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Statement of contributions

My thesis starts from introduction (Chap. 1), where I review gen-
eral results and existing literature about topological materials, Weyl
metals, and non-topological semimentals. I review their known
properties in Secs. 2, 3, 4, 5.1, 5.2.1. The results for double Weyl
metals and Luttinger model presented in the Secs. 5.1.2, 5.2.2 were
obtained by me, but they are not new, and constitute common sense
knowledge. The results presented in Secs. 5.3, 5.4 are new and con-
stitute previously unpublished work. The most significant part of
this work, presented in Chap. 6 - problem of superconductivity in
Weyl metals - was studied by me in collaboration with my supervi-
sor Anton Burkov and our colleague Alexander Zyuzin. With slight
refinements, it has been published in the papers [1, 2]. Finally, the
problem of mirror symmetry in Dirac metals, presented in Chap. 7
is published in a paper [3].
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Abstract

In this work we explore superconductivity and surface states in topo-
logical semimetals. We start from general overview of basic proper-
ties of topological semimetals. We review general concepts of Chern
insulators, their surface states, and use it as a building block for
construction of Weyl metals. We also construct double Weyl met-
als, which are protected both by topology and discrete rotational
symmetry. In addition, we study Luttinger model of semimetals -
it the simplest case, it is non-topological, but it can acquire topo-
logical Weyl points in the presence of non-zero Zeeman field. We
present study of its surface states, and also consider its possible
critical points.

Next, we turn to the problem of superconductivity in Weyl met-
als. We demonstrate that Weyl metals are natural candidates for
hosting unconventional superconductivity. Specifically, we consider
two possible superconducting instabilities: unconventional finite mo-
mentum FFLO pairing, and zero momentum BCS pairing, which is
also unconventional due to spin-momentum locking in Weyl metals.
We demonstrate that its BCS phase is more favorable. In addition,
we compute its anomalous Hall conductivity, and demonstrate that
it is universal, i.e. not affected by the presence of superconductivity.

Finally, we consider Dirac metals, which are protected solely by
rotational symmetry. We point out, that mirror symmetry along its
Dirac points plays special role. We demonstrate, that by breaking
the rotational symmetry, it is possible to convert Dirac metal into
a topological crystalline insulator, and Dirac metal itself can be
viewed as a critical point between its different topological phases.
We explore surface states spectrum in the resulting picture, and
demonstrate, that this mechanism can be used to show that surface
states in Dirac metal always terminate at Dirac points despite being
not topologically protected.
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Chapter 1

Introduction

The concept of topological materials originates from the famous pa-
per [4], where quantum Hall conductivity in two-dimensional elec-
tron gas was studied experimentally. It was found that it possesses
flat plateaus, which are not affected by any perturbations. Soon
after it, theory of quantum Hall effect was built: it was found that
it is related to so called TKNN invariant: an integral of a matrix
elements of wavefunctions over the Brillouin zone [5] , [6]. Later
on, theory of quantum Hall effect was rebuilt in terms of Berry
connection [7] - vector defined in terms of electron wavefunction,
which has all properties of gauge field. Particularly, it was found
[8] that quantum Hall conductivity can be expressed as a topolog-
ical invariant of the wavefuction configuration, i.e. at integral of
Berry curvature, which takes discrete values and is invariant under
any continuous transformations. This discovery led to building the
bridge between condensed matter physics and a mathematical area
of topology, which establishes, whether manifolds or field configura-
tions can be connected to each other by continous transformations.

Later, the area of topological materials was developed further.
For example, there was proposed a famous Haldane model [9], which
exhibits anomalous Hall effect - quantum Hall effect without exter-
nal magnetic field. This model has never been realized experimen-
tally. However, the Haldane model was built on two-dimensional
honeycomb lattice, which later was experimentally realized in graphene
[10]. At the same time, it was theoretically predicted, that graphene
can be viewed as two copies of Chern insulators [11]: two spin
components of its wavefunction exhibit anomalous Hall effect in
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the opposite directions, thus forming spin Hall insulator. Strictly
speaking, graphene electronic structure contains two almost mass-
less Dirac cones, and it was suggested to be viewed as a spin Hall
insulator only because of a very small mass gap present in these
Dirac cones. However, spin Hall effect was discovered in a different
material: HgTe quantum well [12, 13]. This led to a boom in the
area of topological insulators. For example, in one of the first works,
it was proposed that between the topological and normal insulating
phase, there exists a critical point, where the band structure forms
a Dirac cone. At the same time, it was discovered, that topological
insulators can be characterized not only by Chern invariant, but also
by Z2 invariant (see [14] for review). Later on, the area of topological
insulators expanded into many new matetrials. For example, there
were proposed topological crystalline insulators, where, in a mirror
invariant plane, bands are characterized by mirror Chern invariant,
i.e. difference between Chern invariants for states with different mir-
ror eigenvalues [15, 16, 17, 18]. Particular attention was attracted to
the area of topological semimetals, such as, for instance, Weyl met-
als [19] (see [20, 21] for review), nodal line metals (see e.g. [22, 23]),
double Weyl metals [24]. In addition, this area led to discovery of
other related materials, such as e.g. Dirac metals.

1.1 Weyl metals

Weyl metals are a well-known example of metallic topological ma-
terials. As it was first pointed out in [19], it is possible that band
structure may have degeneracy points (so called Weyl points), such
that Berry curvature around them has the same structure, as elec-
tromagnetic field around a monopole, i.e. non-trivial flux around a
closed surface surrounding it. The presence of such flux makes these
points topologically protected. Furthermore, simple arguments lead
to conclusion, that such Weyl metals possess Fermi arcs - surface
states connecting the Weyl points. The existence of such states is
protected topologically: at fixed momentum component along the
separation of Weyl points, they can be viewed as topological surface
states, analogous to edge states in a Chern insulator.

Soon after the initial prediction [19], extensive studying of the
Weyl metals began. Before they were realized experimentally, it
was proposed that Weyl metal phase can be created in a model
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of topological/normal insulator multilayer [25]. This scenario has
never been realized in practice, but this simple toy model, contain-
ing just one pair of Weyl points separated in momentum space within
the Brillouin zone, was widely used as a theoretical tool to predict
various phenomena. For example, within the first years after its in-
vention, the model of topological/normal insulator multilayer made
it possible to find out that Weyl metals have universal magnitude
of their anomalous Hall conductivity, proportional to separation be-
tween the Weyl points [26]. In addition, through this model, it
was found, that Weyl metals host a phenomenon described by the
same equations as chiral anomaly, known from particle physics: in
the presence of electric and magnetic fields, electrons get transferred
from one Weyl node to another, and if they are assigned chiral charge
- opposite for the opposite nodes - its non-conservation has exactly
same form as non-conservation of chiral charge in particle physics
[27]. It was found, that this phenomenon results in quadratic nega-
tive magnetoresistance. [27, 28]. The model of topological/normal
insulator multilayer was generalized to describe topological nodal
line metal, where degeneracies between two bands form closed lines,
rather than points [29].

Numerous attempts were made to predict superconducting prop-
erties in Weyl metals. The first attempt was made in the work [30],
where normal insulator in the topological/normal insulator multi-
layer was replaced with a superconductor. A few spectacular prop-
erties were found: the resulting Bogoliubov quasiparticle dispersion
contains two pairs of Weyl points, i.e. each Weyl point gets split
into two, and, in addition, the spectrum can host Majorana fermions
localized at superconducting vortices. Soon after, intrinsic super-
conductivity in Weyl metal was explored [31, 32], and it was found
that it can exhibit exotic phases, such as, e.g. FFLO state, where
electrons form Cooper pairs with finite momentum. This was an in-
teresting result, because FFLO state was first suggested in the mid
60-s [33, 34], but almost never realized experimentally. Motivated by
this, we also decided to explore superconducting properties in Weyl
metal. We found that zero momentum BCS state has lower energy
than finite momentum FFLO phase [1], but it is unconventional due
to spin-momentum locking. Similarly to the Ref. [30], we found that
each Weyl cone gets split into two. We also found that Fermi arcs, a
unique property of Weyl metal, persist in the presence of supercon-
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ductivity. In addition, we computed anomalous Hall conductivity
in the superconducting Weyl metal, and found that, as long as the
band spectrum can be approximated as linear, its value is unaffected
by the superconducting order parameter [2].

Weyl metal was first experimentally discovered in the material
TaAs, and also in TaP and NbAs [35, 36, 37, 38]. Soon after, it was
found, that TaAs does not become superconducting at low temper-
atures, but TaP may be superconducting at or after applying high
pressure [39]. It is believed, that, at high pressure, TaP undergoes
structural phase transition, where it gets converted into another
Weyl metal with a different space group. [39]. At the same time,
in the Ref. [40], it was suggested, that in TaAs, superconductiv-
ity can be induced by tip, and there was presented evidence, that
such superconductivity may be unconventional. Similar work was
done in the Ref. [41]: it was shown that silver tip can induce su-
perconductivity in TaAs despite that none of them separately is
superconducting. In [41], it was also confirmed that TaAs possesses
spin polarized surface states, as we expected. In addition, in the Ref.
[42], it was shown that superconductivity in NbAs can be induced
by enriching its surface with Nb. This happens because pure Nb is
superconducting, and therefore doping NbAs surface with pure Nb
can be viewed as creation of extrinsic superconductivity. Finally, su-
perconductivity has been observed in type II Weyl metal MoTe2 [43]
(’type II’ refers to Weyl metals, which Weyl cones are tilted, so that
the Fermi surfaces have the shape of pockets instead of spheres).
It was also found to appear at high pressure, and it was confirmed
that it has s-wave superconducting order parameter, dependent on
polar angle around the Fermi surface.

The concept of Weyl metals was also generalized to multi-Weyl
metals [24] - metals, possessing Weyl points with charges higher than
one. Such Weyl points can happen, for example, if several usual
Weyl points are merged into one. To prevent them from splitting,
one has to impose additional protection. In [24] it was shown than
such protection can be realized due to additional discrete rotational
symmetry: a multi-Weyl point can exist along a rotation axis, as a
degeneracy between two bands with different rotational eigenvalues.
One can show, that in such scenario, it is impossible to split a multi-
Weyl point into single ones.
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1.2 Non-topological semimetals

The study of non-topological semimetals goes back to the 1950-s,
when Luttinger model [44] describing the most general kp Hamilto-
nian with four degrees of freedom, satisfying cubic symmetry, was
proposed. This model contains two double degenerate bands, touch-
ing each other at the origin of the Brillouin zone. Since then, the
Luttinger model has been studied for a very long time. For exam-
ple, only at 2002, its anomalous Hall conductivity in the presence
of ferromagnetic impurities [45] was studied: indeed it was a good
’toy’ example demonstrating that AHC can be expressed in terms of
Berry curvature. A few years later, the Luttinger model was stud-
ied as a candidate for probing spin Hall effect [46]. Perhaps, the
most notable property of the Luttinger model, relevant to our work,
is that under Zeeman magnetic field, its quadratic band touching
can split into several Weyl points [47, 48]. In the simplest scenario,
there appear two single and two double Weyl points, but, generally
speaking, there is plenty of possible scenarios including single and
double Weyl points, as well as nodal rings. During the last few
years, this concept was believed to be realized in pyrochlore iridates
with general formula XIr2O7 [47, 49, 50]. In this work, we have
also studied the Luttinger model: explored its phases and surface
states. We have found that, the Luttinger model can possess critical
points, where a lot of states become degenerate, though we are still
not familiar with possible routes of realizing them.

Another notable example of non-topological semimetals is Dirac
metal: a material, whose band structure possess Dirac points, near
which, their dispersion can be described by four-component Dirac
equation. In the simplest case, Dirac metal emerges, as a critical
point between a topological and normal insulator. This scenario,
indeed, has been realized experimentally [13]. However, later on, it
became clear that a Dirac point can also be stabilized by rotational
symmetry [51]. Furthermore, the presence of discrete rotational
symmetry, along with time reversal and inversion (the latter are
necessary to ensure double degeneracy of the bands) made it possi-
ble to perform full classification of possible Dirac Hamiltonians [52].
It was found that Dirac metals can be classified into two possible
classes: in the first class, Dirac metal possess a pair of Dirac points
along rotational axis, whereas in the second class, Dirac metal con-
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tains a single Dirac point located at the origin of the Brillouin zone.
Within the first class, two materials were discovered experimentally:
Na3Bi [53, 54, 55] and Cd3As2 [56, 57, 58, 59]. Dirac materials of the
second class have never been discovered experimentally, but there
exist a similar material ZrTe5 [60]: it hosts a single Dirac point in
the origin of the Brillouin zone, but it is not protected by rota-
tional symmetry. It is believed that its Dirac point has a gap, which
accidentally happens to be very small.

An interesting question to ask, is whether Dirac metal with a
pair of spatially separated Dirac points possess topological Fermi
arcs, similarly to Weyl metal. Indeed, such Fermi arcs have been
discovered experimentally [61, 62]. Initially, they were believed to
be topologically stable[61], as in Weyl metal, since each Dirac point
can be viewed as two copies of Weyl points. However, in this picture,
two Weyl points composing Dirac point, have the opposite charges:
indeed the Dirac points are protected not topologically, but only by
discrete rotational symmetry. This, in turn, implies that Fermi arcs
in Dirac metal are, as well, not protected topologically [63]: Fermi
arcs from each copy of the Weyl metal can, in general, mix with
each other. In this work, we have shown, that, despite being not
protected topologically, surface states in Dirac metal are similar to
Weyl metal in a sense, that they still terminate at Dirac points. In
other words, we have shown that mixing of the Fermi arcs may lead
to their gapping, but it does not lead to their disappearance.
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Chapter 2

Basic notions of topological
band theory

2.1 Berry connection

In this work, we set a goal to derive the concept of topological metals
from the basic notions of band theory. We would like to start from
showing, that bands in solids can possess topological properties. To
do it, we first introduce the concept of Berry phase (for a more
detailed explanation, see e.g. [64]).

Suppose that an arbitrary wavefunction depends on certain pa-
rameters. In the case, when this wavefunction describes a band in a
solid, such parameters can be Brillouin zone momenta. It is known,

that any wavefunction ψ(~k) is defined up to a phase rotation, and
therefore, in the case when the former is a function of parameters
~k, phase rotation can be performed at every point ~k:

ψ(~k) ∼ eiξ(
~k)ψ(~k). (2.1)

From this fact, one can suggest that phase rotations can be viewed
as a gauge symmetry. Indeed, gauge symmetry is an internal sym-
metry, which can be performed separately at every point of the
space.

Once we conclude, that wavefunction contains gauge symmetry,
we can ask, if there exists gauge field. The answer is positive. In-
deed, one can define the gauge field as:

Ai(~k) = −i〈ψ(~k)| ∂
∂ki

ψ(~k)〉. (2.2)

7



Such field is called Berry connection. Indeed, one can check that
under the gauge transformations (Eq. 2.1), it transforms as a con-
ventional gauge field:

A(~k)i → A(~k)i +
∂ξ(~k)

∂ki
.

Once we have defined the Berry connection, which has exactly
same properties as a gauge vector field, it is natural to define Berry
curvature as:

Fij(~k) =
Aj(~k)

∂ki
− Ai(

~k)

∂kj
. (2.3)

Indeed, one can check that the Berry curvature is gauge-invariant.
Finally, we would like to note that if we apply the definition of

Berry connection (2.2) to the last equation, we can obtain expression
for Berry curvature in terms of the wave-function:

Fij = −i
(
〈 ∂ψ
∂ki
|∂ψ
∂j
〉 − 〈 ∂ψ

∂kj
|∂ψ
∂i
〉
)
.

We will use it in the future.

2.2 Magnetic monopoles

In the last section, we have defined the Berry connection and Berry
curvature, according to the Eqs. 2.2, 2.3. As we mentioned, the
Berry connection can be viewed as an analog of electromagnetic
vector potential, and the Berry curvature can be viewed as an analog
of magnetic field. If we assume that both quantities are regular and
smooth, it follows that the effective magnetic field is divergence-free:

εijk∂iFjk = 0.

Due to Stokes theorem, the last equation is equivalent to the state-
ment, that the flux of magnetic field over a closed surface is zero:∮

εijkFijdSk = 0. (2.4)

The statement that divergence of the effective magnetic field is
zero, essentially means absence of magnetic monopoles.
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However, one can construct special examples of singular vector
potentials, which do contain magnetic monopoles. In this section,
we present a familiar textbook example (see e.g. [65, 66]), Dirac
monopole.

Specifically, let us consider the vector potential of the following
configuration. We describe the physical space in spherical coordi-
nates, and assume that only Aφ is non-zero. We write its expression
as:

Aφ =
1

4πr sin θ
(1− cos θ) . (2.5)

One can see, that such vector potential is well-defined everywhere.
except an axis θ = 0. However, one can gauge-transform it using
the gauge function ξ = φ

2π
, and obtain another expression for the

vector potential:

Ãφ =
1

4πr sin θ
(−1− cos θ) .

This expression is well-defined everywhere except special axis θ = π.
Both of these configurations have magnetic field with the only radial
non-zero component:

Br =
1

4πr2
. (2.6)

In other words, we have obtained that singular expressions for the
vector potential can, in principle, lead to regular configurations of
the magnetic field.

In our case, the magnetic field is regular everywhere except just
one point r = 0. However, the presence of just one such singular
point makes the Eq. (2.4) inapplicable. Indeed, one can check that
the magnetic field configuration of the form (2.6) has the total flux
equal to one. Thus, we conclude that the magnetic field configu-
ration of the form (2.6) describes a monopole, located at the point
r = 0.

If we imagine that out electromagnetic field interacts with an-
other field, e.g. fermions, we can derive Dirac quantization condi-
tion for the monopole. Indeed, for a monopole to have an arbitrary
charge g, it is necessary to have vector potential of the form:

Aφ =
g

4πr sin θ
(1− cos θ) ,
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which in turn results in the gauge function of the form:

ξ =
gφ

2π
. (2.7)

However, fermionic field transforms under the same gauge function
as:

ψ → eieξψ.

. If we use the explicit form of ξ (2.7), and the fact that it has to be
smooth: ξ(φ = 0) = ξ(2π), we arrive to a condition, that magnetic
charge is discrete:

eg = N, N = 0,±1,±2 . . .

which is known as Dirac quantization condition.

2.3 Weyl cone as a magnetic monopole

In this section, we consider the Hamiltonian of Weyl fermions, which
can exist in a solid, and show that its Berry curvature configuration
contains effective magnetic monopole. This section can be used as
an example of explicit calculation of the Berry curvature.

The Hamiltonian of Weyl fermions has the form:

H(~k) = σiki. (2.8)

Here ~k is an electron’s momentum, and σi are well-known Pauli
matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

This Hamiltonian describes two bands with linear energy spec-
trum:

E = ±|k|.

These two bands cross at one singular point ~k = 0, which is indeed
called Weyl point.

Our goal is to compute the Berry connection and Berry curvature
of such a system, and to see explicitly that it describes a magnetic
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monopole. The easiest way of doing it, is to introduce spherical
coordinates in momentum space, thus rewriting the Hamiltonian
as:

H = k

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

One can easily verify that it has expected eigenvalues ±k, and
the corresponding eigenvectors:

ψ± =
1√

2(1± cos θ)

(
cos θ ± 1
sin θeiφ

)
.

From these eigenvectors, one can compute the components of
Berry connection Ā. It is easy to see, that Ar = 0 and Aθ depends
only on θ, and thus does not contribute to Berry curvature. We
compute Aφ in spherical coordinates as:

Aφ =
−i

k sin θ
〈ψ|∂φψ〉.

Here we have introduced an extra factor of 1/(k sin θ) to make the
resulting vector have physical scale. This is similar to introducing
the same factor into the definition of gradient. Explicitly, Aφ in our
case has the form:

Aφ =
1∓ cos θ

2k sin θ
.

This equation exactly coincides with the field of magnetic monopole
(Eq. 2.5). Explicitly, we can obtain the Berry curvature by taking
the rotor in spherical coordinates:

Fθφ =
1

k sin θ

(
∂

∂θ
(sin θAφ)− ∂Aθ

φ

)
,

which explicitly evaluates as:

Fθφ =
1

2k2
,

which is exactly the same as magnetic field of a monopole 2.6.
Thus, we come to the conclusion, that Weyl point is a magnetic
monopole in momentum space. However we would like to note, that
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in this derivation, we assumed that, away from the Weyl point, Dirac
Hamiltonian can (2.8) can be viewed as continuum, and extending
along the whole space of vectors k̄. Strictly speaking, the Brillouin
zone is periodic, and at certain cases, contributions from its ends can
be comparable to the contribution near its origin. We will return to
this question later.

2.4 Quantum Hall conductivity as an integral of
Berry curvature

2.4.1 Basics of linear response theory

In this section, we would like to show that quantum Hall conduc-
tivity can be expressed as a two-dimensional integral of Berry cur-
vature, which is a topological invariant. This fact explains why
quantum Hall conductivity is proportional to integer numbers, and
not affected by any perturbations.

A simple definition of Hall conductivity is a proportionality coef-
ficient between electric field and current flowing perpendicularly to
the field. Mathematically speaking, Hall conductivity can be viewed
as antisymmetric part of conductivity tensor σxy, which relates elec-
tric current and field:

ji = σijEj. (2.9)

In quantum mechanical systems, Hall conductivity, similarly to
many other quantities, is calculated by using linear response theory.
Specifically, one has to write quantum mechanical partition function
of the system:

Z =
∑
n

〈n|e−βH |n〉, (2.10)

introduce the electromagnetic field in it as a perturbation, and com-
pute quantum mechanical average current in the leading order over
the field.

The partition function (2.10) has to be rewritten as a path inte-
gral, and the electromagnetic field is introduced into it via coupling
with current:

Z[A] =

∫
Dψ̄Dψe−S+

∫
dτd3x ~J(x) ~A(x).
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From this equation, it immediately follows that quantum mechani-
cal average current can be expressed as a variation of the partition
function over the field:

〈Ji(x)〉 =
1

Z
δZ

δAi(x)
=
δ logZ
δAi(x)

. (2.11)

However, as we know from the definition of conductivity (2.9), the
right-hand side of the last equation is itself a function of the elec-
tromagnetic field.

From the Eq. 2.11, it seems natural to write the current as a
functional:

〈Ji(x1)〉 =

∫
dx2σij(x1, x2)Ej(x2) (2.12)

so that the conductivity is written as:

σij(x1, x2) =
δ2 logZ

δAi(x1)δEj(x2)
.

However, further it is more convenient to work in momentum rep-
resentation, because the momentum is a conserved quantity, which
makes it possible to get rid of extra integrals. Specifically, the Eq.
2.12 can be rewritten in momentum representation as:

〈Ji(k, w)〉 = σij(k, w)Ej(k, w). (2.13)

If we further focus only on x, y components and choose the gauge
At = 0, we can rewrite the Eq. (2.13) as:

〈Ji(k, w)〉 = σij(k, w)iwAj(k, w). (2.14)

In total, this results in Kubo formula:

σij(k, w) =
∂2 logZ

iw∂Ai(k, w)∂Aj(k, w)
, (2.15)

and given that we consider linear response, i.e. take into account
only linear order in the Eq. (2.14), we can assume that we are

computing the derivatives in Eq. (2.16) at ~A = 0. Since at zero
electromagnetic potential, the current (2.11) is also zero, we can
rewrite the Eq. (2.16) as:

σij(k, w) =
∂2Z

iwZ∂Ai(k, w)∂Aj(k, w)
, (2.16)
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2.4.2 Calculation of the quantum Hall conductivity

To compute any quantity using linear response theory, e.g. Eq.
(2.16), we can write partition function of the free system as a path
integral:

Z =

∫
Dψ̄Dψ exp

{∫ β

0

dτ

∫
d3k

(2π)3
ψ+ [∂τ −H]ψ

}
. (2.17)

To proceed, we have to include the coupling between current and
vector potential. However, since the latter has non-zero momentum,
we rewrite the partition function as:

Z =

∫
Dψ̄Dψ exp

{∫ β

0

dτ
∑
k,q

ψ+
k

[
δk,q∂τ − δk,qH(k) + β−1/2 ~J ~Ak−q

]
ψq

}
.(2.18)

For clarity, in the last equation, we also have discretized the mo-
mentum.

To proceed, it is convenient to Fourier-transform our fermionic
fields over the τ variable. Since τ runs from 0 to β, the new vari-
able has to be discrete. This variable runs through values called
Matsubara frequencies, which are proportional to half-integer num-
bers, because the fermionic field in the partition function satisfies
antiperiodic boundary conditions (for more details, see [67]). We
also view the square brackets in Eq. (2.18) as an operator acting
both in frequency-momentum and spin space.

Conventionally, we proceed with the calculation by integrating
out the fermion fields, thus rewriting the partition function as:

Z = det
[
δk,q(iw −H) + β−1/2 ~J ~Ak−q

]
,

which in turn can be rewritten as:

Z = exp
{

log det
[
δk,q(iw −H) + β−1/2 ~J ~Ak−q

]}
,

or equivalently as:

Z = exp
{

tr log
[
δk,q(iw −H) + β−1/2 ~J ~Ak−q

]}
.

