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ABSTRACT

Free-space quantum key distribution has recently achieved several milestones, such as

the launch and results of the first quantum satellite, Micius. The emergence of quan-

tum satellites has certainly made progress towards the realization of a global quantum

cryptographic network.

In this thesis, two challenges in the development of an optical quantum ground station

for a free-space quantum satellite link are studied. The first is the development of a high

brightness, fiber pigtailed waveguide that is to be used as a polarization entangled photon

source. The high pair production rate is required in order to meet the requirements for

a satellite up-link configuration. The portability, robustness and ease of alignment were

motivations for choosing a fiber pigtailed source. Certain challenges that are fundamental

to the source design were characterized and several solutions to these challenges were

investigated.

The other main investigation in this thesis, is the development of a passive polarization

compensation using polarization maintaining fibers. The birefringence in standard sin-

gle mode optical fibers causes random polarization rotations to the light passing through

the fiber. Polarization maintaining fibers, though very high in birefringence, are used with

entangled photons and techniques from reference frame independent quantum key distribu-

tion protocols are shown to compensate for random polarization rotations while preserving

the entanglement. In addition, the feasibility of the protocol using the polarization main-

taining fibers is investigated.

Through various studies, experiments, and component design, the feasibility of a pig-

tailed waveguide entangled photon source has been shown to need further investigation,

while the feasibility of implementing polarization maintaining fibers to the ground sta-

tion has been shown to be effective. It is particularly effective as a passive polarization

compensation system that uses entanglement, however a similar concept is effective for

non-entangled single photons. This work contributes to a long line of achievements lead-

ing towards satellite implementations of quantum key distribution for an eventual global

quantum cryptographic network.
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Chapter 1

Introduction

1.1 Quantum Information

The emerging field of quantum information provides many exciting grounds of study. From

developing quantum computers [1], to simulating quantum field theories on quantum com-

puters [2],[3],[4], to making novel sensors [5], to providing secure communication [6]. The

latter, which is most relevant to this thesis and more specifically quantum key distribution

that enables users to transfer an encryption key with minimal information being leaked to

an eavesdropper. The security stems from the physical security of the protocol which is

the fundamental laws of quantum mechanics.

1.1.1 Quantum Key Distribution

In 1984, Charles Bennett and Gilles Brassard introduced the world to their now famous

quantum cryptography protocol known as BB84 [7]. This was the first protocol of quantum

key distribution (QKD), which utilizes the fundamental laws of nature to provide security.

These fundamental laws are the quantum mechanical notions of the Heisenberg uncertainty

principle [8] and the no-cloning theorem [9, 10].

The Heisenberg uncertainty principle is most commonly seen as:

δxδp ≥
~
2

(1.1)

which is saying that the smaller the uncertainty in the position of a particle, the larger

the uncertainty of its momentum. This relationship applies to any two complementary

variables such as angular momentum along different axes, etc. In a more general sense,

1



the more one knows about one aspect of a given state, the less one knows about its com-

plementary aspect of the same state.

The no-cloning theorem states that one cannot copy an unknown quantum state without

disturbing the original state 1. This can be shown with a simple example: Consider that a

user has a quantum machine that has two slots, HA and HB, and suppose the user wants

to copy the state of HA to HB, [11]. Let |ψ〉 be the state that is initially in HA and |i〉 be

initially in HB such that the initial state of the system is

|ψ〉 ⊗ |i〉. (1.2)

Now suppose the user has some means of applying a unitary U2 such that it can copy the

state from HA to HB, i.e. U(|ψ〉 ⊗ |i〉) = |ψ〉 ⊗ |ψ〉. Now let us apply this to two arbitrary

states |ψ〉 and |φ〉.

U(|ψ〉 ⊗ |i〉) = |ψ〉 ⊗ |ψ〉
U(|φ〉 ⊗ |i〉) = |φ〉 ⊗ |φ〉

(1.3)

If the user now decides to take the scalar product3 of the two equations in Eq. (1.3),

assuming the |i〉 is normalized, the result is

〈ψ|φ〉 = 〈ψ|φ〉2. (1.4)

This is equivalent to saying x = x2 which has only two solutions: x = 1 or x = 0. Therefore,

|ψ〉 and |φ〉 are either the same state (x = 1), or they are orthogonal (x = 0). This, thus

shows that one cannot copy any unknown state and that a general quantum cloning device

is not possible [11].

The most common QKD protocols use photons to encode their information. These

photons are individual quanta of light that, due to the no-cloning theorem, cannot be

reproduced without being disturbed. Different photon degrees of freedom provide the

basis where the information can be encoded. One of the degrees of freedom used to encode

information is the geometric polarization of a photon, this is discussed in more detail

below, however, there are many others such as time-bin encoding [12, 13], and orbital

angular momentum [14, 15], to name a few.

1If the state is fully known then one can create a clone.
2The reader may be wondering what happens if something that is not unitary is chosen? According to

[11], the cloning using non-unitary devices is still not possible unless the user is willing to sacrifice errors

in the cloning process, such as a loss in fidelity (see Sec. 1.1.4 and Eq. (1.23)).
3Note that the scalar product here can also be referred to as the inner product and is not limited to

discrete variables but can also apply to continuous functions.
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Photon Polarization as a Qubit

A quantum bit (qubit) is the fundamental unit in the field of quantum information. A

qubit can be a discrete two state system, but this is not necessary as it can be a subsystem

of a multi-state system or a continuous system. The difference between a qubit and a

classical bit is that the qubit can take on the value of 0 or 1 or some linear combination

(superposition) of the two. Qubits that are orthonormal form a basis for a two dimensional

Hilbert space and, thus form the basis for any quantum state. A good visualization tool of

a qubit space is a unit sphere called the Bloch sphere [11], Fig. 1.1. The quantum states are

depicted by a vector on this sphere, the poles of the sphere represent conventional bases.

For example, the poles along the Z-axis depict the computational basis of |0〉 and |1〉. Any

unitary operation done on a qubit, such as a Pauli Z gate4, is equivalent to rotations along

the Bloch sphere [11].

For photon polarization5, we can classify any polarization as being the |0〉 state, the

orthogonal polarization being the |1〉 state, and the superposition states are any superpo-

sition of these two polarizations. A good question to ask is,“what makes polarization a

qubit, since polarization is not a quantum property?” The polarization itself does not make

the qubit but rather the single photon with a polarization can be a qubit. Single photons

cannot be measured without disturbing the initial state of the photon, while classical light

can be measured while keeping the initial polarization state intact. The polarization ana-

log for the Bloch sphere is the Poincaré sphere [17] and can be used for single photons.

Therefore, it is convenient to use a polarized single photon in the sense of a qubit.

A common convention is for the |0〉 to be |H〉, or the horizontal polarization state, and

|1〉 to be the |V 〉, or the vertical polarization state. However, no one is limited to this

convention. A complete list of the common convention that is followed in this thesis can

be found in Tab. 1.1.

Entangled Photons

For this work and in quantum information in general, some of the most interesting al-

gorithms and protocols arise from the quantum phenomena known as entanglement. To

explain entanglement, let us consider a system made of two subsystems that can be repre-

4For those unfamiliar with the typical quantum information gates please see [11] for a good explanation.
5For those unfamiliar with polarization, it is simply the direction in which the transverse electric field

oscillates with respect to some reference.

3



Figure 1.1: Depiction of the Bloch sphere. Image is taken directly from [16].

Polarization Axis on Bloch Sphere Computational Basis

|H〉 +ẑ |0〉
|V 〉 −ẑ |1〉
|D〉 +x̂ 1√

2
(|0〉+ |1〉)

|A〉 −x̂ 1√
2
(|0〉 − |1〉)

|R〉 +ŷ 1√
2
(|0〉+ i|1〉)

|L〉 −ŷ 1√
2
(|0〉 − i|1〉)

Table 1.1: Definitions of the various polarization states in the computational basis and as

their pole on the Bloch sphere.
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sented by the Hilbert space:

H = H1 ⊗H2 (1.5)

Now suppose we have a state |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, there exists a product state

|ψ1〉 ⊗ |ψ1〉 ∈ H. This is called a separable state because the total state can be described

as a product of two states and can be separated into its individual parts. However, it

is know that quantum mechanics allows for superposition states, which can create states

that are not separable. It is these states that are called entangled states. Examples of

non-separable states are the well known Bell states:

|ψ±〉 =
1√
2

(|01〉 ± |10〉)

|φ±〉 =
1√
2

(|00〉 ± |11〉)
(1.6)

If only one of the two qubits is measured, the measurement results of this qubit will be

random. However, if both qubits are measured, the results when measured in the compu-

tational basis, will be anti-correlated and correlated for the |ψ〉 and |φ〉 states respectively.

As a consequence of entanglement, the correlations are not limited to the computational

basis, but the correlations seen in any basis provided that both qubits are measured in the

same basis. Entangled photons are used and examined throughout this work and several

entanglement QKD protocols have been developed [18],[19]. The entanglement helps to

prevent unintentional information leaks through the unused degrees of freedom [20]. In

practical implementations, entanglement provides a robustness against multi-photon emis-

sions, since the visibility, (Eq. (1.9)), of the state is reduced if the source emits too many

photon pairs. If interested, the reader is encouraged to see [6] and [21] for security proofs

of entanglement based QKD.

In this thesis, one of the key ingredients to complete the reference frame independent

QKD work done in Chap. 3 is entanglement based QKD. Entanglement based QKD differs

from standard QKD in that the sender and receiver can ensure the quality of the quantum

channel by checking both the correlations between the two parties and also via other meth-

ods such as Bell- or CHSH-test, (particular for device independent QKD implementations

[22, 23]). For more information on entanglement based protocols, see [6] and [21].
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Basic QKD Concepts

In every transmission of photons, there will be N number of bits that are transferred. Of

these N bits only Nc are correct while Ni will be the incorrect results. Given the number of

correct and incorrect results, we can define the quantum bit error ratio (QBER) Eq. (1.7),

which is a very important metric in determining the success of key transfer.

QBER =
Rw

R
(1.7)

where R is the total detection rate and Rw
n is the error rate amongst R. The visibility of

the correlations can also be used when expressing a minimally attainable QBER.

QBERmin =
1− vis

2
(1.8)

where the visibility in terms of a wave interference maximum (Imax) and minimum (Imin)

is given by,

vis =
Imax − Imin

Imax + Imin

. (1.9)

In theory, most protocols can withstand an eavesdropper if the QBER remains less than

a threshold from which classical security algorithms can take over, this has historically

been ≈ 11% for the BB84 protocol [24]. However, most practical applications require

a more strict conditions that are dependent on the implementation, i.e. QBER< 7%

[25]. Knowing the limit for the QBER also tells the implementor what minimum value of

visibility is needed in order to successfully transfer a key.

BB84 Protocol

Below I will discuss the steps of the BB84 protocol [7]. The main protocol will involve

two polarization bases, the horizontal and vertical basis (Z basis), and the diagonal and

anti-diagonal basis (X basis). For each photon sent:

� Alice (the sender) and Bob (the receiver) agree on which geometric polarization

corresponds to which bit and measurement outcome.

� Alice then randomly selects a bit to send and records it.

� Alice selects a basis to send this bit to Bob and records it.
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� Alice sends the properly polarized photon to Bob.

� Bob randomly selects a basis to measure the photon and records it.

� Bob measures the photon and records the bit outcome.

� Alice and Bob then compare the basis that they randomly selected and keep only

the bits that correspond to the event where they selected the same basis.

� The raw key is formed from the bits that were kept during the basis comparison step

above.

� Alice and Bob then compare a subset of the bits that are randomly selected and check

to see how many agree. If a sufficient amount agree (based on error tolerances), Alice

and Bob keep the raw key, if not it is discarded

After the steps above are complete, the protocol moves to what is referred to as classical

post processing. This involves steps where the raw key undergoes error correction and

privacy amplification. The error correction step involves Two of the most common forms

of Error Correction are the Low Density Parity Check (LDPC) [26–28] and CASCADE

algorithms [29]. These codes, check the parities between blocks of Alices and Bobs sifted

keys which means they sum blocks of the raw key and perform a sum modulo 2 (XOR),

keeping only the blocks that whose parities match. With the matching parities, one bit

from the block is kept while the rest are discarded. If the parities do not match, all the

bits are discarded. If enough bits are kept, Alice and Bob now share a secret key know

as an error corrected key. The next step is to perform the privacy amplification which

ensures the security of the key. One common method of privacy amplification is to use

what are called universal hash functions [30]. Alice and Bob will reduce the size of their

key during the privacy amplification step. The reduction in key size depends on how much

information they assume Eve to have obtained during the key transfer. Once Complete,

Alice and Bob share a secret key that can be used in a symmetric algorithm such as the

One-Time-Pad [31] or other encryption algorithms.

1.1.2 Reference-Frame-Independent QKD Protocols

For reference frame dependent protocols such as standard BB84 and other entanglement

protocols, both Alice and Bob need to agree on fixed measurement bases as this is essential

for state discrimination and thus key generation. However, in reference frame independent

(RFI) protocols, one basis or none of the bases are aligned. There are several papers in
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the literature that use multi-photon state protocols (i.e. GHZ states) [32–34]. However,

these protocols are not practical, particularly for transmission losses. In free-space QKD,

the transmission probability of the state scales with the number of photons, thus the

more photons required, the lower the transmission probability and consequently, a lower

keyrate. There is also the additional complexity of state preparation and measurement. In

this thesis, we use the simpler case of a two qubit entangled state where, ideally one photon

is transmitted across the free-space link. In our protocol, we restrict the computational

basis, the bases from which a key will be extracted, to be fixed, while the others are

free to rotate by some rotational phase φ [35]. In the conventional single photon QKD

the arbitrary rotation of reference frame significantly affects QBER since its measurement

outcome directly becomes a raw key, and therefore a post-process for the compensation of

the rotation is necessarily required to keep the QBER in check. However, one can carefully

choose the correlation terms to form a good parameter that is independent of the frame

rotation yet sensitive to the information leakage [35], acting like a CHSH-parameter in the

conventional entanglement based QKD [18]. The CHSH-parameter is given by:

S = E(a, b)− E(a′, b)− E(a, b′) + E(a′, b′) (1.10)

S ≤ 2
√

2 (1.11)

where the E(a, b) is the correlation coefficient of the measurements performed by Alice

along a or a′ and Bob along b or b′ [36]. Now using a carefully selected “good” parameter,

similar to the CHSH-parameter, one can implement a QKD protocol under an arbitrary

frame rotation. The payment is to add one more basis in the state analyzer. These, RFI

protocols are useful in many settings such as free-space satellite links and time-bin encoded

QKD. Below, I will present one form of entanglement based protocol where Alice and Bob

share some state that is ideally a maximally entangled Bell state.

One example of an RFI protocol is to set the rotational polarization basis as in [35], as

being fixed or well defined for both Alice and Bob. The other two bases are not required

to be well defined or fixed. The rotational basis is thus the computational basis, while

the other two linear bases are free to rotate by some phase angle β. For the remainder

of this document, the Pauli matrices [σx, σy, σz], will correspond to the D/A, R/L and

H/V polarization bases, respectively and be known as [X, Y, Z], see Tab. 1.2. Thus, in our

example, YA = YB
6. The other two bases will drift as a function of β and can be written

as the relations XB = cos(β)XA + sin(β)ZA and ZB = cos(β)ZA − sin(β)XA. Alice and

Bob both independently and randomly select a basis to measure their half of the entangled

6Subscript A corresponds to Alice’s measurement while subscript B corresponds to Bob’s measurement.
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state and record the measured quantum signal. After the transmission of the quantum

signal is complete, they share their basis measurement choices and the raw key will consist

of the times where they both measure in the Y basis. With the QBER being measured as:

QY =
1− 〈YAYB〉

2
(1.12)

while the information known to an eavesdropper will be measured using the results of the

other bases. More specifically, using the parameter,

C =

√
〈XAXB〉2 + 〈ZAXB〉2 + 〈XAZB〉2 + 〈ZAZB〉2 (1.13)

which, for maximally entangled states, is independent of the phase and rotation angle β.

See Appendix B for more details. Now, due to Pauli algebra, C ≤
√

2 where the equality

of C =
√

2 is when Alice and Bob share a maximally entangled state, which is also the case

when QY = 0 [35]. However, for any value of C <
√

2, Alice and Bob can attribute this to

be noise caused by an eavesdropper, Eve. Thus, Alice and Bob can use this C parameter

to bound Eve’s knowledge [35]. I will not go into a formal security proof here, however, a

proof can be found in [35].

