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Abstract

Projectors are a convenient technology for displaying content on large, abnormal, or
temporary surfaces where mounting other forms of light emitting devices is too imprac-
tical or too expensive. Common uses of projectors include movie cinemas, concert halls,
3D model colourization, planetariums, etc. Many of these applications require multiple
projectors to either cover the entire display surface, like planetariums, or to achieve the
require brightness, like outdoor projection.

Aligning the content between projectors is typically required to ensure that overlapping
regions between projectors display the same content. Naive approaches of aligning content
treat the relationship between the content and a projector independently of all other pro-
jectors in the configuration. Aligning content can limit the quality of the superimposed
image as high frequency signals are often degraded during the alignment process. Previous
works have shown it is possible to improve the perceptual quality of the aligned content
by giving each content-to-projector transformation prior knowledge of all projectors in
the configuration. However, these works either make theoretical assumptions, require spe-
cial hardware, severely limit the types of applications their systems work on, or only use
qualitative analysis to evaluate their system’s performance.

In this work, a framework capable of simulating a multi-projector configuration for any
number of projectors on a flat surface is proposed. A method of comparing the ideal content
with the projected content is developed using the proposed simulation in conjunction with
an existing image comparison technique. Different system setups are tested for a two
projector configuration. The quality of each configuration is measured using the developed
comparison metric across a dataset of natural images. Finally, the proposed framework is
used to train three different models, in an end-to-end fashion, that are capable of improving
the perceptual quality of the superimposed image.

The first two models are parametric and content independent, while the third model is
non-parametric and content dependent. The first model directly integrates with existing
interpolation methods used during the content-to-projector alignment. The second model
applies a post transformation filtering operation using a set of learned linear convolutional
kernels. The third model directly optimizes the projected images to improve the perceptual
quality of the superimposed image.
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Chapter 1

Introduction

Projectors are optical devices that reconstruct a specified pattern using millions of pixels
on a given surface. The patterns that these devices can display are limited only by the
arrangement of pixels, the number of pixels, the refresh rate of the projector, and the owners
imagination. Projectors are used for a wide variety of tasks, including, cinema projectors,
flight simulators, 3D model colourization, side-of-building projection, etc. Many of these
applications require more than one projector to cover the entire display surface since a
single projector may not have sufficient pixel density, or the display surface is an irregular
shape and covering the entire surface is impossible with a single projector (e.g., a round
display surface). Other applications require multiple projectors to increase the redundancy
of the entire system in case of projector failure, increase the total brightness of the content
being projected, or to increase the perceptual quality of the content beyond the capabilities
of a single projector.

1.1 Motivation

Aligning the same content across multiple overlapping projectors is a simple idea in prin-
ciple. In practice, however, aligning content between projectors is a complex task as the
differences between projectors are not easily overcome. For example, the position of each
projector relative to the display surface has a large role in determining the achievable con-
tent quality of the final superimposed image. Other inter-projector properties that affect
the quality of the alignment include projector colour responses, the focus of each projector
at a given location of the display surface, and the quality of pixel correspondences used to
generate a transformation between spaces.
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One specific area that has shown to improve the perceptual quality of the superim-
posed image is to have the images from each projector co-operate with one another. That
is, filter each sub-image so that when stacked they produce a superimposed image with
an improved perceptual quality. It is common for the content’s frame-of-reference to be
different then each projector’s frame-of-reference to ensure that the content is correctly
aligned with the display screen. This requires that each projector sample the correct por-
tion of the content image such that the content is aligned between projectors for any given
overlapping segment. The transformation between spaces relies on interpolation to approx-
imate the content when a sampling point lies between content pixels. The interpolation
process results in a degradation of high frequency patterns. Normal space transformations
and sampling procedures only consider the spaces being operated on; the functions are
agnostic to the state of other existing space. This is disadvantageous for multi-projector
configurations as the overlapping pixel grids may complement or interfere with each others
content. A better superimposed image may be achieved by providing the each content-to-
projector space transformation with prior knowledge of all other existing spaces.

A key component to improving the perceptual quality of the realized image is the
effective resolution at any given area. A greater resolution allows higher frequency content
signals to be projected. The density of pixels within an area increase with the number of
projectors. This effectively means that two projectors acting together, each with the same
given resolution, have the potential to realize a greater superimposed content resolution
than either projector could separately (on average). Figure 1.1 shows the results from one
of the models presented in this work.

1.2 Previous Content Enhancement Approaches

Image stacking can be achieved through a single projector or with multiple projectors.
In the single projector case the concept of wobulation [1] is used. An opto-mechanical
image shifter moves the entire pixel-grid by a fraction of a pixel in both axes. The single
projector operates at double the frequency of a normal projector and alternates between the
shifted and un-shifted images. The effectiveness of this system is due to the precise global
fractional pixel shifts achieved. Wobulation is cumbersome and expensive to implement in
practice [2]. Scaling this technology to more than two shifted images drastically increases
the cost of the projector as the required operating frequency of the projector scales linearly
with the number of shifted images.

Unlike wobulation, the images from each projector in a multi-projector configuration
have distinct points of projection. This requires the sub-images to be transformed such that
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Figure 1.1: An example of the achieved resolution enhancement using the Biased Interpo-
lation system. There are four sub-figures, each showing the same content under different
conditions. Each sub-figure shows the alphabet in arial text at different font sizes, and a
zoomed-in image of three letters stu; marked with a red boarder. Top-left is the original
content, top-right is a simulation of a single projector, the bottom-left is a simulation of
two projectors, and the bottom-right is a simulation of two projectors with the proposed
filtering applied. Notice the quality of the t before and after a second projector is added.
With one projector the t appears to be cut in half with one half shifted by a pixel. When
the second projector is added the t appears like a single undivided entity. The t then
becomes less blurry once the filtering model is applied.
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the content from each image is aligned. Precise calibration is required as any misalignment
will degrade the quality of the superimposed approximate high-resolution image [3]. Having
different points of projection creates a non-uniformity in pixel shift patterns throughout
the overlapping region [4]. Content enhancement is only attainable when fractional pixel
shifts between projectors are present within a local region of the overlapping projector
field [4]. Regions with no fractional pixel shifts are only capable of producing a direct
average of the content being projected from each projector.

Work in multi-projector perceptual quality enhancement has focused on developing post
alignment filter banks to sharpen images in either the spatial or frequency domain [2,3,4,5,
6,7]. These works use a combination of simulated results, captured images, and qualitative
comparison to measure their algorithm’s effectiveness. Directly comparing techniques out-
side a simulated domain is difficult as projector properties differ, developed systems solve
a varying degree of sub-problems within multi-projector content enhancement, or the de-
veloped system is only shown to work with an unrealistic constant global pixel overlapping
pattern (outside of wobulation type configurations).

Metrics used in multi-projector resolution enhancement systems include Structured
Similarity (SSIM) [8], its variants, and Mean Squared Error (MSE). Both have been used
as comparisons metrics but SSIM has never been used to directly train such a system [2,
3, 4, 5, 6, 7].

1.3 Thesis Contributions and Outline

The purpose of this thesis is to develop methods to measure and improve upon the per-
ceptual quality of the superimposed images produced by a multi-projector configuration.
The three main contributions of this thesis are

1. Developing a framework to quantitatively measure the perceptual quality of a super-
imposed image with respect to the ideal content, Chapter 4.

2. Evaluating the degradation of perceptual quality across a variety of two projector
configurations, Chapter 5.

3. Using the proposed framework to learn three different models that are capable of
improving the perceptual quality of superimposed images, Chapter 6.

The rest of the this work is structured as follows, Chapter 2 reviews the knowledge
required to understand the contributions of this work. Different types of multi-projector
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configurations are distinguished, standard content alignment procedures are reviewed, im-
age comparison techniques are stated, and different parts of a multi-projector pipeline are
discussed. Chapter 3 provides an in depth look a what causes perceptual image quality
degradation in multi-projector configurations and how improving the perceptual quality
of the projected superimposed image is possible. In addition, assumptions made in the
problem formulation are listed. Chapter 4 proposes a method of quantitatively measur-
ing the perpetual image quality of the superimposed projected images. This method first
simulates the superimposed image by reducing pixels from each projector into small com-
ponents called sub-pixels. A standard image comparison technique is then adjusted to
accommodate the sub-pixel representation of images. Chapter 5 analyses the performance
of naive multi-projector configurations using the proposed comparison metric. Chapter 6
proposes three different models to improve the perceptual quality of superimposed im-
ages. Two of the models are parametric and content independent, and the third model is
non-parametric and content dependent. A variety of tests are performed on each model
individually, and all three models are compared. Finally, Chapter 7 summarizes the thesis,
restates conclusions, and provides possible future avenues of research.
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Chapter 2

Background

This chapter reviews relevant information required to understand the proposed content
in this work. First, various types of multi-projector configurations are distinguished in
Section 2.1. Next, Section 2.2 formalizes aspects of inter-projector content alignment, this
includes calibrating every projector to a common frame-of-reference, building a model for
each calibration, and moving content between spaces. Then, Section 2.3 defines metrics for
comparing images. Finally, Section 2.4 reviews a more complete picture of multi-projector
systems.

2.1 Multi-Projector Configurations

A multi-projector configuration is a system consisting of more than one aligned projectors
where each unit is displaying a portion of, or all of, the desired content. A key feature of
multi-projector configurations is the amount of overlap between the projectors. Overlap
within a configuration ranges from no overlap between the projectors to complete overlap
between projectors. The type of overlap in the systems is generally determined by the
application, and more specifically, the characteristics of the display surface and the desired
content.

Systems with no overlap, Figure 2.1a, between projectors are used for applications where
the content between projectors is non-contiguous, or when significant time can be spent
on physically aligning each projector with all neighbouring projectors. The latter scenario
is extremely difficult to achieve in practice as minor differences in projector placement or
lens characteristics will result in a misalignment. This scenario essentially limits physical
alignment to flat display surfaces or where custom projector frames are built.
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(a) Non-Overlapping (b) Partially Overlapping (c) Mostly Overlapping

Figure 2.1: This figure compares the types of overlapping projector configurations. Each
image has three projectors represented by grey rectangles. Notice that overlapping re-
gions appear darker; the more overlapping regions the darker the region is. In reality
this relationship is flipped and the regions get brighter due to back light bleed from each
projector.

Partially overlapping configurations, Figure 2.1b, have limited overlap between neigh-
bouring projector pixel-grids. These configurations are well suited for applications where
a single projector cannot cover the entire display, an increase in total screen resolution is
required (to project large content), and when the display surface is an abnormal shape
(e.g, projection on a 3D model). Examples of this scenario include any display with
an abnormal height-to-width ratio, planetariums, and projecting on the side of a build-
ing. The difference between projector properties is most apparent for non-overlapping
and partially overlapping configurations. One important configuration characteristic is the
inter-luminance difference between each projector; over time individual projectors can age
differently resulting in some projectors becoming dimmer than others. Another difference
is the colour response of a given projector. There are a variety of projector technolo-
gies and each has its own unique colour response. This can result in perceptually different
colours despite the same intended colour (e.g., two projectors each displaying solid reds, the
projected image from one projector appears red while the other projected image appears
brownish in comparison). Another issue with partially overlapping regions is the increase
in luminance. Superimposed light is additive; this creates a nonuniform luminance across
the display surface. Reducing the light from each projector in the overlapping area is a
common remedy.

