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Abstract

Understanding Protein-Protein and Protein-DNA interaction is of fundamental impor-
tance in deciphering gene regulation and other biological processes in living cells. Tra-
ditionally, new interaction knowledge is discovered through biochemical experiments that
are often labor-intensive, expensive and time-consuming. Thus, computational approaches
are preferred. Due to the abundance of sequence data available today, sequence-based
interaction analysis becomes one of the most readily applicable and cost-effective methods.

One important problem in sequence-based analysis is to identify the functional regions
from a set of sequences within the same family or demonstrating similar biological func-
tions in experiments. The rationale is that throughout evolution the functional regions
normally remain conserved (intact), allowing them to be identified as patterns from a set
of sequences. However, there are also mutations such as substitution, insertion, deletion
in these functional regions. Existing methods, such as those based on position weight ma-
trices, assume that the functional regions have a fixed width and thus cannot not identify
functional regions with mutations, particularly those with insertion or deletion mutations.
Recently, Aligned Pattern Clustering (APCn) was introduced to identify functional regions
as Aligned Pattern Clusters (APCs) by grouping and aligning patterns with variable width.
Nevertheless, APCn cannot discover functional regions with substitution, insertion and/or
deletion mutations, since their frequencies of occurrences are too low to be considered as
patterns.

To overcome such an impasse, this thesis proposes a new APC discovery algorithm
known as Pattern-Directed Aligned Pattern Clustering (PD-APCn). By first discovering
seed patterns from the input sequence data, with their sequence positions located and
recorded on an address table, PD-APCn can use the seed patterns to direct the incremental
extension of functional regions with minor mutations. By grouping the aligned extended
patterns, PD-APCn can recruit patterns adaptively and efficiently with variable width
without relying on exhaustive optimal search. Experiments on synthetic datasets with
different sizes and noise levels showed that PD-APCn can identify the implanted pattern
with mutations, outperforming the popular existing motif-finding software MEME with
much higher recall and Fmeasure over a computational speed-up of up to 665 times. When
applying PD-APCn on datasets from Cytochrome C and Ubiquitin protein families, all key
binding sites conserved in the families were captured in the APC outputs.

In sequence-based interaction analysis, there is also a lack of a model for co-occurring
functional regions with mutations, where co-occurring functional regions between interac-
tion sequences are indicative of binding sites. This thesis proposes a new representation
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model Co-Occurrence APCs to capture co-occurring functional regions with mutations
from interaction sequences in database transaction format. Applications on Protein-DNA
and Protein-Protein interaction validated the capability of Co-Occurrence APCs.

In Protein-DNA interaction, a new representation model, Protein-DNA Co-Occurrence
APC, was developed for modeling Protein-DNA binding cores. The new model is more com-
pact than the traditional one-to-one pattern associations, as it packs many-to-many associ-
ations in one model, yet it is detailed enough to allow site-specific variants. An algorithm,
based on Co-Support Score, was also developed to discover Protein-DNA Co-Occurrence
APCs from Protein-DNA interaction sequences. This algorithm is 1600x faster in run-time
than its contemporaries. New Protein-DNA binding cores indicated by Protein-DNA Co-
Occurrence APCs were also discovered via homology modeling as a proof-of-concept. In
Protein-Protein interaction, a new representation model, Protein-Protein Co-Occurrence
APC, was developed for modeling the co-occurring sequence patterns in Protein-Protein
Interaction between two protein sequences. A new algorithm, WeMine-P2P, was developed
for sequence-based Protein-Protein Interaction machine learning prediction by construct-
ing feature vectors leveraging Protein-Protein Co-Occurrence APCs, based on novel scores
such as Match Score, MaxMatch Score and APC-PPI score. Through 40 independent ex-
periments, it outperformed the well-known algorithm, PIPE2, which also uses co-occurring
functional regions while not allowing variable widths and mutations. Both applications
on Protein-Protein and Protein-DNA interaction have indicated the potential use of Co-
Occurrence APC for exploring other types of biosequence interaction in the future.
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Chapter 1

Introduction

Protein and DNA play vital roles in our human body [96]. A protein is made up of a chain
of amino acids, i.e. represented by a string of alphabets, where an amino acid is denoted
by an English alphabet [98]. Protein is important as it regulates biological processes and
functions for virtually every biochemical reaction in living cells [98]. It carries out its
function via a functional region. For example, as shown in Fig. 1.1(a), MGDVEKGKKI-
FIMKCSQCHGGTVEKGGKHK is a protein sequence of Cytochrome C, where the high-
lighted region is the binding site binding to the heme molecule [13, 154]. On the other
hand, DNA is a made up of a chain of nucleotides, where a nucleotide is also represented by
an English alphabet [98]. DNA is important as it does not only encode the genetic informa-
tion of organisms as a living archive of instructions to accomplish the functions of life [98],
but also encode the genetic switches (e.g. transcription factor binding sites (TFBSs) [133])
that regulate the expression of such information. It also carries out its function via a func-
tional region For example, as shown in Fig. 1.1(b), ACTTTATTTGCAATAGAAAATC
is a DNA sequence taken from the TRANSFAC database [89], where the highlighted region
encompasses a TFBS, verified by Protein Data Bank (PDB) [12] record (ID: 1CQT). Due
to evolutionary pressure, these functional regions normally remain conserved [66, 67, 68].
However, over many generations, there are still possibly mutations such as insertion, sub-
stitution and deletion [66, 67, 68] within these functionally conserved regions.

For protein and DNA to actually exert their biological functions, they have to par-
ticipate in biological mechanisms, in which they interact with others via their functional
regions. Protein-Protein Interaction (PPI) [40] is one major mechanism, allowing a protein
to function via interacting with another protein. PPI is important for various biological
mechanisms such as metabolic cycles [49] and muscle contraction [87]. In PPI, two proteins
A and B are brought into direct physical contact [104, 47]. In such a process, certain re-
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MGDVEKGKKIFIMKCSQCHGGTVEKGGKHK

a) A protein sequence

ACTTTATTTGCAATAGAAAATC 

b) A DNA sequence

Figure 1.1: An illustration of a functional region in a sequence. a) MGDVEKGKKI-
FIMKCSQCHGGTVEKGGKHK is a protein sequence of Cytochrome C, where the
highlighted region is a functional region which is the binding site for binding to a heme
molecule [13, 154]. b) ACTTTATTTGCAATAGAAAATC is a DNA sequence taken from
the TRANSFAC database [89], where the highlighted region is a functional region, which
encompasses a transcription factor binding site (TFBS), verified by Protein Data Bank
(PDB) [12] record (ID: 1CQT).

gions of a protein are in close contact with certain regions of another protein. Protein-DNA
interaction (or TF-TFBS Binding) [84] is another major mechanism, allowing DNA to ini-
tiate a transcription of a gene expression. For the genetic information encoded in a DNA
sequence, i.e. a gene, to be expressed, a special type of protein, known as a Transcription
Factor (TF), has to bind to a segment of DNA called the transcription factor binding site
(TFBS) located around the target gene [84]. This is essential in regulating genetic activ-
ities [84]. It is also observed that binding is sequence-specific and subtle changes in the
binding sites may affect binding specificity. For example, PKV V IL binds CACGTG and
PKV EIL binds CAGCTG but not vice versa [17], where the V/E variation is indicative
for distinguishing Myc from MRF families [17]. These site-specific variants are important
for understanding the underlying interaction mechanisms between interacting sequences.

Therefore, the identification of functional regions with mutations from Protein and DNA
is vitally important in bioinformatics. Such knowledge if spotted effectively can reveal the
crucial mutation hotspots [134], not only enabling us to have a better scientific understand-
ing but also help the design of new drugs [142, 134]. Traditionally, these functional regions
are identified in resolved high-resolution 3D structures obtained by X-ray crystallography
[149] or nuclear magnetic resonance spectroscopic experiments [6]. However, these experi-
ments are expensive, labor-intensive and time-consuming. Thus, sequence-based functional
region identification methods are motivated by such great need of development.
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1.1 Problem Definition

This thesis formulates two problems in sequence-based functional region identification.
The first problem is the identification of functional regions with mutations from a set of
sequences. Given a set of sequences within the same family or demonstrating similar bio-
logical functions, the outputs are (1) the starting and ending address locations of functional
regions on the sequences if they exist; (2) an alignment of the functional regions. Align-
ment [138] here refers to a process that inserts gaps into a set of sequences such that the
vertical similarity is maximized. Fig. 1.2 provides a simplified illustration of the problem.
As shown in Fig. 1.2(a), the input data is a set of sequences (S0 to S8). It is a simplified
dataset as it only has 9 sequences (S0-S8). As shown in Fig. 1.2(b), the functional regions
in the input data are highlighted in color for illustration. As shown in Fig. 1.2(c), the
output data is the aligned functional regions of a set of sequences, with their sequence ids,
starting and ending address locations.

Extending from the first problem, the second problem is to identify co-occurring func-
tional regions with mutations between interaction sequences such as Protein-Protein and
Protein-DNA interaction sequences.

Here we first describe the concept of co-occurrence of functional regions, from a more
general perspective. By co-occurrence, we perceive it as the co-existence of conserved
regions within a functional domain governed by certain underlying biological functionality.
These functional regions may co-occur on the same sequence [72, 73] to induce folding,
interaction, direct binding or binding to another molecular complex. They might also be
found within observed or conjectured functional domains consisting of a pair or a group of
interaction sequences, implying their involvement in co-operative mechanisms.

In this thesis, we focus on the identification of functional regions co-occurring be-
tween two interaction sequences, associating particularly with Protein-DNA interaction
and Protein-Protein interaction sequences. Due to mutations, certain functional regions
may cease to function or alter their function. Because of this, when sequences are found
within an interaction environment, where the actual interaction regions are not pinpointed
because of the expensive cost associated, additional measures or methods have to be in-
troduced to sort out which regions are corresponding to the actual interaction. A solution
is proposed in this dissertation work.

Specifically, Fig. 1.3(a) provides an illustration of a simplified transaction database
using Protein-DNA interaction sequence data as an example. Each transaction (T0 to T3)
records an experimental record of protein sequences binding a set of DNA sequences but
the exact binding sites have not been identified. Fig. 1.3(b) provides an illustration of
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a) Input data (Simplified): Sequence Set Alpha b) Input data (Simplified) with highlighted 
functional region for illustration

c) Output data

S0   MGDVEKGKKIFIMKCSQCHGGPEGLTAS
S1   IVAFKTGLSCNEPDRWCSQCHGGEGTPALS
S2   RACSPGLKNWDVFETICSQCHGGSTEPGLA
S3   DASKNVFIGCELRWTPCSGMCHGGGSPALTE
S4   ICGTAEPNRLDFSKVWCSGMCHGGLPTEGAS
S5   LPNCRATEWIKFSDGVCSGMCHGGAGTLPSE
S6   SKNWGVFLCRADPIETCSACHGGPALSGTE
S7   PKAGNEILVSTRFDWCCSQMMCHGGSPATELG
S8   PKNFSGIRCVLTWADECSQHGGKTESPLAG

S0   MGDVEKGKKIFIMKCSQCHGGPEGLTAS
S1   IVAFKTGLSCNEPDRWCSQCHGGEGTPALS
S2   RACSPGLKNWDVFETICSQCHGGSTEPGLA
S3   DASKNVFIGCELRWTPCSGMCHGGGSPALTE
S4   ICGTAEPNRLDFSKVWCSGMCHGGLPTEGAS
S5   LPNCRATEWIKFSDGVCSGMCHGGAGTLPSE
S6   SKNWGVFLCRADPIETCSACHGGPALSGTE
S7   PKAGNEILVSTRFDWCCSQMMCHGGSPATELG
S8   PKNFSGIRCVLTWADECSQHGGKTESPLAG

S0: [(14,20)]; s1:[(16,22)]; s2:[(16,22)]; 
S3: [(16,23)]; s4: [(16,23)]; s5: [(16,23)]
S6:[(16,22)]
S7:[(16,24)]
S8:[(16,21)]

C S Q - - C H G G

C S G M - C H G G

C S A - - C H G G

C S Q M M C H G G

C S Q - - - H G G

Figure 1.2: Problem 1: Identification and alignment of functional regions with mutations.
This figure illustrates the problem of identification and alignment of functional regions
with mutations from a set of sequences. Given a set of sequences within the same family or
demonstrating similar biological functions, the outputs are the starting and ending address
locations of functional regions on the sequences if they exist, as well as an alignment of
the functional regions. a) Input data, a set of sequences. This is a simplified dataset as
it only has 9 sequences (S0-S8). b) Input data, with the functional regions highlighted in
color for illustration. c) Output data, aligned functional regions of a set of sequences, with
their sequence ids, starting and ending address locations.
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a transaction database with the co-occurring functional regions highlighted. Here, a co-
occurring functional region refers to a pair of functional regions occurring in both sides of
the sequence pair in a transaction. We observe that 1) FDERRMFR and ACTTCCG co-
occur in transactions T0 and T1; 2) FDERMMFR and ACTCCCG co-occur in transaction
T2. As shown in Fig. 1.3(c), the output data is Protein-DNA Co-Occurrence Aligned Pat-
tern Cluster, capturing co-occurring functional regions with mutations in both Protein-side
and DNA-side. Fig. 1.4 provides an illustration of a real transaction database of Protein-
DNA interaction sequence data from TRANSFAC [89]. An illustration of Protein-DNA
interaction sequences from TRANSFAC [89]. Each transaction records an experimental
record of protein sequences binding a set of DNA sequences but the exact binding sites
have not been identified. In each transaction, the protein sequence can be as long as 500
amino acids (residues) on average. Also, in each transaction, there can be on average 22
DNA sequences, where each DNA sequence can have on average 25 nucleotides. There can
be more than 700 transactions in TRANSFAC [89].

There is also a slight variant of the second problem. It is to identify co-occurring
functional regions with mutations between interaction sequences such as Protein-Protein
interaction sequences, while an interaction label is introduced to each transaction. A ‘+’
interaction label indicates that this is an experimentally-proven record of interaction. A ‘-’
interaction label indicates that this is an experimentally-proven record of non-interaction.
It should be noted that for both cases the binding sites are not indicated in the transaction.
Fig. 1.5(a) provides an illustration of a transaction database using Protein-Protein inter-
action sequence data as an example. Fig. 1.5(b) provides an illustration of a transaction
database with the co-occurring functional regions highlighted. As shown in Fig. 1.5(c),
the output data is Protein-Protein Co-Occurrence Aligned Pattern Cluster, capturing the
co-occurring functional regions with mutations in both protein sides.

1.2 Challenges and Objectives

One major challenge in the identification of functional regions from a set of sequences is to
capture the functional regions with mutations. As shown in Fig. 1.6(a), there is a set of
sequence, i.e. Sequence Set Alpha, which has 9 sequences (s0-s8), containing two functional
regions, CSQCHGG and CSGMCHGG, as well as the functional region with substitution
mutation CSACHGG in s6, the functional region with insertion mutation CSQMMCHGG
in s7, and the functional region with deletion mutation CSQHGG in s8.

Due to technological limitations, existing methods, such as those based on position
weight matrices (PWMs) [151], have to constrain the functional regions to having a fixed
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Protein (TF) Sequence DNA (TFBS) Sequence(s)
T0 AQQQFDERRMFROPOP {GACTTCCGG}

T1 MNNNFDERRMFRKIKI {ACTTCCGA}
T2 WSDEFDERMMFRJCJC {GACTCCCGTTC}
T3 HKWEVHMRHVHKJV {GCACTT; AAGTAC}

b) Input Data (Simplified) with highlighted functional regions for illustration

c) Output Data: Protein-DNA Co-Occurrence Aligned Pattern Cluster, 
capturing co-occurring functional regions with mutations

F D E R R M F R

F D E R M M F R

A C T T C C G

A C T C C C G

Protein (TF) Sequence DNA (TFBS) Sequence(s)
T0 AQQQFDERRMFROPOP {GACTTCCGG}

T1 MNNNFDERRMFRKIKI {ACTTCCGA}
T2 WSDEFDERMMFRJCJC {GACTCCCGTTC}
T3 HKWEVHMRHVHKJV {GCACTT; AAGTAC}

a) Input Data (Simplified): a Protein-DNA interaction sequence database in transaction format

Co-occurrence:    1) FDERRMFR and ACTTCCG co-occur in transactions T0 and T1; 
2) FDERMMFR and ACTCCCG co-occur in transaction T2

Transaction Database (Simplified): Each transaction (T0 to T3) records an experimental record 
of protein sequence binding a set of DNA sequences but the exact binding sites have not 
been identified

Figure 1.3: Problem 2: Identification of co-occurrence functional regions with mutations
between interaction sequences, using Protein-DNA interaction sequences as an example.
Given a transaction database of interaction sequences, the output is to find out the
co-occurring functional regions with mutations. a) Input data, a simplified transaction
database of protein-DNA interaction sequences. Each transaction (T0 to T3) records an
experimental record of protein sequences binding a set of DNA sequences but the exact
binding sites have not been identified. This is a simplified dataset as it only contains
4 transactions and the protein sequences only have less than 20 amino acids. b) Input
data, with the co-occurring functional regions highlighted for illustration. We observe that
1) FDERRMFR and ACTTCCG co-occur in transactions T0 and T1; 2) FDERMMFR
and ACTCCCG co-occur in transaction T2. c) Output data, Protein-DNA Co-Occurrence
Aligned Pattern Cluster, capturing co-occurring functional regions with mutations in both
Protein-side and DNA-side. 6



An Illustration of Protein-DNA interaction sequences from 
TRANSFAC

ID Protein DNA (On average: 25
nucleotides long)

0 RNDCE…QQQG ATACC…AC
CCGTTAA
…
AC…GTT

1 GQERR…NNNG GTATC…TT
ATGCCGG
…
TTACCCT

…

N RREQQ…MNGT CCGAA…GT
GACTTAA
…
CGGGTCC

On average:
~500 residues long

On average:
~500 residues long

On average:
~500 residues long

On average:
22 sequences

On average:
22 sequences

On average:
22 sequences

Figure 1.4: An illustration of Protein-DNA interaction sequences from TRANSFAC [89].
Each transaction records an experimental record of protein sequences binding a set of DNA
sequences but the exact binding sites have not been identified. In each transaction, the
protein sequence can be as long as 500 amino acids (residues) on average. Also, in each
transaction, there could be on average 22 DNA sequences, where each of them can have on
average 25 nucleotides. There could be more than 700 transactions in TRANSFAC [89].
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b) Input Data with highlighted functional regions 

c) Output Data, Protein-Protein Co-Occurrence Aligned Pattern Cluster, capturing co-
occurring functional regions with mutations 

F D E R R M F R 

F D E R M M F R 

P G Q Y N T H G 

P G Q O N T H G 

Protein Sequence 1 Protein Sequence 2 Interaction Label 
T0 AQQQFDERRMFROPOP DAEVMPGQYNTHGALHSN + 
T1 MNNNFDERRMFRKIKI CPCPGQYNTHGQNPK + 
T2 WSDEFDERMMFRJCJC KHPGQONTKGKEF + 
T3 HKWEVHMRHVHKJV REVFQKMAAECTQGT - 

a) Input Data, a Protein-Protein interaction sequence database in transaction format 
with interaction labels 

Co-occurrence:    1) FDERRMFR and PGQYNTHG co-occur in transactions T0 and T1;  
                               2) FDERMMFR and PGQONTHG co-occur in transaction T2  

Transaction Database: Each transaction (T0 to T3) records an experimental record of 
protein sequence binding (+) or not binding (-) another protein sequence indicated by the 
interaction label, but the exact binding sites have not been identified 

Protein Sequence 1 Protein Sequence 2 Interaction Label 
T0 AQQQFDERRMFROPOP DAEVMPGQYNTHGALHSN + 
T1 MNNNFDERRMFRKIKI CPCPGQYNTHGQNPK + 
T2 WSDEFDERMMFRJCJC KHPGQONTHGKEF + 
T3 HKWEVHMRHVHKJV REVFQKMAAECTQGT - 

Figure 1.5: Problem 2b: Identification of co-occurrence functional regions with mutations
between interaction sequences with interaction labels. Given a transaction database of
interaction sequences, while an interaction label is introduced to each transaction, the
output is to find out the co-occurring functional regions with mutations. a) input data,
a transaction database of protein-protein interaction sequences with interaction label; ‘+’
indicates that this is an experimentally-proven record of interaction. ‘-’ indicates that
this is an experimentally-proven record of non-interaction. b) input data, with the co-
occurring functional regions highlighted. c) output data, Protein-Protein Co-Occurrence
Aligned Pattern Cluster, capturing co-occurring functional regions with mutations in both
protein sides.
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width and thus will fail to identify functional regions with insertion mutation and will take
in noises when identifying functional regions with deletion mutation. MEME is the most
popular existing software among existing methods that based on PWMs [151]. As shown
in Fig. 1.6(b), the output of MEME [7] on the Sequence Set Alpha is demonstrated. We
observe that MEME assumes the functional region has a fixed width of 7 and outputs a
PWM with a width of 7. Thus, MEME [7] fails to identify the functional regions with
insertion mutation (e.g. CSQMMCHGG in s7) and took in noises when identifying func-
tional regions with deletion mutation (i.e. CSQHGG in s8). Furthermore, these methods
are not efficient since their determination of the optimal width parameter has to rely on
exhaustive search.