Table 1.2: Polarization basis with the corresponding Pauli spin matrix. The symbols used

in this work are in the last column

Basis Pauli Spin Operator Symbol

H/V σz Z

D/A σx X

R/L σy Y

1.1.3 QKD Ground Station

To achieve a global QKD network, the combination of fiber-based and free-space QKD

systems are necessary [37, 38]. Fiber-based implementations are limited to the order of

100 km range due to the intrinsic losses within optical fibers [37, 38]. However, free-

space implementations, particularly satellites, provide the capabilities of connecting users

separated by great distances. The Quantum Photonics Laboratory is particularly interested

in developing an up-link satellite QKD system known as QEYSSat [39]. An up-link means

that the satellite will be used as a receiver while a ground station on Earth is used as

a sender. There are several advantages to an up-link, one of which is that the satellite
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Polarization 
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Figure 1.2: Optical quantum ground station suitable for an up-link satellite implementa-

tion. The quantum source can be easily exchanged for emerging technologies as well as the

optical assembly. Here, the optical fiber can be a single mode fiber, or as seen in Chap. 3,

a polarization maintaining fiber.

design complexity is reduced and that the quantum source can be easily maintained and

exchanged with new emerging technologies [38].

Though there are many components with challenges for the QEYSSat mission, the

ground station is of interest for this work. At a high level of abstraction, the ground station

consists of a quantum source that prepares a state to be sent (in our case a polarization

state), an optical assembly to enable the transmission of the photon such as a telescope,

and a polarization compensation system that corrects any errors obtained going from the

source to the optical assembly, see Fig. 1.2.

For an up-link QKD ground station, there are two main challenges that are addressed

by this work. One is that the source must be able to produce photons at a high rate

and have other requirements that are outlined in Sec. 1.2.2. Chapter 2 provides the work

done on a proposed high rate entangled photon source that can meet the requirements of

Sec. 1.2.2.

The other challenge is that the fiber which connects the quantum source to the optical

assembly, causes birefringent polarization rotations, as outline in Sec. 3.1. The birefrin-

gence rotations are results of manufacturing defects and small amounts of stress in the
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core of the fiber that can alter the relative index of refraction of the different polarization

modes, which can cause power mixing [40]. This problem is amplified further when the

fiber is bent or moved while the optical assembly is moving in order to track a satellite.

Therefore, the need for a polarization compensation system is very important. However,

the current system on the QEYSSat ground station is quite complex and consists of moving

parts, active state reconstruction and active feedback controlling compensatory wave plates

[38]. However, the work done in Chap. 3 demonstrates a passive polarization compensation

system that does not require moving parts or adaptive feedback.

1.1.4 Quantum State Tomography

In many quantum information experiments, it is useful to perform quantum state tomogra-

phy. Tomography is effectively a reconstruction or estimation of a quantum system based

on measurements that are performed on the quantum system [11]. With a series of repeated

measurements on an ensemble of states, one can sufficiently estimate an arbitrary state of a

quantum system. With a limited and well defined set of measurements, quantum tomogra-

phy can determine the entire state of a system prior to its measurement. Many techniques

of tomography require the measurement of the four Stoke’s parameters (or Pauli measure-

ments) [41]. The Stoke parameters can be linked to experimentally measurable quantities

such as coincidence counts.

Matrix Inversion Method

Most tomography techniques require the inversion of a linear system and what is known as a

tomographically complete set of measurements. Tomographically complete measurements

means that the positive-operator valued measurements (POVM) are selected such that

they form an operator basis on the entire Hilbert space, which provides all the information

about the system [11]. If a system contains n qubits, it is represented by a 2n by 2n

normalized, complex, hermitian matrix which only needs 4n − 1 real free parameters to

describe it. For example, in the one qubit case, the normalized density matrix can be

written as,

ρ =

(
x1 x2 + ix3

x2 − ix3 1− x1

)
(1.14)

where xi are real parameters. Now in most experimental settings that includes experimental

noise and imperfect detectors, we need one more parameter to determine the normalization
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due to the noise and detector efficiencies. [41]. Now, in the two qubit case, there are 16 data

points that are needed to be determined and therefore projections onto 16 state vectors

|φν〉. These |φν〉 are tomographically complete if and only if the matrix with elements:

Bνµ = 〈φν |Γµ|φν〉 (1.15)

is invertible, i.e. nonsingular, which means that the POVM’s that correspond to each |φν〉
measurement form a basis of the Hilbert space. The Γµ are the set of matrices σi ⊗ σj,
where i, j = 0, 1, 2, 3 and the σi are the 2× 2 Pauli matrices. Now from the matrix given

in Eq. (1.15), a reconstructed density matrix can be calculated via7

ρ =
1

N

16∑
ν=1

[
16∑
µ=1

(B−1)νµΓµ

]
nν (1.16)

where N is a normalizing factor defined by taking the trace of the unnormalized Eq. (1.16)

N =
16∑
ν=1

Tr

(
16∑
µ=1

(B−1)νµΓµ

)
nν

and nν is the counts obtained when making the projective measurement |φν〉.

This method works well in reconstructing most quantum states, however, there are

some downfalls to this method. The first is that it requires a tomographically complete set

of projective measurements in order to invert the matrix in Eq. (1.15), [41], otherwise the

Moore-Penrose pseudo-inverse [42] can be used. However, a complete set of measurements

is not always available for every experiments. In fact, the experiments discussed in Chap. 3

do not have a complete set of measurements, hence this method cannot be used. Another

issue with this method is that it is possible that the resulting matrix violates the condi-

tion that all density matrices are positive semidefinite, meaning that their eigenvalues are

positive and that Tr (ρ) = 1. One can create density matrices with this method that are

unphysical i.e. Tr (ρ) 6= 1 or a negative eigenvalue. The reason this is possible is due to the

imperfections in the detectors and experimental noise as well as the constraints that were

used to calculate the density matrix. The matrix inversion method does not constrain

the resulting matrix to be a physical density matrix. We are simply inverting a linear

system to which can have a solution that is nonphysical given the experimental noise and

detector imperfections. However, there is another tomography procedure that constrains

the resulting density matrix to always be physical and is discussed below.

7In [41], there is an error in the indices their equation 3.15
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Maximum Likelihood Method

As mentioned above, the matrix inversion method can create unphysical density matrices.

The maximum likelihood method uses the same measurements |φν〉, however, it constrains

the final density matrix to being positive semidefinite. To do this, we parametrize the

density matrix as:

ρ =
T †T

Tr{T †T}
(1.17)

this will limit the ρ to being positive semidefinite because any matrix that can be written

as G = T †T is must be positive semidefinite for any matrix T [41]. In addition, T †T is

Hermitian and the trace in the denominator of Eq. (1.17) is a normalization factor, thus we

have all the constrains needed for a physical density matrix. T is thus a square matrix of

dimension d that can be written as a triangular matrix with real numbers on the diagonal

such that it only has d2 free parameters. For the two qubit case, this would be 16 free

parameters and the matrix would take the form of:

T =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

. (1.18)

There is also a way to express T by the elements of ρ which is useful when using numerical

methods to find results, this is outlined in [41].

The next steps in deriving the equation for the maximum likelihood method are to

determine how well the calculated density matrix fits the measured data. To do so we

assume that the counts collected have an expected value of

n̄ν = N〈φν |ρ|φν〉 (1.19)

and that they follows a Gaussian probability distribution. N is a parameter that is depen-

dent on the detector efficiency and photon flux. Thus, the probability of measuring a set

of κ counts {nν} is given by:

P (n1, n2, ..., nκ) =
1

Nnorm

κ∏
ν=1

exp
[
− (n̄ν − nν)2

2n̄ν

]
(1.20)

with Nnorm being a normalizing factor. Now substituting Eq. (1.19) into Eq. (1.20), we get

the probability, or likelihood, that ρ could produce the measured data {nκ}.

P (n1, n2, ..., nκ) =
1

Nnorm

κ∏
ν=1

exp
[
− (N〈φν |ρ(t1, t2, ..., tκ)|φν〉 − nν)2

2N〈φν |ρ(t1, t2, ..., tκ)|φν〉

]
(1.21)
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Now rather than maximizing the value of Eq. (1.21), we can simplify the problem by finding

the maximum of its logarithm [41], which reduces the problem further to minimizing the

value of Eq. (1.22) [41].

L(t1, t2, ..., tκ) =
κ∑
ν=1

(N〈φν |ρ(t1, t2, ..., tκ)|φν〉 − nν)2

2N〈φν |ρ(t1, t2, ..., tκ)|φν〉
(1.22)

As already mentioned, the advantage of this method is that the resulting density matrix is

physical since we constrain and assume it to be a representation of a physical system. The

other major advantage of this technique is that it works with an arbitrarily large number

of measurements. Indeed, κ can be much larger than d2 − 1 which gives an over-complete

tomography. In addition, one does not need a tomographically complete set of POVM’s

to get an outcome. One simply needs d2 − 1 measurements to obtain a density matrix

that occupies the subset of the Hilbert space spanned by the POVM’s. The maximum

likelihood method is used to reconstruct the states produced in Chap. 3.

To determine the error of the maximum likelihood method, one must be able to quantify

how well the resulting density matrix fits the set of measurement data. In Chap. 3, I

use a Monte Carlo method to determine the errors in values derived from the resulting

density matrix, i.e. fidelity Eq. (1.23). The Monte Carlo method involves adding random

Poissonian noise to the data, then performing tomography using the adjusted measurement

data. Doing this n-times yields a set of density matrices that can give bounds for the errors

of any values derived from the tomography.

Quantifying State Quality

After reconstructing a state via the aforementioned tomography methods, it is convenient

to be able to quantify the quality of the state created in an experiment. I will now outline

and briefly explain the various measures.

One means to do this is to compare the measured state ρ to a known state σ and

measure their “closeness”. This effectively means comparing how close one state is to

being equal to another state that is desired. Calculating the “closeness” of two quantum

states is know as the fidelity and is given by:

F(ρ, σ) =
[

Tr
√√

ρσ
√
ρ
]2

(1.23)

where for the positive semidefinite matrix M ,
√
M is the unique positive square root given

by the spectral theorem [43]. The fidelity has a couple nice properties namely it is bound
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by 0 ≤ F(ρ, σ) ≤ 1 and it is symmetric, i.e. F(ρ, σ) = F(σ, ρ) [43]. The two states are

deemed to be equivalent if F(ρ, σ) = 1 and orthogonal if F(ρ, σ) = 0. Thus, one can use

the value of the fidelity to quantify the quality of the prepared state as compared to a

desired state.

Another method of quantifying the quality of a state is to calculate what is know as

the purity of a quantum state. The purity is a measure of how much a state is mixed. It

is given by:

Pur = Tr(ρ2) (1.24)

and has bounds of 1
d
≤ Pur ≤ 1, where d is the dimension of the Hilbert space where the

state is defined [11]. The upper bound when Pur = 1, is obtained from the fact that for

any system Tr(ρ) = 1 and Tr(ρ2) ≤ Tr(ρ). However, for a pure state, Pur = Tr(ρ2) = 1.

While the lower bound is found by calculating the purity of a completely mixed state of

a d dimensional Hilbert space, i.e. ρ = 1
d
Id [11]. Thus, any tomography that results in a

calculated purity that is close to 1 can be regarded as almost a pure state.

In Chap. 3, the state of interest is an entangled state. There are several measures of

entanglement [44]. In Chap. 3, we use concurrence and tangle to define the quality of the

entanglement. Though they are measurements of the entanglement of a mixed state [41],

they can also be convenient in measuring the entanglement of a pure state of a two qubit

system [45]. Hence, we use them as a factor for the quality of entanglement.

We start with showing the definition of the concurrence of a two qubit state. First, we

must define the spin flipped state operator for a two qubit system,

ρ̃ = (Y ⊗ Y )ρ∗(Y ⊗ Y ) (1.25)

where ρ∗ is the conjugate transpose of ρ and Y the Pauli matrix as per Tab. 1.2. The

formula for the concurrence is,

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (1.26)

where λi are the eigenvalues of the matrix R where

R =
√√

ρρ̃
√
ρ (1.27)

which is positive semi definite [45]. The tangle of a system is simply defined as [41],

T = C(ρ)2 (1.28)

Both the tangle and concurrence are bounded by 0 ≤ T, C(ρ) ≤ 1 where the upper bound

indicates good entanglement and the lower bound indicating a separable state. Therefore,

it is easy to verify the quality of the entangled quantum system one is using.
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1.1.5 Quantum Illumination

Quantum illumination is an emerging quantum protocol that has direct implications for

radar and LIDAR applications. The protocol includes the creation, via a quantum source,

of photon pairs that are entangled in energy and time. One photon will be sent to a

target, while the other is measured locally at the source. Bouncing the sent beam off a

target and measuring the returned signal correlated against the locally measured signal,

can, in principle, allow for the detection of targets with very faint signals.The signal,

because of the correlations to the locally measured photon, is distinguishable above the

background, which itself will have no correlation to the local photon. Thus with good

timing analysis, the returned faint correlated signal will be sufficiently distinct compared

to any uncorrelated background. These low signal levels allow for the detection of the

source of the photons to be difficult compared with current LIDAR applications that use

much brighter sources. Another benefit is that any adversary that attempts to intercept

the signal will only receive one half of the photon pairs. The statistics of a source, that is

one half of an entangled pair, is similar that of a thermal source which makes it difficult to

determine the origin of the source. These benefits allow for the application to be relevant

in defense type application as outlined in [46]. The source presented in Chap. 2 and the

protocol in Chap. 3 could be utilized for quantum illumination applications. However, the

realization of such applications is far in the future and were only partial motivators of the

creation of the source in Chap. 2.

1.2 Spontaneous Parametric Down-Conversion

One of the most commonly used methods to generate an entangled photon pair has be

to use a process known as spontaneous parametric down-conversion (SPDC). It can be

described by a pump field (Ep) interacting with a nonlinear medium to split into two fields

of lesser energy known as the signal (Es) and idler (Ei). The down-conversion photons are

called signal and idler for historical reasons, with the higher frequency photon being the

signal. SPDC is a quantum effect and cannot be described classically. SPDC is used in this

work to create entangled photon pairs and I will show a brief summary of its derivation,

though if the reader desires a more comprehensive derivation see [47] and [48]. First, we
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begin with the multimode quantized electric field8.

Ê
(−)
j (r̄, t) = −i

√
~ωj

2V ε0

∫
d3k̄j dωj ēj â

†
j e
−i(ωjt+k̄j ·̄r) 9 (1.29)

where â†j is the raising operator, ēj is the polarization vector and j = i, s. We now

restrict the field to propagate in the z-direction. This is not a necessary step but it makes

the derivation simpler.

Ê
(−)
j (z, t) = −i

√
~ωj

2V ε0

∫
d3k̄j dωj ēj â

†
j e
−i(ωjt+kjzz) (1.30)

We need the Hamiltonian that describes the quantum process of SPDC and apply it to the

vacuum state |vac〉 via the interaction picture.

|ΨSPDC〉 = e
1
i~
∫ t
0 ĤSPDC(t′)dt′ |vac〉

= |vac〉+
1

i~

∫ t

0

ĤSPDC(t′)dt′|vac〉+ ...
(1.31)

Note that we are only interested in the first-order term of this perturbation since the higher-

order terms in the expansion yield double pair, triple pair, N-pair down conversions. We

have to now address the Hamiltonian itself which can be derived by taking the classical

field density of a nonlinear material and quantizing the electric field10. The resulting

Hamiltonian is:

ĤSPDC = ε0χ
(2)

∫
V
d3r̄E+

p (z, t)E−s (z, t)E−i (z, t) + h.c., (1.32)

where ε0 is the vacuum permittivity, h.c. is the hermitian conjugate, s and i are the indices

representing the signal and idler modes, respectively, V is the volume of the nonlinear crys-

tal that is interacting with the pump beam, and χ(2) is the nonlinear tensor susceptibility.

It is assumed that only the χ(2) term of the tensor be considered even though other terms

exist, their interactions can be considered weak. The derivation of this Hamiltonian will

not be explicitly done in this work, but there are several nice derivations available in [48].

We also assume that the pump is monochromatic and can be treated as a classical plane

8It has been suggested that the electromagnetic displacement field D̄ be quantized rather than the

electric field. This is since quantizing D̄ preserves Faraday’s law in the nonlinear material whereas the

quantization of the electric field does not [49].
9Bold face and x̄ denotes a vector.

10Again see [49] for the D̄ field expansion form.
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wave beam. If the reader is not familiar with plane waves, I suggest looking at [50]. By

substituting Eq. (1.30) and the plane wave monochromatic pump into Eq. (1.32), we get:

ĤSPDC =ε0χ
(2)

∫
V
d3r̄Ep0 e

i(kpz−ωpt)

√
~ωs

2V ε0

∫
d3k̄s dωs ēs â

†
s e
−i(ωst+kszz)√

~ωi
2V ε0

∫
d3k̄i dωi ēi â

†
i e
−i(ωit+kizz) + h.c.

