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Abstract

We explore methodologies for characterizing and controlling small quantum systems.
We are interested in starting with a description of a quantum system, designing estima-
tors for parameters of the system, developing robust and high-fidelity gates for the system
using knowledge of these parameters, and experimentally verifying the performance of
these gates. A strong emphasis is placed on using rigorous statistical methods, especially
Bayesian ones, to analyze quantum system data. Throughout this thesis, the Nitrogen
Vacancy system is used as an experimental testbed. Characterization of system param-
eters is done using quantum Hamiltonian learning, where we explore the use of adaptive
experiment design to speed up learning rates. Gates for the full three-level system are
designed with numerical optimal control methods that take into account imperfections of
the control hardware. Gate quality is assessed using randomized benchmarking protocols,
including standard randomized benchmarking, unitarity benchmarking, and leakage/loss
benchmarking.
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γsg = 3 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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3.1 The considered experimental ordering. Another popular ordering transposes
the inner two levels. Given a particular parameter configuration of the exper-
iment, ~a ∈ {~a1, ...,~aS} (in the above example, the parameter is the distance
between the two last microwave pulses), N repetitions are performed of both
the experiment, γ, and the references, α and β. The bright reference α is
measured by initializing with a laser pulse, waiting for metastable optical
states to decay, and taking a measurement by opening the APD counting
gate while the laser is on. The dark reference β is similar, except an inver-
sion pulse is applied prior to measurement. The pulse sequence prior to the
reference measurement γ depends on the current parameter ~a. Each time
N repetitions have been made of all S parameter configurations, the system
decides whether to track or not, and this is all repeated R times. A sketch
of the resulting data is shown, averaged over both N and R. . . . . . . . . 72

3.2 Simulation of a severe case of drift. A random instance of the process
(α(t), β(t)) defined in Equation Equation 3.6 is shown on top of their first
moments with a shaded single standard deviation. The dot-dashed purple
line shows the square root of covariance. The model parameters used are
α0 = 10−3, σα = 5 × 10−5, σν = 5 × 10−5, θν = 0.03, Γ∆t = 3 × 10−4,
κ0 = 1/3, σκ = 0.01, and θκ = 0.01. The time units are arbitrary; scaling
the x-axis is equivalent to scaling θν and θκ. . . . . . . . . . . . . . . . . . 77

3.3 With β fixed as α/2, the Cramér-Rao bound of p̂(x, y, z) is plotted as a
function of α and p. We see that values of p closer to 1 are slightly more
difficult to estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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3.4 Simulated example of optimizing measurement time for a low visibility ex-
periment. The same analysis holds for high visibility experiments. (a) The
population of the optical excited state is plotted for two initial states, (b)
which results in distinguishable numbers of detected photons given that we
average enough repetitions. They are labeled α(∆t) and β(∆t) in the main
body and asymptote to the same slope since they both end up in the same
steady state of the master equation. (c) These curves can be used to estimate
the standard deviation of p normalized to square-root runtime for various
experiment lengths. For example, given

√
CRB/MHz = 400/

√
MHz, a to-

tal run time of 100 s = 108 us will approximately reduce the uncertainty of
∆p to 0.04. (d) As a function of Te, optimal measurement window length
∆topt is shown (left axis) along with the corresponding

√
CRB/MHz values

for both the optimal measurement time, and a fixed measurement time of
0.65 us (right axis). It is seen that in this regime the payoff of using the
optimal measurement time is rather slim. . . . . . . . . . . . . . . . . . . 86

3.5 The MSE risk for several estimators of p, labeled in the legend, is plotted
for six different regimes of experimental setup, (a)-(f). The square root has
been taken so that the units of the y-axes have the same units as p. The
estimators under study are the maximum likelihood estimator, p̂MLE, the
bias corrected estimator (see Section 3.4.3), p̂BCE, and the Bayes estimator,
p̂Bayes, with two different priors. These priors are denoted by “Bayes” and
“Bayes-10”, with the latter being a more conservative prior corresponding to
a ten-fold increase in the assumed covariance, as explained in the main body.
Sharp peaks for the Bayes estimators are artefacts of the coarse sampling
along the x-axis; risk was evaluated at p ranging from 0 to 1 in steps of 0.05.
The risks of p̂MLE and p̂BCE are much bigger than 1 for the low-contrast
regime due to the common occurence of y > x, and are therefore not plotted. 94

3.6 An example of posterior mixture weights w∗k for k = 0, ..., S1. Parameters
used were µα = 200, µβ = 140, σα = 40, σβ = 15, σα,β = 90. The prior was
updated with a single sample x = 220 and y = 120. . . . . . . . . . . . . . 100
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3.7 Examples of Bayesian updates showing contours of the prior and posterior
probability distributions, where the update data is depicted by red dots. In
each of the four cases, the same data is given to both the correlated and
uncorrelated priors described in Section 3.5.1 and Section 3.5.2, respectively.
Black dashed ellipses represent 90% confidence regions; their centers are at
the mean of the distribution, and their eccentricity matrix is equal to 4.6
times the covariance matrix of the distribution. Cases (a) and (b) represent
a low data scenario, whereas cases (c) and (d) represent a high data scenario.
Cases (a) and (c) represent correlated measurement data, whereas cases (b)
and (d) represent anti-correlated measurement data. . . . . . . . . . . . . . 102

3.8 In (a-b), the expectation value of the SMC posterior, Eπ∗ [~x] = (ω̂e, ˆδ∆, Ω̂, ÂN , T̂
−1
2 ),

is is used in a simulation of the Hamiltonian model (Section 3.6.1), and
shown on top of the normalized raw data. The raw data was normalized
using the MLE in Equation Equation 3.24, and the 95% error bars are com-
puted with Equation Equation 3.21 for comparison. In (c-d), the expectation
and variance of the SMC posterior is shown as a function of the number of
Bayes’ update steps in SMC. In (e) and (f) posterior marginal distributions
are shown for the parameters ωe and Ω, respectively. The broad shaded
curves come from the same data-processing algorithm run on disjoint sub-
sets of experimental data. The full amalgamated dataset results are shown
for both SMC (black, solid) and weighted least-squares (blue, dashed). . . 104

3.9 A particle distribution was initialized to the prior of Equation 3.73 with
16000 particles, and separately updated with the data from a single point
of a Rabi experiment in six different ways. We show a slice through the
posterior for each case. On the left are bridged and un-bridged updates
with no resamples allowed, The final effective particle count was about 1800
for all three of these updates. This demonstrates the bridging technique
works in practice. On the right are bridged and un-bridged updates with
resamples taken whenever the distribution was detected to have fewer than
8000 effective particles. These two bridge cases maintained at least 8000
effective particles at all times. Since the posterior is far from normal, we
can expect the resampler to introduce distortions. . . . . . . . . . . . . . . 109
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3.10 (a),(b) Time domain data from Rabi and Ramsey experiments. Photon
counts are summed over all 400× 30000 repetitions at each experiment pa-
rameter on the x-axis. Bright and dark references are shown in addition
to the signal of interest. (c) The discrete Fourier transform of the Ramsey
experiment. (d) Scatter plot of the summed reference counts for both ex-
periments. Each point represents a different experiment configuration, the
discrepancy between distributions is due to performing the experiments on
different days of the week. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.11 Two-parameter marginals of the QHL posterior distribution, where each dot
is a member of the particle approximation projected onto the corresponding
axes. The plots have been centered around the mean value of the distribu-
tion, the components of which are specified in the axis labels. . . . . . . . . 113

3.12 Fits to the data from each of the 10 batches of 40 averages. The left column
contains the Rabi experiments, and the right column contains the Ramsey
experiments. The points are the normalized data used in the corresponding
SMC algorithm, with error bars calculated using Equation 3.20. . . . . . . 114

4.1 Timing diagram of online Bayesian learning. The role of the experiment
design heuristic is to pick the next experiment configuration en+1, possibly
based on the current state of knowledge, πn(x), resulting in the new data
point dn+1. This choice of experiment be computationally expensive, and is
therefore run concurrently with quantum experiments. . . . . . . . . . . . 118

4.2 Pulse timing diagrams for Rabi (top) and Ramsey (bottom) experiments.
An experiment has three control lines: whether the laser is on or off, whether
the APD is counting photons or not, and the microwave amplitude profile.
The pulse sequence is repeated N times, collecting photon counts (Xi, Yi, Zi)
for i = 1, ..., N for the bright reference, dark reference, and experiment,
respectively, and finally summing them each over i to produce the data
point d = (X, Y, Z). Initial states are prepared by lasing for time tr and
letting the system settle for time ts. Measurements consist of detecting
photons for durations of length tm while lasing. The dark reference includes
an adiabatic pulse of length ta which causes the state transfer |0〉 → |+1〉.
The action of interest implements the microwave envelope Ω1(t) of duration
te. Relative timing is not to scale in this diagram. . . . . . . . . . . . . . 122
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4.3 Calculation of risk for three different prior distributions (rows) and for both
Rabi and Ramsey type experiments (columns). The dashed blue lines use a
uniform weight matrix Q = diag(1, 1, 1, 1, 1), and the solid orange lines use
a weight matrix focused only on ωe, Q = diag(0, 1, 0, 0, 0). Values have been
normalized against σ2

Q = Tr(QCovπ[x]) where Covπ[x] is the covariance ma-
trix of a prior distribution π, so that, for example, a value of rQ(e)/σ2

Q = 0.95
for a given experiment e implies a 5% expected improvement in weighted
covariance. The wide prior (top row) is defined in Equation 4.20, the cal-
ibrated prior (middle row) is defined in Equation 4.21, and the tight prior
(bottom row) is the same as the calibrated prior, but without widening the
ωe parameter. Note that the Rabi and Ramsey experiments share a y-axis
on each row. We see that, among these examples, the only beneficial set-
ting to perform a Ramsey experiment is with the tight prior when ωe is the
parameter of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 An NV drift tracking example, where tracking operations take place at the
vertical dashed lines. (a) Sub-poissonian 95% credible regions are shown
on top of data normalized by the experiment repetition count, N . (b) The
repetition count was chosen online to maintain a constant ESM value of 20,
which is plotted in (c). Several hundred trials were searched through to find
this extreme but illustrative example—references are typically quite flat. . 127

4.5 Comparison of experiment design heuristics (see Table 4.1) where each
heuristic was run with 100 independent trials using 200 experiments per
trial. The left figures (a-c) use the wide prior of Equation 4.20, and the
right figures (d-f) use the calibrated prior of Equation 4.21. (a,d) For the pa-
rameter ωe, the median posterior variance over 100 trials is plotted (dashed
lines), and regions between the 10% and 90% percentiles are shaded. The
x-axes display ESM (effective strong measurements), where roughly 20 ef-
fective bits of data are collected per experiment, see Section 4.6. The black
dotted line scales as ESM−1. In (b-c,e-f), histograms of which experiments
each heuristic uses are shown, normalized to represent the average number
of times used per trial. Note that the y-axis between histograms is shared,
that the scaling switches from linear to logarithmic at y = 5, and that all
four subfigures contain 100 histogram bins. . . . . . . . . . . . . . . . . . 130

4.6 An extension of Figure 4.5(a-c) that shows learning rates of all parameters
relevant to the quantum dynamics of the system. . . . . . . . . . . . . . . 132
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4.7 An extension of Figure 4.5(d-f) that shows learning rates of all parameters
relevant to the quantum dynamics of the system. . . . . . . . . . . . . . . 133

4.8 For each heuristic in Figure 4.5(a-c), posterior marginal distributions are
plotted for the first (of 100) trials on each parameter relevant to the quantum
dynamics of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.9 For each heuristic in Figure 4.5(d-f), posterior marginal distributions are
plotted for the first (of 100) trials on each parameter relevant to the quantum
dynamics of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 A cartoon depicting the action of the distortion operator g on the input
pulse ~p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 A quantum system being controlled by the magnetic field produced by the
inductor of a nonlinear resonator circuit. The ideal voltage source Vs(t) is
specified by the input undistorted pulse ~p, and the resulting current through
the inductor, IL(t), is computed. The inductance and the resistance are both
functions of the current passing through them. The form of the nonlinearity
is chosen to be consistent with kinetic inductance. . . . . . . . . . . . . . 153

5.3 (a) Response from the same resonator to a top-hat input pulse of length
300ns with an amplitude in both a linear (0.1V) and nonlinear (10V) regime.
The amplitude of the 0.1V pulse is multiplied by 10 to make it visible. (b)
The steady state driving frequency as seen by the spins as a function of
the voltage input to the resonator. (c) Out of 160 pulses searched for at
each of 10 voltage bounds, Vbound, with corresponding total pulse length
Tpulse = 0.25

fs.s.
, the fraction that failed to reach F = 0.99 before the step

size was effectively zero, and (d) the median number of calls made to the
distortion function g along with the 16% and 84% quantiles during the
gradient ascent for those pulses which did reach F = 0.99. . . . . . . . . . 155

5.4 (color online) (a) Example of a π/2)x pulse generated for the matched non-
linear resonator circuit. The driving term (~p) is shown in red, while the
distorted pulse (~q) is shown in blue. The dashed segments are the ringdown
compensation steps. (a) The trajectory of the state |0〉 under this pulse
is shown on the Bloch sphere, and (c-d) the average fidelity is plotted for
different values of αL, δω, and γ. . . . . . . . . . . . . . . . . . . . . . . . 156

5.5 Configuration of the microwave mixing components in relation to pulse dis-
tortion operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
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5.6 An example of the application of a discrete convolution distortion g to an
input pulse with N = 10 time steps. We have dt = 2, and the output space
has 20 time steps per input time step, thus δt = 0.1. . . . . . . . . . . . . 175

5.7 The pulse envelope of a CNOT gate at an exponential rise time value of
τ = 0.005. The shaded curves (blue) show the distorted output pulse, and
the empty curves (red) show the undistorted input pulse. The robustness
curve, in terms of one minus average fidelity, is shown to the right as a
function of τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.8 (color online) The pulse envelopes and Bloch sphere trajectories of a π/2)x
gate on the third qubit. The (unfilled) red curves represent the input pulse,
and the (filled) blue curves represent the output pulse seen by the quantum
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1 (a-b) Supposing a fixed budget of Bernoulli trials for the bag-of-coins ex-
periment, the WCRB (Equation 6.19) of the mean coin bias q is shown,
normalized to the time it takes to complete the full experiment. The true
parameters of the bag are q = t = 0.5, a single coin flip takes tflip = 100 us,
and switching coins takes tpick = 0 and tpick = 5 ms = 50tflip for (a) and (b),
respectively. We see choosing all coins to be different is no longer the best
strategy when tpick > 0. To explore this, in (c-d), given a ratio tpick/tflip,
we compute the optimal number of coin flips N and the resulting optimal
WCRB for tflip = 100 us, t = 0.5, and various values of q. (In these final two
plots, there is no longer a fixed budget of trials; global minima were found
with respect to N .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2 The optimal sequence reuse Nopt for second moment estimation (as used,
for example, in the unitarity protocol), plotted as a function of the total
time budget allowed T , for each of several choices of the switching cost ratio
τ := tpick/tflip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
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6.3 (a) Single and joint posterior marginals of the parameters p, A, and B are
shown for each of the three noise models defined in Section 6.7.1 of the
main text for the standard RB protocol. (b) Using Bayes’ estimate for these
three parameters, the curve (A− B)pM + B is plotted for each model, dis-
played on top of the normalized data used in the inference. The unusual
shape is due to the log-linear scale, and jitter in the x-axis on the data
points was added for visual appeal — for all three models I = 20 random
sequences were used with N = 30 repetitions each at each of the sequence
lengths M = {1, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000}, where
the maximum sequence length is chosen according to the Mmax = 1/(1−F )
heuristic [62]. (c) The posterior shown in (a) was calculated using the model
in Equation 6.15, which describes each survival distribution as a mixture of
beta distributions, and so finally, we plot the posterior mean of 1/

∑K
k=1w

2
k

for each survival distribution, where the weights wk are defined in Equa-
tion 6.14. This quantity ranges between 1 and K and quantifies the esti-
mated number of relevant mixands in each survival distribution. The low
values justify our CDPBM truncation at K = 10. . . . . . . . . . . . . . . 199

6.4 For each of the three noise models defined in Section 6.7.1, four types of data
processing are performed to compare their estimates of (and uncertainties
in) the parameter p from the standard RB protocol. Each dataset consists
of I = 20 random sequences with N = 30 repetitions each at each of the
sequence lengths 1, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 and 50000.
The first two methods show the posterior marginal of p under the models
from Equation 6.15 and Equation 6.13, respectively. The next two meth-
ods are non-parametric bootstrapping and weighted least squares fitting, as
described in Section 6.5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.5 Although the survival distributions at each sequence length are considered
to be nuisance parameters of the model, their posteriors are nonetheless
interesting and provide a diagnostic check. Here, the three rows correspond
to the noise models described in Section 6.7.1, and each column is a different
sequence length. In each plot, Bayes’ estimate of the survival distribution
is shown for both models Equation 6.15 and Equation 6.13 along with their
pointwise 95% credible envelopes. Similar 95% confidence envelopes are
shown for the bootstrap method. These are overlaid on top of histograms
sampled from the true survival distributions, as well as the (normalized)
data that were actually used in the inference. . . . . . . . . . . . . . . . . 202
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6.6 Data from the overrotation model Equation 6.24c was simulated 300 times
for several values of I, the number of random sequences per sequence length.
In all cases |M| = 10 sequences were used with N = 5 repetitions of each
random sequence. Posteriors were computed for every dataset, p-marginals
for three of which are shown in (a) for several values of I. (b) The area
between the upper (100 · α)% quantile and the mean value of pα(D) is
shown for several values of α, demonstrating the posterior’s ability to reliably
report credible lower bounds for p. (The average value of Bayes’ estimate
is shown for comparison.) (c) Finally, we isolate the α = 0.95 case and
display it along with bootstrapped lower 95% confidence bounds, which do
not stay under the desired line. These fractions were computed by running
the bootstrap method on the same collections of 300 data sets. Error bars
are single standard deviations of simple binomial statistics. . . . . . . . . 204

6.7 The top row of three plots show marginal posterior distributions of the
standard RB protocol tying parameters with data simulated according to
the pathological noise model defined in Equation 6.28. The bottom column
of three plots show posterior summaries of the survival distribution at the
sequence lengths M = 1, 20 and 100, respectively. . . . . . . . . . . . . . . 206

6.8 Posterior summaries for the LRB protocol under the model from Equa-
tion 6.13 and two different prior distributions. Simulated data was sampled
at |M| = 12 sequence lengths, each with I = 15 random sequences and
N = 30 repetitions per sequence. The joint posterior marginals of the leak-
age and seepage parameters is shown (top left), as well as the posterior
marginals of the average gate fidelity (top right). The LRB tying functions
are plotted using parameters randomly drawn from the posterior tying dis-
tribution (bottom). Superimposed are the normalized data, where each dot
comes from a unique random sequence. . . . . . . . . . . . . . . . . . . . 207
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7.1 Illustration of pulse design steps for qutrit gates. (Step 1) The pulse is
initially optimized with four control amplitudes for the Hamiltonians Sx,
Sy, S′x, and S′y in the second rotating frame. Blue indicates the input pulse,
and red indicates distorted pulse. (Step 2) Channel pairs are mixed together
in quadrature at the Zeeman energy, ωe = 50 MHz, and this new pulse is
re-optimized in the first rotating frame. (Step 3) The pulse is re-optimized
in units of the DACs, and including distortion due to amplifier compression.
The red and green curves are amplitudes seen by the |0〉 ↔ |−1〉 and |1〉 ↔
|+1〉 transitions respectively. (Step 4) Pulses are tuned-up with a feedback
loop involving a fast oscilloscope. . . . . . . . . . . . . . . . . . . . . . . . 212

7.2 The chances of getting an NV with a clean 13-carbon environment. We see
that there is roughly a 40% chance of having no 13-carbon with a coupling
strength greater than 300 kHz. This figure was generated by computing the
dipolar coupling strength between an electron at the coordinate origin and
a 13-carbon at every diamond cubic lattice position in a 5 nm radius. . . . 213

7.3 (left) Example of a single Rabi experiment, along with a fit produced by
simulating the Hamiltonian with the estimates calculated using SMC. Note
that the x-axis indexes arbitrary but incrementing Rabi pulse durations; the
first half of the experiments are linearly spaced, whereas the latter half are
exponentially spaced. (right) Power compression due to the amplifier. The
output voltage of the AWG is swept and the Rabi frequency estimated at
each value, for both the mS = −1 transition at IF = −50MHz and the
mS = +1 transition at IF = +50MHz. . . . . . . . . . . . . . . . . . . . . 219

7.4 (a) Residuals of measured pulse envelopes (with an oscilliscope) to desired
pulse envelopes, after k steps of correction. Residuals are offset in the y-axis
by k/4 for visual clarity. It is seen that this method does not provide much
correction past the step k = 3, and moreover, the similarity of k = 3, 4, 5
demonstrates that we are above the measurement noise threshhold. (b-c)
Pulse envelopes for Sx and S′y control Hamiltonians as desired (solid black),
as measured after no correction (k = 0, dashed), and as measured after five
steps of correction (k = 5, solid blue). Note that the ‘Desired’ lines are
almost completely obstructed by the ‘Final’ lines. . . . . . . . . . . . . . . 221
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7.5 Robustness plots of the qutrit pulse F , see Section 7.3. Certain parameters
of the Hamiltonian are swept and the utility function is plotting at each
value. Slices include the hyperfine value A, the global power error γ, the
transition-specific power adjustments γp and γm, deviations from the true
ZFS value δ∆, the crystal strain E, and the off-axis field Bx. . . . . . . . 222

7.6 Robustness plots of the qutrit pulse F , see Section 7.3, with no nearby
13-carbon (left column), a 13-carbon with 350 kHz dipolar coupling, a 13-
carbon with 1.5 kHz dipolar coupling. Parameters on the axes are described
in Figure 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.7 Raw summed data from RB+ experiments. Each of the three columns con-
tain a different pulse sequences to implement a their respective gate sets,
described in the main text. The top row shows data for combined RB/IRB
protocols; one exponential curve corresponds to RB, and the others inter-
leave various gates. The bottom row shows data for unitarity/leakage, where
the non-reference curves correspond to measurements of |0〉, |+1〉, and |−1〉. 228

7.8 Analysis of RB/IRB data for the qutrit gateset. The top grid displays
marginal posteriors over the average gate fidelity of the gateset, F0, and of
the interleaved gate XF , FXF . The constants A and B are also included.
The lower figures show 30 decay curves are generated by sampling from the
posterior, and are plotted on top of the normalized data. 90% credibile
bounds bounds on the survival distribution densities are shaded at each
sequence length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

7.9 Analysis of RB/IRB data for the qubit gateset, pre-tune-up. The top grid
displays marginal posteriors over the average gate fidelity of the gateset,
F0, and of the interleaved gate XF , FXF . The constants A and B are also
included. The lower figures show 30 decay curves are generated by sampling
from the posterior, and are plotted on top of the normalized data. 90%
credible bounds on the survival distribution densities are shaded at each
sequence length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.10 Analysis of RB/IRB data for the qubit gateset, post-tune-up. The top grid
displays marginal posteriors over the average gate fidelity of the gateset, F0,
and of the interleaved gates I, FI , and F , FF . The constants A and B are
also included. 30 decay curves are generated by sampling from the posterior,
and are plotted on top of the normalized data. 90% credible bounds on the
survival distribution densities are shaded at each sequence length. . . . . . 234
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7.11 A comparison, for a subset of the RB/IRB qubit pre-tune-up dataset, be-
tween the marginal posterior distributions, the Gaussian error distribution
reported by a weighted least squares fit (WLSF), and 5000 estimates based
on bootstrapping the data. . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.12 (Top) Fits to unitarity datasets from all three gatesets and (Bottom Grid)
the bootstrap distribution over the parameters A, B, and u. Large corre-
lation between u and B are due to lack of data at high sequence lengths,
especially in the case of post-tuneup. . . . . . . . . . . . . . . . . . . . . . 239

7.13 The fraction of infidelity attributable to infidelity. Distributions, left to
right, are for the qutrit, qubit pre-tune-up, and qubit post-tune-up. . . . . 240

7.14 The RB/IRB post tune-up dataset is analyzed on a moving window of sub-
sets. Each subset contains 50 random sequence per sequence length. Fi-
delities F0, FI , and FF are plotted against timestamps of the data, with
an errorbar every six hours. The right column is provided for the sake of
comparision, where the data have been shuffled temporally prior to analysis.
The second row shows the spectrum of the respective time traces in the first
row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

7.15 (a) The pulse profile for the control Hamiltonians Sx and S′y of a pulse
that implements Equation 7.44. (b) The state-to-state fidelity of this pulse
from |0〉 to two different output states as a function of deviation, δωe, from
the nominal ωe = 2π · 50 MHz. Note that the transfer to |0〉 takes place

at δωe = 0 MHz and that the transfer to |−1〉+|0〉+|+1〉√
3

takes place at both
δωe = ±2.189 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.16 A single-quantum Ramsey experiment (with TPPI=5 MHz) preceded by
standard preparation (blue) and with partial pseudo-pure state prepara-
tion (orange), plotted in both the time and frequency domains. In both
cases, normalization of data to the interval [0, 1] is done using the standard
references α and β, not the reduced references α′ and β′ from Equation 7.47.
In the time domain plot, dashed horizontal lines are placed at y = 2/9, 5/9. 244

xxviii



B.1 The mean-squared-error of the Bayes estimator is computed as a function
of p for both the referenced Poisson model (blue, solid) and for a binomial
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Chapter 1

Introduction

Two important aspects of developing quantum devices that push beyond the capabilities
of their classical counterparts—such as quantum sensors, quantum information processors,
and quantum actuators—include gaining high-fidelity coherence control of their dynamics,
and efficiently probing their properties through quantum measurement. The goal of this
thesis is to explore practical methods for performing these two tasks with a focus on small
quantum systems currently available. A central theme will be the relationship between
the complexity of systems and their practical utility. For instance, we study the benefit
that adaptive experiment design can have on magnetometry, the cost of using a non-linear
resonator to control a quantum device, and the quality of qutrit gatesets composed of
numerically optimized control pulses.

To test our methodologies, we will use a quantum system called a Nitrogen Vacancy
(NV) defect in diamond as a testbed on which to apply ideas, and so several chapters will
include detailed information about the dynamics of this system. Throughout, we place
emphasis on applied statistical inference, and in particular Bayesian methods, to analyze
data from quantum experiments. Therefore, this introductory chapter contains relevant
background information on quantum dynamics and some central concepts of statistical
inference.

1.1 Thesis Outline

Figure 1.1 shows the natural organization of the chapters in this thesis, which are summa-
rized below. Chapter 1, the current introductory chapter, overviews notation and concepts
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used throughout the thesis. It consists of three sections, which respectively introduce
quantum theory and quantum dynamics, statistical inference, and bayesian data analysis.

Chapter 2 introduces the Nitrogen Vacancy (NV) defect in diamond as an experimental
platform for quantum information processing (QIP). Its ground state Hamiltonian is de-
fined, and numerically-ammenable methods for entering rotating frames and taking average
stroboscopic approximations are provided in detail. Optical dynamics of the system are
introduced, and used to explore the process of room temperature measurment, including
dark counts and finite visibility. These dynamics are also used to decribe state initializa-
tion of the system. Finally, the experimental setup is briefly presented. This section, in
particular the optical dynamics, measurement and initialization are based partly on Refer-
ence [84], work done in collaboration with Chris Granade. This section also derives certain
block structures to help with average Hamiltonian theory, which is unpublished work done
in collaboration with Romain Ruhlmann.

Chapter 3 takes the NV measurement description and considers it in the framework of
statistical inference. The risk of frequentist and Bayesian estimators are compared against
each other where we find a slight advantage in the latter. We discuss numerical methods
for integrating measurement data into more involved inference tasks like tomography. The
section concludes with a detailed example where we perform quantum Hamiltonian learning
with Bayesian inference, implemented with a sequential Monte Carlo sampler, using data
from an experimental system. Quantum Hamiltonian learning is the task of estimating
parameters from a system’s Hamiltonian given data from the system, and so Bayesian
methods return a posterior distribution over some parameterization of Hamiltonians. This
section is based on the remaining part of Reference [84].

Chapter 4 seeks to improve the Hamiltonian learning example from the previous section
by employing online experiment design. Estimating parameters of quantum systems is
usually done by performing a sequence of predetermined experiments and post-processing
the resulting data. It is known that online design, where the choice of the next experiment is
based on the most up-to-date knowledge about the system, can offer speedups to parameter
estimation. We use risk-based Bayesian experiment design to learn the values of a five-
parameter model describing its Hamiltonian and decoherence process. Comparing this to
standard pre-determined experiment sweeps, we find that we can achieve median posterior
variances on some parameters that are between 10 and 100 times better given the same
amount of data. This has applications to NV magnetometry where one of the Hamiltonian
coefficients is the parameter of interest. This chapter is based on Reference [83], done in
collaboration with Thomas Alexander, Michal Kononenko, and Benjamin Soloway.

Chapter 5 moves away from inference and toward quantum control, where the primary
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interest is gaining high-fidelity control in the presence of imperfect classical hardware.
This is done by itroducing a framework of distortion operators, and detailing how they can
be integrated with existing numerical optimal control routines like gradient-ascent pulse
engineering (GRAPE). We provide examples of distortions for many types of common
hardware imperfections, including transfer functions and cross talk. The main example
presented discusses controlling a qubit by a non-linear resonator, whose inductance depends
on the amount of current present within. We show that it is possible to optimize gates
in this sequence, and moreover, it is possible to include ringdown compensation to drive
the power out of the resonator when the pulse is complete. This chapter is based on
Reference [82], done in collaboration with Chris Granade, and Troy Borneman.

Chapter 6 is concerned with the data analysis of randomized benchmarking (RB) and
related protocols (together denoted by RB+). RB+ protocols are standard tools for char-
acterizing quantum devices. Prior analyses of RB protocols have not provided a complete
method for analyzing realistic data, resulting in a variety of ad-hoc methods. The main
confounding factor in rigorously analyzing data from RB protocols is an unknown and
noise-dependent distribution of survival probabilities over random sequences. We propose
a hierarchical Bayesian method where these survival distributions are modeled as nonpara-
metric Dirichlet process mixtures. Our method infers parameters of interest without addi-
tional assumptions about the underlying physical noise process. We show with numerical
examples that our method works robustly for both standard and highly pathological error
models. Our method also works reliably at low noise levels and with little data because we
avoid the asymptotic assumptions of commonly used methods such as least-squares fitting.
For example, our method produces a narrow and consistent posterior for the average gate
fidelity from ten random sequences per sequence length in the standard RB protocol. This
work is based on Reference [85], done in collaboration with Joel Wallman, Chris Ferrie,
and Chris Granade.

Chapter 7 combines ideas from the previous chapters to test our ability to design high-
fidelity quantum gates for the NV system, while laying out a methodology to do so. We
find a unitary 2-design of order 72 to be used with randomized benchmarking protocols on
a qutrit. Gates for a this gateset, as well as for a qubit 2-design group, are designed with
GRAPE, taking into account circuit distortions and power constraints. These gates are
performed experimentally in RB+ protocols, namely, standard randomized benchmarking,
interleaved randomized benchmarking, leakage benchmarking, and unitarity benchmark-
ing. We find average gate fidelities of around 98− 99% for these pulses. Pulse shapes are
then tuned-up using classical closed-loop feedback with an oscilliscope to match the desired
profile. We find that this process improves average gate fidelities to > 99.5% for qubits.
This work is to be published, and was performed in collaboration with Chris Granade, and
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Chapter 2: The Nitrogen Vacancy 
Center as a Test Platform: 
Preliminary Details

Chapter 3: Learning from Quantum 
Measurements: Hamiltonian
Estimates from NV Photon Counts

Chapter 4: Improving Hamiltonian 
Estimates with Adaptive 
Experiment Design

Chapter 5: High Fidelity Control of 
Real-World Quantum Devices

Chapter 7: Validating Control: Pulse
Design and Benchmarking the 
Nitrogen Vacancy Center

Chapter 6: Benchmarking Quantum 
Devices: Theory and Data Analysis

Figure 1.1: The organization of this thesis.

Joel Wallman.

Finally, Chapter 8 makes some concluding remarks.

1.2 Quantum Systems

This section briefly describes the postulates and mechanics of finite-dimensional quantum
theory, with the main goal of introducing the notation used throughout this thesis.

This section, and indeed this thesis, presupposes some basic knowledge of linear algebra,
such as understanding of vector spaces, norms, inner products, operators acting on vec-
torspaces, the vector spaces they form in turn, their decompositions into eigenstructures,
and so on. Standard linear algebra will introduce these concepts, and we in particular
promote the introductory sections of Reference [183] (available free online).

Quantum mechanics takes place, at least mathematically, within a seperable Hilbert
space over the complex numbers, labelled H. A Hilbert space is an inner-product space
such that the limit of every Cauchy sequence of vectors (under the induced metric of
the inner product) itself exists within the space. Separability is a topological constraint
which, in Hilbert spaces, is equivalent to the existence of an orthonormal basis that can be
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indexed by the natural numbers. However, since we are restricting our attention to finite-
dimensional spaces in this thesis, i.e. dimH = d <∞, seperability and completeness come
for free, so that a Hilbert space for us is simply an inner product space—our convention of
keeping Hilbert’s name attached in this simpler setting is nearly universal in the field.

1.2.1 Quantum Theory Notation

We will find little advantage in working with abstract vector spaces, and therefore always
consider the concrete vector space H = Cd over C for some dimension d, with the standard
complex inner product between two column vectors (x1, . . . , xd)

T , (y1, . . . , yd)
T ∈ H given

by
∑d

i=1 xiyi. In an often convenient tradition beginning with Dirac [36], we use the
notation |·〉 (called a ket) to denote a member of a Hilbert spaceH. For instance, |ψ〉 , |φ〉 ∈
H might be two different vectors, and canonical basis elements are often labeled by integers,
|0〉 , |1〉 , . . . , |dimH− 1〉.

Members of the adjoint space H†—formally being the set of linear functions from H
into C—are written using the notation 〈·| (called a bra), and are best considered as row
vectors, whereas members of H are column vectors. Riesz’ one-to-one correspondence
between vectors and their duals is therefore made, in our concrete case, by conjugation and
transposition from a row vector into a column vector, or vice versa. That is, if |ψ〉 ∈ H is a
column vector, then 〈ψ| = |ψ〉† ∈ H† is the correspnoding dual vector, whose row elements
are the complex conjugates of the column elements of |ψ〉.

One of the main advantages of Dirac’s notation is that the application of a dual vector
〈ψ| ∈ H† to a vector |φ〉 ∈ H, namely 〈ψ| (|ψ〉), looks very similar to the usual notation
of an inner-product, 〈·, ·〉, when the parentheses are removed. Indeed, it is easy to see
that this application is equal to the inner product between |ψ〉 and |φ〉, and is therefore
condensed into the notation 〈ψ|φ〉.

Example 1.1. Suppose that |1〉 , . . . , |d〉 ∈ H is an orthonormal basis and |ψ〉 ∈ H. Since
|1〉 , . . . , |d〉 is a basis there must exist coefficients xi ∈ C such that |ψ〉 =

∑d
i=1 xi |i〉,

and since it is orthornormal, we must have the inner-products 〈i|j〉 = δi,j. Then for any
1 ≤ j ≤ d we have

〈j|ψ〉 = 〈j|

(
d∑
i=1

xi |i〉

)
=

d∑
i=1

xi 〈j|i〉 = xj (1.1)

hence the decomposition |ψ〉 =
∑d

i=1 〈i|ψ〉 |i〉. a
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Given a Hilbert space H = Cd, we denote the set of linear maps from H into itelf by
L(H), which we conflate with the set of d×d matrices with complex entries. The set L(H)
itself forms an inner product space with the Hilbert-Schmidt inner product

〈A,B〉 = Tr(A†B) (1.2)

where A,B ∈ L(H) and ·† is complex conjugation.

Note that if |ψ〉 , |φ〉 ∈ H, then |ψ〉 〈φ| ∈ L(H) is an operator. We call this the outer
product of |ψ〉 and |φ〉. Indeed, 〈φ| is a functional that maps vectors in H to complex
numbers, so that when multiplied by |ψ〉, as in |ψ〉 〈φ|, the result is a vector in H; |ψ〉 〈φ|
is a map from vectors to vectors. Therefore a third state, |α〉 ∈ H, applied to |ψ〉 〈φ| gives
|ψ〉 〈φ| (|α〉) = |ψ〉 〈φ|α〉 = 〈φ|α〉 |ψ〉, where we can put 〈φ|α〉 on the left to emphasize the
inner product, or we can put |ψ〉 〈φ| on the left to emphasize the outer product. Perhaps
a simpler explanation is just that |ψ〉 〈φ| is the matrix product of a column vector with a
row, which gives a rank-1 matrix, where all matrix mechanics apply as usual.

Example 1.2. Let |1〉 , . . . , |d〉 ∈ H be the canonical basis, so that |i〉 has a 1 in its ith

column vector entry, and zeros elsewhere. Then |i〉 〈j| is a matrix with a 1 in the entry (i, j),
and zeros elsewhere. Thus any matrix A ∈ L(H) can be expanded as A =

∑d
i,j=1 Aij |i〉 〈j|.

Observe, for example, that

A† =

(
d∑

i,j=1

Aij |i〉 〈j|

)†
=

d∑
i,j=1

Aij 〈j|† |i〉† =
d∑

i,j=1

Aij |j〉 〈i| =
d∑

i,j=1

Aji |i〉 〈j| , (1.3)

as expected. a
Example 1.3. Let A ∈ L(H) be a normal matrix, AA† = A†. Then it admits eigenvalues
λ1, . . . , λd ∈ C with corresponding eigenvectors |ψ1〉 , . . . , |ψd〉 that form an orthonormal
basis. For any |ψ〉 ∈ H we have

A |ψ〉 = A
d∑
i=1

〈ψi|ψ〉 |ψi〉 =
d∑
i=1

〈ψi|ψ〉A |ψi〉 =
d∑
i=1

λi 〈ψi|ψ〉 |ψi〉

=
d∑
i=1

λi |ψi〉 〈ψi|ψ〉 =

(
d∑
i=1

λi |ψi〉〈ψi|

)
|ψ〉 (1.4)

which shows the notation for a spectral decomposition in Dirac’s notation:

A =
d∑
i=1

λi |ψi〉〈ψi|

. a
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The following subsets of L(H) are commonly used.

Definition 1.1. The set of unitary operators U(H) = {U ∈ L(H)|U †U = I}, of which the
set of special unitary operators is a subset, SU(H) = {U ∈ U(H)| detU = 1}.

Theorem 1. Suppose U ∈ L(H). The following are equivalent:

1. U ∈ U(H)

2. U †U = UU † = I

3. ∀ |ψ〉 , |φ〉H, 〈ψ|φ〉 = 〈ψ′|φ′〉 where |ψ′〉 = U |ψ〉 and |φ′〉 = U |φ〉

4. ∃φ1, . . . , φd ∈ R, |ψ1〉 , . . . , |ψd〉 ∈ H an orthonormal basis, such that

U =
d∑
i=1

eiφi |ψi〉〈ψi|

Definition 1.2. The set of hermitian operators u(H) = {H ∈ L(H)|H = H†}, of which
the set of traceless hermition operators is a subset, su(H) = {H ∈ u(H)|TrH = 0}. Both
of these collections are vector subspaces of L(H).

Theorem 2. Suppose H ∈ L(H). The following are equivalent:

1. H ∈ u(H)

2. H = H†

3. 〈ψ|H |ψ〉 ∈ R∀ |ψ〉H

4. 〈ψ|H |φ〉 = (H |ψ〉)† |φ〉 ∀ |ψ〉 , |φ〉 ∈ H

5. ∃λ1, . . . , λd ∈ R, |ψ1〉 , . . . , |ψd〉 ∈ H an orthonormal basis, such that

H =
d∑
i=1

λi |ψi〉〈ψi|

Example 1.4. If iH ∈ isu(H), then we may obtain a decomposition iH =
∑d

i=1 iλi |ψi〉〈ψi|
as in Theorem 2. Because TrH = 0, we see that

∑d
i=1 λi = 0. The matrix exponential of

iH obtained by applying the scalar exponential to each of the eigenvalues; we have

eiH =
d∑
i=1

eiλi |ψi〉〈ψi| (1.5)
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where it is seen, by Theorem 1, that eiH ∈ UH. Since the determinant is the product of
the eigenvalues, we have moreover that det eiH = ei

∑d
i=1 λi = 0, so that eiH ∈ SUH. This

shows that eisu(H) ⊆ SU(H). In fact, it holds that the reverse containment is true, so that
any special unitary operator can be written as the exponential of some traceless hermitian
operator times i.

Similarly, eiu(H) = U(H). a

Definition 1.3. The set of positive semi-definite operators

P(H) = {P ∈ u(H)| 〈ψ|P |ψ〉 ≥ 0∀ |ψ〉 ∈ H}. (1.6)

We write P ≥ 0 to denote P ∈ P(H), and P ≥ Q to denote P −Q ≥ 0.

Theorem 3. Suppose P ∈ L(H). The following are equivalent:

1. P ∈ P(H)

2. P = AA† for some A ∈ L(H)

3. 〈ψ|P |ψ〉 ≥ 0,∀ |ψ〉H

4. ∃~p1, . . . , pd ≥ 0, |ψ1〉 , . . . , |ψd〉 ∈ H an orthonormal basis, such that

P =
d∑
i=1

pi |ψi〉〈ψi| .

There are two important ways to join vector spaces together to make larger vector
spaces. The first is simply the cartesian product of the two spaces, and linear operations
on this space can be thought of in terms of block matrices.

Definition 1.4. Given two Hilbert spaces H1 = Cd1 and H2 = Cd2 , the direct sum H =
H1 ⊕H2 is the inner product space Cd1+d2 . If |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, then |ψ1〉 ⊕ |ψ2〉
is notation for the column stacking of the two vectors.

The second, which is of fundamental importance in quantum theory, is the tensor
product, which results in a space whose dimension is the product of the constituent spaces,
rather than the sum.
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Definition 1.5. Given two Hilbert spaces H1 = Cd1 and H2 = Cd2 , the tensor product
space H = H1⊗H2 is the inner product space Cd1d2 . Given |ψ1〉 = (x1, x2, . . . , xd1)T ∈ H1

and |ψ2〉 = (y1, y2, . . . , yd2)T ∈ H2, then |ψ1〉 ⊗ |ψ2〉 is notation for the column vector

|ψ1〉 ⊗ |ψ2〉 = (x1 · (y1, y2, . . . , yd2), x2 · (y1, y2, . . . , yd2), . . . , xd1 · (y1, y2, . . . , yd2))T . (1.7)

This form satisfies bilinearity; we have

(|ψ1〉+ α |φ1〉)⊗ (|ψ2〉+ β |φ2〉) =

|ψ1〉 ⊗ |ψ2〉+ α |φ1〉 ⊗ |ψ2〉+ β |ψ1〉 ⊗ |φ2〉+ αβ |φ1〉 ⊗ |φ2〉 . (1.8)

The tensor product of linear operator spaces functions similarly. If A ∈ L(H1) and B ∈
L(H2), then A⊗B ∈ L(H1)⊗ L(H2) is a matrix with entries

A⊗B =

A11B A12B . . .
A21B A22B . . .

...
...

. . .

 . (1.9)

It holds that (A⊗B)(|ψ1〉 ⊗ |ψ2〉) = A |ψ1〉 ⊗B |ψ2〉.

Example 1.5. Suppose H1 = C3 and H2 = C2, with respective canonical orthonormal
bases written as |0〉 , |1〉 , |2〉 and |0〉 , |1〉. Then H = H1 ⊗ H2 = C6, and we have, for
example,

|0〉+ |2〉√
2
⊗ |0〉 =

1/
√

2
0

1/
√

2

⊗ (1
0

)
=
(
1/
√

2 0 0 0 1/
√

2 0
)T

= (|0〉 ⊗ |0〉+ |2〉 ⊗ |0〉)/
√

2 (1.10)

a

1.2.2 Postulates of Quantum Theory

Entities existing in the physical world, a phrase we leave nebulous on-purpose, can be
described by vectors in a Hilbert space. However, its operational meaning will hopefully
be made clearer once we introduce the time-evolution and measurement of these states,
along with a few examples. We begin with the definition of the simplest quantum object.

9



Definition 1.6. A pure state is a vector |ψ〉 ∈ H with unit norm, 〈ψ|ψ〉 = 1.

This definition is generally insufficient because, due to the probabalistic nature of quan-
tum mechanices which we will see, it is very common to want to talk about probabilistic
combinations of pure states. For example, one may have an entity that should described
by the pure state |ψ〉 but only with probability p ∈ [0, 1], and should described by another
pure state |φ〉 with the remaining probability 1 − p. It turns out that such a description
of a system, which is a perfectly reasonable demand, cannot be described by any single
vector in H, at least not with respect to an arbitrary choice of measurement. This leads
us to the following generalization.

Definition 1.7. A mixed state (or density matrix, or often simply state) is an operator
ρ ∈ L(H) that is positive-semidefinite, ρ ≥ 0, with unit trace, Tr ρ = 1. We write
D(H) = {X ∈ P(H)|TrX = 1} for the set of density matrices. If a mixed state ρ is
rank-one, so that there exists some |ψ〉 ∈ H such that ρ = |ψ〉〈ψ|, then we may sometimes
refer to ρ as a pure state even though it is not a vector.

Example 1.6. If ρ1, . . . , ρn ∈ D(H) are density matrices and p1, . . . , pn ∈ [0, 1] form
a probability vector, so that

∑n
i=1 pi = 1, then ρ =

∑n
i=1 piρi is also a density matrix.

Indeed, the sum of positive-semidefinite operators is positive-semidefinite, and Tr ρ =∑n
i=1 pi Tr ρi = 1. a

Example 1.7. Fix a mixed state ρ ∈ D(H). Since positivity implies normality, the spectral
theorem gives us the eigendecomposition

ρ =
n∑
i=1

pi |i〉〈i| (1.11)

where d = dimH,
∑d

i=1 pi = 1, and |1〉 , . . . , |d〉 forms an orthonormal basis for H. Thus,
we may interpret our system as having the state |1〉 with probability p1, the state |2〉 with
probability p2, and so on. However, there may exist some other decomposition (and usually
there will be infinitely many such), say

ρ =
n∑
i=1

qi |ψi〉〈ψi| , (1.12)

which is different from the first in a non-trivial way. This is an equally valid intepretation
of the state, as no experiment will be able to distinguish it from the first. a
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Actions on pure states transform a given pure state into another pure state. Supposing
such operations are linear, they must be isometric to preserve the unit length (so that
outputs are pure states), and hence unitary, since all isometric operators are unitary in finite
dimensions. Hence given a unitary matrix U ∈ U(H), we might have the transformation of
pure states |ψ〉 7→ U |ψ〉. Therefore, in terms of dual pure states we must have the mapping
〈ψ| 7→ 〈ψ|U † for consistency. This, in turn, implies that the rank-1 density matrix |ψ〉〈ψ|
transforms as |ψ〉〈ψ| 7→ U |ψ〉〈ψ|U † under the operation U . To be consistent with linearity,
we infer that a density matrix ρ ∈ D(H) of any rank must transform as ρ 7→ UρU † inder
the operation U .

However, just as we claimed pure states were insufficient to describe reasonably moti-
vated situations above, likewise unitary transformations of density matrices are insufficient
to describe transformations of mixed states. We may have, for example, a situation where
an operation U ∈ U(H) is applied with probability p, and another operation W ∈ U(H)
is applied with probability (1 − p). Such an operation would map a density matrix as
ρ 7→ pUρU †+ (1− p)WρW †, which is not generally describable by a single unitary. There-
fore, we consider more generally the set of linear operations acting on on L(H) itself.

Definition 1.8. We call a linear operator Λ : L(H)→ L(H) a superoperator, denoting the
space of all superoperators as T (H) = L(L(H)).

For a superoperator Λ ∈ T (H) to preserve mixed states, it must be positivity preserving,
ρ ∈ P(H) =⇒ Λ(ρ) ∈ P(H), and it must be trace preserving, A ∈ L(H) =⇒ Tr Λ(A) =
TrA. Preserving positivity of states is not quite enough, it turns out, and we also need
to worry about preserving the positivity when joint to some other hypothetical system of
arbitrary size. We also want a notion of time evolution of such maps.

Definition 1.9. We call a superoperator Λ ∈ T (H) completely positive if for any d′ ∈ N
and any P ∈ P(H⊗H′) it holds that (Λ⊗ Id′)(P ) ∈ P(H⊗H′), where Id′ is the identity
operator in T(H′) and H′ = Cd′ . We denote the set of all completely positive trace
preserving maps as C(H), variously calling them CPTP maps, quantum channels, or just
channels.

Definition 1.10. Suppose Λt ∈ C(H) is CPTP for each t ∈ R, and that the following
conditions hold:

1. Λt is continuous with respect to t

2. Λt ◦ Λs = Λs+t,∀s, t ∈ R
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then we call {Λt}t∈R a continuous dynamical semigroup. (Since we are working in finite
dimensions, we don’t need to specify the type of continuity—they’re all the same.)

Finally, we move to measurement of quantum states. Fixing an orthonormal basis
|ψ1〉 , . . . , |ψd〉 for a Hilbert space H, a pure state |ψ〉 can be interpreted as a discrete
probability distribution, where the indices 1, 2, . . . , d are the outcomes, and the values
pi = |〈ψi|ψ〉|2 are their respective probabilities. This is possible because |ψ〉, being a pure
state, has unit norm. We see that the outcomes correspond to different regions of the state
space H, and the probabilities are based on the amplitude of the projection of |ψ〉 into
that subspace. Generalizing this idea to density matrices, and taking into account other
desired features such as the ability to bin multiple directions into single events, or feature
some outcomes very weakly, we have the following description of a measurement.

Definition 1.11. A positive operator valued measurement (POVM) is a set {Ei}ni=1 ⊂
P(H) such that

∑n
i=1 Ei = I. In the special case each Ei is a hermitian projector, Ei ∈

u(H) and EiEi = Ei, we call {Ei}ni=1 a projection valued measurement (PVM). Given a
density matrix ρ ∈ D(H), the discrete probability distribution associated with this POVM
with outcome events 1, 2, . . . , n is given by Pr(i) = pi = Tr(Eiρ). Note that condition∑n

i=1Ei = I (along with Tr ρ = 1) ensures that
∑n

i=1 pi = 1, and the positivity of each Ei
(along with ρ) ensures that each pi ≥ 0. Also note that n 6= d in general, and we may have
both n < d and n > d.

The motivating prose and definitions laid out above are summarized in the following
four postulates of quantum theory.

Postulate 1. States. The state of a physical system at time t is represented by a density
matrix ρ(t) ∈ D(H) acting on the Hilbert space H.

Postulate 2. Composition. If two distinct physical systems (or two distinct aspects of the
same physical system) are described in Hilbert spaces H1 and H2, then states of the joint
system are represented in the Hilbert space H1 ⊗H2.

Postulate 3. Evolution. States in a static environment evolve in time via continuous
dynamical semigroups; if {Λt}t is a continuous dynamical semigroup describing evolution,
and ρ(t1) ∈ D(H) is the state of the system at time t1, then the state of the system at
time t2 is given by ρ2 = Λt2−t1(ρ1) ∈ D(H).

Postulate 4. Measurement. A quantum state ρ ∈ D(H) is measured with a POVM
{Ei}ni=1. If event 1 ≤ i ≤ n is measured (which happens with probability Tr(Eiρ)), then

the post-measurement state is given by ρ′ =
EiρE

′
i

Tr(EiρE′i)
.
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1.2.3 Time Evolution of Quantum Systems

Postulate 3 asserts that quantum states in a static environment evolve via continuous
dynamical semigroups, objects which are characterized by well motivated properties: com-
plete positivity, trace preservation, continuity, and consistency of composition. Lindblad’s
theorem neatly characterizes all such objects.

Definition 1.12. A superoperator L ∈ T (H) is said to be in Lindblad form if there exists
H ∈ u(H) and Lk ∈ L(H) for k = 1, 2, · · · , d2 − 1 such that

L(X) = −i[H,X] +
d2−1∑
k=1

LkXL
†
k − {L

†
kLk, X}/2 (1.13)

where [A,B] = AB − BA is the commutator and {A,B} = AB + BA is the anti-
commutator. We call H the Hamiltonian of the system and {Lk} the Lindblad dissipators
of the system. Given the theorem that follows, we often refer to L as a supergenerator
to informally distinguish it from a superoperator, as it does not usually act on quantum
states before it is exponentiated.

Theorem 4. (Lindblad [112]) The family {Λt}t∈R ⊆ C(H) is a continuous dynamical
semigroup if and only if Λt = etL where L ∈ T (H) is of Lindblad form.

The notation etL represents the solution to the differential equation

dX(t)

dt
= L(X(t)) = −i[H,X(t)] +

∑
LkX(t)L†k − {L

†
kLk, X(t)}/2. (1.14)

which we call the Lindblad master equation. Therefore if X(t) is the solution to this
equation under initial condition X(0) ∈ L(H), then X(t) = etL(X(0)).

The Hamiltonian of the master equation is responsible for all unitary evolution, and
the Lindblad dissipators are responsible for all non-unitary dynamics. Indeed, if we set
all of the Lindblad dissipators to 0, we end up with purely unitary dynamics—setting
U(t) = e−itH , which is unitary as per Example 1.4, it holds that Λt(ρ) = U(t)ρU(t)†. This
is the solution to the Shrödinger equation, a special case of the Lindblad master equation,

dX(t)

dt
= −i[H,X(t)]. (1.15)

While a continuous dynamical semigroup can always be expressed as the exponential
of a supergenerator, we often wish to deviate from the condition of a static environment.
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This might be due to, for example, an external, classical magnetic field whose amplitude
and direction are changing as a function of time. In this case, we can imagine that we
still have a static environment over infinitesimal time intervals, during which Lindblad’s
form will apply. However, each of these infinitesimal intervals will receive different Lind-
blad forms, which motivates the use of time dependent Hamiltonians, H(t), and/or time
dependent Lindblad dissipators, Lk(t). We used classical magnetic fields as an example
above. It is worth mentioning that, by contrast, quantum environments are best dealt with
by expanding the Hilbert space to include them, rather than adding time dependence to
the supergenerator. However, the computational cost of doing so can be prohibitive, in
which case master equation approximations in the original space are very valuable when
back-action and memory effects are not important. Given a time dependent Lindblad form,
we have the master equation

dX(t)

dt
= L[t](X(t)) = −i[H(t), X(t)] +

∑
Lk(t)X(t)Lk(t)

† − {Lk(t)†Lk(t), X(t)}/2.
(1.16)

whose formal solution is written as

Λt = T e
∫ t
0 L[t′]dt′ . (1.17)

This solution does not necessarily obey Λt+s = Λt ◦ Λs. The T out front is Dyson’s time
ordering symbol, which serves to remind one that this is not a standard matrix exponential;
the non-commutativity of L[t] with itself at different times must be accounted for.

It is worthwhile to consider how to solve equations such as Equation 1.14 and Equa-
tion 1.16 in practical terms, given only classical computational resources, as numerical
solutions will be needed throughout this thesis. We introduce vectorization for this pur-
pose.

Definition 1.13. Given a linear operator X ∈ L(H), its vectorization is written as |X〉〉 ∈
H ⊗ H = Cd2

, obtained by stacking all of the columns of X into a single column vector.
We can also consider the corresponding dual vectorization 〈〈X|, a row vector, so that, for
example, |X〉〉 〈〈X| ∈ L(H⊗H). Note that vectorization is a linear operation.

Lemma 1. (Roth [90]) Suppose X, Y, Z ∈ L(H). Then |XY Z〉〉 = (ZT ⊗X) |Y 〉〉.

This useful Lemma can be applied to Lindblad’s form, giving

|L(X)〉〉 =
[
−i(I⊗H −HT ⊗ I) +

∑
Lk ⊗ Lk − (I⊗ L†kLk + (L†kLk)

T ⊗ I)/2
]
|X〉〉

(1.18)
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which conveniently moves all appearances of X to the right of the formula. Setting L̂ to
the d2×d2 matrix in the square brackets of this formula, we have the vectorized differential
equation

d |X(t)〉〉
dt

= L̂[t] |X(t)〉〉 . (1.19)

In the case that this equation is time independent, the solution is given by |X(t)〉〉 =

etL̂ |X(0)〉〉, where etL̂ is no longer just formal notation for the solution, but the concrete
exponentiation of a matrix. Most numerical computer libraries will contain such a function,
which can in principle be computed with the Taylor series

etL̂ =
∞∑
k=0

(tL̂)k

k!
, (1.20)

but is more efficiently computed with Padé approximants [81]. In the case of time de-
pendence, one convenient approach is to slice a time interval [0, T ] into N short slices
[(n − 1)δt, nδt] for n = 1, . . . , N , over each of which the Lindblad form is well approx-
imated as being constant. This produces the time-sliced approximate solution, using a
mid-ponit sampling rule, given by

T e
∫ T
0

ˆL[t′]dt′ ≈
N∏
n=1

eδtL̂[(n−0.5)δt] (1.21)

where the product is taken in the left-to-right order n = N,N − 1, . . . , 2, 1.

1.3 Statistical Inference

Once data have been collected from a quantum system, they are no longer quantum but
classical. To be of use, they must be analyzed, and this thesis places particular importance
on performing these relevant statistics in detail, where raw data is used to infer parameters
of interest about a quantum system. Indeed, this is a central theme of several chapters,
including Chapter 3, which studies statistical inference using the data from a Nitrogen
vacancy system, and Chapter 6, which considers a rigorous Bayesian analysis of data
from randomized benchmarking experiments. Therefore, in this section, we lay out some
notation and background material regarding statistical inference.
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1.3.1 Notation

If F is a probability distribution, we denote a random variable X drawn from this distri-
bution as X ∼ F , and we denote the probability (or probability density for continuous
random variables) variously as Pr(X = x), Pr(x), or p(x). If f is a measurable function
between the sample space of X and some other sample space, then the expectation of f is
defined as

E[f(X)] =

∫
f(x)p(x)dx. (1.22)

We will sometimes underscript the expectation to make it clear which distribution is being
integrated over when confusion might be possible, e.g. EX [F (X)]. In the case of discrete
random variables, the integral becomes a sum over possible values of x. Expectations are
linear; if X and Y are random variables and a, b are scalars, then it holds that

E[aX + bY ] = aE[X] + bE[Y ]. (1.23)

The (raw) moments of X are defined by taking f(x) = xn, which gives

µn = E[Xn] =

∫
xnp(x)dx (1.24)

for n = 0, 1, 2, 3, . . ., where the special case µ1 is known as the expectation value of X.
Similarly, the central moments of X are found by taking the raw moments of X − µ1,

µ′n = E[(X − E[X])n], (1.25)

where in particular we have

µ′1 = E[X] = µ1 (1.26)

µ′2 = E[(X − E[X])2] = µ2 − µ2
1 =: Var[X] (1.27)

with the latter quantity named the variance of X. The standard deviation of a random
variable is the square root of its variance,

Std[X] =
√

Var[X]. (1.28)

The notation Pr(x, y) denotes the joint density of two random variables X and Y , and
the notation Pr(x|y) denotes the density of the random variable X conditioned on the
particular value Y = y. We say that two random variables X and Y are independent if
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their joint density factorizes, Pr(x, y) = Pr(x) Pr(y), and we call them dependent otherwise.
Their covariance is the quantity

Cov[X, Y ] = E[(X − E[X])(X − E[Y ])] = E[XY ]− E[X]E[Y ] (1.29)

which is equal to 0 if X and Y are independent.

We have the following fundamental relationships of densities.

Law 1. (Conditional Density) Pr(y|x) Pr(x) = Pr(x, y) = Pr(x|y) Pr(y)

Law 2. (Marginal Density) Pr(x) =
∫

Pr(x, y)dy

Law 3. (Total Probability) Pr(x) =
∫

Pr(x|y) Pr(y)dy

Law 4. (Total Conditional Probability) Pr(x|z) =
∫

Pr(x|y, z) Pr(y|z)dy

Law 5. (Bayes) Pr(x|y) = Pr(y|x) Pr(x)
Pr(y)

= Pr(y|x) Pr(x)∫
Pr(y|x) Pr(x)dx

In each case, integration takes place over the entire sample space, and integrals can
be replaced by sums in the case of discrete distributions. One sees that these laws are
not all independent—the law of total probability is a simple consequence of the defini-
tion of marginal density and conditional density, and Bayes law is just a rearangement of
conditional density.

If Pr(x|y) is a conditional density conditioned on the particular value y, then X|y
denotes a random variable drawn from this distribution. It holds that X has distribution
Pr(x) =

∫
Pr(x|y) Pr(y)dy by the law of total probability. We will often find the resulting

laws of total expectation and total variance useful:

Law 6. (Total Expectation) E[X] = EY [E[X|y]]

Law 7. (Total Variance) Var[X] = EY [Var[X|y]] + VarY [E[X|y]]

Law 8. (Total Raw Moment) Var[Xm] = EY [E[Xm|y]]

Law 9. (Total Covariance) Cov[X, Y ] = EZ [Cov[X, Y |z]] + Cov[E[X|z],E[Y |z]]
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1.3.2 The Likelihood Function

Let Pr(y|θ) be the marginal density of the random variable Y |θ, conditioned on some
particular value θ. In the case that Y is an observable result of some experiment or trial,
and θ is an unknown parameter (or vector of unknown paramaters) that we wish to learn,
then we call Pr(y|θ) the likelihood function, and denote it as

L(θ; y) = Pr(y|θ). (1.30)

Notice that the order in which the arguments appear is switched—this standard convention
is to emphasize functional dependence on θ; this quantity represents the likelihood that θ
is the ‘true’ value given that some value y is measured.

Often our experiments will contain additional settings which are known exactly, which
we label e. In this case we sometimes explicitly add conditional dependence on e to help
us keep track of which experiment was performed, writing

L(θ; y, e) = Pr(y|θ, e) (1.31)

as the likelihood function.

Example 1.8. Suppose a coin with unknown bias is flipped n times. Let K ∈ {0, 1, . . . , n}
be the random variable representing the number of times heads lands. Then, in the notation
above, we have Y = K, y = k, θ = p, and e = n. The likelihood function is the distribution
of K|p, the binomial distribution, given by

L(p; k, n) = Pr(k|p, n) =

(
n
k

)
pk(1− p)n−k. (1.32)

a

1.3.3 Estimators

Definition 1.14. Let Y1|θ, Y2|θ, . . . , Yn|θ be identical and independent conditional ran-
dom variables with a likelihood function L(θ; y) where the sample space of the unknown
parameter θ is Rm for some m ≥ 1. Let θ̂(Y1, Y2, ..., Yn)|θ be a new random variable that
takes output values in Rm. Then we call θ̂ an estimator of the unknown quantity θ.

This broad definition “an estimator is just some function of the data” means that
estimators don’t need to be sensible. For example, θ̂(·) = 5 is a perfectly valid estimator
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whenever m = 1, but it will usually be a bad one. The estimator itself is a random
variable, with its own distribution, and therefore we can study properties such as its
expectation value or variance. These properties can be used to compare the quality of
several estimators.

