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Abstract

This thesis is concerned with the parallel, adaptive solution of hyperbolic conservation
laws on unstructured meshes.

First, we present novel algorithms for cell-based adaptive mesh refinement (AMR) on
unstructured meshes of triangles on graphics processing units (GPUs). Our implementa-
tion makes use of improved memory management techniques and a coloring algorithm for
avoiding race conditions. The algorithm is entirely implemented on the GPU, with neg-
ligible communication between device and host. We show that the overhead of the AMR
subroutines is small compared to the high-order solver and that the proportion of total run
time spent adaptively refining the mesh decreases with the order of approximation. We
apply our code to a number of benchmarks as well as more recently proposed problems
for the Euler equations that require extremely high resolution. We present the solution
to a shock reflection problem that addresses the von Neumann triple point paradox. We
also study the problem of shock disappearance and self-similar diffraction of weak shocks
around thin films.

Next, we analyze the stability and accuracy of second-order limiters for the discontinu-
ous Galerkin method on unstructured triangular grids. We derive conditions for a limiter
such that the numerical solution preserves second order accuracy and satisfies the local
maximum principle. This leads to a new measure of cell size that is approximately twice
as large as the radius of the inscribed circle. It is shown with numerical experiments that
the resulting bound on the time step is tight. We also consider various combinations of
limiting points and limiting neighborhoods and present numerical experiments comparing
the accuracy, stability, and efficiency of the corresponding limiters.

We show that the theory for strong stability preserving (SSP) time stepping methods
employed with the method of lines-type discretizations of hyperbolic conservation laws may
result in overly stringent time step restrictions. We analyze a fully discrete finite volume
method with slope reconstruction and a second order SSP Runge-Kutta time integrator to
show that the maximum stable time step can be increased over the SSP limit. Numerical
examples show that this result extends to two-dimensional problems on triangular meshes.

Finally, we propose a moment limiter for the discontinuous Galerkin method applied to
hyperbolic conservation laws in two and three dimensions. The limiter works by finding di-
rections in which the solution coefficients can be separated and limits them independently
of one another by comparing to forward and backward reconstructed differences. The lim-
iter has a precomputed stencil of constant size, which provides computational advantages
in terms of implementation and runtime. We provide examples that demonstrate stability
and second order accuracy of solutions.
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Chapter 1

Introduction

This thesis is concerned with the development of robust, parallel algorithms for the numeri-
cal approximation of solutions to hyperbolic conservation laws in two and three dimensions
using the discontinuous Galerkin (DG) method. Hyperbolic conservation laws are partial
differential equations (PDEs) that model wave propagation and have applications in com-
putational fluid dynamics (CFD). Weak solutions of such equations admit discontinuities,
which can be difficult to approximate numerically. Therefore, the development of reliable
numerical methods for this class of PDEs is important for many applied problems in CFD
and engineering. Popular methods to solve hyperbolic PDEs include finite difference and
finite volume methods with high order reconstructions, e.g., ENO and WENO schemes.
These methods attain high order accuracy using an order-dependent stencil and can be
unwieldy on complex geometries and unstructured meshes. In contrast, the DG method
presents a number of advantages. First, the method is of arbitrarily high order and has a
compact, order-independent stencil. It is also suitable for execution on parallel architec-
tures since an element only requires information about itself and its neighbors. Second,
it can be defined on different element geometries, e.g. triangles, quadrilaterals, and on
complex domains. Finally, it is straightforward to use this method with adaptive mesh
refinement (AMR) algorithms that refine or coarsen elements in the mesh or modify an
element’s order of approximation.

In this thesis, we have focused on (1) the development and implementation of AMR
algorithms parallelized on graphics processing units (GPUs) and on (2) the development
and analysis of novel limiting techniques for the DG method on unstructured meshes of
triangles and tetrahedra. GPUs are popular for the parallelization of numerical solvers
for PDEs [3–6] due to their low cost and impressive compute capabilities. Adaptive, un-
structured computational fluid dynamics (CFD) solvers on GPUs must leverage the high
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floating point operation (FLOP) throughput available by optimizing memory transfers and
reducing latencies [3, 7]. We propose and implement novel algorithms for cell-based adap-
tive mesh refinement on unstructured meshes of triangles on graphics processing units.
Our implementation makes use of improved memory management techniques and a color-
ing algorithm for avoiding race conditions. Using our GPU-accelerated AMR algorithm,
we solve a number of problems in gas dynamics that are intractable without some form
of adaptive mesh refinement. In particular, we provide numerical evidence in support of
Guderley Mach reflection, which requires element sizes on the order of 10−6 and meshes
comprising over 5 million elements. We also solve a problem concerning the interaction of
a shock with a thin, reflecting film and determine the location of shock disappearance.

For nonlinear conservation laws, a stabilization procedure, such as slope limiting, is
required to prevent instabilities that can occur in the presence of discontinuities in the
numerical solution. Limiters from the finite volume framework can sometimes be modi-
fied to act on DG solutions, though there are limiters devised to stabilize DG solutions
specifically [8,9]. These limiters compare the DG solution values on the edges to values re-
constructed from averages on neighboring elements. In this thesis, we analyze the stability
and accuracy of second-order limiters for the discontinuous Galerkin method on unstruc-
tured triangular meshes. We also present a limiter that can be viewed as a first step in the
generalization of the moment limiter in [10,11] to unstructured meshes, or as a standalone
second order limiter with proven stability and accuracy properties. It is a lightweight and
simple limiting procedure that is composed of two independent one-dimensional limiters.
The implementation of the limiter is easily parallelizable and straightforward as it uses the
minmod function to compare the solution coefficients to suitable forward and backward
differences.

We now describe the discontinuous Galerkin method in two and three dimensions, give
an overview of adaptive mesh refinement techniques, provide a description of reflection
problems in gas dynamics, and finally, describe limiters in the context of the DG method.

1.1 The discontinuous Galerkin method

Hyperbolic conservation laws are partial differential equations of the form

ut +∇ · F(u) = 0, (1.1)

with the solution u(x, t) = (u1, u2, ..., uM)ᵀ defined on Ω × [0, T ] such that x ∈ Ω ⊂ Rd,
T is the final time and F(u) is the flux function. Additionally, the initial condition along
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Ω0

Ω1

(a) Conforming mesh of two triangles.

Ω0 Ω2

Ω3Ω4

Ω5

(b) Nonconforming mesh of five triangles.

Figure 1.1: Possible meshes of a square domain.

with appropriate boundary conditions are prescribed. In this thesis, we consider two- and
three-dimensional hyperbolic PDEs, i.e., d = 2, 3.

The discontinuous Galerkin method can be formulated by first dividing the domain Ω
into an unstructured mesh of triangles or tetrahedra such that Ω =

⋃
i Ωi. Typically, a

mesh produced by a mesh generator is conforming (Figure 1.1a). However, an adaptive
mesh refinement algorithm can split an element into four smaller triangles by connecting
edges’ midpoints, which may produce a nonconforming mesh (Figure 1.1b). The weak
form of the conservation law is obtained by multiplying equation (1.1) by a test function
v ∈ H1(Ωi) and integrating on element Ωi. After applying the divergence theorem, we
obtain ∫

Ωi

utvdx−
∫

Ωi

F(u) · ∇vdx +

∫
∂Ωi

vF(u) · ndl = 0, ∀v ∈ H1(Ωi), (1.2)

where n is the unit outward facing normal on the element’s boundary ∂Ωi. In two di-
mensions, each element Ωi is mapped to the canonical triangle Ωc, having vertices at
(0, 0), (1, 0), (0, 1), using the transformationxy

1

 =

xi,1 xi,2 xi,3
yi,1 yi,2 yi,3
1 1 1

1− r − s
r
s

 , (1.3)
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(a) Canonical triangle.

(0, 0, 0) (1, 0, 0)

(0, 0, 1)

r

(0, 1, 0)

s

t

(b) Canonical tetrahedron.

Figure 1.2: Canonical elements Ωc.

where (xi, yi)1,2,3 are the vertices of Ωi in the physical space (Figure 1.2a). We label the
edge defined by (0, 0) and (1, 0) of the canonical triangle edge 1, (1, 0) and (0, 1) edge 2,
and (0, 1) and (0, 0) edge 3. The Jacobian of the transformation is

Ji =

(
xi,2 − xi,1 xi,3 − xi,1
yi,2 − yi,1 yi,3 − yi,1

)
. (1.4)

In three dimensions, each element Ωi is mapped to the canonical tetrahedron Ωc, having
vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), using the transformation

x
y
z
1

 =


xi,1 xi,2 xi,3 xi,4
yi,1 yi,2 yi,3 yi,4
zi,1 zi,2 zi,3 zi,4
1 1 1 1




1− r − s− t
r
s
t

 , (1.5)

where (xi, yi, zi)1,...,4 are the vertices of Ωi in the physical space (Figure 1.2b). We label
the face opposite vertex (1, 0, 0) face 1, the face opposite vertex (0, 1, 0) face 2, the face
opposite vertex (0, 0, 1) face 3, and the face opposite the vertex (0, 0, 0) face 4 (Figure
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1.2b). The Jacobian of the transformation is

Ji =

xi,2 − xi,1 xi,3 − xi,1 xi,4 − xi,1
yi,2 − yi,1 yi,3 − yi,1 yi,4 − yi,1
zi,2 − zi,1 zi,3 − zi,1 zi,4 − zi,1

 . (1.6)

We define Sp(Ωc) to be the space of polynomials of order up to p on Ωc, and {ϕk}k=0,··· ,Nd
p−1

to be the set of orthonormal basis functions on S(Ωc) [12, 13], where the number of basis
functions Nd

p for the space of order p in d spatial dimensions is

Nd
p =

{
1
2
(p+ 1)(p+ 2) if d = 2,

1
6
(p+ 1)(p+ 2)(p+ 3) if d = 3.

The linear basis in two dimensions is

ϕ0 =
√

2,

ϕ1 = −2 + 6r,

ϕ2 = −2
√

3 + 2
√

3r + 4
√

3s,

(1.7)

and in three dimensions is

ϕ0 =
√

6,

ϕ1 = −
√

10 + 4
√

10r,

ϕ2 = −2
√

5 + 2
√

5r + 6
√

5s,

ϕ3 = −2
√

15 + 2
√

15r + 2
√

15s+ 4
√

15t.

(1.8)

The exact solution on element Ωi is approximated by Ui, which is a linear combination

of the basis functions ϕk, i.e. Ui =
∑Nd

p−1

k=0 ci,kϕk, where ci,k = [c1
i,k, c

2
i,k, . . . , c

m
i,k, . . . , c

M
i,k]

ᵀ

are referred to as the degrees of freedom (DOFs). As continuity between elements is not
imposed, the solution is multivalued in the boundary integral. We therefore introduce a
numerical flux F∗(Ui,Uj) to allow information exchange between adjacent cells Ωi and
Ωj. We assume that the numerical flux is consistent, monotone, and differentiable. With
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v chosen to be ϕk, equation (1.2) now becomes

d

dt
ci,k =

1

det Ji

(∫
Ωc

F(Ui) · (∇ϕkJ−1
i ) det Ji dx

−
∑

j∈Ne
i ,j 6=i

∫
∂Ωi,j

ϕkF
∗(Ui,Uj) · ni,j dl

)
, k = 0, · · · , Nd

p − 1, (1.9)

where N e
i is the set of indices of Ωi and of elements that share an interface with Ωi, ∂Ωi,j

is the interface shared by Ωi and Ωj, and ni,j is the outward pointing unit normal on that
interface. In two dimensions, ∂Ωi,j is a linear segment, i.e. an edge and in three dimensions,
it is a triangle, i.e. a face. ∂Ωi,j is also referred to as es, where s is the index of the edge
or face. We use numerical quadrature rules of order 2p and 2p+ 1 to evaluate the volume
and surface integrals in (1.9), respectively [9]. The system of equations (1.9) can be solved
in time using a standard ordinary differential equation (ODE) solver of order p+ 1, e.g. a
Runge-Kutta (RK) method.

As the volume and surface integral contributions can be computed cell-by-cell and
face-by-face, respectively, the method is predisposed to applications on highly parallel
GPU architectures [3]. We now give an overview of the application programming interface
(API), CUDA, with which the DG method can be implemented on NVIDIA GPUs.

1.2 CUDA

NVIDIA’s CUDA (Compute Unified Device Architecture) is an API for general purpose
GPU computing on NVIDIA GPUs. The CPU, named the host, directs the GPU, named
the device, through API calls that transfer memory and execute parallel algorithms, called
kernels. Kernels are executed by threads in parallel, or in lock-step, i.e. in a Single
Instruction Multiple Data (SIMD) fashion. That is, the same instruction set is executed
on different data units simultaneously.

There are many considerations that must be taken into account when designing a kernel.
The programmer is tasked with mapping data elements to threads such that memory con-
tention (race conditions) is avoided, while also ensuring memory is accessed in an efficient
manner for optimal (coalesced) memory transfers.

Warps are collections of 32 threads. They are grouped into blocks of a size determined
by the programmer. The entire collection of blocks constitutes all the parallel elements of
a kernel. Though it is possible to implement a synchronization point across the threads
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in a specific block, the only way to synchronize across all threads in a kernel is by exiting
the kernel. Upon kernel termination, the programmer is guaranteed that all threads have
completed their respective work. This is crucial to know when designing kernels that may
present race conditions.

There is a complex memory hierarchy on NVIDIA GPUs that we only briefly summarize
here. Global memory is shared among threads and is located in GPU video memory
(DRAM). Modern NVIDIA GPU platforms, such as the NVIDIA Tesla K40, have 12 GB
of global memory available. Thread local memory is located on low-latency registers, or, if
the registers are full, there is spillage into global memory. The programmer can minimize
the effect of high latency global memory accesses through efficient data access patterns,
i.e. coalesced reads and writes, and minimization of the number of reads and writes to
global memory. An optimized data flow on the GPU entails a coalesced load of data from
global memory, manipulation of these data in the registers, then a coalesced write back to
global memory.

1.3 Adaptive mesh refinement

AMR is a technique that modifies the mesh in order to efficiently distribute computational
resources over the domain. Common types of adaptivity include anisotropic adaptivity, p-,
and h-refinement. Anisotropic adaptivity spatially relocates, or smooths, the geometrical
nodes of the mesh [14]. P -refinement strategies aim to increase the local degree of approx-
imation in smooth regions of the solution [15, 16]. Finally, h-refinement strategies enrich
the mesh locally with new elements in order to capture fine structures of the solution or
shocks.

Implementations of AMR are numerous and include PARAMESH [17], Chombo [18],
deal.ii [19], and AMRClaw [20]. H -adaptivity has been implemented as patch-, block-, or
cell-based refinement.

The idea behind patch-based refinement, or component grids, is to superimpose pro-
gressively refined Cartesian grids until the desired accuracy is obtained [21] (Figure 1.3b).
Subgrids communicate with one another and are advanced in time using local time step-
ping.

In block-based refinement, a predefined number of elements is grouped together into
blocks [22, 23]. Refinement and coarsening operations execute on blocks of cells, rather
than individual elements (Figure 1.3c). Only inter-block connectivity is required since the
blocks are scaled versions of one another.
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(a) Initial mesh. Shaded
elements are flagged for
refinement.

(b) Patch-based refine-
ment.

(c) Block-based refine-
ment.

(d) Cell-based refine-
ment.

Figure 1.3: Patch-, block-, and cell-based refinement strategies on regular grids.

(a) Initial unstructured mesh of triangles.
Shaded triangles are flagged for refinement.

(b) Cell-based refinement.

Figure 1.4: Cell-based refinement on an unstructured mesh of triangles.
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In cell-based h-refinement, cells are refined independently of one another, which requires
more connectivity data than block-based refinement (Figure 1.3d). Usually, parent-child
relations between coarse and fine elements are organized into a quadtree or octree data
structure for two- and three-dimensional codes [24], respectively. The advantage of this
approach is that fewer elements may be needed for a prescribed error tolerance and that it
is well suited to unstructured meshes. We focus on cell based h-adaptivity on unstructured
meshes of triangles in this thesis (Figure 1.4), though the work we present here generalizes
to other AMR strategies.

Cell-based h-adaptivity has been used extensively on serial and parallel CPU architec-
tures in CFD codes, e.g., [25–27]. However, GPU architectures present their own challenges.
During AMR, elements and their corresponding data may be added or removed from the
mesh. Updating the data arrays can lead to memory management issues, e.g., ensuring
that arrays contain contiguous information without excessive copying.

1.4 Reflection problems in gas dynamics

There are a number of reflection problems in gas dynamics that are intractable without
some form of adaptive mesh refinement. In this thesis, we consider a number of AMR
benchmarks as well as two more challenging problems. The first problem is resolving
Guderley Mach reflection and the second is resolving the shock disappearance point in a
diffraction problem. Guderley Mach reflection has previously been simulated on manually
constructed, logically Cartesian grids. Here we present fully adaptive computations on
an unstructured mesh, which allows us to obtain a more accurate position of the triple
point and contribute to the body of numerical evidence for Guderley’s solution. There
are several self-similar reflection patterns that can result from the oblique reflection of a
shock against a wedge. Regular reflection occurs when the incident (I) and reflected (R)
shocks meet at the wall (Figure 1.5a). Single Mach reflection occurs when the point at
which the incident and reflected shocks meet detaches from the wall (Figure 1.5b). This
point is called the triple point (TP) and is connected to the wall via the Mach stem (MS).
A slipline (S) also originates at the triple point. Under different wedge angles and shock
strengths, a more complex reflection pattern is observed, called double Mach reflection.
The reflected shock creates a second triple point (TP’), Mach stem (MS’), and slipline (S’)
(Figure 1.5c). The theory of regular and Mach reflection was developed by von Neumann
and allowed the prediction of the type of reflection pattern that occurs (regular or Mach
reflection) based on the wedge angle and shock strength. However, some difficulty was
encountered when applying the theory to weak shocks. Early experimental evidence seemed
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(a) Regular reflection.

IR

MS
S
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(b) Single Mach reflection.

I

MS

TP

MS’
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(c) Double Mach reflection.

IR

MS

TP

(d) Guderley Mach reflection.

Figure 1.5: Regular reflection, single and double Mach reflection. The incident (I), primary
and secondary reflected shocks (R, R’), Mach stems (MS, MS’) and sliplines (S, S’) are
indicated. The sonic line in the Guderley Mach reflection case is indicated by the dashed-
dotted line.
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to indicate that in some parameter regimes, Mach reflection was the observed reflection
pattern even though this was not allowed in von Neumann’s theory. One proposed solution
is that a singularity could be present behind the triple point, invalidating assumptions in
von Neumann’s theory. Another solution was proposed by Guderley, where there is an
expansion fan and a supersonic patch behind the triple point [28]. Early experimental
and numerical studies were unable to determine the correct solution. This is because
the region of interest is very small, on the order of 10−4. To properly resolve this flow
feature, cell sizes on the order of 10−6 are required in the neighborhood of the triple point.
Recently, numerical and experimental evidence has suggested that Guderley’s solution is
correct [29–31] (Figure 1.5d).

1.5 Limiters

Oscillations in numerical solutions given by high order numerical methods appear due
to Gibbs’ phenomenon in the presence of discontinuities. We illustrate this on a simple
example by solving the linear advection equation, ut+ux = 0 on the periodic domain [−1, 1],
with a finite volume method using the upwind numerical flux and a slope reconstruction.
The initial condition is the pulse u0(x) = 1 if x < 0 and u0(x) = 0 otherwise. The
numerical solution at T = 0.5 is given in Figure 1.6a, where a number of overshoots
and undershoots are present near the discontinuities. For linear fluxes, these oscillations
may or may not be acceptable in the final solution. For nonlinear fluxes however, these
nonphysical oscillations may lead to numerical instability. In this case, a stabilization
procedure, such as slope limiting, must be used to suppress oscillations in the solution in
case of wave steepening and shock formation. Using a slope limiter, e.g., the superbee
limiter, an oscillation-free numerical solution can be obtained (Figure 1.6b). Typically,
a slope limiting procedure modifies the numerical slope on each element such that it lies
in a locally defined range. Then, a global stability property of the numerical solution
is deduced. For one-dimensional problems, slope limiters that enforce a total variation
diminishing (TVD) property have been successful [32]. However, an extension of this
approach to two-dimensions was shown to yield at most first order accurate schemes [33].
For two-dimensional problems, slope limiters that maintain a local maximum principle can
also preserve second order accuracy [34].