The third type of configuration is where each projector is mostly overlapping, Fig-
ure 2.1c, with all other projectors. Projecting the same content with multiple overlapping
projectors provides several advantages compared to using a single projector, such as in-
creased brightness to overcome ambient light or display surface anomalies, redundancy in
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case of projector failure, an increase in the area being projected on, and the possibility for
increased content resolution. Like partially overlapping configurations content alignment is
required. An issue for overlapping systems is the increase in back light bleed; this reduces
how dark blacks are. Every additional projector added to the overlapping regions typically
degrades the quality of edges within a pattern. This is a result of the pixel-grids between
the projectors being unaligned.

2.2 Content Alignment

Both the partially overlapping and mostly overlapping configurations require the content to
be aligned, shown in Figure 2.1b and Figure 2.1c respectively. This is required because the
physical pixel-grids of each overlapping projector pair are unlikely to be physically aligned
once setup in the desired location. The process of aligning the content can be broken down
into two general stages: alignment calibration, and content transformation. Alignment
calibration is the process of generating a model that relates every projector to a common
frame-of-reference; namely, the space in which the content is placed. Content warping is the
process of applying the alignment model to the desired content. That is, transforming an
image from its native representation to a different representation. There are three different
categories of 2D spaces required for these two stages of alignment: content space, projector
spaces, and camera spaces. The camera space acts as an intermediate between the content
space and the projector spaces. Note that this work assumes only one content space but
possibly many camera and projector spaces. The remainder of this section defines each
type of space, how they relate to each other, methods of space calibration, and the process
of moving content between spaces.

2.2.1 Projector-to-Content Calibration

The goal of calibration is to generate a mapping from every point in each projector space
to any equivalent point in content space. Let C be the content space. C is the native space
of the images being projected. Let Pp be the space for projector p ∈ {1, 2, ..., n} for an n
projector setup. Let Vv be the camera space for camera v ∈ {1, 2, ...,m} for an m camera
setup. Let HSa→Sb

model a mapping from space Sa to Sb of a set of points X

XSb = HSa→Sb
XSa (2.1)

8



where XSa and XSb are the same set of points represented in spaces Sa and Sb, respectively.
Mapping a set of points from some projector space Pp to content space C is defined as

XC = HPp→CX
Pp (2.2)

Each projector is mapped to some portion of the content space. The camera spaces are
used to connect the content space to each of the projectors spaces. Equation 2.2 can be
decomposed into two separate mappings, a projector-to-camera mapping and a camera-to-
content mapping.

XC = HV→CHPp→VX
Pp (2.3)

Note that this equation assumes that every point in XPp can be mapped through some
camera space Vv to the content space C. Calculating HV→C and HPp→V each requires a set
of pixel correspondences. These are determined through separate calibration steps. The
result of the entire calibration process is to generate a set of pixel correspondences that
map every point in each projector to some point in content space.

{XC , XPp}∀p ∈ P (2.4)

Projector-to-camera calibration is the process of relating one or more world references
(cameras) to every projector in the configuration. Structured light based methods [9, 10,
11, 12] are generally used to generate these correspondences. That is, for each projector-
camera pair a series of predetermined patterns is projected which a given camera records.
A set of pixel correspondences relating camera pixels to projector pixels can be determined
using the set of pattern pairs (i.e., the displayed pattern and the captured pattern). The
nature of the pixel correspondences depends on the patterns being used and the type of
space transformation model being used (these models are discussed in subsection 2.2.2).
Typically, there is a trade off between the number of pixel correspondences generated and
the accuracy of any individual correspondence. For example, the method of Gray Coding [9]
attempts to calculate a correspondence for every projector pixel without assuming a display
surface model. Any one point may be noisy and post processing is required to improve the
accuracy of such points; algorithms like Random Sample Consensus (RANSAC) [13] may
be used.

It is generally required that enough cameras be used to cover the entire display surface.
Specifically, enough world reference perspectives, not physical cameras, are required. This
allows a single camera to have a non fixed position. A key requirement of multi-perspective
world reference system is the ability to quantify the relationship between each perspective.
This can be achieved through prior knowledge (predetermined perspective locations), or
ensuring perspective overlap and applying a perspective-to-perspective calibration step.

9



(a) Checkerboard (b) Partial Gray Code

Figure 2.2: This figure shows two different calibration methods. Only a fraction of the
total patterns used in the Gray Code algorithm are shown. Note that the black boarder
on each image is for clarity.

The content-to-camera calibration step generates a mapping from the content space C
to every camera space Vv. This process is heavily dependent on the application. Specifi-
cally, how important is the location and shape of the content on the display surface. Appli-
cations with complex screen geometries often require precise content placement, whereas
applications with flat screen geometries have greater flexibility since the display surface
is usually larger than the content. Correct placement on complex surfaces often requires
prior knowledge of the display’s geometry, and a method of determining the display’s ori-
entation relative to each camera. Typically some method of keypoint tracking [14, 15, 16]
is required. For example, simple surfaces markers can be placed on the display surface to
define the content shape, or just simply draw (in a graphical interface) the location and
shape of the content in camera space on a computer monitor.

2.2.2 Space Mapping Models

There are several sources of possible noise during a space-to-space calibration step. This is
especially true when physical objects, like a camera or a projector, are involved. Cameras
have several properties that must be correctly configured to make an accurate calibration
possible. The camera must be focused on the projector content, the correct exposure must
be set, the camera sensor must be of sufficient resolution (ideally a many-to-one ratio
between camera and projector pixels), and the camera must be synced with the content
being displayed. Projectors are mainly required to have sufficient brightness compared to
ambient light and to be focused across the projected content. The latter point can be
difficult to achieve depending on the projector’s physical relationship to the screen.
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Directly calibrating a dense correspondence map between content and each projector
(via gray coding or similar methods) often leads to a noisy set of maps. Warping models H
are often used to reduce noise. That is, use a set of raw calibration points to parameterize
a warping model from which a dense set of point correspondences can be sampled. Noisy
values that do not conform to the assumed model can be ignored. By removing noisy
values a the sampled set of correspondences will be more accurate, but this only holds
if there is no global bias present in the raw values. Note that the assumed model must
be able to fit the display surface, otherwise the sampled values will be meaningless. A
projective model will work for any flat surface and requires a minimum of four points [17].
Spline based models [17] will work of any continuous surface with sufficient control point
density. The number of control points required increases with degrees of local freedom in
the display geometry. Display surfaces with edges or discontinuities must be segmented into
continuous segments where either a projective model [17] or spline model can be applied;
another option is to not use a model. A projective model is defined byxSj

ySj

1

 =

a0 a1 a2
a3 a4 a5
a6 a7 1

xSi

ySi

1

 (2.5)

where a0 to a7 are parameters that define the transformation. The 1’s at the bottom of
each matrix denote the multiplication being performed in homogeneous space [17].

2.2.3 Interpolation

Let the mapping of an image between spaces be defined by

ISb = ISa(HSb→SaX
Sb) (2.6)

That is, a set of points XSb is mapped to Sa and is used to sample an image ISa . Images
are typically stored in a quantized pixel space. A consequence of this is images only having
values at integer coordinates. This is a problem for mapping between spaces when the map-
ping must accommodate sub-pixel shifts. Such mappings are prevalent in multi-projector
configurations. A process called interpolation is to used fill in the gaps between pixels when
sub-pixel shifts exist in the space mapping. There are many methods used to approximate
the correct value at any sampling location. Interpolation methods including nearest neigh-
bor, bilinear, convolutional bicubic, bicubic spline, lanczos, and sinc function [17]. These
are listed in the order of least accurate and fast to accurate and slow.

For this research the bicubic spline function is used as it provides a balance of accuracy
and computational speed. Bicubic spline interpolation is defined in equations (2.7) - (2.15)
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for some given point (x, y) in an arbitrary space. The following equations define sampling
points on a unit square:

x̃ = mod(x, 1) (2.7)

ỹ = mod(y, 1) (2.8)

where x̃ and ỹ are the decimal components of the sampling point. Only the decimal values
of the sampling point are required as interpolation is performed using a unit square. That
is, only the distance from neighbouring pixels is required. The four corners of the unit
square within the content image are defined by the points

x̄0 = bxc (2.9)

x̄1 = x̄0 + 1 (2.10)

ȳ0 = byc (2.11)

ȳ1 = ȳ0 + 1 (2.12)

where b·c is the floored value of a given variable. The sampled value from I at point (x, y)
is defined as

p(x, y) =
[
1 x̃ x̃2 x̃3

]
A
[
1 ỹ ỹ2 ỹ3

]T
(2.13)

where x̄0, x̄1, ȳ0, x̄1, I and its derivatives are omitted as parameters of p(·) for brevity. A
is calculated as

A = B


I00 I01 Iy00 Iy01
I10 I11 Iy10 Iy11
Ix00 Ix01 Ixy00 Ixy01
Ix10 Ix11 Ixy10 Ixy11

BT (2.14)

where Ix and Iy are the derivatives of I for the x and y axes respectively. Ixy is the second
order mixed derivative in the x and y axis. These derivatives are determined by numerically
calculating the slope of the four pixels surrounding the sampled point. The first and second
subscript numbers of each I are the x̄ and ȳ coordinates on the unit square, respectively.
B is a matrix containing polynomial coefficients [17], and has the values of

B =


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

 (2.15)

These values are derived from the definition of bicubic splines.
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2.3 Image Comparison

Ideally, the superimposed image should match the content image (the image provided to
a system to project). This is rarely the case in a multi-projector configuration since the
physical projector pixel-grids do not perfectly overlap. As such, the ideal content image
must be warped so the content between projectors are aligned. These transformations can
degrade the quality of the original image. If IC is the ideal projected image in content space
then let ÎC be the realized superimposed image in content space. This can be expressed as

ÎC =
1

n

n∑
p

ICp (2.16)

where ICp is the image displayed by projector p mapped to content space C. Equation 2.16
assumes that each projector contributes equally to the superimposed image (i.e., all pro-
jectors share the same brightness). Dividing by n normalizes the brightness of the super-
imposed image to 1.