Since, eventually, we need to take the second derivative of the par-
tition function Z, we can expand it up to the second order over the
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vector potential A. Before doing it, it is convenient to introduce
Green function as:

G(k, w) = (iw −H)−1 .

Using it, we can rewrite the partition function after the expansion
as:

Z = exp

{
tr

[
logG−1 + β−1/2G ◦ ~J ~A− 1

2β
G ◦ ~J ~A ◦G ◦ ~J ~A

]}
.

We remind, that here we view each term inside the square brackets as
an operator both in frequency-momentum and spin space. However,
since the Green function acts non-trivially only in the spin space,
whereas in momentum space it is proportional to identity operator,
we can rewrite the partition function in terms of operators acting
only in spin space. If we leave only the interaction terms, it looks
as:

Z = exp

{
tr

[∑
k,w

G(k, w)β−1/2 ~J ~A(k, w)

− 1

2β

∑
k,q,w

G(q, w) ~J ~Aq−kG(k, w) ~J ~Ak−q

]}
.

This expression leads to the conductivity tensor of the form:

σij = − lim
w→0

1

iΩβ
tr
∑
k,q,w

G(q, w + Ω) ~JiG(k, w) ~Jj. (2.19)

We also would like to remind, that to compute Hall conductivity, we
have to take the antisymmetric part of σij. In addition, to obtain
physical Hall conductivity, we will have to transform the Eq. 2.19
from imaginary to real frequencies, i.e. perform analytical continu-
ation.

2.4.3 Quantum Hall conductivity vs. Berry curvature

Now we are interested in general expression of the quantum Hall
conductivity in terms of Berry curvature. To start its derivation,
we would like to write the matrix expression of the Green function.
Indeed, since the Green function, as an operator is defined as G =
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(iw−H)−1, we can write its matrix expression in terms of projectors
to eigenstates of the Hamiltonian:

G =
∑
n

|n〉〈n|
iw − En

.

Also we would like to note, that since current can be expressed as a
variation of the Hamiltonian with respect to the vector potential:

~J =
δH

δ ~A
,

and the vector potential, in turn, is introduced via Pierls substitu-
tion:

~k → ~k − e ~A,

we can write the current as a derivative of the Hamiltonian over
momentum:

~J = −e∂H
∂k

.

Now we can use the last equations in order to rewrite the ex-
pression for the conductivity tensor at zero external momentum in
terms of matrix elements between eigenvectors of the Hamiltonian:

1

β
tr
∑
k,w

G(k, w + Ω) ~JiG(k, w) ~Jj

=
−e2

β

∑
k,w

〈m|∂H
∂ki
|n〉〈n| ∂H

∂kj
|m〉

(i(w + Ω)− Em)(iw − En)
. (2.20)

Our next step is to perform the summation over Matsubara fre-
quencies. To do it, we use the fact that our frequencies, are multiples
of half-integers:

wn =
2π

β
(n+

1

2
). (2.21)

These numbers are precisely the poles of the Fermi distribution func-
tion:

nF (z) =
1

eβz + 1
.
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By expanding it around the poles, one can obtain that their residues
are equal to −1/β.

Thus, to compute the sum (2.20), we consider an integral:∮
dz

2πi

nF (z)

(z + iΩ− Em)(z − En)
(2.22)

Since the function is regular at z → ∞, the integral taken around
very large contour has to be equal to zero. On the other hand, this
integral can be written as a sum over all residues of the subintegral
function. More precisely, there exist two kinds of residues: the ones
of the Fermi function, as determined by the Eq. (2.21), and zeros of
the denominator (2.22). Since, as we have mentioned, the sum over
both of them is zero, we can write the equation between the sum
over the Matsubara frequencies, and the zeros of the denominator
of the Eq. (2.22), thus obtaining:

1

β

∑
wn

1

(iwn + iΩ− Em)(iwn − En)

=
nF (−iΩ + Em)

−iΩ + Em − En
+

nF (En)

En + iΩ− Em
.

We can recall that Ω is the difference between two fermionic
frequencies, and therefore its presence does not affect the value of
the Fermi function: nF (E + iΩ) = nF (E). Thus we can rewrite the
last equation as:

1

β

∑
wn

1

(iwn + iΩ− Em)(iwn − En)
=
nF (En)− nF (Em)

iΩ + En − Em
.

This equation, in turn, can be substituted into the expression for
the conductivity (2.20), which takes the form:

1

β
tr
∑
k,w

G(k, w + Ω) ~JiG(k, w) ~Jj

= −e2
∑
k

〈m|∂H
∂ki
|n〉〈n| ∂H

∂kj
|m〉 [nF (En)− nF (Em)]

iΩ + En − Em
(2.23)

Now we would like to use the fact, that Hall conductivity is an
antisymmetric part of the conductivity tensor. If we take the anti-
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symmetric part of the eq. 2.23, we obtain:

1

β
tr
∑
k,w

G(k, w + Ω) ~JiG(k, w) ~Jj

= iΩe2
∑
k,w

〈m|∂H
∂ki
|n〉〈n| ∂H

∂kj
|m〉 [nF (En)− nF (Em)]

Ω2 + (En − Em)2
(2.24)

Naively, we would like to take the limit simply by substituting Ω = 0
into the denominator. However, we have to take into account, that
the conductivity σij is a dynamical quantity, i.e. it is defined for a
partition function as an integral over both space and time variables.
To account for it, we have to take analytic continuation over Ω,
which results in an extra factor of i.

In the case of zero temperature, the Fermi distribution becomes
trivial: nF (E) = θ(−E), or in other words,

nF (En) =

{
1 if the state n is filled
0 n is empty

By using this, we can split the summation over filled and empty
states, and thus to rewrite the quantum Hall conductivity as:

1

β
tr
∑
k,w

G(k, w + Ω) ~JiG(k, w) ~Jj

= Ωe2
∑

n−filled
m−empty

∑
k

〈m|∂H
∂ki
|n〉〈n| ∂H

∂kj
|m〉 − 〈m| ∂H

∂kj
|n〉〈n|∂H

∂ki
|m〉

(En − Em)2
.(2.25)

If we use the Kubo formula, which relates conductivity and trace of
Green functions (2.19), we can rewrite the last equation in terms of
the conductivity:

σij = ie2
∑

n−filled
m−empty

∑
k

〈m|∂H
∂ki
|n〉〈n| ∂H

∂kj
|m〉 − 〈m| ∂H

∂kj
|n〉〈n|∂H

∂ki
|m〉

(En − Em)2
.(2.26)

This equation is known as TKNN (Thouless-Kohmoto-Nightingale-
den Nijs) formula.

Finally, we can simplify the above expression by using the fact
that |n〉 are the eigenvectors of the Hamiltonian. To do it, we notice
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that:

〈m|∂H
∂ki
|n〉 = 〈m| ∂

∂ki
(H|n〉)− 〈m|H∂|n〉

∂ki

=
∂En
∂ki
〈m|n〉+ (En − Em)〈m| ∂

∂ki
|n〉.

If we use the fact, that the states m and n are always different
(since one of them is filled, but the other is empty), and substitute
the above identity into the expression for quantum Hall conductivity
(2.26), we obtain:

σij = ie2
∑

n−filled
m−empty

∑
k

(
〈∂m
∂ki
|n〉〈n|∂m

∂kj
〉 − 〈∂m

∂kj
|n〉〈n|∂m

∂ki
〉
)

(2.27)

The last equation can be transformed by using the identity:∑
filled

|n〉〈n| = 1−
∑
empty

|n〉〈n|,

and the fact that, since the product of two states is a constant:
〈m|n〉 = δmn, we can flip the derivatives as:

〈∂m
∂ki
|n〉 = −〈m| ∂n

∂ki
〉.

Using these identities, we can derive that the quantum Hall con-
ductivity can be written as:

σij = −ie2
∑

n−filled

∑
k

(
〈 ∂n
∂ki
| ∂n
∂kj
〉 − 〈 ∂n

∂kj
| ∂n
∂ki
〉
)

(2.28)

The bracket in the last equation is precisely the Berry curvature, and
thus we arrive to our main conclusion: quantum Hall conductivity
is proportional to the integral of Berry curvature over the Brillouin
zone.
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Chapter 3

Basic concepts of
topological phases of matter

It is known, that in most real solids, electrons can be described as ef-
fectively free, and in such case, they are characterized by electronic
band structure, i.e. their spectrum as a function of the Brillouin

zone momentum E(~k). One of the main recent achievements of
the modern condensed matter physics is that electronic structure
can be characterized by its topological properties. Simply speak-
ing, topological properties are properties, which do not change un-
der continuous deformations, but may change under ’large’ discrete
ones. In the everyday life, examples of topological phases include,
for example, a rope with fixed ends reeled up a rod. If we can not
move the end of the rope, we are free to make smooth deformations
of the rope, but we are not able to change the number of times it
reels up the rope. Another example is a knot: if we are not allowed
to move the ends of the rope, we cannot untie the knot, but can
only make small continuous movements of the rope. In mathemat-
ics, topological properties are characterized by discrete topological
invariants: numbers, which remain invariant under any continuous
deformations. We saw one example of such number in sec 2: a
Chern number, or a monopole charge. These are functions of elec-
tromagnetic field (or Berry connection), which takes discrete values,
invariant under any continuous deformations of the vector field. We
would like to demonstrate, how Chern numbers describe topological
phases of matter.
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3.1 Berry connection vs. time reversal and in-
version symmetries

It is known, that many solids are invariant under time-reversal and
inversion symmetry. In such case, their electronic structure obeys
Kramers theorem, which states that, in the presence of both time-
reversal and inversion symmetries, bands are doubly degenerate. We
would like to briefly demonstrate it.

Inversion symmetry is a symmetry, which inverts coordinates:

x→ −x, t→ t.

It follows that it also inverts momentum, but does not invert spin
(because it behaves as angular momentum:

k → −k s→ s.

This is simply because, classically, momentum behaves as velocity
k ∼ dx

dt
, and spin behaves as angular momentum: ~s ∼ ~L = ~x × ~p.

Thus inversion symmetry P transforms quantum mechanical state
|ψ↑(k)〉 to a state with opposite momentum, but the same spin:

P |ψs(k)〉 = |ψs(−k)〉. (3.1)

In contrast, time-reversal symmetry T is a symmetry, which in-
verts time:

x→ x, t→ −t.

It also inverts velocity/momentum, and angular momentum/spin:

p→ −p, si → εijsj.

We also note, that time evolution of wave function requires time-
reversal to be antiunitary operator:

TeiHt|ψ〉 = e−iHtT |ψ〉.

By writing the last equation, we essentially said: if we take wave-
function |ψ〉, and let it evolve for the period t, and after it apply
time-reversal operator, we should obtain the same wave function
acted by time-reversal operator in the beginning, and evolved in the
opposite direction of time. The fact that the operator applied to the
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vector multiplied by number gives operator applied to the vector,
and after it multiplied by the conjugate number, is the definition of
antilinear operator. Since the operator T also preserves the norm,
we can say that it is antiunitary.

Conventional matrix representation of the time-reversal operator,
satisfying these properties is:

Tψi(k) = iεijψ
∗
j (−k)

We would like to note, that if a band possesses time-reversal
invariance, its Berry connections changes sign under the T transfor-
mation:

A(−k) = −A(k).

This fact, in turn, means that in a time-reversal invariant system,
Hall conductivity is zero.

We conclude, that non-trivial Hall conductivity arises in system
with broken TR. The simplest system with non-zero Hall conduc-
tivity without external magnetic field is a Chern insulator. Due
to broken time reversal symmetry, its bands have non-zero Chern
numbers, and the fact that it is an insulator implies, that they are
fully filled. That, in turn, means that Hall conductivity, which is an
integral over the filled states, is in fact an integral over the whole
Brillouin zone. Thus, in two-dimensional Chern insulator, Hall con-
ductivity is proportional to an integer number.

3.2 Surface states in a Chern insulator

Topologically non-trivial systems obey bulk-boundary correspondence,
which states that presence of non-trivial topology results in exis-
tence of protected surface states. Bulk-boundary correspondence
can be viewed as an analog of index theorem. We do not describe
it in details here (for detailed, but complicated explanation, see e.g.
[68, 69, 70]), but one of its consequences is that the number of zero
modes of Dirac operator is related to the topological properties of
external field, where the Dirac operator acts. Analogously, Chern
number of Brillouin zone is related to the number of protected sur-
face states, which cross the energy gap.

The most simple way to interpret the existence of surface states
follows from the fact that anomalous Hall conductivity is non-zero
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for a Chern insulator. Generally, insulator is a solid, whose bands are
either fully filled, or fully empty, i.e. it does not have a Fermi surface.
However, electric current may appear, if electrons are excited near
the Fermi surface. Therefore the only way to create non-zero current
in an insulator is to allow that, separately from the bulk, there exist
Fermi surface on the surface of the sample.

There is known heuristic Laughlin argument [5] about the exis-
tence of surface states. Consider a sample having a shape of cylinder,
so that y is the coordinate along it, and x is the coordinate across it
(see Fig. 3.1). In other words, the system is periodic in y direction,
but open in x direction. Now imagine, that magnetic flux is inserted
through the cylinder. Following high-school physics, it would result
in electric field along the cylinder:

~E = − dΦ

Lydt
,

which would accelerate the electrons in the sample:

~a = − e

m
~E.

Thus, the magnetic flux insertion would result in momentum change
of the electrons:

∆ky =
eΦ

Ly
.

In particular, we call the flux a unit flux, if the momentum changes
at one unit:

∆ky =
2π

Ly
,

which implies that the unit flux is equal to:

Φ =
2π

e
.

Now let us look at the system quantum-mechanically. It is de-
scribed by Hamiltonian H(k), and when the flux is inserted, the
Hamiltonian takes the form: H(k− eΦ

Ly
). Let us write quantum me-

chanical expression for the current density, in terms of the Hamilto-
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nian density H:

〈jy〉 = e〈ψ|∂H
∂ky
|ψ〉 = Ly〈ψ|

∂H
∂Φ
|ψ〉

= Ly

(
∂

∂Φ
〈ψ|H|ψ〉 − 〈 ∂

∂Φ
ψ|H|ψ〉 − 〈ψ|H| ∂

∂Φ
ψ〉
)
.

The last two terms in this equation cancel out, because ψ has con-
stant norm. Thus we can write:

〈jy〉 = Ly
∂〈E〉
∂Φ

≈ Ly
∆〈E〉
∆Φ

.

In particular, if the flux is unit, the last equation is rewritten as:

〈jy〉 =
eLy∆〈E〉

2π
.

The factor Ly disappears, if we replace the current density with the
total current, and the energy density with the total energy:

〈Jy〉 =
e∆〈E〉

2π
. (3.2)

Thus we conclude that the existence of current along the cylin-
der is related to change in energy of the electrons. Since the band
structure is insulating, this change of energy can occur only due to
change of occupation numbers of the surface states. In particular, if
the unit flux is inserted, one filled surface state at one of the edges
becomes empty, and vice versa.

Now, we can relate energy change of the system to the change in
the voltage across it:

∆〈E〉 = NeV,

where N is the total number of electrons transferred to the bound-
ary. Thus we can rewrite the Eq. (3.2) as:

〈jy〉 =
Ne2V

2π
,

which, in turn, results in Hall conductivity being equal to:

σxy =
Ne2

2π
.
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Figure 3.1: Schematic picture of the system considered in Laughlin argument.
The conductor is open in x direction and periodic in y direction, or in other
words, it forms a cylinder. Magnetic flux is inserted into it, which results in
electric field, and consequently redistribution of electric charges along the edges
due to Hall conductivity.

As we mentioned, N here is an integer number equal to the number
of electrons transferred to the boundary. Since, under unit flux
insertion, states can only get repopulated, one empty edge state
becomes filled and vice versa. Saying it in different words, along
the boundary in x direction, there exist a set of edge states with
different ky, and one of them changes its population for each of the
surface bands. Therefore, we can say that N here is a number of
the surface bands.

Thus we obtain, the main result of this section: Hall conductivity
is proportional to Chern number of the Brillouin zone, which, in
turn, is equal to the number of surface bands.

3.3 Explicit calculation of the surface states

In this section, we present an example, demonstrating analytical
computation of the surface states [14, 71]. We consider the simplest
possible Hamiltonian of two-dimensional Chern insulator:

H = kxσx + kyσy +mσz. (3.3)
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This Hamiltonian describes two-band model of Chern insulator,
which may exist in 2D. It also has smallest - linear powers of mo-
mentum. We note, that this Hamiltonian may, as well, describe 3D
material, if m is allowed to be a function of kz.

However, let us, for simplicity, study the model (3.3) in 2D. Con-
sistently with all symmetries, we can allow m to be dependent on
the in-plane momentum:

m = M −B(k2
x + k2

y).

We will see shortly, that the presence of such momentum-dependent
term is necessary to obtain analytical expression for the surface
states.

The Hamiltonian (3.3) is written in momentum representation,
which is obtained from coordinate representation by Fourier trans-
formation. In the case, when we are interested in bulk states, we can
simply assume that the coordinate space is infinite, and therefore
the momentum space is continuum. In other words, we can say, that
in coordinate representation, bulk states form plane waves. How-
ever, we are interested now in surface states. Therefore, we have to
view our coordinate space not as infinite, but as half-infinite. For
example, we can assume that our sample is located at x > 0. Next,
we have to account for the presence of such boundary. In general,
it is difficult to do it accurately, but the simplest hand-waving way
of accounting for it, is implementing fixed boundary condition, e.g.

Ψ(x = 0) = 0. (3.4)

In this case, the bulk states would be proportional to sin(kxx), but
the surface states have to be localized near x = 0. Thus, to find
them explicitly, we have to go back to the coordinate representation
in x direction, i.e. to write the Hamiltonian as:

H = −i∂xσx + kyσy + (M −Bk2
y +B∂2

x)σz. (3.5)

Since its bulk states are obtained by Fourier transforming, it is
natural to search the solution for the surface states in a form, similar
to Fourier transforming, but accounting for the fact, that they are
localized. Indeed, we can search for the states in the form:

Ψ = e−λxψ, x > 0. (3.6)

27



This solution differs from the bulk solution simply by replacement
kx → iλ, and thus λ can be described as ’imaginary momentum’.
This solution rapidly decreases, as x becomes positive. Now, our
goal is to find the explicit expression for the wavefunction ψ, and
the corresponding energy spectrum E(λ, ky).

If we substitute our ansatz (3.6) into the Schrodinger equation
with the Hamiltonian (3.5), we can write it as:

Eψ =
(
iλσx + kyσy + (M −Bk2

y +Bλ2)σz
)
ψ. (3.7)

Since we have to account for the Dirichlet boundary condition
(3.4), we need to obtain a solution, which is superposition of two
exponents, canceling out each other at the boundary. Thus we write
our full ansatz as:

Ψ =
(
e−λ1x − e−λ2x

)
ψ, x > 0. (3.8)

From this ansatz, it is evident, why we have to include quadratic
terms in our Hamiltonian (3.3): we need to obtain two different
values λ1,2 having the same energy and the same wavefunction. This
is possible, if λ1,2 are roots of a quadratic equation, but not possible
for a linear equation.

Since our total eigenstate (3.8) is a superposition of two expo-
nents, they both have to be eigenvectors of the Hamiltonian (3.7)
with the same energies: E(λ1, ky) = E(λ2, ky). Let us try to find
out, what this condition means. We can write the equation (3.7) for
each value of λ, and to subtract the equations for λ1 and λ2. That
would result in an equation:

0 =
(
i(λ1 − λ2)σx +B(λ2

1 − λ2
2)σz

)
ψ.

It is straightforward to simplify it by dividing both parts by λ1−λ2,
and multiplying by −iσx, thus obtaining:

0 = (1−B(λ1 + λ2)σy)ψ.

This equation is solved straightforwardly: if ψ is an eigenvector
of σ2 with an eigenvalue ±1, then the sum λ1 + λ2 has the form:

λ1 + λ2 = ±1/B (3.9)

At this point we have to account for the fact that we are looking
for the solution, decaying at positive x, or, equivalently, with both
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positive λ1,2. If, without loss of generality, we assume that B is pos-
itive, then we have to select only the + sign in the last equations. In
contrast, if we were looking for the solution decaying at negative x,
we had to select only the negative sign. This is indeed an important
conclusion: it implies, that states localized at our boundary x = 0
have fixed spin in y direction. If the boundary is at one side of the
sample, the spin has one direction, but if the boundary is on the
other side, then spin has the opposite direction.

Now let us go back to the main Schrodinger equation (3.7), and
try to use the fact that our solution has spin directed along y co-
ordinate. In particular, we use the condition ψ = σyψ, which is, in
turn equivalent to iσxψ = −σzψ. We can rewrite the equation (3.7)
as:

Eψ =
(
−λσz + ky + (M −Bk2

y +Bλ2)σz
)
ψ. (3.10)

Since we already know the explicit form of ψ - it is an eigenvector
of σy, but not an eigenvector of σz, we can decouple the equation
(3.10) into two: {

E = ky
−λ+M −Bk2

y +Bλ2 = 0
(3.11)

Here the first equation is the answer for the energy spectrum, we
were looking for. We have found that energy is linear over the
momentum component along the edge ky. Notably for a given value
of ky there exist only one value of energy (in contrast to two values in
bulk spectrum). Thus we can say that our surface band has a fixed
handedness. In the considered case, it is right-handed. In contrast,
if we were considering states localized in the opposite boundary,
we would obtain an expression for the energy with opposite sign:
E = −ky. Such band would be called left-handed. Furthermore, we
obtained, that, along given boundary, state with fixed momentum
has fixed spin direction (it is positive y direction in our case). Such
state is called chiral. One can check that states localized at opposite
boundaries have opposite chiralities.

Finally, we need to discuss the second equation in the system
(3.11). This is a quadratic equation for λ entering the exponents
(3.8), i.e. penetration depth. We can solve it easily and obtain:

λ1,2 =
1±
√

1− 4MB

2B
. (3.12)
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Thus we have found two different values of λ, which in sum give
the Eq. (3.9). As we mentioned previously, we needed two differ-
ent values of λ to satisfy the boundary conditions, and the second
equation in the system (3.11) demonstrates that we had to include
the quadratic terms in momentum.

Finally, we need to ensure that both values of λ, defined by the
Eq. (3.12), have positive real parts. It is necessary, since our solution
(3.8) has to decay inside the sample, i.e. at x > 0. The condition of
both Reλ1,2 > 0 leads to inequality:

M > 0 (3.13)

Its left part has obvious meaning: surface states exist only at posi-
tive M , which is the range of M , where the model is a topological
insulator. As M becomes negative, the system becomes a normal
insulator, and its surface states disappear.

We note, that λ1,2 can exist in two different regimes. In the case,
when M < 1/(4B), both λ1,2 are real and positive, whereas in the
case M > 1/(4B), they become complex, but still retain positive
real parts. Thus, in our model, surface states exist any any positive
M . However, we remark, that if try to include the lattice effects, i.e.
periodicity of the Brillouin zone, the model will acquire additional
phases, and at the point M = 1/(4B) there will appear an additional
transition. We will discuss this issue in Chapter (4).

3.4 Topological phase transitions

In the previous sections, we described the concept of two dimen-
sional Chern insulator: it has bands with non-zero Chern numbers.
Now we would like to discuss possible transitions between differ-
ent topological phases. As mentioned before, topological phases are
characterized by topological invariants (in our case Chern numbers),
which are discrete functions of the bands. Thus a system cannot
change its topological phase under any smooth deformations of the
electronic structure. However, can there exist a non-smooth trans-
formation, which does change the topological invariant? The answer
is that topological invariants can change if the system undergoes a
phase transition, which can occur if the gap gets closed.

One example of such transition was proposed in Ref. [12]: it is
a topological phase transition in HgTe quantum well. Such two di-
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mensional system can be described by a massive Dirac Hamiltonian,
which consists of two copies of Weyl Hamiltonians:

H =

(
h(k) 0

0 h∗(−k)

)
, (3.14)

where h is defined in exactly the same way, as in the Eq. (3.3).
Now let us consider, how each copy with the Hamiltonian h

evolves, as m changes. If we imagine, that our model lives in a fic-
titious three-dimensional space kx, ky,m, we can say, that the point
kx = ky = m = 0 is a magnetic monopole, i.e. integral of Berry cur-
vature over a surface surrounding this point is equal to the magnetic
charge. This, in turn, is equivalent to saying, that Chern number
of such model, as an integral of Berry curvature over the (kx, ky)
changes by unit number, as m changes sign. Thus, we can conclude,
that the point m = 0 is a point of topological phase transition in the
model with the Hamiltonian h. It is also consistent with the fact,
that in the point m = 0, gap closing occurs. At m = 0, the system is
gapless, whereas at any non-zero m, either positive or negative, the
system is gapped. At positive m, the system with Hamiltonian h is
Chern insulator, but at negative m the system is a normal insulator.