Limiting in multidimensional space is more difficult than in one dimension. In one
dimension, there is only one limiting direction and a clear forward and backward neigh-
boring element. In multiple dimensions, it is not obvious in which direction the slope
must be limited, or how to define a neighboring element. Most work in multidimensional
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(a) Slope reconstruction without limiting.
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(b) Superbee slope reconstruction.

Figure 1.6: Linear advection example illustrating Gibbs’ phenomenon.

limiting has concerned two-dimensional numerical schemes. For example, there are direc-
tional derivative limiters and moment limiters on Cartesian grids. Directional derivative
limiters reduce the x and y partial derivatives by constant factors such that the value of
the numerical solution at the surface quadrature points is contained in a local interval
defined by neighboring elements. Barth-Jespersen type limiters multiply both x and y
partial derivatives by the same constant factor between 0 and 1 [2, 35]. A less restrictive
type of limiter solves a small linear program on each element such that x and y partial
derivatives are multiplied by different factors [36]. One way of determining which elements
are neighboring is finding all elements that share a geometrical vertex with the limited ele-
ment. The difficulty with using this type of limiter is that the number of vertex neighbors
increases quickly with dimension. In one dimension, there are only two vertex neighbors.
On good quality two dimensional unstructured meshes of triangles, we have observed that
each element can have up to 20 vertex neighbors. On good quality three dimensional un-
structured meshes of tetrahedra, this number can reach 120, which leads to an exorbitant
amount of computational work. The influence of using a subset of the vertex neighborhood
for two-dimensional limiting was examined in [2]. The number of vertex neighbors that
compose the limiting stencil varies from element-to-element, unless the mesh is structured.
This can lead to inefficiencies for codes implemented on parallel computing architectures
such as GPUs [2]. Specifically to the Euler equations of gas dynamics, positivity preserving
limiters for density and pressure as well as entropy bounding limiters have been examined
in [37–40] for high order DG solutions.
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1.6 Outline of thesis

This thesis is structured as follows. In Chapter 2, we describe our GPU parallelized h-
adaptive implementation of the DG method. Using these GPU algorithms, we solve a
number of popular benchmarks in gas dynamics and two less common shock reflection
problems that are intractable without some form of mesh adaptivity. In Chapter 3, we
analyze the stability and accuracy of second-order slope limiters for the discontinuous
Galerkin method on unstructured triangles. In Chapter 4, we study the optimal CFL
number of SSP time stepping methods in one dimension used with the method of lines-
type discretizations of hyperbolic conservation laws. In Chapters 5 and 6, we describe our
novel approach to moment limiting on unstructured meshes of triangles and tetrahedra,
respectively.
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Chapter 2

Adaptive mesh refinement on
unstructured meshes of triangles

In this chapter, we discuss and implement code optimization techniques for high order finite
element GPU codes that support runtime adaptive mesh refinement (AMR). Our imple-
mentation presents a number of novelties. First, it is entirely implemented on the GPU.
Many AMR solvers in the literature are actually hybrid CPU-GPU solvers, whereby the
main solver is implemented on the GPU and some algorithms that modify the adaptively
refined mesh are offloaded onto the CPU. CFD codes on GPUs can easily present race
conditions when multiple threads attempt to write to the same memory location, e.g., in
writing the surface contribution to the right-hand-side of two elements that share an edge
or face. A suboptimal solution is extensive amounts of buffer memory [7]. In anisotropic
adaptivity, a race condition can also occur when the code is modifying the position of the
geometrical vertices of the mesh. In both cases, a coloring algorithm for work scheduling is
a suitable solution [7, 41, 42]. The edge coloring of the initial, conforming mesh is done in
the preprocessing stage. Based on this initial coloring, we describe a fast runtime mapping
from parent to children which extends the edge coloring to adaptively refined meshes (Sec-
tion 2.1.5). The resulting edge coloring is also used in mesh smoothing subroutines that
force adjacent elements to not differ by more than a prescribed difference in refinement
level (Section 2.2.1). We propose an efficient stream-compaction operation that ensures
that data is contiguous in memory. Finally, we apply our optimized code to a number
of computationally difficult problems in gas dynamics that are intractable without mesh
adaptivity.

Our h-adaptive DG-GPU algorithm is implemented in NVIDIA CUDA C and comprises
a DG module and AMR module. In the DG module, we calculate the RHS of (1.9) on
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a static mesh and advance the solution in time. Every N time steps, the AMR module
adapts the mesh to the solution by refining and coarsening select elements. We show the
organization of our AMR and RHS evaluation subroutines in Algorithm 1.

Algorithm 1 Pseudocode for AMR solver
step = 1; t = 0;
while t < T do

Advance cn to cn+1 with the DG method and RK time stepping. . DG module
if mod(step, N ) == 0 then

AMR module.
end if
step++
t += ∆t

end while

2.1 DG module

In this section we describe how the DG module is organized and give a brief overview of
the subroutines that evaluate the right-hand-side of (1.9). For a more detailed treatment
of these aspects of the solver, see [3, 7].

2.1.1 Data ordering and ID numbers

Every element and edge is assigned a unique identification integer (ID). The IDs of the
elements and edges of the initial conforming mesh are given sequentially based on the
output of the mesh generator. We store the IDs for elements and edges of the current
mesh in arrays called elem list and edge list (Figure 2.1). After the AMR module is
executed, the position an element or edge occupies in elem list or edge list may no
longer correspond to its ID. This is because elements will be added and removed within
the list due to refinement and coarsening subroutines. Therefore, we store the positions
of IDs in elem id2pos to avoid searching elem list. In the example presented in Figure
2.1, the element with ID 7, Ω7, is at the fifth index of elem list, i.e. elem list[5] = 7.
Then, elem id2pos[7] = 5. The same is done in edge id2pos for edges in edge list.
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elem list

elem id2pos

0 1 2 3 4 5 6 7

2 3 1 0 4 6

0 13 4 5

57

6 72

index

Figure 2.1: The value of elem id2pos[i] indicates the location of Ωi’s ID in elem list.

2.1.2 Element information

The DOFs are organized into arrays named c0, c1, ..., each of length N , which is the
number of elements in the mesh. There is one array for every basis function and equation,
i.e. the number of arrays is Np ×M , where Np is the number of basis functions and M is
the number of equations in (1.1). The right-hand-side of (1.9) is stored in a similar manner
in arrays named rhs0, rhs1, ... . This guarantees coalesced reads and writes in computing
the volume integral [7]. The DOFs are organized in the same order as the element IDs in
elem list. For example, c7,0 is at index 5 of c0 (Figure 2.1).

Additional data required for the computation of (1.9) such as element vertices, coor-
dinate transformation Jacobians, and precomputed basis function values are also stored.
Element connectivity is stored as the ID numbers of a triangle’s three edges (element-to-
edge connectivity data, Figure 2.2a). A triangle may have more than three edges if one
or more of its neighbors have been refined, e.g. Ω1 has four edges in Figure 1.1. For such
nonconforming triangles, the parent ID of the refined edges is stored instead, e.g., edge ID
4 is stored rather than 6 and 9. The IDs 6 and 9 are found using the edge tree structure
(Section 2.2.2).

2.1.3 Edge information

Edge normals and lengths are required for the computation of (1.9). Refining or coarsening
an edge does not introduce new edge normals for straight-sided triangles. Therefore, we
only store the normals and lengths of edges in the original mesh. Edges in the current
mesh store their refinement level. To find the current edge length, simple arithmetic is
done when evaluating the surface contribution term by dividing the original edge length
by 2r, where r is the edge refinement level. An edge points to its left and right element, i.e.
the two elements that share it (Figure 2.2b); the ID of an edge’s left and right elements
are stored as integers in the arrays left elem and right elem.
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Ω1 Ω2 Ω3 Ω4 Ω5

e5 e6 e7 e8 e9 e10 e11 e12 e13e1 e2 e4

parent-child relation

(a) Element-to-edge connectivity.

e1 e2 e5 e6 e7 e8 e9 e10 e11 e12 e13

Ω1 Ω2 Ω3 Ω4 Ω5

Boundary

(b) Edge-to-element connectivity.
Dashed and solid lines connect an
edge to its left and right element,
respectively.

Figure 2.2: Connectivity information stored for the refined mesh in Figure 1.1.

2.1.4 Right-hand-side evaluation kernels

A standard RK time integrator requires the evaluation of the RHS of (1.9). This time
stepping module consists of two kernels that evaluate the volume terms

1

det Ji

∫
Ωc

F(Ui) · >(J−1
i )∇ϕk det JidΩc (2.1)

and surface terms

− 1

det Ji

∑
j∈Ne

i ,j 6=i

∫
∂Ωi,j

ϕkF(Ui,Uj) · ni,j dl. (2.2)

One thread per element is launched for the first kernel eval volume. Thread ti computes
the volume integral terms for Ωi in (2.1). The thread then stores the volume contribution
in rhs0, rhs1, ... The data for this kernel is accessed in a coalesced fashion. We illustrate
this in Figure 2.3 where thread s accesses the sth positions of arrays c0, c1, ...

Similarly, one thread ts per edge Ωi,j, i.e. es, is launched for the second kernel,
eval surface. Thread ts loads the solution coefficients of its edge’s left and right ele-
ments, then it computes the surface integral terms for edge es in (2.2). The thread then
adds the surface contribution to the right-hand-side of its edge’s left and right element in
rhs0, rhs1, ... . In this kernel, memory is not guaranteed to be accessed in a coalesced
fashion. This is because consecutive edges may not necessarily have consecutive left and
right elements due to the unstructured nature of the mesh.
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0 1 2 3 4 5 6 7 8 9thread idx

c0 c10,0 c7,0 c2,0 c11,0 c3,0 c6,0 c4,0 c8,0 c0,0 c9,0

c1 c10,1 c7,1 c2,1 c11,1 c3,1 c6,1 c4,1 c8,1 c0,1 c9,1

elem list 10 7 2 11 3 6 4 8 0 9

...

Figure 2.3: eval volume coalesced read access pattern.

2.1.5 Coloring

Thread ts in the eval surface kernel evaluates the surface integral along the sth edge
in edge list. Then, ts adds its surface contribution to the right-hand-side of the edge’s
left and right element. The race condition can arise if two threads simultaneously attempt
to write their surface contribution to the same element (Figure 2.4). An edge coloring
algorithm that partitions the edges of a conforming mesh was proposed in [7]. The race
condition can be avoided by executing eval surface over all edges of the same color in
separate kernel launches (Figure 2.5). In [7], a simple mapping of the colors between
coarse and fine elements is proposed as it is impractical to recolor the entire mesh when it
is adaptively refined (Figure 2.6). The first child edge retains the color of its parent and
the second child takes the parent’s color incremented by three. If the parent’s color is c,
then the children’s colors are c and mod(c + 2, 6) + 1, e.g., if the parent’s edge color is 1,
then its children’s colors are 1 and 4. Each new interior edge takes the color of the edge
on the parent element to which it is parallel. This process is easily reversible during the
coarsening operation. These algorithms result in the minimum number of colors used, i.e.,
3 and 6 colors on conforming and nonconforming meshes of triangles, respectively.
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Figure 2.4: Race condition arises when threads t0 and t1 write simultaneously to the
memory location of Ω1.
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Figure 2.5: Avoiding the race condition with coloring. The arrows indicate the elements
to which each thread writes its surface contribution.
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Figure 2.6: Mapping the initial coloring to refined triangles and back.

2.2 Adaptive mesh refinement

We discuss in this section the implementation details of the adaptive mesh refinement
module of the code. First, we compute an indicator on each cell from which we determine
which elements to flag for refinement or coarsening. During one execution of the AMR
subroutines, we allow the refinement level of a cell to be adjusted by at most one. The
exception is the initial condition where the AMR module is executed a number of times
until a predefined maximum refinement level is reached.

2.2.1 Mesh smoothing

After elements are flagged for refinement or coarsening (Section 2.2.8), we perform mesh
smoothing to avoid creating a mesh where the refinement levels of neighboring elements
differ by more than one (Figure 1.1, right), i.e., we require that

|ri − rj| ≤ 1, (2.3)
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(a) ‘1’ indicates refinement, ‘-1’ in-
dicates coarsening, and ‘0’ indicates
that the element is neither coarsened
nor refined.

(b) Mesh after refinement, coarsen-
ing, and smoothing operations. The
dashed line shows the elements added
due to smoothing.

Figure 2.7: Mesh smoothing operation.

where ri and rj are the refinement levels of adjacent elements Ωi and Ωj, respectively.
For example, in Figure 2.7a we display a mesh with AMR flags ‘-1’, ‘1’, or ‘0’ on each
element, indicating whether it should be coarsened, refined, or neither. These AMR flags
are stored in the array edr, ‘element difference in refinement’. When Ω1 and Ω2 are
refined, the refinement level of their children and Ω0 will differ by two, which violates the
nonconformity constraint (2.3). We therefore must smooth the mesh to reduce this jump.

We implement this operation by launching one thread per edge in a kernel called smooth

(Algorithm 2). Each thread loads the left and right element of its designated edge. Using
the elements’ current refinement levels and edr value, the element refinement levels after
the AMR operation are computed. If their updated refinement levels do not satisfy the
nonconformity constraint (2.3), then the AMR flag in edr of either the left or right element
is modified such that a more refined mesh is obtained. For example, on edge e0 in Figure
2.7a, the refinement levels after the AMR operation will be 2 on Ω1’s children and 0 on
Ω0. Consequently, we refine Ω0 once (Figure 2.7b).

We execute smooth on all edges of the same color in separate kernel launches. This
is done in order to avoid memory contention when modifying the AMR flag array edr.
Without coloring, threads operating on edges e0 and e1 in Figure 2.7a could write their
result simultaneously to the position in memory corresponding to Ω0 in edr. smooth is
launched multiple times until the nonconformity condition (2.3) is satisfied for all elements.
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After mesh smoothing, it is finalized which elements are to be refined or coarsened.
Thus, we may proceed to executing the refinement and coarsening subroutines.

Algorithm 2 Mesh smoothing operation

procedure smooth(edr)
le, re← positions of left and right element.
left after, right after← level after refinement of left and right elements
if left after-right after > 1 then

edr[re] = 1
else if right after-left after > 1 then

edr[le] = 1
end if

end procedure

2.2.2 Tree structures

The parent-children relations of elements and edges are stored in tree data structures,
where parents and children point to one another. The tree structure for the elements in
the refined mesh of Figure 1.1 are shown in Figure 2.8. The elements and edges that are
active in the refined mesh are highlighted in blue and do not have children.

2.2.3 Connectivity

In order to evaluate the surface contributions in (2.2), each thread of the kernel eval surface

needs the IDs of the left and right elements sharing its assigned edge, i.e., edge-to-element
connectivity data (Figure 2.2b). After the mesh is refined and coarsened, it is necessary to
update mesh connectivity to reflect the addition and removal of elements, e.g., find the new
left and right elements sharing an edge. We do this by using the tree structure described
above.

First, we refine the edge tree by splitting edges flagged for refinement, assign new IDs
to child edges, and update the IDs in edge list. Similarly, we refine the element tree
and update the IDs in elem list. From the edge and element trees, we can compute the
connectivity between new elements and edges.

As an example, consider the refined mesh in Figure 1.1. First the edges of Ω0 are
refined and the new IDs for the child edges of e0, e3, and e4 are assigned (Figure 2.8,
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Ω0 Ω1

Ω2 Ω3 Ω4 Ω5

e0 e1 e2 e3 e4

e5 e6 e7 e8 e9 e10 e11 e12 e13

Figure 2.8: Tree for the refined mesh in Figure 1.1. Elements and edges shaded in blue are
active in the current mesh.

bottom). Next, Ω0 is refined and the new IDs for the children are assigned. The IDs of
the child elements’ outer edges can be found from the already updated edge tree, e.g. e7

and e10. Then, the edge IDs of the interior child triangle Ω5 must be created, e11, e12, and
e13. Now that the new elements know the IDs of their edges, i.e. we have the updated
element-to-edge connectivity (Figure 2.2a), the left and right elements of the new edges in
edge list can be updated.

By our convention, a triangle points to three edges that have the same refinement level.
For elements that have more than three edges, e.g. Ω1 in Figure 1.1, the ID of the refined
edges’ parent is stored instead. In our example, Ω1 points to e1, e2, and e4, which are all
of refinement level 0. From the edge tree, we can find that e4 points to e6 and e9 (Figure
2.2a).

2.2.4 Coarsening

Coarsening is done ‘in-place’, i.e., this modification to the mesh does not require a buffer
and avoids large amounts of memory transfers (Figure 2.9a). coarsen list contains a
list of parent element IDs that are to replace their children. We place the parent ID in
the first child’s position in elem list and flag the other children’s memory locations as
unused. We illustrate in Figure 2.9a how elem list is updated to reflect the coarsening
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(a) Coarsening.

0 1 2 3 4 5 6 7 8 9thread idx

refine list

(before) elem list

(after) elem list

5 7 - 11 - 6 - 8 0 9

5 12 13 11 14 6 15 8 0 9

7

(b) Refining.

Figure 2.9: Access pattern for refinement and coarsening kernels.

of elements Ω1, Ω2, Ω3, and Ω4. Thread 2 places the parent element ID of the cluster,
i.e. Ω5, in the list position of its first child element ID, i.e. in the position of element Ω1.
The freed memory spaces of the three other children are indicated by dashes. All the data
associated with elements are dealt with in a similar fashion, e.g., the DOFs of the parent
element Ω5 are placed in the old memory location of the first child, Ω1.

Coarsening four children leads to the removal of a section of the element and edge trees.
We keep track of the memory and ID numbers freed during the coarsening operation in
order for them to be reused during a refinement operation. For this reason, coarsening, if
required, is always executed before refinement.

The solution coefficients on a parent element are obtained using an L2 projection on
the four child elements. The projection is implemented as a dot product of the solution
coefficients on the children and weights that have been precomputed for fast execution.

2.2.5 Refinement

Refinement is also done ‘in-place’ (Figure 2.9b). refine list contains a list of element IDs
that are to be refined. The position of the parent element in elem list is taken by its first
child. The IDs for the three remaining children are placed in free memory locations, if any
were made available during coarsening. If there are no free locations within the list, then
the additional IDs are concatenated to the end of the array. All the data associated with
elements are dealt with in a similar fashion. For example, in Figure 2.9b, Ω7 in refine list

is refined by thread 5. The first child ID Ω12 overwrites Ω7, the rest (Ω13, Ω14, and Ω15) are
placed in the remaining available memory locations of elem list indicated by dashes. The
DOFs of the four child elements are obtained with an L2 projection, which is equivalent
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(c) Launch over edges of color 3.

Figure 2.10: Without ordering of the edge IDs, eval surface will have inactive threads,
reducing parallelism.
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(c) Launch over edges of color 3.

Figure 2.11: With ordering of the edge IDs, all threads of eval surface will be active.

to a dot product of the parent DOFs and weights, which have been precomputed for fast
execution.

2.2.6 Edge reordering

The surface integral kernel, eval surface, is executed on the edges of a particular color in
separate launches. If the edges in edge list are not ordered by color, then the parallelism
of eval surface will be reduced. This is because some threads will be inactive during the
kernel execution (Figure 2.10). The edges in edge list are not guaranteed to be ordered
by color after the mesh is refined and coarsened. Therefore, after the AMR subroutines
complete, the edges in edge list must be reordered by color. This will guarantee all
threads in the launches of eval surface are active (Figure 2.11).

2.2.7 Memory management

In Sections 2.2.4 and 2.2.5, we described how the coarsening and refinement operations are
done in-place. This is to avoid using buffers and unnecessary memory transfers. However,
if the total number of elements in the mesh is reduced by the refinement and coarsening
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operations, there will be ‘holes’ in the the data arrays. This will reduce the efficiency of
memory accesses by making some reads and writes uncoalesced. Therefore, these ‘holes’
must be filled to make the data contiguous in memory.