The quality of the approximation can be determined by comparing IC to ÎC . Stan-
dard image comparison techniques include Mean Squared Error (MSE) [17] and Structural
Similarity (SSIM) [8]. MSE measures the average squared difference between pixels across
images. MSE is defined as

MSE(IC , ÎC) =
1

N

N∑
i

||IC(i)− ÎC(i)||2 (2.17)

where N is the number of pixels in IC and ÎC , and IC(i) and ÎC(i) are the pixel values of
the ith pixel in IC and ÎC , respectively. The lower the MSE the closer the two image are.
A problem with MSE is that it does not quantify the visual appearance of an images from
a human’s perspective. That is, the same MSE value can correspond to many visually
different images. Consider an image that has had two separate adjustments applied to it
such that they both have the same resulting MSE: a blurred image and an image with
a global intensity offset. Visually, the latter image is almost identical to the original
image where as the former image appears significantly degraded. This example is shown
in Figure 2.3.

Several comparison metrics have been devised to overcome this pitfall in MSE. A com-
monly used metric is SSIM [8]. SSIM contains three different modalities of comparison:
luminance, contrast, and structure. These metrics are designed to reflect different percep-
tual aspects of the human visual system. The three metrics on a window w of pixels in
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images IC and ÎC are defined as

l(ICw , Î
C
w ) =

2µICwµÎCw + c1

µ2
ICw

+ µ2
ÎCw

+ c1
(2.18)

c(ICw , Î
C
w ) =

2σICwσÎCw + c2

σ2
ICw

+ σ2
ÎCw

+ c2
(2.19)

s(ICw , Î
C
w ) =

σICw ÎCw + c3

σICwσÎCw + c3
(2.20)

where l(·), c(·), and s(·) represent luminance, contrast, and structure, respectively. µICw
and µÎCw are the mean pixel values in window w for IC and ÎC , respectively, σICw and σÎCw
are the sample standard deviations of pixel values in window w for IC and ÎC , respectively,
σICw ÎCw is the covariance of pixel values between IC and ÎC , and c1, c2, and c3 are small
constants used to prevent small denominators. The three metrics combine into the SSIM
metric as

SSIM(ICw , Î
C
w ) = lα cβ sγ (2.21)

where α, β, and γ are weights used to determine the importance of luminance, contrast,
and structure, respectively. When c3 = c2

2
and α = β = γ = 1 (a common setting) SSIM

on a window of pixels is defined as

SSIM(ICw , Î
C
w ) =

(2µICwµÎCw + c1)(2σICw ÎCw + c2)

(µ2
ICw

+ µ2
ÎCw

+ c1)(σ2
ICw

+ σ2
ÎCw

+ c2)
(2.22)

The SSIM score between two images is the average of all SSIM windows between the two
images

SSIM(IC , ÎC) =
1

N

N∑
w

SSIM(ICw , Î
C
w ) (2.23)

whereN is the number of local windows in each of the compared images. Typically, a sliding
window approach is used when comparing images using SSIM. Note that the number of
pixels and number of windows are the same when the window only moves over one pixel
at a time. SSIM ranges from -1 to 1, where -1 represents a large dissimilarity between ICw
and ÎCw and 1 is when the two images are identical.
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(a) Original Image (b) Image with Blur (c) Image with Offset

Figure 2.3: This figure compares MSE and SSIM in their ability to measure human visual
perceptual differences between images. Two separate transforms are applied to the left
most image (a): a Gaussian blur (b), and a global offset (c). Notice that the two trans-
formed images have the same MSE but different SSIM. Comparatively, (c) is perceptually
closer to the original image than (b). This is not reflected in MSE but is reflected in SSIM.

2.4 Other Aspects of Multi-Projector Configurations

Multi-projector configurations require many image processing operations to align and nor-
malize (share the same properties) the content that each projector displays. So far only
projector placement calibration, content warping, and interpolation have been discussed.
However, there are other properties that must be considered to achieve improved image
quality results in practice. Such topics are not required to understand the contributions
in this work but serve to provide useful context for real world applications and various
difficulties that must be overcome to achieve a superior viewing experience. Four areas of
particular importance include projector colour response correction, projector edge blending
and edge masking, lens Point Spread Function (PSF) [17] correction, and screen property
correction. A generic pipeline for a multi-projector configuration is shown in Figure 2.4.

Projectors use a wide variety of methods to display light in the visible and non-visible
specturms. Such methods include: digital light processing (DLP) [18], liquid crystal dis-
play (LCD) [19], and light emitting diodes (LEDs) [20]. Each type of system has unique
properties that often result in different colour responses. Even projectors that share colour
technology can produce drastically different colour responses. For example, projecting a
pure RGB red to two different projectors can result in two different reds on the same dis-

15



Figure 2.4: A generic pipeline for multi-projector configurations. A calibration step is
launched after each projector in the configuration has been placed. Each projector’s posi-
tion, relative to the projection surface, is determined through the use of structured light
patterns. This allows a warping model between content space and projector space to be
fit. These spacial models are combined in order to determine a boundary mask for each
projector. In addition, relative projector colour responses are determined. A final calibra-
tion step involves determining the Point Spread Function (PSF) [17] of each lens in the
projector configuration. During run time, for each projector, the input image is warped
to the projector space, the image’s colour is corrected to match other projector responses,
the overlapping and non-overlapping area brightness levels are harmonized, and the image
is sharpened to correct for lens PSF.
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play surface (typically one red will look brownish). Correcting for the differences between
projectors in the same configuration can result in improved quality of the superimposed
image.

There are many different types of multi-projector configurations with respect to over-
lapping projector patterns. The three general types are discussed in Section 2.1: non-
overlapping, partially overlapping, and mostly overlapping. The non-overlapping regions
in the overlapping configurations will have less luminance than the overlapping regions;
this is because light is additive. Differences in luminance is not desirable for many ap-
plications. For example, planetariums are particularly dark as the projected stars cover
only a small portion of the display being projected on. The overlap in back light bleeding
becomes increasingly visible in this scenario. The brightness of the non-overlapping areas
must be increased so that of the overlapping areas to hide the boundaries between the two
types of regions (this results in a loss of contrast).

Lenses in projectors are rarely perfect and the light from the projectors many not hit
the display surface at a consistent focus. These circumstances can result in a gradual
blur across the content being displayed. Methods exist to compensate for this scenario by
measuring the characteristics of the blur and pre-processing the content so once projected
the blur will be diminished [21,22,23].

Many applications require projectors to display content on a non-ideal surface. That
is, any surface that is not a white non-textured Lambertian surface [17] will degrade the
quality of the displayed image. Several techniques have been developed to compensate
for a non-ideal environment [12, 24, 25]. The main idea is to hide the irregularities of the
background by pre-adjusting the content so when projected the image adjustments and
the display surface irregularities cancel. Typically the average luminance of the projected
image is lowered to hide non-reflective areas on the display. Projecting on the side of a
building is an example of when the display surface must be compensated for.
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Chapter 3

Quantitative Problem Formulation

Multi-projector configurations are built from a series of sub-components as illustrated
in Figure 2.4. These systems include, but are not limited to, screen geometry model-
ing, projector-camera alignment, image warping, inter-projector colour correction, edge-
blending, boundary masking, and PSF correction. Each component can add or subtract
from the perceptual quality of the realized image on the display surface. This makes it dif-
ficult to design a system that optimizes for each component and their inter-dependencies
simultaneously. The focus in this work is on the image warping component of multi-
projector configurations.

The rest of the chapter is structured as follows Section 3.1 conceptualizes the task
of inter-projector content alignment as generic filtering problem. Section 3.2 discusses
the implications of overlaying quantized pixel spaces and describes the emergent Moiré
patterns. Section 3.3 limits the set of multi-projector configurations under consideration.
Finally, Section 3.4 discusses the reasoning for various limitations of the multi-projector
configuration model used in the thesis.

3.1 Problem Conceptualization

The image warping component of a multi-projector image processing pipeline (described
in Figure 2.4) is responsible for transforming an image IC from the content space C to all
projector spaces {Pp}. The transformation for moving from C to a specific projector space
Pp is described in Equation 2.6. However, representing the process using this notation is
limiting as it implies that the transformation is restricted to point-wise mapping and inter-
polation, and that each content-to-projector transformation is independent. This hobbles
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the filtering process from using the increased pixel density, thus removing the potential for
a gain in perceptual image quality.

Transforming an image between spaces is inherently a filtering process parameterized
by a space transformation HPp→C . That is, some set of operations are applied to an image
IC to produce a new image IPp . A generalized version of Equation 2.2 that allows for
inter-projector pixel-grid conditioning within a space transformation can be defined as

IPp = f(IC , {HPp→C}; θp) (3.1)

where f is the space transformation filter function, {HPp→C} is the set of all space trans-
formation models, and θp is a set of parameters used in the filtering process for the pth

mapping. For a camera-projector pair p, HPi=p→C is used as the base space transforma-
tion model and {HPi6=p→C} is used to give f prior knowledge of the entire multi-projector
configuration.

The focus of this research is the development of filtering techniques that use the re-
lationship between pixel-grids to increase the perceptual quality of an image formed by
superimposed sub-images in multi-projector configurations. The remainder of this chapter
describes characteristics of overlapping pixel grids, limits the types of overlapping patterns
under consideration, and lists assumptions used to narrow the research scope.

3.2 Moiré Interference Patterns

Understanding the consequences of different projector configurations is key in developing a
framework that uses inter-projector pixel-grid relations to increase perceptual image qual-
ity. Each projector p in a multi-projector configuration has a different point of projection.
This results in a misalignment between each pixel-grid on the display surface. That is, an
integer translation between the given projector pair does not exist. No amount of image fil-
tering can overcome this physical limitation. There are three properties of multi-projector
configurations that affect the overlapping patterns of pixel-grids: the physical shape of the
display surface (e.g., flat, wavy, has corners, etc.), the positioning of each projector, and
the location on the display surface in which the content is placed.

The last property makes the placement of the content on the display surface independent
of the projectors’ physical locations. This distinction is important in a variety of situations.
For example, consider a configuration with a single projector. This projector is placed close
to the surface to which it is projecting. The projector is angled vertically so a larger image
can be achieved. The desired shape of the content is rectangular. However, the vertical
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angle of the projector produces a keystoning effect. The content being projected must be
warped such that the content when projected on the display surface appears rectangular
and at the correct ratio. An example of this is shown in Figure 3.1.

(a) Grid Boundaries (b) Uncorrected (c) Corrected

Figure 3.1: Single projector content pixel-grid correction. (a) A comparison between the
physical projector pixel grid (blue) with an arbitrarily defined content pixel grid (red). (b)
A projected image aligned to the projector pixel grid. (c) A projected image aligned to
the content pixel grid.

A key distinction between the three properties (i.e., display shape, projector position,
and content location) is that the first two points are physical properties, controlled by
display geometry and projector placement, and the last point is a virtual property (digital),
controlled by content placement. This requires a system to consider a separate pixel-
grid for each projector in the system in addition to the pixel-grid of the content space.
Distinguishing content pixel space and projector pixel space is a general requirement in a
projection system whenever a projector is not serving as the systems frame-of-reference for
content placement; as depicted in Figure 3.1.