However, the full model of the HgTe quantum well (3.14) includes
two copies of h. Their presence is necessary to ensure that the model
possesses time reversal and inversion symmetries. Indeed, as we dis-
cussed previously, non-zero Chern number are possible only if the
time reversal symmetry is broken, which indeed occurs in the sub-
system with Hamiltonian h. One can check, that one copy of the
subsystem transforms under time reversal to the other. Thus the
total system is time reversal invariant, and it is also easy to check,
that, consistently with Kramers theorem, its bands are doubly de-
generate. This is simply because bands of the two copies of h have
equal energies.

Since the system (3.14) consists of two copies of Hamiltonians h,
which, in turn, undergo topological phase transition at m = 0, we
can say that the whole system undergoes topological phase transi-
tion at m = 0. As we said, the gap closes at this point, and the total
system consist of two copies of two-dimensional Weyl Hamiltonians.
This is, in turn, equivalent to saying that the whole model realizes
Dirac point at m = 0. This is our main conclusion: Dirac point can
arise as a critical point between two different topological phases.
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Finally, for completeness, we note that the two copies of h have
the opposite Chern numbers. We also note, that in this particu-
lar model, each copy of h corresponds to a fixed direction of spin,
whereas 2 × 2 components of each h act in the space of orbital de-
grees of freedom. Thus, at the topological phase, the system has
a given value of anomalous Hall conductivity for one spin, and the
opposite of it for the other spin. Such kind of systems is called spin
Hall insulator.

3.5 Weyl metal

In the previous section, we discussed that studying a phase transi-
tion between two different topological phases leads to a new state of
matter: Dirac metal. That is a gapless system, whose spectrum can
be described by Dirac equation. We also mentioned that Dirac equa-
tion, written in terms of four component matrices, can be viewed as
two copies of Weyl equations, and the two copies necessarily arise
due to presence of both inversion and time reversal symmetries.
Now, we are interested, if it is possible to obtain these Weyl cones
separately. To achieve it, we simply need to remove the Kramers
degeneracy, which can be done by breaking either time-reversal, or
inversion symmetry. In such case, the bands are no longer dou-
bly degenerate, and therefore, the Weyl cones are free to move in
momentum space under any perturbations.

Once two Weyl cones become separated, they can not be gapped
under any small perturbations. This is because each Weyl cone is
a magnetic monopole of Berry curvature. The latter is non-zero
due to the presence of the Weyl point, which is a singularity, but it
would always be zero for any kind of gapped system. Thus, we can
say that Weyl points are protected topologically. Our conclusion
is that, under symmetry breaking, Dirac points can be deformed
into either normal insulator, or a topological insulator, or a Weyl
metal - a material with spatially separated Dirac points (this sce-
nario was discussed in a large number of specific models, e.g. in
[25]). Therefore, we can expect the Weyl points to be very common
in the nature. Indeed, they have been detected experimentally in a
large number of materials (see e.g. [35, 37, 36, 38]).

As we have just said, Weyl points possess non-zero topological
charge: integral of Berry curvature around closed surfaces surround-
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ing them is non-zero. Equivalently, integral of Berry curvature over
Brillouin zone cross-section from one side of the Weyl point differs
from the integral on the other side. Therefore, it is convenient to
view Weyl metal as a ’stack’ of Chern insulators in momentum space.
As an example, let us imagine that a Weyl metal possess a single
pair of Weyl points at the momenta (0, 0,±Q). We can view it as
a stack of Chern insulators in z direction, such that the integral of
Berry curvature over xy plane is zero outside the Weyl points, i.e.
at |kz| > Q, and equals to 1 between them, i.e. at |kz| < Q.

After these making considerations, we arrive to the simplest pos-
sible Hamiltonian describing a model of Weyl metal:

H = kzσx + kyσy +m(kz)σz, (3.15)

This Hamiltonian is just a superposition of 2D Hamiltonians (3.3)
at fixed values of kz. We assume, that m is positive at |kz| < Q,
and negative at |kz| > Q. Points, where m = 0 are the Weyl points.
Using the results from the previous sections, we can see that its
Chern number at fixed kz behaves as expected: it is equal to 1
between the Weyl points, and zero outside them.

We note, that in this model, Weyl points have opposite topo-
logical charges. It is consistent with the fact, that the topological
charges have to cancel out, if the Weyl points merge into one Dirac
point. We also note, that such model is possible only under breaking
of time reversal symmetry, since electrons with opposite momenta
have opposite spins. If, instead, the inversion symmetry were bro-
ken, the states with opposite momenta would have the same spin,
and thus the Weyl points would have the same topological charges.
Therefore, a minimal model of Weyl metal had to include at least
four Weyl points.

Finally, we discuss the structure of surface states in a Weyl metal.
As we have just discussed, Weyl metal is a Chern insulator at kz <
|Q| and a normal insulator at kz > |Q|. Therefore, for each value
of kz its surface states have to look exactly as surface states of a
Chern/normal insulator. If we recover the properties of the surface
states, that we obtained in Sec. 3.3, we obtain that Weyl metal
possesses chiral surface states with dispersion E = ky at |kz| < Q,
but does not possess surface states at |kz| > Q (see Fig. 3.2). In
other words, if we look at the surface states spectrum at fixed energy,
e.g. at E = 0, we will see a branch of surface states connecting
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Figure 3.2: Schematic view of Weyl points in a Weyl metal, and integrals of
Berry curvature over different cross-sections of the Brillouin zone (left). Dis-
persion structure in the bulk has two Weyl cones, whereas dispersion structure
along the surface is linear; surface states exist between the Weyl points (right).
This figure is reprinted from http://phyx.readthedocs.io/en/latest/TI/

Weyl_semi-metal.html and distributed under Creative Commons License.

the Weyl points. Such branch is called a Fermi arc. Since the
dispersions are opposite on the opposite surfaces (E = +ky on one
surface, and E = −ky on the other one), there are two different
Fermi arcs connecting the Weyl points: one on each surface.

3.6 A model of Weyl metal in a topological/normal
insulator multilayer

In this section, we present the first theoretically proposed model
of Weyl metal: a topological normal insulator multilayer [25]. We
note, that this model has never been realized experimentally, but
it attracted a lot of attention, because it was the first proposed
model, and also because this model is the simplest, i.e. it contains
only one pair of Weyl points, but includes the effect of their spatial
separation, which makes it convenient to analyze as a toy model.

In the Sec. (3.5), we have said that the simplest way to imagine
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Weyl metal is to view it as a stack of Chern insulators in z direction.
We have also said, that at fixed kz, Chern insulator can be described
by a gapped Weyl Hamiltonian (3.15). There is a widely known ex-
ample, where two-dimensional fermions with linear dispersion exist:
surface states in a 3D topological insulator (strictly speaking, it is
Z2 topological insulator, which is different from Chern insulators
considered in this work) are described by Dirac equation. The most
natural way to make them three-dimensional, but not to alter their
properties along xy plane, is to create a multilayer in z direction.
In this case, the fermions become effectively three-dimensional due
to tunneling between the different layers.

However, we need one additional ingredient. In the Sec. (3.5)
we mentioned, that Weyl metal can be realized, if time reversal
or inversion symmetry is broken. Z2 topological insulator does not
break it, and therefore, we need to break it separately, which is easy
to do, for example, by adding magnetization to our multilayer. It
is natural to add it in the same direction, as the multilayer growth,
i.e. in z direction.

In total, we can write the Hamiltonian of the multilayer model
in the following form:

H =
∑
i,j,k

{
vF τz(σxky − σykx)δi,j + bσzδi,j

+∆Sτxδi, j +
∆Dτ

+

2
δj, i+ 1 +

∆Dτ
−

2
δj,i−1

}
.

(3.16)

Here we numerate the layers by indices i, j. We also have to distin-
guish between the surfaces on the left and on the right side of the
topological insulator, which we achieve by introducing an additional
flavor: τ matrices act in the space of this new flavor. In particular,
the term proportional to ∆S describes tunneling between two edges
of one topological insulator layer, whereas the terms proportional to
∆D describe tunneling between different topological insulator lay-
ers. In contrast, σ matrices act in usual spin space: each τz block
in the first two terms of the Hamiltonian describes surface states
of a one topological normal insulator interface, but the states from
the opposite surfaces have the opposite chiralities. The time rever-
sal symmetry breaking magnetization is encoded in the third term
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bσz, which describes interaction of spin 1/2 electrons with Zeeman
magnetic field.

To find the electronic structure of this model, one has to di-
agonalize the Hamiltonian (5.13), and to find its eigenenergies as
functions of momentum. We start doing it from a standard step: we
perform Fourier transformation in z direction, in order to obtain the
Hamiltonian in momentum space in all three directions. This step is
commonly done in many lattice models, because it straightforwardly
helps to get rid of the matrix elements between the different sites
(in our case the terms proportional to ∆D).

However, we also perform another trick: a canonical transforma-
tion of the matrices entering the Hamiltonian: σ± → σ±τ z, τ± →
σzτ

±. It is straightforward to see, that this transformation leaves
the commutation relation between the matrices unchanged, and
one can also check that this transformation is, in fact, unitary
transformation of the Hamiltonian H → UHU+ with the matrix
U = 1+τz

2
+ (1−τz)σz

2
.

After performing these two steps, the Hamiltonian can be written
as:

H = vF (σ1k2 − σ2k1) + bσz +

(
∆sτx +

∆Dτ
+

2
eikzd +

∆Dτ
−

2
e−ikzd

)
σz.

(3.17)

Afterwards, the Hamiltonian is easy to diagonalize. Indeed, non-
trivial τ matrices enter it only inside the large bracket. Thus we
can immediately diagonalize it in τ space. In particular, eigenvalues
of the large bracket are equal to ±∆, which we define as:

∆ =
√

∆2
S + ∆2

D + 2∆S∆D cos(kzd).

To parametrize the ± sign, we introduce a new variable t, which
takes values ±1. In total, after diagonalization in τ space, the
Hamiltonian (3.17) decouples into two copies for each of the signs
of t. These copies are explicitly written as:

H = vF (σ1k2 − σ2k1) + (b+ t∆(kz))σz.

Now, for each of the copies, we can introduce m = b+ t∆(kz) , and
the connection to the Weyl metal (see Eq. 3.15) becomes straightfor-
ward. Indeed, we obtain two copies of Hamiltonians with different
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m for each case of the t sign. One can check, that it is possible to
find a range of parameters, such that m in the case of negative t
sign behaves as in a Weyl metal, i.e. change its sign at two values
of kz. We write these values of kz = Q explicitly:

Q =
1

d
acos

(
b2 −∆2

S −∆2
D

2∆S∆D

)
. (3.18)

The parameters b,∆S,∆D has to be chosen, in such a way, that the
acos is well-defined, which is indeed possible.

In contrast, the block with t = +1 never changes its sign, and
furthermore, its energies lie in a different range from the energies of
the block with t = −1 sign. Thus, the model of topological/normal
insulator multilayer (5.13) contains, in total, four bands. Two of
them may cross each other, forming a single pair of Weyl points,
whereas the other two are separated from the former by energy gap.
Hence, we can further consider the Hamiltonian of Weyl metal in the
simple form (3.15), which indeed refers to the topological/normal
insulator multilayer.

Finally, we note, that our multilayer model (5.13) can, in prin-
ciple be modified in many different ways. For example, one may
consider the situation, where both time reversal and inversion sym-
metries are broken [72]. The latter can be accounted simply by
adding an additional term: Hλ = λτy.This leads to new kinds of
contributions anomalous Hall conductivity and longitudinal magne-
toresistance in these models [27, 28]. Also, one may consider dif-
ferent directions of magnetization in the multilayer, which would to
a richer phase diagram: one may obtain not only Weyl metal, but
also nodal line metal [29].

37





Chapter 4

Lattice model of Chern
insulator and Weyl metal

4.1 Introduction to lattice models

In this section, we would like to place the model of Weyl metal
(3.15) on a lattice. We need to do it, because only in case of the
lattice, Chern number as an integral of Berry curvature, becomes
integer. We can see it in the following way. In sec. 2.3 we found,
that magnetic charge, which can be viewed as an integral of Berry
curvature over the surface surrounding the monopole, is quantized.
However, if instead of a closed surface, we consider an open surface,
e.g. a part of the closed surface, its integral of Berry curvature is
no longer quantized. The continuum model (3.15) is indeed defined
on an open surface: kx, ky run from −∞ to ∞, and therefore an
integral of Berry curvature over the whole plane kx, ky is not integer.
However, it will become integer, if instead of the full plane, we
consider a torus |kx,y| < π, because in the latter case, we can derive
quantization conditions in the same way, as we did for a sphere.

Indeed every solid is known to be a lattice of atoms, and therefore,
an electron’s wavefunction can be viewed as a wavefunction inside
an atom multiplied by plane wave as a function of discrete atomic
coordinate (this statement is known as Bloch theorem). Thus, mo-
mentum in a solid conventionally refers to crystal momentum, i.e.
momentum obtained by Fourier transformation over discrete lattice
coordinate. However, if a variable is discreet, its Fourier transform
is periodic. Thus crystal momentum is periodic: it is known that is
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forms a periodic Brillouin zone.
Now let us build the simplest possible extension of the model

(3.15) accounting for the periodicity of the Brillouin zone. The
most straightforward way of doing it, is to replace every momentum
component with its sin function: kx,y → sin kx,y. Such function is
periodic, and in the limit of small momentum it becomes equal to the
momentum component itself. This is consistent with the fact, that
small momenta correspond to large distances, but at large distances,
lattice can be viewed as approximately continuum.

This approach has a drawback. The Hamiltonian H = σx sin kx+
σy sin ky has several degeneracy points. It is degenerate not only at
the point kx = ky = 0, as it would be in the continuum case, but
also at the points kx,y = π. However, we would like to talk about
topological phase transitions occurring at the degeneracy points,
and extra such points would bring extra complications for us. Thus
we would like to remove such ’copies’, and the easiest way to do it,
is to introduce quadratic terms in the Hamiltonian, as we already
did, when we were discussing surface states (see Sec. 3.3). When we
switch from continuum model to the lattice, we replace our quadratic
terms as: k2

x,y → 2(1 − cos kx,y) - this function is periodic and has
limit, consistent with the continuum model.

Thus, the proper Hamiltonian for Chern insulator on a lattice
has the form:

H = σx sin kx + σy sin ky + σz (M − 2B(2− cos kx − cos ky)) . (4.1)

In the following sections we compute its Chern number, and surface
states.

4.2 Analytical computation of Chern number

In this section, we demonstrate how Chern number can be computed
analytically on a lattice. As we discussed previously, Chern number
is defined as an integral of Berry curvature over the Brillouin zone.
If one computes the Berry curvature explicitly for the Hamiltonian
(4.1), its expression becomes complicated, and it seems hard to take
its integral analytically. However, there exists a way compute it
exactly, and we would like to demonstrate it.

First, integral of Berry curvature over the Brillouin zone can
be rewritten as an integral of Berry connection over its boundary:
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∫
M

F =
∫
∂M

A. In our case, the Brillouin zone is bounded by four

lines kx,y = ±π. Thus, we can write the Chern number as:

C =
1

2π

∮
~Ad~l

=
1

2π

 π∫
−π

Aydky |kx=π −
π∫

−π

Axdkx |ky=π

−
π∫

−π

Aydky |kx=−π +

π∫
π

Axdkx |ky=π

 .

(4.2)

We note, that our contour of integration is periodic, and thus the
integrals at the opposite edges of the Brillouin zone

∫
Ayky |kx=±π

or
∫
Axkx |ky=±π are almost identical. The only source of difference

between them comes from the fact, that there can be singularities
along the boundary of the Brillouin zone, and the integral contours
have to go around them in different directions. This fact is similar
to the sec. (2.2): there we also have obtained that integral of Berry
curvature over a closed surface is non-zero solely due to presence of
singularities of the Berry connection.

Thus, to compute the integral (4.2) we have to find all singular-
ities of the Berry connection. To make our equations shorter, we
consider a general Hamiltonian:

H = diσi. (4.3)

Its eigenvector corresponding to the filled state has the form:

ψ =
1√

2d(d+ d3)

(
d1 − id2

−d− d3

)
. (4.4)

The corresponding Berry connection has an expression:

Ai =
d1∂id2 − d2∂id1

2d(d+ d3)
.

It is easy to see, that its singularities may occur only if either d = 0,
or d + d3 = 0. The first case corresponds to the point M = 0, i.e.
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the point of topological phase transition. The second case can be
realized, when d1 = d2 = 0, i.e. kx,y = 0,±π, and, in addition,
d3 < 0. Further analysis depends on specific details of the system.

If we choose the Hamiltonian in accordance to the Eq. (4.1),
there are several possible cases. For simplicity, let us fix B to be
positive and consider different possible values of M .

We start from the simplest case of M > 8B. The term d3 = M−
2B(2−cos kx−cos ky) is always positive at the whole Brillouin zone,
and therefore, Berry connections does not have any singularities. As
a result, its integral (4.2) is zero. We will understand its meaning
soon.

Singularities appear, as M becomes less than 8B. Particularly,
in the range 4B < M < 8B, singularities appear at kx = ky = π.
Thus the integral (4.2) is in fact an integral over a contour, which
is going around the point kx = ky = π:

(−π,−π) (π,−π)

(π, π)(−π, π)

(−π,−π) (π,−π)

(π, π)(−π, π)

(−π,−π)

Figure 4.1: Integration contour for ~A in the plane (kx, kz) in the model defined
by H+ (Eq. 7.5). in the case 4B < M < 8B.

On this picture 4.1, we have shown that the integral over the
boundary of the Brillouin zone can be transformed to the integral
around the singularity. Since we can take the contour surrounding
the singularity to be infinitely small, we can expand the values of
d1,2,3 entering the Eq. 4.1 around this singularity, i.e. around the
point kx = ky = ±π. Explicitly, we can write kx,y = π + qx,y, where
q is very small, and make the expansion: sin kx,y = sin(π + qx,y) ≈
−qx,y. Since we are interested in the integral around closed contour,

42



it is convenient to write it in polar coordinates: qx = q cosϕ, qy =
q sinϕ. Using them, we can write the wavefunction (4.4) as:

ψ =
1√

2d(d+ d3)

(
−qe−iϕ
−d− d3

)
. (4.5)

Indeed, in the polar coordinates we need only one component of
Berry connection, i.e. Aϕ, and it is simply equals to −1. By inte-
grating it over ϕ, we obtain the answer: in the range 4B < M < 8B,
the Chern number is equal to −1.

The other cases are considered in a similar way, so let us describe
them briefly. In the case 0 < M < 4B, there two new poles appear:
one at kx = 0, ky = ±π, and the other at kx = ±π, ky = 0. One can
perform integral of Berry connection over the contours surrounding
them in a similar way, and obtain that each integral is equal to 1,
and thus the Chern number as a sum of all integrals is equal to −1+
1 + 1 = 1. It has the opposite sign from the previous case. Finally,
in the case M < 0, the point kx,y = 0 also becomes a pole, and
therefore the expression (4.2) has to be modified: since integral of
Berry curvature is equal to the integral of Berry connection around
the boundary of the surface, assuming there are no singularities in
the surface, we have to write the integral of Berry curvature as an
integral of Berry connection over the boundary of the Brillouin zone
plus an integral surrounding the pole. If we perform all calculations,
we obtain that the total integral, and hence Chern number is equal
to zero.

Thus we derived, that the model (4.1) has in total four topological
phases: trivial phases at M < 0 and at M > 8B, a phase with Chern
number 1 at 0 < M < 4B, and also a phase with Chern number −1
at 4B < M < 8B. As we discussed in Sec. 3.4, between different
topological phases, gap closing must occur. Indeed, in our model,
the energy gap closes at M = 0, kx = ky = 0. At M = 4B, the gap
closes at two points: kx = 0, ky = π and kx = π, ky = 0. Finally,
the gap also closes at M = 8B and kx = ky = π. Thus, we conclude
that lattice model has more topological phases, than its continuum
limit.
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4.3 Numerical calculation of Chern number

In this section, we would like to present a possible way of numerical
computation of Chern number on a lattice. From the first sight, this
problem seems to be straightforward. Chern number is defined as
an integral of Berry curvature over the Brillouin zone:

C =
1

2π

∫
dSF , (4.6)

and to compute it on a lattice, we have to discretize it. This, gener-
ally, can be problematic: for example, if our lattice size is ∆k, then
Berry connection can be computed on a lattice with the accuracy
O(∆k), but when we compute Berry curvature, we have to divide
the variation of Berry connection by ∆k again, which can lead to
large uncertainties.

In this section we present the proper way [73, 74] of discretizing
the integral (4.6), which empirically has small uncertainties. The
method is inspired by lattice gauge theory, which we briefly revise
here.

Berry connection is a vector field, which describes evolution of
wavefunction along a given contour. It describes, how wavefunction
is varied under infinitely small shifts:

− i ~A(k) ~dk = 〈ψ(~k)|ψ(~k + ~dk)〉 − 〈ψ(~k)|ψ(~k)〉.

In the case of finite shifts, i.e. on a lattice, this equation can be
replaced by:

〈ψ(~k)|ψ(~k + ∆~k)〉 = e
−i

∆k∫
0

~A(k) ~dk
. (4.7)

We are assuming here, that the wavefunction is normalized: 〈ψ(~k)|ψ(~k)〉 =
1.

Berry curvature can be defined by considering integral of Berry
connection along a closed contour. For example, we can consider a
small square with the sides ∆kx,∆ky, and in such case, the wave-
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function will evolve by a factor of:

exp

−i ∆kx∫
0

Ax(kx, 0)dkx − i
∆ky∫
0

Ay(∆kx, ky)dky

+i

∆kx∫
0

Ax(kx,∆ky)dkx + i

∆y∫
0

Ay(0, ky)dky


It is easy to check, that in the continuum limit, when ∆kx, ∆ky
become infinitely small, this integral gets reduced to the integral of
Berry curvature over the small square:

exp (−iFxy∆kx∆ky) (4.8)

Now we have to construct the numerical method, which makes it
possible to compute Chern number in a lattice model. We do it, by
implementing the equations (4.7 - 4.8). Suppose, we have a lattice
model of fermions, which, for example, can be a model described by
the Hamiltonian (4.1). To perform the numerical computation, we
have to discretize the momentum. After doing it, we obtain a grid
(kx(i), ky(j)). Then, we compute matrix elements, similarly to the
Eq. 4.7:

A1 = 〈ψ(kx, ky)|ψ(kx + ∆kx, ky)〉,
A2 = 〈ψ(kx + ∆kx, ky)|ψ(kx + ∆kx, ky + ∆ky)〉,
A3 = 〈ψ(kx + ∆kx, ky + ∆ky)|ψ(kx + ∆kx, ky + ∆ky)〉,
A4 = 〈ψ(kx, ky + ∆ky)|ψ(kx + ∆kx, ky)〉.

After it, we compute lattice approximation of the Berry curvature
as:

∆Fxy = Im log(A1A2A3A4),

and then obtain the approximate Chern number by summing it over
the grid:

C =
1

2π

∑
kx,Ky

∆Fxy

We introduced here imaginary part of the logarithm of matrix ele-
ments to select the imaginary part under the exponent in Eq. (4.7):
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strictly speaking, the matrix element also has a real part, which has
a higher order of ∆k, and which we are not interested.

We checked explicitly, that this method converges very quickly:
it gives a very good approximation for the lattice size of just about
∼ 20× 20 sites.

4.4 Numerical computation of surface states

In this section, we would like to demonstrate, that the lattice model
can be used to compute numerically energy spectrum, and, partic-
ularly, surface states. As an example, let us consider the model
(4.1).

In Sec. 3.3, we discussed, that pure momentum representation
can only be used to analyze bulk properties of a given model. To
analyze the surface properties, and in particular to find the surface
states, it is essential to consider model in coordinate representation.
On the other hand, the model (4.1) is, in fact, a lattice model, i.e. it
corresponds to discretized coordinates. We can write such discrete
coordinate representation in x direction, while leaving momentum
representation in y direction. In other words, we perform Fourier-
transformation of the model (4.1) in x direction. If we numerate the
lattice sites by indices i, j, this is equivalent to the replacement:

1 → δi,j,

cos(kx) →
δi+1,j + δi,j+1

2
,

sin(kx) →
δi+1,j − δi,j+1

2i
.

Thus, we can write the model Hamiltonian in coordinate repre-
sentation as:

H =Mδi,j + T δi+1,j + T +δi,j+1. (4.9)

We are assuming here, that since a Hamiltonian is a Hermit op-
erator, its matrix elements in front of δi+1,j and δi,j+1 have to be
Hermit conjugate to each other. In the case of the model with the
Hamiltonian (4.1), the matrix elements have the form:

M = σyky + σz(M − 2B(2− cos ky)),

T =
σx
2i

+ σzB.
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Now we can imagine, that our sample is finite in the x direction
- we need it to find the surface states. In other words, we assume,
that the indices i, j run through a finite range of values, e.g. from 1
to N . In this case, we can write the Hamiltonian (4.9) as a matrix
in coordinate space:

H =


M T + 0 . . . 0
T M T + . . . 0
0 T M 0
...

...
0 . . . T M

 (4.10)

We remind, that, in this Hamiltonian, each element M, T is, in
addition, a matrix in momentum space.

