.

The n-qubit Clifford group, Cn, is a special case of unitary operations that maps non-

identity Pauli operators to non-identity Pauli operators,

Cn = {U ∈ U(2n)|UσU † ∈ ±Pn\I⊗n ∀σ ∈ ±Pn\I⊗n}/U(1). (1.9)
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Figure 1.1: The Bloch sphere [3]. A pictoral representation of the state space of a single

qubit. Unitary operations are represented as rotations of the Bloch sphere; a quantum state

is represented as a unit vector.

Modeling Quantum Error Channels

This section describes some common sources of errors in quantum systems, as well as the

theory used to describe them. These concepts are integral to understanding how best to

leverage a noisy quantum system, including how to correct errors effectively.

Definition 2. A unitary channel is a channel whose action on a density matrix, ρ, can be

written Φ[ρ] = UρU †, for some unitary operator, U .

A unitary operation can be imagined as a rotation of the state space. It is often convenient

to picture the state space as a unit sphere construct called the Bloch sphere, pictured in

fig. 1.1.

Operations on quantum states are often referred to as gates. One common source of error

is over or under-rotation when gates are applied. This is generally modeled by a unitary

rotation channel, which can be expressed as single Kraus operator given by eiθ~n·~σ, where ~n

is a vector with ~n† · ~n = 1, ~σ = (X, Y, Z), and
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eiθ~n·~σ = cos θI + i sin θ(~n · ~σ). (1.10)

Definition 3. A mixed unitary channel, Φ, is a channel that can be expressed as a convex

combination of unitary channels as follows

Φ[ρ] =
∑

k

p(k)UkρU
†
k , (1.11)

where p is a probability vector, 0 ≤ p(k) ≤ 1 ∀k and
∑

k p(k) = 1.

Definition 4. A Pauli channel is a mixed unitary channel with Uk ∈ P ∀k.

Pauli channels are useful because they are easy to simulate and, because the Pauli matri-

ces form a complete basis over Hermitian matrices in C2×2, a code can correct an arbitrary

single-qubit error if and only if at can correct any single qubit Pauli error.

Definition 5. A channel, Φ, is unital if Φ[I] = I.

Unitary and mixed unitary channels are unital. A metric was introduced in [4] to quantify

how close a channel is to unitary; the unitarity, u(Φ), of a channel, Φ, is defined as

u(Φ) =
d

d− 1

∫
Tr(Φ′[ψ]†Φ′[ψ])dψ, (1.12)

where the integral is over all pure states, and Φ′ is defined such that Φ′[I] = 0 and Φ′[A] =

Φ[A] − Tr(Φ[A])√
d

I for traceless A. Then, because an arbitrary matrix M can be expressed as

cI+A for some constant c and traceless matrix A, by linearity Φ′[M ] = cΦ′[I]+Φ′[A] = Φ′[A].

Not all channels are Pauli channels. A common non-Pauli source of error in physical

systems is the decay of an excited state to the ground state. This is modeled by an amplitude

damping channel, in which an excited state decays from |1〉 to |0〉 with some probability,

p, while the ground state, |0〉, remains unchanged. The amplitude damping channel can be

described by the Kraus operators, {Ai}, in eq. (1.13). The amplitude damping channel is

neither mixed unitary nor unital.

A0 =

[
0
√
p

0 0

]
and A1 =

[
1 0

0
√

1− p

]
. (1.13)
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It is possible to achieve a Pauli approximation of a channel via a process referred to as Pauli

twirling [5]. This is achieved by taking the average result of conjugating a channel with

Pauli operators. More generally, twirling is the process of taking the average channel under

conjugation by a set of unitaries. Pauli twirling is achievable experimentally and is easily

achieved in simulations and theory [5].

The completely depolarizing channel is a common example of a Pauli channel used to

model noise; it describes a process in which the input state is replaced with the maximally

mixed state with probability p, and left unchanged with probability 1 − p. The completely

depolarizing channel can be described by the Kraus operators A0 =
√

1− 3p/4I, A1 =√
p/4X, A2 =

√
p/4Y , and A3 =

√
p/4Z.

Definition 6. An operator has weight w if it acts non-trivially on w qubits.

1.2.2 Other Common Operations on Quantum Channels

This section introduces two common 2-qubit operations used in quantum computing, as

well as the single-qubit Hadamard operator. The first 2-qubit gate is the controlled-NOT

(CNOT) gate. The CNOT gate applies an X gate to one qubit when the other qubit is in the

excited state, and does nothing otherwise. The qubit which determines whether X is applied

is called the control qubit, and the qubit acted upon is the target qubit. The operator for a

CNOT gate is

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 . (1.14)

Another operation that is commonly used in quantum computing is the SWAP gate, which

exchanges the position of two qubits. The SWAP gate is

SWAP =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 . (1.15)
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Later, in chapter 3, we will use cyclic permutation operators, which are operations that apply

many SWAP gates to permute qubits. For notational convenience, we use the notation of

group theory for these operations. Cyclic permutations are denoted by a series of numbers

grouped into brackets; the numbers index which qubit is mapped to which position. In each

bracket, every number is the index of a qubit being mapped and the number to its right is

the index it should be mapped to, with the rightmost number in a bracket mapping to the

leftmost number’s position. For example, the operator (134)(25) writes the first qubit to the

third position, the third qubit to the fourth position, the fourth qubit to the first position,

the second qubit to the fifth position, and the fifth qubit to the second position.

The single-qubit Hadamard transform is a gate which maps X ↔ Z, and is given by

H =
1√
2

[
1 1

1 −1

]
. (1.16)

1.3 Measurement

Meauring a quantum state, |ψ〉 = α|0〉 + β|1〉, in the computational basis will collapse the

wavefunction to classical states 0 or 13 with probability |α|2 or |β|2, respectively. Because we

generally want to continue using an encoded quantum state after applying error correction

protocols, it is imperative that we avoid collapsing to a classical state. To garner information

about a state without destroying it, we instead use a class of measurements called projective

measurements, which project the state onto an eigenspace of the measured operator. This

section describes the action of projective measurements and the information that is retrieved

by applying these operations.

When we apply a projective measurement, we say that we are measuring some operator,

Λ, which can be decomposed as

Λ =
∑

i

λiΠi, (1.17)

where {λi} are the eigenvalues of Λ and Πi is a projector onto the eigenspace of Λ cor-

responding to λi. If we measure Λ on some state, |ψ〉, the resultant state will be in the

3 The classical states 0 and 1 are states in the computational basis of a qubit; for an m-dimensional state,

the computational basis states would be Zm.
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eigenspace corresponding to λi with probability 〈ψ|Πi|ψ〉, and the state after measurement

is

Πi|ψ〉√
〈ψ|Πi|ψ〉

. (1.18)

Measurements are typically applied using qubits outside of the state being measured4. Note

that through the measurement process, we can learn which eigenspace the state was projected

onto.

1.4 Circuit Representation

It is often convenient to represent quantum channels pictorally. This is achieved through the

use of quantum circuit diagrams, in which qudits are denoted by horizontal lines and gates

as images overlaid over the qudits. Figure 1.2 shows a basic example of a quantum circuit.

|ψ〉 W U

Figure 1.2: Basic example of a quantum circuit diagram in which a W operator is applied

to the state |ψ〉, followed by a U operator. Time flows from left to right by convention.

Multi-qudit operations are represented by images overlaid over multiple qudits in a circuit,

as demonstrated in fig. 1.3. A multi-qudit gate is expressed as an operator in a larger space.

If it acts on each qubit individually, it can be broken down as a tensor product of single

qubit operators. Throughout this thesis, when we examine multi-qudit operators that act in

this manner, we will omit the tensor product symbol for notational simplicity.

|ψ〉 W
V

|φ〉

Figure 1.3: Basic example of a multi-qudit quantum circuit diagram in which a single qudit

gate, W , acts on |ψ〉, followed by a multi-qudit gate, V , which acts on W |ψ〉 and |φ〉.
4 This process will become apparent in section 1.5.
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|ψ〉 •
|φ〉

Figure 1.4: The circuit representation of a quantum CNOT gate, where ψ is the control

qubit, and φ is the target. A controlled gate with a different action on the target qubit is

represented by a similar symbol in which the circle on the target qubit is replaced by the

symbol representing the desired operation.

Measurement in the computational basis is represented in a quantum circuit by the

symbol shown in fig. 1.5. It is worth noting that there is no qudit exiting the gate on the

right because measurement destroys the state.

|ψ〉

Figure 1.5: Quantum circuit diagram representation of a measurement operation.

In the case of encoded qudits, it is often convenient to denote a single logical qudit,

which is encompassed by many physical qudits (see section 1.5), as a single horizontal line

in a quantum circuit diagram.

1.5 Error Correcting Codes

Errors are introduced into quantum systems when the system is not sufficiently isolated from

the surrounding environment and when gates are not perfectly implemented. To correct these

errors, it is necessary to use some sort of quantum error correcting protocol. This section

reviews the basics of quantum error correcting codes.

1.5.1 Classical Repetition Code

In classical computing, states are often protected from errors by encoding in a repetition code,

that is, by copying every bit of data onto additional “ancilla” bits to create redundancy. We

denote encoded (logical) bits by a bar, so a three bit encoding for a classical repetition code

would be expressed as

0→ 0 = 000 (1.19)

1→ 1 = 111. (1.20)
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For example, the string “010” would be encoded as “000111000”.

Errors are then corrected by measuring every physical bit in each logical bit and flipping

any bit that doesn’t agree with the majority. Introducing a bit flip error on the second last

physical bit in the above example, we have “000111010”. When we measure the third logical

bit, we see that the second physical bit doesn’t match the others and will accurately correct

the error. If, however, two single bit errors were introduced in the same logical bit, e.g.

“000111011”, we would attempt to correct the wrong error so that the end result would be

“000111111”, thus introducing a logical fault, as this would then be decoded as “011” rather

than the intended “010”. However, this recovery method works the majority of the time

because the error rate in classical systems is incredibly small [6]5.

1.5.2 Quantum Repetition Code

The classical error correction methods described in section 1.5.1 are not possible in quantum

systems because, by the no-cloning theorem [7], quantum states cannot be copied, so the

classical encoding cannot be replicated for a logical quantum state. Further, measuring a

quantum state destroys it, so observing the state to see errors directly is not possible, and

errors are continuous, unlike errors in digitized classical data.

In quantum computing, encoding creates redundancy in a similar way; data is protected

using additional ancilla qubits, albeit in a different manner. Ancilla qubits are also used to

get information about errors in quantum error correcting codes.

Definition 7. The set of codewords, C, of a quantum error correcting code is the set of

encoded computational basis states.

The quantum repetition code is constructed by defining logical states |0〉 = |000〉 and

|1〉 = |111〉. This encoding does not violate the no-cloning theorem because a general state

|ψ〉 = α |0〉+ β |1〉 maps to |ψ〉 = α |0〉+ β |1〉, rather than (α |0〉+ β |1〉)⊗3 and so the state

is not copied in the encoding process. The encoding circuit for the 3 qubit repetition code

is given in fig. 1.6.

5 This study reported one memory error on average in 41 hours on a node with 4GB of DRAM with no

error correction in 2016.
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|ψ〉 • •
|0〉
|0〉

Figure 1.6: Encoding circuit for the quantum repetition code.

To detect bit flip errors on states encoded in the quantum repetition code, we can detect

differences between any two pairs of physical qubits without directly measuring the encoded

state as shown in fig. 1.7.

•
• •





|ψ〉

•

|0〉a

|0〉b

Figure 1.7: Measuring bit flip errors on the 3 qubit repetition code.

Measuring ancilla qubits a and b tells us whether the first and second qubit and second

and third qubit in the encoded state match, respectively. The outcome of these measurements

is a two bit string called a measurement syndrome, which provides insight into what errors

might have occurred. Assuming that bit flip errors are the only source of noise in our system,

we can try to correct the noise based on the measured error syndrome. Error syndromes and

the associated bit flip errors are listed in table 1.1.

Label a b Errors

m0 0 0 I⊗3, X⊗3

m1 0 1 IIX, XXI

m2 1 0 XII, IXX

m3 1 1 IXI, XIX

Table 1.1: Syndromes and corresponding bit flip errors for the 3 bit repetition code.

Assuming a low probability of error (in a useful quantum system, this is a reasonable

assumption), we generally choose to correct the underlined error associated with each syn-

drome in table 1.1; if each qubit has a low probability p of undergoing a bit flip error, then
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the underlined errors are significantly more likely to occur than the others. Correcting an

error that did not occur can result in a logical error. For example, if an XXI error occurs

and we measure the correct syndrome, (0, 1), but we assume that IIX has occurred and

apply IIX as a correction, we will then have the encoded state acted upon by XXX, thus

producing a logical fault6.

The indistinguishability of these errors is symptomatic of a pervasive issue in quantum

error correction; the only information available to try to correct errors in a quantum error

correcting code is which syndrome was measured, which could correspond to many different

errors. This difficulty is well summarized by the Knill-Laflamme conditions for error correc-

tion, presented in ref. [8], which give necessary and sufficient conditions for a state to be

recoverable after it has undergone some noise process.

The codewords of a code form an orthonormal basis of the codespace. In terms of the

codewords, {|ψi〉} ∈ C, the first Knill-Laflamme condition for the correctability of two errors,

E and F , is as follows:

1. 〈ψi|E†F |ψi〉 = 〈ψj|E†F |ψj〉

2. 〈ψi|E†F |ψj〉 = 0.