A physical constraint to the content-projector relation is the location where the content
is placed on the display surface. Another important characteristic of this relation is the
pixel density of the content space. It is important to consider the relative density of the
projector pixel-grids when deciding on the density of the content space. If the content-
to-projector pixel ratio is too high then there is not enough physical projector pixels to
sample the content, resulting in a degradation in image quality via image blurring. If the
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(a) Reference (b) Change in Resolu-
tion

(c) Change in Density (d) Change in Position

Figure 3.2: Two pixel-grids are shown, one red and on blue. Three different alterations
are made the blue pixel-grid to illustrate the difference between a change in pixel-grid
resolution, pixel-grid density, and pixel-grid position.

ratio is too low then the aligned image quality suffer resulting in a blocky (low resolution)
looking image. A comparison between pixel-grid density, resolution, and position is show
in Figure 3.2.

There are two aspects to the overlapping nature of the pixel-grids in a multi-projector
configuration: the local overlapping pattern, and the global overlapping pattern. The local
pattern is the manner in which pixels between overlapping pixels are arranged. Given any
location within an overlapping pixel-grid field, pixels can either completely overlap or only
partially overlap. The latter pattern provides the most flexibility for image enhancement
as frequencies beyond the Nyquist frequency of a single projector are realizable [4]. Both
patterns appear when pixel-grids overlap (except when there is only a global translational
shift between pixel-grids, see Figure 3.3b. Examples of various overlapping patterns are
shown in Figure 3.3.

3.3 Multi-Projector Configuration Constraints

The goal of this research is to increase the perceptual quality of aligned superimposed
images when compared to naive image warping techniques. Measuring the effectiveness of
a perceptual quality enhancement system is difficult since the image quality loss is both
intra-warp dependent and inter-warp dependent. That is, the quality loss of superimposed
image is dependent on the loss from a single image warp (between content space and a
given projector space), and how the loss between image warps stack (how projector spaces
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(a) No Warping (b) Translation (c) Skew

(d) Scale (e) Rotation (f) Keystone

(g) Projective 1 (h) Projective 2 (i) Stacked Projective

Figure 3.3: Examples of various Moiré patterns resultant of overlapping pixel-grids. The
red pixel-grid is static between examples. The blue pixel-grid has a specified transformation
applied to it. Different Moiré patterns emerge as the type of transform applied to the blue
pixel-grid is altered. Only the translation transformation has no Moiré pattern. Notice
that a Moiré pattern is still present in example (i) while having two transformed pixel-grids
superimposed.
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relate). Properties that affect intra-warp and inter-warp loss, screen geometry and relative
projector configurations, have infinite permutations.

The number of configurations possible given p projectors and an arbitrary display sur-
face is potentially infinite. This makes testing all possibilities computationally intractable
and requires restricting the domain of testing to a few variables. One way to restrict the
domain of inquiry is to only test flat screens. This has a twofold effect first it reduces
the number of possible surfaces to one, obviously, and second it allows for a simplified
warping model to be used to map content space to projector space. A projective transform
is the upper bound on complexity required to handle a flat surface [17]. This transform
is described in Equation 2.5. This can be further restricted to a similarity transform [17],
shown in Equation 3.2. Put simply, a projective transform only requires straight lines to
remain straight after a transformation, and a similarity transformation requires the stricter
condition of keeping angles between lines the same after a transformation.

Given a point (xSi , ySi) in 2D space Si, a mapping to space Sj using a similarity warp
is defined by xSj

ySj

1

 =

s ∗ cos(θ) −s ∗ sin(θ) tx
s ∗ sin(θ) s ∗ cos(θ) ty

0 0 1

xSi

ySi

1

 (3.2)

where (xSj , ySj) is the corresponding 2D coordinate in space Sj, s and θ are the scale and
rotation parameters, respectively, relating space Si with space Sj, and tx and ty are the
translation parameters. Note that this is in homogeneous coordinates, see Section 2.2.2.

Using a similarity model over a projective model reduces the search space from eight
variables to four variables. Despite the reduction in search space not much is lost in
terms of the transformation’s effect on the possible relation between content space pixels
and projector space pixels. Remember that this research is interested in multi-projector
configurations where there is substantial overlap between projectors with similar qualities
(e.g., aspect ratio, and number of pixels); reflecting the circumstances in many practical
applications. This requirement is only met, under the flat screen requirement, when the
projectors are placed close to each other with similar axes of projection. The primary
characteristic lost in the transformation simplification is the key-stoning effect. This effect
under the limitations put forth (flat screen, with large projector overlap) is assumed have
a minuscule effect on the measured perceptual quality of the superimposed image in any
local region. That is, pixels under these conditions will be approximately square in any
local region throughout the projector field. This should hold true for a wide variety of
configurations with modern high definition projectors, and where each projector’s axis of
projection does not approach a 90 degrees offset from the normal axis of the display surface.
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The similarity warp defined in equation (3.2) has two parameters describing the trans-
lation within the transformation, one for the x-axis and one for the y-axis. The translation
effect of the pixel overlapping pattern can be divided into two components: the integer
component, and the decimal component. The integer component shifts the global pattern
by a given number of pixels; the phase of the pixel overlap pattern stays in the same loca-
tion relative to the content in the transformed space. The decimal component of translation
shifts the phase of the pixel overlap pattern. Thus, neither the integer component nor the
decimal component of the translation is important in describing the global pixel overlap-
ping pattern since the average global overlapping pattern remains relatively constant. The
only time this is not true is when there is no rotation and a scale value of 1; like in the case
of wobulation [1]. In this case the decimal component of the translation has a global effect
on the pixel overlap pattern. Both the translation components have been set to 0 for this
research experiment since such a scenario is rare in practice. This limits the transformation
model to two parameters, a scale difference, and a rotational difference. Using this limited
similarity warping model allows for a more tractable and understandable method of mea-
suring the effects of different content-to-projector and projector-to-projector relationships.
Going forward the scale parameter of the limited similarity transform is referred to as the
pixel-length-ratio. The pixel-length-ratio describes the length of a projector pixel relative
to the length of a content pixel.

3.4 Non-Warping Assumptions

Various assumptions and restrictions must be placed on the other components, shown in
Figure 2.4, in a multi-projector configuration to focus solely on image warping. Some of
the assumptions have already been discussed but are repeated in this section for complete-
ness. The display geometry is assumed to be flat with a white Lambertian [26] surface.
Using a flat display surface allows a simple image warping model to be used resulting in
a more tractable approach of testing different projector configurations. The Lambertian
surface removes the need to quantify the superimposed image quality from multiple view-
ing perspectives. Ideal projector-camera pixel correspondences are assumed. This removes
alignment uncertainty from all downstream stages. Lens and colour responses of each
project are assume to be ideal. Issues of focus can be ignored with an ideal lens. An ideal
colour response for each projector allows the research to ignore variations in lighting tech-
nology between projectors (i.e., the light source in each projector). For example, projectors
cannot produce an impulse response at any given colour (frequency). In addition, projec-
tors cannot typically project nothing (black), a small amount of light usually persists. The
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non-illuminated spaces between pixels are ignored. The non-overlapping projector regions
will not be considered for this research. This removes the need to match light levels of the
non-overlapping regions. The superimposed image is assumed to be the average colour of
each overlapping pixel in a given region (this is an implication of the above restrictions but
worth pointing out).

The assumptions made for this research seem extensive but for the most part these
assumptions do not remove major sources of perceptual quality degradation for a large
portion of practical applications. For example, flat screens are one of the primary display
surfaces used in practise, there exist projector-camera calibration methods that are sub-
pixel accurate, using an application appropriate projector lens with a bore sight (a prism
between the light source and the lens within a projector) allows many focusing problems to
be remedied, and projectors used within a multi-projector configuration are usually of the
same make and model which minimizes inter-projector colour variations. Assumptions that
are potential problems include display surface properties vary and are rarely Lambertian,
no projector has an ideal response at every (or any) frequency, discarding non-overlapping
projector pixels is not done for every application.
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Chapter 4

Sub-Pixel Integration

Ideally, the projected superimposed image ÎC will match the content image IC . However,
there are several transformation operations between each projected image IPp and the
content image IC . Each transformation potentially affects the content of the image; this
makes it difficult to preserve the quality of edges within the transformed image. More
importantly, the physical pixel-grids of the content space will not align perfectly with the
pixel-grids of the projectors in most multi-projector configurations. This is a problem for
standard image comparison metrics as they require a one-to-one mapping between pixels
across images.

The following equation represents ÎC as an average of all the projected images.

ÎC =
1

n

n∑
p

ICp (4.1)

This is the same equation as Equation 2.16. Note that ÎC is never represented in any
digital manner during the projection process. ÎC only exists once all the projectors are
displaying the appropriate warped aligned images. This makes it difficult to compare a
digital image IC with ÎC as ÎC is only represented in the physical world. Thus, ÎC must
be simulated to compare the two images, or an image must be taken using a camera.

Images are typically thought of in terms of quantized pixel units over a finite space. This
representation is not suitable for ÎC since we want to simulate an accurate representation
of the superimposed image on the display surface. More precisely, we want to simulate the
overlap of unaligned pixel-grids where the individual pixels each have a physical height and
width. Standard definitions of image comparison metrics (i.e. SSIM [8]), that typically
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operate on pixels, must be generalized to accommodate comparing a normal pixel grid to
a superimposed unaligned pixel grid.

The remainder of this chapter is structured as follows, Section 4.1 explores a method
of representing an image formed from a set of unaligned pixel-grids, and then Section 4.2
develops a method of modifying a standard image comparison technique to accommodate
the new method of image representation.

4.1 Sub-Pixel Calculation

Comparing the similarity of two unaligned pixel grids is not a straightforward task. Stan-
dard measures, such as SSIM [8] or MSE [17], require a one-to-one pixel mapping. In
practice such a mapping is rarely present due to physical restrictions of overlaying multiple
projectors. This makes using the aforementioned loss metrics impossible without some
additional steps. One such approach would be to take a picture of the projected images,
warp the captured image back to the content space, and then compare. This approach has
several issue with it: first, having the projectors and a camera in the measurement loop
introduces several sources of noise. Also, this method requires the use of an additional
transformation which would further reduces the quality of the comparison.

Another options is to calculate each of the projected images, warp them back to the
original content space, and average them to approximate what the superimposed image
would look like. This method removes both the projector and camera from the loop.
However, this method still uses an inverse warping to move back to the image content
space. The loss introduced by the inverse transformation can be reduced by increasing the
pixel densities of the original image by upscaling the projected images before applying the
inverse transformation. The greater the upscaling the smaller the loss from the inverse
transformation. Unfortunately, the computational requirements grow with the size of the
upscaling. If this approach is taken to the limit the loss from the inverse transformation
reduces to zero. This is equivalent to calculating the individual areas of sub-pixels formed
from unaligned overlapping pixel-grids. A depiction of two grids overlapping is shown in
Figure 4.1. This figure shows the results of averaging two checkerboard patterns and counts
the sub-pixels formed by the overlap.