To compute the eigenstates of this Hamiltonian, we need to code
explicitly the Eq.(4.10), and then to diagonalize it numerically. This
method is called exact diagonalization, because it is exact after plac-
ing the model on the lattice, and does not involve any further ap-
proximations, contrary to other numerical methods, such as e.g.
DMRG.

Once we performed the diagonalization, we need to split between
the bulk and surface states. We find both kinds of states as eigen-
vectors of the Hamiltonian (4.10), but the difference between two
of them is that surface states are localized on a surface: on a large
lattice, only a few components of the eigenvectors are significantly
different from zero, whereas others are very small. In contrast, bulk
states are distributed in a bulk, i.e. many of their components within
the whole range of coordinates have magnitude of roughly the same
order.

If an eigenvector has components vi, we can distinguish, whether
it is a bulk, or a surface state by computing participation ratio:∑

i

v4
i .

For a normalized bulk state with total N components, each compo-
nent has roughly an order 1/

√
N , and thus participation ratio has

an order of 1/N . In contrast, a surface state has a few components
of order 1, and therefore its participation ratio has also an order of
1 . Thus, bulk and surface states can be distinguished from each
other by computing their participation ratio.
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Finally, for surface states, it may be of interest to distinguish,
whether they are localized on the left, or on the right edge. This
can be done very easily: one just has to take a certain number
of components (e.g. N/3) on the left, and the same amount of
components on the right, and to compare their contribution to the
norm.
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Chapter 5

More complicated examples
of topological materials

5.1 Double Weyl metal

In this section, we consider a slight modification of a Weyl metal
described in Sec. 3.5 - a double Weyl metal. Its difference from a
simple Weyl metal is that it contains Weyl points with topological
charge±2 (as we discussed before, topological charge of conventional
Weyl points is equal to ±1). As previously, we can write the simplest
Hamiltonian of a double Weyl metal, which contains just one pair of
the Weyl points. It happens to be quite similar to the model studied
in the Sec. 3.5:

H =

(
M(kz)−B(k2

x + k2
y) (kx − iky)2

(kx + iky)
2 −M(kz) +B(k2

x + k2
y).

)
. (5.1)

The main difference from simple Weyl metal is that the non-diagonal
terms are quadratic over momentum, in contrast to the linear terms
in the former. As previously, the Weyl points have monopole charge,
and, because of that, they cannot be gapped out by an arbitrary
perturbation. However, there, in principle, exists a perturbation,
which can destroy the double Weyl points without breaking the
monopole charge - that is a perturbation, which splits each double
Weyl point into to simple Weyl points with charge ±1. Thus, to
create a double Weyl metal, we need an additional protection from
splitting.

It happens, that such protection can arise from discrete rotational
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symmetry. More precisely, in the Eq. (5.1), we are assuming, that
the double Weyl points are located along z axis. Now let us sup-
pose, that the solid with the double Weyl points possesses rotational
symmetry along the z axis 1. From the basics of crystallography, it
is known, that rotational symmetry in a crystal is always discrete,
and it can be only 2, 3, 4, 6 -fold. Let us also suppose, that, along
the z axis, i.e. at kx = ky = 0, eigenstates of the Hamiltonian
(5.1) are also eigenvectors of the rotational symmetry operator, and
their eigenvalues are equal to JA,B. Obviously, along the z axis, the
Hamiltonian (5.1) is diagonal, but suppose, that we added to it a
non-diagonal perturbation ∆, thus writing it as:

H0 =

(
m ∆
∆ −m

)
.

Now let us transform it under the rotational symmetry:

H0 →
(
e−iJa 0

0 e−iJb

)(
m ∆
∆ −m

)(
eiJa 0
0 eiJb

)
=

(
m ∆e−i(Ja−Jb)

∆ei(Ja−Jb) −m

)
.

From the last equation, it is evident that, at Ja 6= Jb, such non-
diagonal term would break the rotational symmetry. Thus, we arrive
to our conclusion: double Weyl metal can be realized, if it is pro-
tected by discrete rotational symmetry, i.e. its eigenstates along the
rotation axis are rotational eigenvectors with different eigenvalues.

As we mentioned, while discussing simple Weyl metals, m enter-
ing the Hamiltonian (in our case 5.1), is a function of kz, which is
positive between the Weyl points, and negative outside. The Weyl
points exist, where m changes its sign, i.e. becomes equal to zero.
For this reason, it is convenient to view Weyl metal as a ’stack’ of
2D topological insulators in momentum space, i.e. we consider the
Hamiltonian for a fixed kz as effectively two-dimensional Hamilto-
nian. In the next subsections, we compute Chern number in the
model (5.1) at fixed kz, to verify that its Weyl points, indeed have
charge ±2, and we also compute its surface states.

1Strictly speaking, the Hamiltonians for both simple 3.15 and double Weyl metals 5.1 are
invariant under continuous rotational symmetry along z axis. However, this symmetry can,
in principle, be violated by higher-order corrections to the Hamiltonians, which, as we know,
do not affect the Weyl points
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5.1.1 Chern number in double Weyl metal

In this subsection, we compute Chern number in model (5.1) at fixed
kz. Its derivation is very similar to the case of simple Weyl metal,
discussed in Sec. (4.2).

If we formally try to compute the Chern number, as an integral of
Berry curvature, in the continuum model (5.1), i.e. without placing
it on the lattice, we obtain:

C =
1

2π

∫
d2kFxy =

B√
1 +B2

+ sign(M).

We can see, that the Chern number changes by 2 at the point,
where M changes sign, but in general it is not integer. Thus, the
continuum model makes it possible to correctly find the point of
phase transition, but does not make it possible to describe each
topological phase.

If we place the model on the lattice, our Hamiltonian can be
written as a linear superposition of Pauli matrices: H = diσi, with
the coefficients equal to:

d1 = 2(cos(ky)− cos(kx)),

d2 = 2 sin(kx) sin(ky),

d3 = M − 2B(2− cos(kx)− cos(ky)).

As in the case of usual Weyl metal, we introduced here quadratic
corrections to the M term, to remove copies of the Weyl point at
the edges of the Brillouin zone.

If we perform the same calculation as in the Sec. (4.2), we obtain
that there are three possible cases with different behavior of the
Berry connection A:

M > 8B In this case d3 is positive everywhere. Therefore, ~A is
well-defined and periodic everywhere, which results in C = 0.

0 < M < 8B In this range of points ~A has singularities at (kx, ky) =
(±π,±π), (±π,∓π). Therefore, the integral over the boundary
of the BZ can be transformed to the integral around the point
(π, π), as it is shown on the picture:

51



(−π,−π) (π,−π)

(π, π)(−π, π) (π, π)

The radius of the contour of integration can be taken infinitely
small, therefore we can expand the momentum around the the
singular point: kx,y = π+px,y and, after that, rewrite it in polar
”coordinates”: px ± ipy = pe±iφ. After using these notations,

we can obtain ~Aφ = −2, which results in C = 2.

m < 0 In this case, the Brillouin zone contains two singular points:
(kx, ky) = (π, π) and (0, 0, therefore the Chern number has to
be written as an integral over two contours:

(0, 0)

(π, π)

By using the same method as previously, one can check that the
contributions from these two points exactly cancel each other,
which means that the total Chern number is zero.

Summarizing our results, we obtain that the Chern number is
equal to 2 in the range 0 < M < 8B, and zero otherwise. This
is consistent with the fact, that, in the Hamiltonian (5.1), the gap
closes at the points M = 0 and M = 8B.

5.1.2 Surface states

In this subsection, we present the structure of surface states in the
model (5.1). Since, in the range 0 < M < 8B, Chern number is
equal to 2, we expect two surface states of the same handedness
on each surface. To compute them explicitly, we follow the same
method, as in Sec. 3.3.

As in the case of usual Weyl Hamiltonian, we consider our model
in the half-space x > 0 and look for the solution Ψ satisfying the
boundary conditions Ψ |x=0= 0 and Ψ |x→∞= 0. This implies that
the eigenstate of the Hamiltonian has to have the form:

Ψ =
(
e−λ1x − e−λ2x

)
ψ(ky, λ1, λ2), (5.2)
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which, in turn, implies the condition:

(H(λ1)−H(λ2)) Ψ = 0.

By applying this condition to the Hamiltonian (5.1), we obtain the
constraint on λ1 + λ2 and the form of eigenvector:

λ1 + λ2

2
=

|ky|√
1 +B2

Ψ =

(
λ1+λ2

2
− ky

B (λ2+λ2)
2

)
This state is an eigenstate of the Hamiltonian (5.1) if λ1,2 has an
expression:

λ1,2 =
|ky| ±

√
B(k2

yB −M)
√

1 +B2
,

which, in turn, means that the state has the form:

Ψ =

(
1− sign(ky)

√
1 +B2

B

)
and its energy is:

E = sign(ky)
(2k2

yB −M)
√

1 +B2
.

One can try to analyze the range of the parameters M , B, ky,
when the solution is well-defined. Indeed, the solution has to satisfy
the conditions Reλ1,2 > 0, which implies that the solution does
not exist, when B(k2

yB −M) > k2
y, which, in turn, means that the

solution is not well-defined when:
|B| > 1

k2
y >

mB

B2 − 1
|B| < 1

k2
y <

−mB
1−B2

These conditions result the energy spectrum have one of the forms
showed on the Fig. 5.1. The edge spectrum always contains two
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branches, one of which emerges from the valence band and the other
emerges from the conduction band. One can also see that configura-
tions at M having different signs are topologically distinct, i.e. they
cannot be smoothly deformed one into another. If one asks, whether
the edge modes are topologically stable, the answer is positive in the
cases of M > 0, B > 1 and M < 0, B < −1: the states are topolog-
ically stable because they connect bands separated by energy gap.
However, the answer is not clear in the other cases: our analysis of
the model shows that the arcs can emerge from one band and not
cross the other, but strictly speaking, the picture may change if one
includes higher powers of momentum in the Hamiltonian (5.1). In-
deed, the corrections can shift the arc to make it either topological
(connect two bands) or non-topological (connect two points within
one band).

Thus, we conclude that the continuum model makes it possible to
determine the number of surface states, their handedness, and the
points, where they emerge. However, the continuum model does not
make it possible to determine, whether the surface states are actually
topological, i.e. if they connect the different bands. For this reason,
we also analyze our model in a different way. Specifically, we use
the results of the Ref. [75] about general conditions on existence of
surface states in a lattice model. When we use these conditions, we
write them separately in the cases of small and large B. Also, to
get more clear picture, we compute the surface states numerically
on the lattice model (5.12), using the method described in Sec. 4.4.
Our results look as following:

|B| < 1 In this case, the surface states must satisfy the condition:

− 1 +
B(M − 8B)

2(1−B2)
< cos(ky) < 1 +

MB

2(1−B2)
, (5.3)

which at positive B does not constrain ky, if 0 < M < 8B.
In other words, in the range of parameters where the Chern
number is non-zero, edge state exists at any ky. By computing
them numerically (see Fig. 5.2a), one can see that there are
precisely two edge states at each side of the sample, which are
topological and cross the energy gap, thus confirming that the
number of topological edge states is equal to the Chern number.

At M = 0 or M = 8B the bulk gap closes, and the topological
phase transition occurs. Outside of the range of parameters
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with non-zero Chern number, the edge states still may exist.
However, numerical calculation demonstrates that they are no
more topological, which is again consistent with the fact that
the Chern number is zero. An example of such state is shown

on the Fig. 5.2b. These states disappear at M = −4(1−B2)
B

and

M = 8B + 4(1−B2)
B

, and since they are non-topological, they
disappear without phase transition.

|B| > 1 In this case, the edge states exist if

2B2 − 2−MB

2(B2 − 1)
< cos(ky) <

6B2 + 2−MB

2(B2 − 1)
.

This implies that, in the ”topological” range of parameters,
edge states exist at any ky, when:

4(B2 − 1)

B
< M <

4(B2 + 1)

B
.

Outside this range, the topological edge states still connect two
bands, but they range not through all values of ky (see Fig.
5.2c). After passing the ”critical values” M = 0, 8B, the edge
states disappear.

Thus, we showed that the lattice model (5.12) has two regimes:
topological at 0 < M < 8B, and non-topological otherwise. In the
topological regime, the model’s Chern number is 2, and it always
possesses two topological edge states connecting two bands through
the gap, which is consistent with Laughlin argument (see Sec.3.2).
In the non-topological regime, the model’s Chern number is zero. It
may not possess edge states, or it may possess edge states, which
are not topological and do not pass through the energy gap, thus
having no effect on Hall conductivity, if the Fermi level lies within
the gap.

We note, that the structure of edge states in the lattice model is
consistent with the continuum model (Eq. 5.1), assuming that the
latter holds only at small ky. In conclusion, we obtain that double
Weyl point separates areas with trivial and non-trivial topological
properties, and analysis near the WP makes it possible to show
topological phase transition between them. However, to establish
the topological nature of each area, it is not sufficient to analize
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(a) m > 0, B > 1

No edge states

(b) m < 0, B > 1

(c) m > 0, 0 < B < 1 (d) m < 0, 0 < B < 1

(e) m > 0, −1 < B < 0 (f) m < 0, −1 < B < 0

No edge states

(g) m > 0, B < −1 (h) m < 0, B < −1

Figure 5.1: Sketches of possible energy spectra of the Hamiltonian 5.1. Bulk
states are showed by blue, and edge states at x > 0 are showed by red.
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Figure 5.2: An example of the band structure with topological (left) and non-
topological (right) edge states. The parameters are: m = 1.0, B = 0.5 (top
left); m = 4.5, B = 0.5 (top right); m = 0.5, B = 1.5 (bottom left).
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only surrounding of the WP: one has to take into account the full
periodic BZ.
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5.2 Luttinger model

In this section, we consider a more complicated example, where
we can compute surface states analytically. We consider Luttinger
model, which was introduced a long time ago [44] in the context of
physics of semiconductors. The Luttinger model is quite general,
and it is used to describe electrons in cubic lattices. Specifically,
it takes into account three symmetries: time reversal, inversion and
cubic crystalline symmetry. The former two of them result in double
degeneracy. Luttinger model describes two different bands: conduc-
tion, and valence, and thus it has in total, four degrees of freedom.
In general, the conduction and valence band can be decoupled from
each other, but the purpose of Luttinger model is to include irre-
ducible representations of the cubic group. It turns out [44], that
the most general quadratic Hamiltonian satisfying these symmetries
contains just a few kinds of terms:

H =
γ1k

2

2m
+ E (kykzΓ1 + kxkzΓ2 + kxkyΓ3)

+C

(
(k2
x − k2

y)Γ4 +
1√
3

(2k2
z − k2

x − k2
y)Γ5

)
. (5.4)

This Hamiltonian describes an electron with spin 3/2, For this rea-
son, it is convenient to introduce spin operators:

Sx =


0

√
3/2 0 0√

3/2 0 1 0

0 1 0
√

3/2

0 0
√

3/2 0

 ,

Sy =


0 −i

√
3/2 0 0

i
√

3/2 0 −i 0

0 i 0 −i
√

3/2

0 0 i
√

3/2 0

 ,

Sz =


3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2

 , (5.5)
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and write the Γ matrices [46] in terms of them:

Γ1 =
1√
3

(SySz + SzSy),

Γ2 =
1√
3

(SzSx + SxSz),

Γ3 =
1√
3

(SxSy + SySx),

Γ4 =
1√
3

(S2
x − S2

y),

Γ5 = S2
z −

5

4
.

One can check, that the Γ matrices written is this way, indeed satisfy
the correct commutation relations {Γi,Γj} = 2δij. This fact makes it
possible to immediately write the energy spectrum of the Luttinger
model :

E =
γ1k

2

2m
±

√
4C2

3

(
k4
x + k4

y + k4
z

)
+

(
E2 − 4C2

3

)(
k2
yk

2
z + k2

xk
2
z + k2

xk
2
y

)
.

Due to time reversal and inversion symmetries, each band is dou-
ble degenerate, and thus the total spectrum of the four component
model contains two energy levels.

In the special case 2C = ±E, the Luttinger model becomes
isotropic: it is invariant not only under cubic symmetry, but also un-
der continuous rotational symmetry. Two cases of ± signs are equiv-
alent: they are obtained from each other through change of signs of
the Γ matrices, and therefore, they can be canonically transformed
into each other. In the isotropic Luttinger model, it is convenient
to switch the notations by introducing:

γ2 =
2Cm√

3
.

This makes it possible to write the Luttinger Hamiltonian as:

H =
γ1k

2

2m
+
γ2

m
daΓa, (5.6)
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where da are five d-wave functions in momentum space [46]:

d1 = ±
√

3kykz,

d2 = ±
√

3kxkz,

d3 = ±
√

3kxky,

d4 =

√
3

2
(k2
x − k2

y),

d5 =
1

2
(2k2

z − kx − k2
y).

The expression for its energies becomes very simple:

E =
(γ1 ± 2γ2)k2

2m
. (5.7)

Thus, the Luttinger model contains two double degenerate bands,
which both have quadratic dispersion. The bands ’touch’ each other
at the point k = 0. In the case γ1 > 2γ2, both bands disperse in the
same direction, and the band with the − sign has larger effective
mass. For this reason, the lower band is sometimes called as ’heavy
hole’, whereas the higher is called ’light hole’.

5.2.1 Luttinger model in magnetic field

It is interesting to study Luttinger model in the presence of Zeeman
magnetic field [48]. Physically, this situation may occur, for exam-
ple, in magnetically doped semiconductors [45]. More recently, there
were attempts to use Luttinger model to describe other materials,
such as e.g. pyrochlore iridates [47, 49].

The simplest way to study the effect of magnetic field on the
Luttinger model, is to introduce Zeeman field in z direction:

H1 = −bSz. (5.8)

Here Sz is a spin matrix in z direction, as it was introduced in Eq.
(5.5). Evidently, such Zeeman field breaks time reversal symmetry,
and thus splits double degeneracy of the bands. General analytical
solution of the total Hamiltonian containing both the terms (5.4)
and (5.8) is unknown, but it can be easily solved in the special case
along the z direction, i.e. at kx = ky = 0. Indeed, in the latter case,
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the Hamiltonian just becomes diagonal:

H(kx = ky = 0)

=


(γ1+2γ2)k2

z

2m
− 3b

2
0 0 0

0 (γ1−2γ2)k2
z

2m
− b

2
0 0

0 0 (γ1−2γ2)k2
z

2m
+ b

2
0

0 0 0 (γ1+2γ2)k2
z

2m
+ 3b

2

 .

(5.9)

Schematic plot of its bands is shown on the Fig. 5.3. Indeed, there
are four non-degenerate bands, which cross each other. By comput-
ing perturbation to the Hamiltonian (5.9) at small transverse mo-
menta, one can see, that these crossings are, indeed, Weyl points. In
total, the model has four Weyl points: two of them are simple, and
the other two are double. We checked the Chern numbers of each
band by computing them numerically. They proved to be consistent
with the charges of the Weyl points, and their values are also shown
on the Fig. 5.3.

It is interesting to note, that our model model has two regimes,
which depend on the relative sign of C and E in the Eq. (5.4).
In both of them, the simple (or linear) Weyl points have the same
charges, but the double (or quadratic) Weyl points have the charges
of opposite signs.

5.2.2 Surface states in Luttinger model

In this section, we compute surface states in the Luttinger model.
As we mentioned previously, the Luttinger model (without magnetic
field) possesses two double degenerate bands with the spectrum sat-
isfying the Eq. 5.7. If we consider the simplest example, when γ1 is
positive, there are two possible cases. In the case γ1 > 2|γ2|, both
bands disperse in the same direction, whereas in the case γ1 < 2|γ2|,
the bands disperse in the opposite directions. Since, due to double
degeneracy, the bands in free Luttinger model do not have non-
trivial Chern invariants, we expect the surface states to be non-
topological. However, we find that they exist exactly in the case,
when the bands disperse in the opposite directions. We think that
simple way of explaining it, is that surface states connect the gap,
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Figure 5.3: Band structure of the Luttinger model with Zeeman field: schematic

view of the bands at kx = ky = 0 and C = −
√
3
4 , b = 0.5. E = −

√
3/2 (left) and

E =
√

3/2 (right)). The numbers shown on the left picture, are Chern numbers
of each band.
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which exist at k 6= 0, when the bands disperse in the opposite direc-
tions, whereas in the opposite case, there is no energy gap present.

We managed to compute the surface states in the Luttinger model
analytically, by using the method from Sec. 3.3. The calculation
is very long, but we just mention, that we performed it by making
change of variables:

x =

√
2γ2 − γ1

2γ2 + γ1

,

y =
ky√
k2
y + k2

z

,

z =
γ2(k2

y + k2
z)

m

µ =
λ√

k2
y + k2

z

.

After long, but straightforward calculations, we found the following
results. The expressions for the surface states (we parametrize them
by ±) are:

v(±) =
1

2
√

2(x2 + 1)


i
√

1± y(2y −
√

3x∓ 1)

∓
√

1∓ y(−2
√

3y + x∓
√

3)

i
√

1± y(2
√

3y + x∓
√

3)

±
√

1∓ y(2y +
√

3x± 1)

 .

(5.10)

Their energies are:

E± =
k2
√

3

4m

(√
3γ1 ∓

√
4γ2

2 − γ2
1

)
and penetration depth parameters λ1, λ2 are:

λ1 =

√
k2
y + k2

z

2

(√
3(2γ2 − γ1)

2γ2 + γ1

± 1

)
,

λ2 =

√
k2
y + k2

z

2

(√
3(2γ2 + γ1)

2γ2 − γ1

∓ 1

)
.
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By analyzing them, one can find that the model has edge states,
if 2|γ2| > |γ1|, i.e. when there exist energy gap between bulk bands.
More specifically, there are three cases:

γ2 < γ1 < 2γ2 Only v(+) is well-defined and has positive energy.

−γ2 < γ1 < γ2 Both v(±) are well-defined. v(+) has negative en-
ergy and v(−) has positive energy.

−2γ2 < γ1 < γ2 Only v(−) is well-defined and its energy is nega-
tive.

Thus, we have found, that the Luttinger model has two transi-
tions: one of them is at γ1 = ±2γ2, where one of the bulk bands
changes its curvature, and simultaneously, one surface band appears.
The other transition occurs at γ1 = ±γ2, where the second surface
band appears as flat. We note, that, to best of our understanding,
surface states in the Luttinger model without magnetic field are not
topologically protected.

We have also repeated the same calculation numerically on the
lattice, and we obtained a very similar picture. We present it on the
Fig. 5.4.

Finally, we note that while writing this manuscript, we became
aware of the work [76], where surface states in Luttinger model have
also been computed. Contrary to our view, that work presented an
argument, that the surface states may be topological in a differ-
ent sense from our reasoning. We are interested in exploring this
question further.

5.2.3 Surface states in Luttinger model with magnetic field

In the presence of Zeeman magnetic field, the band structure of
the Luttinger model changes. As we discussed in Sec. 5.2.1, there
appears four non-degenerate bands, which contain two pairs of Weyl
points: one pair has the charge ±1, and the other ±2.

In general, at non-zero magnetic field, the energy spectrum can-
not be found analytically, and so are the surface states. However,
there exists an interesting special case, when the surface states can
be found analytically, which is kz = 0. In this special case, the
Luttinger Hamiltonian (5.6) decouples into two 2× 2 Hamiltonians
describing the Sz = 3/2,−1/2 and Sz = 1/2,−3/2 bands, which
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Figure 5.4: Dispersion structure of the Luttinger model at zero magnetic field.
The parameters are γ2 = 1.0, m = 1.0, kz = 0.0. The values of γ1 are: 0.0
(5.4a); 0.5 (5.4b); 1.0 (5.4c); 1.5 (5.4d).
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have the following form:

H3/2,−1/2 =
γ1k

2

2m
− b

2

+
γ2

m

[
(
k2
x + k2

y

2
− bm

γ2

)σ3 +

√
3

2
(k2
y − k2

x)σx −
√

3kxkyσy

]
,

H1/2,−3/2 =
γ1k

2

2m
+
b

2

+
γ2

m

[
(−
k2
x + k2

y

2
− bm

γ2

)σ3 +

√
3

2
(k2
y − k2

x)σx −
√

3kxkyσy

]
.

These Hamiltonians can be viewed as ”tilted” models of double Weyl

points, i.e. models deformed by the term γ1k2

2m
. Their surface states

can be found analytically in a similar way to the Sec. 5.1.2.

H1/2,−3/2

We start our analysis from the Hamiltonian H1/2,−3/2, which has two
surface state solutions. The first of them has the form:

v(+) |y=−1=

(
x+
√

3

−
√

3x+ 1

)
.