Estimator Bias

For instance, we can define the bias of an estimator as follows.

Definition 1.15. Let θ̂(Y1, Y2, ..., Yn)|θ be an estimator of θ. We call

Bias[θ̂] = E[θ̂ − θ] (1.33)

the bias of θ̂, and we say that θ̂ is biased if Bias[θ̂] 6= 0. If limn→∞ Bias[θ̂] = 0, then we say

that ~̂p is consistent.

Example 1.9. As in the previous example, suppose a coin with bias p is flipped n times,
where p ∈ [0, 1] is the unknown quantity. Let K|p be the random variable representing the
number of times the coin lands heads. Then K|p has a binomial distribution with central
moments E[K|p] = np and Var[K|p] = np(1− p). Let p̂0 = K/n and p̂1 = (K + 1)/(n+ 1)
be two different estimators of p. It holds that

E[p̂0] = E[K/n] = p (1.34)

E[p̂1] = E[(K + 1)/(n+ 2)] =
n

n+ 2
p+

1

n+ 2
(1.35)

and therefore Bias[p̂0] = 0 so that p̂ is unbiased, but p̂1 is biased though consistent.

Note that in the definition n refers to the number of samples collected, whereas in this
example it appears as a parameter of the binomial distribution with a single sample K.
This difference is artificial—a binomial variate is the sum of n independent trials, and is
a sufficient statistic, which in this cases, informally, means there is nothing to gain in any
situation by keeping trials separate, so one might as well sum them. a

Estimator Risk

Although no one will complain about an unbiased estimator, there are other properties
that one might reasonably prefer if a compromise must be made. One such property is low
risk.
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Definition 1.16. Let θ̂(Y1, Y2, ..., Yn)|θ be an estimator of θ, and let L(θ̂, θ) ∈ [0,∞) be a
loss function which specifies the distance between the estimate and the true value. In this
thesis we will only be concerned with the squared-error loss function

L(θ̂, θ) = (θ̂ − θ)2. (1.36)

We call the quantity

RL(θ̂, θ) = E[L(θ̂, θ)] (1.37)

the risk of the estimator θ̂ with respect to the loss function L.

Notice that in the case of squared-error, the risk of an estimator is the sum of its
variance and squared bias:

R[θ̂] = E[(θ̂ − θ)2]

= E[θ̂2 − 2θ̂θ + θ2]

= E[θ̂2 − 2θθ̂ + θ2 + (E[θ̂]2 + E[θ̂]2 − 2θ̂E[θ̂])]

= E[(θ̂ − E[θ̂])2] + E[θ̂ − θ]2

= Var[θ̂] + Bias[θ̂]2 (1.38)

This shows that risk is slightly more nuanced than bias—it is not only concerned with the
deviation from the true value, but how large the uncertainty of the estimate is.

Example 1.10. We continue Example 1.9, introducing the estimators

p̂β =
K + β

n+ 2β
(1.39)

for any β ≥ 0, whereas the previous example looked at β = 0 and β = 1 in particular. We
can compute that the (squared-error) risk of p̂β is given by

R[p̂β] =
β2 + 4p(1− p) (n− β2)

4(n+ β)2
. (1.40)

Straight-forward calculus shows that the value of β that minimizes the average risk,
minβ

∫ 1

0
R[p̂β]dp, is β = 2. Similarly, the value of β that minimizes the maximum risk,

minβ maxp R[p̂β], is given by
√
n. Risk is plotted as a function of p in Figure 1.2 for these

two cases, as well as for the unbiased estimator, β = 0,

a
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Figure 1.2: The squared-error risk of the estimator p̂β (see Equation 1.39) for β = 0, 2
and
√
n. Here, n is fixed at the arbitrary choice n = 10.

Some Common Estimators

One of the mostly widely considered estimators is the maximum likelihood estimator
(MLE). Given a likelihood function L(θ; y), the MLE is the estimator denoted θMLE that
maximizes the likelihood as a function of θ. The MLE is always consistent, and asympot-
ically saturates the Cramer-Rao bound (discussed in the next subsection).

As in Example 1.10, we might be interested in estimators with low risk under relevant
loss functions. In that example, we saw an estimator based on minimizing the averege
squared-error loss, and minimizing the maximum risk over parameter space.

The final type of estimator we mention here are Bayes estimators, which minimize Bayes
risk, discussed in the next section. In particular, we will see that for squared-error loss, the
Bayes estimator is the mean of the posterior distribution. As it happens, the family of add-
beta estimators in Example 1.10 are all Bayes estimators for symmetric Beta-distributed
priors.

1.3.4 The Cramer-Rao Bound

Intuitively, if a likelihood function L(θ; y) is tightly concentrated about some value of
θ given some y, then y is highly informative about θ. The converse is true when the
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likelihood is broad given some result y. We can quantify this by considering the negative
m×m Hessian of the log-likelihood function, whose entries are given by

J (θ, y)i,j = −∂
2 logL(θ|y)

∂θi∂θj
. (1.41)

This matrix is called the observed information of the system. It has a large magnitude in
regions of the likelihood function that are tightly peaked. The dependence on the observed
data y may be inconvenient if we have not measured anything yet, or if we want to make
general statements that don’t depend on what we end up measuring. Therefore consider
the average observed information over possible data,

I(θ) = E[J (θ, y)], (1.42)

which is a famous matrix known as the Fisher Information . Its importance stems from
the Cramer-Rao bound (CRB) which states that [74]

Cov[θ̂|θ] ≥ (Jµ(θ))I(θ)−1(Jµ(θ))T (1.43)

for any estimator θ̂ of θ, where µ(θ) = E[θ̂(y)] is the expectation of the estimator, and
Jµ(θ) its Jacobian matrix. The matrix inequality is as defined in Definition 1.3. This puts
a lower bound on the performance of the specific estimator θ̂ conditioned on the true value
θ, as quantified by its second moment.

The linearity of derivatives in combination with having taken the logarithm of the
likelihood conspire to give the Fisher information a very useful property. If Y1 and Y2 are
independent random variables with the same parameter space, then their joint distribution
is separable making their joint loglikelihood additive, and so the Fisher information of
taking a sample from each is I(θ) = IY1(θ) + IY2(θ). Or if we take n independent and
identically distributed samples like Y , then the total Fisher information is nI(θ).

A nicer form of the CRB is available in the special case of unbiased estimators, that is,
when µ(θ) = θ, which gives

Cov[θ̂|θ] ≥ I(θ)−1. (1.44)

Since the right hand side doesn’t depend on the estimator at all, it is a generic lower bound
for every unbiased estimator. Additionally, many unbiased but consistent estimators have
a bias that scales as O(1/n) (as in Example 1.9), and therefore this form of the CRB often
holds up to O(1/n2) for such estimators.
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In order to compute the inverse of the Fisher information matrix, we need to compute
all elements of I(θ). If this is inconvenient, or if taking the inverse is inconvenient, and
we only want a bound on the variance of the ith entry of θ̂, then we can use the looser
inequality

Var[θ̂i|θ] ≥
(
I(θ)−1

)
1,1
≥ 1/I(θ)i,i. (1.45)

1.4 Bayesian Data Analysis

Bayesian data analysis can conceptually be divided into three steps [58]:

1. Setting up the full probability model of the system in question. Typically, this
involves writing down the likelihood function and deciding on a prior distribution to
place on unknown parameters. The prior distribution is subjective and encodes prior
knowledge about their values, which may be broad (not much is known) or peaked
(much is known).

2. Collecting data and computing the distribution of the unknown parameters condi-
tioned on the particular data that was observed, the posterior distribution. This
step, except for simple examples or cases where strong assumptions can be made, is
performed numerically with one of many numerical algorithms designed to sample
from posteriors.

3. Evaluate the fit of the model, determine if it is reasonable, and study the predictions
that it makes.

The premise of Bayesian analysis is that one should describe one’s uncertainty in un-
known parameters by probability distributions, and update these distrubutions as data is
obtained. This is in contrast to frequentist analysis where the true parameters do not have
distributions attached to them—they are fixed and absolute in reality, obtained only in
the limit of infinite data. Instead, one analyses the distributions of statistics (functions)
of the data, which are often arranged to estimate the true parameters.

One schema is not fundamentally superior to the other, it ultimately comes down to
personal preference, and which route is more practical and efficient for the task at hand.
Frequentist methods, for example, often excel at producing estimators of parameters and
uncertainties that are efficient to compute. However, they come at the cost of needing
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specialists to study one problem at a time, deriving appropriate custom tools. Tools such
as bootstrapping [35] can help mitigate against this, but they also often require fine-tuning.
Bayesian analysis, on the other hand, is more of a one-size-fits-all affair: the probability
model of the system is defined, a prior is chosen, and Bayes’ theorem provides the result:
a posterior distribution1.

1.4.1 Bayes’ Theorem and Inference

Recall Bayes’ law, Law 5:

Pr(θ|y) =
Pr(y|θ) Pr(θ)

Pr(y)
=

Pr(y|θ) Pr(θ)∫
Pr(y|θ) Pr(θ)dθ

=
L(θ; y) Pr(θ)∫
L(θ; y) Pr(θ)dθ

(1.46)

Bayes’ law has a striking interpretation. If we take θ to mean a parameter (or vec-
tor of parameters) that we wish to learn about, y to be the data (or collection of data
y = (y1, . . . , yn)) from an experiment that depends on θ, and Pr(θ) to be our prior knowl-
edge distribution about θ before data, then Bayes law can be interpretted as follows: the
distribution of θ conditioned on having observed some particular y, Pr(θ|y) (the posterior
distribution, exactly what a Bayesian wants to know), is proportional to the likelihood
of having gotten y conditioned on a hypothetical θ times the a priori probability of this
hypothetical value θ being correct, Pr(θ). The denominator,

∫
L(θ; y) Pr(θ)dθ, does not

depend on θ, which is the only functional dependece on the left-hand-side, and therefore
serves only to normalize the right-hand-side.

Therefore, Bayes law connects inference to simulation: if we are able to compute the
likelihood of data L(θ; y) for hypothetical true values of y, which is at heart a simula-
tion of the parameterized physical system, then we are able to make inferences about the
parameters of the system, θ.

Bayes Estimators

The Bayes risk of an estimator θ̂ for θ is the risk (see Definition 1.16) for some loss function
L marginalized over the prior, π = Pr(θ),

rL(θ̂|π) = Eθ[RL(θ̂|θ)]. (1.47)

1Numerical Bayesian methods often also require fine-tuning, though such fine tuning is becoming less
relevant as methods improve [89, 13, 12]. However, this fine-tuning is of a completely different nature;
parameters of the Bayesian algorithms are tweaked to make them more efficient, rather than being tuned
to make them correct.
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An estimator which minimizes (over estimators) the Bayes risk is known as a Bayes esti-
mator. For us, a Bayes Estimator is the mean value of the posterior,

θ̂Bayes =

∫
θPr(θ|y)dθ (1.48)

because this choice always minimizes the Bayes risk under mean-squared loss [109].

Example 1.11. Suppose a coin with unknown bias p is flipped n times, and k sides land
heads. The likelihood function is given by the binomial distribution,

L(p; k) = Pr(k|p) =

(
n
k

)
pk(1− p)n−k. (1.49)

The prior distribution, Pr(p), is chosen subjectively. In this example, we choose to assign
it as a uniform distribution, Pr(p) = 1 for all p ∈ [0, 1]. Suppose some particular value
k ∈ {0, 1, ..., n} is measured, then the posterior distribution is computed as

Pr(p|k) =
Pr(k|p) Pr(p)∫ 1

0
Pr(k|p) Pr(p)dp

=
( nk ) pk(1− p)n−k

( nk )
∫ 1

0
pk(1− p)n−kdp

= (n+ 1)

(
n
k

)
pk(1− p)n−k. (1.50)

This distribution is plotted in Figure 1.3 for several values of n and k. We see the distribu-
tion is converging on p = 0.8 as we increase n, keeping the ratio k/n = 0.8 fixed. In fact,

the posterior has a mean value of k+1
n+2

and a variance of (k+1)(n−k+1)
(n+2)2(n+3)

. Thus Bayes estimator
is given by

θ̂Bayes =
k + 1

n+ 2
. (1.51)

a

Error Bars

The interpretations of error bars in Bayesian analysis and frequentist analysis are analagous,
but different. Bayesian error bars are specified as credible intervals and frequentist error
bars are specified as confidence intervals. We replace the word ‘intervals’ with ‘regions’ in
the case of multi-dimensional parameters.
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Figure 1.3: The posterior distribution of the bias of a coin, p, after it has been flipped n
times, receiving k heads as the outcome.

• (Frequentist) Suppose a dataset y1, y2, ..., yn is collected, from which a 95% confidence
interval [l̂, û] is constructed for some parameter of interest θ. The data are variates
of some random variable, and the limits of the confidence interval, being functions
of the data, are therefore also variates of some distribution. The interpretation of
confidence intervals is as follows: if, hypothetically, an infinite number of like datasets
were collected from the same distribution, and confidence intervals were computed in
the same way for each dataset, then the true value of x would lie in these hypothetical
intervals with an asymptotic frequency of 0.95.

• (Bayesian) Suppose that Pr(θ|y1, ..., yn) is the posterior distribution of θ. Then the
probability that the true value of θ satisfies l ≤ θ ≤ u is equal to

∫ u
l

Pr(θ|y1, ..., yn)dθ.
A 95% credible interval is a choice of l and u such that this integral is equal to 0.95.

1.4.2 Posterior Sampling Methods

The coin example in Example 1.11 has an analytic posterior—this turns out to be a special
case of a conjugate relationship between the prior and the likelihood, discussed below. In
practice, however, exact posteriors are not usually not possible to compute. In this section,
after we discuss conjugate priors, we overview two popular numerical methods to sample
from posterior distributions.
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In terms of numerics, being able to sample from a continuous distribution is nearly as
good as having a formula for its density function, and sometimes better. Often, quantities
that we would most like to know about are integrals over the posterior, such as moment
and volume integrals.

Suppose we are interested in the quantity A =
∫
f(x) Pr(x)dx for some function f ,

where the integral is taken over the whole sample space. Let x1, x2, . . . , xn be samples
from Pr(x). Then assigning Â = 1

n

∑n
i=1 f(xi), we have that

E[Â] =
1

n

n∑
i=1

E[f(xi)] =

∫
f(x) Pr(x)dx = A, (1.52)

hence Â is an unbiased estimator of A. This is called the Monte Carlo integral of f . Next,

Var[Â] =
1

N2

n∑
i=1

Var[f ] =
Var[f ]

N
(1.53)

hence

Â ≈ A+O(1/
√
N) (1.54)

assuming Var[f ] is bounded. Notice this analysis is independent of the dimension of x.
Therefore, one can well estimate integral properties of distribution given only samples from
the distribution. If one is interested in plotting the distribution, then the dimension of x is
likely either 1 or 2, and either histograms or kernel density estimates (KDE) can be used.

Conjugate Priors

A conjugate prior is a family of distributions which, relative to a fixed likelhood function,
yield posteriors in the same family as the prior. Many of the common named distributions,
when considered as likelihood functions, have conjugate priors.

For instance, in Example 1.11 we found an analytic posterior for the binomial likelihood
when the prior used was a uniform distibution. The uniform distribution on the unit
interval is a special case of the beta distribution, Beta (a, b), where a = b = 1. The beta
distribution has a density function given by

fBeta(x) =
xa−1(1− x)b−1

B(a, b)
(1.55)
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where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function and Γ(·) is the usual gamma
function. If Beta (a, b) is the prior distibution for the binomial likelihood with n trials,
then the posterior distribution is given as Beta (a+ k, b+ n− k) if 0 ≤ k ≤ n is the
outcome of the experiment.

SMC Sampling

Sequential Monte Carlo (SMC) sampling is a method of sampling from a posterior by
updating the locations and weights of a swarm of particles in the sample space sequentially
for each datum in a dataset. The sequential nature of this sampler makes it particularly
appropriate for data that is being streamed, and indeed, SMC samplers are often referred
to as particle filters, sharing similarities with other filters such as Kalman filters. SMC has
receieved attention in the field of quantum information processing for this reason [63], and
the main analyses of Chapter 3 and Chapter 4 use this method.

The premise is to approximate the prior, intermediate, and posterior distributions as
finite sums of weighted points in sample space. Suppose that Pr(x) is the prior distribution
of the unknown quantity x ∈ Rm, and the dataset (y1, y2, · · · , yn) consists of variates drawn
identically and independently with the likelihood function L(x; y). We begin by sampling
elements (called particles) x1, x2, ..., xI ∈ Rm from Pr(x) and setting uniform weights
w1 = w2 = · · · = wI = 1/I to approximate the distribution Pr(x) as

Pr(x) ≈
I∑
i=1

wiδ(x− xi) (1.56)

where δ(·) is the Dirac delta function centered at the origin. Although this is not a good
approximation to Pr(x) pointwise, it is accurate at estimating quantities that are based on
integrals of Pr(x), as discussed in the introduction of this section.

Next, notice that Bayes law can be expanded as follows due to the independence of
data

Pr(x|y1, y2, . . . , yn) =
Pr(y1, y2, . . . |x) Pr(x)

Pr(y1, y2, . . . , yn)

=
Pr(y1|x)

Pr(y1)

Pr(y2|x)

Pr(y2)
· · · Pr(yn|x)

Pr(yn)
Pr(x). (1.57)

Therefore, the intermediate distrubution Pr(yk|x)
Pr(yk)

· · · Pr(yn|x)
Pr(yn)

Pr(x) can be interpreted as the
prior distribution of the next data point, yk+1. This allows us to update our particle
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approximation sequentially by applying Bayes rule. If
∑I

i=1wiδ(x − xi) is our particle
approximation at some 1 ≤ k < n, then the particle approximation at step k + 1 is given
by

Pr(x|yk+1, yk, . . . , y1) ≈ L(x; yk+1)

Pr(yk+1)

I∑
i=1

wiδ(x− xi)

=
1

Pr(yk+1)

I∑
i=1

L(xi; yk+1)wiδ(x− xi) (1.58)

where the normalization constant is

N := Pr(yk+1) =

∫
L(xi; yk+1)

I∑
i=1

wiδ(x− xi)dx =
I∑
i=1

L(xi; yk+1)wi. (1.59)

Hence updating a particle distribution with the data point yk+1 amounts to updating the
weights using the rule

wi 7→ L(xi; yk+1)wi/N (1.60)

while keeping the particles constant.

As this algorithm progresses, the weights of unlikely particles xi will diminish, and the
weights of likely particles xi will increase. Eventually, this will lead to instability as the
number of effective particles

neff = 1/
I∑
i=1

w2
i , (1.61)

will tend to 0, unless the original sampling from Pr(x) was quite dense, which is usually im-
practical. Therefore, periodically, a resampling operation is performed, where the weights
are reset to uniform, while the particles are moved closer to where they are needed most.
In this thesis, we use the Liu-West resampler [113], which samples new particles from the
mixture distribution

n∑
i=1

wi Normal
(
axi + (1− a)µ, h2σ2

)
(1.62)

where µ =
∑I

i=1wixi and σ2 =
∑I

i=1 wi(xi − µ)2. If a2 + h2 = 1, then this resampler
maintains the first two moments of the particle distribution; we use a = 0.98.
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MCMC Sampling

A Markov chain Monte Carlo (MCMC) method is an algorithm used to sample independent
elements from some desired distribution using the following general principle: an instance
of a Markov chain is simulated, where the Markov chain has been designed to have a
steady-state distribution equal to the distribution of interest.

The Metropolis–Hastings is one of the simplest such algorithms. It is designed for the
scenario where one wants to sample from the density function f(x) but one only has access
to an unnormalized version g(x), where f(x) = g(x)/

∫
g(x)dx [76]. This is often useful in

the context of Bayesian inference where f(x) = Pr(x|y) is the posterior of x given the data
d. By Bayes’ law, f(x) ∝ Pr(d|x)π(x) where both the likelihood Pr(y|x) and prior π(x)
are known, but the normalization constant

∫
Pr(y|x)π(x)dx is intractable.

The Metropolis–Hastings trick is to construct a Markov chain whose steady state distri-
bution is given by f(x), but for which simulating a random instance requires only evalua-
tions of ratios of f , which are the same as ratios of g. Then we may start with an arbitrary
initial value and evolve until we have reason to believe we are in the steady state, which is
determined either empirically or theoretically. The last time sample represents a random
sample drawn from f(x). If multiple samples are required, it is common to, say, throw
out the first 1000 transient time points of the process (the burn-in period), and keep every
100th subsequent time step as a random sample of f(x). A short auto-correlation time post
burn-in, known as a fast mixing rate, is desired, so that fewer samples need to be thrown
out.

The algorithm requires a proposal density h(x′|x) whose job is to propose the next
value of the process, x′, given the previous value, x. The prototypical choice is a normal
distribution h(x′|x) ∝ e−(x−x′)2/2σ2

. This choice affects the burn-in time and mixing rate.
For example, with a normal proposal density, a small variance will mean it takes many steps
to move around the domain of f leading to a slow mixing rate. On the other hand, a large
variance may usually propose new locations well outside the likely support of f , leading to
high rejection rates and therefore also slow mixing. A well-tuned proposal density will hit
the sweet spot. The algorithm is as follows:

1. Somehow pick an initial value, x0.

2. For k ≥ 1, draw a proposal and a random number,

x′ ∼ h(x′|xk−1)

r ∼ Unif ([0, 1]) ,
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and then set xk =

{
x′ if r ≤ g(x′)/g(xk−1)

xk−1 else
.

3. Iterate the previous step until the desired number of samples from the steady-state
have been aquired.

Intuitively this makes sense; we move from the previous location xk−1 to the proposed loca-
tion x′ with a probability that prefers a higher density of f , characterized by f(x′)/f(xk−1) =
g(x′)/g(xk−1). Therefore samples will end up in the densest regions of f(x).

The sampling method used in Chapter 6 is Hamiltonian Monte carlo (HMC) which
is a sophisticated, modern MCMC method [133]. In particular we use an library imple-
mentation called stan [22]. Here, the term Hamiltonian is used in the classical context.
The unknown distribution f(x) is treated as being the Boltzmann distribution of some
energy function over states in the sample space. The proposal for the next step in the
Markov chain simulation is drawn by simulating the dynamics of this Hamiltonian system,
using the previous sample as the starting point and a random initial momentum, for some
amount of time—the endpoint of the trajectory is the proposal. This results in very large
steps and greatly decreases the mixing time; a well tuned HMC sampler has nearly no
correlation between adjacent points. A recent improvement to HMC is the No-U-Turns
sampler, which introduces an automatic way to determine the number of steps to simu-
late each Hamiltonian trajectory [89]. A recent conceptual tutorial on Hamiltonian Monte
Carlo has been provided by [13].
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Chapter 2

The Nitrogen Vacancy Center as a
Test Platform: Preliminary Details

1

2.1 Introduction

This thesis contains several experimental demonstrations of concepts and protocols, all of
which are based on a quantum system called the Nitrogen Vacancy (NV−) center. In this
section we describe the properties and dynamics of this system. Later sections discuss
methods to design control schemes and assess the quality of this control experimentally.

Pure diamond is an allotrope of carbon arranged in a diamond cubic crystal structure.
An NV− defect is an impurity in the diamond lattice consisting of a nitrogen atom adjacent
to an empty lattice site, replacing two carbon atoms that would normally be in those
positions. This defect, when negatively charged, has six bound electrons whose spatial
wavefunction extends on the order of a dozen lattice sites before coupling to 13-carbon
atoms through Fermi-contact becomes negligible compared to coupling through dipolar
interactions [161, 57, 41]. These six electrons form an effective spin-1 electron in the

1This section, in particular the optical dynamics, measurement and initialization subsections, is based
partly on Reference [84], work done in collaboration with Chris Granade, whose main contributions appear
in Chapter 3, which is also based on this reference. This section also derives certain block structures to
help with average Hamiltonian theory, which is unpublished work done in collaboration with Romain
Ruhlmann, who helped to extend the idea to Bloch-Siegert approximations in the first rotating frame,
with a corresponding numerical implementation (found in Appendix A ‘nvham’). Little of this section is
novel, except perhaps the block treatment of Hamiltonian approximations, but serves as one of the most
complete (and hopefully beginner-friendly) references for the dynamics of NV systems.
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electronic ground state [37]. Each NV defect in a single crystal diamond has slightly
different properties, such as mechanical strain, electric fields, and magnetic fields. These
differences in the local environment are caused by randomly distributed nearby defects,
such as 13-carbon and other lattice defects, or features on the surface if sufficiently close
(/ 10 nm). It is standard practice to pick two out of these three spin energy levels to define
a qubit, though in this thesis we will often be interested in working with all three.

NV− centers have been studied extensively due to a number of remarkable physical
properties [37]. These include long coherence times at room temperature [4], the ability to
address and readout a single defect in isolation [70, 95], the ability to initialize to a (nearly)
pure state on demand [75], and the ability to selectively interact with nearby nuclei [94, 43,
48, 96, 135, 41]. Moreover, the NV− center’s sensitivity to external macroscopic properties
like magnetic fields, electric fields, and temperature, in combination with its nanoscopic
spatial profile, have shown it to be highly suitable as a quantum sensor [39, 1, 148].

2.2 Ground State Hamiltonian

There are four possible orientations for an NV−defect to have, corresponding to the four
crystalline directions of the diamond lattice. In low magnetic and electric fields the domi-
nant energy is given by the zero field splitting (ZFS) which lies along this direction, which
we call the principal axis (PA). There can additionally be small distortions on the defect’s
electron wave-function due to stray electric fields and crystal strain. As shown in detail in
Reference [37], these effects can be ignored without approximation if we rotate our refer-
ence frame so that it is centered along the combined effect of the ZFS, the strain, and the
constant electric field. For small strains and electric fields, this simply results in a slightly
modified ZFS along a slightly different direction than the PA. Henceforward, all spatial
coordinates are with respect to this modified frame.

The total Hamiltonian for an NV−center in the electronic ground state manifold, con-
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Figure 2.1: Illustration of an NV− defect in diamond, consisting of a nitrogen atom (blue)
and an adjacent vacancy filled with six electrons (red). Green laser light incident on the
center is used for initialization and measurement stimulation. Emitted red photons are are
detected and used for measurement. An applied microwave field drives spin transitions to
control dynamics, and a static external magnetic field splits degenerate energy levels.
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sisting of an effective spin-1 electron and nearby nuclei, is given by

H(t) =∆S2
z ZFS

+ γe ~B · S + γN ~B · I +
∑
i

γC ~B · Ii Zeeman

+ S · A · I +
∑
i

S · Ai · Ii Hyperfine

+ +
∑
i

I ·Di · Ii +
∑
i<j

Ii ·Dij · Ij Dipole-dipole

+ I ·Q · I Quadrapolar

+ 2Ω(t) cos (ωµwt+ φ(t)) (Sx + bSz). Microwave drive (2.1)

All terms of this Hamiltonian are written in the (modified) PA reference frame, and
definitions are provided in Table 2.1. We adopt an implicit tensor space ordering H =
HNV ⊗HN ⊗H13C with a dimension of either 3× 3× 2n or 3× 2× 2n (in the case of 14-
nitrogen or 15-nitrogen, respectively), where n is the number of relevant 13-carbon atoms
in the environment. Tensor products with the identity operator are implicit, for example,
Sz, in this context, refers to Sz⊗ IN ⊗ I⊗n13C , and SzIz,2 refers to Sz⊗ IN ⊗ I13C⊗ Iz⊗ I⊗(n−2)

13C .
Spin operators are defined in Table 2.3 (spin-1/2) and Table 2.2 (spin-1). Note that we
are using standard spin-vector notation is used, so that, for example, we have

γe ~B · S = γe (BxSx +BySy +BzSz) (2.2)

and
S · A · I =

∑
i,j∈{x,y,z}

AijSiIj (2.3)

where A is a 3× 3 hyperfine tensor indexed by {x, y, z}.
This Hamiltonian applies to both natural isotopes of nitrogen, 14-nitrogen and 15-

nitrogen, which are spin-1 and spin-1/2 respectively. However, 14-nitrogen is by far more
common, and therefore appears in all simulations and experiments presented in this thesis.
Since the nitrogen lies on the z-axis, its hyperfine tensor is diagonal, with a 14-nitrogen
value of roughly A = diag(−2.7,−2.7,−2.14)MHz [48].

Dipole-dipole interactions between nuclear spins are determined geometrically. If two
spins i and j have respective locations ~ri and ~rj in our coordinate system, then letting
~r = ~ri − ~rj, r = ‖~r‖ and r̂ = ~r/r, we get the dipolar tensor components

Dij = −2π
µ0γiγj~

4πr3
(3ri · rj − δij) (2.4)
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Symbol Value Description
S {Sx,Sy,Sz} Electron spin-1 vector
I {Ix, Iy, Iz} Nitrogen spin-1 or spin-1/2 vector
Ii {Ix, Iy, Iz} Carbon spin-1/2 vector
∆ 2π · 2.87 GHz Nominal ZFS value
~B . 100 G External magnetic field
γe 2π · 2.8025 MHz/G Electron gyromagnetic ratio
γN 2π · 0.3077(−0.4316)kHz/G Nitrogen 14(15) gyromagnetic ratio
γC 2π · 1.071 kHz/G Carbon gyromagnetic ratio
A,Ai kHz−MHz Hyperfine tensors, dipolar + Fermi contact
Di, Dij kHz Nuclear-nuclear dipolar tensors
Q −2π · 5.01 MHz 14-nitrogen quadrapolar (0 for 15-nitrogen)
Ω(t) . 2π · 20 MHz Microwave amplitude envelope
φ(t) [0, 2π] Microwave phase profile
ωµw ≈ ∆ Microwave carrier frequency
b unitless Microwave field direction misalignment

Table 2.1: Glossary of Hamiltonian parameters. Spin operators are defined in Table 2.3
(spin-1/2) and Table 2.2 (spin-1). Note that the difference between spin labels is just that:
labeling—historically, electron spins get the S symbol and nuclear spins get the I symbol.

for i, j ∈ {x, y, z}, where δij is the kronecker delta, µ0 = 4π ·10× 10−7 H/m· is the magnetic
constant. Note that Planck’s reduced constant ~ in the numerator is not squared because
of our convention to omit ~ it from Shrödinger’s equation. Hyperfine tensors A between the
electron and nuclear spins arise as a combination of dipole-dipole interaction (see above),
which must be integrated over the spatial extend of the electron wavefunction, and the
Fermi contact interaction—this calculation is difficult, and experimental measurements
are preferred [57]. The exception is when the nucleus is sufficiently far away from the
NV− so that Fermi contact is negligible, and a mean field approximation is acceptable.

The z axis is aligned with the PA, which leave the x and y axes undefined. Here, our
choice is to fix the x axis such that the microwave field lies in the xz plane, hence the
lack of Sy term in the microwave drive Hamiltonian. If a single 13-carbon is present, it is
sometimes preferable to let its spatial location determine the x-axis instead.

We see in Table 2.1 that the ZFS is the dominant energy term when we limit the
external magnetic field value. In subsequent sections we explore entering the rotating
frame induced by this term in order to simplify, ease simulations, and provide insight.
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Sx = 1√
2

0 1 0
1 0 1
0 1 0

 Sy = 1√
2

0 −i 0
i 0 −i
0 i 0

 Sz =

1 0 0
0 0 0
0 0 −1


S′x = 1√

2

 0 −1 0
−1 0 1
0 1 0

 S′y = 1√
2

0 −i 0
i 0 i
0 −i 0

 P0 =

0 0 0
0 1 0
0 0 0


S+

x = 1√
2

0 1 0
1 0 0
0 0 0

 S−x = 1√
2

0 0 0
0 0 1
0 1 0

 Sxx =

0 0 1
0 0 0
1 0 0


S+

y = 1√
2

0 −i 0
i 0 0
0 0 0

 S−y = 1√
2

0 0 0
0 0 −i
0 i 0

 Syy =

0 0 −i
0 0 0
i 0 0


Table 2.2: Our extended spin-1 operators. The first row cantains the standard spin-1
operators, and defines the spin vector {Sx,Sy,Sz}. The second row contains the 0-projector
and the ‘twisted’ spin operators that naturally arise in the NV− rotating frame due to
conjugation by S2

z. The third and fourth rows isolate individual transitions.

X = 2σx = Sx =

(
0 1
1 0

)
, Y = 2σy = Sy =

(
0 −i
i 0

)
, Z = 2σz = Sz =

(
1 0
0 −1

)
Table 2.3: Spin-1/2 operators. The spin vector is given by {σx, σy, σz}. When the 2 × 2
identity matrix is added, this forms an orthogonal basis.
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2.3 Secular and Higher Order Hamiltonian Approxi-

mations

The Hamiltonian in Equation 2.1 has time dependence which enters at both large fre-
quencies on the order of ωµw ≈ 3 GHz, and at smaller frequencies on the order of kHz.
Therefore, it will be helpful to enter the unitary rotating frame Urot(t) = eitHrot where
Hrot = ωµwS2

z. It is easy to verify that for any differentiable pure state function |ψ(t)〉 sat-
isfying the Shrödinger equation d

dt
|ψ(t)〉 = −iH(t) |ψ(t)〉, the frame-rotated state |ψ̃(t)〉 =

Urot(t) |ψ(t)〉 satisfies the Shrödinger equation

d

dt
|ψ̃(t)〉 = −iHeff(t) |ψ̃(t)〉 (2.5)

using the effective Hamiltonian

Heff(t) := Urot(t) (H −Hrot)U
†
rot(t). (2.6)

The operator solution of Equation 2.5 is denoted as

U(t) = T exp

(
−i
∫

0,t

Heff(t′)dt′
)
, (2.7)

where T is Dyson’s time ordering symbol, so that |ψ̃(t)〉 = U(t) |ψ(0)〉 for any time t. One
of the main purposes of entering this rotating frame is to make the action of the microwave
drive term appear quasi-static, that is, to eliminate time-dependence at the high frequency
ωµw, leaving behind only the slower functions Ω(t) and φ(t). As currently formulated,
this purpose is not achieved, and has in fact been made worse—terms exist in Heff(t) at
frequency e2iωµwt which arise via the scalar conjugation eiωµwt cos(ωµwt + φ(t))e−iωµwt. As
is standard practice, we use average Hamiltonian theory [73] to divide the mechanics into
successive orders of importance, while also eliminating high-frequency noise. For a fixed
time t, the average Hamiltonian expansion is given by

U(t) = exp(−it(H0 +H1 +H2 + ...)) (2.8)

where

H
0

=
1

t

∫ t

0

dt1Heff(t1)

H
1

=
−i

2t

∫ t

0

dt1

∫ t1

0

dt2[Heff(t1), Heff(t2)]

. . . (2.9)
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In the regime where time dependence of Ω(t) and φ(t) is negligible over the period of
rotation T = 2π/ωµw, as it typically is, it is useful to take this period T as our average
Hamiltonian expansion period. Then, because T is so small, any simulation time t > T
with constant Ω(t) and φ(t) can be achieved as

U(t) ≈ U(T bt/T c) = U(T )bt/T c; (2.10)

the so-called stroboscopic approximation.

The naive method of computing each of the average Hamiltonian terms in Equation 2.9
at duration T is to perform the integrals, which becomes increasingly cumbersome as the
number of nested commutants increases. However, by exploiting the known structure of
the rotating frame transformation, and using some formulas emerging from Floquet theory
due to Leskes et al. [110], we can avoid integration altogether. To begin, consider operators
acting on H = HNV ⊗ HN ⊗ H13C as being 3 × 3 block matrices with each block having
size compatible with the nuclear subspace, HN ⊗ H13C . Our rotating frame unitary can
then be written as the block diagonal matrix Urot(t) = diag(eiωµwtI, I, eiωµwtI). Conjugating
any operator X ∈ L(H) by this transformation results in

Urot(t)XUrot(t)
† =

eiωµwtI 0 0
0 I 0
0 0 eiωµwtI

A B C
D E F
G H I

e−iωµwtI 0 0
0 I 0
0 0 e−iωµwtI


= e−iωµwt

 0 0 0
D 0 F
0 0 0

+

A 0 C
0 E 0
G 0 I

+ e+iωµwt

0 B 0
0 0 0
0 H 0


≡ e−iωµwtP−[X] + P×[X] + e+iωµwtP|[X] (2.11)

where we have implicitly defined three linear operations P×, P|, and P− that project onto
the shown disjoint blocks.

Next, expanding the cosine term in our original Hamiltonian Equation 2.1 into complex
exponentials, we can write it (minus the rotation frame) as

H −Hrot = e−iωµwtH− +Hs + e+iωµwtH+ (2.12)

where Hs contains all of the static terms, and H+ and H− contain the control terms.
Combining Equation 2.6, Equation 2.11, and Equation 2.12 then gives

Heff = e−2iωµwt(P−[H−]) + e−iωµwt(P−[Hs] + P×[H−])

+ (P−[H+] + P×[Hs] + P|[H−])

+ e+iωµwt(P×[H+] + P|[Hs]) + e+2iωµwt(P|[H+]) (2.13)
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which provides simple formulas to expand Heff into the Floquet form

Heff =
∑
−2≤k≤2

eikωµwtHk. (2.14)

The matrix terms {H−2, H−1, H0, H+1, H+2} of this expansion can be plugged directly into
the formulas of Leskes [110] to compute average Hamiltonians:

H0 = H0 (2.15a)

H1 = −1

2

∑
k 6=0

[H−k, Hk]

kωµw
+
∑
k 6=0

[H0, Hk]

kωµw
(2.15b)

H2 =
1

3

∑
k,k′ 6=0,k 6=k′

[Hk′ , [Hk−k′ , H−k]]

k′kω2
µw

+
1

2

∑
k 6=0

[Hk, [H0, H−k]]

k2ω2
µw

− 1

2

∑
k 6=0

[H0, [H0, Hk]]

k2ω2
µw

+
∑

k 6=0,k′ 6=0

[Hk′ , [H−k′ , Hk]]

kk′ω2
µw

+
1

2

∑
k 6=0,k′ 6=0

[Hk′ , [Hk, H0]]

kk′ω2
µw

(2.15c)

H3 = . . .

As an example, the zeroth order average Hamiltonian—which includes two approxima-
tions often discussed in the literature, namely the secular and rotating wave approximation—
can be deduced through visual inspection by considering the blocks of H in Equation 2.1
projected using P×, P| and P−, giving

H0 = H0 = P×[Hs] + P−[H+] + P|[H−]

= (∆− ωµw)S2
z + γeBzSz + γN ~B · I +

∑
i

γC ~B · Ii

+ AzzSzIz +
∑
i

Sz(Azx,iIx + Azy,iIy + Azz,iIz)

+
∑
i

I ·Di · Ii +
∑
i<j

Ii ·Dij · Ij + I ·Q · I

+ Ω(t)(cosφ(t)Sx + sinφ(t)S′y). (2.16)

Note the twisted spin operator S′y in the control term, defined in Table 2.2. Pseudocode
for a general algorithm to compute average Hamiltonians is outlined in Algorithm 2.
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Figure 2.2: Comparison between an ‘exact’ simulation and various average Hamiltonian
simulations for a system with one NV− and one 14-nitrogen. The simulation consists of
a 1 us evolution under the constant parameters ∆ = 2π · 2.87 GHz, Bz = 20 G, ωµw = ∆−
γeBz, Q = −2π ·5.01 MHz, Axx = Ayy = 2π ·2.14 MHz, Azz = 2π ·2.7 MHz, Ω = 2π ·6 MHz,
φ = 0, and Bx = 2 G for (a), Bx = 60 G for (b). The initial state is ρ0 = |0〉〈0| ⊗ I3/3
and the measurement projection is P0 = |0〉〈0| ⊗ I3. Since these both commute with the
frame tranformation Urot(t), we don’t need to worry about exiting and entering the rotating
frame in this comparison. Exact simulation is done by time-slicing Equation 2.1 at 10 ps
intervals. Average Hamiltonian simulation is done by exponentiating sums of expressions
in Equation 2.15 at 1 ns intervals.

Simulation under Havg = H0, Havg = H0 +H1, Havg = H0 +H1 +H2, etc. successively
improves the approximation, as demonstrated in Figure 2.2. Indeed, in the secular approx-
imation Equation 2.16 we see that static magnetic fields off-axis to z on the NV− center
are completely ignored. However, higher order corrections account for this; the first order
correction will add terms of order BzBx/ωµw which we see are relevant even 50 ns into
the simulation. Given that the formulas in Equation 2.9 only involve a couple dozen ma-
trix multiplications in total (essentially the price of a single matrix exponential), from the
perspective of simulation, the cost of using an approximation better than H0 is negligible.

2.4 A Second Hamiltonian Rotating Frame

The previous section described a practical method to enter the rotating frame Hrot = ωµwS2
z

and calculate the average Hamiltonians of the effective Hamiltonian in this frame. One of
the primary assumptions of that derivation was that the microwave profile defined through
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Ω(t) and φ(t) should appear at a much lower frequency than the carrier frequency ωµw.
Specifically, we mean that the Fourier transform of Ω(t)eiφ(t) should contain most of its
support on an interval [−ω0, ω0] for some 0 < ω0 � ∆. The electron transition frequencies
|0〉 ↔ |+1〉 and |0〉 ↔ |−1〉 happen at roughly the frequencies ∆ + γeBz and ∆ − γeBz,
respectively. If one is interested in doing experiments that involve only the states |0〉 and
|+1〉 (with |−1〉 being a nuissance level), for example, then the results of the previous
section are sufficient, since one may set ωµw near one of the transitions ∆± γeBz.

If, however, one is interested in involving both transitions in the same experiment—as
we will be—then it is sometimes helpful to enter a second rotating frame. In particular,
in section Section 7.2, we found entering this frame when designing quantum gates was
essential to success, as it dramatically improved the control landscape. We begin by defin-
ing ωe = γeBz, and noting that this strategy will only work in the intermediate regime
0� ωe � ∆, for example, ωe = 2π · 50 MHz ≈ ∆/60 is a reasonable value.

Next, note that the pulse profile (Ω(t), φ(t)) can be alternatively written in Cartesian
form with the transformation

ωx(t) = Ω(t) cosφ(t) and ωy(t) = Ω(t) sinφ(t). (2.17)

If we wish to concentrate microwave power around both electron transitions, then it is
sensible to set ωµw ≈ ∆ and enforce the forms

ωx(t) = ω1(t) cos(ωet+ φ1(t)) and ωy(t) = ω2(t) cos(ωet+ φ2(t)) (2.18)

on our profile. In this way, in the absence of very nearby 13-carbon atoms, the static part
of Heff will be dominated by the term ωeSz, and ωe will be the primary frequency appearing
in our controls in the rotating frame.

Therefore, after computing our average Hamiltonian from the first frame, we enter the
second rotating frame Urot,2(t) = eitHrot,2 where Hrot,2 = ωeSz. The strategy is the same as
before, except now we have the conjugation rule

Urot,2(t)XUrot,2(t)† =

eiωetI 0 0
0 I 0
0 0 e−iωetI

A B C
D E F
G H I

e−iωetI 0 0
0 I 0
0 0 eiωetI


= e−iωet

 0 0 C
D 0 0
0 H 0

+

A 0 0
0 E 0
0 0 I

+ e+iωet

0 B 0
0 0 F
G 0 0


≡ e−iωetP^[X] + P\[X] + e+iωetP_[X] (2.19)
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that can be used in equations similar to Equation 2.13, Equation 2.14, and Equation 2.15,
and as outlined in Algorithm 2. This completes the description of the approximation.

We write
Hm,n (2.20)

to denote the average effective Hamiltonian that results from using average Hamiltonian
orders H0 + · · ·+Hm in the first rotating frame, and average Hamiltonian orders H0 + · · ·+
Hn in the second rotating frame. For example, rewriting H0 from Section 2.3 in terms of
Equation 2.18 we get

H0 = Hstatic +
1

2

[
ω1eiωeteiφ1Sx + ω1e−iωete−iφ1Sx

]
− i

2

[
ω2eiωeteiφ2S′y − ω2e−iωete−iφ2S′y

]
(2.21)

so that

H0,0 = P\[Hstatic − ωeSz] + P^[ω1eiφ1Sx − iω2eiφ2S′y]/2 + P_[ω1e−iφ1Sx + iω2e−iφ2S′y]/2

= (∆− ωµw)S2
z + γN ~B · I +

∑
i

γC ~B · Ii

+ AzzSzIz +
∑
i

Sz(Azx,iIx + Azy,iIy + Azz,iIz)

+
∑
i

I ·Di · Ii +
∑
i<j

Ii ·Dij · Ij + I ·Q · I

+
1

2

[
ω1 cosφ1Sx + ω1 sinφ1Sy − ω2 cosφ2S

′
x + ω2 sinφ2S

′
y

]
. (2.22)

The control term of H0,0 can be separated into simple transitions of the eigenstates by
defining

ω+1,x = ω1 cosφ1 + ω2 cosφ2 ω−1,x = ω1 cosφ1 − ω2 cosφ2

ω+1,y = ω1 sinφ1 + ω2 sinφ2 ω−1,y = ω1 sinφ1 − ω2 sinφ2 (2.23)

which gives

H0,0,control = ω+1,xS
+
x + ω−1,xS

−
x + ω+1,yS

+
y + ω−1,yS

−
y . (2.24)

The reverse mapping is discussed in Section 7.2.3, where control pulses are converted from
this second rotating frame back into the first. This shows, for example, that we can drive the
|0〉 ↔ |−1〉 transition along the y direction by arranging the phases φ1, φ2 and amplitudes
ω1, ω2 so that only ω−1,y 6= 0: simply choose ω1 = ω2, φ1 = π/2, and φ2 = −π/2.
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Figure 2.3: Comparison between an ‘exact’ simulation and various stacked average Hamil-
tonian simulations for a system with one NV− and one 14-nitrogen, in which we are
modulating the microwave control field at a frequency of ωe = 2π ·50 MHz. The simulation
consists of a 1 us evolution under the constant parameters ∆ = 2π · 2.87 GHz, ωµw = ∆,
Q = −2π · 5.01 MHz, Axx = Ayy = 2π · 2.14 MHz, Azz = 2π · 2.7 MHz, ω1 = 2π · 6 MHz,
φ1 = ω2 = φ2 = 0, and Bx = 20 G. Simulation details are the same as Figure 2.2, where
‘(m,n) order’ refers to the average Hamiltonian Hm,n of Equation 2.20.
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It is certainly worthwhile to ask whether it was necessary to enter these two rotating
frames separately. The issue with entering both frames at once, using Hrot = ∆S2

z +ωeSz, is
that multiple frequencies appear in the effective Hamiltonian. Using a stroboscopic scheme
in such a case is not possible unless one can find a common period of all frequencies that
is not too long. Therefore, using a joint frame transformation is less general than what we
have described above. However, if one is free to precisely set ωe in an experiment, then it
is worthwhile to enforce a common period by design—a good choice would be to make ωe
an integer divisor of ∆, such as ωe = 2π · 47.8333 MHz = ∆/N , where N = 60, in which
case one would have a Floquet expansion of the form

H =
∑

k=±{0,N−1,N+1}

eikωeHk (2.25)

for our original Hamiltonian Equation 2.1 assuming the controls from Equation 2.18. The
conjugation rule for this transformation has seven terms instead of three, given by

Urot(t)XUrot(t)
†

=

ei(N+1)ωetI 0 0
0 I 0
0 0 ei(N−1)ωetI

A B C
D E F
G H I

e−i(N+1)ωetI 0 0
0 I 0
0 0 ei(N−1)ωetI


= e−i(N+1)ωet

 0 0 0
D 0 0
0 0 0

+ e−i(N−1)ωet

0 0 0
0 0 F
0 0 0


+ e−2iωet

0 0 0
0 0 0
G 0 0

+

A 0 0
0 E 0
0 0 I

+ e2iωet

0 0 C
0 0 0
0 0 0


+ ei(N−1)ωet

0 0 0
0 0 0
0 H 0

+ ei(N+1)ωet

0 B 0
0 0 0
0 0 0

 (2.26)

for any X ∈ L(H), where Urot(t) = eit(NωeS2
z+ωeSz), which again, can be used in Algorithm 1

and Algorithm 2. The time-dependent effective Hamiltonian ends up with Floquet terms
at the following orders:

±{0, 2, N − 3, N − 1, N + 1, N + 3, 2N − 2, 2N, 2N + 2}. (2.27)
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Algorithm 1 The function EffectiveHamiltonian takes as input a Hamiltonian Flo-
quet expansion (see Equation 2.14) in the form of a mapping 〈k : Hk〉 with integer keys k,
and outputs a new Floquet expansion, representing the same Hamiltonian in the rotating
frame defined by ω and the block projections of BlockProject.

function BlockProject(p, X) . See ex. Equation 2.11, Equation 2.19,
Equation 2.26

return <Relevant projection of X for eipω>

end function
function EffectiveHamiltonian(Hfloq = 〈k : Hk〉, P )

Heff ← 〈〉 . Empty mapping with default value 0
for all k,Hk ∈ Hfloq do

for all p ∈ P do . Loop over projection integers
Heff[p+ k] += BlockProject(p,Hk) . Matrix coefficient of ei(p+k)ω

end for
end for
return Heff

end function

2.5 Using Average Hamiltonian Approximations

In the previous two subsections we have provided detailed methods for computing average
Hamiltonians of the NV system. It merits briefly discussing, now, when to use average
Hamiltonians, how many terms to include, and other practical matters.

Fundamentally, average Hamiltonian theory provides two resources: (i) it makes simu-
lation more efficient by increasing the time resolution at which one needs to simulate, and
(ii) it provides insight into quantum systems by dividing dynamics into successive orders of
importance, each of which are likely easier to understand than the original time-dependent
Hamiltonian. The latter resource is very powerful, and has been one of the main methods
of analyzing and developing pulse sequences in NMR. This thesis is primarily interested in
the former resource, owing to our heavy use of numerics and inference. In the remainder
of this subsection, advice is given with respect to simulation accuracy.

The number of average Hamiltonian terms one should use depends on the parameter
regime one is in, the intended application, and the types of experiments being simulated.
Therefore, we offer the following generic, best practice advice (which also serves as a sanity
check against implementation errors):

1. Simulate the intended application in the regime of interest under the exact Hamilto-
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Algorithm 2 The function AverageHamiltonian computes the average Hamiltonian of
the effective Hamiltonian (see Algorithm 1) generated by moving H into the rotating frame
Hrot, assuming this frame has the correct projection rules defined by BlockProject.
Floquet expansions as found in Equation 2.14 are written as mappings 〈k : Hk〉 with
integer keys k.

function Com(Hfloq = 〈k : Hk〉, m, n)
return Hfloq[m] ·Hfloq[n]−Hfloq[n] ·Hfloq[m]

end function
function AvgHamTerm(0, Heff = 〈k : Hk〉, ω)

return Heff[0]
end function
function AvgHamTerm(1, Heff = 〈k : Hk〉, ω)

H ← 0
for all k ∈ Heff do

if k 6= 0 then
H += Com(Heff, 0, k)/(kω)
H −= Com(Heff,−k, k)/(2kω)

end if
end for
return H

end function
function AvgHamTerm(2, Heff = 〈k : Hk〉, ω)

return <See Equation 2.15>

end function
function AverageHamiltonian(order, H = 〈k : Hk〉, Hrot, P , ω)

H[0] −= Hrot

Heff ← EffectiveHamiltonian(H,P )
Havg ← 0
for k = 0,. . . ,order do

Havg += AvgHamTerm(k,Heff, ω)
end for
return Havg

end function
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nian. If time slicing is manually chosen, decrease the time-step size until the results
converge.

2. Simulate the intended application under successive average Hamiltonian approxima-
tions until the solution aligns with the exact solution to within a precision suitable
for the application.

These steps were performed in Figure 2.2 in the case of evolution under static parameters.

We can also use back-of-the-envelope heuristics as follows. Let’s take the example of
the first rotating frame, ωµwS2

z, discussed in Section 2.3. The secular approximation was
stated in Equation 2.16. The accuracy of this approximation depends mostly on the size
of the first order correction, H1. Observing Equation 2.15, we see that terms of H1 will
have coefficients of order cd

ωµw
, where c and d are coefficients appearing in H −Hrot whose

operators do not commute. The largest coefficient in H − Hrot will often be the field
along z, ωe = γeBz, and a term which does not commute with Sz is Sx. This leads to
corrections of order Ω ωe

ωµw
, where Ω is the Rabi strength, and ωx

ωe
ωµw

, where ωx = γeBx

is the static field along x. If, say, ωe/ωµw ≈ 0.05 and there is a 1 G stray magnetic field
along x, then this latter correction will have strength ωx

ωe
ωµw
≈ 2π · 140 kHz, which will be

relevant on timescales of > 1 us for precision applications. One can use commutators of
the corresponding operators to find out whether a given correction will enter as a nutation
or a phase shift.

In Appendix A, a reference is provided to the Mathematica package ‘nvham’ that we
have made available online. This package computes average Hamiltonians for the NV
system, with a convenient interface for including nearby nuclear spins, and performing
coordinate transformations between the PAS and other frames. As a simple example, and
for brevity of the output equations, we continue the example of the previous paragraph
with no nuclear spins, a static magnetic field along x and z, and a Rabi field along the x
axis at frequency ωµw = ∆ + ωe. Thus in the lab frame the Hamiltonian is given by

H = ∆S2
z + ωeSz + ωxSx + 2Ω cos(2π(∆ + ωe)t)Sx. (2.28)

In Listing 2.1 we analytically compute H0 and H1 for this example using ‘nvham’. The
secular output of this code sample is

H0 =

 0 Ω√
2

0
Ω√
2

0 Ω√
2

0 Ω√
2
−2ωe

 (2.29)
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where we see the static Rabi term ΩSx as expected, and where the ms = −1 energy level
is off resonance by 2ωe, also as expected. The first order correction is given by

H1 =


−Ω2+4ωxΩ−2ω2

x

4(∆+ωe)
0 −Ω2+4ωxΩ−2ω2

x

4(∆+ωe)

0 Ω2+4ωxΩ−2ω2
x

2(∆+ωe)
−ωe(Ω+2ωx)√

2(∆+ωe)

−Ω2+4ωxΩ−2ω2
x

4(∆+ωe)
−ωe(Ω+2ωx)√

2(∆+ωe)
−Ω2+4ωxΩ−2ω2

x

4(∆+ωe)

 (2.30)

We see a leakage nutation error (we have entered a frame targeted at |0〉 ↔ |+1〉 transi-

tions) between |0〉 ↔ |−1〉 at strength ωe(Ω+2ωx)
(∆+ωe)

. We also have a frequency shift term of

strength −Ω2+4ωxΩ−2ω2
x

4(∆+ωe)
with diagonal operator diag(1, 2, 1); the pieces of this with Ω2 in

the numerator are the well-known Bloch-Siegert shift—shifts in resonance frequency in-
duced by the drive field. Finally, there are double quantum nutation errors, with the same
strength as the frequency shift error. In Figure 2.2(b) the huge discrepancy between the
secular approximation and its first order correction is due to the significant frequency shift
induced by the large off-axis static magnetic field—full Rabi flops are not observed in the
corrections because the applied microwaves are effectively off-resonance.

Finally, we mention that, for us, the second rotating frame has two purposes. The first,
as will be seen in Section 7.2, is to improve the control landscape when pulse finding. The
second, as mentioned in the paragraph following Equation 2.24, is that it makes clear which
cosine-mixed sinusoids generate which single quantum transitions, which can be useful in
simple square or gaussian pulse design. The improvement to simulation efficiency alone is
likely not worth the effort of switching into the second rotating frame.

Listing 2.1: Computing the average Hamiltonian terms H0 and H1 for Equation 2.28.

1 Needs [ ”NVHamiltonian`” ] ;
B f i e l d = Vector [{Ωx+2Ω Cos [ 2π (∆ + Ωe ) t ] , 0 ,Ωe}/γe , Cartes ian ] ;
H0 = NVAverageHamiltonian [

0 , ∆ + Ωe ,
Magnet icFie ld → Bf i e ld ,

6 AngularUnits → True
] / ( 2π ) // FullSimplify ;

H1 = NVAverageHamiltonian [
1 , ∆ + Ωe ,
Magnet icFie ld → Bf i e ld ,

11 AngularUnits → True
] / ( 2π ) − H0 // FullSimplify ;
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2.6 Optical Dynamics of the NV Center in Diamond

The previous sections considered dynamics in the optical ground state alone. Such dy-
namics are usually sufficient to describe experiments because the more complicated optical
dynamics are most often only used for initialization and readout, and therefore separated
from spin manipulation. Here we briefly summarize the optical dynamics of the NV−center
in diamond, setting up our notation for future sections. However, because of the detail that
we will pay to analyzing measurement data from this system, it is necessary for us to sum-
marize these dynamics in detail. Yet more detailed descriptions can be found elsewhere,
see, for example, the review article [38] and references therein.

The NV− center can absorb and emit photons. The energy difference between the
optical ground state and the first excited state is 637 nm (red). At room temperature,
however, a spontaneously emitted photon is usually accompanied with with the absorption
or emission of a phonon of varying energy, so that the emission spectrum of an NV−center
is spread out from about 600nm to 800nm, with a small zero-phonon spike at 637nm [70].
Many NV experiments in literature elect to work at cryogenic temperatures to reduce
phonons, thereby enabling spectroscopic distinction between different spin-state decays or
applications that require single mode photon output (our experiments, however, are all
performed at room temperature). It is experimentally convenient to optically excite the
defect from the ground state to the first excited state using light with a wavelength outside
of the emission spectrum, for example 532 nm (green). This is possible due to the presence
of higher energy states above the first excited state which very quickly decay to the first
excited state, while preserving spin populations. Separating red and green allows a confocal
microscope to be set up so that optical cycling of a single isolated NV−center can be
studied [70]: incident green light is delivered to a small region inside of a diamond, roughly
a cubic micron in volume, and red light is extracted from the same region. Assuming the
use of a diamond whose impurities are sparse enough, this region can be chosen to contain
a single NV− center.

The dynamics of the NV− center are usually described for the spin system alone, with
the optical degrees of freedom assumed to be in the ground state. However, since we
are interested in the measurement process, we must include both degrees of freedom. We
describe the dynamics using a seven level system: three levels for the optical ground state
spin system, three levels for an optical excited state spin system, and one level for an optical
inter-system-crossing (ISC). It is known that more levels exist [38], but adding them to
this discussion will not change our model of the measurement process.
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We decompose our Hilbert space as the direct sum

H = Hground ⊕Hexcited ⊕Hisc, (2.31)

where dim(Hground) = dim(Hexcited) = 3 and dim(Hisc) = 1. We define a basis for H as

|g,+1〉 =



1
0
0
0
0
0
0


, |g, 0〉 =



0
1
0
0
0
0
0


, |g,−1〉 =



0
0
1
0
0
0
0


, |e,+1〉 =



0
0
0
1
0
0
0


, (2.32)

|e, 0〉 =



0
0
0
0
1
0
0


, |e,−1〉 =



0
0
0
0
0
1
0


, |s〉 =



0
0
0
0
0
0
1


(2.33)

where {+1, 0,−1} are spin labels corresponding to the eigenvalues of Sz = diag(1, 0,−1),
and (g, e, s) refer to optical ground, excited and singlet, respectively. In this way we can
write, for example, the spin-1 z operator in the optical ground state as Sz ⊕ 0 ⊕ 0 =
|g,+1〉 〈g,+1| − |g,−1〉 〈g,−1|.

Note that throughout this thesis when we omit the electronic label from an NV− ket,
as we did in the previous sections of this chapter, our convention is that it refers to the
ground state, i.e., |0〉 = |g, 0〉, |−1〉 = |g,−1〉, and |+1〉 = |g,+1〉.

Given an external magnetic field applied along the z-axis with strength ωe (in angular
frequency units), the Hamiltonian of the system is given by

H = Hground ⊕ 0⊕ 0 + 0⊕Hexcited ⊕ 0 (2.34)

with

Hground = ∆gS
2
z + ωeSz

Hexcited = ∆eS
2
z + ωeSz (2.35)
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The terms ∆g ≈ 2π ·2.87 GHz and ∆e ≈ 2π ·1.4 GHz denote the zero-field splittings. As
the name implies, they are energies that enter into the Hamiltonian without the application
of an external field; they result from the couplings between the electrons constituting the
NV− center.

Absorption of a photon takes the system from Hground to Hexcited, and vice versa for
spontaneous photon emission. These processes are known to be spin-conserving. Although
coherent optical control is possible, we restrict our attention to the more commonly used
dissipative regime. Therefore, we describe excitation and spontaneous emission using spin-
conserving Lindblad operators,

L1 =
√
γeg (|g,+1〉 〈e,+1|+ |g, 0〉 〈e, 0|+ |g,−1〉 〈e,−1|) (2.36)

L2 =
√
k · γeg (|e,+1〉 〈g,+1|+ |e, 0〉 〈g, 0|+ |e,−1〉 〈g,−1|) (2.37)

where γeg is the rate of spontaneous emission, about 77 MHz. Without the additional
dynamics described below, this would imply an average excited state lifetime of about
1/γea = 13 ns. The dimensionless parameter k corresponds to the laser power (as a fraction
of the spontaneous emission rate γeg) and in our experiments is typically on the order of
unity when the laser is on. It can be set to 0 in periods where the laser is off.

Spin selective measurement is possible because of an additional decay path that is
not spin-conserving and emits photons with a wavelength outside of the 600 nm–800 nm
emission spectrum. This route preferentially allows the excited |e,−1〉 and |e,+1〉 states
to decay to the ground states through the ISC to the state |s〉. It can be modeled using
the Lindblad dissipaters

L3 =
√
γes/2 |s〉 〈e,+1| (2.38)

L4 =
√
γes/2 |s〉 〈e,−1| (2.39)

L5 =
√
γsg/3 |g,+1〉 〈s| (2.40)

L6 =
√
γsg/3 |g, 0〉 〈s| (2.41)

L7 =
√
γsg/3 |g,−1〉 〈s| . (2.42)

The first two move support on the excited |e,−1〉 and |e,+1〉 states to the ISC state.
The last three spread ISC population approximately evenly (and incoherently) over the
ground space. This may seem counterintuitive given that optical excitation of sufficient
duration results in high spin state polarization; the resolution is that the selective decay
from |e,+1〉 , |e,−1〉 to |s〉 is what actually drives polarization, as measured by [146]. The
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Figure 2.4: The quantum state is initialized to fully mixed state in the optical ground
spin-1 manifold, which is approximately the Boltzmann distribution at room temperature
and low magnetic field. Therefore at t = 0, the combined |g,+1〉, |g,−1〉manifold has twice
as much population as |g, 0〉. A laser pulse of duration 5µs is applied starting at 1µs. The
populations of the subspaces spanned by the pure states in the legend are tracked through
time. The values used are k = 0.3, γeg = 77 MHz, γes = 30 MHz, γsg = 3 MHz, and
γ01 = 0.5 MHz. At 6µs when the laser pulse is turned off, the excited states quickly decay
to the ground states, and the singlet state slowly leaks back to the ground state; normally
we wait around 5 or 10 times the characteristic decay time before resuming activity. Note
that full polarization will never be reached due to the nonzero mixing rate γ01.

rate of the spin-selective decay is roughly γes = 30 MHz, and comparing this to γea, shows
that the excited ±1 states take the ISC path roughly 1/3rd of the time. The lifetime of the
singlet |s〉 is quite long, with a decay rate of roughly γsg = 3 MHz; this is the time scale
that will end up dominating the optimal measurement time.