The sub-pixels that form ÎC , Equation 4.1, have several properties that affect the
perception of ÎC including: shape, position, and area. All of these properties are affected
by the number of projectors in the configuration, and the relative position of each projector
with the content space. The shape of each sub-pixel will be a simple polygon assuming
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Figure 4.1: The general process of overlapping two separate pixel grids. Two grids with
the same checkerboard pattern are offset by a small rotation and translation. Sub-pixels
are formed when the two grids are overlaid. When a black pixel from one grid overlaps
with a white pixel from the other gird a grey sub-pixel is created. The right most image
counts the number of sub-pixels created by the overlap of the two pixel grids.

there are no discontinuities with respect to the projection field of a single projector (i.e.,
there is a continuous path between all pixels on the display surface for every projector).
This allows the shoelace algorithm [27] to be used to calculate the area of every sub-pixel
efficiently. Note that this requires pixel edges to be straight lines. This condition is upheld
under a similarity transform.

For the purpose of this research the process of representing an image ÎC using sub-
pixels is known as Sub-Pixel Integration (SPI). The following general steps are performed
for SPI:

1. Move each projector pixel grid to content space.

2. Overlay all pixel grids. Each simple polygon formed is considered a sub-pixel.

3. Calculate the area of each sub-pixel.

4. Use the set of sub-pixels to represent ÎC .

After SPI, the shape, the position, and the area of each sub-pixel are known in content
space. Note the area of each sub-pixel is with respect to the area of a content pixel. For
example, if a sub-pixel has an area of 0.25 then it is 0.25 times the size of a content pixel
regardless of the sub-pixel shape.
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Figure 4.2: This figure shows an example of using SPI-SSIM to compare two unaligned
pixel-grids. The original content space is shown in red and the warped content space is
shown in blue. The green window is the region under comparison. In this case the SSIM [8]
window has a size of 2. Each red pixel in the SSIM window is divided into four sub-pixel
sections due the nature of the blue warped grid. The area of each sub-pixel is represented
by αab in Equations 4.5 to 4.7.

4.2 Loss Function Adjustment

After SPI, Section 4.1, is performed on ÎC , both IC and ÎC have a numerical representation
in the content space and can be directly compared. The position property of each sub-
pixel in ÎC is used to determine to which pixel in IC it should be compared. An important
consideration is the size of the sub-pixel. That is, there can be a large size difference
between sub-pixels. The larger the sub-pixel the more effect it is assumed to have on the
perceptual quality of ÎC . Thus, the effect of a sub-pixel comparison will be weighed by its
area. Note that no sub-pixel that overlaps with a content pixel can have an area larger
than 1 content pixel squared. The final property extracted during SPI is the shape of
each sub-pixel. Humans have a varying sensitivity to lines at different orientations [28].
However, no method of integrating the orientation of each sub-pixel into standard loss
metrics is explored in this work.

The standard image comparison metric SSIM [8] operates on a window of pixels and uses
mean, variance, and covariance statistics. To apply SPI to SSIM each statistic involving
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ÎC must be modified. Let SPI-SSIM denote that SSIM operates under the SPI constraint

SPI-SSIM(ICw , Î
C
w ) =

(2µICwµÎCw + c1)(2σICw ÎCw + c2)

(µ2
ICw

+ µ2
ÎCw

+ c1)(σ2
ICw

+ σ2
ÎCw

+ c2)
(4.2)

here the terms α, β, and γ are all set to one, and the c3 = c2
2

. Note that Equation 4.2 is the
same as Equation 2.22. This results in the same general expression shown in Equation 2.22.
The mean value of window w in IC is

µICw =
1

W

W∑
a

ICwa (4.3)

where W is the number of pixels in window w relative to the original image, and ICwa is the
ath pixel value in window w. The sample variance of ICw is:

σ2
ICw

=
1

W − 1

W∑
a

(µICw − Iwa)
2 (4.4)

The mean of a window w of sub-pixels in ÎCw is defined as

µÎCw =
1

W

W∑
a

||ÎCwa||∑
b

αabÎ
C
wab (4.5)

where αab is the area of sub-pixel wab, and ||ÎCwa|| is the number of sub-pixels in pixel wa.

Note that
∑||ÎCwa||

b αab = 1. The sample variance of ÎCw is defined as

σ2
ÎCw

=
1

W − 1

W∑
a

||ÎCwa||∑
b

αab(µÎw − Î
C
wab)

2 (4.6)

and the sample covariance between the two images about w is defined as

σICw ÎCw =
1

W − 1

W∑
a

(µIw − ICwa)
||ÎCwa||∑
b

αab(µÎCw − Îwab) (4.7)

The size of the SSIM window matters because it determines the balance between local
edges and global structure. With resolution enhancement we are interested in preserving
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content at the sub-pixel level. Focusing only on the smallest detail may introduce other
artifacts that are undesirable. Having a SSIM window that is too large will focus too
much on global similarity and adds additional computational costs. It is not inherently
clear what size of SSIM to use. Subjectively a SSIM window size of 7 works well and will
be used for the remainder of this work. Figure 4.2 shows an example of SPI-SSIM being
applied across two unaligned pixel grids.
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Chapter 5

Quantitative Properties of
Multi-Projector Configurations

SPI-SSIM, Section 4.2, provides away of quantitatively measuring the perceptual quality
of a superimposed image produced by a multi-projector configuration. The only prior
information SPI, Section 4.1, requires is the location of each projector relative to the content
space. In this chapter SPI-SSIM is used for a variety of tests to determine how different
relative projector placement affects the perceptual quality of the superimposed projected
image. First, Section 5.1 uses SPI-SSIM to evaluate a single projector and a two projector
configuration across a range of pixel-length-ratio and rotation configurations. Section 5.2
expands the two projector analysis by comparing the rotation between projector spaces
with the average rotation between the projector spaces and the content space. Finally,
Section 5.3 investigates pixel-length-ratio effects on SPI-SSIM on a wider range of values.

5.1 SPI-SSIM Pixel-Length-Ratio vs. Rotation

Establishing a baseline for SPI-SSIM is important before developing models that will at-
tempt to improve upon it. In this section SPI-SSIM is tested on a single projector config-
uration and a two projector configuration. Remember that even in a single projector case
the projector space and content space may not be the same, see Figure 3.1.

The limited similarity warp is used for both configurations. In the one projector con-
figuration the rotation is varied from 0 degrees to 45 degrees. The warp will be centered
on the center of the original image. This range covers all possible pixel overlap patterns
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(a) Single Projector (b) Two Projectors

Figure 5.1: This figure shows the average quality loss incurred across a set of images after
a similarity transform is applied. The loss is measured using SPI-SSIM. The vertical axis
notes the pixil-length-ratio difference between the original content and the warped content.
The horizontal axis notes the rotation between the sets of pixel grids. The optimal SPI-
SSIM is shown in the top-left corner when an identity warp (no warp) is applied. The loss
increases as scale increases and is relatively consistent across rotations.

for the similarity warp at a give scale. The pixel-length-ratio will be varied from 1.0 to√
2. Remember that pixel-length-ratio is equivalent to the scale parameter in the limited

similarity transform model.

In the two projector configuration the rotation for each projector is varied from 0 to
22.5 degrees; one projector will be rotated clockwise and the other projector will be rotated
counter-clockwise. This is done to keep the effects of rotation on the content image the
same for each projector. These ranges test all possible overlapping pixel patterns between
the projector pixel-grids but do not test all the overlapping patterns between each projector
pixel-grid and the content pixel-grid. The same pixel-length-ratio range that is used in the
one projector test is used for the two projector configuration test.

The average SPI-SSIM is measured across a set of 1000 images randomly selected from
the ImageNet dataset [29]. Areas where content is lost due to the warp will not be included
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in the average. Note that natural images have specific statistical qualities to them. Namely
that a large percentage of natural image content consists of low frequency patterns. The
perceptual change to such patterns, under the limited similarity warp, will be minor and
will not be reflected in the SPI-SSIM. This makes the amount of SPI-SSIM persevered
hard to interpret.

Figure 5.1a shows the results of the single projector configuration test. Both the pixel-
length-ratio and the rotation effect of the quality of the image. In general, SPI-SSIM
decreases as the pixel-length-ratio increases and is consistent across rotations. Changing
rotations only has an effect when the rotation is small. The loss measured at a pixel-
length-ratio of

√
2 and a rotation of 0 degrees (bottom-left corner) is less than the loss at a

pixel-length-ratio of 1 and a rotation of 45 degrees (top-right corner). The steepest change
in SPI-SSIM is when either the pixel-length-ratio or rotation is changed from identity.

Figure 5.1b shows the results of the two projector configuration test. Much like the
single configuration test, a change in pixel-length-ratio causes a greater change to the
perceptual quality of superimposed image then a change in rotation. A rotation of zero
degrees produces a noticeable loss in SPI-SSIM compared to all other rotations. At this
rotation both projector pixel-grids are always on top of one another which causes pixels
between projectors to average with only one other pixel. Thus, no sub-pixels are formed
and the resolution of the superimposed image is effectively diminished.

Overall the two projector configuration test has a higher average SPI-SSIM across the
tested parameter ranges. However, directly comparing a specific pixel-length-ratio and
rotation setting between tests is not particularly useful because the addition of a projector
has a larger effect on the characteristics of the pixel-grid overlapping pattern.

Furthermore, notice that the SPI-SSIM does not drop below 0.85, on average. The
limited use of SPI-SSIM’s range, under a similarity transform, will make any improved
SPI-SSIM hard to interpret as the maximum loss is not known. Determining maximum loss
would allow for the measured loss to be normalized, making SPI-SSIM more interpolatable.
Figure 5.2 compares superimposed images with each individual projected image that forms
them.

5.2 Inter-Rotation vs. Intra-Rotation

A primary objective in any multi-projector configuration is to minimize the difference
between the projected content and the original content. Results from Subsection 5.1 show
that relative pixel-length-ratio and rotation have a large effect on the preserved image
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Original

Superimposed
Image

5 Degrees

25 Degrees

Figure 5.2: A comparison between the original images, the superimposed images, and the
individual projected images that when stacked form the superimposed image. The PLR of
the projected images is

√
2. Two different rotations are used for demonstrative purposes.

Note that the superimposed image and each projected image have their brightness normal-
ized to 1.0 so the content is visible. In reality the superimposed image would be twice as
bright as each individual projected image.
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Figure 5.3: This figure shows the results of the inter-rotation vs. intra-rotation test. The
rotation between two projectors (intra-rotation) and the average rotation between the
projectors and the content space (inter-rotation) are varied across a range of scales. The
resulting images is compared to the original image using SPI-SSIM. The top ten location
combinations per scale are scored in the histogram. The greatest cluster of maximal SPI-
SSIM is focused around an intra-rotation of 1.75 degrees and an inter-rotation of 0.875
degrees.

quality. The smooth gradient in preserved image quality in the test implies some optimal
orientation to align projectors. The purposed SPI-SSIM metric, Section 4.2, allows for an
automated approach in determining optimal projector placement.