Its energy is equal to:

E = −z
√

3(x+
√

3)(
√

3x− 1)

2(x2 + 1)
− bx(

√
3− x)

1 + x2

and it is not well-defined, when{
z < − by(x+

√
3)(
√

3x−1)

(
√

3−x)(
√

3x+1)

− 1√
3
< x <

√
3{

z > − by(x+
√

3)(
√

3x−1)

(
√

3−x)(
√

3x+1)

x >
√

3 or x < − 1√
3

The second solution has the form:

v(−) |y=1=

(
−x+

√
3√

3x+ 1

)
,

67



its energy is:

E =
z
√

3(
√

3x+ 1)(
√

3− x)

2(x2 + 1)
+
bx(x+

√
3)

1 + x2

and it is not well-defined, when{
z > − by(x−

√
3)(
√

3x+1)

(
√

3+x)(
√

3x−1)

−
√

3 < x < 1√
3{

z < − by(x−
√

3)(
√

3x+1)

(
√

3+x)(
√

3x−1)

x > 1√
3

or x < −
√

3

By analyzing these conditions, one can find that the surface states
have the following behavior. In the range −γ2 < γ1 < γ2, (i.e. at
1/
√

3 < x <
√

3) both solutions are well-defined. The solution
at ky > 0 always has positive energy and the solution at ky < 0
always has negative energy. Both energies are positively inclined.
In the limit γ1 → γ2, the mode at ky > 0 disappears, but the
mode at ky < 0 becomes flat. As γ1 increases further, the mode at
ky < 0 ”shrinks” until, at γ1 = 2γ2, it disappears. One can find
numerically, that the bands have zero CN, and therefore the surface
states are expected to be non-topological. This can be confirmed by
numerical calculation (since the analytical calculation captures only
the behavior at small ky!), which results are shown on Fig. 5.5.

H3/2,−1/2

The Hamiltonian H3/2,−1/2 also has two surface state solutions, sim-
ilarly to H1/2,−3/2. The first of them has the form:

v(+) |y=1=

(
1−
√

3x√
3 + x

)
and energy

E = −z
√

3(x+
√

3)(
√

3x− 1)

2(x2 + 1)
+
bx(
√

3− x)

x2 + 1
.
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Figure 5.5: A few examples of non-topological edge states of H1/2,−3/2. The
parameters are γ2 = 1.0, m = 1.0, b = 0.9. The values of γ1 are: 0.2 (5.5a); 1.0
(5.5b); 1.4 (5.5c); 2.0 (5.5d).
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It is not well-defined if:{
z < − b(x+

√
3)(
√

3x−1)

(
√

3−x)(
√

3x+1)

− 1√
3
< x <

√
3{

z > − b(x+
√

3)(
√

3x−1)

(
√

3−x)(
√

3x+1)

x >
√

3 or x < − 1√
3

The second solution has the form:

v(−) |y=−1=

( √
3x+ 1

−x+
√

3

)
,

energy:

E =
z
√

3(
√

3x+ 1)(
√

3− x)

2(x2 + 1)
− bx(x+

√
3)

x2 + 1

and it is not well-defined when:{
z > b(x−

√
3)(
√

3x+1)

(x+
√

3)(
√

3x−1)

−
√

3 < x < 1√
3{

z < b(x−
√

3)(
√

3x+1)

(x+
√

3)(
√

3x−1)

x < −
√

3 or x > 1√
3

By analyzing the conditions, when the solutions are well-defined,
one can find that their behavior shares similar properties to the
previous model. Indeed, at small γ1, both modes are well-defined
in the whole range of z. In the limit γ1 = γ2, the mode v(+) |y=1

forms flat band, and as γ1 increases further, the range of momenta,
where the modes exist, becomes more narrow. At γ1 = 2γ2, the edge
modes disappear.

However, in contrast to the model, studied in the previous sec-
tion, this model is topologically non-trivial. Its CN is equal 2, and
as one can confirm by the numerical calculations (see Fig. 5.6), its
surface modes are topological. Therefore, an important question
is: how topologically non-trivial states can disappear under smooth
change of one parameter γ1, given that CN does not change? This
question becomes even more interesting if one tries to compute nu-
merically the bulk band structure of the lattice model: the bulk gap
does not close, as one can see from Fig. 5.7. The answer is that,
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even though the gap in the bulk spectrum does not close, the pro-
jected bands still ”touch” each other at γ1 = 2γ2, and as the modes
”shrink” by approaching this limit, they can disappear. Thus we
obtain an important physical result: to ”destroy” topological edge
states it is not necessary to close bulk gap, it is sufficient to close
gap between projected bands. This result does not contradict Laugh-
lin argument for existence of edge states, because even though the
bulk bands are separated from each other, any Fermi level would
always cross them. Therefore the system is not insulating, and thus
does not require edge states to have non zero anomalous Hall con-
ductivity.

We would like to mention, that, besides kz = 0, we have found
another special case, when the surface states in Luttinger model can
be found analytically. That is a special condition, when

y =
z2(3− x2) + b2x2

2
√

3bxz
.

In the latter case, the solution has the form:
i
√
x2(z + b)2 − 3z2((3− x2)z − 2bx2)

−
√

3
√

3z2 − x2(z − b)2((3− x2)z − 2bx2)

i
√

3
√
x2(z + b)2 − 3z2((3− x2)z + 2bx2)

−
√

3z2 − x2(z − b)2((3− x2)z + 2bx2)

 ,

and the penetration depth parameters are:

λ1,2 =
1

4xz

(√
3z(x2 + 1)±

√
4b2x4 − z2(x2 − 3)2

)
.

It also has remarkably simple expression for energy

E = − b2x2

2z(x2 + 1)
= −b

2m(2γ2 − γ1)

8γ2
2(k2

y + k2
z)
.

However, we do not know the physical reasons explaining why this
solution is special.

Finally, we can find the spectrum (including the surface states)
in the Luttinger model numerically by placing it on the lattice, and
exploring their evolution at different kz. We plot numerically com-
puted surface states on the Fig. 5.8. As expected, at kz = 0.0
(see Fig. 5.8a), the plot for the Luttinger model is a superposi-
tion of plots for H3/2,−1/2 and H1/2,−3/2. One can notice that, at
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ky = 0, the lowest band of H3/2,−1/2 has lower energy than the one
of H1/2,−3/2, and therefore, the topological states of H3/2,−1/2 enter
inside the bulk structure of H1/2,−3/2. However, as kz increases, the
topological states evolve, so that, sufficiently away from kz = 0, they
end at the verge of the bulk band structure (see Fig. 5.8b, 5.8c).
The presence of linear Weyl points does not affect the surface states,
as one can see from Fig. 5.8d, 5.8e. This is expected, because the
linear Weyl points are located inside the bulk spectrum: there is no
energy gap in the projected band structure near them. In contrast,
after passing through the quadratic Weyl points, the surface states
transform from topological to non-topological (see Fig. 5.8f), which
is consistent with the fact that, at quadratic Weyl point, two gapped
bands touch each other.

Thus, surface state structure of the Luttinger model can be sum-
marized as follows: it has surface states, if there exists a gap between
the projected bands. At zero Zeeman field, it may have one or two
pairs of surface states, which are not topologically protected. At
non-zero Zeeman field, the Luttinger model still has non-topological
surface states far away from the Weyl points, but between the
quadratic Weyl points, it always has two pairs of topological sur-
face states. This is consistent with the fact that the total CN of the
bands lying below the energy gap is 0 outside of the quadratic Weyl
points, and 2 between them. The presence of additional linear Weyl
point does not affect the topological structure of the surface state
spectrum, because in the projected band spectrum, the Weyl points
lie inside the bulk gap.

5.3 Transitions between different topological phases

In this section, we briefly describe a few possible ideas about tran-
sitions between different topological phases. In the Sec. 3.4, we
introduced one well-known example of such transition: transition
between normal and topological insulator occurs through gap clos-
ing, and thus leads to the formation of a new critical phase, which
is a Dirac metal. In this section, we consider examples of phase
transitions between different phases involving Weyl metals.

Let us describe one possible example of such transition. Consider
Weyl metal with one pair of spatially separated Weyl points. As we
discussed previously, Chern number, as an integral over the plane
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Figure 5.6: Topological edge states of H3/2,−1/2. The parameters are γ2 = 1.0,
m = 1.0, b = 0.9. The values of γ1 are: 0.6 (5.6a); 1.0 (5.6b); 1.6 (5.6c); 2.0
(5.6d).
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Figure 5.8: Full surface states structure of the Luttinger model with Zeeman
field at γ1 = 0.5, γ2 = 1.0, m = 1.0, b = 0.9. The values of kz are: 0.0 (5.8a),
0.1 (5.8a), 0.5 (5.8c), 0.7 (5.8d), 0.9 (5.8e), 1.1 (5.8a).
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perpendicular to the spatial separation of the Weyl points, is equal
to zero outside the WP, and a non-zero integer, if the plane lies
between them. Now let us consider a smooth change of parameters,
such that the Weyl points change the signs of their charges. The
fact, that they change their charges implies, that the integral of
Berry curvature taken between the Weyl points, also changes. As
we discussed, this can occur through gap closing at every plane,
where the integral of Berry curvature changes. Thus, change of
signs of the Weyl points would imply gap closing in the whole range
between them.

Let us show it, using one specific example of a double Weyl metal.
The most general Hamiltonian of double Weyl metal has the form:

H =

(
m(kz, k

2
⊥) ak2

+ + bk2
−

ak2
− + bk2

+ −m(kz, k
2
⊥)

)
, (5.11)

where we have introduced k± = kx ± iky. As it was pointed out in
Ref. [24], this Hamiltonian describes double Weyl point with the
charge 2sign(|a| − |b|). This means that the charge is different in
the cases |a| > |b| or |a| < |b|. Now, let us ask a question: what
happens in the transition point a = b?

For concreteness, we place the model on the lattice, thus rewriting
the effective Hamiltonian as:

H =

(
m(k) A+

A −m(k)

)
, (5.12)

where, for shortness of notations, we have introduced

m(k) = M(kz)− 2B(2− cos(kx)− cos(ky)),

A = 2(a+ b)(cos(ky)− cos(kx))− 2i(a− b) sin(kx) sin(ky).

For simplicity, we assume M,B, a, b > 0. The model possesses Weyl
points at (kx, ky,M) = (0, 0, 0) and (π, π, 8B). Chern numbers in
xy planes are zero at M < 0 or M > 8B, and are equal to ±2 at
0 < M < 8B. Since the Chern number changes, as a − b changes
sign, one can expect that, at a = b, energy gap has to close in the
whole range 0 < M < 8B. To see it explicitly, we write general
expression for the energy:

E2 = (m− 2B(2− cos(kx)− cos(ky)))
2

+4(a+ b)2(cos(ky)− cos(kx))
2

+4(a− b)2 sin2(kx) sin2(ky)
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One can see, that in the case a = b, the energy gap closes at

cos(kx) = cos(ky) = 1− m

4B
.

Thus we conclude: if, under smooth change of parameters, Weyl
points change their charges, then, at the critical point, there exist
energy crossing, which connects them. In the considered case, this
crossing has the shape of two ’glued’ rings, consistently with C4 ro-
tational symmetry of the Hamiltonian (5.12). We note, that within
our model, it is not clear, how the critical point a = b can be realized
physically, but, in principle, these ’tied’ rings may form a new state
of matter. However, there also exists a different, and more realistic
model [77], where critical point between two Weyl points forms one
Weyl ring.

5.3.1 Transitions between different topological phases in
Luttinger model

It is interesting to study possible transitions between different topo-
logical phases in the Luttinger model. If we look at the anisotropic
Luttinger model without magnetic field (see Eq. 5.4), we can see
that, in general, it has two double degenerate bands, but in the spe-
cial cases of C = 0, or E = 0, four-fold degeneracies appear. In
particular, at E = 0, there are such degeneracies at k2

x = k2
y = k2

z ,
and in the case C = 0, there are degeneracies at kx = ky = 0,
kx = kz = 0, and ky = kz = 0.

Extra degeneracies also happen in the Luttinger model with non-
zero magnetic field. Indeed, as we discussed in Sec. 5.2.1, the model
possesses four Weyl points, and as C,E change their signs, the signs
of monopole charges change as well. Thus, in the cases of zero C or
E, the model has to have additional degeneracies. We would like to
look at them at more details.
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E = 0

In this limit, energy spectrum can be found exactly:

√
3

C
E−1/2,3/2 = −

√
3b

2C
±

√√√√(2k2
z − k2

x − k2
y −
√

3b

C

)2

+ 3
(
k2
x − k2

y

)2
,

√
3

C
E−3/2,1/2 =

√
3b

2C
±

√√√√(2k2
z − k2

x − k2
y +

√
3b

C

)2

+ 3
(
k2
x − k2

y

)2
.

From these expressions, one can find that the degeneracies occur
in the following cases:

E3/2 = E1/2 . Two-dimensional degeneracy with the equation

k2
z =

k2
x + k2

y +
√

(k2
x − k2

y)
2 + 3b2

4C2

2

It starts at the linear Weyl point, and proceeds to the increasing
kz. Along this degeneracy, the energy is equal to:

E = − C√
3

√
4(k2

x − k2
y)

2 +
3b2

C2
.

E3/2 = E−1/2 . One-dimensional degeneracy{
k2
x = k2

y

k2
z = k2

x +
√

3b
2C

It consists of four lines emerging from the quadratic Weyl point.

The energy along these lines is constant and equal to
√

3
C
E =

−
√

3b
2C

.

E1/2 = E−3/2 : One-dimensional degeneracy{
k2
x = k2

y

k2
z = k2

x −
√

3b
2C

Four lines emerging from the new Weyl point located at k2
x =

k2
y =

√
3b

2C
, kz = 0. This new Weyl point exists only at E = 0.
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E−3/2 = E−1/2 : Two-dimensional degeneracy with the equation

k2
z =

k2
x + k2

y −
√

(k2
x − k2

y)
2 + 3b2

4C2

2
.

This two-dimensional degeneracy also appears only at suffi-
ciently large kx, ky and exists only at E = 0.

C=0

At C = 0, the Hamiltonian can be diagonalized analytically, and
the resulting energies are:

E = ±
√

5b2

4
+ E2(k2

xk
2
y + k2

xk
2
z + k2

yk
2
z)±

√
b4 + b2E2k2

xk
2
y + 4b2E2k2

z(k
2
x + k2

y).

One can see that, in this case, the degeneracies having zero energy,
occur (up to interchange kx ↔ ky) at{

|kxkz| =
√

3b
2E

ky = 0

Thus, we have shown that studying critical points between phases
of different topological metals can lead to many new exotic phases
with degeneracies of different dimensions. As for now, we are not
familiar, how these phases can be stabilized, e.g. how C or E in the
Luttinger model can be tuned to zero, but we believe that it might
be of interest to explore it further.

5.4 Multilayers of Weyl metal

In this section, we would like to discuss band structure that can
arise in a multilayer containing Weyl metals. To demonstrate, why
it is interesting, we briefly remind an idea of topological/normal
insulator (see Sec. 3.6): since each topological or normal layer is in a
different topological phase, surface states appear at their interfaces.
But, since, each layer is thin, these surface states can tunnel between
the different interfaces, thus forming effectively three-dimensional
states, which can form new states of matter.
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5.4.1 Two Weyl metals with oppositely separated Weyl
points

We would like to explore, what may happen, if the multilayer is
made from Weyl metals. For example, it can be Weyl metal/normal
insulator multilayer, or a multilayer formed from two different kinds
of Weyl metals. A specific example, that we consider, is the follow-
ing: suppose that the multilayer is formed from two Weyl metals,
in such a way that, in each layer, the Weyl points are separated in
the direction perpendicular to the growth direction. Also suppose,
that the Weyl points in the neighboring layers are separated in the
opposite directions (see Fig. 5.9).

+

−

−

+

+

−

−

+

+

−

−

+

x

kz

Figure 5.9: Multilayer formed by two Weyl metals. The picture is drawn in
mixed representation: coordinate in the growth direction (horizontal), and mo-
mentum in the direction of Weyl points separation (vertical). Surface states are
shown in green.

As we discussed before, each layer of Weyl metal contains chi-
ral surface states, so that surface states localized on the opposite
surfaces have the opposite chiralities. In this example, at each in-
terface, surface states arising from two neighboring layers have the
same chirality. However, surface states from different surfaces can
tunnel between each other. Thus, we expect the resulting energy
spectrum to be superposition of surface states from different sur-
faces.

To find the energy spectrum, we assume that the layer is grown in
the x direction, but the Weyl points are separated in the z direction.
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We write the Hamiltonian as:

H =



(
m(kz)−B(k̂x

2
+ k2

y) vF (k̂x − iky)
vF (k̂x + iky) −m(kz) +B(k̂x

2
+ k2

y).

)
odd layer(

m(kz)−B(k̂x
2

+ k2
y) vF (k̂x + iky)

vF (k̂x − iky) −m(kz) +B(k̂x
2

+ k2
y).

)
even layer

Here we introduce the ˆ symbol above kx to emphasize that it is
an operator, which acts in coordinate representation, whereas ky,z
are written in the momentum representation. This Hamiltonian
accounts for the fact that the Weyl points in each layer are separated
in the opposite directions, but by the same distance, exactly as
shown on the Fig. 5.9.

We find spectrum of this model numerically by placing it on a
lattice in x direction, and present our findings on the Fig. 5.10. We
obtain two main features: first, we find surface states localized at
the boundary of the whole sample, which persist in the multilayer.
Second, the surface states from all other interfaces get mixed with
each other, thus forming effectively bulk states. Surprisingly, we find
that the dispersion spectrum of such states is significantly different
from the spectrum of an isolated layer, but the main feature here,
is that these states are inside the bulk gap of each layer. They look
almost as if the connected the conduction and valence bands, but
a more detailed calculation (the same as presented on the Fig. 5.9,
but with higher resolution) shows that they are hybridized. Thus
we can say that multilayer of two Weyl metals is a way to create
three dimensional states with a very narrow gap, almost like Dirac
electrons. For completeness, we have also plotted profiles of these in-
gap states, which confirm that they are superposition of the surface
states from each layer. The profiles look like a Bloch wave formed
by the surface states from each interface, and we present them on
the Fig. 5.11.

5.4.2 Weyl metal/normal insulator multilayer

Similarly to the previous case, we can consider a multilayer formed
by Weyl metal and a normal insulator. We write the Hamiltonian
in a very similar way, but with the only difference that allow m to
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Figure 5.10: Dispersion structure in a multilayer of two Weyl metals. The
parameters for both layers are: m = 2.0, B = 1.0, vF = 1.0, the number of sites
for each odd layer is 4, and for each even layer is 3. The number of bilayers is 8
(9 odd layers and 8 even layers). Blue color refers to bulk states; green: states
localized on the left edge; red: states localized on the right edge

be different at odd/even layers:

H =



(
m1 −B(k̂x

2
+ k2

y) vF1(k̂x − iky)
vF1(k̂x + iky) −m1 +B(k̂x

2
+ k2

y).

)
,

at − L < x < 0, L < x < 2L . . .(
m2 −B(k̂x

2
+ k2

y) vF2(k̂x + iky)

vF2(k̂x − iky) −m2 +B(k̂x
2

+ k2
y).

)
,

at 0 < x < L, 2L < x < 3L . . .

(5.13)

Specifically, we assume that m1 is positive, whereas m2 is negative.
Strictly speaking, this Hamiltonian may describe WM-NI multilayer,
or a multilayer formed by two Weyl metals with different separation
between the Weyl points, and in the range of kz, where the odd
layers are in topologically non-trivial phase, whereas the even layers
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(a) State with E = -0.34527 (b) State with E = 0.345276

Figure 5.11: Profiles of two in-gap states from the Fig. 5.10 at ky = 1.0

are topologically trivial.

We find that the resulting energy spectrum is somewhat simpler,
than in the case, considered in Sec. 5.4.1. We present it on the
Fig. 5.12. We can see, that there still exist surface states localized
at the boundary of the sample, but the states localized at all other
interfaces get hybridized. In contrast to the case, considered in the
Sec. 5.4.1, hybridization affects the energy spectrum insignificantly:
the states only obtain a tiny gap, which is not clearly visible on the
Fig. 5.12. Thus, our conclusion remains: a multilayer containing
Weyl metal is a way to create a material with a very narrow energy
gap.

We have also plotted the profiles of the in-gap states, which con-
firm that they are superposition of the surface states from each
interface. We plot two of them on the Fig. 5.13

Let us state again, that the model with the Hamiltonian (5.13)
may describe either WM-NI multilayer, or multilayer formed by
two Weyl metals with different spatial separation between the Weyl
points. Since Weyl metal is characterized by Chern number at fixed
momentum component kz, we can say that the scenario shown on
the Fig. 5.12 will be realized at such kz, that one Weyl metal is in
a topological phase, whereas the other is normal. In other words, if
the spatial separation between Weyl points in each layer is equal to
Q1,2, then the phase shown on the Fig. is realized at Q1 < |kz| < Q2.
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Figure 5.12: Dispersion structure in a WM-NI multilayer. The parameters for
both layers are: m1 = 2.0, m2 = −2.0, B = 1.2, vF = 1.0, the number of sites
for each (both odd and even) layer is 8. The number of bilayers is 8 (8 odd layers
and 8 even layers). Blue color refers to bulk states; green: states localized on
the left edge; red: states localized on the right edge

5.4.3 Weyl metal in a spatially modulated field

In the previous section, we have established, that a multilayer formed
by two Weyl metals with different spatial separation of the Weyl
points can form new low-gap states. We discussed, that Weyl points
can be separated in momentum space due to non-zero Zeeman field.
Thus, our multilayer can be realized if the Zeeman field is spatially
modulated. Following the previous sections, we could assume that
the magnitude of the Zeeman field is a two-valued function (one
value for odd and even layers), but in this section, we take a dif-
ferent approach. We assume that the Zeeman field is a smooth and
periodic function along the growth direction of the multilayer:

beff = b+ b0 cos

(
2πx

λ

)
.

We also assume, that without the Zeeman field, our material would
be a Dirac metal, but solely due to the former, Weyl points become
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spatially separated. Thus, we write the Hamiltonian as:

H = γ1kx + γ2ky + γ3kz

+2B(cos(kx) + cos(ky) + cos(kz)− 3)γ4 + beffSz.

We present numerically computed energy spectrum on the Fig.
5.14. Indeed, we obtain expected results: its energy spectrum can be
viewed as a superposition of the energy spectra for each of the layers.
If the wavelength of the Zeeman field is large, the bulk states look
almost like two bulk Weyl metals. In addition, the full spectrum
includes Fermi arcs localized at the boundary of the multilayers.
Since, at small kz, all layers are in the same topological phase, there
are no ’surface’ states localized at each interface. However, there are
hybridized surface states in the range of kz between the smaller and
the larger separation of the Weyl points. In the case of ’thick’ layers,
i.e. large wavelength of the Zeeman field, they form almost flat
bands. Thus, we believe that Dirac metal in a spatially modulated
Zeeman field is close to a new state of matter, which can be called
an open nodal line.

We conclude, that we checked numerically, that multilayer of
Weyl metals can be realized by considering Dirac or Weyl metal
with a spatially modulated Zeeman field. It has very interesting
properties, which include in-gap states with very low, almost zero
energies. These states are almost degenerate.
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Figure 5.13: Profiles of two states from the Fig. 5.12 at ky = 0.2

Figure 5.14: Dispersion structure in a four band Weyl metal with spatially
modulated magnetic field. The parameters are: B = 0.8, vF = 1.0 , b0 = 0.5 ,
b = 1.0, λ = 50. The number of sites is 250.
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Chapter 6

Superconductivity in Weyl
metals

In this chapter, we explore possible superconducting states, that can
arise in Weyl metal. We consider a model of Weyl metal in a topo-
logical/normal insulator multilayer, because it is the simplest full
model of Weyl metal, which contains only one pair of Weyl points.
We use this model to demonstrate our calculations of various proper-
ties related to superconductivity: free energy, critical temperature,
order parameter, anomalous Hall conductivity.

6.1 Hamiltonian of superconducting state

Conventionally, superconductivity arises due to interaction between
electrons, such that they form ’Cooper pairs’. The most well-known
example of electron-electron interaction is Coulomb interaction, which
has a Hamiltonian of the form:

H = e2

∫
dx1dx2

ψ+
σ1

(x1)ψσ1(x1)ψ+
σ2

(x2)ψσ2(x2)

|x1 − x2|
.

This Hamiltonian describes Coulomb repulsion between electron
densities at the points x1 and x2. This is a very rough model, be-
cause it does not take into account a lot of additional effects, such
as interaction with the lattice, impurities etc. However, we still can
obtain a lot of non-trivial results by approximating it even further,
i.e. assuming that the interaction is local. Specifically, the local
interaction means, that its potential has a shape of delta-function,
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so that the Hamiltonian is written as:

H = U

∫
dxψ+

σ1
(x)ψσ1(x)ψ+

σ2
(x)ψσ2(x).

Here, we have introduced arbitrary coupling strength U . We can
rewrite the Hamiltonian in momentum representation as:

H = U
∑
kk′q

ψ+
σ1,k+qψσ1,k−qψ

+
σ2,k′−qψσ2,k′+q.

This model can host interesting strongly coupled states, when the
Hamiltonian H is not small. For example, superconductivity can
arise in the case of non-zero expectation 〈ψσ1,k−qψσ2,k+q〉. We will
see shortly the relation between this expectation and the interaction
Hamiltonian. For now, we only note, that we are interested in the
simplest case of singlet pairing, when the expectation is non-zero
only for electrons with the opposite spins, 〈ψ↑,k−qψ↓,k+q〉. As we
will see, it results, that we have to consider only the terms in the
interaction Hamiltonian of the form:

H = U
∑
kk′q

ψ+
↑,k+qψ

+
↓,k′−qψ↑,k−qψ↓,k′+q.