Recently, Aligned Pattern Clustering (APCn) [77, 143] was introduced to identify from
a set of sequences functional regions as Aligned Pattern Clusters (APCs) [77, 143] by
grouping and aligning patterns with variable width. As shown in Fig. 1.6(c), the out-
put of the existing software WeMine running APCn [77, 143] on the Sequence Set Alpha
is demonstrated. With this method, first, variable-width patterns with high frequencies
of occurrence and sufficient statistical significance are discovered [77, 143]. Then, these
patterns are clustered based on column similarity, where gaps can be introduced. The
outputs are referred to as APCs [77, 143]. Nevertheless, a drawback of APCn is that it
cannot identify functional regions with mutations if their frequency of occurrences is too
low to be considered as a pattern. Hence, a new algorithm was developed to overcome
these challenges.

In addition, in the problem of identifying co-occurring functional regions with muta-
tions between interaction sequences in Protein-DNA interaction [79] and Protein-Protein
interaction [111, 109, 112], existing algorithms do not have representation models allowing
mutations. Given a database of protein-DNA interaction sequences in transaction for-
mat as shown in Fig. 1.3(a), the traditional representation model, one-to-one mapped
associated patterns [79] as shown in Fig. 1.7(a), cannot capture the mutations (or site
variations). Hence, a new representation model for capturing co-occurring functional re-
gions with mutations, and a discovery algorithm for discovering such representation model
from interaction sequence data, have been developed.

Based on this new representation model, it is also interesting to investigate if it can help
to build better sequence-based Protein-Protein Interaction machine learning prediction
model. The challenge here is how to construct a feature vector using the new representation
model. Fig. 1.8 provides an illustration.

Therefore, the objectives of this thesis are to:

• discover functional regions with substitution, insertion and deletion mutations
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a) Sequence Set Alpha

S0   MGDVEKGKKIFIMKCSQCHGGPEGLTAS
S1   IVAFKTGLSCNEPDRWCSQCHGGEGTPALS
S2   RACSPGLKNWDVFETICSQCHGGSTEPGLA
S3   DASKNVFIGCELRWTPCSGMCHGGGSPALTE
S4   ICGTAEPNRLDFSKVWCSGMCHGGLPTEGAS
S5   LPNCRATEWIKFSDGVCSGMCHGGAGTLPSE
S6   SKNWGVFLCRADPIETCSACHGGPALSGTE
S7   PKAGNEILVSTRFDWCCSQMMCHGGSPATELG
S8   PKNFSGIRCVLTWADECSQHGGKTESPLAG

b) Output of the most popular existing software MEME on 
the Sequence Set Alpha

Position Weight Matrix (PWM) Functional Regions Identified by MEME

C S Q - C H G G

C S G M C H G G

1. CSQCHGG
2. CSGMCHGG

Pattern Aligned Pattern 
Cluster (APC)

c) Output of the existing software WeMine
running Aligned Pattern Clustering (APCn) on the 

Sequence Set Alpha

d) Output of the proposed algorithm Pattern-
Directed Aligned Pattern Clustering (PD-APCn)

S0: [(14,20)]; s1:[(16,22)]; s2:[(16,22)]; 
S3: [(16,23)]; s4: [(16,23)]; s5: [(16,23)]
S6:[(16,22)]
S7:[(16,24)]
S8:[(16,21)]

C S Q - - C H G G

C S G M - C H G G

C S A - - C H G G

C S Q M M C H G G

C S Q - - - H G G

Figure 1.6: An illustration of a sequence set with mutations and demonstration of outputs
by existing software. a) Sequence Set A is composed of 9 sequences (s0-s8), containing two
functional regions, CSQCHGG and CSGMCHGG, as well as the functional region with
substitution mutation CSACHGG in s6, the functional region with insertion mutation
CSQMMCHGG in s7, and the functional region with deletion mutation CSQHGGG in
s8. b) The output of the most popular existing software MEME [7] on the Sequence Set
Alpha is demonstrated. We observe that MEME assumed the functional region having a
fixed width of 7 and outputted a position weight matrix (PWM) [151] with a width of 7.
c) The output of the existing software WeMine running APCn [77, 143] on the Sequence
Set Alpha is demonstrated. We observe that APCn cannot identify functional regions with
mutations, since their frequencies of occurrence are too low to be considered as patterns. d)
The output of the proposed algorithm Pattern-Directed Aligned Pattern Clustering (PD-
APCn) [126, 127] is demonstrated. PD-APCn [126, 127] can identify all functional regions
with mutations, indicating their starting and ending address locations with sequence ids,
in an efficient manner.
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a) New Representation Model: Protein-DNA Co-Occurrence 
Aligned Pattern Cluster (Many-to-many mapped)

F D E R R M F R

F D E R M M F R

A C T T C C G

A C T C C C G

F D E R R M F R A C T T C C G

b) Traditional Representation Model: One-to-one mapped 
associated pattern

Enabling
Homology modeling
for new binding site 
discovery

Bioinformatics application

Figure 1.7: An illustration of Protein-DNA Co-Occurrence Aligned Pattern Cluster. a)
New representation model: Protein-DNA Co-Occurrence Aligned Pattern Cluster, which
is many-to-many mapped, enabling the use of homology modeling [116] to discover new
binding sites by considering all pair-wise combinations between both sides. b) Traditional
representation model: One-to-one mapped associated pattern [79], where mutations are
not captured.

• use an efficient process to determine the model width adaptively from data without
exhaustive search

• develop a new representation model for capturing co-occurring functional regions
with mutations

• develop a new algorithm to discover such a representation model from interaction
sequence data in the format of a transaction database

• develop applications of the new representation model in real Protein-DNA and Protein-
Protein interaction sequence data

1.3 Contributions

The contribution of this thesis can be stated as follows:

• This thesis proposes a new algorithm known as Pattern-Directed Aligned Pattern
Clustering (PD-APCn) [126, 127] which can identify functional regions with mu-
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a) New Representation Model: Protein-Protein Co-
Occurrence Aligned Pattern Cluster (Many-to-many 

mapped)

F D E R R M F R P G Q Y N T H G

b) Traditional Representation Model: One-to-one 
mapped associated pattern

Feature 
Construction

Sequence-based Protein-
Protein Interaction Prediction

Bioinformatics applicationF D E R R M F R

F D E R M M F R

P G Q Y N T H G

P G Q O N T H G

Interaction Prediction 
Model

Protein 
Sequence A

Protein 
Sequence B

Score: 0.75

Figure 1.8: An illustration of Protein-Protein Co-Occurrence Aligned Pattern Cluster. a)
New representation model: Protein-Protein Co-Occurrence Aligned Pattern Cluster, which
is many-to-many mapped. Leveraging the proposed APC − PPI score [124, 125] in this
thesis, feature vectors can be constructed using the Protein-Protein Co-Occurrence APC
to train a sequence-based protein-protein interaction prediction model, using a transaction
database of protein-protein interaction sequences with interaction label as training data. b)
Traditional representation model: One-to-one mapped associated pattern [109, 112]. Our
experimental results [124, 125] on 40 independent datasets demonstrated our prediction
model are better than the ones based on the traditional representation model [109, 112].

12



tations from sequence data. Compared to the existing algorithm Aligned Pattern
Clustering (APCn) [77, 143], it does not require users to specify the representation
model width parameter, and can identify mutated functional regions which have low
frequencies of occurrence. Compared to the most popular existing software MEME
[7], in our experiments on synthetic datasets, PD-APCn could identify the implanted
functional regions and outperform with higher recall and Fmeasure over a compu-
tational speed-up of up to 665 times [126, 127]. When applying PD-APCn on real
datasets from Cytochrome C and Ubiquitin protein families, all key binding sites in
the families were captured in the APC outputs. [127]. As shown in Fig. 1.6(d), the
output of the proposed algorithm Pattern-Directed Aligned Pattern Clustering (PD-
APCn) [126, 127] is demonstrated. PD-APCn [126, 127] can identify the functional
regions with mutations, indicating their starting and ending address locations with
sequence ids, while APCn and MEME cannot.

• This thesis proposes a new representation model known as Co-Occurrence APC [74,
124, 75, 125], and the discovery algorithm for discovering co-occurring functional
regions between interaction sequences in transaction database format via the Co-
Support score [74, 124, 75, 125].

• This thesis presents an application of Co-Occurrence APC to Protein-DNA interac-
tion. We developed Protein-DNA Co-Occurrence APC [74, 75], as shown in 1.7(b),
for the discovery of protein-DNA binding cores with higher precision (up to 20%
more precise) with a 1600 times faster run-time than those of its contemporaries.
The significant of the speed-up is attributed to replacing the combinatorial search
of one-to-one co-occurrence in the entire transaction dataset to the many-to-many
search of co-occurrences between patterns within each high-ranking Protein-DNA Co-
Occurrence APC (Fig. 4.1). New Protein-DNA binding cores revealed by Protein-
DNA Co-Occurrence APC are also discovered via homology modeling [116] as a
proof-of-concept [74, 75].

• This thesis presents an application of Co-Occurrence APC to Protein-Protein inter-
action [124, 125]. We developed Protein-Protein Co-Occurrence APCs [124, 125], as
shown in 1.8(b), to construct feature vectors by the proposed Match score [124, 125],
MaxMatch score [124, 125] and APC−PPI score [124, 125]. Based on such feature
vectors, we built machine learning prediction models for sequence-based Protein-
Protein interaction prediction which outperformed its nearest counterpart PIPE2
[109, 112] among 40 independent datasets. The significance of APC [77, 143] enables
WeMine-P2P to have pattern variants and flexible width in the features, leading
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to stronger interpretability. A list of interpretable biological features discovered via
WeMine-P2P has been rendered in Tables 5.5 and 5.6.

1.4 Thesis structure

This thesis is presented with the following structure. Chapter 2 provides a summary
of the background knowledge and related work. Chapter 3 introduces the new Pattern-
Directed Aligned Pattern Clustering (PD-APCn) and the experimental results. Chapter 4
introduces the new representation model known as Co-Occurrence APC and its applications
to Protein-DNA interaction. Chapter 5 introduces the application of Co-Occurrence APC
to Protein-Protein interaction. Chapter 6 concludes the thesis and indicates potential
future work.
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Chapter 2

Background and Related Work

In this chapter, the basic biological background knowledge is introduced. For complete-
ness, the concept of Protein, DNA and the Central Dogma of Molecular Biology is briefly
presented, followed by a review on Protein-DNA interaction and Protein-Protein interac-
tion.

2.1 Protein, DNA and the Central Dogma

Amino acid (Residue) is a fundamental organic compound with amine (-NH2), car-
boxylic (-COOH) functional groups and a specific side chain. Different amino acids are
differentiated by the side chains attached. Human body has 20 standard amino acids,
which are {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V}. An amino acid,
also called a residue, can form a peptide bond with another amino acid.

Protein can be simply interpreted as a linear sequence of amino acids, i.e. a string of
alphabets, where each alphabet represents one amino acid. For example, RAWYVFMP
is a protein sequence. Protein structure can be divided into 4 distinct levels, from pri-
mary to quaternary. The primary structure of a protein refers to the linear sequence of
amino acids linked by peptide bonds. The secondary, tertiary and quaternary refer to the
3D arrangement of the bonding. Hence, a 3D structure of a protein reveals 4 levels of
information.
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Nucleotides are (organic) molecules where each of them has a five-carbon sugar, a spe-
cific nitrogenous base and at least one phosphate group. There are five types of nitrogenous
bases including Adenine (A), Uracil (U), Guanine (G), Thymine (T), and Cytosine (C).
This is called complementary base pairing.

DNA (deoxyribonucleic acid) is interpreted as a sequence of nucleotides. Only 4
types of nucleotide (A, C, G, T) are present in DNA. For example, ACAGATTT is a DNA
sequence.

The Central Dogma of Molecular Biology The central dogma of molecular biology
normally refers to how a protein is made from DNA. As shown in Fig. 2.1, DNA is first
transcribed into messenger Ribonucleic Acid (mRNA) and mRNA is then translated into
protein. mRNA serves as the template of DNA to convey the genetic information. After the
transcription, mRNA is then translated to protein. A gene is a segment of DNA encoding
a protein. The process which turns a gene into a protein is called gene expression.

2.2 Functional Regions in Protein and DNA

As mentioned in Chapter 1, for protein and DNA to actually exert their biological functions,
they have to participate in biological mechanisms, in which they interact with others via
their functional regions. Therefore, the identification of functional regions with mutations
from Protein and DNA is vitally important in bioinformatics. Such knowledge if spotted
effectively could reveal the crucial mutation hotspots [134], not only enabling us to have a
better scientific understanding but also help the design of new drugs [142, 134]. Fig. 1.1
provides an illustration of functional regions.

Traditionally, functional regions in Protein and DNA are identified in resolved high-
resolution 3D structures obtained by X-ray crystallography [149] or nuclear magnetic res-
onance spectroscopic experiments [6]. However, these experiments are expensive, labor-
intensive and time-consuming.

Under evolutionary pressure, these functional regions normally remain conserved [81].
Thus, sequence-based identification methods are feasible. To identify them, domain an-
notation [33] leverages existing databases (such as PFam [34]) or profile hidden markov
models [35]. Nevertheless, functional regions not recorded in existing databases or too
distinct from the recorded ones cannot be identified.
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2.2.1 Multiple Sequence Alignment (MSA)

For de novo discovery of functional regions, Multiple Sequence Alignment (MSA) [132] is
one approach, but it is suitable only for globally homologous sequences with a high level of
similarity [132]. Even within the same protein family, this “homologous” assumption may
not hold. For example, in the class A Scavenger Receptor [140] with five subclasses, the
width of collagenous domains varies in subclasses from 75 to 250 amino acids [62].

2.2.2 Motif Discovery

Motif Discovery is an approach to locate and align locally homologous subsequences [37].
Throughout the years, many algorithms [95, 82, 7, 139], have been developed to find
unknown patterns (de novo motifs) only from a set of protein or DNA sequences.

MEME [7] is the most popular method to represent such homologous sub-sequences
by a position weight matrix (PWM) [151] which is fixed-width, but the span of protein
functional regions, with frameshifts (insertion and deletion mutations) varies in width. A
graphical illustration of the output of the motif discovery algorithm MEME [7] showing a
PWM is provided in Fig. 1.6(b).

Furthermore, to identify the width parameter of a PWM requires exhaustive compu-
tational intensive search. In MEME [7], the search range of the default PWM width
parameter varies from 8 to 50. This is a default option of motif discovery software for
a bioinformatics scientist. In addition, GLAM2 [38] is also a popular motif discovery
algorithm, with its specialty in identifying motifs with gaps, and it is often used as an
benchmark algorithm [113] or integrated into a bioinformatics pipeline [69]. Both of them
were used as benchmark algorithms in Chapter 3.

2.2.3 Aligned Pattern Clustering (APCn)

Aligned Pattern Clustering (APCn) [77, 143] was introduced to discover functional regions
with variable width from protein family sequences as Aligned Pattern Clusters (APCs)
[77, 143]. In this section, we briefly describe Aligned Pattern Clusters (APCs) [77, 143],
and their discovery algorithm Aligned Pattern Clustering (APCn) [77, 143].
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Definition of Aligned Pattern Cluster (APC)

An APC [77, 143] is a group of sequence patterns augmented by inserting gaps - and
wildcards *, such that the augmented sequence patterns share a high column similarity
and each of them has the same length.

Sequence

Let Σ be a set of alphabets. Let sk be a sequence comprising of alphabets in Σ, i.e.
sk = s1

ks
2
k . . . s

|sk|
k , where sjk ∈ Σ, ∀j = 1, 2, . . . , |sk|.

Sequence Set

Let S be a set of sequences, i.e. S = {sk|k = 1, 2, ..., |S|}.

Pattern

A pattern p̄ is defined as an ordered sequence of interdependent symbols from Σ, i.e.
p̄ = σ̄1σ̄2...σ̄|p̄|, where σ̄j ∈ Σ,∀j = 1, 2, ..., |p̄|, that passes the requirements [144], such as
minimum width minwidth, maximum width maxwidth, minimum occurrence minoccurrence,
confidence interval confinterv, redundancy pruning (delta-closed) threshold deltaclosed.

Pattern Discovery Algorithm

Given a sequence set S, minimum width minwidth, maximum width maxwidth, minimum
occurrence minoccurrence, confidence interval confinterv, redundancy pruning (delta-closed)
threshold deltaclosed, a set of patterns P̄ by the pattern discovery algorithm [144], i.e.
P̄ = {p̄i|i = 1, ..., |P̄ |} = {p̄1, p̄2, . . . , p̄|P̄ |}. A graphical illustration of the output of the
pattern discovery algorithm [144] is provided in 1.6(c).
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Aligned Pattern Cluster (APC)

Given a set of patterns P̄ l = {p̄l,1, p̄l,2, ..., p̄l,ml}, an APC C l is defined as

C l = ALIGN(P̄ l) (2.1)

= ALIGN


p̄l,1

p̄l,2

...
p̄l,ml

 =


pl,1

pl,2

...
pl,ml

 =
(
P l
)

(2.2)

=
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1 σl,1
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nl
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nl

...
...

...
...

σl,ml
1 σl,ml

2 . . . σl,ml
nl


ml×nl

, (2.3)

where σl,i
j ∈ Σ∪{−}∪{∗}, ∀i = 1, 2, ...,ml,∀j = 1, 2, ..., nl, and ALIGN [77, 143] is a process

to maximize the column similarity in P̄ l, by inserting gaps and wildcards, to obtain a set
of aligned patterns P l = {pl,1, pl,2, ..., pl,ml} with the same length nl.

Aligned Pattern Clustering (APCn) algorithm

Given a set of patterns P̄ = {p̄1, p̄2, ..., p̄|P̄ |}, a set of APCs C = {C1, C2, . . . , C |C|}, can be
obtained by the Aligned Pattern Clustering (APCn) algorithm [77, 143]. The algorithm is
illustrated in Algorithm 1.

Thus, an APC is formed by clustering and aligning the patterns discovered by the pat-
tern discovery algorithm [144]. A graphical illustration of the output of the Aligned Pattern
Clustering (APCn) algorithm [77, 143] is provided in 1.6(c). It is a crucial observation as
we find out that if a pattern is missed by the Pattern Discovery algorithm [144], it will not
be discovered by the Aligned Pattern Clustering (APCn) algorithm [77, 143]. As shown in
Fig. 1.6(a), Sequence Set A is composed of 9 sequences (s0-s8), containing two functional
regions, CSQCHGG and CSGMCHGG, as well as the functional region with substitution
mutation CSACHGG in s6; the functional region with insertion mutation CSQMMCHGG
in s7; and the functional region with deletion mutation CSQHGGG in s8. As shown in Fig.
1.6(c), we observe that APCn cannot identify functional regions with rare mutations, such
as CSACHGG on S6, CSQMMCHGG on S7 and CSQHGG on S8, since their frequencies
of occurrence are too low to be considered as patterns.
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Algorithm 1 Aligned Pattern Clustering (APCn) algorithm [77, 143]

Input: a set of patterns P̄ = {p̄1, p̄2, ..., p̄|P̄ |}, a minimum similarity threshold,
minSimilarity.
Output: a set of APCs C = {C1, C2, . . . , C |C|}
Set all p̄i ∈ P̄ as Ci ∈ C, ∀i = 1, 2, ..., |P̄ |
for all pairs of (Ci, Cj) do

compute Similarity(Ci, Cj)
end for
while True do

s = select max Similarity(Cmaxi , Cmaxj)
if s <minSimilarity then

break
end if
Cnew = merge(Cmaxi , Cmaxj)
remove Cmaxi , Cmaxj from C
insert Cnew into C
for all pairs of (Cnew, Ci) do

compute Similarity(Cnew, Ci)
end for

end while
return C

2.3 Protein-DNA interaction

A Protein-DNA interaction is referred to as a protein binding a molecule of DNA [123],
when they are in close contact (<3.5Å[1]), usually via chemical bonds such as hydro-
gen bonds [117]. Hence, a Protein-DNA interaction is also considered as a Protein-DNA
binding. Protein-DNA interactions play essential roles in DNA transcription [85, 84]. A
transcription factor (TF) is a special type of protein. A TF regulates (activates or inhibits)
the expression of a gene by binding itself in a sequence-specific manner in most cases to
a segment of DNA located around the target gene called the transcription factor binding
site (TFBS) [85, 84]. Sequence-specific binding is referred to as the ability of a TF to
distinguish different DNA sequences.
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Figure 2.1: This figure illustrates the Central Dogma of Molecular Biology and how
Protein-DNA binding regulates (activates or inhibits) transcription. (a) The Central
Dogma of Molecular Biology simply refers to how protein is made from DNA. Transcrip-
tion turns DNA to mRNA and translation turns mRNA to Protein. (b) How Protein-DNA
binding regulates transcription is illustrated. (1) A transcription factor (TF), a special
type of protein, binds itself to a segment of DNA called transcription factor binding site
(TFBS), which is located around the target gene which is a DNA segment coded for pro-
tein. (2) Gene transcription is initiated. (3) The target gene is transcribed to mRNA. (4)
The mRNA is translated to a protein.
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2.3.1 Protein-DNA binding core

A DNA binding domain is the binding region of a TF. It can recognize a collection of similar
TFBSs. A domain annotation indicates both the starting position and the ending position
of that domain. DNA binding domain annotations are conventionally long, varying from
25 to 500 amino acids. However, according to high-resolution 3D Protein-DNA binding
structures, only short regions (<10) of TF and TFBS actually form critical chemical bonds.
The regions between a TF and a TFBS in close contact (<3.5Å[1, 99]) are referred to as
Protein-DNA binding cores [18, 79] (see Figure 2.2). The argument is that such a close
contact is unlikely to be a random happening. It is because that in the binding cores critical
chemical bonds [71] exist to pull together the residue and the nucleotide. Existing work has
shown that this close contact is energetically important [91, 63], causing differential binding
when mutated [17], and is important for establishing regulation across model organisms
and databases such as SwissRegulon [101]. While Protein-DNA binding cores are relatively
short regions (<10), TFBS can be as long as 20 bp [18, 79]. It is observed that subtle
changes in binding cores may affect its binding specificity. For example, the V/E variation
between PKVVIL−CACGTG and PKVEIL−CAGCTG (in bold fonts) is indicative
for distinguishing Myc from MRF families [17]. Hence, analyzing and affirming binding
cores will not only consolidate our knowledge of gene regulation but also potentially provide
additional insights on the binding specificity of transcription factors.