(1.33)

Now substituting Eq. (1.33) into Eq. (1.31) and keeping only the first order non vacuum

term, we get:

|ΨSPDC(z, t)〉 '
(
− ε0χ(2) 1

i~

∫ t

0

dt′
∫
V
d3r̄Ep0 e

i(kpz−ωpt)

√
~ωs

2V ε0

∫
d3k̄s dωs ēs â

†
s e
−i(ωst+kszz)√

~ωi
2V ε0

∫
d3k̄i dωi ēi â

†
i e
−i(ωit+kizz) + h.c.

)
|vac〉.

(1.34)

Now we reduce the SPDC to being single mode and monochromatic, similar to the pump,

and combine some terms.

|ΨSPDC(z, t)〉 '
(
iχ(2)Ep0

√
ωs
2V

√
ωi
2V

∫ t

0

dt′
∫
V
d3r̄ ei(kpz−ωpt) ēs â

†
s e
−i(ωst+kszz)

ēi â
†
i e
−i(ωit+kizz) + h.c.

)
|vac〉.

(1.35)

Now integrating over the volume of the crystal that interacts with the pump (V = LxLyLz)

and over the interaction time, and restricting each photon to one polarization, we get11:

|ΨSPDC(z, t)〉 ' iχ(2)Ep0

√
ωsωiLxLy

2V

∫ t

0

ei(ωi+ωs−ωp)t′dt′
∫ Lz

0

dz ei(kpz−kszz−kizz)|1〉s|1〉i

(1.36)

and completing the integrals and taking that χ(2) has no z dependence, we get:

|ΨSPDC(t)〉 'iχ(2)Ep0

√
ωsωiLxLy

2V
ei

(ωi+ωs−ωp)

2
t t sinc

((ωi + ωs − ωp)t
2

)
ei

(kp−ksz−kiz)Lz
2 Lz sinc

((kp − ksz − kiz)Lz
2

)
|1〉s|1〉i.

(1.37)

11Note that the h.c. term was removed because this contains two lowering operators that take the

vacuum state to zero.
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Now if the interaction time t is long enough, we can approximate the first sinc as a delta

function.

|ΨSPDC(t)〉 '
iχ(2)Ep0

√
ωsωi

2
ei

(ωi+ωs−ωp)

2
t δ(

ωi + ωs − ωp
2

) ei
∆kLz

2 sinc
(∆kLz

2

)
|1〉s|1〉i

(1.38)

where ∆k = kp − ksz − kiz and Ep0 is the amplitude of the pump. Eq. (1.38) shows that

the process of SPDC only produces pairs of photons that meet the following conditions.

They must first, by consequence of the delta function, have energies that add up to that

of the pump,

ωp = ωs + ωi (1.39)

which is effectively the conservation of energy. A secondly, because of the sinc
(

∆kLz

2

)
term,

the signal will be maximized when,

k̄p = k̄s + k̄i (1.40)

this is called the phasematching relation. This condition limits the length over which the

SPDC interaction may occur coherently within the crystal. This phasematching relation

can be tuned and modified to create different signal and idler wavelengths, however this

will not be discussed in this work.

Periodic Poling

The aforementioned phasematching is not the easiest thing to achieve. Most nonlinear

crystals are dispersive which can cause Eq. (1.40) to not be satisfied, this is obviously

problematic when already SPDC has a probability of about 10−6 per pump photon [51].

Therefore, quasi-phasematching is developed to modify the material such that the phase-

matching is satisfied for longer crystal lengths. There are several methods that optimize

quasi-phasematching such as temperature tuning and angle of incidence tuning [52]. Both

of these methods make use of the birefringence of the materials in order to compensate

for the dispersion. However, these methods have some shortcomings, for instance, some

nonlinear materials are not birefringent or have insufficient birefringence [53]. One solution

that is very popular is called periodic poling, and is the most common method now used

to fabricate nonlinear crystals for quasi-phasematching. Periodic poling was first demon-

strated by [54] and works for ferroelectric materials. The idea is to apply electrodes to a

19



Figure 1.3: A periodically polled material with the poling period labeled.

crystal once every period, which thus reverses the polarity of the domain in the material.

This also inverts the sign of the χ(2), which causes the phasematching condition to become:

kp = ks + ki +
2π

Λ
(1.41)

where Λ has units of length is known as the poling period. More specifically Λ is the

distance over which to make one period of polarity reversal, see Fig 1.3.

In general, this method does not suffice to get perfect phasematching. However, with

slight temperature adjustments and tuning, the phasematching can be met and in fact, for

SPDC, the signal and idler wavelengths may be tuned via the change in temperature.

1.2.1 Types of SPDC

It is now good to mention that there are different configurations of SPDC. The various

types are based on pump, signal and idler polarizations. For this work I will use type-

0 SPDC for the work described in Chap. 2, which is when all the photons involved are

identically polarized i.e. |H〉p, |H〉s, |H〉i. For the work done in Chap. 3, the source is a

type-II SPDC source. This means that the signal and idler photons have perpendicular

polarizations and there is not necessarily any polarization correlation between successive

pairs [55], i.e. |H〉p, |V 〉s, |H〉i. The third type of SPDC, that is not used in this work, is

type-I, this is when the signal and idler share the same polarization but can differ from

that of the pump, i.e. |H〉p, |V 〉s, |V 〉i.

1.2.2 Desired Specification for SPDC for Free-Space QKD

Amongst the many practical applications of SPDC, QKD is one in which it can be used to

produce entangled photon pairs. However, not all nonlinear crystals can give the desired
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performances for specific QKD applications. In the case of the QEYSSat mission [39], the

requirements for a free-space up-link are far more stringent then for a laboratory setting

[56].

The first requirement for QEYSSat system is that the signal photons be produced at

around 780 nm [56]. This can be achieved by many different nonlinear crystals including

periodically poled Lithium Niobate that is further discussed in Chap. 2. Now the require-

ment for the idler photon (the partner photon of the signal photon) is less strict and can be

any detectable wavelength. However, the ideal case would be a typical telecommunications

band such as 1550 nm. The convenience of having the idler photon in the telecommunica-

tions range allows for easy integration of the photon pair with fiber optic communication

networks.

Another requirement is that the source be sufficiently narrow band in spectrum as to

be distinguishable from the background noise [56]. This is ideally on the order of 1 nm but,

the narrower the bandwidth, the better. This also includes a limited amount of background

noise that can be produced by the nonlinear crystal, see Sec. 2.3.1 for a discussion on this

topic.

Since the implementation of the SPDC is a specifically free space satellite up-link, the

source must have a brightness, or emission rate, that is capable of producing enough signal

in such a channel. The minimum requirement for the brightness of an SPDC source used

in an up-link is about 100 MHz [56].

There are also the requirements of practicality, the source should not require optical

setups that take up the entirety of a room. The source should also ideally be mobile to

and easy to function and align so that it can be utilized in a widespread global network.

However, the practicality can be sacrificed if all the other requirements are met, within in

reason, of course.

1.3 Waveguide Physics

Waveguides are widely applicable in electromagnetic wave manipulation. They are used in

many practical as well as experimental setting. In this work, Chap. 2 particularly, requires

the knowledge of several waveguide concepts, the physics involved is thus important in

understanding this work. This section will cover the basic physics of a waveguide needed

for this thesis as well as some notes on the optical fibers used throughout this work.
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1.3.1 Optical Waveguides

The main concept of optical waveguides is the supported solutions for the wave equation or

Helmholtz equation. However, we will discuss this in more detail with the specific case of

the optical fiber in Sec. 1.3.2. For now we will introduce the concept of optical waveguides

with what is know as the metal guide as seen in Fig. 1.4.

Figure 1.4: Metallic walled waveguide of width d

The walls of this waveguide are mirrors and every time a ray is incident on the mirror,

we expect it to be reflected and then re-reflected. This propagation results in an effectively

a net z-direction travel. To find out what field is allowed to exist inside the waveguide, we

start with the time-independent field that is a y-polarized plane wave traveling along some

angle, θ, with respect to the z-axis Eq. (1.42), as seen in the Fig. 1.4.

Ey(x, z) = E exp
(
− ik0{z sin θ ± x cos θ}

)
(1.42)

with the total field being a combination of both the upward and downward components.

Ey(x, z) = E− exp
(
− ik0{z sin θ − x cos θ}

)
+ E+ exp

(
− ik0{z sin θ + x cos θ}

)
(1.43)

The E± is determined by the boundary conditions which are that the fields at x = 0 and

x = d vanish, i.e. Ey(0, z) = 0. Thus for x = 0, E− = −E+ and for x = d,Ey(d, z) = 0,

which gives sin k0d cos θ = 0. Which finally gives us the condition on which modes and

angles are permitted within the waveguide.

cos−1
( πν
k0d

)
= θν (where ν = 1, 2, 3, ...) (1.44)

Eq. (1.44) is referred to as the eigenvalue equation of the waveguide [17]. Each θν corre-

sponds to a particular mode that the guide can support. However, only a finite number

of modes are supported, i.e. the case where πν
k0d

> 1 has no supported modes since the

guide is too small (πν
k0
> d). This implies a condition that for any mode to exist πν

k0
< d

and π
k0
> d or half the optical wavelength [50]. Now these conditions dictate the number

of modes that can be supported by the waveguide, i.e. if d is slightly larger than π
k0

, then

it is a single mode guide, and if d is even larger, the guide becomes multimode.
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1.3.2 Optical Fibers

Optical fibers are a circular dielectric waveguides and can be considered probably one of the

most common application of optical waveguides. The same concepts from above provide

a good basis for understanding the physics of optical fibers. Particularly, the optical fiber

supports electromagnetic fields that satisfy the wave equation, or Helmholtz equation,

given the boundary conditions and media of the fiber. The fibers can be single mode fibers

(SMF), meaning they allow only one spatial mode of light to propagate, while other fibers

can be multimode fibers (MMF) and can support many modes. It should be mentioned

that we will discuss only step-index fibers where there is two distinct indices of refraction

between the core and the cladding materials. However, the reader should be made aware

of graded index fibers or GRIN fibers that have a slowly varying core index of refraction.

The highest being in the center of the core and the lowest being where the core meets the

cladding material. For further information on GRIN fibers the reader is encouraged to look

in [17] and [57] as a good starting reference.

Before we discuss the physics of the fields within an optical fiber. I would like to

mention an important quantity that dictates the acceptance angle of the fiber. This is

known as the numerical aperture (NA) and is given in Eq. (1.45).

NA =
√
n2

1 − n2
2 (1.45)

Where n1 and n2 are the indices of refraction of the core and cladding, respectively. Now

given the NA, the acceptance angle of the fiber is given by Eq. (1.46)

NA = sin θa (1.46)

Any ray that is incident on the fiber core with an angle of incidence θ < θa, the ray will

propagate through the fiber. However, any ray that is incident with an angle θ > θa, the

ray will only propagate a short distance through the fiber before it refracts out of the core

since it will not undergo total internal reflection [17]. Like in a waveguide, it is the bounce

angles that support a mode that are of interest.

We now proceed to develop the theory of light in fibers. Before we begin, there are a

few assumptions to be made. First we assume that this is a weakly guiding fiber, which

means that the core and cladding have vary similar refractive indexes, n1 − n2 � 1. For

most practical purposes, n1 − n2 � 1 is true. Second, we take the cladding radius to

infinity, this very much simplifies the problem and can be done because the fields outside

the core decay exponentially (evanescent fields) [58], see also Eq (1.53).
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To start, we must find the electric and magnetic fields that propagate in the fiber via

Maxwell’s equations and the boundary conditions of the fiber. This effectively becomes a

Helmholtz equation problem, which is the time-independent form of the wave equation after

separation of variables is done. We solve the Helmholtz equation for a generic step index

fiber of refractive index n(r) Eq. (1.47) 12 to get the modes and fields that are supported

by the optical fiber. Now we restrict the guided modes to waves traveling in the z-direction

thus, we take the longitudinal components of Ez and Hz, these satisfy Eq. (1.47). We can

use Maxwell’s equations to find the transverse components.

∇2U + n(r)2k2
0U = 0 (1.47)

where k0 = 2π
λ

, U is the function describing the field, either (E or H components), and

n(r) =

n1, r < a

n2, r > a

where a is the core radius. Now writing Eq. (1.47) in cylindrical coordinates we get

Eq. (1.48)

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂φ2
+
∂2U

∂z2
+ n(r)2k2

0U = 0 (1.48)

By separation of variables U(r, φ, z, t) = T (t)R(r)Φ(φ)Z(z). Now the z and time depen-

dence of U(r, φ, z, t) can be solved for and make up the factor

T (t)Z(z) = exp[i(ωt− βz)] (1.49)

with ω being the monochromatic frequency and β being the propagation constant. Eq. (1.49)

should be a common factor for the reader if they are familiar with plane wave solutions

to Maxwell’s equations [50]. We are now left with the radial and angular dependence of

U(r, φ, z, t). From which we try a solution that is 2π periodic in φ with ν = 0, 1, 2, ...

R(r)Φ(φ) = u(r)e−iνφ (1.50)

Substituting Eq.(1.50) into Eq. (1.48) gives us a resulting equation.

∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
+

(
n(r)2k2

0 −
ν2

r2
− β2

)
u(r) = 0 (1.51)

12 Eq. (1.47) can also be derived from Maxwell’s equations by eliminating the transverse field components

and solving for either Ez or Hz [58].
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We get what is the well know Bessel equation. The solutions and type of Bessel function

that u(r) gets is dependent on n(r). Now β is within the limits n2k0 < β < n1k0. This

means that within the fiber core we will get the ordinary Bessel function as the solution,

while in the cladding we obtain the modified Bessel function, Bessel-K. Eq. (1.51) can then

be written in terms of inside and outside of the core.

∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
+

(
κ2 − ν2

r2

)
u(r) = 0, r < a

∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
−
(
γ2 +

ν2

r2

)
u(r) = 0, r > a

(1.52)

where γ2 = β2 − n2
2k

2
0 and κ2 = n2

1k
2
0 − β2. Now it should be possible to write a solution

for U(r, φ, z, t) = T (t)R(r)Φ(φ)Z(z).

U(r, φ, z, t) ∝

Jν(κr) e−iνφ ei(ωt−βz), r < a

Kν(γr) e
−iνφ ei(ωt−βz), r > a

(1.53)

The proportional sign is needed because there are constant out front that are ignored in

our derivation. The reader is referred to the great derivation done in [58] for more details

on finding the values for these constant and the exact values of all the field components.

κ and γ determine the properties of the fields in the fiber. For instance, larger values of

γ means faster decay in the cladding (r > a) while large values of κ means more radial

oscillations in the core (r < a). From κ and γ we can define a dimensionless parameter that

is very important for the number of modes supported by the fiber called the V parameter

that is define in Eq. (1.54).

V 2 = (κa)2 + (γa)2

V 2 = NA2k2
0

V = 2π
a

λ
NA (1.54)

where NA is defined in Eq. (1.45). As eluded to above, this parameter helps determine

the number of modes supported in the fiber since it is related parameters that dictate the

zeros of the Bessel functions, i.e. κ and γ. For convenience we define W = κa and T = γa

such that V 2 = W 2 + T 2. Now the field supported inside the fiber must be continuous

at the boundary. Therefore, the function U(r, φ, z, t) and U ′(r, φ, z, t) must be continuous

25



at the boundary where r = a. Taking the derivative and equating the functions at r = a

gives rise to what is know as the characteristic equation, Eq. (1.55).

W
Jν±1(W )

Jν(W )
= ±T Kν±1(T )

Kν(T )
(1.55)

Now given that T =
√
V 2 −W 2 and knowing the value of V and ν, the only parameter we

need to solve for is W . The solutions to this equation can be done graphically by plotting

the left-hand side and the right-hand side and the intercepts are where the solutions for

W are found, see Fig. 1.5

Figure 1.5: Solutions to the characteristic equation for a fiber with a V parameter of

V ≈ 9. In this graph ν = 0. Each intersection corresponds to a Wm with m = 1, 2, 3, ...,

but Wm ≤ V . Here G(W ) corresponds to the left-hand side of Eq. (1.55), while F (T )

corresponds to the right-hand side. Both axes are unitless.

To determine the number of modes in a fiber, one must estimate the number of roots

of Eq. 1.55. For large values of V, the number of modes N can be approximated by the

formula

N ≈ V 2

2
. (1.56)
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A derivation of this formula can be found in [58] and similar concepts are used in applied

mathematics for various partial differential equation problems that are eigenvalue problems

similar to the case of the optical fiber.

1.3.3 Polarization Maintaining Fibers

Polarization maintaining fibers (PMF) are designed specifically to maintain the polarization

of any light that is coupled into either one of its polarization mode axes. The typical single

mode fiber (SMF) should in theory not effect the polarization state of the light transmitting

through it. However, any break in the rotational symmetry of the fiber’s refractive index

will cause the polarization modes of a fiber to mix or rotate.