Small non-spin conserving transitions are estimated to have a rate of about γ01 =
1 MHz [38]. They can be modelled as the Lindblad operators

L8 =
√
γ01/4 |g,+1〉 〈e, 0|

L9 =
√
γ01/4 |g,−1〉 〈e, 0|

L10 =
√
γ01/4 |g, 0〉 〈e,+1|

L11 =
√
γ01/4 |g, 0〉 〈e,−1| . (2.43)
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Solving the Lindblad master equation (introduced in Section 1.2.3),

dρ(t)

dt
= −i[H, ρ(t)] +

11∑
i=1

(
Lkρ(t)L†i − (ρ(t)L†iLi + L†iLiρ(t))/2

)
, (2.44)

with some initial state ρ(0) allows us to track the populations and coherences of the quan-
tum system through time. A simulation of this master equation is plotted in Figure 2.4. If
we start with spin-state coherences, they will quickly die off due to the mismatch in zero-
field splittings between the optical ground and excited states. Since we have no coherence
generating terms in our internal Hamiltonian, describing the optical dynamics in a fully
quantum setting is overkill. If we were to simultaneously turn on a resonant microwave
field and the green laser, the simplifications we will make in Section 2.7.2 would not apply.

2.7 Measurement Dynamics

It is possible to gain information about the spin state of the NV system by simultaneously
illuminating it and counting the photons it emits in the process. This works because the
ISC is spin selective. States initially with support on the subspace span(|g,−1〉 , |g,+1〉),
once excited, have a decay path which does not emit a detectable photon. Therefore,
states initially with support in this space, on average, appear dimmer. We now formalize
this. A great many symbols were introduced in the previous subsection, and even more
are introduced in this section—a comprehensive summary is provided in Table 2.4.

2.7.1 Measurement Description

A single measurement of an NV− center consists of turning the laser on for some amount
of time (on the order of 500 ns) and counting the spontaneously emitted photons in this
duration. We assume in our model that no information about arrival time or spectral
properties is recorded.

The probability of a quantum system spontaneously emitting a detectable photon
within a short duration dt at time t is given by the product of the rate of spontaneous
emission, the length of the time window, and probability of being in the excited triplet
manifold [168]:

Pr (photon; [t, t+ dt]) = γea Tr [Pe · ρ(t)] dt, (2.45)
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Symbol Value Description

0,±1 Spin-1 labels
e, g, s Excited (|e,+1〉 , |e, 0〉 , |e,−1〉), ground (|g,+1〉 ≡ |+1〉 , |g, 0〉 ≡

|0〉 , |g,−1〉 ≡ |−1〉), and singlet (|s〉) manifolds
γeg 77 MHz Spontaneous decay rate from e to g
γes 30 MHz Spontaneous decay rate from e to s (only applies to |e,±1〉)
γsg 3 MHz Spontaneous decay rate from s to g
γ01 0.5 MHz Non-spin conserving spontaneous decay rate from e to g
k ∼ 1 Laser excitation from g to e, as a unitless fraction of γeg
Li Lindblad jump operators describing measurement process
ρ(t) In context, the density operator at time t when measurement begins

at t = 0
R Rate matrix of population dynamics (Equation 2.52)
~p(t) 5D vector describing populations in various subspaces; function of

ρ(t)
µ(t) ≤ 77 MHz Instantaneous visible photon emission rate given state ρ(t), sometimes

denoted µ(t, ρ(t))
∆t ∼ 400 ns Duration of measurement (see also Figure 3.4)
ne ∼ 0− 20 Number of visible NV photons emitted during single measurement

process of pre-measurement state ρ(0)
Γ Average background photon counts in duration ∆t
η ∼ 10−4 Fraction of ne detected by photon detector, on average
nd Number of visible NV photons detected during single measurement

process of pre-measurement state ρ(0)
µ0 ∼ 10−3 Expected number of detections in single measurement, assuming pre-

measurement state ρ(0) = |g, 0〉
µ1 ∼ 0.7 · 10−3 Expected number of detections in single measurement, assuming pre-

measurement state ρ(0) = |g,−1〉
q ∼ 0.9 Pseudo-pure state preparation purity
µ′0, µ

′
1 Modifications of µ0, µ1 to account for pseudo-pure preparation

α Bright reference; expected number of detections when ρ(0) = |g, 0〉,
including background, finite visibility, and pseudo-pure preparation.
May implicitly be summed over some number of measurement repe-
titions, N , depending on context

β Dark reference; same as α, but for ρ(0) = |g,−1〉 (or |g,+1〉)
γ Signal; same as α, but for ρ(0) of interest
p p = Tr[|g, 0〉〈g, 0| ρ(0)] (distinct from ~p(t))

Table 2.4: Symbols used to describe measurement dynamics. Some values, such as back-
ground counts and visibility, may change significantly depending on the experimental
setup—in such cases we quote values from our own setup.
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where Pe = |e,+1〉 〈e,+1| + |e, 0〉 〈e, 0| + |e,−1〉 〈e,−1| is the projector onto the excited
subspace Hexcited and ρ(t) ∈ D(H) is the state of the system at time t. This defines an
inhomogeneous Poisson process, where the rate of events is time-dependent, given by

µ(t) = γea Tr [Pe · ρ(t)] . (2.46)

This is a generalized version of the more common homogeneous Poisson process, where the
event rate λ is constant, and the probability of k events in the time duration t is given by
Pr (k) = e−λt(λt)k/k!. An inhomogeneous Poisson process has a similar formula given by

Pr (ne|ρ(0)) =

(∫ ∆t

0
µ(t)dt

)ne
ne!

e−
∫∆t
0 µ(t)dt (2.47)

where ne is the number of emitted photons during the interval [0,∆t]. The expected
number of emitted photons is then

E[ne|ρ(0)] =

∫ ∆t

0

µ(t)dt. (2.48)

With our typical parameters, the expected number of emitted photons is on the order of a
dozen. Optimal measurement times ∆t will be discussed in Section 3.3.6.

Notice that we are conditioning on what we call the pre-measurement state, ρ(0). If
the parameters in the dynamics are known and fixed, then so too is ρ(t) for 0 ≤ t ≤ ∆t
given the pre-measurement state. It follows that the inhomogeneous rate function µ(t) is
conditioned upon the pre-measurement state, µ(t) = µ(t|ρ(0)), but we often omit this for
notational simplicity, writing simply µ(t).

Given the parameters of the Hamiltonian and Lindblad dissipaters, the pre-measurement
state, and an integration time, we now have a concrete method of calculating the expected
number of photons emitted.

2.7.2 The Rate Equation Simplification

Due to the absence of coherence, a full open quantum system simulation of ρ(t) is unnec-
essary to compute µ(t). Instead, we can reduce our dynamics to a rate equation picture
without further approximation.
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To this end, we define the probabilities

pg0(t) = Tr [|g, 0〉〈g, 0| ρ(t)] (2.49a)

pg1(t) = Tr [(|g,−1〉〈g,−1|+ |g,+1〉〈g,+1|)ρ(t)] (2.49b)

pe0(t) = Tr [|e, 0〉〈e, 0| ρ(t)] (2.49c)

pe1(t) = Tr [(|e,−1〉〈e,−1|+ |e,+1〉〈e,+1|)ρ(t)] (2.49d)

ps(t) = Tr [|s〉〈s| ρ(t)] , (2.49e)

as well as the vector ~p(t) = (pg0(t), pg1(t), pe0(t), pe1(t), ps(t))
T ∈ [0, 1]5. Here, ρ(t) is the

solution to the Lindblad master equation Equation 2.44. Notice that the components of
this vector sum to unity,

∑5
i=1 pi(t) = 1 because the projectors used in the definitions of

its components sum to the identity.

Combining the master equation with the definitions from Equation Equation 2.49, we
can compute the time evolution of each component of ~p(t). For example, we have

ṗg0(t) = Tr[|g, 0〉〈g, 0| ρ̇(t)]

= Tr

[
|g, 0〉〈g, 0|

(
−i[H, ρ(t)] +

∑
k

(
Lkρ(t)L†k − (ρ(t)L†kLk + L†kLkρ(t))/2

))]
= −kγegpg0(t) + γegpe0(t) +

γsg
3
ps(t) (2.50)

where we have skipped a few lines of algebra. In this way we end up with a set of coupled
linear differential equations involving rates from the Lindblad operators which can be
described by the matrix DE

ṗg0(t)
ṗg1(t)
ṗe0(t)
ṗe1(t)
ṗs(t)

 =


−kγeg 0 γeg γ01/2 γsg/3

0 −kγeg γ01/2 γeg 2γsg/3
kγeg 0 −γeg − γ01/2 0 0

0 kγeg 0 −γeg − γes − γ01/2 0
0 0 0 γes −γsg

 ·

pg0(t)
pg1(t)
pe0(t)
pe1(t)
ps(t)

 ,

(2.51)
which we write in condensed notation as

~̇p(t) = R · ~p(t). (2.52)

Notice that the columns of R sum to 0 which ensures that ~p(t) remains a probability vector
as it evolves. This condensation of the Lindblad master equation into a rate equation
of probabilities is possible because, in our special case, the Hamiltonian commutes with
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the projectors and the Lindblad dissipaters have no dynamics within these subspaces.
This assumption would break if the NV were placed in a magnetic field with off-axis field
components comparable to the zero-field splittings, or if near-resonance microwave fields
were turned on during the laser pulse.

The solution of Equation Equation 2.52 is ~p(t) = etR~p(0). Thus the inhomogeneous
Poisson rate from Equation Equation 2.46, µ(t) = γea Tr [Pe · ρ(t)], can be simplified to
µ(t) = γea(pe0(t) + pe1(t)), or in terms of the initial state,

µ(t) = γea ~m · etR~p(0)

with ~p(0) = (Tr[|g, 0〉〈g, 0| ρ(0)],Tr [(|g,−1〉〈g,−1|+ |g,+1〉〈g,+1|)ρ(0)] , 0, 0, 0)T

(2.53)

where ~m = (0, 0, 1, 1, 0)T is the projector onto the excited space, and where we have
assumed that the pre-measurement state ρ(0) has support only on Hground. This new
expression is much more tractable as it involves just a 5 × 5 matrix exponential, instead
of a 49× 49 matrix exponential in superoperator space. It also makes it simpler to derive
the following relationship:

µ(t|ρ(0)) = γea ~m · etR~p(0)

= γea ~m · etR(Tr[|g, 0〉〈g, 0| ρ(0)],Tr [(|g,−1〉〈g,−1|+ |g,+1〉〈g,+1|)ρ(0)] , 0, 0, 0)T

= Tr[|g, 0〉〈g, 0| ρ(0)]γea ~m · etR(1, 0, 0, 0, 0)T

+ Tr [(|g,−1〉〈g,−1|+ |g,+1〉〈g,+1|)ρ(0)] γea ~m · etR(0, 1, 0, 0, 0)T

= Tr[|g, 0〉〈g, 0| ρ(0)]µ(t, |g, 0〉〈g, 0|)
+ Tr [(|g,−1〉〈g,−1|+ |g,+1〉〈g,+1|)ρ(0)]µ(t, |g,+1〉〈g,+1|)

= p · µ(t, |g, 0〉〈g, 0|) + (1− p) · µ(t, |g,+1〉〈g,+1|) (2.54)

where p = Tr[|g, 0〉〈g, 0| ρ(0)], again assuming ρ(0) has support only on Hground. Note that
the choice of using |g,+1〉 rather than |g,−1〉 (or any superposition of both) was arbitrary.
Therefore the rate of photon emission during measurement given the pre-measurement
state ρ(0) is the convex combination of the the photon emission rates of the states |g, 0〉
and |g,+1〉, where the convex combination parameter is the overlap of ρ(0) with |g, 0〉. It
is this relationship that ultimately justifies the notion of taking reference measurements to
calibrate the signal measurement.

An immediate corollary of this is that Equation Equation 2.48 can be simplified to

E[ne|ρ(0)] = pE[ne| |g, 0〉〈g, 0|] + (1− p)E[ne| |g,+1〉〈g,+1|] (2.55)
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which says that the expected number of emitted photons during measurement for the pre-
measurement state ρ(0) is the convex combination of the expected number of photons
for the pre-measurement states |g, 0〉 and |g,+1〉. We already know that ne is always
a Poisson distribution for any pre-measurement state (Section 2.7.1), and that a Pois-
son distribution is characterized completely in terms of its expected value, therefore once
µ0 := E[ne| |g, 0〉〈g, 0|], µ1 := E[ne| |g,+1〉〈g,+1|], and p = Tr[|g, 0〉〈g, 0| ρ(0)] are known,
everything about Pr (ne|ρ(0)) is also known:

Pr (ne|ρ(0)) =
(pµ0 + (1− p)µ1)ne

ne!
e−(pµ0+(1−p)µ1) (2.56)

which is a more tractable version of Equation Equation 2.47. Note that µ0 and µ1 will be
redefined in the next section to account for visibility and background counts.

2.7.3 Measurement Visibility and Noise

There are two mechanisms that will affect our photon counting: photons can get lost along
the way to the detector, or photons can be detected that did not originate from the NV.
In Section 2.7.1 we derived the probability of the NV emitting some number of photons
during a measurement, Pr (ne), and in Section 2.7.2 we provided a simpler formula for the
same quantity.

In this section we introduce two new variables, Γ and η. Let Γ be the rate of dark counts
per unit time, due both to noise in the photon counter itself and to stray photons. Similarly,
let η be the probability that a photon emitted by the NV center will be collected by the
detector. This parameter is largely determined by the quality of the confocal microscope
and the solid angle of emitted photons in view.

It is useful to define ndc as the random variable representing those detected photons
which were dark counts, and ntd as the random variable representing those detected photons
which originated from the NV, dubbed ‘true detections’. We have the relationship

nd = ndc + ntd (2.57)

where nd is the random variable representing all detected photons during a single mea-
surement window. Note that ndc and ntd are independent random variables, and also, that
they are not in practice distinguishable.

Assuming the rate of dark counts is constantly equal to Γ over the a measurement
duration ∆t we simply have

ndc ∼ Poisson (Γ∆t) . (2.58)
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The true detections are slightly more complicated. Each photon emitted by the NV has an
(independent) probability η of arriving at the detector and being detected. We therefore
have the conditional distribution

ntd|ne ∼ Binom (ne, η) (2.59)

where we are conditioning on a particular number of photons being emitted by the NV, ne.
Recall that ne is Poisson distributed with a mean which we label µ = Ene := E[ne|ρ(0)]
for now. We can therefore use the law of total probability to compute

Pr (ntd = n) =
∞∑
m=0

Pr (ntd = n|ne = m) Pr (ne = m)

=
n−1∑
m=0

0 · Pr (ne = m) +
∞∑
m=n

(
m

n

)
ηn(1− η)m−n

µme−µ

m!

=
ηn(1− η)−ne−µ

n!

∞∑
m=n

(1− η)mµm

(m− n)!

=
(ηµ)ne−ηµ

n!
, (2.60)

which shows that ntd is also Poisson distributed, with a mean given by ηµ. Since the sum
of two independent Poisson variables is also Poisson, we conclude that the random varibale
of interest, nd = ntd + ntd, is Poisson distributed,

nd ∼ Poisson (Γ∆t+ ηE[ne|ρ(0)]) . (2.61)

This, in combination with Equation 2.55, gives

nd ∼ Poisson (Γ∆t+ η(pµ0 + (1− p)µ1))

= Poisson (p(Γ∆t+ ηµ0) + (1− p)(Γ∆t+ ηµ1)) (2.62)

where µ0 := E[ne| |g, 0〉〈g, 0|], µ1 := E[ne| |g,+1〉〈g,+1|], and p = Tr[|g, 0〉〈g, 0| ρ(0)].

Therefore, just as µ0 and µ1 served as the maximum and minimum reference counts for
the expected emitted number of photons, E[ne], we see that in the case of measurement
visibility and noise, the numbers (Γ∆t+ ηµ0) and (Γ∆t+ ηµ1) serve as the new references
for E[nd].
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2.8 State Initialization

Simply illuminating an NV center for a period of time with a laser, and then waiting for the
system to settle, results in a highly polarized spin state. This can be shown by analysing
the steady state solution to the rate equation. Importantly, the equilibrium state is unique,
so that no matter what the initial conditions are to the initialization procedure, the final
state is the same.

2.8.1 The Steady State Solution to the Rate Equation

The rate equation derived in Section 2.7.2, while much simpler than the Lindblad master
equation it was derived from, is still not analytically solvable unless certain terms like γ01

are assumed to be zero. In order to estimate, for example, the time required to initialize
the NV center, it will be helpful to consider the steady state solutions to the rate equation.

The rate matrix R from Equation Equation 2.52 has only non-positive eigenvalues, and
must have a non-trivial null space. To see this, examine the solution to the rate equation,
~p(t) = etR~p(0). If R had positive or complex eigenvalues, the probability vector ~p(t) would
either blow up or gain complex entries, neither of which are allowed under a Lindblad
master equation. Moreover, if all of the eigenvalues were strictly negative, ~p(t) would
asymptote to 0, and would therefore violate conservation of probability, hence at least one
of the eigenvalues must be 0.

The null space completely specifies the steady state solution. Indeed, suppose that we
have an initial set of populations ~p(0) and decompose this into an eigenbasis ~v1, ..., ~v5 for R,
where it holds that ~v1, .., ~vi0 all have eigenvalue zero, and ~vi0+1, .., ~v5 have strictly negative
eigenvalues λi0+1, ..., λ5. This gives ~p(0) =

∑5
i=1 ai~vi for some real coefficients a1, ..., a5.

The evolution is now described by

~p(t) =
5∑
i=1

aie
Rt~vi =

5∑
i=1

aie
λit~vi =

i0∑
i=1

ai~vi +
5∑

i=i0+1

aie
λit~vi

t→∞−−−→
i0∑
i=1

ai~vi, (2.63)

which is to say that only the population that was originally within the null subspace can
remain in the steady state. This analysis also shows that the non-zero eigenvalue with the
smallest absolute value largely determines the rate of decay — populations in this subspace
take the longest to die.

As a technical aside, note that the rate matrix R is not normal, so that its eigenspaces
are not orthogonal. This means that the population of the null space cannot be naively
computed by projecting onto that subspace; a full linear inversion must be performed.

61



When the laser is off, we have k = 0 and the null space is two dimensional, spanned
by (1, 0, 0, 0, 0)T and (0, 1, 0, 0, 0)T, which correspond to the populations of the optical
ground state – this is not surprising. The three remaining eigenvalues are −(γeg + γ01/2),
−(γeg+γes+γ01/2), and −γsg. The first two die off quickly – these correspond to population
escaping from the optically excited states. The last rate, γsg, is the most important,
having an eigenvector (1/3, 2/3, 0, 0, 1)T, corresponds to population slowly seeping out of
the singlet state and entering the three optical ground state levels. State initialization is
complete once the singlet state is sufficiently depleted. The process is exponential, so one
need only wait some small multiple of 1/γsg before the population of |s〉 is vanishingly
small.

When the laser is on, so that k > 0, the eigenstructure of the rate matrix is not as
tractable, but we can still make progress. First, it can be shown that the null space
is now only one dimensional. We denote the probability vector spanning the null sub-
space as ~pss = (pssg0, p

ss
g1, p

ss
e0, p

ss
e1, p

ss
s )T. This is extremely important because it validates

the NV−initialization procedure: no matter what the quantum state was before the laser
is turned on, if you let it equilibrize under optical illumination, it will reach a unique
steady-state.

Under the approximation that γ01 = 0, we have ~pss = (1/(1 + k), 0, k/(1 + k), 0, 0)T

which has support only on the mS = 0 spin state. We see that if k = 1 so that the rate
of spontaneous emission is equal to the rate of optical excitation, the ground and excited
mS = 0 populations equilibrize to the same value of 1/2. The null eigenspace is much
more complicated when γ01 > 0. Though an analytic expression can be derived, it is a
large unhelpful mess of divisions and multiplications of the various rates which we have
been unable to simplify. To gain some insight, in Figure 2.5 we plot the components of
~pss as a function of γ01. As γ01 increases, two properties are apparent: the steady-state
population of the mS = ±1 spin states increases, as expected, but also, the steady-state
singlet state population increases dramatically. The latter effect occurs because the singlet
state’s relatively long lifetime makes it a good storage location, and now due to γ01, there
is always some population to feed it. Indeed, expanding ~pss in a γ01 power series about 0,
the steady state population of the singlet is psss = 3kγ01

2(k+1)γsg
+O(γ2

01).

2.8.2 Imperfect Preparation: The Pseudo-pure State

Due to small but important spin-non-conserving terms in the master equation during
continuous optical excitation Equation 2.43, the steady state density matrix must have
non-zero support on the states |g,−1〉, |g,+1〉, |e,−1〉, and |e,+1〉. This can be seen in
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Figure 2.5: The components of ~pss, the vector spanning the one dimensional null space of
the rate matrix R, as a function of the spin-flip rate γ01. Population of this vector outside
of the |e, 0〉, |g, 0〉 subspace results in imperfect polarization. The other rate values used
are k = 0.3, γeg = 77 MHz, γes = 30 MHz, and γsg = 3 MHz.
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Figure 2.5. This means that the initialization process does not asymptote to the pure state
|g, 0〉, but rather to a mixed state ρ0 which is mostly pure. Since our optical model does
not distinguish between ms = +1 and ms = −1, they must have equal population in the
pumping steady-state, and therefore ρ0 can be written as a pseudo-pure state [29],

ρ0 = q |g, 0〉〈g, 0|+ (1− q) I
3
, (2.64)

where the purity parameter q depends in a non-trivial way on all of the parameters of
the rate equation, but generally decreases as the rates of spin-non-conserving processes
increase. It is pseudo-pure in the sense that any unitary (and in general, unital) process
only acts on the first term,

Uρ0U
† = qU |g, 0〉〈g, 0|U † + (1− q) I

3
(2.65)

so that its lack of complete purity, in practice, serves only to limit the contrast of mea-
surement. This is discussed further in Section 7.5, where we consider pseudo-purification
of the adjacent nitrogen spin.

To see this, we begin by computing the expected number photons emitted during the
measurement of our preparation procedure ρ0 using Equation Equation 2.55,

µ′0 := E[ne|ρ0] =
1 + 2q

3
µ0 +

2− 2q

3
µ1. (2.66)

Next, if prior to measuring ρ0 we perform an operation |g, 0〉 7→ |g,+1〉, which may be
implemented as an adiabatic inversion with a microwave pulse, we have a pre-measurement
state

ρ1 = q |g,+1〉〈g,+1|+ (1− q) I
3

(2.67)

which when measured emits an expected number of photons

µ′1 := E[ne|ρ1] =
1− q

3
µ0 +

2 + q

3
µ1. (2.68)

Previously we had considered µ0 and µ1 as the quantities that define the reference mea-
surements in the absence of noise. However, given that ρ0 is the best achievable initial
state using standard techniques, it is in practice more convenient to use µ′0 and µ′1. Indeed,
if we prepare the state ρ0 and perform any unital operation resulting in a pre-measurement
state

ρ = qρψ + (1− q) I
3
, (2.69)
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then some simple algebra shows that

E[ne|ρ] = pµ′0 + (1− p)µ′1 (2.70)

where p = Tr[ρψ |g, 0〉〈g, 0|].
Finally, if we take into consideration finite visibility η and dark count rate Γ as discussed

in Section 2.7.3, we may define

α := E[nd|ρ0] = Γ∆t+ ηµ′0
β := E[nd|ρ1] = Γ∆t+ ηµ′1
γ := E[nd|ρ]. (2.71)

to arrive at

E[nd|ρ] = γ = pα + (1− p)β
nd|ρ ∼ Poisson (pα + (1− p)β) (2.72)

which is analagous to Equation Equation 2.62 but for our pseudo-pure state preparation.
The quantity γ, which we will call the signal, is by definition conditioned on the pre-
measurement state ρ, and will henceforward generically refer to the expected number of
detected photons given the pre-measurement state of interest or, equivalently, the experi-
ment of interest which when performed on the preparation state ρ0 yields ρ. We will call
the quantities α and β our references because they bound the expected values of detected
photons for arbitrary states of the form in Equation Equation 2.69. More specifically, α is
the bright reference and β is the dark reference since α > β.

2.9 Experimental Setup

Here we give a brief overview of the experimental setup used for the experiments in this
thesis. Giving a complete overview is beyond the scope of this thesis, and we refer the
reader to Reference [138], where a full account of our particular setup is outlined. The
setup was constructed by Osama Moussa and Om Patange, and maintained primarily by
myself while the experiments presented in this thesis were being performed.

The setup consists of three large composite components:

• a custom confocal microscope with micrometer resolution, using 532 nm light for
excitation, a single photon counting module for detection, and including a switching
component for the laser with a ∼ 50 ns risetime,
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• a microwave circuit to deliver arbitrarily shaped quadrature pulses to the diamond
that can be synced to the laser switch and photon counting module,

• a control computer with accompanying software suite to conveniently acquire images,
run microwave experiments, including those specified as a remote command from
another computer.

The confocal microscope has four distinct arms. The output of a 100 mW green 532 nm
CW laser enters the first arm whose purpose is to switch laser on and off at the end point
quickly provided an external digital signal. This is achieved with a double-pass through an
acousto-optic modulator (AOM), which, when driven, splits incoming light into multiple
spatial modes, one of which is picked off by an iris. The result is input into the second arm
which shapes the light back into a Gaussian mode by passing through a single-mode optical
fiber. The third arm consists of a pair of electronically controlled galvonometer mirrors
which, aided by a pair of lenses, determine the angle of incidence into the main objective
lens, thereby allowing optical scanning of the sample. Lower-energy light (∼ 600−900nm)
that fluoresces from the current region of focus of the objective travels backward along the
same path as the incident green light, except that past the galvonemeter mirrors, it passes
through a dichroic mirror which reflects green light. This transmitted light is focused
through a 5 um pinhole confocal to the to the objective lens’ focus, and is subsequently
detected by an avalanche photo detector (APD). In addition to being able to steer the
focus using the galvo mirrors, the entire diamond can be translated under the objective
using a 3-axis stage. A detailed diagram is found in Reference [138].

The microwave circuit, pictured as a part of Figure 2.6, consists primarily of an arbitrary
waveform generator (AWG) that shapes two analog profiles with 2 ns resolution, which are
then mixed with a microwave tone using an in-phase and quadrature (IQ) modulator.
These analog profiles, up to circuit distortions, become the coefficients of Sx and S′y in
the NV Hamiltonian. This signal is transmitted to the NV center by placing a 25 um wire
nearby carrying the signal, acting as an antenna. The AWG also serves to synchronize the
microwave signal with the counter and laser, which are gated by digital outputs.

The experiment is run by a lab computer. It constructs images inside the diamond by
rastering the galvo mirrors and recording the number of photons collected at each position
of a 2D grid, which become the pixels of a gray-scale image—NV centers are visible as bright
spots in a dark background. The lab computer also compiles pulse sequences, specified us-
ing a custom text-based syntax, into sequences of voltage levels and digital states at each
time-step, which is then sent to the AWG. A photon count is recorded for every instance
that this pulse program opens the counting window. This software, implemented in MAT-
LAB, has a rich history—it was originally written by Jonathan Hodges, and subsequently
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modified (at times heavily) by at least the following authors: Colm Ryan, Osama Moussa,
Chris Granade, Om Patange, Romain Ruhlmann, Madelaine Liddy, Michal Kononenko,
and myself. The lab computer is also able to enter a mode where it listens for experiments
sent by other computers over the network. Timestamps and photon counts are returned
when the experiment is complete. This mode was developed specifically for the adaptive
experiments discussed in Chapter 4 with help from Michal Konenenko.
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the microwave circuit and control computers.
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Chapter 3

Learning from Quantum
Measurements: Hamiltonian
Estimates from NV Photon Counts

1

3.1 Introduction

Having discussed properties and dynamics of the NV center in the previous section, we
now begin to consider using this system in practice. Our first step, and the goal of this
chapter, is to phrase the measurement process of this system as a statistical inference
problem concerning the parameters of interest. We discuss and quantitatively compare
two types of estimators, and finish by applying them to experimental data to perform a
task known as quantum Hamiltonian Learning (QHL).

The overarching motivation for such a rigorous approach, as opposed to naively applying
some canned curve fitting method, is that developing tools for the characterization of
quantum systems is an increasingly important problem. As more performance is demanded
out of quantum devices, more knowledge about these quantum devices is also required.
This applies as much to large-scale multi-qubit quantum information processors as it does
to small single-qubit quantum sensors. Importantly, this knowledge must include not

1This section is based on Reference [84], work done in collaboration with Chris Granade, who provided
statistical and numerical advice. This work represents the first rigorous treatment of the statistics of
NV measurement, introducing the Poisson obstructed coin model, which, to our knowledge, has not been
considered in estimator theory before. It also represents the first time that fully Bayesian methods have
been applied to the quantum Hamiltonian learning problem using experimental data.
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only estimates of relevant quantities, but also careful estimates of the uncertainty of these
quantities. Indeed, if the application is, for example, metrology, then the very nature of the
problem demands that one should be as confident in one’s ability to produce meaningful
error bars as one’s ability to produce the estimate itself. Or, if one is using knowledge
about a quantum system to design control sequences (such as unitary gates), then it is
important to know how much system parameters are expected to vary through space and
time. If the estimate of this parameter distribution is too tight, the control sequence will
not meet specifications, and if it is too broad, the control sequence will not have optimal
efficiency [144, 140, 87, 78].

Therefore, data from quantum experiments should be analyzed on firm statistical foot-
ing. This requires a detailed model that computes the likelihoods of experimental out-
comes given a specified set of system parameters or hyperparameters. This is not to say
that we need perfect statistical models, but rather, that models and methods should be
well enough defined so that rigorous questions can be asked and answered unambiguously.
Most of the widespread characterization protocols in quantum information have been de-
scribed by statistical models. Quantum mechanics is ultimately a statistical theory and
so this is usually a natural thing to do. State and process tomography have been studied
extensively as matrix-valued inference [92, 14, 61], randomized benchmarking (RB) and
derivative protocols are inherently statistical [116, 46, 62, 181], and Hamiltonian param-
eter learning is often considered from a machine learning perspective [185, 66, 105, 182].
These statistical models of characterization, however, usually stop short of platform de-
pendent considerations; for example, the RB protocol does not tell you how to interpret
the noisy voltage measurement of a superconducting qubit. Such divisions are drawn to
achieve cross-quantum-platform generality. Specific platforms, therefore, need to consider
how to append their own messy details onto these well-established protocols, as we will do
in the coming sections.

3.2 Drifting References

In Section 2.8.2, in particular in Equation Equation 2.71, we defined the quantities α, β,
and γ, which will figure prominently in this chapter. Respectively, these parameters are
the bright reference, the dark reference and the signal. They correspond to the expected
number of photons collected (including visibility loss and background counts) in a sin-
gle repetition of an experiment given that the pre-measurement state was (imperfectly)
prepared as |0〉, |±1〉, or an arbitrary state ρ, respectively. Due to convenient additive
properties of the Poisson distribution, we will later justify the overloading of these symbols
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to mean the expected number of collected photons in N repetitions of the same experiment,
where the difference between N = 1 and N > 1 will be obvious from context.

One of the main complications of experimental NV measurement is drifting of the
references α and β in time. Though there are many mechanisms which can cause this,
for us, the most prevalent is due to relative movement between the NV center and the
focal spot of the confocal microscope. This region of focus has a 3D Gaussian profile, and
as temperatures or other properties of the lab change in time, movement of the center
of this region off of the point-sized NV center causes both a drop-off of delivered laser
power, k, and collection efficiency, η. Other mechanisms may include fluctuation of the
laser power, and quality of the confocal microscope’s alignment, which will affect η, k, and
the background count rate Γ. If left unchecked, the drift would eventually cause the NV
under study to no longer be in the focal region at all. To avoid this, a tracking procedure
is periodically run, whose purpose is to recenter the NV with the focal region by taking a
series spatial of images and using feedback to realign.

3.2.1 Experiment Ordering

Experiments typically have a set of parameters that are varied. For the sake of concreteness,
we choose the specific experiment and repetition ordering described in Figure 3.1; variations
of this ordering may require a modified (though similar) analysis to that which follows. We
denote the list of experiment parameter configurations as ~a1, ...,~aS. For example, in the
case of a Ramsey experiment for magnetometry [170], the distance between two π

2
pulses

is varied, so that ~as = (ts) where ts is the pulse spacing. If additionally the phase of the
second Ramsey pulse is varied in proportion to the spacing, we have instead ~as = (ts, ωts)
for some angular frequency ω. A parameter configuration ~a ∈ {~a1, ...,~aS} is fixed and a
large number, N , of back-to-back repetitions with this parameter configuration is performed
before moving on to the next. The choice of N is motivated, for instance, by the time
required for experimental control hardware to switch between choices of configuration ~a.
Each time all parameter configurations have been dealt with, the tracking procedure is
run, and then the entire procedure is repeated R times, which we call averages.

A signal measurement γ depends only on the current value of α and β, the current
parameter configuration ~a, and any noise operations acting on ~a. We denote the true
value of α, β, and γ at the nth repetition of the sth experiment ~as in the rth average as
αn,s,r, βn,s,r, and γn,s,r, for 1 ≤ n ≤ N , 1 ≤ s ≤ S, and 1 ≤ r ≤ R. It holds that
γn,s,r = psαn,s,r + (1− ps)βn,s,r where we have used our assumption of the independence of
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Figure 3.1: The considered experimental ordering. Another popular ordering trans-
poses the inner two levels. Given a particular parameter configuration of the experiment,
~a ∈ {~a1, ...,~aS} (in the above example, the parameter is the distance between the two
last microwave pulses), N repetitions are performed of both the experiment, γ, and the
references, α and β. The bright reference α is measured by initializing with a laser pulse,
waiting for metastable optical states to decay, and taking a measurement by opening the
APD counting gate while the laser is on. The dark reference β is similar, except an in-
version pulse is applied prior to measurement. The pulse sequence prior to the reference
measurement γ depends on the current parameter ~a. Each time N repetitions have been
made of all S parameter configurations, the system decides whether to track or not, and
this is all repeated R times. A sketch of the resulting data is shown, averaged over both
N and R.
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p from the drift processes to label p by only s. This yields the random variables

Xn,s,r ∼ Poisson (αn,s,r)

Yn,s,r ∼ Poisson (βn,s,r)

Zn,s,r ∼ Poisson (γn,s,r) (3.1)

with the corresponding variates (xn,s,r, yn,s,r, zn,s,r)
N,S,R
n,s,r=1.

3.2.2 Combining Experiments

Due to low visibility, the repetition number N in Figure 3.1 is often quite high. It is usually
cumbersome to store the results of the experiment for each individual measurement. We
therefore assume that the data is summed over the N repetitions. Because of the additive
property of the Poisson distribution, if we define Xs,r :=

∑N
n=1Xn,s,r, Ys,r :=

∑N
n=1 Yn,s,r,

and Zs,r :=
∑N

n=1 Zn,s,r we get

Xs,r ∼ Poisson (αs,r)

Ys,r ∼ Poisson (βs,r)

Zs,r ∼ Poisson (γs,r) (3.2)

where αs,r :=
∑N

n=1 γn,s,r, βs,r :=
∑N

n=1 γn,s,r, and γs,r :=
∑N

n=1 γn,s,r.

As mentioned earlier, we will often abuse notation so that α, β, and γ, refer to αs,r,
βs,r, and γs,r for a particular index (s, r) where some N ≥ 1 is implicitly understood.

Furthermore, in this context δ will refer to
∑N

n=1 Γn,s,r∆t, that is, the total contribution to

the dark counts. Similarly, ν will refer to
∑N

n=1 ηn,s,r(µ
′
0)n,s,r and κ to 1

ν

∑N
n=1 ηn,s,r(µ

′
1)n,s,r.

(Recall that the quantities µ′0 and µ′1 were defined in Equation 2.66 and Equation 2.66
respectively, reffering to the expected number of photon counts arising from the bright
and dark references, accounting for pseudo-pure preparation.) The fraction 0 < κ < 1
represents how much dimmer the reference state ρ1 is as compared to ρ0. This results in
the relationship

α = δ + ν

β = δ + κν. (3.3)

3.2.3 Correlations of Model Parameters

The three primitive quantities µ′0, µ′1, and η (see Section 2.8.2 for definitions) all depend
on the quality of the coupling between the confocal microscope and the NV defect; as the
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relative displacement between the defect and the center of focus drifts, η decreases. This
could be due to, for example, temperature changes in the lab which expand or contract the
components on the optical table. However, µ′0 and µ′1 also change with decreased optical
coupling because the preparation state ρ0 depends on the laser power which is coupling
dependent. Therefore we expect correlations between µ′0, µ′1, and η.

Nominally Γ∆t should be independent of each of the quantities η, µ′0, µ′1, and p. How-
ever, this may break if the power of the laser varies in time and a significant portion of the
dark counts are caused by unwanted reflections of, or excitations due to the laser; we may
end up with correlations between Γ∆t and each of η, µ′0, and µ′1.

Finally, and perhaps most importantly, the quantity p will normally be independent
of the quantities η, µ′0, µ′1, and Γ∆t. However, it is also possible for this to fail. For
example, if the process that takes the preparation state ρ0 to the pre-measurement state
ρ0 is non-unital, we will not end up with exactly the form qρφ + (1 − q)I/3 (as seen in
Section 2.8.2) leading to errors when inferring p from pα + (1 − p)β. Non-unitality could
occur due to T1 relaxation, or leakage of laser light when it is supposed to be off.

3.2.4 A Stochastic Model of Drift

The references α and β at N = 1 are best viewed as stochastic processes with autocorrela-
tions in time. As discussed above, they will also be correlated with each other. They will
undergo a discontinuous jump every time a tracking operation is performed.

As derived in Section 2.8.2, conditioned on set of parameters, including k, Γ, ∆t, η,
γes, γsg, γeg, and γ01 the references are given by α = Γ∆t + ηµ′0 and β = Γ∆t + ηµ1 at
a particular instance in time. Given the number variables and unknowns that likely go
into the drift process itself (which will in turn affect k, Γ, and η) on top of the already
complex conditional model stated above, writing down an analytic model for the stochastic
processes α and β would be difficult, if not impossible.

We therefore restrict our attention to simpler effective models which still well describe
expected and observed behaviour. We assume that the stochastic process (α, β) is a Gaus-
sian process. This is a weak assumption especially given that in later sections we will only
make use of the first two moments.

We may relate this continuous stochastic process to the discrete variables defined in
Section 3.2.1 with a standard discretization as follows. Consider the rth average of the
experiment and a particular realization of the stochastic process (α(t), β(t)) during this
average. Then we have that αn,s,r = α(tn,s) and βn,s,r = β(tn,s) where tn,s is the time of
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the nth repetition of the sth experiment relative to the start of the rth average. This gives,
for example, the discrete Cox process Xn,s,r ∼ Poisson (α(tn,s)).

We take the time value t = 0 to mean the time directly after performing a tracking
operation. The tracking operation has the effect of drawing the initial values α(0) and
β(0) from a fixed normal distribution

(α(0), β(0)) ∼ Normal ((α0, β0),Σ0) (3.4)

where the variances in Σ0 are determined by the noise and error in the tracking procedure,
and the mean is a property of the confocal microscope’s quality and the NVs optical
properties. Assuming a Gaussian stochastic process leads to the distribution

(α(t), β(t)) ∼ Normal ((αt, βt),Σt) (3.5)

at time t ≥ 0.

We now consider an explicit example of a stochastic model for concreteness. We
make use of the Ornstein–Uhlenbeck process, which is one of the simplest continuous-
time stochastic processes, consisting of a random walk on a real line (Wiener process)
that has been modified with a term that causes reversion back to a fixed location. Such
a process can be used, for example, to model the position of a mass attached to a spring
undergoing random Gaussian external forces as a function of time. We consider the NV
drift model given as

α1 ∼ Normal (α0, σα)

ν ∼ OrnsteinUhlenbeck (0, σν , θν , α1 − Γ∆t)

κ ∼ OrnsteinUhlenbeck (κ0, σκ, θκ, 0)

(α, β) = (Γ∆t+ ν,Γ∆t+ κ · ν). (3.6)

Here, Γ∆t are the expected dark counts in a single measurement, which we have assumed
to be deterministic and constant for simplicity. However, the expected number of photons
due to the bright state ρ0, denoted an ν, is an Ornstein–Uhlenbeck process with long-
time mean 0, volatility σν , mean reversion speed θν , and initial value α1− Γ∆t, where the
initial value is marginalized over Normal (α0, σα) representing imperfections in the tracking
process. This implies that, on average, α(0) = α0 and α(∞) = Γ∆t with average decay
rate µν , where ‘shakiness’ in getting there is determined by σν . In order to correlate α with
β, and also to help enforce the physical constraint β ≤ α, we relate the two components
with another Ornstein–Uhlenbeck process κ.
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Note that this model does not guarantee, for example, that α(t) > 0 or that 0 ≤ κ(t) ≤
1. We can only make these scenarios improbable by choosing low volatilities. This is the
compromise of having such a simple model in terms of the well known Ornstein-Uhlenbeck
Gaussian process.

Solving for the moments of this stochastic process we arrive at the expressions

E[α(t)] = Γ∆t+ (α0 − Γ∆t)e−tθν

E[β(t)] = Γ∆t+ κ0(α0 − Γ∆t)e−tθν

Var[α(t)] = σ2
αe−2tθν + σ2

ν

(1− e−2tθν )

2θν

Var[β(t)] = κ2
0σ

2
αe−2tθν + σ2

κ

((α0 − Γ∆t)2 + σ2
α)e−2tθν

2θκ
+ σ2

ν

(2θκκ
2
0 + 1)(1− e−2tθν )

4θκθν

Cov[α(t), β(t)] = κ0σ
2
αe−2tθν +

κ0σ
2
ν(1− e−2tθν )

2θν
. (3.7)

These calculations can be found in Section B.1. In Figure 3.2, these moments are plotted
along with a single random trajectory of the stochastic process defined above.

The purpose of this section has been to demonstrate that it is possible to meaningfully
model the drift process as a stochastic process, which leads to reference count variances
and covariances at each time step. These variances will correspond to the moments of the
hyperparameter distribution for the references described in Section 3.3.1.

3.3 Statistical Models of Measurement

In this section we state the measurement of an NV center as a statistical inference problem.

3.3.1 The Statistical Model of Measurements

Consider the inner-product space H = C3 with the canonical basis |1〉 = (1, 0, 0)T, |0〉 =
(0, 1, 0)T, and |−1〉 = (0, 0, 1)T. We call a state of the system prior to the measurement
procedure the pre-measurement state. Suppose that the pre-measurement state of interest
is given by the density matrix ρ ∈ D(C3). Define p = Tr[ρP0] where P0 is the projector
onto |0〉. In the case of a strong quantum measurement we would have access to random
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Figure 3.2: Simulation of a severe case of drift. A random instance of the process
(α(t), β(t)) defined in Equation Equation 3.6 is shown on top of their first moments with
a shaded single standard deviation. The dot-dashed purple line shows the square root of
covariance. The model parameters used are α0 = 10−3, σα = 5 × 10−5, σν = 5 × 10−5,
θν = 0.03, Γ∆t = 3 × 10−4, κ0 = 1/3, σκ = 0.01, and θκ = 0.01. The time units are
arbitrary; scaling the x-axis is equivalent to scaling θν and θκ.
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variables drawn from the distribution Bernoulli (p). Instead, however, we have access to
the random triplet (X, Y, Z)|α, β defined by

X ∼ Poisson (α)

Y ∼ Poisson (β)

Z ∼ Poisson (pα + (1− p)β) ≡ Poisson (γ) (3.8)

where α and β are the expected number of photons collected in N independent repetitions
of a fixed experiment. It is always true that 0 ≤ p ≤ 1 and 0 ≤ β ≤ γ ≤ α.

The references α and β are in turn random variables drawn from the distribution(
α
β

)
∼ Normal

((
ᾱ
β̄

)
,

(
σ2
α σαβ

σαβ σ2
β

))
(3.9)

with σαβ > 0. The normality of this distribution is typically irrelevant, and is stated as
such just to be concrete. We are usually only interested in its first two moments. The
‘true’ distribution is almost certainly quite complicated, and arises from the stochastic
processes described in Section 3.2. In later sections this multinormal distribution will be
replaced with a product gamma distribution, or a mixture of product gamma distributions,
as discussed in Section 3.5. To be clear, note that when a variate (x, y, z) is sampled from
this distribution, all three variates are conditional on the same values of α and β.

This creates a hierarchical model with nuisance hyperparameters ᾱ, β̄, σα, σβ, and
σα,β. We will see that this second layer is rarely useful, so that the conditional model
(X, Y, Z)|α, β should usually be used in practice. However, it is important to remember
that the second layer exists, because it makes it clear that multiple identical samples cannot
be taken from the conditional model. Indeed, the values of α and β will change each time
the set of N measurements are made.

3.3.2 Moment Calculations

We first work out the first two moments of the random variables X, Y , and Z, both
conditional and unconditional on the hyperparameters α and β.

The conditional moments are trivially given by

E[X|α] = Var[X|α] = α

E[Y |β] = Var[Y |β] = β

E[Z|p, α, β] = Var[Z|p, α, β] = pα + (1− p)β
and Cov[X, Y |α, β] = 0 (3.10)
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using basic properties of the Poisson distribution. The law of total expectation can be used
to compute

E[X] = Eα,β[E[X|α]] = ᾱ

E[Y ] = Eα,β[E[Y |β]] = β̄

and E[Z] = Eα,β[E[Y |p, α, β]] = pᾱ + (1− p)β̄, (3.11)

showing that the variance of α and β do not affect the mean. Similarly, the law of total
variance gives

Var[X] = Eα,β[Var[X|α]] + Varα,β[E[X|α]] = ᾱ + σ2
α

Var[Y ] = Eα,β[Var[Y |β]] + Varα,β[E[Y |β]] = β̄ + σ2
β

Var[Z] = Eα,β[Var[Z|p, α, β]] + Varα,β[E[Z|p, α, β]]

= pᾱ + (1− p)β̄ + p2σ2
α + (1− p)2σ2

β + 2p(1− p)σα,β (3.12)

which shows that the variances have two parts, one due to the usual finite sampling error
of a Poisson variable, and one due to the underlying fluctuation of the Poisson parameters.

3.3.3 Three Advantages of the Conditional Model

If the measurement model is not stated as concretely as we have done, then there can be
a slight subtlety in the interpretation of random variates. Misunderstanding this point
could result in reporting incorrect error bars or confidence intervals/credible regions. In
an attempt to be as clear as possible, we illustrate with an example.

Suppose Yves and Zoey together collect R variates of the random variable (X, Y, Z),
sampled identically and independently, giving the results (x1, y1, z1), (x2, y2, z2), ..., (xR, yR, zR).
They go back to their separate offices and try to analyse the data. Yves calculates the sam-
ple mean and variance of x1, x2, ..., xR as xsamp = 1

R

∑R
r=1 xr and σ2

x,samp = 1
R−1

∑R
r=1(xr −

xsamp)2, respectively. He gets xsamp = 200 and σx,samp = 20. Looking at Equation Equa-
tion 3.11, and using the standard error of the mean, this informs his rough belief that
ᾱ ≈ xsamp ± σx,samp/

√
R = 200± 20/

√
R.

Zoey recalls that each variate xr was obtained by summing N independent measure-
ments. She wonders why they bothered batching the results into R sets, and why they
didn’t just take N × R measurements to begin with. She therefore does a sum to get
the new quantity xsum =

∑R
r=1 xr. She knows that for each 1 ≤ r ≤ R, xr was drawn

from the distribution Poisson (αr) for some specific but unknown value of αr. Therefore,
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knowing the summative property of Poisson distributions, she correctly deduces that xsum

was sampled from Poisson
(∑R

r=1 αr

)
. The Poisson distribution’s standard deviation is the

square-root of its mean, she therefore adopts the rough belief that
∑R

r=1 αr ≈ xsum±
√
xsum,

and therefore that 1
R

∑R
r=1 αr ≈ xsum/R±

√
xsum/R) = 200± 14/

√
R.

Zoey and Yves get back together and compare their results, and wonder why Zoey is
more confident than Yves about the quantity she has estimated, when, naively, it seems
that they have estimated the same thing with the same data.

The discrepancy comes down to the fact that they are estimating parameters using
different models. Yves is estimating the hyperparameter ᾱ from the hierarchical model in
Section 3.3.1, justified by the moment calculations in Section 3.3.2. Zoey is foregoing the
hyperparameter layer of the model and making a direct inference about the sum of the
particular references α1, α1, ..., αR they happened to draw in their measurements. Neither
is wrong, they are simply estimating different but related quantities.

We saw in Section 3.3.2 that Var[X|α] = ᾱ and Var[X] = ᾱ + σ2
α. Yves was assuming

he made R independent measurements of X and Zoey was assuming she made a single
measurement of X|α with a combined α =

∑R
r=1 αr. Therefore the difference between

their error bars is due to σα.

The end goal, of course, is not to estimate the reference α or its mean, but to estimate
quantities related to the quantum state like p = Tr[ρP0]. However, the better one’s accuracy
in estimating the references, the better one’s accuracy in p. Therefore, given the above
discussion, it is apparent that there is no advantage to drawing multiple samples of (X, Y, Z)
when it is possible to increase the number of measurements N instead, often by adding
samples together as Zoey did. There are, however, special circumstances where drawing
multiple samples is desirable. This occurs in cases where p is not fixed shot to shot, but is
instead drawn from a distribution on each shot.

There is a second and less obvious advantage to Zoey’s method. Yves’ model assumes
that the multinormal distribution on (α, β) is a good approximation to the moments of
the stochastic process governing α and β discussed in Section 3.2.4. This will usually be
good enough. But if, for example, there are daily temperature patterns in the lab which
significantly affect optical alignment, this could cause the normal approximation to be
inaccurate. Zoey’s model, however, makes no assumptions about the nature of the drift.

Finally, the third advantage of the conditional model is that it is simpler and therefore
more tractable. Just solving for the MLE of the hierarchical model analytically would be
difficult or impossible; it is painful enough for the conditional model.
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3.3.4 Basic Inference Problem

We state the basic NV measurement inference problem for both the conditional and hier-
archical models. For the conditional model, recall that we are, although without much loss
of generality, limited to drawing a single sample (x, y, z) from (X, Y, Z)|α, β. The inference
problem is, given the likelihood function

L(p, α, β|x, y, z) = Pr (X = x, Y = y, Z = z|p, α, β)

= pdfPois (x;α) · pdfPois (y; β) · pdfPois (z; pα + (1− p)β)

=
αxe−α

x!
· β

ye−β

y!
· (pα + (1− p)β)ze−(pα+(1−p)β)

z!
, (3.13)

to infer the value of p. Note that α and β are nuisance parameters.

In the case of the hierarchical model, if we take R iid samples (xr, yr, zr) from (X, Y, Z)
we have the likelihood function

L(p, ᾱ,β̄, σα, σβ, σα,β|(x1, y1, z1), (x2, y2, z2), ..., (xR, yR, zR)) =

R∏
r=1

∫ ∞
−∞

∫ ∞
−∞

pdfPois (xr;α) · pdfPois (yr; β) · pdfPois (zr; γ)

· pdfNorm

(
α, β;

(
ᾱ
β̄

)
,
(

σ2
α σαβ

σαβ σ2
β

))
dα dβ (3.14)

where ᾱ, β̄, σα, σβ, and σα,β are nuisance parameters, and we are still trying to infer the
value of p. This integral is generally intractable.

3.3.5 Generalized Inference Problems

In the previous subsection, the inference problem was stated such that the survival proba-
bility p = Tr[ρP0] was the quantity of interest. We may of course modify this if some other
quantity is preferred.

For example, suppose we are interested in state tomography. We define the ideal unitary
operators {U1, ..., U9} ∈ U(H) in such a way that {Un |0〉〈0|U †n}9

n=1 is a basis for L(H). Our
scheme is to prepare ρ, implement the gate Un for some n, and measure the resulting state,
so that pn = Tr[UnρU

†
nP0] with corresponding random variables

Zn ∼ Poisson (pnα + (1− pn)β) ≡ Poisson (γ) . (3.15)
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Then our likelihood function becomes

L(ρ, α, β|x, y, z1, z2, ..., z9) = pdfPois (x;α) · pdfPois (y; β) ·
9∏

n=1

pdfPois (zn; pnα + (1− pn)β)

(3.16)

and we are interested in inferring ρ ∈ D(H). This will be similar for the hierarchical model.
We have taken one set of reference measurements for all Z1, ..., Z9. We could also choose to
take one for each, resulting in the data (x1, y1, z1), ..., (x9, y9, z9) with a similar likelihood
function of the form L(ρ, α1, β1, ..., α9, β9|x, y, z1, z2, ..., z9). These sorts of details come
down to the particulars of the experimental implementation.

It is clear that any measurement inference problem can be stated in a similar way, such
as process tomography, and Hamiltonian parameter inference, as will be seen in Section 3.6.

3.3.6 Fisher Information and the Cramér–Rao Bound

The average curvature of the likelihood function provides a measure of how informative
data are. Generally, a highly curved (unimodal) likelihood function implies a tight re-
gion of support, so that data will tell you a lot about the parameters of interest. This
is formalized by Fisher information and the Cramér–Rao bound [30]. Given a likelihood

function L(~θ|~d) of parameters ~θ given data ~d, the Fisher information is the average curva-
ture of L, more specifically, it is the negative expected Hessian matrix of the log-likelihood,

I(~θ)i,j = −E~d[
∂2 logL(~θ|~d)
∂θi∂θj

|~θ]. The Cramér–Rao bound asserts that no unbiased estimator of ~θ

can outperform this intrinsic curvature. Namely, if θ̂ is any unbiased estimator, which takes
data ~d and outputs estimates of the true value of ~θ, then its covariance is lower-bounded
by the inverse Fisher information matrix,

Cov[θ̂] ≥ I(p, α, β)−1. (3.17)

As good estimators will often make this inequality nearly tight, the inverse Fisher infor-
mation sets a benchmark for estimators to aim at. There is a generalized inequality for
biased estimators that will be used in Section 3.4.1.

The Fisher information matrix of the conditional model (X, Y, Z)|α, β can be computed
exactly as

I(p, α, β) =


(α−β)2

p(α−β)+β
p(α−β)

p(α−β)+β
α

β+αp−βp − 1
p(α−β)

p(α−β)+β
p2

pα−pβ+β
+ 1

α
− (p−1)p
p(α−β)+β

α
pα−pβ+β

− 1 − (p−1)p
p(α−β)+β

pα+(p−2)(p−1)β
β(p(α−β)+β)

 (3.18)
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with an inverse matrix given by

I(p, α, β)−1 =


p(p+1)α+(p−2)(p−1)β

(α−β)2
pα
β−α

(p−1)β
α−β

pα
β−α α 0

(p−1)β
α−β 0 β

 . (3.19)

See Section B.2 for the calculation. The Cramér–Rao bound for the top left entry states
that

Var[p̂(x, y, z)] ≥ p(p+ 1)α + (p− 2)(p− 1)β

(α− β)2
, (3.20)

for any unbiased estimator p̂ given the data triple of photon counts (x, y, z). This bound
is plotted in Figure 3.3 for the slice β = α/2. In Section 3.4.5 we will see that this bound
is very close to the average error incurred by a few important estimators, including the
widely used maximum likelihood estimator, and in many disparate but relevant parameter
regimes. This means that this inequality is perhaps better thought of as an approximation,
except in exceptionally low contrast regimes.

We can use this result to derive a formula that tells us roughly how much data we will
need to collect in order to lower the error bars on p to a specified level. We approximate

that p̂ ∼ Normal
(
p, (I(p, α, β)−1)

−1/2
1,1

)
with α and β known (whereas we will generally

only have estimates of them). This gives the 100(1− ζ)% confidence interval

p±∆p = p± cζ/2
√
p(p+ 1)α + (p− 2)(p− 1)β

α− β
(3.21)

for p̂ where cζ/2 =
√

2 erf−1(1− ζ) with erf(x) = π−1/2
∫ x
−x e

−t2dt the error function. Sup-

posing a reference contrast of C = α−β
α+β

, we need

α ≈
c2
ζ/2

2∆p2
(1 + 1/C)2 (3.22)

to make p̂ ≈ p ±∆p a 100(1 − ζ)% confidence interval 2. To derive this formula we have
assumed the worst case, p = 1. These calculations show that, for example, if we desire a
95% confidence interval of ±0.01 for p, then we need to do at least enough experiments N
so that α is on the order of ∼ 170, 000.

2We use this definition for contrast simply because it shows up naturally in Equation 3.28; α−β
α is

arguably a better choice.
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Figure 3.3: With β fixed as α/2, the Cramér-Rao bound of p̂(x, y, z) is plotted as a
function of α and p. We see that values of p closer to 1 are slightly more difficult to
estimate.
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This heuristic holds for any optical transition rates and choice of measurement time
∆t in the measurement protocol detailed in Section 2.7. However, certain choices of mea-
surement time are better than others. We can use the Cramér–Rao bound to estimate the
optimal such time, namely, we wish to choose the measurement time ∆t that maximizes
the temporal information density of p. Begin by supposing that the total runtime of a
fixed experiment, including taking bright and dark reference counts, is T = N(Te + 3∆t),
where N is the number of repetitions, and Te is the amount of time per repetition not spent
counting photons (initialization, wait periods, pulse sequences, etc.). We must multiply
∆t by 3 to account for all three of the signal, bright reference, and dark reference counting
windows. Writing α = Nα and β = Nβ, with α and β the average per-shot reference
values, again at the worst case p = 1, gives ∆p2 = 2α

(α−β)2 , or rearranging, gives

∆p
√
T =

√
2(Te + 3∆t)α(∆t)

α(∆t)− β(∆t)
. (3.23)

We have written α = α(∆t) and β = β(∆t) to emphasize their implicit dependence on
∆t. These two functions are easily estimated experimentally by sweeping the length of the
measurement window. Then for any given Te, the the quantity ∆p

√
T can be be minimized,

visualized in Figure 3.4. As the experiment time Te grows, it becomes increasingly worth-
while to lengthen the duty cycle of measurement. This formula and its units are analogous
to widely used magnetometry sensitivity formulas; see [170] or [86] for two examples out
of many.

Of note is the steep increase of ∆p
√
T as ∆t→ 0. While the slope is relatively gentle

as ∆t gets larger, causing little harm even if ∆t is twice as big as the optimal value for
a given Te, there is a large penalty for choosing a measurement of ∆t which is too short.
Long refocusing sequences like CPMG are especially at risk of falling into this trap.

3.3.7 Other Measurement Protocols

Our analysis has considered the conventional protocol for NV spin-state measurement.
Other measurement protocols exist, such as one that uses multiple laser frequencies to ex-
ploit spin-to-charge conversion [158], or another that incoherently stores pre-measurement
spin populations on an ancilla nuclear qubit that is subsequently read out several times
successively [96], both potentially achieve greater read-out efficiency. The methods we
describe here can be applied to these other measurement schemes and will have similar
forms—their detailed analyses we leave for future work.
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Figure 3.4: Simulated example of optimizing measurement time for a low visibility exper-
iment. The same analysis holds for high visibility experiments. (a) The population of the
optical excited state is plotted for two initial states, (b) which results in distinguishable
numbers of detected photons given that we average enough repetitions. They are labeled
α(∆t) and β(∆t) in the main body and asymptote to the same slope since they both end
up in the same steady state of the master equation. (c) These curves can be used to esti-
mate the standard deviation of p normalized to square-root runtime for various experiment
lengths. For example, given

√
CRB/MHz = 400/

√
MHz, a total run time of 100 s = 108 us

will approximately reduce the uncertainty of ∆p to 0.04. (d) As a function of Te, opti-
mal measurement window length ∆topt is shown (left axis) along with the corresponding√

CRB/MHz values for both the optimal measurement time, and a fixed measurement
time of 0.65 us (right axis). It is seen that in this regime the payoff of using the optimal
measurement time is rather slim.
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3.4 Estimators for the Referenced Coin Model

The previous section discussed inference models of NV measurement in some detail. In
this section, we introduce two estimators for the basic inference problem of the conditional
model defined in Section 3.3.4. We also compare their relative strengths and weaknesses.

3.4.1 Maximum Likelihood Estimator

The most obvious estimator turns out to be quite a good one, and the one that has
been used almost universally in practice. Suppose (x, y, z) is a variate of (X, Y, Z)|α, β.
Equation Equation 3.10 shows that x, y, and z are unbiased estimates of α, β, and pα +
(1 − p)β, respectively. We invert the equation pα + (1 − p)β for p substituting in our
estimates above to get the estimator

p̂MLE =
z − y
x− y

(3.24)

for p. Although appearing quite simple, it is difficult to work with this estimator analyti-
cally; it is the ratio of two correlated Skellam distributions which does not have many nice
properties. However, it can be shown with Lagrange multipliers that this is the maximum

likelihood estimator (MLE) of the model, that is,
(
z−y
x−y , x, y

)
is the (unique) maximum of

the function L(p, α, β|x, y, z) on the domain 0 ≤ p ≤ 1, 0 < β ≤ α, for any x, y, z ≥ 0. See
Section B.3.1 for details.

There is always a finite probability that x = y, in which case this estimator will divide
by zero. With sufficient magnitude of and contrast between α and β this is highly unlikely.
It still poses a problem if we wish to prove anything about it, for example, if we wish to
find its expectation value. To avoid this situation we define the slightly modified estimator

p̂MLE,ε =
z − y

x− y + ε
(3.25)

for some non-integer value of ε. One might consider using this estimator instead of the
MLE if x = y has a significant probability. In the next section, Section 3.4.2, we show that
the bias of p̂MLE,ε is non-zero, a linear function of p, and exactly given by the integral

Bias[p̂MLE,ε] = re

∫ π

0

i(−1)−εe−α(1+eiφ)−β(1+e−iφ)((β + (α− β)p)eiφε + βeiφ(ε−1))dφ− p.

(3.26)
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Taking the limit as ε approaches zero gives an expression for the bias of the original
estimator,

Bias[p̂MLE] = lim
ε→0

Bias[p̂MLE,ε]

=

∫ π

0

e−(α+β)(1+cosφ) [(γ + β cosφ) sin((α− β) sinφ) + (β sinφ) cos((α− β) sinφ)] dφ− p.

(3.27)

This integral can be solved numerically to find the exact bias. If α+ β � 1, we can derive
an asymptotic approximation to this integral,

Bias[p̂MLE] ≈
(
p− β

α + β

)
α + β

(α− β)2
+O

(
(α + β)−2

)
, (3.28)

which through numerics can be shown to be valid for α + β & 300. Note that the bias
vanishes at p = β

α+β
, and that if the contrast C = α−β

α+β
is fixed, then the worst case bias

scales as α+β
(α−β)2 = O ((α + β)−1).