2.3.2 Experimental approaches on studying Protein-DNA inter-
action

Traditionally, experiments such as DNA footprinting [48] or gel-shift assays [52] were used
for studying Protein-DNA interactions. DNA footprinting [48] provides a binary binding
signal between the protein and the target DNA sequence (50 - 200 base pairs). Gel-shift
assays [52] provide more or less the same signal except that the target DNA sequence
can be as short as 5 base pairs [114]. They are good for verification but impractical for
discovery due to the large search space required to identify the right sites. Also, they
do not provide any binding site information on the protein side. Expensive experiments
such as X-ray crystallography or Nuclear Magnetic Resonance (NMR) are conducted to
obtain high-resolution 3D Protein-DNA binding structure to identify the Protein-DNA
binding cores (<10 residues/ base pairs on both sides). Due to the high cost of the high-
resolution 3D structures, the available Protein-DNA 3D structures are limited and far
from being complete [142]. Furthermore, as these experiments are labor-intensive and
time-consuming, they are unable to be conducted on scale. Therefore, the recent trend
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PDB: 
1PUE 

Figure 2.2: [75] A binding core [79] is denoted as a region between a TF and a TFBS in
close contact (<3.5Å[1, 99]). For example, (MARAL,GGGAA) is a binding core, where a
hydrogen bond exists between R and G with a length of 3.25Å. MARAL and GGGAA are
called as a TF-core and a TFBS-core respectively.
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to study Protein-DNA interactions is to develop high-throughput technologies [123] such
as chromatin immunoprecipitation (ChIP) followed by microarray or sequencing (ChIP-
Chip or ChIP-Seq) [16, 102] and protein binding microarray (PBM) [11]. ChIP-Chip or
ChIP-Seq [16, 102] sequencing technologies measure the binding occupancy of a particular
TF to the nucleotide sequences on a genome-wide basis in vivo (within cells), but at low
resolution. These sequencing technologies are only able to indicate a region of 100 or
more base pairs [123], and are available in the Encyclopedia of DNA Elements (ENCODE)
database [22]. Another emerging sequencing technology is PBM [11, 10] which enables the
measuring of the binding preference of a TF to all possible nucleotide sequences with 8
base pairs in vitro (in test tubes) [11, 10] as available at the UniProbe [58]. Nevertheless,
it does not provide any binding site information on the TF side.

2.3.3 Computational approaches on studying Protein-DNA in-
teraction

Different approaches have been developed, but most of them are one-sided.

Association Rule Mining. Among the computational techniques, association rule
mining is the only few systematic two-sided approach which was recently applied in [79, 148]
to mine TF-TFBS associated patterns, e.g. (MARAL, GGGAA), from sequence data only.
Despite the satisfactory results, the algorithms [79] represent a TF-TFBS binding by a TF-
TFBS associated pattern which is a one-to-one pattern mapping of a protein sequence and
a DNA sequence only without considering any variation. One algorithm [146] suggests that
it can discover many-to-many mapped TF-TFBS associated patterns using evolutionary
algorithms. However, it is still based on one-to-one mapped TF-TFBS associated patterns
[79]. It leads to information loss and involves combinatorial trials. Another algorithm in
[148] does consider variations by allowing at most 1 mismatch between every TF-TFBS
associated pattern, but each of them is represented as a pair of position weight matrices,
which is not biologically intuitive for interpretation, and the column-wise associations are
also not reserved for analysis.

Unified Score Model. Besides systematic methods, ad-hoc models [20] have been
developed to discover TF-TFBS associated patterns with variations but are not totally
based on sequences. Recently, a new method called Unified Score Model (USM) [19] was
proposed to mine TF-TFBS associated patterns with variations from sequence data only.
USM performs motif discovery (allowing at most 1 mismatch) on TF-side and the TFBS-
side of each corresponding TF. It is thus computationally intensive as motif discovery is
performed for N+1 times, given N transcription factors and their DNA binding sequences.
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USM then links up both sides by summing the TF-side and its corresponding TFBS-side
motif scores as a unified score to rank TF-TFBS associated patterns. Although variations
are considered, the representation of TF-TFBS associated patterns is still one-to-one, giv-
ing no site-specific information on variations. For example, assume that the TF-TFBS
associated pattern (FQNRRMK, TTATTTG) is discovered by USM, it does not include
the information about whether its variants, such as (FQNRRAK, TTAATTG), are possible
for binding.

2.4 Protein-Protein interaction

Protein-protein interaction (PPI) is important for biological processes and functions in
living cells such as metabolic cycles, DNA transcription and replication, and signaling
cascades [40]. Hence, studying PPI is critical for better understanding the molecular
mechanisms inside the cell [40]. Following [104, 47], we refer a PPI as an interaction that
brings two different proteins A and B into direct and close physical contact (<6Å[100]), i.e.
heterodimeric interaction. In contrast, most homodimeric interaction, in which proteins
A and B are the same, are for maintaining the stability of the interacting complex (as
proteins A and B cannot exist independently [97]) but not for regulating cellular processes
[97].

2.4.1 Experimental methods on predicting Protein-Protein in-
teraction

Predicting Protein-Protein interaction is a process to predict if one protein will interact
with another protein. It is particularly useful for discovering the unknown functions of a
target protein [56]. A number of experimental methods have been developed for study-
ing PPI. Low-throughput methods such as crystallography [70] can provide an accurate
understanding of the target PPI. However, these methods are expensive, labor-intensive
and time-consuming [152, 110], and hence are not suitable for large-scale discovery. Al-
though there are attempts [122, 57] to enhance the throughput, their efficiency remains
to be demonstrated. Recently, high-throughput methods such as the yeast two-hybrid
(Y2H) systems [60], and tandem affinity purification (TAP) [40] with mass spectrometry
[53] , have been developed for large-scale PPI detection. Nevertheless, these experimental
methods usually suffer from high rates of both false positive and false negative predictions
[105, 83]. Hence, developing effective and reliable computational methods to facilitate more
accurate prediction of PPI is of fundamental importance [121].
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2.4.2 Computational methods on predicting Protein-Protein in-
teraction

Predicting Protein-Protein interaction using computational methods is a process to predict
if one protein will interact with another protein based on digital computation but not
physical experiments. Existing computational methods for PPI prediction can be divided
into four types depending on the input data. The first type such as Computational docking
[108] requires three-dimensional structures of the target proteins. It can be applied to the
target proteins to simulate if they can interact based on physiochemical properties such
as shape complementarity, electrostatics, and biochemcial information [39]. The second
type requires genomic information of the target proteins, e.g. gene fusion events [31], the
conservation of gene-order [23], and the calculation of prior probabilities of genomic features
between interacting proteins [61]. The third type requires prior biological knowledge of the
target proteins, e.g. phylogenetic profiles [106], domain knowledge of proteins [21, 64, 41]
and topological properties of proteins in PPI networks [153]. All these methods do not have
general applicability because the required data/information is not always available. The
last type of methods require only sequence data. It uses the coded information inherent in
sequences to predict if a protein pair interacts. For this reason, sequence-based methods
are becoming popular, since sequence data is more readily available nowadays [56].

2.4.3 Sequence-based Protein-Protein interaction Prediction

Sequence-based Protein-Protein interaction Prediction is a process to predict if one pro-
tein will interact with another protein using only their sequences as input to a computer
program.

PIPE [111] / PIPE2 [109, 112] is a well-established sequence-based method. Given
a protein A, a protein B and a database of positive PPIs, PIPE simply counts how fre-
quently all fixed-length protein sequence segments in Proteins A and B found co-occurring
in the database. To achieve such a task, all combinations of 20-mers between Protein A
and Protein B are first enumerated using a sliding window with a width of 20. Then,
the co-occurrence of each combination, e.g. MGIRRLVSVITRPIINKVNS from Protein A
and GPEAIILTGTFDDWKGTLPM from Protein B, is searched in the database, and the
frequency of their co-occurrence is counted. The sum of all counts is then computed. If
the sum is larger than or equal to a threshold, the algorithm then predicts that protein
A and B would interact. PIPE2 is a much faster version of PIPE. However, in spite of
the satisfactory prediction performance, we observe that there is room for improvement.
The key drawback of PIPE/PIPE2 is their use of a fixed-window of 20 amino acids. This
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is biologically unrealistic since functional regions such as the Short Linear Motifs (SLiMs
[30]) have variable length from 3 to 15 amino acids [30]). Most of them are less than 10
amino acids [90]. Recently, a similar algorithm called VLASPD [56] that allows variable
lengths of protein sequence segments is proposed. Nevertheless, it still uses exact patterns,
which are neither realistic nor useful for biological analysis since it does not accept vari-
ants. Furthermore, it adopts a threshold-based prediction model, which does not allow
nonlinear relationships between features and class outputs. Nevertheless, since PIPE2 is
well benchmarked [104], we compared our newly proposed algorithm with it.

Another well-established sequence-based method involves the use of a Support Vector
Machine (SVM) with a Pairwise String Kernel [88, 51, 136, 121, 43, 9]. They encode a
PPI pair into a feature vector composed by the co-occurrence of k-mer (a sequence of k
residues) and train the SVM to predict if a protein pair can interact. For example, assume
k = 3, a selected feature could be the number of counts of how often the 3-mers, say
WTG and LGA co-occur in a protein pair along the entire sequence. Since all possible
3-mers are considered, the feature space could be as large as 203 x 203 (i.e. 64 millions)
[47]. With a SVM, even with such a high dimensionality, by using the kernel trick, neither
computing nor storing the feature vector is needed. As no feature vectors are computed,
in spite of achieving satisfactory prediction performance, it is hard to use SVM results
to reveal or interpret why the feature space leads to its good performance. Thus, since
the feature space is hardly interpretable, not much biological knowledge can be gained.
Hence, to overcome this hurdle encountered when using a SVM is another key motivation
of our proposed method. It should be noted that it is possible to generalize k-mer counting
strategies allowing for gaps and mismatches [78]. However, these methods still do not allow
a variable length. For example, if k is set to be 5, these methods would still consider all the
5-mers, while in WeMine-P2P, there could be 5-mers, 6-mers and 7-mers. In WeMine-P2P,
we utilize the locally conserved sequence pattern clusters [143, 77] and their co-occurrence
[74] to obtain biologically realistic and interpretable features that are flexible in pattern
length while allowing variants. Experiments showed that our prediction results based on
these features are comparable to those achieved by the SVM with Pairwise String Kernel
approaches. In addition, the presence of concrete feature values makes the feature analysis
of our models (and the subsequent biological interpretation) easier for biologists, compared
to the SVM with Pairwise String Kernel approaches, which have no concrete features and
thus make feature analysis (and the subsequent biological interpretation) of the models
difficult.
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2.4.4 Short Linear Motifs mediating Protein-Protein interaction

Short Linear Motifs (SLiMs) [29, 93], also known as Linear Motifs (LMs) or Eukaryotic
Linear Motifs (ELMs) [26] or minimotifs, are conserved [107] and short protein sequences
(generally 28 residues in length [107], <10 residues [90]) that mediate Protein-Protein in-
teraction via interacting with (the globular domains of) the same and/or other proteins
[24]. The key property of SLiMs is their linearity, which means three-dimensional arrange-
ment is not required to bring distant amino acids together to make the recognizable unit
[59]. The conservation of SLiMs varies, where some are highly conserved while others are
not [59]. The SLiMs that are not conserved can easily evolve to cater for different types of
Protein-Protein interaction [90].
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Chapter 3

Pattern-Directed Aligned Pattern
Clustering

3.1 Introduction

As described in Chapter 2, for protein and DNA to actually exert their biological functions,
they have to participate in biological mechanisms, in which they interact with others via
their functional regions. Therefore, the identification of functional regions with mutations
from Protein and DNA is vitally important in bioinformatics. Such knowledge if spotted
effectively can reveal the crucial mutation hotspots [134], not only enabling us to have a
better scientific understanding but also to help the design of new drugs [142, 134].

Up-to-date, domain annotation [33] is one approach to identify functional regions from
sequences but it needs to leverage existing databases (such as PFam [34]) or profile hidden
markov models [35]. Nevertheless, functional regions not recorded in existing databases
or too distinct from the recorded ones cannot be identified. For de novo discovery, motif
discovery [37] such as the most popular software MEME [7] locates and aligns locally
homologous sub-sequences to obtain a position weight matrix (PWM) [151] which is a
fixed-length representation model whereas protein functional region size varies. It thus
requires computational expensive exhaustive search to obtain a PWM [151] with width of
optimal range.

To overcome such an impasse, this thesis proposes a new algorithm, Pattern-Directed
Aligned Pattern Clustering (PD-APCn) [127, 126], which can: a) use a systematic process
to determine the representation model width adaptively from data without exhaustive
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search; b) discover functional regions with mutations. Experiments on synthetic datasets
with different sizes and noise levels showed that PD-APCn [127, 126] outperforms MEME
[7] with much higher recall and Fmeasure and computational speed 665 times faster than
MEME. When applied to the Cytochrome C and Ubiquitin families, PD-APCn found all
key binding sites within the APCs.

3.2 Method

There are two phases in PD-APCn. Given a set of sequences, Phase I is for the discovery
of seed patterns leveraging the pattern discovery algorithm [144] based on a suffix tree [5].
An address table is then constructed from the seed patterns. The seed patterns are then
extended via the address table to obtain a set of extended seed patterns. Given a set of
seed patterns, Phase II of PD-APCn is to initiate and expand the APCs [77, 143] via a
new procedure known as APC growing. Figure 3.1 provides a system overview.

PD-APCn is based on two important concepts. The first is the introduction of the
breakpoint (Fig. 3.2). We should keep in mind that some mutated patterns (when frag-
mented) could not be discovered by the pattern discovery algorithm (PDA) [144] since the
frequency of occurrences of the entire mutational pattern is too low. In Fig. 2(a) the data
space, a pattern ACGGTT in the data space occurs 3 times over 5 sequences. However,
its mutated variants ACGCTT and ACGATT, with a single substitution mutation, occur
only once and thus cannot be discovered statistically as patterns. Nevertheless, the sub-
patterns ACG and TT may still have high frequency of occurrences (if functional), and
thus they can still be discovered as patterns. Hence, if we have the address location of the
sub-patterns ACG and TT, we consider the mutation spot between them (say C and A)
as a breakpoint. By jumping over it the mutated variants ACGCTT and ACGATT can
be discovered. In a like manner, Fig. 3.2(b) and (c) illustrate the finding of the insertion
and deletion mutations through the breakpoints respectively.

The second concept of PD-APCn is the seed pattern extension introduced to increase
the coverage of the growing APC. We observed that the width of seed patterns is inherent
in data and should not be affected by the algorithmic process and/or the width parameters.
As shown in Fig. 3.3(a), with seed width = 3, we apply the same procedure of jumping over
a breakpoint and obtain a full coverage. When the seed width is changed to 4 (Fig. 3.3(b)),
the same full coverage is obtained, showing pattern width adaptation without exhaustive
search.
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Figure 3.1: An overview of the PD-APCn with the workflow given in circled steps. Phase I:
Pattern Discovery. (1) Obtain a set of seed patterns with seed width (preferably small) via
the PDA [144] based on a suffix tree [5]. (2) Extend the seed patterns to their superpatterns
over the breakpoint gaps to obtain a set of extended seed patterns. Phase II: Growing of
gAPCs. (3) Obtain a seed APC (gAPC) from the extended seed patterns. Specifically,
the top extended seed pattern is initially considered as a gAPC with only one pattern.
Within each gAPC C*, we denote the patterns (whose support no smaller than minSupport)
as P* and the rare mutational patterns (whose support smaller than minSupport) as R*.
(4) Induce data space D from P* and R* via the suffix tree (5) For the next extended
seed pattern p’, if p’ is found significantly similar to the patterns in a gAPC C*, and its
support is no smaller than minSupport, include it in P*, update P*, D* and D. if p’ is
found significantly similar to the patterns in a gAPC C*, and its support is smaller than
minSupport, include it in R*, update R*, D* and D. Otherwise, p’ is considered as a new
gAPC with only one pattern. (6) Check terminating condition (if a specified amount of
extended seed patterns are reached). (7) If not terminated, conduct next run. (8) Consider
a gAPC as a final model, which is composed of APC (P*) and R*. Rank all final models
based on their support. Output the final models with high ranking.
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Figure 3.2: This figure illustrates how the concept of pattern breakpoint is used for discov-
ering patterns with 3 types of mutations: (a) substitution, (b) insertion and (c) deletion.
Seed Patterns (with seed width=2, , minSupport = 5) are first discovered from the input
data (data space). An address table is then constructed from the occurrence of the dis-
covered seed patterns. By jumping over the breakpoints between the subpatterns, a set of
extended seed patterns, encompassing the rare mutational patterns, can be discovered, via
the process called extension.
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Figure 3.3: Extension of seed patterns to adaptively determine the representation model
width. Seed patterns are first discovered from the input data (data space), with (a) seed
width = 3, minSupport = 3; and (b) seed width = 4, minSupport = 3. An address table
is then constructed from the occurrence of the discovered patterns. By jumping over the
breakpoints between the pattern occurrence, a set of extended seed patterns is discovered.
We observe that the set of extended seed patterns obtained in (a) and (b) respectively
are the same, showing that the representation model width could be obtained from data
adaptively without exhaustive search.
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3.2.1 Problem Definition

Give a set of sequences S = {sk|k = 1, 2, ..., |S|}, a positive integer wseed ∈ Z+ to determine
the width of seed patterns, a positive integer gapbreak ∈ Z+ to control the breakpoint gap, a
real-valued similarity threshold minSimilarity ∈ R to cluster patterns, we would like to find a
set of aligned pattern clusters (APCs) C = {C l|l = 1, ..., |C|} = {C1, C2, . . . , C |C|−1, C |C|}.
For details about APCs, please refer to section 2.2.3.

3.2.2 Input Sequence Data

Referring to section 2.2.3, let Σ be a set of alphabets {e1, e2, . . . , e|Σ|}. A sequence s =
s1s2 . . . s|s|−1s|s|, where each si ∈ Σ and s is of length |s|. Let S be a set of sequences, i.e.
S = {sk|k = 1, 2, ..., |S|}. A set of input protein sequences is shown in Fig. 3.4(a).

3.2.3 Step 1: Seed Pattern Discovery

Leveraging the pattern discovery algorithm (PDA) [144] based on a suffix tree [5] (section
2.2.3), we can discover patterns with any width specified, locate the pattern occurrence,
and count the pattern support. Hence, we can obtain a set of patterns to serve as seeds
efficiently. The seed patterns discovered are then ranked according to their support from
highest to lowest. Such crucial information can later assist in finding the breakpoints where
mutated patterns can be identified. It should be noted that when we use the pattern
discovery algorithm (PDA) [144] in this chapter, we turn off the delta-close redundancy
and statistical non-induce pruning. Here we provide more definitions.