Algorithm 3 Compaction

procedure compaction(out, in, out flag, in flag)
idx ← thread index
if in flag[idx] then

out[out flag[idx]] ← in[idx]
end if

end procedure

This operation on GPUs is called a ‘stream compaction’ and it does not have a simple
solution. Typically, a compaction is done using an operation called a prefix sum. A prefix
sum takes as input an array of integers in flag and outputs another array out flag. The
element at the nth index of the output array is given by the formula

out flag[n] =
n−1∑
i=0

in flag[i] for n > 0, (2.4)

and out flag[0] is set to 0 (Figure 2.12). Now, assume that we wish to copy selected data
from the array in into the array out. in flag is an integer array of 0’s and 1’s, which
indicates whether the data at the corresponding position in in must be preserved (‘1’) or
removed (‘0’). After computing the prefix sum for in flag, a compaction kernel (Algorithm
3) is launched that creates a new array out without the unwanted data. This procedure
is illustrated in Figure 2.12. There are application programming interfaces (APIs) that
provide an implementation of the prefix sum and compaction operations. Unfortunately,
the standard implementations of the stream compaction operation are not suitable for our
purposes. This is because we may have GBs of data where only a small fraction of the
elements in those arrays require removal. Executing the compaction kernel will always
result in all the data of the compacted array being moved to a new location, regardless
of the number of elements being removed. A more efficient solution is to implement an
in-place compaction, which we will now describe.

Suppose we wish to remove the elements from the array of integers in Figure 2.13 using
in flag. According to in flag, the compacted array will have a length of 6. Let us refer
to the position between indices 5 and 6 as the ‘pivot’. The idea is to fill the holes to the left
of the pivot with elements from the right of the pivot. First, we find the elements to the
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before compaction

after compaction

in

out

Figure 2.12: Example of a standard compaction algorithm.

right of the pivot for which in flag is ‘1’ and store their position in the array from. Next,
we find the elements located to the left of the pivot for which in flag is ‘0’ and store their
positions in to. Populating to and from is done using the prefix-scan from CUB [43]. The
final step is to launch a kernel which completes the data transfer in-place (Algorithm 4).
This operation does not preserve the initial ordering of the data, but this is not important
in our application.

Algorithm 4 In-place compaction

procedure in place compaction(in, to, from)
idx ← thread index
in[to[idx]] ← in[from[idx]]

end procedure

2.2.8 Refinement strategy

In this work, we are not concerned with the optimal way to flag an element for coarsening
or refinement. Therefore, we adopt the following simple strategy reported in the literature
[44]. We compute on Ωi the refinement indicator εi. Then, we compare εi to reference
values εr = εδ and εc = ε/δ, where ε and δ are prescribed constants. Ωi is refined if εi > εr.
A cluster of four elements, Ωi, Ωj, Ωk, Ωl, with the same parent element, is coarsened if
εi, εj, εk, εl < εc. We choose the simple refinement indicator

εi = hi||∇Ui||2, (2.5)
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Figure 2.13: In-place compaction implementation.
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Figure 2.14: Minimum cell height hi = min(Hi,1, Hi,2, Hi,3) [2].
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where ∇Ui is the gradient evaluated at the cell centroid and hi is the minimum cell height
(Figure 2.14, [2]).
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2.3 Computed examples

2.3.1 Initial-boundary value problems

We solve the two-dimensional Euler equations, which can be written in form (1.1) with the
fluxes

F1(U) =


ρu

ρu2 + p
ρuv

(E + p)u

 and F2(U) =


ρv
ρuv

ρv2 + p
(E + p)v

 , (2.6)

where U = [ρ, ρu, ρv, E]. The system is closed with the equation of state

p = (γ − 1)
(
E − ρ

2
(u2 + v2)

)
,

where γ = 1.4 is the adiabatic constant for air, ρ is the density, u and v are components
of the velocity vector, and E is the energy.

2.3.1.1 Smooth isentropic vortex

We use this example to illustrate the runtime performance of our AMR algorithm. This
example was solved on an NVIDIA Titan X Pascal. The problem with initial conditions
stated in Table 2.1 has the exact solution U(x, y, t) = U0(x, y− t), i.e. the initial vortex is
advected in the y direction with speed 1 [45]. It is solved until the final time T = 2 on the
domain [−10, 10]2 with the exact solution used as boundary conditions. The initial mesh
is coarse and composed of 180 unstructured triangles.

First, we perform an initial mesh adaptation to accurately capture the initial conditions.
Then, we run the mesh adaptation subroutines every time step. In this example, we allow
at most six levels of refinement. The size of the mesh for all orders of approximation
was about 30,000 elements and did not vary substantially during the simulation. This is
expected since the solution is a translation of the initial conditions.

The breakdown of compute time in seconds for solutions with p = 1...4 is reported in
Table 2.2. The same data, but as a percentage of total AMR time, are shown in Figure
2.15. We report the timings in terms of seven subroutines: determineParents, smooth,
coarsen, refine, compaction, determineSideOrder, reorderSides, and other. The
procedures grouped in other include computing the refinement indicator (2.5), updat-
ing mesh connectivity and tree structures. determineParents looks up the parent IDs
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Table 2.1: Initial conditions for the smooth isentropic vortex problem (Example 2.3.1.1),
where r = 1

R2 (1− x2 − y2), S = 13.5, M = 0.4, and R = 1.5.

of the elements flagged for coarsening and stores them in coarsen list (Figure 2.9a).
determineSideOrder determines the new order of the edge IDs based on their color and
reorderSides reorders them and edge data to avoid race conditions in eval surface.

In Table 2.2, we notice that the time spent in the AMR subroutines increases with the
order of approximation as the number of calls to the time stepping and mesh adaptation
modules increases with p. This is because the time step size scales inversely with the order
of the method for the DG method of order approximation p paired with an RK scheme of
order p + 1. In Table 2.3, we list the data from Table 2.2 normalized by the number of
time steps. For subroutines that only depend on the number of elements in the mesh, we
observe that the normalized timings are similar for all polynomial orders.

We also note from Table 2.2 that the fraction of the total runtime spent in the AMR
module of the code decreases with p. This is because the number of RK stages and
the cost of computing the RHS of (1.9) increases with p. For orders p = 1 to 3, the
smooth subroutine is the most time consuming operation because it is difficult to parallelize
efficiently on the GPU (Section 2.2.1).

Note that refinement is usually performed less frequently than after every time step
as is done for this example, e.g., we may refine when the solution moves two cell widths.
For the RK-DG method where p = 1, 2, 3, 4, this means every 8, 12, 16, 20 time steps,
respectively [46]. Therefore, for practical applications, the overhead associated with the
AMR subroutines is small compared to the total runtime of the solver, especially for high
order simulations.

2.3.1.2 Kelvin-Helmholtz instability

Next, we solve the Kelvin-Helmholtz instability problem on the domain [−1, 1]2, with the
initial conditions given in Table 2.4 and illustrated in Figure 2.16 [1]. The initial conditions
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Subroutine 1 2 3 4
determineParents 0.44 0.64 0.84 1.03

smooth 1.21 1.75 2.29 2.81
coarsen 0.49 0.91 1.71 2.90
refine 0.76 1.24 2.03 3.39

compaction 0.49 0.78 1.16 1.67
determineSideOrder 0.70 1.00 1.32 1.62

reorderSides 0.18 0.25 0.33 0.41
other 0.49 0.73 0.96 1.21

AMR time 4.76 (0.45) 7.30 (0.20) 10.63 (0.09) 15.05 (0.04)
Total solver runtime 10.54 36.83 121.33 380.67

Table 2.2: Break-down of time spent in each AMR subroutine in seconds for Example
2.3.1.1. The number in parentheses is the fraction of the total runtime spent in the AMR
module of the code, when refining every time step.

Subroutine 1 2 3 4
determineParents 195.93 196.18 198.41 198.27

smooth 539.08 537.41 542.00 541.03
coarsen 216.95 279.58 404.79 558.14
refine 335.65 381.98 480.29 652.52

compaction 216.66 239.40 275.16 321.12
determineSideOrder 310.73 309.06 312.01 311.20

reorderSides 78.13 77.82 78.42 79.02
other 218.06 224.95 226.57 233.06

AMR time 2111.19 2246.38 2517.65 2894.35

Table 2.3: Timings in Table 2.2 divided by the number of time steps. Values are reported
in microseconds per time step. The grayed rows correspond to operations with runtimes
that are independent of the order of approximation.
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Figure 2.15: Percentage of the AMR runtime spent in each subroutine.

|y| ≤ 0.5 elsewhere
ρ 2 1
u 0.5 -0.5

v w sin(4πx)
[
e−

1
2s2

(y+0.5)2 + e−
1

2s2
(y−0.5)2)

]
p 2.5

Table 2.4: Density, velocity, and pressure of the three layers of fluid where w = 0.1 and
s = 0.05/

√
2 [1] (Example 2.3.1.2).

describe three fluid layers. The outer layers are dense, rightward moving fluids that are
sandwiching a less dense leftward moving fluid. In the neighborhood of the interfaces, the
fluids are perturbed with an oscillatory vertical velocity. These interfaces are sliplines,
which will lead to a rich production of vortices in the numerical solution. We prescribe
the initial state at the horizontal boundaries of the domain and impose periodic boundary
conditions at the vertical boundaries. The initial mesh is composed of two triangles.

The density along with the adaptively refined meshes at T = 2 with 6, 9, and 12 levels of
refinement are plotted in Figures 2.17 and 2.18. The number of elements in the final meshes
is approximately 4,000, 120,000, and 4,000,000. The AMR algorithms act predominantly
in the neighborhood of the sliplines. As we increase the number of refinement levels, the
vortices become more pronounced due to the reduction in numerical viscosity.
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fluid 1

fluid 1

fluid 2

y = 0.5

y = −0.5

Figure 2.16: Setup of the Kelvin-Helmholtz test problem (Example 2.3.1.2). The arrows
indicate the direction of fluid flow.

UI UQ

ρ 8 1.4
s 8.25 0
p 116.5 1

Table 2.5: Density, normal speed (s), and pressure of the incident UI and quiescent Uq

states in Example 2.3.1.3.

2.3.1.3 Double Mach reflection

We use this example to demonstrate the algorithm’s performance on a transient shock
reflection problem. We solve double Mach reflection problem on the domain [0, 3.5]× [0, 1]
with the initial condition of a rightward-moving shock that propagates into a quiescent
gas [47]. The incident Mach 10 shock forms a 60◦ angle with a reflecting boundary, which
results in the reflection pattern shown in Figure 1.5c. We provide the setup in Figure 2.19
along with the incident UI and quiescent UQ states in Table 2.5. We solve the problem
until the final time of T = 0.2, allowing 3, 6, and 9 levels of refinement from an initial
unstructured mesh composed of 1,776 triangles. The adaptively refined meshes at the final
time are shown in Figure 2.20 along with the density isolines on the finest mesh in Figure
2.21.
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(a) 6 levels of refinement. (b) 9 levels of refinement.

(c) Mesh on white rectangle in Figure 2.17a. (d) Mesh on white rectangle in Figure 2.17b

Figure 2.17: Final solutions and adaptively refined meshes of the Kelvin-Helmholtz test
problem allowing 6 and 9 levels of refinement.
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(a) 12 levels of refinement.

(b) Mesh on white square in Figure 2.18a.

(c) Zoom on red rectangle in Figure 2.18b.

Figure 2.18: Final solution and adaptively refined mesh of the Kelvin-Helmholtz test prob-
lem allowing 12 levels of refinement.

UI UQ

y

x
x0 =

1
6

60◦

x = 3.5

y = 1

Figure 2.19: Double Mach reflection setup (Example 2.3.1.3).
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(a) 3 levels of refinement. (b) Zoom on slipline region.

(c) 6 levels of refinement. (d) Zoom on slipline region.

(e) 9 levels of refinement. (f) Zoom on slipline region.

Figure 2.20: Final meshes of the double Mach reflection problem allowing 3, 6, and 9 levels
of refinement.
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(a) Density isolines. (b) Zoom on slipline region.

Figure 2.21: Density isolines at the final time on the mesh with 9 levels of refinement in
Figures 2.20e and 2.20f.

2.3.2 Boundary value problems

The initial-boundary value problem (1.1) can be restated as a boundary value problem in
the self-similar coordinates ξ = x

t
, η = y

t
, and τ = ln t, as follows

∂

∂τ
U +

∂

∂ξ
(F1(U)− ξU) +

∂

∂η
(F2(U)− ηU) + 2U = 0. (2.7)

A steady state solution of (2.7) corresponds to a self-similar solution of (1.1) in (ξ, η)
coordinates. Self-similar form (2.7) is useful because adapting the mesh for steady state
solutions is simpler than for transient ones. This is because the relevant features in the
solution do not move after the initial transient phase passes. In this section, we solve (2.7)
where F1(U) and F2(U) are the fluxes in (2.6).

2.3.2.1 Von Neumann triple point paradox

In this example, we present numerical evidence that supports Guderley’s solution to the von
Neumann triple point paradox. The problem setup consists of a weak, rightward moving
incident shock impinging obliquely on a wedge on a computational domain in the shape
of a circular sector (Figure 2.22a). The incident (I) and reflected (R) shocks detach from
the wedge and meet at a triple point (TP). The triple point is connected to the wedge via
a Mach stem (MS). We are interested in a very small portion of the reflection interaction
shown in Figures 2.22b and 2.22c. The supersonic patches predicted by the Guderley Mach
reflection are illustrated with dash-dotted lines in Figure 2.22c.
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R

I

MS

(a) Shock reflection pattern on the domain.

R

I

MS

(b) Zoom on the red
rectangle in Figure
2.22a.

R I

MS

TP

(c) Zoom on the red cir-
cle in Figure 2.22b. The
dashed-dotted line behind
the triple point is the sonic
line.

Figure 2.22: Incident (I) and reflected (R) shocks, with the Mach stem (MS) on the solution
domain, with zooms on the neighborhood of the triple point (TP).

A number of numerical investigations of this problem have been executed on block
adaptively refined grids [48] or distorted conforming grids [29,49]. Here we present results
on an unstructured mesh of triangles. The initial conforming mesh of the circular sector-
shaped domain in Figure 2.23a is shown in Figure 2.23b. The initial mesh is constructed
such that the elements are aligned with the incident shock.

The boundary conditions are given by a weak incident shock traveling at Mach 1.075
into a quiescent gas [29]. The incident UI and quiescent UQ states are reported in Table
2.6, the boundaries on which they are imposed are shown in Figure 2.23a. With the
goal of determining an accurate position of the triple point, we resolve the full length of
the incident and Mach stem as opposed to only in a neighborhood of the triple point.
Additionally, we explicitly prescribe that elements lying on a half disk centered on the
triple point are refined to the maximum level (Figure 2.25c). This is because the solution
varies little in that region and the refinement indicator we use has difficulty detecting the
complex reflection pattern. This small refined region moves with increasing pseudotime
τ , following the triple point along the vertical line ξ = 1.075 to its final position in self-
similar coordinates (1.075, 0.4111). We plot in Figure 2.24 the η coordinate as a function
of pseudotime τ .
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UI UQ

ρ 1.57697 1.4
u 0.12064 0
v 0 0
p 1.18156 1

Table 2.6: The incident UI and quiescent UQ states imposed as boundary conditions in
Example 2.3.2.1.

ξ = 1.075
θ = 15◦

UI

UQ

(a) Initial domain. The incident UI and quies-
cent UQ states are imposed on the red and blue
boundaries, respectively. The bottom boundary
is reflecting.

ξ = 1.075
θ = 15◦

(b) Initial, conforming mesh of domain in Figure
2.23a.

Figure 2.23: Initial domain and mesh for the von Neumann triple point paradox problem
in Example 2.3.2.1.

In Figure 2.25, we provide an adapted mesh, composed of ∼ 800,000 elements, with ∼
120,000 elements of minimum cell width h ≈ 4.6 · 10−6 in the neighborhood of the triple
point, where h is defined in Figure 2.14. We compute the self-similar Mach number

M̃ =

√
(u− ξ)2 + (v − η)2

c
,

where c is the speed of sound, and plot the isolines of M̃ in Figure 2.26. The solution
in Figure 2.26b was obtained by further refining the elements in the neighborhood of the
triple point in Figure 2.26a by a factor of 8. On the coarser mesh, only one supersonic
patch is discernible. However, two patches become visible with additional resolution. The
finer mesh is composed of ∼ 6,200,000 elements, with ∼ 5,000,000 elements of minimum
cell width h ≈ 5.8 · 10−7 in the neighborhood of the triple point.
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0.288

0.3

0.32

0.34

0.36

0.38

0.4

0.4111

0.42

τ

η

Figure 2.24: The vertical coordinate of the triple point vs. pseudotime.

(a) Adaptively refined mesh for
the solution in Figure 2.26a.

(b) First zoom of Mach stem
and triple point region in Figure
2.25a.

(c) Second zoom of Mach stem
and triple point region in Figure
2.25b.

Figure 2.25: The adaptively refined mesh for the solution in Figure 2.26a.
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(a) h ≈ 4.3 · 10−6

1.07440 1.07460 1.07500 1.07520 1.075401.07480
0.41022

0.41044

0.41066

0.41089

0.41111
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0.41178

0.41200

x/t

y/t

(b) h ≈ 5.8 · 10−7

Figure 2.26: 6 isolines for self-similar Mach numbers M̃ in the range 0.996 to 1.02. The
red isoline corresponds to the sonic line, i.e., M̃ = 1. The h is the approximate minimum
cell width in the neighborhood of the supersonic patches.
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2.3.2.2 Shock diffraction around a thin film

We now consider the problem of a shock interacting with a thin, reflecting film on a square
domain [−1.125, 1.125]2. The thin film is located on the line ξ = 0 between η = −1.125 and
η = 0. The incident, horizontally oriented shock propagates downward to the thin film.
Once it hits the film, it reflects and diffracts around the obstacle. The incident shock is
weak and propagates at Mach 1.075. As the shock diffracts, it transforms into an expansion
wave in a self-similar fashion. Another characteristic of the flow is the development of a
vortex at the corner of the thin film. The incident (I) and reflected (R) shocks as well
as the point (P) where the shock disappears are illustrated in Figure 2.27a, after the
incident shock has passed the thin film. Since this interaction is self-similar, this figure
also illustrates the boundary conditions applied in (ξ, η) coordinates, which are given by
three constant states UR, UI , UQ, i.e., the reflected, incident, and quiescent states (Table
2.7). The thin film is modeled by a reflecting internal boundary condition, indicated on
the initial mesh in Figure 2.27b by a bold line. The reflected shock state UR is computed
from the incident shock state UI by solving a one-dimensional Riemann problem about
the thin film (reflecting boundary).

We compute the sonic function

S =
√

(u− ξ)2 + (v − η)2 − c.

The flow is subsonic when S < 0, supersonic when S > 0, and the sonic line is located where
S = 0. For this problem, refinement is driven by proximity to the sonic line. The final
mesh is comprised of ∼ 2,800,000 elements where the smallest resolution is h ≈ 4.8 · 10−5

in the neighborhood of the sonic line.

The sonic function of the solution is plotted in Figure 2.28a. In Figures 2.28b and
2.28c, cross sections of S are provided in the neighborhood of the shock disappearance
point on η = 0,−0.05, ...,−0.25. On these cross sections, the shock is visible at the
coordinates (ξ, η): (0, 1.0173), (−0.05, 1.0219), and (−0.1, 1.0240). The location of shock
disappearance seems to be about ∼ (−0.15, 1.0237), a more precise location is difficult
to determine. Finally, shock disappearance seems to occur on the sonic line as indicated
in [50] for the UTSDE.
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UI UR UQ

ρ 1.57697 1.77139 1.4
u 0 0 0
v -0.12064 0 0
p 1.18156 1.39066 1

Table 2.7: The incident UI , reflected UR, and quiescent UQ states imposed as boundary
conditions in Example 2.3.2.2.

R

Film

P

I

UR

UI

UQ

(1.125,−1.07500)

(−1.125, 0.97848)

η

ξ

(a) The incident (I) shock propagates into quiescent (Q)
gas, diffracts around, and reflects (R) off the thin film. The
shock disappears at P. The incident UI , reflected UR, and
quiescent UQ states are imposed as boundary conditions on
the red, gray, and blue boundaries, respectively.

(b) Initial mesh for the shock diffraction
problem. The bolded line corresponds to
the thin film.

Figure 2.27: Initial setup and mesh for the shock diffraction problem in Example 2.3.2.2.
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(a) Isolines of sonic function. The red isoline corresponds to the
sonic line, i.e., where S = 0.
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(b) Cross sections of S on η = 0,−0.05,−0.1.
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(c) Cross sections of S on η = −0.15,−0.2,−0.25.