The purpose of this test is to demonstrate that an optimal alignment exists but not
how to efficiently find it. Brute force checking all possible alignments for an arbitrary
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number of projectors is computationally expensive in general but is tractable given a two
projector setup under the defined limited similarity transform. Two parameters will be
varied to find a near-optimal configuration in the two projector configuration across a
range of pixel-length-ratios. The two parameters are intra-rotation and inter-rotation. The
intra-rotation defines the rotation between the two projectors, the inter-rotation defines
the average rotation between the projectors and the content. The test from Section 5.1
only varied the intra-rotation; the inter-rotation is kept constant at zero. This could be
limiting the proposed system’s capabilities as both projectors suffer the same type of loss
at the same time.

Section 5.1 shows the a near-optimal configuration will be found when both the inter-
rotation and intra-rotation are low. The inter-rotation is varied from 0 degrees to 2 degree
in increments of 0.125 degrees, the intra-rotation is varied from 0 degrees to 4 degrees in
increments of 0.25 degrees, and the pixel-length-ratio is varied from 1.0 to

√
2 in increments

of approximately 0.01. A total of 17 ∗ 17 ∗ 41 = 11849 combinations are tried. The results
of this test are shown in Figure 5.3.

The greatest clustering of maximal SPI-SSIM is focused around an intra-rotation of
1.75 degrees and an inter-rotation of 0.875 degrees. This centroid is located along the top-
left to bottom-right diagonal. This diagonal marks when one of the two projector pixel
grids has the same rotation as the original content pixel grid. The majority of the maximal
SPI-SSIM locations lie about an intra-rotation of 1.75 degrees and above 1 degree inter-
rotation. Why this is occurring will require further investigation but it is likely associated
with the relationship between the morié pattern created by the unaligned projector pixel-
grids and statistical qualities of natural images. Figure 5.4 compares original images with
two different two projector configurations, the optimal configuration and a non-optimal
configuration.

5.3 Pixel-Length-Ratio Exploration

The previous tests have limited the pixel-length-ratio range from 1 to
√

2. At a ratio
of 1 the pixel length of the content and each projector are equal. In other words, each
projector space has the same number of pixels as the content space. At a ratio of

√
2 there

are, approximately, the same number of pixels between the two projector spaces as there is
in the content space. This counts the projector pixels that overlap with the content pixels.

The goal of this test is to determine how a two projector configuration behaves when
pushed beyond a pixel-length-ratio of

√
2. In this test a two projector configuration is
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Original Optimal Non-Optimal

Figure 5.4: A comparison between an original image, a two projector system at the optimal
configuration, and a two projector configuration at a non-optimal configuration. Both
configurations have a PLR of

√
2. The non-optimal configuration has one projector rotated

22.5 degrees clockwise and the other projector rotated 22.5 degrees counter-clockwise.
Notice that the sub-pixels in the non-optimal images do not resemble squares.
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Figure 5.5: Comparing SPI-SSIM to an increase in the pixel-length-ratio of a two projector
configuration. Generally, the SPI-SSIM deceases as the pixel-length-ratio increases. There
is a major decline in performance after a pixel-length-ratio of 1. The decline in performance
is approximately linear. The middle quartile range approximately doubles from a pixel-
length-ratio of 1.05 and a pixel-length-ratio of 2.0.

tested at the optimal configuration determined in Section 5.2; an intra-rotation of 1.75 and
an inter-rotation of 0.875. The pixel-length-ratio goes from 0 to 2 in increments of 0.05. At
2 the content space has approximately 2 times the number of pixels as there are between
the projectors combined. Like the other tests, SPI-SSIM is used as the evaluation metric
on a 1000 random images sampled from the ImageNet dataset.

The results of this test are shown in Figure 5.5. A pixel-length-ratio of 1 has the highest
achieved SPI-SSIM. This reflects the findings in the previous tests. At this setting there are
twice as many pixels on the display as required for the given content. A perfect SPI-SSIM
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is not achieved because one of the projector pixel-grids does not align with the content
pixel-grid. A steep decline in performance results when a pixel-length-ratio of 1.05 is tested.
The decline in performance continues linearly at a rate of approximately 0.04 SPI-SSIM
per pixel-length-ratio. The linear decline in perceived quality after a pixel-length-ratio
of
√

2 is unexpected as there are no longer enough addressable locations to contain the
original content. Calculating effective pixel density in the overlapping projector regions
may aid in understanding the relationship between SPI-SSIM and pixel-length-ratio. The
middle quartile bounds also follow a linear pattern. The quartile range is the smallest at a
pixel-length ratio of 1.0. The range grows significantly at a pixel-length-ratio of 1.05. The
quartile range approximately doubles from a pixel-length-ratio of 1.05 to a pixel-length-
ratio of 2.0. The range increase is likely cause by the pixel-length-ratio having a non-linear
effect across a range of higher frequency signals, but this requires further investigation.
Figure 5.6 shows examples of simulated superimposed images at different pixel-length-
ratios.
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Original

PLR 1.0

PLR
√

2

PLR 2

Figure 5.6: A comparison of three simulated superimposed images at different pixel-length-
ratios. The images are simulated using a two projector configuration with an intra-rotation
of 1.75 and an inter-rotation of 0.875 . From left to right, there is a picture of a cat, a
building, and some letters. Notice that the text (a small structured pattern) becomes
unreadable before a pixel-length-ratio of

√
2. By a pixel-length-ratio of 2 the text is

unrecognizable. The pictures of the animals remain distinguishable across all three pixel-
length-ratios. If you look closely at one of the simulated images you will see two sets of
overlapping pixel-grids and the emergent Moiré pattern.
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Chapter 6

Content Improvement Models

The tests in Chapter 5 show that SPI-SSIM, Section 4.2, is capable of quantitatively
measuring the perceptual quality of superimposed images produced by a multi-projector
configuration in a variety of configurations. Any difference between the content pixel-grid
and any of the projector pixel-grids can result in a non-optimal SPI-SSIM (i.e., a value of
1.0). This is true, in general, if there is any non-DC signal in the content image. This is a
result of interpolation and the pixels having a discrete size.

Standard interpolation functions used during space transformations, such as bilin-
ear [17] and bicubic [17], typically operate with knowledge of only the spaces involved,
the original space and the mapped space. This is an issue for multi-projector configu-
rations as pixels between projectors have significant overlap. The type of inter-projector
pixel overlapping pattern range from constructive interference (a pixel in one space per-
fectly overlaps with only one other pixel per projector space) to destructive interference
(a pixel in one space overlaps with many other pixels in other spaces); examples of these
patterns are shown in Figure 3.3.

The destructive interference patterns causes blurring when standard interpolation func-
tions are applied. This is because interpolation assumes that this is the optimal approach
of signal reconstruction. Building knowledge of other pixel-grids into the transformation
process has shown to result in improved superimposed image quality, as discussed in Sec-
tion 1.2. However, none of these systems use a quantitative method to directly optimize
a transformation process for any generic multi-projector configuration. The rest of this
section explores three different methods of conditioning each content-to-projector trans-
formation on every other projector in a given multi-projector configuration to improve
the perceptual quality of the superimposed image. The system designed in this section is
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Figure 6.1: The general structure of the proposed model. There are four main sections
to the model, warping the original image IC to the projector space, filtering each warped
image, stacking the projected images so comparison may take place, and comparing the
superimposed image with the original image. There are three sets of parameters that are
learned in the model: the biased interpolation weights (green), used from biased interpo-
lation, the kernel weights (orange), used both the kernel-space and kernel-limited model
configurations, and the projected images (purple), used for the optimal model. Note that
the projected images are only parametrized for the optimal model and are otherwise the
output of the filtering stage.

shown in Figure 6.1.

Transforming between spaces is essentially a filtering process; an output image is pro-
duced by applying a set of operations to an input image. Operations applied on the input
image can be divided into content specific operations, and content independent operations.
For this research, content specific operations implies the filtering operations, for a given
spatial region of the content space, have potentially different behaviour for different con-
tent. For example, the desired operations for low frequency content and operations for high
frequency content may be different. Content independent operations are where filtering
operations are static regardless of the content.

The remainder of this chapter is structured as follows, Section 6.1 introduces a filtering
method that in integrated directly into the interpolation process between space. Section 6.2
explores a model that applies a post interpolation filter operation. Section 6.3 proposes
a model that directly optimizes the projected images. Finally, Section 6.4 analyzes the
proposed models.
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6.1 Biased Interpolation

Information about high frequency patterns can be lost during interpolation. Previous
systems use filtering to minimize the loss introduced and to maximize the the quality
of the superimposed image. Determining the number of filters to use and where to use
them is a complex problem due to the non-uniformity in pixel overlapping patterns. Past
research has not explored integrating filtering into the interpolation process directly. Doing
so may allow a greater flexibility for perceptual enhancement as the learned filters will be
able to directly leverage the sampling curves. In a sense, more information survives the
transformation process.

One type of traditional spatial filtering uses convolutional kernels to enhance content
at any given location. Kernel based filtering adjusts a given value based on values about a
given location. Interpolation algorithms approximate an unknown value given surrounding
values. Thus, any filtering based interpolation method must be able to incorporate both the
approximation and adjustment properties. A model is proposed in which an interpolation
algorithm can shift along the interpolation curve (i.e., the approximated values between
point) by a learned amount.

Common interpolation functions include: nearest neighbor, bilinear, convolutional bicu-
bic, bicubic spline, lanczos, and sinc function [17]. For this research the bicubic spline func-
tion is used. The standard bicubic spline function is defined in Equations (2.7) - (2.15).
For this research a slight modification is made to the definition of x̃ and ỹ original defined
in Equations 2.7 and 2.8, respectively. x̃ and ỹ become

x̃ = mod(x, 1) + ωx (6.1)

ỹ = mod(y, 1) + ωy (6.2)

|ωx|, |ωx| ≤ δω (6.3)

where ωx and ωy are sampling offsets for the x and y axes respectively. ωx and ωy are limited
by δω to prevent sampling occurring beyond neighboring pixels. This bicubic interpolation
function is the same as the standard bicubic interpolation function when ωx and ωy are set
to zero. Note that ωx and ωy only change where sampling occurs and has no effect on the
interpolation curve itself. This method of altering the bicubic spline function can be used
in conjunction with most other interpolation functions.

Every pixel in each projector has an ωx and an ωy associated with it. Each set of
omegas can have different values. These values will ideally allow any configuration of
stacked pixel-grids to achieve improved perceptual quality by shifting the sampling point
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along the interpolation curve. These weights are dependent on the nature of the local
overlapping pattern.