Polarization maintaining fibers have two axes that will preserve any polarization that

is aligned to these axes [59]. They are know as the slow and fast axis. The concept behind

this is to alter the index of refraction of the core such that there are two distinct indexes of

refraction. Unfortunately, these two axes, due to differences in their respective refractive

indexes, create a phase difference between the two polarizations.

The reader might be wondering why would one make a polarization maintaining fiber

such that the axes of the fiber have differing indexes of refraction. In theory, there should

be no need to do this to normal single mode fibers if the incident light is purely in one

polarization since there should be no mixing into the other polarization mode. However,

in practice, due to fiber imperfections and strain, having the group and phase velocities

matched allows for the different polarization modes to mix, thus regular single mode fibers

cause polarization rotations and drift [17]. This would not be an issue if the fibers were

simply used for transferring power. However, due to this polarization mixing in single

mode fibers, the resulting output polarization is elliptical and thus impractical for po-

larization sensitive applications such as QKD. In order to reduce the polarization mode

mixing, manufacturers introduce a phase difference through a group velocity delay of one

polarization mode relative to another that is orthogonal. This makes it very difficult for

the two polarizations to mix as they are not phase matched when traversing the fiber. The

slow axis literally means that the light couped with a polarization mode along that axis

will travel slower than that along the fast axis.

Any polarization not aligned to one of these two axes, such that both polarization

modes are excited, the light will be subject to the polarization mode dispersion caused by

the induced fiber asymmetry. One will slip out of phase relative to the other. The difference

birefringence will cause a rotation to the polarization and at most points throughout the

fiber, the polarization will be elliptical. However, if the phase difference becomes 2Π, the
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original polarization is returned. Thus the effect of a (uniform) birefringence is to cause a

general polarization state to evolve through a periodic sequence of states as it propagates.

The length over which this occurs is the fiber beat length Lb = 2π/β. An integer number

of these beat lengths will result in the original polarization being returned. However, in

many applications, the number of beat lengths experienced by the light will not be integer

and the unaligned polarizations will most likely be returned in an elliptical state.

The phase difference, or asymmetry in the index of refraction, of the PMF’s, can be

produced in several difference ways [59]. The most common way is to induce a stress along

one axis of the fiber core that will cause a relative difference between two orthogonal axes

of the fiber. This can be done via several techniques such as; physically pressing the fiber

core [60], using stress inducing rods such as the Bow-tie [31] and Panda fibers [61]. The

polarization maintaining fibers used in this work are all Panda fibers.
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Chapter 2

Waveguide Entangled Photon Source

In this chapter, I will discuss the work done on a bright entangled photon source. The

project was an attempt to make a source that is capable of meeting the requirements

of Sec. 1.2.2. We start with the characterization of the waveguide crystal and show the

promising brightness, then move to the issues and discuss the difficulties encountered,

present the attempted solutions and their results. Then conclude with the future ideas

and outlook.

2.1 Design

The selection of the periodically poled lithium niobate magnesium oxide doped (PPLN-

MgO) waveguide crystal was done with a satellite QKD link in mind, Sec. 1.2.2. The idea

was to select a crystal that has a high brightness, 100 MHz pair rate, and is capable of being

mobile thus requiring easy alignment. In considering the mobility and easy alignment, the

choice was made to pigtail two 780 nm PM fibers of 1 m in length, to the waveguide. The

fibers were to create a source that is mobile and simple to align as per the requirements in

Sec. 1.2.2. I was not involved in any of the design choices and selection of the crystal as

this was done before my arrival to the Quantum Photonics Lab.

The choice of a waveguide over a bulk crystal was made since the waveguide allows

for the pump light to have a longer interaction length with the nonlinear material in

comparison to bulk crystals [62]. The idea is that the waveguide prevents the need for

the pump light to be focused down tightly, which would cause damage to the crystal and

reduce the interaction length with the nonlinear material.
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2.1.1 Sagnac Loop

The design of the source is based off the well established Sagnac loop design. See [53]

for a description of these sources. We plan to implement this system using a rotated

PM fibers in one arm similar to the source in [63]. In order to generate polarization

entangled photons, we use a 405 nm pump laser that pumps a nonlinear optical crystal

from two sides at the same time to produce photon pairs with spontaneous emission.

These photon pair emissions are combined on a polarizing beam splitter (PBS) which

closes the interferometer. This is known as a Sagnac interferometer. Because the paths of

the interferometer are indistinguishable, the photon pairs cannot be connected to a specific

path, and therefore become entangled in their polarization. This correlation can be used

for quantum communications and other applications requiring entangled photons.

The overall design of this Sagnac loop can be seen in Fig. 2.1. The Thorlabs NanoMax�

stages were selected in order to have fine adjustment capabilities since coupling into single

mode fibers can be difficult. The PPLN waveguide that was selected, is a type-0 crystal.

All the down conversion propagates back towards the pump and needs to be separated from

the pump by a dichroic mirror, as seen in Fig. 2.1. All the optics that are in Fig. 2.1 prior

to the SMF 405 nm are used to get a monochromatic pump, Fig. 2.2. As will be discussed

in Sec. 2.3.1, there is a large amount of noise present in the waveguide and reducing the

pump to a clean monochromatic beam is a means of troubleshooting the source of the

noise. See Appendix A for details on how a non-monochromatic pump can reduce source

quality.

2.1.2 Detection Analyzer

The detection of the photon pairs was done using the setup found in Fig. 2.3 know as the

frequency analyzer in Fig. 2.1. The wavelengths of the signal and idler photons were not

at ideal peaks for the central wavelengths of the filters. This required rotating the filter in

order to shift the central wavelength [64].

The photons are separated from each other in the setup shown in Fig. 2.4. The sepa-

ration of the photons allowed for coincidence detection between the signal and the idler.

This was done using single photon avalanche diodes (SPAD’s) and timetaggers of 158ps

resolution.
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Figure 2.1: Schematic optical setup of the pigtailed waveguide Sagnac loop. The pump

wavelength is 405 nm and the signal and idler wavelengths are centered around 785 nm

and 834 nm respectively. HWP- 405 nm half wave plate, PBS- polarizing beam splitter,

F1- Thorlabs FES0800 shortpass filter, HM- Thorlabs M253H45 hot mirror, F2- Thorlabs

FGB37 color filter, P1- prism, C1-C5 Thorlabs Nanomax 6-axis Fiber coupling stages, DM-

dichroic mirror reflect red and transmit blue, SMF- Single mode fiber, PMF- polarization

maintaining fiber, RM- Fiber rotating mount, BE- Bat ears.
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Figure 2.2: Pump spectra, the various optical elements that are in the pump path prior to

the SMF 405 nm are to ensure a monochromatic pump as seen in the spectra.
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Figure 2.3: Schematic optical setup of the frequency separator for the coincidence analysis

of the photons. C1-C2-Fiber coupling stages, L1-Thorlabs F220FC-780 fiber collimator,

F1-Thorlabs FEL0750 longpass filter, DC-Thorlabs DMSP805 dichroic mirror, F2-Semrock

LL01-785-12.5 bandpass filter, F3-Thorlabs FL850-10 laser line filter, M1-Thorlabs P01

silver mirror, L2-Thorlabs RMS10X achromat objective, MMF-Thorlabs multimode fiber,

SPAD-Excelitas Single Photon Avalanche Diode detectors.
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Figure 2.4: Optical setup as seen in the experiment of the frequency separator for the

coincidence analysis of the photons, the individual components and description of labels

are found in Fig. 2.3
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2.2 Characterization of the Crystal

2.2.1 Phase Matching and SPDC Spectra

In order to produce the appropriate wavelength, the crystal temperature must be tuned

appropriately as the down converted photons’ energies are a function of the crystal tem-

perature. The phase matching curve is shown in Fig. 2.5.

285 290 295 300
Temperature [K]760

780

800

820

840

860

Wavelength [nm]

Output Wavelength vs. Temperature

Figure 2.5: Calculated wavelength of the down-converted photons as a function of the

crystal temperature. With the input pump wavelength of 404.39 nm, a polling period of

≈2.741µm, and one photon emitted at 785.0(5) nm the other photon will be 834(2) nm

and a temperature of 13.7(1) ◦C.

For quantum communication applications, the source of photons must be narrow band

in order to ensure proper transmission and detection [56]. Our source has a narrow band-

width of sub 1 nm. This is shown in Fig. 2.6 and Fig. 2.7 which meets the criteria outline

in Sec. 1.2.2.

Overall, the waveguide crystal’s output bandwidth can be reduced with more precise

filtering. However, custom filters would be required and prove to be quite costly.

2.2.2 Brightness

Quantum communication applications require a high source brightness and efficiency due

to transmission losses that can occur over the communication channel, whether it be free-

space or fiber. We calculated the brightness of the source as follows.
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Figure 2.6: Measured spectrum of the 785 nm photon. This arm of the down-conversion

passes through a 785 nm 3 nm bandpass filter. (a) The measured spectrum including the

background IR light from the waveguide crystal. (b) The background light created by the

crystal when pumped by the laser at an offset temperature. (c) The spectrum with back-

ground noise subtracted from spectra (a). The total area under the curve was calculated

to be 1.72 for the signal in (c), while the background area from (b) was calculated to be

0.44, giving a signal to noise ratio of 3.90.
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Figure 2.7: Measured spectrum of the 834 nm photon. This arm of the down-conversion

passes through a 834 nm 3 nm bandpass filter. (a) The measured spectrum including the

background IR light from the crystal. (b) The residual near-IR light generated by the the

crystal when pumped by the laser at an offset temperature. (c) The spectrum with back-

ground noise subtracted from spectra (a). The total area under the curve was calculated

to be 2.82 for the signal in (c), while the background area from (b) was calculated to be

0.84, giving a signal to noise ratio of 3.37.
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Table 2.1: Values for singles in both channels as well as coincidences in counts per second

(cps). The coincidences detuned field shows the amount of coincidences when the delay

between the two channels is set far from the correct value to show the background coinci-

dences. This data is taken at the proper crystal temperature of 13.7 ◦C. The error values

are derived using error propagation of the statistical counting error.

Pump power in fiber 785 nm singles 834 nm singles Coincidences Coincidences detuned

[µW] [cps] [cps] [cps] [cps]

6.75 175000 ± 418 112000 ± 334 4700 ± 68 61 ± 8

7.75 258000 ± 508 167000 ± 334 6800 ± 82 175 ± 13

9.00 370000 ± 508 240000 ± 408 9400 ± 96 370 ± 19

10.25 408000 ± 639 261000 ± 489 11000 ± 104 450 ± 21

11.50 506000 ± 711 319000 ± 510 13500 ± 116 650 ± 25

12.75 605000 ± 779 384000 ± 564 16400 ± 128 1020 ± 31

14.50 708000 ± 841 456000 ± 619 19000 ± 137 1330 ± 36

16.50 823000 ± 907 527000 ± 675 22500 ± 150 1800 ± 42

18.50 935000 ± 967 609000 ± 725 25800 ± 160 2200 ± 47

19.25 1070000 ± 1034 700000 ± 780 29700 ± 172 3190 ± 56

Table 2.2: Values for singles in both channels as well as coincidences in counts per second

(cps). The coincidences detuned field shows the amount of coincidences when the delay

between the two channels is set far from the correct value (100 ns detuned) to show the

background coincidences. This data is taken at a distant crystal temperature of 19.3(10) ◦C

which will generate photons outside the bounds of our collection optics. Statistical counting

error is used to compute the errors.

Pump power in fiber 785 nm singles 834 nm singles Coincidences Coincidences detuned

[µW] [cps] [cps] [cps] [cps]

6.75 36000 ± 189 34000 ± 184 40 ± 6 10 ± 3

7.75 56000 ± 237 51000 ± 225 60 ± 8 13 ± 4

9.00 80000 ± 282 72000 ± 268 85 ± 9 27 ± 5

10.25 83000 ± 288 75000 ± 273 105 ± 10 39 ± 6

11.50 104000 ± 322 88000 ± 296 127 ± 11 43 ± 7

12.75 129000 ± 359 110000 ± 331 170 ± 13 68 ± 8

14.50 154000 ± 392 130000 ± 360 200 ± 14 80 ± 9

16.50 171000 ± 413 148000 ± 385 245 ± 16 110 ± 10

18.50 189000 ± 433 160000 ± 400 290 ± 17 140 ± 12

19.25 221000 ± 470 190000 ± 436 400 ±20 196 ± 14
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The coincidences measured in the system are:

CSPDC = Rs × η1 × η2, (2.1)

where Rs is the singles rate, η1 is the efficiency of the 785 nm photon collection and η2 is

the efficiency of the 834 nm photon collection. The singles rate can be calculated as:

S1,SPDC = Rs × η1, (2.2)

and similarly for S2:

S2,SPDC = Rs × η2. (2.3)

Since singles and coincidences are measured, we can now find the efficiencies as:

η1 =
CSPDC

S2,SPDC

, (2.4)

and

η2 =
CSPDC

S1,SPDC

. (2.5)

These efficiencies, however, also include the background light from other sources. The

efficiency from just the crystal for the proper SPDC photons can be found by subtracting

the background from the temperature detuned trials of Fig. 2.6 and 2.7. Subtracting the

background in Eq.(2.4) and Eq. (2.5) we get:

η1,corr =
CSPDC

S2,SPDC − S2,back

, (2.6)

and

η2,corr =
CSPDC

S1,SPDC − S1,back

, (2.7)

The associated pair production rate can be found by rearranging Eq. (2.2) or (2.3) for Rs:

Rs =
S1,SPDC

η1

, (2.8)

with the similar corrected value of:

Rs,corr =
S1,SPDC − S1,back

η1,corr

. (2.9)

An equivalent equation can be done with Eq. (2.3). The brightness of the source is calcu-

lated by:

Bs =
Rs,corr

P
, (2.10)

where P is the input pump power into the waveguide. These values for varying powers can

all be seen in Table 2.3.
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Table 2.3: Measured efficiencies of the system with η1 corresponding to the 785 nm photon

and η2 corresponding to the 834 nm photon. The pair production rate is based off the arm

with the higher efficiency and the corrected pair rate takes into account the background

noise. The η are unitless. The single and coincidence counts corresponding to these

calculated values are measurements are found in Tab. 2.1 and Tab. 2.2.The error values

are derived using error propagation of the statistical counting error.

Pump Power η1 η2 η1,corr η2,corr Pair Corrected Pair Brightness

in fiber Production Production [counts/s/µW](105)

[µW] [cps](106) [cps](106)

6.75 0.0420 ± 0.0006 0.0269 ± 0.0004 0.0603 ± 0.0009 0.0333 ± 0.0005 4.17 ± 0.10 2.31 ± 0.36 3.42 ± 0.05

7.75 0.0407 ± 0.0005 0.0264 ± 0.0003 0.0586 ± 0.0007 0.0329 ± 0.0004 6.34 ± 0.13 3.45 ± 0.43 4.45 ± 0.06

9.00 0.0392 ± 0.0004 0.0254 ± 0.0003 0.0560 ± 0.0006 0.0315 ± 0.0003 9.45 ± 0.16 5.18 ± 0.56 5.76 ± 0.06

10.25 0.0421 ± 0.0004 0.0270 ± 0.0002 0.0591 ± 0.0005 0.0330 ± 0.0003 9.68 ± 0.16 5.50 ± 0.55 5.36 ± 0.05

11.50 0.0423 ± 0.0004 0.0267 ± 0.0002 0.0584 ± 0.0005 0.0323 ± 0.0003 11.96 ± 0.17 6.88 ± 0.62 5.98 ± 0.05

12.75 0.0427 ± 0.0003 0.0271 ± 0.0002 0.0599 ± 0.0005 0.0331 ± 0.0003 14.17 ± 0.19 7.95 ± 0.64 6.24 ± 0.05

14.50 0.0417 ± 0.0003 0.0268 ± 0.0002 0.0583 ± 0.0004 0.0329 ± 0.0002 16.99 ± 0.21 9.51 ± 0.72 6.56 ± 0.05

16.50 0.0427 ± 0.0003 0.0273 ± 0.0002 0.0594 ± 0.0004 0.0333 ± 0.0002 19.28 ± 0.22 11.0 ± 0.76 6.66 ± 0.05

18.50 0.0424 ± 0.0002 0.0276 ± 0.0002 0.0575 ± 0.0003 0.0333 ± 0.0002 22.07 ± 0.24 13.0 ± 0.84 7.02 ± 0.04

19.25 0.0424 ± 0.0002 0.0278 ± 0.0002 0.0582 ± 0.0003 0.0338 ± 0.0002 25.22 ± 0.25 14.6 ± 0.86 7.57 ± 0.04

From the data in Table 2.3 we have calculated average efficiencies of η1 = 0.059 and η2 =

0.033 which correspond to 5.9% and 3.3% respectively. With the measured pair production

rates, the crystal brightness is measured to be approximately 5.9× 105 Pairs/s/µW which

is an extremely bright value as only microwatts are required produce millions of pairs of

photons. Fig. 2.8 and Fig. 2.9 show the efficiencies and pair production rates of the source

over varying powers. By comparison, the Sagnac source used for the work done in Chap. 3

required milliwatt power levels to produce a photon pairs on the order of ≈ 105 Hz.