Figure 2.28: Sonic function (S) and its cross sections for the shock diffraction problem in
Example 2.3.2.2.
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2.4 Summary

We have outlined a GPU-parallelized h-adaptive implementation of the DG method for hy-
perbolic conservation laws on unstructured meshes. The highlights of this implementation
are memory management and the use of a coloring algorithm to eliminate race conditions.
Our memory management techniques allow for quickly resizing the data arrays resulting
in the smallest number of necessary memory transfers. This is done by using a modi-
fied stream-compaction operation. The coloring algorithm prevents race conditions in the
evaluation of an integral over cell edges. It is also used in the smoothing subroutines to
ensure proper nonconformity between elements. In fact, the smoothing module is the most
expensive part of the AMR algorithm. This procedure can easily be done recursively on
CPUs, but it is difficult to implement efficiently on GPUs. This is because the smoothing
on one element may trigger smoothing of its neighbors. Using coloring yields a lightweight
implementation relative to an element-wise operation.

We have presented a number of computed examples in gas dynamics demonstrating
the performance of the AMR algorithm. In particular, we computed two problems that
are intractable without AMR due to the extremely high resolution required to resolve
the solution features. We present numerical evidence that further supports Guderley’s
solution to the von Neumann triple point paradox. We also include numerical experiments
that suggest shock disappearance occurs on the sonic line in the self-similar diffraction of
a shock around a thin film. To our knowledge, these are the first results to the shock
diffraction problem on the full Euler equations.
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Chapter 3

Slope limiters in two dimensions

Weak solutions of hyperbolic PDEs admit discontinuities, which can lead to nonphysical
oscillations when high order numerical methods are employed. A popular technique to
stabilize the growth of these oscillations for methods that are formally second order accurate
is slope limiting. The gradient is computed directly by differentiating a polynomial solution,
e.g. in Galerkin methods, or reconstructed using neighboring solution means, e.g. finite
volume (FV) methods. A limiting algorithm will modify, or limit, this gradient so that the
solution at suitable points belongs to a specified, local range.

For one-dimensional problems, slope limiters that ensure a total variation diminishing
(TVD) property are frequently used [32,51–53]. In two dimensions, enforcing a TVD prop-
erty can lead to at most first order schemes [54]. A weaker requirement on the numerical
solution is enforcement of a local maximum principle, studied in [55] on two-dimensional
structured grids for steady state computations. This idea is used in [35] to reconstruct
non-oscillatory gradients on unstructured meshes of triangles. This limiter is quite popu-
lar due to its ease of implementation and computational simplicity. It consists in writing
the numerical solution as a sum of the cell mean and slope. The slope is then reduced by
a scalar between 0 and 1 such that the numerical solution at predetermined points lies in
a locally defined interval. Some limiters modify the x and y components of the gradient
separately, e.g. [36], by solving a small linear program on each element. Slope limiters can
operate on solution values at the edge midpoints [56], at the neighboring cell centroids [36],
or cell vertices as in [57–59]. In contrast to the above methods, classified as monoslope
methods, multislope methods have also been studied whereby the solution is reconstructed
and limited independently at each face of the element [60,61].
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Much literature on limiters has been devoted to finite volume methods. When transi-
tioning to the discontinuous Galerkin (DG) method, often the same limiters are applied.
However, second-order limiters for the discontinuous Galerkin method have been presented
in, e.g. [62] for one-dimensional problems and [9] for multidimensional problems. The lim-
iter proposed in [63] requires precomputation of several mesh-dependent geometric param-
eters on each cell, which increases computational complexity. This explains the popularity
of coupling the DG method with the so-called Barth-Jespersen limiter [35]: no geometric
data needs to be precomputed, and the limiter does not require a stencil larger than that
of the DG method. Another second-order limiter for the DG method on triangles was
presented in [8] and requires solving an optimization problem.

Classical limiters operate only on the linear approximations to the solution. Limiters
that work on higher than second order accurate approximations are needed and a significant
effort has been placed into finding such limiters. In [10, 11], the idea of moment limiters
was proposed, whereby the numerical solution’s dth derivative is limited using the (d−1)th
derivatives on neighboring cells. Generalizations of the moment limiter to unstructured
meshes were studied in [34,64]. Different approaches to high order limiting were described
in [65,66].

In this chapter, we analyze the Barth-Jespersen limiter [35] on two-dimensional un-
structured meshes of triangles, applied to linear and nonlinear problems using the DG
method. This limiter has been addressed in [67] for finite volume methods, but not for
the DG method. Despite its popularity, we argue that in its simplest form, it is not a well
performing limiter for the DG method.

The simplest implementation of the Barth-Jespersen limiter uses the edge neighbor-
hood and edge midpoints as limiting points. With these choices, we show that unstruc-
tured meshes are unlikely to yield second-order accurate numerical solutions, defeating the
purpose of high-resolution numerical methods. For these meshes, we show that the way a
refinement study is conducted will influence the observed rate of convergence of the solu-
tion. For example, refinement obtained by tiling the initial mesh or remeshing the domain
at a reduced cell size can yield first order convergence. One may observe second-order ac-
curacy in the L1 norm with nested refinement, but first-order accuracy is still observed in
the L∞ norm. We prove that a remedy of this problem is to choose an alternative limiting
neighborhood, such that the limiting points lie in the admissibility region that we define.

In our analysis of second order limiters applied to DG, we address two issues: stability
and accuracy. For stability, we have proven that the numerical solution for scalar equa-
tions will satisfy a local maximum principle that ensures L∞ stability, provided a suitable
time step restriction is enforced. This new time step restriction follows from the stability
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analysis, and uses a new measure of cell size, which is the cell width in the direction of
flow. We show with numerical experiments that this time step restriction is tight. The
new measure is approximately double the radius of the inscribed circle, typically used with
maximum principle limiters and the DG method. As a result, the maximum allowable time
step doubles and the amount of computational work halves.

From our analysis, we find the range to which the cell means of the solution at the
next time step will belong, provided the above time step restriction is enforced. This range
is determined by the solution averages on nearby elements, i.e. on the neighbors used
in the limiting procedure. There is freedom in defining this neighborhood, e.g. we can
choose the elements that share edges or we can choose elements that share vertices with
the element being limited [68]. These neighborhoods are the most natural ones, though
others are possible, e.g. the entire mesh. We find that smaller neighborhoods introduce
too much numerical diffusion. In particular, limiting with the edge neighborhood is too
diffusive. On the other hand, if the neighborhood has a large and variable size, e.g. vertex
neighborhood on an unstructured grid, this can yield almost a threefold increase in the
time spent executing the limiting subroutines. This has implications for limiters that use
vertex-type neighborhoods [57,59,65,69].

The other aspect of the limiting algorithm is the choice of points at which the numerical
solution is checked for overshoots, i.e. the algorithm’s limiting points. In this chapter,
we study the one- and two-point Gauss-Legendre quadrature nodes as limiting points.
Checking for oscillations at quadrature points comes naturally in the DG implementation.
This is because the basis functions at these points are often precomputed, therefore solution
values can be obtained efficiently. Other choices are theoretically possible though seldom
done in practice. We have proven that one- and two-point limiting are sufficient for the
stability of linear and nonlinear problems, respectively. Two-point limiting may lead to first
order accuracy and catastrophically diffusive solutions on edge neighborhoods. Numerical
experiments verify that two-point limiting is more diffusive than one-point limiting on all
neighborhoods, though the difference is small for the vertex neighborhood. While the one-
point limiter with nonlinear fluxes will not guarantee that the minimum and maximum of
the solution are maintained, for all problems that we considered, the growth in the means
was small. Finally, we find that the number of limiting points does not affect code run
time as drastically as the size of the neighborhood. In the numerical experiments section
(Section 3.6), we discuss which combination of limiting points and neighborhoods should
be used.
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3.1 Limiting algorithm

With the following limiting algorithm, we seek to enforce the local maximum principle.
The numerical solution satisfies the local maximum principle if

min
j∈Ni

U
n

j ≤ U
n+1

i ≤ max
j∈Ni

U
n

j , (3.1)

where Ni is a set containing the index of Ωi and the indices of elements in the neighborhood
of Ωi, and U

n

i is the cell average.

We previously defined the numerical solution in terms of basis functions and degrees of
freedom. Here, we rewrite it in terms of the cell average and slope at time step n:

Un
i (x) = U

n

i +∇Un
i · (x− xi), (3.2)

where xi is the centroid of Ωi, U
n

i is the cell average, and ∇Un
i is the solution gradient.

The limiting procedure applied to the numerical solution on Ωi multiplies the gradient by
a coefficient αi, with the aim to enforce the maximum principle (3.1) on the means at the
next time step. The limited solution Ũn

i (x) is of the form

Ũn
i (x) = U

n

i + αi∇Un
i · (x− xi). (3.3)

Limiting is done by comparing the values of Ui(x) to the solution averages on neighboring
elements, where the points x can be quadrature points, element vertices, edge midpoints,
or other. We refer to these points as limiting points. If the solution at the limiting points
falls outside of the range defined by its neighbors, its slope is reduced by αi.

We collect the indices of the elements used in limiting the slope on Ωi in a set. As with
limiting points, there is freedom in choosing a suitable neighborhood of Ωi. For example,
the edge neighborhood is comprised of Ωi itself and all the elements that share an edge with
it, we refer to the set of these indices as N e

i . The vertex neighborhood is comprised of Ωi

itself and all elements that share a vertex with it, we refer to the set of these indices as N v
i .

We can also choose a reduced subset of N v
i , which we refer to as N r

i . These neighborhoods
are illustrated in Figure 3.1.

We execute the following algorithm to compute αi:

1. Compute the minimum and maximum cell means on the elements in Ni:

mn
i = min

j∈Ni
U
n

j and Mn
i = max

j∈Ni
U
n

j . (3.4)
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Ωi

(a) Edge-neighborhood Ne
i : Ωi

and all elements that share an
edge with Ωi.

Ωi

(b) Vertex-neighborhood Nv
i :

Ωi and all elements that share
a vertex with Ωi.

Ωi

(c) Reduced neighborhood Nr
i :

Ωi and three vertex neighbors.

Figure 3.1: Edge, vertex, and reduced neighborhoods of Ωi.

2. Compute the coefficient yi(xl) at each limiting point xl

yi(xl) =


Mn
i −U

n
i

Uni (xl)−U
n
i
, if Un

i (xl)− U
n

i > 0,

mni −U
n
i

Uni (xl)−U
n
i
, if Un

i (xl)− U
n

i < 0,

1, otherwise.

3. Find the smallest yi(xl) on Ωi

yi = min
l
yi(xl).

4. If yi ∈ (0, 1), then the solution is outside the locally defined range, [mn
i ,M

n
i ], for at

least one limiting point. Scaling the gradient by αi = yi brings that value into the
prescribed range. If yi > 1, then the solution at the limiting points lies in the range,
i.e. the current slope is acceptable and should not be modified, so αi = 1. Combining
the above into one formula, we have

αi = min(yi, 1).

5. The limited numerical solution Ũn
i is now given by (3.3).

After limiting, the polynomial Ũn
i (x) is rewritten in terms of the basis functions and

the simulation continues.
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xi

(a) One-point Gauss-Legendre quadrature
rule.

xi

(b) Two-point Gauss-Legendre quadrature
rule.

Figure 3.2: Nodes of quadrature rules for edge integrals.

3.2 Time integration

We propagate (1.9) in time using an explicit two-stage second order Runge-Kutta (RK)
method, known as Heun’s method. For a system of ODEs of the form

d

dt
c = L(c),

the time stepping scheme, with a limiter, is given by Algorithm 5.

Algorithm 5 SSP-RK2 algorithm.

c(1) = cn + ∆tL(cn)
Limit c(1)

c(2) = c(1) + ∆tL(c(1))
cn+1 = 1

2
cn + 1

2
c(2)

Limit cn+1

In the algorithm above, we limit the intermediate RK stage and the solution at level
tn+1. The stability results we prove in the next section concern one forward Euler time
step, which is only first order accurate in time. The presented analysis extends to a special
subset of RK methods, called Strong Stability Preserving (SSP) schemes. This is because
such methods can be written as a convex combination of forward Euler steps [70]. Since
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each forward Euler step does not introduce new extrema, a convex combination of them
will not either. Note that Heun’s method is SSP.

3.3 Stability

We now prove stability of the DG scheme coupled with the limiter (3.3) under a suitable
time step constraint for linear and nonlinear equations. From (1.9), with the test function

φi,0 = |Ωi|−
1
2 , where |Ωi| is the area of the cell, we obtain the ordinary differential equation

for propagation of the mode corresponding to the constant basis function, ci,0,

d

dt
ci,0 = − 1√

|Ωi|

∑
j∈Ne

i ,j 6=i

∫
∂Ωi,j

F∗(Ui(x), Uj(x)) · n dl.

Multiplying both sides of the equation by φi,0, recalling the orthonormal property of the
basis, and using U i = ci,0φi,0, we have

d

dt
U i = − 1

|Ωi|
∑

j∈Ne
i ,j 6=i

∫
∂Ωi,j

F∗(Ui(x), Uj(x)) · n dl.

We apply one forward Euler time step to the equation above, and the scheme for the cell
average on Ωi becomes

U
n+1

i = U
n

i −
∆t

|Ωi|
∑

j∈Ne
i ,j 6=i

∫
∂Ωi,j

F∗(Un
i (x), Un

j (x)) · n dl. (3.5)

In the case of nonlinear fluxes F(u), the DG method needs to integrate the boundary
integral with third order accuracy [9]. An efficient choice of approximation is the two-
point Gauss-Legendre quadrature rule, with xi,j,q being the qth quadrature point on ∂Ωi,j.
Replacing the boundary integral in (3.5) with the quadrature rule gives

U
n+1

i = U
n

i −∆t
∑

j∈Ne
i ,j 6=i

1

2

|∂Ωi,j|
|Ωi|

∑
q=1,2

F∗(Un
i (xi,j,q), U

n
j (xi,j,q)) · ni,j, (3.6)
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where |∂Ωi,j| is the length of ∂Ωi,j. For a linear flux, this becomes

U
n+1

i = U
n

i −∆t
∑

j∈Ne
i ,j 6=i

|∂Ωi,j|
|Ωi|

F∗(Un
i (xi,j), U

n
j (xi,j)) · ni,j, (3.7)

where xi,j is the midpoint of the edge shared by Ωi and Ωj. Before presenting the main
result, we state the following proposition, the proof of which is provided in A.

Proposition 1. For a quadrature point x, there exists a multiplier 0 ≤ r ≤ 2 and another
quadrature point x′ on a different edge, such that

Ui(x)− U i = r(U i − Ui(x′)).

For schemes (3.6) and (3.7), we have the following maximum principle result.

Theorem 1. Let m′i = mink∈Ne
i
mn
k and M ′

i = maxk∈Ne
i
Mn

k , where mn
k and Mn

k are given
by (3.4). If mn

i ≤ Un
i (x) ≤Mn

i for all quadrature points xi,j in (3.7) or xi,j,q in (3.6), and
∆t is subject to the CFL constraint

∆t ≤ 1

6
min
i

hc,i
λi
, (3.8)

where hc,i is the radius of the inscribed circle of Ωi, and λi is the magnitude of the wave
speed on Ωi, then

U
n+1

i ∈ [m′i,M
′
i ]. (3.9)

That is, the schemes (3.6) and (3.7) satisfy the local maximum principle (3.1).

Proof. The proof consists of three steps. First, we write the solution mean at tn+1, U
n+1

i ,
in the following form

U
n+1

i = diU
n

i +
∑

djU
n
j (x), (3.10)

where the sum is over all edge quadrature points x, and Un
j (x) are understood to be the

solution values from either inside or outside the element Ωi. Next, we show that under the
CFL constraint (3.8), the coefficients dj are non-negative, and their sum is equal to 1, i.e.
they have

1. sum property:

di +
∑

dj = 1, (3.11)
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2. non-negativity property:
dj ≥ 0. (3.12)

This means that U
n+1

i in (3.10) is a convex combination of solution values at tn. Upon
application of the limiter (3.3), these values will be bounded, i.e. we have

3. limiting property:

Un
j (x) ∈

[
min
k∈Nj

U
n

k ,max
k∈Nj

U
n

k

]
= [mn

j ,M
n
j ],

where x is understood to be an edge quadrature point. Finally, if the conditions in proper-

ties 1, 2, and 3 are satisfied, then the bounds (3.9) on U
n+1

i directly follow. We now prove
the theorem for linear problems, i.e. (1.1) with linear fluxes.

Linear problems. For linear problems we use the upwind numerical flux, which is given
by

F∗(Un
i (xi,j), U

n
j (xi,j)) · ni,j =

{
(a · ni,j)Un

j (xi,j) if j ∈ N e,−
i ,

(a · ni,j)Un
i (xi,j) if j ∈ N e,+

i ,

where N e,−
i and N e,+

i are the sets of inflow and outflow neighbors, respectively, i.e. N e,±
i =

{j : j ∈ N e
i , j 6= i, such that ± a · ni,j > 0}. Therefore, scheme (3.7) becomes

U
n+1

i = U
n

i + ∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

Un
j (xi,j)−∆t

∑
j∈Ne,+

i

|a · ni,j|
|∂Ωi,j|
|Ωi|

Un
i (xi,j). (3.13)

By the divergence theorem, we have the following relation∑
j∈Ne

i ,j 6=i

|∂Ωi,j|a · ni,j = 0. (3.14)

Using (3.14) in (3.13), we have

U
n+1

i = U
n

i + ∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

(Un
j (xi,j)− U

n

i )

−∆t
∑

j∈Ne,+
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

(Un
i (xi,j)− U

n

i ).
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Applying Proposition 1 to the outflow terms in the previous equation, we obtain

U
n+1

i = U
n

i + ∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

(Un
j (xi,j)− U

n

i )

−∆t
∑

j∈Ne,+
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

ri,j(U
n

i − Un
i (xi,j′)),

where ri,j is the scaling coefficient r on edge ∂Ωi,j. Grouping terms allows us to write the
above equation in the form (3.10):

U
n+1

i =

1−∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

−∆t
∑

j∈Ne,+
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

ri,j

U
n

i

+ ∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

Un
j (xi,j) + ∆t

∑
j∈Ne,+

i

|a · ni,j|
|∂Ωi,j|
|Ωi|

ri,jU
n
i (xi,j′). (3.15)

We will now prove Properties 1 and 2.

Sum. The sum constraint is automatically satisfied because

di +
∑

dj =

1−∆t
∑

j∈Ne,+
i

ri,j|a · ni,j|
|∂Ωi,j|
|Ωi|

−∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|


+ ∆t

∑
j∈Ne,+

i

ri,j|a · ni,j|
|∂Ωi,j|
|Ωi|

+ ∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

= 1.

Non-negativity. First, note that the coefficients in (3.15)

∆t|a · ni,j|
|∂Ωi,j|
|Ωi|

and ∆t|a · ni,j|
|∂Ωi,j|
|Ωi|

ri,j
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corresponding to dj in (3.10) are always non-negative. Next, we will choose a local stable
time step ∆ti such that di is non-negative as well, i.e.

di = 1−∆ti
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

−∆ti
∑

j∈Ne,+
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

ri,j ≥ 0. (3.16)

Observing that |a · ni,j| ≤ ||a||, ri,j ≤ 2, extending the sums from N e,±
i to N e

i , and
rearranging the terms, we obtain the following upper bound on the sum terms in (3.16)

∆ti
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

+ ∆ti
∑

j∈Ne,+
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

ri,j ≤ 3∆ti||a||
∑

j∈Ne
i ,j 6=i
|∂Ωi,j|

|Ωi|
.

Coefficient di will be non-negative if

3∆ti||a||
∑

j∈Ne
i ,j 6=i
|∂Ωi,j|

|Ωi|
≤ 1.

Solving for ∆ti yields the sufficient condition for the non-negativity property (3.12)

∆ti ≤
1

6

hc,i
||a||

,

where

hc,i = 2
|Ωi|
|∂Ωi|

,

|∂Ωi| is the perimeter of Ωi, and hc,i is the radius of the circle inscribed in Ωi. Then the
non-negativity constraint on the entire mesh is

∆t ≤ 1

6
min
i

hc,i
||a||

. (3.17)

Finally, property 3 is guaranteed by limiter (3.3). Thus (3.9) is true, and the linear scheme
(3.7) is L∞ non-increasing with time in the means.