Occurrence

A sequence s̄ occurs in a sequence s if and only if s̄ is a subsequence of s, i.e. ∃i such that
s̄ = s[i, i+ |s̄| − 1], where 1 ≤ i ≤ |s| − |s̄|+ 1. It is also equivalent to saying that s̄ occurs
at the position i in s. Hence, given a sequence segment s̄ and a sequence s, the occurrence
of s̄ in s is defined as:

Occurrence(s̄, s) =

{
1, if s̄ occurs in s

0, otherwise
(3.1)
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Figure 3.4: Illustrative examples of results obtained from MEME [7] and PD-APCn. (a)
Input data, a set of sequences, with the pattern “CAQHGCCA” highlighted in orange,
with the mutations highlighted in green. (b) The top Position Weight Matrix (PWM) by
MEME [7] on this dataset. (c) A set of extended seed patterns obtained from this dataset
(with seed width = 3 and breakpoint gap = 3) by PD-APCn Phase I. Sequence in yellow
shade are patterns, i.e. patterns whose support being no smaller than minSupport, while
those in blue shade are mutants with one occurrence. (d) An Aligned Pattern Cluster
(APC) obtained by PD-APCn Phase II, where the APC is composed of an aligned pattern
and several rare mutant patterns.
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Support

Given a sequence s̄, and a set of sequences S, the support of s̄ over S is defined as the
number of sequences in S in which s̄ occurs. Formally, we write

Support(s̄, S) =
∑
sk∈S

Occurrence(s̄, sk) (3.2)

Pattern

Given a set of sequences S, we consider a sequence p as pattern if its support is larger than
or equal to a minimum threshold minSupport, i.e. Support(p, S) ≥ minSupport. It should
be noted that as it is a new algorithm, the definition here is not the same as the one in
section 2.2.3.

Seed Pattern

We then define a seed pattern p̄ as a pattern with a particular width wseed, i.e. |p̄| = wseed.
Given a set of sequences S, a set of seed patterns P seed could then be discovered from S by
the pattern discovery algorithm [144] via setting wseed and minSupport, i.e. P seed = {p̄i|i =
1, ..., |P̄ |} = {p̄1, p̄2, . . . , p̄|P̄ |}.

Rare Mutant Pattern

Given a set of sequences S and a set of Patterns P , we consider a sequence r as a
rare mutant pattern if its support being lower than a minimum threshold minSupport, i.e.
Support(p, S)<minSupport and is found to be significantly similar to the patterns in P , i.e.
ALIGN(P , r) [77, 143] ≥ minSimilarity.

3.2.4 Step 2: Seed Pattern Extension

Leveraging the PDA [144] based on a suffix tree [5], given a seed pattern p̄j, we can retrieve
the sequences in which p̄j occurs and its occurrence positions. For example, as shown in
Fig. 3.2(a), the occurrence of ACGGTT over s1 is (1,6). Hence, an address table mapping
a sequence sk to the occurrence of seed patterns on itself can be constructed.
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Address Table

Given a sequence sk, and a set of seed patterns P seed, a function H is defined as follows.

H(sk, P
seed) = {(ok1, tk1), (ok2, t

k
2), ..., (oknk

, tknk
)} (3.3)

where okj is the position that a seed pattern p̄j ∈ P seed occurs in sk, tkj is the ending position,
∀j = 1, 2, ..., nk, and nk is the number of seed patterns occurring in sk. For example, as
shown in Fig. 3.2(a), H(s3, {AC, CG, GG, GT, TT})={(1,2), (2,3), (3,6)}. An address
table is constructed by applying function H to every sk ∈ S.

Breakpoint Gap

Given two pattern occurrences, (oki , t
k
i ) and (oki+1, t

k
i+1), we define the gap between them as

gap(oki ,t
k
i ),(oki+1,t

k
i+1) = oki+1 − tki − 1 (3.4)

Note that two pattern occurrences, (oki , t
k
i ) and (oki+1, t

k
i+1) could be merged into one pat-

tern occurrence (oki , t
k
i+1), if gap(oki ,t

k
i ),(oki+1,t

k
i+1) ≤ gapbreak, where gapbreak is a non-negative

integer defined by users. Hence, gap(oki ,t
k
i ),(oki+1,t

k
i+1) is a breakpoint gap if gap(oki ,t

k
i ),(oki+1,t

k
i+1)

≤ gapbreak.

Extended Seed Pattern

By merging pattern occurrences, the seed patterns are extended to their superpatterns,
allowing the identification of rare mutant patterns such as those with frameshifts. For
example, as illustrated in 3.4(c), “CAQHGC” has a width of 6 occurring at position 2 on
s1, i.e. (2,7), and “CAG” has a width of 3 occurring at position 10 on s1, i.e. (10,12).
With gapbreak = 2, these two occurrences would be grouped into one occurrence, i.e. (2,12),
allowing the identification of the rare mutant pattern “CAQHGCGGCAG”. As mentioned,
such rare mutant patterns if spotted effectively can reveal the crucial mutation hotspots
[134], not only enabling us to have a better scientific understanding but also to help the
design of new drugs [142, 134]. We applied such operation on the address table constructed
to obtain a set of extended seed patterns P seed

ext . Afterwards, all the extended seed patterns
are ranked according to their statistical significance [144].
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3.2.5 APC Growing

After the discovery of a set of extended seed patterns P seed in Phase 1 (Fig. 5.1), an
iterative APC growing process (steps (3) to (8)) directed by the extended seed patterns
follows in Phase 2 as below. Here we first define APC. For details, please refer to section
2.2.3. Let a set of APC be defined as:

C = {C l|l = 1, ..., |C|} = {C1, C2, . . . , C |C|−1, C |C|}

and let an APC be defined as,

C l = ALIGN(Pl), (3.5)

=


s1

1 s1
2 . . . s1

n

s2
1 s2

2 . . . s2
n

...
...

...
...

sm1 sm2 . . . smn


m×n

=


p1

p2

...
pm

 , (3.6)

=
(
p1 p2 . . . pm

)
. (3.7)

where sij ∈ Σ ∪ {−} is a pattern pi with a new column index j. Each of the |Pl| = m
patterns in the rows of C l is of length |C l| = n.

Step 3: Initialization of gAPC

Obtain a seed APC (gAPC) from the extended seed patterns. Specifically, the top extended
seed pattern is initially considered as a gAPC with only one pattern. Within each gAPC,
we denote the patterns (with support no smaller than minSupport) as P* and the rare
mutant patterns (with support smaller than minSupport) as R*. It should be noted that
initialization of gAPC is conducted only in the first run of this step.

Step 4: Induce data space D* from P* and R*

We denote data space D* as a set of sequences containing the patterns in P* and R*, as
well as data space D’ as a set of sequences not containing any patterns in P*, i.e. the data
space uncovered yet. Via the suffix tree constructed by PDA [144], such an operation is
efficient.
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Step 5: P* and R* growing

For the next extended seed pattern p’, if p’ is found significantly similar to the patterns in
a gAPC C*, and its support is no smaller than minSupport, include it in P*, update P*, D*
and D. if p’ is found significantly similar to the patterns in a gAPC C*, and its support is
smaller than minSupport, include it in R*, update R*, D* and D. Otherwise, p’ is considered
as a new gAPC with only one pattern. It should be noted that the similarity between p’
and the patterns in a gAPC C* is computed by ALIGN (P* ∪ R* ∪ p’) [77, 143].

Step 6: Check terminating condition

We check if we have reached the terminating condition, i.e. if a specified amount of
extended seed patterns are reached.

Step 7: Continue or terminate

If termination condition is reached, we end the growing process, i.e. jump to step 8.
Otherwise, we continue the algorithm, i.e. back to step 3 but skip the initialization.

Step 8: Output the final models

At termination, each gAPC C* will be composed of P* and R* and is considered as the final
model. Rank all the final models by their support and output those with high ranking.

3.3 Experiments and Results

3.3.1 Design of Experiments

To demonstrate the effectiveness of PD-APCn, we designed and conducted synthetic ex-
periments to evaluate its performance with respect to how effective it is at discovering
and locating the conserved functional regions scattered in a dataset with various conserved
and mutational patterns synthetically generated. Three sets of synthetic data of different
number of sequences subjecting to different mutations were generated randomly. We used
them to compare PD-APCn with other methods quantitatively through a set of metrics
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following the previous work [55]. After experiments on synthetic datasets, we applied PD-
APCn to two real protein sequence datasets, Cytochrome c and Ubiquitin, obtained from
Pfam [34].

3.3.2 Synthetic Dataset Preparation

In this study, for the purpose of quantitative evaluation, three synthetic protein sequence
datasets were generated. Dataset 1 is a synthetic dataset composed of 500 protein se-
quences, generated under the following procedure. First, 500 protein sequences were ran-
domly generated at a random length of 50 to 150 under a uniform distribution of the 20
amino acids. Second, a protein segment with 30 amino acids “MKCSQCHTVEKGGKHK-
TGPNLHGLFGRKTG” extracted from Human Cytochrome C (UniProt KB ID: P99999,
positions 12 to 41) was used as the conserved pattern extracted from a real biological
dataset. Third, this pattern was implanted at randomly generated positions among the
500 protein sequences with its position in all sequences recorded. To simulate mutational
degeneracy, during the insertion of the conserved pattern, each of its position would un-
dergo 5% chance of substitution, insertion and deletion mutation. Dataset 2 is a synthetic
dataset composed of 1000 protein sequences, generated similar to the procedure used for
generating Dataset 1 but double in size. Dataset 3 is a synthetic dataset composed of 2000
protein sequences. The first 1000 sequences were generated by the same procedure used
for generating Dataset 1. An additional 1000 protein sequences were randomly generated
with variable length of 50 to 150 under an uniform distribution of the 20 amino acids.
They were considered as noise sequences.

3.3.3 Evaluation of Experiments on Synthetic Datasets

We evaluated PD-APCn with MEME [7] and GLAM2 [38] via these three datasets, where
the conserved region positions are a priori known and considered as the ground-truth. The
discovered conserved regions outputted by algorithms could then be compared with the
ground-truth quantitatively. Hence, as illustrated by a previous work [55], True Positive
(TP), False Positive (FP) and False Negative (FN) could be defined. TP refers to the
conserved region positions overlapping with the predicted positions. FP refers to the pre-
dicted positions not overlapping with any conserved region positions. Also, any predicted
positions on the noise protein sequences are considered as FP. FN refers to the conserved
region positions not overlapping with any predicted positions. Fig. 3.5 provides a graphical
illustration of the definition of TP, FP and FN. Based on TP, FP and FN, we could define
Precision, Recall and Fmeasure, as below, illustrated by the previous work [55].
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Figure 3.5: An illustration of the definition of True Positive (TP), False Positive (FP) and
False Negative (FN) for the quantitative evaluation of the predicted conserved regions.
The true and predicted patterns are illustrated as blue and red blocks respectively in
the figure. In our experiments on synthetic datasets, the conserved region positions on a
protein sequence were a priori known, as illustrated as blue blocks in the figure.

Precision =
nTP

nTP + nFP
(3.8)

Recall =
nTP

nTP + nFN
(3.9)

Fmeasure =
2× Precision×Recall
Precision+Recall

(3.10)

where nTP refers to the total number of TP, nFP refers to the total number of FP,
and nFN refers to the total number of FN. Also, if both Precision and Recall are zero,
Fmeasure is defined as zero [55].

In our experiments, we applied MEME, GLAM2 and PD-APCn to discover the con-
served regions from the input protein sequences. MEME [7] is a popular Protein or DNA
motif discovery algorithm for bioinformatics scientists. Hence it was chosen for comparison
in our experiments on the synthetic datasets. The version we adopted was 4.11.04, released
on April, 2017 [7]. In our experiments, we had three options for MEME, by setting the
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Table 3.1: Performance evaluation of PD-APCn on Dataset 1 (500 sequences)
Precision Recall Fmeasure

GLAM2 [38] (nMotifs=1) 0.37840 1.00000 0.54904
GLAM2 [38] (nMotifs=2) 0.34745 1.00000 0.51572
GLAM2 [38] (nMotifs=3) 0.33325 1.00000 0.49991
MEME [7] (nMotifs=1) 0.99839 0.49630 0.66301
MEME [7] (nMotifs=2) 0.99261 0.77936 0.87315
MEME [7] (nMotifs=3) 0.99269 0.78816 0.87868
PD-APCn (wseed=3, gapbreak=2) 0.96348 0.89905 0.93015
PD-APCn (wseed=3, gapbreak=3) 0.96335 0.91655 0.93942

Table 3.2: Parameter investigation of PD-APCn on Dataset 1 (500 sequences)
Precision Recall Fmeasure

PD-APCn (wseed=3, gapbreak=2) 0.96348 0.89905 0.93015
PD-APCn (wseed=4, gapbreak=2) 0.99584 0.82937 0.90501
PD-APCn (wseed=5, gapbreak=2) 0.99948 0.76369 0.86581
PD-APCn (wseed=3, gapbreak=3) 0.96335 0.91655 0.93942
PD-APCn (wseed=4, gapbreak=3) 0.99589 0.84077 0.91178
PD-APCn (wseed=5, gapbreak=3) 0.99948 0.77169 0.87094

number of motifs to search to be 1 (nMotifs=1) or 2 (nMotifs=2) or 3 (nMotifs=3). The
other MEME [7] parameters remained default. GLAM2 [38] is an algorithm that is fa-
mous for gap pattern discovery. Thus it was chosen for comparison in our experiments on
the synthetic datasets. The version we adopted was also 4.11.04, released on April, 2017
[7]. In our experiments, the GLAM2 parameters remained default. For the PD-APCn
algorithm, we varied the setting of seed (pattern) width (wseed) and also the breakpoint
gap (gapbreak) to investigate its robustness. All experiments were conducted on a laptop
computer (i7-4700HQ CPU 2.4GHz, 16.0 GB RAM).

3.3.4 Experimental Results Analysis on Dataset 1 (500 sequences)

Dataset 1 is a synthetic dataset composed of 500 protein sequences containing a mutated
protein segment with thirty amino acids. It does not contain noise sequences, and thus is
a relatively simple dataset among the three. We applied MEME [7], GLAM2 [38] and PD-
APCn on this dataset. For MEME, we had three parameter settings, i.e. the number of
motifs to search to be 1 (nMotifs=1) or 2 (nMotifs=2) or 3 (nMotifs=3). For GLAM2, we
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adopted the default parameter settings and investigated the top 3 motifs. For PD-APCn,
we fixed the seed (pattern) width (wseed) to be 3 and varied the breakpoint gap (gapbreak)
to be 2 and 3. Also, in step 1, we only used the top 6% of the seed patterns. In step 5,
the similarity threshold was set as 0.05. In step 6, all the extended seed patterns needed
to be reached.

Table 3.1 summarizes the experimental results on Dataset 1. We observed that MEME
[7] obtained a high precision but a low recall. For MEME (nMotifs=1), the precision was
0.99839 but the recall was merely 0.49630, indicating that a significant portion of patterns
were not discovered. For MEME (nMotifs=2), the precision increased to 0.99261 and the
recall also increased to 0.77936. For MEME (nMotifs=3), the precision further increased
to 0.99269 and the recall further increased to 0.78816, but on both cases the marginal
increase was lower. We observed that GLAM2 obtained an extremely high recall, but
an extremely low precision, leading to low fmeasure. For GLAM2 (nMotifs=1), GLAM2
(nMotifs=2), GLAM2 (nMotifs=3), the recall obtained was 1.00000, but the precision
obtained was respectively 0.37840, 0.34745, 0.33325, leading to low Fmeasure 0.54904,
0.51572, 0.49991. For PD-APCn, it obtained a satisfactory level of both precision and
recall, and thus obtained a higher level of Fmeasure, outperforming MEME and GLAM2
in this dataset. For PD-APCn (wseed=3, gapbreak=2), the obtained precision was 0.96348
and the recall was 0.89905. For PD-APCn (wseed=3, gapbreak=3), the obtained precision
slightly decreased to 0.96335 but the recall increased to 0.91655, indicating that a significant
portion of patterns were discovered. For both cases, PD-APCn obtained a slightly lower
precision but a significantly higher level of recall, thus leading to a higher level of Fmeasure.

We next investigated the effects of the parameter settings on PD-APCn on Dataset 1.
Table 3.2 summarized the experimental results by further setting the wseed to be 4 and 5.
We observed that by setting the wseed larger (increasing from 3 to 5), the precision obtained
was higher. PD-APCn (wseed=5, gapbreak=2) and PD-APCn (wseed=5, gapbreak=3) both
obtained the highest level of precision as 0.99948, but at the same time obtained the
lowest recall as 0.76369 and 0.77169 respectively. We also observed that by setting the
gapbreak from 2 to 3, the recall obtained was higher. We observed this was true not only
for PD-APCn (wseed=3) but also PD-APCn (wseed=4) and PD-APCn (wseed=5).

3.3.5 Experimental Results Analysis on Dataset 2 (1000 sequences)

Dataset 2 is a synthetic dataset composed of 1000 protein sequences containing a mutated
protein segment with thirty amino acids. It does not contain noise sequences, but is a
larger dataset comparing to the size of Dataset 1. We applied MEME [7], GLAM2 [38]
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Table 3.3: Performance evaluation of PD-APCn on Dataset 2 (1000 sequences)
Precision Recall Fmeasure

GLAM2 [38] (nMotifs=1) 0.46781 1.00000 0.63742
GLAM2 [38] (nMotifs=2) 0.41305 1.00000 0.58462
GLAM2 [38] (nMotifs=3) 0.35262 1.00000 0.52139
MEME [7] (nMotifs=1) 0.97967 0.39232 0.56028
MEME [7] (nMotifs=2) 0.97922 0.84919 0.90958
MEME [7] (nMotifs=3) 0.97930 0.85249 0.91151
PD-APCn (wseed=3, gapbreak=2) 0.96541 0.89065 0.92092
PD-APCn (wseed=3, gapbreak=3) 0.96462 0.91266 0.93792

Table 3.4: Parameter investigation of PD-APCn on Dataset 2 (1000 sequences)
Precision Recall Fmeasure

PD-APCn (wseed=3, gapbreak=2) 0.96541 0.89065 0.92092
PD-APCn (wseed=4, gapbreak=2) 0.99654 0.82580 0.90317
PD-APCn (wseed=5, gapbreak=2) 0.99965 0.75798 0.86220
PD-APCn (wseed=3, gapbreak=3) 0.96462 0.91266 0.93792
PD-APCn (wseed=4, gapbreak=3) 0.99658 0.83731 0.91003
PD-APCn (wseed=5, gapbreak=3) 0.99965 0.76579 0.86723
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Table 3.5: Performance evaluation of PD-APCn on Dataset 3 (2000 sequences)
Precision Recall Fmeasure

GLAM2 [38] (nMotifs=1) 0.61117 1.00000 0.75867
GLAM2 [38] (nMotifs=2) 0.59827 1.00000 0.74865
GLAM2 [38] (nMotifs=3) 0.54501 1.00000 0.70551
MEME [7] (nMotifs=1) 0.99898 0.48957 0.65711
MEME [7] (nMotifs=2) 0.99261 0.77936 0.87315
MEME [7] (nMotifs=3) 0.93682 0.83278 0.88426
PD-APCn (wseed=3, gapbreak=2) 0.92997 0.89605 0.91269
PD-APCn (wseed=3, gapbreak=3) 0.93039 0.91266 0.92149

and PD-APCn on this dataset. The initial parameter setting was the same as those used
in Dataset 1.

Table 3.3 summarizes the experimental results on Dataset 2. Similar to the results in
Dataset 1, PD-APCn obtained a satisfactory level of both precision and recall, and thus
obtained a higher level of Fmeasure, outperforming MEME and GLAM2 in this dataset.
We also observed that GLAM2 obtained an extremely high recall, but an extremely low
precision, leading to low fmeasure. For PD-APCn (wseed=3, gapbreak=3), it obtained the
highest Fmeasure as 0.93792 in this dataset. Again, this high recall indicated that a
significant portion of patterns were discovered. These results also demonstrated that scaling
up the dataset two times larger did not affect the performance of PD-APCn.

We then investigated the effects of the parameter settings on PD-APCn on Dataset 2.
Table 3.4 summarized the experimental results by further setting the seed width to be 4 and
5. The observation was consistent. By setting the wseed larger (increasing from 3 to 5), the
precision obtained was higher, but the recall was lower. PD-APCn (wseed=5, gapbreak=2)
and PD-APCn wseed=5, gapbreak=3) both obtained the highest level of precision as 0.99948,
but at the same time obtained the lowest recall as 0.76369 and 0.77169 respectively. We
also observed that by setting the gapbreak from 2 to 3, the recall obtained was higher,
consistently for wseed=3, wseed=4) and PD-APCn wseed=5.