Given the pair production rates and the source brightness for such low pump powers,

the PPLN-MgO waveguide source looks very promising for free-space QKD applications.

Typical bulk nonlinear crystals require that the pump have an incident power of around

1 mW and do not come close to similar brightness levels for these down conversion wave-

lengths [62]. Thus the concept of using a waveguide PPLN-MgO doped crystal could meet

the brightness requirements of Sec. 1.2.2. However, as will be discussed in the following

section, there are some limitations to the quality of the source.
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Figure 2.8: Calculated efficiencies, ηm, for varying powers of the source. m = 1 corresponds

to the 780 nm photons while m = 2 corresponds to 834 nm photons. The efficiencies are a

unit less quantity. The error bar values are derived using error propagation of the statistical

counting error.

(a) (b)

Figure 2.9: (a) Pair production rate for varying powers of pump. As expected, the pair

production rate increase with pump power. (b) Source brightness as a function of pump

power. The brightness should remain relatively constant over time which is observed here.

Both curves are plotted in log10 scale on the y-axis. The error bar values are derived using

error propagation of the statistical counting error.
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2.3 Difficulties

The following section will outline and discuss the relevant issues that were encountered

when attempting to realize the goal of a fiber based Sagnac entangled photon source.

It is due to the issues below that this source will not be used for any free space QKD

applications. However, the brightness and the information gained from such a project are

still valuable and the source could potentially be used in other applications. Though the

source appears to have a very high brightness, the quality of the output state is ultimately

determined by the signal to noise ratio. In our context, this ratio will be quantified by the

ratio of coincidence counts to single counts. For a typical good entangled photon source,

one wants this ratio to be above 10% [65], ideally 25% for the uplink QKD case. However,

due to various source issues that are intrinsic to waveguide sources and those introduced

by the design choice, limited the ability to achieve a good quality source.

2.3.1 Noise in Waveguide

The benefits of using a waveguide for SPDC are presented above in Sec. 2.1. However, one of

the drawbacks is the production of noise [66]. The noise produced by waveguide nonlinear

crystals are an observed phenomena and seem to be plaguing many users. For further

discussion and information on this topic, [66] and [67] have a much more detailed and in

depth explanation of the noise observed. However, here I will give a simple explanation.

The issue is that the waveguides used for SPDC can be multimode for both the pump

wavelength and the down conversion wavelengths. In such a multimode waveguide, the

phase matching conditions and energy conversion can be satisfied by several spatial mode

bands that can produce signal and idler photons that are not within the frequency or mode

structure desired [66]. In addition, these alternate SPDC bands can thus significantly

degrade source performance [66].

For examples, lets consider a pump that comes in a (00)p spatial mode, i.e. the funda-

mental mode, there are several down conversion modes including:

A (00)p → (00)s + (00)i,

B (00)p → (01)s + (01)i, and

C (00)p → (10)s + (10)i & (02)s + (02)i.

(2.11)

Here the individual modes are labeled with a pair of integers (kl). We can see in the case

of B and C,that higher order modes are produced [67]. These created triplets are still
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parity conserving modes and are thus physically allowable. The thing to note is that the

wavelengths of the signal and idler in A-C may differ significantly depending on the phase

matching conditions of the nonlinear material. Thus without proper filtering, these higher

order mode triplets contribute to background noise and can thus reduce the quality of the

performance of the source.

In our case, the waveguide is pigtailed with single mode PM780 fibers so any higher

order modes will be filtered out. However, the case in which the pump is in a higher order

mode within the waveguide such as the (01)p spatial mode. For parity conservation, there

is the possibility to produce a signal or idler photon in the fundamental or (00) spatial

mode. For example,

D (01)p → (01)s + (00)i & (00)s + (01)i

E (01)p → (01)s + (02)i & (02)s + (01)i
(2.12)

which can theoretically produce signal and idler photons of similar wavelength to the fun-

damental triplet in Eq. (2.11), depending on the phase matching conditions [67]. Therefore,

narrow filtering of the signal and idler may not remove these photons and can thus are

regarded as noise. This problem is further discussed in Sec. 2.3.2.

2.3.2 Multimode Fibers

Another added issue to the source design is the selection of the fibers used. The pump

light of 405 nm is multimode in the PM780 fibers that were selected. If one calculates the

V-parameter presented in Eq. (1.54) for the pump wavelength propagating through the

PM780 fibers, the result is a V-parameter of 4.190 which is above the single mode limit

of 2.405 [17]. Fig. 2.10 shows the results of the solutions to the characteristic equation,

Eq. (1.55) This brings forth many issues because any small defect in the fiber will cause

mode mixing and thus it is very difficult to maintain fundamental mode propagation of

the pump in the fibers as seen in Fig. 2.11. Now if the pump light is multimode when

traversing through the fibers and reaches the waveguide in higher order modes other than

the fundamental mode, the SPDC photons will be created in these higher order modes

as eluded to in Sec. 2.3.1, which do not couple to the single mode output fiber. When

only one photon is lost while the other is successful at coupling into the single mode

output fiber, such as case of Eq. (2.12), this creates a lot of noise and thus decreases the

coincidence to single count ratio. One gets a larger than expected single count rate due

to the photons that emerge from the waveguide without their partner. For a typical good
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entangled photon source, one wants the coincidence to single count ratio to be above 10%

[65], and specifically for this source, we would like about 25% [25]. However, I was only

able to achieve consistently 3% coincidence to singles ratio with a maximum attained value

of ≈ 6%.

(a) l = 0 (b) l = 1

Figure 2.10: Solutions to the characteristic equation for the PM780 fiber at the pump

wavelength of 405 nm that is pigtailed to the waveguide source. The blue line is the right-

hand-side of Eq. (1.55), while the dashed red line is the left-hand-side, with their intercepts

being the solutions to Eq. (1.55) . The results clearly show that the fibers are multimode

for the pump wavelength. The axes are unitless since, for the y-axis, Bessel functions

return unitless quantities and the values of the x-axis is the unitless quantity W presented

in Sec. 1.3.2. (a) Shows the case for l=0, we can see that there are solutions for m=1 and

m=2. (b) Shows the case for l=1, we can see that there is only the solution for m=1.

The combination of the multimode fibers and the intrinsic noise of a waveguide nonlin-

ear crystal, make for a very difficult task of achieving high g(2) entangled source. Thus, in

the following section (Sec. 2.4, I will discuss the attempted solutions that try to optimize

the fundamental mode propagation of the 405 nm pump through the PM780 fibers, which

should reduce the noise and thus increase the coincidence to singles ratio.
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(a) LP01 (b) LP21

(c) LP11

Figure 2.11: Intensity plot of the modal structure for the pump wavelength of 405 nm (a)

pump output Gaussian structure, (b) and (c) output mode structure from the PM780 fiber

that is pigtailed to the waveguide source. The results clearly show that the fibers are

multimode for the pump wavelength.
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2.4 Attempted Solutions to Issues

Several attempts at resolving the issues of the waveguide source stemmed from prior ex-

perimental experience and advice of others, as well as a literature search conducted by

the author. The obvious issue was to some induce only the fundamental mode to propa-

gate through the fibers. This was investigated by several means and a beam pickoff was

made such that I could investigate the various techniques against another PM780 fiber, see

Fig. 2.12

Figure 2.12: Pick off of the pump beam that enabled the analysis of various solutions.

SMF- Single mode fiber, PMF- polarization maintaining fiber, C1-C2- Thorlabs Nanomax

6-axis coupling stages, BE- Bat ears, FM1-FM2- flip mirrors, CCD- charge coupled device

(camera).

2.4.1 Lens System

The first and most obvious solution would be to attempt to excite only the fundamental

propagation mode of the multimode fiber. This can be done by selecting the correct lens

system to achieve the appropriate magnification such that the spot size of the incident beam

is equal to that of the NA of the fundamental mode. One can calculate the appropriate

size that the incident spot size should be given the core diameter and numerical aperture

of the fiber [68]. The equation used to calculate the power coupling coefficient (ηlm) of the

various modes is given by,

ηlm =

∣∣∣∞∫
0

dr
2π∫
0

dφ Llm−1(V r2) e
−
(

r2

2( 1
Ω2 +V )

)
rl+1

∣∣∣2
∞∫
0

rdr
2π∫
0

dφ
∣∣∣e−( r2

2Ω2

)∣∣∣2 ∞∫
0

dr
2π∫
0

dφ r2l+1

∣∣∣cos
(
l
φ

)
Llm−1(V r2) e−0.5r2V

∣∣∣2 (2.13)
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where V is the V-parameter of the fiber, Ω is the ratio of the spot size to the core diameter,

l = 0, 1, 2, ... is the azimuth mode number, m = 1, 2, 3, ... is the radial mode number and

Lan(x) is the generalized Laguerre polynomial. The results obtained for the PM780 fiber

is in Fig. 2.13. The results indicate that a spot size that is roughly half the core diameter

should excite only the fundamental mode, assuming normal incidence. For the setup in

Fig. 2.1, this meant an overall magnification of ≈ 0.7. A telescope system was set up to

achieve such a magnification and this was investigated using the pick off mentioned above

in Fig. 2.12, however no positive results were found as the output mode of the fiber can be

seen in Fig. 2.14.

Figure 2.13: Power Coupling Coefficients of LPlm modes versus normalized incident spot

size, ηlm is the uniteless power coupling coefficient, Ω is the normalized spot size (uniteless),

normalized to the core diameter. Calculated using Eq. (2.13).
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(a) (b)

(c) (d)

Figure 2.14: Output mode for 0.7 magnification telescope system, (a)-(c) show the output

of the 405 nm pump light after passing through the PM780 fiber. The various modes were

obtained by adjusting the coupling. (d) A Gaussian mode as reference for the reader

Given that the calculations done following [68] did not lead to any sufficiently positive

result. A characterization effort was undertaken with to try and find the best combination

of lenses that would give the best coincidence to singles ratio with the results shown in

Fig. 2.15.
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Figure 2.15: Coincidence counts versus focusing lens focal length, see Tab. 2.4. The col-

limating lens focal length is specified in the plot legend. The fibers were attached to bat

ears whose positions were optimized as explained in Sec. 2.4.2. The error bar values are

derived using error propagation of the statistical counting error.

Table 2.4: Information about lenses used for the measurements in Fig. 2.15.

Magnification Effective Focal Length NA Manufacturer

[mm]

4 45.00 0.10 Olympus

10 17.09 0.25 Edmund

10 18.00 0.25 Olympus

16 11.00 0.30 Newport

20 9.00 0.40 Olympus

40 4.50 0.65 Olympus

In Fig. 2.15 we see that none of the lens combinations performed well, i.e. coincidence

to single ratio ≈ 3%. However, this can be due to a number of factors such as fiber

alignment and orientation. Nonetheless, the lens that did perform the best was investigated

further with other collimating lens but to no positive result. Many hours were dedicated

to increasing the coincidence counts to single counts ratio, however, there was no increase
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in the ratio beyond 3%, thus further methods to induce fundamental mode propagation

were investigated.

2.4.2 Bat Ears

Another method that was sought to combat the multimode nature of the fibers is to use

what are known as bat ears. Bat ears are a laboratory tool that is typically used to

apply a controlled stress to an optical fiber. They are normally used to cause the unitary

birefringent induced polarization rotation of single mode fibers to be identity. A picture of

commonly used bat ears can be found in Fig. 2.16. The idea is that the bat ears will be

able to adjust the fiber shapes and stress such that the mode mixing is optimized for SPDC

generation. The position of the bat ears is essentially unpredictable as it is difficult to define

how the bat ears will effect the individual count rates. However, there is a considerable

effect and the bat ears position can alter the coincidence to singles ratio. Fig. 2.17 shows

the results of the various positions that the bat ears were placed and counts were recorded

for. It is apparent that there is an increase in the coincidence to singles ratio. However,

there is not a significant increase that will make this solution viable.

Figure 2.16: A laboratory tool commonly known as bat ears used to apply a controlled

stress to a fiber, usually to manipulate the birefringence induced polarization rotations

caused by single mode fibers. Picture taken from [69]

2.4.3 Curve Fiber

Another technique that was used and is based on inducing power loss by bending the

fiber [70]. This is similar in theory to what the bat ears do, however, rather than trying
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Figure 2.17: Coincidence counts as a function of various Bat Ear positions. The numbering

of positions are simply numbered in the order that they were taken. The error bar values

are derived using error propagation of the statistical counting error.

to change the input pump mode, we are inducing power loss to the higher order modes.

The basic premise is that the curving of the fiber induces loss for the various modes of

a multimode fiber. The theoretical loss induced to the power of the higher order modes

is larger in magnitude than that of the fundamental mode as seen in Fig. 2.18 with the

experimental result in Fig. 2.20. The modal used to calculate the curves in Fig. 2.20 is

done using a large bend radius R � a where a is the core radius. The power loss of a

mode ν is given by the following equation:

2α =

√
πκ2 exp[−2

3
(γ3/β2

g)R]

eνγ3/2V 2
√
RKν−1(γa)Kν+1(γa)

eν =

2, ν = 0

1, ν 6= 0

(2.14)

where κ is the first zero of the special Bessel function Kn(x), γ and βg are constants

derived from the dispersion relation of the light propagating through the fiber and V is

the V-parameter of the fiber [70]. The results of using this formula for the given fibers

and pump wavelength are shown in Fig. 2.18. The experimental values are obtained by

removing the fiber from the bat ears in Fig. 2.1 and wrapping the fiber around posts of
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decreasing diameter as seem in Fig. 2.19. The results from this are shown in Fig. 2.20.

Again, there is no significant increase in the coincidence to singles ratio from what was a

achieved with only manipulating the Nanomax� that would confirm that this method is

effective for the length of fibers we have chosen. The trend in Fig. 2.20 also does not seem

to follow what should be expected from simulation as it should be noted that the derivation

of Eq. (2.14) is done with some assumptions such as a large bend radius, amongst other

[70].

Figure 2.18: Simulation of the loss induced to the fundamental LP01 mode or ν = 0 and

the LP11 or ν = 1 via a curved fiber. It is clear that the higher order modes experience

much higher power loss at shorter bend radii.
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(a) (b)

Figure 2.19: Coiled fibers wrapped around differing tube sizes to allow for accurate diam-

eter of curvature measurements. (a)3 cm (b)3.2 cm

Figure 2.20: Coincidence counts as a function of various fiber curvature radii. The smallest

fiber bend radius was chosen to be sufficiently large above the stress limit of the fiber

(12 mm). This measurement was repeated twice to show that there is no reproducibility

in the results. This is to be expected as we are well above the threshold where curvature

loss begins to take effect, as per Fig. 2.18. The error bar values are derived using error

propagation of the statistical counting error.
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2.5 Conclusions and Future Suggestions

After the rigorous characterization and testing, it is apparent that this pigtailed config-

uration of PPLN waveguide crystals will not meet the requirements of Sec. 1.2.2, due to

the low signal to noise ratio, with no clear solution to resolve this issue. However, since

there is still the need for a high rate entangled photon source, the author has compiled

some suggestions for future investigations of PPLN waveguide sources that could meet the

requirements of Sec. 1.2.2.

The first suggestion would be to use the exact configuration of [63], where they did

not pigtail the fibers but rather have the fiber alignment to the waveguide be a degree of

freedom. This allows for the selection of the proper pump mode that enters the waveguide

and thus can ignore the multimode nature of the fibers for the pump wavelengths.

Another suggestion would be to use a free space coupled waveguide and not use the

fiber based technique. The advantages of this is that one can guarantee the mode structure

of the pump light. The disadvantages are that the alignment is tedious and thus making

the source not easily mobile. There is also the added issue that though the waveguide has

a very high brightness that can be utilized, there is still the inherent scattering background

of PPLN waveguides. Given the above, a bare waveguide might not be the best solution

that mets the criteria of Sec. 1.2.2.

One of the most probable solutions for resolving the multimode pump, is to cut or

shorten the fibers that are pig-tailing the waveguide. The reason for this suggestion is

that there is a substantial amount of literature on fundamental mode propagation in short

multi-mode fibers of fiber cores on the order of 100µm and lengths on the order of a few

centimeters [71]. The advantage of using the short fibers is that it allows the user to have

the ability to keep the fiber as straight as possible, which is a common theme in [71].

Using the simple setup of Fig. 2.21, I was able to manipulate the output mode of the

pump wavelength through a short PM780 fiber. The output mode of the pump was easily

adjusted by small detuning of the input or output coupler, the mode are seen in Fig. 2.22.