Although estimators with no bias are generally preferred, we see that this estimator has
the more important property of being consistent, meaning that Bias[p̂MLE]→ 0 as α→∞
with fixed contrast. We can make an even stronger statement by using the Cramér–Rao
bound for biased estimators, which is a generalization of Equation 3.17 known as the van
Trees inequality or the Bayesian Cramér–Rao bound [175], stating that

Cov[θ̂] ≥ Jθ̂(p, α, β)I(p, α, β)−1JT
θ̂

(p, α, β) (3.29)

where Jθ̂(p, α, β) is the expectation value of the Jacobian matrix of the possibly biased

estimator θ̂. Using the approximation from Equation 3.28, this gives us the inequality

Var[p̂MLE] ≥ p(p+ 1)α + (p− 2)(p− 1)β

(α− β)2
+O

(
(α + β)−2

)
(3.30)

for the maximum likelihood estimator, again assuming that the contrast is fixed as α and
β increase. This is approximately the same bound as the unbiased Cramér–Rao bound dis-
cussed earlier. Indeed, this is generic, as the van Trees inequality approaches the Cramér–
Rao bound for large data sets, such that incorporating prior information can be thought
of as an important correction for finite data sets [136].
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3.4.2 Bias of the MLE

In this section we derive the bias of the MLE used in the previous section by studying
the modified estimator p̂MLE,ε from Equation 3.25. In several places Mathematica is used
to evaluate limits and series. We are ultimately interested in the limiting case as ε → 0
since this gives the maximum likelihood estimator. We wish to compute the bias of p̂MLE,ε,
which is given by

Bias[p̂MLE,ε] = Ex,y,z[p̂MLE,ε − p]

=
∞∑
x=0

∞∑
y=0

∞∑
z=0

z − y
x− y + ε

αxe−α

x!
· β

xe−β

y!
· γ

xe−γ

z!
− p. (3.31)

This triple sum is not straight forward to compute. Our strategy is to first sum over z and
x resulting in

Ex,y,z[p̂MLE,ε] =
∞∑
y=0

[
γe−α−ββy(−α)y−εΓ(ε− y)

Γ(y + 1)
− e−α−ββy(−α)y−εΓ(ε− y)

Γ(y)

+
e−α−ββy(−α)y−εΓ(ε− y,−α)

Γ(y)
− γe−α−ββy(−α)y−εΓ(ε− y,−α)

Γ(y + 1)

]
(3.32)

where Γ(x) =
∫∞

0
tx−1e−tdt is the gamma function, and Γ(s, x) =

∫∞
x
ts−1e−tdt is the upper

incomplete gamma function. Note that the non-integer value of ε allows us to avoid poles
of the gamma function. The first two terms of the sum are seen to be purely imaginary.
Since the expectation value is known to be real, we may ignore them.

To proceed, we make use of the complex integral form of the incomplete gamma func-
tion,

Γ(ε− y,−α) =

∫ ∞
−α

tε−y−1e−tdt = lim
R→∞

∫ R

−1

(αt)ε−y−1e−αtαdt, (3.33)

which holds for any integration path in C from −1 to R which does not cross the negative
real axis. For the third term we get

∞∑
y=0

e−α−ββy(−α)y−εΓ(ε− y,−α)

Γ(y)
=

∫ ∞
−1

∞∑
y=0

e−α−ββy(−1)y−εtε−y−1e−αt

Γ(y)
dt

=

∫ ∞
−1

β(−1)1−εtε−2e−α(1+t)−β(1+1/t)dt (3.34)
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and similarly

∞∑
y=0

−γe
−α−ββy(−α)y−εΓ(ε− y,−α)

Γ(y + 1)
=

∫ ∞
−1

∞∑
y=0

−γe
−α−ββy(−1)y−εtε−y−1e−αt

Γ(y + 1)
dt

=

∫ ∞
−1

γ(−1)1−εtε−1e−α(1+t)−β(1+1/t)dt (3.35)

for the last term. Therefore

Ex,y,z[p̂MLE,ε] =

∫ ∞
−1

(−1)1−εe−α(1+t)−β(1+1/t)(γtε−1 + βtε−2)dt (3.36)

Consider the integration path which is a semi-circle from −1 to 1, and then a straight line
to R along the positive real axis, avoiding the singularity at t = 0. Note that along the
positive real axis, the integrand is purely imaginary. We are therefore only interested in
the real part of the integral along the unit semi-circle. Making the change of variables
t = eiφ we are left with

Ex,y,z[p̂MLE,ε] = re

∫ π

0

i(−1)−εe−α(1+eiφ)−β(1+e−iφ)(γeiφε + βeiφ(ε−1))dφ (3.37)

from which we conclude that

Ex,y,z[p̂MLE] = lim
ε→0

Ex,y,z[p̂MLE,ε]

= re

∫ π

0

ie−α(1+eiφ)−β(1+e−iφ)(γ + βe−iφ)dφ

=

∫ π

0

e−(α+β)(1+cosφ)

· [(γ + β cosφ) sin((α− β) sinφ) + (β sinφ) cos((α− β) sinφ)] dφ.
(3.38)

From this expression we can see that Ex,y,z[p̂MLE] is exactly linear with respect to γ, and
therefore the bias will be exactly linear with respect to p. This integral is best done
numerically. What follows is a closed form approximation which will usually be more
practical.

We see that the integrand falls off exponentially with rate α+β as φ decreases from π.
Since it will usually hold that α + β � 2, the integrand will have most of its support in
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a region close to π. This justifies a low order series expansion of trigonometric functions
about φ = π, giving

Ex,y,z[p̂MLE] ≈
∫ π

0

e−(α+β)(φ−π)2/2

[−(γ − β) sin((α− β)(φ− π))− (φ− π)β cos((α− β)(φ− π))] dφ

=

∫ 0

−π
e−(α+β)φ2/2 [−(γ − β) sin((α− β)φ)− φβ cos((α− β)φ)] dφ

≈
∫ 0

−∞
e−(α+β)φ2/2 [−(γ − β) sin((α− β)φ)− φβ cos((α− β)φ)] dφ

=
γ − β
α− β

+

(
γ − β
α− β

− β

α + β

)(√
2
α− β√
α + β

F

(
α− β√
2
√
α + β

)
− 1

)
= p+

(
p− β

α + β

)
f

(
α− β√
α + β

)
(3.39)

where F (x) = e−x
2 ∫ x

0
et

2
dt is the Dawson function and f(x) =

√
2xF (x/

√
2)−1. Numerics

show that these approximations are accurate to O ((α + β)−2) for α + β & 700. For large
x we have the series f(x) = 1

x2 + 3
x4 +O (x−6). It follows that

Bias[p̂MLE] ≈
(
p− β

α + β

)
α + β

(α− β)2
+O

(
(α + β)−2

)
(3.40)

We see that the estimator is unbiased at the single point p = β
α+β

and that worst bias

happens at p = 0 or p = 1 and scales as O
(

1
α+β

)
. Note that we have assumed that the

contrast α−β
α+β

stays fixed to make the above asymptotic arguments.

3.4.3 Bias Corrected Estimator

We can use Equation Equation 3.28 to attempt to derive an estimator which is less biased
than the MLE by subtracting off an estimate of the bias. This gives

p̂BCE = p̂MLE +

(
p̂MLE −

β̂

α̂ + β̂

)
α̂ + β̂

(α̂− β̂)2

=
z((x− y)2 − x− y)− y((x− y)2 − 2x− 2y)

(x− y)3
(3.41)
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However, recall from Section 3.3.6 that the Cramér–Rao bound gives us the lower bound

Var[p̂MLE] ≥ p(p+ 1)α + (p− 2)(p− 1)β

(α− β)2
(3.42)

on the variance of our estimator. If we take the average of this bound at p = 0 and p = 1
we get α+β

(α−β)2 which happens to be equal to the worst-case bias derived above. We conclude

that when α+ β & 300, the bias of the MLE is negligible since it will be of O ((α + β)−1),

well contained within a single standard deviation of p̂MLE, O
(

(α + β)−
1
2

)
.

Moreover, the estimate of the bias
(
p̂MLE − β̂

α̂+β̂

)
α̂+β̂

(α̂−β̂)2
used above is itself likely to

have a variance and bias which outweigh that which it is trying to correct. Therefore, this
estimator is not useful in practice.

3.4.4 Bayes Estimator

If we assume our prior knowledge of the parameters (p, α, β) is encoded in the probability
distribution π(p, α, β), then assuming our model is correct, Bayes’ theorem will tell us
how to best update our beliefs about the parameters after we have measured the variate
(x, y, z):

π∗(p, α, β) ≡ Pr (p, α, β|x, y, z) =
Pr (x, y, z|p, α, β) π(p, α, β)∫

Pr (x, y, z|p, α, β) π(p, α, β)dp dα dβ

=
L(p, α, β|x, y, z)π(p, α, β)

N
. (3.43)

Here, L is the likelihood function from Equation Equation 3.13 and N is a normalization
constant.

If we assume a separable prior π(p, α, β) = π(p)π(α, β), and it would be strange not to,
then Bayes’ theorem can be applied sequentially. This relies on the conditional indepen-
dence of X, Y , and Z. We can first update our prior distribution using the datum (x, y)
to get

Pr (p, α, β|x, y) =
Pr (x, y|p, α, β) π(p, α, β)∫

Pr (x, y|p, α, β) π(p, α, β)dp dα dβ

=
Pr (x|α) Pr (y|β) π(α, β)∫

Pr (x|α) Pr (y|β) π(α, β)dα dβ
π(p) ≡ π∗(α, β)π(p) (3.44)
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and subsequently

Pr (p, α, β|z) =
Pr (z|p, α, β) π∗(α, β)π(p)∫

Pr (z|p, α, β)π∗(α, β)π(p)dp dα dβ
= π∗(p, α, β). (3.45)

This sequential break down is useful because a conjugate prior can be found for the like-
lihood Pr (x, y|p, α, β) in a couple of useful cases, meaning the posterior π∗(α, β) can be
computed exactly. Formulas for two different conjugate priors for the references are given
in Section 3.5. The full likelihood L, however, almost certainly does not have a conjugate
prior.

Given the posterior distribution π∗, there are many choices for the estimator. The
most common is the mean square error (MSE) Bayes estimator which simply takes the
expectation value of π∗. For the particular parameter p, we have

p̂Bayes = E[p|x, y, z] =

∫ 1

0

∫ ∞
0

∫ ∞
0

pπ∗(p, α, β)dp dα dβ. (3.46)

This is known to be the estimator which minimizes the expected MSE of the estimate over
all possible estimators,

(p̂Bayes, α̂Bayes, β̂Bayes) = argminθ̂ E[(θ̂(x, y, z)− (p, α, β))2]. (3.47)

3.4.5 Comparing Estimators: Risk

We wish to compare the quality of the above estimators. In general, when one wants to
compare several estimators, or even assess the quality of a single estimator, the first step is
to decide which properties make an estimator ‘good’ in the context of the problem at hand.
For example, if there are serious consequences to being wrong, then it might be better to
err on the side of a cautious estimator, rather than one with lousy worst case performance
but better performance on average. In our case, the quantity p will rarely, if ever, be the
primary quantity of interest. However, it will always be a gateway, implicitly or explicitly,
to the real quantities of interest. If we assume, for the sake of generality, that the size of
the average mean-squared-error (MSE) on these parameters is a sufficient figure of merit,
then by the standard rules of error propagation, out of a collection of estimators for p, we
should prefer the one with the best MSE averaged over random realizations. It is possible
that there are situations in which this general principle does not hold, in which case the
full and specific problem should be considered.
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Figure 3.5: The MSE risk for several estimators of p, labeled in the legend, is plotted for
six different regimes of experimental setup, (a)-(f). The square root has been taken so
that the units of the y-axes have the same units as p. The estimators under study are
the maximum likelihood estimator, p̂MLE, the bias corrected estimator (see Section 3.4.3),
p̂BCE, and the Bayes estimator, p̂Bayes, with two different priors. These priors are denoted
by “Bayes” and “Bayes-10”, with the latter being a more conservative prior corresponding
to a ten-fold increase in the assumed covariance, as explained in the main body. Sharp
peaks for the Bayes estimators are artefacts of the coarse sampling along the x-axis; risk
was evaluated at p ranging from 0 to 1 in steps of 0.05. The risks of p̂MLE and p̂BCE are
much bigger than 1 for the low-contrast regime due to the common occurence of y > x,
and are therefore not plotted.
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To proceed, we accept the idea of a ‘true value’ of p, and define the MSE loss between
the true value and the estimate p̂(x, y, z) as

LMSE(p̂(x, y, z), p) = (p̂(x, y, z)− p)2, (3.48)

where (x, y, z) is some realization of data drawn from (X, Y, Z)|p, α, β. Next, it is rea-
sonable to assume that the operators of a given experimental setup will have a rough
idea of what to expect as their reference counts. Or, given the results of a set of ex-
periments, all of the reference counts can be pooled to empirically construct a distribu-
tion of reference counts. As such, we assume the existence of a probability distribution
PS(α, β) = Pr(α, β|experimental setup S) which characterizes a particular setup called S
(assuming a fixed number of shots, N , per experiment).

Given an estimator p̂, its risk with respect to the true values (p, α, β) is defined in the
standard way as the average value of the loss,

R(p̂, p, α, β) = Ex,y,z|p,α,β[LMSE(p̂, p)] =
∞∑

x,y,z=0

LMSE(p̂(x, y, z), p) Pr(x, y, z|α, β, p). (3.49)

With a particular setup S we can then quantify its overall risk,

RS(p̂, p) = Eα,β[R(p̂, p, α, β)] =

∫
R(p̂, p, α, β)PS(α, β)dα dβ, (3.50)

by marginalizing over our knowledge about it. Note that the units of
√

RS(p̂, p) are the
same as those of p, and that, for example, a value of 0.01 has the straight forward in-
terpretation as being the amount that p̂ differs from the true value p, averaging over all
possible data coming from the given setup, weighted by the likelihood of that data. If
we were to additionally marginalize over a distribution of p, this would be the Bayes risk,
and an estimator minimizing this quantity would be a Bayes estimator. Therefore, the
expression above can be seen as a hybrid between Bayes risk and frequentist risk, where
we marginalize over α and β, but not p.

We will treat the prior of a Bayesian estimator as an implicit property of the estimator.
We can then compare, for example, p̂Bayes with itself under different priors. The prior on
α and β does not need to have any relationship with PS(α, β). A large part of choosing a
prior has to do with assessing one’s level of paranoia, and one may be more paranoid about
generating a fair risk comparison than about giving the estimator an over-informed prior,
or vice versa. However, setting them equal to each other will often be the most sensible
thing to do.
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We study a few regimes of experimental setups. We consider a high-data regime, Shd,
where α = 100, 000, a mid-data regime, Smd, where α = 10, 000, and a low-data regime,

Sld where α = 1, 000. In these three cases the contrast is the same, C = α−β
α+β

= 0.6.

We additionally consider mid-data regimes of varying contrast, where α = 10, 000 for
C = 0.05, 0.33, 0.82. This defines the respective low, medium, and high contrast setups
Slc, Smc, and Shc. The above setup descriptions only supply the mean values of their
respective distributions PS, that is, EPS

[(α, β)] = (α, β). To keep things simple, we take
these distributions to all be binormal with super-Poisson standard deviations σα = 2

√
α

and σβ = 2
√
β, and covariances defined by σα,β = 1.5β.

In Figure 3.5,
√

RS(p̂, p) is plotted for each of the setups described above, and for each of
the estimators p̂MLE, p̂BCE, and p̂Bayes. Two different priors are used for the Bayes estimator
on each setup, both are product gamma distributions, discussed further in Section 3.5.1.
The first, ‘Bayes’, uses the same mean value and diagonal covariance elements as PS.
The second, ‘Bayes-10’, uses the same mean value as PS, but standard deviations which
are ten times larger than PS, corresponding to a rather uninformative prior. The more
sophisticated prior discussed in Section 3.5.2, which allows for correlations between α and
β, should in theory be strictly better than the ones used in these calculations, but were
found to be too computationally expensive for naive implementations of risk computation.
For all setups and estimators, risk is computed by Monte Carlo sampling; for each value
of p, many pairs (α, β) are sampled from PS(α, β), for each pair many variates (x,y,z)
are drawn from the likelihood distribution, and the loss LMSE is computed for each. The
average of these loss values for this value of p forms an estimate of RS(p̂, p).

These plots show that the Cramér–Rao bound Equation 3.20 is an excellent estimate
of the risk of the MLE in most regimes. Further, under our loss function, the Bayes
estimator never has more risk than the MLE, and has superior performance especially near
the boundaries of [0, 1], even for the rather uninformative Bayes-10 prior.

3.5 Conjugate Priors for Reference Parameters

Given a likelihood function, its conjugate prior is a special family of distributions such
that the posterior is also in the same family of distributions. Therefore conjugate priors,
when they exist, are very useful at reducing the complexity of applying Bayesian inference.
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3.5.1 Uncorrelated Conjugate Prior

Since the likelihood function L(α, β|x, y) for the drift parameters is separable into two
Poisson distributions,

L(α, β|x, y) =
αxe−α

x!
· β

ye−β

y!
, (3.51)

the product of Gamma distributions will be a conjugate prior. Indeed, with the prior

π(α, β) = π(α)π(β) = pdfGamma (α; aα, bα) · pdfGamma (β; aβ, bβ) (3.52)

where pdfGamma (ξ; a, b) = baξa−1e−ξb

Γ(a)
and Γ is the gamma function, and given the variate

(x, y) of (X, Y )|α, β, the posterior distribution takes the analytic form

π∗(α, β) = Pr[α, β|x, y] =
Pr[x, y|αβ]π(α, β)∫

Pr[x, y|αβ]π(α, β)dαdβ

= pdfGamma (α; aα + x, bα + 1) · pdfGamma (β; aβ + y, bβ + 1) .
(3.53)

This convenient fact means that if we describe our knowledge of the references α and β
by the hyperparameters (aα, bα, aβ, bβ), then the hyperparameters describing the posterior
are (aα + x, bα + 1, aβ + y, bβ + 1). Note that the mean and variance of the gamma distri-
bution Gamma (a, b) are given by µ = a

b
and σ2 = a

b2
, respectively. These equations can

be uniquely inverted as a = µ2

σ2 and b = µ
σ2 . Therefore we can equivalently, but more in-

tuitively, describe our prior with the hyperparameters (µα, σ
2
α, µβ, σ

2
β) which give posterior

hyperparameters(
a∗α = x+

µ2
α

σ2
α

, b∗α = 1 +
µα
σ2
α

, a∗β = y +
µ2
β

σ2
β

, b∗β = 1 +
µβ
σ2
β

,

)
(3.54)

or, in terms of mean and variance,(
µ∗α =

µ2
α + σ2

αx

µα + σ2
α

, (σ∗α)2 =
σ2
α (µ2

α + σ2
αx)

(µα + σ2
α)2 µ∗β =

µβ2 + σβ2y

µβ + σβ2
, (σ∗β)2 =

σβ2 (µβ2 + σβ2y)

(µβ + σβ2)2

)
.

(3.55)
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3.5.2 Correlated Conjugate Prior

The prior introduced in the previous subsection assumes that the parameters α and β are
uncorrelated. This will rarely if ever be true in practice; a large positive correlation is
expected. Therefore, in addition to the hyperparameters (µα, σ

2
α, µβ, σ

2
β) we would like to

add a fifth hyperparameter, σα,β, which describes the covariance of α and β.

To this end we consider a bivariate Poisson model inspired by Equation Equation 3.3.
In that equation it is clear that variations in δ will cause correlations between α and β. A
bivariate Poisson random variable is defined as (A,B) ∼ BP (θ0, θ1, θ2) where A = C0 +C1

and B = C0 +C2 with Ci ∼ Poisson (θ0), i = 0, 1, 2. This produces the probability density

pdfBP (x, y; θ0, θ1, θ2) =
e−(θ0+θ1+θ2)θx1θ

y
2

x!y!

min(x,y)∑
i=0

(
x
i

)(
y
i

)
i!

(
θ0

θ1θ2

)i
. (3.56)

This distribution has marginal distributions

A ∼ Poisson (θ0 + θ1) and ∼ Poisson (θ0 + θ1) (3.57)

and covariance Cov(A,B) = θ0. As discovered by Karlis and Tsiamyrtzis [98], it has an
exact family of conjugate priors given by the mixture distributions

r∑
j=0

wjG(θ0; a0 + j, b0) ·G(θ1; a1 − j, b1) ·G(θ2; a2 − j, b2) (3.58)

where G is the probability density of the gamma distribution, ai, bi > 0, r ∈ {0, 1, 2, ...},
0 ≤ wj ≤ 1, and

∑r
j=0wj = 1.

For the prior that interests us, fixing r = 0 and b0 = 1 will suffice; this leaves us
with five hyperparameters (a0, a1, a2, b0, b1) which we will bijectively map onto the more
intuitive hyperparameters (µα, σ

2
α, µβ, σ

2
β, σα,β).

Indeed, make the change of variables α = θ0 +θ1 and β = θ0 +θ2 and consider the prior

π(α, β, θ0) = G(α− θ0; a1, b1) ·G(β − θ0; a2, b2) ·G(θ0; a0, 1) (3.59)

where

a1 =
(µα − σα,β)2

σ2
α − σα,β

b1 =
µα − σα,β
σ2
α − σα,β

a2 =
(µβ − σα,β)2

σ2
β − σα,β

b2 =
µβ − σα,β
σ2
β − σα,β

a0 = σα,β. (3.60)
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It then holds that, for example,

E[α2] =

∫ ∞
0

dθ0

∫ ∞
θ0

dα

∫ ∞
θ0

dβα2π(α, β, θ0)

=

∫ ∞
0

dθ0

∫ ∞
0

dθ1(θ2
0 + θ2

1 + 2θ1θ3)G(θ1; a1, b1) ·G(θ0; a0, 1)

=

(
a0

12
+
a2

0

12

)
+

(
a1

b2
1

+
a2

1

b2
1

)
+ 2

a1

b1

a0

= σ2
α + µ2

α (3.61)

so that Var[α] = σ2
α. Similarly we get E[α] = µα, E[β] = µβ, Var[α] = σ2

α, Var[β] = σ2
β,

and Cov[α, β] = σα,β.

Since this prior is conjugate to the likelihood function of

(X, Y ) ∼ BP (θ0, α− θ0, β − θ1) , (3.62)

if we receive the iid data (x1, y1), ..., (xn, yn) sampled from this distribution, the posterior
will have the form of Equation Equation 3.58 with updated parameters. Let x =

∑n
k=1 xk

and y =
∑n

k=1 yk. First we have the simple updated posterior parameters a∗0 = a0, a∗1 =
a1 +x, a∗2 = a2 + y, b∗i = bi +n for i = 0, 1, 2, which is very similar to the uncorrelated case
of the previous section. The new weights w∗j of the posterior (recall we had a single weight
w0 = 1 in the prior) also has a closed form, but it is cumbersome to write down. Defining
si = min(xi, yi) and Sn =

∑n
i=1 si, then for each 0 ≤ k ≤ Sn we have wk = p̄k/

∑Sn
m=0 p̄k

where

p̄k = c
(n)
k

ba1
1 b

a2
2

Γ(a1)Γ(a2)Γ(a0)
Γ(a1 − k + x)Γ(a2 − k + y)Γ(a0 + k)

(
(n+ b1)(n+ b2)

n+ b0

)k
.

(3.63)

and the quantities c
(n)
k are defined recursively as

c
(n)
k =

min(k,s∗n)∑
r=max(0,k−s∗n)

v(n)
r c

(n−1)
k−r (3.64)

where v
(m)
r = ((xm − r)!(ym − r)!r!)−1, c

(1)
k = v

(1)
k , and s∗m = min(sm, Sm−1). For generality,

we have provided these formulas given n random samples, when in practice, because of the
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Figure 3.6: An example of posterior mixture weights w∗k for k = 0, ..., S1. Parameters used
were µα = 200, µβ = 140, σα = 40, σβ = 15, σα,β = 90. The prior was updated with a
single sample x = 220 and y = 120.

drift discussed in the main body of this article, only one random sample will usually be
taken. With n = 1, the recursive definition is unnecessary and the weights are given by

w∗k =
x!y! sin(π(α1 + x)) sin(π(α2 + y))

3F̃2

(
{−x,−y, α0}, {1− x− α1, 1− y − α2}, 1

2
(β1 + 1)(β2 + 1)

)
· Γ(k + α0)Γ(x− k + α1)Γ(y − k + α2)

π2k!(x− k)!(y − k)! Γ(α0)

(
(1 + b1)(1 + b2)

2

)k
(3.65)

where pF̃q({c1, ..., cp}, {d1, ..., dq}, z) = pFq({c1,...,cp},{d1,...,dq},z)
Γ(d1)···Γ(dq)

is the regularized generalized

hypergeometric function and pFq({c1, ..., cp}, {d1, ..., dq}, z) is the generalized hypergeomet-
ric function. However, the only factors in Equation 3.65 which are are relevant to numerical
implementations are those which involve k. Everything else can be implicitly calculated
by demanding the normalization

∑Sn
k=0 w

∗
k = 1. An example of posterior mixture weights

is shown in Figure 3.6.

With these definitions, the posterior is given by the exact distribution

π∗(α, β, θ0) =
Sn∑
j=0

w∗j
[
G(θ0; a0 + j, b0 + n) ·G(α− θ0; a1 + x− j, b1 + n)

·G(β − θ0; a2 + y − j, b2 + n)
]
. (3.66)
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Depending on the size of Sn, the posterior may be expensive to compute the value of at
a given coordinate. However, once the posterior weights ω∗k have been computed, drawing
a sample is essentially the same cost as drawing a sample from three Gamma distributions.

3.6 Example: Quantum Hamiltonian Learning

One of the primary advantages of using a Bayesian approach to NV measurement is that
it can be used as an overlay model on other estimation problems. This results in seamless
propagation of error bars to the final quantities of interest. In frequentist settings, it is
usually a pain to justifiably propagate error bars near the boundaries of an interval like
[0, 1] because the usual normality approximations are dubious. To illustrate this Bayesian
approach, in this section we provide a thorough example of Quantum Hamiltonian Learning
(QHL) [185] using experimental data. QHL has been shown to be a powerful method of
characterizing quantum systems [182].

3.6.1 Hamiltonian Model

We assume a secular form of the spin-1 Hamiltonian (in the optical ground state, see
Section 2.3) of the form

HmI
= δ∆S2

z + (ωe +mIAN)Sz + Ω(t)Sx (3.67)

where we are in a frame rotating near the ground state ZFS, 2.87 GHz. Here, δ∆ is the
mismatch between the applied microwave frequency and the ZFS, ωe is the projection of
the static magnetic field onto the z-axis, AN is the hyperfine splitting due to 14-Nitrogen,
mI is the spin number of the nitrogen atom, and Ω is the microwave nutation strength. All
of the parameter units are angular frequency, 2π·MHz, except mI which is unitless. Our
goal is to learn these parameters, as well as the T2 decay time. In particular, we would like
good error bars on ωe since this is the quantity of interest in magnetometry, considering
other parameters as nuisances.

At room temperature, the nitrogen atom is equally likely to be in each of its three energy
states |mI ∈ {−1, 0,+1}〉. Since the nitrogen T1 is much longer than a single experiment,
we assume that for each experiment, the state of the nitrogen is fixed. Hence in the
Hamiltonian above, we simply treat the axial hyperfine coupling between the NV−and the
nitrogen as a small mI dependent shift in the static magnetic field.
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Figure 3.7: Examples of Bayesian updates showing contours of the prior and posterior
probability distributions, where the update data is depicted by red dots. In each of the
four cases, the same data is given to both the correlated and uncorrelated priors described in
Section 3.5.1 and Section 3.5.2, respectively. Black dashed ellipses represent 90% confidence
regions; their centers are at the mean of the distribution, and their eccentricity matrix is
equal to 4.6 times the covariance matrix of the distribution. Cases (a) and (b) represent
a low data scenario, whereas cases (c) and (d) represent a high data scenario. Cases
(a) and (c) represent correlated measurement data, whereas cases (b) and (d) represent
anti-correlated measurement data.
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With an initial state ρi = |g, 0〉〈g, 0|, at time t the density matrix is described by
ρ(t) = 1

3

∑
mI
S(t)mI

[ρi] where SmI
(t) is the evolution superoperator under the Hamiltonian

HI, along with a single dephasing Lindblad term L =
√
T2Sz. The superoperators SmI

can be computed by exponentiating the supergenerator derived from the Lindblad master
equation. We will only consider constant or piecewise constant values of Ω(t), which
simplifies simulation (finite rise-times are ignored). This convex combination approach is
valid because we will be summing over many trials of the same experiment, and hence will
see an equal mixture of all three nitrogen states on average.

3.6.2 Experiment Choices and Data

The time dependence of the nutation envelope Ω is controlled by the experimentalist. To
learn the parameters of this system, we choose to do two types of experiments. The first
is the Rabi experiment, where Ω is finite and constant for a period tr and the state is
subsequently measured. Rabi experiments are primarily sensitive to nutation frequency.
The second is the Ramsey experiment, where there is a wait period with Ω = 0 of length
tw between two identical unitary gates which are created by turning Ω on at full power
for a duration tp. Ramsey experiments are sensitive to fields along the z-axis. These two
experiments are sensitive to roughly orthogonal regions of parameter space.

These considerations are only heuristics, and due to the continuum of possible experi-
ment types, it is intractable to discover which ones are globally optimal for learning some
set of parameters. Some improvement in learning efficiency could be almost certainly be
achieved by considering additional pulse sequences which might further decorrelate and/or
isolate parameters of interest. However, such considerations are beyond the scope of the
present example where our goal is a proof of principle of fully Bayesian methods.

Experiments were performed on a microscope with relatively poor optical characteris-
tics; for a single repetition (N = 1) we had an average number of detected bright reference
photons α ≈ 0.006, and an average number of detected dark reference photos β ≈ 0.004,
giving a contrast value of 0.2. The static magnetic field acting on the NV−center was just
the ambient stray field in the laboratory; some combination of Earth’s field, building char-
acteristics, and nearby electronics. We took R = 400 averages of N = 30000 repetitions for
both the Rabi and Ramsey experiments. Rabi flops were sampled at 100 linearly spaced
points between tr = 8ns and tr = 800ns. The Ramsey wait times were sampled at 200
linear spaced points between tw = 0.01µs and tw = 2µs, with a pulse time tp = 44ns. Raw
(summed) data is plotted in Figure 3.10.
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Figure 3.8: In (a-b), the expectation value of the SMC posterior, Eπ∗ [~x] =
(ω̂e, ˆδ∆, Ω̂, ÂN , T̂

−1
2 ), is is used in a simulation of the Hamiltonian model (Section 3.6.1),

and shown on top of the normalized raw data. The raw data was normalized using the MLE
in Equation Equation 3.24, and the 95% error bars are computed with Equation Equa-
tion 3.21 for comparison. In (c-d), the expectation and variance of the SMC posterior is
shown as a function of the number of Bayes’ update steps in SMC. In (e) and (f) posterior
marginal distributions are shown for the parameters ωe and Ω, respectively. The broad
shaded curves come from the same data-processing algorithm run on disjoint subsets of
experimental data. The full amalgamated dataset results are shown for both SMC (black,
solid) and weighted least-squares (blue, dashed).
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3.6.3 QHL Likelihood Function

As we did for the tomography model sketched in Section 3.3.5, we now write down
a model for our QHL problem. We label a given experimental configuration as ~c =
(tr, tw, tp, k), where the three timing parameters were defined in Section 3.6.1 and k ∈
{RABI,RAMSEY} selects the experiment types explained in Section 3.6.2. Similarly, we
denote a hypothetical parameter set as a vector ~x = (ωe, δ∆,Ω, AN , T

−1
2 ). A specific pair,

(~x,~c), provides enough information to do a full quantum simulation of the spin-1 manifold,
resulting in the probability of a projective |0〉 measurement given by

p~x,~c = Tr (|0〉〈0| S~x,~c(|0〉〈0|)) . (3.68)

Here, S~x,~c is the solution to the Lindblad master equation under the Hamiltonian model
described in Section 3.6.1. This yields the conditional model X, Y, Z|α, β, ~x;~c with X ∼
Poisson (α), Y ∼ Poisson (β), and Z ∼ Poisson (β + p~x,~c(α− β)). The goal of the inference
problem is to deduce the true values of ~x, and in particular, ωe, given a dataset of photon
counts.

3.6.4 Bayesian Inference with Sequential Monte Carlo

We begin with a prior distribution π(~x) describing our knowledge of the system before any
measurements, given by the following product distribution:

ωe ∼ Unif (0 MHz, 10 MHz) (3.69)

δ∆ ∼ Unif (−5 MHz, 5 MHz) (3.70)

Ω ∼ Unif (0 MHz, 10 MHz) (3.71)

AN ∼ Unif (1.5 MHz, 3.5 MHz) (3.72)

T−1
2 ∼ Unif

(
(100 µs)−1, (1 µs)−1

)
. (3.73)

Additionally, we empirically choose a prior for the references α and β by computing the
sample moments of the experimental reference count data, multiplying the standard de-
viations by 4 to be conservative, and choosing a product gamma distribution with these
moments. This distribution is discussed in Section 3.5.1. We label this distribution as
πk(α, β) where k ∈ {RABI,RAMSEY}.

The prior distribution is now sequentially updated through Bayes’ law one triple (x~c, y~c, z~c)
at a time. Here, x~c =

∑N,R
n=1,r=1 xn,~c,r, y~c =

∑N,R
n=1,r=1 yn,~c,r, and z~c =

∑N,R
n=1,r=1 zn,~c,r are the
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photon counts for a particular experiment ~c = (tr, tw, tp, k) summed over all repetitions and
averages (see Section 3.2.2). The distribution Pr(α, β, ~x) is stored as a so-called particle
approximation consisting of a finite list of hypothetical values, called particles, labeled as
{(αi, βi, ~xi)} with corresponding weights {wi},

∑
iwi = 1. Typically on the order of 10000

particles are used for numerical stability.

The distribution for the references α and β is reset to πk(α, β) before each triple of data
is used. As discussed in Section 3.4.4, we may process the reference pair (x~c, y~c) first and
subsequently process the signal count z~c. The reference pair is processed by replacing the
reference prior with the analytically derived posterior, discussed in Section 3.5.1. This is
done by replacing the (α, β) coordinates of each particle (αi, βi, ~xi) with a random variate
drawn from the posterior π∗(α, β|x~c, y~c). The signal is processed using the Sequential
Monte Carlo (SMC) algorithm, as implemented by the software package QInfer [63].

While Bayes’ update rule is agnostic to the order in which we enter data since each data
triple is statistically independent, the order is relevant to the numerical implementation.
An intuitive explanation is as follows. Suppose one is interested in determining the fre-
quency of a cosine wave using amplitude data sampled at various time points, and that we
assign a flat prior distribution over a wide range of frequencies. If we first update our prior
with the data from a late time point, the posterior will have many peaks because every
divisor of the measurement time will correspond to a period consistent with the observed
data. Subsequent updates will eventually inform us about which peak contains the true
frequency. However, if we first update our prior with data from a time point early enough
that we know (according to our prior) that less than a full period has had time to take
place, then the posterior will be a very broad but unimodal. Subsequent chronological
Bayes updates will tend to shift and narrow this peak. Since the SMC algorithm — specif-
ically, the Liu–West resampler [113] — implicitly assumes unimodality, the first approach
will usually fail and the second approach will usually succeed, assuming the ansatz that
there is only one true value in parameter space. Given this data processing constraint, we
fed the data to the Bayes updater in strictly increasing times tw and tr, shuffling the Rabi
and Ramsey data together randomly. Alternatively, an algorithm without a unimodality
constraint could be considered [64].

One nice feature of the SMC algorithm is that it typically heralds its own failure through
the effective sample size criterion [11]. Such failures can result from multi-modalities, as
discussed above. Another common failure path is through overly-informative data, where
a single Bayes update causes only a handful of particles to remain relevant. We mitigate
against this partly by using a conjugate prior for the reference indices, as discussed in
Section 3.4.4, and also by a technique called bridging the transition, discussed in the next
subsection.
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3.6.5 Bridged Updater for the Referenced Poisson Model in SMC

For us, there are two main mechanisms that can cause the SMC algorithm to become
unreliable. Both have to do with the finite particle approximation and its reliance on having
enough effective particles near the true model parameter values, known as importance
sampling. The first mechanism is that periodicities in the model have the effect of creating
temporary multimodalities in the posterior as we analyze the data. If certain early data
happen to cause disproportionate support on an incorrect mode, we lose particles where
we need them, and this might lead to a runaway effect where all particle weights become
zero. We mitigate against this by processing the data in ascending order, as discussed the
previous subsection.

The second cause of instability is that some data points are overly informative. From a
learning perspective, informative data are great. However, from SMC’s perspective, very
informative data have the tendency to drastically reduce the weight of most particles,
causing the effective particle count,

neff = 1/
N∑
n=1

w2
n, (3.74)

to become a tiny fraction of the actual particle count, N . For example, it is not unusual
(nor is it common) for data, with our QHL model, to reduce the effective particle count to
below 100 while there are 16000 actual particles. Storing a multi-dimensional distribution
(seven dimensions in our current QHL example) on 100 particles is a bad idea, and causes
the remainder of the inference to become suspect. A costly solution to this problem is to,
for example, increase to 160000 particles, so that the effective particle count does not dip
much below 1000. The purpose of this section is to discuss a less costly solution.

The idea is as follows. It is easy to detect when an update would cause the effective
particle count to drop below some threshold, say 1000; one simply need compute Equa-
tion 3.74 on the posterior weights before overwriting the current weights. If this flag is
raised, instead of performing the update (i.e. overwriting the current weights), we instead
perform a sequence of less informative updates that do not correspond to actual obser-
vations, but that do result in the same posterior. This technique is called bridging the
transition [2], and it gives a chance for the updater to resample the particles “mid-update”
so that particles can be relocated to where they are actually needed. This technique is only
amenable to certain likelihood functions, and thankfully, owing to some nice properties of
the Poisson distribution, ours is one of them.
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To see this, consider the generic NV−model at some particular step of SMC:

s ∼ π(s) (3.75a)

α, β ∼ π(α, β) (3.75b)

X|α ∼ Poisson (α) (3.75c)

Y |β ∼ Poisson (β) (3.75d)

Z|s, α, β ∼ Poisson (p(s)α + (1− p(s))β) . (3.75e)

Here, s is a set of parameters we wish to learn, π(s) is our current particle distribution
describing these parameters, π(α, β) is our prior on the next data point’s references, p(s)
is the function that takes the parameters of interest and returns p = Tr ρP0, and (X, Y, Z)
is the next data point triplet. On obtaining the variate (x, y, z), the next SMC update
step should result in the posterior distribution Pr(s, α, β|x, y, z), which, using Bayes’ rule,
is proportional to

Pr(s, α, β|x, y, z) ∝ Pr(x, y, z|s, α, β)π(α, β)π(s) (3.76a)

= Pr(z|s, α, β) Pr(x|α) Pr(y|β)π(α, β)π(s) (3.76b)

∝ Pr(z|s, α, β)π∗x,y(α, β)π(s). (3.76c)

As noted in Section 3.4.4, this formula shows that our update consists of first updating
α and β analytically using a conjugate prior, and subsequently updating s, α, β using
π∗x,y(α, β)π(s) as a prior. The proportionalities allow us to neglect those factors which
depend only on x, y, and/or z but not any of s, α, or β; all particles see the same values
of x, y, and z, so any such factors will be canceled out when enforcing the normalization
condition of the particle weights.

To bridge this transition, we start with the particles in the state π∗x,y(α, β)π(s) and
notice that

Pr(z|s, α, β) ∝ (p(s)α + (1− p(s))β)ze−p(s)α−(1−p(s))β (3.77a)

=

(
p(s)

α

m
+ (1− p(s)) β

m

)m z
m

mze−mp(s)
α
m
−m(1−p(s)) β

m (3.77b)

∝ pdfPois

(
z

m
; p(s)

α

m
+ (1− p(s)) β

m

)m
(3.77c)

so that the update can be achieved instead with m Poisson updates with reduced count data
z/m and reference particle locations for α and β also reduced by m. This is illustrated
in Figure 3.9. Note that our fictional data can have fractional photon counts; this is
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Figure 3.9: A particle distribution was initialized to the prior of Equation 3.73 with 16000
particles, and separately updated with the data from a single point of a Rabi experiment
in six different ways. We show a slice through the posterior for each case. On the left
are bridged and un-bridged updates with no resamples allowed, The final effective particle
count was about 1800 for all three of these updates. This demonstrates the bridging tech-
nique works in practice. On the right are bridged and un-bridged updates with resamples
taken whenever the distribution was detected to have fewer than 8000 effective particles.
These two bridge cases maintained at least 8000 effective particles at all times. Since the
posterior is far from normal, we can expect the resampler to introduce distortions.

not a problem, the Poisson mass function is well defined for non-integer data, assuming
the factorial is implemented using the gamma function, which it will be in any modern
programming language.

3.6.6 Results and Validation

Bayesian inference with the SMC algorithm was run on the entire dataset to obtain a
posterior distribution (two-parameter marginals are plotted in Figure 3.11). Recall that
our entire dataset consists of 400 averages of 30000 repetitions for each of the 300 different
experimental configurations, corresponding to roughly 24 hours of experiment time given
our particular optical efficiency. This number of averages was chosen to be large to allow for
more convincing validation of our techniques. To this end, the 400 averages were divided
into ten disjoint and chronological batches of 40 averages each, and the SMC algorithm
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was run independently on each batch. Since each batch has strictly less data than the
entire dataset (effectively lower values of α and β), wider posteriors are expected for these
than for the entire data set.

The main results are shown in Figure 3.8 and Table 3.1. The top two plots, Figure 3.8(a-
b), show that the SMC posterior corresponds to a sensible traditional fit of the data; the
posterior is used to obtain a point estimate of each of the parameters, and these parameters
are then used in a simulation spanning the experimental configurations. Since the posterior
distribution is tight enough that simulations from randomly sampled values are visually
indistinguishable, these fits can be interpreted as a visual posterior predictive check, where
data simulated according to the posterior is compared with actual data [58]. The middle
two figures show convergence properties of the SMC algorithm. Finally, the bottom two
figures show that the disjoint data sets result in posteriors that are consistent with each
other, and consistent with the posterior of the amalgamated data set. Keep in mind that
the parameters could be fluctuating slightly over long time scales.

For comparison, we also analyzed the data using a weighted least-squares fit (WLSF)
of of the parameters ~x = (ωe, δ∆,Ω, AN , T

−1
2 ). This was done by using the SciPy [97]

function optimization. curve fit to minimize the quantity

Φ(~x) =
∑
~c

(
p̂~c − p~x,~c

σ~c

)2

p̂~c =
z~c − y~c
x~c − y~c

, σ2
~c =

p̂~c(p̂~c + 1)x~c + (p̂~c − 2)(p̂~c − 1)y~c
(x~c − y~c)2

(3.78)

where the sum is taken over all experiment configurations ~c = (tr, tw, tp, k) that were per-
formed, p~x,~c is the simulation of hypothesis ~x under conditions ~c defined in Equation 3.68,
p̂~c is the MLE of p given the data (x~c, y~c, z~c), and the formula for the estimated variance
σ2
~c is derived from the Cramér–Rao bound Equation 3.20. For simplicity, the initial guess

of the WLSF function was taken to be the SMC point estimate. The WLSQ fit is shown
in Figure 3.8(e-f) on top of the SMC marginal posteriors. Table 3.1 provides a more com-
prehensive comparison, where WLSQ fits are also performed on each of the ten batches.
Visual checks for each batch are plotted in Figure 3.12. For the smaller batch sizes, the
WLSQ confidence intervals are more comparable in size to the SMC credible regions. We
suspect this is because SMC did not have enough data to significantly reduce posterior
correlations between parameters, especially between δ∆ and ωe.
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ωe δ∆ Ω AN T−1
2

E σ E σ E σ E σ E σ

all data
SMC 1432 0.5 597 13.9 5555 1.1 2171 0.8 35 0.5

WLSF 1432 1.4 158 54.7 5564 3.3 2169 1.8 43 1.7

batch 0
SMC 1430 3.6 639 115.0 5554 6.2 2181 4.7 44 2.8

WLSF 1424 4.0 773 127.8 5551 9.5 2176 5.2 49 4.8

batch 1
SMC 1422 2.8 -463 211.0 5555 9.6 2172 3.1 40 3.6

WLSF 1425 3.5 -222 172.7 5562 8.4 2171 4.6 41 4.0

batch 2
SMC 1437 3.2 -323 279.6 5567 8.9 2163 4.9 48 4.2

WLSF 1433 4.0 -188 153.3 5566 8.6 2164 4.9 49 4.5

batch 3
SMC 1434 2.6 30 247.2 5569 7.6 2166 3.3 31 2.0

WLSF 1433 3.3 153 140.4 5569 8.3 2164 4.3 36 3.9

batch 4
SMC 1432 2.5 -120 233.3 5560 8.0 2173 4.2 40 2.3

WLSF 1431 3.6 -132 133.3 5563 7.8 2175 4.8 46 4.3

batch 5
SMC 1435 2.9 125 147.8 5561 7.3 2177 4.2 40 2.7

WLSF 1435 3.7 163 140.1 5566 8.4 2178 4.8 45 4.2

batch 6
SMC 1433 3.7 -41 248.9 5567 7.1 2169 4.5 44 3.7

WLSF 1433 3.5 0 6962.6 5571 8.1 2166 4.5 44 4.0

batch 7
SMC 1426 3.4 390 499.5 5559 10.4 2168 4.3 40 3.3

WLSF 1429 3.3 410 127.2 5562 7.8 2165 4.1 40 3.8

batch 8
SMC 1438 4.3 203 348.1 5549 7.2 2168 3.8 41 2.9

WLSF 1440 3.7 511 144.9 5550 8.9 2168 4.6 43 4.3

batch 9
SMC 1439 3.5 226 650.5 5554 7.8 2167 3.6 45 2.9

WLSF 1439 3.9 538 140.1 5554 8.8 2169 4.8 46 4.3

Table 3.1: Results of the SMC and WLSF fits are shown for for the entire data sat, as well
as for each batch. All units are kHz. Both the point estimate (E) and the marginal standard
deviation (σ) are displayed for each of the five fit parameters, (Ω, ωe, δ∆, AN , T

−1
2 ).
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Figure 3.10: (a),(b) Time domain data from Rabi and Ramsey experiments. Photon counts
are summed over all 400× 30000 repetitions at each experiment parameter on the x-axis.
Bright and dark references are shown in addition to the signal of interest. (c) The discrete
Fourier transform of the Ramsey experiment. (d) Scatter plot of the summed reference
counts for both experiments. Each point represents a different experiment configuration,
the discrepancy between distributions is due to performing the experiments on different
days of the week.
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Figure 3.11: Two-parameter marginals of the QHL posterior distribution, where each dot
is a member of the particle approximation projected onto the corresponding axes. The
plots have been centered around the mean value of the distribution, the components of
which are specified in the axis labels.
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The points are the normalized data used in the corresponding SMC algorithm, with error
bars calculated using Equation 3.20.
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Chapter 4

Improving Hamiltonian Estimates
with Adaptive Experiment Design

1

4.1 Introduction

Characterizing quantum devices efficiently is an increasingly important problem. In the
case of quantum processors, knowing system properties and error processes is helpful for
designing robust high-fidelity control. If system parameters drift in time, they will need
to be periodically recharacterized, which reduces uptime. Or, in the case of metrology,
certain properties of the quantum system are themselves the quantities of interest, and so
more efficient characterization leads to higher sensitivities.

Quantum system characterization is typically done by performing a set of predetermined
experiments and subsequently processing statistics of the resulting data. This was the
approach taken in the Hamiltonian learning example of the previous chapter. While there
is nothing wrong with this—and indeed, in some cases, this strategy can even be tuned to
have near optimal performance—it has long been known that online (also called adaptive

1This chapter is based on Reference [83], done in collaboration with Thomas Alexander, Michal
Kononenko, and Benjamin Soloway. Experiments and analysis were performed by myself, with some
consultation from Thomas Alexander. Thomas Alexander was responsible for help with the Bayes risk
numerical implementation, see Appendix A ‘nv-adaptive’. Michal Konenenko was responible for setting
up a server to communicate experiments between the experiment-choosing computer with the experiment-
performing computer. Benjamin Soloway helped with the theory of effective strong measurements. The
third paragraph of this section puts this work in the context of adaptive quantum literature, both the-
oretical and experimental—in particular, this reference contains the first adaptive quantum Hamiltonian
learning experiments that have been performed.
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by some authors) experiment design is generally capable of outperforming predetermined
experiment sweeps [23, 79]. As its name implies, online experiment design allows the next
experiment choice to depend somehow on what has already been learned. The reason for
the advantage is obvious—online experiments can potentially avoid executing experiments
that are expected to be uninformative by using information that was initially unavailable.

Online experiment design has a long history in quantum systems. Almost five decades
ago, it was used to reduce the time required to determine relaxation rates in NMR spin
systems [56], and later to speed up inversion recovery T1 measurements [169]. In recent
decades, it has been studied extensively, both in theory and experiment, in the context of
quantum phase estimation [187, 10, 80, 9, 79, 191, 195, 26] and quantum state tomography
[92, 106, 50, 165, 167, 61, 143]. Online experiment design has been suggested for sequence
length choices in randomized benchmarking experiments[62], and adaptive protocols to
generate control pulses for quantum systems have been proposed [44, 52, 147]. Here we
build on online experiment design applied to quantum Hamiltonian estimation [155, 66,
51, 184, 166, 164], where a Hamiltonian form (or set of forms) is specified, and unknown
coefficients of Hamiltonian terms are sought.

The purpose of this chapter is to study online Bayesian experiment design, with Hamil-
tonian estimation as the inference problem of choice, using experimental data and noise on
a system with slightly non-trivial dynamics. By non-trivial we mean that there are more
than one or two relevant inference parameters (we ultimately use 10, including nuisance
parameters describing optical drift), that quantum state evolution does not admit a nice
closed form solution, and that we allow the ability to turn on and off the control field
within an experiment. In doing so we hope to pave the way for similar experiments in yet
more complex systems. To this end we interface a sequential Bayesian inference engine
with an experimental setup that controls the qutrit manifold of a single Nitrogen Vacancy
(NV) defect in diamond.

4.2 Inference of Quantum Devices

We begin by defining some notation while reviewing parameter estimation as applied to
quantum devices.

Information about a quantum device can be encoded into a list of real values, which we
call model parameters, labeled x. For example, in the case of Hamiltonian learning, these
values parameterize the Hamiltonian operator of the quantum system, or in the case of
state tomography, the entries of a density operator. This set of parameters includes both
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parameters of interest, which one is interested in learning, and nuisance parameters, which
are not of principle interest, but are still necessary to sufficiently describe the system.

Quantum devices are controlled by some collection of classical knobs that adjust various
settings such as power, timings, carrier frequencies, and so on. We refer to a specific
assignment of all of these settings as an experiment configuration, sometimes called the
control variables, which we label e. Then an experiment consists of a quantum measurement
(or set of quantum measurements) made using this fixed experiment configuration. For
example, in this nomenclature, a standard Rabi curve would be constructed by making a
set of experiments, each one defining—among other fixed parameters—a pulsing time in
its experimental configuration, e = (. . . , tpulse, . . .).

An experiment returns a datum d. This might be a photon count over a known time
interval, a time series of voltages, or a number of ‘down’ strong measurement results out
of N repetitions, and so on.

Generally, the goal of statistical inference is to learn the parameters x given a data
set d1, . . . , dn with respective configurations e1, . . . , en. This requires us to additionally
specify a model for the system—something which connects the model parameters to the
experiment configurations and data. This is done through a likelihood function,

L(x; d1:n, e1:n) = Pr(d1:n|x, e1:n), (4.1)

which returns the probability of receiving a given dataset conditioned on a hypothetical
configuration x. Here, and throughout this chapter, we use subscripted index-range nota-
tion, where, for example, d1:n = {d1, ..., dn}. Note that multiple models can be considered
and compared—known as model selection—if the true model is not known. For quan-
tum systems, these likelihood models come naturally through quantum system evolution
formulas in conjunction with Born’s rule.

One popular inference choice is to maximize the likelihood function with respect to
x, producing the maximum likelihood estimate (MLE) x̂MLE := argmaxx L. Confidence
regions of this estimate can be constructed with statistical derivations, or more generally,
through techniques like bootstrapping. Least-squared curve fitting is often used as a proxy
for the MLE (with confidence intervals arriving from assuming a linearized model) since it
is exactly equal to the MLE for linear models and normal likelihood functions.

The MLE is one example of an estimator in a vast literature on estimator theory.
In the present work, we limit ourselves to the use of Bayesian inference because of its
natural integration with online experiments, discussed below. In short, in the paradigm of
(sequential) Bayesian inference, one maintains the most current state of knowledge about
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Figure 4.1: Timing diagram of online Bayesian learning. The role of the experiment
design heuristic is to pick the next experiment configuration en+1, possibly based on the
current state of knowledge, πn(x), resulting in the new data point dn+1. This choice of
experiment be computationally expensive, and is therefore run concurrently with quantum
experiments.

the model parameters x, encoded as a probability distribution πn(x) = Pr(x|d1:n, e1:n),
where n = 1, 2, 3, ... indexes the state of knowledge when the first n data points d1:n have
been collected and processed from the first n experiments e1:n. We write π0(x) to denote
the distribution prior to all measurements. The update from πn−1 to πn is done through
Bayes’ law,

πn(e) =
Pr(dn|x, en)πn−1(x)

Pr(dn|en)
, (4.2)

so that our knowledge is improved sequentially as each datum arrives. Note that the
chain rule of conditional probabilities can be used to expand this equation into πn(e) =
Pr(d1:n|x, e1:n)π0(x)/Pr(d1:n|e1:n).

4.3 Bayesian Experimental Design

An experiment design heuristic is simply a function that determines the next experiment
configuration to use. We say such a heuristic is online if it explicitly uses the results
of preceding experiments, and we call it offline otherwise. An experiment design timing
diagram is shown in Figure 4.1. Conventionally, as an example, Rabi curves are generated
with offline heuristics, where the next experiment is chosen by increasing the pulse time by
a fixed duration in each experiment. The number of experiments and pulse time increments
are usually chosen through Nyquist considerations based on prior implicit beliefs about the
frequencies and relaxation times of the system.
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We restrict our online design heuristics to Bayesian designs, summarized in the following
framework. Let Un(x, d, e) be the utility of collecting the datum d under configuration e
given the hypothetical model parameters x and the current state of knowledge πn(x), where
a large value is good. Using the Bayesian maxim of marginalizing over unknown quantities,
the average utility of observing d at step n+1 under the possible experiment configuration
e is

Un(d, e) =

∫
π̃n,d,e(x)Un(x, d, e)dx. (4.3)

where π̃n,d,e(x) ∝ L(x; d, e)πn(x) is the hypothetical posterior at step n+ 1 assuming d will
be observed. Since we do not know a priori which d will occur, the average utility of the
possible configuration e as a whole is

Un(e) =

∫
Pr(d|e)Un(d, e)dd. (4.4)

where Pr(d|e) =
∫

Pr(d|x, e)πn(x)dx is the predictive distribution2. Based on this quantity
we can choose the next experiment to be the one that maximizes the utility,

en+1 = argmaxe Un(e), (4.5)

with the maximum taken over some space of possible experiments. If computed numerically,
we might only hope to find local maxima.

One can consider different choices of utility function U . When the application is in-
ference of a non-linear system, such as ours, it is common to choose a utility based on
mean-squared error [23]. In particular, we choose Un = −rn,Q where

rn,Q(x, d, e) = Tr
[
Q(x− x̂n,d,e)T(x− x̂n,d,e)

]
(4.6)

where Q is a positive semi-definite weighting matrix. Here, x̂n,d,e =
∫
xπ̃n,d,e(x)dx is the

Bayes estimator of x. In this case, rn,Q(e) has the simple interpretation of being the
expected posterior covariance matrix weighted against Q,

rn,Q(e) = Tr [QEd[Covπ̃[x|d, e]]] , (4.7)

a quantity known as the Q-weighted mean-squared-error Bayes risk (some numerical im-
plementation details are outlined in Section B.5).

2Note that π̃n,d,e(x) Pr(d|e) = Pr(x, d|x1:n, d1:n, e), and therefore Un(e) is the joint average over x and
d of Un(x, d, e) given the current state knowledge—this is a description some may prefer to the two-step
description involving the intermediate quantity Un(d, e) provided in the main-body.
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4.4 Nitrogen Vacancy System Model

The quantum system used in our experiment is a nitrogen vacancy (NV) center, introduced
in Chapter 2. Our goal for this section is to explicitly define model parameters, experiment
configurations, and a likelihood function for this system. Once this is achieved, we will be
able to employ sequential Bayesian inference and online experiment design.

Recall that in the rotating frame ωµwS2
z, with the rotating wave and secular approxi-

mations, the Hamiltonian of the optical ground state is given by

H/2π = (D − ωµw)S2
z + (ωe + AIz)Sz + Ω1(t)Sx (4.8)

where (Sx,Sy,Sz) are the spin-1 operators, ωµw is the applied microwave frequency, Ω1(t) is
the microwave drive strength, A is the hyperfine splitting due to the adjacent nitrogen-14
atom, and Iz is the nitrogen spin-1 operator along z. Along with the T ∗2 decoherence time
that introduces the Lindblad operator L =

√
1/T ∗2 Sz, these parameters are sufficient to

simulate the experiments that we perform. Therefore, the model parameters of our spin
system (a few more nuisance parameters will be added later) are given by

x = (Ω, ωe, δD,A, (T
∗
2 )−1) (4.9)

where δD = D − 2.87 GHz. Here, Ω is the maximum possible value that Ω1(t) can take,
so that we can write Ω1(t) = a(t)Ω using the unitless pulse-profile function a(t) : [0, te]→
[−1, 1] of duration te.

A general experiment configuration is then specified by

e = (a(t), ωµw, N) (4.10)

where a(t) pulse profile, ωµw is the applied microwave frequency, and N is the number of
repetitions of this experiment3. In this paper, we restrict our attention to two special cases
of this general form, depicted in Figure 4.2, given by

1. Rabi experiments, eRabi = (tp, ωµw, N), a(t) = 1 for all 0 ≤ t ≤ te = tp; and

2. Ramsey experiments, eRamsey = (tp, tw, ωµw, N),

a(t) =

{
0 tp < t < tp + tw

1 else

for all 0 ≤ t ≤ te = 2tp + tw.

3The experiment configuration must also specify values for each of the timings labeled in Figure 4.2,
but as they are calibrated independently from the experiment of interest, we omit them here for simplicity.
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Given a hypothetical set of model parameters x and an experiment configuration e,
the superoperator (in column-stacking convention) is given by the solution to the Lindlad
master equation,

S(x, e) = T e
∫ te
0 (C[H(t)]+D[L])dt, where (4.11a)

C[H(t)] = −i(I⊗H(t)−H(t)⊗ I) and (4.11b)

D[L] = L⊗ L− (I⊗ L†L+ L†L⊗ I)/2, (4.11c)

and where T is Dyson’s time ordering operator. This results in the measurement proba-
bility

p(x, e) = 〈〈P0|S(x, e) |ρ0〉〉 , (4.12)

where our initial state is ρ0 = |0〉〈0| ⊗ I/3 and the measurement projector is P0 = 3ρ0.

Further recall that the standard measurement protocol of the NV system at room
temperature does not have direct access to strong measurements, see Chapter 3. Instead,
the probability p(x, e) is obstructed by three Poisson rates, so that data is in the form of
a triple d = (X, Y, Z) where

X|α ∼ Poisson (Nα) (4.13a)

Y |β ∼ Poisson (Nβ) (4.13b)

Z|x, e, α, β ∼ Poisson (N(β + p(x, e)(α− β))) (4.13c)

with α and β, the number of expected photons for the bright and dark references in a
single shot with a given measurement duration tm, satisfying 0 < β < α. The values α and
β are nuisance parameters which we must append to our model parameters, giving

x = (Ω, ωe, δD,A, (T
∗
2 )−1, α, β). (4.14)

The likelihood function (see Equation 4.1) for a single experiment is then given by

L(x; d, e) = f(X,Nα) · f(Y,Nβ)

× f(Z,N(β + p(x, e)(α− β)) (4.15)

where f is the probability mass function of the Poisson distribution, f(Q, λ) = e−λλQ/Q!.
Some example risk plots (Equation 4.7) of this model are shown in Figure 4.3.
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Figure 4.2: Pulse timing diagrams for Rabi (top) and Ramsey (bottom) experiments.
An experiment has three control lines: whether the laser is on or off, whether the APD
is counting photons or not, and the microwave amplitude profile. The pulse sequence
is repeated N times, collecting photon counts (Xi, Yi, Zi) for i = 1, ..., N for the bright
reference, dark reference, and experiment, respectively, and finally summing them each
over i to produce the data point d = (X, Y, Z). Initial states are prepared by lasing for
time tr and letting the system settle for time ts. Measurements consist of detecting photons
for durations of length tm while lasing. The dark reference includes an adiabatic pulse of
length ta which causes the state transfer |0〉 → |+1〉. The action of interest implements the
microwave envelope Ω1(t) of duration te. Relative timing is not to scale in this diagram.
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Figure 4.3: Calculation of risk for three different prior distributions (rows) and for both
Rabi and Ramsey type experiments (columns). The dashed blue lines use a uniform weight
matrix Q = diag(1, 1, 1, 1, 1), and the solid orange lines use a weight matrix focused only
on ωe, Q = diag(0, 1, 0, 0, 0). Values have been normalized against σ2

Q = Tr(QCovπ[x])
where Covπ[x] is the covariance matrix of a prior distribution π, so that, for example, a
value of rQ(e)/σ2

Q = 0.95 for a given experiment e implies a 5% expected improvement in
weighted covariance. The wide prior (top row) is defined in Equation 4.20, the calibrated
prior (middle row) is defined in Equation 4.21, and the tight prior (bottom row) is the
same as the calibrated prior, but without widening the ωe parameter. Note that the Rabi
and Ramsey experiments share a y-axis on each row. We see that, among these examples,
the only beneficial setting to perform a Ramsey experiment is with the tight prior when
ωe is the parameter of interest.
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4.5 Computation and Hardware

For all experiment design heuristics, offline and online, we use the sequential Monte Carlo
(SMC) [40] method to numerically compute sequential posteriors using the Python library
QInfer[63]. In this algorithm, the state of knowledge about the model parameters, πn(x),
is approximated as a finite list of weighted hypothetical values (which are called particles),

πn(x) =
K∑
i=1

wn,iδ(x− xn,i), (4.16)

where wn,i ≥ 0 with
∑K

i=1wn,i = 1, and where δ(·) is the delta mass distribution centered
at 0. The particle-approximated prior, π0(x), is generated by sampling K initial particles
x0,i from the prior distribution and setting uniform weights w0,i = 1/K. Given the new
datum dn+1 under experiment configuration en+1, Bayes update can be implemented with
the simple multiplication

wn+1,i ∝ wn,i · L(xn,i; dn+1, en+1) (4.17)

which requires K simulations of the quantum system to compute the likelihoods (Equa-
tion 4.15), and where the constant of proportionality is chosen so that

∑K
i=1wn+1,i = 1. We

use the scheme of Liu and West [113] to resample particle locations, triggered by a threshold
in the effective particle count, neff := 1/

∑
i=1w

2
n,i [63]. We also use the bridged-updating

trick discussed in Reference [84].