We notice that this Hamiltonian may change its form if we trans-
form the wavefunctions by multiplying them by a k-dependent ma-
trix. For this reason, if we are interested in interactions, that can
arise in the model of topological/normal insulator multilayer, we
have to start our analysis from the full four-band Hamiltonian.
Thus, we write together the initial Hamiltonian of the multilayer,
and its superconducting pairing:

H = H0 +Hsc

H0 = c+ (vF τz(σ1k2 − σ2k1) + bσz

+∆sτx +
∆Dτ

+

2
eikzd +

∆Dτ
−

2
e−ikzd + λτyσz

)
c,

Hsc = −U
V

∑
kk′q

c+
k+q↑c

+
−k+q↓c−k′+q↓ck′+q↑.

In addition to the Hamiltonian considered in the case of topologi-
cal/normal insulator without interactions (see Sec. 3.6), this model
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also contains inversion symmetry breaking term, which strength is
proportional to λ. We are going to neglect it while performing diag-
onalization, but later, account for it numerically. We will find, that
it has non-trivial consequences.

As we can see, the canonical transformation σ± → σ±τ z, τ± →
σzτ

± does not affect the superconducting pairing. After performing
it, the Hamiltonian is rewritten as:

H0 = c+ (vF (σ1k2 − σ2k1) + bσz (6.1)

+(∆sτx +
∆Dτ

+

2
eikzd +

∆Dτ
−

2
e−ikzd)σz + λτy

)
c,

Hsc = −U
V

∑
kk′q

c+
k+q↑c

+
−k+q↓c−k′+q↓ck′+q↑.

As a next step, we have to perform diagonalization in the τ space,
which turns out to affect the superconducting interaction. Indeed,
the matrix diagonalizing H0 in the τ space has the form:

1√
2

(
1 1

∆s+∆De
−ikzd

∆
−∆s+∆De

−ikzd

∆

)
,

where ∆ =
√

∆2
s + ∆2

D + 2∆s∆D cos(kzd). It can be rewritten in
terms of imaginary exponents as:

1√
2

(
1 1
e−iφ −e−iφ

)
,

where each exponent is defined as:

e−iφ =

√
∆S + ∆De−ikd

∆S + ∆Deikd
.

After diagonalization in τ space, the Hamiltonian is rewritten as:

H0 = c+ (vF (σ1k2 − σ2k1) + bσz + ∆τzσz) c,

Hsc = − U

4V

∑
kk′qτ

U+
t1τ
U+
t2τ
Uτt3Uτt4c

+
k+q↑t1c

+
−k+q↓t2c−k′+q↓t3ck′+q↑t4 .

Its free part H0 is a block of two 2 × 2 Hamiltonians with masses
b ± ∆. As we showed in Sec. 3.6, only the block with negative
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sign contains Weyl points, whereas the block with positive sign is
separated from the former by energy gap, and thus can be neglected.
As a result, we write 2× 2 Hamiltonian describing the Weyl points
in the form:

H0 = c+ (vF (σ1k2 − σ2k1) +mσ3) c, (6.2)

Hsc = − U

4V

∑
kk′qτ

Ξ(k, k′, q)c+
k+q↑t1c

+
−k+q↓t2c−k′+q↓t3ck′+q↑t4 ,

where we have introduced new parameters:

m = b−∆

Ξ(k, k′, q) =

1 +
(∆s + ∆De

i(k+q)d)(∆s + ∆De
i(−k+q)d)

∆(k + q)∆(−k + q)

×(∆s + ∆De
−i(−k′+q)d)(∆s + ∆De

−i(k′+q)d)

∆(−k′ + q)∆(k′ + q)

= 1 + eiφ(q+k)+iφ(q−k)−iφ(q−k′)−iφ(q+k′).

We would like to emphasize, that the fact, that our initial model
contained four bands, results in the factor Ξ, which would not ap-
pear, if we started considering 2 × 2 Hamiltonian (6.2) from the
beginning. However, it is easy to see that at q = 0, the factor Ξ is
just a constant equal to 2, and thus we can, in principle, approxi-
mate it by 2 everywhere. This approximation works at qd << 1, i.e.
when separation between the Weyl points is small. In this section,
we keep the factor Ξ for completeness, but we will neglect it further,
when we will be studying anomalous Hall conductivity.

Our goal is to find possible superconducting states, which can
arise in the model with Hamiltonian (6.2). It is known, that su-
perconducting state is a condensate of Cooper pairs, created by
electrons with different momenta. Thus we can make a qualitative
conclusion, that superconducting state can appear only when the
electron density of states is finite. In a Weyl metal, density of states
is finite only at finite chemical potential, whereas if the chemical
potential is zero, i.e. Fermi level is aligned with the Weyl points,
the density of states vanishes. Thus, we assume that the chemical
potential is finite, and not too close to the Weyl points. This, in
turn means, that if we are interested in the possible superconducting
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states, i.e. Fermi surface phenomena, we can further consider only
one band, which crosses the Fermi level.

If we perform diagonalization of the Hamiltonian 6.2 explicitly,
we obtain the following eigenvectors of H0:

zs =
1√
2

( √
1 + sm

E

s
√

1− sm
E

(ky−ikx)√
k2
x+k2

y

)
,

which have energies sE, where E =
√
v2
Fk

2
⊥ +m2 is the positive

eigenvalue of H0, and s = ±1.
Without loss of generality, we can assume that the chemical po-

tential is positive, which, in turn, means, that after diagonalizing
free part of the Hamiltonian, we can leave only the band with pos-
itive energy. However, when we perform diagonalization of the free
term, we also have to transform the interaction term. To do it, we
introduce the factor

g(k, q) =
1

2

√
1− mq−k

Eq−k

√
1 +

mq+k

Eq+k

(−ky + ikx)√
k2
x + k2

y

.

In these notations, the interaction term takes the form:

Hsc = − U

4V

∑
kk′q

Ξ(k, k′, q)g+(k, q)g(k′, q)c+
↑,q+kc

+
↓,q−kc↑,q−k′c↓,q+k′ .

Since each pair of creation/annihilation operator is invariant under
their commutation and simultaneous change of sign of the momen-
tum k ↔ −k, we antisymmetrize the factors g by introducing a new
factor:

γ(k, q) =
g(k, q)− g(−k, q)

2
(6.3)

= −(ky − ikx)
4|k⊥|

(√
1− mq+k

Eq+k

√
1 +

mq−k

Eq−k

+

√
1− mq−k

Eq−k

√
1 +

mq+k

Eq+k

)
,

and rewrite the interaction term (6.3) as:

Hsc = −U
V

∑
kk′q

Ξ(k, k′, q)γ+(k, q)γ(k′, q)c+
q+kc

+
q−kcq−k′cq+k′ ,

(6.4)
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6.2 Path integral treatment of the superconduct-
ing state. Gap equation.

In this section, we write the full quantum mechanical partition func-
tion describing superconducting Weyl metal. Its initial expression
has a conventional form:

Z =

∫
Dc+Dc exp{−

β∫
0

dτ(c+∂τc+H − µN)}

and we assume here, that the Hamiltonian contains one band, de-
scribing Weyl metal near the Fermi level, which, in turn, is away
from the Weyl points (see Sec. 6.1).

After Fourier-transformation of the imaginary time τ and intro-
ducing ξ = E − µ, the partition function is rewritten as:

Z =

∫
Dc+Dc exp

{∑
k

c+
k (iw − ξk)ck

+
U

4V β

∑
kk′q

Ξ(k, k′, q)g+(k, q)g(k′, q)c+
q+kc

+
q−kcq−k′cq+k′

}
.

In this equation and further, when we write sum over k, we imply
sum over spatial momentum k and Matsubara frequencies w.

As we mentioned previously, we cannot assume here, that the
interaction term is small. On the other hand, we have to account
for the fact, that superconductivity arises, when the correlator 〈cc〉
is non-zero. When we work with the path integral, we express
these two statements by performing Hubbard-Stratonovich trans-
formation, i.e. introducing additional integration over field ∆, thus
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rewriting the partition function as:

Z =

∫
Dc+DcD∆̄D∆ exp

{∑
k

c+
k (iw − ξk)ck

+
U

4V β

∑
kk′q

Ξ(k, k′, q)g+(k, q)g(k′, q)c+
q+kc

+
q−kcq−k′cq+k′

− U

4V β

∑
kk′q

Ξ(k, k′, q)(g+(k, q)c+
q+kc

+
q−k −

2V β

UNk

∆̄)

×(g(k′, q)cq−k′cq+k′ −
2V β

UNk

∆)

}
.

Here we introduced a new variable Nk which refers to the number of
wavevectors k, k′. The last equation can be simplified and rewritten
as:

Z =

∫
Dc+DcD∆̄D∆

exp

{∑
k

c+
k (iw − ξk)ck −

V β

UN2
k

∑
k,k′,q

Ξ(k, k′, q)|∆(2q)|2

+
∑
kk′q

Ξ(kk′q)

2Nk

(
g+(k, q)c+

q+kc
+
q−k∆(2q) + g(k, q)cq−kcq+k∆̄(2q)

)}

If we also symmetrize the interaction term and introduce γ(k, q) (see
Eq. 6.3), we can rewrite the partition function as:

Z =

∫
Dc+DcD∆̄D∆ exp

{
− V β

UN2
k

∑
k,k′,q

Ξ(k, k′, q)|∆(2q)|2

+
∑
k

iw − ξk
2

+
∑
kq

(
c+
q+k cq−k

)( iw−ξq+k
2

γ+(k, q)∆(2q)

γ(k, q)∆̄(2q)
iw+ξq−k

2

)(
cq+k
c+
q−k

)}
.

(6.5)

In the last sum it is assumed, that q runs over two values corre-
sponding to the positions of the nodes, and k runs in their vicinity.
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The physical meaning of non-diagonal elements in the matrix en-
tering the Hamiltonian in Eq. 6.5 is that superconductivity mixes
particles (annihilated by the operator c) and holes (annihilated by
c+).

In the last equation, we can integrate out the fermions, thus
obtaining partition function of the order parameter ∆, which has
the form:

Z =

∫
D∆̄D∆ exp

(
− V β

UN2
k

∑
k,k′,q

Ξ(k, k′, q)|∆(2q)|2 +
∑
k

iw − ξk
2

+
∑
kq

log

(
(iw − ξq+k)(iw + ξq−k)

4
− |γ(k, q)|2|∆(2q)|2

))
(6.6)

We can consider its mean field approximation, i.e. assume that ∆
is a classical well-defined field. In this case, it has to obey semiclas-
sical field equation, which is obtained by varying the action entering
the partition function over ∆̄. Explicitly, such gap equation has the
form:

1

V β

∑
k,w

4|γ(k, q)|2

(−iw + ξq+k)(iw + ξq−k) + 4|γ|2|∆|2
=

1

UN2
k

∑
kk′

Ξ(k, k′, q)

(6.7)

In the last equation the zeros of the denominator correspond to the
energies of Bogoliubov quasiparticles:

E± = ±ξq+k − ξq−k
2

+

√(
ξq+k + ξq−k

2

)2

+ 4|γ|2|∆|2 (6.8)

By using it, one can simplify the gap equation as:

− 1

V β

∑
k,w

4|γ(k, q)|2

(iw − E+)(iw + E−)
=

1

UN2
k

∑
kk′

Ξ(k, k′, q)

If we perform summation over the Matsubara frequencies w, the
gap equation is rewritten as:

1

V

∑
k

4|γ|2

E+ + E−
(nF (−E−)− nF (E+)) =

1

UN2
k

∑
kk′

Ξ(k, k′, q) (6.9)
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Solving this equation makes it possible to obtain critical temper-
ature, when the superconductivity appears, and magnitude of the
order parameter ∆.

6.3 Equation for critical temperature

In this section, we are interested in finding critical temperature, i.e.
temperature at which the superconductivity appears. The equation
for it is obtained from the gap equation (6.7) by setting ∆ = 0. To
simplify it, we, first replace momentum summation with integration.
Next, we split the overall momentum integral into integral over en-
ergies and integral over momenta at fixed energies, thus rewriting
the LHS of the equation as:

1

V β

∑
k,w

4|γ(k, q)|2

(−iw + ξq+k)(iw + ξq−k)

=
4

β

∑
w

∫
dξk

∫
d3k

(2π)3
δ(ξk − ξ̄k)

|γ(k, q)|2

(−iw + ξk + ξq+k − ξ̄k)(iw + ξk + ξq−k − ξ̄k)

In the last equation, ξk is an independent integration variable, and
ξ̄k is expressed in terms of the momentum k.

Further, we assume that the total integral is mostly contributed
near the Fermi surface. This fact makes it possible to assume, that
the momentum integral at fixed energy is equal to the momentum
integral at the Fermi level. Thus, we rewrite the LHS as:

4

β

∑
w

∫
dk

(2π)3
δ(ξ̄k)|γ(k, q)|2

∫
dξk

(ξk − iw + ξq+k − ξ̄k)(ξk + iw + ξq−k − ξ̄k)

=
4

β

∑
w>0

∫
dk

(2π)3
δ(ξ̄k)|γ|22πi

(
1

2iw − ξq+k + ξq−k
+

1

2iw + ξq+k − ξq−k

)

If we recall that w are Matsubara frequencies defined by w =
2π(n+1/2)

β
and perform the summation over w up to Debye frequency

wD, which we take as physical cut-off, we rewrite the LHS of the
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equation for critical temperature as:

2

∫
dk

(2π)3
δ(ξ̄k)|γ(k, q)|2 ×(

ψ(
βwD
2π

+ 1 +
iβ

4π
(ξq+k − ξq−k))− ψ(

1

2
+
iβ

4π
(ξq+k − ξq−k))

+ψ(
βwD
2π

+ 1− iβ

4π
(ξq+k − ξq−k))− ψ(

1

2
+ 1− iβ

4π
(ξq+k − ξq−k))

)
.

Here we have introduced digamma function ψ, and approximated it
by logarithm in the limit ωD >> Tc. By using its asymptotic, the
last expression can be rewritten as:

4

∫
dk

(2π)3
δ(ξ̄k)|γ(k, q)|2 ×

(
log

(
wd

2πTc

)
− Reψ

(
1

2
+

i

4πTc
(ξq+k − ξq−k)

))
and thus the equation for critical temperature takes the form:

1/U = 2

∫
dk

(2π)3
δ(ξ̄k)|γ(k, q)|2 (6.10)

×
(

log

(
ωd

2πTc

)
− Reψ

(
1

2
+

i

4πTc
(ξq+k − ξq−k)

))
.

Now we use specific form of the energy spectrum of our model,
i.e. the fact that energy is linear over momentum. Furthermore, we
are interested in two special cases of the Cooper pair momentum
q: conventional BCS pairing, where q = 0, and finite momentum
FFLO pairing. We assume that in the latter case, Cooper pairs
are created between electrons from the opposite parts of each Weyl
cone, i.e. momentum of each Cooper pair is equal to the momentum
of the Weyl cone center, i.e. ±Q. In either case, we can assume,
that ξq+k = ξq−k. This approximation makes it possible to find
expression for the critical temperature analytically:

Tc =
wD
2π

exp

{
−ψ

(
1

2

)
− 1

2U
∫

dk
(2π)3 δ(ξk)|γ|2

}
.

Let us estimate the critical temperature for each of the cases. In
the case of FFLO pairing, i.e. at q = Q we have

|γ|2 =
1

4
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and the momentum integral over the Fermi surface (one node) is
evaluated as: ∫

dk

(2π)3
δ(ξk) =

µ2

2π2v2
Fvz

Thus the critical temperature has an expression:

Tc =
wD
2π

exp

{
−ψ

(
1

2

)
− 4π2v2

Fvz
µ2U

}
(6.11)

In contrast, in the BCS case, i.e. at q = 0, we obtain:

|γ|2 =
1

4

(
1− m2

k

E2
k

)
and the momentum integral is evaluated as:∫

dk

(2π)3
δ(ξk)|γ|2 =

µ2

6π2v2
Fvz

.

As a result, the critical temperature is equal as:

Tc =
wD
2π

exp

{
−ψ

(
1

2

)
− 3π2v2

Fvz
µ2U

}
. (6.12)

By comparing the Eqs. (6.11) and (6.12), one can find that

T
(FFLO)
c < T

(BCS)
c , i.e. the critical temperature in the FFLO case is

lower, than in the BCS case. We also note, that the difference be-
tween them becomes more significant at small coupling U . Thus we
have established, that there exists temperature range, where BCS
pairing is possible, whereas FFLO is not.

6.3.1 Broken inversion symmetry

Now let us explore, what happens to critical temperature, if inver-
sion symmetry in the multilayer is broken. The simplest way of
doing it is to write the energy spectrum in the form:

ξk =
√
v2
Fk

2
⊥ +m2 − Λkz − µ. (6.13)

Here, the parameter Λ is obtained by transforming and taking the
leading order contribution in the inversion symmetry breaking term
6.1. One can show, that it has the following expression:

Λ =
λ∆Dd

|∆S + ∆D|
.
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In other words, we approximate the full dispersion curve by two
Dirac cones centered in the Weyl nodes. After this simplification, it
is convenient to rewrite the momentum in terms of polar ”coordi-
nates” acting in each cone:

vFk⊥ = p sin θ, (6.14)

vz(kz ±Q) = p cos θ.

This change of variables makes it possible to compute the result-
ing integrals over p analytically. In particular, the equation (6.10)
explicitly contains delta-function, and integration over the ”radius”
p removes it. As a result, we obtain equation containing only one-
dimensional integrals over the polar angle θ. The equation for crit-
ical temperature (6.10) in the FFLO case, i.e. at q = Q has the
form:

1

U
=

µ̃2

8π2v2
Fvz

π∫
0

sin θdθ

{
log

(
ωD

2πTc

)
− Reψ

(
1

2
− iΛµ̃ cos θ

2πvzTc

)}
with µ̃ being the ”effective” chemical potential at the node: µ̃ =
µ+ ΛQ. Analogously, the Eq. (6.10) in the BCS case, i.e. at q = 0
is rewritten as:

1

U
=

µ2

4π2v2
Fvz

π∫
0

sin3 θdθ

×
{

log

(
wD

2πTc

)
− Reψ

(
1

2
− iΛ

2πTc
(Q+

µ

vz
cos θ)

)}
We mention, that the integral over terms containing the radicand is
taken only within the range where the latter is positive.

We solve these two equations numerically in the case of linear
energy spectrum defined by the Eq. (6.13) and present our results
on the Fig. 6.1a. One can see, that, in this model, the critical tem-
perature at the inversion symmetric point, i.e. at λ = 0 is higher for
the internodal pairing than for the intranodal, which implies that
Cooper pairs form conventional BCS state. As the inversion asym-
metry increases, both critical temperatures decrease and eventually
disappear. At weak coupling, the critical temperature in the BCS
phase is higher in the whole range of Λ, which means that only
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the BCS superconducting state can be created. However, as the
coupling increases, it is possible to realize the situation, when the
critical temperature for the FFLO phase overruns the BCS. One can
also see that, in the case of FFLO pairing, critical temperature is
not even under change of sign of Λ. It means, that the critical tem-
perature is different for each node, which, in turn, implies that it is
possible to realize a situation, when the superconducting pairing is
present only in one node, thus forming helical state with the order
parameter having the form ∆(z) = ∆e2iQz.

6.4 Order parameter

In this section, we would like to find the magnitude of supercon-
ducting order parameter at zero temperature. To do it, we have
to solve the gap equation (6.9). If we take the temperature to be
zero, use symmetry of the energy E+(k) = E−(−k), and approximate
Ξ(k, k′, q) ≈ 2, we can rewrite it as:

1

U
= 2

∫
dk

(2π)3

|γ(k, q)|2

E+ + E−
(θ(E+)− θ(−E−)) . (6.15)

If we also represent the integral over momenta as a combination of
integrals over energy and the Fermi surface (similarly to the Sec.
6.3), introduce

ξq+k = ξ + δk

ξq−k = ξ + δ−k

and make shift ξ + δk+δ−k
2
→ ξ, we can rewrite the gap equation as:

1

U
=

∫
dξ

∫
dk

(2π)3

δ(ξk)|γ(k, q)|2√
ξ2 + 4|γ|2|∆|2

×
(

1− 2θ

(
δ−k − δk

2
−
√
ξ2 + 4|γ|2|∆|2

))
If we perform integration over the energy, we obtain:

1

U
= 2

∫
dk

(2π)3
δ(ξk)|γ|2

×

log

(
wd
|γ||∆|

)
− arcsh

√(δk − δ−k
4|γ||∆|

)2

− 1

 . (6.16)
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Figure 6.1: Plots for critical temperature 6.1a, order parameter 6.1b and free
energy 6.1c in a superconducting Weyl metal as functions of the inversion sym-
metry breaking parameter λ in the cases of weak (left) and strong (right) cou-
pling. The parameters we choose are b = 10.0, ∆S = 7.8, ∆D = 2.6, µ = 0.5,
ωD = 0.15. We choose U = 30 for the case weak coupling and U = 60 for the
strong coupling. For simplicity we take v⊥ = 1 and d = 1.
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In this equation the last term is present only if the expression en-
tering the root is positive.

In the case of linear dispersion, we have δk = δ−k, and thus we
can find the expression for order parameter analytically:

∆ = wD exp

{
−

1
2U

+
∫

dk
(2π)3 δ(ξk)|γ|2 log |γ|∫
dk

(2π)3 δ(ξk)|γ|2

}
. (6.17)

Similarly to the problem of critical temperature, we can com-
pute the order parameter explicitly in the FFLO and BCS cases.
Specifically, in the FFLO case, i.e. at q = Q, the Eq. (6.17) can be
evaluated as:

∆ = 2wD exp

{
−4π2v2

Fvz
µ2U

}
, (6.18)

whereas in the BCS case, the Eq.(6.17) takes the form:

∆ = wD exp

{
−3π2v2

Fvz
µ2U

+
5

6

}
. (6.19)

Similarly to the critical temperature, in the case of broken inver-
sion symmetry, the order parameter cannot be found analytically.
However, we can simplify the gap equation (6.16) in a way, similar
to the Sec. 6.3.1 and solve it numerically. Simplified equation in the
FFLO case has the form:

1

U
=

(µ̃2

2(2π)2v2
⊥vz

∫
sin θdθ

log

(
2wD
|∆|

)
− arcsh

√(Λµ̃ cos θ

vz|∆|

)2

− 1

 ,

and, analogously, in the BCS case, the equation for ∆ is written as:

1

U
=

µ2

(2π)2v2
⊥vz

∫
sin3 θdθ

log

(
2wD

|∆|| sin θ|

)
− arcsh

√(Λ(Q+ µ
vz

cos θ)

|∆| sin θ

)2

− 1


Its numerical solutions are shown on the Fig. 6.1b. As in the case
of critical temperature, in the presence of inversion symmetry, BCS
pairing has larger magnitude than FFLO. However, at sufficient
inversion symmetry breaking, and coupling strength, it is possible,
that FFLO pairing exists, whereas BCS does not.
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6.5 Free energy of superconducting state

In this section, we compute free energy of the possible supercon-
ducting states, that can arise in Weyl metals. This is of interest,
because its expression makes it possible to figure out, which state
in more favorable, and thus can be practically realized. Indeed, the
more favorable is the state, which has lower free energy.

We start from a known thermodynamical relationship between
free energy and partition function:

F = − 1

β
logZ.

We use this equation to compute free energy in the mean field ap-
proximation, i.e. assuming that the partition function is equal to
exponent of the action computed at the saddle point, i.e. at the
classical field configuration. It is known, that negative exponent is
mainly contributed from the point, where its argument, i.e. the ac-
tion, takes the smallest possible value, which, in turn, happens on
the classical field solutions.

By taking mean-field approximation of the partition function
(6.6), and rewriting it in terms of energies of the Bogoliubov quasi-
particles (eq. 6.8), we obtain the following expression for the free
energy:

F (q) = − 1

β

∑
k

log

(
(−iw + E+)(iw + E−)

4

)
+

2V

U
|∆(2q)|2 −

∑
k

iw − ξk
2β

.

However, we are interested in change of free energy due to super-
conductivity. For this reason, we consider difference between free
energies in superconducting and normal regimes at zero tempera-
ture, which we write as:

Fsq(q)− Fn(q)

V
= −

∫
d3kdw

(2π)4
log

(
(−iw + E+)(iw + E−)

(−iw + ξq+k)(iw + ξq−k)

)
+

2

U
|∆(2q)|2,

or equivalently as:

Fsq(q)− Fn(q)

V

=
2

U
|∆(2q)|2 − 1

2

∫
d3kdw

(2π)4
log

(
w2 + E2

+

w2 + ξ2
q+k

)
− 1

2

∫
d3kdw

(2π)4
log

(
w2 + E2

−

w2 + ξ2
q−k

)
.