6.2 Kernel Models

Kernel based models learn a set of linear convolutional kernels that can be applied post
interpolation to improve the perceptual quality of ÎC , Equation 4.1. There are many
different ways to parameterize and learn kernel based models. The two types of kernel
models explored are distinguished by the number of kernels that each model is allowed to
use. The first model learns as many kernels as needed to achieve an optimal result. The
second model is limited to a predetermined number of kernels.

6.2.1 Kernel-Space Model

The Kernel-Space (KS) model has the freedom to learn a unique linear kernel for each pixel
in every projector. This is achieved by two sets of parameters per projector: a spanning
set of kernels and a kernel activation map. The spanning set of kernels is defined by
KPp = {kPp

s1 , ..., k
Pp
sq } consisting of q kernels where q is the dimensionality of the kernels

beings used. s indicates kernels used for the Kernel-Space model. For this model assume
each kernel has the same dimensionality and that the kernels are square. Each kernel has
a real number associated activation map ms. Each activation map has a value for every
pixel in IPi . The Kernel-Space filtered image I

Pp
s is calculated as

IPp
s =

q∑
j

m
Pp

sj (IPp ∗ kPp

sj ) (6.4)

There are two different methods to parametrize the spanning set of kernels used for
this model: use a fixed one hot initialization, or have a tunable set of kernels. The one
hot approach ensures that the spanning set is orthonormal and that the only trainable
parameters are the kernel activation maps. This effectively makes the kernel activation
maps the kernels used on a given pixel. The second approach allows both the kernels
and the kernel activation maps to be trainable. Both techniques are described below.
Both methods allow the same degree of freedom for learning. The former approach is
computationally cheaper to train since the kernels used on any pixel do not need to be
sampled from kernel space. The latter approach removes independence between the kernels
during training since every pixel effects the delta change in the spanning set.
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6.2.2 Kernel-Limited Model

The second model under consideration is the Kernel-Limited (KL) model. This model

learns a finite set of kernels K
Pp

l = {kPp

l1 , ..., k
Pp

ld } consisting of d kernels for each projector
Pp. l indicates kernels used for the Kernel-Limited model. A kernel activation map ml

is learned for each kernel in every projector. For the Kernel-Limited model only a single
kernel will be used per pixel. The output of a single projector is defined as

I
Pp

l =
d∑
j

m
Pp

lj (IPp ∗ kPp

lj ) (6.5)

mlj has the same dimensionality as IPp and every value in mlj is either 0 or 1 (i.e., off or
on). Since only one kernel can be active at time

∑
j

mj = 1 (6.6)

There are two distinct methods to learn K
Pp

l , directly train the kernels using gradient
descent [30], or use kernels learned for the kernel-space model as a starting point for a
clustering based approach. The gradient descent approach requires a relaxation of only
one kernel being active (on) at a time so that the system is completely differentiable. Every
value of ml will be allowed to have a continuous value in the range [0, 1]. A KullbackLeibler
divergence [31,32] based regularizer will be used to promote a sparse distribution for kernel
activations for a given pixel in IPp . During inference the kernel with the highest activation
for a given pixel will be used.

The clustering based approach makes use of pre-trained kernel activation weights learned
for the Kernel-Space model. The kernel activation maps for a specific pixel in a projector
represents the coordinate of the kernel, in kernel space as defined by the kernel spanning
set, being used at the pixel’s location. Assuming similar kernels (kernels that produce sim-
ilar effects such as directional sharpening or blurring) have similar coordinates in kernel
space, clustering may be used to directly reduce the number of kernels.

The key to using a limited number of kernels is the fact that any Moiré pattern present
in the pixel overlap between projectors is not locally unique. That is, the characteristics
of any potential perceptual improvement is dependent on the Moiré pattern and that the
local Moiré pattern is repeating throughout a configuration.
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6.3 Optimal Model

Both the Biased Interpolation model and the Kernel models are both parameteric and
content independent. That is, they try to model a set of operations that will enhance
the superimposed image ÎC using a set of pre-learned parameters. Biased Interpolation
learns a set of offsets used during the interpolation process, and the Kernel models learn
a set of filters that are applied post interpolation. The ability of both of these models
to improve ÎC ’s perceptual quality is restricted by the limited ability of the operations in
their respective models.

A method that does not have this limitation is one that does not try fit a set of opera-
tions. This can be achieved by optimizing the projected images of each projector directly.
In effect, the limitation on the perceptual quality improvement is moved from the model
parameterization to the comparison metric being used (namely SPI-SSIM, Section 4.2).
The only thing limiting this model is the ability of the comparison metric being used. This
model is call the Optimal model and is formally defined as

ÎC = argmax
ÎC

SPI-SSIM(IC , ÎC) (6.7)

In this equation ÎC , and more importantly its sub-images {ÎCp }, is a flexible set of variables
rather than a fixed set of images. There are two options to initialize each sub-image in
{ÎCp } using a random initialization, or using the naive sub-image as initialization (i.e., the
image that would be produced by each projector in a naive mutli-projector configuration).
For this research the second approach is used. Note that the pixels of each sub-image {ÎCp }
are directly trained in this model.

6.4 Results

The three models proposed are the Biased Interpolation model, Section 6.1, Kernel models,
Section 6.2, the Optimal Model, Section 6.3. First two tests are performed on Kernel
models, then all models are compared.

6.4.1 Kernel-Space Spanning Set

This test compares the two discussed methods of parameterizing the Kernel-Space model’s
kernel spanning set, Section 6.2.1. The first method uses a fixed Euclidean spanning set,
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and the second method learns the spanning set that maximizes SPI-SSIM, Section 4.2.
Both methods are tested using a two projector configuration on a range of pixel-length-
ratios and intra-rotations. In this test the inter-rotation is set to zero. To reiterate,
the purpose of this test is to determine which of the two parameterization methods is
superior for improving SPI-SSIM, and not to measure the effectiveness of the Kernel-Space
at improving SPI-SSIM.

Figure 6.2: This figure shows two sets of kernel spanning sets. The top row of 3x3 kernels is
the spanning set used when the spanning set is fixed. Only one value each of these kernels
is set to 1, the rest are set to 0. This spanning set is the natural basis of Euclidean space.
The bottom row of 3x3 kernels are an example of a learned spanning set. The values in
these kernels may be set to any real number. Note that the values between the spanning
sets are not normalized in this figure.

Figure 6.2 visualizes one spanning set for each approach. The learned spanning set
approach proved a more effective training approach for training the Kernel-Space model.
The model converges quicker and with a greater increase in average SPI-SSIM. This is not
surprising as the kernels learned for the free spanning model individually resemble useful
sharpening and blurring filters. This most likely allows the model to move along the high
dimensional manifold of useful kernels more efficiently. For the remainder of the tests in
this paper the learned spanning set of kernels is used.

Notice that the third, fifth, and eighth kernels for the learned spanning set are al-
most identical. This redundancy indicates that useful linear kernels for perceptual quality
enhancement are limited to a plane in kernel space. The complexity of the overlapping
pixel-grid patterns increases as more projectors are added. Thus, the redundancy in the
kernel spanning set may not hold for configurations with more than two projectors.

48



6.4.2 Kernel-Space vs. Kernel-Limited

The Kernel-Space model, Section 6.2.1, and the Kernel-Limited model, Section 6.2.2, are
very similar. In fact, the Kernel-Space model is equivalent the Kernel-Limited model when
the number of kernels is limited to the number of pixels within the image being filtered.
Limiting the number of kernels has two primary advantages: reducing the computational
cost of the model, and reducing the memory required to store the kernels.

Figure 6.3: This figure shows the performance of the Kernel-Limited model as the number
of kernels in increased. The top line indicates the average performance of Kernel-Space
model from which the Kernel-Limited model uses as a starting point during clustering. A
range of 1 kernel to 10 kernels is shown as performance saturates as the number of kernels
increases.

The Kernel-Limited model for this test uses the clustering based approach to generate
the set of kernels. Directly learning the kernels through gradient descent proved too unsta-
ble to produce reliable results across different initializations and projector configurations.
More work is required to determine if direct kernel learning in the Kernel-Limited model
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is feasible. For this test the number of clusters is varied between 1 to the number of pixels
in the projected images.

Figure 6.3 demonstrates the trade-off between the number of kernels used and the
achievable SPI-SSIM improvement. The improvement in SPI-SSIM, Section 4.2, increases
as the number of kernels increases with diminishing returns. The improvement saturates
around 5 kernels, on average, reaching approximately 75% of the Kernel-Space model’s
performance. Achieving 75% with less then one percent of the total number of kernels
indicates that there is a limited variety of distortions that must be compensated for (at
least in the two projector configuration). The performance of the Kernel-Limited model
continues to increase as the number of kernels approaches the number of pixels in each of
the projected images.

6.4.3 Model Comparison

This section compares the Biased Interpolation model, Section 6.1, the Kernel-Space model
(using the learned spanning set), Section 6.2.1, and the Optimal model, Section 6.3. The
first two models are designed to be content independent. Testing the BI model and the KS
model in a content specific way will provide an upper limit of performance if these models
contained a content dependent mechanisms of adjusting the underlying filtering process.
As such, both these models will be trained using a content independent manner (optimize
the model across a set of images) and a content dependent manner (optimize the model
for every image). The content independent models are refereed to as general models and
the content dependent models are refereed to as particular models.

For the sake of comparison, the Biased Interpolation model is combined with the Kernel-
Space model to create a Fusion model. Biased Interpolation allows a model the ability to
reduce the quality loss of the interpolation process. The Kernel Space model allows for
explicit sharpening or blurring of content within a region to improve the superimposed
image quality. Fusing these two different approaches may allow of a more effective system.
Figure 6.1 illustrates fusion model.

A gradient ascent [30] approach is taken to optimize the SPI-SSIM, Section 4.2, for
each model using a two projector configuration. The Tensorflow [33] package is used for
gradient ascent in this work. Momentum is used in conjunction with gradient ascent
[34]. Each model is tested using the same pixel-length-ratio and rotation ranges used in
Section 5.1 for the two projector configuration. Note that the general models are trained
until performance improvement saturates. The average improvement across 1000 images
is shown in Figure 6.4. Note that the baseline SPI-SSIM of the dataset across all tested
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configurations is 0.897. The numerical improvement, regardless of the model, will be small
since the maximum value of SPI-SSIM is 1.0.

Figure 6.4: This figure shows the relative performance of seven different models. Notice
that the Fusion General model is approximately the addition of the BI General model and
the KS General model. The KS Particular model and the Fusion Particular model achieve
the same improvement as the Optimal model as they are capable of learning unique pixel
offsets on a per pixel basis.

The Optimal model, the Kernel-Space particular model, and the Fusion particular
model all achieve the same SPI-SSIM improvement. The Kernel-Space particular model
learns a unique kernel for every pixel in every image. The learned kernels effectively act as
optimal offsets for the pixel being filtered. This allows the Kernel-Space model to match the
Optimal model’s performance. The particular Kernel-Space model converges in about 100
iterations per image, on average. The same applies to the Fusion model since it contains
the Kernel-Space based filtering.