We note that the expensive stage of this algorithm is embarrassingly parallel—simulations
under the various model parameters xn,i can be performed independently. All of our pro-
cessing was run on a desktop computer with simulations parallelized over the 12 cores on
a pair of Intel Xeon X5675 CPUs. In this configuration, our updates took on the order
of 2 seconds with K = 30000 particles. In principle, simulations could instead be run on
quantum simulators, as was recently demonstrated [182].

For online heuristics, the Bayes risk (Equation 4.7) is calculated by noting that the
particle approximation turns all integrals, which includes expectations and covariances,
into finite sums—see Section B.5 for details. Some risk calculations for the NV model are
plotted in Figure 4.3. As seen in the timing diagram in Figure 4.1, these calculations (along
with the Bayes updates) are performed concurrently with experiments so that they do not
add to experiment cost4. This causes the side-effect where the next experiment is selected

4Of course, this is only possible so long as the experiment repetition count is large enough compared
to the parallelized simulation cost. In our setup, at our count rates, we landed naturally in this regime
with CPU computation a single desktop computer.
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using information that is one cycle out-of-date; however, in our simulations at our data
collection rates, we found that this did not have a noticeable effect on learning rates. A new
experiment configuration en+1 having been decided, by whatever heuristic, the processing
computer sends en+1 to the computer which controls experiments. The experiment is run,
and the datum dn+1 = (X, Y, Z) is returned to the processing computer. This process is
iterated until some stopping criterion is met—for example, in our experiments, we chose
to stop after 200 experiments had been performed.

In our setup, the processing computer and the experiment computer communicate over
ethernet with TCP. A diagram of electrical connections is found in Figure 2.6. We use a
custom built confocal microscope to isolate an individual NV center in bulk diamond. All
of our experiments were performed on the same NV center. We use a caching strategy,
where the experiment computer uses a hash table to check if the desired experiment already
exists in the AWGs memory, avoiding data transfer costs when possible.

4.6 Effective strong measurements and drift tracking

The amount of information provided by a measurement of Z (see Equation 4.13) depends on
the values of α and β. Their magnitudes, relative contrast, and uncertainty all contribute
to this information content. We quantify this idea by introducing what we call the number
of effective strong measurements (ESM), defined as the number of two-outcome strong
measurements one would (hypothetically) have to do to gain the equivalent amount of
information about p(x, e), averaged uniformly over p ∈ [0, 1]. This works out to

ESM =
(α̂− β̂)2

3(α̂ + β̂) + 2
(
σ2
α + σ2

β

) . (4.18)

where α̂ and β̂ are our current estimates of α and β, and σα and σβ are standard deviation
uncertainties in these estimates. See Section B.4 for details. We choose the number of
repetitions in the next experiment, N , such that the expected value of ESM is constant—
see Figure 4.4(b-c). This is especially important for the purpose of this chapter, which is
to compare experiment design heuristics. In this way, certain heuristics are not artificially
improved because of favorable lab conditions on a certain day of the week.

The true specific values of the references α and β depend not only on the optical dy-
namics of the quantum system itself, but also on the quality of the microscope’s alignment.
As the temperature of the lab changes, for instance, one can expect the values of α and
β to drift as the location of the NV center moves with respect to the focal spot of the
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microscope. To account for this, a tracking operation is performed periodically, where the
focus of microscope is repositioned based on a new set of images taken with the microscope.

A model that assumes these reference values are constant in time can lead to inaccurate
results, or even failure. To account for this drift, we append a Gaussian random walk model
for the parameters α and β to the static model defined in Section 4.4. Specifically, we
assume that immediately prior to a particle update (Equation 4.17) the reference indices
of the each model parameter particle undergo a resampling step defined as(

αn,i
βni

)
∼ Normal

((
αn,i
βni

)
,∆t

(
σ2
α σα,β

σα,β σ2
β

))
, (4.19)

where ∆t is the amount of time elapsed since the last update. The hyper-parameters σα,
σβ, and σα,β are treated as unknown; they are appended to the model parameters, and co-
learned along with the parameters defined in Equation 4.14. We use a wide inverse Wishart
distribution as the prior with a degrees-of-freedom parameter ν = 30 and a scale matrix
Ψ such that the mean value of the prior corresponds to σα = σβ = σα,β/0.7 = 0.036 /hour.
We use an empirical prior on α and β, where before the actual experiments take place, a
reference-only experiment is performed with N = 300000 repetitions, and the prior is set as
α ∼ Γµ = X/Nσ = 3

√
X/N and β ∼ Γµ = Y/Nσ = 3

√
Y /N . When a tracking operation

is performed, the distribution of α and β is resampled from the prior π0(x), with all other
parameters of the model held fixed. We chose to perform tracking operation at the start
of each trial, and each time our estimate of α dipped below our prior estimate of α minus
five times the standard deviation of our prior for α.

4.7 Heuristics Used and Data Collection

There are many choices to be made, even for this small system. For example, we have
already limited ourselves to Rabi and Ramsey experiments. Put differently, and given that
our free evolution commutes with both our initial state and measurement, we have limited
ourselves to bang-bang control with a maximum of two pulses. This is to ease simulations
(bang-bang), and to reduce the search space for online heuristics (two pulses or fewer).
We simplify the situation further by choosing to work in the low field regime, say . 3 G.
This saves us from having to adaptively modify the synthesizer frequency ωµw; we keep a
fixed value of ωµw = 2.87 GHz for all experiments. It also prevents us from having to make
decisions about the relative phase between the two Ramsey pulses, to which we are almost
entirely insensitive at low field and with linearly polarized microwaves. These particular
choices are by no means necessary, but serve as a starting place to explore the landscape.

126



150000

200000

250000

N

(b)

0 25 50 75 100 125 150 175 200
Experiment #

10
20
30

ES
M

(c)

0.016

0.018

0.020

0.022

Ph
ot

on
s p

er
 sh

ot

(a) Tracking operation
Normalized data, X/N
Normalized data, Y/N

95% credible region for 
95% credible region for 

Figure 4.4: An NV drift tracking example, where tracking operations take place at the
vertical dashed lines. (a) Sub-poissonian 95% credible regions are shown on top of data
normalized by the experiment repetition count, N . (b) The repetition count was chosen
online to maintain a constant ESM value of 20, which is plotted in (c). Several hundred
trials were searched through to find this extreme but illustrative example—references are
typically quite flat.
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Heuristic Definition

Alternating Linear Offline; Sequential alternation between elements of
the experiment
sets ERabi(500 ns, 100) and ERamsey(t̂p,best, 2 us, 100)

Ramsey Sweeps Offline; Two back-to-back sweeps through the ex-
periment set ERamsey(t̂p,best, 2 us, 100)

Uniformly Weighted Risk Online; en+1 = argmax
e∈E

(rn,Q(e)) where Q =

diag(1, 1, 1, 1, 1) and
E = ERabi(500 ns, 100) ∪ ERamsey(t̂p,best, 2 us, 100)

Magnetometry Weighted Risk Online; en+1 = argmax
e∈E

(rn,Q(e)) where Q =

diag(0, 1, 0, 0, 0) and
E = ERabi(500 ns, 100) ∪ ERamsey(t̂p,best, 2 us, 100)

Table 4.1: Summary of heuristics used to choose experiments. The best Ramsey tip time
is defined by t̂p,best = 1/(4Ω̂) (rounded to the nearest 2 ns), where Ω̂ is the current Bayes
estimate of the microwave drive amplitude. ERabi(tmax,m) denotes a set of Rabi exper-
iments with pulse times tp = tmax/m, 2tmax/m, . . . , tmax, and ERamsey(tp, tmax,m) denotes
a set of Ramsey experiments with wait times tw = tmax/m, 2tmax/m, . . . , tmax and pulse
times tp. The components of weight matrices Q correspond to the Hamiltonian parameters
(Ω, ωe, δD,A, (T

∗
2 )−1), with zeros for reference parameters.

From the perspective of metrology, these choices amount to studying the efficiency of DC
magnetometry at low field with the NV system using the double quantum manifold.

In our first comparison between experiment design heuristics, we use a wide prior on
the Hamiltonian parameters given by

Ω/MHz ∼ Unif ([0, 20]) , (4.20a)

ωe/MHz ∼ Unif ([0, 10]) , (4.20b)

δD/MHz ∼ Unif ([−5, 5]) , (4.20c)

A/MHz ∼ Unif ([1.5, 3.5]) , (4.20d)

T ∗2 /µs ∼ Unif ([1, 20]) . (4.20e)

along with the reference priors discussed in Section 4.6. We implement the offline heuristic
Alternating Linear and the online heuristics Uniformly Weighted Risk and Magnetometry
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Weighted Risk defined in Table 4.1. The offline heuristic is motivated by standard DC mag-
netometry, where, intuitively, Rabi experiments are used to determine the pulse length that
causes |0〉 7→ |+1〉+|−1〉√

2
, and Ramsey experiments subsequently exploit this superposition

state to measure the relative phase accumulation between |+1〉 and |−1〉, which is pro-
portional to twωe. Note that, unconventionally, this heuristic alternates between Rabi and
Ramsey experiments, as was done in [84]—this improves numerical stability of the SMC
sampler; as different experiments are statistically independent, alternation does not affect
the overall information content. The two online experiments differ only in the weighting
matrix Q that is used—the first weights all quantum system parameters equally, and the
second projects risk onto only one parameter, ωe.

Results of this first comparison are shown in Figure 4.5(a-c). Here, it is seen that both
online heuristics outperform the offline heuristic, with a final gap of a bit more than two
orders of magnitude in the median (over trials) posterior variance of ωe after 4000 ESM.
In the histograms we see that the magnetometry focused online heuristic uses almost all
Ramsey experiments, and the uniformly weighted online heuristics uses almost all Rabi
experiments, which agrees with the risk profiles plotted in Figure 4.3. We see also that
the offline heuristic has a much larger spread in posterior variances across trials (area
of shaded regions), where some trials perform almost as well as the online heuristics, but
many perform significantly worse. In this sense, in addition to tighter posteriors on average,
these online heuristics have the extra advantage of being more reliable. Our guess is that
offline heuristics require luckily informative data at certain key experiments to perform
well, whereas online experiments can simply repeat these key experiments. Finally, note
that the magnetometry focused online heuristic slightly outperforms the evenly weighted
online heuristic—this is unsurprising as we happen to be plotting the variance of the
magnetometry parameter, ωe.

In the context of magnetometry, it is unrealistic to assume such a wide prior as given
in Equation 4.20. More likely, one has already calibrated the quantum device and wants
to learn only the value of ωe. For example, one might be constructing a magnetic image
[118, 68, 149], and each pixel of the image requires a new field measurement. Therefore,
for our second comparison, we place a prior that is tight in all Hamiltonian parameters
except ωe, given as

ωe/MHz ∼ Unif ([0, 10]) , (4.21a)

(Ω, δD,A, (T ∗2 )−1)/MHz ∼ Normal (µcal,Σcal) , (4.21b)

where µcal and Σcal are taken

from the posterior obtained by processing two trials of the Alternating Linear heuristic,
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Figure 4.5: Comparison of experiment design heuristics (see Table 4.1) where each heuristic
was run with 100 independent trials using 200 experiments per trial. The left figures (a-c)
use the wide prior of Equation 4.20, and the right figures (d-f) use the calibrated prior of
Equation 4.21. (a,d) For the parameter ωe, the median posterior variance over 100 trials
is plotted (dashed lines), and regions between the 10% and 90% percentiles are shaded.
The x-axes display ESM (effective strong measurements), where roughly 20 effective bits of
data are collected per experiment, see Section 4.6. The black dotted line scales as ESM−1.
In (b-c,e-f), histograms of which experiments each heuristic uses are shown, normalized
to represent the average number of times used per trial. Note that the y-axis between
histograms is shared, that the scaling switches from linear to logarithmic at y = 5, and
that all four subfigures contain 100 histogram bins.
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for a total of 400 experiments, and roughly 8000 ESM. Explictly, these are given by

µcal =


11.55
−0.86
2.18
0.35

MHz (4.22a)

Σcal =


2.56× 10−5 1.02× 10−3 7.67× 10−7 3.80× 10−5

1.02× 10−3 1.06× 10−1 1.97× 10−4 2.50× 10−3

7.67× 10−7 1.97× 10−4 7.51× 10−5 −1.02× 10−4

3.80× 10−5 2.50× 10−3 −1.02× 10−4 1.01× 10−3

MHz2 (4.22b)

for the ordered parameters (Ω, δD,A, (T ∗2 )−1), where ωe and nuisance parameters have been
marginalized over.

In our study of this second prior, in addition to the three heuristics used above, we
consider another heuristic called Ramsey Sweeps that uses only Ramsey experiments, since
they are the de facto method for measuring static Hamiltonian terms along z. Results for
this second prior are shown in Figure 4.5(d-f). There are a few interesting features. The
first is that it is clearly visible where the Ramsey Sweeps heuristic finishes one sweep and
starts the next, at 2000 ESM. The second is that all three of the heuristics that were also
used for the wide prior (Equation 4.20) have significantly less spread under the calibrated
prior. The third is that the magnetometry weighted online heuristic has a much clearer
advantage over the uniformly weighted online heuristic than in the case of the wide prior
comparison. Finally, notice in the histograms, that the uniformly weighted online heuristic
again chooses Rabi experiments almost exclusively.

In the summarizing figure Figure 4.5, only the learning rates of ωe are reported. In
Figure 4.6 and Figure 4.7, all learning rates are shown. Posteriors are shown in Figure 4.8
and Figure 4.9, where the first trial from each heursitic is used as a representative.

Our online learning rates appear to be at the standard quantum limit (SQL) once
transient behavior has settled down; the dotted line in Figure 4.5(d) guides the eye with
a curve ∝ ESM−1. The transient behavior prior to the SQL regime looks qualitatively
exponential as a function of ESM. This does not violate the Heisenberg limit (σ2 ∝ ESM−2)
because experiment times, te, are able to exponentially increase, too [155]. Exponential-
into-SQL scaling is consistent with previous Hamiltonian estimation research, where the
coherence time of the system controls the transition location—ideally we would perform
Ramsey experiments with arbitrarily long wait times, but finite T ∗2 makes such experiments
uninformative [51].
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Figure 4.6: An extension of Figure 4.5(a-c) that shows learning rates of all parameters
relevant to the quantum dynamics of the system.
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Figure 4.7: An extension of Figure 4.5(d-f) that shows learning rates of all parameters
relevant to the quantum dynamics of the system.
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Figure 4.8: For each heuristic in Figure 4.5(a-c), posterior marginal distributions are
plotted for the first (of 100) trials on each parameter relevant to the quantum dynamics of
the system.
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Figure 4.9: For each heuristic in Figure 4.5(d-f), posterior marginal distributions are
plotted for the first (of 100) trials on each parameter relevant to the quantum dynamics of
the system.
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4.8 Summary of Results

We compared the ability of several experiment design heuristics to experimentally learn the
electronic ground state Hamiltonian of an NV defect in diamond. Some of our heuristics
were offline—using experiment sweeps that were predetermined, and some of heuristics were
online—using knowledge gained from previous experiments to choose the next experiment
adaptively. The heuristics we used are summarized in Table 4.1. All data analysis was done
with sequential Bayesian inference, and all online heuristics were based on minimizing the
weighted Bayes risk over a collection of possible experiments. Heuristics were compared by
running 100 independent trials of each, and comparing the reduction in posterior variance
of certain parameters as a function of the number of experiments performed.

We found that our online heuristics outperformed our offline heuristics; results are
summarized in Figure 4.3. In particular, in the case of a very wide prior on all parameters
(Figure 4.5(a-c)), we found that the median posterior variance of the parameter ωe—which
is proportional to the external magnetic field’s projection onto the z-axis—is over two orders
of magnitude smaller after 200 experiments (comprising 200 effective strong measurements
per experiment) for the online heuristic called Magnetometry Weighted Risk than it is for
the offline heuristic called Alternating Linear. Next, in the case of a prior that is tight
on all paramaters except ωe (Figure 4.5(d-f)), we found about an order of magnitude of
improvement between the best online heuristic and the best offline heuristic. The use case
of this prior is when one wants to use a calibrated NV device to measure many magnetic
fields.

Consistent with intuition, we found that when online experiments are weighted to
improve ωe alone, they tend to choose Ramsey experiments almost exclusively, rather than
Rabi experiments, see Figure 4.5(b-c,e-f).

In addition to faster decrease in variance, we also found that variance decreases more
predictibly for online heuristics than it does for predetermined heuristics. This is seen in
the tighter 80% percentile regions of Figure 4.5(a,d) for online experiments. For example,
the difference in the final posterior variance of the parameter ωe varies by as much as four
orders of magnitude between independent trials for the Ramsey Sweeps heuristic, whereas
it always varies by less than one order of magnitude for all online heuristics.

Studies of the sort presented here necessarily suffer from having to make choices—in
the end we had to choose a small number of heuristics to compare, which types of ex-
periments heuristics should be allowed to perform, what the hyper-parameters of each
heuristic should be, what the initial prior over parameters should be, and so on. Though
these choices are ultimately arbitrary, we attempted to make them reasonable, with the
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end goal of comparing a fully brute-force Bayesian scheme against what have historically
been the de facto methods of characterization. While we would not be surprised to find a
less computationally expensive experiment design heuristic for this particular problem with
similar performance (for example, see the heuristic policies in [164]), the advantage of a
full-risk based approach is that it doesn’t require an expert to design a heuristic for every
particular combination of system and protocol. Indeed, minimizing Bayes risk, if com-
putationally feasible either with classical or quantum resources, is a sensible approach for
practically any characterization protocol, from tomography to randomized benchmarking.
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Chapter 5

High Fidelity Control of Real-World
Quantum Devices

1

5.1 Introduction

The ability to coherently control the dynamics of quantum systems with high fidelity is
a critical component of the development of modern quantum devices, including quantum
computers [108], actuators [88, 15], and sensors [19, 120, 170] that push beyond the capa-
bilities of classical computation and metrology. In recent years, quantum computation has
presented a compelling application for quantum control, as high-fidelity control is essential
to implement quantum information processors that may achieve fault-tolerance [60, 55, 72].
As quantum devices continue to grow in size and complexity, the requirements of classi-
cal control hardware also increase. This will more frequently produce situations with a
significant trade-off between hardware response simplicity and overall hardware capability.

The performance of numerically optimized quantum gates in laboratory applications
strongly depends on the response of the classical electronics used to apply the control

1This chapter is based on Reference [82], done in collaboration with Chris Granade, and Troy Borneman.
Troy Borneman was responsible for providing the non-linear circuit model, putting its importance in
context of existing literature, and helping to interpret its results. Chris Granade was responsible for
co-developing the theory of distortion operators and making significant contributions to the code (see
Appendix A, ‘QuantumUtils’). The novel contributions of this work are to introduce a comprehensive
framework for integrating distortions into numerical pulse-finding, with many special cases provided in
detail, and also to numerically demonstrate the feasibility of controlling a quantum system using a nonlinear
resonator.
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sequence. In this article, we provide a formalism for including arbitrary classical hardware
models into pulse finding algorithms such that the produced control sequences are tailored
to work robustly for the intended hardware controllers. A novelty of our general framework
is the ability to natively incorporate nonlinear and non-invertible hardware behaviour.
Importantly, it also naturally allows for robustness against uncertainties and errors in
parameters describing the hardware, in contrast to previous methods which dealt only
with Hamiltonian parameters such overall power and offset frequency [173, 186, 151].

It has been demonstrated how a model of linear distortions of the control sequence, such
as those arising from finite bandwidth of the classical control hardware, may be integrated
into optimal control theory (OCT) algorithms [16, 162, 93, 128]. We generalize and extend
these methods to admit hardware models which are non-invertible or non-linear, allowing
the experimenter to maximize control efficiency and measurement sensitivity by driving
hardware performance to its limits without sacrificing the ability to perform robust, high-
fidelity quantum control.

Our framework includes a complete integration of the system-apparatus dynamics and
models hardware components explicitly, such that their effect on a quantum system can be
computed and compensated for using numerical OCT [139] algorithms to optimize control
sequences. Control sequences designed using OCT algorithms, such as the GRadient Ascent
Pulse Engineering (GRAPE) [99] algorithm, can be made robust to a wide variety of field
inhomogenities, pulse errors and noise processes [102, 104, 17]. These methods are also
easily extended [122, 121, 154, 59] to other applications and may be integrated into other
protocols [44].

We begin developing our method generally, without making assumptions about the
device of interest, so that our results may be broadly applicable to a wide range of quantum
devices. We briefly discuss how our theory is easily applied to any linear distortion, and
then in more detail, demonstrate with numerics how nonlinearities in control hardware
may be included. As an example, we derive high-fidelity control pulses for strongly-driven
superconducting resonators exhibiting non-linear kinetic inductance [114, 126, 31], that
are robust to uncertainty in the amount of non-linearity present. While our methods
apply generally to a wide range of quantum control modalities, superconducting resonators
serve well as an illustrative test-bed of our method’s utlity, having found significant recent
application in pulsed electron spin resonance (ESR) [8, 119, 159] and circuit QED to
increase induction measurement sensitivity and provide an interface for microwave photon
quantum memories[107, 192].
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5.2 Review of GRAPE

As mentioned previously, we are concentrating on the GRAPE algorithm for concreteness.
This algorithm was proposed in Reference [99]. In this section we briefly review its standard
treatment to make way for our generalization in the next section.

Suppose that we are given a system Hamiltonian

H(t) = H0 +
L∑
l=1

ql(t)Hl (5.1)

acting on a Hilbert space of dimension d, where H0 is the fixed internal Hamiltonian,
{Hl}Ll=1 are the fixed control Hamiltonians, and {ql : R → R}Ll=1 are amplitude functions
caused by an experimenter. The question we are interested in is as follows: how do
we choose the envelopes β(t) = {ql(t)}Ll=1 ∈ L1

(
R,RK

)
such that at time T we effect

the desired total unitary Utarget ∈ U(d)? That is, if we compute the effect that a pulse
β ∈ L1

(
R,RK

)
has on the quantum system by solving Shrödinger’s equation,

U(β) = T exp(−i
∫ T

0

H(t)dt), (5.2)

then we desire that U(β) = Utarget, up to a global phase. Here we are using the L1 function
space to broadly emphasize that we are restricted to a finite amount of power.

A well-known result in quantum control theory tells us that such an envelope β exist
for any target unitary Utarget whenever the span of the nested commutations of the anti-
hermitian operators {iHl}Ll=0 is at least d2 − 1 [32].

Theorem 5. (Operator Controllability) Let {H0, . . . , HL} be as in Equation 5.1, let Lie(S)
denote the Lie algebra generated by the matrices S ⊂ L(d), and let Utarget ∈ U(d) be any
d × d unitary matrix. If dim Lie({iH0, . . . , iHL}) ≥ d2 − 1 then there exists some T > 0,
and some β ∈ L1

(
R,RK

)
such that U(β) = eiφUtarget for some φ ∈ R.

In this theorem, Lie(A0, A1, . . . , AL) denotes the smallest matrix Lie-algebra (vector
space of matrices closed under multiplication and commutation) containing A0, A0, . . . , AL.
Its proof is not constructive in a practical sense, and therefore our stated problem is more-
or-less a constructive demand for this result. However, as it turns out, there is no known
closed-form solution, and so we must fall back on either numerics or case-by-case specialized
tricks. We now consider the numerical algorithm GRAPE, one of many tools used for this
problem. Begin by discretizing candidate control functions β with the following mid-point
sampler.
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Definition 5.1. Given a slicing interval δt and a step count M ∈ N, the discretization
operator is defined as

f1 : L1

(
R,RL

)
→ RM ⊗ RL

β 7→ ~q = (β(δt · (1/2)), . . . , β(δt · (M − 1/2))). (5.3)

Here we are interpreting members of RM⊗RL as a vector of vectors, written ~q = (q1, . . . , qM),
where each qm ∈ RL is a vector of control amplitudes, and 1 ≤ m ≤M indexes time.

Then, in lieu of Equation 5.2, for any ~q ∈ RM ⊗ RL we can use a time-sliced version,
which is more ammenable to numerics,

U(~q) =
1∏

m=M

Um(~q), (5.4)

where the product is ordered such that U1 is on the far right, and where

Um(~q) = exp

(
−iδt

[
H0 +

L∑
l=1

qm,lHl

])
. (5.5)

Formalizing our language a bit for clarity in future sections, we have the following definition.

Definition 5.2. A continuous control pulse is a function β ∈ L1

(
R,RL

)
for some L ∈ N,

the number of controls. A discretized control pulse (or just pulse) is a vector ~q ∈ RM ⊗RL

for some M ∈ N, the number of control steps. A discretized control pulse can be generated
from a continuous control pulse by choosing a slicing interval δt, a control step number
M ∈ N and applying the discretization operator, ~q = f1(β). The action due to pulse ~q is
given by U(~q), defined in Equation 5.4.

Keeping in mind our end goal U(~q) = Utarget, we define a function that describes how
close we are to achieving it. Note that instead of using a some norm distance between the
target and the action of a pulse, a trace overlap is used. The primary reason is to allow
for for a global phase difference; up to a sign, additive constant, and a global phase, the
trace overlap is equal to the square Frobenious distance for unitaries,

‖U − V ‖2
F = Tr

(
(U − V )(U − V )†

)
= ‖U‖2

F + ‖V ‖2
F − TrUV † − TrV U †

= 2d2 − 2 re Tr(UV †). (5.6)
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An added benefit is that overlap is easy to compute—distinct from many measures of
matrix distance, we don’t require singular values. We end up with the following utility
function, which is labeled ‘bare’ to distinguish it from a generalized utility function defined
in the next section.

Definition 5.3. Suppose that ~q ∈ RM ⊗ RL is a discretized control pulse and Utarget is a
d× d unitary matrix. Then the bare utility function Φ : RM ⊗ RL → [0, 1] is defined by

Φ[~q] =
∣∣∣Tr
(
U †targetU(~q)

)∣∣∣2 /d2, (5.7)

where U(·) is the unitary effected by ~q, defined in Equation 5.4.

Remark 5.1. It holds that Φ[~q] = 1 iff Utarget = eiφU(~q) for some global phase φ ∈ R.
Therefore, we are generally interested in maximizing Φ.

Penalties can be added to this utility function in order to demand that the solution ad-
mit certain properties. For instance, penalty functions have been used to ensure robustness
to control noise and limited pulse fluence [87, 160, 104, 103] or to ensure that undesired
subspaces are avoided [137, 132].

The GRAPE algorithm is a gradient ascent of this (or similar) utility function, where
the M · L values of ~q are the search space. Naively, it might seem that we would need to
evaluate Φ on the order of M times to compute the gradient vector. However, the main
insight of the algorithm—and indeed the reason it merits its own acronym, not having
been realized before Reference [99]—is that the cost of computing the gradient of the
utility function is roughly the same cost as computing the utility function itself.

Indeed, the cost of computing Φ(~q) is dominated by the cost of evaluating the M matrix
exponentials U1, . . . , UM , even in the case of very small values of d. Once U1, . . . , UM have
been computed, however, we can use them both to compute Φ(~q), and also to compute

the quantities Pm :=
(∏M

i=m+1 U
†
i

)
Utarget and Xm :=

∏1
i=m Ui that can then be used to

compute all of the components of the gradient ∇~qΦ as

∂Φ

∂qm,l
= − re

[
2iδtTr

(
P †mHlXm

)
Tr
(
X†mPm

)]
. (5.8)

A standard (conjugate) gradient ascent method can be used in conjunction with Equa-
tion 5.7 and Equation 5.8. The initial value of ~q is typically chosen to approximate a
random smooth function. For example, random values for every 10th timestep of ~q are
chosen from a uniform distribution, and intermediate values are chosen by sampling along
a spline.
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5.3 Theory of Distortions

Recall our Hamiltonian system

H(t) = H0 +
L∑
l=1

ql(t)Hl (5.9)

from the previous section. The functions {ql(t)}Ll=1 seen by the quantum system Hamil-
tonian represent a distorted version of what was actually input to the classical hardware.
Effects such as circuit transfer functions, mixer imbalance, noise, amplifier non-linearity,
and cross talk, will all contribute to this distortion acting on the input pulse. Such distor-
tions are encompassed in the following definition.

Definition 5.4. A continuous distortion operator is a function

f : L1

(
R,RK

)
→ L1

(
R,RL

)
α(t) 7→ β(t)

where, by convention, we write component functions with the symbols α(t) = {p1(t), ..., pK(t)}
and f [α(t)] = β(t) = {q1(t), ..., qL(t)}. Here, K,L ∈ N are respectively known as the num-
ber of input and output control fields, and α, β are respectively known as the input and
output continuous control pulses.

Note that it will typically hold that K = L, though it is not hard to find examples
where K 6= L is useful to have. In the case of on-resonant quadrature control of a qubit,
K = L = 2. Since we are ultimately interested in doing numerics, we will prefer to work
with a discretized version of this operator.

Definition 5.5. A discretized distortion operator (or sometimes just distortion operator)
is a triplet (g, dt, δt) where g is a function

g : RN ⊗ RK → RM ⊗ RL

~q 7→ ~p,

and where dt > 0 is the duration of each of the N ∈ N input time steps, and δt > 0 is the
duration of each of the M ∈ N output time steps. Here, K,L ∈ N are respectively known
as the number of input and output control fields, and ~q, ~p are respectively known as the
input and output discretized control pulses, or just the input and output pulses.
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Remark 5.2. As before, we write ~p = (~p1, ..., ~pN), and similar for ~q; a vector of vectors,
where ~pk ∈ RK corresponds to the amplitudes of the controls at the kth timestep. Further,
we will usually abuse notation and refer to g as the distortion operator.

The fact that input and output timesteps have uniform duration is merely for notational
convenience—generalizing to dt1, . . . , dtN and δt1, . . . , δtM does not intruduce any signifi-
cant complications. The condition M ·δt = N ·dt need not hold, for example, M ·δt > N ·dt
will be useful when the distortion has a finite ringdown time. It is not strictly necessary for
a discretized distortion operator to be derived from a continuous distortion operator, but
in our examples, we will find that it is usually convenient to do so. This is achieved using
the discretization operator from Definition 5.1 along with the following operator that has
the opposite effect.

Definition 5.6. Given a time-step duration dt, the dediscretization operator is given by

f2 : RN ⊗ RL → L1

(
R,RL

)
(~p1, ..., ~pN) 7→

N∑
n=1

~pn · Top(t− dt · (n− 1/2)) (5.10)

where Top is the L-dimensional top hat function,

T (t) =

{
(1, 1, ..., 1) 0 ≤ t < dt

(0, 0, ..., 0) else.
(5.11)

Definition 5.7. Given a continuous distortion operator f , the corresponding discretized
distortion operator is given by the composition g = f1 ◦ f ◦ f2.

The action of a distortion operator is depicted in Figure 5.1, and in the following
example we give a concrete, useful transformation from a continuous distortion operator
to a discretized distortion operator.

Example 5.1. Consider the continuous distortion operator given by the convolution with
an L×K kernel φ(t),

β(t) = f(α)(t) = (φ ? α)(t) =

∫ ∞
−∞

φ(t− τ) · α(t)dτ. (5.12)

The convolution kernel φ models any distortion that can be described by a linear differential
equation, such as a simple exponential rise time, control line crosstalk, or the transfer
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Figure 5.1: A cartoon depicting the action of the distortion operator g on the input pulse
~p.

function of the control hardware [162, 145, 16, 7]. Splitting the integral into N parts and
applying f1 and f2 gives the output values

qm,l =

N,K∑
n=1,k=1

(∫ ndt

(n−1)dt

φl,k((m− 1/2)δt− τ)dτ

)
pn,k (5.13)

of the corresponding discretized distortion operator. Though straight-forward, explicit
steps to derive this are provided in Section 5.7.2. This can be written more compactly as

~q = g(~p) = φ̃ · ~p, (5.14)

where we are contracting over the n and k indices, and the components of the tensor φ̃ are
given by the integrals

[φ̃]m,l,n,k =

∫ ndt

(n−1)dt

φl,k((m− 1/2)δt− τ)dτ. (5.15)

Being a linear operator, the Jacobian matrix is simply given by J~p(g) = φ̃ which is inde-
pendent of the pulse ~p. a

We can now incorporate the distortion operator g into standard methods from optimal
control theory. In particular, for the case of GRAPE defined in the previous section, we
have the following modified utility function.
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Definition 5.8. Suppose that ~p ∈ RN ⊗ RK is a discretized input pulse, Utarget is a d× d
unitary matrix, and g : RN ⊗ RK → RM ⊗ RL is a discretized distortion operator. Then
the utility function relative to distortion g, denoted Φg : RN ⊗ RK → [0, 1], is defined by

Φg[~p] = Φ ◦ g(~p). (5.16)

where Φ is the bare distortion operator, see Definition 5.3

This gives us a measure of the quality of an input gate ~p including whatever distortions
are added by our classical circuit. We ascend this utility function to the nearest local
maxima starting with a random initial guess and choosing an uphill direction based on the
gradient of Φg with respect to the components of ~p. In the examples that follow in later
sections, we use a standard adaptive step-size conjugate-gradient routine implemented in
the QuantumUtils for Mathematica library [188]. In practice, as with standard GRAPE, a
surprising fraction of local maxima are globally optimal when using experimentally relevant
Hamiltonians and parameters.

Using the multivariable chain rule, we compute the gradient of Φg to be

∇~p(Φg) = ∇g(~p)(Φ) · J~p(g) (5.17)

[J~p(g)]m,l,n,k =
∂gm,l
∂pn,k

, (5.18)

thus separating the utility function derivatives into the derivatives of the distortion oper-
ator, and the bare utility function. Here, the dot represents a contraction over the indices
m and l, and J~p(g) is the Jacobian of g at ~p.

The remaining challenge is to compute the Jacobian J~p(g). This task depends entirely
on the specific nature of the discrete distortion operator g. For instance, if g is linear,
then computing the Jacobian tensor is in principle trivial, and is independent of the input
pulse ~p—we saw this in Example 5.1. In the examples that follow, the components of this
Jacobian tensor will be worked out in detail.

Since the cost of evaluating g will typically not grow more than polynomially with
the number of qubits, the computational cost of the optimization effectively remains un-
changed from standard GRAPE, as it is still dominated by the cost of computing M matrix
exponentials. We include a pseudo-code implementation of our modification to GRAPE in
Algorithm 4.

Although we have singled out the GRAPE algorithm as our routine to optimize the
utility function, this choice is based largely on the favourable convergence properties of
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the algorithm [127], and does not prevent the use of a different routine. In particular,
GRAPE is a greedy algorithm which attempts to find an optimum closest to the initial
value by choosing a direction related to the steepest uphill slope. Global optimizers such
as Nelder-Mead, genetic algorithms, or hybrid gradient algorithms [134, 44, 65, 127] could
be used without modification by substituting the usual utility function, Φ, with the dis-
tortion modified utility function, Φg. Such methods are useful in cases where the control
landscape is known to be saturated with suboptimal maxima. Gradient free methods may
be advantageous in cases where it is difficult or overly expensive to compute the Jacobian
tensor of Φg.

5.4 Including Robustness Distributions

In practice, it is unreasonable to assume that the Hamiltonians H0, . . . , H1 in Equation 5.1
are perfectly known, or static across the temporal and/or spatial quantum ensemble. For
example, we may

• know a certain Hamiltonian parameter only up to some error, i.e., ω ∈ [a, b] with
99% confidence;

• be studying many nearly-identical systems in parallel with Hamiltonian parameters
that vary spatially, a common situation for magnetic resonance systems;

• or, have system parameters that drift slowly in time throughout the day as a result
of lab conditions.

These quasi-static-like examples are the focus of this section—more sophisticated methods
are needed for fluctuations that occur within a quantum system during a single experiment,
such as those that require refocusing.

The standard approach to this problem is to parameterize all uncertain quantities in a
vector ~a with an associated probability distribution Pr(~a). We write

H0[~a], . . . , HL[~a] (5.19)

to denote the internal and control Hamiltonians conditional on a particular set of param-
eters ~a ∈ RA. As a result, the action of a discretized pulse ~q may also be dependent on
~a:

U(~q;~a) =
1∏

m=M

Um(~q;~a) where Um(~q;~a) = exp

(
−iδt

[
H0[~a] +

L∑
l=1

qm,lHl[~a]

])
. (5.20)
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Example 5.2. The canonical example is a qubit with an off-resonance and control power
distribution. In this case we have A = 2, ~a = (δω, κ), where δω is the difference between
the frequency of the control circuit and the frequency of the qubit, and κ > 0 is the
multiplicitive error of the nutation frequency. This results in the Hamiltonians

H0[~a] = δωSz

H1[~a] = (1 + κ)Sx

H2[~a] = (1 + κ)Sy.

a

Similarly, we should allow distortions to depend on ~a, denoted

~q = g[~a](~p) (5.21)

conditional on the parameter vector ~a.

Definition 5.9. Suppose that ~p ∈ RN ⊗ RK is a discretized input pulse, Utarget is a d× d
unitary matrix. Suppose also that Pr(~a) is a probability distribution on RA and that for
any ~a ∈ RA, g[~a] : RN ⊗ RK → RM ⊗ RL is a discretized distortion operator. Then the
bare utility function conditional on ~a is denoted Φ~a : RM ⊗ RL → [0, 1] and defined by

Φ~a(~q) =
∣∣∣Tr
(
U †targetU(~q;~a)

)∣∣∣2 /d2, (5.22)

where U(·) is the unitary effected by ~q conditional on ~a, defined in Equation 5.20. Next, the
utility function relative to distortion g conditional on ~a is denoted Φg,~a : RN ⊗RK → [0, 1],
is defined by

Φg,~a(~p) = Φ~a ◦ g[~a](~p). (5.23)

This finally yields the expected utility function relative to distortion g, defined as

Φg :RN ⊗ RK → [0, 1]

Φg(~p) =

∫
Pr(~a)Φg,~a(~p)d~a. (5.24)

Remark 5.3. It is common to use a particle approximation for the distribution Pr(~a),
writing

Pr(~a) =
S∑
s=1

psδ(~a− ~as) (5.25)
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where ps > 0,
∑

s ps = 1, in which case we have the more friendly expected utility function
expression

Φg(~p) =
S∑
s=1

psΦg,~as(~p). (5.26)

Having slightly modified the utility function to include this distribution over parameters
~a, pulse optimization proceeds as normal.

Example 5.3. Suppose that the convolution matrix φ(t) from Example 5.1 is parame-
terized by a value ~a, which we write as φ[~a](t). If the distribution Pr(~a) is independent
between the part of ~a that affects φ[~a] and the part that affect the Hamiltonians, then the
following shortcut can be taken, which results in a new effective convolution. First observe
that the continuous distortion operator acts as

β(t) = f(α)(t) =

∫
Pr (~a) (φ[~a] ? α)(t)d~a (5.27)

where Pr (~a) is the probability of realization ~a, then linearity helps us out and we simply
have

φ̃ =

∫
Pr (~a) φ̃[~a]d~a. (5.28)

If, on the other hand, there is correlation between φ[~a] and the HamiltoniansH0[~a], ..., HL[~a],
then the integration should be done at the level of the utility function, as in Defini-
tion 5.9. a

5.5 A Generalized Utility Function

The utility function of Definition 5.3 assumes that the goal of the optimization is to find
a pulse which generates some unitary Utarget on the full Hilbert space. In this section
we introduce a simple, but very useful, generalization of this utility function that can
assign different unitary targets to orthogonal subspaces, allowing arbitrary relative phases
between them. We will see that pure state-to-state transfers, mixed state-to-state transfers,
and global unitary targets, are all captured by this framework.
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5.5.1 Motivating Example

Suppose H = C3 ⊗ C2 and that we wish to flip two levels of the first spin (the qutrit)
depending on the state of the second spin (the qubit). Therefore, the following would be
sufficient:

U1
target =

 1 0 0
0 0 1
0 1 0

⊗ ( 1 0
0 0

)
+

 1 0 0
0 1 0
0 0 1

⊗ ( 0 0
0 1

)
=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 .

However, suppose that throughout our experiment we never plan on having population
within the subspace |−1〉 ⊗ C2, except perhaps when a control gate is taking place. Then
anything of the form

U2
target =


U

0 0 0 0
0 0 0 0

0 0 0 0 eiφ 0
0 0 0 eiφ 0 0
0 0 eiφ 0 0 0
0 0 0 0 0 eiφ


would suffice, where U is any 2× 2 unitary, and φ is any real number which is effectively
a global phase. This example will be useful in Chapter 7 when designing gates for a qubit
manifold of the NV center.

5.5.2 The Utility Function

In a Hilbert space H of dimension d, suppose we have a collection of groups of vectors,
Ai = {|ψi,1〉 , ..., |ψi,ni〉} ⊆ H for 1 ≤ i ≤ s, which we want mapped to a second collection
of groups of vectors, Bi = {|φi,1〉 , ..., |φi,ni〉} ⊆ H for 1 ≤ i ≤ s. Suppose moreover that
∪si=1Ai is an orthonormal set, and that ∪si=1Bi is an orthonormal set. Viewed differently,
when each Ai and Bi are (in a slight abuse of notation) treated as d × ni matrices with
columns {|ψi,1〉 , ..., |ψi,ni〉} and {|φi,1〉 , ..., |φi,ni〉} respectively, then X1, . . . , Xs is a set of
pairwise orthogonal isometries, and likewise so is Y1, . . . , Ys.
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We desire a d× d unitary matrix such that

U |ψi,j〉 = eiαi |φi,j〉 ∀ 1 ≤ j ≤ ni, 1 ≤ i ≤ s (5.29)

for some αi ∈ R, 1 ≤ i ≤ s. This is written more compactly as

UAi = eiαiBi ∀ 1 ≤ i ≤ s. (5.30)

Claim 1. A U satisfies Equation 5.29 if and only if
∑s

i=1

|TrU†BiA
†
i |

2

sn2
i

= 1.

Proof. Given a unitary d× d unitary U , we have

∃~α ∈ Rs s.t. UAi = eiαiBi ∀ 1 ≤ i ≤ s

⇐⇒ ∃~α ∈ Rs s.t.
∥∥UAi − eiαiBi

∥∥2
= 0 ∀ 1 ≤ i ≤ s

⇐⇒ ∃~α ∈ Rs s.t. Tr(A†iAi) + Tr(B†iBi)− 2 re(eiαi Tr(UAi)
†Bi) = 0 ∀ 1 ≤ i ≤ s

⇐⇒ ∃~α ∈ Rs s.t. ni + ni − 2 re(eiαi Tr(UAi)
†Bi) = 0 ∀ 1 ≤ i ≤ s

⇐⇒ ∃~α ∈ Rs s.t. re(eiαi TrU †BiA
†
i ) = ni ∀ 1 ≤ i ≤ s

⇐⇒
∣∣∣TrU †BiA

†
i

∣∣∣2 = n2
i ∀ 1 ≤ i ≤ s

⇐⇒
s∑
i=1

∣∣∣TrU †BiA
†
i

∣∣∣2
sn2

i

= 1

This claim justifies the (bare) utility function

Φ(~q) =
s∑
i=1

∣∣∣TrU(~q)†BiA
†
i

∣∣∣2
sn2

i

. (5.31)

Partial derivatives straight-forwardly derived from Equation 5.8, given by

∂Φ

∂qm,l
= −2iδt

s∑
i=1

re
[
Tr
(
P †m,iHlXm,i

)
Tr
(
X†m,iPm,i

)]
(5.32)

where Pm,i :=
(∏M

i=m+1 U
†
i

)
BiA

†
i and Xm,i :=

∏1
i=m Ui, with Ui as in Equation 5.5. Note

that in the case where s = 1 and n1 = 1, then this is just the overlap between the initial
state and the final state. Also note that in the case where s = 1, n1 = d, X = Id (the
computation basis), and Y = Utarget (an orthonormal basis for H), then this objective
function is the standard GRAPE objective function.
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Example 5.4. A pure state-to-state transfer between |ψ〉 ∈ H and |φ〉 ∈ H is achieved
trivially with s = 1 and n1 = 1. a

Example 5.5. A full unitary target Utarget is achieved with s = 1, X1 = I, and Y1 =
Utarget. a

Example 5.6. A mixed state-to-state transfer between ρ and σ is achieved by first de-
composing into the eigenforms ρ =

∑s
i=1 pi |ψi,1〉〈ψi,1| and σ =

∑s
i=1 pi |φi,1〉〈φi,1|, so that

each ni = 1, 1 ≤ i ≤ s ≤ d. Note that they must both have the same eigenvalues or else a
unitary transfer would not be possible. a

Example 5.7. The example from Section 5.5.1 is achieved by taking s = 1, X1 = 02⊕ I4,
and Y1 = 02 ⊕ CNOT. a

5.6 In-depth Nonlinear Circuit Example

As a more involved example than the convolution case, Example 5.1, we consider a quantum
system being controlled by a tuned and matched resonator circuit [6] with nonlinear circuit
elements (Figure 5.2). We emphasize that while we have picked a relatively simple circuit
for this demonstration, it has a general enough form to accurately describe the majority of
resonators used in spin resonance experiments, including the non-linear resonator described
in Reference [126]. Moreover, arbitrarily complex circuits with additional poles could just
as easily be incorporated by finding their circuit equations with a standard application of
Kirchhoff’s laws, resulting in a higher order equation in place of Equation (5.34).

Nonlinear superconducting resonators are used in a variety of applications, including
circuit QED for quantum information processing and quantum memories [153, 142, 67],
microwave kinetic inductance detectors for astronomy [34], and pulsed electron spin res-
onance [3, 8, 119, 159]. Often, however, these devices are operated in their linear regime
to avoid complications resulting from nonlinearity. Avoiding nonlinearities requires reduc-
ing input power, leading to longer control sequences that reduce the number of quantum
operations that can be performed before the system decoheres. Additionally, limiting in-
put power removes the natural robustness of high-power sequences to uncertainties in the
environment achieved by strongly modulating the quantum system [54, 140].

If the circuit were linear, the distortion could be modelled as a convolution φ ? as
discussed above. However, with nonlinear circuit elements present we must numerically
solve the circuit’s differential equation every time we wish to compute the distorted pulse
[114].
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Figure 5.2: A quantum system being controlled by the magnetic field produced by the
inductor of a nonlinear resonator circuit. The ideal voltage source Vs(t) is specified by the
input undistorted pulse ~p, and the resulting current through the inductor, IL(t), is com-
puted. The inductance and the resistance are both functions of the current passing through
them. The form of the nonlinearity is chosen to be consistent with kinetic inductance.

5.6.1 Overview and Results

It is most natural to demonstrate with a qubit system. This is both because it lets us
more clearly isolate the change in control landscape induced by the non-linear distortion
operator, and because it is known that control landscapes generally scale well with Hilbert
space dimension [144]. Our qubit is a near-resonance spin system whose Hamiltonian in
the rotating frame, after invoking the rotating wave approximation, as in Example 5.2, is
given by

H =
δω

2
σz + (1 + κ)

(
ωx(t)

2
σx +

ωy(t)

2
σy

)
(5.33)

where δω and κ represent off-resonance and control power errors, respectively.

The time evolution of the circuit shown in Figure 5.2 is governed by the third order
differential equation

d

dt

 IL
VCm
VCt

 =

−R
L

0 1
L

0 −1
RLCm

1
RLCm−1

Ct
−1
RLCt

1
RLCt

 IL
VCm
VCt

+

 0
Vs(t)
RLCm
Vs(t)
RLCt

 (5.34)
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where the nonlinearities arise when the inductance, L, and resistance, R, are functions
of the current passing through them [114, 172]. In the case of kinetic inductance, these
nonlinearities take on the form

L = L(IL) = L0(1 + αL|IL|2)

R = R(IR) = R0(1 + αR|IR|η) (5.35)

where αL, αR and η are constants [31, 126]. Kinetic inductance leads to a reduction in the
circuit resonance frequency, coupling, and quality factor with increasing power, as shown
in Figure 5.3(a-b).

Since our Hamiltonian in Equation 5.33 is written in a frame rotating at the circuit
resonance frequency in the linear-regime, it is convenient to write our differential equation
in this frame, too. To this end, with the differential Equation 5.34 shorthanded as ~̇y(t) =

B(~y(t))~y(t) + Vs(t)~b, we introduce the complex change of variables ~x(t) = e−iω0t~y(t). In
this new frame, since B(~y(t)) = B(~x(t)), our dynamics become

~̇x(t) = (B(~x(t))− iω0I) ~x(t) + Ṽs(t)~b

≡ A(~x(t))~x(t) + Ṽs(t)~b (5.36)

where we have invoked the rotating wave approximation, and Ṽs(t) = e−iω0tVs(t) is the
rotating version of Vs(t). Details of this frame change are described in Section 5.6.2.
Now the real and imaginary parts of the complex current in the rotating frame, ĨL(t) =
e−iω0tIL(t), are proportional via a geometric factor to the control amplitudes appearing in
the Hamiltonian,

ωx(t) ∝ re[ĨL(t)] and ωy(t) ∝ im[ĨL(t)]. (5.37)

To compute the distortion ~q = g(~p) caused by the resonator, we set the circuit’s input
voltage Ṽs(t) to be the piecewise constant function with amplitudes coming from ~p. To
improve stiffness conditions, a small finite risetime may be added to the forcing term Ṽs(t),
which is equivalent to adding a low-pass filter to the ideal voltage source in the circuit. We
can now solve the Equation 5.36 for ĨL(t) using the NDSolve function in Mathematica 10,
interpolate the results, and resample at a rate δt to determine the distorted pulse ~q.

Since our distortion is nonlinear, the Jacobian of g will not be constant with respect
to the input pulse ~p. However, we may compromise the accuracy of the Jacobian in
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Figure 5.3: (a) Response from the same resonator to a top-hat input pulse of length 300ns
with an amplitude in both a linear (0.1V) and nonlinear (10V) regime. The amplitude of
the 0.1V pulse is multiplied by 10 to make it visible. (b) The steady state driving frequency
as seen by the spins as a function of the voltage input to the resonator. (c) Out of 160
pulses searched for at each of 10 voltage bounds, Vbound, with corresponding total pulse
length Tpulse = 0.25

fs.s.
, the fraction that failed to reach F = 0.99 before the step size was

effectively zero, and (d) the median number of calls made to the distortion function g
along with the 16% and 84% quantiles during the gradient ascent for those pulses which
did reach F = 0.99.
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Figure 5.4: (color online) (a) Example of a π/2)x pulse generated for the matched nonlinear
resonator circuit. The driving term (~p) is shown in red, while the distorted pulse (~q) is
shown in blue. The dashed segments are the ringdown compensation steps. (a) The
trajectory of the state |0〉 under this pulse is shown on the Bloch sphere, and (c-d) the
average fidelity is plotted for different values of αL, δω, and γ.
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favour of taking a larger number of ascent steps that are still generally uphill by using the
approximation

∂gm,l
∂pn,k

∣∣∣∣
~p

≈ [g(ε~en,k)/ε]m,l . (5.38)

These quantities may be precomputed prior to gradient ascent and therefore only add
a constant to the computation time. Exact partial derivatives may be computed for a
cost that scales as K · N and whose implementation can be parallelized, as derived in
Section 5.6.3.

In Figure 5.4, we show an example of a GRAPE-optimized pulse for U = π
2
)x, with

the circuit of Figure 5.2 used as a distortion operator. There are 16 times steps of length
0.5ns shown as a solid red step function. The pulse has been made to be robust to static
uncertainty in the Hamiltonian parameters δω and γ and the nonlinearity parameter αL.
Since the circuit has a high quality factor, it would take many times the length of the
pulse for the ringdown tail to decay to zero. We therefore utilize an active ringdown
suppression scheme with three compensation steps of lengths 4ns, 2ns, and 1ns. This is a
generalization of ringdown suppression in linear circuits [16, 125, 91] with details presented
in Section 5.6.4. Further, a pseudo-code implementation including ringdown suppression
is listed in Algorithm 4.

Having demonstrated the ability to find a robust gate in the presence of our non-
linear distortion operator, we now study the effect it has on the control landscape. It
would perhaps be anticipated that, in presence of a non-trivial distortion operator, finding
optimal solutions would become more expensive, measured in the number of steps taken
by the optimizer. Therefore, a trade-off between computational cost and gate time length
could reasonably be expected. We perform a numerical study to examine this relationship.

We bound the allowed input power to the resonator used by the GRAPE algorithm by
10 different voltages, 1 V to 10 V, where 1 V is on the edge of the linear regime, and 10 V
is highly nonlinear. In analogy to the numerical control landscape experiments performed
in Reference [127], for each of these bounds, we attempt to compute a fidelity F = 0.99
π
2
)x pulse 160 times, with a different random initial guess each time. The total length

of the pulse is set to Tpulse = 0.25
fs.s.

where fs.s. is the steady state driving frequency of the
resonator at the corresponding voltage bound. The number of time steps is held constant
at N = 16 for each trial. The gradient approximation from (5.38) is used. On each trial,
we count the number of times the distortion function g is called. The results are shown
in Figure 5.3 where it seen that the number of calls actually tends to decrease as the
allowed nonlinearity is increased, indicating that the control landscape does not become
more difficult to navigate.

157



Host FPGA /
AWG

Mixer

Resonator

LO

Figure 5.5: Configuration of the microwave mixing components in relation to pulse dis-
tortion operators.

5.6.2 The Rotating Frame of a Circuit

A spin in a large static magnetic field γB0 = ω0 with a transverse time dependent field
γB1(t) = 2Ω(t) will evolve under the Hamiltonian

H =
ω0

2
σz + 2

Ω(t)

2
σx. (5.39)

Since ω0 is taken to be the dominant term, in analogy to a wide range of experimental
settings, it is helpful to enter the rotating frame generated by Hrot := ωrσz/2, where
ωr := [ω0 + δω]. In doing so, we will suppose that

Ω(t) = ω1(t) cos(ωrt+ φ(t))

= ω1(t) · 1

2

(
eit(ωrt+φ(t)) + e−it(ωrt+φ(t))

)
,

representing that Ω is produced by mixing a modulating signal with an oscillator at ω0 +δω
(see Figure 5.5). We will later relate this model to the in-phase and quadrature control
fields.

In the frame of Hrot, the effective Hamiltonian Heff is given by

Heff(t) = e+iHrottH(t)e−iHrott −Hrot

= Ω(t)e+iHrottσxe
−iHrott − δω σz

= Ω(t)[cos(ωrt)σx − sin(ωrt)σy]−
δω

2
σz.
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Discarding the terms which oscillate at 2ωr (that is, the rotating wave approximation), we
can rewrite this in terms of ω1 and φ instead,

Heff(t) =
ω1(t)

2
[cosφ(t)σx + sinφ(t)σy]−

δω

2
σz.

Since Ω is often produced by mixing, as noted above, we can also represent the rotating
frame control using two real control fields ωx(t) and ωy(t),

ωx(t) = re[ω1(t)eiφ(t)] ωy(t) = im[ω1(t)eiφ(t)]. (5.40)

We can now relate to the circuit dynamics. The nutation frequency of the spins is
proportional to the magnetic field generated by the inductor via the gyromagnetic ratio,
which is in turn proportional to the current passing through the inductor, thus

Ω(t) = ηIL(t), (5.41)

where the exact value of η depends on the relevant geometry. This along with Equation 5.40
leads us to the relationships

ωx(t) = re[ω1(t)eiφ(t)] = re[Ω(t)e−iωrt] = η re[ILe−iωrt] = η re[ĨL]

ωy(t) = im[ω1(t)eiφ(t)] = im[Ω(t)e−iωrt] = η im[ILe−iωrt] = η im[ĨL], (5.42)

where ĨL(t) = e−iω1tIL(t) and we have ignored pieces rotating at 2ωr in the calculation.
We recover the expression in the main body, such that by solving the differential equation
~̇x(t) = A(~x)~x+ Ṽs(t)~b for a complex driving function Ṽs(t), we can find the rotating-frame
unitary action U(t) = T exp(−i

∫ t
0
Heff(t)) of that pulse.

5.6.3 The Distortion Operator of a Nonlinear Resonator Circuit

We define the distortion operator g : RN ⊗R2 → RM ⊗R2 corresponding to the non-linear
resonator circuit shown in the main body. Note that the input to g will have units of volts,
and the output of g will have units of Hz. We use a uniform input discretization time dt
and a uniform output discretization time δt. Given an input pulse ~p ∈ RN ⊗R2, we define
the complex vector p̃ ∈ CN by p̃n = pn,1 + ipn,2. Setting n(t) =

⌈
t
dt

⌉
, we define

α(t) = p̃n(t) (5.43)

in the case where we add no rise time to the forcing term, or

α(t) = p̃n(t)−1 + (p̃n(t) − p̃n(t)−1)(1− e−
t−n(t)dt

τr ). (5.44)
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in the case where we include a finite rise time on the forcing with timescale τr. Note that
we must have τr � dt for the function α to be (approximately) continuous. This limitation
could easily be overcome with a more sophisticated definition of α, for example, by using
a convolution operator. Also note we are using the convention p̃i = 0 for i < 1 or i > N .

Now we solve the vector differential equation

ẋ = A(x)x+ α(t)b, (5.45)

where

x =

 ĨL
ṼCm
ṼCt

 A(x) =

−R
L

0 1
L

0 −1
RLCm

1
RLCm−1

Ct
−1
RLCt

1
RLCt

− iωrI b =

 0
1

RLCm
1

RLCt

 (5.46)

with Mathematica 10’s function NDSolve. By default, this function dynamically chooses
the step size and switches between solvers, of both the implicit and explicit time stepping
variety, to ensure that the solution is accurate and stable. An interpolating function for
ĨL(t) is returned. Recalling Equation 5.42, we sample the real and imaginary parts of ĨL(t)
at a rate δt to obtain ~q:

qm,1 = η re ĨL(δt(m− 1/2))

qm,2 = η im ĨL(δt(m− 1/2)) (5.47)

To populate elements of the Jacobian tensor J~p(g), we are interested in approximating
partial derivatives of the form

∂gm,l
∂pn,k

(5.48)

where g is the distortion corresponding to the non-linear resonator circuit. The most
straight forward way of approximating such would be to use a central difference formula

∂gm,l
∂pn,k

≈
[
g(~p+ ε~en,k)− g(~p− ε~en,k)

2ε

]
m,l

, (5.49)

where ~en,k is the unit vector in the {n, k} direction, and ε > 0 is a small number that is
greater than the precision of the DE solver. Such an approximation would require 2NK
calls to the DE solver. It is also numerically unstable as it involves the difference of two
numerical DE solutions whose forcing terms are only slightly different; ε would have to be
very carefully tuned and may have no reliable value at all, especially when searching for
high fidelity pulses.
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If we consider the approximation g(~p ± ε~en,k) ≈ g(~p) ± g(ε~en,k) the central difference
reduces to

∂gm,l
∂pn,k

≈ [g(ε~en,k)/ε]m,l . (5.50)

which is the approximation quoted in the main body. Importantly, this approximation
does not depend on the current pulse ~p and can therefore be precomputed eliminating the
2NK calls to g (i.e. DE solver calls) per ascension step.

An exact method to compute these partial derivatives is derived below, which will take
N ∗K + 1 calls to the DE solver to compute the entire Jacobian matrix. Begin with the
resonator differential (Equation 5.45)

ẋ = A(x)x+ α(t)b. (5.51)

As discussed, we have

[g(~p)]m,1 = η re ĨL(tm) ≡ h1(x(tm))

[g(~p)]m,2 = η im ĨL(tm) ≡ h2(x(tm)) (5.52)

where tm = (m − 1/2)δt. Thus it is clear that the difficult part of computing
∂gm,l
∂pn,k

is

computing ∂ĨL
∂pn,k

, or more generally ∂x
∂pn,k

.

We derive a set of K ∗ N = 2N secondary partial differential vector equations whose
time sampled solutions produce the necessary partial derivatives. To do this we just take
the partial derivative ∂

∂pn,k
of Equation 5.45, which gives as the lth component of the (n, k)th

equation

∂

∂pn,k

∂xl
∂t

=
∂Al,l′

∂xl′′

∂xl′′

∂pn,k
xl′ + [A(x)]l,l′

∂xl′

∂pn,k
+ Tn,kbl (5.53)

where Einstein summation notation is used and (in the case τr = 0)

Tn,k(t) =



0 0 ≤ t ≤ dt
...

δ1,k + iδ2,k (n− 1)dt ≤ t ≤ ndt
...

0 ≤ t ≤ Ndt

. (5.54)
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Denote

yn,k(t) =
∂x

∂pn,k
(t)

[A′(x)]l,l′′ =
∂Al,l′

∂xl′′
xl′ (5.55)

and commuting the partial derivatives, the components Equation 5.53 can be rewritten as
the non-linear vector PDE

ẏn,k = [A′(x) + A(x)]yn,k + Tn,k(t)b (5.56)

where x(t) is the solution to Equation 5.45. Therefore once x(t) has been computed, we can
plug it into each of the DEs for yn,k, solve them with the initial condition yn,k((n−1)dt) = 0
(by causality yn,k = 0 for t < (n− 1)dt) and we arrive at the exact formula

∂gm,l
∂pn,k

=
∂hl(x(t))

∂pn,k

∣∣∣∣
t=tm

=
∂hl
∂xl′

∂xl′

∂pn,k

∣∣∣∣
t=tm

=
∂hl
∂xl′

[yn,k(tm)]l′ (5.57)

where hl was defined implicitly in Equation 5.52 and each ∂hl
∂xl′

is easy to compute.

If we take the Taylor series of A(x) about x = 0, we have

A(x) = A0 + A1(x) + A2(x) + . . . (5.58)

where each Ap is a matrix polynomial in the coordinates of x with all terms having order
exactly p. The 0th order approximation of Equation 5.56 gives

ẏn,k = A0yn,k + Tn,k(t)b. (5.59)

In this form we see that yn,k is just the same as x where the DE for x, Equation 5.56, has
been linearized and the forcing is the top hat Tn,k: yn,k = x|A=A0,α=Tn,k . The linearization
condition A = A0 is approximately the same as the guarantee ‖A(x) − A0‖ � 1, which

can be met by setting α = εTn,k with ε chosen so that
∥∥∥A( ε‖b‖‖A0‖)− A0

∥∥∥� 1. Therefore the

zeroth order approximation to the Jacobian is

∂gm,l
pn,k

≈ g(εen,k)

ε
. (5.60)

which is a somewhat more satisfying derivation of Equation 5.50.
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5.6.4 Ringdown Compensation

A resonator or cavity with a large quality factor Q will store energy for times that are
long compared to the time steps that are used in pulse design. If this effect is not included
in optimization by integrating the distortion differential equation for a sufficient period,
then the integrated action of the pulse on the quantum system will not be accurate. This
can be dealt with by defining the image of the distortion operator to represent a longer
time interval than the domain, but this is inconvenient in experimental practice, where we
would like to turn off a pulse quickly. Thus, a better alternative is to actively compensate
for the ringdown introduced by large Q, and to demand that the distorted pulse goes to
zero at a given time step.