Nonlinear problems. We consider the scheme (3.6), and use the notation Fi,j(U1, U2) =
F∗(U1, U2) · ni,j. Similar to the linear case, we use the divergence theorem to obtain∑

j∈Ne
i ,j 6=i

|∂Ωi,j|Fi,j(U
n

i , U
n

i ) = 0. (3.18)
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Using (3.18) in (3.6), we obtain

U
n+1

i = U
n

i −∆t
∑

j∈Ne
i ,j 6=i

1

2

|∂Ωi,j|
|Ωi|

∑
q=1,2

{
Fi,j(U

n
i (xi,j,q), U

n
j (xi,j,q))− Fi,j(U

n

i , U
n

i )
}
.

Adding and subtracting Fi,j(U
n

i , U
n
j (xi,j,q)) in the inner sum, we have

U
n+1

i = U
n

i −∆t
∑

j∈Ne
i ,j 6=i

1

2

|∂Ωi,j|
|Ωi|

∑
q=1,2

{Fi,j(Un
i (xi,j,q), U

n
j (xi,j,q))− Fi,j(U

n

i , U
n
j (xi,j,q))}

+{Fi,j(U
n

i , U
n
j (xi,j,q))− Fi,j(U

n

i , U
n

i )}.

Using the mean value theorem, we obtain

U
n+1

i = U
n

i −∆t
∑

j∈Ne
i ,j 6=i

1

2

|∂Ωi,j|
|Ωi|

∑
q=1,2

∂Fi,j
∂U1

(ξ1, U
n
j (xi,j,q))(U

n
i (xi,j,q)− U

n

i )

+
∂Fi,j
∂U2

(U
n

i , ξ2)(Un
j (xi,j,q)− U

n

i )

with
∂Fi,j
∂U1

and
∂Fi,j
∂U2

as the partial derivatives with respect to the first and second argu-

ments of Fi,j, respectively, ξ1 between U
n

i and Un
i (xi,j,q) and ξ2 between U

n

i and Un
j (xi,j,q).

Introducing v1
i,j,q = ∆ti

|∂Ωi,j |
|Ωi|

∂Fi,j
∂U1

(ξ1, U
n
j (xi,j,q)), and v2

i,j,q = ∆ti
|∂Ωi,j |
|Ωi|

∂Fi,j
∂U2

(U
n

i , ξ2), we have

U
n+1

i = U
n

i +
∑

j∈Ne
i ,j 6=i

1

2

∑
q=1,2

v1
i,j,q(U

n

i − Un
i (xi,j,q))− v2

i,j,q(U
n
j (xi,j,q)− U

n

i ).

By the monotonicity property of the numerical flux

v1
i,j,q ≥ 0 and − v2

i,j,q ≥ 0. (3.19)

As in the case of a linear flux, we apply Proposition 1 to the U
n

i − Un
i (xi,j,q) term, i.e.

U
n+1

i = U
n

i +
∑

j∈Ne
i ,j 6=i

1

2

∑
q=1,2

v1
i,j,qri,j,q(U

n
i (xi,j′,q)− U

n

i )− v2
i,j,q(U

n
j (xi,j,q)− U

n

i ),
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where ri,j,q is the scaling coefficient r on edge ∂Ωi,j at the qth quadrature point. Grouping
terms yields

U
n+1

i =

1−
∑

j∈Ne
i ,j 6=i

∑
q=1,2

1

2
(v1
i,j,qri,j,q − v2

i,j,q)

U
n

i

+
∑

j∈Ne
i ,j 6=i

1

2

∑
q=1,2

[
v1
i,j,qri,j,qU

n
i (xi,j′,q)− v2

i,j,qU
n
j (xi,j,q)

]
. (3.20)

This is of the form (3.10). We will now prove properties 1 and 2.

Sum. The sum constraint is automatically satisfied because

di +
∑

dj = 1−
∑

j∈Ne
i ,j 6=i

∑
q=1,2

1

2
(v1
i,j,qri,j,q − v2

i,j,q)

+
∑

j∈Ne
i ,j 6=i

{1

2

∑
q=1,2

v1
i,j,qri,j,q −

1

2

∑
q=1,2

v2
i,j,q}

= 1.

Non-negativity. First, note that the coefficients in (3.20) corresponding to the dj coeffi-
cients in (3.10) are always non-negative by (3.19). Next, we will choose a ∆ti such that di
is non-negative as well, i.e.

di = 1−
∑

j∈Ne
i ,j 6=i

∑
q=1,2

1

2
(v1
i,j,qri,j,q − v2

i,j,q) ≥ 0.

Due to the differentiability of the numerical flux, there exists a λi such that
∂Fi,j
∂U1

(ξ1, U
n
j (xi,j,q)) ≤

λi and − ∂Fi,j
∂U2

(U
n

i , ξ2) ≤ λi hold. Similar to the linear case, a sufficient condition on the
local time step ∆ti is

6∆ti
λi
hc,i
≤ 1.

A time step suitable for all elements is determined by minimizing the ratio
hc,i
λi

, i.e.

∆t ≤ 1

6
min
i

hc,i
λi
.
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Finally, Property 3 is enforced with limiter (3.3). Thus (3.9) is true and the nonlinear
scheme (3.6) is L∞ non-increasing.

Remark.

Here we derive a less restrictive CFL condition for linear problems. Consider the
coefficient

di = 1−∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

−∆t
∑

j∈Ne,+
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

ri,j. (3.21)

Because 0 ≤ ri,j ≤ 2, it follows that di is bounded below by

1−∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

− 2∆t
∑

j∈Ne,+
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

≤ di.

The non-negativity of di is guaranteed if

0 ≤ 1−∆t
∑

j∈Ne,−
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

− 2∆t
∑

j∈Ne,+
i

|a · ni,j|
|∂Ωi,j|
|Ωi|

≤ di. (3.22)

From (3.14), we have the identity

−
∑

j∈Ne,−
i

|∂Ωi,j|a · ni,j =
∑

j∈Ne,+
i

|∂Ωi,j|a · ni,j.

Because a · ni,j < 0 for j ∈ N e,−
i and a · ni,j > 0 for j ∈ N e,+

i , this becomes∑
j∈Ne,−

i

|∂Ωi,j||a · ni,j| =
∑

j∈Ne,+
i

|∂Ωi,j||a · ni,j|. (3.23)

For linear problems, three situations are possible. There can be two inflow edges and one
outflow edge, or one inflow edge and two outflow edges. In these two situations, there is
a single inflow or a single outflow edge. We refer to that edge as ∂Ωi,J . Finally, when the
direction of flow is parallel to an edge, i.e. is one inflow and one outflow edge. In this case,
∂Ωi,J can refer to either the inflow or outflow edge. In terms of ∂Ωi,J , identity (3.23) now
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becomes
|∂Ωi,J ||a · ni,J | =

∑
j∈Ne,−

i

|∂Ωi,j||a · ni,j| =
∑

j∈Ne,+
i

|∂Ωi,j||a · ni,j|.

Using the above in (3.22), we obtain

0 ≤ 1− 3∆t|a · ni,J |
|∂Ωi,J |
|Ωi|

. (3.24)

The area of the cell Ωi is 1
2
|∂Ωi,J |Hi,J , where Hi,J is the height of the cell measured from

the edge ∂Ωi,J as shown in Figure 3.3a. Further, a simple geometric consideration reveals
that ||a||Hi,J = hd,i|a · nJ |, where hd,i is the width of the cell in the direction of a as in
Figure 3.3a. The non-negativity constraint on the entire mesh is then given by

∆t ≤ 1

6
min
i

hd,i
||a||

. (3.25)

By geometrical considerations, we note that this hd,i is larger than the radius of the in-
scribed circle hc,i (Figure 3.3c). Therefore, this CFL condition (3.25) is less restrictive.

For systems of equations, in general, there is not a single direction along which infor-
mation is propagated. For simplicity, we propose to take the minimum possible cell width,
i.e.,

h′d,i = min(Hi,1, Hi,2, Hi,3), (3.26)

where Hi,1, Hi,2, and Hi,3 are the cell widths perpendicular to the three edges of the
element, ∂Ω1, ∂Ω2, and ∂Ω3, as shown in Figure 3.3b.

We have shown that at the next time step the solution means will satisfy a local

maximum principle that depends on the chosen limiting neighborhood. That is, U
n+1

i will
lie in the interval [m′,M ′], where m′ and M ′ depend on the elements involved in limiting by
(3.4). In the next section, we discuss how the choice of limiting points and neighborhoods
affects the accuracy of the numerical solution.

61



∂Ωi,J

Hi,J

hd,i

a

ni,J

θ

θ

(a) Cell size in the direction of
flow hd,i.

Hi,3

Hi,2

Hi,1

∂Ω3

∂Ω2
∂Ω1

(b) Cell size for systems h′d,i =
min(Hi,1, Hi,2, Hi,3).

h′
d,i hc,i

(c) Comparison of minimum cell width
h′d,i and radius of the inscribed circle
hc,i.

Figure 3.3: Measures of cell size for time step restriction (3.25).

3.4 Solution accuracy and admissibility region

In order to preserve second order accuracy, the limiting algorithm (3.3) must not modify
linear data. We call the set from which one can choose limiting points such that this
condition is not violated the admissibility region. First, we give a definition of this region,
and then prove in Theorem 2 that points from this region satisfy the desired property.

Definition 1. The limiter’s admissibility region is defined as the convex hull of the cen-
troids of the elements in Ni, where Ni is the neighborhood of Ωi involved in the limiter
(3.3). Geometrically, this region is a convex polygon whose vertices are labeled vk and or-
dered counterclockwise about their barycenter (Figure 3.4). Any point x in the region can
be written as

x =
∑
k

γkvk,∑
k

γk = 1 and γk ≥ 0.
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v2

v1

v0

xi

(a) Edge-neighborhood,
equilateral triangles.

v2

v0

v1

xi

(b) Edge-neighborhood,
deformed triangles.

xi

v1

v2

v3
v4

v5

v6

v7

v8

v0

(c) Vertex-neighborhood.

xi

v0

v2

v1

(d) Reduced-
neighborhood.

Figure 3.4: Admissibility regions for Ωi and various limiting neighborhoods.

By definition, the points x in the convex hull satisfy the following conditions

(x− xi) · qk ≤ (vk − xi) · qk, (3.27)

(x− xi) · qk ≤ (vk+1 − xi) · qk, (3.28)

for all indices k, where qk are outward pointing unit vectors such that qk · (vk+1−vk) = 0,
i.e. they are vectors perpendicular to the boundaries of the convex hull. Additionally, the
pairs qk and qk+1 are linearly independent.

We display examples of admissibility regions in Figure 3.4. These regions depend on
the neighborhood involved in computing the local minimum and maximum [mn

i ,M
n
i ] in

the limiting procedure in Section 3.1. For the edge neighborhood the region is simply the
triangle formed by connecting the centroids of the elements that share an edge with Ωi, as
shown in Figures 3.4a and 3.4b. For the vertex neighborhood, the shape is more complex,
as shown in Figure 3.4c.

The admissibility region of the vertex neighborhood usually contains all the limiting
points. An exception would be neighborhoods of elements that are located on the boundary
of the computational domain. The number of elements in the vertex neighborhood is
variable in unstructured meshes. This leads to memory inefficiencies in numerical codes
as the stencil for the limiter varies from element to element. This motivates defining the
reduced neighborhood. We iterate through all possible combinations of three elements
in the vertex neighborhood and choose the first subset such that all limiting points are
contained in its convex hull (Figure 3.4d).

Theorem 2. (i) If the limiting points lie in the admissibility region then linear data will
not be modified by the limiter (3.3). (ii) If a limiting point lies outside the admissibility
region, then there exists a gradient that will be modified by the limiter (3.3).
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(a) Edge neighborhood, with vectors qk.

v1

v0v2

q1
q0

q2

β1

β2 β0

θ0,1 = π − β1

θ2,0 = π − β0θ1,2 = π − β2

(b) Admissibility region of Ωi in Figure
3.5a.

Figure 3.5: Illustration for Theorem 2, where Ωi = (xi,1,xi,2,xi,3), and the admissibility
region is shaded.

Proof. We first prove part (i) of the theorem. Let us consider an admissibility region,
which is a polygon with vertices vk (Figure 3.5a). We denote by βk the angle formed by
the edges of the polygon at vertex vk. Since the region is convex, we have that 0 < βk < π.
We denote by θk,k+1 the angle between qk and qk+1. A simple geometric consideration
reveals that θk,k+1 = π − βk (Figure 3.5b) and, consequently, 0 < θk,k+1 < π.

We consider a vector g = ∇Ui. There exists an index K such that g lies between qK
and qK+1 (Figure 3.5b). Since 0 < θK,K+1 < π, we can express g = c1qK + c2qK+1 such
that c1, c2 ≥ 0. Assume the limiting point x ∈ Ωi is in the admissibility region. Therefore,
it satisfies (3.27) and (3.28), with index k = K + 1 and k = K, respectively, i.e.

(x− xi) · qK ≤ (vK+1 − xi) · qK ,
(x− xi) · qK+1 ≤ (vK+1 − xi) · qK+1.

Multiplying the first inequality by c1, and the second by c2, then summing, we have

(x− xi) · g ≤ (vK+1 − xi) · g.

64



Adding the cell average U i, we have by (3.2),

Ui(x) ≤ Ui(vK+1).

Therefore,
Ui(x) ≤Mi,

where Mi is given in (3.4). The same reasoning can be applied to g = −∇Ui, which gives

−Ui(x) ≤ −mi.

Therefore,
mi ≤ Ui(x),

where mi is given by (3.4). Therefore mi ≤ Ui(x) ≤ Mi, x ∈ Ωi, and by the limiter
algorithm (3.3), the slope is not limited.

We now prove part (ii) of the theorem by constructing a solution that will be limited
by algorithm (3.3) if a limiting point x ∈ Ωi lies outside of the admissibility region. In this
case, at least one inequality (3.27) or (3.28), e.g. (3.27) with index K, will not hold:

(vK − xi) · qK < (x− xi) · qK .

However, each of the vertices vk of the admissibility region belongs to the region itself,
therefore by (3.27) and above, we have

(vk − xi) · qK ≤ (vK − xi) · qK < (x− xi) · qK . (3.29)

Let us assume that the global solution is a plane, whose gradient is qK . We add to (3.29)
the solution average U i on Ωi. Using (3.2), we obtain

Ui(vk) < Ui(x), ∀k. (3.30)

Additionally, because the vertices of the admissibility region correspond to neighboring
element centroids, we have Ui(vk) = Uk. Taking the maximum over k in (3.30) gives

Mi < Ui(x).

Since Ui evaluated at x exceeds its allowed range, the slope of Ui will be limited by the
limiting algorithm (3.3).
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∇Ui

Ωi
v1

v2

v3

A

Figure 3.6: Limiting point A is outside the admissibility region of Ωi, described by v1, v2,
and v3.

Remark : Part (ii) of this theorem has a simple geometric interpretation that is illus-
trated in Figure 3.6. Ui is a linear function whose isolines are parallel lines. Since the
isoline passing through the limiting point, A, lies higher than the centroids on the neigh-
boring elements, the value of Ui at A exceeds the value at the neighboring centroids and
the numerical solution on Ωi will be limited.

3.5 Refinement studies

In the following discussion, we argue that limiting with the edge neighborhood should not
be used with the discontinuous Galerkin method. With this limiter, we are not guaranteed
that an element’s limiting points will all lie in the admissibility region. This will lead to a
reduced rate of convergence on smooth solutions. The observed rate of convergence under
mesh refinement will depend on a number of factors: the quality of the initial mesh, the
particular numerical solution, and the method of refinement. To illustrate this point, we
construct two sequences of meshes and conduct numerical simulations that demonstrate
different convergence behaviors. Here we analyze only the midpoint limiter, the two-point
limiter will perform even worse.

All numerical simulations were done using the DG code described in [3] written for
NVIDIA GPUs, using the code optimizations described in [7].
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(a) Ω0. (b) Ω1. (c) Ω2.

Figure 3.7: Mesh sequence obtained through tiling.

3.5.1 Tiled refinement

We start with the initial mesh Ω0 of a square domain Ω. Then, Ω0 is scaled by a factor of 1
2
,

and tiled over Ω to obtain the next mesh in the sequence Ω1; that is, Ω1 is composed of four
scaled copies of Ω0. We continue in a similar fashion, i.e. Ω2 contains 16 scaled copies of
Ω0. We show a sample initial mesh, and two subsequent meshes obtained through tiling in
Figure 3.7. The initial mesh is arbitrary with the only restriction that vertex placement on
opposing boundaries is identical. This is needed in order to avoid nonconforming elements
on the boundary of adjacent tiles. To simplify this discussion, we assume that elements on
tile boundaries are not limited.

To demonstrate a loss of accuracy under limiting, we examine the limiting operation
applied to a linear function u(x, y). On Ωi, this function can be written as

ui(x, y) = a(x− xi) + b(y − yi) + ui,

where ui is the average over Ωi, xi, yi are the coordinates of the cell centroid. After applying
the limiter to ui(x, y), we obtain the limited function

Ũi(x, y) = αia(x− xi) + αib(y − yi) + ui,

where αi ∈ [0, 1] is the limiting coefficient. This coefficient will not change upon translation
or scaling of the mesh, provided the numerical solution is linear.
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xi

xi,1 xi,2

xi,3

Figure 3.8: Shaded surfaces are described by the integrand |a(x−xi) + b(y− yi)| in (3.31).

The L1 norm of the error introduced due to limiting is

E1(Ω0) =
∑
i

∫
Ωi

|ui(x, y)− Ũi(x, y)|dxdy

=
∑
i

(1− αi)
∫

Ωi

|a(x− xi) + b(y − yi)|dxdy. (3.31)

Each integral in the sum has a geometrical interpretation of the volume of two polyhedra
since a(x − xi) + b(y − yi) is zero along a line passing through the centroid of Ωi. This
is illustrated in Figure 3.8, where the shaded planes are the surfaces described by the
integrand.

Shrinking the mesh by a factor of two, x′ = 1
2
x, shrinks the volume of the polyhedra

and, therefore, the error by a factor of eight. We have on the scaled mesh, Ω′, the L1 error

E1(Ω′) =
1

8
E1(Ω0).

Additionally, translating the mesh, x′ = x+d, does not change the error. On the translated
mesh, Ω′, the L1 error is

E1(Ω′) =
∑
i

(1− αi)
∫

Ωi

|a((x+ dx)− (xi + dx)) + b((y + dy)− (yi + dy))|dxdy

=
∑
i

(1− αi)
∫

Ωi

|a(x− xi) + b(y − yi)|dxdy

= E1(Ω0).

To summarize, scaling the Ω0 by a factor of two reduces the error by a factor of eight
and translation does not affect the error. Thus, the L1 error on Ω1, which consists of four
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scaled and translated copies of Ω0 (Figure 3.7) is

E1(Ω1) =
4

8
E1(Ω0) =

1

2
E1(Ω0).

This implies that the nth mesh in the tiled sequence has the error

E1(Ωn) =

(
1

2

)n
E1(Ω0),

which indicates at most first order convergence in the general case.

3.5.2 Nested refinement

We now define a mesh sequence for which the same limiter, i.e. edge midpoints as limiting
points coupled with the edge neighborhood, will yield a second order approximation of the
initial data. We start by considering a mesh consisting of one element, Ωi (Figure 3.9a). It
is refined by splitting into four children, Ωj, Ωk, Ωl, and Ωm (Figure 3.9b). We can show
that on the center child element of Ωi, in this case Ωj, linear data will not be limited. To
show this, note that the limiting points of Ωj, ξ, are the midpoints of its edges:

ξj,1 =
1

2
(xj,3 + xj,1),

ξj,2 =
1

2
(xj,1 + xj,2),

ξj,3 =
1

2
(xj,2 + xj,3),

(3.32)

where xj,1, xj,2, and xj,3 are the vertices of Ωj. Further, the vertices of Ωj are the midpoints
of Ωi’s edges:

xj,1 =
1

2
(xi,1 + xi,2),

xj,2 =
1

2
(xi,2 + xi,3),

xj,3 =
1

2
(xi,3 + xi,1),

(3.33)
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where xi,1, xi,2, and xi,3 are the vertices of Ωi. Combining (3.32) and (3.33), we haveξj,1
ξj,2
ξj,3

 =

1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

xi,1
xi,2
xi,3

 . (3.34)

We also write the centroids xm, xk, and xl in terms of xi,1, xi,2, and xi,3:xm
xk
xl

 =

2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3

xi,1
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 . (3.35)

Combining (3.34) and (3.35), we obtainξj,1
ξj,2
ξj,3

 =

2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3

xm
xk
xl

 .