There is some promise that the use of short fibers is effective, however it requires some

future investigation.
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Figure 2.21: A 17 cm 780PM fiber is investigated for the mode selection of 405 nm laser

light. The mode is easily selected via changing the coupling at the input. The mode can

also be adjusted by bending the fiber by adjusting the tilt of the output coupler.
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(a) (b)

(c)

Figure 2.22: Spots that are produced with the 17 cm 780PM fiber that was mounted to

be as straight as possible. (a) The input and output couplers are adjusted such that the

fiber is as straight as possible. (b) The focus and tilt of the input and output couplers are

adjusted such as to create a Gaussian output mode with the highest output power. (c)

Higher order output mode induced by adjusting the output and input coupler
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Chapter 3

Reference Frame Independent Protocol with

PM fibers

In most QKD protocols, both Alice and Bob need to agree on fixed measurement bases

as this is essential for key generation. However, in reference frame independent protocols

(RFI), only the computational bases, the bases from which a key will be extracted, is fixed,

while the other two are free to rotate by some rotational phase φ. RFI protocols are useful

in many settings such as free-space satellite links and time-bin encoded QKD. As further

explain in Sec. 1.1.2.

3.1 Concept

RFI protocols are of great interest to the QEYSSat mission as it will enable the transmitter

to reduce the number of moving parts and adaptive optics that have been historically used

to compensate the birefringent polarization changes caused by the single mode fibers (SMF)

that link the quantum source to the transmitting telescope.

The birefringence results from manufacturing defects and small amounts of stress in the

core of the fiber that can alter the relative index of refraction of the different polarization

modes. Even the smallest defect in the fiber can cause a large amount of power mixing of

the polarizations [40]. Therefore, there is a need for compensation systems that can correct

for any shift in polarization. In the laboratory setting, most systems can be fixed by the

simple addition of a half-wave plate or bat ears to recover the initial polarization state.

This however, requires that the fiber be fixed and at a stable temperature. For other

practical applications, such as the transmitting telescope for an up-link QKD system,
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simple bat ears and wave plates will not suffice and adaptive compensation systems are

needed. Historically for the QEYSSat specific system, this involved moving parts and a

complex active feedback system [38].

One solution requires only polarization maintaining fibers (PMF) to combat the bire-

fringence induced changes by the SMF. The PMF has two axes that will preserve any

polarization that is aligned to these axes (Sec. 1.3.3) [59]. They are know as the slow and

fast axis. Unfortunately, these two axes, due to differences in their respective refractive

indexes, create a phase difference between the two polarizations:

φ =
2π(ns − nf )L

λ
(3.1)

where ns and nf are the indexes of refraction for the slow and fast axes respective. It is

this phase difference that causes the rotation of any polarization that is not aligned to the

axes of the PMF. φ is also subject to bends in the fiber, temperature of the fiber, basically

any stress on the PMF will cause this phase to change and thus is difficult to accurately

measure for Alice and Bob. Now if we send both qubits of a Bell State each through a

PMF. The resulting state will be, for example:

|Ψ〉 =
1√
2

(|0〉A|1〉B + e−iφ|1〉A|0〉B) (3.2)

where φ is from (3.1), the subscripts A and B refer to the qubits of Alice and Bob respec-

tively. It is this entangled state that is used in the demonstration of the 3-2 basis RFI

protocol. However, it should be noted that I did not do a complete QKD since we were

disclosing the measurement results between Alice and Bob. Complete QKD would only

share the measurement basis and the timetags of the photons detected. From the shared

measurement basis and timetags, Alice and Bob can use the entanglement to solidify the

expected bit results that they have between them and transfer a secure key.

3.1.1 Transmission of Entangled Photons in PM fibers

In addition to a relative phase difference between the slow and fast axis, polarization

maintaining fibers also introduce a walk-off between the modes of the two axes, shown in

Fig. 3.1. Now the walk-off induced by a polarization maintaining fiber is given by:

τp =
B

c
(3.3)
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Figure 3.1: Walk-off induced by the polarization maintaining fiber. In this figure the two

PM fibers are 90◦ relative to each other such that the polarizations traveling along each

axis is different in each fiber. τc is the coherence time and τp is the fiber induced walk-

off. The length and walk-off induced by each fiber needs to be similar to preserve the

indistinguishably of the photons.

where c is the speed of light in vacuum and B is the fiber birefringence [59]. τp is in units

of s/m. Now if this walk-off is greater than the coherence time of the photons traveling

through the fiber, the photons will lose interference visibility. More importantly for this

work, the entanglement will no longer be capable of being observed until the walk-off is

undone [72].

Now the coherence time of a photon is calculated by dividing the coherence length by

the phase velocity of the photon:

τc ≈
λ2

c λ
(3.4)

where c is the speed of light in vacuum, ∆λ is the bandwidth and λ is the wavelength of

the light [17]. Now calculating this value for a single photon source that has a emission

spectrum centered at 800 nm with a 3 nm bandwidth, which is similar to the characteristics

of the SPDC photons that are used in this experiment, the coherence time is τc ≈ 0.71 ps.

Calculating the walk-off due to a induced by the 2 m polarization maintaining fibers used

(Thorlabs PMF780) which have a birefringence of 3.5 × 10−4, via Eq. (3.3) gives τpL =

2.34 ps. Now comparing this to the coherence time of a 800 nm ± 3 nm photon, we see

that the walk-off is greater than the coherence time which causes a drop in interference

visibility and should cause the entanglement to no longer be observable if measured [72].

In fact, if one were to send single photons that have a large bandwidth across a single PM

fiber, the walk-off would destroy the coherence of the photons. This particularly effects the

polarizations that are not aligned to either the slow or fast axis. The component along the

slow axis will end up temporally displaced from that along the fast axis which, if displaced

greater than the coherence time of the photon, will destroy the polarization state.
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However, contrary to a simple single photon source, entanglement is much more resis-

tant to the displacement since the coherence time of entangled photons is dictated by the

coherence time of the pump [73–75]. For this experiment the pump is centered at 404 nm

with a bandwidth of 0.005 nm. The pumps coherence time is τc ≈ 1.08 ns which is much

greater than the walk-off induced by the fibers. Given these calculated values, the entan-

gled photons should be capable of withstanding the walk-off, provided that the walk-off is

equal and symmetric in both arms of the entangled source to allow the photons to remain

indistinguishable [72]. The results in Sec. 3.4 indicate that not only is the entanglement

still observed, but a very high purity is maintained, something that is not typically known

for high birefringent fibers such as PM fibers.

In addition to the work presented in the chapter, which is done using one PM fiber

for each arm of the entangled photon source, see Fig. 3.2, we also tested the feasibility of

using two PM fibers in each arm. The idea behind this is that the second fiber is to be

rotated such the photons that propagated along slow axis in the first fiber, then propagate

along the fast axis of the second fiber and vice-versa. If the fiber lengths are selected

correctly, then the walk-off induced by the first fiber can effectively be canceled by the

second fiber, which would reduce the need for a long photon coherence. This two fiber

concept works because the walk-off is effectively a local unitary effect that can be undone.

The two fiber concept was investigated using one arm of an entangled photon source as a

single photon source with a large bandwidth. The results were quite promising since we

achieved a visibility of 93% compared to 50% with only on PM fiber.

3.1.2 3-2 Basis Protocol

One key element to understand in this particular experiment is the protocol. I will start by

identifying that the measurements made in the 3-2 basis protocol are not tomographically

complete. However, they are capable of executing the protocol and are in fact the minimum

amount of bases needed to compensate for the rotations induced by the PM fiber.

The basics of the protocol are very similar to the RFI protocol described in Sec. 1.1.2.

The only differences are that Bob only has two measurement bases rather than three. The

advantages of having two bases at Bob instead of three is that it reduces the complexity of

Bob, which in this case would be a satellite. The reduced complexity is an added benefit

to any project that requires substantial amount of resources to implement. Thus, reducing

the complexity of the receiver reduces the amount of optics and detectors that would be

rendered unnecessary in the end. The loss of the third basis in Bob does not have any

real changes to the protocol presented in Sec. 1.1.2. However, the computational basis is
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changed to the basis that is aligned to the axes of the PM fiber, in this case the H/V or

Z basis. Due to the lack of basis in Bob’s state analyzer, the C-parameter is reduced from

Eq. (1.13) to only have two terms instead of four.

C =

√
〈XAXB〉2 + 〈YAXB〉2 (3.5)

It can be seen in Eq. (3.5), that any decrement in the expectation value of the correlation

between XA and XB will be compensated exactly by an increment in the YA and XB

correlation. The compensation is further presented in Appendix B. It is also shown in

Appendix B that Eq. (3.5) is still bounded by 1 and anything other than the perfect value

of 1 indicates a loss in entanglement or purity of the state.

3.2 Experiment

Prior to discussing any results, I will discuss the experimental setup. Fig. 3.2 shows

the general schematic of the experimental setup. Each component is explained in more

details below. Most of the setup was made be Dr. Jeongwan Jin, however, the alignment

techniques, fine tuning of the source and minor adjustments to the setup were done by the

author after Dr. Jin’s departure.

Figure 3.2: The RFI setup that includes a Sagnac interferometer as the entangled photon

source and Alice has a 6-state analyzer while Bob has a 4-state analyzer. The photons are

transmitted to the state analyzers via a polarization maintaining fiber (PMF).

3.2.1 Entangled Photon source

The experimental setup is shown in the Fig. 3.3. The entangled photon source used is

well know Sagnac interferometer [76]. A periodically poled potassium titanyl phosphate

(KTiOPO4) nonlinear bulk crystal is bi-directionally pumped with a blue mode 405nm and

each direction of the pump photons produces SPDC photon pairs as described in Sec. 1.2.
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This particular crystal is a type-II crystal which means that the photon pairs produce are

anti-correlated. Thus overall producing the bell state:

|Ψ〉 =
1√
2

(|01〉 ± |10〉) (3.6)

where the ± depends on the pump’s phase. For this particular protocol the pumps phase

is not important and can be ignored. The temperature of the crystal is tuned such that

the down-conversion photons are at wavelengths of 776nm and 842nm. The alignment of

the source is done by using the Hiking Boot and Stiletto methods that are outline in [65].

PMF

405nm

H
W

P 1

PBS H
W

P 2

L1

PBS H
W

P 3

HWP 4

F1

F2
M1

M2

M3

C1

C2

C3

PMF

PMF

MMF

PBS = Polarizing Beam Splitter
QWP = Quarter Wave Plate
HWP = Half Wave Plate
BS = Beam Splitter
PMF= Polarization Maintaining Fiber
MMF= Multimode Fiber
DM = Dichroic Mirror
F= Bandpass Filter
L = Lens
M= Mirror
S= External Phase Adjuster

S

Input

Figure 3.3: Optical components of the Sagnac Interferometer, HWP3, and HWP4 are to

align the pump polarization to the appropriate crystal polarization that will maximize the

nonlinear SPDC interaction. S is the external source that will enable the phase to be

adjusted at a faster rate than produced by the fibers alone.

The down conversion photons are sent to both polarization state analyzers through
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polarization maintaining fibers (PM780) of 2 m in length. It is these fibers that induce

a relative phase between the slow and fast axis as explained in Sec. 1.3.3. The fibers

need to be of the same length in order to preserve the entanglement. In fact, if the length

difference causes a phase difference that is longer than the pump’s coherence time, then the

entanglement is lost [72]. Thus, ultimately, it is sufficient to have fibers that are similar in

length such that the difference in the walk-off is smaller then that of the pump’s coherence

time.

3.2.2 Measurements

The measurements were done using two separate state analyzers that correspond each

to either Alice or Bob. Alice’s state analyzer is shown in the Fig. 3.4 and is capable of

measuring six polarization states in three separate bases (H/V, D/A, R/L). In contrast, Bob

has a 4-state analyzer as seen in Fig. 3.5 which can measure only 4 separate polarizations

(H/V, D/A). Each analyzer needed to be adjusted such that the birefringent phase induced

by the optics is nulled within the analyzer. This allows for higher visibility/contrast in the

D/A and R/L basis.

To null the phase induced by the optical elements of the analyzer, one must use a

birefringent element (such as a HWP or QWP) and rotate it about its vertical axis, (i.e.

about the post that normally holds optics to an optical table). One rotates the birefringent

element until the phase is nulled or when it is minimized, further explained below:

1. Select a birefringent element (HWP or QWP) with a known slow and fast axis angle

setting.

2. Place a polarizer at the input of the analyzer such that the polarization that propa-

gates through the analyzer is known.

3. Set the polarizer to a known polarization, such as horizontal or diagonal.

4. Observe the count rate or power output at the various detector ports.

5. If the contrast value does not make sense for the given polarization, place the bire-

fringent element in the signal path (aligned to either the slow or fast axis) and rotate

the birefringent element until it does.

6. Do this for every detection basis, for every input polarization, and for both the slow

and fast axis of the birefringent element until the contrast is optimized.
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Figure 3.4: Optical components of the 6-state analyzer (Alice)
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7. Once optimized, secure the birefringent element in place.

8. If no optimal rotational position can be achieved for a measurement path, a halfway

point is chosen.

As an example, the 6-state analyzer D/A basis measurement, if there is no relative

phase introduced by the analyzer, there should be a large contrast when the polarizer is

set to the diagonal polarization. Basically the anti-diagonal detector should effectively be

reporting background counts. If not, following the steps above, a HWP or QWP would be

placed in the D/A path, similar to the location in Fig. 3.4 and rotated until the diagonal

counts are optimized and the anti-diagonal counts are minimized. Then one would do

the same procedure but setting the polarizer to send anti-diagonal, maximizing the anti-

diagonal counts and minimizing the diagonal counts. If the two polarizations cause differing

rotation positions of the birefringent element, a halfway point is chosen.

To detect the photons, ten avalanche photo diodes with time tagging units record

the time of arrivals of the photons in both state analyzers. These time tags are then

compared for correlations between Alice and Bob’s detections. There are twenty four total

correlations that can be measured for coincidence counts. From these measurements, I can

perform state tomography of the entangled source, calculate the expectation values in each

measurement bases, measure the phase φ in (3.2) and extract a key rate.

3.2.3 Phase Sweep

Normally the phase φ, in (3.2), is slow and visible state rotations are on the order of hours

in time, if the fibers and system are left undisturbed in a laboratory setting. This renders

it very unpractical to reasonably observe any phase drift unless very long data sets are

taken. To shorten the data collection, I induced a faster phase drift with external sources

denoted by S in Fig. 3.2.

One technique to inducing an increased phase drift is to take advantage of the fact that

bending the fiber causes a phase drift, I used a micrometer translation stage to induce

controlled bends in the fiber. By attaching the fiber on Alice’s side to the translation stage

and slowly moving it such that the fiber bends. The phase induced by the fiber changes

as a function of bend angle. If bent slowly enough, this phase change can be smooth a

continuous. Unfortunately, this technique is not accurate and is difficult to reproduce the

same phase drift speed for different data collections.

To induce a phase shift that is more accurately controlled and faster, I used a liquid

crystal (LC) retarder (Thorlabs LCC1411-A) to induce a phase on again Alice’s side of
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the entangled state in (3.2). The LC retarder can change the index of refraction for along

one of its crystal axes, typically the slow axis, which similarly to the PMF, can induce

a phase difference between any polarization aligned to this axis and its orthogonal pair.

One can change the amount of phase difference by changing the voltage applied to the

LC. The voltage applied to the LC can change very quickly and can have a variety of

modulation shapes and depths. The problem with the LC is that their was an absorption

along the slow axis as a function of the voltage. This causes a drop in entanglement quality

and visibility in the superposition bases (D/A, R/L). This absorption can be clearly seen

in Fig. 3.6 (a)&(c). The power transmission was measured by send a know polarization

of light towards the LC, in this case horizontal polarization was used. The polarization

was aligned to the slow axis of the LC since this is the axis which can alter its index of

refraction. The power of the transmitted light is recorded by a power meter. The power

meter was not polarization sensitive and was recording the optical power of the beam after

the LC. To ensure that the laser source was not a source of the power fluctuations, the

source power was monitored via a second power meter. To further demonstrate that this

effect is polarization dependent, vertically polarized was also sent to the LC and the output

optical power was recorded. Fig. 3.8 shows that the vertically polarized light is not effect

by the voltage modulation, thus only the polarization that is aligned to the slow axis of

the LC will experience a loss in transmission. This absorption would cause an imbalance

in the state and thus a loss in entanglement quality. Data runs were collected with using

the LC retarder, however, I wanted a technique that does not induce loss of entanglement

quality.
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(a) LC fs = 2 mHz (b) Source 2 mHz

(c) LC fs = 24 mHz (d) Source 24 mHz

(e) LC fs = 0 2 V (f) Source 2 V

Figure 3.6: LC Retarder transmission data to demonstrate the absorption loss as a function

of applied voltage. The incident polarization was set to be horizontal with the slow axis of

the LC aligned to it. (a) 2 mHz voltage modulation frequency from 1V −2V. There is a clear

peak transmission. (c) 24 mHz voltage modulation frequency from 1V − 2V. The voltage

dependence of the LC is evident in the peaks that are present throughout the figure. (e) A

constant 2 V is applied to horizontally polarized light. No loss in transmission is observed

indicating the loss in transmission is voltage dependent. (b)&(d)&(f) Laser source power

during the same data acquisition as the corresponding data set to indicate that the source

of the loss in transmission is not laser instability. The fs are described as in Fig. 3.7.
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Figure 3.7: Waveform pattern for the voltage applied to the LC. The fs is defined in this

figure for reference in Fig. 3.6.