For a resonator with only linear elements, this problem has been solved [16] by appealing
to the transfer function h : RM → RK ,

g[~p] = f1[f2(~p) ? h] (5.61)

where ? is the convolution operator. For the case M = K = 1, the transfer function takes
on the simple form

h(t) = Ae−t/τc (5.62)

for some amplitude A and where τc = Q/ω0 is a time constant. In this case, it is easy to
append an additional pulse segment of amplitude

pK+1 = −A g[~p]m
eδt/τc − 1

, (5.63)

where m is a time step index such that tm = tK .

In the nonlinear case, Q, ω0 and A are not constant, but depend on ~p, and so more
attention is required. One solution is to modify the performance continuous to include the
demand that the ringdown go to zero by defining

Φ′g(~p) := Φg(~p)− Ωg(~p) = (Φ− Ω) ◦ g. (5.64)

For ringdown compensation,

ΩRD :=
M∑

m=m0

|pm|2, (5.65)

where m0 is the time step index at which we start demanding that the solution goes to zero.
The derivatives of this function are easily found, such that ~∇Φ′ is easy to compute given
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~∇Φ and J(g). Since a solution that both has high fidelity with a unitary target and admits
ringdown compensation can be hard to find, we use the ringdown-compensation method
found in the next section to generate initial guesses which result in a small penalty Φ′g(~p).

Another solution is to include ringdown suppression in the distortion operator g itself.
That is, given an input pulse ~p, the forcing term α now includes not only steps taken
directly from ~p, but also additional steps which are chosen (according to the results from
the next section) to eliminate the energy from the cavity in a short period of time. This
was the method employed in the example above.

5.6.5 Eliminating energy from a non-linear resonator

Here, we derive a scheme to calculate the values of compensation steps to append to a
pulse which act to remove the energy from a resonator on a timescale shorter than the
ringdown time.

Write the equation of the circuit as

ẋ = Ax+ αb (5.66)

where x is a vector of state variables for the circuit, A is a matrix describing the circuit
without forcing, b is the forcing direction of the circuit, and α is a controllable scalar
which sets the magnitude of the forcing. We assume that we have already entered the
frame rotating at the resonance frequency so that all quantities are complex, where real
quantities correspond to in-phase components, and imaginary quantities correspond to
quadrature components. Note that for a non-linear circuit, A will depend on the state of
the system, that is, A = A(x). Moreover, α can be time dependent, α = α(t).

Our goal is as follows: start with an undistorted pulse ~p0 and append nrd steps of length
dtrd to form the undistorted pulse ~p = [~p0, ~prd] which cause the distorted pulse g(~p) to have
near zero amplitude at the end of the last time step. To simplify our task, we make the
approximation that A remains constant during each of the compensation steps, taking on
a value corresponding to the state x at the end of the previous time step.

The general solution to Equation 5.66 is given by

x(t) = etAx0 +

∫ t

0

α(s)e(t−s)Ab ds. (5.67)

Substituting our continuous forcing solution from Equation 5.44 and translating the time
coordinate so that t = 0 corresponds to the transition from the (n − 1)th to the nth gives
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the solution

x(t) = etAx0 + etA
[∫ t

0

e−sA
(
p̃n−1 + (p̃n − p̃n−1)(1− e−s/τr)

)
ds

]
b

= etAx0 +
[
p̃nA

−1(etA − I)− (p̃n − p̃n−1) (A+ I/τr)−1 (etA − e−t/τrI)] b (5.68)

in the region t ∈ [0, dtrd]. We wish to drive the state of the system, x, to 0. Therefore, let’s
try to demand that at time t = dtrd, x becomes some fraction of its value at the end of
the (n− 1)th step, so that x(dtrd) = rx0 for some r ∈ [0, 1]. We refrain from setting r = 0
when x is large because if x changes too much in the time span dtrd our approximation of
constant A will break down. Since all we can do is change the value of p̃n, the equality
x(dtrd) = rx0 won’t in general be achievable. We therefore instead minimize the quantity

β(p̃n) = ‖P (x(dtrd)− rx0)‖2 (5.69)

where P is a positive semi-definite matrix which relates the importance of minimizing
certain state variables over others. This quantity can be rewritten as

β(p̃n) = ‖w − p̃nv‖2

w = P
[
(etA − rI)x0 + p̃n−1 (A+ I/τr)−1 (etA − e−t/τrI) b]

v = P
[
(A+ I/τr)−1 (etA − e−t/τrI)− A−1(etA − I)

]
b (5.70)

In this form it is clear that β(p̃n) is minimized when p̃n is chosen to be the complex
projection amplitude of the vector w onto v:

p̃n =
〈v, w〉
〈v, v〉

. (5.71)

For reference, note that in the limit τr → 0, the vectors v and w simplify to

w = P (etA − rI)x0

v = −PA−1(etA − I)b. (5.72)

5.7 Further Examples of Distortions

In this section we provide a range of useful distortions and some useful formulas along the
way.
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5.7.1 Composition

First, it is worth noting the (perhaps obvious) fact that composing distortion operators is
easily implemented in this framework. Suppose we have characterized the first half of our
classical hardware with the discrete distortion operator g1 : RN ⊗ RK → RN ′ ⊗ RK′ and
the second half with the operator g2 : RN ′ ⊗ RK′ → RM ⊗ RL. We have been careful to
make the domain of g2 compatible with the range of g1. Then the total distortion operator
is given by the composition

g = g2 ◦ g1 : RN ⊗ RK → RM ⊗ RL (5.73)

~p 7→ g2(g1(~p)). (5.74)

To find the Jacobian matrix of g at point ~p we just need to use the multivariate chain
rule,

J~p(g) = Jg1(~p)(g2) · J~p(g1), (5.75)

or in terms of indices,

[J~p(g)]m,l,n,k =
N ′∑
n′=1

K′∑
k′=1

[Jg1(~p)(g2)]m,l,n′,k′ [J~p(g1)]n′,k′,n,k. (5.76)

5.7.2 Transfer Functions and Convolutions

Linear electronic systems can be fully described by a transfer function Φ(ω). This function
gives a simple relationship between an input tone X(ω) at frequency ω and the resulting
output tone Y (ω), namely Y (ω) = Φ(ω)X(ω). The magnitude of H(ω) represents the gain
or attenuation, and the argument represents the phase shift. Taking the inverse Fourier
transform of this equation yields the convolution, y(t) = (φ ? x)(t), where we have chosen
the non-unitary angular frequency convention for the Fourier transform, that is,

F [φ(t)] (ν) = Φ(ν) =

∫ ∞
−∞

φ(t)e−iνtdt. (5.77)

The transfer function may be measured experimentally [162, 71, 145], or may be computed
if a good model of the system is known. In the main body, the formula for a discrete
convolution operator arising from a time domain transfer function φ is shown. Here, we
derive it in slightly more detail.
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To begin, the time domain version of the transfer function φ(t) results in the distortion
operator f defined as

β(t) = f(α)(t) = (φ ? α)(t) =

∫ ∞
−∞

φ(t− τ) · α(t)dτ. (5.78)

Note that here φ(t) is a function whose values are L ×K matrices. In the usual context
where K = L and the k′th output channel is mostly a distorted version of the k′th input
channel, the the diagonals of φ(t) represent channel-wise distortions, and the off-diagonals
represent cross contamination between channels.

Discretizing the input we get

f(f2(~p))(t) =
N∑
n=1

∫ ndt

(n−1)dt

φ(t− τ) · ~pn dτ (5.79)

≡
N∑
n=1

φn(t) · ~pn, (5.80)

which we then discretize the output of, to get

[(f1 ◦ f ◦ f2)(~p)]m,l =
N∑
n=1

K∑
k=1

[φn((m− 1/2)δt)]l,kpn,k (5.81)

≡
N∑
n=1

K∑
k=1

φm,l,n,kpn,k, (5.82)

for all 1 ≤ m ≤M and 1 ≤ l ≤ L where

φm,l,n,k = [φn((m− 1/2)δt)]l,k (5.83)

=

∫ ndt

(n−1)dt

[φ((m− 1/2)δt− τ)]l,k dτ (5.84)

Letting φ̃ ∈ RM ⊗ RL ⊗ RN ⊗ RK be the tensor with entries φm,l,n,k gives

g(~p) = (f1 ◦ f ◦ f2)(~p) = φ̃ · ~p (5.85)

as a compact representation of the discretized distortion operator, where the dot represents
a contraction over the indices n and k.
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The elements of the Jacobian matrix J(g) are now easily computed as

[J(g)]m,l,n,k =
∂(g(~p))m,l
∂pn,k

=
∂(φ̃ · ~p)m,l
∂pn,k

=
∂
∑N

n′=1

∑K
k′=1 φm,l,n′,k′pn′,k′

∂pn,k
= φm,l,n,k (5.86)

so that

J(fφ) = φ̃. (5.87)

5.7.3 Transfer Functions in the Rotating Frame

In the previous subsection we discussed convolutions of the form

β(t) = f(α)(t) = (φ ? α)(t) (5.88)

and provided relevant derivations of the discrete distortion operator. Since it is often the
case that we consider the quantum dynamics of a quantum device in a rotating frame
rather than in the lab frame, it is useful to additionally go through how a transfer function
applied in the lab frame translates into a distortion in the rotating frame.

We consider a qubit whose Hamiltonian is given by

H =
ω0

2
σz + 2

Ω(t)

2
σx (5.89)

where ω0 is the dominant energy and Ω(t) = (K ?Λ)(t) with Λ(t) = ω1(t) cos (ωrft+ φ(t)).
K(t) is our time domain transfer function and our control fields have a modulation fre-
quency ωrf , with modulation amplitude and phase given by ω1(t) and φ(t), respectively.

Note that since K(t) is purely real, K̃(ν) must be conjugate symmetric, K̃(−ν) = K̃(ν).

As usual, we enter the rotating frame given by Hrot = ωrf

2
σz. This produces an effective

Hamiltonian

Heff(t) = eitHrot(H −Hrot)e
−itHrot

=
ω0 − ωrf

2
σz + Ω(t)

(
0 eitωrf

e−itωrf 0

)
. (5.90)
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Examining the time dependent control pieces in Fourier domain yields

F
[
eitωrf Ω(t)

]
(ν) = F [Ω(t)] (ν − ωrf)

= K̃(ν − ωrf) · F
[
ω1(t)

2

(
eiφ(t)eitωrf + e−iφ(t)e−itωrf

)]
(ν − ωrf)

= K̃(ν − ωrf) · F
[
ω1(t)

2
eiφ(t)

]
(ν − 2ωrf) + K̃(ν − ωrf) · F

[
ω1(t)

2
e−iφ(t)

]
(ν)

= K̃(ν − ωrf) · F
[
ωx(t)− iωy(t)

2

]
(ν)

=⇒ eitωrf Ω(t) =
1

2
[(K− ? ωx) (t)− i (K− ? ωy) (t)] . (5.91)

In this derivation, we dropped components of ω1eiφ at the frequency ν − 2ωrf since they
are far off resonance; this is the usual rotating wave approximation. We further defined
the shifted transfer function K̃−(ν) = K̃(ν − ωrf) and the quadrature control components
ωx(t) = ω1(t) cos(φ(t)) and ωy(t) = ω1(t) sin(φ(t)). A similar calculation results in

e−itωrf Ω(t) =
1

2
[(K+ ? ωx) (t) + i (K+ ? ωy) (t)] (5.92)

where K̃+(ν) = K̃(ν + ωrf). It is important to realize that while K(t) is a real function,
in general, neither K+(t) nor K−(t) will be. However, it is straight forward to show that
K+(t) = K−(t) using the conjugate symmetry of K̃(ν) noted above. Alternatively, this
could be shown by observing that our effective Hamiltonian must remain Hermitian. In
any case, our derivation is concluded by rewriting our effective Hamiltonian as

Heff(t) =
ω0 − ωrf

2
σz + Ω(t)

(
0 eitωrf

e−itωrf 0

)
=
ω0 − ωrf

2
σz +

1

2

(
0 K+ ? (ωx + iωy)(t)

K+ ? (ωx + iωy)(t) 0

)
=
ω0 − ωrf

2
σz +

1

2
(re[K+ ? ωx](t)− im[K+ ? ωy](t))σx +

1

2
(re[K+ ? ωy](t) + im[K+ ? ωx](t))σy

=
ω0 − ωrf

2
σz +

ω′x(t)

2
σx +

ω′y(t)

2
σy (5.93)

where

ω′x(t) = re[K+ ? ωx](t)− im[K+ ? ωy](t) (5.94)

ω′y(t) = re[K+ ? ωy](t) + im[K+ ? ωx](t) (5.95)
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.

If we let α(t) =
(
ωx(t)
ωy(t)

)
and β(t) =

(
ω′x(t)
ω′y(t)

)
then in the notation of Equation 5.78 we

have

φ(t) =

(
reK+(t) − imK+(t)
imK+(t) reK+(t)

)
(5.96)

and the results from the same section can be directly applied.

5.7.4 Discrete Distortion Operators for Linear Circuits

Applying the distortion operator due to a nonlinear circuit—see Section 5.6—involved solv-
ing the circuit equations given a piecewise constant forcing term in the time domain every
time the effect on a new pulse needed to be calculated. For linear circuits, that is, circuits
where all circuit elements behave linearly, this should not be required. Linear circuits yield
a linear differential equation, which is equivalent to a convolution, and therefore, given a
linear circuit we expect to be able to cast it in the form

β(t) = f(α)(t) = (φ ? α)(t) =

∫ ∞
−∞

φ(t− τ) · α(τ)dτ. (5.97)

as described in Equation 5.78, where the convolution tensor φ(t) will be some function of
the circuit.

To begin, let’s consider a circuit which produces the linear differential equation

dx

dt
= Ax(t) + f(t)b (5.98)

where x(t) : R→ Cc is the state of the circuit consisting of a list of voltages, currents, fluxes,
etc, A is a c × c matrix describing the circuit, b ∈ Cc is the direction of the forcing term,
and f(t) : R→ C is the amplitude of the forcing. Note that we are in the rotating frame,
so that real and imaginary values are interpreted as in-phase and quadrature components,
respectively. In the case of a simple matched resonator we have

x =

 ĨL
ṼCm
ṼCt

 A(x) =

−R
L

0 1
L

0 −1
RLCm

1
RLCm−1

Ct
−1
RLCt

1
RLCt

− iωrI b =

 0
1

RLCm
1

RLCt

 (5.99)

so that c = 3 and f(t) has units of (complex) volts. This will be our motivating example,
and though we will try to work generally, we will still have some limitations. Mainly, we
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will consider only quadrature control drawn from the real and imaginary parts of a single
element of x(t).

Thus, in terms of our continuous input and output α(t) and β(t) we have the relation-
ships

f(t) = W (α(t)) where W

([
α1

α2

])
= α1 + iα2 (5.100)

β(t) = V (x(t)) where V



x1

x2
...
xc


 =

[
rex1

imx1

]
(5.101)

where we have presumed that the state variable of interest is x1 in the definition of V .
Note that V and W are linear functions (when the scalar field is the real numbers).

The general solution to Equation 5.98 is given by

x(t) = etAx0 +

∫ t

0

e(t−s)Abf(s) ds. (5.102)

and assuming the initial state is x0 = 0, we have in terms of α and β

β(t) = V

[∫ t

0

e(t−s)AbW [α(s)] ds

]
(5.103)

which we can hopefully put into the form of Equation 5.78. To this end we define the real
functions dij(t) implicitly by

etAb =


d11(t)
d21(t)

...
dc1(t)

+ i


d12(t)
d22(t)

...
dc2(t)

 (5.104)
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and therefore

β(t) = V

[∫ t

0

e(t−s)AbW [α(s)] ds

]

= V


∫ t

0



d11(t− s)
d21(t− s)

...
dc1(t− s)

+ i


d12(t− s)
d22(t− s)

...
dc2(t− s)


 (α1(s) + iα2(s)) ds



= V

[∫ t

0

(
d11(t− s)α1(s)− d12(t− s)α2(s)
d21(t− s)α1(s)− d22(t− s)α2(s)

...
dc1(t− s)α1(s)− dc2(t− s)α2(s)



+ i


d12(t− s)α1(s) + d11(t− s)α2(s)
d22(t− s)α1(s) + d21(t− s)α2(s)

...
dc2(t− s)α1(s) + dc1(t− s)α2(s)


)
ds

]

=

∫ t

0

[
d11(t− s)α1(s)− d12(t− s)α2(s)
d12(t− s)α1(s) + d11(t− s)α2(s)

]
ds

=

∫ t

0

(
d11(t− s) −d12(t− s)
d12(t− s) d11(t− s)

)
·
[
α1(s)
α2(s)

]
ds. (5.105)

This is very similar to the desired Equation 5.78, except that the integration bounds are
different. Since we have α(t) = 0 for t < 0, we can move the lower bound from 0 to −∞
without issue. The upper integration bound is slightly more subtle. To fix it, we must
make the definitions

d̃11(t) =

{
d11(t) t ≥ 0

0 t < 0
and d̃12(t) =

{
d12(t) t ≥ 0

0 t < 0
(5.106)

which results in

β(t) =

∫ t

−∞

(
d11(t− s) −d12(t− s)
d12(t− s) d11(t− s)

)
·
[
α1(s)
α2(s)

]
ds

=

∫ ∞
−∞

(
d̃11(t− s) −d̃12(t− s)
d̃12(t− s) d̃11(t− s)

)
·
[
α1(s)
α2(s)

]
ds

=

∫ ∞
−∞

φ(t− s) · α(s)ds (5.107)
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where

φ(t) =


(

[re etAb]1 −[im etAb]1

[im etAb]1 [re etAb]1

)
t ≥ 0

0 t < 0

. (5.108)

Now according to Equation 5.84, the discretized kernel is given by

[φ̃]m,l,n,k =

∫ ndt

(n−1)dt

[φ((m− 1/2)δt− τ)]l,k dτ. (5.109)

Given a particular value of m and n, there are three cases: (m − 1/2)δt < (n − 1)dt,
(m− 1/2)δt ≥ ndt, or (n− 1)dt ≤ (m− 1/2)δt < ndt. In the first case, we are guaranteed
that the integrand is 0. The last two cases can be combined as

[φ̃]m,1,n,1 = [φ̃]m,2,n,2

=

∫ min(ndt,(m−1/2)δt)

(n−1)dt

[re e((m−1/2)δt−τ)Ab]1dτ

= re

[
−A−1e((m−1/2)δt−τ)A

∣∣∣∣min(ndt,(m−1/2)δt)

(n−1)dt

b

]
1

= − re
[
A−1

(
e−[min(ndt,(m−1/2)δt)−ndt]A − edtA

)
e[(m−1/2)δt−ndt]Ab

]
1

(5.110)

which results in the total formula

[φ̃]m,1,n,1 = [φ̃]m,2,n,2

=


− re

[
A−1

(
I− edtA

)
e[(m−1/2)δt−ndt]Ab

]
1

(m− 1/2)δt ≥ ndt

− re
[
A−1

(
I− e[(m−1/2)δt−(n−1)dt]A

)
b
]

1
(n− 1)dt ≤ (m− 1/2)δt < ndt

0 (m− 1/2)δt < (n− 1)dt

(5.111)

and similarly

[φ̃]m,2,n,1 = −[φ̃]m,1,n,2

=


− im

[
A−1

(
I− edtA

)
e[(m−1/2)δt−ndt]Ab

]
1

(m− 1/2)δt ≥ ndt

− im
[
A−1

(
I− e[(m−1/2)δt−(n−1)dt]A

)
b
]

1
(n− 1)dt ≤ (m− 1/2)δt < ndt

0 (m− 1/2)δt < (n− 1)dt

(5.112)
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This lends itself to an efficient implementation of computing φ̃ since A only needs to be
diagonalized once.

Note that A will have eigenvalues whose real parts are negative, otherwise conservation
of energy would be broken. Therefore, for numerical stability, it is critical that whenever
A appears in a matrix exponent, the time appearing before it must be positive.

5.7.5 Finite Rise Times

A simple special case of the general convolution discussed in Section 5.7.2 is a rise time
acting independently on each control channel. This will cause the rising edge of a square
input pulse to be smoothed over with an exponential of time constant τ , and the trailing
edge to decay back to zero with an exponential of the same time constant. Such a transfer
function arises, for example, from a simple RL circuit, where the time constant is given by
τ = L/R.

Given a rise time τ kc acting independently on each of the 1 ≤ x ≤ K = L control
channels gives the time-domain transfer function as

φl,k(t) =

{
1
τkc
e−t/τ

k
c l = k and t ≥ 0

0 else
(5.113)

which, when the integral from Equation 5.84 is performed and simplified (by Mathematica
in this case), results in the discrete convolution

[φ̃]m,l,n,k =


δl,k(e

dt/τkc − 1)e
tn−1−t

′
m

τkc tn < t′m

δl,k

(
1− e

tn−1−t
′
m

τkc

)
(tn = t′m) ∨ ((tn > t′m) ∧ (n = 1 ∨ tn−1 < t′m))

0 else

(5.114)
for each 1 ≤ k ≤ K = L, where tn = ndt and t′m = (m − 1/2)δt. This is illustrated in
Figure 5.6 with K = L = 1.

Example 5.8. We consider designing a CNOT gate for two qubits with an internal Hamil-
tonian

H =
ω1

2
σ1
z +

ω2

2
σ2
z +

J

4
(σ1

xσ
2
x + σ1

yσ
2
y + σ1

zσ
2
z) (5.115)
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Figure 5.6: An example of the application of a discrete convolution distortion g to an
input pulse with N = 10 time steps. We have dt = 2, and the output space has 20 time
steps per input time step, thus δt = 0.1.

and control Hamiltonians {
Hx = σ1

x + σ2
x, Hy = σ1

y + σ2
y

}
(5.116)

where ω1 = −2π · 15, ω2 = +2π · 15, J = 2π · 50, and the amplitudes of the control
Hamiltonian are bounded by 2π · 50. This is the style of Hamiltonian found in liquid state
NMR homonuclear samples [111]. We use N = 30 input time steps of length dt = 0.005,
and M = 2N + d10τ/dte output time steps of length dt/2. Here, τ is the characteristic
exponential rise time of both control channels, as defined in Section 5.7.5.

To make the resulting pulse sequence robust against the value τ , we set the utility
function of the optimization problem to be a convex combination of utility functions, each
with a different value of τ , as explained in Section 5.4. The results are shown in Figure 5.7,
where it is seen that F > 0.99 is achieved in a region about ±7% around a nominal value
of τ = 0.005.

a

5.7.6 Crosstalk

Crosstalk is the phenomenon where a signal sent along one control channel is overheard
by other control channels. As alluded to earlier, this can be fully accounted for (in the
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Figure 5.7: The pulse envelope of a CNOT gate at an exponential rise time value of
τ = 0.005. The shaded curves (blue) show the distorted output pulse, and the empty
curves (red) show the undistorted input pulse. The robustness curve, in terms of one
minus average fidelity, is shown to the right as a function of τ .

case of linear controllers) by the off-diagonal elements of the transfer function φ. This
may be overkill as crosstalk can often be accurately modelled as one control line seeping
into each of the other control lines with attenuation factors that are constant in time. See
Reference [7] for example, where crosstalk between five coupled superconducting qubits is
observed.

To model this situation, we consider that our quantum system has I subsystems (or
qubits) each with L = K control channels. The Hamiltonian is given by

H = Hint +
I∑
i=1

L∑
l=1

qi,l(t)Hi,l (5.117)

where Hint is the internal Hamiltonian, containing all coupling terms, and qi,l(t) and Hi,l

are the lth control envelope and Hamiltonian of the ith system. There are now a total of
I ·L controls, and so instead of indexing the control indeces by single numbers, k and l, we
index them by tuples, (i, k) and (i, l). Since this distortion is independent of time, we set
δt = dt and M = N . Ideally, we would have pn,(i,k) = qn,(i,k) representing the fact that the
(i, k)th control signal is sent exactly to the (i, k)th Hamiltonian at each time step n. With
crosstalk included, the (i, k)th Hamiltonian actually sees a linear combination of each of
every control line,

qn,(i,l) =
I∑
j=1

K∑
k=1

χ(i,l),(j,k)pn,(j,k), (5.118)

where χ(i,l),(j,k) is the fraction of the (j, k)th control line seen on the (i, l)th control. More
compactly,

~q = g(~p) = χ · ~p (5.119)
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where the dot in this case represents contraction over the indices j and k.

The ideal χ tensor is χ(i,l),(j,k) = δi,jδl,k. As an example, if there are 4 qubits each with
two controls, x and y, then in matrix format the ideal tensor reads

χideal =

Q1 Q2 Q3 Q4
x y x y x y x y



Q1
x 1 0 0 0 0 0 0 0
y 0 1 0 0 0 0 0 0

Q2
x 0 0 1 0 0 0 0 0
y 0 0 0 1 0 0 0 0

Q3
x 0 0 0 0 1 0 0 0
y 0 0 0 0 0 1 0 0

Q4
x 0 0 0 0 0 0 1 0
y 0 0 0 0 0 0 0 1

(5.120)

If we add a crosstalk term between adjacent qubits, where an x control only talks to
adjacent x controls and similar for y controls, the tensor might look like

χnearest neighbour =

Q1 Q2 Q3 Q4
x y x y x y x y



Q1
x 1 0 0.2 0 0 0 0 0
y 0 1 0 0.3 0 0 0 0

Q2
x −0.1 0 1 0 0.5 0 0 0
y 0 0.15 0 1 0 0.4 0 0

Q3
x 0 0 −0.2 0 1 0 0.2 0
y 0 0 0 −0.2 0 1 0 0.3

Q4
x 0 0 0 0 0.23 0 1 0
y 0 0 0 0 0 0.7 0 1

(5.121)

As is clear from Equation 5.119, the Jacobian of this distortion operator is simply given
by

J~p(g) = χ. (5.122)

A pulse could be designed to be robust against errors in the crosstalk tensor by including
a distribution over crosstalk tensors, or perhaps just a distribution over some of its values,
dependently or independently, using the method described in Section 5.4.

177



Example 5.9. We design a π/2 gate about x on the third of four qubits arranged in a
line, with the other three qubits performing the identity operation. Each qubit has an x
and y control, {Hi,x = σix, Hi,y = σiy}, and the internal Hamiltonian is given by

H =
∑
|i−j|=1

ωijσ
i
zσ

j
z (5.123)

where ωij = 2π · 20MHz and the input control amplitudes are limited to 2π · 40MHz. We
use a crosstalk tensor

χ =

Q1 Q2 Q3 Q4
x y x y x y x y



Q1
x 1 0 0.3 0.001 0.05 0 0.001 0
y 0 1 0 0.1 0 0.01 0 0.001

Q2
x 0.25 0 1 0 0.3 −0.005 0.04 0
y 0 0.2 0 1 0 0.4 0 0

Q3
x 0 0 0.2 0 1 0 −0.2 0
y 0 −0.04 0 0.2 0 1 0 0.3

Q4
x 0.001 0 0.04 0 0.3 0 1 0
y 0 0 0 0.07 0 −0.3 0 1

(5.124)

Using this crosstalk distortion tensor, a pulse with average fidelity F = 0.9999 was
found and is shown in Figure 5.8.

a

5.8 Pseudocode for Modified GRAPE

In this Section, we list our modifications to the GRAPE algorithm, including ringdown
compensation (though this step may be ignored if irrelevant), in Algorithm 4.
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Figure 5.8: (color online) The pulse envelopes and Bloch sphere trajectories of a π/2)x
gate on the third qubit. The (unfilled) red curves represent the input pulse, and the (filled)
blue curves represent the output pulse seen by the quantum system.

Algorithm 3 Ringdown compensation function used in Algorithm 4.

function RingdownCompensate(~q, x0, nsteps, τr, r)
for istep ∈ {1, . . . , nsteps} do

q0 ← last step in ~q
w ← P

[
(etA − rI)x0 + q0 (A+ I/τr)−1 (etA − e−t/τrI) b]

v ← P
[
(A+ I/τr)−1 (etA − e−t/τrI)− A−1(etA − I)

]
b

append 〈v, w〉/〈v, v〉 to ~q
end for
return ~q

end function
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Algorithm 4 Modified GRAPE algorithm with ringdown compensation (see Algorithm 3).
This pseudocode implements its own conjugate descent for completeness, though in prac-
tice, it is likely more sensible to use an gradient ascent method from a scientific library.

Input: Target unitary Utarget, target fidelity Φtarget, distortion operator g, initial pulse ~pinit,
ringdown compensation steps nsteps, ringdown compensation step width τr, ringdown
compensation ratio r ∈ [0, 1], [optional] particle approximated distribution {(ps,~as)}Ss=1.

Output: Pulse ~p such that that Φg[~p] ≥ Φtarget, or Φg[~p] ≥ Φtarget if a list of samples is
given.
function BareUtil(~q, {(ps,~as)}Ss=1)

return
∑S

s=1 psΦ~as [~q]
end function
function FindPulse(Utarget, Φtarget, g, ~p, nsteps, τr, r [, {(ps,~as)}Ss=1])

if distribution samples {ps,~as}Ss=1 are not given then
{(ps~as)} ← {(1,~0)} . Use a single sample if no samples are given.

end if
β ← 0
~d′ ← 0
g ←

∑S
s=1 psg[~as]

Jg ← J(g) . Precalculate the Jacobian of the distortion operator g.

u← 0
while u ≤ Φtarget do

~q, x0 ← g[~p] . Distort the pulse, keeping the final state x0 of the distortion.

~q ← RingdownCompensate
(
~q, x0, nsteps, τr, r

)
u← BareUtil(~q, {(ps,~as)}Ss=1)
~d←

∑n
i=1

~∇~qΦ[~q|~xi] · Jg . Use [99] to calculate ~∇~qΦ.

∆~d← ~d− ~d′ . Find the conjugate gradient direction.

β ← max{0, ~d ·∆~d/~d′ · ~d′}
~s← ~d+ β~d′

α = argmaxαBareUtil(g[~p+ α~s], {(ps,~as)}Ss=1) . Perform a line search.

~p← ~p+ α~s . Update the pulse by the step α~s.
~d′ ← ~d . Set the previous gradient to the current and prepare for the next iteration.

end while
return ~p

end function
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Chapter 6

Benchmarking Quantum Devices:
Theory and Data Analysis

1

6.1 Introduction

Accurately characterizing the performance of both large and small quantum devices is vital
to ensure that, for example, quantum information processors are reliable and metrology
devices are accurate. For critical applications, the reliability of confidence intervals or
credible regions for figures of merit is more important than a single-point estimate as there
might be practical consequences to over-reporting the performance of a device.

Currently, the only known scalable protocols for characterizing discrete quantum logic
gates are randomized benchmarking (RB) [45, 101, 115, 116] and variants thereof, collec-
tively referred to as RB+ (see Table 6.1 for some variants). The standard RB protocol
works by applying random sequences of gates that ideally compose to the identity, where
the gates form a unitary 2-design [33]. Measuring in the basis of any initial state after
applying a random sequence therefore gives an estimate of the survival probability con-
ditioned upon that random sequence. The survival probability averaged over all random
sequences of a fixed length decays exponentially with the length, where the decay rate is a

1This work is based on Reference [85], done in collaboration with Joel Wallman, Chris Ferrie, and Chris
Granade. Joel Wallman was responsible for helping to develop the framework of RB+ protocols, and gave
advice on which models to numerically study. Chris Granade and Chris Ferrie independently developed
a similar Bayesian model (our efforts were eventually joined), and provided the theory of experiment
selection for second moment estimators. This work represents the first complete treatment of the rigorous
statistical analysis of RB+ experiment data.
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linear function of the average gate fidelity of the overall noise channel. Members of RB+
all have similar structure, modified to suit different goals. RB has been experimentally im-
plemented on a large variety of quantum platforms [18, 129, 176, 7, 131, 190, 157, 49, 77],
and is so ubiquitous that its results are often reported with little detail within the context
of a larger purpose.

However, these experimental implementations make different ad-hoc statistical assump-
tions because previous theoretical treatments of RB+ have typically neglected data analy-
sis. The analysis of RB+ experiments is complicated by three factors:

1. every random sequence in a protocol gives rise to a different survival probability,
giving rise to a survival distribution for each sequence length;

2. in low- to mid-data regimes, assuming Gaussian errors on either the estimates of the
individual survival probabilities or on the mean of the survival distribution through
the central limit theorem is dubious; and

3. applying hard physical constraints violates the assumptions of standard statistical
fitting routines.

This chapter presents a Bayesian data-processing method that overcomes these difficul-
ties, and that can be applied to all members of RB+. As with any Bayesian approach, the
output is a joint posterior distribution over all parameters relevant to the problem. Joint
distributions over the parameter(s) of interest can be obtained by marginalizing over nui-
sance parameters, enabling straight-forward statements like ‘under this protocol’s model
with this prior knowledge, there is a 95% probability that such-and-such parameter is
greater than 0.999’. If a point estimate is required for some parameter, the Bayes estimate
is just a sum and division away.

6.2 The Framework of RB+

In this section we provide a general framework to rapidly understand and compare the
various protocols related to randomized benchmarking. The framework consists of the
following six elements, exemplified in Table 6.1:

1. G, Gate Set: the set of R gates G = {G1, G2, ..., GR} used in the protocol, where this
set might satisfy specific conditions such as being a group and a unitary 2-design2;

2As a point of practicality, note that gates from G are often physically implemented by compiling gates
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2. E, Experiment Types: labels for protocols that combine data from multiple sub-
protocols, possibly including specification of multiple configurations of preparation
and measurement (SPAM), denoted with ρ and E respectively3;

3. M , the Sequence Length: a positive integer, where `(M, e) denotes the exact number
of gates from G needed to construct a sequence at length M under experiment type
e ∈ E;

4. JM,e, Allowable Sequences: a discrete distribution whose sample space is the set of
gate-indexing tuples {1, ..., R}`(M,e), typically uniform on a subset thereof;

5. ~xT , Tying Parameters: the set of parameters that can be learned from the protocol;
and,

6. T , Tying Functions: the known dependence of the parameters on the statistics of the
measurement data.

For a given sequence of gate indices ~j = (j1, ..., jK), define the corresponding ideal gate
as

G~j = GjK · · · Gj2Gj1 , (6.1)

where we use the convention that the scripted version of a letter denoting a unitary operator
is the quantum channel which conjugates by that unitary, that is, G(ρ) = GρG†. We
write the imperfect implementations of ρ, G~j, and E as ρ̃, G̃~j, and Ẽ respectively. The
following procedure is then performed experimentally, possibly in a random order to prevent
experimental drifts from causing a systematic error:

for each sequence length M ∈M do
for each experiment type e ∈ EM do

for each sequence i = 1, 2, 3, ..., I do
~j ← RV (JM,e)

QM,e,i ← RV
(

Binom
(
N,Tr ẼeG̃~j(ρ̃e)

))
end for

end for
end for

from a smaller generating set of gates that need not share any special properties required by G. Unitary
2-designs are defined in Definition 7.1.

3Rather than including SPAM configurations as experiment types, sometimes protocols may instead
compile SPAM configurations into the allowable sequences.
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where M ⊂ N is some choice of sequence lengths, and (ρe, EE) is the SPAM configuration
specified by experiment type e. Here, RV (·) denotes sampling a random variate from
the given distribution, so that RV (JM,e) denotes choosing a random allowable sequence,

and RV
(

Binom
(
N,Tr ẼeG̃~j(ρ̃e)

))
corresponds to repeating this experiment N times and

summing the resulting 0s and 1s. This binomial model assumes strong measurement with
two outcomes. This condition can be loosened, as is done in Section 7.4.2.

In principle the number of random sequences I can depend on M and e, and the
number of repetitions N can depend on M , e, and i, and so on, but we avoid this to
maintain subscriptural sanity (though our methods will work nonetheless on such ragged
structures). For the same reason, we omit any indices which are not relevant to some
specific protocol. Generically, this protocol produces the dataset

D = (QM,e,i)M∈M,e∈EM ,1≤i≤I . (6.2)

As a concrete example, consider standard RB. Then G is a unitary 2-design which is also
a group. There is only one type of experiment for every sequence length, so E = {0}, with
a fixed SPAM configuration E0, ρ0 ≈ |0〉〈0|. We note that our notation allows, however, for
formalizing modifications in which two different final measurements are used to decorrelate
preparation and measurement errors [53]. For sequence length M we require `(M, 0) =
M + 1 gates from G, where the extra gate corresponds to the final inversion: the allowable
sequences at sequence length M are a uniform distribution of all length M + 1 gate indices

that ideally produce the identity gate, JM,0 = Unif
(
{~j ∈ {1, ..., R}M+1|G~j = I}

)
.

Interleaved randomized benchmarking has a similar structure except, for example, that
we may have EM = {0, 3}, where e = 0 represents no interleaving, and e = 3 represents
interleaving the 3rd gate in G. As with standard RB, we have `(M, 0) = M+1. Interleaved
experiments add a fixed gate for every random gate giving us `(M, 3) = 2M + 1. See
Table 6.1 for more examples of RB+ protocols as described by our framework.

6.3 Tying functions

The quantity
S~j,e = Tr ẼeG̃~j(ρ̃e) ∈ [0, 1] (6.3)

is called the survival probability of the sequence ~j ∼ JM,e at sequence length M for exper-
iment type e ∈ E. For a specific noise model and any protocol described by the previous
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section, we can consider the discrete survival distribution for sequences of length M and
experiment type e given by

SM,e(q) =
∑
~j

Pr(~j)δ(q − S~j,e) (6.4)

where δ(·) is the delta mass distribution centered at 0, the sum is over all sequences of
the right length, ~j ∈ {1, ..., R}`(M,e), and Pr(~j) is the probability of picking sequence ~j
according to the protocol. This distribution has support lying in the unit interval [0, 1].

Such survival distributions depend heavily on the noise model. Complications to the
noise model can be introduced successively. See Epstein et al. [46] for a wide set of examples,
or Ball et al. [5] for simulations of non-Markovian noise model survival distributions in
particular. Letting E(·) denote a CPTP noise channel and ~j = (j1, . . . , jK) a specific gate
sequence, starting with the simplest, the broad categories of noise models are

• Gate-independent noise: For every Gr ∈ G we have G̃r = EGr so that G̃~j = EGjK · · · EGj1 .

• Gate-dependent noise: For every Gr ∈ G we have G̃r = ErGr so that G̃~j = EjKGjK · · · Ej1Gj1 .

• Gate- and position- dependent noise: For Gr ∈ G appearing at time k we have
G̃r = Er,kGr so that G̃~j = EK,jKGjK · · · E1,j1Gj1 .

We can fine-grain these categories further by specifying the types of channels the errors
E can take, for example, depolarizing, extremal, or unitary rotations. We can also, as a
matter of preference, move gate noise to the right side of the ideal operator, or consider both
left and right noise. Non-markovian noise models obeying causality are also reasonable to
study,

• Non-markovian gate dependent noise: For every Gr ∈ G we have G̃r = EGr where E
depends on both r and the gates preceding Gr, so that G̃~j = Ej1,...,jKGjK · · · Ej2,j1Gj2Ej1Gj1 .

The set of allowable sequences JM,e typically grows exponentially with the sequence
length M , and numerical evidence suggests that it is reasonable to approximate the survival
distribution by a continuous distribution.

RB+ protocols have the shared property of tying together moments of survival distri-
butions to extract parameters of interest. For example, the gate-independent noise model
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ties the first moments of RB survivals distributions through the relationship4

ESM [q] = (A−B)pM +B (6.5)

where the average gate fidelity of the error map E is p + (1 − p)/d, A = Tr Ẽ0E(ρ̃0), and
B = Tr Ẽ0E(I/d). Note that we have chosen a slightly different parameterization than that
of [116], such that the range of valid SPAM parameters is given by (A,B) ∈ [0, 1]2.

More generally, every protocol will have a function T which ties together the tth mo-
ments of the survival distributions through

ESM,e [q
t] = T (t,M, e, ~xT ). (6.6)

for some subset of all moments. We call T the tying function. Here, ~xT is a vector of
parameters required by the tying function, for instance, ~xT = (p,A,B) in the case of
standard RB. As of this writing, the unitarity protocol is the only protocol which ties
together moments past the first [177].

6.4 The Likelihood Function

Let’s start with the standard RB protocol in what is known as the 0th order model, as
written in Equation 6.5. The parameter of interest is p since it is related to the average
gate fidelity of the average error map. Given a dataset D, as defined in Equation 6.2, we
are interested in inferring the value of p, with A and B treated as nuisances.

Any inference starts with writing down the likelihood function of the parameter of
interest [163], along with nuisance parameters, conditioned on the collected data. The
total likelihood will be a product over all sequences lengths and sequence draws. Consider
just the factor for the ith draw of length-M , resulting in the binomial outcome d = QM,e,i ∈
{0, . . . , N}. The likelihood of this outcome, conditional on drawing the particular sequence
~j, is given by

L(p,A,B|d,~j) =

(
N

d

)
qd(1− q)N−d (6.7)

where q = S~j is the survival probability of sequence ~j. The conditional is removed by
marginalizing q over the survival distribution,

L(p,A,B|d,M) = ESM
[(
N

d

)
qd(1− q)N−d

]
. (6.8)

4Recall that we omit some indices, here in SM,e, for notational convenience. In this case because there
is only one experiment type and SPAM setting. Also, the notation ESM

[q] is the expectation value of the
random variable (arbitrarily called q) drawn according to the distribution defined by SM in Equation 6.4.
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Protocol Parameter Symbol Value

RB [116, 28] Gate Set G Group and unitary 2-design, R members
Experiment Types E EM = {0} with SPAM ρ0, E0 ≈ |0〉〈0|
Allowable Sequences JM,e Unif

(
{~j ∈ {1, ..., R}M+1|G~j = I}

)
Tying Parameters ~xT (p,A,B)
Tying Functions T T (1,M, e, ~xT ) = (A−B)pM +B

Interleaved RB [117] Gate Set G Group and unitary 2-design, R members
Experiment Types E EM = {0, r} for some 1 ≤ r ≤ |G|, with SPAM

ρe, Ee ≈ |0〉〈0|
Allowable Sequences JM,e JM,0 = Unif

(
{~j ∈ {1, ..., R}M+1|G~j = I}

)
JM,r = Unif

(
{~j ∈ {1, ..., R}2M+1|G~j = I,~jeven = r}

)
Tying Parameters ~xT (p0, pr, A,B)
Tying Functions T T (1,M, e, ~xT ) = (A−B)pMe +B

Unitarity [177] Gate Set G Group and unitary 2-design, R members
Experiment Types E EM = {0} with SPAM ρ0, E0 ≈ |0〉〈0|
Allowable Sequences JM,e Unif

(
{1, ..., R}M

)
Tying Parameters ~xT (u,A,B)
Tying Functions T T (2,M, ~xT ) = A+BuM−1

Leakage RB [189] Gate Set G Group and unitary 2-design with R members acting on
X1,
X = X1 ⊕X2 with dimX = d1 + d2

Experiment Types E EM = {0, ..., d1−1} with SPAM Ee ≈ |e〉〈e| , ρe ≈ |0〉〈0|
Allowable Sequences JM,e Unif

(
{~j ∈ {1, ..., R}M+1|G~j = I}

)
Tying Parameters ~xT (L1, L2, µ1, pl, {Ae}e∈E, {Be}e∈E, {Ce}e∈E, )
Tying Functions T T (1,M, e, ~xT ) =(L2Ae + L1Be)/(L1 + L2)

+
(

L1
L1+L2

− pl
)

(Ae −Be)(1− L1 − L2)M

+(1− pl)(Ce −Ae)(µ1(1− L1))M

Dihedral Benchmarking [21] Gate Set G 〈Zj = eiπZ/j , X〉 ⊆ SU(2) for some j ∈ N, R total
members

Experiment Types E EM = {X,Z} with SPAM Ee, ρe ≈ (I + e)/2

Allowable Sequences JM,e Unif
({
~j ∈ {1, ..., R}M+1|G~j ∈ {I, e}

})
Tying Parameters ~xT (pX , pZ , A,BX , BZ)
Tying Functions T T (1,M, e, ~xT ) = A+BepMe

Table 6.1: Description of some RB+ protocols within our framework.
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At this point we have run into a very serious problem. This expression cannot be simplified,
even in principle, unless we know more about the survival distribution SM . There is one
exception, however, first explicitly pointed out in an appendix of Granade et al. [62]: if
N = 1, then the expectation’s integrand is linear in q for both values of d and so only the
first moment of SM matters; we get

L(p,A,B|d = 1,M) = (A−B)pM +B (6.9)

for standard RB, or more generally,

L(~xT |d = 1,M, e) = T (1,M, e, ~xT ) (6.10)

for any protocol whose first moments are tied together. This fact was exploited to great
effect by those authors. The same argument shows that the first N moments of SM,e

are potentially relevant to the likelihood function for any protocol, and therefore some
characterization of them should be appended to the list of nuisance parameters.

Alternatively, one might argue to simply enforce the constraint N = 1. This is a rea-
sonable suggestion, and is explored in Section 6.6 where it is shown that N = 1 should
be considered best-practice for protocols which only tie together their first moments, and
whose implementations are quick at switching between random sequences. For some ex-
perimental setups, however, switching the sequence every experiment would dominate the
duty cycle. The way around this is through fast logic near the quantum system [152],
such as was recently demonstrated by [77] in the case of a transmon qubit coupled to an
oscillator-encoded logical qubit. Or perhaps, even more seriously, some systems are not
capable of strong measurement, and so a binomial model with N = 1 is not physically
possible. In this case we can still write down a likelihood function, no longer conditionally
binomial (as seen, for example, in Section 7.4.2), but one that will involve higher moments
by necessity. Finally, in some cases, the second moment is the moment of interest, as in
the unitarity protocol, so that N = 1 is completely insensitive to the quantity of interest.

In any case, a great deal of RB+ experiments have been performed with N > 1 and so
it behooves us to devise a statistically rigorous approach for analysing such data.

6.5 Constructing Agnostic Models

In the last section we noted that for a repetition value of N , to fully specify the likelihood
function of an RB or related protocol, we require at least N parameters per sequence
length and experiment type, in addition to the parameters of the tying function. These
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extra parameters correspond to moments of the survival distributions. We will write ~xS to
denote these new parameters, whatever they end up being, distinguishing them from the
parameters of the tying function, ~xT . One must tread carefully in any analysis that follows
this observation. The goal of this section to develop a framework where we treat these
nuisance parameters in a principled yet practical way, while at the same time remaining
as agnostic about their structure as possible.

6.5.1 Parameterizations

A Bayesian, by instinct, may be tempted to throw all of the unknown moments of the
survival distributions into an inference engine as nuisance hyperparameters. In principle
there is nothing wrong with this. However, it would lead to a huge number of parame-
ters for even modest values of N . Care would be required in restricting the domains of
these moments, for example, the variance σ2 of a distribution with support on [0, 1] and
expectation value µ must always satisfy 0 ≤ σ2 ≤ µ(1− µ).

One might suggest next to truncate the number of moments to be included as hyper-
parameters down to some tractable, empirically motivated constant. But even in this case,
one must specify the higher moments somehow. For example, one might choose to set them
all to zero. This would effectively restrict the space of allowed survival distributions to
some strange, unmotivated family of distributions. Instead, one might make the moments
above the truncation cutoff sure functions of those below in some sensible way.

At this point, we have basically argued for the use of parameterized families of prob-
ability distributions; any family of probability distributions, like the Gaussian or gamma
families, can be defined as a rule that specifies all moments of a given member in terms of
a few parameters. For us, the most natural starting point is the beta distribution family.
This family is conjugate to the binomial distribution, and is the canonical family of contin-
uous distributions with support on the unit interval. A member with parameters α, β > 0
is written Beta(α, β), and has a density function defined by

pdfBeta (q) =
qα−1(1− q)β−1

B (α, β)
(6.11)

where the normalization constant B (α, β) is the beta function. Its first and second central
moments are given by µ = α

α+β
and σ2 = αβ

(α+β)2(α+β+1)
, respectively. These equations can

be uniquely inverted as

α = µ2(1− µ)/σ2 − µ (6.12a)

β = µ(1− µ)2/σ2 − (1− µ), (6.12b)
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which provides an alternate parameterization of the family. In a slight abuse of notation,
we write Beta(µ, σ) for a member written in the new coordinates. Alternate parameteri-
zations and their transforms are provided in Section C.3, and we similarly abuse notation
for these other coordinates, writing, for example, Beta(µ, r) where σ2 = rµ2(1− µ)2.

This family can produce quite a wide variety of shapes even though it only has two
parameters. Setting α = β = 1 results in the uniform distribution on [0, 1]. Fixing any
mean α

α+β
∈ (0, 1) while increasing α and β decreases the variance, and the distribution

approaches a normal shape. On the other hand, decreasing α and β while the mean is
kept fixed increases the variance toward µ(1 − µ); the probability density at first spreads
out over the whole interval [0, 1], and when this is no longer able to keep increasing the
variance, the mass begins to build up at the end points, approaching a weighted mixture
of two delta functions.

Using this family, for a first order tying function, every sequence length, experiment
type, and measurement operator would add one parameter to the likelihood model, so that
~xS = {σM,e}M∈M,e∈EM , or some other parameterization thereof. In the case of any protocol
which ties together only first moments, we get the hierarchical model

~xT ∼ π(~xT ) (6.13a)

µM,e|~xT = T (1,M, e, ~xT ) (6.13b)

σM,e ∼ π(σM,e) (6.13c)

qM,e,i|µM,e, σM,e
iid∼ Beta (µM,e, σM,e) (6.13d)

QM,e,i|qM,e,i
iid∼ Binom (N, qM,e,i) (6.13e)

for the dataset D. The horizontal line is a visual aid to separate the prior from the
likelihood distribution, and π(·) refers to the prior distribution of the given parameters.
The quantities qM,e,i are latent random variables representing survival probabilities —
they can be analytically integrated out of the model if desired, resulting in a beta-binomial
distribution instead. This set of sampling statements, which are sequentially dependent
on previous variables, is an example of a probabilistic program. It is a convenient way of
specifying the joint distribution of the prior and the likelihood, which is proportional to
the posterior distribution.

Models for higher-order tying functions are just as easy to write down. Note, however,
that the beta distribution only has two parameters, so that if both of the first two moments
are tied together, there is no more uncertainty in the survival distributions (conditional
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on a specific value of ~xT ). This can be solved by using a larger family of distributions, or
through a nonparametric approach, as discussed in the following section.

6.5.2 Nonparameterizations

The assertion that every survival distribution is approximately beta distributed may some-
times be too strong. In this section we would like to loosen this restriction. One viable path
is to use a bigger family, such as the generalized beta family with five parameters [123].
Even more generally, we can resort to Bayesian nonparametrics. This is the approach that
we take, and in particular, we use Dirichlet process mixtures, which are distributions of
distributions5.

Let DPK(α,G0) denote a Dirichlet process with a concentration parameter α > 0 and
a base distribution G0 that has support on the parameter space Ω, and that is truncated
to K modes6. We would like to replace the draw of qM,e,i from a beta distribution (see
Equation 6.13) to a draw from a random distribution G, such as G ∼ DPK(α,G0). The
Dirichlet process has two shortcomings that prevent us from directly using it for this pur-
pose. The first is that its variates are not continuous distributions, and the second is that
the moments of its draws are random, whereas we would like the ability to (conditionally)
fix some of them according to the tying functions.

To overcome these problems we modify the Dirichlet process into a new nonparamet-
ric family that we call constrained Dirichlet process beta mixtures (CDPBM), denoted
CDPBMK(α,G0, ·), whose definition is motivated in Section C.2.2. In short, if the de-
sired mean value of our random distributions is 0 < µ1 < 1, then the random distribution
G ∼ CDPBMK(α,G0, µ1) is drawn as follows:

K∑
k=1

wkδ(ν∗k ,rk) ∼ DPK (α,G0) (6.14a)

νk =
1

1 + e−ν
∗
k−h

with h such that
K∑
k=1

wkνk = µ1 (6.14b)

G =
K∑
k=1

wk Beta(νk, rk). (6.14c)

5We provide a brief introduction to Dirichlet processes and Dirichlet process mixtures in Section C.2.1.
6As a brief bit of context, recall that G0 is the mean value of DPK(α,G0), and that α can be interpreted

as the number of ‘prior observations’ from samples of DPK(α,G0); it scales inversely with the variance of
DPK(α,G0).
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Here, the Dirichlet process sample space is (ν∗k , rk) ∈ R× (0, 1) = Ω, upon which the base
distribution G0 is defined, and we are using the (µ, r) parameterization of the beta family
(see Section C.3). This procedure ensures that E[G] = µ1, and that the support of G lies
within [0, 1]. We typically choose G0 = N(0, 1.9)× Unif(0, 1) as a broad prior, and assign
a hyper-prior α Gam(1, 1).

With this defined, our nonparametric model for analyzing RB+ data is a straight-
forward modification of Equation 6.13, given by

~xT ∼ π(~xT ) (6.15a)

µM,e|~xT = T (1,M, e, ~xT ) (6.15b)

αM,e
iid∼ Gam(1, 1) (6.15c)

GM,e|αM,e, µM,e
ind∼ CDPBMK (αM,e, G0, µM,e) (6.15d)

qM,e,i|GM,e
ind∼ GM,e (6.15e)

QM,e,i|qM,e,i
ind∼ Binom(N, qm,i). (6.15f)

A slight modification is needed for protocols which tie together higher moments, which
we omit for brevity; see Section C.2.2.

6.5.3 Frequentist Approaches

Though we are primarily concerned with a Bayesian approach, we are also interested in
comparing to frequentist methods. To date, the de facto frequentist inference tool for RB+
data (with exceptions) has been least-squares fitting (LSF) to exponential decay models.
Generally, the justification for LSF is that it is equal to the maximum likelihood estimator
(MLE) in the case of Gaussian noise on the data.

There are a couple of reasons to be cautious when using estimates and confidence
regions based on LSF in the case of RB+. One is that the distribution of the data is not
Gaussian, except approximately in the high data regime, and therefore the MLE is not
being reported, but some sort of approximation thereof. Another is that weights need to
be chosen for weighted LSF (WSLF)—using uniform weights implicitly makes assumptions
about the nature of the noise model and should always be avoided.

It is non-trivial to choose appropriate weights for WLSF. One may be tempted to
use sample variances as weights, but there is a subtle issue that these variances do not
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directly represent the uncertainty of the quantities of interest at a given sequence length
and experiment type; they partially contain unnecessary weight due to finite sampling
statistics. Even if this is corrected for, one must also make sure that weights are assigned
consistently. Additionally, one needs a heuristic for assigning a non-zero weight in the case
of no variance in the outcomes at a given sequence length of a protocol.

For these reasons our preferred frequentist method for analyzing data from RB+ models
containing many sequence lengths is to look directly at the MLE. This can be done by
using a likelihood function that assumes that survival distributions are beta distributed—
see the second half of Equation 6.13. The log-likelihood of this model is easily and reliably
maximized with gradient-based numerical methods. We avoid having to assign weights at
every sequence length since they are now treated as nuisances of the global fit. Confidence
intervals for this estimator can be constructed through standard bootstrapping techniques
(see for example the survey article of DiCiccio and Efron [35]). We construct bootstrap
distributions of the tying parameters by computing the MLE on random data replications
drawn from the empirical (non-parametric) distribution of the data, or by sampling the
likelihood distribution at the MLE of the data (parametric). Samples are always drawn on
a per-sequence-length basis, so that the shape of the bootstrapped data is the same as that
of the original data. Confidence intervals are constructed with the simplest bootstrap-t
procedure. That is, we look directly at the CDF of these bootstrap distributions.

Occasionally we will also consider the WLSF for the sake of interest. In such cases, we
set weights equal to the sample variances of the binomial data normalized by N . We do
this because it has been a popular approach historically.

6.6 Sequence Re-Use

Thus far we have only talked about data analysis. In this section we discuss which ex-
periments to perform in the first place. Specifically, we address the question of how many
times a fixed random sequence from an RB+ protocol should be reused. In Section 6.4 we
hinted at the fact that every random sequence should, ideally, only be used once. Here, we
qualify and quantify this idea.

With all of the heavy lifting of getting to the survival distribution out of the way, we can
cast the problem of sequence re-use as one of pure statistics. Or, we can think of a concrete
and conceptually simple isomorphic problem—we can think of a survival distribution as
a bag of coins with different biases. Suppose this bag has a mean bias q and a standard
deviation of biases σ (or, equivalently characterized by the second moment µ2). We want
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to estimate these unknown quantities from selecting coins from the bag, at random, and
flipping them. The isomorphism is that the statistical conclusions of flipping the same coin
more than once are the same as repeating a given gate sequence in RB.

So, by considering the trade-off in the number of repetitions of flips using the same coin
versus selecting a new coin, we can understand the optimal experimental design policy in
RB.

6.6.1 First moment estimators

Naturally, we start with the first moment. With protocols that tie only first moments, we
only care, by necessity, about inferring values which depend on q, but none of the higher
moments of the bag. Conditional on picking a coin with bias q, if we perform N Bernoulli
trials and add them up, we have the conditional random variable

Q|q ∼ Binom(N, p) (6.16)

with conditional cumulants E[Q|q] = Np and Var[Q|q] = Nq(1− q).

This gives Var[Q] = Nq(1− q) +N(N − 1)σ2 through the law of total variance. If we
independently and identically repeat the process of drawing a different coin I times and
perform N Bernoulli trials on each, we end up with

Var

[
I∑
i=1

Qi

N · I

]
=

1

I

(
q(1− q)
N

+
N − 1

N
σ2

)
(6.17)

as the variance of the scaled quantity
∑I

i=1 Qi/(N · I) whose mean value is q̄. The take-
away from this formula is that the variance approaches 0 as we increase the number of
coins (sequences) we use, but asymptotes to the finite value σ2 if we fix I and increase
the binomial parameter N (re-use of the same sequence). If we consider instead the total
number of flips of all coins to be fixed, I ·N = const., we can see at once that the variance
is minimized when N = 1 by completely eliminating the contribution from σ.

We have looked at the variance formula above because it has a simple derivation and
gets the point across. However, a better quantity to consider is the Fisher information and
the resulting Cramér–Rao bound of q, because it gives a rigorous bound on how well any
(unbiased) estimator of q can do. Supposing that we explicitly choose our bag to have a
beta distribution with mean value q and variance σ2 = tq(1− q) for some 0 < t < 1, then
our likelihood distribution is Beta-Binom(N,µ, t) and the two-by-two Fisher information
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Figure 6.1: (a-b) Supposing a fixed budget of Bernoulli trials for the bag-of-coins ex-
periment, the WCRB (Equation 6.19) of the mean coin bias q is shown, normalized to
the time it takes to complete the full experiment. The true parameters of the bag are
q = t = 0.5, a single coin flip takes tflip = 100 us, and switching coins takes tpick = 0
and tpick = 5 ms = 50tflip for (a) and (b), respectively. We see choosing all coins to be
different is no longer the best strategy when tpick > 0. To explore this, in (c-d), given a
ratio tpick/tflip, we compute the optimal number of coin flips N and the resulting optimal
WCRB for tflip = 100 us, t = 0.5, and various values of q. (In these final two plots, there
is no longer a fixed budget of trials; global minima were found with respect to N .)
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matrix, J(q, t), is given by the negative expected value of the Hessian of the log-likelihood
function. By virtue of our choice of parameterization (q, t), the Fisher information matrix
happens to be diagonal, and so the the Cramer-Rao bound reads

Var[q̂] ≥ 1

I · J(q)
(6.18)

where J(q) = J(q, t)1,1 and q̂(Q1, ..., QI) is any unbiased estimator of q that depends on I
iid samples from the likelihood.

So far we have neglected any cost associated with picking a new coin from our analysis,
which is the main reason why experimentalists re-use sequences. We can include this cost
by considering the Fisher information per unit time, J(q)/T , where T is the time it takes
to collect the data. Suppose that it takes time tpick to pick a new coin and time tflip to flip
a coin once. Then we have T = I(tpick +Ntflip), and the CRB weighted by experiment cost
is

Var[q̂]/Hz ≥ (tpick +Ntflip)

J(q)
≡WCRB(q) (6.19)

where we have assumed T is in units of seconds. Note that if we take the square root
of both sides we get the usual units for sensitivity. This figure of merit is explored in
Figure 6.1.

6.6.2 Second moment estimators

As before, we draw a coin I times and perform N Bernoulli trials on each. This time, how-
ever, we estimate the second moment via summing the squares of the number of successes.
This estimator is biased, but not asymptotically so:

E

[
I∑
i=1

Q2
i

I ·N2

]
= µ2 +

1

N
(q − µ2). (6.20)

That is, as the number of repetitions N increases, this estimator becomes less biased.

Due to this bias, the Cramér–Rao cannot tell us much about this estimator. But, we
can directly calculate the mean squared error. As before, though, we consider a fixed total
number of measurements T = N · I = const. and calculate T · MSE.
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Since the MSE involves the square of the second moment, we need to calculate

E

( I∑
i=1

Q2
i

I ·N2

)2
 =

1

I2N4

I∑
j,k=1

E[Q2
jQ

2
k]

=
1

I2N4

(
I∑

k=1

E[Q4
k] +

I∑
j 6=k=1

E[Q2
j ]E[Q2

k]

)

=
1

I2N4

(
IE[Q4] + I(I − 1)E[Q2]2

)
. (6.21)

The fourth moment of the Beta-Binomial Beta-Binom(N,µ, µ2) is simple yet still too messy
to usefully reproduce here.

We calculate the optimal repetition rate by averaging the total cost over a uniform
prior on the domain of validity in the parameterization of (µ, µ2). The final answer for the
optimal value of N is

Nopt =

(
16

40 + 32 ln(2)− 3 ln(3)

) 1
3

T
1
3 +O

(
1

T
1
3

)
, (6.22)

or roughly 0.65T
1
3 . A ball-park amount of data usually taken at each sequence length

in randomized benchmarking is about a kilobyte. This corresponds to about N = 13
repetitions per sequence and I = 615 difference sequences.

It is also of interest to consider the case when µ ∈ (l, 1) for some lower bound l. For
example, suppose we are fairly confident that our fidelity is above 90%. In this case, we
still have

N = C(l)T
1
3 +O

(
1

T
1
3

)
, (6.23)

for some C(l) < C(0). For example, taking l = 0.9, we have N = 0.39T
1
3 .

Finally, we generalize the calculation of Equation 6.22 to include the effects of finite
switching costs τ := tpick/tflip. In doing so, we proceed numerically, as the series expansion
obtained in Equation 6.22 is much less useful for τ > 0. We plot the results in Figure 6.2,
noting that even for τ = 30, the optimal sequence lengths found do not deviate substantially
from the case where there is no switching cost. Thus, Nopt ≈ 0.65T

1
3 remains a useful

heuristic in this case, even if it is no longer a rigorous approximation.

197



0 2000 4000 6000 8000 10 000

2

4

6

8

10

12

14

Figure 6.2: The optimal sequence reuse Nopt for second moment estimation (as used, for
example, in the unitarity protocol), plotted as a function of the total time budget allowed
T , for each of several choices of the switching cost ratio τ := tpick/tflip.

6.7 Numerical Results

In this section we explore our Bayesian model with a collection of numerical examples,
using various protocols and error models.

As with most Bayesian models, analytic formulae for posterior distributions are in-
tractable. Our posterior in the examples throughout this section are therefore computed
with numerical techniques. In particular, we use the Hybrid Monte Carlo (HMC) sampler
using the No-U-Turns (NUTS) heuristic [42, 89]. This is a type of Markov chain Monte
Carlo (MCMC) sampler that has gained widespread use due to its lack of tuning param-
eters, fast mixing rate, and ability to handle large numbers of parameters. More details
about our sampling strategies are outlined in Section C.1.