It should be noted that this condition applies for any orthonormal basis of the codespace,

rather than just the set of codewords. The other conditions presented in [8] are equivalent

and we restrict attention to this one for brevity.

We can construct a similar code which corrects phase errors by replacing the CNOT gates

in fig. 1.6 with controlled-Z gates and applying Hadamard gates to the ancilla qubits before

and after the CNOTs in the syndrome measurement.

1.5.3 Stabilizer Codes and their Error Correction Protocols

In this section, we discuss a particular class of quantum error correcting codes known as

stabilizer codes. The quantum repetition code introduced in the previous section is an

example of a stabilizer code.

A stabilizer code is a quantum error correcting code (QECC) that is described by opera-

tors which stabilize the logical (i.e encoded) computational basis states. That is, operators,

S, for which

6 Applying the recovery operator introduces a logical fault because it maps |0〉 ↔ |1〉.
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S|l〉 = |l〉, ∀l ∈ Zq, (1.21)

where q is the dimension of the logical state.

Definition 8. The codespace of a quantum error correcting code is the space spanned by

the +1 eigenstates of the code, that is, the set of encoded logical states.

Definition 9. The set of operators, S, which stabilize the codewords is the stabilizer group

The stabilizer group has size |S| = 2n−k for a QECC which encodes k logical qubits in n

physical qubits.

Definition 10. The minimal generating set for the stabilizer group are the stabilizer gen-

erators7, G.

The group of stabilizer generators for a code which encodes k logical qubits in n physical

qubits has size |G| = n−k. A stabilizer code is generally specified by its stabilizer generators.

For a given stabilizer code, we define a set of “logical” Pauli operators, {σ} ∈ ±Pn.

Recall that Pn = {I,X, Y, Z}⊗n is the n-qubit Pauli group. The logical Pauli operators

act on the encoded state as the Pauli operators would act on the unencoded state. These

operators have the same commutation relations as the unencoded Paulis, and commute with

every element of the stabilizer group, S.

Definition 11. The normalizer, N(S), of a quantum error correcting code is the set of Pauli

operators that commute with every element of that stabilizer group. That is, N(S) = {M ∈
{±1,±i}Pn : [M,S] = 0∀S ∈ S}.

Definition 12. A cospace of a quantum error correcting code is the image of the codespace

under a coset of the normalizer in {±1,±i}Pn.

The quantum repetition code discussed in section 1.5.2 is an example of a stabilizer code,

with stabilizer generators ZZI, and IZZ. Figure 1.7 shows these generators being measured,

and the resultant measurement outcomes8 gives the commutation relations of the stabilizer

generators with the error that has occurred.

7 The stabilizer generators of a code are often referred to as simply the generators of that code.
8 The resultant measurement outcome is the measured syndrome.
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More generally, after some noise process is applied to the encoded state in an arbitrary

stabilizer code, projective measurements, Πm, are applied, mapping the state onto a cospace

of the code associated with syndrome measurement m, where m is a binary vector of length

n − k; each bit of m is specified by the commutation relation of a generator with the error

that has occurred. So, after an error, e, the ith bit of m is decided by the commutation

relation between the ith generator, gi and e. So m(i) = 0 when [e, gi] = 0 and m(i) = 1 when

{e, gi} = 0. The trivial syndrome, 0⊗(n−k), is denoted m0.

A projection operator onto the ±1 eigenspace of a generator, gi, can be written (I⊗(n−k)±
gi)/2. The projection operators, Πm, used to project onto the cospace associated with

syndrome m, and consequently measure syndrome m, can then be expressed as a product of

measurements of the individual generators,

Πm =
∏

j

(I⊗n + (−1)m(j)gj), (1.22)

where gj is the jth stabilizer generator, and m(j) is the jth bit of m.

After syndrome measurement, a recovery operation, Rm, associated with the cospace is

then applied to map the state back to the codespace. The selection of effective recovery

operations is imperative to the successful implementation of an error correcting code; as

discussed in section 1.5.2, selecting suboptimal recovery operations can introduce logical

faults. This problem is discussed in detail in section 1.6, and the results presented in this

thesis underscore the efficacy of a particular method of selecting recovery operations (see

section 2.3).

The notion of code distance in quantum error correction is analogous to that used in

classical error correcting codes, and there are many equivalent definitions. We will use the

definition provided below herein.

Definition 13. The distance of a quantum error correcting code is the minimum weight of

an operator which maps one codeword to another.

A QECC which encodes k logical qubits in n physical qubits and has distance d is

denoted as an [[n, k, d]] code. An [[n, k, d]] code can correct the set of t-qubit errors, where

t ≤ b(d− 1)/2c[9].

QECCs are often used in concatenation schemes to increase code distance. This is ac-

complished by re-encoding each physical qubit in an encoding with another (or the same)
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QECC, recursively. Re-encoding with the same QECC at each level of concatenation is often

used to find thresholds for the performance of a given QECC [10–12]. This thesis does not

address fault tolerance, however it is worth noting that concatenating using different QECCs

has been used to get a universal set of fault-tolerant gates on the full encoded state [13].

1.5.4 Popular Examples of Stabilizer Codes

One of the more popular quantum error correction codes is the [[5, 1, 3]] code. The stabilizer

generators of the 5 qubit code are given in table 1.2. This code is referred to as a “perfect”

code because each single qubit Pauli error (plus the trivial error) is associated with a unique

syndrome and there are no syndromes leftover.

X Z Z X I

I X Z Z X

X I X Z Z

Z X I X Z

Table 1.2: Stabilizer generators for the [[5, 1, 3]] code.

The 9-qubit Shor code is created by concatenating the 3 qubit repetition (bit flip) code

and the 3 qubit phase flip code to form a code which can correct all single qubit bit flip or

phase flip errors. The Shor code is specified by the generators given in table 1.3.

Z Z I I I I I I I

I Z Z I I I I I I

I I I Z Z I I I I

I I I I Z Z I I I

I I I I I I Z Z I

I I I I I I I Z Z

X X X X X X I I I

I I I X X X X X X

Table 1.3: Stabilizer generators for the 9 qubit Shor code.

Calderbank-Steane-Shor (CSS) codes are created by mapping the parity check matrix of
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classical codes9 to Pauli operators as follows: half of the stabilizer generators are constructed

by taking each row of the parity check matrix for a classical code and replacing every 0 with I

and every 1 with X. To construct the remaining stabilizer generators, this process is repeated,

using a code that is the dual of the first code, but with 0→ I and 1→ Z. The Steane code

is an example of a CSS code, and is constructed from the classical 7 bit Hamming code,

with stabilizer generators given in table 1.4. There are many other CSS codes; the [[15, 1, 3]]

Reed-Muller is one of the more popular examples, and one of the larger codes commonly

studied.

Z Z Z Z I I I

Z Z I I Z Z I

Z I Z I Z I Z

X X X X I I I

X X I I X X I

X I X I X I X

Table 1.4: Stabilizer generators for the 7 qubit Steane code.

1.6 The Decoder Problem

The outcome of a syndrome measurement tells us the commutation relation of each generator

with the error that has occurred, but because this is the only information available about the

error and many errors could have the same commutation relations, there is some uncertainty

as to which error has actually acted on the encoded state. As discussed in section 1.5.2,

correcting the wrong error can introduce a logical fault, so selecting an appropriate recovery

operation to associate with the corresponding syndrome is crucial. In this section, we discuss

some approaches for selecting recovery operations.

In any protocol for the selection of recovery operations, it is necessary to have a method

for approximating the noise acting on a quantum channel. For example, if we know that

the most common errors afflicting a channel are bit flips, and other types of errors are rare,

selecting recovery operations which have non-zero weight on only X operators wherever

possible follows logically. Alternatively, if we know nothing about the noise acting on a

channel, the default is generally to select the lowest weight error associated with every

9 We omit an introduction to classical error correcting codes for brevity; for a thorough introduction, see

[14].
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syndrome because for a successful implementation, the probability of a physical error must be

low, and if the probability of an error on a single qubit is p, then the probability of that error

occurring on a given pair of qubits is10 p2 ≤ p. When an error with the lowest possible weight

is associated with each syndrome measurement, the recovery protocol is called symmetric

recovery. It is common for theoreticians to assume a particular noise channel to model the

effects of selecting different recovery operations, but a full density matrix simulation for a

channel is costly, particularly in a code with large distance (or a concatenated code).

For ease of simulation, it is common for researchers to assume Pauli noise, and restrict

to simulating only a few levels of concatenation or low distance encodings. This assumption

has been accepted by the research community because logical noise is believed to converge

to Pauli noise as code distance increases. However, even with the restriction to Pauli noise,

simulation is costly, leading to simulation methods ranging from using tensor networks [11]

to machine learning [15].

Further difficulty arises when we go beyond a single level of concatenation and need to

select recovery operations at several levels, leading to the possibility that the best set of

recovery operations will make the noise worse at one level only to improve it at a higher

level. Searching for the optimal set of recovery operations over all levels of concatenation is

computationally costly. As a result, many studies of concatenated codes restrict attention to

“hard” decoding protocols, where recovery operations are selected for optimal performance

independently at each level of concatenation. Some “soft” decoding algorithms have been

explored, where recovery operations are selected using knowledge of the recovery operations

chosen at other levels of concatenation [12, 16].

To evaluate the performance of a set of recovery operations, it is necessary to have some

metric with which to quantify the severity of the errors resulting from applying a given set.

Section 1.7 discusses methods for quantifying errors. In [10], we proposed an algorithm which

uses the average logical infidelity11 to select recovery operations.

1.6.1 An Example: Selecting Recovery Operations for the [[5, 1, 3]] Code

As discussed in section 1.6, the selection of recovery operations can drastically alter the

performance of a quantum error correction code under a given noise model. In this section,

10 For each syndrome measurement outcome, we can only choose to correct a single 2-qubit error or a single

1-qubit error. The number of each type that could occur is therefore irrelevant.
11 Which we define as one minus the average logical fidelity (see section 1.7).
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we explore the selection of recovery operations for the [[5, 1, 3]] code under different noise

models to demonstrate this variance.

It is possible to associate every single-qubit Pauli error (including the trivial error) with

a unique syndrome in the [[5, 1, 3]] encoding. It is also possible to associate every error in the

set containing single-qubit Z errors and two qubit Z errors as well as the trivial error with

unique syndromes. The effect of selecting one of these decoders versus the other12 varies

based on the noise present in the system. This is illustrated by the example in fig. 1.8, which

plots the average logical infidelity (a metric13 for measuring error rate - see section 1.7)

against the angle of rotation for channels undergoing coherent rotations about different axes

for the two sets of recovery operations described above.

12 Or selecting any alternate decoder.
13 Note that in this document the word metric is used in a non-technical sense as a synonym for “figure of

merit;” infidelity is a semimetric as it does not satisfy the triangle inequality.
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Figure 1.8: Plots of the average logical infidelity under Z recovery and symmetric recovery

for a coherent rotation about the Z axis (top) and a coherent rotation about an equally

weighted axis14(bottom).

If we have a rotation about an axis equally weighted in X, Y, and Z, then selecting the

lowest weight recovery operations will be more effective for low angles than applying strictly

14 A unitary rotation as defined in section 1.2.1 with ~n = (1/
√

3, 1/
√

3, 1/
√

3).
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Z recovery operations. Alternatively, if we have a rotation about the Z axis, it is better to

apply recovery operations with non-zero weight only on Z operators for a rotation by any

angle. In useful quantum systems, we should have small θ.

1.7 Quantifying Errors

In any computation, it is important to have some metric which quantifies the reliability of

the result; several methods have been developed to analyse the severity of noise in quantum

systems.

Some specific noise channels have a form that lends itself easily to defining an error rate.

A Pauli channel, for example, has some probability of applying a non-identity operation;

that probability could easily be viewed as the error rate for that channel. For a channel

which applies a unitary rotation, by contrast, it is not immediately obvious what metric

should be used to quantify the severity of the error. Further, the probability of error has no

clear analog at the logical level.

The average gate infidelity15 to the identity (hereafter infidelity) is one metric developed

to quantify error rate in quantum systems. It is the most commonly used metric by ex-

perimentalists because it can be estimated efficiently in physical systems via randomized

benchmarking (see ref. [17]). The infidelity, r(Φ), of a channel Φ, to the identity channel is

given by eq. (1.23).

r(Φ) = 1−
∫
〈ψ|Φ(|ψ〉〈ψ|)|ψ〉dψ, (1.23)

where the integration is over the uniform Haar measure on pure states. In terms of the Kraus

operators, {Ak}, of the channel, Φ, the infidelity is16 [5, 18]

r(Φ) =

∑
k |Tr(Ak)|2 + q

q(q + 2)
. (1.24)

The diamond distance, �(·), is another common metric for error quantification, and is com-

monly used by theoreticians as a worst-case error analysis. It is defined relative to the

identity channel, I, by eq. (1.25),

15 We define infidelity as one minus the fidelity.
16 In the interest of brevity, we omit the details of this derivation.
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�(Φ) = supψ
1

2
‖(Φ⊗ Im − Im2)(ψ)‖1, (1.25)

where the supremum is over all q2-dimensional pure states to account for the effect of the

channel on an entangled state.

The diamond distance is related to the infidelity by [19, 20]

q + 1

q
r(Φ) ≤ �(Φ) ≤

√
q(q + 1)

√
r(Φ), (1.26)

with

�(P) =
q + 1

q
r(P) (1.27)

for Pauli noise P [21]. For unitary rotations, U , �(U) is proportional to
√
r(U), but does

not necessarily saturate the upper bound in eq. (1.26)[22].