102



We can simplify it by integrating over the Matsubara frequency w,
thus rewriting it as:

Fsq(q)− Fn(q)

V
=

2

U
|∆(2q)|2 − 1

2

∫
d3k

(2π)3
(|E+|+ |E−| − |ξq+k| − |ξq−k|) .

(6.20)

This equation has a clear physical meaning: the fact, that energies
of Bogoliubov quasiparticles are larger than energies of free excita-
tions, leads to the decrease of free energy. However, there is also
a positive contribution due to superconducting order parameter ∆,
and superconductivity appears, when the latter is smaller than the
former.

We would like to compute free energy explicitly in our model.
After assuming that the dispersion is linear, we can take ξq+k ≈ ξq−k,
and thus simplify the free energy as:

F(q) =
Fsq(q)− Fn(q)

V
=

2

U
|∆(2q)|2 −

∫
d3k

(2π)3
(|E| − |ξ|) . (6.21)

We can also transform it by using the gap equation (6.15), which,
in the case of linear dispersion, can be simplified as:

1

U
=

∫
dk

(2π)3

|γ|2

|E|
.

If we substitute it into the equation for free energy (6.21), we obtain:

F(q) =

∫
dk

(2π)3

(
2|γ|2|∆|2

|E|
− |E|+ |ξ|

)
.

By using the relation between the energies of electrons and Bogoli-
ubov quasiparticles: |E| =

√
ξ2 + 4|γ|2|∆|2, the free energy can be

simplified as:

F(q) = −
∫

dk

(2π)3

(|E| − |ξ|)2

2|E|
.

Further, we compute the integral entering the last equation. We
assume that |ξ| < wD << µ, and take the leading order over |ξ|/µ.
In both FFLO and BCS cases, the integral is performed over both
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Fermi surfaces. We obtain that, in the FFLO case, the free energy
(for the both nodes) has the form:

F = − µ2

π2v2
Fvz

(
wD

√
w2
D + ∆2 − w2

D

)
,

and its leading term over ∆/wD is expressed as:

F ≈ − µ2∆2

2π2v2
Fvz

. (6.22)

Similarly, in the BCS case, the free energy has the form:

F = − 2µ2

(2π)2v2
Fvz

(
(w2

D + ∆2)wD
∆

arctan

(
∆

wD

)
− w2

D

)
,

and its expansion over ∆/wD gives:

F ≈ − µ2∆2

3π2v2
Fvz

. (6.23)

By substituting the previously obtained expressions for the or-
der parameter ∆ (6.18, 6.19) into the free energies (6.22, 6.23) and
comparing the obtained expressions, we can see that FBCS < FFFLO.
This is an important physical result, which implies that zero momen-
tum BCS pairing is energetically more favorable than finite momen-
tum FFLO state.

Finally, we are interested in the expression for free energy in
the inversion symmetry breaking case. In this case, simplifying its
expression (6.20) by using the gap equation gives the following ex-
pression:

F = |∆|2
∫

d3k

(2π)3

1

E+ + E−
(1− θ(−E−)− θ(−E+))

−1

2

∫
d3k

(2π)3
(|E+|+ |E−| − |ξq−k| − |ξq+k|) .

We treat it further in a similar way to the critical temperature and
order parameter, considered in the Secs. 6.3.1 and 6.4. Specifically,
we approximate the energy spectrum according to the Eq. 6.13, and
perform integration over magnitude of the momentum.
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In the FFLO case, free energy per one node can be written as:

F(Q) =
µ̃2

(2π)2v2
⊥vz

∫
dp sin θdθ

{
|∆|2

2
√
p2 + ∆2

− |∆|2√
p2 + ∆2

θ

(
Λµ̃ cos θ

vz
−
√
p2 + ∆2

)
−
∣∣∣∣−Λµ̃ cos θ

vz
+
√
p2 + ∆2

∣∣∣∣+

∣∣∣∣p− Λµ̃ cos θ

vz

∣∣∣∣} ,
and, after evaluation of the integrals (under assumption |Λ|µ

vz
< wD),

it takes the form:

F(Q) = − µ̃2

2π2v2
⊥vz

(
wD

√
w2
D + ∆2 − w2

D −
Λ2µ̃2

3v2
z

)
, if

|Λ|µ
vz

< |∆|

F(Q) = − µ̃2

2π2v2
⊥vz

(
wD

√
w2
D + ∆2 − w2

D

−Λ2µ̃2

3v2
z

+
vz

3|Λ|µ

((
Λµ

vz

)2

−∆2

))
, if

|Λ|µ
vz

> |∆|

In the BCS case, free energy can be written as:

F(0) =
µ2

(2π)2v2
⊥vz

∫
dp sin θdθ

{
|∆|2 sin2 θ√
p2 + |∆|2 sin2 θ(

1− θ
(

ΛQ+
Λµ

vz
cos θ −

√
p2 + |∆|2 sin2 θ

)
− θ

(
−ΛQ− Λµ

vz
cos θ −

√
p2 + |∆|2 sin2 θ

))
−
∣∣∣∣−ΛQ− Λµ

vz
cos θ +

√
p2 + |∆|2 sin2 θ

∣∣∣∣− ∣∣∣∣ΛQ+
Λµ

vz
cos θ +

√
p2 + |∆|2 sin2 θ

∣∣∣∣
+

∣∣∣∣p− ΛQ− Λµ

vz
cos θ

∣∣∣∣+

∣∣∣∣p+ ΛQ+
Λµ

vz
cos θ

∣∣∣∣} .
and after evaluating the integral over p, it takes the form:

F(0) = − µ2

2π2v2
⊥vz

∫
sin θdθ

{
wD

√
w2
D + ∆2 sin2 θ − w2

D

−
(

ΛQ+
Λµ

vz
cos θ

)2

+

∣∣∣∣ΛQ+
Λµ

vz
cos θ

∣∣∣∣
√(

ΛQ+
Λµ

vz
cos θ

)2

−∆2 sin2 θ

 .

We use these complicated expressions to evaluate the free ener-
gies numerically, and we present the resulting graphs on the Fig.
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6.1c. Our conclusions are similar to the problem of critical temper-
ature: at the inversion symmetric case, zero momentum BCS state
is always energetically more favorable, than the FFLO. However, as
the inversion symmetry gets broken, two scenarios are possible. At
weak pairing, BCS state is still always energetically more favorable
than FFLO, but with the growing asymmetry, it disappears. How-
ever, at sufficiently strong pairing, it is possible, that in the certain
range of the inversion symmetry breaking parameter, FFLO state
becomes more energetically favorable than BCS.

We note that our results have a clear physical meaning. We have
obtained that BCS state is energetically more favorable, which is
consistent with the fact, that electrons at opposite momenta have
exactly same energies due to inversion symmetry. In contrast, elec-
trons in the opposite sides of one Weyl cone are not forced to have
equal energies, and thus it is natural to expect, that pairing between
them is less favorable. Once inversion symmetry gets broken, Weyl
cones shift their energies, so that electrons with opposite momenta
have different energies, and thus their pairing is less favorable. After
this shift, it is possible, that electrons in the opposite parts of one
Weyl cone are less separated in energy space, than electrons in the
different Weyl cones.

6.6 Energies of superconducting excitations

In this section, we are interested in energy spectrum of excitations
above the superconducting state. From now on, we assume that the
underlying normal Weyl metal is described by two-band Hamilto-
nian (6.2), and assume that BCS superconductivity with zero mo-
mentum of the Cooper pairs is created. We neglect the factor Ξ, and,
for our purposes, it is not important, whether superconductivity is
intrinsic or extrinsic.

We write the Hamiltonian of normal state in component form as:

H =

(
m− µ k2 + ik1

k2 − ik1 −m− µ

)
. (6.24)

After we add superconducting pairing and introduce Nambu spinor:

ψ =
(
ck↑ ck↓ c+

−k↓c
+
−k↑

)T
, (6.25)
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we write the total Hamiltonian as:

H =


m− µ k2 + ik1 ∆ 0
k2 − ik1 −m− µ 0 −∆

∆ 0 m+ µ k2 + ik1

0 −∆ k2 − ik1 −m+ µ

 . (6.26)

This Hamiltonian can be diagonalized analytically, and its four eigen-
states have energies ±E+ and ±E− defined as:

E± =

√
k2 +m2 + µ2 + ∆2 ± 2

√
∆2m2 + (k2 +m2)µ2. (6.27)

A special limit is zero chemical potential µ. In this case, the
energies can be rewritten as:

E± =
√
k2 + (m±∆)2.

Its physical meaning is that, in the presence of superconductivity,
each Weyl cone splits into two cones, and their separation is pro-
portional to the magnitude of the superconducting order parameter
∆.

6.7 Electromagnetic response in superconduct-
ing Weyl metal

6.7.1 Effective action

In this section, we would like to study electromagnetic response
in our model of superconducting Weyl metal. Our final goal is to
compute its anomalous Hall conductivity. We start from quantum
mechanical partition function with the action for superconducting
electrons interacting with electromagnetic field, which is written as:

−S =

∫
dτc+∂τc−H + µN (6.28)

=
∑
k

(
c+
k↑

c+
k↓
)( iw −m+ µ −k2 − ik1

−k2 + ik1 iw +m+ µ

)(
ck↑
ck↓

)
−e
∑
k,p

(
c+
k+p↑

c+
k+p↓

)( iA0 −A2 − iA1

−A2 + iA1 iA0

)(
ck↑
ck↓

)
−∆e2iθ

∑
k

c+
k↑c

+
−k↓ −∆e−2iθ

∑
k

c−k↓ck↑.
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Here, we have included the Hamiltonian of Weyl metal (Eq. 6.24),
added interaction with electromagnetic field via Pierls substitution
k → k − eA, and introduced superconducting pairing ∆. We have
added phase fluctuations θ of the superconducting order parameter,
which occur due to the electromagnetic field, but they can be re-
moved by gauge transformation of the fermion operators, c→ eiθc,
and the vector potential Aµ → Aµ − ipµAµ.

After we introduce Nambu spinors (6.25), we can rewrite the
action as:

− S =
∑
k

ψ+(G−1 +HA)ψ,

where the superconducting Green function G is defined as:

G = (iw −H0)−1, (6.29)

and H0 is the Hamiltonian of the Nambu spinors (6.26).

The Hamiltonian describing electromagnetic interaction can be
written in two blocks:

HA =

(
hA 0
0 −hA

)
, (6.30)

and each block has an expression:

hA =

(
iA0 −A2 − iA1

−A2 + iA1 iA0

)
.

To proceed with the calculations, we have to write the Green
function (6.29) explicitly, i.e. invert the matrix iw −H. After long
calculations, we find it convenient to write the answer in terms of
2× 2 blocks:

G =

(
Ge G̃∆

G∆ Gh

)
, (6.31)
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which have the following explicit expressions:

det(G−1)G∆

= ∆
(
2imw + 2(k2m− ik1µ)σ1 + 2(−k1m− ik2µ)σ2 − (µ2 + ∆2 + k2 + w2 −m2)

)
det(G−1)G̃∆

= ∆
(
2imw + 2(k2m+ ik1µ)σ1 + 2(−k1m+ ik2µ)σ2 − (µ2 + ∆2 + k2 + w2 −m2)

)
det(G−1)Ge

= ∆2(µ− iw)− k2σ1(∆2 + k2 +m2 − (µ− iw)2) + k1σ2(∆2 + k2 +m2 − (µ− iw)2)

+mσ3(∆2 − k2 −m2 + (µ− iw)2)

det(G−1)Gh

= ∆2(µ+ iw)− k2σ1(∆2 + k2 +m2 − (µ+ iw)2) + k1σ2(∆2 + k2 +m2 − (µ+ iw)2)

+mσ3(∆2 − k2 −m2 + (µ+ iw)2)

The determinant entering these equations is given by:

det(G−1)

= ∆4 + 2∆2(k2 + w2 + µ2 −m2) + (k2 +m2 − µ2)2 + 2w2(k2 +m2 + µ2) + w4.

Further, we proceed with the calculations in a way similar to the
Sec. 2.4. Specifically, we have to consider quadratic contribution to
the effective action for the electromagnetic field, which is given by:

S(2) =
∑
k,p

e2

2
tr (G(k)HA(−p)G(k + p)HA(p)) .

We transform this equation by decomposing the Green function G
and the interaction Hamiltonian HA into 2 × 2 blocks, and writing
their explicit expressions given by the Eqs. 6.31 and 6.30. While
performing the calculations, we have to take traces of Pauli matrices.
We note, that it is convenient to do by introducing four-dimensional
sigma-matrices as: σµ = (1, σµ), σ̄µ = (1,−σµ), and using the rela-
tion:

trσµσ̄νσρσ̄σ = 2 (ηµνηρσ − ηµρηνσ + ηµσηνρ) + 2iεµνρσ,

where ηµν is a Minkovski metric tensor equal to diag(1,−1,−1,−1).

109



Since the total effective action contains a lot of terms, which
would be too difficult to write explicitly, we have to select the terms,
which contribute to the anomalous Hall conductivity, that we are in-
terested in. We notice, that the anomalous Hall conductivity arises
due to Chern-Simons term εµνλkµAνAλ. Its main feature is that
it is odd under time-reversal symmetry, which distinguishes it from
conventional electromagnetic action F 2

µν , or massive electromagnetic

term m2A2
µ (the latter is responsible for Meissner effect in supercon-

ductors, i.e. exponential decay of the electromagnetic field), which
both are even under time reversal. Thus, if we are interested in
the anomalous Hall conductivity, we can select only terms, which
are odd under time reversal symmetry. Such terms entering the
second-order quantum effective action are the following:

1

2e2
detG−1(k)detG−1(q)S(2) = even terms (6.32)

+ 2µ2(mk −mq)
[
(∆2 − k2

µ −m2
k + µ2)wq + wk(∆

2 − q2
µ −m2

q + µ2)
]

×(A1(−p)A2(p)− A2(−p)A1(p))

+ εµνλkµAν(−p)Aλ(p)
[
−mq(∆

2 − q2
µ −m2

q + µ2)(∆2 + k2
µ +m2

k − µ2)

−4µ2mqwkwq + 2∆2(∆2 + q2
µ + µ2 −m2

q)mk

]
+ εµνλqµAν(−p)Aλ(p)

[
mk(∆

2 − k2
µ −m2

k + µ2)(∆2 + q2
µ +m2

q − µ2)

+4µ2mkwkwq − 2∆2(∆2 + k2
µ + µ2 −m2

k)mq

]
For shortness, here we have introduced the momentum q = k+p. In
addition, to simplify this expression, we have made a replacement
of momenta: k ↔ q, p↔ −p.

Next, we have to simplify this effective action. We start from in-
tegrating out the fluctuations of the superconducting order param-
eter, and afterwards, we perform Matsubara frequency summation
and momentum integration.

6.7.2 Integration of the superconducting phase

As we mentioned in the beginning, external electromagnetic field
results in the order parameter ∆ having arbitrary space (or equiva-
lently momentum) dependent phase e2iθ. We performed gauge trans-
formation of the action (6.28), which removed the phase dependence
from the order parameter. As a result, we obtained effective action
for the electromagnetic field, which enters in a combination with the
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phase gradient: Aµ(p)− ipµθ. In other words, we have obtained an
action, which generally can be written as:

S =
∑
p

(Aµ(−p) + ipµθ(−p))Qµν(p) (Aµ(p)− ipµθ(p))

Since the superconducting order parameter is a quantum field, we
have to integrate out its phase fluctuation explicitly (this method
has been previously used in the context of chiral p-wave supercon-
ductor [78]). If we do it, we obtain effective action of pure electro-
magnetic field:

S =
∑
p

Aµ(−p)KµνAν(p).

Here, the new operator Kµν is related to the old operator Qµν as:

Kµν = Qµν −
QµρpρpσQσν

Qαβpαpβ
(6.33)

Now, we would like to understand the consequences of this equa-
tion. The most general momentum expansion of Qµν consistent with
rotational symmetry is:

Q00 = QS
Ω,

Q0i = QS
Ωppi + ε0ijpjQ

A
p ,

Qij = QS
p δij + Ωε0ijQ

A
Ω.

Explicitly, we have decomposed the tensor Qµν into symmetric and
antisymmetric parts, and used the fact, due to rotational symmetry,
spatial indices can originate only from the vector field momentum -
the only vector available. We can substitute these decompositions
into the Eq. (6.33), and thus obtain general form of the operators
Kµν :

K0i =
−QS

ΩQ
S
pΩpi +QS

pQ
A
p ε0ijpjp

2 +QS
ΩQ

A
Ωε0ijpjΩ

2

QS
ΩΩ2 +QS

p p
2

,

Kij =
1

QS
ΩΩ2 +QS

p p
2

{
QS
pQ

S
ΩΩ2δij + (QA

p )2p2δij +QS
ΩQ

A
ΩΩ3ε0ij

+QS
pQ

A
ΩΩp2ε0ij − (QS

p )2pipj −QS
pQ

S
pΩΩpipj

−QS
p (QA

p −QA
Ω)Ωpipkε0jk −QS

pQ
S
ΩpΩpipj

−QS
p (QA

Ω −QA
p )Ωpjplε0il

}
.
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Now we would like to use the fact, that our final goal is to com-
pute anomalous Hall conductivity, which originates from the anti-
symmetric Chern-Simons term. For this reason, we are interested
specifically in the antisymmetric contribution to the operators Kµν .
It has the following explicit expression:

KA
0i = ε0ijpj

QS
ΩQ

A
ΩΩ2 +QS

pQ
A
p p

2

QS
ΩΩ2 +QS

p p
2

,

KA
ij = Ωε0ij

QS
ΩQ

A
ΩΩ2 +QS

pQ
A
p p

2

QS
ΩΩ2 +QS

p p
2

.

These equations can be greatly simplified in the limit p→ 0, i.e. in
the case of spatially uniform electromagnetic field:

KA
0i = ε0ijpjQ

A
Ω,

KA
ij = Ωε0ijQ

A
Ω. (6.34)

We note, that we have to take the limit p → 0 before taking
the limit Ω → 0 because we are interested in a transport quantity
(see [79] for details). We also note, that the equations (6.34) have
the following physical meaning. If we compute Chern-Simons term,
we may, in general, obtain different coefficients in front of ΩAiAj
and piA0Aj. However, the Eq. 6.34 tells us, that anomalous Hall
conductivity is determined specifically by the coefficient in front of
ΩAiAj.

6.7.3 Summation over momenta and frequencies

Now let us go back to the Eq. (6.32). In the last subsection, we have
figured out, that we are interested only in the terms proportional
to ε0ijAiAj. Also, since we take the limit p → 0 before taking the
limit Ω → 0, we need to select the terms, which do not vanish at
mk = mq. Thus, we write the effective action (6.32) as:

1

2e2
detG−1(k)detG−1(q)S(2) = even terms + terms containing A0 (6.35)

+8ε0ijAi(−p)Aj(p)
[
mqw

3
kw

2
q + wkw

2
q(mq(∆

2 + k2 +m2
k − µ2) + 2∆2mk)

−mq(∆
2 − q2 −m2

q + µ2)w3
k − 4µ2mqw

2
kwq

−mq(∆
2 − q2 −m2

q + µ2)(∆2 + k2 +m2
k − µ2) + 2∆2mk(∆

2 + q2 + µ2 −m2
q)
]
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As a next step, we have to perform the summation over Matsub-
ara frequencies. To do it, we decompose determinant of the Green
function as:

det(G−1) = (iw − iE+)(iw + E+)(iw − E−)(iw + E−),

where E± are energies of the excitations given by, Eq. (6.27). We
can evaluate the Matsubara sum by using the method described in
Sec. 2.4.3, i.e. by introducing the Fermi function nF (z), which poles
are located at the Matsubara frequencies, and rewriting the sum as
an integral over complex plane z. If we assume that the external
spatial momentum, as well as the temperature, is zero, i.e. k = q,
mk = mq, and consider the leading order over the external frequency
Ω = wq − wk, we obtain the following identities:

1

β

∑ w3
kw

2
q

det(G−1(k))det(G−1(q))
= − Ω

8(E+ + E−)3

1

β

∑ wkw
2
q

det(G−1(k))det(G−1(q))
=

Ω

8E+E−(E+ + E−)3

1

β

∑ w3
k

det(G−1(k))det(G−1(q))
= − 3Ω

8E+E−(E+ + E−)3

1

β

∑ w2
kwq

det(G−1(k))det(G−1(q))
= − Ω

8E+E−(E+ + E−)3

1

β

∑ wk
det(G−1(k))det(G−1(q))

= −
Ω(E2

+ + E2
− + 3E+E−)

8E3
+E

3
−(E+ + E−)3

After we substitute them into the Chern-Simons term (6.35), we
can simplify it and obtain:

2

e2
S(2) = V β

∫
dkz
2π

∫
d2k

(2π)2
4ε0ijΩAiAj

m

(E+ + E−)3

{
1 +

k2 +m2 − µ2 −∆2

E+E−

}
The integral over the momentum perpendicular to the direction of
the nodes can be computed by making change of variables

x =
√

(k2 +m2)µ2 +m2∆2

and multiplying the numerator and the denominator by the factor
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(E+ − E−)3. The resulting answer for the effective action is:

S(2) = 2V βe2ε0ijΩAiAj

∫
dkz

(2π)2
m

×

{
−∆2

8µ3
log

(
µ|
√
µ2 + ∆2 + |m||+ |m|

√
µ2 + ∆2 + µ2

µ|
√
µ2 + ∆2 − |m||+ |m|

√
µ2 + ∆2 − µ2

)

−
√
µ2 + ∆2

8µ2|m|

(
|
√
µ2 + ∆2 − |m|| − |

√
µ2 + ∆2 + |m||

)}
.

It can be simplified and rewritten as:

S(2) =
1

2
e2V βε0ijΩAiAj

∫
dkz

(2π)2

×
{

sign(m)

[
1 +

∆2

µ2
− ∆2|m|

2µ3
log

(
|m|+ µ

|m| − µ

)]
θ(|m| −

√
µ2 + ∆2)

m

µ

[√
1 +

∆2

µ2
− ∆2

2µ2
log

(√
µ2 + ∆2 + µ√
µ2 + ∆2 − µ

)]
θ(
√
µ2 + ∆2 − |m|)

}
,

which leads to the following answer for the anomalous Hall conduc-
tivity:

σSCxy =
e2

4π2

π/d∫
0

dkz

{
sign(m)

[
1 +

∆2

µ2
− ∆2|m|

2µ3
log

(
|m|+ µ

|m| − µ

)]
θ(|m| −

√
µ2 + ∆2)

+
m

µ

[√
1 +

∆2

µ2
− ∆2

2µ2
log

(√
µ2 + ∆2 + µ√
µ2 + ∆2 − µ

)]
θ(
√
µ2 + ∆2 − |m|)

}
(6.36)

One can also see that, in the limit ∆ = 0, i.e. in the case of
normal Weyl metal, the Hall conductivity is reduced to the familiar
result obtained in the Ref. [28]:

σnon−SCxy =
e2

4π2

π/d∫
0

dkz

{
sign(m)θ(|m| − µ) +

m

µ
θ(µ− |m|)

}
.

(6.37)
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An interesting property of the last equation is that, in the case, when
m(kz) is linear, the anomalous Hall conductivity does not depend
on chemical potential.

Now, if we look at the superconducting anomalous Hall conduc-
tivity (6.36) we can see, that in the limit ∆ << µ, |m|, the difference
between the integrands entering the Eqs.(6.36) and (6.37) is sup-
pressed by a factor ∆2/|m|2. This represents the expected fact, that
contribution to the anomalous Hall conductivity from the states far
from the Fermi surface does not differ in superconducting and non-
superconducting cases. Therefore, the difference σSCxy −σnon−SCxy can
be written as an integral over the range of kz with |m(kz)| < µ+ωD.
Furthermore, if we also assume that m is linear within the range of
momentum integration, the latter becomes symmetric and the in-
tegrand becomes odd relative to the center of each Weyl cone. As
a result, in the regime, when m is linear over kz, the difference
σSCxy − σnon−SCxy vanishes.

Thus, we conclude, that under the approximation of linear band
dispersion, the value of anomalous Hall conductivity in Weyl metal
is universal. It is neither affected by the presence of small chemical
potential, nor by superconducting instability. By considering all
four bands, which are relevant for the formation of the Weyl metal
(see Ref. [28] for more details), one can see that the anomalous
Hall conductivity is simply proportional to the distance between
the Weyl points. Its deviation from this value can be created only
by non-linear corrections to the band spectrum.

6.8 Model-independent calculation of anomalous
Hall conductivity in a superconductor

Once we established that non-trivial anomalous Hall conductivity
may exist in a superconductor, we may wonder, if it has a general
expression, analogous to the TKNN formula, obtained in Sec. 2.4.
In this section, we present an attempt to obtain such expression for
an arbitrary multiband model with BCS pairing. We start from a
general superconducting Hamiltonian:

h = c+
αhαβcβ −∆c+

k↑c
+
−k↓ − ∆̄c−k↓ck↑, (6.38)

where we assume summation over spin indices α, β. The term de-
scribing its interaction with electromagnetic field has the conven-
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tional form, obtained by Pierls substitution:

hA = −eAµ
∂h

∂kµ
.