Therefore, by Definition 1 the limiting points of Ωj belong to its admissibility region. Thus
linear data on Ωj will not be limited by (3.3). An example is given in Figure 3.9b, where
the limiting points lie inside the shaded admissibility region. In Figure 3.9c, the third mesh
in the sequence, Ω2, is shown. A simple geometric consideration reveals that elements that
do not share an edge with the boundary of the original element will not be limited. This is
because they are the center element of Ω1, scaled by a factor of 1

2
, translated and rotated.

Therefore, elements on which linear data is limited can only appear on the boundaries of
the initial mesh elements in Ω0 (Figure 3.9d). In the nth mesh of this sequence, there are
3(2n − 1) , n > 0, elements on the boundary.

We now construct a nested refinement sequence starting with an arbitrary initial trian-
gulation, Ω0, with N0 triangles, of a square domain Ω, e.g. the initial mesh in Section 3.5.1.
To obtain the first mesh in the sequence, Ω1, we refine each cell as described above. Com-
pleting this procedure n times gives the nth mesh in the sequence, Ωn, which has 4nN0 ele-
ments. The number of elements that can possibly be limited in Ωn isN0·3(2n−1), for n > 0.
The upper bound on the number of elements on which the function will be approximated
to first order grows linearly with h decreasing while the number of elements in the mesh
grows quadratically, where h is a measure of cell size. This yields an effective second order
rate of convergence in an integral norm of an approximation of the initial data, because
the limited elements form a smaller and smaller proportion of the total number of elements
in the mesh. This is easy to see by noting that the error on limited elements is O(h), the
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(a) Ω0, one element Ωi.
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(b) Ω1, four child ele-
ments Ωj , Ωk, Ωl, and
Ωm. Grey zone is the
admissibility region for
Ωj .

xi,1

xi,2

xi,3

(c) Ω2, sixteen child ele-
ments.

xi,1

xi,2

xi,3

(d) Linear data on
hatched elements in Ω2

will not be limited by
(3.3).

Figure 3.9: Mesh sequence obtained through nested refinement, with Ω0 in (a) as the
starting mesh.

area of an element is O(h2), and the number of limited elements is O(h−1). The product
of these estimates gives O(h2).
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(a) Initial mesh. (b) Third mesh in tiling se-
quence.

(c) Third mesh in nested refine-
ment sequence.

Figure 3.10: Sample meshes from tiling and nested refinement sequences. The elements on
which linear data is limited are shaded.

3.6 Numerical experiments

Unless otherwise specified, the problem is solved on the domain [−1, 1]2, using the upwind
or Lax-Friedrichs numerical flux on linear and nonlinear problems, respectively. We use
the Heun’s method to integrate in time unless otherwise stated and specify the particular
time step restriction used in each example.

3.6.1 Accuracy verification - linear exact solution

We solve (1) with the flux F(u) = [u, u], on the tiled and nested mesh sequences (Figure
3.10) described in Section 3.5 with the initial and boundary condition chosen such that the
exact solution is

u(x, y, t) = t− 1

2
x− 1

2
y. (3.36)

We use the limiter based on the edge midpoints coupled with the edge neighborhood.
First we project and limit the initial condition on the mesh sequences and report the error
resulting from the application of the limiter in Figure 3.11a. Since there is no error due
to projection of the initial condition into the finite element space, the observed error is
entirely due to one application of the limiter. We observe the first and second order rate of
convergence as discussed in Sections 3.5.1 and 3.5.2 for the tiled and nested mesh sequences,
respectively. We also construct another sequence by remeshing the domain, whereby each
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(a) L1 error after application of
the limiter on the initial projec-
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(b) L1 error at the final time T =
1.
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(c) L∞ error at the final time
T = 1.

Figure 3.11: Convergence history of initial condition (3.36) after projection and limiting,
and final solution at T = 1 of (1.1) in Section 3.6.1. We plot the error versus (number of

elements)
1
2 .

mesh in the sequence has a comparable number of elements to nested and tiled refinement.
The L1 error on the remeshed sequence behaves similarly to tiled refinement, i.e. with first
order accuracy.

Next, we examine the global error due to the cumulative effect of the interaction between
the limiter and the DG method at the final time T = 1. In these experiments, we use the
time step restriction based on the radius of the inscribed circle hc,i in (3.17) (Figures 3.11b
and 3.11c). The limiter severely affects the solutions on the tiled sequence. The maximum
error initially decreases with a rate of one, and then the rate tapers off to approximately 0.6.
However, in the L1 norm, convergence appears to stall. The error even increases at the last
two solutions in the sequence. Note that the solution means are still converging with first
order accuracy (Figure 3.11b); in the plot, we refer to this error with ‘Tiled: means’. For
nested refinement, we observe quadratic convergence in the L1 norm and linear convergence
in the L∞ norm. The reason for the first order convergence in the L∞ norm is that some
elements are limited. On those elements, the accuracy is only first order. However, we
observe second order convergence in the L1 norm because the number of limited elements
is small relative to the total number of elements in the mesh (for example Figure 3.10c).
Even though the analysis in Section 3.5.2 is only valid for the first application of the limiter,
its conclusion seems to hold for multiple applications during a simulation.
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(b) L∞ error at the final time T = 1.

Figure 3.12: Convergence history of the final solution of (1.1) in Section 3.6.2. We plot

the error versus (number of elements)
1
2 .

3.6.2 Accuracy verification - nonlinear exact solution

We consider (1.1) with the flux F(u) = [u, u], and the following initial condition

u(x, y, 0) = sin(πx) sin(πy), (3.37)

along with periodic boundary conditions in the x and y directions. We use a time step
restriction based on the radius of the inscribed circle, hc,i, in (3.17). We report the global
error in the numerical solution at T = 1 on the nested and tiled mesh sequences (Figure
3.12). We note that convergence behavior is similar to that in Section 3.6.1 (Figure 3.11).

3.6.3 Validation of CFL number for linear fluxes

These experiments verify that the less restrictive CFL condition (3.25) based on cell width
in the direction of flow hd,i is tight. We solve (1.1) with flux F(u) = [u, u] and a square
pulse as the initial condition

u(x, y, 0) =

{
1 if max(|x|, |y|) ≤ 1

4

0 elsewhere.
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Figure 3.13: Structured mesh on which the linear CFL (3.25) based on hd,i is verified to
be tight.

We limit at the edge midpoints and use the vertex neighborhood. The domain is divided
into a 40 by 40 grid of squares. Then the squares are split into triangles by connecting the
upper left and lower right corners of each square (Figure 3.13). The width of the cells in
the direction of the flow is hd,i = 1

40

√
2 ≈ 3.535 ·10−2 and the wave speed is ||a|| =

√
2. We

solve the problem until the final time T = 0.1 with forward Euler and RK2 time stepping.
The smallest and largest of the cell-wise solution averages at the final time are reported in
Table 3.1 for various values of the CFL number.

We observe that the time step restriction (3.25) is valid and tight for the forward Euler
method. For RK2, we notice in Table 3.1b that the CFL number can be increased without
the solution violating the local maximum principle. A possible reason is the larger absolute
stability region of the RK2 family of time integrators.

3.6.4 CFL experiments for a nonlinear flux

This experiment demonstrates that both measures of cell size, radius of the inscribed
circle hc,i in (3.17) and minimum cell height h′d,i in (3.26), yield solutions that appear to
satisfy the maximum principle for nonlinear problems. We consider problem (1.1) with
flux F(u) =

[
1
2
u2, 1

2
u2
]

(the two-dimensional Burgers’ equation). The initial condition is a
square pulse of side length 1

2
, centered at the origin and rotated by π

4
(Figure 3.14a). The
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1/CFL Minimum Maximum
3 -1.84e-01 1.23
4 -3.11-03 1.00085
5 -1.15e-05 1

5.95 -2.69e-07 1
6 -6.56e-18 1

(a) Forward Euler.

1/CFL Minimum Maximum
3 -9.50e-18 1.000336
4 -6.15e-18 1
5 -3.93e-18 1

5.95 -3.72e-18 1
6 -3.62e-18 1

(b) RK2-SSP.

Table 3.1: Minimum and maximum cell average for Example 3.6.3 using time step restric-
tion (3.25) based on the width of the cell in the direction of flow, hd,i, for various CFL
numbers.

exact solution at T =
√

2
2

is given by

u

(
x′, y′,

√
2

2

)
=

{
x′ + 1

4
, if − 1

4
≤ x′ ≤ 3

4
and − 1

4
≤ y′ ≤ 1

4
,

0, otherwise,

where x′ =
√

2
2
x+

√
2

2
y and y′ = −

√
2

2
x+

√
2

2
y (Figure 3.14b). We use the vertex neighborhood

and the nodes of the two-point Gauss-Legendre quadrature rule as limiting points. The
first mesh is generated by dividing the domain into a 10 by 10 grid of squares. Then the
square elements are split into triangles by connecting the upper left and lower right corners
of each square. Subsequent meshes we test on are obtained through nested refinement. We
report the minimum and maximum cell means for both measures of cell size in Table 3.2.
It appears that both time step restrictions result in solutions that are L∞ non-increasing.
However, the minimum cell height is substantially larger than the inscribed radius, which
reduces the number of time steps by more than half.

We also solve this problem using the vertex neighborhood and one-point limiting. Ac-
cording to the analysis in Theorem 1, the solution is not guaranteed to stay within the
local bounds. We find this to be the case, however the growth in the means is on the
order of approximately 10−6. This indicates that while the proof is correct, practically the
violation of the local maximum principle is small.
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(a) Exact initial condition.

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

y

x
u

(b) Exact solution at T =
√
2
2 .

Figure 3.14: Exact solution at initial and final time for Example 3.6.4.

Number of elements Time steps Minimum Maximum
200 85 5.22e-11 0.693
800 199 2.59e-18 0.873
3200 406 9.1e-36 0.934
12800 817 1.05e-69 0.962
51200 1637 4.14e-137 0.980

(a) Radius of the inscribed circle (3.17).

Number of elements Time steps Minimum Maximum
200 35 5.53e-11 0.691
800 82 2.55e-18 0.871
3200 168 1.01e-35 0.932
12800 338 9.51e-70 0.962
51200 678 3.31e-137 0.980

(b) Minimum cell height (3.26).

Table 3.2: Verification of the time step restriction based on and radius of the inscribed
circle hc,i in (3.17) and minimum cell height h′d,i in (3.26).
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Figure 3.15: Initial condition for rotating objects test problem in Example 3.6.5.

3.6.5 Rotating objects

This example demonstrates the comparative performance of the proposed limiters, i.e.,
one- or two-point limiting points with edge, vertex or reduced neighborhoods. We solve
(1.1) with the flux F(u) = [−2πyu, 2πxu] on the square domain [−1, 1]2. The exact
solution is a rotation of the initial data about the origin. The solution comprises a
slotted cylinder and a cone (Figure 3.15). Each object is defined on a disc of radius
r0 = 0.3, the center of which is (x0, y0). The height of the objects are written in terms
of r(x, y) = 1

r0

√
(x− x0)2 + (y − y0)2. Outside of the discs, the initial solution values are

zero. The center of the slotted cylinder is (x0, y0) = (0, 0.5) and its height is defined as

h(x, y) =

{
1 if |x− x0| ≥ 0.05 or y ≥ 0.7

0 otherwise,
for r(x, y) ≤ 1.

The center of the cone is (x0, y0) = (0,−0.5) and its height is defined as

h(x, y) = 1− r(x, y) for r(x, y) ≤ 1.

We use the time step restriction based on the minimum cell height h′d,i (3.26), and an
unstructured mesh of 16,870 triangles. The surface integral in (1.9) is evaluated using the
two-point quadrature rule. As a result, one-point limiting does not guarantee a solution
that is L∞ non-increasing. The solutions at T = 1 are plotted in Figures 3.16 - 3.19.
The two-point, edge neighborhood limiter is clearly the most diffusive and the one-point,

78



vertex neighborhood limiter is the least. The two-point, edge neighborhood limiter provides
a noticeably worse solution than the other limiters, Figure 3.19. The one- and two-point
vertex limiters yield the least diffusive results, and perform similarly.

In conclusion, we observe that neighborhoods with fewer elements are more diffusive,
e.g. edge and reduced neighborhoods and larger neighborhoods are less diffusive, e.g. vertex
neighborhood. Larger neighborhoods result in larger intervals to which the numerical
solution at the limiting points is constrained. Finally as expected, two-point limiting is
more diffusive than one-point limiting.

(a) One-point limiting, edge neighborhood. (b) Two-point limiting, edge neighborhood.

Figure 3.16: Raised solution in Example 3.6.5 for the edge neighborhoods.
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(a) One-point limiting, vertex neighborhood. (b) Two-point limiting, vertex neighborhood.

Figure 3.17: Raised solution in Example 3.6.5 for the vertex neighborhoods.

(a) One-point limiting, reduced neighborhood. (b) Two-point limiting, reduced neighborhood.

Figure 3.18: Raised solution in Example 3.6.5 for the reduced neighborhoods.
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(b) Profile at the slotted cylinder.

Figure 3.19: Cross sections of solution for Example 3.6.5 along x = 0 at T = 1.

3.6.6 Transient shock - double Mach reflection

We solve the double Mach reflection problem on an unstructured mesh of 271,458 triangles.
The set-up is described in Section 2.3.1.3. We extend the limiter to systems of equations
by limiting each component separately, i.e., we limit the conserved variables.

The contour plots for density using three different limiters are shown in Figures 3.20,
3.21, and 3.22. Although computationally simple, limiting using the edge neighborhood
does not yield a solution of good quality. One-point limiting smears the slipline (contact
discontinuity) emanating from the primary triple point in Figure 3.20a. Two-point lim-
iting in Figure 3.20c is clearly too diffusive: the contact and reflected shock are smeared
significantly and the rightward moving jet is not resolved at all.

One- and two-point limiting with the reduced neighborhood in Figures 3.21a and 3.21c
performs just as poorly as one-point limiting with the edge neighborhood. Enlarging the
limiting stencil to the vertex neighborhood significantly improves the solution in Figures in
Figures 3.22a and 3.22c. The shocks and slipline are tighter and the jet is better resolved.
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Neighborhood limiting points Run time (s) Time steps Time (ms) /step
vertex 1 51.4 8,624 5.9 (-)

reduced 1 18.7 8,409 2.2 (2.68x)
vertex 2 55.5 8,371 6.6 (-)

reduced 2 27.7 8,464 3.2 (2.06x)

Table 3.3: Comparison of run time for limiters. The number in brackets is the speed up
factor of the limiters using the reduced neighborhood relative to those using the vertex
neighborhood, with the same number of limiting points.

We observe more vortices due to Rayleigh-Taylor instabilities. Both one- and two-point
limiting appear to be numerically stable, though two-point limiting is more diffusive.

In Table 3.3, we report the time spent executing subroutines for limiters using the
vertex and reduced neighborhoods in the DG-GPU code [3, 7] on an NVIDIA Titan X
Pascal. The number of quadrature points does not seem to affect run time of the limiter
subroutine as much as stencil size. We note that the run time is gravely affected when
using a variable stencil size. For this test problem, the run time of the one-point, vertex
neighborhood limiter subroutines took 5.9 ms, and the one-point, reduced neighborhood
limiter subroutines was 2.2 ms; this is a 2.68x reduction in run time. On the mesh in
this example, the vertex neighborhood size varies from 7 to 17, whereas the size of the
reduced neighborhood is simply 3. The substantial increase in runtime of the limiter
algorithm can be explained by the following. First, the amount of memory loads required
to execute any vertex neighborhood based limiters is at least double that required for
the reduced neighborhood. Further, due to size variability of the vertex neighborhood,
thread divergence in the GPU code will limit the attainable parallelism at runtime. For a
discussion of thread divergence in unstructured CFD codes on GPUs, see [7].

The conclusion to draw from this example is that the quality of the limited solution is
a trade-off between computational work and numerical diffusion. For more computational
work, one can reduce the amount of numerical diffusion introduced by the limiter by
using the vertex neighborhood. The least computationally intensive limiter using the
edge neighborhood can excessively smooth the solution. For this problem, we consider
the two-point, vertex limiter as the best trade-off between solution quality and run time.
Two-point limiting is preferred because the basis functions are already precomputed at
these quadrature points. Using two-point limiting is not substantially slower than using
one-point limiting, though this may depend on the implementation.
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(a) One-point limiting, edge neighborhood. (b) One-point limiting, edge neighbor-
hood, zoom.

(c) Two-point limiting, edge neighborhood. (d) Two-point limiting, edge neighbor-
hood, zoom.

Figure 3.20: Double Mach reflection problem using the edge neighborhood.
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(a) One-point limiting, reduced neighborhood. (b) One-point limiting, reduced neighbor-
hood, zoom.

(c) Two-point limiting, reduced neighborhood. (d) Two-point limiting, reduced neighbor-
hood, zoom.

Figure 3.21: Double Mach reflection problem using the reduced neighborhood.
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(a) One-point limiting, vertex neighborhood. (b) One-point limiting, vertex neighbor-
hood, zoom.

(c) Two-point limiting, vertex neighborhood. (d) Two-point limiting, vertex neighbor-
hood, zoom.

Figure 3.22: Double Mach reflection problem using the vertex neighborhood.
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3.7 Summary

We have studied aspects of second order limiters on unstructured meshes of triangles. These
limiters were first introduced and analyzed for finite volume methods but are often applied
to DG methods. The important difference between finite volume and DG methods is the
manner by which the surface integral is evaluated. FV methods use midpoint quadrature
for nonlinear problems, while DG uses two-point quadrature, thus the FV analysis is not
directly transferable to the DG method. Since the the surface integral advances the solution
means in time, the values at the quadrature points need to be controlled for overshoots
if we are to enforce the local maximum principle on the means. Numerical experiments
indicate that limiting at the midpoint for nonlinear equations leads to the violation of the
maximum principle by a small amount. For example, the solution in Section 3.6.4 grew
only by 10−6. While solutions with one-point limiting might look noisy, they do not have
unbounded growth, even for long time integration. This indicates that strong stability
may be more of theoretical interest rather than of practical purpose, unless an application
cannot tolerate any deviation from the initial means.

We find that maintaining accuracy is more difficult than preventing uncontrolled growth
of the solution. Our findings indicate that despite ease of implementation and convenience,
the edge neighborhood, i.e. elements that share an edge with the element being limited,
should not be used for limiting. This is because the limiter is only first order accurate, even
on meshes of reasonably good quality, e.g. Delaunay discretization of a square domain.
While the edge neighborhood comes naturally as it is the stencil of the DG method, larger
neighborhoods, e.g. the vertex neighborhood, should be employed for the solution to
stay second order accurate. Unfortunately, this destroys the locality of the DG method,
which is one of its advantageous aspects. Although a limiter that uses the DG stencil
and preserves locality exists [63], it has its own drawbacks. It requires precomputing and
storing geometrical coefficients, which is costly and it needs a user-defined parameter. A
possible extension of the present work would be to analyze the admissible range of this
parameter and its optimal value.

To summarize, the best limiter is the one based on the vertex neighborhood, though
it is almost three times as expensive as one based on smaller neighborhoods. The edge
neighborhood provides visibly worse solutions both at shocks and smooth regions. Al-
though the maximum principle can only be enforced for scalar equations, the performance
of the limiter on scalar equations is a predictor of performance on systems of equations.
Numerical experiments with the Euler equations confirm this.