Both the fidelity and diamond distance metrics extend easily to characterizing the severity

of logical errors. However, comparing physical and logical error rates with these two metrics

demonstrates some significant discrepancies in their characterization; the diamond distance

and fidelity often differ by orders of magnitude when describing the effects of the same

noise channel. Figure 1.9 shows results from [23] comparing physical diamond distance and

physical fidelity to logical fidelity for randomly generated CPTP maps. Notice that the plots

highlight that the depolarizing (Z rotation) noise has the best logical fidelity when compared

to the physical diamond distance (fidelity), and the worst logical fidelity when compared to

the physical fidelity (diamond distance).
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Figure 1.9: Plots of average logical fidelity for an encoded noisy state at the third level of

concatenation, r(N (3)
), in the Steane code entangled with a perfect single qubit state as

a function of physical diamond distance, �(N ), (left) and physical infidelity, r(N ), (right)

when recovery operations are selected to maximize fidelity with the noiseless state [23]. Each

point on each plot corresponds to a random CPTP map, which acts on each physical qubit

comprising the state encoded in the Steane code. The blue lines show the behaviour of

depolarizing noise, while the black show the scaling of errors for a coherent rotation about

the Z axis.

1.7.1 Current Experimental Error Rates

Several companies have developed quantum computing devices. This section presents the

error rates and number of qubits for some of these devices, as well as plans for future devices

to demonstrate scalability. Error rates are presented in terms of infidelity for single-qubit

(two-qubit) gates averaged over each qubit, r1q (r2q), and readout error, eRO, corresponding

to the error introduced by preparing and immediately measuring a state. Rigetti defines the

readout error as eRO = 1
2
[p(0|0) + p(1|1)], where p(x|y) is the probability of measuring x

given that the state prepared was y [24].
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Company/Acedemic Group Name of Device Number of Qubits r1q r2q eRO

Blatt [25] NR 20 NR NR NR

IBM [26] IBM Q 20 Austin 20 0.010 170.0638 0.1479

IBM [26] IBM Q 20 Tokyo 20 0.002 0.0287 0.077

Intel [27] NR 17 NR NR NR

Intel [28] Tangle Lake 49 NR NR NR

Google [29] NR 9 180.0008 NR 0.022

Monroe [30] NR 5 19NR 0.017 NR

Rigetti [24] NR 20 0.0137 0.123 0.067

Table 1.5: Number of qubits and error rates in current quantum devices, as reported by the

companies developing each device. NR indicates that the value was not reported in the cited

articles, or that no value listed is clearly associated with these error metrics.

Google has announced plans to build Bristlecone, a 72-qubit quantum device, using

devices modeled after their 9-qubit device as unit blocks with the goal of achieving error

rates as low as those in the 9-qubit device [31]. Rigetti unveiled plans to build a 152-qubit

quantum device by August 2019 using blocks of 16-qubits [32].

To achieve quantum supremacy, ie for a quantum computer to outperform current state

of the art classical computers, Google believes (As of March, 2018) that a quantum com-

puter would require 49 qubits, a two-qubit gate infidelity of less than 0.5%, and to be able

to perform circuits with a circuit depth of 40 [31]. Current devices with fewer than 49 qubits

have been shown to exceed a 2-qubit gate infidelity of 0.5% by an order of magnitude (see

table 1.5), though circuits with more than 40 gates have been achieved on these smaller

devices [24]. Devices which meet the aforementioned size criteria are presently being devel-

oped or have been announced, though error rates have not yet been published for these larger

devices, and there is as of yet no evidence that they have met the circuit length requirement.

17 IBM reports this as a multi-qubit gate error for both of their 20-qubit devices.
18 Note that the average single-qubit gate fidelity was only measured for 4 of the 9 qubits, and this is an

average over those 4 qubits.
19 The Monroe group reports an average infidelity of 0.02 for a set of single- and 2-qubit gates.
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1.8 The Process Matrix Formalism

Process matrices are another way to express channels. The size of a process matrix for a

single logical state is fixed by the chosen basis so that the dimensions do not increase with

increasing code distance; this allows for a significant reduction in computational complexity

in the simulation of quantum channels. Further, successive operations are captured in the

process matrix formalism by a simple matrix multiplication rather than by nesting sums of

conjugations, as in the Kraus formalism, allowing for simulation of significantly more compli-

cated channels. The use of process matrices for quantum channels was originally suggested

by Rahn et. al in 2002 [33], and they have since been used to calculate thresholds20 at high

levels of concatenation [10], and examine the contribution of coherent errors at the logical

level [34]. This section introduces the process matrix formalism and shows the derivation for

process matrices at various stages of the error correcting process. The expressions for single-

qubit noise and noise after full error correction were shown in [33], while the expressions for

encoded noise with no error correction and encoded noise after syndrome measurement are

new.

The set of Pauli matrices, P = {I,X, Y, Z}, forms a basis for Hermitian matrices in C2×2,

so that we can write an arbitrary quantum state as

ρ =
1√
2

[〈I〉ρI + 〈X〉ρX + 〈Y 〉ρY + 〈Z〉ρZ], (1.28)

where 〈σ〉τ is the expectation value of σ for the state τ . Then let

|ρ〉〉 =
1√
2




〈I〉ρ
〈X〉ρ
〈Y 〉ρ
〈Z〉ρ


 , (1.29)

to arrive at a representation of an q-dimensional quantum state in the process matrix for-

malism. More generally, a state ρ can be written in terms of an arbitrary trace-orthonormal

basis of Cq×q, {Bi}, as

ρ =
∑

i

Tr(B†i ρ)Bi. (1.30)

20 Bounds on the physical noise parameters for which a QECC can correct errors
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Vectorizing by letting |Bi〉〉 → ei, where {ei} is the canonical basis of Cq2 , we arrive at the

representation of a state in the process matrix formalism,

|ρ〉〉 =
∑

i

Tr[B†i ρ]ei. (1.31)

In the Pauli basis, a channel, V : ρi → ρf , is expressed as a 4 × 4 matrix such that |ρf〉〉 =

V|ρi〉〉.
From eq. (1.31), and letting 〈〈ρ| = |ρ〉〉†, we derive below an expression for 〈〈ρ|τ〉〉,

〈〈ρ|τ〉〉 =
∑

i,j

Tr(ρ†Bi)e
†
iTr(B†jτ)ej (1.32)

=
∑

i

Tr(ρ†Bi)Tr(B†i τ). (1.33)

Recalling the decomposition of matrices given in eq. (1.30),

Tr(ρ†τ) =
∑

i,j

Tr(B†i ρ)∗Tr(Bjτ)Tr(B†iBj) (1.34)

=
∑

i

Tr(ρ†Bi)Tr(Biτ). (1.35)

So that

〈〈ρ|τ〉〉 = Tr(ρ†τ). (1.36)

1.8.1 Noise in A Quantum Channel

The process of quantum error correction on a noisy communication or memory channel can

be described by a channel, N (Rm), which encodes a logical state via a map C, exposes it to

some noise, N , measures a syndrome, m, and applies recovery operation Rm, both captured

by R, and then decodes, with D, is given by

N (Rm) = DRNC, (1.37)
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where the bar over N in N (Rm) is used to denote logical noise. This entire process is shown

in fig. 1.10.

|Ψ〉

C N
R

D

|0⊗(n−k)〉

Figure 1.10: Quantum circuit diagram depicting the encoding of a state, Ψ, in a quantum

error correcting code. The encoded state then undergoes some noise, N , and a syndrome

measurement and recovery operation are applied by R before the state is decoded by D.

The matrix N (Rm) can be thought of as a noisy communications channel or quantum

memory. Alternatively, we can model an encoded computation by replacing N with a series

of encoded gates. In this work, we study the effects of quantum error correction on physical

noise processes. As such, we will restrict attention to the channel N (Rm) described above,

and assume perfect C, R, and D.

1.8.2 Infidelity as a Function of the Process Matrix

Here we derive an expression for the infidelity of a channel, N , in terms of its process

matrix representation. Recalling the expression for infidelity in terms of the channel’s Kraus

operators, {Ak}, from eq. (1.24),

r(N ) =

∑
k |Tr(Ak)|2 + q

q(q + 2)
, (1.38)

we note that in order to express the infidelity in terms of the process matrix of the channel

rather than its Kraus operators, we must simply re-write
∑

k |Tr(Ak)|2. We define {Bσ} as

the orthonormal Pauli basis, P/
√

2. Starting from the trace of the process matrix,
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Tr(N ) = Tr

(∑

σ,k

BσAkBσA
†
k

)
(1.39)

=
∑

σ,k

Tr(BσAkBσA
†
k). (1.40)

From eq. (1.35),

∑

σ,k

Tr(BσAkBσA
†
k) =

∑

i,σ,k

Tr(BσA
†
kBi)Tr(BiBσAk). (1.41)

Because Bσ = B†σ and {Bσ} is an orthonormal basis,

Tr(BσAkB
†
σA
†
k) =

∑

k

Tr(A†k)Tr(Ak) (1.42)

=
∑

k

|Tr(Ak)|2, (1.43)

So from eq. (1.40),

Tr(N ) =
∑

k

|Tr(Ak)|2. (1.44)

The infidelity in terms of the process matrix of the channel is then

r(N ) =
Tr(N ) + q

q(q + 1)
, (1.45)

where N is acting on a q-dimensional state. For a qubit,

r(N ) =
Tr(I −N )

6
(1.46)

1.8.3 Quantum Channels in the Process Matrix Formalism

Noise on an Unencoded State

The final state after undergoing some channel, N : ρi → ρf , is described by
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〈Bi〉ρf = Tr[Biρf ] (1.47)

= Tr[BiN [ρi]] (1.48)

= Tr

[
BiN

[∑

j

〈Bj〉ρiBj

]]
(1.49)

(1.50)

Expanding |ρf〉〉 = N|ρi〉〉, we arrive at the following expression for the elements of N

NBi,Bj
= Tr[BiN [Bj]]. (1.51)

In the Pauli basis,

Nσ,σ′ =
1

2
Tr[σN [σ′]], (1.52)

where σ, σ′ ∈ P, and the 1/2 comes from normalization. We continue in the Pauli basis for

the remainder of this thesis.

Noise on an Encoded State

This section derives an expression for the effective logical noise arising from physical noise

N when no syndrome measurement or recovery operations are applied.

In the Kraus operator formalism, an encoding channel can be expressed as

C[ρ] = CρC†, (1.53)

where C = |0〉〈0|+ |1〉〈1| for a single logical qubit, and

C =
∑

b∈Zk
2

|b〉〈b| (1.54)

29



for a k-qubit encoding. The corresponding decoding is then given by D[C[ρ]] = C†C[ρ]C for

an arbitrary encoded state, C[ρ]. Encoding P gives E = {Eσ}, σ ∈ P. An encoded state can

be expressed as

C[ρ] =
1

2k

∑

σ

Tr[〈σ〉ρEσ]. (1.55)

For a single logical qubit,

C[ρ] =
1

2k
Tr[〈I〉ρEI + 〈X〉ρEX + 〈Y 〉ρEY + 〈Z〉ρEZ ], (1.56)

where

EI = |0〉〈0|+ |1〉〈1| (1.57)

EZ = |0〉〈0| − |1〉〈1| (1.58)

EX = |0〉〈1|+ |1〉〈0| (1.59)

EY = i(|0〉〈1| − |1〉〈0|). (1.60)

The final state, after encoding, C, undergoing some noise process, N , and decoding, D, is

described by

〈σ〉ρf = Tr[σρf ] (1.61)

= Tr[σC†N [C[ρi]]C] (1.62)

= Tr[EσN [C[ρi]]]. (1.63)

The action of N on the encoded state will map some terms in the expansion of the state

out of the codespace; these terms will be lost when the decoding map is applied, so that

the effective channel is trace decreasing when neither syndrome measurements nor recovery

operations are applied. The effective channel is given by

N σ,σ′ =
1

2k
Tr[EσN [Eσ′ ]], (1.64)
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where the factor of 1/2k arises to normalize the {Eσ} so that they form an orthonormal

basis. The encoded Pauli operator, Eσ, acts on the codespace as σ and vanishes elsewhere.