The next best model is the Biased Interpolation particular model. BI should not be
able to achieve the same performance as the Optimal model because it is limited to the
sampling curves present in the interpolation performed during space warping. Despite the
reduction in relative performance the Biased Interpolation model only takes 10 iterations
per image to converge on average. All the particular models are not practical to use as they
require more steps to converge and require more computations per step then the Optimal
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model. However, they indicate an upper bound to the performance of the general models.

The three general models from worst to best performance are the Biased Interpolation
model, the Kernel-Space model, and the Fusion model. The Biased Interpolation model
achieves one quarter and the Kernel-Space model achieves a half of the performance when
trained across a set of images compared to their respective particular based training. Un-
like the particular case, the Fusion model has superior performance to both the Biased
Interpolation model and Kernel-Space model. The performance of the Fusion model is
approximately the addition of the individual models. The Biased Interpolation model, the
Kernel-Space model, and the Optimal model are compared in Figures 6.5 to Figure 6.8.
From a visual perspective filtered images produced by the BI general model may not be
noticeably different from the original image. The noticeable differences only occur around
high contrast areas.
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Text - Optimal Two Projector Configuration Example

Original

PLR Unfiltered Bias Interpolation Kernel-Space Optimal

1.0

√
2

2

Figure 6.5: An example of the proposed filtering techniques applied to a two projector
configuration at the optimal inter-rotation and intra-rotation setting. Each models’ ability
to improve the quality of the text image increases as the PLR increases. The Optimal
model has the largest effect on the quality of the text. Perceptually the Optimal model
increases the contrast in the image but numerically it increases the structure in the image.
Note that the models have little effect on a PLR of 1.0 since there are twice as many
projector pixels as content pixels within each simulated image.
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Figure 6.6: An example of the proposed filtering techniques applied to a two projector
configuration where the projectors are rotated 22.5 degrees away from the content space.
One projector is rotated clockwise and the other projector is rotated counter-clockwise.
Note that the black marks in the top corners of each image are caused by each simulated
projector not having pixels at those locations due to the applied rotation. The simulated
unfiltered images in this example are all blurrier compared to the optimal configuration in
Figure 6.5. This enables the filtering models to have a greater impact on improving the
perceptual quality.
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Figure 6.7: An example of the proposed filtering techniques at the optimal two projector
configuration. In this example the difference between the original image and the unfiltered
images is obscured in comparison to Figure 6.5. This also makes it more difficult to see
the improvement provided by each model. Notice that none of the proposed models can
compensate for the Moiré effect on the building’s staircase at a PLR of 2.
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Figure 6.8: An example of the proposed filtering techniques applied to a two projector
configuration where the projectors are rotated 22.5 degrees away from the content space.
The orientation of the projectors is perceptually difficult to determine (as a opposed to
Figure 6.6) because of the high frequency content. One of the projector pixel-grids now
aligns (more or less) with the grain of the building’s staircase causing the Moiré pattern to
no longer be present. Like the other examples the Optimal model has the greatest effect
on quality of the image; the build’s features become sharper with the appearance of an
increase in global contrast.
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Chapter 7

Conclusions

This chapter summarizes this thesis, reviews the contributions made, discusses the impact
of this work, and lists potential areas for future research.

7.1 Summary of Thesis and Contributions

In this thesis, a framework for quantitatively evaluating the perceptual quality of a multi-
projector configuration is proposed. This framework is used to evaluate the multi-projector
configurations across a wide range of physical setups. Finally, the proposed framework is
used to train three different models that improve the perceptual quality of image produced
by multi-projector configurations.

Chapter 3 introduces the problems encountered when designing a system to improve
the perceptual quality of superimposed images produced by multi-projector configurations.
First, the process of aligning content between spaces is conceptualized as a filtering prob-
lem, Section 3.1. The emergence of Moiré interference patterns in multi-projector configu-
rations are reviewed and their implications for perceptual quality improvement is discussed,
Section 3.2. In addition, the constraints, Section 3.3, and assumptions, Section 3.4, on the
type of multi-projector configurations considered in this work are stated.

Chapter 4 proposed a framework to evaluate the perceptual quality of the mutli-
projector configurations. A technique called Sub-Pixel integration (SPI) is proposed to
numerically represent superimposed images produced by multi-projector configurations,
Section 4.1. SPI is integrates the concept of sub-pixels into the structural similarity
(SSIM) [8] metric to produce a new metric called SPI-SSIM, Section 4.2. This new metric
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allows a method of quantitatively comparing the ideal projected image with the superim-
posed image produced by a mutli-projector configuration.

Chapter 5 uses SPI-SSIM to evalute a variety of projector configurations. First SPI-
SSIM is used on a single projector configuration and a two projector configuration to serve
as a baseline, Section 5.1. Then SPI-SSIM is used to determine the optimal configuration
for naive two projector configurations. It is shown that perceputal quality is most preserved
in a two projector configuration when there is a intra-rotation of 1.75 degrees and an inter-
rotation of 0.875 degrees, Section 5.2. Finally, a range of pixel-length-ratios are tested on
the optimal two projector configuration, Section 5.3.

Chapter 6 uses the proposed framework to train three separate models capable of
improving the perceptual quality of the superimposed image. The Bias Interpolation
model integrates filtering directly into the interpolation process used during the content-
to-projector transformation process, Section 6.1. The Kernel based models learn a set
of projector specific linear convolution kernels that are applied after the space transfor-
mation process, Section 6.2. Finally, the Optimal model directly learns the best possible
combination of sub-images for each projector, Section 6.3.

The models are compared in Section 6.4. The Optimal model is most able to pre-
serve perceptual quality of the superimposed image. This is followed by the Kernel Space
model, then the Biased Interpolation model. Fusing the KS model and the BI model
showed greater performance then either individually. However, the Fused model is still
outperformed by the Optimal model. Using a trainable kernel spanning set for the kernel
space in the KS model both improved performance and allowed for a faster convergence.
Every additional kernel used in the Kernel Limited model greatly improves the its perfor-
mance. This trend continues until approximately five kernels where every additional kernel
is met with diminishing returns.

7.2 Impact

The novel contributions of this work can be grouped into two categories: a method of
comparing a superimposed image with the ideal content, and a framework for training
differentiable models in an end-to-end manner using the proposed comparison metric. A
process call Sub-Pixel Integration (SPI), Section 4.1, is used to represent a superimposed
image as a collection of sub-pixels and allows standard image comparison metrics to quanti-
tatively compare the ideal projected image with the actual projected image. An important
part of SPI is that it can be used for any multi-projector configuration. Previous quantita-
tive measures only work on configurations where the projectors differ by translation shifts,
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or methods of approximating the superimposed image are used. The framework developed
is a general method of using an SPI altered comparison metric to optimize a model that
improves the superimposed image quality. This framework only requires that the model
under consideration is differentiable. In addition, the proposed framework makes it easier
to iterate and improve upon model designs as a model can be quickly trained and evaluated
on actual multi-projector configurations.

7.3 Future Work and Preliminary Results

The framework and models introduced in this work are effective tools for measuring and
improving upon the perceptual quality of superimposed images. For the most part, the
proposed framework and models are assembled using existing techniques. These techniques
may not be optimal for measuring or improving upon the perceptual image quality in an
unaligned pixel-grids environment. The remainder of this section lists possible directions
for future research related to the contributions made in this work; some of the discussed
directions also include a discussion on preliminary results. This list is in no way extensive.

7.3.1 Improved Comparison Metric

SSIM [8] was chosen as the base comparison metric because it has been a standard image
comparison technique for the last 15 years. As discussed in Section 2.3, SSIM [8] is formed
from three separate statistical measure, one for luminance, one for contrast, and one for
structure. Each of these measures behaves differently when a limited similarity transform
is applied. Luminance has little to no change, contrast is reduced by at most 5%, and
structure can be drastically effected, especially for high frequency content. This observation
implies, at the very least, that two of the three components of SSIM are not critical to
measuring the perceptual degradation of images when a limited similarity warp is applied.
A possible area of research would be to verify this pattern on other warping models and
to explore other comparison techniques that measure the local structure different between
images.

Another observation regarding SSIM is that it is not sensitive to the perceptual quality
difference across a range of rotations. Consider two single projector systems, one where
there is a 5 degree difference between the content space and projector space, and another
system where there is a 45 degree difference between the content space and projector
space. SPI-SSIM will quantitatively evaluate the appearance of both systems similarity.
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However, in reality the former system appears much closer in quality to the original image,
on average. This is because the orientation of the 5 degree system is more capable of
preserving both vertical and horizontal frequencies of the original content. This inability
to distinguish quality between rotations has only been observed in rotations greater than
5 degrees, approximately. Developing a metric that is sensitive to relative pixel-grids
orientation would be a useful area of advancement.

7.3.2 Complex Surfaces

Only flat surfaces were used throughout this work. This is was done to enable a systematic
way of testing a variety of projector configurations and allowed a warping model with only
two parameters to be used. Limiting the warping to model to only vary scale and rotation
was made under an assumption that the key stoning effect would have a minor influence
on the perceptual quality of superimposed images. This assumption should be verified.
In addition, the proposed comparison framework and models should be tested on more
complex surfaces and more complex warping models. Note that SPI, Section 4.1, assumes
that a configuration only contains a set of pixel-grids where each pixel-grid in contiguous on
the display surface (i.e., neighbouring pixels are beside each other). This condition will not
hold for all complex 3D models. Thus, SPI must be generalized to allow for discontinuities
between pixels and within a single pixel (i.e., a single projector pixel lays on disconnected
regions of the display surface).

7.3.3 Testing More than Two Projectors

The methods proposed in this work are limited to no more than two projectors. This
restriction helped in limiting the number of tests required to validate the proposed models.
Initial tests suggest that increasing the number of projectors is beneficial but with dimin-
ishing returns for each new projector. An important factor in the potential for perceptual
improvement lies with the difference between the content pixel density and each projectors
pixel density; much like with the two projector configurations.

7.3.4 Parametric Content Dependent Models

The three types of model proposed in this work are either feed-forward and content inde-
pendent (Biased Interpolation and Kernel models, Section 6.1 and Section 6.2 respectively),
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or iterative and content dependent (Optimal model, Section 6.3). The feed-forward mod-
els are fast but lacked performance during runtime, and the iterative model is slow but
provides superior results. Developing a model that is capable of being feed-forward and
content dependent would be beneficial where pre-processing a video sequences is not desir-
able. Initial attempts at developing such a model proved unfruitful. However, some tests
indicate that a two step training process may be beneficial. First generate a dataset of
optimal sub-images using the Optimal model. Then train the feed-forward content depen-
dent model using the generated dataset as the targeted output. In a sense, this method of
training provides such a model with a more realistic goal.
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