Figure 3.8: Vertically polarized light subject to 24 mHz voltage modulation frequency from

1V − 2V. There is no absorption as the effect is only seen for polarizations aligned to the

slow axis.

The other technique that is used to induce the phase is a well known technique amongst

experimental optics groups. The rotation of a birefringent element such as a Half-wave

plate (HWP) or a Quarter-wave plate (QWP) with its slow axis aligned to one of the

polarization of the computation basis it will induce a phase difference as a function of

angle. This technique is somewhat in-between the first two whereas it does not induce

loss as a function of phase difference while it is still controllable. One issue was that large

rotation angles of, in my experiments case, the HWP will cause an alignment shift in the

analyzer and thus cause a loss in visibility in all bases and thus entanglement quality.

Ideally automation of this system would have been great but one only has so much time

when completing a Master’s of Science.
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3.3 Models

In every good experiment, one needs models to predict and demonstrate what to expect

from experiments. To simulate the 3-2 basis protocol, I have made some models to attempt

to describe and model the system that we are dealing with. To start we take (3.2) but

instead add the ability to imbalance the entanglement, i.e. pump one direction through

the crystal more than the other.

|Ψ′〉 = (a|0〉A|1〉B + e−iφ
√

1− a2|1〉A|0〉B)

ρ′ = |Ψ′〉〈Ψ′|
(3.7)

Where ||a|| ≤ 1 and φ is from Eq.(3.1). Now we apply a depolarizing channel to it via

the well know Kraus operators for depolarizing channels to simulate overall losses in the

system, which includes dark counts, background counts and other depolarizing effects [77].

p̂0 =

√
1− 2 p+ depDA

4
I, p̂z =

√
depDA

4
σz

p̂y =

√
p

4
σy, p̂x =

√
p

4
σx

(3.8)

where σi are the Pauli matrices andp ≤ 1 is the probability of a σx and σy spin flip error

which can be regarded as the degree of depolarization in the computational basis (H/V),

which causes depolarization of the entire state (stronger in the HV basis then others),

while depDA ≤ 1 is the probability of a σz flip error which can regarded as the degree of

depolarization in the ”diagonal” visibility. We claim here that the diagonal bases, because

of the PM fibers, may have a reduced visibility (Eq. (1.9)) compared to the computational

basis (H/V). Applying the Kraus operators to the density matrix ρ′

ρmod =
∑
i

(p̂i ⊗ p̂i)ρ′(p̂†i ⊗ p̂
†
i ) (3.9)

Eq. (3.9) is the final density matrix model is used to simulate the expected experimen-

tal results. The results of this model are shown in Fig. 3.9 and Fig. 3.10 where a set of

random data similar to what one would expect in an experiment is generated in order to

simulate fluctuations in the count rates, relative detector efficiency mismatches and other

losses. The parameter ranges are found in Tab. 3.1 The data was generated by selecting a

range for each of the parameters a, p, depDA and have a randomly generate values for the

parameters within that range. The phase was a continuous sweep from 0 ≤ φ ≤ π.
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Table 3.1: Simulation parameter range that was selected in order to simulate the fluctua-

tions in count rates and variations in detector efficiencies. The depDA range was selected

to be quite large since this was observed during experiments

Parameter Range

a
[

1√
2
− 0.02, 1√

2
+ 0.02

]
p [0.010, 0.028]

depDA [0.03, 0.12]

Figure 3.9: Expectation values of the simulated data for a modeled density matrix. As we

can see that C is constant.
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Figure 3.9 shows that though the relative phase in the computational basis is changing

as is evident in the 〈XA ⊗XB〉 and 〈YA ⊗XB〉 values. However, we can still infer the

visibility in the diagonal basis and thus extract a QBER and Keyrate as seen in Fig. 3.10

(a) QBER (b) Keyrate

Figure 3.10: (a) QBER calculated for both the computational basis and the “diagonal”

basis. (b) A keyrate is estimated form these QBER’s using Eq. (3.12).

The QBERs in Fig. 3.10 are calculated via,

QBERHV =
1− 〈Z ⊗ Z〉

2
, QBER‘Diag =

1− 〈C〉
2

(3.10)

where,

C =

√
〈XA ⊗XB〉2 + 〈YA ⊗XB〉2 (3.11)

which allows us to infer the maximum visibility for the diagonal basis this is further dis-

cussed in Appendix B. The QBER in this work is unitless and is reported as a ratio and

not as a percentage. The keyrate is calculated via:

R ≥ Qλ(1− fH2(QBERHV )−H2(QBERDiag)) (3.12)

[78] where Qλ is the basis reconciliation factor, (1
6

in our case), and f is the bidirection error

correction efficiency, (f ≈ 1.22 in our case). It should be noted that the keyrate here is is

in the units of fraction of secure key per detection event (in our case coincidence count).

It is also the asymptotic case which means that the sample has effectively and infinite

number of events. QBERHV can be estimated from a subset of the data, by using every

nth bit, or from error correction algorithms [26–29]. QBERDiag is directly determined from
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the measured coincidences, as per Eq. (3.10). In addition, the basis reconciliation factor

changes based on the implementation, as seen in Fig. 3.4 and Fig. 3.5 we selected evenly

distributed basis selections, however, one can have different weighting selections for the

measurement basis selections. For example, in Fig. 3.5, rather than having a 50:50 even

distribution between the measurement bases, one could select say 90:10 [79]. The only

requirement is that there are statistically sufficient counts for all the bases.

We also show the results for QBER and keyrate as a function of each parameter in

ρmod that may be varied as shown in the Fig. 3.11. Each parameter in Fig. 3.11 is varied

over a full range, while the other parameters are left constant at some initial value. As is

prevalent in Fig. 3.11 it is apparent that the keyrate is gravely affected by the quality of

the entanglement. The most important thing to note from the results in Fig. 3.11 is that

the keyrate is not affected by the changing phase. This is should not come as a surprise,

though it is quite important for our protocol which allows for the use of the PM fibers.

The phase independence should be stressed further that it also does not have an effect on

the QBER of the “diagonal” basis as seen in Fig. 3.11 (d). Given that the QBER is not

effected by the phase, we can further justify the use of the C-parameter as a means of

verifying the presence of an eavesdropper thus validating our protocol.

Though this model does demonstrate the various aspects of how the protocol will be-

have, it is not accurate. This is because, most entangled sources are not varying in purity

or visibility as rapidly as this model depicts. Most of the parameters we varied in this

model, other than the phase, are actually fairly stable and constant with time. Thus, we

needed another model in order to accurately simulate what is observed in the experiments.
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Poissonian Count Parameter Variation

Another more precise count model that allows us to better simulate the noise that is

observed during experiments is to generate simulated coincident count rates with a Poisson

distribution. The goal was to generate pseudo data with a random number generator such

that the data matched a Poisson distribution as shown in Fig. 3.13

Figure 3.13: Poisson distribution probability density function with a mean of 15.

this distribution is typical for counting experiments, detectors, and is suitable for our

simulations. The simulation is as follows:

1. Select the parameters for the density matrix model Eq.(3.9)

2. Use the positive-operator valued measures (POVM) of the various measurements

done in the 3-2 protocol to compute the probabilities of detection (Probji = Tr(ρmodMji)),

where Mji is the POVM, where i = {H,V,D,A,R, L} and j = {H,V,D,A}

3. Compute the count rates of each detection ηji = ProbjiNji where Nij is the randomly

generated Poisson distribution for each of the coincidence measurement pair. This is

further explained below.

4. Calculate all the various quantities using the equations presented above ((3.10),(3.12),(3.13)),

tomography as discussed in Sec.3.4.2 was also performed on the simulated counts

The results of this simulation are in Fig. 3.14

To further explain the need for differing count rates for each measured coincidence pair,

each detector and optical path will have differing efficiencies that will effect the overall count

rates. To simulate this, one cannot capture this in the model of Eq.(3.9) alone and thus

is not prevalent in the Probj. However, by giving each individual coincident measurement

pair an unique count rate, we can capture the discrepancies observed in experiment as seen

in Fig. 3.15.
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(a) (b)

(c)

Figure 3.14: Various plots demonstrating the simulated coincidence count data (a) HV

basis coincidence counts (b) DA basis coincidence counts (c) 〈YA ⊗XB〉 measurement

coincidence counts. The expectation values in (b) and (c) varying with the varying phase,

as expected

(a) Simulation (b) Experiment

Figure 3.15: Comparison of coincidence counts between the simulation (a) and the ex-

periment (b). It is evident that the simulation matches the experimental results that are

obtained for the system.
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Seeing that this model is sufficient to describe the experimental situation given the co-

incidence counts, we plot the results of the expectation values, Fig. 3.16 and the QBER and

keyrate, Fig. 3.17. We will later use these simulation results to compare to the experimental

values presented in Sec. 3.4.

Figure 3.16: Expectation value results for the Poissonian count variation. The expectation

values behave as expected with the diagonal bases varying with the phase and C remaining

constant with the change in phase.
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(a) QBER (b) Keyrate

Figure 3.17: The QBER (a) and keyrate (b) results for the Poissonian count variation. The

QBER is much more stable than that in Fig. 3.10 which can be attributed to the much

more accurate model since source stability plays a major role in the QBER and keyrate.

3.4 Experimental Results

The following section will describe the results in various test situations. As mentioned in

Sec. 3.2, the data collection was done allowing for an induced phase drift to be applied

to the system and also collected for when the system is allowed to drift on its own. Both

cases are analyzed for various results. I collected coincidence detections and single photon

detections on both Alice and Bob’s analyzers.

3.4.1 Counts and Expectation Values

Below are some figures that show the collection of the single photon and coincidence counts.

The experimental source should output equal counts amongst all the detection ports. How-

ever, it should be noted that the differences can be correlated to detection efficiencies of

the individual detectors and channel loses through each port as seen in Fig. 3.18, 3.19

and 3.20.
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Figure 3.18: Plots demonstrating the experimental coincidence count data when the system

is left to drift on its own (a) HV basis coincidence counts (b) DA basis coincidence counts

(c) 〈YA ⊗XB〉 measurement coincidence counts. Error bars are present in all figures,

however, some might be too small to be visible. The error bar values are derived using

error propagation of the statistical counting error.
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Figure 3.19: Plots demonstrating the experimental coincidence count data with an induced

phase by a liquid crystal retarder (a) HV basis coincidence counts (b) DA basis coincidence

counts (c) 〈YA ⊗XB〉measurement coincidence counts. Error bars are present in all figures,

however, some might be too small to be visible. The error bar values are derived using

error propagation of the statistical counting error.
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Figure 3.20: Plots demonstrating the experimental coincidence count data with an induced

phase by rotating a birefringent material such as a HWP (a) HV basis coincidence counts

(b) DA basis coincidence counts (c) 〈YA ⊗XB〉 measurement coincidence counts. Error

bars are present in all figures, however, some might be too small to be visible. The error

bar values are derived using error propagation of the statistical counting error.
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The expectation values of each basis was calculated via:

〈M〉 =
m++ −m+− −m−+ +m−−∑

i,jmij

(3.13)

where i, j ∈ {+,−}, mij are the coincidence counts between Alice and Bob’s measurements,

and M is the overall two qubit measurement of choice. The thing to note from Fig. 3.21 is

that the expectation value of the H/V basis is a constant 〈Z ⊗ Z〉 = −1 for all tests while

the values for both the diagonal and rotational bases are drifting with the phase induced

by the fibers and the external phase source. Both non-computational bases follow a sine

curve that are π shifted from one another. It should also be noted that these plots are

very similar to the randomly generated data from our simulation models. In addition, we

also observe that the constant C is indeed constant if the phase is rotation slow enough.

If the phase is too fast we see a drop in the visibility (Fig. 3.20 (c)) due to the counting

statistics of the measurements.

When the phase moves to quickly, the finite time interval in which the time tagger is

collecting counts will experience a large fluctuation. This large fluctuation of counts will

result in a drop in visibility because the number of coincidences will be “smeared” over the

interval. If the time tagger were sufficiently fast and our integration time for recording the

coincidence counts was also very small,(1s for our experiments), one could observe very

fast phase fluctuation with little effect on the overall visibility. This should not occur in

theory because there is no phase dependence in C. However experimentally, due to the

statistical nature of C the tolerance of the phase drift is dependent on the instrumentation

used.

Comparing the experimental values for C to the simulated average value of C = 0.9716±
0.00941 taken from the data used to generate Fig.3.16. Two of the experimental trials are

in agreement with the simulated values, the system without an external phase inducer i.e.

the drift case (C = 0.9777 ± 0.0104) and the HWP tilt case (C = 0.9571 ± 0.0394). The

value for the LC retarder case of C = 0.8877 ± 0.0459 is indicative that the LC caused

absorption that reduces the quality of the entanglement as discussed in Sec. 3.2.3.

3.4.2 Tomography

With the measurements made, I was able to perform a tomographic reconstruction of the

two qubit entangled photon state via the maximum likelihood method. This method’s

only assumptions are that the density matrix is physical i.e. trace being unity and being a

1This can be adjusted based by tuning the parameters in Eq. (3.9)
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positive semi definite matrix, as seen in Sec. 1.1.4. The reason for the use of this method

is that the combined measurements that Alice and Bob make are not a tomographically

complete set of measurements. Thus typical linear inversion methods cannot be used

Sec. 1.1.4. However, as discussed in Sec. 1.1.4, with these measurements we are limiting

the subspace of the Hilbert space in which our density matrix may exist. Nonetheless, the

maximum likelihood method fins the best density matrix to fit the data, thus some areas

of the density matrix may be filled in by the optimization algorithm in order to find a

solution. Thus, even without a tomographically complete set of POVM’s, we are still able

to get a fairly good approximation of the state of the system.

As we can see in Fig. 3.22 the phase has an expected effect on the density matrix. The

effect is also prevalent in the experimental data as seen in Fig. 3.23.
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(a) φ = 2.961 (b) φ = 2.961

(c) φ = −1.499 (d) φ = −1.499

(e) φ = 0.616 (f) φ = 0.616

Figure 3.22: Various plots demonstrating the resulting density matrix from the simulated

data at various phase values. Each row corresponds to a complete density matrix with the

corresponding real and imaginary parts. All plots share the same parameters of a = 1√
2
,

p = 0.080 and depDA = 0.02, with the phase value indicated in subcaptions.

86



(a) Drift: φE = 2.957, t = 80 s (b) Drift: φE = 2.957, t = 80 s

(c) LC Retarder: φE = −1.483,

t = 42 s

(d) LC Retarder: φE = −1.483,

t = 42 s

(e) HW tilt: φE = 0.622, t =

100 s

(f) HW tilt: φE = 0.622, t =

100 s

Figure 3.23: Various plots demonstrating the resulting density matrix from the experimen-

tal data at various phase values. Each row corresponds to a complete density matrix with

the corresponding real and imaginary parts. These data points were chosen to be similar

to that of the simulated data. Phase values are normally not know to Alice or Bob during

the key transfer.
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From these density matrices, we are also able to calculate the quality of the entangled

state as a function of time and the phase. We calculated the purity, concurrence, fidelity,

and tangle. Some results are found in the plots below. The interesting but not surprising

results from this calculations is that the quality of the measured entangled state is dropped

during times of large phase drift as well as periods in which there is losses of photons due

to the various optical elements such as the liquid crystal retarder.

The fidelity was calculated by using a search algorithm that finds a value for a phase

φF , when applied to a pure state, maximizes the fidelity with the experimental state. This

phase is compared to the experimental phase that is applied by the fiber or the external

source, Fig. 3.25. Interestingly, φF matches fairly well the trend of φE, as seen in Fig. 3.25.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.24: Various plots demonstrating the purity, fidelity, concurrence and tangle of

the experimental data sets presented above. The fidelity was found by comparing the

experimental state to the closest pure state. (a) & (b) correspond to the undisturbed

system. (c) & (d) correspond to the liquid crystal induced phase. There is a clear drop in

state purity, fidelity, concurrence and tangle. The count range was cut down to only show

200 s for clarity. (e) & (f) correspond to the half-wave plate. There is a sudden drop in the

purity and fidelity at the end of (e) & (f) which is due to a period of rapid phase change.

The error bars are derived using the Monte Carlo method presented in Sec. 1.1.4.
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(b) LC Retarder
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(c) HWP tilt

Figure 3.25: Experimental phase φE that is applied to the three data sets. φF is a calculated

phase from the fidelity calculations done to produce the plots in Fig. 3.24. Interestingly,

the two phases are equal in value for all three experimental cases.