We show that the local maximum principle is satisfied under a suitable time step re-
striction. The analysis is valid on one forward Euler time step and the bound is shown
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to be tight. This restriction involves a new measure of cell size, which is the width of the
cell in the direction of flow. This is larger than the commonly used radius of the inscribed
circle. A convex combination of forward Euler time steps can extend this stability restric-
tion to high order time integration schemes, e.g. SSP-RK methods. Experimentally, we
find that a larger time step can be taken for the SSP-RK2 method without violating the
local maximum principle. Finding the analytical CFL number in this case is subject of the
following chapter.
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Chapter 4

On the optimal CFL number of SSP
methods for hyperbolic problems

In one dimension, hyperbolic conservation laws are of the form

∂u

∂t
+

∂

∂x
f(u) = 0, (4.1)

where u(x, t) is the solution and f(u) is the flux function. A popular approach to solving
these partial differential equations (PDEs) is the method of lines. This entails first dis-
cretizing the spatial derivative, e.g., with the finite volume (FV) method. The result is
said to be in a semidiscrete form and is a system of ordinary differential equations (ODEs)
for the degrees of freedom (DOFs) of the spatial discretization

d

dt
U = L(U), (4.2)

where U is the numerical solution which approximates u and the operator L approximates
− ∂
∂x
f(u). This system is then advanced in time using a time stepping scheme, e.g., an

explicit Runge-Kutta (RK) method. Typically, one chooses a time integrator of the same
order as the spatial order of accuracy. If L(U) is linear, then stability of the fully discrete
scheme under a suitable time step restriction can be shown using the absolute stability
region of the time stepper and the eigenvalues of the spatial operator L [71, 72]. This
approach cannot be directly applied if L(U) is nonlinear, e.g., if f(u) is nonlinear or if f(u)
is linear but a limiter is applied. In this case, we can first show stability of a forward Euler
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time step applied to (4.2), i.e.,

||U + ∆tL(U)|| ≤ ||U ||, ∀U, (4.3)

where ∆t ≤ ∆tFE, ∆tFE is the maximum stable forward Euler time step specific to the cho-
sen spatial discretization, and || · || is a convex functional [73]. This result can be extended
to a higher order RK method if the method can be written as a convex combination of
forward Euler time steps. If each forward Euler step does not violate the stability property,
then a convex combination of them will not either. This is the idea behind strong stability
preserving (SSP) methods [74]. The need for these time discretizations was demonstrated
in [75–77]. If the high order time stepper is not SSP, then an oscillation-free numerical
solution is not guaranteed even if the spatial reconstruction is total variation diminishing.

The time step ∆t of high order SSP methods is related to ∆tFE by the SSP coefficient
c [77], i.e.,

∆t ≤ c∆tFE. (4.4)

The optimal SSP coefficient for the second and third order RK methods, SSP-RK2 and
SSP-RK3, is c = 1, meaning that forward Euler, RK2, and RK3 time integrators all have
the same severe time step restriction. For example, second order finite volume methods
with linear slope reconstruction (Section 4.2) coupled with the forward Euler method have a
CFL number of 1

2
. Such schemes applied to the scalar advection equation yield a maximum

allowed forward Euler time step ∆tFE = 1
2
h
a
, where h is the grid spacing and a is the

advection speed. Thus, by the standard SSP theory, this spatial discretization coupled with
the SSP-RK2 and SSP-RK3 methods also has a CFL number of 1

2
. In two dimensions, this

maximum allowable CFL number becomes 1
6

for the discontinuous Galerkin (DG) method
coupled with the vertex-based limiter in [2], i.e., ∆tFE = 1

6
h
||a|| , where h is a measure of cell

size and a is the speed vector. This is unlike what is known about linear stability of RK
methods, where increasing the number of stages in the RK time stepper can increase the
area of its absolute stability region and possibly increase the maximum stable time step.

The advantage of using the standard SSP analysis is that from the stability of the spatial
discretization coupled with the forward Euler method, stability with high order SSP time
integrators is guaranteed under the suitable time step restriction (4.4). This time step
restriction may or may not be tight. We show that by analyzing the fully discrete FV
and RK2 schemes for the scalar advection equation with periodic boundary conditions, the
SSP coefficient in (4.4) can be increased while still guaranteeing stability of the numerical
solution in the maximum norm. We note that our analysis does not preclude the existence
of spatial discretizations for which (4.4) is tight.
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It has been shown in other contexts that the SSP restriction (4.4) can be relaxed without
sacrificing positivity of the solution, in e.g. [78,79] for well resolved and smooth problems.
Additionally, if monotonicity in an inner product norm rather than in a convex functional
is desired then a more relaxed time step restriction than (4.4) is possible [80]. The work
presented here makes no assumptions on the solution and shows that the maximum stable
time step of a second order finite volume scheme can be increased by analyzing the fully
discrete spatial and temporal discretization.

4.1 The FV method

We consider a second order finite volume method with slope reconstruction. The periodic
computational domain is divided uniformly into elements Ωi with left, xi− 1

2
, and right,

xi+ 1
2
, end points, where h = xi+ 1

2
− xi− 1

2
is the grid spacing. A semi-discrete finite volume

scheme for (4.1) is given by

d

dt
Ui =

1

h

[
f ∗(Qi−1(xi− 1

2
), Qi(xi− 1

2
))− f ∗(Qi(xi+ 1

2
), Qi+1(xi+ 1

2
))
]
, (4.5)

where Ui is an approximation to the cell average of the exact solution on Ωi, Qi(x) is
a linearly reconstructed solution on Ωi, and f ∗ is the numerical flux [81]. The linearly
reconstructed numerical solution at time tn on cell Ωi is

Qn
i (x) = Un

i + σni (x− xi) for x ∈ [xi− 1
2
, xi+ 1

2
). (4.6)

The slope σni is reconstructed using a second order TVD limiter [32, 82]. Using (4.6), we
define the correction term

∆n
i = Un

i,r − Un
i = Un

i − Un
i,l, (4.7)

where Un
i,r = Qn

i (xi+ 1
2
) and Un

i,l = Qn
i (xi− 1

2
). With a TVD limiter, we have

∆n
i−1 = γi− 1

2
,l(U

n
i − Un

i−1) and ∆n
i = γi− 1

2
,r(U

n
i − Un

i−1), (4.8)

for 0 ≤ γi− 1
2
,l, γi− 1

2
,r ≤ 1 (Figure 4.1). Assuming a linear flux f(u) = au where a > 0, and

the upwind numerical flux in (4.5), we obtain the scheme

d

dt
Ui =

1

h
(aUi−1,r − aUi,r). (4.9)
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Figure 4.1: Cell averages (dashed lines) and reconstructed slopes (solid lines).

Adding and subtracting aUi inside the parentheses on the right-hand-side of (4.9), we have

d

dt
Ui =

a

h
(Ui−1,r − Ui)−

a

h
(Ui,r − Ui). (4.10)

Substituting the second identity of (4.7) into (4.10), we obtain

d

dt
Ui =

a

h
(Ui−1,r − Ui)−

a

h
(Ui − Ui,l). (4.11)

4.2 First order forward Euler time stepping

We discretize (4.11) in time using the forward Euler method to obtain a second order in
space finite volume scheme, which has been examined in [77,81,83]. This gives

Un+1
i =

(
1− 2∆t

a

h

)
Un
i + ∆t

a

h
Un
i−1,r + ∆t

a

h
Un
i,l. (4.12)

Letting α = 2∆t a
h
, the cell average at tn+1 becomes

Un+1
i = (1− α)Un

i +
α

2
Un
i−1,r +

α

2
Un
i,l. (4.13)

Using periodicity and a reconstruction (4.6) with a TVD slope limiter, Un
i−1,r, U

n
i,l will lie

within the interval defined by the cell averages of Ωi and Ωi−1 (Figure 4.1). If α ≤ 1, then
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Un+1
i can be expressed as a convex combination of solution values at tn, and the scheme

(4.12) will be stable in the maximum norm. Thus, the forward Euler time step restriction
is

∆tFE ≤
1

2

h

a
.

4.3 Second order Runge-Kutta time stepping

The first and second intermediate solution values of the RK2 time stepping algorithm can
be written as

U
(1)
i = (1− α)Un

i +
α

2
Un
i−1,r +

α

2
Un
i,l, (4.14)

U
(2)
i = (1− α)U

(1)
i +

α

2
U

(1)
i−1,r +

α

2
U

(1)
i,l . (4.15)

On each cell, the left U
(1)
i,l and right U

(1)
i,r intermediate values can be written in terms of

the average U
(1)
i and the correction term ∆

(1)
i

U
(1)
i,l = U

(1)
i −∆

(1)
i and U

(1)
i,r = U

(1)
i + ∆

(1)
i . (4.16)

Substituting Un
i = (Un

i,l + Un
i,r)/2 into (4.14), and (4.16) into (4.15), the RK2 algorithm

becomes

U
(1)
i =

1− α
2

(
Un
i,l + Un

i,r

)
+
α

2
Un
i−1,r +

α

2
Un
i,l, (4.17)

U
(2)
i = (1− α)U

(1)
i +

α

2

(
U

(1)
i−1 + ∆

(1)
i−1

)
+
α

2

(
U

(1)
i −∆

(1)
i

)
, (4.18)

Un+1
i =

U
(2)
i + Un

i

2
. (4.19)

Substituting (4.17) and (4.18) into (4.19) yields

Un+1
i =

(
−1

8
α +

1

2

)
Un
i,l+

1

8
αUn

i−1,l+

(
−1

4
α2 +

3

8
α

)
Un
i−1,r+

1

8
α2Un

i−2,r+

(
1

8
α2 − 3

8
α +

1

2

)
Un
i,r+

1

4
α(∆

(1)
i−1−∆

(1)
i ).

Un+1
i is now in terms of the solution values at tn and the correction terms ∆

(1)
i and ∆

(1)
i−1.

From (4.8), the values of ∆
(1)
i and ∆

(1)
i−1 take on the following four extreme cases:

92



1. ∆
(1)
i = 0 and ∆

(1)
i−1 = 0,

2. ∆
(1)
i = U

(1)
i − U

(1)
i−1 and ∆

(1)
i−1 = U

(1)
i − U

(1)
i−1,

3. ∆
(1)
i = 0 and ∆

(1)
i−1 = U

(1)
i − U

(1)
i−1,

4. ∆
(1)
i = U

(1)
i − U

(1)
i−1 and ∆

(1)
i−1 = 0.

For each of the above cases, we will show that Un+1
i can be written as a convex combination

of solution values at tn, i.e.,

Un+1
i =

∑
j

djUj, (4.20)

where Uj are understood to be solution averages at time tn or values at the left and right
endpoints of the elements. The multipliers dj, which are functions of α, must satisfy the
following conditions

1. Sum condition ∑
j

dj = 1, (4.21)

2. Non-negativity condition
dj ≥ 0 ∀j, (4.22)

in order for the scheme to preserve the local and global bounds on the solution. In each of
the Cases 1-4, the sum condition (4.21) is satisfied. We will now comment on the values
of α for which the multipliers dj are non-negative.

Cases 1. and 2.

Un+1
i =

(
−1

8
α +

1

2

)
Un
i,l+

1

8
αUn

i−1,l+

(
−1

4
α2 +

3

8
α

)
Un
i−1,r+

1

8
α2Un

i−2,r+

(
1

8
α2 − 3

8
α +

1

2

)
Un
i,r.

The multipliers are non-negative for 0 ≤ α ≤ 3
2
.

Case 3.

Un+1
i =

1

2
Un
i,l +

1

4
αUn

i−1,r +

(
−1

4
α +

1

2

)
Un
i,r.

The multipliers are non-negative for 0 ≤ α ≤ 2.
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Figure 4.2: The limiter ensures that Ui−1,l − Ui−1,r = β(Ui−2 − Ui), where 0 ≤ β ≤ 1.

Case 4.

Un+1
i =

1

2

(
1− 1

2
α

)
Un
i,l+

1

2

(
1− α +

1

2
α2

)
Un
i,r+

1

4
αUn

i−1,l+
1

2

(
α− α2

)
Un
i−1,r+

1

4
α2Un

i−2,r.

(4.23)
The multipliers in the above expression are non-negative for 0 ≤ α ≤ 1. We can obtain a
larger interval for α by rearranging terms. Introducing the difference

(
Un
i−1,l − Un

i−1,r

)
and

using Un
i = (Un

i,l + Un
i,r)/2, we obtain

Un+1
i =

(
1− 1

2
α

)
Un
i +

1

4

(
α2 − α

)
Un
i,r+

(
−1

2
α2 +

3

4
α

)
Un
i−1,l+

1

2

(
α2 − α

) (
Un
i−1,l − Un

i−1,r

)
+

1

4
α2Un

i−2,r.

With a limiter, the solution satisfies

Un
i−1,l − Un

i−1,r = β
(
Un
i−2 − Un

i

)
for some 0 ≤ β ≤ 1 (Figure 4.2). Then, the scheme can be written as

Un+1
i =

(
−1

2
βα2 +

1

2
(β − 1)α + 1

)
Un
i +

1

2
β
(
α2 − α

)
Un
i−2+

(
3

4
α− 1

2
α2

)
Un
i−1,l+

1

4
α2Un

i−2,r+
1

4
(α2−α)Un

i,r.

(4.24)
The multipliers are non-negative for

1 ≤ α ≤
√

2 = min
0<β≤1

(
3

2
,
β − 1 +

√
β2 + 6β + 1

2β

)
.

Combining this interval with 0 ≤ α ≤ 1, we obtain with this expression for Un+1
i that it

can be written as a convex combination of solution values at tn with 0 ≤ α ≤
√

2, though
we need to use two different expressions.
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A slightly larger bound on α can be obtained if we specify which TVD slope limiter is
used in the scheme. For example, consider the monotonized central-difference (MC) slope
limiter [84]

σni =
1

h
minmod

(
2(Un

i − Un
i−1),

Un
i+1 − Un

i−1

2
, 2(Un

i+1 − Un
i )

)
. (4.25)

With this limiter, we now show that 0 ≤ β ≤ 1
2
. First, assume that the forward, central,

and backward differences are all of the same sign and nonzero. Then, multiplying both
sides of (4.25) by h/(Un

i+1 − Un
i−1), recognizing that Un

i,r − Un
i,l = hσni , and substituting

β = (Un
i,r − Un

i,l)/(U
n
i+1 − Un

i−1), we have

β = min

(
2
Un
i − Un

i−1

Un
i+1 − Un

i−1

,
1

2
, 2

Un
i+1 − Un

i

Un
i+1 − Un

i−1

)
.

From the above, it is clear that β is bounded above by 1
2
. If the forward, central, and

backward differences do not have the same sign or at least one is zero, then β = 0. This
gives that 0 ≤ β ≤ 1

2
. From this smaller interval for the β coefficient, we have that the

multipliers of (4.24) are non-negative for

1 ≤ α ≤ 3

2
= min

0<β≤ 1
2

(
3

2
,
β − 1 +

√
β2 + 6β + 1

2β

)
.

Depending on the value of α, we have different expressions of Un+1: if 0 ≤ α ≤ 1, then
Un+1 from (4.23) can be used, if 1 ≤ α ≤ 3

2
, then (4.24) can be used. Overall, Un+1 can

be written as a convex combination of solution values at tn for 0 ≤ α ≤ 3
2
.

Putting it all together.

Combining the above with the results from Section 4.2, we find that the scheme satisfies
the local maximum principle for 0 ≤ α ≤

√
2. All above cases are convex combinations of

solution values at time tn, thus a larger time step than in (4.4) is possible. The time step
restriction is therefore

∆t ≤
√

2

2

h

a
. (4.26)
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Taking into account the chosen TVD limiter, which in our case is the MC limiter, this time
step restriction can be increased to

∆t ≤ 3

4

h

a
. (4.27)

Remark

These results are based on the assumption of a piecewise linear numerical solution and a
limiter that forces solution values to belong to a local interval defined by its immediate
neighbors. As such, this larger CFL number immediately extends to other spatial dis-
cretizations, e.g. the DG method, where we have stability of the solution means in the
maximum norm.

4.4 Numerical examples

In this section, we demonstrate that numerical solutions obtained with the time step re-
striction (4.27) and the MC limiter are accurate and stable. Unless otherwise stated, in all
one-dimensional examples we use periodic boundary conditions on the domain [−1, 1] and
integrate until the final time T = 1.

4.4.1 Advecting sine wave

We solve (4.1) with the flux f(u) = u and the initial condition u0(x) = cos(2πx). We
provide the L1 errors, convergence rates, and lower and upper bounds attained by the
solution means in Table 4.1. We observe that the scheme is second order accurate and
preserves the global minimum and maximum of the solution.

4.4.2 Advecting discontinuities

We solve (4.1) with the flux f(u) = u and the initial condition u0(x) = 1 if x < 0, and 0 elsewhere.
The exact and numerical solutions at the final time are plotted in Figure 4.3. The global
minimum and maximum of the cell averages are maintained. We tabulate them at the final
time in Table 4.2.
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N Error Minimum Maximum
25 2.814176e-01 (-) -8.019780e-01 8.042554e-01
50 1.072674e-01 (1.39) -9.306829e-01 9.283151e-01
100 3.476506e-02 (1.62) -9.748830e-01 9.748830e-01
200 9.814755e-03 (1.82) -9.906997e-01 9.906997e-01
400 2.629868e-03 (1.89) -9.965111e-01 9.965111e-01
800 6.910883e-04 (1.92) -9.986542e-01 9.986542e-01

Table 4.1: L1 errors, rates of convergence (in parentheses), and global minimum and
maximum of cell averages with the number of cells N for Example 4.4.1.

N Minimum Maximum
25 1.912839e-04 9.994733e-01
50 8.725729e-09 1
100 0 1
200 0 1
400 0 1
800 0 1

Table 4.2: Global minimum and maximum of cell averages in terms of the number of
elements in Example 4.4.2.

(a) N = 25 (b) N = 50 (c) N = 100

Figure 4.3: Exact (dashed line) and numerical (solid line) solutions (Example 4.4.2).
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(a) Density (b) Velocity (c) Pressure

Figure 4.4: Exact (dashed) and numerical (solid) density, velocity, and pressure for the
Sod tube problem with N = 100 (Example 4.4.3).

4.4.3 Euler equations

We solve the Sod tube problem on the domain [0, 1] with the initial states (ρl, ul, pl) =
(1, 0, 1) and (ρr, ur, pr) = (0.125, 0, 0.1) to the left and right of x = 0.5, respectively. The
exact and numerical solutions at the final time T = 0.2 are plotted in Figure 4.4; slight
over- and undershoots are observed in the numerical solution. These oscillations are due
to the reconstruction in conserved variables [85] and are present when the CFL number is
both 3

4
and 1

2
. These overshoots and undershoots can occur even in numerical solutions

obtained with first order schemes [86].

4.4.4 Two-dimensional advection equation

In this example, we demonstrate that a larger time step is possible in two dimensions, as
well as with a spatial discretization different from the FV method. We solve ut+ux+uy = 0
on [−1, 1]2 using the DG spatial discretization with a linear basis, coupled with the limiter
based on the vertex neighborhood in [2]. The mesh was obtained by discretizing the domain
into a 40 × 40 grid of squares, then splitting each square along its diagonal from the top
left to bottom right, into two triangles. It was shown in [2] that solution means do not
grow in the maximum norm when

∆t ≤ CFL
h

||a||
, (4.28)
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1/CFL Minimum Maximum
3 -9.50e-18 1.000336
4 -6.15e-18 1
5 -3.93e-18 1
6 -3.62e-18 1

Table 4.3: Minimum and maximum cell averages for Example 4.4.4 using time step restric-
tion (4.28) for various CFL numbers.

with CFL ≤ 1
6
, a being the speed vector, and h being the cell width in the direction of a.

Here, h = 1
40

√
2. The problem is solved until a final time T = 0.1 with the initial condition

u0(x, y) = 1 if max(|x|, |y|) ≤ 1
4
, and 0 elsewhere.

In Table 4.3, we show the global maximum and minimum cell averages over the entire
mesh for various CFL numbers. Extrapolating from the one-dimensional analysis, we see
that the numerical solution in two dimensions preserves the global bounds on the solution
for a time step ∆t ≤ 3

2
∆tFE = 1

4
h
||a|| .