3.3.6 Experimental Results Analysis on Dataset 3 (2000 sequences)

Dataset 3 is a synthetic dataset composed of 2000 protein sequences. Among them, 1000
sequences contained a mutated protein segment with thirty amino acids. The remaining
sequences were noise sequences. Thus, it is a relatively challenging dataset among the
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Table 3.6: Parameter investigation of PD-APCn on Dataset 3 (2000 sequences)
Precision Recall Fmeasure

PD-APCn (wseed=3, gapbreak=2) 0.92997 0.89605 0.91269
PD-APCn (wseed=4, gapbreak=2) 0.99397 0.82580 0.90211
PD-APCn (wseed=5, gapbreak=2) 0.99965 0.75798 0.86220
PD-APCn (wseed=3, gapbreak=3) 0.93039 0.91266 0.92149
PD-APCn (wseed=4, gapbreak=3) 0.99406 0.83731 0.90898
PD-APCn (wseed=5, gapbreak=3) 0.99965 0.76579 0.86723

three datasets. We applied MEME [7], GLAM2 [38] and PD-APCn on this dataset. The
initial parameter setting was the same as those used in Dataset 1.

Table 3.5 summarizes the experimental results on Dataset 3. We observed consistently
that MEME [7] obtained a high precision but a low recall, indicating a large portion
of patterns was not discovered. We also observed that GLAM2 obtained an extremely
high recall, but an extremely low precision, leading to low fmeasure. PD-APCn obtained a
satisfactory level of precision and recall, and thus a higher Fmeasure, outperforming MEME
[7] and GLAM2. This consistent high recall indicated that PD-APCn has discovered a
greater significant portion of patterns than MEME. As for the effects of the parameter
settings on PD-APCn on this Dataset, Table 3.6 summarized the experimental results on
this dataset with respect to the parameter setting of wseed to be 4 and 5. We observed that
by increasing wseed from 3 to 5, the precision obtained was higher but the recall was lower.

Fig. 3.6 (a), (b) and (c) shows the top, 2nd and 3rd output of MEME, while Fig.
3.6 (d) shows the top APC outputted by PD-APCn. The top three PWMs outputted by
MEME has a width of 15, 8 and 11 respectively. Note that the third one has substantial
overlapping with the first two. The top APC (showing only the first 25 patterns) outputted
by PD-APCn has a width of 35. It has captured the entire protein segment introduced in
Dataset 3, i.e. “MKCSQCHTVEKGGKHKTGPNLHGLFGRKTG” with 30 amino acids.
It is clear here that MEME is much inferior in reflecting aligned protein segment to PD-
APCn in this experiment. This explains their differences in their recalls.

3.3.7 Combined Analysis on Datasets 1, 2 and 3

As shown in Tables 3.2, 3.4 and 3.6, the Fmeasure obtained demonstrates its robustness
to parameter settings, and also that introducing noise sequences or varying either the
wseed or the gapbreak would affect little the performance of PD-APCn. By setting wseed=3

46



Table 3.7: Runtime comparison of PD-APCn on Datasets 1, 2 and 3
Dataset 1 Dataset 2 Dataset 3

GLAM2 (nMotifs=3) [38] 202.074s 334.273s 228.779s
MEME [7] (nMotifs=1) 368.401s 2315.512s 15721.029s
MEME [7] (nMotifs=2) 471.633s 2749.722s 17437.620s
MEME [7] (nMotifs=3) 570.683s 3155.81s 18786.427s
PD-APCn (wseed=3, gapbreak=2) 4.759s 12.531s 28.104s
PD-APCn (wseed=4, gapbreak=2) 5.143s 13.466s 30.309s
PD-APCn (wseed=5, gapbreak=2) 5.213s 13.997s 33.232s
PD-APCn (wseed=3, gapbreak=3) 4.843s 12.999s 28.232s
PD-APCn (wseed=4, gapbreak=3) 5.193s 13.653s 30.454s
PD-APCn (wseed=5, gapbreak=3) 5.726s 14.070s 33.696s

and gapbreak=3, PD-APCn obtained high recall and Fmeasure consistently with at a little
sacrifice of precision.

In addition to performance, runtime is also an important criterion. Table 3.7 summa-
rized the runtime of GLAM2, MEME and PD-APCn among all parameter settings on all
three datasets. It should be noted that as GLAM2 outputted all the top 3 motifs at once,
it thus only had one row of record in our experiment. In Dataset 1 (500 protein sequences),
MEME took at least 300s while PD-APCn took at most 6s. MEME [7] (nMotifs=3) took
570.683s to complete running to obtain its optimal Fmeasure (0.87868), while PD-APCn
(seed width=3, breakpoint gap=3) took a much less time, 4.843s, but obtained an even
higher Fmeasure (0.93942). It was a speed up of 117.84X. In Dataset 2 (1000 protein
sequences), MEME took at least 2000s while PD-APCn took at most 15s. MEME [7]
(nMotifs=3) took 3155.81s to complete running to obtain its optimal Fmeasure (0.91151),
while PD-APCn (seed width=3, breakpoint gap=3) took a much less time, 12.299s, but
obtained an even higher Fmeasure (0.93792). It was a speed up of 256.59X. In Dataset 3
(2000 protein sequences), MEME took at least 15000s while PD-APCn took at most 34s.
MEME [7] (nMotifs=3) took 18786.427s to complete running to obtain its optimal Fmea-
sure (0.88426), while PD-APCn (seed width=3, breakpoint gap=3) took a much less time,
28.232s, but obtained an even higher Fmeasure (0.92149). It was a speed up of 665.43X.

In additional to computation speed-up, the significance of PD-APCn lies to its ability
to discover and locate functional regions that have various types of mutations, including
substitution, mutation and deletion. PD-APCn can discover the rare mutant pattern
even with a support = 1. The discovery of rare mutant patterns will be significant for
personalized medicine in the future.
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Figure 3.6: A comparison of the outputs by MEME [7] and PD-APCn on Dataset 3 (2000
sequences). (a) The top position weight matrix (PWM) outputted by MEME, with a
width of 15. (b) The 2nd PWM outputted by MEME, with a width of 8. (c) The 3rd
PWM outputted by MEME, with a width of 11. (d) The top APC outputted by PD-APCn
(showing only the first 25 patterns), with a width of 35. It should be noted that the protein
segment introduced in Dataset 3 is “MKCSQCHTVEKGGKHKTGPNLHGLFGRKTG”
with 30 amino acids, and it is entirely captured in (d). Further analysis such as functional
subgroup discovery by disentanglement [156] will be possible via the APC discovered by
PD-APCn.
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3.3.8 Real Dataset Preparation and Parameter Setting

In this study, to validate the practical usability of PD-APCn, two real protein sequence
datasets were obtained from Pfam [34]. The first dataset is Dataset Cytochrome C down-
loaded from Pfam (PF00034, Seed, Release 31) on March 15th, 2018. It has 66 sequences,
with an average length of 91.11 amino acids. The second dataset is Dataset Ubiquitin
downloaded from Pfam (PF00240, Seed, , Release 31) on March 15th, 2018. It has 63
sequences, with an average length of 72.62 amino acids. The parameter setting is as fol-
lows. wseed is set as 3. gapbreak is set as 0, so that the results can be comparable to those
obtained in previous studies [77, 143].

3.3.9 Experimental Results Analysis on Dataset Cytochrome C

Cytochrome C is a heme-containing protein [154]. It is an essential component of the elec-
tron transport chain in the mitochondria [154], where the heme group plays an important
role in accepting and transferring electrons.

The Pfam Hidden Markov Model (HMM) logo of Cytochrome C is shown in Fig. 3.7(a).
Applying PD-APCn on the Dataset Cytochrome C, the first three APCs obtained are shown
in Fig. 3.7(b), (c) and (d). The 1st APC has covered Cys (C) 14 [8, 14], Cys (C) 17 [8, 14]
and His (H) 18 [129, 45]. His (H) 18 [129, 45] forms an axial ligand with the heme from
the proximal front, i.e. the proximal heme binding site. Cys (C) 14 [8, 14] and Cys (C)
17 [8, 14] enhance and maintain the axial ligand between His18 and the heme. The 2nd
APC has covered Tyr (Y) 97, which provides a hydrophobic environment for the function
of Cytochrome C [36]. The 3rd APC has covered Met (M) 80 [129] which forms an axial
ligand with the heme from the distal side, i.e. the distal heme binding site. It should
be noted that the Pfam Hidden Markov Model (HMM) logo of Cytochrome C, as shown
in Fig. 3.7(a), does not clearly indicate Met (M) 80. Fig. 3.8 gives a three-dimensional
structure illustration. These results have validated the capability of PD-APCn to discover
functional regions in real protein sequences.

3.3.10 Experimental Results Analysis on Dataset Ubiquitin

Ubiquitin plays an important role in a process called ubiquitination, where ubuiquitin is
attached to a substrate protein. It could either be a single ubiquitin protein or a chain
of ubiquitin. To form a chain, an ubiquitin connects to another ubiquitin by binding its
C-terminal tail to one of the seven lysine (K) amino acid of its linking partner. The seven
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Figure 3.7: An illustration of the APCs outputted by PD-APCn on the Dataset Cy-
tochrome C. (a) The Pfam Hidden Markov Model (HMM) logo of Cytochrome C. Applying
PD-APCn on the Dataset Cytochrome C, the first three APCs obtained are shown in Fig.
3.7(b), (c) and (d). The column score is denoted as R1 [77]. The higher the score, the
more conserved the column is. (b) The 1st APC outputted by PD-APCn on the Dataset
Cytochrome C. It has covered His (H) 18 [129, 45], the proximal heme binding site, as
well as Cys (C) 14 [8, 14] and Cys (C) 17 [8, 14] which assist the heme binding (c) The
2nd APC outputted by PD-APCn on the Dataset Cytochrome C. It has covered Tyr (Y),
which provides a hydrophobic environment for the function of Cytochrome C [36]. (d) The
3rd APC outputted by PD-APCn on the Dataset Cytochrome C. It has covered Met (M)
80 [129], i.e. the distal heme binding site. These results have validated the capability of
PD-APCn to discover functional regions in real protein sequences.
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Figure 3.8: A three-dimensional structure of Cytochrome C obtained from Protein Data
Bank (PDB) [12] (ID: 1HRC). This figure shows that the binding residues Cys (C) 14,
Cys (C) 17, His (H) 18, Met (M) 80, Tyr (Y) 97 are all highlighted with R1=1 within our
discovered APCs (Fig. 3.7(b)(c)(d)).
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lysine (K) are Lys (K) 6, Lys (K) 11, Lys (K) 27, Lys (K) 29, Lys (K) 33, Lys (K) 48 and
Lys (K) 63.

The Pfam Hidden Markov Model (HMM) logo of Ubiquitin C is shown in Fig. 3.9(a).
Applying PD-APCn on the Dataset Ubiquitin C, the first four APCs obtained are shown
in Fig. 3.9(b), (c), (d) and (e). The column score is denoted as R1 [77]. The higher the
score, the more conserved the column is. The 1st APC has covered Lys (K) 48 and Lys (K)
63. The 2nd APC has covered Lys (K) 33. The 3rd APC has covered Lys (K) 27, Lys (K)
29 and Lys (K) 33. The 4th APC has covered Lys (K) 6 and Lys (K) 11. Hence, all seven
lysine (K) have been covered, where they are important for the formation of ubiquitin
chains [137, 25, 130]. Fig. 3.10 gives a three-dimensional structure illustration. These
results have further validated the capability of PD-APCn to discover functional regions in
real protein sequences.

3.4 Summary

In this chapter, we proposed a new algorithm Pattern-Directed Aligned Pattern Clustering
(PD-APCn) [126, 127] to discover and locate functional regions that have various types of
mutations, including substitution, mutation and deletion, in protein sequences, represented
as APCs . For the rare mutants discovered, such as those with support = 1, it could place
them into a hotspot mutant pool. These rare mutants could be important for biomedical
research. Also, further analysis such as functional subgroup discovery by disentanglement
[156] will be possible via the APC discovered by PD-APCn. It should be noted that
these mutants are difficult to discover as revealed by the low recall of MEME [7] in our
experiments. Hence, the final APCs obtained by PD-APCn [126, 127] are more stable and
robust as it complies to the conditions determined by the more natural sequence structures
and functionality inherent in the data. Such phenomena are manifested by the discovery
results. It thus resolves a difficult problem of demarcating the size of a conserved region
and avoids the exhaustive search of such size parameter to drive for an optional solution.

To evaluate the performance of PD-APCn [126, 127], we generated synthetic datasets
with a priori known mutated protein sequence segments implanted. Among all the ex-
periments on the three datasets, where each of them has a different size and noise level,
PD-APCn [126, 127] has consistently demonstrated high performance in both effective-
ness and efficiency. Comparing with the popular MEME [7] , PD-APCn [126, 127] has
manifested competitive performance, higher in recall and Fmeasure with significant com-
putational speed up (up to 665x). Through parameter analysis, we demonstrated that
PD-APCn [126, 127] has rendered consistently high performance among all datasets given
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Figure 3.9: An illustration of the APCs outputted by PD-APCn on the Dataset Ubiquitin.
(a) The Pfam Hidden Markov Model (HMM) logo of Ubiquitin. (b) The 1st APC outputted
by PD-APCn on the Dataset Ubiquitin. It has covered Lys (K) 48 and Lys (K) 63. (c) The
2nd APC outputted by PD-APCn on the Dataset Ubiquitin. It has covered Lys (K) 33. (d)
The 3rd APC outputted by PD-APCn on the Dataset Ubiquitin. It has covered Lys (K)
27, Lys (K) 29 and Lys (K) 33. (e) The 4th APC outputted by PD-APCn on the Dataset
Ubiquitin. It has covered Lys (K) 6 and Lys (K) 11. All seven lysine (K) have been
covered, where they are important for the formation of ubiquitin chains [137, 25, 130].
These results have further validated the capability of PD-APCn to discover functional
regions in real protein sequences.
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Figure 3.10: A three-dimensional structure of Ubiquitin obtained from Protein Data Bank
(PDB) [12] (ID: 1AAR) is shown. The seven lysine (K), Lys (K) 6, Lys (K) 11, Lys (K) 27,
Lys (K) 29, Lys (K) 33, Lys (K) 48 and Lys (K) 63, which are important for ubiquitination,
are all covered by our discovered APCs, and highlighted, with R1>0.8 within our discovered
APCs (Fig. 3.9(b)(c)(d)(e)).

54



indicating its robustness. We thus believe that PD-APCn [126, 127] would be important
for the discovery of new functional regions from protein family sequences, as well as rare
mutants that will be significant for personalized medicine in the future.
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Chapter 4

Discovering Binding Cores from
Protein-DNA interaction sequences
using Protein-DNA Co-Occurrence
APC

4.1 Introduction

As described in Chapter 2, the regions between a TF and a TFBS in close contact
(<3.5Å[1, 99]) are referred to as Protein-DNA binding cores [18, 79] (see Figure 2.2).
Understanding binding cores is of fundamental importance in deciphering Protein-DNA
(TF-TFBS) binding and gene regulation. Limited by expensive experiments, it is promising
to discover them with variations directly from sequence data. Although existing computa-
tional methods have produced satisfactory results, they are one-to-one mappings with no
site-specific information on residue/nucleotide variations, where these variations in binding
cores may impact binding specificity.

In this chapter, the study proposed a new representation known as Protein-DNA Co-
occurrence APC for modeling binding cores by incorporating variations and an algorithm
to discover them from only sequence data. A Protein-DNA Co-occurrence APC is a new
representation model that is more compact than one-to-one pattern associations, as it
packs many-to-many associations in one model, yet detailed enough to allow site-specific
variants. In our experiment, the new algorithm took protein and DNA sequences from
TRANSFAC (a Protein-DNA Interaction Sequence database in transaction format) as
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input, and obtained binding cores with higher precision and much faster runtime (≥1600x)
than that of its contemporaries. The new algorithm also discovered new protein-DNA
binding cores that do not co-occur as one-to-one associated patterns in the raw data, via
homology modeling.

4.2 Method

4.2.1 Problem Definition

Given a biological database DB with N transactions, the problem is to find a set of Protein-
APCs CP and a set of DNA-APCs CD to form a set of Protein-DNA Co-Occurring APCs,
i.e. A = CP × CD, such that the top K elements in A maximize binding core verification
measures. An overview is illustrated in Figure 4.1. A summary of the algorithm is provided
in Algorithm 2.

4.2.2 Biological Database

To model the binding between Protein-DNA (TF-TFBS), we let ΣP ={A, R, N, D, C,
E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V} and ΣD = {A,C,G, T} be alphabets of
protein and DNA respectively, where |ΣP | = 20 and |ΣD| = 4. A protein sequence, sP , is
an element of Σ∗P and a DNA sequence, sD, is an element of Σ∗D. A protein sequence is
also denoted as a TF sequence and a DNA sequence is denoted as a TFBS sequence.

The input data is a biological database DB, which is a set of N transactions, i.e. DB =
{T1, T2, ..., TN}. Each transaction describes the binding of one Protein (TF) sequence to
many DNA (TFBS) sequences, i.e. Ti = {(siP ,Si

D)|∀i = 1, 2, . . . , N}, where siP ∈ Σ∗P ,

Si
D = {s1

D, s
2
D, . . . , s

|Ti|
D } such that siD ∈ Σ∗D ∀i = 1, 2, . . . , |Ti|. For instance, a simplified

biological database with only 4 transactions is shown in Table 4.1. A summary of notation
is provided in Table 4.2.

4.2.3 APC Discovery

This section introduces an algorithm to mine APCs from Protein (TF) sequences and DNA
(TFBS) sequences. The Protein sequences and DNA sequences are input to this algorithm
independently to produce Protein-APCs and DNA-APCs.
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Figure 4.1: An overview of Protein-DNA (TF-TFBS) Binding Core discovery process. 1)
The input is TRANSFAC [89], which is a database of Protein-DNA (TF-TFBS) binding
sequences; 2) An Aligned Pattern Clustering algorithm [77] is applied to discover Protein-
DNA Co-Occurring APCs and rank them according to their co-occurrence. 3) For the
top-ranking Protein-DNA Co-Occurring APCs, binding core candidates are enumerated.
4) Each binding core candidate is checked if support can be found in the PDB. If found,
the candidate is ascertained as a binding core. 5) If not found, homology modeling is
conducted to an existing 3D structure closely matching to the candidate to check if the
binding mechanism is chemically feasible. Replacing the combinatorial search of one-to-
one co-occurrence in the entire transaction dataset to the many-to-many search of co-
occurrences between patterns within each high-ranking Protein-DNA Co-Occurrence APC
is key to the computational speed-up.
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Table 4.1: A simplified example of TRANSFAC database on Protein-DNA interaction
sequences

Transaction No. Protein (TF) Sequence DNA (TFBS) Sequence(s)
Ti siP Si

D

1 FDERRMFR {GACTTG}

2 MEDRKMFR {ACTTCA}

3 MREFMVR {GAGTTC}

4 VHMRHV {GCACTT; AAGTAC}

Pattern discovery

First, we discover sequence patterns using a previously developed pattern discovery al-
gorithm [144], referring to section 2.2.3. A pattern is defined as a sequence of ordered
consecutive dependent symbols p ∈ Σ∗, where each symbol is either from ΣP or ΣD that is
of the statistically significant [144]. A protein (TF) pattern is denoted as pP and a DNA
(TFBS) pattern is denoted as pD. The resulting list of the discovered patterns are further
pruned of redundant patterns and are represented by P = {p1, p2, . . . , p|P|−1, p|P|}.

Aligned Pattern Clustering

Second, we group and align sequence patterns to maximize the vertical similarity of symbols
between the patterns [77, 143], referring to section 2.2.3. Each cluster of aligned patterns
is an APC. Let an APC be defined as

C = ALIGN


p1

p2

...
pm

 . (4.1)

where each of the |Pl| = m patterns in the rows of C is of length |C| = n by augmenting
with Σ ∪ {−} ∪ {∗}, where - and * denote ‘gap’ and ‘wildcard’ respectively. Hence, each
aligned pattern is of the same length n.

A Protein-APC (TF-APC) is denoted as CP and a DNA-APC (TFBS-APC) is denoted
as CD. Let a set of APCs be defined as C = {C1, C2, . . . , C |C|−1, C |C|}.
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Protein-APCs and DNA-APCs

Therefore we let a Protein-APC be a set of protein patterns Ci
P = Pi

P = {pi,1P , p
i,2
P , ..., p

i,|Pi
P |

P }
where pi,kP ∈ Σ∗P ,∀k = 1, 2, . . . , |Pi

P |. Similarly, we let a DNA-APC be a set of DNA patterns

Ci
D = Pi

D = {pi,1D , p
i,2
D , ..., p

i,|Pi
D|

D }, where pi,kD ∈ Σ∗D,∀k = 1, 2, . . . , |Pi
D|. We further let CP

= {C1
P , C

2
P , ..., C

|CP |
P } be a set of Protein-APCs, and CD = {C1

D, C
2
D, ..., C

|CD|
D } be a set of

DNA-APCs.