3.4.3 Key Rate/QBER

Following equation (3.10) I calculated the QBER of the experimental data. Select QBER’s

can be seen in the Fig. 3.26. As can be seen in Fig. 3.26 (b), the LC absorption has a very

large effect on the QBER causing it to spike to 0.125 or 12.5% in the “diagonal” basis.

It should also be noted that the total QBER is less than 0.06 or 6% in most of Fig. 3.26

(a) and some of Fig. 3.26 (c). There is also the spike in the QBER in Fig. 3.26 (c) that

is caused by a rapid change in the phase. From Fig. 3.26 (c), I was able to determine a

threshold for the robustness of the protocol. By finding the change in phase for points

near the sudden spike in QBER that are below our threshold of 0.06, the protocol is

determined to be resistant to phase changes up to 0.7 rad/s. This is great to quantify, but
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is difficult to translate to what would be expected when the system is implemented on the

quantum optical ground station (Fig. 1.2). It is very difficult to predict how the angular

speed of a moving transmitter translate to the phase induced by the fibers’ motional stress.

Nonetheless, this puts an upper bound to the phase resistance of the system in reference

to our QBER threshold limit.
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Figure 3.26: Plots demonstrating the experimental QBER that is obtained from Eq.(3.10)

in the different experimental situations (a) System left to drift (b) LC induced phase drift

(c) HWP induced phase drift. The sudden spike is due to a large shift in the phase value

as varying the phase value too quickly causes smearing of the counts and increases the

QBER. The error bar values are derived using error propagation of the statistical counting

error.

I also calculated an estimated key rate based on the calculated QBERs as seen in the
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Fig. 3.27. Again, the effects of the LC absorption has an effect on the keyrate reducing it

below 0.10 per coincidence. However, the case in Fig. 3.27 (a), where the system is let to

drift, the keyrate is almost at an ideal value of ≈ 0.15 per coincidence. The ideal value

comes from the basis reconciliation factor in Eq. (3.12).
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(c) HWP tilt

Figure 3.27: Plots demonstrating the experimental key rate that is obtained from Eq.(3.12)

in the different experimental situations (a) System left to drift (b) LC induced phase drift

(c) HWP induced phase drift. The drop in keyrate is due to the smeared resulting from a

rapid change in the phase value. The error bar values are derived using error propagation

of the statistical counting error.
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Averaging Counting Blocks

One means to overcome some of the finite size effects that are inherent to our system,

due to the lower count rates, is to add the results of several counting blocks together.

This can only be done if the relative phase of the system is drifting slowly. The adding

of blocks can increase the clearance value from the minimum value for QKD. The basic

idea is that the more blocks that are added together will reduce the relative error in the

measurements. For example, having the counts collected over one second will produce a

certain number of Poissonian counts, N1. Now adding k number of these blocks will make

it appear the system has collected counts over k seconds, i.e. Nk > N1, for k > 1. Now the

relative error in the counts is
√
Nk

Nk
<
√
N1

N1
. This reduction in error increases the clearance

of the experimental value with a theoretical value. The clearance is given by the following

equation.

Cl =
M

σ
(3.14)

where M is the difference between the calculated expectation value and a theoretically

estimated threshold value of ≈ 0.78 and σ is the error of the expectation value. The value

of ≈ 0.78 can be found by taking the practical QBER limit for QKD of QBER≈ 0.06 and

plugging this value into Eq. (1.8) where vis is the average visibility of both the diagonal

and computational basis:

vis =
visHV

2
+

visdiag
2

. (3.15)

We get vis = 0.88. Now assuming a good visibility in the computational basis, say visHV =

0.98, plugging this into Eq. (3.15) and solving for the visdiag we get visdiag = 0.78. Now

any value of the visdiag ≥ 0.78 is sufficient for QKD Fig. 3.28 shows this adding of blocks

of counts and they show the effects of this on the various data sets I present. We can

see that summing several time blocks together will decrease the value of the visdiag if

the phase is varying at an observable rate. However, the clearance increases since the

summing the blocks increases the number of counts and thus reduces the relative error in

the measurements as seem in Fig. 3.28 (b) and (d).
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3.5 Conclusions an Outlook

The results in Sec. 3.4 indicate that the technique of using entangled photons to combat

the birefringence induced by PM fibers is feasible for quantum information applications.

Particularly in Sec. 3.4.3, it is shown that this technique is theoretically feasible for reference

frame independent quantum key distribution and is able to obtain a potential keyrate of

approximately 0.15 per coincidence. We also showed the feasibility of using entangled

photons with polarization maintaining fibers.

Further investigation of this project would be to implement a higher rate entangled

photon source to the system and perform proper QKD to an outdoor free-space link. This

would only further solidify the argument that the protocol is feasible for satellite QKD.

Future work could also be done to investigate whether the two PM fiber configuration

discussed in Sec. 3.1.1 improves the robustness of the system. There is also still some

room for more theoretical and experimental work, particularly on investigating the types

of eavesdropping attacks that could potentially render this protocol insecure. The obvi-

ous methods would be to take advantage of the flawed implementation of the protocol.

Nonetheless, the outlook for this particular implementation of polarization compensation

using PM fibers and RFI QKD is particularly promising and is ready to be tested further

towards being used in the larger QEYSsat system.
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Chapter 4

Conclusion

In this thesis, I focused on developing polarization entangled photon sources for the use in

free-space QKD. In Chap. 2, I characterized and attempted to implement a high brightness,

narrow-band entangled photon source. The source used periodically poled materials in a

waveguide configuration and had fibers pigtailed to either end of the waveguide for easy

alignment. However, due to the intrinsic noise and multimode nature of the pump light

in the pigtailed fibers caused a low signal to noise ratio, and the source is not usable for

free-space QKD applications. Nonetheless, the source has the potential to be applied to

other experiments and there is the invaluable information obtained through the thorough

investigation of the fiber pigtailed waveguide-based entangled photon source.

The next experiment, presented in Chap. 3 demonstrated the feasibility of using po-

larization maintaining fibers with entangled photons. In addition, a reference frame inde-

pendent QKD protocol concept using the PM fibers was also investigated and shown to be

feasible. In doing this, we were able to provide a simple solution for the QEYSsat ground

station to combat the birefringence rotational caused by the currently implemented single

mode fibers. This has been shown to be feasible, particularly as a passive polarization

compensation system that uses entanglement.

The next steps are to conduct further investigation of possibilities for bright entangled

photon sources. One avenue that is promising is the use of shorter fibers. Another is to

use birefringent fibers as the nonlinear material for pair generation. Nonetheless, once a

suitable high brightness entangled photon source is produced, it can be implemented to

conduct outdoor free-space quantum experiments. Further investigation of the PM fiber

reference frame independent QKD system would include performing complete QKD to an

outdoor free-space link. This would only further solidify the argument that the protocol is

feasible for satellite QKD. In addition, the use of two PM fibers in each arm of the entangled
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photon sources needs to be investigated further as this will have a clear path forward to

implementation considering it can also be used with non-entangled single photons. The

final steps would be full implementation of the PM fiber compensation method to the

optical quantum ground station and testing of this system with a long distance free-space

link.
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Appendix A

Further Notes of Sagnac Alignment

A.1 Pump spectra

This appendix is to be used in addition to the material provided in [65]. They provide

very good alignment techniques and information that can be used when making an Sagnac

entangled photon source.

The pump spectra has a major effect on the visibility of an entangled photon source, as

can be seen in the following figures and plots. The spectra must contain a single Gaussian

peak with no side peaks. These side peaks create a loss in visibility due to the ability

to potentially frequency correlate and distinguish the path in which the photon traveled.

This also plays a factor in the bandwidth of the source.
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Figure A.1: Proper pumps Gaussian spectra that is critical for high visibility and entan-

glement purity.

Figure A.2: Pump spectra that includes side peaks and causes a loss in visibility and

entanglement purity.
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Figure A.3: (a) Results obtained using the pump spectra of Fig. A.1. (b) Results obtained

using the pump spectra of Fig. A.2, it is apparent that there is a loss in entanglement

quality because the C parameter has dropped to around 0.75 as opposed to ≈ 1 as in (a).

Given these results above, it is critical that the pump spectra be a definite single Gaus-

sian peak. To ensure this, one should ideally have a pump pick off as seen in Fig. 3.3. This

allows for a user to check and adjust the spectra accordingly before each data acquisition

or alignment attempt.
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Appendix B

Further Notes on C Parameter and

Measurements of 3-2 Basis Protocol

The C parameter from Eq.(3.11) is used throughout our protocol as a measure of the

entanglement quality and can be used to determine the level of information that an eaves-

dropper (Eve) has gained [35]. No formal security proof is given here, however, I will show

some general calculations for the bounds of C.

B.1 Analysis for Pure States

For an entangled pure state we get, C = 1. This is true for all pure entangled states and

is not dependent on any relative rotational phase similar to what we have in Eq.(3.1). We

can show this by starting with a general pure state,

|ϕ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (B.1)

where α, β, γ, δ ∈ C and ||α||2 + ||β||2 + ||γ||2 + ||δ||2 = 1 is required for the normalization of

the state. If we compute C we get,

C =

√
4||α||2||δ||2 + 4||β||2||γ||2 + 8||α||||β||||γ||||δ|| (B.2)

For any values of α, β, γ, δ ∈ C satisfying the normalization condition and applied to our

general state |ϕ〉, we get that C ≤ 1. Only two special cases yield C = 1:

1. when |ϕ〉 is a maximally entangled state i.e. ||α|| = ||δ|| = 1√
2

or ||β|| = ||γ|| = 1√
2

2. when |ϕ〉 is completely depolarized or the identity i.e. ||α|| = ||β|| = ||γ|| = ||δ|| = 1
2
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while all other values of α, β, γ, δ ∈ C yield the case of C < 1. The second case of C = 1 is

problematic if we are limited to observing C since a completely depolarized state can be

mistake to be maximally entangled. However, to combat this, one simply has to observe the

expectation value of 〈ρ(Z ⊗ Z)〉 and if 〈ρ(Z ⊗ Z)〉 6= 1, then the state is not a maximally

entangled state. Hence, ideally observing both C and 〈ρ(Z ⊗ Z)〉 can verify whether or

not Alice and Bob share a maximally entangled state.

B.1.1 Pure State with Relative Phase

The above analysis does not account for any rotational phase. Thus, if we apply a relative

phase, i.e. the phase from Eq.(3.1) between horizontal and vertical polarizations, we get

that

C =

√
4||α||2||δ||2 + 4||β||2||γ||2 + 8||α||||β||||γ||||δ|| cos 2φ (B.3)

for a maximally entangled state this again will give the value of C = 1. However, any other

pure state that has ||α||, ||β||, ||γ||, ||δ|| < 1√
2

but still satisfying ||α||2 + ||β||2 + ||γ||2 + ||δ||2 = 1

will have C ≤ 1 and C will vary with the relative phase. Thus Alice and Bob may use

the value of C to determine whether or not the state is a maximally entangled state. An

important result here is that the introduction of a relative phase eliminates the need to

observe 〈ρ(Z ⊗ Z)〉. Therefore, if Alice and Bob are able to guarantee a relative phase,

they only need to monitor C to ensure the state they share is maximally entangled.

For our experimental implementation, we find that the calculated value of C is not

always exactly C = 1. However, it is relatively close and most of the time within ex-

perimental error. For times when this is not the case, it can be attributed to a reduced

visibility in the “diagonal” basis or quality of the entangled state which relates directly

to the QBER in the “diagonal” basis given by Eq. (3.10). Without turning into a formal

security proof, the value of C can help determine whether or not there is an eavesdropper

since we can attribute a deviation from the maximally entangled state to Eve. The optimal

value of C = 1 with 〈Z ⊗ Z〉 = ±1 indicates a maximally entangled state. While C < 1

indicates non maximally entangled state or some other problem.

Another interesting analysis is to see how the various parameters of the model in

Eq. (3.9) effect the C parameter. If we take the density matrix in Eq. (3.9) and com-

pute C we get:

C =

√
4a2 (1− a2) vis2

DA (1− p)4. (B.4)

Recall that 0 ≤ visDA, p ≤ 1, and that ||a|| ≤ 1. Now any deviation from the perfect

situation of visDA = 1, p = 0 and ||a|| = 1√
2

will reduce the value of C.
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B.2 Measurement Outcome in each basis

In the following section we will derive the measurement outcomes for each of the basis

measurements that we get in the protocol. We will assume that there is no noise in the

detectors and that the entangled state of the system is pure. We start with the state of

Eq. (3.2) and apply it to the three possible joint measurements that Alice and Bob can

make.

B.2.1 H/V basis

The H/V basis measurement is isomorphic to a Z spin measurement:

〈Z ⊗ Z〉 = Tr(ρ(Z ⊗ Z)) (B.5)

Now Z|0〉 = |0〉 and Z|1〉 = −|1〉 so applying Eq. (B.5) to the positive state of Eq. (3.2)

we get,

ρ = |Ψ〉〈Ψ|

=
1

2

(
|0〉A|1〉B〈0|A〈1|B + e−iφ|1〉A|0〉B〈0|A〈1|B + e−iφeiφ|1〉A|0〉B〈1|A〈0|B + eiφ|0〉A|1〉B〈1|A〈0|B

)
so taking the dot product with the measurement and the trace we get the measurement

results1

〈Z ⊗ Z〉 = Tr(ρ(Z ⊗ Z))

= Tr(
1

2
(|0〉A|1〉B〈0|A〈1|B + e−iφ|1〉A|0〉B〈0|A〈1|B

+|1〉A|0〉B〈1|A〈0|B + eiφ|0〉A|1〉B〈1|A〈0|B)(Z ⊗ Z))

= Tr(
1

2
(−|0〉A|1〉B〈0|A〈1|B − e−iφ|1〉A|0〉B〈0|A〈1|B

−|1〉A|0〉B〈1|A〈0|B − eiφ|0〉A|1〉B〈1|A〈0|B)

= −2

2

〈Z ⊗ Z〉 = −1

1This is by no means the only approach to take. Another convenient approach is to write the state in

terms of the Pauli matrices[11] and compute the various outcomes.
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B.2.2 D/A basis

The D/A basis measurement is isomorphic to a X spin measurement:

〈X ⊗X〉 = Tr(ρ(X ⊗X)) (B.6)

Now X|0〉 = |1〉 and X|1〉 = |0〉 so applying Eq. (B.6) to the positive state of Eq. (3.2) we

get,

〈X ⊗X〉 = Tr(ρ(X ⊗X))

= Tr(
1

2
(|0〉A|1〉B〈0|A〈1|B + e−iφ|1〉A|0〉B〈0|A〈1|B

+|1〉A|0〉B〈1|A〈0|B + eiφ|0〉A|1〉B〈1|A〈0|B)(X ⊗X))

= Tr(
1

2
(|0〉A|1〉B〈1|A〈0|B + e−iφ|1〉A|0〉B〈1|A〈0|B

+|1〉A|0〉B〈0|A〈1|B + eiφ|0〉A|1〉B〈0|A〈1|B))

=
1

2

(
e−iφ + eiφ

)

〈X ⊗X〉 = cos(φ) (B.7)

B.2.3 Rotational basis

The R/L or rotational basis measurement is isomorphic to a Y spin measurement, however,

Bob only has a 4-state analyzer and is thus unable to make a rotational measurement.

Therefore Bob still makes a measurement in the diagonal basis, i.e. the basis that is not

fixed:

〈Y ⊗X〉 = Tr (ρ(Y ⊗X)) (B.8)

Now Y |0〉 = i|1〉 and Y |1〉 = −i|0〉 so applying Eq. (B.8) to the positive state of Eq. (3.2)

we get,
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〈Y ⊗X〉 = Tr (ρ(Y ⊗X))

= Tr(
1

2
(|0〉A|1〉B〈0|A〈1|B + e−iφ|1〉A|0〉B〈0|A〈1|B

+|1〉A|0〉B〈1|A〈0|B + eiφ|0〉A|1〉B〈1|A〈0|B)(Y ⊗X))

= Tr(
1

2
(i|0〉A|1〉B〈1|A〈0|B + ie−iφ|1〉A|0〉B〈1|A〈0|B

−i|1〉A|0〉B〈0|A〈1|B +−iiφ|0〉A|1〉B〈0|A〈1|B))

=
1

2

(
ie−iφ − ieiφ

)

〈Y ⊗X〉 = sin(φ) (B.9)

B.2.4 C-parameter

If we now take the results of the expectation values in Eq. (B.7) and Eq. (B.9), we can

calculate what to expect with the C-parameter for a noiseless system that implements the

6-4 state protocol.

C =

√
〈X ⊗X〉2 + 〈Y ⊗X〉2

=
√

cosφ2 + sinφ2

= 1
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