We define an operator, Π0, which projects onto the codespace21,

Πm0 =
1

|S|
∑

S∈S

S, (1.65)

and construct an operator which projects onto the codespace and acts as σ, so that we can

write

Eσ = Πm0σ (1.66)

=
1

|S|
∑

S∈S

Sσ. (1.67)

Substituting eq. (1.67) into eq. (1.64), we arrive at eq. (1.68),

N σ,σ′ =
1

2k|S|2
∑

S,S′∈S

Tr[SσN [S ′σ′]]. (1.68)

By eq. (1.36),

N σ,σ′ =
1

2k|S|2
∑

S,S′∈S

〈〈Sσ|N |S ′σ′〉〉. (1.69)

Expanding 〈〈Sσ|N |S ′σ′〉〉22,

〈〈Sσ|N |S ′σ′〉〉 = 2nχ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(S′σ′)j
, (1.70)

where χ(A) is the global phase of A relative to a member of Pn such that ∃B ∈ Pn with

χ(A)B = A. Thus,

N σ,σ′ =
1

|S|
∑

S,S′∈S

χ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(S′σ′)j
. (1.71)

21 Recall that we previously defined S as the stabilizer group of a quantum error correcting code.
22 The full derivation of this equation is given in appendix A
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Effective Noise after Syndrome Measurement

In an error correcting protocol, after exposure to some noise, N , the encoded state is pro-

jected onto a cospace associated with syndrome m by a projection operator, Πm, with

some probability, p(m). The projection operator corresponding to syndrome m is given

by eq. (1.22). The resultant state is described by {〈σ〉f}, where

〈σ〉ρf = Tr[σρf ] (1.72)

=
1

p(m)
Tr[σC†ΠmN [C[ρi]]Π†mC] (1.73)

=
1

p(m)
Tr[Π†mCσC

†ΠmN [C[ρi]]] (1.74)

=
1

p(m)
Tr[Π†mEσΠmN [C[ρi]]]. (1.75)

Let Pm[ρ] = 1
p(m)

ΠmρΠm so that

〈σ〉ρf = Tr

[
Pm[Eσ]N

[
1

2k

∑

σ′

〈σ′〉ρiEσ′
]]

. (1.76)

By eq. (1.36),

〈σ〉ρf = 〈〈Eσ|P†mN|
1

2k

∑

σ′

〈σ′〉ρiEσ′〉〉. (1.77)

Expanding |ρf〉〉 = E|ρi〉〉 for an arbitrary channel, E , it is clear that

N σ,σ′(m) =
1

2k
〈〈Eσ|P†mN|Eσ′〉〉 (1.78)

=
1

2kp(m)
〈〈ΠmEσΠm|N |Eσ′〉〉. (1.79)

Substituting eq. (1.67) into eq. (1.79),

N σ,σ′(m) =
1

2kp(m)|S|2
∑

S,S′∈S

〈〈ΠmSσΠm|N |S ′σ′〉〉. (1.80)
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Because logical operators commute with stabilizers, and Πm can be written as an sum of

stabiliers,

N σ,σ′(m) =
1

2kp(m)|S|2
∑

S,S′∈S

〈〈ΠmSΠmσ|N |S ′σ′〉〉. (1.81)

Projecting a sum over stabilizer elements onto a codespace introduces signs such that

∑

S∈S

ΠmSΠm = Πm. (1.82)

Then,

N σ,σ′(m) =
1

2kp(m)|S|2
∑

S,S′∈S

ν(S|m)〈〈Sσ|N |S ′σ′〉〉, (1.83)

where ν(S|m) is the sign of S in the expansion of Πm in eq. (1.22). Using eq. (1.70),

N σ,σ′(m) =
2n

2kp(m)|S|2
∑

S,S′∈S

ν(S|m)χ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(S′σ′)j
(1.84)

=
1

p(m)|S|
∑

S,S′∈S

ν(S|m)χ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(S′σ′)j
. (1.85)

It is often convenient to sum over recovery operations to get a picture of how the channel

acts on average. This is described by

〈N σ,σ′〉(\R) =
1

|S|
∑

m∈Zn−k
2

S,S′∈S

ν(S|m)χ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(S′σ′)j
. (1.86)

Effective Noise with Full Error Correction

In an error correcting protocol, after a state has been exposed to some noise, a projective

measurement, Πm, projects the resultant state onto a cospace associated with syndrome
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m ∈ Zn−k2 with some probability, p(m). A recovery operation, Rm ∈ R, is then applied to

map the state back to the codespace. This mapping acts on a state, ρ, as

N (ρ,Rm) = Rm[N [C[ρ]]] =
1

p(m)
RmΠmN [C[ρ]]Π†mR

†
m, (1.87)

where Rm projects onto the cospace corresponding to syndrome m and applies Rm.

As described in section 1.8.3: Effective Noise after Syndrome Measurement, it is often

convenient to sum over syndrome measurements to analyse the channel in its entirety; we

refer to the resultant process matrix as the average channel. We therefore do the same here.

Letting 〈N (ρ)〉 be the effective logical channel averaged over recovery operations,

〈N (ρ)〉 = R[N [C[ρ]]] =
∑

m

1

p(m)
RmΠmN [C[ρ]]Π†mR

†
m. (1.88)

The average final state, ρf , after encoding, exposing the encoded state to some noise, N ,

measuring syndromes, applying recovery operations, and decoding will be specified by the

expectation values of the Pauli operators, {〈σ〉ρf},

〈σ〉ρf = Tr[σρf ] (1.89)

= Tr

[∑

m

σC†RmΠmN [C[ρi]]Π†mR†mC
]

(1.90)

= Tr

[∑

m

Π†mR
†
mCσC

†RmΠmN [C[ρi]]
]

(1.91)

= Tr

[∑

m

Π†mR
†
mEσRmΠmN [C[ρi]]

]
(1.92)

= Tr[DσN [C[ρi]]], (1.93)

where Dσ =
∑

m Π†mR
†
mEσRmΠm. Then,

〈σ〉ρf = Tr

[
DσN

[
1

2k

∑

σ′

〈σ′〉ρiEσ′
]]

. (1.94)
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Expanding |ρf〉〉 = N|ρi〉〉, we arrive at an expression for the elements of 〈N〉, the average

effective logical process matrix after full error correction has been applied,

〈N σ,σ′〉 =
1

2k
Tr[DσN [Eσ′ ]]. (1.95)

Then, using eq. (1.67),

Dσ =
1

|S|
∑

m∈Zn−k
2

S∈S

Π†mR
†
mSσRmΠm (1.96)

Because the stabilizers, logical operators, and recovery operators are all Pauli, they will

either commute or anti-commute. So we define η(A,B) implicitly as AB = η(A,B)BA and

commute Rm past Sσ. Because R†mRm = 1, and recalling eq. (1.82),

Dσ =
1

|S|
∑

R∈R
S∈S

η(Sσ,R)Sσ, (1.97)

where η(A,B)AB = BA. Substituting eq. (1.67) and eq. (1.97) into eq. (1.95),

〈N σ,σ′〉 =
1

2k|S|2
∑

S,S′∈S
R∈R

η(Sσ,R)Tr[SσN [S ′σ′]]. (1.98)

By eq. (1.36),

〈N σ,σ′〉 =
1

2k|S|2
∑

S,S′∈S
R∈R

η(Sσ,R)〈〈Sσ|N |S ′σ′〉〉. (1.99)

From eq. (1.70),

〈N σ,σ′〉 =
1

|S|
∑

S,S′∈S
R∈R

η(Sσ,R)χ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(S′σ′)j
. (1.100)
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1.8.4 Examples of Operations in the Process Matrix Formalism

This section presents some basic operations in the process matrix formalism. The Pauli

operators are

X =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 Y =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 Z =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


. (1.101)

Recalling the unitary rotation channel defined in section 1.2.1, a rotation about the x-axis

by θ is given by

Rx(θ) =




1 0 0 0

0 1 0 0

0 0 cos 2θ sin 2θ

0 0 − sin 2θ cos 2θ


 . (1.102)

Analogously, process matrices for rotations about the y-axis, z-axis, and the axis equidistant

from the x, y, and z axes, defined by ~n = (1/
√

3, 1/
√

3, 1/
√

3) are

Ry(θ) =




1 0 0 0

0 cos 2θ 0 − sin 2θ

0 0 1 0

0 sin 2θ 0 cos 2θ


, Rz(θ) =




1 0 0 0

0 cos 2θ sin 2θ 0

0 − sin 2θ cos 2θ 0

0 0 0 1


, (1.103)

and

Rxyz =




1 0 0 0

0 1
3
(1 + 2 cos 2θ) 2

3
sin θ(sin θ +

√
3 cos θ) 2

3
sin θ(sin θ −

√
3 cos θ)

0 2
3

sin θ(sin θ −
√

3 cos θ) 1
3
(1 + 2 cos 2θ) 2

3
sin θ(sin θ +

√
3 cos θ)

0 2
3

sin θ(sin θ +
√

3 cos θ) 2
3

sin θ(sin θ −
√

3 cos θ) 1
3
(1 + 2 cos 2θ)


 ,

(1.104)

respectively. The depolarizing channel defined in section 1.2.1 is
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Dp =




1 0 0 0

0 1− p 0 0

0 0 1− p 0

0 0 0 1− p


 . (1.105)
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Chapter 2

Quantum Error Correction: When Errors

Happen, what is the Impact?

In this chapter, we explore the effects of quantum error correction on physical noise processes.

We first discuss the form of noise from a quantum channel at the physical level, before ex-

tending our discussion to the effective logical noise post-syndrome measurement and after the

application of recovery operations. We demonstrate that syndrome measurement suppresses

the non-Pauli components of the noise, and show that the selection of recovery operations

effectively dictates the severity of the average effective logical noise. Further, we discuss the

usefulness of the logical fidelity as a measure of the efficacy of a set of recovery operations.

Many of the results presented in section 2.1-2.3 of this chapter were released in [35] prior to

the completion of this document.

2.1 Bounds on Noise Processes

Let E = |I − N | be the error process matrix.

Lemma 14. For any single-qubit Markovian noise channel with infidelity, r ≤ 1/3,

EI,σ′ = 0 (2.1a)

Eσ,I ≤ 3r (2.1b)

Eσ,σ ≤ 3r (2.1c)

Eσ,σ′ ≤
√

6r − 9r2 (2.1d)
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where σ, σ′ ∈ (P\I)/
√

2.

Proof. Equation (2.1a) follows directly from the trace-preserving condition on quantum chan-

nels; recall that Nσ,σ′ = 1
2
Tr(σN [σ′])) from eq. (1.52), and Tr(σ′) = 2δI,σ′∀σ′ ∈ P. For any

CPTP map, N , then, Tr(N [σ′]) = 2δI,σ′∀σ′ ∈ P, and NI,σ′ = Tr(IN [σ′]) = 2δI,σ′∀σ′ ∈ P.

Equation (2.1b) was shown in [19, Prop. 12].

The proof of eq. (2.1c) is an extension of the proof of [19, Prop 12], where we note that

taking the Pauli twirl of N produces a diagonal matrix with the singular values of N on the

diagonal. Analogous to the proof of [19, Prop 12], we write Nσ,σ = 1 − γσr, for γσ ≥ 0, so

that Eσ,σ = γσr, where the {γσ} must satisfy

(γσ − γτ )2 ≤ γ2
ζ (2.2)

for all permutations {σ, τ, ζ} of P\I by [19, eq. 63]. Rearranging eq. (1.46),

∑

σ∈P\I

Nσ,σ = 3− 6r (2.3)

= 3− (γσ + γτ + γζ)r, (2.4)

it is clear that
∑

σ γσ = 6. Combined with eq. (2.2), we can conclude that γσ ≤ 3∀σ ∈ P\I.

To prove eq. (2.1d), we first define the unital part, Mu, of a process matrix, M, as the

sub-matrix obtained by deleting the first row and column of M.

King and Ruskai, [36], [37], showed that a process matrix for a valid channel can be

written as

M≈




1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3


 , (2.5)

up to a change of basis, where the |λi| are the singular values ofMu. Applying this approx-

imation of M x times will cause the λi to go to their xth power. If any λi is ≥ 1 then that

singular value will diverge. Thus, the λi are upper-bounded by 1. Including the change of

basis, we can write [19]
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M = (I ⊕ U)




1 0 0 0

0 λ1 0 0

0 0 λ2 0

t 0 0 λ3


 (I ⊕ U †)(I ⊕ V ), (2.6)

where U, V ∈ SO(3) correspond to physical unitaries in SU(2).

The maximum singular value of a matrix M is given by

λmax(M) = max
{u,v:‖u‖2,‖v‖2≤1}

v†Mu (2.7)

≥ max
{v:‖v‖2≤1,j}

v†Mej (2.8)

= max
j
‖Mej‖2, (2.9)

where u and v are vectors, and ‖Mej‖2 is the Euclidean norm of the jth column of M, so

that we can conclude that 1 ≥ λmax(Nu) ≥ ‖Nuej‖2∀j. Then,

1 ≥ ‖Nuej‖2
2 =

∑

σ∈P\I

|(Nu)σ,τ |2 (2.10)

≥ (1− 3r)2 +
∑

σ 6=τ

|Eσ,τ |2 (2.11)

≥ (1− 6r + 9r2) + |Eσ 6=τ,τ |2, (2.12)

where τ ∈ P\I is the Pauli indexed by j, and

|Eσ 6=τ,τ | ≤
√

6r − 9r2. (2.13)

Corollary 15. For any single-qubit Markovian noise channel with infidelity r ≤ 1/3,

Eσ,σ′ ≤
√

6r (2.14)

where σ, σ′ ∈ (P\I)/
√

2.
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The bound on the off-diagonal elements of E can be further tightened by considering

unitarity.

Proof. This follows directly from lemma 14.

Theorem 16. For any single-qubit Markovian noise channel with infidelity r ≤ 1/3 and

unitarity u,

Eσ,σ′ ≤ min{
√

6r − 9r2,
√

3u− 3(1− 2r)2} (2.15)

where σ, σ′ ∈ (P\I)/
√

2.

Proof. The first expression in the minimization comes directly from lemma 14. The second

term can be derived using the following inequality from [19, eq. 70]

3(1− 2r)2 ≤
∑

σ

(Nu)2
σ,σ (2.16)

and the fact that ‖Nu‖F ≤ 3u, where ‖·‖F denotes the Frobenius norm, from [4, Prop.

3].

2.2 Scaling of Process Matrix Entries with Error Correction

In this section, we examine the scaling of off-diagonal elements of the effective logical process

matrix after syndrome measurement and recovery operations are applied, in order to conclude

that the use of quantum error correcting codes decoheres noise, that is, causes the effective

noise to converge to a Pauli channel. It is worth noting that the results presented in this

section can be applied to the case where no recovery operations are applied.