4.2.4 Protein-DNA Co-Occurring APCs

After discovering a set of Protein-APCs and a set of DNA-APCs, we then compose a set of
Protein-DNA Co-Occurring APCs by associating each Protein-APC with each DNA-APC
from TRANSFAC. We then rank each Protein-DNA Co-Occurring APC in descending
order by a measure called the Co-Support, which takes a value between 0 and 1 inclusively.

Protein-APCs and DNA-APCs Associations

The relationship represented by a Protein-DNA Co-Occurring APC [74] Ai,j is composed
of a Protein-APC Ci

P and a DNA-APC Cj
D such that Ai,j ∈ (Ci

P × C
j
D) and

Ai,j = {am,n
i,j |p

i,m
P ∈ Ci

P , p
j,n
D ∈ C

j
D}, (4.2)

in which am,n
i,j = (pi,mP , pj,nD ) is a single one-to-one Protein-DNA pattern association. A set

of Protein-DNA Co-Occurring APC A = {A1,1, A1,2, ..., A|CP|,|CD|}.

Co-Support Measure

In a biological database DB with N transactions, we define the Co-Support of a Protein-
DNA Co-Occurring APC Ai,j , i.e. CS(Ai,j), as the number of transactions that Protein-
APC Ci

P and DNA-APC Cj
D co-occur over the total number of transactions. It measures

how frequent the patterns in a Protein-APC and a DNA-APC co-occur in a biological
database. The greater the value, the higher the co-occurrence of the patterns. We let

1. trans(Ci
P ) =

|Ci
P |⋃

k=1

trans(pi,kP );
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Algorithm 2 APC Co-Occurrence Algorithm

Input: a Protein-DNA Binding Sequence DB with N transactions.
Output: a set of binding core candidates B
Step 1: Discover a set of Protein-APCs CP from DB.
Step 2: Discover a set of DNA-APCs CD from DB.
Step 3: Associate each Protein-APC with each DNA-APC
Step 4: Rank the APC pair by Co-Support
Step 5: Select the top K
return B

2. trans(Cj
D) =

|Cj
D|⋃

k=1

trans(pj,kD ),

in which trans(pi,kP ) is the set of transactions where pi,kP occurs; and trans(pj,kD ) is the set
of transactions where pj,kD occurs. The Co-Support of a Protein-DNA Co-Occurring APC
Ai,j is hence defined as follows:

CS(Ai,j) =
|trans(Ci

P )
⋂
trans(Cj

D)|
N

(4.3)

Forward-Confidence Measure

For an one-to-one Protein-DNA pattern association am,n
i,j = (pi,mP , pj,nD ), we also compute

its forward confidence [79, 148], i.e. FConf , to quantify the probability that, in the same
transaction, the DNA-Pattern pj,nD occurs given the Protein-Pattern pi,mP occurs.

FConf(am,n
i,j ) =

|trans(pi,mP )
⋂
trans(pj,nD )|

|trans(pi,mP )|
(4.4)

4.2.5 Verification

To verify whether the Protein-DNA pattern associations in Protein-DNA Co-Occurring
APCs are binding cores, we follow the procedure mentioned in [79, 148]. We first match
them with the binding instance set called Extended PDB (See Section 4.3.1). We then
apply homology modeling on the top-ranking cases not supported by the Extended PDB
set to obtain viable binding cores.
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Verification By PDB

Following [148], we define two levels of verification, i.e. ‘TF-verified’ & ‘Both-verified’ for
a Protein-DNA pattern association am,n

i,j = (pi,mP , pj,nD ). am,n
i,j is said to be ‘TF-verified’, if

at least one 5-mer obtained from pi,mP is a substring of the TF-side of a binding instance.
am,n
i,j is said to be ‘Both-verified’, if any 5-mer obtained from pi,mP and any 5-mer obtained

from pj,nD (with consideration on reverse complement) are substrings of the TF-side and the
TFBS-side respectively of the same binding instance. All gaps and wildcards are removed
from the patterns in the verification process.

Given a Protein-DNA Co-Occurring APC Ai,j, we define the set of all possible combi-
nation of Protein-DNA associated patterns for ‘TF-verified’ and ’Both-verified’ as follows:

1. VTF (Ai,j) = {am,1
i,j ∈ Ai,j}, where the 1 is a ‘dummy’ place holder of no significance;

2. VBoth(Ai,j) = Ai,j;

3. V̄TF (Ai,j) = {a ∈ VTF (Ai,j) | a is TF-verified};

4. V̄Both(Ai,j) = {a ∈ VBoth(Ai,j) | a is Both-verified}.

Given a set of Protein-DNA Co-Occurring APCs A, we define two measures, i.e. RTF

and RBoth, for evaluating the verification performance.

RTF =

|CP |∑
i=1

|CD|∑
j=1

|V̄TF (Ai,j)|

|CP |∑
i=1

|CD|∑
j=1

|VTF (Ai,j)|
(4.5)

RBoth =

|CP |∑
i=1

|CD|∑
j=1

|V̄Both(Ai,j)|

|CP |∑
i=1

|CP |∑
j=1

|VBoth(Ai,j)|
(4.6)

The underlying meaning of Equations 4.5 and 4.6 of is accounting the sum of all verified
cases in each Protein-DNA Co-Occurring APC over the sum of all possible variants in each
Protein-DNA Co-Occurring APC.
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Verification By Homology Modeling

Homology modeling constructs the three dimensional (3D) model of the ‘target’ protein at
the atomic resolution level from its amino acid sequence and an experimentally constructed
3D structure. This approach is based on the concept that evolutionarily related proteins
have similar sequences and naturally occurring homologous proteins have similar protein
structure. It can be used to build the model of the protein-DNA or protein-RNA com-
plexes. Following [79], we apply homology modeling on unverified Protein-DNA pattern
associations in the Protein-DNA Co-Occurring APCs to show they are viable binding cores.
The homologous 3D structures required by homology modeling can be quickly identified by
referring to the verified Protein-DNA pattern associations within the same Protein-DNA
Co-Occurring APCs.

4.3 Experiments and Results

4.3.1 Materials

Input Database: TRANSFAC

TRANSFAC [89] provides us with the sequences of TFs and their experimentally-proven
binding DNA sequences for binding core discovery. As TFBSs embed in these DNA se-
quences, we denote them as TFBS sequences. Similar to the previous work [148], we employ
TRANSFAC Professional version 2009.4 [89] in this study. Thus, entries not involving TF
or TFBS sequences from it were discarded. To retain data quality, only TFBS sequences
no shorter than 8 nucleotides were used. To reduce data redundancy, identical TFBS se-
quences corresponding to a TF were removed, in which only one of them was retained.
After data pre-processing, we have one TF dataset with 706 full-length TF sequences (av-
erage length: 495), in which each TF on average binds 22 TFBS sequences (average length:
25).

Verification Data: Protein Data Bank

Protein Data Bank (PDB) [12] provides us with three-dimensional (3D) Protein-DNA
complex structure data for verifying if the discovered patterns are indeed binding cores.
We followed the approaches mentioned in [148] for pre-processing and collected from PDB
1226 distinct 3D Protein-DNA complex entries. For each PDB entry, a residue-nucleotide
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pair is considered as binding if and only if its distance (between their closet atom-pairs) is
less than or equal to 3.5Å[1]. Starting with a residue-nucleotide binding pair, we extracted
the adjacent residues and nucleotides to form a TF-TFBS binding sequence pair (which
is also called a binding instance or a binding core). We set the length of both TF-side
and TFBS-side sequences of a binding instance to be 9 [148]. Using this approach, we
extracted 36679 binding instances. Together with 9 binding instances from annotations
and literature obtained from [19], we have in total 36688 binding instances for verification.
This set of binding instances is denoted as the Extended PDB.

4.3.2 Experimental Procedure

We first applied APC algorithm to mine a set of Protein-APCs and a set of DNA-APCs
from TRANSFAC in two independent runs. We then formed a set of Protein-DNA Co-
Occurring APCs by them and selected the top 100 Protein-DNA Co-Occurring APCs by
their Co-Support Measure. We further computed RTF and RBoth from the top 10 to top
100 by the Extended PDB for comparison. We finally applied homology modeling on two
cases without support from Extended PDB to show that they are very likely to be binding
cores. We summarize the setting of our approach as follows.

Procedure and Setting on Mining Protein-APCs

For TF sequences, pattern discovery was run with minimum occurrence of 10, length of
7 and default parameters of confidence interval of 3, and delta-closed of 0.9. A special
condition of three consecutive amino acids is used to filter out patterns that are from acidic-
rich, proline-rich, and glutamine-rich activation domains [115], which are unlikely binding
cores; and, aligned pattern clustering was run based on global alignment, hamming distance
considering gaps, and termination on 3 consecutive matches and 1 conserved column. The
variation (dendrogram threshold) to be allowed is 4. No gaps and wildcards are allowed to
be enclosed by amino acids.

Procedure and Setting on Mining DNA-APCs

For TFBS sequences, pattern discovery was run based on minimum occurrence of 100 and
length of 7, as well as the default confidence interval of 3 and default delta-closed of 0.9.
Aligned pattern clustering was then run based on global alignment, hamming distance
(considering gaps), and termination on 3 consecutive matches and 1 conserved column. A
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ID: 758

Rank 1 VRVWFCN VKIWFQN IKIWFQN WFCNRRQ FCNRRQK FQNRRMK FQNRRAK WFQNRRA IWFQNRR VWFQNRR

TTATTTG 0.0000 0.0000 0.0625 0.0417 0.0455 0.0385 0.0000 0.0000 0.0263 0.0000

TTAATTG 0.1538 0.2400 0.6875 0.1667 0.1818 0.5769 0.3750 0.3684 0.4474 0.5294

ID: 182

Rank 2 EGCKGFF CKGFFRR CKGFFKR KGFFRRS GFFRRTI KGFFRRT

AGGTCAT 0.8333 0.6957 0.7273 0.5455 0.9000 0.8182

AGGTCAG 0.7500 0.6522 0.6364 0.5455 0.8000 0.7273

AGGTCAA 0.6667 0.6087 0.6364 0.6364 0.7000 0.6364

AGGTCAC 0.7083 0.5217 0.6364 0.4545 0.7000 0.6364

ID: 716

Rank 4 VRVWFCN VKIWFQN IKIWFQN WFCNRRQ FCNRRQK FQNRRMK FQNRRAK WFQNRRA IWFQNRR VWFQNRR

CAATTAA 0.3077 0.3200 0.3750 0.2083 0.2273 0.4615 0.3125 0.3158 0.3421 0.4118

ID: 721

Rank 3 VRVWFCN VKIWFQN IKIWFQN WFCNRRQ FCNRRQK FQNRRMK FQNRRAK WFQNRRA IWFQNRR VWFQNRR

AATTAAA 0.3077 0.2400 0.4375 0.2500 0.2727 0.5000 0.3125 0.2632 0.3158 0.4118

ID: 201

Rank 5 EGCKGFF CKGFFRR CKGFFKR KGFFRRS GFFRRTI KGFFRRT

CAGGTCA 0.7917 0.6522 0.4545 0.3636 1.0000 0.9091

TAGGTCA 0.5417 0.3913 0.3636 0.3636 0.5000 0.4545

ID: 723

Rank 6 VRVWFCN VKIWFQN IKIWFQN WFCNRRQ FCNRRQK FQNRRMK FQNRRAK WFQNRRA IWFQNRR VWFQNRR

TTTGCAT 0.4615 0.0000 0.1250 0.7917 0.8182 0.1154 0.0000 0.0000 0.0526 0.0000

ID: 181

Rank 7 EGCKGFF CKGFFRR CKGFFKR KGFFRRS GFFRRTI KGFFRRT

GACGTCA 0.2083 0.1304 0.1818 0.0909 0.2000 0.1818

GAGGTCA 0.5833 0.5217 0.6364 0.4545 0.7000 0.6364

ID: 586 ID: 592

Rank  8  ESARRSR Rank 9 ESARRSR Not Both verified

ACGTGGC 0.9091 CACGTGG 0.8182

GACGTGG 0.5000

ID: 720

Rank 10 VRVWFCN VKIWFQN IKIWFQN WFCNRRQ FCNRRQK FQNRRMK FQNRRAK WFQNRRA IWFQNRR VWFQNRR

ATGCAAA 0.5385 0.0000 0.0000 0.8333 0.9091 0.0000 0.0000 0.0000 0.0000 0.0000

Co-Support: 0.0439

Co-Support: 0.0425

Co-Support: 0.0368

Co-Support: 0.0368

Co-Support: 0.0312

Both verified

Legend

Co-Support: 0.0312

Co-Support: 0.0297

Co-Support: 0.0283

Co-Support: 0.0283Co-Support: 0.0283

Figure 4.2: The top 10 Protein-DNA Co-Occurring APCs (DNA variation = 1) where the
ranking is based on Co-Support Measure and ID. For each table, the first row contains
the patterns in the Protein-APC and the first column contains the patterns in the DNA-
APC. A cell represents a Protein-DNA pattern association and the value within a cell is
its forward confidence. The color scheme indicates if a Protein-DNA pattern association
is Both-verified (Green) or not (Red). The number of green colored cells is 72 while the
number of all cells is 111. The verification measure, RBoth, is thus 0.72.
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minimum matching quality score of 0.85 is set to ensure 6 matched positions and pattern
with length 7. The variation (dendrogram threshold) to be allowed is 1 or 2. No gaps and
wildcards are allowed to be enclosed by nucleotides.

4.3.3 Comparative Schemes

To show that our results cannot be easily replicated, we developed two more schemes, i.e.
‘Unified Score Mode (USM)’ [19] and ‘Random’, to discover Protein-DNA Co-Occurring
APCs from sequence data, since there are no existing algorithms.

In USM, we post-processed the output of the latest algorithm [19] developed for dis-
covering TF-TFBS associated patterns (One-to-One Protein-DNA Pattern Associations)
to produce representations similar to Protein-DNA Co-Occurring APCs. We first used
complete-linkage hierarchical clustering (to ensure tightness) to cluster the top 1000 TF-
TFBS associated patterns by the edit distance on the TF-side associated patterns and
cut the dendrogram at 4. We then used complete-linkage hierarchical clustering again to
cluster the TFBS-side associated patterns in each cluster formed by TF-sided associated
pattern and cut the dendrogram at 1 or 2. Clusters of TF-TFBS associated patterns that
are similar to the representation of Protein-DNA Co-Occurring APCs were produced. They
are then re-ranked by Co-Support Measure in descending order and the top 100 of them
were selected for comparison.

For USM, we used the parameters including Top=5, M=7, Mode=Sum/Normalized
(Nor) and w=7. We refer ‘Mode’ to the type of the unified scores that rank the TF-TFBS
associated patterns, where ‘Sum’ is the total score and ‘Normalized (Nor)’ is the total score
normalized to the number of summed terms. We also refer ‘w’ to the width of both the
TF-side and TFBS-side associated patterns. For the others, please refer to [19]. These
parameter settings helped USM achieve its best verification performance [19].

In the scheme ‘Random’, on the top 100 Protein-DNA Co-Occurring APCs discovered
by our algorithm, we randomly extracted a sequence segment from TRANSFAC to replace
each pattern in each APC. We then re-computed the CoSupport, Measure re-ranked them,
and re-computed RTF and RBoth from top 10 to top 100. We repeated this process 100
times and reported the mean of RTF and RBoth.

4.3.4 Top 10 Protein-DNA Co-Occurring APCs

In Figure 4.2 we show the verification performance of the Top 10 Protein-DNA Co-
Occurring APCs. For DNA variation = 1, RTF = 1.00, RBoth = 0.72; for DNA variation
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= 2, RTF = 0.97, RBoth = 0.73. For illustration, we showed the Top 10 Protein-DNA
Co-Occurring APCs (DNA variation = 1) ranked by Co-Support Measure in a descending
order. In tie cases, we ranked by ID in an ascending order. For each table, the first row
contains the patterns in the Protein-APC and the first column contains the patterns in the
DNA-APC. A cell represents a Protein-DNA pattern association and the value within a
cell is its forward confidence. The color scheme refers to whether the Protein-DNA pattern
association is Both-verified (Green) or not (Red). The number of green colored cells is 72
while the number of all cells is 111. Hence, RBoth = 0.72.

4.4 Discussion

4.4.1 Performance Comparison

The Protein-DNA Co-Occurring APCs or similar representations discovered by three differ-
ent schemes: WeMine (our approach), USM and Random are compared on the verification
performance in terms of RTF and RBoth. Considering the DNA variation to be at most 1,
Figures 4.3a and 4.3b show the Extended PDB verification in RTF and RBoth respectively.
WeMine is consistently better than other schemes from Top 10 to Top 100 in terms of
RTF , as shown in Figure 4.3a. The difference between WeMine and other algorithms is
even larger in terms of RBoth, which is a stricter verification scheme, as shown in Figure
4.3b. Considering the DNA variation to be at most 2, Figures 4.3c and 4.3d show the
Extended PDB verification in RTF and RBoth respectively. WeMine is also observed to
be consistently better than other schemes. These results show that the Protein-DNA Co-
Occurring APCs discovered is neither random nor easily replicated by existing approaches.

Interestingly, referring to the rank 1 Protein-DNA Co-Occurring APC as shown in
Figure 4.2, we observe that we have identified 3 Protein-DNA Pattern Associations, i.e.
(FQNRRAK, TTATTTG), (WFQNRRA, TTATTTG), and (VWFQNRR, TTATTTG)
with zero forward confidence but both-verified. This demonstrates that the Protein-DNA
Co-Occurring APC can model variants that do not exist in TRANSFAC. This implies
that it has a stronger discovery power than previous algorithms [79, 148, 19] discovering
one-to-one representations.

From the opposite perspective, we also notice some paired patterns that are not co-
occurring are distant apart in three-dimensional structures.

A common problem in machine learning is the potential of over-fitting the model to the
training data. Our method addresses overfitting in the following three manners. First, our
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Legend 

Figure 4.3: These figures illustrate the performance comparison between WeMine, USM
and Random on Extended PDB verification. The x-axis is the accumulative top number
of Protein-DNA Co-Occurring APCs, i.e. Top 1-10, Top 1-20,...,Top 1-100. The y-axis is
the Extended PDB verification ratio corresponding to (a) RTF considering DNA variation
to be at most 1, (b) RBoth considering DNA variation to be at most 1, (c) RTF considering
DNA variation to be at most 2 and (d) RBoth considering DNA variation to be at most 2.

experimental framework is not supervised but unsupervised. In our experiments, we are
not training predictive models and there are no class labels required in the model. Second,
the new hypothetical complexes identified in this study are supported by high forward
confidence. Third, the results remained stable over two different experimental conditions.

4.4.2 Run-time Comparison

We also compared the run-time used by the schemes WeMine, USM-Sum and USM-Nor in
the experiment. The recorded run-time in seconds is summarized in Table 4.3. We observed
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ID: 758 Co-Support: 0.0439 

Rank 1        VRVWFCN VKIWFQN IKIWFQN WFCNRRQ FCNRRQK FQNRRMK FQNRRAK WFQNRRA IWFQNRR VWFQNRR 

TTATTTG 0.0000 0.0000 0.0625 0.0417 0.0455 0.0385 0.0000 0.0000 0.0263 0.0000 

TTAATTG 0.1538 0.2400 0.6875 0.1667 0.1818 0.5769 0.3750 0.3684 0.4474 0.5294 
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T  C 
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modeling 

(a) 

(b) 

Chain A 149-155 
FCNRRQK  

  

TTAATTG 
Chain C    10-16  
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T 

TTAATCG 
Chain C   10-16 

2R5Z 

 

Chain A  149-155 
FQNRRMK 

      

Q M 

C 

Figure 4.4: An illustration of how Protein-DNA Co-Occurrence APCs enabling Homology
Modeling. (a) The top-ranking Protein-DNA Co-Occurring APCs (DNA variation = 1)
is shown in the table. Binding core candidates denoted in green (red) have been verified
(not verified) by PDB. Here, the target candidate (FCNNRQK, TTAATTG), shaded in
red, is examined. Within the same Protein-DNA Co-Occurring APC, we search for cases
in green closely matching to this target canidate to conduct homology modeling. (b) A 3D
structure (2R5Z) with close matching in Protein-pattern (FQNRRMK) and DNA-pattern
(TTAATCG) to the target case is found at the left of (b). In the middle of (b), mutations
perfomed (Q150C and M154Q in Chain A; and C15 T in Chain C) are shown. At the right
of (b), a homology model of the 3D structure of the target candidate is obtained.

that while both USM-Nor and USM-Sum used more than 20,000s, WeMine used only 12s.
It should be noted that the post-processing on the outputs of USM used at most 3s and all
experiments were run on the same computer (CPU:i5-2410M 2.3GHz, RAM:8.0GB). These
results demonstrate a speed-up of ≥ 1600x on WeMine over USM [19]. The speed-up is
brought by that USM needs to have O(N) times of motif discovery (N refers to the number
of transactions), while WeMine only needs two independent runs.
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4.4.3 Homology Modeling

Case 1: Strong Protein-DNA Mutations

Consider the rank 1 Protein-DNA Co-Occurring APC in Figure 4.2, (FCNRRQK, TTAATTG),
which is not supported by Extended PDB, has a forward confidence of 0.1818 that is higher
than that of (FQNRRMK, TTAATTG), which is supported by PDB record 2RMZ. Due to
the high similarity between these two Protein-DNA pattern associations, a few mutations
can be introduced to 2R5Z to model the interested Protein-DNA binding. We performed
mutations of Q150C, M154Q on the Chain A and C15T on the chain C, of the PDB record
2R5Z, as shown in Figure 4.4. Most of the hydrogen bonds are maintained at the Protein-
DNA binding site. This indicates that the interaction between the DNA and protein is
as strong as the original case. Intriguingly, we observed that the removal of sulfur which
interacts with several nucleotides of DNA from M154Q mutation is replenished by sulfur
from Q150C mutation, suggesting the flexibility of the variation of Protein-DNA binding
in nature. Hence, (FCNRRQK, TTAATTG) is supported by homology modeling to be a
very likely binding core.