6.7.1 RB with Various Noise Models

As a first example, we consider the standard RB protocol on a qubit under three noise
models. We use an order 12 subgroup of the usual 24 member Clifford group as our
gateset. This subgroup is still a 2-design and can be generated as G = 〈Z,

√
ZH〉, where
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Figure 6.3: (a) Single and joint posterior marginals of the parameters p, A, and B are
shown for each of the three noise models defined in Section 6.7.1 of the main text for
the standard RB protocol. (b) Using Bayes’ estimate for these three parameters, the
curve (A − B)pM + B is plotted for each model, displayed on top of the normalized data
used in the inference. The unusual shape is due to the log-linear scale, and jitter in the
x-axis on the data points was added for visual appeal — for all three models I = 20 ran-
dom sequences were used with N = 30 repetitions each at each of the sequence lengths
M = {1, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000}, where the maximum sequence
length is chosen according to the Mmax = 1/(1−F ) heuristic [62]. (c) The posterior shown
in (a) was calculated using the model in Equation 6.15, which describes each survival dis-
tribution as a mixture of beta distributions, and so finally, we plot the posterior mean
of 1/

∑K
k=1 w

2
k for each survival distribution, where the weights wk are defined in Equa-

tion 6.14. This quantity ranges between 1 and K and quantifies the estimated number
of relevant mixands in each survival distribution. The low values justify our CDPBM
truncation at K = 10.
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H = ( 1 1
1 −1 ) /

√
2 and Z = ( 1 0

0 −1 ). Our three noise models are defined as

E1
r = Λs1 (6.24a)

E2
r = Φs2 ◦Θ[Gr, ε2] (6.24b)

E3
r = Θ[Gr, ε3] (6.24c)

where G̃r = Gr ◦ E ir is the actual implementation of the ideal gate Gr for r = 1, ..., R and
where

Λs(ρ) = (1− s)ρ+ sTr[ρ]I/2 (6.25a)

Φs(ρ) = (1− s)ρ+ sZρZ (6.25b)

Θ[U, ε](ρ) =

{
ρ U is some z-rotation

U ερ(U ε)† else
(6.25c)

are the depolarizing, dephasing, and transverse overrotation channels, respectively. There-
fore E1

r is a gate independent depolarizing channel, E2
r is gate independent dephasing com-

bined with a gate dependent overrotation by amount ε2, and E3
r is purely gate dependent

overrotation by amount ε3. Constants were chosen by trial and error so that all three noise
models result in exactly the same RB decay base p = 0.9998, ultimately achieved with
the choices s1 = 0.0002, s2 = 0.000028954, ε2 = 0.01, and ε3 = 0.11132. A formula for
computing p given a gate dependent noise model is provided in Ref. [178].

Data was simulated under each noise model with the initial state ρ = |0〉〈0| and the mea-
surementM = 0.99 |0〉〈0| at each of the sequence lengths M = {1, 100, 200, 500, 1000, 2000, 5000,
10000, 20000, 50000}. At each sequence length, I = 20 random sequences were drawn and
N = 30 repetitions were used for each. To produce histograms of the survival distributions,
however, thousands of simulations were done per sequence length.

This dataset was processed in a few different ways. Posterior results using the CDPBM-
survival-distribution model Equation 6.15 are summarized in Figure 6.3. The slightly
simpler Beta-survival-distribution model Equation 6.13 was also used, which is compared
to the CDPBM model in Figure 6.4, along with weighted least squares fitting, and a
non-parametric bootstrap with 2000 samples. Additionally, estimates of the shapes of
some survival distributions are seen in Figure 6.5. The prior distribution on the tying
parameters was chosen to be π(p,A,B) = Unif([0, 1]3) in all cases.

6.7.2 Low Data Regime

One advantage of using the full likelihood model is that it transitions seamlessly to low data
regimes where normal approximations fail and the usual sample moments are ill-defined.
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Figure 6.4: For each of the three noise models defined in Section 6.7.1, four types of
data processing are performed to compare their estimates of (and uncertainties in) the
parameter p from the standard RB protocol. Each dataset consists of I = 20 random
sequences with N = 30 repetitions each at each of the sequence lengths 1, 100, 200, 500,
1000, 2000, 5000, 10000, 20000 and 50000. The first two methods show the posterior
marginal of p under the models from Equation 6.15 and Equation 6.13, respectively. The
next two methods are non-parametric bootstrapping and weighted least squares fitting, as
described in Section 6.5.3.

At a given sequence length, if we only pick a handful of sequences I with a handful of shots
N each, then there is a good chance that QM,e,i will be equal for all i = 1, ..., I. This is
especially true near the boundaries 0 and 1. In this event, it is difficult to use a weighted
least-squares fit.

To illustrate our Bayesian model in this regime, we consider simulated data from stan-
dard RB using the gate dependent overrotation model from Equation 6.24c. We choose
this model because it has very wide survival distributions, as seen in Figure 6.5.

We wish to demonstrate that posterior distributions in the low-data regime meaning-
fully report the parameter of interest, p. The worst thing an inference method can do in
this example is predict that the RB parameter p is larger than it actually is. Therefore
instead of summarizing a posterior in terms of its mean value (Bayes’ estimate), it is more
helpful to summarize it in terms of the the value at a one sided credibility level α,

pα(D) = [p0 such that Pr(p > p0|D) = α] . (6.26)

Here, Pr(p|D) is the posterior of p under the beta model Equation 6.13 with the same prior
as in Section 6.7.1 given the RB dataset D. For example, according a given posterior, with
95% probability, p0.95(D) should be a lower bound for the true the value of p. Fixing the
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CDPBM: Posterior expected 
survival distribution
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survival distribution
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Figure 6.5: Although the survival distributions at each sequence length are considered
to be nuisance parameters of the model, their posteriors are nonetheless interesting and
provide a diagnostic check. Here, the three rows correspond to the noise models described in
Section 6.7.1, and each column is a different sequence length. In each plot, Bayes’ estimate
of the survival distribution is shown for both models Equation 6.15 and Equation 6.13
along with their pointwise 95% credible envelopes. Similar 95% confidence envelopes are
shown for the bootstrap method. These are overlaid on top of histograms sampled from
the true survival distributions, as well as the (normalized) data that were actually used in
the inference.
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model and the prior, the quantity pα(D) is itself a random variable as it depends on D.
What we desire in our numerical test is that consistency condition

Pr(pα(D) < ptrue) ≥ α (6.27)

is satisfied for any level α that we care about.

To evaluate this criterion we compute pα(D) for many simulated datasets D. Each
dataset uses the sequence lengths

M = {1, 100, 200, 500, 1000, 2000,

5000, 10000, 20000, 50000}

and the repetition number N = 5. Three-hundred data sets were considered at each of the
values I = 1, 3, 5, 10, 20, 30, 50, 80, 100. Figure 6.6 shows both a selection of posteriors, as
well as a summary of the distribution of p0.95(D) at each value of I. Note that the sharp
elbow displayed in Figure 6.6(b) could be used in practice to decide on an appropriate
amount of data to take: in this example, there is a huge advantage in moving from I = 5
to I = 10, but not much of an advantage in moving from I = 10 to I = 15.

The bootstrapped confidence bounds discussed in Section 6.5.3 are also sensibly defined
in the low data regime. In Figure 6.6(d), however, we see in both parametric and non-
parametric bootstrapping that the MLE has a tendency to exaggerate confidence. All
bootstrap distributions contain 600 samples.

6.7.3 A pathological model: pushing the Dirichlet process to its
limits

To demonstrate that CDPBM based models are capable of handling strange underlying
survival distributions, we use a highly pathological error model, constructed to have mul-
tiple distinct peaks. The model has gate-independent qubit noise defined as the convex
mixture of a channel that resets to a fixed pure state, a channel that resets to identity, and
the identity channel, or explicitly

E(ρ) = Tr(ρ)

(
p1 |ψr〉〈ψr|+ p2

I
2

)
+ (1− p1 − p2)ρ. (6.28a)

We used the parameters p1 = 0.9, p2 = 0.001, and |ψr〉 = e−i0.05(X+Y ) |0〉 in our simulations.
This noise model results in an average gate fidelity of 0.5495, or a decay base of p =
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Figure 6.6: Data from the overrotation model Equation 6.24c was simulated 300 times
for several values of I, the number of random sequences per sequence length. In all cases
|M| = 10 sequences were used with N = 5 repetitions of each random sequence. Posteriors
were computed for every dataset, p-marginals for three of which are shown in (a) for
several values of I. (b) The area between the upper (100 · α)% quantile and the mean
value of pα(D) is shown for several values of α, demonstrating the posterior’s ability to
reliably report credible lower bounds for p. (The average value of Bayes’ estimate is
shown for comparison.) (c) Finally, we isolate the α = 0.95 case and display it along
with bootstrapped lower 95% confidence bounds, which do not stay under the desired line.
These fractions were computed by running the bootstrap method on the same collections
of 300 data sets. Error bars are single standard deviations of simple binomial statistics.
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0.099. Due to the high value of p1, this error channel is so bad that running RB as a
characterization tool is not a great choice in the first place, and therefore looking at the
posterior distribution of (p,A,B) is of little direct use, although similarly bad channels
can arise when using interleaved RB to extract tomographic information [100]. In any
case, we provide certain marginals at the top of Figure 6.7 anyway. However, our point
is to look at the posterior of the survival parameters, ~xS, which are summarized in the
bottom section of Figure 6.7. This posterior was computed using the sequence lengths
M = {1, 2, 5, 20, 50, 100} with I = 30 random sequences per sequence length, and N = 50
repetitions each. The same gateset as Section 6.7.1 was used, with the same initial state
and measurement operators.

6.7.4 Complicated Tying Function: Leakage RB (LRB)

There are a few protocols which measure leakage of information into and/or out of the
qubit subspace [189, 179, 25, 24]. Here we provide an example using our framework with
the LRB protocol that is described in Ref. [189] with an experimental implementation
reported as a part of Ref. [124]. We have chosen this protocol because it has one of the
most complicated tying functions of existing protocols; for a single qubit there are at
least seven tying parameters, three of which are not nuisances. Moreover, it is not quite
a SPAM-free protocol—some of the information that is necessary to decouple the three
parameters of interest from each other is contained in the constant offset term as well as
the coefficients of the exponential terms.

We consider a system with a Hilbert space X = X1 ⊕ X2, where dimX1 = d1 = 2
and dimX2 = d2 = 1, and X1 is the computational subspace. Our noise model is gate
independent, equal to the depolarizing leakage extension (DLE) [189] of Edephasing ◦ Erot

where

Edephasing(ρ) = (1− s)ρ+ sZρZ (6.29a)

Erot(ρ) = e−iαZ/2ρeiαZ/2, (6.29b)

and where we denote the resulting DLE as E . The parameters L1 and L2 are called the
leakage and seepage respectively, and are given by

L1 = 1− Tr I1E(I1/d1) (6.30a)

L2 = Tr I1E(I2/d2) (6.30b)

where I1 and I2 are the projectors onto X1 and X2. We see that the leakage quantifies how
much population from X1 leaks out of X1, and the seepage quantifies how much population

205



0.0 0.5 1.0
p

Pr(p|Q)

0.0 0.5 1.0
A

Pr(A|Q)

0.0 0.5 1.0
B

Pr(B|Q)

M=1 Posterior expected 
survival distribution
%95 credible region
Normalized Data, Q/N
Survival Distribution

M=20

0.0 0.2 0.4 0.6 0.8 1.0
Survival Probability

M=100

Figure 6.7: The top row of three plots show marginal posterior distributions of the stan-
dard RB protocol tying parameters with data simulated according to the pathological noise
model defined in Equation 6.28. The bottom column of three plots show posterior sum-
maries of the survival distribution at the sequence lengths M = 1, 20 and 100, respectively.
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Figure 6.8: Posterior summaries for the LRB protocol under the model from Equation 6.13
and two different prior distributions. Simulated data was sampled at |M| = 12 sequence
lengths, each with I = 15 random sequences and N = 30 repetitions per sequence. The
joint posterior marginals of the leakage and seepage parameters is shown (top left), as well
as the posterior marginals of the average gate fidelity (top right). The LRB tying func-
tions are plotted using parameters randomly drawn from the posterior tying distribution
(bottom). Superimposed are the normalized data, where each dot comes from a unique
random sequence.
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seeps into X1 from X2. We have assumed that our initial states are prepared in X1 for
simplicity in this demonstration. We use the values s = 0.003, α = 0.1◦, L1 = 0.001,
and L2 = 0.0015. The average gate fidelity of E averaged over states in X1 comes out as
F = 0.997001 with these numbers.

One feature of the fitting method proposed along with the LRB protocol is that it
implicitly asserts that certain SPAM parameters sum to unity, and certain other SPAM
parameters sum to zero (respectively A and B in our appendix). Though this may be valid
for some systems, it depends on the methods of state preparation and measurement for
the given device. We have highlighted our ability to loosen this assertion by comparing
the posterior distributions due to two priors. In the first, all SPAM parameters have flat
non-informative priors, and in the second, prior information is introduced that causes the
two sums in question to have support of roughly ∼ 1(±0.05) and . 0.05, respectively.
Explicit details of this prior, along with the LRB protocol and how we slightly modified
its parameterization can be found in Section C.5. Posterior results are summarized in
Figure 6.8.

6.8 Conclusions drawn from our treatment of RB+

data processing

In this chapter we have presented a Bayesian approach to analyzing data from RB+ exper-
iments. We used a formal framework to describe such protocols to emphasize that RB and
its derivative protocols, from the perspective of statistical inference, are all quite similar.
Specifically, they all admit noise model dependent survival distributions which are tied
together parametrically by a combination of quantities of interest and nuisance (SPAM)
parameters. A handful of examples are summarized in Table 6.1.

We proposed a hierarchical Bayesian model that was constructed to be agnostic to the
nature of these survival distributions, and hence to the noise model. This was achieved
by modeling them non-parametrically through Dirichlet process priors. We also consid-
ered modeling them parametrically through the Beta distribution family. For physically
reasonable noise models we found that this simpler family worked well. Therefore we sug-
gest using the non-parametric model in, for example, first runs where the system is not
well understood, possibly switching to the parametric model when the system is better
characterized and RB+ is being used for tune-ups.

Under either model, however, one ends up with a marginal posterior distribution of
the RB+ parameters, from which figures of merit can be computed. We found qualitative
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similarity between the nonparametric MLE bootstrap distribution and the posterior dis-
tribution of the Bayesian nonparametric model when using a diffuse prior, which merits
further study.

We tested our Bayesian models under various noise types, data regimes, and protocols.
Our posterior distributions were computed numerically by drawing posterior samples with
MCMC methods. As well as fitting well to survival distributions from standard error mod-
els (Figure 6.3), we were also able to fit to pathological multi-modal survival distributions
(Figure 6.7). Due to our choice of parameterization, estimating probabilities very close to
the boundaries [0, 1] is stable. Of particular importance, we found no systematic tendency
to over-report gate qualities. Specifically, a numerical study of standard RB in the low data
regime showed that posteriors of our model accurately report uncertainty—for example,
a 95% credible lower bound on the fidelity is indeed a lower bound to the true value at
least 95% of the time (Figure 6.6). This is in contrast to the frequentist bootstrapping
techniques we compared to, which do not always pass this sanity test in the low-data
regime.

We assumed throughout this work that the model being used for a given dataset was
correct. In practice, features like non-Markovian noise may necessitate corrections to a
model. A useful direction of research would therefore be to explore Bayesian model selection
and cross validation.
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Chapter 7

Validating Control: Pulse Design and
Benchmarking the Nitrogen Vacancy
Center

1

7.1 Introduction

So far in this thesis we have discussed dynamics and measurements of the NV defect in
diamond, characterization of Hamiltonian parameters, numerical methods for generating
quantum gates, and techniques for analyzing data from quantum benchmarking experi-
ments. This chapter is an applied synthesis of these ideas. Our goal is to design high
quality gates for the NV system and test their performance. We are interested in designing
arbitrary unitary gates for the qutrit manifold, as well as for one of the qubit sub-manifolds.

Due to the drift Hamiltonian present when microwave controls are off, pulses imple-
menting gates for this system cannot easily be constructed by intuition, especially in the
full qutrit manifold. Therefore this platform is an ideal testbed for numerical optimal
control techniques. The main confounding term in the Hamiltonian with respect to pulse

1This chapter is based on work to-be-published, with the benchmarking experiments done in collab-
oration with Chris Granade and Joel Wallman. Chris Granade helped with finding appropriate groups
to benchmark, and wrote much of the code to do so. Joel Wallman provided consultation on which ex-
periments to perform, and also on certain aspects of data analysis. This work represents the only qutrit
benchmarking experiments performed to date, while also including more benchmarking protocols than are
usually performed. The method of using the second rotating frame to find initial pulses for the NV qutrit
system is also novel.
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finding, we will find, is the coupling to the adjacent 14-nitrogen. All pulses must have high
fidelity regardless of the state of the nitrogen atom, which is effectively a 3-level magnetic
fluctuator with timescales much longer than experiments.

Characterization of gates and gatesets will be performed with randomized benchmark-
ing and related protocols (RB+). In particular, we will perform the standard RB, inter-
leaved RB, unitarity, and loss protocols on three different gateset implementations.

This work represents the first benchmarking experiments on a qutrit of any sort known
to the author, though as with most solid state systems, numerical optimal control methods
have been considered for NV centers (see [193] for one example), and standard RB has
been performed on an NV qubit manifold and a NV(qubit)-nucleus(qubit) system [150].
The distinguishing feature of this work is that we elect to work at low field with the full
three level system and a mixed state nitrogen—it is common, for example, to work in a
qubit manifold at Bz = 512 G where the nitrogen naturally ends up polarized. This choice
is made because we are most interested in testing methods under strenuous circumstances.
For example, we elect to work in the compression regime of our amplifier to introduce
non-linearities in the distortion function, though it would be simpler to use a higher power
amplifier, or have longer pulses.

7.2 Designing Robust Spin-1 NV Gates with GRAPE

In Chapter 5 the GRAPE algorithm was defined, including the extensions of optimizing
over a static distribution of parameters, and the effects of classical circuit distortions. In
this section we provide a set of steps detailing how this can be applied in practice to an
NV center. The steps are as follows, with each step detailed in a subsequent subsection.

1. Find robust pulse in the second secular rotating frame with a smooth amplitude
envelope and exponential distortion.

2. Convert pulse back into first rotating frame and re-optimize.

3. Introduce circuit distortion and re-optimize in units specified by Rabi experiments.

4. Tune-up pulse shape with a classical feedback loop.
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Figure 7.1: Illustration of pulse design steps for qutrit gates. (Step 1) The pulse is
initially optimized with four control amplitudes for the Hamiltonians Sx, Sy, S′x, and S′y
in the second rotating frame. Blue indicates the input pulse, and red indicates distorted
pulse. (Step 2) Channel pairs are mixed together in quadrature at the Zeeman energy,
ωe = 50 MHz, and this new pulse is re-optimized in the first rotating frame. (Step 3)
The pulse is re-optimized in units of the DACs, and including distortion due to amplifier
compression. The red and green curves are amplitudes seen by the |0〉 ↔ |−1〉 and |1〉 ↔
|+1〉 transitions respectively. (Step 4) Pulses are tuned-up with a feedback loop involving
a fast oscilloscope.
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Figure 7.2: The chances of getting an NV with a clean 13-carbon environment. We see that
there is roughly a 40% chance of having no 13-carbon with a coupling strength greater than
300 kHz. This figure was generated by computing the dipolar coupling strength between an
electron at the coordinate origin and a 13-carbon at every diamond cubic lattice position
in a 5 nm radius.

7.2.1 Step 0: Preliminary calibrations

Before describing Step 1, we discuss some preliminary calibrations of the system.

Choosing an NV center

The diamond used in our experiment is roughly 2 mm × 2 mm × 2 mm with 〈100〉 crystal
orientation, unannealed, and has natural abundance (1.1%) carbon. The concentration of
negatively charged NV centers is roughly 10-20 per 50 um × 50 um × 50 um volume. We
searched several NV centres to find one with a linewidth no greater than 300 kHz. This
happens with a probability of roughly 40%, as shown in Figure 7.2. We work roughly
90 um below the surface of the diamond to avoid background counts from bright features
on and above the surface of the diamond.
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Static Magnetic Field Calibration

Our static magnetic field is generated by a single cylindrical rare-earth magnetic with
a 7.5mm diameter mounted on its own 3-axis stage. We simulated a 3-D model of the
magnetic field by integrating the equation of a magnetic dipole over the cylindrical vol-
ume, assuming uniform magnetization which can be roughly inferred from the magnet’s
datasheet. Therefore, given a coordinate (x, y, z) relative to the center of the cylinder we

have the field prediction ~Bpredict(x, y, z).

To predict the field seen at the focus of the confocal microscope where the NV under
study is located, we require a precise relative coordinate and orientiation between the mag-
net and the NV center. To learn this transformation, the magnet was moved to each point
of a 3-D grid of motor stage positions, a few dozen positions in total, {(xi, yi, zi)}i=1,i=I ,
and at each point, a CW experiment was performed on the NV center of interest. Each of
these data sets was fit individually to estimate the projection of the magnetic field along
the z axis of the PA, B̂z,i corresponding to (xi, yi, zi) for each 1 ≤ i ≤ I. Performing the
least squares fit

argmin
x0,y0,z0,θ0,φ0,B0,κ

I∑
i=1

(B̂z,i − (η(θ0, φ0) · κ~Bpredict(xi − x0, yi − y0, zi − z0) +B0))2 (7.1)

where η(θ, φ) = (cosφ sin θ, sinφ sin θ, cos θ) yields the desired values. Here,

(x0, y0, z0, φ0, θ0)

comprises the coordinate transform, where (x0, y0, z0) are interpretted as the magnet stage
positions that would situate the magnet concentric with the microscope’s focus (though
such an arrangement is not physically possible due to clearances and stage limits), and the
angles (φ0, θ0) include both the NV orientation and slight tilt and rotation of the diamond
itself relative to the stage. The parameter κ ≈ 1 is a correction to the magnetization value
of the simulation, and B0 allows for a background field independent of the permanent
magnet.

Note that these data also make clear which of the four possible orientations our NV
center has; only one of the four orientations will come close to giving a good least squares
fit given rough bounds on the fit parameters.

Having a value for (x0, y0, z0, θ0, φ0, B0, κ), we can optimize the inverse problem and
determine the stage position that most closely produces the magetic field of interest, ac-
cording to the simulated model. In our experience, this method yields the desired field to
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an accuracy of about 1 MHz or, 0.3 G. When attempting to find a magnetic field aligned to
the PAS, small deviations in the x and y directions are generally acceptable, as they appear
in correction terms to the Hamiltonian in the rotating frame that enter with strengths of
order γeBx/∆, which is further justified by the robustness plots in Figure 7.5 discussed
later. This natural robustness can be used to our advantage to generate accurate fields
along the z axis. For example, suppose we were interested in creating a Zeeman splitting
of 100 MHz with a field aligned to the PAS, but experimentally the splitting is found to
be 100.5MHz with pulsed-ESR; an experiment is described below. We then query the field
simulator for the motor position which results in an aligned splitting of 99.5MHz, which,
experimentally, will yield a splitting close to 100MHz. This process generally converges in
two to three rounds to within the linewidth.

Ideally, following the prescription of Chapter 4, one would use a fully adaptive statistical
inference to measure the Zeeman field. Lacking this infrastructure, we may use a single
quantum Ramsey experiment with time-proportional-phase (TPPI) increment on both the
mS = 0↔ −1 and the mS = 0↔ +1 transitions. A TPPI Ramsey sequence is defined by

π

2

)
φ=0

τ
π

2

)
φ=τ ·ωTPPI

(7.2)

where φ is the phase of the pulse relative to x, π/2 is the single-quantum nutation angle of
the pulse, τ is the wait time, and ωTPPI is the TPPI frequency. A Ramsey experiment works
by accumulating a relative phase between two states—in our case using one of |0〉+ |±1〉—
due to a term along the z access for a varying time τ , converting this phase into population,
so that the averaged output signal as a function of τ , s(τ), contains the strength of the z
field as a frequency. The purpose of TPPI is to shift the Fourier transform of s(τ), denoted
s̃(ω), left or right by an amount ωTPPI without the pulses being off-resonance of the spins,
which would reduce the amplitude of the signal.

This sequence is performed at both of the frequencies ωcenter ± ωoffset, where ωcenter is
the current best guess of the ZFS ∆, and ωoffset is the current best guess of ωe := γeBz.
Denoting the frequency of the central peak of s̃(ω) as ω+ and ω−, respectively for the cases
ωcenter + ωoffset and ωcenter − ωoffset, we get the improved estimates

ω̂e =
ω+ − ω−

2
+ ωoffset (7.3)

∆̂ = ωTPPI + ωcenter −
ω+ + ω−

2
(7.4)

for ∆ and ωe.
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7.2.2 Step 1: Optimize the second rotating frame

Having measured set the static field to be nearly aligned with the PAS with a value ωe =
50 MHz, we proceed with pulse-finding for a particular target unitary Utarget. In the case
of finding qutrit pulses, we use the standard utility function of Definition 5.3, while for
qubit pulses, we restrict our attention to the subspace spanned by |0〉 and |+1〉, using the
generalized objective function of Equation 5.31 with

A1 =

1 0
0 1
0 0

 and B1 =

(
[Utarget]
0 0

)
. (7.5)

However, qubit pulses skip Step 1, beginning directly with Step 2.

We first enter the rotating frame ∆S2
z and subsequently the rotating frame ωeSz, as

discussed in Section 2.4. We use the second secular rotating frame, provided in generality
in Equation 2.22, given by

H = 2πASz + 2π
1

2
(1 + γ)

[
νx(t)Sx + νy(t)Sy − νx′(t)S′x + νy′(t)S

′
y

]
. (7.6)

Here, A is the hyperfine coupling strength to the adjacent 14-nitrogen, γ is a unitless param-
eter specifying over-rotation error, and we have four independent (but power-bandwidth
limited) control Hamiltonians with envelopes labeled by {νx, νy, νx′ , νy′}.

As in Section 3.6.1, we are treating the nitrogen as being in one of its eigenstates with
equal probability, which is justified by being at room temperature in low field. Therefore,
given a desired pulse Utarget, we require that a set of controls generate a high quality pulse
for all three values of the nitrogen spin, mI ∈ {−1, 0,+1}. This is encoded in our robustness
distribution (see Section 5.4) as the mixture

Pr(A) =
1

3

∑
m∈{−1,0,+1}

Normal (mA0, σA) (7.7)

where A0 ≈ 2.14 MHz is the measured hyperfine splitting of the nitrogen from the calibra-
tion step. We use an independent robustness distribution for γ,

Pr(γ) = Normal (0, σγ) . (7.8)

The second rotating frame operator, U(t) = ei2πtωeSz , coincides with the trivial frame
change, I, with a period of 1/ωe = 20 ns. For convenience (though not necessary if taken
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into account), we choose gate lengths which are multiples of this period to avoid frame
changes. Our qutrit gates have length 400 ns. Denote the length of a pulse by T . Large
dt = 10 ns input time-steps are used in this step. Output time-steps are smaller, δt = 1 ns,
to capture the dynamics of the 2 ns exponential rise time distortion, see Section 5.7.5,
which is used to help control the pulse’s bandwidth.

All four control channels are constrained to lie within an envelope with gaussian rise
and fall, |ν·(t)| <= E(t) for all t ∈ [0, T ], where the gaussian envelope is defined by

E(t) = Ω0


e((r+d/2)T+t)2/(2.5rT )2

t < (r + d/2)T

1 (r + d/2)T ≤ t ≤ (1− r − d/2)T

e((1−r−d/2)T+t)2/(2.5rT )2
t > (1− r − d/2)T

(7.9)

Here, r ∈ [0, 1] and d ∈ [0, 1] are respectively the risetime and deadtime, each expressed
as a fraction of T . This envelope is enforced by clipping the pulse after each step in the
gradient descent algorithm. The purpose of the deadtime is to add small delays of no
microwave energy between pulses, so that the ringdown of one pulse is unable to seep
into the next pulse. However, since the pulse is optimized on the full interval [0, T ],
deadtime is accounted for. We set dT = 10 ns and r = T/7 for our pulses. The coefficient
Ω0 = 6 MHz controls the maximum amplitude of the pulse, and is deliberately set 10%
below the maximum value allowed by the control circuit so that there is room for pulse
adjustment in later steps.

Pulses at this stage are optimized to about Φ = 0.999, picking the best result out of
∼ 20 − 50 initial guesses. Initial guesses are formed by choosing random values for the
pulses every 10 steps and sampling from a spline between them.

7.2.3 Step 2: Re-optimize in the first rotating frame

The rotating frame used in the previous section was used to smooth the landscape of control
space, reducing ripples at the required modulation frequency of ωe. In this step, pulses
are converted back into the first rotating frame by cosine-mixing up at frequency ωe, and
sampling at dt = 2 ns. We found the second rotating frame allows most initial guesses to
succeed with point-like parameter robustness distributions σA = σγ, whereas in the first
rotating frame, random initial guesses rarely succeed at all with the same distribution.

The mixing operation is derived by inverting the definitions of {νx, νy, νx′ , νy′} from
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Section 2.4. This results in coefficients for the control Hamiltonians Sx and S′y given by

ωx(t) = ν1(t) cos(2πωet+ φ1(t)) and

ωy(t) = ν2(t) cos(2πωet+ φ2(t)) (7.10)

respectively, where

ν1(t) =
√
νx(t)2 + νy(t)2 and φ1(t) = arctan2(νx(t), νy(t))

ν2(t) =
√
νx′(t)2 + νy′(t)2 and φ2(t) = arctan2(νx′(t), νy′(t)) (7.11)

with arctan2(x, y) the quadrant-preserving arctan function.

Because of clipping with the envelope function2, the non-commutation of the expo-
nential distortion operator through the mixing process, and other discretization artifacts,
the utility function of the pulse drops significantly (10− 20%). However, this loss is very
quickly recovered by re-optimizing the pulse in the new frame, using it as the initial guess
in the GRAPE algorithm.

Pulses for qubit gates, having skipped Step 1, use a random initial guess for ωx(t) and
ωy(t) here instead of using the cosine-mixed output of the previous step. However, we use
the rotating frame (∆− ωe)S2

z instead of ∆S2
z so that all power is targeted at the relevant

transition. Because of the reduced demands of the utility function, pulses are shorter, at
T = 100 ns, though the envelope function, distortions, and parameter distributions are the
same.

7.2.4 Step 3: Re-optimize in DAC units including power-imbalance

Pulses resulting from Step 2 have control amplitudes which are in units of the Hamilto-
nian, which, in our case, are MHz. To be used in practice they need to sent from computer
memory to the digital-to-analog (DAC) converter of the AWG, which uses unitless num-
bers between −1 and 1, corresponding to 4.5Vpp at 50 Ω in our setup. While this is just a
rescaling, the circuit the signal then passes through includes IQ imbalance, filters, and com-
pression from the amplifier. In this project, we purposely work into the 3 dB compression
zone of the amplifier to test our methods more thoroughly.

We characterize the amplifier compression by measuring the Rabi frequency of the NV
as a function of DAC amplitude. This is done for both the |0〉 ↔ |−1〉 transition at ∆−ωe ≈

2The pulse envelope is defined independently over four channels, and the mixing process therefore allows
the combined two-channel pulse to exceed new envelopes.
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Figure 7.3: (left) Example of a single Rabi experiment, along with a fit produced by sim-
ulating the Hamiltonian with the estimates calculated using SMC. Note that the x-axis
indexes arbitrary but incrementing Rabi pulse durations; the first half of the experiments
are linearly spaced, whereas the latter half are exponentially spaced. (right) Power com-
pression due to the amplifier. The output voltage of the AWG is swept and the Rabi
frequency estimated at each value, for both the mS = −1 transition at IF = −50MHz and
the mS = +1 transition at IF = +50MHz.

2820 MHz and the |1〉 ↔ |+1〉 transition at 2920 MHz. Results of these measurements are
shown in Figure 7.3. Given the observed discrepancy between the asymptotes of the curve,
we wish to model the different transition rates in our pulse-finding. We label a power
fit to these compression curves cp(v) and cm(v) for the positive and negative transition
respectively, and use them to define the distortion operator g2 : RN ⊗ R2 → RM ⊗ R4,
g((vx(t), vy(t))) = (ωp,x(t), ωp,y(t), ωm,x(t), ωm,y(t)) as

ωp,x(t) = cp(vx(t)), ωp,y(t) = cp(vy(t))

ωm,x(t) = cm(vx(t)), ωm,y(t) = cm(vy(t)). (7.12)

These four amplitudes are used as coefficients of the single transition control Hamiltonians
S+

x , S+
y , S−x , and S−y defined in Table 2.2. The total distortion operator used in this step is

given by g = g2 ◦ g1, where g1 is an exponential rise-time distortion matching the rise-time
of the circuit.

The pulse resulting from this step is generated by inverting3 the pulse from Step 3, and
then using it as the initial guess in a re-optimization this step using the distortion operator
g. The envelope function E(t) is still used, with Ω0 = 1.

3 This distortion is not technically invertible because it takes two control and outputs four controls,
but we can approximate the inversion by using the inverse of the average compression (cp + cm)/2.
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7.2.5 Step 4: Tune-up shape with in-hardware classical feedback
loop

We found that our distortion model was not sufficiently accurate to achieve the desired
pulse shape at the NV site. This was found by monitoring the pulse shape through a
directional coupler with a fast oscilliscope, as shown in the circuit diagram of Figure 2.6.
To make final corrections, we used a simple iterative feedback loop. At step k = 0, we set
~q0 = ~q, the pulse we wish the quantum system to see. We then iterate by correcting each
time step by a fraction of the measured residual,

~qk+1 ← ~qk + εk(~q −m(~qk)), (7.13)

where m(·) represents a pulse sent through the circuit, as measured by the oscilloscope. We
used the coefficients εk = 0.1(6−k) for k = 1, 2, 3, 4, 5. This measurement m(·) is performed
by sampling the analog signal at a rate 10× that of the AWG (5 GHz), performing a digital
mix-down at the center frequency of the control circuit, and finally decimating the result
by a factor of 10. The amplitude is corrected to have the same units as the input pulse
by sending a constant voltage through the AWG and measuring the amplitude at the
oscilloscope. Results of this loop are shown in Figure 7.4 for an example pulse.

The utility of this correction is validated by running randomized benchmarking and re-
lated protocols before and after each pulse in the gateset undergoes this correction. Results
of these experiments are analyzed in section Section 7.4 and summarized in Table 7.6.

7.2.6 Robustness Plots

Although pulses are only optimized over a joint distribution of A and γ, in this section we
additionally simulate the final pulse for several other parameters. In Figure 7.5 we plot
the utility function Φg,~a[~p] (for the final input pulse ~p obtained from Step 4) as functions of
parameter values—such plots are known as robustness plots. We also consider the effects
that a single nearby carbon-13 has on the pulse, which is seen in Figure 7.6. Though we
only show robustness plots for one pulse (Utarget = F in this case, see Section 7.3), such
plots are studied for all generated pulses before they are used experimentally.

7.3 Selecting Unitary 2-designs for Benchmarking

In Chapter 6 we found that all RB+ protocols require the ability to physically implement
any member of a unitary 2-design, or 1-design.
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the Hamiltonian are swept and the utility function is plotting at each value. Slices include
the hyperfine value A, the global power error γ, the transition-specific power adjustments
γp and γm, deviations from the true ZFS value δ∆, the crystal strain E, and the off-axis
field Bx.

222



- 4 - 2 0 2 4
- 0.10

- 0.05

0.00

0.05

0.10

- 4 - 2 0 2 4
- 0.10

- 0.05

0.00

0.05

0.10

- 4 - 2 0 2 4
- 0.10

- 0.05

0.00

0.05

0.10

- 0.10 - 0.05 0.00 0.05 0.10
- 0.10

- 0.05

0.00

0.05

0.10

- 0.10 - 0.05 0.00 0.05 0.10
- 0.10

- 0.05

0.00

0.05

0.10

- 0.10 - 0.05 0.00 0.05 0.10
- 0.10

- 0.05

0.00

0.05

0.10

- 4 - 2 0 2 4
0

5

10

15

20

25

30

- 4 - 2 0 2 4
0

5

10

15

20

25

30

- 4 - 2 0 2 4
0

5

10

15

20

25

30

- 4 - 2 0 2 4

- 4

- 2

0

2

4

- 4 - 2 0 2 4

- 4

- 2

0

2

4

- 4 - 2 0 2 4

- 4

- 2

0

2

4

Without 13-Carbon 350kHz 13-Carbon 1.5MHz Carbon

Utility Value

>1- 10- 3

>1- 10- 2

>1- 10- 1

>1- 100

Figure 7.6: Robustness plots of the qutrit pulse F , see Section 7.3, with no nearby 13-
carbon (left column), a 13-carbon with 350 kHz dipolar coupling, a 13-carbon with 1.5 kHz
dipolar coupling. Parameters on the axes are described in Figure 7.5.

223



Definition 7.1. A collection {U1, U2, . . . , UL} ⊆ U(d) of unitary matrices is called a unitary
t-design if for any complex homogeneous polynomial f of degree (s, s) less than or equal to
(t, t) in the entries of U and U , it holds that 1

L

∑L
i=1 f(U) =

∫
U(d)

f(U)dU . Here, integration

takes place over the normalized Haar measure on U(d), and f(U) denotes f applied to the
2d2 complex entries U1,1, U1,2, . . . , Ud,d;U1,1, U1,2, . . . , Ud,d.

Informally, a unitary t-design is a finite set of unitaries with symmetry sufficient to
approximate continuous Haar integrals with more tractable finite sums, at least for t-
polynomials. Many RB+ protocols require a unitary 2-design because twirling a channel
Λ ∈ C(d) by a unitary 2-design, i.e. the channel which acts on ρ as 1

L

∑L
i=1 U

†
i Λ(UiρU

†
i )Ui,

results in a unitarily-invarianct depolarizing channel of one parameter whose average gate
fidelity is equal to that of the original channel Λ. We see that entries of this twirl sum are
homogeneous polynomials of degree (2, 2) in the entries of Ui and U i.

Since every unitary 2-design is also a unitary 1-design, in this chapter we focus on
the former, so that we only have one gate set to worry about. Moreover, the standard
randomized benchmarking protocol also requires that the 2-design be a group. Since the
Clifford group in dimension d is a 2-design, it is a useful place to start.

The qubit and qutrit Clifford groups, C (2) and C (3), are generated by S and H [27],
where for qubits,

S =

(
1 0
0 i

)
and H =

1√
2

(
1 1
1 −1

)
, (7.14)

and for qutrits,

S =

1 0 0
0 e2πi/3 0
0 0 1

 and H =
1√
3

1 1 1
1 e2πi/3 e−2πi/3

1 e−2πi/3 e2πi/3

 . (7.15)

Since we are working in low dimensions, it is easiest to generate these groups by brute
force, systematically multiplying generators together, discarding duplicates, until no new
elements arise in an entire stage of multiplication. In this way, every member of the group
C (2) and C (3) can be described as a word in the letters S and H. To reduce the length of
these words, we choose to add two more generators, X and Z, which are the usual Paulis
for d = 2, and are given by the Weyl operators

X =

0 0 1
1 0 0
0 1 0

 and Z =

1 0 0
0 e2πi/3 0
0 0 e−2πi/3

 . (7.16)
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for d = 3. Under this scheme, the groups C (2) and C (3) are presented in Table 7.1 and
Table 7.2, respectively.

It is known that for any subgroup of the Clifford group G ≤ C (d) to be a 2-design, it
must have an order of at least |G| ≥ d2(d2 − 1) [69]. This bound is equal to 12 for qubits
and 72 for qutrits. We found subgroups of both C (2) and C (3) saturating these bounds
by systematically choosing two elements of the Clifford group, computing the generated
group, and counting its elements—an inelegant brute-force approach. Indeed, defining

F := SHSS =



1√
2

(
1 −1

i i

)
d = 2

1√
3

 1 e−2πi/3 1

e2πi/3 e2πi/3 1

1 e2πi/3 e2πi/3

 d = 3

(7.17)

for both qubits and qutrits, we found that G3 := 〈F,H,X,Z〉 generates an order 72 sub-
group of C (3), and G2 := 〈F,X,Z〉 generates an order 12 subgroup of C (2)—presentations
are shown in Table 7.3 and Table 7.4. We can verify that these subgroups are still 2-designs
by computing the frame potential ∑

U,W∈G

∣∣TrU †W
∣∣4

|G|2
(7.18)

which is equal to 2 if and only if the finite set G ⊆ U(H) is a unitary 2-design [69].

If gates are to be physically implemented by composing gates that implement the group
generators, then the average word count of the members of the group is highly relevant
as it will affect the quality of the total gateset—the identity gate will have unit fidelity
(if implemented as a length-0 pulse), and the worst gate, in our presentation of C (3), is
composed of 7 elements. At the time that the data was collected, the effects of highly gate
dependent noise had been considered, but was not yet a well-studied problem, and indeed,
open problems still remain. Recently, however, it has been proven that the randomized
benchmarking decay curve is exponential under arbitrary amounts of gate dependent (but
non-markovian) noise [178, 141], and that the decay rate of this exponential is a simple
function of a metric known as the gateset circuit fidelity (proven for a qubit, conjectured
for all dimensions) [20]. Not having known these results, and more importantly being,
primarily motivated by the underlying question of ‘how well can we design shaped pulses
for arbitrary unitaries?’, we mitigated against such enormous gate dependent errors by
choosing to separately design a pulse for every member of both G2 and G3, even the idenity
elements, each of the same duration and with the same power constraints.
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I, S, H, X, Z, SH, SX, SZ, HS, HX, HZ, XS, XZ, SHS, SHX, SHZ, HSH,
HSX, HSZ, HXS, HXZ, XSH, SHSZ, SHXS

Table 7.1: Presentation of C(2) in terms of the generators 〈H,S,X,Z〉. There are 24
elements and the average word length is ∼ 2.29.

I, H, S, X, Z, HH, HS, HX, HZ, SH, SS, SX, SZ, XH, XS, XX, XZ, ZZ,
HHH, HHS, HHX, HHZ, HSH, HSS, HSX, HSZ, HXH, HXS, HXX, HXZ,
SHH, SHS, SHX, SHZ, SSH, SSX, SSZ, SXH, SXS, SXX, SXZ, SZZ, XHH,
XHS, XHX, XSH, XSS, XSX, XXS, XXZ, XZZ, HHHS, HHHX, HHHZ,
HHSH, HHSS, HHSX, HHSZ, HHXH, HHXS, HHXZ, HSHH, HSHS,

HSHX, HSHZ, HSSH, HSSX, HSSZ, HSXH, HSXS, HSXX, HSXZ, HXHH,
HXHX, HXSH, HXSS, HXSX, HXXS, HXXZ, SHHH, SHHS, SHSH, SHSS,
SHSX, SHSZ, SHXS, SHXX, SHXZ, SSHH, SSHS, SSHX, SSHZ, SSXH,
SSXX, SSZZ, SXHH, SXHS, SXHX, SXSH, SXSX, SXXS, XHHS, XHHZ,
XHSH, XHSS, XHXH, XHXX, XSHH, XSSH, XSXH, XXZZ, HHHSH,

HHHSX, HHHSZ, HHHXS, HHHXZ, HHSHS, HHSHX, HHSHZ, HHSSH,
HHSSX, HHSXH, HHSXS, HHSXZ, HHXHX, HHXSH, HHXSS, HSHHH,
HSHHS, HSHSS, HSHSX, HSHSZ, HSHXS, HSHXZ, HSSHH, HSSHS,
HSSHZ, HSSXH, HSSXX, HSXHH, HSXHS, HSXHX, HSXSX, HSXXS,
HXHHS, HXHHZ, HXHXH, HXSHH, HXSXH, SHHHS, SHHHZ, SHSHH,

SHSHX, SHSSH, SHSSX, SHSSZ, SHSXS, SHSXZ, SHXSH, SHXSS,
SSHSH, SSHSS, SSHSX, SSHSZ, SSHXS, SSHXX, SSHXZ, SSXHH,

SSXHS, SXHHS, SXHSH, SXHSS, SXSHH, SXSXH, XHHSH, XHSHS,
XSSHS, HHHSHX, HHHSHZ, HHHSXH, HHHSXS, HHHSXZ, HHHXSS,
HHSHSS, HHSHSX, HHSHSZ, HHSHXS, HHSSHS, HHSSXH, HHSXHS,
HHSXHX, HSHHHZ, HSHSSX, HSHSSZ, HSHSXS, HSHSXZ, HSHXSS,
HSSHSZ, HSSXHH, HSSXHS, HSXHSS, HXHHSH, SHHHSZ, SHSHHS,
SHSSHH, SHSSHZ, SHSSXH, SHXSHH, SSHSHX, SSHXSH, SSXHSH,

XHSHSS, XSSHSH, HHHSXHX, HHSHSSX, HHSSXHS

Table 7.2: Presentation of C(3) in terms of the generators 〈H,S,X,Z〉. There are 216
elements and the average word length is ∼ 4.33.

I, F , X, Z, FF , FX, FZ, XF , XZ, FFX, FFZ, FXF

Table 7.3: Presentation of G2 in terms of the generators 〈F,H,X,Z〉. There are 12
elements and the average word length is ∼ 1.83.
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I, F , H, X, Z, FF , FH, FX, FZ, HF , HH, HX, HZ, XF , XH, XX, XZ, ZF , ZZ,
FFF , FFH, FFX, FHH, FHX, FHZ, FXF , FXH, FXX, FZF , FZZ, HFF ,

HFX, HFZ, HHF , HHH, HHZ, HXF , HXX, HXZ, HZF , XFF , XFH, XFZ,
XHF , XHX, XXF , XXZ, XZZ, ZFH, FFFH, FFFX, FFHZ, FFXF , FFXH,
FHHH, FHHZ, FHXF , FHXX, FXFF , FXFH, FXFZ, FXXF , HFFX,
HFXX, HFZF , HHFZ, HHHF , HHZF , HXXZ, XFHX, XXZZ, FXFHX

Table 7.4: Presentation of G3 in terms of the generators 〈F,H,X,Z〉. There are 72
elements and the average word length is ∼ 2.98.

7.4 Analyzing Results

Using the steps outlined in Section 7.2, we designed qutrit pulses for all 72 elements of
G3, each 400 ns long. We also designed qubit pulses for all 12 elements of G2, each 100 ns
long. In subsequent subsections we analyze RB+ data that were taken on the experimental
system with these two gatesets.

7.4.1 Data Sets Collected

Table 6.1 summarizes many of the popular randomized benchmarking protocols. Of these,
we perform (standard) RB, Interleaved RB (IRB), and Unitarity on both of the qubit and
qutrit gatesets defined in the previous section. The unitarity protocol happens to give
information about leakage, too. For the qutrit gateset G3, we interleave the gate XF in
IRB. In the qubit gateset G2, we interleave both of the gates I and F .

Importantly, these protocols are performed on the qubit gateset both before and after
the tune-up sequence of Step 4, described in Section 7.2.5. The qutrit gateset, however, was
only performed before the tune-up sequence because the NV under study was lost before
the experiment was able to be performed. Raw datasets are shown in Figure 7.7, where they
has been summed over random sequences at each value of sequence length, including both
the dark and bright NV references. Table 7.5 specifies the number of random sequences
used per sequence length, and which gates were interleaved in IRB.

7.4.2 Standard and Interleaved Randomized Benchmarking

Recall that standard RB consists of choosing m gates independently and uniformly at
random from the 2-design group G, and setting the (m+1)th gate to be the inverse of their
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Figure 7.7: Raw summed data from RB+ experiments. Each of the three columns contain
a different pulse sequences to implement a their respective gate sets, described in the main
text. The top row shows data for combined RB/IRB protocols; one exponential curve
corresponds to RB, and the others interleave various gates. The bottom row shows data
for unitarity/leakage, where the non-reference curves correspond to measurements of |0〉,
|+1〉, and |−1〉.
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Name Gateset RB # IRB Gates Unitarity #
Qutrit G3 998 XF 1998
Qubit pre-tune-up G2 1500 I,F 998
Qubit post-tune-up G2 1500 I,F 998

Table 7.5: Numbers of random sequences used for the presented datasets. IRB data were
collected in tandem with RB data, and therefore use the same number of sequences.

product. This ideally implements the identity gate I. This is done I times at many values
of m, and the resulting average decay, as a function of m, is an exponential of the form

µm = (A−B)pm +B. (7.19)

If the noise channel Λ ∈ C(H) is gate independent then we have

p =
dF − 1

d− 1
(7.20)

with F the average gate fidelity of Λ and d = dimH, and where

A = Tr(EΛ(ρ0)) ≈ 1,

B = Tr(EΛ(I/d)) ≈ 1/d (7.21)

with E ≈ |0〉〈0| the measurement POVM element and ρ0 ≈ |0〉〈0| the initial state. Recall
further that interleaved RB modifies this protocol by interleaving a fixed gate Ul ∈ G,
creating sequences of length 2m + 1 which ideally implement the identity gate, resulting
in a decay of the form

µm,l = (A−B)(p · pl)m +B (7.22)

with A, B, p as above, and where pl corresponds to the average gate fidelity of the imple-
mentation of Ul, using the same transformation as Equation 7.20.

Following Chapter 6, making modifications to Equation 6.13 or Equation 6.15 to fit
our NV measurement scheme, we can write down a hierarchical joint Bayesian model for
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standard RB and interleaved RB as follows:

A,B, pl ∼ Unif ([0, 1])

µm,0 = (A−B)pm +B (7.23)

µm,l = (A−B)(p · pl)m +B, for p ≥ 1

Gm,l|A,B, pl ∼ π(Gm,l) such that EGm,l [p] = µm,l

αm,i, βm,i ∼ Normal
(
(α, β),Σα,β

)
qm,l,i|Gm,l ∼ Gm,l

(Xm,i, Ym,i)|α, β ∼ Pois(αm,i)× Pois(βm,i)

Zm,l,i|qm,l,i, αm,i, βm,i ∼ Pois(βm,i + (αm,i − βm,i)qm,l,i) (7.24)

Here, m ∈ M are the chosen sequence lengths, 1 ≤ i ≤ I indexes over random sequences
at each sequence length, and 0 ≤ l ≤ L indexes over which gate in interleaved, where p0

corresponds to SRB. The symbol Gp,l denotes a random distribution describing the survival
distribution at a given index (p, l) and π(Gm,l) its prior. This can be, for example, the
family of beta distributions, or the CBMDP family of Section 6.5.2. As always, α and β
are the bright and dark references of the NV system.

It is computationally helpful to integrate the q′s out of this distribution. Doing so
in the form of a normal moment approximation results in the modification to the above
program given by

σm,l ∼ π(σ)

zm,l,i = βm,i + (αm,i − βm,i)µm,l
σ2
z;m,l,i = zm,i + (αm,i − βm,i)2σ2

m,l

Zm,l,i|αm,i, βm,i, µm,l, σm,l ∼ Normal
(
zm,l,i, σ

2
z;m,l,i

)
. (7.25)

Here, VarG = σ2, so that a draw of G has been replaced by a draw of (some parameteriza-
tion) of G’s variance, greatly reducing computational overhead. This is valid in the regime
where either the survival distributions are unimodal, and/or in the regime where α, β are
large enough so that Z is approximately normally distributed, but their contrast is not so
great that they can be easily distinguished in a single draw.

The model is used to fit the RB/IRB data-sets, seen in Figure 7.8, Figure 7.9, and
Figure 7.10. We see that the qutrit average gateset fidelity is measured at 98.5%, and the
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interleaved XF gate has fidelity 97.8%. The qubit gateset, before tune-up, has an average
gateset fidelity of 99.1%, with average gate fidelities of I and F measured at 95.5% and
99.4% respectively. After tuneup, the same three metrics improve to 99.85%, 99.7%, and
99.55%, respectively. Fidelities are also summarized in the conclusion of this chapter, in
Table 7.6.

Although we have demonstrated that a Bayesian analysis was feasible for these datasets,
it was not strictly necessary. This is due both to the quantity of data at hand, and
because Poisson distributions are virtually indistinguishable from normal at the rates we
are working at. This is demonstrated in Figure 7.11 where a subset of the pre-tune-up
RB/IRB qubit dataset (100 random sequences at each sequence length) is is analyzed with
the Bayesian model, as well as with a weighted least-squares fit, with weights calculated
using moment expansions. The following subsection therefore uses LSFs exclusively.

7.4.3 Unitarity and Leakage Randomized Benchmarking

The purity of a quantum state ρ ∈ D(H) is defined as Tr(ρ2) = 〈ρ, ρ〉. Pure states have
a purity of 1, and the completely mixed state has a purity of 1/d. Note that a unitary
channel preserves the purity of any density matrix by the cyclic property of the trace.
The unitarity of a superoperator Λ ∈ T (H) is the average purity of the channel’s output
averaged over all pure inputs [177],

u(Λ) :=
1

d− 1

∫
dψTr[Λ′(|ψ〉〈ψ|)Λ′(|ψ〉〈ψ|)], (7.26)

where to account for channels which are trace decreasing (a property that this metric
wishes to be independent of) the integral is over the identity-subtracted super operator Λ′,
defined by

Λ′(X) = Λ(X)− [Tr Λ(X)/
√
d]I. (7.27)

The unitarity lies between 0 and 1, equal to 1 only for unitary channels, and equal to 0 for
the completely depolarizing channel.

Similarly, the leakage can be defined as the average extent to which a channel decreases
trace,

`(Λ) := 1−
∫

dψTr Λ(|ψ〉〈ψ|), (7.28)

equal to 0 for trace preserving maps. This is the sum of the leakage into and out of the
subsystem of interest, which were defined separately in Equation 6.30.
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Figure 7.8: Analysis of RB/IRB data for the qutrit gateset. The top grid displays marginal
posteriors over the average gate fidelity of the gateset, F0, and of the interleaved gate XF ,
FXF . The constants A and B are also included. The lower figures show 30 decay curves
are generated by sampling from the posterior, and are plotted on top of the normalized
data. 90% credibile bounds bounds on the survival distribution densities are shaded at
each sequence length.
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Figure 7.9: Analysis of RB/IRB data for the qubit gateset, pre-tune-up. The top grid
displays marginal posteriors over the average gate fidelity of the gateset, F0, and of the
interleaved gate XF , FXF . The constants A and B are also included. The lower figures
show 30 decay curves are generated by sampling from the posterior, and are plotted on
top of the normalized data. 90% credible bounds on the survival distribution densities are
shaded at each sequence length.
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Figure 7.10: Analysis of RB/IRB data for the qubit gateset, post-tune-up. The top
grid displays marginal posteriors over the average gate fidelity of the gateset, F0, and of
the interleaved gates I, FI , and F , FF . The constants A and B are also included. 30
decay curves are generated by sampling from the posterior, and are plotted on top of the
normalized data. 90% credible bounds on the survival distribution densities are shaded at
each sequence length.
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Figure 7.11: A comparison, for a subset of the RB/IRB qubit pre-tune-up dataset, between
the marginal posterior distributions, the Gaussian error distribution reported by a weighted
least squares fit (WLSF), and 5000 estimates based on bootstrapping the data.

Unitarity Estimator

Implementing the unitarity protocol[177] is the same as implementing the standard RB
protocol, except that a final inverting gate is not used. Optionally, adding more measure-
ment operators reduces the signal to noise, so long as the same random sequence is used
for each measurement type. In our case, we measured all three operators M0 = |0〉〈0|,
M1 = |−1〉〈−1|, and M2 = |+1〉〈+1| by appending an appropriate gate (selected from
the gateset under study) just prior to measurement. The unitarity protocol asserts an
exponential decay in the second moment of observations, rather than the first, given by

νm := E[|q|2] = A+Bum−1 (7.29)

where the expectation is over random sequences of length m, and q is the expectation value
of the measurement operator Q conditioned on some particular random gate sequence4.
In this decay, A and B are SPAM constants, and u is equal to the unitarity of the noise
channel in the case of gate-independent noise. Its meaning in the case of gate-dependent
noise is an unsolved problem.

Our data structure at fixed sequence length m has the form

(Xi, Yi, Zi,0, . . . , Zi,d−1)|αi, βi, pi,0, . . . , pi,d−1 (7.30)

where 1 ≤ i ≤ I index unique random sequences, Xi and Yi are the reference counts, and
Zi,j are the counts due to the survival as measured by Mj, that is, pi,j = TrMjρi where ρi

4The original paper only treats hermitian measurements Q. However the same analysis works for
possible non-hermitian measurements by replacing q2 with |q|2, Q2 with QQ†, and Q⊗Q with Q⊗Q†
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is the final state resulting from the ith sequence. Therefore the likelihood of the conditional
distribution is

Xi|αi ∼ Poisson (nrefαi)

Yi|βi ∼ Poisson (nrefβi)

Zi,j|αi, βi, pi,j ∼ Poisson (βi + pi,j(αi − βj)) (7.31)

where nref ≥ 1 references are taken in each shot. To effectively use the data from different
measurements, which constitute the diagonal elements of the density matrix in our case,
we synthesize the measurement of the diagonal Weyl operator Q := Z5. For a dimension d,
we have Q = diag(1, ω, . . . , ωd−1). We define Zi =

∑d−1
j=0 ω

jZi,j, which is complex for d = 3,

to synthesize a measurement of Q, with values denoted as qi = TrQρi =
∑d−1

j=0 TrMjρi.

We wish to derive an estimator for E[|q|2], therefore we study the second moment of Zi.
We have

E[|Zi|2 |αi, βi, {pi,j}j] = Var[Zi|αi, βi, {pi,j}j] + |E[Zi|αi, βi, {pi,j}j]|2

=
∑
j

∣∣ωj∣∣2 (βi + pi,j(αi − βi)) +

∣∣∣∣∣∑
j

ωj(βi + pi,j(αi − βi))

∣∣∣∣∣
2

=
∑
j

(βi + pi,j(αi − βi)) + |qi|2 (αi − βi)2 (7.32)

for the conditional second moment. Marginalizing over survivals gives

E[|Zi|2 |αi, βi] =
∑
j

(
βi + pj(αi − βi)

)
+ νm(αi − βi)2, (7.33)

and subsequently marginalizing over references gives

E[|Zi|2] =
∑
j

(
β + pj(α− β)

)
+ νmE(αi − βi)2. (7.34)

Rearranging for the desired quantity νm while substituting in quantities with readily avail-
able moment estimates produces

νm =
E[|Zi|2]−

∑d−1
j=0 E[Zi,j]

E[(Xi − Yi)2] + E[Xi + Yi]/n2
ref

. (7.35)

Equation 7.35 is valid for both d = 2 and d = 3 and can be used to fit to Equation 7.29.

5The Weyl operator and the measurement photon counts, unfortunately, share the same symbol ‘Z’—
they can be distinguished here by the presence or lack of a subscript.
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Leakage Estimator

The leakage protocol is the same as the unitarity protocol (though it only requires a unitary
1-design), except the first moment of the data is analyzed [180, 179, 177]. The decay curve
is given as

ηm = C`m−1 (7.36)

where C is a SPAM constant, ell is equal to the leakage of the noise channel in the case of
gate-independent noise, and ηm is the expected value (over sequences) of the measurement
operator R. Having measured M0 = |0〉〈0|,M1 = |−1〉〈−1|, and M2 = |+1〉〈+1| for the
unitarity protocol, we set R =

∑d−1
j=0 Mj in order to re-use data. Deriving an estimator for

ηm is straight-forward compared to the estimator we derived for νm above—we need only
look at first moments, which give

ηm =

∑d−1
j=0 E[Zi,j]− dE[Yi]/nref

E[Xi − Yi]/nref.
(7.37)

Equation 7.37 is valid for both d = 2 and d = 3 and can be used to fit to Equation 7.36.

Results

Unitarity fits to datasets from all three gatesets are shown in Figure 7.12. Typically leakage
happens on timescales much longer than gate errors, and the sequence length collected in
our datasets do not extend far enough to meaningfully estimate ` for the qutrit or post-
tune-up qubit gatesets. However, as seen in the raw data of Figure 7.7, there is considerable
leakage in the pre-tune-up gateset into the third level. A simple fit to Equation 7.36 gives
an estimate ˆ̀ = 0.0080(2). This is to be expected as our synthesizer frequency was set
such that the lower side-band corresponds exactly to the unwanted transition |0〉 ↔ |−1〉,
which it never would be in practical qubit applications. However, it serves to demonstrate
the dramatic effect of tune-up, as the slightly modified pulse profiles show negligible signs
of leakage at m = 400. See Table 7.6 for a comparison of F , u, and ` for the three gatesets.

Finally, we would like to consider the extent to which our gate noise is unitary. For
any channel Λ ∈ C(H), it holds that

p =
dF (Λ)− 1

d− 1
≤
√
u(Λ) ≤ 1 (7.38)
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where F (Λ) is the average gate fidelity of Λ [177]. The left hand side is tight when Λ is
the depolarizing channel of strength p, Λ(X) = pX + (1 − p)I/d, and the right hand side
is tight when Λ is a unitary channel. Rearranging this expression gives

0 ≤ fu :=
(d− 1)(1−

√
u(Λ))/d

1− F
≤ 1 (7.39)

where unitary channels saturate the upper bound and depolarizing channels saturate the
lower bound. Infidelity being in the denominator, the value of fu may be understood as the
fraction of the infidelity which is attributable to unitary error. Bootstrap histograms of fu
are plotted in Figure 7.13. We see that, pre-tune-up, the qutrit pulses suffer less unitarity
error than the qubit pulses, perhaps because they are four times longer and thus more
subject to decoherence mechanisms. We also see that the process of tune-up decreases
the fractional unitarity fu, consistent with the intuition that the gates improve in tune-up
because we are fixing unitary errors due to bad pulse shapes.

7.4.4 Time dependence of gate quality

The collected datasets represent a long span of wall-clock time. In particular, the post-
tune-up RB/IRB dataset comprises nearly two weeks of continuous experiments. We can
analyze subsets of this data to construct a time-trace of fidelities. There is a tradeoff
between the error-bars on these subsets and the resolution of the time trace—we elect
to use subsets consisting of 50 random sequences per sequence length, representing about
10.5 hrs of collection time.

This trace is plotted in Figure 7.14. We see that fidelities are roughly flat, though there
is certainly structure present when compared to the same data but shuffled. There appear
to be no strong daily trends.