2.2.1 Separable Noise

Theorem 17. For an [[n, k, d]] code, after syndrome measurement, the off-diagonal elements

of the logical process matrix for a local physical noise process scale as
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N (m)σ,σ′ ∈ O(r
d/2
phys), (2.17)

where rphys = maxjr(N (j)), and we define a local noise process as one which can be expressed

as N =
⊗

j∈Zn
N (j).

Proof. From eq. (1.86), the effective logical process matrix after syndrome m is measured is

given by

N σ,σ′(m) =
1

|S|
∑

S,S′∈S

ν(S|m)χ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(S′σ′)j
. (2.18)

By definition, Sσ and S ′σ′ must differ on at least d qubits for a distance d stabilizer code

for any σ 6= σ′. By corollary 15, then,

N σ,σ′(m) ≤ |S|(6r)d/2. (2.19)

From the bounds on the other elements of the process matrix given by lemma 14, rd/2 is the

lowest order term that will arise in the calculation of the off-diagonals of the logical process

matrix.

Theorem 18. Applying a recovery operation R ∈ Pn will not change the magnitude of the

per-syndrome process matrix entries.

Proof. The process matrix for any Pauli operator is diagonal (recall eq. (1.101)), with N =

±1, so applying any Pauli recovery process will only change the sign of the process matrix

elements.

Corollary 19. The off-diagonal elements of the effective logical process matrix for an [[n, k, d]]

code undergoing separable physical noise,
⊗

j∈Zn
N (j), with full error correction using Pauli

recovery operators will scale as

N (m)σ,σ′ ∈ O(r
d/2
phys), (2.20)

where rphys = maxjr(N (j)).
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Proof. Corollary 19 follows directly from theorem 17 and theorem 18.

In theorem 17, we showed that errors on the off-diagonal elements of the process matrix

are suppressed exponentially with code distance. In order to conclude that errors decohere

with error correction, we must argue that the diagonal elements of the process matrix are not

suppressed proportionally; if error correction decoheres errors, the scaling of the off-diagonal

elements of the error matrix should be less than the square root of the diagonals.

The contributions of errors on subsets of qubits on the noise channel are discussed in

more detail in section 2.5, but for the purposes of this section, the following suffices. We can

express the noise as a sum over errors acting on subsets of qubits as

N =
∑

l⊆Zn

J (l), (2.21)

where J (l) is an error acting only on the qubits indexed by l. Then, we can write the

effective noise after syndrome m is measured and recovery Rm is applied as

N (Rm)σ,σ′ =
∑

l⊆Zn

N (Rm, l)σ,σ′ , (2.22)

where

N (Rm, l)σ,σ′ =
1

p(m)

∑

S,S′∈S

η(Sσ,Rm)χ(Sσ)χ(S ′σ′)
∏

j∈l

J (l)
(j)

(Sσ)j ,(S′σ′)j
. (2.23)

For any [[n, k, d]] code, there will exist an un-correctable error with weight at most dd/2e,
acting on qubits indexed by v ⊂ Zn, which will contribute a term to the expression given in

eq. (2.22). The contribution of this term to the diagonal elements of N (Rm) is given by

N (Rm, v)σ,σ =
1

p(m)

∑

S∈S

η(Sσ,Rm)χ(Sσ)2
∏

j∈v

J (v)
(j)
(Sσ)j ,(Sσ)j

(2.24)

=
1

p(m)

∑

S∈S

η(Sσ,Rm)
∏

j∈v

J (v)
(j)
(Sσ)j ,(Sσ)j

, (2.25)
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where the χ(·) are omitted in the second line because χ(Sσ) = ±1 and (±1)2 = 11. From

eq. (2.1c), this term will scale at worst proportionally to r|u| = rdd/2e. Recalling that the off-

diagonals scale as rd/2 post-error correction, and that absent error correction, the diagonals

are approximately the square of the off-diagonals (and both are ≤ 1) from lemma 14, we can

conclude that error correction decoheres noise, and that with increasing d, noise becomes

more Pauli.

This decoherence can be attributed to the syndrome measurements, rather than the

recovery operations; syndrome measurements have the effect of removing some terms in the

expansion of the state, as shown below. The encoded state can be expressed as

ρ =
∑

σ∈L

c(σ)Sσ =
∑

σ∈L

c(σ)Π0σ. (2.26)

After exposure to some noise, the state is not necessarily in the codespace,

N [ρ] =
∑

P∈Pn

c′(P )P, (2.27)

where

c′(P ) =
∑

S∈S
σ∈P

c(σ)
∏

j∈Zn

NPj ,(Sσ)j . (2.28)

After syndrome measurement projects onto the cospace associated with syndrome m, the

state is given by

ΠmN [ρ]Πm =
∑

P∈Pn

c′(P )ΠmPΠm, (2.29)

where the Πm annihilate any P ∈ Pn that is not of the form S ′σ′. The state after syndrome

measurement can then be expressed as

1 The phase on Sσ relative to an element of the Pauli group will always be ±1 because S and σ are

Hermitian operators and so their product must also be a Hermitian operator.
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ΠmN [ρ]Πm =
∑

S,S′∈S
σ,σ′∈P

c′(S ′σ′)S ′L′ (2.30)

=
∑

Sσ,S′σ′

c(σ)
∏

j∈Zn

N(S′σ′)j ,(Sσ)jS
′σ′. (2.31)

Terms appearing in the sum in eq. (2.27) that do not have the form S ′σ′ arise predominantly

due to contributions from coherent errors2. Thus, we can qualitatively conclude that the

suppression of coherent errors is achieved via syndrome measurement.

2.2.2 General Noise

General, potentially correlated, noise can be written in the form

N =
∑

α

pα
⊗

j∈Zn

N (α,j), (2.32)

where pα gives the probability of occurence for the separable noise
⊗

j∈Zn
N (α,j), analogous

to the definition of mixed states given by eq. (1.3).

By linearity, the analysis of relative scaling of the elements of diagonal to off-diagonal

elements of the effective logical noise for a separable noise process should extend directly

to the more general case of non-separable noise. It can therefore be concluded that for any

general noise process, error correction will decohere the noise.

The parameter that performs the role analogous to the single qubit infidelity, r, in the

case of more general noise remains unclear, and finding such a parameter is an open problem.

2.3 Choosing Recovery Operations with Infidelity

In section 2.2 we demonstrated that with increasing code distance, the effective logical noise

should converge to a Pauli channel, though contributions from the coherent part of the

physical noise will have a non-negligible effect on this final channel. For this reason, it is

appropriate to use fidelity as a metric of error rates at the logical level for error correcting

2 Consider the effect of applying a coherent rotation to a single qubit Pauli.
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codes with large distance, as fidelity effectively quantifies the contributions from the Pauli

part of the noise. Further, the discrepancies between diamond distance and fidelity should

become negligible as code distance increases and the noise approaches a Pauli channel. The

use of fidelity rather than another metric such as the diamond distance to quantify errors

post-correction in order to select recovery operations is convenient because the fidelity is a

linear function, so we can optimize the fidelity independently for each error syndrome, as

noted in [10]. In order to use the diamond distance or another non-linear metric, we would

have to optimize simultaneously over all possible combinations of recovery operators.

The selection of recovery operations using infidelity is convenient for simulations, because

by eq. (1.46) the fidelity of a noise process only depends on the trace of the process matrix,

which significantly reduces the number of terms required relative to calculating the full pro-

cess matrix. Further, this approach has already been validated via calculation of process

matrices to produce better thresholds than the traditional symmetric or CSS recovery pro-

tocol [10]. In CSS recovery, a lowest weight operator is associated with each error syndrome,

with preference given to recovery operators with weight on X and/or Z rather than Y .

2.4 Approximating the Logical Noise

Calculating the exact process matrix for an [[n, k, d]] stabilizer code as given by eq. (1.100)

requires a sum over 12(n− k)3 terms3. As such, it is infeasible to evaluate the exact logical

noise for any but the smallest codes. In this section, we present the Pauli twirl approximation

(PTA) of a logical process matrix, and show how to make corrections to the PTA up to a

specified order in r.

2.4.1 Pauli Twirl Approximation

Applying a Pauli twirl (see section 1.2.1) at the physical level produces a Pauli channel, for

which the contributing physical noise on each qubit is diagonal, that is, N (j) is diagonal ∀j.
To calculate this channel, it is sufficient to allow N (j)

σ,τ = 0 ∀σ 6= τ and calculate N (j)
σ,σ as

normal, so that the PTA of the physical process matrices are diagonal.

3 The first row of the process matrix is fixed by the trace preserving condition. The remaining 12 terms

each require a sum over the set of recovery operations and two sums over the set of stabilizers, for which

|R| = |S| = n− k.
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If we apply a Pauli twirl at the logical level, we get a similar result, with N σ,τ = 0 ∀σ 6= τ ,

and

〈N σ,σ〉 =
1

|S|
∑

R∈R,S∈S

η(R, S)χ(Sσ)χ(Sσ)
∏

j∈Zn

N (j)
(Sσ)j ,(Sσ)j

(2.33)

=
1

|S|
∑

R∈R,S∈S

η(R, S)
∏

j∈Zn

N (j)
(Sσ)j ,(Sσ)j

, (2.34)

∀σ ∈ P because χ(Sσ) = ±1. This approximation only requires a sum over 3(n− k)2 terms,

thus producing a significant reduction in computational complexity.

Typically, simulations rely on Pauli twirling at the physical level in order to simplify the

calculations required. Deviation from this approximation has been demonstrated [34, 38],

though on average, logical noise appears approximately Pauli. This deviation is explicable

as the contribution of the coherent part of the physical noise to the diagonal of the effective

logical noise, so that applying the Pauli twirl at the logical level should provide a more

accurate approximation of the effective logical noise.

2.4.2 Higher order corrections to the PTA

We now derive corrections to the PTA up to a specified order, w, in r. Let eq. (2.34) denote

the 0th order term of the exact noise, so that for a recovery operation R,

N (R)(0)
σ,σ =

1

|S|
∑

S∈S

η(R, S)
∏

j∈Zn

N (j)
(Sσ)j ,(Sσ)j

. (2.35)

This is equivalent to applying a Pauli twirl at the physical level. Using lemma 14, each term

of the right-hand-side of eq. (1.100) will contribute at most O(rΓ(Sσ,S′σ′)/2), where

Γ(A,B) = |{j : AjBj = −BjAj}| (2.36)

+∞|{j : Aj 6= Bj = I}| (2.37)

+ 2|{j : B 6= A = I}|. (2.38)

Equation (2.36) comes from eq. (2.1d), eq. (2.37) is from eq. (2.1a), and eq. (2.38) comes

from eq. (2.1b) and eq. (2.1c) and effectively counts the number of indices on which the
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input operators commute and anticommute, with or without acting on that index with an

identity operator.

The rw correction to the PTA is then given by

N (R)
(w)
σ,σ′ =

1

|S|
∑

S,S′∈S:Γ(Sσ,S′σ′)=w

η(R, S)χ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(Sσ′)j
. (2.39)

To calculate the effective logical process matrix up to order w, we then use eq. (2.39) as

follows

N (R)σ,σ′ ≈
∑

j∈Zw+1

N (R)
(j)
σ,σ′ . (2.40)

This derivation generalizes trivially to the approximation of noise after syndrome measure-

ment but without the application of recovery operations.

2.5 Contributions from Subsets of Qubits

In the event that some qubits are known to undergo a significantly more severe noise process

than others, it is useful to consider the effective logical noise arising from the noise acting

on only a subset of physical qubits. This section derives an equation for use in such a case,

first for the PTA, and then for more general noise.

2.5.1 The PTA from a Subset of Qubits

Recalling that we defined E = |I −N| in order to quantify errors on elements of the process

matrix in section 2.1, we substitute N (j) = I + E (j) into eq. (2.34) and expand to get

N (R)σ,σ =
∑

l⊆Zn

E(R)(l)
σ,σ, (2.41)

where
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E(R)σ,σ =
1

|S|
∑

S∈S

η(R, S)
∏

j∈l

E(Sσ)j ,(Sσ)j

∏

j /∈l

I(Sσ)j ,(Sσ)j (2.42)

=
1

|S|
∑

S∈S

η(R, S)
∏

j∈l

E(Sσ)j ,(Sσ)j . (2.43)

Let Sl ⊆ S be the subgroup of S that acts trivially on all elements indexed by l, S‖l ⊆ S be the

set of operators which commute with every element in Sl, and S⊥l ⊆ S be the complementary

set. Any R ∈ S⊥l ∩ R anticommutes with exactly half of the elements of Sl, so that any

recovery operator which corrects errors outside of l does not contribute to E (l)
. Then,

N σ,σ =
∑

R∈S‖l ∩R

N (R)σ,σ (2.44)

=
∑

l⊆Zn

R∈S‖l ∩R

E(R)(l)
σ,σ, (2.45)

where

E(R)(l)
σ,σ =

1

|S|
∑

S∈S
U∈S/Sl

η(R, SU)
∏

j∈l

E (j)
(Uσ)j

(2.46)

=
1

|S/Sl|
∑

U∈S/Sl

η(R,U)
∏

j∈l

E (j)
(Uσ)j

. (2.47)

2.5.2 Off-Diagonals from a Subset of Qubits

Using a procedure similar to that used to derive eq. (2.47), we arrive at an expression for the

off-diagonal elements of the effective logical process matrix arising from noise contributions

from a subset of qubits,

N σ,σ′ =
∑

l⊆Zn

R∈S‖l ∩R

E(R)
(l)
σ,σ′ , (2.48)

where
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E(R)
(l)
σ,σ′ =

1

|S/Sl|
∑

S,S′∈Sl
U,V ∈S/Sl

η(R,U)χ(Sσ)χ(S ′σ′)
∏

j∈l

E(Uσ)j ,(V σ)j

∏

j /∈l

δ(Sjσj, S
′
jσ
′
j). (2.49)

Theorem 20. Any physical noise process which acts on fewer than d qubits will produce

Pauli noise at the logical level4.