Case 2: DNA Mutation

Consider the rank 1 Protein-DNA Co-Occurring APC in Figure 4.2, (WFCNRRQ, TTAATTG),
which is not supported by Extended PDB, has a forward confidence of 0.1667 that is higher
than that of (WFCNRRQ, TTATTTG), which is supported by PDB record 1CQT. Due to
the high similarity between these two Protein-DNA pattern associations, a few mutations
can be introduced to 1CQT to model the interested Protein-DNA binding. We performed a
mutation of T222A on the Chain N of the PDB record 1CQT, as shown in Figure 4.5. The
T222A mutation on the DNA still maintains the hydrogen bonds to residues in close prox-
imity such as glutamine and asparagine. Hence, (WFCNRRQ, TTAATTG) is supported
by homology modeling to be a very likely binding core.

4.5 Summary

In this chapter, we proposed a new representation denoted as Protein-DNA Co-Occurring
Aligned Pattern Cluster (APC) for modeling Protein-DNA binding with variations. It is
more compact than one-to-one pattern associations, as it packs many-to-many associations
in one model, yet detailed enough to allow site-specific variants. We also developed a novel
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Figure 4.5: A homology modeling of 1CQT with a mutation of T222A on Chain N to
model the Protein-DNA Binding (WFCNRRQ, TTAATTG).
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algorithm to mine Protein-DNA Co-Occurring APCs, discovering binding cores at a higher
precision that is faster (≥1600x) than other methods. We further demonstrated the use of
our work for intuitive analysis to synthesize new knowledge in Protein-DNA binding. Two
new binding cores, i.e. (FCNRRQK, TTAATTG) and (WFCNRRQ, TTAATTG) have
been discovered by homology modeling assisted by Protein-DNA Co-Occurring APCs to
locate close matching 3D structures. There are three benefits of Protein-DNA Co-Occurring
APC to researchers: (1) site-specific information on variants, (2) significant speed-up and
(3) discovery of binding cores that do not exist as one-to-one associations. We believe that
this novel presentation will be useful in future applications involving Protein-DNA binding,
in particular for assisting sequence-based Protein-DNA binding prediction, and enable the
novel discovery of potential Protein-DNA co-evolution.
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Table 4.2: A summary of notations with examples on Protein-DNA interaction sequences
Description Notation Example(s)

A Protein-APC Ci
P C1

P = {p1,1P =MFR, p1,2P =MVR},
C2

P = {p2,1P =MRE, p2,2P =MRH}
A DNA-APC Cj

D C1
D = {p1,1D =ACTT, p1,2D =AGTT}

Protein-APCs CP CP = {C1
P , C

2
P }

DNA-APCs CD CD = {C1
D}

A One-to-One Protein-DNA Pattern
Association

am,n
i,j a1,22,1 = (MRE, AGTT)

A Protein-DNA Co-Occurring APC Ai,j A1,1 = {a1,11,1 = (MFR,ACTT ),

a1,21,1 = (MFR,AGTT ),

a2,11,1 = (MVR,ACTT ),

a2,21,1 = (MVR,AGTT )}
A2,1 = {a1,12,1 = (MRE,ACTT ),

a1,22,1 = (MRE,AGTT ),

a2,12,1 = (MRH,ACTT ),

a2,22,1 = (MRH,AGTT )}
Protein-DNA Co-Occurring APCs A A = {A1,1, A2,1}
Protein Pattern to Transactions trans(pP ) trans(MRE) = {3}

trans(MRH) = {4}
Protein APC to Transactions trans(Ci

P ) trans(C1
P )

= trans(MRE)
⋃

trans(MRH)
= {3,4}

DNA Pattern to Transactions trans(pD) trans(ACTT) = {1,2,4}
trans(AGTT) = {3}

DNA APC to Transactions trans(Cj
D) trans(C1

D)
= trans(ACTT)

⋃
trans(AGTT)

= {1,2,3,4}
Co-Support of a Protein-DNA Co-
Occurring APC

CS(Ai,j) CS(A2,1)

=
|trans(C2

P )
⋂

trans(C1
D)|

4

= |{3,4}|
4 = 2

4 = 0.5

Forward Confidence of a Protein-DNA
Co-Occurring APC

FConf
(am,n

i,j )
FConf(a1,22,1)

= |trans(MRE)
⋂

trans(AGTT )|
|trans(MRE)|

= |{3}|
|{3}| = 1

1 = 1.0

All Possible Variants (TF) of a Protein-
DNA Co-Occurring APC

VTF

(Ai,j)
VTF (A2,1)

= {a1,12,1 = (MRE,ACTT ),

a2,12,1 = (MRH,ACTT )}
All Possible Variants (Both) of a
Protein-DNA Co-Occurring APC

VBoth

(Ai,j)
VBoth(A2,1) = A2,1
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Table 4.3: Runtime comparison between WeMine, USM-Nor and USM-Sum
Scheme DNA Variation 1 DNA Variation 2

WeMine 12.42s 14.78s
USM-Nor 20152.30s 20151.18s
USM-Sum 20193.83s 20193.21s
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Chapter 5

Predicting Protein-Protein
Interaction Using Protein-Protein
Co-occurrence APC

5.1 Introduction

Protein-Protein interaction (PPI) is important for various biological processes and func-
tions in living cells such as metabolic cycles, DNA transcription and replication, and sig-
naling cascades [40]. Following [104, 47], we refer to a PPI as an interaction that brings
two different proteins A and B into direct physical contact, i.e. heterodimeric interactions.
Protein-Protein interaction prediction refers to a process to predict if one protein will inter-
act with another protein. It is critical for better understanding the molecular mechanisms
inside the cell [40], and is particularly useful for discovering unknown functions of a protein
[56].

Sequence-based Protein-Protein interaction prediction is a process to predict if one
protein will interact with another protein using only their sequences as input to a computer
program. As described in section 2.4.3, motivated by the general applicability of sequence-
based methods and realization of the drawbacks of the existing algorithm, the objective
of this chapter is to develop a new sequence-based Protein-Protein interaction prediction
method which is (1) based on biologically interpretable features, (2) based on features
that are more biologically realistic such as allowing variable widths and mutations, and
(3) achieving satisfactory prediction performance. In this chapter, to accomplish these
objectives, we propose a new algorithm WeMine-P2P, leveraging a new representation
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model known as the Protein-Protein Co-Occurrence APC which captures co-occurrence
functional regions allowing variable widths and mutations. Comprehensive experiments
were also conducted to validate the effectiveness of WeMine-P2P with comparison with
existing software.

5.2 Methods

Overview. An overview of our method in steps 1 to 6 is illustrated in Fig 5.1.

Problem definition. A protein pair, or a PPI pair is defined as a pair of protein
sequences that can either be interacting or not interacting with one another. A protein-
protein interaction pair, referred to as a positive PPI pair, is defined as a pair of protein
sequences that can interact with each other. A protein-protein non-interaction pair, or a
negative PPI pair, is defined as a pair of protein sequences that cannot (or are not yet
known to) interact with each other. A PPI database includes protein sequences, as well as
both positive and negative PPI pairs. We use it to train a model for predicting whether a
new protein pair would interact or not. The PPI prediction output score would be within
the range of 0 and 1 inclusively: the higher the score the more likely that the two protein
sequences are predicted to be interacting.

Input PPI Database. The input dataset, denoted PPI Database (PPI-DB), consists
of a set of protein sequences, as well as positive and negative PPI pairs. To model the pro-
tein sequence patterns, we let Σ = {A,R,N,D,C,E,Q,G ,H, I, L, K,M,F, P, S, T,W, Y, V }
be the protein alphabet containing 20 amino acids, where |Σ| = 20. A protein se-
quence from the PPI database S = σ1σ2 . . . σ|S|−1σ|S| is an element of Σ∗, where each
σi ∈ Σ and S is of length |S|. Let the set of input protein sequences be defined as
S = {Sx|x = 1, ..., |S|} = {S1, S2, . . . , S|S|−1, S|S|}.

Step 1: Label positive and negative PPI pairs. We label the positive and negative
PPI pairs provided by PPI-DB as “+” class and “-” class respectively (Fig 5.1). This helps
to form the training set for binary classification, in which a training sample is a protein pair
pertaining either to a “+” or “-” class. Formally, we let B = S×S = {B1,1, B1,2, ..., B|S|,|S|},
where each protein pair Bx,y is composed of two protein sequences Sx and Sy such that
Bx,y = (Sx, Sy).

Step 2: Obtain Aligned Pattern Clusters from PPI-DB. We obtain conserved
regions from PPI-DB that maintain variable mutations and flexible length (Fig 5.1). It
should be noted that the definitions here refer to section 2.2.3. To achieve this, first
from the input protein sequences we use a pattern discovery algorithm [144] to discover
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APC1-APC1 APC1-APC2 APC1-APC3 .  .  . APC3-APC3 APC4-APC1 .  .  . Class

P117 - P227 0.50 1.00 0.50 .  .  . 0.00 0.25 .  .  . +

P337 - P225 0.50 1.00 0.50 .  .  . 0.00 0.49 .  .  . +

P231 - P524 0.00 0.00 0.50 .  .  . 1.00 0.57 .  .  . -

.  .  . .  .  . .  .  . .  .  . .  .  . .  .  . .  .  . .  .  .

Step 4: Construct a PPI matrix by matching the co-occurring APC (cAPC) pairs to 
the PPI pairs in the PPI-DB and score the matching by APC-PPI Score

PPI Matrix:  Co-occurrence APC Pairs Matching  PPI  Pairs   
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Figure 5.1: WeMine-P2P: a PPI Predictor. The input dataset, denoted as PPI Database
(PPI-DB), consists of a set of protein sequences,as well as positive and negative PPI pairs.
Each protein sequence has a unique ID, e.g. P117, P227...etc. For illustration, only some
segments on a protein sequence are shown. To train a predictive model, positive and
negative protein-protein interaction pairs are labeled by “+” and “- ” labels respectively
(Step 1). For extracting features, APCs are obtained from PPI-DB using WeMine Aligned
Pattern Clustering algorithm (Step 2). All possible pairwise combination of APCs are
then enumerated as co-occurring APC pairs (cAPC pairs) (Step 3). To construct a PPI
matrix, cAPC pairs are then matched to the PPI pairs in the PPI-DB and the matchings
are scored by APC-PPI (Step 4). A predictive model is trained on the PPI matrix, where
each of its rows is a feature vector with a class label (+) or (-) as its last element (Step
5). Any protein pair can be turned into a feature vector by computing the APC-PPI of all
cAPC pairs and concatenating the APC-PPIs. The feature vector can then be inputted to
the trained model to output the classification results (Step 6).
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sequence patterns. Here, we define an unaligned sequence pattern p̄ as an ordered sequence
of interdependent symbols from Σ, i.e. p̄ = σ̄1σ̄2...σ̄|p̄|, where σ̄j ∈ Σ,∀j = 1, 2, ..., |p̄|,
that pass the four statistical conditions defined in [144]. The list of unaligned patterns
discovered is P = {p̄i|i = 1, ..., |P|} = {p̄1, p̄2, . . . , p̄|P|−1, p̄|P|}. Next, we cluster and align
these unaligned sequence patterns using the Aligned Pattern Clustering algorithm [77, 143].
Each cluster is an Aligned Pattern Cluster (APC) [77, 143], i.e.

C l = ALIGN


p̄1

p̄2

...
p̄m

 =


p1

p2

...
pm

 (5.1)

=


σ1

1 σ1
2 . . . σ1

n

σ2
1 σ2

2 . . . σ2
n

...
...

...
...

σm
1 σm

2 . . . σm
n


m×n

, (5.2)

where σi
j ∈ Σ∪ {−} ∪ {∗}. Note that − denotes a gap character and ∗ denotes a wildcard

character. Each APC C l contains m aligned patterns, where each of them is of length
n, i.e. pi = σi

1σ
i
2...σ

i
n, ∀i = 1, 2, ...,m. Let a set of APCs be defined as C = {C l|l =

1, ..., |C|} = {C1, C2, . . . , C |C|−1, C |C|}.

Step 3: Enumerate all possible pairs of APC that co-occur. We enumer-
ate all possible pairs of APCs and call a pair of APC as a co-occurring Aligned Pattern
Cluster pair (cAPC pair) (Fig 5.1). We obtain a set of cAPC pairs as A = C × C =
{A1,1, A1,2, ..., A|C|,|C|}, where there are in total |C|×|C| = N number of cAPC pairs. Each
cAPC pair Ai,j is composed of two APCs Ci and Cj such that Ai,j = (Ci, Cj). These
cAPC pairs are features extracted from PPI-DB instantly in order to predict PPI between
PPI pairs.

Step 4: Construct a Protein-Protein Interaction Matrix. We use the PPI
matrix M to register the match between cAPC pairs and PPI pairs. Each row in the
PPI matrix M is associated with a PPI pair say Bx,y. Each column in the PPI matrix
M is associated with a cAPC pair Ai,j, with the last column being the class label. Each
cell in the matrix M registers the score of a cAPC pair Ai,j co-occurring in the protein
pair Bx,y (Fig. 5.1). Hence, stating in a more specific way, each cell of the PPI matrix
M is the score(Ai,j, Bx,y). This score indicates the strength of occurrence of patterns in
the cAPC pair Ai,j on the protein pair Bx,y. APC-PPI is devised to determine the value
of score(Ai,j, Bx,y). APC-PPI is computed based on the best match between cAPC pair
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and PPI pair, which is picking the best segment match between all permutations between
the APC Ai,j = (Ci, Cj) and protein sequences Bx,y = Sx, Sy. Here, a PPI pair Bx,y is
represented by a row of APC-PPIs, where each of them is considered as a PPI feature.

Match Score Given an APC C with m patterns with length n and a sequence segment
s=σ′1σ

′
2...σ

′
n, we define the Match Score, i.e. match(C, s), as:

match(C, s) =
1

n

n∑
i=1

xi, (5.3)

where

xi =

{
1, if σ′i = σj

i∀j ∈ {1, 2, ...,m}
0, otherwise

(5.4)

This score reflects the ratio of the characters in a sequence segment s matching the charac-
ters in an APC C of the same length n, as exemplified in Figure 5.2, achieved by Algorithm
3, which is designed to match approximately the patterns in an APC C to a sequence seg-
ment s of the same length. Algorithm 3 first checks if each character in the segment occurs
in the APC column of the same index. It then sums up the number of matches, and
normalizes the sum by the length of the segment.

Segment:

segment: 5

APCmatchingSegment Score = 4/5 = 0.8

Figure 5.2: An example on how Match Score is calculated for a sequence segment with 5
characters and an APC with 2 rows.
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Algorithm 3 Match Score

Input: An APC C of size m× n, a sequence segment s = σ′1σ
′
2...σ

′
n

Output: a value in range [0 1]
for character σ′i in s do

Add match count if sigma′i is found in σ1
i σ

2
i ... σm

i of C { i: column index; m: number
of rows in APC C}

end for
return match count / |s|

MaxMatch Score Given an APC C with m patterns and length n, a protein sequence
S, we define the MaxMatch Score, i.e. MaxMatch(C, S), as:

MaxMatch(C, S) = max
i=1,2,...,|S|−n+1

Match(C, S[i, i+ n]), (5.5)

where S[i, i + n]= σiσi+1...σi+n−1 which is a substring of S. This score represents the
strength of occurrence of an APC C on an protein sequence S, achieved by Algorithm 4. It
uses a sliding window of the APC length over the sequence and computes an Match Score
for all segments (at an amount of |S| − n+ 1) of segments. The maximum Match Score is
chosen as the output.

Algorithm 4 MaxMatch Score

Input: An APC C with m patterns and length n, a Protein sequence S
Output: A value in range [0 1]
for i = 1 to |S| − n+ 1 do

Find Match Score of S[i, i+ n] and C
end for
return Maximum Match Score

APC-PPI Given a cAPC pair Ai,j composed of APCs Ci and Cj, and a PPI pair Bx,y,
with Protein sequences Sx and Sy, we define APC-PPI as:

APC − PPI(Bx,y, Ai,j) = max{p1 × p2, p3 × p4}, (5.6)

where p1 = MaxMatch(Ci, Sx), p2 = MaxMatch(Cj, Sy), p3 = MaxMatch(Ci, Sy) and
p4 = MaxMatch(Cj, Sx). The APC-PPI measures the strength of occurrence of a cAPC
pair on a PPI pair, obtained from Algorithm 5, which first calculates two MaxMatch
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Scores for each of the two possible APC-Protein combinations. Then the product of the
MaxMatch Scores in each APC-Protein combination is calculated. Then, each of the two
APC-Protein combinations is associated with a score. The APC-PPI is the maximum one
among those two scores.

Algorithm 5 APC-PPI

Input: A cAPC pair Ai,j composed of APCs Ci and Cj, and a PPI pair Bx,y, with
Protein sequences Sx and Sy.
Output: A value in range [0 1]
Let Score1 = Product of MaxMatch Score between (Ci,Sx) and (Cj,Sy)
Let Score2 = Product of MaxMatch Score between (Ci,Sy) and (Cj,Sx)
return Max of Score1 and Score2

Step 5: Train a predictive model based on PPI Matrix. We train a predictive
model, specifically a Random Forest [15], based on the constructed PPI matrix. A random
forest is an ensemble learning method. In this study, we use it mainly for binary classifi-
cation, i.e. to predict if a protein pair is a positive or negative PPI pair. It operates by
constructing a number of decision trees in the training process, then outputting the class
label by voting, i.e. the mode of individual trees. We choose Random Forest as our pre-
dictive model because 1) it runs efficiently on large training sets and is easily parallelized
[15]; 2) it can handle a large number of input variables without variable deletion [15]; 3)
it seldom overfits the training set [15]. We adopt the machine learning package WEKA
3.7 [46] in training the Random Forest predictive model, using 3000 trees. It supports
outputting the prediction probability in addition to the class label.

Step 6: Transform the testing protein pairs. Given a testing protein pair, we
first transform it into a feature vector by computing the APC-PPI of all extracted cAPC
pairs to itself. When the feature vector is constructed, we then input it to the predictive
model to obtain a class label, and also the probability of the prediction (supported by
WEKA [46]).

Feature analysis: cAPC pair selection. To analyze the features, we have developed
a score to measure how distinct a cAPC pairs column, Ai,j, in the PPI matrix is. For
example, the higher the score the cAPC pair can obtain, the more likely that it will co-
occur in a positive PPI pair but less in a negative PPI pair. This score is built upon the
APC-PPI but needs to be normalized to the number of PPI pairs (positive or negative) in
the PPI matrix. We first define

tscore(Ai,j, Bx,y) =

{
score(Ai,j ,Bx,y)

posPPI
, if +ve PPI pair,

− score(Ai,j ,Bx,y)

negPPI
, if -ve PPI pair,

(5.7)
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where score(Ai,j, Bx,y) is the APC-PPI, posPPI is the total number of positive PPI pairs,
and negPPI is the total number of negative PPI pairs. The tscore(Ai,j, Bx,y) that relates
to a cAPC pair Ai,j is summed over all PPI pairs in B. We define

hscore(Ai,j) =
∑
∀Bx,y∈B

tscore(Ai,j, Bx,y) (5.8)

We can then use hscore to rank the cAPC pairs Ai,j.

5.3 Experiments and Results

5.3.1 Materials

In our experiments, 40 independent Yeast Randam datasets were downloaded from [104] at
http://www.marcottelab.org/differentialGeneralization. The procedure to obtain
these 40 datasets is described below. Yeast Protein-Protein Interaction (PPI) data (Sac-
charomyces cerevisiae-20100304.txt) containing the protein sequences and the positive PPI
pairs was acquired from the protein interaction network analysis platform [150]. Further
pre-processing was applied to the proteins therein. First, the proteins were clustered using
CD-HIT2 [80] with the requirement that they shared sequence identity less than 40%. Sec-
ond, the proteins with less than 50 amino acids as well as homo-dimeric interactions were
also removed. In total, 6806 Yeast protein sequences remained after the pre-processing.