7.5 Application: Partial pseudo-pure state prepara-

tion

Some quantum systems use initial states which are ‘pseudo-pure’ rather than pure. As an
example, take the initial state of a proton in a large, external magnetic field, where the
initial state is produced by waiting for relaxation. There is a slight preference for spin
states to be aligned with this field, an effect which gives rise to the thermal state

ρthermal ≈ (I + εσz)/2 (7.40)
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Figure 7.12: (Top) Fits to unitarity datasets from all three gatesets and (Bottom Grid) the
bootstrap distribution over the parameters A, B, and u. Large correlation between u and
B are due to lack of data at high sequence lengths, especially in the case of post-tuneup.
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Figure 7.13: The fraction of infidelity attributable to infidelity. Distributions, left to
right, are for the qutrit, qubit pre-tune-up, and qubit post-tune-up.

where ε depends on the temperature and the field strength as derived through Boltzmann
statistics. This state is called pseudo-pure because when rewritten as

ρthermal =
1− ε

2
I + ε |↑〉〈↑| , (7.41)

where |↑〉 = ( 1
0 ), it becomes clear that any unital operation Λ (which includes all unitary

channels) will affect only the latter term. This produces a final state

1− ε
2

I + εΛ (|↑〉〈↑|) (7.42)

causing dynamics equivalent to having started with the pure initial state |↑〉, except that
we are using a copy of the Bloch sphere with radius ε instead of 1.

In Section 2.8.2 we concluded that the NV center’s intialization procedure produces a
pseudo-pure state q |0〉〈0|+ (1− q)I/3 for a value of q near unity. In this section we discuss
pseudo-purifying the nitrogen atom, which has a fully mixed initial state in the operating
conditions of our experiments: room temperature and low field. The T1 relaxation time of
the 14-nitrogen (the characteristic time scale at which its eigenstates randomly flip) has
been measured to be hundreds of microseconds at our magnetic field levels [135], which
is much long than a single shot including references and measurements (totaling tens of
microseconds), but much shorter than an entire experiment (minutes or hours).
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Figure 7.14: The RB/IRB post tune-up dataset is analyzed on a moving window of
subsets. Each subset contains 50 random sequence per sequence length. Fidelities F0, FI ,
and FF are plotted against timestamps of the data, with an errorbar every six hours. The
right column is provided for the sake of comparision, where the data have been shuffled
temporally prior to analysis. The second row shows the spectrum of the respective time
traces in the first row.
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Our goal is to prepare the NV-nitrogen system in a state ρ0 = s |00〉〈00| + (1 − s)σ0

such that

(Λ⊗ I)(ρ0) = sΛ(|0〉〈0|)⊗ |0〉〈0|+ (1− s)σ0 (7.43)

where Λ in any unital channel acting on the NV alone, and σ0 is a density matrix on the
joint system. This is a slight modification of the usual pseudo-pure state definition because
we do not require σ0 to be proportional to I, and our operation of interest Λ acts on only
part of the system—hence the term ‘partial pseudo-pure’ in the title of this section. It
is useful because it allows for one to consider only the possibility that the nitrogen is in
the state |0〉 when designing the operation or protocol Λ, and also when analyzing the
resulting data. Indeed, we saw in our Hamiltonian learning experiments that the presence
of nitrogen is a nuisance to simulation and learning, and in our pulse design that it is an
impediment to short, simple pulse profiles. This partial pseudo-pure state comes at the
cost of an effective drop in contrast between references.

We begin by supposing access to a unitary operation W acting on the joint system such
that

W |0, 0〉 = eiφ1 |0, 0〉

W |0,+1〉 =
eiφ2

√
3

(|−1〉+ |0〉+ |+1〉)⊗ |+1〉

W |0,−1〉 =
eiφ3

√
3

(|−1〉+ |0〉+ |+1〉)⊗ |−1〉 (7.44)

for some phases φ1, φ2, φ3 ∈ R. Composing such a unitary with a subsequent complete
dephasing channel (which is implemented simply by waiting several multiples of the T ∗2,e
time, but much less than the T1,e time—a feat easily arranged in the NV system) produces
a channel Φ0 such that

Φ0(|0, 0〉〈0, 0|) = |0, 0〉〈0, 0|
Φ0(|0,+1〉〈0,+1|) = I⊗ |+1〉〈+1| /3
Φ0(|0,−1〉〈0,−1|) = I⊗ |−1〉〈−1| /3. (7.45)

Therefore, applying Φ0 to the standard preparation (q |0〉〈0| + (1− q)I/3)⊗ I/3 gives our
desired form of ρ0 where

s = q/3

σ0 =
I
3
⊗ q(|−1〉〈−1|+ |+1〉〈+1|) + (1− q)I

3
. (7.46)
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Figure 7.15: (a) The pulse profile for the control Hamiltonians Sx and S′y of a pulse that
implements Equation 7.44. (b) The state-to-state fidelity of this pulse from |0〉 to two
different output states as a function of deviation, δωe, from the nominal ωe = 2π · 50 MHz.
Note that the transfer to |0〉 takes place at δωe = 0 MHz and that the transfer to |−1〉+|0〉+|+1〉√

3
takes place at both δωe = ±2.189 MHz.

Given that the effect of q is—by its very definition—unobservable, it is most sensible to
ignore it by setting q = 1 in these formulas. In this case the effective reference levels are

α′ = β +
5

9
(α− β) and β′ = β +

2

9
(α− β) (7.47)

where α and β are as defined in Equation 2.71.

We may find the unitary operation W using the same methods that were used to
find gatesets for randomized benchmarking experiments. However, we use a state-to-state
objective function in each of the three nitrogen manifolds instead of a full unitary objective
function. A pulse profile and a corresponding robustness plot are shown in Figure 7.15.
In Reference [130], which is the inspiration for this example, an operation similar to W
was constructed (and for the same purpose) by modifying a Dante pulse sequence. The
effectiveness of this partial pseudo-pure state preparation is demonstrated in Figure 7.16,
where we see that we can eliminate the nitrogen isocromats |+1〉 and |−1〉 from a Ramsey
signal. This experiment was performed with the same NV and in the same environment as
the randomized benchmarking experiments. Note that with an actual purification of the
nitrogen atom, we would not lose contrast as we do in this experiment.
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Figure 7.16: A single-quantum Ramsey experiment (with TPPI=5 MHz) preceded by stan-
dard preparation (blue) and with partial pseudo-pure state preparation (orange), plotted
in both the time and frequency domains. In both cases, normalization of data to the in-
terval [0, 1] is done using the standard references α and β, not the reduced references α′

and β′ from Equation 7.47. In the time domain plot, dashed horizontal lines are placed at
y = 2/9, 5/9.

7.6 Summary

The goal of this chapter has been to test our ability to generate high quality pulses that
implement arbitrary unitary gates for the NV center using numerical optimal control. We
laid out the concrete steps we performed to do so. This methodology was characterized
experimentally by designing pulses for each member of a 2-design group, both in d = 2
and d = 3. Such gatesets were chosen so that protocols from RB+ could be applied,
in particular, we considered standard RB, interleaved RB, Unitarity and Leakage. Gate
qualities inferred from these protocols are summarized in Table 7.6. Though all gates
generated were Clifford gates, we have no reason to suspect that some other non-Clifford
gate would perform better or worse on average using the same pulse design steps.

In interpreting these results one must be careful regarding the subtleties of gate depen-
dent errors. For example, we considered the quantity fu as being the fraction of infidelity
attributable to unitary error, when, however, little is known about what the ‘unitarity of
a gateset’ means when there is gate dependent noise. Very little, too, is known about the
effect non-markovian noise has on RB+ protocols, except that it probably leads to devia-
tions from exponential decays[178]. On the other hand, it is known that, at least in qubits
but likely higher dimensions too, the decay constant in standard RB has an interpretation
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Gateset d F u `
Qutrit 3 0.9816 [0.9812, 0.9820] 0.968 [0.964, 0.972] ∼ 1
Qubit pre-tune-up 2 0.9902 [0.9899, 0.9904] 0.990 [0.988, 0.992] 0.0080(2)
Qubit post-tune-up 2 0.9983 [0.9982, 0.9983] 0.997 [0.996, 0.998] ∼ 1

Gate
XF 3 0.9725 [0.9714, 0.9735] - -
I (pre-tune-up) 2 0.9541 [0.9515, 0.9566] - -
F (pre-tune-up) 2 0.9947 [0.9943, 0.9950] - -
I (post-tune-up) 2 0.9972 [0.9971, 0.9973] - -
F (post-tune-up) 2 0.9962 [0.9960, 0.9963] - -

Table 7.6: A summary of RB+ measurement values. 90% confidence intervals based on
percentile-bootstrap are shown in square brackets.

in the case of gate dependent errors in terms of a metric called the gateset circuit fidelity
[20].
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Chapter 8

Conclusions and Outlook

This thesis has discussed aspects of characterization, control, and validation as applied to
small quantum systems, ranging from quantum Hamiltonian learning with Bayesian infer-
ence, to the numerical optimization of pulse shapes for high-fidelity control, to performing
randomized benchmarking experiments and analyzing their results. Many of these ideas
were tested experimentally, using the NV defect in diamond as a testbed, though it is our
hope that these ideas are more broadly applicable across all modalities of small quantum
devices.

A central theme for us has been the tradeoff between complexity and performance.
In quantum Hamiltonian learning, for instance, the infrastructure to perform risk-based
adaptive experiment design added overhead to the experiment’s setup, and introduced
substantial (though managable) classical computing requirements, but ultimately provided
significant speed-ups in our parameter learning rates. Later, we considered controlling
a qubit ensemble with a superconducting strip-line resonator, which provides improved
sensitivity due to high quality factors, but comes at the cost of a complicated non-linear
distortion operator that requires ringdown suppression. Similarly, we found that designing
high-fidelity qutrit gates for the NV system at low field system and in the presence of a
mixed nitrogen is feasible.

We have emphasized rigorous application of statistical methods, especially promoting
Bayesian methods for their transparency and portability. This was seen throughout, such as
in our treatment of data from randomized benchmarking and related protocols which relied
on both parametric and non-parametric Bayesian models. Further, we found convenience
in using Bayesian methods for quantum Hamiltonian learning because it provided a natural
method to propagate errors to the parameters of interest, requiring only a simulator and
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prior distribution as input to generate a posterior output.

Looking forward, we can consider many interesting directions for future work. One
of the numerical methods we often used, sequential Monte Carlo, lends itself particularly
well to online sequential learning, and adaptive experiment design. We hope that adaptive
quantum experiments will become more commonplace to improve device performance. For
example, in the case of randomized benchmarking, our datasets were far too large in some
cases, but contained sequences that were too short in other cases. Adaptive schemes are
adept at mitigating against such shortcomings, and can do so in an automated way, which
could prove useful for larger, more complex devices. Regarding gate design, it seems likely
that high-performance quantum devices will need to periodically adjust their gates based
on measurement, another area where adaptive methods may help improve in situ tune-up
efficiency.

Using what we have learned, we leave off with a high-level vision for the control infras-
tructure of a mid-sized near-term quantum information processor. First, it is accompanied
by an online Bayesian engine which maintains the state of relevant parameters that para-
metrically capture the current quality of the device. The engine is able to suggest charac-
terization experiments based on its current state of knowledge to routinely update its state
of knowledge. Its control electronics are such that new gate sequences can be streamed
into memory while experiments are being run, and faster than they are performed, so that
experiments can collect one shot per random circuit without penalty, thereby maximizing
the efficiency of mean-based randomized benchmarking protocols. Pulse profiles of gate op-
erations were pre-optimized for the hardware taking into account its limitations, however,
their parameters are maintained by the state of the engine.
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Appendix A

Code for Numerics

Parts of this thesis relied heavily on numerics, and indeed, most of the effort of some
projects was writing the code. In this appendix we gather together as much of it as is
publicly available.

Libraries

• QInfer - https://github.com/QInfer/python-qinfer A Python library that performs
Bayesian inference using sequential Monte Carlo, targeted for quantum systems[63].

• Stan - http://mc-stan.org/ A general purpose Bayesian inference algorithm whose
main algorithm is HMC with NUTS [22].

• QuantumUtils - https://github.com/QuantumUtils/quantum-utils-mathematica A
Mathematica library that contains tools for quantum control, GRAPE, simulation,
channel representation conversion, and perturbations.

• nvham - https://github.com/ihincks/nvham Mathematica Library to help con-
struct Nitrogen Vacancy Hamiltonians.

Project Repositories

• Chapter 3: https://github.com/ihincks/nv-meas-code

• Chapter 4: https://github.com/ihincks/nv-adaptive

• Chapter 6: https://github.com/ihincks/birb
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Appendix B

Certain Details of NV Measurement

B.1 Stochastic Moments

Mathematica version 10.0.2.0 was used to execute the code snippets in Listing B.1 and
Listing B.2.

Listing B.1: Mathematica code for computing the moments of the stochastic model defined
in Equation Equation 3.6 conditional on the value of α1.

p [ expr ] := TransformedProcess [
expr ,
{

ν ∼ Ornste inUhlenbeckProcess [ 0 , σν , θν , α0 − Γ ] ,
5 κ ∼ Ornste inUhlenbeckProcess [ κ0 , σκ , θκ ]

} ,
t

] ;

10 αmean1 = p [ Γ+ν [ t ] ] [ t ] //Mean
βmean1 = p [ Γ+κ [ t ] ν [ t ] ] [ t ] //Mean
αvar1 = p [ Γ+ν [ t ] ] [ t ] //Variance
βvar1 = p [ Γ+κ [ t ] ν [ t ] ] [ t ] //Variance//Expand
(∗ We need to compute the covar iance manually

15 us ing Cov [ a , b]=Mean [ a∗b]−Mean [ a ] Mean [ b ] ∗)
αβproduct =(Γ+ν [ t ] ) ( Γ+κ [ t ] ν [ t ] ) / /Expand ;
αβcov1 = Sum[Mean[ p [ expr ] [ t ] ] , { expr , List@@αβproduct } ]

− αmean∗βmean//Expand
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Listing B.2: Mathematica code for using the laws of total expectation, variance, and
covariance to derive the moments of the stochastic model defined in Equation Equation 3.6.
The results are shown in Equation Equation 3.7.

totalExp [ mean ] :=
2 Mean[ Trans formedDistr ibut ion [

mean ,
α1∼NormalDistr ibut ion [α0 ,σα ]

] ]

7 tota lV \ ] ar [ mean , var ] := Variance [ Trans formedDistr ibut ion [
mean ,
α1∼NormalDistr ibut ion [α0 ,σα ] ]

] , + Mean[ Trans formedDistr ibut ion [
var ,

12 α1∼NormalDistr ibut ion [α0 ,σα ] ]
]

tota lCov [ mean1 , mean2 , cov ] :=
Covariance [ Trans formedDistr ibut ion [

{mean1 , mean2} ,
17 α1∼NormalDistr ibut ion [α0 ,σα ] ] , 1 , 2

] + Mean[ Trans formedDistr ibut ion [
cov ,
α1∼NormalDistr ibut ion [α0 ,σα ]

] ]
22

αmean = totalExp [αmean1 ]
βmean = totalExp [βmean1 ]
αvar = tota lVar [αmean1 ,αvar1 ]
βvar = tota lVar [βmean1 ,βvar1 ]//Expand

27 αβcov = totalCov [αmean1 ,βmean1 ,αβcov1 ]//Expand
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B.2 Cumulants of the Conditional Likelihood Func-

tion

We wish to compute

I(p, α, β) = −Ex,y,z

[(
∂

∂θi

∂ logL
∂θj

)3

i,j=1

]
=
∞∑
x=0

∞∑
y=0

∞∑
z=0

L(x, y, z|p, α, β)

(
∂

∂θi

∂ logL
∂θj

)3

i,j=1

,

(B.1)

Ki,j,k = Ex,y,z
[
∂

∂θi

∂

∂θj

∂ logL
∂θk

]
, and (B.2)

Jj;i,k = Ex,y,z
[
∂ logL
∂θj

· ∂
∂θi

∂ logL
∂θk

]
(B.3)

where θ1 = p, θ2 = α, θ3 = β, and from Equation Equation 3.13 we have

L(x, y, z|p, α, β) =
αxe−α

x!
· β

ye−β

y!
· (pα + (1− p)β)ze−(pα+(1−p)β)

z!
. (B.4)

Listing B.3. The results of this code for the Fisher information matrix are

I(p, α, β) = −Ex,y,z

[(
∂

∂θi

∂ logL
∂θj

)3

i,j=1

]

=


(α−β)2

p(α−β)+β
p(α−β)

p(α−β)+β
α

β+αp−βp − 1
p(α−β)

p(α−β)+β
p2

pα−pβ+β
+ 1

α
− (p−1)p
p(α−β)+β

α
pα−pβ+β

− 1 − (p−1)p
p(α−β)+β

pα+(p−2)(p−1)β
β(p(α−β)+β)

 (B.5)

with inverse

I(p, α, β)−1 =


p(p+1)α+(p−2)(p−1)β

(α−β)2
pα
β−α

(p−1)β
α−β

pα
β−α α 0

(p−1)β
α−β 0 β

 . (B.6)
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Further, the higher order cumulants turn out to be

K1,·,· =


2(α−β)3

(p(α−β)+β)2

2β(β−α)
(p(α−β)+β)2

2α(α−β)
(p(α−β)+β)2

2β(β−α)
(p(α−β)+β)2 − 2pβ

(p(α−β)+β)2

p(α+β)−β
(p(α−β)+β)2

2α(α−β)
(p(α−β)+β)2

p(α+β)−β
(p(α−β)+β)2 − 2(p−1)α

(p(α−β)+β)2



K2,·,· =


2β(β−α)

(p(α−β)+β)2 − 2pβ
(p(α−β)+β)2

p(α+β)−β
(p(α−β)+β)2

− 2pβ
(p(α−β)+β)2 2

(
p3

(p(α−β)+β)2 + 1
α2

)
− 2(p−1)p2

(p(α−β)+β)2

p(α+β)−β
(p(α−β)+β)2 − 2(p−1)p2

(p(α−β)+β)2

2(p−1)2p
(p(α−β)+β)2


K3,·,· =


2α(α−β)

(p(α−β)+β)2

p(α+β)−β
(p(α−β)+β)2 − 2(p−1)α

(p(α−β)+β)2

p(α+β)−β
(p(α−β)+β)2 − 2(p−1)p2

(p(α−β)+β)2

2(p−1)2p
(p(α−β)+β)2

− 2(p−1)α
(p(α−β)+β)2

2(p−1)2p
(p(α−β)+β)2

2
β2 − 2(p−1)3

(p(α−β)+β)2

 (B.7)

and

J1;·,· =


(β−α)3

(p(α−β)+β)2

(α−β)β
(p(α−β)+β)2

α(β−α)
(p(α−β)+β)2

(α−β)β
(p(α−β)+β)2

p2(β−α)
(p(α−β)+β)2

(p−1)p(α−β)
(p(α−β)+β)2

α(β−α)
(p(α−β)+β)2

(p−1)p(α−β)
(p(α−β)+β)2 − (p−1)2(α−β)

(p(α−β)+β)2



J2;·,· =


− p(α−β)2

(p(α−β)+β)2
pβ

(p(α−β)+β)2 − pα
(p(α−β)+β)2

pβ
(p(α−β)+β)2 − p3

(p(α−β)+β)2 − 1
α2

(p−1)p2

(p(α−β)+β)2

− pα
(p(α−β)+β)2

(p−1)p2

(p(α−β)+β)2 − (p−1)2p
(p(α−β)+β)2



J3;·,· =


(p−1)(α−β)2

(p(α−β)+β)2 − (p−1)β
(p(α−β)+β)2

(p−1)α
(p(α−β)+β)2

− (p−1)β
(p(α−β)+β)2

(p−1)p2

(p(α−β)+β)2 − (p−1)2p
(p(α−β)+β)2

(p−1)α
(p(α−β)+β)2 − (p−1)2p

(p(α−β)+β)2

(p−1)3

(p(α−β)+β)2 − 1
β2

 . (B.8)

Listing B.3: Mathematica code to find the fisher information matrix, as well as two higher
order cumulants.

(∗ Def ine assumptions on v a r i a b l e s ∗)
$Assumptions = 0<β<γ<α && 0<=p<=1 && x>0 && y>0 && z>0;

3 (∗ Def ine the log−l i k e l i h o o d ∗)
L = (αˆx Exp[−α ] ) / Factorial [ x ]

∗ (βˆy Exp[−β ] ) / Factorial [ y ]
∗ ( ( p α+(1−p)β )ˆ z Exp[−(p α+(1−p)β ) ] ) / Factorial [ z ] ;

LL = Log [ L ] // FullSimplify ;
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8 (∗ Ver i fy that L i s normal ized as a san i ty check ∗)
Sum[ L ,{ x , 0 ,∞} ,{y , 0 ,∞} ,{ z , 0 ,∞} ] // Simplify

(∗ Compute F i sher matrix and i t s i n v e r s e ∗)
I f i s h e r = −Sum[ Evaluate [ Simplify [

13 Outer [D[ LL,#1 ,#2]& ,{p ,α ,β} ,{p ,α ,β } ]L
] ] ,
{x , 0 ,∞} , {y , 0 ,∞} , {z , 0 ,∞}

] // FullSimplify ;
I i nv = I f i s h e r // Inverse // FullSimplify ;

18

(∗ Compute K and J ( takes a while , e s p e c i a l l y J ) ∗)
K = With [

{summand=FullSimplify [ L∗Outer [
D[ LL,#1 ,#2 ,#3]&,

23 {p ,α ,β} ,
{p ,α ,β} ,
{p ,α ,β } ] ] } ,

Sum[ summand , {x , 0 ,∞} , {y , 0 ,∞} , {z , 0 ,∞} ]
] // FullSimp \ ] l i f y ;

28 J = With [
{summand=L∗FullSimplify [Outer [

D[ LL,#2 ,#3]∗D[ LL,#1]& ,
{p ,α ,β} ,
{p ,α ,β} ,

33 {p ,α ,β } ] ] } ,
Sum[ summand , {x , 0 ,∞} , {y , 0 ,∞} , {z , 0 ,∞} ]

] // FullSimplify ;

B.3 Maximum Likelihood Estimator

B.3.1 Derivation

The log-likelihood of the basic conditional model is given by

logL = (x logα− α− log x!) + (y log β − β − log y!)

+ (z log(pα + (1− p)β)− (pα + (1− p)β)− log z!). (B.9)

Having fixed a some particular values of x, y, and z, the goal is to maximize the function
logL(p, α, β). The value which maximizes this function is then the MLE. The easiest
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method is to consider the equivalent problem maximizing the function

(x logα− α− log x!) + (y log β − β − log y!) + (z log γ − (pα + (1− p)β)− log z! (B.10)

subject to the constraint γ = pα + (1 − p)β. Using the Lagrange multiplier λ, this is
encoded in a Lagrangian as

Φ = [(x logα− α− log x!) + (y log β − β − log y!) + (z log γ − (pα + (1− p)β)− log z!)]

− λ[γ − (pα + (1− p)β)] (B.11)

yielding a simple set of equations

{∂Φ

∂α
= 0,

∂Φ

∂β
= 0,

∂Φ

∂γ
= 0,

∂Φ

∂p
= 0,

∂Φ

∂λ
= 0} (B.12)

with no more logarithms. These equations can be solved for α, β, and p as a function of x,
y, and z. This was done in Mathematica 10.0.2.0 using the snippet found in Listing B.4.

This calculation can also be done directly by taking partial derivatives of logL and
setting them to zero, although the algebra is significantly more demanding, and the order
in which the equations are solved for affects the difficulty of subsequent steps.

Listing B.4: Mathematica code to solve the Lagrange problem stated in Equation Equa-
tion B.11

(∗ Def ine assumptions on v a r i a b l e s ∗)
$Assumptions = 0<β<γ<α&&0<=p<=1&&x>0&&y>0&& z>0&&λ∈Reals ;
(∗ Def ine Lagrangian ∗)

5 Φ = Log [ \ ]α ] / Factorial [ x ]
∗βˆy Exp[−β ] / Factorial [ y ]
∗(p α+(1−p)β )ˆ z Exp[−γ ] / Factorial [ z ]

] − λ (γ−(p α+(1−p)β ) ) ;
(∗ Take p a r t i a l d e r i v a t i v e s to get system o f equat ions ∗)

10 l agrangeEquat ions = D[Φ,#]==0 & /@ {α ,β ,γ ,λ , p}
// FullSimplify ;

(∗ Remove λ from the s e t o f equat ions ∗)
lagrangeEquat ions = Rest [ l agrangeEquat ions ]

/ . F ir st@Solve [ First@lagrangeEquat ions ,λ ] // FullSimplify ;
15 (∗ Remove γ from the s e t o f equat ions ∗)

lagrangeEquat ions = lagrangeEquat ions [ [ { 1 , 2 , 4 } ] ]
/ . F i r st@Solve [ lagrangeEquat ions [ [ 3 ] ] , γ ] ;

(∗ Solve f o r the remaning v a r i a b l e s to conc lude ∗)
s o ln = Solve [ lagrangeEquat ions , {α , β , p } ] // FullSimplify
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B.4 Details of Effective Strong Measurements

Given a quantum state ρ, information is accessed through the Born’s probability p =
Tr(|0〉〈0| ρ). In the hypothetical case of strong measurement, in the language of statistics,
we would be able to draw from the Bernoulli distribution Bernoulli (p), or more generally,
with n repeated preparations and strong measurements, from the binomial distribution
Binom (n, p).

Standard room temperature NV setups do not allow strong measurements. Instead,
access to the quantity p is obstructed by three Poisson rates, such that conditional on
some values 0 < β < α, we can draw from the random variables

X|α ∼ Poisson (α)

Y |β ∼ Poisson (β)

Z|α, β, p ∼ Poisson (α + (1− p)β) . (B.13)

The quantities α and β are known as the bright reference and the dark reference, respec-
tively. They are defined as the expected number of photons collected (and summed over
N repetitions of the experiment) using the initial NV states |0〉〈0| and |1〉〈1|, respectively1.

The information content about p of this referenced Poisson model is not immediately
obvious, and depends both on the magnitude of α + β, as well as the contrast between
α and β. This is different than the strong measurement case mentioned above, where n
strong measurements has a clear intuitive and operational interpretation. The goal of this
section is to reduce information about the references α and β into a single number with
the same interpretation as n. This will allow one, for example, to quantitatively compare
two experimental setups or NVs and decide which one is better at providing information
about p.

It has been shown[84] that the Fisher information matrix of this referenced Poisson
model is given by

J(p, α, β) =


(α−β)2

p(α−β)+β
p(α−β)

p(α−β)+β
α

β+αp−βp − 1
p(α−β)

p(α−β)+β
p2

pα−pβ+β
+ 1

α
− (p−1)p
p(α−β)+β

α
pα−pβ+β

− 1 − (p−1)p
p(α−β)+β

pα+(p−2)(p−1)β
β(p(α−β)+β)

 , (B.14)

1They are more accurately defined in terms of the pseudo-pure states that are actually created in the
NV initialization procedure [84].
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with inverse matrix

J(p, α, β)−1 =


p(p+1)α+(p−2)(p−1)β

(α−β)2
pα
β−α

(p−1)β
α−β

pα
β−α α 0

(p−1)β
α−β 0 β

 . (B.15)

Using the Cramer-Rao bound, these matrices let us estimate the information content
of p in the referenced Poisson model. Specifically, they give us an estimate in each of the
following extreme cases. First, the (p, p) element of J−1, (J−1)p,p = p(p+1)α+(p−2)(p−1)β

(α−β)2 , is a

lower bound on the variance of any (unbiased) estimate of p given that a single measurement
of the triple (X, Y, Z) has been made, with no prior information about p, α, or β given.

Second, the inverse of the (p, p) element of J , (Jp,p)
−1 = p(α−β)+β

(α−β)2 , is a lower bound on the

variance of any (unbiased) estimate of p given that a single measurement of Z has been
made, assuming perfect knowledge of both α and β.

It will be useful for us to also be able to interpolate between these two extremes, where
some, but not all, prior information about α and β is available. There are a few tacks
that one might consider to achieve this, including the Bayesian Cramer-Rao bound, or
looking directly at the risk of some estimator. Instead, we choose a slightly ad-hoc method
as it actually produces a tractable calculation—statistics of the referenced Poisson model
usually involve a triple infinite sum, and many calculations are simply not possible without
numerics. To this end, let σ2

α and σ2
β represent our prior variances of α and β, respectively,

before taking a measurement of Z|α, β, p. We can now ask the question: how many times,
M , we must measure X|α and Y |β to produce these variances in the first place? We must
allow M to depend on α or β in each case. The distribution Poisson (M(λ)λ) has Fisher

information given by (M(λ)+λM ′(λ))2

λM(λ
. Equating this to 1/σ2 and soliving the differential

equation at M(0) = 0 gives M = λ/4σ2. Therefore consider the distribution

Poisson

(
α2

4σ2
α

)
× Poisson

(
β2

4σ2
β

)
× Poisson (pα + (1− p)β) (B.16)

which effectively results in our desired information about α and β. Solving for the (p, p)
element of the inverse Fisher information matrix of this distribution results in the formula

K =
β + p

(
α− β + pσ2

α + (p− 2)σ2
β

)
+ σ2

β

(α− β)2
. (B.17)
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This formula correctly interpolates between the case of perfect prior information, and prior
information as collected by a single sample of (X, Y )|α, β, namely,

lim
σ2
α,σ

2
β→0

K = (Jp,p)
−1 and lim

σ2
α→α,σ2

β→β
K = (J−1)p,p. (B.18)

The inverse Fisher information of the binomial model Binom (n, p) is given by p(1−p)
n

,
which when integrated uniformly over [0, 1], produces 1

6n
. Our definition for the number

of effective strong measurements (ESM) of a referenced Poisson model with parameters

(α, β, σα, σβ) is defined by equating
∫ 1

0
Kdp = 1

6n
and solving for n, which results in

ESM =
(α− β)2

3(α + β) + 2
(
σ2
α + σ2

β

) . (B.19)

This shows, for example, that having perfect information about α and β before measuring
Z|α, β, p is roughly equivalent—in terms of information learned about p—to 5/3 ≈ 1.67
times more effective strong measurements than the case where the triple (X, Y, Z)|α, β, p
is measured, but with no prior information.

Finally, in Figure B.1, we use some numerics to show that the ESM quantity accurately
relates the mean-squared error of the Bayes estimator for the referenced Poisson model
and a binomial model with n = ESM.

B.5 Brute-force Numerical Evaluation of Bayes Risk

The methods in this section were developed in collaboration with Thomas Alexander. See
Appendix A ‘nv-adaptive’ for a numerical implementation.

Evaluating the full Bayes risk for continuous outcome probability distributions is not
possible analytically apart from special cases such as linear models with a normal likeli-
hood function. For finite outcome probability distributions the problem is more tractable,
however as the number of possible outcomes grows to be large, or even infinite—such as
the Poisson distributions considered by us—the evaluation once again becomes intractable.

The difficulty of evaluation is a result of the expectation taken in Equation 4.7. For
both infinite-discrete and continuous outcome probability distributions the expectation is
intractable, however for finite discrete distributions, the expectation is a bounded discrete
sum and straight-forward to evaluate numerically. We, therefore, aim to evaluate the Bayes
risk by approximating the possible outcomes with a finite, discrete set of outcomes—note
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Figure B.1: The mean-squared-error of the Bayes estimator is computed as a function of
p for both the referenced Poisson model (blue, solid) and for a binomial model (orange,
dashed) where n = ESM. The prior distribution on p is uniform. This is done in nine
regimes, corresponding to the nine subplots of the figure. Each row uses a different mag-
nitude of bright reference, α, and each column uses a different amount of prior reference
knowledge. The left column uses sub-Poisson error bars on α and β, and the right column
uses regular Poisson error bars.

278



that this technique may also be used when the set of possible outcomes is finite but large
enough to be computationally intractable. Typically, outcome domains are large with
outcome probability mass concentrated to a small portion of the outcome domain. By
fixing particle locations and sampling outcomes from these particles, we may evaluate the
risk for only the outcomes that “matter” within the regions of outcome probability mass
concentration.

We consider the case of evaluating the Bayes risk for the next experiment, e. We
assume throughout this discussion, that this hypothetical experiment e was preceded by
n experiments e1:n with corresponding data d1:n. In several places, for brevity of nota-
tion, we will omit conditioning on this prior information, for example, we have Pr(d|e) =
Pr(d|e, d1:n, e1:n). We begin by re-approximating the particle filter prior distribution with
a uniformly weighted particle distribution by sampling K ′ particles from the prior πn,

xj ∼ πn(x), (B.20)

which approximates the prior πn as

πn(x) ≈ 1

K ′

K′∑
i

δ (x− xi) . (B.21)

For each particle we now sample a datum from the likelihood function,

d(j) ∼ L (xj; d, e) ∀ xj ∈ x1:K′ . (B.22)

The set of sampled data is an approximation to the joint outcome, particle distribution

Pr(d, x|e) ≈ 1

K ′

K′∑
i

δ
(
d− d(i)

)
δ (x− xi) . (B.23)

The average utility—Equation 4.4—may be expanded in conjunction with Equation 4.3 as

Un(e) =

∫ ∫
Pr(d|x, e)π̃n,d,e(x)Un(x, d, e)dxdd

=

∫ ∫
Pr(d, x|e)Un(x, d, e)dxdd. (B.24)

The approximate particle, datum joint distribution, Equation B.23 may be substituted
into Equation B.24 and the integrals are thus replaced by a sum,

Un(e) ≈ 1

K ′

K′∑
i

Un(x, d, e), (B.25)
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which is the average utility of the joint sampled particle, datum distribution. When the
utility is the negative mean-squared error the Bayes risk has the approximate form

rn,Q(e) ≈ 1

K ′

K′∑
i

TrQ(xi − x̂n,d(i),e)
T(xi − x̂n,d(i),e), (B.26)

where x̂n,d(i),e is the posterior mean given the the approximate prior Equation B.21,

x̂n,d(j),e =
K′∑
i

L
(
xi; d

(j), e
)

K ′
xi. (B.27)

The evaluation of the Bayes risk requires on the order of O(K ′2) likelihood evaluations.
However, typically a large number of outcome samples will be required to effectively sample
the outcome domain of each particle and the total number of outcome samples will roughly
be O(Knd), where nd is roughly the average number of outcome datum desired per particle.
This may be prohibitively large when sampling is expensive.

Provided the outcome domain does not depend on the experiment—as is the case
for our experiments—we may perform maximum importance sampling (MIS) to sample
outcomes from an alternative distribution—chiefly the marginalized outcome distribution
Pr(d|e)—and properly re-weight the resultant utility functions [174]. The sampled outcome
distribution Pr(d|e) is obtained from the sampled Pr(d, x|e) by neglecting the associated
model parameter,

Pr(d|e) ≈ 1

K ′

K′∑
i

δ
(
d− d(i)

)
. (B.28)

The MIS utility is given as

Un(e) =

∫ ∫
Pr(d|x, e)πn(x)

Pr(d|e)
Pr(d|e)

Un(x, d, e)dxdd

≈ 1

K ′

K′∑
i

K∑
j

Pr(d(i)|xj, e)ωn,j
Pr(d(i)|e)

Un(xj, d
(i), e)

=
1

K ′

K′∑
i

K∑
j

ωn+1|d(i),jUn(xj, d
(i), e), (B.29)

where the judicious choice of the sampling distribution has allowed the utility to be written
as the average of the posterior utility expectation over the marginalized outcome distribu-
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tion. For the case of the Bayes risk this may be further simplified to

rn,Q(e) ≈ 1

K ′

K′∑
i

Tr
[
QCovπ̃[x|d(i), e]

]
=

1

K ′

K′∑
i

Tr
[
Q(x̂Txi − x̂Ti x̂i)

]
, (B.30)

where x̂Txi =
K∑
j

ωn+1|d(i),jx
T
j xj, and x̂i =

K∑
j

ωn+1|d(i),jxj.

In general the the initial prior distribution may be down-sampled to some number
of particles K, such that we now have two parameters that may be tuned, the number of
outcome samples K ′, and the number of model parameter particles K. With the MIS Bayes
risk, the number of likelihood function calls is now O(KK ′), with only O(K ′) outcome
samples required. We utilize the MIS Bayes risk for experiment design within this chapter.

In practice a trade-off between accuracy and computational cost/time is necessary when
selecting the number of outcomes and particle samples, K ′ and K respectively for the
evaluation of the MIS Bayes risk. A comparison of various sampling numbers is displayed
in the heatmaps of Figure B.2, which were evaluated with the wide prior of Equation 4.20
and experiments for the uniformly weighted Bayes risk experiment design heuristic given
in Table 4.1. The aquistion of 4000 ESM takes roughly 10 seconds, as the full particle filter
update of 30000 particles takes roughly 2 seconds, there are 8 seconds remaining in which
to compute the Bayes risk and select the optimal experiment. We use K ′ = 512 outcome
samples and K = 1024 particle filter samples, as this strikes a balance between accuracy
while keeping the evaluation time below our threshold on our computational hardware. As
this problem is massively parallel, if desired it is simple to use additional computational
resources to refine to the evaluation accuracy.
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Figure B.2: Comparison of various outcomes and particle sampling accuracies and times
when evaluating the MIS Bayes risk. The prior distribution over model parameters is
given by Equation 4.20, and the experiments which the Bayes’ risk is computed for is the
uniformly weighted experiment design risk heuristic found in Table 4.1. (a) Log mean
squared difference for all experiments computed with respect to a 4000 outcome, 4000
particle reference evaluation. (b) Log evaluation time(s) of Bayes risk over all experiments
for a given number of outcome and particle samples. These calculations were done on an
i9-7980XE CPU.
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Appendix C

Supplementary Information for
Bayesian RB+ Analysis

C.1 Sampling Strategies

C.1.1 Posterior Sampler

Analytic formulae for the posteriors of our models are intractable—we must instead choose
a numerical inference algorithm to sample points from the posterior. A sufficient number
of these points can be used to compute any quantity of interest related to the posterior.
We used the Hybrid Monte Carlo (HMC) sampler using the No-U-Turns (NUTS) heuristic
[42, 89]. This is a Markov chain Monte Carlo (MCMC) sampling strategy which has gained
widespread use due to its lack of tuning parameters, fast mixing rate, and ability to handle
large numbers of parameters. Specifically, we used the PyStan interface to the Stan library
[22]. Probabilistic programs such as those written in Equation 6.13 and Equation 6.15 can
entered nearly verbatim as input to this library (or other similar libraries), and samples
from the posterior are returned. We suspect that sampling algorithms customized to our
models could significantly outperform these generic tools, but it is hard to turn down the
convenience of modern probabilistic programming languages and automatic differentiation.

It warrants mention why we have not used sequential Monte Carlo (SMC), which has
emerged as a popular inference engine for quantum information processing tasks [63], in-
cluding for RB and IRB with N = 1 [62]. Our main reason is that we wish to leave open
the option of sampling from exact posterior distributions, especially while still in the proof-
of-principle stage. SMC operates by storing the distribution over parameters as a weighted
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mixture of delta functions. Data is entered sequentially and the prior is gradually trans-
formed into the posterior with the inclusion of each subsequent individual datum. While
SMC uses exact likelihood functions to sequentially update the weights with Bayes’ rule,
it also occasionally requires a resampling operation that moves the positions of the delta
functions to where they are most needed. This resampling step usually only considers the
first two moments of the distribution, and tends to distort the distribution toward being
multivariate normal—see Appendix B of Reference [63]. Therefore, in SMC, posterior dis-
tributions are convolved with normal approximations to the true posterior distribution.
However, SMC has an important advantage in that it can naturally be used with adap-
tive experiments, where the next experiment (sequence length, measurement type, etc.) is
chosen based on the current state of knowledge. Also, SMC is often less computationally
expensive and always highly parallelizable.

C.1.2 Reparameterizations

MCMC samplers benefit from using an optimal parameterization of the model — simply
reparameterizing a model can make huge differences to the convergence, mixing rates, and
stability. Ideally, posterior parameters are decorrelated, centered at the origin, and have a
variance of order unity. Doing a perfect job at this would require knowing the posterior in
advance of sampling from it, so we must instead rely on other heuristics.

For example, samplers have trouble near hard cutoffs, requiring special boundary spec-
ifications, and time can be wasted proposing random-walk values outside of the allowed
region. This is relevant to our models where it is common to be inferring values that are
physically restricted to the interval [0, 1], and that are ideally very close to the boundary,
such as the average gate fidelity of a gate-set. Modern Bayesian inference libraries, such
as Stan, will automatically remove hard cutoffs by reparameterizing the model through a
logit function for interval constraints, or through the logarithm for one-sided constraints.
(It also multiplies the pdf by the change of variables Jacobian so that the prior is not
distorted.)

We can do slightly better than this if we have prior expectations about some parameter
values. For instance, if we expect a decay parameter p to be on the order of p0 = 0.9999,
then instead of using the sampling variable p̃ = logit(p) as would automatically be done by
Stan, we can use the variable perr where p = logit(p0 + perr). This is distinct from the role
of a prior distribution in the sense that the correct distribution is sampled from even if we
have set p0 far from the value p that we are attempting to estimate; rather, we arrive at
our samples less efficiently in that case. For reference, logit(0.9999) ≈ 9, and we will have,
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with very little effort, prevented the sampler from making an initial random walk from 0
to 9 while also keeping track of 200 other variables.

If we additionally have expectations about the standard deviation, say we expect δp =
p0 ± δp in the posterior, then we can use the changed variable perr where p = logit(p0 +
δp̃ · perr). If we let δp̃ = δp · p−1

0 (1− p0)−1, then perr = 0± 1 will translate to p = p0 ± δp.
This trick does not affect the posterior in any way, it only improves sampling performance.
We have had success using least-squared fits to estimate p0 and/or δp (along with other
parameters), using these values in the parameter transformation. If there is not enough
data to meaningfully estimate δp with, for example, a weighted least squares fit, then
δp̃ = 0.5 is a fine choice.

The above heuristic should apply well to most probability parameters. There is a
notable exception that comes up in low data regimes, which we will now illustrate in the
case of standard RB for concreteness. Here, the tying function is (A − B)pM + B, and
for high quality devices, and at very low values of M , the survival probability is roughly
equal to A . 1. Moreover, low values of M are exactly where we learn the most about A,
allowing us to decorrelate its value from p and B. Suppose, however, that we are in the
low data regime defined by 1/(1− A)� N · I, so that at the lowest values of M it’s very
likely that every single shot of the experiment will return 1. In this case any estimation
technique will only be capable of producing a lower bound on the value of A; any value of
A arbitrarily close to 1 will be consistent with the data. This is a problem for the logit
rescaling discussed above because an estimate of A arbitrarily close to 1 implies a sampling
parameter Aerr that is arbitrarily large no matter the choices of A0 and δA. There are a few
potential paths forward. One is to switch sampling strategies to something like Riemannian
Manifold HMC that fairs better with varying curvature in parameter space [12]. Another
is to reparameterize in a different way, for example through an exponential distribution.
Perhaps the easiest, however, is to recall that the lowest values of M are dubious in the
case of gate dependent noise, and no data should be taken there anyway. We can just take
a new definition of the initial state to be our old initial state acted on by a fixed number
of random gates, effectively lowering the value of A.

C.2 Nonparametric Families

C.2.1 Dirichlet Processes

Dirichlet processes (DP) can be introduced in many ways. Given how they are used in
the main body of this chapter, we will introduce them as a natural extension to beta
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and Dirichlet priors as follows. Much more comprehensive introductions can be found
elsewhere, for example, see this article of Teh [171].

First, consider of coin with an unknown bias p that we wish to infer. If we flip it N times
and sum the resulting number of heads we get the random variable X ∼ Binom (N, p).
In a Bayesian setting, we start by assigning a prior π(p) to the unknown quantity p.
Having collected the variate x of X, our posterior is proportional to Pr(p|x) ∝

∫ (
N
x

)
px(1−

p)N−xdπp(p). An important property the beta distribution is that when it is used as the
prior in this example, say π(p) = Beta(a, b) for some choices a > 0 and b > 0, then this
integral has a nice closed form solution,

Pr(p|x) = Beta(a+ x, b+N − x). (C.1)

This is one of the reasons the beta distribution family is the canonical family of distributions
with support on [0, 1]. Moreover, from this formula, an operational interpretation of the
prior parameters a and b is apparent: a can be thought of as the number of prior ‘heads’
observations, and b as the number of prior ‘tails’ observations. For example, π(p) =
Beta(1, 1) is asserting that one’s prior knowledge of p is equivalent to having already
flipped the coin twice, with each a heads and a tails landing once.

Let us generalize one step further before mentioning Dirichlet processes. Suppose we
are interested in inferring the weights p = (p1, ..., pK) of a K-sided die, where p is a finite
probability distribution, so that

∑
k pk = 1 and pk ≥ 0. (The coin example above is the

case K = 2.) Rolling this die N times and binning the number of times each side lands face
up results in the random variable X = (X1, ..., XK) ∼ Multinomial(N, p). The Dirichlet
distribution family is the natural extension to the beta distribution family for K > 2.
Namely, if we set the prior π(p) = Dir(a1, ..., aK), then the posterior distribution is given
by

Pr(p|x) = Dir(a1 + x1, ..., aK + xK) (C.2)

where x = (x1, ..., xK) is the data. As before, this provides an operational interpretation
of the prior parameters a1, ..., aK — the value ak can be interpreted as the number of prior
observations of side k out a total of

∑
k ak prior observations.

Dirichlet processes can be thought of as the next logical step in this progression. We
move from probability distributions with two sides, to K sides, and now to a continuum
of sides; Dirichlet processes are natural priors for probability density functions. Suppose
that f is an unknown probability density function on the sample space Ω that we wish
to infer. Therefore

∫
Ω
f(x)dµ(x) = 1 where µ is some measure on Ω. Data is collected

from this unknown distribution through the random variable X ∼ f . We wish to set
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our prior on f to be a Dirichlet process, which is a distribution of distributions on the
sample space Ω. First, we need to define what a Dirichlet process is: given a distribution
G0 defined on Ω and a positive real number α > 0, we say that the random distribution
G is Dirichlet process distributed with base distribution G0 and concentration parameter
α, writing G ∼ DP(α,G0) to denote this, if for any finite disjoint measurable partition
∪Kk=1Bk = Ω, it holds that

(G(B1), ..., G(BK)) ∼ Dir(αG0(B1), ..., αG0(BK)). (C.3)

Note that for B ⊂ Ω, all we mean by G(B) is the probability of an event in B under
distribution G. This means that αG0(B) has the interpretation of being the number of
prior observations in the region B ⊂ Ω, and that to be Dirichlet process distributed means
to be a distribution which obeys this condition for every possible partition of Ω into regions.
In our previous example with the K-sided die, we could have reparameterized the Dirichlet
prior as Dir(α, g) where α :=

∑
k αk and g := (α1/α, ..., αK/α) to be more notationally

analogous to the present example.

If we let π(f) = DP(α,G0) be the prior distribution of f , and suppose we make N iid
measurements X ∼ f , then the posterior is also Dirichlet process distributed, with

Pr(f |x) = DP

(
α +N,

α

α +N
G0 +

N

α +N

∑N
k=1 δxk
N

)
(C.4)

where δxk is the delta distribution centered at the datum xk ∈ Ω. We see that the base
distribution of the posterior of f is a mixture of the prior’s base distribution and the
empirical distribution of the data. It also makes it clear that α still has the interpretation
as the total number of prior observations. Despite these nice interpretations, so far it might
seem like Dirichlet processes are too abstractly defined to make them practical; at the end
of this section, we will see that they have a alternate and procedural description which is
not too hard to work with.

Dirichlet processes can be used as a generic stand-in for parametric priors in Bayesian
models. For example, suppose we have samples Xk|λ ∼ Pois(Tkλ) for some rate of events λ
measured for durations of time Tk. Moreover, suppose that there is not just one underlying
rate of emission, but that there truly is a distribution of rates taking place, and we would
like to infer what this distribution looks like. A parametric Bayesian approach might be
through the model

Xk|λ ∼ Pois(Tkλ)

λ ∼ Gam(a, b)

a, b ∼ π(a, b) (C.5)
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where π(a, b) is some prior on a and b. We have parameterized the unknown distribution
over rates with a gamma distribution with hyperparameters a and b; if we infer a and b,
we can plot an estimate of the distribution of λ. Hovever, if we are unable to confidently
assert that the distribution over rates λ must be gamma distributed, then we might choose
a nonparametric Bayesian approach with the model

Xk|λ ∼ Pois(Tkλ)

λ ∼ G

G ∼ DP(α,G0). (C.6)

Just as we looked at the posterior of the parameters a and b above, here we can look at
the posterior of G.

One caveat to random distributions drawn from DP(α,G0) is that they are almost
surely discrete in nature, even when G0 is a continuous distribution. With probability one,
G ∼ DP(α,G0) will be of the form

G(·) =
∞∑
k=1

pkδθk(·) (C.7)

where the pk are probabilities summing to unity and θk are members of Ω. However, this
is not a big deal in practice for two reasons. The first is that any continous function can
be approximated with arbitrary accuracy in L1 distance using distributions of the form
Equation C.7. Secondly, we always have the option of convolving G with some smooth
distribution to end up with a smooth distribution. This is called a Dirichlet process
mixture model [47].

Sethuraman found a way to construct instances of DP(α,G0) in the form of Equa-
tion C.7 using a stick breaking process [156]. A random variate G ∼ DP(α,G0) can be
construction as follows. The points θk are simply drawn from G0 independently and iden-
tically. Their weights pk, however, are derived from the following process. A stick of unit
length is broken in two at the random location V1 ∼ Beta(1, α). The first piece is kept and
its length is assigned to the first weight, p1 = V1. The remaining piece has length 1 − V1

and is broken again at a random fraction V2 ∼ Beta(1, α) of its length. The first piece
is kept and its length is assigned to the second weight, p2 = V2(1 − V1). This process is
repeated until the stick has been broken up a countably infinite number of times, giving
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pk = Vk
∏

l<k(1− Vl). We therefore have the representation

G =
∞∑
k=1

[
Vk

k−1∏
l=1

(1− Vl)

]
δθk

Vk
iid∼ Beta(1, α), θk

iid∼ G0 (C.8)

which is equivalent to G ∼ DP(α,G0).

Finally, we remark that it is standard practice to assign a distribution to the parameter
α, acknowledging one doesn’t know a priori how good the base distribution G0 is. We can
see this in the stick breaking process, where low values of α lead to few important modes,
and high values of α lead to many modes. In practice, Dirichlet processes are parameterized
by their weights and locations, and the number of possible modes is truncated. One can
verify that a certain truncation is sufficient by making sure the last weights (which must
decrease in size) are negligibly small.

C.2.2 Constrained Dirichlet Process Beta Mixtures

We wish to modify the Dirichlet Process, defined in the previous section, so as to make
it a suitable prior for survival distributions. In order for such a prior to work well with
state-of-the-art MCMC samplers, which depend on gradients, we require a sample space of
smooth distributions. This is easily done, as in the previous section, by convolving variates
of the Dirichlet process with smooth distributions. It is natural for us to convolve with
Beta distributions rather than the typically used normal distributions because survival
distributions have support only within the interval [0, 1].

The main difficulty of our construction lies in our second demand, which is the ability
to constrain certain moments of these random distributions to specific values. We draw
inspiration from Yang et al. [194] who propose a method to specify either or both of the
first two moments of Dirichlet process variates. This method consists simply of shifting
and scaling the delta locations θk (see Equation C.8) so that the mean and variance of
G are as desired. We cannot use this approach directly because our domain is [0, 1]; for
example, we might need to shift some of our locations θk to be outside of this interval to
obtain the correct mean, which is not allowed. To overcome this, we use the logit function
and its inverse to constrain and unconstrain variables between R and (0, 1), as follows.

Using a sample space Ω = R× (0, 1), we begin by drawing a standard Dirichlet process
distributed variate

∑K
k=1wkδ(ν∗k ,rk). Here, rk is the scaled variance parameter (Section C.3)
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and ν∗k represents an unconstrained beta mean. We then constrain each of these latter
values to (0, 1) by using the inverse logit function, νk = logit−1(ν∗k+h) = 1/(1+e−ν

∗
k−h). The

value of h is chosen as the unique real number which enforces the condition
∑K

k=1wkνk =
µ1. This in turn guarantees that E[G] = µ1. There is no analytic formula for h, but
it can be found efficiently with numerical optimization. In particular, Newton’s method

with an initial guess h = logit
(
µ1 −

∑K
k=1wkν

∗
k

)
has quadratic convergence. A code

sample is shown in Listing C.1. This procedure produces a variate from what we call
the mean-constrained Dirichlet process beta mixture mean-CDPBM distribution, which is
summarized in Equation 6.14 of the main body.

Draws from the second-moment-constrained version, CDPBMK(α,G0, µ2), and the
first-second-moment-constrained version, CDPBMK(α,G0, (µ1, µ2)), are similar, except
that a transform of the form logit−1(h1ν

∗ + h2) is necessary to constrain the variance
as well as the mean.

If a protocol were to tie together the first two moments, following Equation 6.15, we
would have the probabilistic program

~xT ∼ π(~xT ) (C.9a)

µ1,M,e|~xT = T (1,M, e, ~xT ) (C.9b)

µ2,M,e|~xT = T (2,M, e, ~xT ) (C.9c)

αM,e
iid∼ Gam(1, 1) (C.9d)

GM,e|αM,e, µ1,M,e, µ2,M,e
ind∼ CDPBMK (αM,e, G0, (µ1,M,e, µ2,M,e)) (C.9e)

qM,e,i|GM,e
ind∼ GM,e (C.9f)

QM,e,i|qM,e,i
ind∼ Binom(N, qm,i). (C.9g)

Listing C.1: Stan function (similar to C) to transform input weighted locations (ν∗k) into
output locations (νk) whose weighted mean is equal to µ.

1 // nu_star is a vector of input locations

// w is a length-K vector of weights

// mu is the desired mean value

vec to r compute nu ( vec to r nu star , vec to r w, r e a l mu) {
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6

r e a l h ;
vec to r [ s i z e [w ] ] nu ;

// initial guess for h is exact when var(nu_star)=0

11 h = l o g i t (mu) − dot product (w, nu s ta r ) ;

// fixed descent of five steps

for ( newton loops in 1 : 5 ) {
nu = i n v l o g i t (h + nu s ta r ) ;

16 h = h − ( dot product (w, nu) − mu) /
( dot product (w, nu .∗ (1−nu ) ) ) ;

}

nu = i n v l o g i t (h + nu s ta r ) ;
21

return nu ;
}

C.3 Beta Reparameterizations

In this section we provide some useful reparameterizations of the beta distribution, along
with their inverses. As noted in Equation 6.11 of the main body, a beta distribution
Beta(α, β) has a density function given by

pdfBeta (q) =
qα−1(1− q)β−1

B (α, β)
(C.10)

for any q ∈ [0, 1]. The normalization constant B (α, β) is the beta function, which is defined

in terms of the gamma function, B (α, β) = Γ(α)Γ(β)
Γ(α+β)

. The parameters α and β must both
be positive. Its mean and variance are given by

µ =
α

α + β
(C.11a)

σ2 =
αβ

(α + β)2(α + β + 1)
(C.11b)

respectively. The conditions α, β > 0 are exactly equivalent to the conditions 0 < µ < 1
and 0 < σ2 < µ(1− µ).
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Parameters Bounds Transform Inverse Transform Variance

(µ, σ2) µ ∈ (0, 1) µ = α/(α + β) α = µ2(1− µ)/σ2 − µ
σ2 ∈ (0, µ(1− µ)) σ2 = αβ/((α + β)2(α + β + 1)) β = µ(1− µ)2/σ2 − (1− µ) σ2

(µ, µ2) µ ∈ (0, 1) µ = α/(α + β) α = µ(µ− µ2)/(µ2 − µ2)

µ2 ∈ (µ2, µ) µ2 = α(1 + α)/(α + β)(1 + α + β) β = (1− µ)(µ− µ2)/(µ2 − µ2) σ2 = µ2 − µ2

(µ, t) µ ∈ (0, 1) µ = α/(α + β) α = µ(1/t− 1)

t ∈ (0, 1) t = 1/(1 + α + β) β = (1− µ)(1− t)/t σ2 = tµ(1− µ)

(µ, r) µ ∈ (0, 1) µ = α/(α + β) α = 1/(r − rµ)− µ
r ∈ (0, 1) r = (α + β)2/(αβ(1 + α + β)) β = 1/(rµ) + µ− 1 σ2 = rµ2(1− µ)2

(µ, s) µ ∈ (0, 1) µ = α/(α + β) α = sµ

s ∈ (0,∞) s = α + β β = s(1− µ) σ2 = µ(1− µ)/(s + 1)

Table C.1: Five reparameterizations of the beta distribution Beta(α, β). The first two,
(µ, σ2) and (µ, µ2), simply reparameterize into mean and variance (or second moment),
which yields non-rectangular bounds. The other four parameterizations have rectangular
bounds. In the parameterization (µ, t), t represents the fraction of the maximum possible
variance given a mean µ. Conversely, in the parameterization (µ, s), we have t = 1/(s+1) so
that large s corresponds to small variance. The parameterization (µ, r) does not allow the
full range of varinace—the maximum possible variance (assuming 0 < r < 1) is µ2(1−µ)2.

The parameters α and β have operational interpretations in terms of ‘prior obser-
vations’; α is the number of prior observations of heads, and β is the number of prior
observations of tails. Therefore, for example, the uniform prior Beta(1, 1) asserts that two
prior observations have been made: one of heads, and one of tails. not entirely intuitive.
In Table C.1, four reparameterizations along with their inverse transformations are given.

C.4 Priors on Heavily Biased Coins

In all of the examples in the main text we used an uninformative uniform prior on probabil-
ity parameters such as A, B, and p in the standard RB protocol. There may be situations,
especially in low data regimes, where incorporating prior knowledge has a noticeable effect
on the posterior width, thereby reducing the necessary amount of data needed to attain a
desired credibility lower bound.

For this purpose, we suggest a two-parameter family of distribution with support on
[0, 1] which we call probably at least (PAL). A member of this family with parameters
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0 < p0 < 1 and 0 < z < p0 has a continuous density function given by

pdfPAL (x) =
1− z
1− p0


(
x
p0

) p0−z
z(1−p0)

x < p0

1 x ≥ p0

. (C.12)

This distribution is a sort of hedged version of Unif ([p0, 1]) that admits a finite but decreas-
ing probability that x < p0. Indeed, it is parameterized so that the probability 0 < x < p0

is equal to z. Observe that p0 = z gives Unif ([0, 1]), and z → 0 approaches Unif ([p0, 1]).

If the discontinuity of the derivative of this prior at x = p0 poses a problem for the
sampler at hand, this distribution can be smoothed over as follows:

g(x) =
p2

0(2− z) + 2xz + p0(2x+ z)

zp0(1− p0)

pdfPAL′ (x) =
1− z
1− p0

g(x)
(
x
p0

)2
p0−z
z(1−p0)

x < p0

1 x ≥ p0

. (C.13)

The parameters p0 and z have the same interpretations, but now the decaying piece moves
smoothly into the constant piece, at the cost of a bit more complexity.

C.5 A Reparameterization of LRB

Consider SPAM configurations e = (λ, i) ∈ E where Eλ is a measurement operator, and ρi is
an initial state. LRB as described in [189] has a first moment tying function T (1,M, e, ~xT )
defined by

1

L1 + L2

Tr

[
E†λE

(
L2

I1

d1

+ L1
I2

d2

)]
+

(
L1

L1 + L2

− pi
)

Tr

[
E†λE

(
I1

d1

− I2

d2

)]
λM1

+ (1− pi) Tr

[
E†λE

(
ρ′i −

I1

d1

)]
λM2 (C.14)

where E is the gate independent noise acting on X1⊕X2, with dimXk = dk and Ik = IXk for
k = 1, 2. Here, pi := Tr[I1ρi] and ρ′i := I1ρiI1/(1− pi). The protocol recommends choosing
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λ = 0, ..., d1 − 1 with Eλ ≈ |λ〉〈λ| and i = 0 with ρ0 ≈ |0〉〈0|. Other quantities are defined
as

L1 = 1− Tr E(I1/d1)I1 (C.15a)

L2 = Tr E(I2/d2)I1 (C.15b)

λ1 = 1− L1 − L2 (C.15c)

λ2 = µ1(1− L1) =
d1F (E)− (1− L1)

d1 − 1
(C.15d)

with F (E) the average gate fidelity of E averaged over states in X1. L1, called the leakage,
measures E ’s average loss of population from X1 into X2, and L2, called the seepage,
measures the reverse effect. Some easy bounds on these parameters include

L1, L2 ≥ 0 (C.16a)

L1 + L2 ≤ 1. (C.16b)

Wood and Gambetta suggest extracting the parameters of interest, (L1, L2, F ), as fol-
lows. First, the data are summed over λ and the sample mean is taken over sequences
I and sequence repetitions N . Under this sum the third term of the tying function,∑

λ Tr
[
E†λE

(
ρ′0 − I1

d1

)]
≈ 0, approximately cancels out leaving a single exponential term

of base λ1. Fitting to this curve yields λ1 and hence L1 +L2, and combining this with the

constant offset of the curve,
∑

λ
1

L1+L2
Tr
[
E†λE

(
L2

I1
d1

+ L1
I2
d2

)]
≈ L2

L1+L2
, we can separate

to get L1 and L2. Note that this protocol is not truly SPAM free because part of the
inference relies on the constant term which contains SPAM parameters. Next we go back
to the unsummed data, plug in our estimate of λ1, and fit to λ2 to deduce F .

In our scheme, we are able to process the data all at once, instead of this two step
fitting procedure. It is helpful to rewrite the tying function a bit to make it a bit more
clear what all of the independent parameters are. We generalize the protocol to possibly
use multiple initial states ρi, i = 0, ..., d − 1. Then if we define Aλ = Tr[E†λE(I1/d1)],

Bλ = Tr[E†λE(I2/d2)], and Ci,λ = Tr[E†λE(ρi)] the tying function is expressed as

T (1,M, (λ, i), ~xT ) =
L2Aλ + L1Bλ

L1 + L2

+

(
L1

L1 + L2

− pi
)

(Aλ −Bλ)λ
M
1

+ (1− pi)(Ci,λ − Aλ)λM2 . (C.17)
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There are two reasons that one might prefer to use an orthogonal basis of pure initial
states with one measurement operator, rather than vice versa, as suggested in the LRB
paper. The first is that it requires fewer nuisance parameters — both Aλ and Bλ depend on
the measurement but not the initial state. The second is that the offset term L2Aλ+L1Bλ

L1+L2
is

exactly equal for all experiments (under the assumption of gate-independent noise), which
means it can effectively be measured independently by including very long sequence lengths
in the data collection.

In Section 6.7.4 of the main text, we used one measurement operator, M = 0.99999 |0〉〈0|,
and two initial states, ρ0 = 0.9999 |0〉〈0| and ρ1 = 0.9995 |1〉〈1|. The two prior distributions
used for tying parameters were

L1, L2, · ∼ Dir(1, 1, 100) (C.18a)

µ1, Aλ, Bλ, Ci,λ ∼ Unif([0, 1]). (C.18b)

and

L1, L2, · ∼ Dir(1, 1, 100) (C.19a)

µ1, Ci,λ ∼ Unif([0, 1]) (C.19b)

Aλ ∼ Beta(100, 100) (C.19c)

Bλ ∼ Beta(1, 100) (C.19d)

labeled ‘Flat SPAM prior’ and ‘Tighter SPAM prior’ in Figure 6.8, respectively. The
Dirichlet distribution on L1 and L2 was chosen because of the additive constraint L1 +L2 ≤
1 means that the triple (L1, L2, 1−L1−L2) is a probability vector. The variable 0 ≤ µ1 ≤ 1
has the interpretation of the depolarizing parameter of E restricted to X1.
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