Now, we would like to repeat the steps described in the Sec.
6.32.To do it, we introduce Nambu spinor: Ψ(k) = (ck↑, ck↓, c

+
−k↓,−c

+
−k↑)

T

and rewrite the total Hamiltonian as:

Hsc = Ψ+(H0 +HA)Ψ,

H0(k) =

(
h(k)− µ ∆

∆ h(−k) + µ

)
,

HA(k) = −eAµ

(
∂h(k)
∂kµ

0

0 ∂h(−k)
∂kµ

)
.

As we have established previously, anomalous Hall conductivity is
evaluated from Chern-Simons term, which, in turn, is obtained from
the quadratic term of the effective action:

Seff =
1

2
trG(ω, k)HA(−p)G(ω + Ω, k)HA(p), (6.39)

where G(k) is Green function determined as: G = (iω − H0)−1.
In the Sec. 2.4, we have evaluated this term by finding explicit
expression for G, but now we take a different approach. Similarly
to the Sec. 2.4, we write the Green function in terms of projectors
to the eigenstates of the system as:

G(k) =
∑
s

|zs〉〈zs|
iw − Eks

,

and substitute it into the effective action (6.39). After it, we per-
form the summation over Matsubara frequencies, thus rewriting the
effective action in the form:

Seff =
β

2

∑
ss′k

〈zs|HA(−Ω)|zs′〉〈zs′|HA(Ω)|zs〉 ×
nF (Eks)− nF (Eks′)

iΩ + Eks − Eks′
.

By using the Eq. (6.39), and the relation between the effective
actions before and after integrating over superconducting order pa-
rameter, one can see, that it leads to the following expression for
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the Hall conductivity:

σxy = −
∑
ss′k

〈zs|
δHA

δAx
|zs′〉〈zs′ |

δHA

δAy
|zs〉 ×

nF (Eks)− nF (Eks′)

(Eks − Eks′)2
.

In the limit of zero temperature, the last equation can be rewritten
as:

σxy = −e2
∑
k

∑
s−filled
s′−empty

1

(Eks − Eks′)2
(6.40)

×
{
〈zs|

∂H0

∂kx
τ3|zs′〉〈zs′|

∂H0

∂ky
τ3|zs〉 − 〈zs|

∂H0

∂ky
τ3|zs′〉〈zs′|

∂H0

∂kx
τ3|zs〉

}
.

This expression for the anomalous Hall conductivity is similar to
the well-known TKNN formula. However, an important difference
is the presence of the Pauli matrix τ3 in Nambu space, which rep-
resents the fact that elementary excitations in a superconducting
system do not have well-defined charge. The momentum summa-
tion in the last equation is taken over the half of the first Brillouin
zone (e.g. kz > 0), to avoid double counting caused by introducing
Nambu spinors. However, if we consider the difference between the
superconducting and non-superconducting anomalous Hall conduc-

tivity σ
(SC)
xy −σ(Non−SC)

xy , the range of momentum summation can be
limited only to the states affected by the presence of superconduc-
tivity, i.e. near half of the Fermi points/surfaces.

The equation for anomalous Hall conductivity (6.40) can be used
to see explicitly, that, in any TRI system, total anomalous Hall
conductivity is zero. Indeed, one can check that states connected
with each other by TR transformation z(k)→ iσ2z

∗(−k) give oppo-
site contribution to its explicit expression (6.40). In the considered
model of Weyl metal, TRS is explicitly broken, which allows the
total anomalous Hall conductivity to be non-zero. However, if we
approximate energy spectrum of Weyl metal as linear, we find, that
it obeys an approximate symmetry:

h( ~K − ~k) = −h( ~K + ~k), (6.41)

which, in turn, implies that, in the low energy limit, Weyl metal
possesses an analog of TRS taken not relative to the origin, but
relative to the Weyl node:

z( ~K + ~k)→ iσ2z
∗( ~K − ~k). (6.42)
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Now we would like to study the effect of this symmetry on the
anomalous Hall conductivity. Let us write each term in the sum as
dσxy, so that σxy =

∑
k dσxy, and consider the difference between

anomalous Hall conductivities in superconducting and normal case:

σ
(SC)
xy − σ

(Non−SC)
xy . Since such difference contains only low energy

terms, it can be split between two Weyl cones:

σ(SC)
xy − σ(Non−SC)

xy

= −e2
∑
kz>0

∑
s−filled
s′−empty

(
dσSCxy ( ~K + ~k, s, s′)− dσnon−SCxy ( ~K + ~k, s, s′)

)

+e2
∑
kz<0

∑
s−filled
s′−empty

(
dσSCxy ( ~K − ~k, s, s′)− dσnon−SCxy ( ~K − ~k, s, s′)

)
,

(6.43)

One can see, that in the approximation of linear energy spectrum
near the node, two sums taken over the opposite parts of the Weyl
cones exactly cancel each other. Thus, we conclude that the presence
of the analog of TRS in the form of the Eq. (6.42), ensures that the
difference between the Hall conductivities in superconducting and
non-superconducting Weyl metal is zero. In general, this result holds
if the states forming Cooper pairs, i.e. the states giving non-zero

contribution to the σ
(SC)
xy − σ(Non−SC)

xy are located in the part of the
BZ, where h is odd under the reflection relative to the node, i.e.

h( ~K − ~k) = −h( ~K + ~k).
We also note, that this argument can be applied to multi-Weyl

metals. In this case, the most general Hamiltonian still has the form
(6.38) with its free part equal to: H0 = diσi, and its components
written as:

h1,2 = h1,2(kx, ky),

h3 = m(kz),

where the leading terms of h1,2 have powers of k equal to the charge
of the Weyl point (see [24] for the possible explicit expressions), and
m is linear over kz.

In the case of cubic band touching, the Hamiltonian still pos-
sesses the symmetry (6.41), and consequently still invariant under
the transformations (6.42). Thus, the whole reasoning for the con-
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ventional Weyl metals can be transferred to the Weyl metals with
cubic band touching.

In the case of quadratic band touching, the Hamiltonian is no
longer invariant under (6.41), and as a result, the Weyl cones are
not invariant under the symmetry (6.42). However, one can consider
a combination of the transformation (6.42) with rotation by π/2 in
the xy plane. Indeed, the Hamiltonian for double-Weyl metals has
a symmetry:

h(kx, ky,m) = −h(ky,−kx,−m),

which ensures invariance under transformations

z(kx, ky,m)→ iσ2z
∗(ky,−kx,−m).

By applying the same argument as before, one can see that, in the

case of the quadratic band touching, the result σ
(SC)
xy −σ(Non−SC)

xy = 0
still holds in the low energy limit. Thus, we conclude that, in a
double Weyl metal, independence of anomalous Hall conductivity
on the presence of superconductivity occurs due to ’analog’ of time
reversal symmetry, which switches spin, but rotates momentum over
cubic angle.
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Chapter 7

Dirac metal

7.1 Basic concepts

Dirac metal is a material, which spectrum is described by four-
component massless Dirac equation. Historically, Dirac equation in
the form H = γiki + mγ0 was first introduced to describe massive
relativistic electrons. It has two double degenerate solutions with
positive and negative energies. In the massless limit, Dirac equation
can be decomposed into two Weyl equations with opposite chirali-
ties.

In the condensed matter context, we are interested in the mass-
less Dirac equation, because it describes gapless phases. Since, the
massless Dirac equation can be decomposed into two Weyls, it is
convenient to view each Dirac point as two copies of Weyl points
with opposite chiralities. However, two such points would have the
opposite monopole charges, and thus the resulting Dirac point will
not be topologically protected. An example, illustrating this point,
is a model of topological/normal insulator (see Sec. 3.6), where
Dirac point is a critical point between Weyl metal and the insu-
lating phases. Thus, to stabilize Dirac points, we need additional
protection, which can be realized, for example, due to discrete ro-
tational symmetry. In this sense, Dirac metal is similar to a double
Weyl metal: in both of them, the Dirac/Weyl points are protected
via the same mechanism: discrete rotational symmetry.

In the Ref. [52], the full classification of Dirac metals protected
by the rotational symmetry was performed, and it was found, that
they can be realized via a few possible Hamiltonians. We consider
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one of them. Specifically, we write our Hamiltonian as:

H0 = vFkxΓ1 + vFkyΓ2 +m(k)Γ3 +
γkz
2

(k2
y − k2

x)Γ4 + γkzkxkyΓ5.(7.1)

If we neglect the factor γ, then the Hamiltonian consists of only
three terms, and it can be decomposed into two copies of the Weyl
Hamiltonians 3.15, describing one pair of Weyl points each. We
choose representation of the gamma-matrices, which makes this de-
composition explicit:

Γ1 = σx ⊗ sz, Γ2 = −σy, Γ3 = σz,

Γ4 = σx ⊗ sx, Γ5 = σx ⊗ sy.

We note, that in contrast to Weyl metal, the Dirac Hamiltonian is
invariant under both inversion and time-reversal symmetries, which
is consistent with double degeneracy of the bands. If we view it as
two copies of Weyl metals, we can say that, under time reversal, one
copy gets transformed into the other.

However, the whole Hamiltonian 7.1 also contains two terms pro-
portional to γ, which mix these Weyl copies. As a result, Dirac point
can no longer be viewed as two copies of Weyl points, and therefore
it is no longer topologically protected. As we will see later, this fact
affects the surface states properties: at zero γ there are two copies
of Fermi arcs, each of which is exactly same as in Weyl metal, but
at non-zero γ, they hybridize with each other.

As we mentioned previously, Dirac points are protected by rota-
tional symmetry. If one considers realistic material (e.g. Na3Bi),
and explore, how the Hamiltonian 7.1 arises in it, one can find
that its true rotational symmetry generator along the z axis has
the form: C = (2 − σz) ⊗ sz. In other, words, this Hamiltonian
describes a model, such that valence electrons along the z axis have
rotational eigenvalues j = ±3/2, but conduction electrons have rota-
tional eigenvalues ±1/2. The fact, that conduction and valence elec-
trons have different rotational eigenvalues explains, why the Dirac
point is protected. Indeed, to gap the Dirac point out, one has to
add a rotationally invariant term, that would be non-zero along the
rotation axis, and would mix states from the opposite bands. Such
term has to be proportional to phase of perpendicular momentum,
and if we assume that the Hamiltonian is an analytic function, it
has to contain at least linear powers of k⊥, i.e. it cancels along the
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rotation axis. Thus, we conclude that it is not possible to add to the
Hamiltonian 7.1 a term, that would not break rotational symmetry,
but would gap the Dirac points out.

7.2 Dirac metal and topological crystalline in-
sulator

As we pointed out, the basic model of Dirac metal contains three
symmetries: time reversal, inversion, and discrete rotational. How-
ever, the full crystal group of a material contains a lot of other sym-
metries. For instance, the full crystal group of Dirac metal Na3Bi
contains mirror symmetry along planes along the z axis, i.e. planes
passing along Dirac points. We would like to explore the effects of
such symmetry.

Specifically, we can add to the Hamiltonian 7.1 a term, which pre-
serves such mirror symmetry, but breaks the rotational symmetry,
thus gapping the Dirac points out. We write this term as:

H1 = ∆1kzΓ4. (7.2)

This term breaks the rotational symmetry, because of non-trivial
transformation of each wavefunction component. To ensure, that
it preserves the mirror symmetry in xz plane, we write the latter
explicitly as:

H(kx,−ky, kz) =MH(kx, ky, kz)M−1,

and note that its generator has the form:

M = iΓ2Γ5. (7.3)

As we mentioned previously, the term 7.2 breaks the rotational
symmetry, and thus gaps the Dirac points out. As a result, the
system described by the sum of Hamiltonians 7.1 and 7.2 is an in-
sulator. We would like to explore its properties in more details.

The first question we can address, is whether the resulting sys-
tem is a topological or normal insulator. Indeed, this question has
a very simple answer. In the Ref. [64], it was demonstrated, that a
system with inversion symmetry is a topological insulator, if a prod-
uct of its inversion eigenvalues is different at different time reversal
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invariant momenta within the Brillouin zone. By placing the total
Hamiltonian on the lattice:

H0 = vF sin kxΓ1 + vF sin kyΓ2 +m(k)Γ3

+γkz(cos kx − cos ky)Γ4 + γkz sin kx sin kyΓ5,

H1 = ∆1 sin kzΓ4, (7.4)

and checking its inversion symmetry eigenvalues explicitly, we can
find out, that their product is indeed different. The system is a
strong topological insulator, and thus its surface state spectrum
contains two-dimensional Dirac cone centered at the Γ point (i.e.
at the origin) of the Brillouin zone.

Now, we would like to explore the effects of mirror symmetry.
We note that the Hamiltonian (7.4) commutes with the mirror sym-
metry operator (7.3) at the momenta lying in the mirror invariant
plane, i.e. at ky = 0. In this special case, the Hamiltonian (7.4)
decouples into two 2× 2 Hamiltonians with fixed mirror eigenvaues
equal to ±1. Each of these Hamiltonians has the form:

H± = vF sin kxτ1 ±m(k)τ3

+ (γ(1− cos kx) + ∆1) sin kzτ2. (7.5)

Since these Hamiltonians are similar to a simple model of 2D Chern
insulator, it is easy to compute their Chern numbers, using the
method described in Sec. 4.2. We can find, that the filled bands of
each of the Hamiltonians 7.5 have the Chern numbers C = ±sign∆1.
In other words, the bands with opposite mirror eigenvalues have the
opposite Chern numbers. Thus, in the total system, the Chern
numbers cancel out each other, but the system is still topologically
non-trivial. Indeed, it can be characterized by mirror Chern number
[80] defined as the difference between the Chern numbers for the
bands with opposite mirror eigenvalues. Such kind of topological
materials is known as topological crystalline insulator [15, 18].

However, even more interesting property of the system defined by
the Hamiltonians 7.5 is that the Chern numbers change their signs,
as the gap parameter ∆1 changes sign. We remind, that ∆1 = 0
is the point, where the system becomes Dirac metal. Thus, we ar-
rive to the conclusion, that Dirac metal with two spatially separated
Dirac points can be viewed as a critical point between two phases of
topological crystalline insulators with different Chern numbers.
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7.3 Surface states in Dirac metal and topologi-
cal crystalline insulator

In the previous section, we have established that Dirac metal is a
critical point between two different topological crystalline insulators.
Now, we would like to explore, how this fact affects the surface
states. We can make all qualitative conclusions from the topological
properties described in the previous section, and then check the
results numerically.

First, the fact that system with non-zero gap ∆1 is a topo-
logical insulator, implies that its surface spectrum contains two-
dimensional Dirac cone localized at the center of the Brillouin zone.

Next, the fact that the system is a topological crystalline insula-
tor, i.e. possess non-trivial Chern numbers in the mirror invariant
plane ky = 0, makes it possible to describe topological structure of
the surface states at ky = 0. Indeed, as we mentioned previously, the
total Hamiltonian of the model consists of two blocks with Chern
numbers ±1 each. We know, that each block contains one chiral
surface state of a given ’handedness’ on each surface (i.e. it dis-
perses either from left to right, or from right to left). As a result,
the whole model contains a pair of two surface states of opposite
’handednesses’. These two states cross each other exactly at the

point, where they have to form the Dirac cone, i.e. at ~k = 0. We
show their structure on the Fig. 7.1a.

As the gap parameter ∆1 acquires the opposite sign, each Chern
number, as well, change its sign. Thus, at the opposite side of the
transition, surface states have the opposite ’handednesses’ (see Fig.
7.1d). Now let us look at the transition point in more details. If γ
were equal to zero, transition between these two phases would occur
through the point, where the surface states spectrum is flat. We
know this, because, at γ = 0, the system consists of two copies of
Weyl metals, each of which possesses Fermi arcs with the spectrum
E = ±vfky: in the mirror invariant plane ky = 0 their energies
would be equal to zero. However, this is no longer the case, when γ
is non-zero. Indeed, this is numerically demonstrated on the plot of
the surface states in Dirac metal, shown on the Fig. 7.1b.

At the transition point, the surface states have to meet two con-
ditions: first, their ’handedness’ has to change, and second, this
change has to occur in such a way, that, at the critical point, their
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Dirac velocity at ~k = 0 has to remain non-zero. The first condition
can be reformulated in a way, that if a surface state from one side
of the transition terminate at one (conduction/valence) band, then,
on the other side of the transition, it has to terminate at the op-
posite band (valence/conduction). Thus, at the critical point, i.e.
in the Dirac metal, the surface state branches ’switch’ the zones,
where they terminate. This may happen only if the surface states
in the Dirac metal terminate exactly at the gap closing point, i.e. at
the Dirac points. This is an important physical conclusion: surface
states in Dirac metal terminate exactly at the Dirac points, despite
being not protected topologically, as in Weyl metal.

Now let us explore the structure of the surface states near the
transition. We mentioned, that on one side (at ∆1 > 0), the surface
states form a Dirac cone localized at the Brillouin zone center. As
the gap closes, there appears additional degeneracies at the gap

closing point, but the Dirac cone at ~k = 0 persists. This Dirac
point also persists slightly away from the critical point (see Fig.
7.1c), where it coexists with two other Dirac cones, which arise from
the bulk Dirac points at the transition point. As |∆| increases, these
two Dirac points smoothly move towards the center of the Brillouin
zone. Since they appear as degeneracies between two surface state
branches with the opposite mirror eigenvalues, we can conclude that
the two Dirac points, shown on the Fig. 7.1c, are protected by the
mirror symmetry.

To check the mirror symmetry protection of the two surface Dirac
points, we have introduced an additional term to the Hamiltonian:

H2 = ∆2 sin kzΓ5, (7.6)

which breaks the mirror symmetry in xz plane, and plotted the
resulting surface states. We presented our results on the Fig. 7.2.
Indeed, we have found, that if the new gap parameter ∆2 is kept
constant while ∆1 changes, then the gap never closes. Fig. 7.1c
shows that the states at the origin of the Brillouin zone are still
protected, but two other Dirac cones, which were protected by the
mirror symmetry become gapped. Furthermore, we have found that
the transition between two phases with positive/negative ∆1 can
be accomplished without gap closing (see Fig. 7.2). Indeed, we
can take the state at ∆1 > 0, ∆2 = 0, make ∆2 non-zero, then
change ∆1 from positive to negative, and eventually turn ∆2 back
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to zero. Such transition between two phases with different mirror
Chern numbers would occur without gap closing. Thus, we confirm
that the two topological phases, which exist away from the Dirac
metal, are protected by the mirror symmetry. They are topologically
distinguishable, when it is present, but become indistinguishable,
once it is broken.

(a) (b)

(c) (d)

Figure 7.1: Dispersion structure of the model (7.5) at mirror eigenvalue +1.
The values of ∆1 are 0.8 (a), 0.0 (b), −0.2 (c), −0.8 (d). The parameters are:
vF = 1.0, m = 0.5, bxy = 0.5, bz = 0.5, γ = 1.0. Blue color refers to bulk
states; Red and Green colors refer to surface states localized at the left and
right boundary correspondingly. Surface states with a given mirror eigenvalue
and localized at one surface have the same dispersion as states with the opposite
mirror eigenvalue and localized at the opposite surface.
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(a) (b)

(c) (d)

Figure 7.2: Dispersion structure of the model (7.5) in the case of broken mirror
symmetry. The values of ∆1 are 0.8 (a), 0.0 (b), −0.2 (c), −0.8 (d). The
parameters are: vF = 1.0, m = 0.5, bxy = 0.5, bz = 0.5, γ = 1.0, ∆2 = 0.1.
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Chapter 8

Conclusions

In this work, we have presented a general discussion about topolog-
ical and superconducting properties of Weyl and Dirac metals. We
have started from pedagogical revision of basic properties of Chern
insulators, such as their Berry curvature and anomalous Hall effect.
After it, we presented pedagogical introduction to Weyl metals, fol-
lowed by a few problems solved by the author.

The first problem was to find surface states in Luttinger model.
We found that Luttinger model without magnetic field possess two
branches of surface states in the case, when bands disperse in the
opposite directions. This is the case in the presence of particle-hole
symmetry, as well as the case of its slight breaking. However, as
particle-hole symmetry breaking increases, one of the surface state
branches disappears. Eventually, the other surface state branch dis-
appears too - it happens, when the bands start dispersing in the
same directions. However, in this model, surface states are not pro-
tected topologically.

In the Luttinger model with external Zeeman field, quadratic
band touching splits into four Weyl points.In other words, Lut-
tinger model with external Zeeman field forms Weyl metal, and
thus, similarly to any other Weyl metal, it possesses topological
surface states forming Fermi arcs. More precisely, we found that
such model possesses both topological and non-topological surface
states. Interestingly, we found that in this model surface states dis-
appear in a similar way to Luttinger model without magnetic field:
they completely disappear, when the bands start dispersing in the
same directions. However, we have also found a new feature, which
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makes Luttinger model distinct from conventional topological mate-
rials. In conventional topological insulators, surface states disappear
at critical points, where bulk bands touch each other. In contrast,
in the Luttinger model, surface states may disappear if only the
projections of the bulk bands touch each other, whereas the bulk
bands still remain separated. We believe, that this is a new kind
of topological phase transition, which may be relevant in all topo-
logical systems, where bands may disperse in different directions:
for example, it may be Luttinger model, but it may also be type II
Weyl metal, or any other related system.

We have also found that, in a given model, e.g. Luttinger model,
under smooth change of parameters, signs of Weyl points charges
may change. This is also a new form of topological phase tran-
sition, which would result in continuous gap closing in the whole
range between the Weyl points, whose charge changes. It would be
of interest to realize such transition experimentally, and to propose
one possible scenario, we decided to consider a multilayer of dif-
ferent Weyl metals, where two thin layers from the opposite sides
of the transition alternate with each other. Indeed, we have found
that such multilayer possesses gapless states, which emerge as Bloch
waves formed by Fermi arcs residing at each interface. We would
like to note, that this scenario can be realized experimentally in
many different ways. First, since there exist plenty of various semi-
conductors described by Luttinger model with different parameters,
it seems natural to use them to create multilayer. Next, since Weyl
points with spatially modulated separation can be created by ap-
plying spatially modulated Zeeman field, it is natural to search for
these gapless states in a model of Weyl/Dirac metal accompanied
by spin density wave, which in turn can be either intrinsic or extrin-
sic. Indeed, after completing this work, we have found that Dirac
metals naturally host spin density waves. Finally, we would like to
note, that since in such phase, there are in fact a lot of states at zero
energy, it might be strongly modified by electron-electron interac-
tions. For example, such gapless phase may be a new candidate for
unconventional superconductivity or other strongly coupled phases.

We also studied the problem of possible superconducting insta-
bilities in Weyl metal. We found that in a simple model of Weyl
metal, where Weyl points are located at the same energies, conven-
tional zero momentum pairing is more favorable that finite momen-
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tum pairing (FFLO). However, after a few years since our results
were published, there is still little evidence, that our predictions are
correct. Only in a few materials with Weyl points, superconductiv-
ity was discovered at special conditions, e.g. high pressure. Despite
that, we still think that there is a change to verify our predictions.
Indeed, Weyl points may exist in a huge amount of materials: the
only necessary constraint is breaking of time-reversal or inversion
symmetries, and in fact, during the last few years, plenty of dif-
ferent Weyl metals were experimentally discovered. It is natural
to seach for superconductivity in materials, where electron-electron
coupling is as strong as possible, as well Fermi level and density of
states are as large as possible. It is easy to see, that density of states
is, in turn, larger in systems with larger Fermi velocities, and there-
fore it is natural to explore them. Finally, we note that it is natural,
that intrinsic superconductivity has been discovered in type II Weyl
metal: its Fermi pockets have larger area than Fermi spheres, and
therefore it has higher density of states at Fermi level.

The last problem we considered was related to exploring surface
states in Dirac metal. We started from considering mirror invariant
planes connecting the Dirac points, which are present, as crystal
symmetries, in Dirac metal Na3Bi. We found that it is possible to
break rotational symmetry protecting the Dirac points, while pre-
serving such mirror symmetries. As a result, it is possible to gap the
Dirac points out, thus converting the Dirac metal into a topological
crystalline insulator. We note, that this can be realized experimen-
tally in an number of different ways: one can apply high pressure,
or find structural phase transition in Dirac metal, or consider any
other way of breaking rotational symmetry, such as e.g. nematic
order. We have found that Dirac metal can be viewed as a critical
point between two different phases of topological crystalline insu-
lators with different mirror Chern numbers. This fact implies that
Dirac metal is a critical point, where handedness of surface states
changes, which, in turn, leads, to an important physical conclusion:
surface states in Dirac metal always terminate at Dirac points de-
spite being not topologically protected. Thus our work supplements
previous works, which established that suraface states in Dirac metal
contain a small gap, which results from absence of topological pro-
tection. However, we would like to note, that such gap has never
been observed experimentally, because it is smaller than Fermi level
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in realistic samples. Thus, to confirm our predictions, it would be
of interest, to create Dirac metal samples with as low Fermi level as
possible. This can be achieved, e.g. by adding acceptor impurities.
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