It is shown by [104] that predictive models perform much better for test pairs that share
components with the training set than for those that do not. Traditional cross-validation,
however, overlooks this issue [104]. Hence, to prepare a training set with both positive
and negative PPI pairs, a specific resampling process was conducted by [104] on the 6806
Yeast protein sequences to obtain 40 independent datasets. In each dataset, there are
about 16000 PPI pairs for training and about 4000 PPI pairs (including C1, C2 and C3)
for testing. It should be noted that the number of positive and negative PPIs is in equal
amount. A simplified example dataset with training set and testing set C1, C2 and C3
is illustrated in Fig 5.3 with proteins existing in the training dataset in green and novel
proteins not from the training dataset in red. The rationale for dividing the test set into
three distinct classes is that, if not doing so, a test set may be dominated by pairs that
share components with training pairs in the training set, yet such pairs may be a minority
on the population level [104]. In other words, this is to assess if the classifier performs well
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on pairs that are similar to the training pairs yet fails to generalize to the population level.
The required generalization ability from the classifier increases with the number of novel
protein sequences from C1 to C3.

5.3.2 Experimental design and parameter setting

As mentioned in section 5.3.1 Materials, we obtained in total 40 independent datasets
provided by [104]. Each dataset has a training set of 16000 PPIs and a testing set of 4000
PPIs (80%-20% split). In our experiment, we first extracted features (Step 1, Step 2) from
the training set, then used the features to construct a PPI matrix (Step 3, Step 4) and
trained a predictive model based on the PPI matrix. In Step 1, we used WeMine Aligned
Pattern Clustering algorithm [77, 143] to obtain APCs with length varying from 5 to 10
amino acids inclusively with the minimum support of 6, and the clustering threshold of
0.1. Other WeMine parameters remain default [77, 143]. We also trained 3000 trees in the
Random Forest in Step 5 using Weka 3.7 [46]. Other Weka 3.7 parameters remain default
[46]. We then transformed every PPI pair in the testing set into a feature vector (Step 6)
and applied the trained model on it to output a class label and a score. We evaluated the
predictive performance by computing the Area Under Curve (AUC) following [104] (see
Table 5.3). We repeated the same procedure for all 40 independent datasets and computed
the average AUC for comparison with Methods 1-7 in [104] (see Table 5.4).

5.3.3 Investigating the number of trees in the Random Forest

In the Step 5 of our Methodology, we used Random Forest as the prediction model and set
the number of trees to be 3000. To illustrate that more trees would improve the prediction
performance, we conducted two more experiments where one used 100 trees and another
used 500 trees in the Random Forest. The results are shown in Table 5.1. We observe
that WeMine-P2P achieved the best AUC performance when 3000 trees were used in the
Random Forest. Hence, this setting was used throughout this study unless further specified.

5.3.4 Investigating the effectiveness of APC-PPI

APC-PPI measures the strength of an occurrence of a cAPC pair on a PPI pair. To
investigate its effectiveness, we designed a new score, denoted as Random-APC-PPI. Given
a cAPC pair Ai,j composed of APCs Ci and Cj, and a PPI pair Bx,y, with Protein sequences
Sx and Sy, we define Random-APC-PPI, i.e. PPIrandom(Bx,y, Ai,j) = δ, where δ is a
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Training set:
P01 – P02, +
P01 – P03, +
P07 – P08, +
P09 – P10, +
P01 – P07, -
P02 – P09, -
P03 – P07, -
P03 – P10, -

Testing set C1 
P01 – P10, +
P08 – P09, -

Testing set C2 
P01 – P15, +
P08 – P19, -

Testing set C3 
P11 – P15, +
P13 – P19, -

A simplified example dataset

Figure 5.3: A simplified Protein-Protein Interaction sequence dataset example with a
training set and a testing set with three distinct classes as defined in [104]. Each row
is a pair of protein sequences with a class label. “+” means positive interactions and “-”
means negative interactions. The positive PPI pairs are experimentally validated while the
negative PPI pairs are sampled from the proteins within the same set that are not known
to interact [103]. Proteins existing in the training dataset are in green and novel proteins
not from the training dataset are in red. For example, in the training set, P01-P02 and
P07-P08 are positive PPI pairs but P01-P07 is a negative PPI pair. All protein pairs in
the testing sets are not found in the training set. However, all the protein sequences in
C1 are in the training set, while in C2 only some protein sequences are in the training set,
and in C3 no protein sequences are in the training set.
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random value uniformly distributed in [0, 1]. We repeated the same experiment while using
Random-APC-PPI instead of APC-PPI. The results are shown in Table 5.2. We observe
that WeMine-P2P with APC-PPI outperformed the WeMine-P2P with Random-APC-PPI.
This shows that APC-PPI is indeed effective for the predictive model construction.

5.3.5 Comparison to PIPE2

To illustrate the improvement made by WeMine-P2P on the use of co-occurring sequence
segments, we compared the average AUC with those obtained by PIPE2, provided by [104].
Recall that PIPE2 [112, 109] uses the short amino acid sequences (fixed at length of 20) that
co-occur frequently in given positive PPI pairs to make predictions on a testing PPI pair.
As shown in Table 5.3, our results demonstrate that WeMine-P2P achieves better AUC
performance in all three testing sets compared to PIPE2, indicating that WeMine-P2P
outperformed PIPE2. WeMine-P2P is novel in the sense that 1) the length of sequence
patterns is allowed to vary, coping with inherent functional association in the form of
statistically significant patterns; 2) sequence patterns are clustered and aligned as Aligned
Pattern Clusters (APCs) to relate to inherent functional conservation and variations; 3)
nonlinear predictive models can then be trained with the feature vectors. Since WeMine-
P2P has overcome the drawbacks of PIPE2, it does outperform it in the experiment.

5.3.6 Comparison to SVM-based Methods

To further illustrate the strength of WeMine-P2P, we compared its average AUC to the
SVM-based methods that are well-known for achieving state-of-the-art predictive perfor-
mance. The average AUC of SVM-based methods were obtained in [104]. As shown in
Table 5.4, WeMine-P2P achieved comparable results, particularly for the testing sets C2
and C3, in which some testing protein sequences in C2 and all in C3 are new and not found
in the training set (Fig. 5.3). For details please refer to section 5.3.1 Materials. This illus-
trates that WeMine-P2P has similar predictive power comparing to SVM-based methods
for novel testing protein sequences. We have to point out that while assuming the pattern
length k = 3, the feature dimension of SVM-based methods with Pairwise String Kernel
[88, 51], though not computed nor stored, can be as large as 203 × 203 = 64,000,000. In
WeMine-P2P, the feature dimension is only around 50,000, while allowing the variation of
residues with the pattern length varying from 5 to 10. It is a potential reduction of 1280x in
feature dimension. With such a large-scale reduction, the feature analysis of WeMine-P2P
is much easier compared to that of a SVM using Pairwise String Kernel approaches. This
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Table 5.1: Performance comparison of WeMine-P2P with different trees on the average
Area Under Curve (AUC) among 40 independent datasets ± the standard deviation

Number of Trees Testing set C1 Testing set C2 Testing set C3
100 0.76±0.02 0.60±0.02 0.56±0.02
500 0.78±0.02 0.60±0.02 0.58±0.02
3000 0.79±0.02 0.61±0.02 0.58±0.02

Table 5.2: Performance comparison of WeMine-P2P with APC-PPI and Random-APC-PPI
on the average Area Under Curve (AUC) among 40 independent datasets ± the standard
deviation

Testing set C1 Testing set C2 Testing set C3
Random-APC-PPI 0.50±0.01 0.50±0.02 0.50±0.02
APC-PPI 0.79±0.02 0.61±0.02 0.58±0.02

would make biological knowledge discovery much easier. Also, while the feature vector is
fixed in SVM-based methods, WeMine-P2P could extract features from the input data,
allowing them to be biologically interpretable as described in the next section. Note that
Methods 5 and 7 do not use SVM directly but are variants of SVM-based methods [104].

5.3.7 Analysis of the features with high hscore

This section reports our investigation with high hscore values discovered by WeMine-P2P,
as shown in Tables 5.5 and 5.6. We focused our analysis on the training data in the
independent dataset (ID = 11). In this dataset, we found about 250 APCs according to
the default parameter setting. This means that we would have about 250x250 = 50,000
cAPC pairs. We adopted the hscore defined in section 5.2. Methodology in order to
compute a feature score (within -1 and 1 inclusively) for each feature (i.e.cAPC pair). The
higher the score, the more likely the cAPC pair co-occur in positive PPI and less likely
they co-occur in negative PPI. The features are ranked from the highest to lowest. The top

Table 5.3: Performance comparison of PIPE2 and WeMine-P2P on the average Area Under
Curve (AUC) among 40 independent datasets ± the standard deviation

Method Testing set C1 Testing set C2 Testing set C3
Method 6 (PIPE2 [109, 112]) 0.75±0.02 0.59±0.04 0.52±0.04
WeMine-P2P 0.79±0.02 0.61±0.02 0.58±0.02
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Table 5.5: Top 10 cAPC pairs in hscore
Description 1st APC ID 2nd APC ID hscore
1st cAPC pair 1465525 9692312 0.018337
2nd cAPC pair 1465525 9698509 0.018083
3rd cAPC pair 1465525 1465525 0.018030
4th cAPC pair 1465525 9487593 0.017986
5th cAPC pair 1465525 9728806 0.017978
6th cAPC pair 1465525 8234623 0.017748
7th cAPC pair 1465525 9590335 0.017430
8th cAPC pair 1465525 9658538 0.017391
9th cAPC pair 8234623 9658538 0.017231
10th cAPC pair 9642970 9658538 0.017229

10 cAPC pairs are shown in Table 5.5 and their corresponding APCs are shown in Table
5.6. Here 10 is an arbitrary number, and it represents the top 0.02% of the features.

We observed that there are 9 unique APCs within the top 10 cAPC pairs, as shown
Table 5.5. Among these 9 APCs, 8 of them are likely to represent a segment in the com-
positionally biased region, as shown in Table 5.6. For example, “AMAMAAMAMAMA”
is a compositionally biased region in which “A” and “M” are enriched. According to [4],
a compositionally biased region is composed of amino acids that have locally shifted fre-
quencies, i.e. in some local regions, particular amino acids appear much more/less often
than expected.

We observed a similar phenomenon in APC 1465525 (enriched for “A” and “Q”), APCs
9487593, 9692312, 8234623, 9658538 (enriched for “E”), APC 9642970 (enriched for “K”
and “R”), and APC 9698509 (enriched for “K” and “E”), and APC 9728806 (enriched
for “D” and “E”). These enriched regions can play important roles in PPI [135]. 1) the
adaptation of organisms to extreme ecological niches [128]; 2) forming amyloids [3] or other
cellular functions [50]; 3) determine certain properties of proteins [94].

In addition, computational bias regions can contribute directly in PPI. It is reported
that some computational bias regions are strongly associated with intrinsically disordered
sequences [135], which are found to be enriched for certain types of amino acids [27]. In-
trinsically disordered sequences have no stable secondary and/or tertiary structure [27] but
have the potential to associate with many partners due to multiple possible metastable con-
formations [90]. Those meditating regions are often to be SLiMs [29, 93], which are usually
less than 10 amino acids in length [90]. These short interaction motifs may easily evolve
and have the potential to rapidly change protein interactions and cellular signaling [90].
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Hence, allowing flexibility in binding segment length and residue variations is important
to capture these signals.

By performing such an analysis, biologists not only can obtain a binary indication of
PPI prediction but also get a sense of the type of sequence pattern pairs participating
in PPI. This can assist them in subsequent experiment design and even provide hints
on how to block interactions. It should be noted that all these pieces of knowledge can
be discovered using only sequence data by WeMine-P2P without any a priori knowledge.
This benefits biologists greatly if they wish to discover new knowledge about PPI beyond
computational prediction.

5.4 Summary

In this chapter, we have furnished a new sequence-based Protein-Protein interaction pre-
diction method WeMine-P2P that adopts interpretable biologically realistic features. We
have demonstrated that our approach WeMine-P2P is not only able to yield superior or
comparable predictive results but can also discover knowledge for PPIs through analyzing
the interpretable discriminative features, to a certain degree, by a significant reduction of
feature dimension. The knowledge discovered in the interpretable feature space can be
useful for building better predictive models in the future. Through 40 independent exper-
iments, we showed that (1) WeMine-P2P outperforms the well-known algorithm, PIPE2,
which also utilizes co-occurring amino acid sequence segments but does not allow vari-
able lengths and pattern variations; (2) WeMine-P2P achieves satisfactory PPI prediction
performance, comparable to the SVM-based methods particularly among unseen protein
sequences with a potential reduction of feature dimension of 1280x; (3) Unlike SVM-based
methods, WeMine-P2P renders interpretable biological features from which we observed
that co-occurring sequence patterns from the compositional bias regions are more dis-
criminative. Since no prior information on PPI has been incorporated, WeMine-P2P is
extendable to other biosequence applications in the future.
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Chapter 6

Conclusion and Future Work

6.1 Contributions and Novelty

In this thesis, a new algorithm named Pattern-Directed Aligned Pattern Clustering (PD-
APCn) was developed to discover and locate functional regions with mutations as APCs.
To the best of our knowledge, these functional regions with mutations are difficult to be
identified by existing algorithms, as illustrated by the results revealed in our experiments.
Among all the experiments on the three synthetic datasets, where each of them has a
different size and noise level, PD-APCn has consistently demonstrated higher recall and
Fmeasure scores, when it was compared with the popular MEME. For operational effi-
ciency, PD-APCn had a significant computational speed up (up to 665x) compared with
the popular MEME. PD-APCn has also rendered consistently high performance among
all datasets given indicating its robustness. In addition, PD-APCn also offers a succinct
comprehensible display format of the output with direct traceable references to the pat-
tern locations in sequences with known ids indexed by a suffix tree when compared with
PWM-based approaches such as the popular MEME. Thus, PD-APCn is an effective, ef-
ficient, robust and comprehensive functional region identification algorithm. We believe
that PD-APCn will play a significant role for the discovery of new functional regions from
biosequences. This will be significant for drug discovery, administration and personalized
medicine in the future.

For the application in Protein-DNA interaction sequences, a new model to represent
Protein-DNA binding cores known as Protein-DNA Co-Occurring Aligned Pattern Clus-
ters (APCs) was developed. This new model is more compact than one-to-one pattern
associations, as it packs many-to-many associations in one model, yet detailed enough to
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allow site-specific variants. Furthermore, an efficient algorithm was developed to discover
Protein-DNA Co-Occurring APCs from Protein-DNA binding sequences. The discovery
algorithm was faster than its counterpart by at least 1600x. On the biological aspect, a
Protein-DNA Co-Occurring APC enables us to discover new Protein-DNA binding cores
by pairing up the Protein patterns and DNA patterns within the APC. This can cap-
ture the Protein-DNA binding core candidates that do not co-occur as one-to-one mapped
TF-TFBS associated patterns, an indication of its stronger discovery power. Two new
Protein-DNA binding cores were discovered based on the follow-up homology modeling.

For the application in Protein-Protein interaction sequence, Aligned Pattern Clus-
ters (APCs) [77, 143] were introduced to represent the co-occurring sequence patterns in
Protein-Protein Interaction (PPI) (between two protein chains). This study demonstrates
the first successful use of APCs in PPI, compared to the previous studies [77, 143, 73, 74].
Second, based on APCs, the novel co-occurring Aligned Pattern Cluster pairs (cAPC pairs)
were used for modeling the co-occurring sequence patterns in PPI. Comparing to existing
sequence-based prediction models, cAPC pairs are more biologically realistic because se-
quence patterns with variable length and variants are allowed. Third, using APC-PPIs
to encode predictive features of PPI pair, a new PPI prediction system, WeMine-PPI,
was developed. The experimental results demonstrated that WeMine-PPI outperformed
PIPE2 [109, 112], which is a popular prediction algorithm based on co-occurring sequence
patterns, and was comparable to the state-of-the-art SVM methods, while allowing a bio-
logically intuitive understanding of the feature vector.

6.2 Limitations and Future Work

In this section, we discuss the current limitations of the proposed work and the potential
extension in the future.

6.2.1 Comprehensive analysis of the parameter setting of break-
point gap and seed width in PD-APCn

In Pattern-Directed Aligned Pattern Clustering (PD-APCn) algorithm, there are two im-
portant parameter settings, which are 1) seed width; and 2) breakpoint gap. As demon-
strated in Table 3.2, Table 3.4 and 3.6, the performance achieved by PD-APCn is robust,
particularly comparing with the popular MEME algorithm. For completeness, one di-
rection is to extend the analysis to investigate the best parameter setting of seed width

92



and breakpoint gap, on an even larger scale of experiments. This study would help re-
searchers better understand how these parameters can be optimized in different datasets
in the future.

6.2.2 Discovering Protein-DNA Binding Cores from a new Protein-
DNA interaction sequence database

Protein Binding Microarray (PBM) is a new Protein-DNA interaction sequence database
leveraging high-throughput sequencing technologies. In addition to sequences given, bind-
ing intensity, measuring how strong the binding between each combination of the protein
and a DNA sequence, is also provided in the database. An illustration of the database is
provided in Fig 6.1. One possible extension would be to discover Protein-DNA Binding
Cores from this new type of database.

6.2.3 Improving the Prediction Performance of WeMine-P2P

Although the prediction performance of WeMine-P2P is competitive against the state-of-
the-art SVM-based method, there is still room for improvement. One direction to improve
the prediction performance is by introducing additional features into the feature vector.
One choice is the pairwise protein global similarity scores based on the popular BLOSUM62
matrix [28]. The rationale is that the global protein similarity information, which has not
been adopted in the current model, can complement the protein similarity modeled by
APCs. By introducing additional features, the prediction performance should be further
enhanced.

6.2.4 Extending the representation of protein in other bioinfor-
matics applications

In this thesis, a new representation of protein is developed by using Protein-Protein Co-
Occurrence to encode as a feature vector via MaxMatchScore. Fig. 6.2 provides an illus-
tration. A direction for future work is to extend this representation of protein in other
bioinformatics applications. For example, MutationTaster [120] and SNPdryad [147] are
computer programs to predict if a non-synonymous human single nucleotide polymorphism
(SNP) [120, 147] is deleterious or not. These programs take a non-synonymous human SNP
and the sequence of the human protein that the SNP is on as input, and then output a
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Protein Binding Microarray (PBM) Data

ID Protein DNA
(All possible 8-mers)

Intensity

01 RNDCE…QQQG AAAAAAAA
AAAAAAAC
……
TTTTTTTT

10.1
1.2
……
2.5

02 GQERR…NNNG AAAAAAAA
AAAAAAAC
……
TTTTTTTT

12.4
0.9
……
1.7

…

86 RREQQ…MNGT AAAAAAAA
AAAAAAAC
……
TTTTTTTT

0.7
12.9
……
0.2

On average
~500 residues

On average
~500 residues

On average
~500 residues

Figure 6.1: An illustration of Protein Binding Microarray (PBM) data. Each row contains
a unique protein sequence and all possible DNA sequences with 8 base pairs (8-mers). The
binding intensity, measuring how strong the binding between each combination of the
protein and a DNA sequence, is provided. The higher the value, the stronger the binding.
On average, in the database, each protein has about 500 residues. There are in total 86
TFs in the database.
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>Protein EPN1_HUMAN

MSTSSLRRQMKNIVHNYSEAEIKVREATSNDPWGPSS…LL

Encode into a Feature Vector by computing
MaxMatchScore on a set of APC 

APC 1 APC 2 APC 3 … APC N

1.00000 0.80000 0.83333 … 0.024524

Figure 6.2: An illustration of encoding a protein sequence into a feature vector via APC
and MaxMatchScore. The key idea here is that by computing MaxMatchScore of an APC
on a protein sequence, a better score can be obtained. Repeating this step on a set of
APCs, a list of real values can be obtained. This list of real values can then be a feature
vector for machine learning.

score. The higher the score, the more deleterious the input nsSNP is predicted to be.
These programs have only adopted the protein domains but not leveraged APC in their
prediction models. Incorporating APCs as complementary information into these programs
could potentially improve their performance.

6.3 Conclusion

Protein-DNA and Protein-Protein interactions have been studied for years but discovering
new interaction knowledge remains challenging. Different types of biochemical experiments
and computational methods have been proposed but each of them has their own limitations.
In this thesis, we proposed a new sequence-based algorithm to discover functional regions
with mutations as Aligned Pattern Clusters (APCs), and developed the use of Protein-
DNA and Protein-Protein Co-Occurrence APC to capture co-occurrence functional regions
in Protein-DNA and Protein-Protein interactions. Experimental results on both synthetic
and real datasets validated their effectiveness and efficiency. We thus believe that our work
can significantly contribute to advancing the frontiers in bioinformatcs and biomedical
research.
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