Proof. By the definition of the code distance, we know that Sσ and S ′σ′ differ on at least

d qubits for any S, S ′ ∈ S, σ 6= σ′ ∈ P. We can therefore neglect any terms with |l| < d in

eq. (2.49), which implies that any noise process which acts on fewer than d qubits will have

Nσ,τ = 0 ∀σ 6= τ , thus producing Pauli logical noise.

4 This statement holds for noise with or without the application of syndrome measurements and/or re-

covery operations.
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Chapter 3

Quantum Error Correction: What Does the

Noise Look Like and When Does it Look the

Same Under Different Conditions?

Distinct recovery operations will not always produce distinct effective noise maps [10, 39]. It

is useful to know when a particular recovery operator will produce the same effective noise

as another because if we have this information a priori, it becomes unnecessary to do the

full calculation for both recovery maps as we know the results of one from the other. This

knowledge can drastically reduce the computational cost of calculating the effective process

matrix averaged over syndromes, and can remove recovery operators from consideration in

the selection of recovery operations, thus simplifying that procedure. Ref. [39] showed

that for an effective logical noise process that can be expressed as a unitary channel1, it

is often possible to find Clifford operations which leave the effective logical noise invariant

when they act on the recovery operations, and gave examples for the 5- and 7-qubit codes.

This section provides a generalization of that result, which was obtained independently prior

to the publication of ref. [39]. We present conditions for equivalent noise under different

recovery operations for general noise and an arbitrary stabilizer code.

Theorem 21. The effective logical noise in a quantum error correcting code is equivalent

for any two recovery operations R,R′ ∈ R for which there exist unitary channels, U ,V, with

[U ,N ] = 0, such that U †RV = R′ and which leave Πm0σ invariant ∀σ ∈ P.

Proof. Following a derivation similar to that used in ?? 18: Effective Noise with Full Error

1 They thus restrict attention noise that can be expressed in terms of a single Kraus operator.
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Correction, we can write the effective logical noise under full error correction conditioned on

recovery operation, R, as

N (R)σ,σ′ =
1

2n|S|
∑

S,S′∈S

〈〈Sσ|R†N|S ′σ′〉〉 (3.1)

=
1

2k
〈〈Πm0σ|R†N|Πm0σ

′〉〉 (3.2)

Assuming the existence of channels U and V which leave Πm0σ invariant ∀σ ∈ P, we can

re-write eq. (3.2) as

N (R)σ,σ′ =
1

2k
〈〈Πm0σ|V†R†NU|Πm0σ

′〉〉, (3.3)

because U and V leave Πm0σ invariant, and because the input and output states are both

on the codespace. With [U ,N ] = 0, this is equivalent to

N (R)σ,σ′ =
1

2k
〈〈Πm0σ|V†R†UN|Πm0σ

′〉〉. (3.4)

Comparing eq. (3.4) to eq. (3.2), it is clear that a recovery operator, R′, for which R′† =

V†R†U will produce the same effective logical noise as R. This is equivalent to R′ =

U †RV .

Corollary 22. Any permutation operator which leaves Π0σ invariant ∀σ ∈ P can be used to

generate sets of equivalent recovery operations for a given code.

Proof. A permutation operator can be re-written as a product of transpose operations, each

of which exchanges two elements [40]. A transpose operation serves the same role in a

quantum system as a SWAP gate, which exchanges the positions of two qubits. Because

the SWAP gate is a unitary operation, we can re-write any permutation operator as a

product of SWAP gates, ie as a unitary operation. Replacing V† from theorem 21 with this

permutation and U with the identity channel, corollary 22 follows as a direct consequence of

theorem 21.
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3.1 Examples of Symmetries in Common Error Correcting Codes

This section presents operators which partition sets of recovery operations into equivalence

classes for the 3 qubit quantum repetition code, the 5-qubit code, the Steane code, and the

Shor code.

3.1.1 Equivalent Effective Noise in the 3 Qubit Repetition Code

In the 3 qubit repetition code, the (0 1 2) operator leaves Π0σ invariant ∀σ ∈ P2. The (0 1 2)

operator can be equivalently expressed as a product of SWAP0,1 and SWAP1,2. As such,

any subsets of the recovery operators which are closed under these operations will produce

equivalent logical noise. Noting the set of errors for which this code is designed, the typical set

of recovery operations selected for the 3 qubit repetition code is R = {I⊗3, XII, IXI, IIX}.
Observing the effects of the aforementioned SWAP gates on these recovery operations, it is

clear that N (XII) = N (IXI) = N (IIX).

This symmetry was observed by Huang et.al in ref. [39] for the specific case of a rotation

about the z-axis, though no operator was specified to generate the symmetry.

3.1.2 Equivalent Effective Noise in the 5 Qubit Code

Ref. [39] showed the symmetry presented in this section; we restate it here as it pertains

to general noise in the 5 qubit code, and we extend the analysis to a few cases of non-

symmetric recovery. The Π0σ operator of the 5 qubit code is left invariant ∀σ ∈ P by the

cyclic permutation3 (0 1 2 3 4). This permutation operator can equivalently be expressed

as a product of SWAP0,1, SWAP1,2, SWAP2,3, SWAP3,4, and SWAP4,0. For the popular

symmetric decoder, then, it is clear that N (R) is the same for any single qubit X recovery

operator, that any single qubit Z recovery operator will produce equivalent logical noise,

and that the single qubit Y recovery operators are an equivalence class as well.

The Z-only recovery set containing the trivial recovery operation, all single qubit Z

operators, and all 2-qubit Z operators is partitioned into 4 equivalence classes by (0 1 2 3 4),

2 Note that this operator is not unique; there are others which leave Π0σ invariant ∀σ ∈ P. This is true

for all codes explored in this section.
3 We do not include the additional permutation presented in ref. [39] as it does not decrease the number

of equivalence classes for any of the decoders explored in this section.
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with representative elements IIIII, ZIIII, ZZIII, and ZIZII. An X-only or Y -only

recovery set can be similarly partitioned.

3.1.3 Equivalent Effective Noise in the 7 Qubit Steane Code

The recovery operations of the 7 qubit Steane code can be partitioned by the cyclic per-

mutations (4 5)(6 7) and (1 4 2)(3 5 6)4. A similar permutation was achieved by Huang et.

al in ref. [39] using a set of 4 permutation operators. Ref. [39] only explores the set of

recovery operations we refer to below as Calderbank-Shor-Steane recovery; we demonstrate

equivalence classes for an additional, symmetric, set of recovery operations, and note that

their partitioning extends to the case of non-unitary noise.

A5 set of symmetric recovery operations for the Steane code consists of the trivial error,

all single-qubit Pauli errors, and a subset of 2-qubit Pauli errors. The equivalence classes

generated by the permutation operators given above are presented in table 3.1.

Class Recovery Operators

1 I⊗7

2 Weight 1 X errors

3 Weight 1 Y errors

4 Weight 1 Z errors

5 ZXIIIII, XZIIIII, ZIIXIII, XIIZIII, ZIIIIIX, XIIIIIZ,

IZIXIII, IXIZIII, IZIIIIX, IXIIIIZ, IIIZIIX, IIIXIIZ,

IIZIXII, IIZIIXI, IIXIZII, IIIIZXI, IIXIIZI, IIIIXZI

6 Y XIIIII, XY IIIII, Y IIXIII, XIIY III, Y IIIIIX, XIIIIIY ,

IY IXIII, IXIY III, IY IIIIX, IXIIIIY , IIIY IIX, IIIXIIY

7 Y ZIIIII, ZY IIIII, Y IIZIII, ZIIY III, Y IIIIIZ, ZIIIIIY ,

IY IZIII, IZIY III, IY IIIIZ, IZIIIIY , IIIY IIZ, IIIZIIY

Table 3.1: Equivalence classes for a symmetric decoder in the 7 qubit Steane code.

4 Like permutation operators specified for other codes, these operators are not unique. Two are given

for this code because together, they partition the sets of recovery operations explored into a minimal set of

equivalence classes. The same convention is followed in specifying permutations for the 9 qubit Shor code.
5 In codes other than the 5 qubit code, there are often syndromes which have more than one error with

the minimal weight; in such cases, a recovery operation is chosen arbitrarily from the set of minimum weight

errors for that syndrome. As such, a set of symmetric recovery operations is generally not unique.
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Another popular set of recovery operations for the Steane code is the Calderbank-Shor-

Steane (CSS) recovery: the set containing the trivial error, all single qubit Pauli errors, and

all weight 2 errors with 1 X error and 1 Z error. The given permutation operators partition

this set of recovery operations into 5 equivalence classes, as demonstrated in ref. [39] for

unitary noise, with all recovery operators of a given weight of the same type of Pauli in the

same class6.

These permutation operators group any set of recovery operations with weight 2 acted

upon by the same Pauli operators into the same equivalence class.

The equivalence classes of recovery operations explored for the Steane code in this section

resolve an open question posed in [39]; they noted that in [10] we found 7 unique channels,

whereas in [39] they only observed 5. Ref. [39] conjectured that this discrepancy was

due to their restriction to unitary channels, however, we showed above that the number of

equivalence classes is a side effect of the selected recovery protocol.

3.1.4 Equivalent Effective Noise in the 9 Qubit Shor Code

For the 9 qubit Shor code, (4 7)(5 8)(6 9) and (1 4)(2 5)(3 6)(7 8 9) can be used to parti-

tion recovery operations into equivalence classes. For a symmetric decoder, these operators

generate 12 equivalence classes, specifed in table B.1 of appendix B.

3.2 The Evolution of Depolarizing Noise

This section explores the behaviour of the completely depolarizing channel introduced in

section 1.2.1, and in particular, how this noise model behaves in a concatenated 5 qubit or

Steane code.

3.2.1 A General Expression for Depolarizing Noise in a QECC

From eq. (1.100), the process matrix for an encoded channel, conditioned on a single syn-

drome measurement m and the application of the corresponding recovery operator, under-

going depolarizing noise on each physical qubit is given by

6 This set is also a set of symmetric recovery operations, and is referred to as the symmetric recovery in

ref. [39]. In this thesis, we have defined a different set of symmetric recovery operations and because this

set focuses on X− and Z−type recovery, we label this one CSS.
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N (Rm)σ,σ′ =
1

2k|S|2
∑

S,S′∈S

η(Sσ,Rm)〈〈Sσ|D⊗n|S ′σ′〉〉, (3.5)

where D is the depolarizing channel. Examining the action of the depolarizing channel, we

see that it has the following effects on Pauli operators,

D[I] = I (3.6)

D[P ] = (1− p)A, ∀A ∈ P\I. (3.7)

Then,

D⊗np |S ′σ′〉〉 = (1− p)w(S′σ′)|S ′σ′〉〉, (3.8)

where w(A) is the weight of A. Equation (3.5) then becomes

N (Rm)σ,σ′ =
1

2k|S|2
∑

S,S′∈S

η(Sσ,Rm)(1− p)w(S′σ′)〈〈Sσ|S ′σ′〉〉 (3.9)

Expanding 〈〈Sσ|S ′σ′〉〉,

〈〈Sσ|S ′σ′〉〉 = 2nχ(Sσ)χ(S ′σ′)δ(Sσ),(S′σ′) = 2nδ(Sσ),(S′σ′), (3.10)

where the global phases can be neglected because their square will always be 1. Thus,

N (Rm)σ,σ =
1

|S|
∑

S∈S

η(Sσ,Rm)(1− p)w(Sσ), (3.11)

and

N (Rm)σ,σ′ = 0, ∀σ 6= σ′. (3.12)
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3.2.2 A Brief Aside: The Evolution of Pauli Noise

In this section, we derive a general expression for Pauli noise in a QECC.

Parameterizing a Pauli channel as follows,

P [ρ] = (1− px − py − pz)IρI + pxXρX + pyY ρY + pzZρZ, (3.13)

the physical process matrix is

P =




1 0 0 0

0 1− 2(py + pz) 0 0

0 0 1− 2(px + pz) 0

0 0 0 1− 2(px + py)


 . (3.14)

Following a procedure similar to that in section 3.2,

N (Rm)σ,σ =
1

|S|
∑

S∈S

η(Sσ,Rm)[1− 2(py + pz)]
wx(Sσ)[1− 2(px + pz)]

wy(Sσ)[1− 2(px + py)]
wz(Sσ),

(3.15)

where wσ(A) is the number of qubits in A that are acted upon by σ and N (Rm)σ,σ′ = 0∀σ 6=
σ′.

3.2.3 Depolarizing Noise in the 5 Qubit Code

This section explores the evolution of depolarizing noise in the 5 qubit code; equivalence

classes of recovery operations specific to depolarizing noise are presented, and the behaviour

of depolarizing noise in a concatenated 5 qubit code is analysed. An expression for the

threshold value of the depolarizing parameter is derived.

Additional Symmetry in the 5 Qubit Code Under Depolarizing Noise

Recalling the form of depolarizing noise (eq. (1.105)),
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Dp =




1 0 0 0

0 1− p 0 0

0 0 1− p 0

0 0 0 1− p


 , (3.16)

it is apparent that additional symmetry is introduced by applying depolarizing noise because

depolarizing noise acts in the same way on X, Y , and Z operators. With this in mind, we

wish to find an operator which satisfies the conditions introduced in theorem 21, and which

maps between Pauli operators. Let Q =
√
Z
√
X; the unitary channel Q(ρ) = QρQ† maps

X → Y → Z → X and leaves I invariant. Q⊗5 preserves Sσ ∀σ ∈ P. The process matrix

representation of Q is

Q =




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


 , (3.17)

and [Q,Dp] = 0, so Q⊗5 satisfies the conditions for U and V in theorem 21 when N = D⊗5
p .

Following theorem 21, we let U = V = Q⊗5. Then any recovery maps, R and R′, for which

R′ = (Q†)⊗5RQ⊗5 will result in the same effective logical noise. The single-qubit mapping,

Q†R(i)Q, takes X → Z → Y → X , so, in conjunction with the previous result that all single

qubit errors of a given type share an equivalence class for the 5 qubit code, we can conclude

that the set of single qubit errors forms an equivalence class for the 5 qubit code under

depolarizing noise. The channel Q† can be expressed in terms of a single Kraus operator,

A0 =
√
−X
√
−Z.

Hard Decoding in the 5 Qubit Code Under Depolarizing Noise

When depolarizing noise acts on every physical qubit in the [[5, 1, 3]] code, the most effective

known recovery protocol7 is to apply symmetric recovery [10].

The average effective logical channel under symmetric recovery has the following form:

7 In terms of achieving high average fidelity to the identity and maximizing the threshold limit with

concatenation.
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〈N〉 =




1 0 0 0

0 α 0 0

0 0 α 0

0 0 0 α


 , (3.18)

where α = 1
2
(p−1)3(3p(p−2)−2). Recalling the process matrix for depolarizing noise acting

on a single qubit (eq. (1.105)), it is clear that the effective logical noise in the 5 qubit code

has a similar form on average. Letting α = 1 − plogical so that we can more clearly see the

effective noise dynamics as a depolarizing channel on the logical state,

plogical =
1

2
[15p2 − 25p3 + 15p4 − 3p5]. (3.19)

It is therefore trivial to model depolarizing noise in a concatenated 5 qubit code using

symmetric recovery at each level of concatenation; the effective noise at the lth level of

concatenation is depolarizing with the noise parameter pl calculated by recursively applying

eq. (3.19), such that

p(l) =
1

2
[15(p(l−1))2 − 25(p(l−1))3 + 15(p(l−1))4 − 3(p(l−1))5], (3.20)

where p(0) = p is the noise parameter of the physical noise. It is clear from this expression

that p(l) ∈ O(p2l) for small p. The noise parameters for the first 5 levels of concatenation

are plotted as a function of the physical noise parameter in fig. 3.1.
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Figure 3.1: Plots of the effective logical noise parameters, p(l), at the lth level of concatenation

in the 5 qubit code under depolarizing noise.

Solving eq. (3.19) for when p = plogical, we can find the intercept seen in fig. 3.1, which

corresponds to the threshold below which depolarizing noise is suppressed by the 5 qubit

code with symmetric recovery. The threshold value for the depolarizing noise parameter

under these conditions is pthreshold = 1−
√

2/3.

Depolarizing Noise Under Soft Decoding in the 5 Qubit Code

This section presents a soft decoding algorithm tailored to the 5 qubit code under soft

decoding. We begin by presenting the general methodology for this algorithm, which can be

leveraged for other QECCs, then specialize to a concatenated 5 qubit code under depolarizing

noise for performance analysis. The algorithm presented in this section is powerful because

it provides a means to simulate soft decoding which is not subject to statistical sampling

methods8. Further, our algorithm provides a significant increase in performance over the

optimal hard decoding method for the 5 qubit code under depolarizing noise, and can, in

theory, be similarly leveraged for a similar improvement under different conditions.

8 For soft decoding algorithms, the simulation method often involves sampling syndrome measurements at

each level of concatenation. This approach to threshold estimation is problematic because in the case that

the effective logical noise converges for some sampled set of recovery operations for a noise parameter above

the threshold value, the threshold estimate could potentially be artificially inflated.
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Hard decoding algorithms select recovery operations independently at each level of con-

catenation, generally by taking the average channel at the previous level of concatenation

and feeding it in as the apparent physical noise on each qubit in the next level. Soft decoding

is computationally expensive because at each level of concatenation, the noise from the pre-

vious levels is not averaged, so there are 2(
∑l−1

i=0 n
i)(n−k) combinations of recovery operations

to be considered at the lth level of concatenation. Cumulatively, to concatenate up to the

lthmax level with general soft decoding, we would need to consider
∑lmax

l=1 2(
∑l−1

i=0 n
i)(n−k) terms.

In this algorithm, the goal is to leverage the power of soft decoding, while preserving some of

the reduction in computational complexity achieved by averaging channels. This is achieved

by applying a coarse-graining operation to group channels into bins then averaging over the

contents of each bin at every level of concatenation. The algorithm is pictured in fig. 3.2

for the general case with b bins at each level of concatenation, where lmax is the number of

concatenations applied. Letting b → |R| can produce optimal recovery selection, as this is

the general soft decoding protocol.

At the first level of concatenation, the normal error correction procedure is followed; the

state is encoded, undergoes physical noise, syndrome measurements and recovery operations

are applied, and the outcome is 2n−k not-necessarily-distinct channels, one for each syndrome.

Then the resultant channels are grouped by some sorting method into b bins of channels and

the average channel in each bin is calculated. The subsequent levels see a “physical noise”

from the previous level as a permutation of noises from the bins, so that each N (j) = N (bini)

for some i ∈ Zb, where N (bini) is the average of the channels in the ith bin. This procedure is

repeated for every permutation of N (j)s. A syndrome measurement and recovery operation

is then applied to each channel, and the coarse graining procedure is repeated so that the

same number, b, of channels are fed into the next level as “physical” noise. Thus, for

levels l > 1, at each level of concatenation there are bn × (2n−k) channels to consider. The

constant scaling makes this implementation feasible to evaluate directly rather than relying

on the statistical sampling techniques traditionally used to evaluate the performance of soft

decoding algorithms. For lmax levels of concatenation, a total of [(lmax− 1)bn + 1]2n−k terms

are required.

For the 5 qubit code under depolarizing noise, there are only 2 distinct channels after

symmetric recovery at the first level of concatenation. For simplicity, we then let b = 2 for

binning at the higher levels of concatenation. After re-encoding, the second level undergoes

noise in the form of permutations of the two depolarizing noises resulting from the trivial or

non-trivial syndrome measurement at the first level. Letting N (bin0) be the noise resulting

from trivial recovery and N (bin1) be the noise resulting from non-trivial recovery, we now
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Let {N} = {Nphysical}
and l = 1.

Calculate N (R,N )
for every R ∈ R
and N ∈ {N}.

Sort {N (R,N )} into b bins
based on some predefined cri-
teria. Calculate the average

channel in each bin, N (bini).

Let {N} =
{N (bin1),N (bin2), ...,N (binb)}⊗n

and l = l + 1.

Is l = lmax?

Return
∑

i N (bini)

yes

no

Figure 3.2: An algorithm for soft decoding up to the lthmax level in a concatenated code.
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examine the effects at the second level of concatenation for different permuatations of trivial

and non-trivial noise.

We have already seen that when depolarizing noise acts on the physical qubits in a 5

qubit code as D⊗5
p the resultant noise after symmetric recovery is depolarizing noise with one

parameter for the trivial syndrome and a different parameter for the non-trivial syndrome. So

when the second level undergoes N (bin0)⊗5 or N (bin1)⊗5, it will behave similarly. These two

cases correspond to observing the trivial syndrome or a non-trivial syndrome on every code

block in the previous level of concatenation. None of these cases exhibits additional symmetry

beyond that already observed, so these cases constitute 4 distinct effective channels.

When a permutation of N (bin0)⊗4⊗N (bin1) or N (bin0)⊗N (bin1)⊗4 occurs at the first

level of concatenation, there are 6 distinct effective channels that can result, and all of them

are depolarizing. The first two arise when the trivial syndrome is measured for either of

these noises. The remaining four correspond to the cases when the recovery operation acts

trivially or non-trivially on the N (bini) that acts only on one codeblock.

The remaining cases correspond to when the previous codeblocks undergo noise of the

form of permutations of N (bin0)⊗2 ⊗ N (bin1)⊗3 or N (bin0)⊗3 ⊗ N (bin1)⊗2. These noise

models produce depolarizing channels when the trivial syndrome is measured and when the

recovery operation acts non-trivially on a codeblock undergoing N (bini) for noise in the

form N (bini)
⊗2 ⊗ N (binj)

⊗3. These cases form 4 more equivalence classes. The remaining

channels are not depolarizing and there are 6 distinct cases.

The recovery protocol we have selected is to apply the typical symmetric recovery to any

channels which are depolarizing, and apply the symmetric recovery multiplied by a logical

operator when the noise is not depolarizing. The logical operator is selected to maximize

the diagonal elements in order to minimize infidelity. This is the same method for selection

of recovery for an individual syndrome as that we proposed in [10].

After recovery operations are applied, we sort the effective channels into two categories.

This can be implemented in a variety of ways; we partition into bins as follows: We first

average over the non-depolarizing channels, grouping them into two sets based on the in-

coming noise: one set containing permuatations of N (bin0)⊗2 ⊗ N (bin1)⊗3 and the other

set containing permutations of N (bin0)⊗3 ⊗ N (bin1)⊗2, each of which averages to a depo-

larizing channel. We then take the ratio of the N (bini)σ,σ to the N (bini)I,I , σ 6= I, and

group the corresponding noises into distinct sets based on whether this ratio is larger or

smaller than a cutoff. We checked cutoff values between 0 and 1 in increments of 0.01 and

the cutoff values that produced the largest threshold value were in [0.69, 0.73], all of which
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produced the same threshold. This binning and recovery method results in a threshold

value of p = 0.2348, which is an improvement over the threshold achieved by hard decoding,

p = 1−
√

2/3 = 0.1835.

Another method of binning was considered, in which the cutoff value was set at each

level of concatenation to the ratio of Maxi{N (bini)σ,σ/N (bini)I,I} for the input noise from

the previous level. This produced a threshold value of p = 0.2083.

The threshold value achieved in this section could be improved upon by introducing

more bins, partitioning into bins in a different manner, or by doing more than one level

of concatenation between coarse graining, e.g by binning after every two levels of error

correction. Ref. [12] presented a soft decoding algorithm which achieved a threshold value

of p = 0.2513. This value was obtained via statistical sampling. While the algorithm we

have presented for the 5 qubit code has a slightly lower threshold, the cost to simulate it

directly is significantly less, and with the modifications suggested, it is possible that our

algorithm could match the algorithm presented in [12].

3.2.4 Depolarizing Noise in the Steane Code

This section explores the behaviour of the effective logical noise resulting from applying

depolarizing noise to each physical qubit in a concatenated Steane code when symmetric or

CSS recovery operations are applied.

Additional Symmetry in the Steane Code Under Depolarizing Noise

While depolarizing noise is highly symmetric, there is no guarantee that a given stabilizer

code will have more equivalent recovery operations when it undergoes depolarizing noise.

The Steane code, for example, retains the same equivalence classes for CSS or symmetric

recovery under depolarizing noise as under any arbitrary noise model.

Depolarizing Noise Under CSS Recovery in the Steane Code

Applying CSS recovery to a state encoded in the Steane code undergoing depolarizing noise

produces an average effective channel of the following form
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


1 0 0 0

0 α 0 0

0 0 β 0

0 0 0 α


 , (3.21)

where

α = 1− 21

2
p2 +

49

2
p3 − 105

4
p4 +

63

4
p5 − 21

4
p6 +

3

4
p7 (3.22)

and

β = 1− 63

4
p2 +

91

2
p3 − 945

16
p4 +

651

16
p5 − 231

16
p6 +

33

16
p7. (3.23)

Defining a Pauli channel where X and Z operations are equiprobable,

P [ρ] = (1− 2pxz − py)IρI + pxz(XρX + ZρZ) + pyY ρY, (3.24)

results in a process matrix,

P =




1 0 0 0

0 1− 2(py + pxz) 0 0

0 0 1− 4pxz 0

0 0 0 1− 2(pxz + py)


 , (3.25)

which has a form similar to that of eq. (3.21). Letting α = 1− 2(py + pxz) and β = 1− 4pxz,

it is clear that the average effective logical channel is given by eq. (3.24) with

pxz =
1

64
(252p2 − 728p3 + 945p4 − 651p5 + 231p6 − 33p7) (3.26)

and

py =
1

64
(84p2 − 56p3 − 105p4 + 147p5 − 63p6 + 9p7). (3.27)
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Re-encoding Pauli noise of the form eq. (3.24) in the Steane code and applying CSS recovery

results in a logical channel with the same form, with

pxz−logical = −42p4
xz(−1 + 2pxz)(5 + 2pxz(−9 + 10pxz))

+ 42(1− 2pxz)
2p2
xz(5 + 2pxz(−8 + 7pxz))py

+ 21(1− 8pxz + 24p3
xz(4− 9pxz + 6p2

xz))p
2
y

+ 14(−7 + 12pxz(4− 7pxz + 6p3
xz))p

3
y

− 42(−1 + 2pxz)(5 + 6pxz(−3 + 2pxz))p
4
y

− 252(1− 2pxz)
2p5
y + 168(1− 2pxz)p

6
y − 48p7

y (3.28)

and

py−logical = pxz(pxz(21− 98pxz + 12p3
xz(77 + 2pxz(−91 + 68pxz)))

− 42(1− 2pxz)
4(−1 + 4pxz)py − 126(−1 + 2pxz)

3(−1 + 4pxz)p
2
y

− 168(1− 2pxz)
2(−1 + 4pxz)p

3
y − 84(1− 6pxz + 8p2

xz)p
4
y). (3.29)

Then a state encoded in the Steane undergoing depolarizing noise at the physical level will

have the form of eq. (3.24) at the lth level of concatenation ∀l ≥ 2.

Defining a logical error rate for eq. (3.24) of 2pxz + py, and a physical error rate, 3p/49,

for depolarizing noise, we plot the logical error rate for the first 4 levels of concatenation as

a function of the physical error rate in fig. 3.310.

9 The constant factor is a normalization to allow for a more meaningful comparison between this and the

logical error rate.
10 Note that in this plot the intersection of error rates for consecutive levels of concatenation is not the

threshold, but rather a pseudo-threshold, which indicates the value below which the next level will outper-

form the previous. The pseudo-threshold between the first and second levels of concatenation is larger than

the pseudo-thresholds for other consecutive concatenations shown; because the intersections do not all occur

at the same value, we cannot ascertain the general threshold value from the intersections. This apparent in-

stability occurs because with multi-parameter noise, the dependencies between the noise parameters between

levels is more complex. With infinite concatenation, however, the plot will converge to a step function, for

which the vertical asymptote is the threshold value.
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Figure 3.3: Plots of the logical noise rate, defined as 2pxz + py, as a function of the physical

depolarizing noise parameter, renormalized to represent a similar error rate.

Depolarizing Noise Under Symmetric Recovery in the Steane Code

Under symmetric decoding, depolarizing noise undergoes a similar evolution with concate-

nation. At the first level, the effective logical noise is given by eq. (3.21), with

α = 1− 12p2 +
61

2
p3 − 285

8
p4 +

183

8
p5 − 63

8
p6 +

9

8
p7, (3.30)

and

β = 1 + 2p− 39

4
p2 + 12p3 − 105

16
p4 +

21

16
p5. (3.31)

Subsequent concatenation preserves the the form of a Pauli channel with equi-probable X

and Z errors. The details of this evolution are omitted for brevity.
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Chapter 4

Conclusion

In this thesis, we presented a method for approximating the effective logical noise in a

quantum error correcting code in terms of the physical infidelity, r, and derived equations

for the calculation of process matrices up to a specified order in r. This can significantly

reduce the computational complexity of calculating the effective logical noise while preserving

most of the accuracy of the full calculation. We gave bounds on the lowest order term in the

logical noise in terms of the physical infidelity, and gave qualitative arguments that encoding

in a quantum error correcting code and applying syndrome measurements decoheres both

local and non-local noise, on average, even without the application of recovery operations.

We showed that the decoherence of noise produced by error correction protocols scales with

code distance so that, for an arbitrary [[n, k, d]] code, noise should converge to a probabilistic

Pauli channel on average as d increases. From these conclusions, we argued that the logical

fidelity is a reasonable metric by which the performance of a given set of recovery operations

can be assessed. This is useful because, since the logical fidelity is a linear function of

quantum channels, we can optimize the logical fidelity per syndrome in order to optimize the

total average fidelity when selecting recovery operations, which drastically reduces resource

requirements relative to attempting to optimize a metric that is not linear in quantum

channels, like the diamond distance.

We proved that in an [[n, k, d]] code, it is impossible for noise acting on fewer than d

qubits to produce non-Pauli noise at the logical level.

We presented generalized conditions under which N (R) = N (R′) for R 6= R′. In sec-

tions 3.1.1 to 3.1.3, we presented equivalence classes in popular sets of recovery operators

for the 3 qubit repetition code, the 5 qubit code, the Steane code, and the Shor code. We

presented additional symmetries that arise when the 5 qubit code undergoes depolarizing
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noise, and showed that for the Steane code, depolarizing noise has the same equivalence

classes as under general noise for the CSS recovery and a symmetric recovery.

In section 3.2, we derived an expression for the effective logical noise when each physical

qubit in the encoding undergoes depolarizing noise, and demonstrated that in the 5 qubit

code with symmetric recovery, depolarizing noise on each physical qubit manifests as de-

polarizing noise at the logical level, with a new noise parameter. From this expression, we

calculated the threshold limit. We further showed that in the Steane code, under symmetric

or CSS recovery, physical Pauli noise with equi-probable X and Z errors results in logical

noise of the same form. After encoding in the Steane code and applying CSS or symmetric

recovery, depolarizing noise manifests as Pauli noise with equi-probable X and Z errors. We

also presented a general expression for Pauli noise in a quantum error correcting code.

We proposed a soft decoding algorithm which can be exactly simulated and thus does

not rely on statistical sampling methods, and applied it to the 5 qubit code, demonstrating

an improvement over hard decoding techniques. This algorithm was presented in its general

form, and future research will include exploring the effects of changing methods for binning

noise at each level of concatenation, how many levels of concatenation are implemented

between binning, and how many bins are used. The algorithm will also be used for other

quantum error correcting codes and noise.
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Appendix A

Derivation of eq. (1.70)

Recall from eq. (1.31), in the Pauli basis,

|ρ〉〉 =
∑

σ

Tr(B†σρ)eσ, (A.1)

where {eσ} is the canonical basis. Then,

〈〈(Sσ)j|N (j)|(S ′σ′)j〉〉 =
∑

τ,ζ∈P

Tr[(Sσ)†jBτ ]e
†
τN (j)Tr[B†ζ(S

′σ′)j]eζ (A.2)

=
∑

τ,ζ∈P

Tr[(Sσ)†jBτ ]Tr[B†ζ(S
′σ′)j]N (j)

τ,ζ . (A.3)

We define an operator H = χ(H)J , where J ∈ P, and χ(H) is a constant. Then Tr[B†ζH] =
2√
2
χ(H)δζ,J , where the factor of 1/

√
2 comes from the normalization of Bζ . Equation (A.3)

can then be simplified as

〈〈(Sσ)j|N (j)|(S ′σ′)j〉〉 = 2χ((Sσ)j)χ((S ′σ′)j)N (j)

(Sσ)j ,(S′σ′)j
(A.4)

where we have generalized the definition of χ(·) to be the phase on the input Pauli operator

relative to the Pauli group. Extending this further so that χ(·) can be the phase on an

operator relative the the n-qubit Pauli group,
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〈〈Sσ|N |S ′σ′〉〉 =
⊗

j∈Zn

〈〈(Sσ)j|N (j)|(S ′σ′)j〉〉 (A.5)

=
⊗

j∈Zn

2χ((Sσ)j)χ((S ′σ′)j)N (j)

(Sσ)j ,(S′σ′)j
(A.6)

= 2nχ(Sσ)χ(S ′σ′)
∏

j∈Zn

N (j)

(Sσ)j ,(S′σ′)j
. (A.7)
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Appendix B

Equivalence Classes for Symmetric Recovery in

the Shor Code

The partitioning of a set of symmetric recovery operations for the Shor code into equivalence

classes by (4 7)(5 8)(6 9) and (1 4)(2 5)(3 6)(7 8 9) is given in table B.1.

Class Recovery Operators

1 I⊗7

2 IIIIIIIIZ, IIIZIIIII, ZIIIIIIII

3 IIIIIXIII, IIIIIIXII, IIIIIIIIX, IIXIIIIII, IIIXIIIII,

IIIIIIIXI, XIIIIIIII, IIIIXIIII, IXIIIIIII

4 IIIIIY III, IIIIIIY II, IIIIIIIIY , IIY IIIIII, IIIY IIIII,

IIIIIIIY I, Y IIIIIIII, IIIIY IIII, IY IIIIIII

5 ZIIIIXIII, IIIZIIXII, ZIIIIIIIX, IIXZIIIII, ZIIIIIIXI,

ZIIIXIIII, IIIZIIIIX, IXIZIIIII, ZIIIIIXII, IIXIIIIIZ,

ZIIXIIIII, IIIZIIIXI, XIIZIIIII, IIIIIXIIZ, IXIIIIIIZ,

IIIIXIIIZ

6 IIIIIXIIX, IIXIIIXII, IIXXIIIII, IIIIIXIXI, XIIIIXIII,

IIIIXIIIX, IIXIIIIIX, XIIIIIIIX, IXIIIIXII, IIXIIXIII,

IIIIIXXII, IIIXIIXII, IXIXIIIII, IIIIXIIXI, IIIXIIIIX,

IIXIIIIXI, XIIIIIIXI, XIIIXIIII, IXIIIIIIX, XIIIIIXII,

IIXIXIIII, IXIIIXIII, IIIIXIXII, XIIXIIIII, IIIXIIIXI,

IXIIIIIXI, IXIIXIIII

7 IIIIIY IIX, IIXIIIY II, IIIIIXIIY , IIY IIIXII, IIXY IIIII,

IIIIIXIY I, IIY XIIIII, IIIIIY IXI, Y IIIIXIII, IIIIY IIIX,
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IIXIIIIIY , XIIIIY III, IIIIXIIIY , IIY IIIIIX, Y IIIIIIIX,

IY IIIIXII, IIXIIY III, IIIIIXY II, XIIIIIIIY , IXIIIIY II,

IIY IIXIII, IIIIIY XII, IIIY IIXII, IY IXIIIII, IIIIY IIXI,

IIIY IIIIX, IIXIIIIY I, IIIXIIY II, IXIY IIIII, IIIIXIIY I,

IIIXIIIIY , IIY IIIIXI, Y IIIIIIXI, XIIIY IIII, IY IIIIIIX,

Y IIIIIXII, IIXIY IIII, XIIIIIIY I, Y IIIXIIII, IXIIIIIIY ,

XIIIIIY II, IIY IXIIII, IY IIIXIII, IIIIY IXII, Y IIXIIIII,

IIIY IIIXI, IXIIIY III, IIIIXIY II, XIIY IIIII, IIIXIIIY I,

IY IIIIIXI, IXIIIIIY I, IY IIXIIII, IXIIY IIII

8 IIIIIY IIY , IIY IIIY II, IIY Y IIIII, IIIIIY IY I, Y IIIIY III,

IIIIY IIIY , IIY IIIIIY , Y IIIIIIIY , IY IIIIY II, IIY IIY III,

IIIIIY Y II, IIIY IIY II, IY IY IIIII, IIIIY IIY I, IIIY IIIIY ,

IIY IIIIY I, Y IIIIIIY I, Y IIIY IIII, IY IIIIIIY , Y IIIIIY II,

IIY IY IIII, IY IIIY III, IIIIY IY II, Y IIY IIIII, IIIY IIIY I,

IY IIIIIY I, IY IIY IIII

9 Y IIZIIIII, ZIIY IIIII

10 IIXIIXIIX, IIXIIXXII, IIXXIIIIX, IIXIIXIXI, XIIIIXXII,

IIXIXIIIX, XIIXIIIIX, IIXXIIIXI, IXIIIXXII, XIIXIIXII,

IIXIXIXII, XIIIIXIIX, IXIXIIIIX, IIXIXIIXI, XIIXIIIXI,

IXIIIXIXI, IIXXIIXII, XIIIXIXII, IXIIIXIIX, IXIIXIIIX,

XIIIIXIXI, IXIXIIIXI, IXIIXIXII, XIIIXIIIX, IXIIXIIXI,

IXIXIIXII, XIIIXIIXI

11 IIXIIY IIX, IIXIIXY II, IIXIIXIIY , IIY IIXXII, IIXY IIIIX,

IIXIIXIY I, IIXIIY IXI, Y IIIIXXII, IIXIY IIIX, IIXIXIIIY ,

IIY IIXIIX, Y IIXIIIIX, IIXY IIIXI, IY IIIXXII, IXIIIXY II,

IIXIIY XII, XIIY IIXII, IIXIXIY II, Y IIIIXIIX, IIXIY IIXI,

IIY IXIXII, IXIY IIIIX, IIXIXIIY I, IIXXIIIIY , IIY IIXIXI,

Y IIXIIIXI, IXIIIXIY I, IIXY IIXII, IY IIIXIIX, IXIIIY IXI,

XIIIIXIIY , Y IIIXIXII, IXIIIXIIY , XIIIIXY II, IIY IXIIIX,

XIIY IIIIX, IXIIY IIIX, IIXXIIY II, Y IIIIXIXI, IIXIY IXII,

IXIIXIIIY , IXIY IIIXI, IXIIIY IIX, IIXXIIIY I, IXIIIY XII,

Y IIXIIXII, IY IIXIXII, XIIIIXIY I, Y IIIXIIIX, IY IIIXIXI,

IXIIXIY II, XIIIXIIIY , IXIXIIIIY , IIY IXIIXI, XIIY IIIXI,

IXIIY IIXI, IXIY IIXII, IY IIXIIIX, IXIIXIIY I, IXIXIIY II,

XIIIXIY II, Y IIIXIIXI, IXIIY IXII, XIIIXIIY I, IXIXIIIY I,
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IY IIXIIXI

12 Y IIIIXY II, IIXY IIIIY , Y IIY IIIIX, IIXY IIIY I, Y IIY IIXII,

Y IIIIXIIY , Y IIY IIIXI, IIXY IIY II, Y IIIXIY II, Y IIIIXIY I,

IXIY IIIY I, Y IIIXIIIY , IXIY IIY II, Y IIIXIIY I, IXIY IIIIY

Table B.1: Equivalence classes for a symmetric decoder in the 7 qubit Steane code.
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