4.5 Conclusion

We have demonstrated analytically and numerically for one-dimensional finite volume
methods that the time step restriction for the stability in the maximum norm with RK2
time stepping is larger than the SSP theory’s prediction. We provide numerical evidence
that this conclusion extends to two dimensions and other spatial discretizations, e.g., the
DG method. The main conclusion here is that the stability of the fully discrete numerical
method depends on both the temporal and spatial discretizations. We believe that the
result can be extended to other SSP methods and spatial discretization schemes. The
analysis in multi-dimensions and for time integrators using a larger number of stages will
be significantly more involved algebraically.
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Chapter 5

Moment limiters in two dimensions

The limiter that we present here can be viewed as a first step in the generalization of the
moment limiter in [10,11] to unstructured meshes, or as a standalone second order limiter
with proven stability and accuracy properties. We start by noting that the second order
DG solution is written in terms of an orthonormal basis that contains a constant function
and two linear functions. We find two directions in which the directional derivative of the
solution is proportional to either of the two solution coefficients corresponding to the non-
constant basis functions. Each separated coefficient can be limited independently from
the other by comparing it to a suitably reconstructed approximation to this directional
derivative, as opposed to scaling them both by a constant multiplier [67]. We prove for
linear and nonlinear scalar hyperbolic equations that the solution with this limiter satisfies
the local maximum principle in the means.

The result of this analysis is a limiter on two-dimensional unstructured meshes that is
composed of two independent one-dimensional limiters. The implementation of the limiter
is straightforward as it uses the minmod function to compare the solution coefficients to
suitable forward and backward differences. The mesh preprocessing stage determines the
directional derivatives to be limited and the neighboring elements involved in the recon-
struction. The stability analysis provides a set of constraints on the solution coefficients,
i.e., a set of inequalities. Finding the optimal limited solution satisfying these constraints
will result in the least diffusive limiter, but would be computationally costly. Instead, we
derive a simplified region in the space of limiting coefficients that ensures that the numer-
ical solution is second order accurate and that it satisfies the local maximum principle,
similar to the Sweby’s second order TVD region [32]. From this region, we choose a limiter
that is easy to code and compute, as opposed to finding the least diffusive limiter.
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We derive a local time step restriction for which application of the limiter guarantees
that the cell averages remain within a locally defined interval for one forward Euler time
step. This can be extended to high order time stepping, i.e., strong stability preserving
(SSP) Runge Kutta methods. The derived CFL number is larger than the one needed for
linear stability [87] and we show that using the time step restriction derived from the LMP
can lead to stable but inaccurate solutions.

5.1 Ordinary differential equation for the solution av-

erages

Let us consider the case where (1.1) is a scalar conservation law. With k = 0, (1.9) becomes

d

dt
ci,0 = − 1

det Ji

∑
j∈Ne

i ,j 6=i

∫
∂Ωi,j

ϕ0F
∗(Ui, Uj) · ni,j dl. (5.1)

Multiplying the above by ϕ0 =
√

2 and recognizing that the cell average of Ui is U i = ci,0ϕ0,
we obtain

d

dt
U i = − 1

|Ωi|
∑

j∈Ne
i ,j 6=i

∫
∂Ωi,j

F∗(Ui, Uj) · ni,j dl, (5.2)

where |Ωi| is the area of the cell and det Ji = 2|Ωi|. This is an equation for the propagation
of the solution average on Ωi in time. We apply one forward Euler time step to (5.2) to
obtain

U
n+1

i = U
n

i −
∆t

|Ωi|
∑

j∈Ne
i ,j 6=i

∫
∂Ωi,j

F∗(Un
i , U

n
j ) · ni,j dl. (5.3)

For nonlinear fluxes, the DG method needs to integrate the boundary integral with third
order accuracy. An efficient choice is the two-point Gauss-Legendre quadrature rule [62],
with xi,j,q being the qth quadrature point on the edge shared by Ωi and Ωj. Replacing the
boundary integral in (5.3) with the quadrature rule gives

U
n+1

i = U
n

i −
∑

j∈Ne
i ,j 6=i

1

2
∆t
|∂Ωi,j|
|Ωi|

∑
q=1,2

F∗(Un
i (xi,j,q), U

n
j (xi,j,q)) · ni,j. (5.4)
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For a linear flux, this becomes

U
n+1

i = U
n

i −
∑

j∈Ne
i ,j 6=i

∆t
|∂Ωi,j|
|Ωi|

F∗(Un
i (xi,j), U

n
j (xi,j)) · ni,j, (5.5)

where xi,j is the midpoint of the edge shared by Ωi and Ωj.

5.2 Limiting algorithm

The numerical solution satisfies the local maximum principle in the means if

min
j∈Ni

U
n

j ≤ U
n+1

i ≤ max
j∈Ni

U
n

j , (5.6)

where Ni is a set containing the index of Ωi and the indices of elements neighboring Ωi, and
U
n

i , U
n

j are cell averages. In order to enforce the local maximum principle (5.6), we apply
a limiter to the solution coefficients cni,1 and cni,2. We consider the directional derivative of
Un
i (r) in the direction of the unit vector w, in the canonical coordinate system r = (r, s)

DwU
n
i (r) = ∇rsU

n
i ·w =

(
cni,1∇rsϕ1 + cni,2∇rsϕ2

)
·w.

Computing the gradient of the basis functions ϕ1 and ϕ2 in (1.7), yields

DwU
n
i (r) =

(
cni,1 (6 , 0) + cni,2

(
2
√

3 , 4
√

3
))
·w. (5.7)

In the directions w1 = 2√
5

(
1,−1

2

)
and w2 = (0, 1), the directional derivatives are

Dw1U
n
i = 6

(
2√
5

)
cni,1 and Dw2U

n
i = 4

√
3cni,2.

They depend on either cni,1, or cni,2, i.e. we have found the directions in which the DOFs are
uncoupled. This will allow us to limit each solution coefficient separately by comparing
them to forward and backward approximations of the derivatives in the directions w1 and
w2.

Using (1.3), we map w into the physical space and normalize to obtain on Ωi

vi =
Jiw

||Jiw||
.
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hi,2

hi,1

xi,1

xi,2

xi,3

Figure 5.1: hi,1 is the length of the segment connecting xi,2 and the midpoint of the edge
defined by xi,1 and xi,3. hi,2 is the length of the edge defined by xi,1 and xi,3.

For w1 and w2 in canonical coordinates, the corresponding vectors in the physical space
are vi,1 and vi,2, and the directional derivatives are

Dvi,1U
n
i = cni,1

6
√

5
2
||Jiw1||

and Dvi,2U
n
i = cni,2

4
√

3

||Jiw2||
.

Let hi,1 =
√

5
2
||Jiw1|| and hi,2 = ||Jiw2||. From (1.4), it follows that hi,1 is the distance

between xi,2 and the midpoint of the opposite edge, and hi,2 is the distance between xi,3
and xi,1 (Figure 5.1). In terms of derivatives Dvi,1U

n
i and Dvi,2U

n
i , the solution coefficients

cni,1 and cni,2 are written as

cni,1 =
hi,1
6
Dvi,1U

n
i and cni,2 =

hi,2

4
√

3
Dvi,2U

n
i . (5.8)

We reconstruct the slopes of the numerical solution in these two directions using solution
averages on neighboring elements. We start by compiling a list of all elements that share
a vertex with Ωi. We connect the centroids of the elements with linear segments to form
a polygon, see Figure 5.2a, shaded region. We find the four points where this polygon is
crossed by the lines with directions vi,1 and vi,2 that pass through the centroid of Ωi. We

name them xbi,1, xbi,2, and xfi,1, xfi,2, respectively (Figure 5.2a). Next, using linear interpo-
lation, we reconstruct the values of the numerical solution at the forward and backward
points of intersection. The reconstructed numerical solution in the forward and backward
direction of vi,1 are U f

i,1 and U b
i,1. Likewise, in the forward and backward direction of vi,2,

they are U f
i,2 and U b

i,2, respectively. For example, in Figure 5.2b the forward interpolated
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Ωj

Ωk

Ωm

Ωn

Ωi

−vi,1

vi,1

xb
i,1

xf
i,1

vi,2

−vi,2

xb
i,2

xf
i,2

xi,2

xi,3

xi,1

(a) Reconstruction neighborhood.

Ωj

Ωk

Ωm

Ωn

Ωi

U b
i,1 = βb

i,1U j + (1 − βb
i,1)Uk

dbi,1

dfi,1

U f
i,1 = βf

i,1Um + (1 − βf
i,1)Un

xb
i,1

xf
i,1

xi,3

xi,1

xi,2

(b) Forward and backward reconstruction in the direction of
vi,1.

Figure 5.2: Approximation of directional derivatives on Ωi = (xi,1,xi,2,xi,3).

solution value U f
i,1 is given by

U f
i,1 = βfi,1U

n

m + (1− βfi,1)Un with 0 ≤ βfi,1 ≤ 1.

The reconstructed forward differences ∆f
i,1 and ∆f

i,2 are defined as

∆f
i,1 =

1

dfi,1
(U f

i,1 − U i) and ∆f
i,2 =

1

dfi,2
(U f

i,2 − U i), (5.9)

where dfi,1, dfi,2 are the distances from xfi,1 and xfi,2 to the cell centroid xi, respectively.

Similarly, the backward differences ∆b
i,1 and ∆b

i,2 are

∆b
i,1 =

1

dbi,1
(U i − U b

i,1) and ∆b
i,2 =

1

dbi,2
(U i − U b

i,2), (5.10)

where dbi,1, dbi,2 are the distances measured from xbi,1 and xbi,2 to the cell centroid xi, re-
spectively. We limit cni,1 by comparing Dvi,1U

n
i to the reconstructed forward and backward

differences. The same is done for cni,2 and Dvi,2U
n
i . The limited degrees of freedom can be
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written in terms of the forward or backward differences

c̃ni,1 = lfi,1
hi,1
6

∆f
i,1 or c̃ni,1 = lbi,1

hi,1
6

∆b
i,1,

c̃ni,2 = lfi,2
hi,2

4
√

3
∆f
i,2 or c̃ni,2 = lbi,2

hi,2

4
√

3
∆b
i,1,

where lfi,k and lbi,k for k = 1, 2 are non-negative limiting coefficients for forward and back-
ward differences that we will derive. Introducing ri,1 and ri,2, the ratios of the backward
and forward differences,

ri,1 =
∆b
i,1

∆f
i,1

=

(
dfi,1
dbi,1

)
U i − U b

i,1

U f
i,1 − U i

ri,2 =
∆b
i,2

∆f
i,2

=

(
dfi,2
dbi,2

)
U i − U b

i,2

U f
i,2 − U i

, (5.11)

we express the limited degrees of freedom in terms of the forward differences

c̃ni,1 = li,1
hi,1
6

∆f
i,1,

c̃ni,2 = li,2
hi,2

4
√

3
∆f
i,2,

(5.12)

with non-negative limiting coefficients li,1 and li,2.

We want to derive upper bounds on the limiting coefficients such that the maximum
principle (5.6) is satisfied under a suitable time step restriction. To do so, we write the

solution mean at tn+1, U
n+1

i , in the following form

U
n+1

i = U
n

i +
∑
j

dj(Uj − U
n

i ), (5.13)

where Uj are understood to be solution means in the neighborhood of Ωi or reconstructed

solution values, e.g. U f
i,1, U b

i,1, U f
i,2, U b

i,2. Next, we show that under the limiter (5.12) and a
time step restriction, we ensure that the coefficients dj are non-negative and that the sum
of the coefficients is less than or equal to 1. In summary, we need to prove

1. sum property: ∑
j

dj ≤ 1, (5.14)
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2. non-negativity property:
dj ≥ 0. (5.15)

Properties (5.14) and (5.15) mean that U
n+1

i in (5.13) is a convex combination of solution
values at time tn and the local maximum principle (5.6) holds for one forward Euler time
step. The result can be extended to higher order Runge Kutta methods if they are strong
stability preserving (SSP). SSP-RK methods are convex combinations of stages of forward
Euler time steps. Since each forward Euler step produces an intermediate solution with
cell averages that do not violate those of the initial condition, then a convex combination
of forward Euler steps will not either [73].

We present analysis for when (1.1) is a linear equation. The nonlinear case closely
follows the linear one and is presented in Appendix B.

5.3 Linear advection equation

We use the upwind numerical flux, which is given by

F∗(Un
i (xi,j), U

n
j (xi,j)) · ni,j =

{
(a · ni,j)Un

j (xi,j) if j ∈ N−i ,
(a · ni,j)Un

i (xi,j) if j ∈ N+
i ,

where a is the flow direction, N−i and N+
i are the sets of inflow and outflow neighbors that

share an edge with Ωi, respectively, i.e. N±i = {j : j ∈ N e
i , j 6= i such that ± a · ni,j > 0}.

For a neighboring element Ωj with a · ni,j = 0, the flux term does not contribute to the
right hand side of (5.2), and this element can be omitted from both N±i . Therefore, the
scheme (5.5) becomes

U
n+1

i = U
n

i + ∆t
∑
j∈N−i

|a · ni,j|
|∂Ωi,j|
|Ωi|

Un
j (xi,j)−∆t

∑
j∈N+

i

|a · ni,j|
|∂Ωi,j|
|Ωi|

Un
i (xi,j). (5.16)

By the divergence theorem, we have the following relation∑
j∈Ne

i ,j 6=i

|∂Ωi,j|a · ni,j = 0. (5.17)

106



Using (5.17) in (5.16), we have

U
n+1

i = U
n

i + ∆t
∑
j∈N−i

|a · ni,j|
|∂Ωi,j|
|Ωi|

(Un
j (xi,j)− U

n

i )−∆t
∑
j∈N+

i

|a · ni,j|
|∂Ωi,j|
|Ωi|

(Un
i (xi,j)− U

n

i ).

Introducing the coefficients

v−j,i = −∆ta · ni,j
|∂Ωi,j|
|Ωi|

and v+
i,j = ∆ta · ni,j

|∂Ωi,j|
|Ωi|

, (5.18)

we write the linear scheme as

U
n+1

i = U
n

i +
∑
j∈N−i

v−j,i(U
n
j (xi,j)− U

n

i )−
∑
j∈N+

i

v+
i,j(U

n
i (xi,j)− U

n

i ). (5.19)

Limiting the numerical solution at the time tn gives

U
n+1

i = U
n

i +
∑
j∈N−i

v−j,i(Ũ
n
j (xi,j)− U

n

i )−
∑
j∈N+

i

v+
i,j(Ũ

n
i (xi,j)− U

n

i ), (5.20)

where Ũn
i and Ũn

j are the limited numerical solutions on Ωi and Ωj, respectively. We aim
to rewrite the inflow terms in (5.20) for each j ∈ N−i in the form

Ũn
j (xi,j)− U

n

i = fj,i(U
n

j − U
n

i ) + fj,i,1(U−j,i,1 − U
n

i ) + fj,i,2(U−j,i,2 − U
n

i ), (5.21)

where U−j,i,1 and U−j,i,2 are reconstructed solution values in the forward or backward direc-
tions ±vi,1 and ±vi,2, respectively, and fj,i, fj,i,1, and fj,i,2 are non-negative constants.
Likewise, we aim to rewrite the outflow terms for each j ∈ N+

i in (5.20) in the form

Ũn
i (xi,j)− U

n

i = −
[
gi,j,1(U+

i,j,1 − U
n

i ) + gi,j,2(U+
i,j,2 − U

n

i )
]
, (5.22)

where U+
j,i,1 and U+

j,i,2 are reconstructed solution values in the forward or backward direc-
tions ±vi,1 and ±vi,2, respectively, and gi,j,1 and gi,j,2 are non-negative constants.

5.3.1 Inflow term

We start with the inflow term in (5.20). Consider the limited numerical solution on cell
Ωj, j ∈ N−i , an inflow neighbor of Ωi, at xi,j = x(rj,i), where rj,i is the quadrature point
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on Ω0

Ũn
j (x(rj,i)) = U

n

j + c̃nj,1ϕ1(rj,i) + c̃nj,2ϕ2(rj,i).

Note that the physical point xi,j might be mapped using (1.3) to different edges of the
canonical triangle Ω0 by Ωi and Ωj. On Ωj, xi,j is mapped to rj,i ∈ Ω0, while the same
point on Ωi is mapped to ri,j ∈ Ω0. Using (5.9) and (5.12), the limited solution can be
rewritten in terms of the forward differences

Ũn
j (x(rj,i)) = U

n

j + lj,1ϕ1(rj,i)
hj,1
6

1

dfj,1
(U f

j,1 − U
n

j ) + lj,2ϕ2(rj,i)
hj,2

4
√

3

1

dfj,2
(U f

j,2 − U
n

j ). (5.23)

Consider the second term in the right hand side of (5.23). To satisfy the non-negativity
property (5.15), we require that the multiplier of the difference U f

j,1−U
n

j be non-negative.
If ϕ1(rj,i) ≥ 0, then this requirement is satisfied. Otherwise, using (5.11), we replace the
forward difference with the backward difference to obtain

ϕ1(rj,i)
1

dfj,1
(U f

j,1 − U
n

j ) = ϕ1(rj,i)
1

rj,1dbj,1
(U

n

j − U b
j,1) = |ϕ1(rj,i)|

1

rj,1dbj,1
(U b

j,1 − U
n

j ).

This results in a non-negative multiplier in front of U b
j,1−U

n

j , if the forward and backward
differences are of the same sign. If the differences are of opposite sign, then lj,1 is zero and,
consequently, fj,i,1 is equal to zero. We introduce the following notation for convenience

α−j,i,1 =


hj,1

6

ϕ1(rj,i)

dfj,1
if ϕ1(rj,i) ≥ 0,

hj,1
6

|ϕ1(rj,i)|
rj,1dbj,1

otherwise,
and U−j,i,1 =

{
U f
j,1 if ϕ1(rj,i) ≥ 0,

U b
j,1 otherwise.

(5.24)

Similarly, for the last term on the right hand side of (5.23) we introduce

α−j,i,2 =


hj,2
4
√

3

ϕ2(rj,i)

dfj,2
if ϕ2(rj,i) ≥ 0,

hj,2
4
√

3

|ϕ2(rj,i)|
rj,2dbj,2

otherwise,
and U−j,i,2 =

{
U f
j,2 if ϕ2(rj,i) ≥ 0,

U b
j,2 otherwise.

(5.25)

Using (5.24) and (5.25) in (5.23), we obtain

Ũn
j (xi,j) = U

n

j + lj,1α
−
j,i,1(U−j,i,1 − U

n

j ) + lj,2α
−
j,i,2(U−j,i,2 − U

n

j ). (5.26)
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Subtracting U
n

i from both sides of (5.26), then adding and subtracting U
n

i in the last two
terms on the right, we have

Ũn
j (xi,j)− U

n

i = U
n

j − U
n

i + lj,1α
−
j,i,1(U−j,i,1 − U

n

i + U
n

i − U
n

j ) + lj,2α
−
j,i,2(U−j,i,2 − U

n

i + U
n

i − U
n

j ),

which gives

Ũn
j (xi,j)− U

n

i = (1− lj,1α−j,i,1 − lj,2α−j,i,2)(U
n

j − U
n

i )

+ lj,1α
−
j,i,1(U−j,i,1 − U

n

i ) + lj,2α
−
j,i,2(U−j,i,2 − U

n

i ). (5.27)

Thus, (5.27) is in the form of (5.21), with

fj,i = 1− lj,1α−j,i,1 − lj,2α−j,i,2,
fj,i,1 = lj,1α

−
j,i,1,

fj,i,2 = lj,2α
−
j,i,2.

Sum and non-negativity

The coefficients fj,i,1 and fj,i,2 are non-negative by (5.24) and (5.25). Requiring the coeffi-
cient fj,i to be non-negative gives the following condition

1− lj,1α−j,i,1 − lj,2α−j,i,2 ≥ 0 ∀j ∈ N−i . (5.28)

Note that (5.28) imposes a restriction on the neighboring inflow element Ωj, rather than
on Ωi itself. The sum of the coefficients over the inflow edge is

fj,i + fj,i,1 + fj,i,2 = lj,1α
−
j,i,1 + lj,2α

−
j,i,2 + (1− lj,1α−j,i,1 − lj,2α−j,i,2) = 1. (5.29)

5.3.2 Outflow term

We now deal with the outflow term in (5.20). Consider the limited numerical solution on
cell Ωi at the quadrature point xi,j = x(ri,j), j ∈ N+

i ,

Ũn
i (x(ri,j)) = U

n

i + c̃ni,1ϕ1(ri,j) + c̃ni,2ϕ2(ri,j).
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Using (5.9) and (5.12), the limited solution can be rewritten in terms of the forward
differences

Ũn
i (x(ri,j))− U

n

i = li,1ϕi,1(ri,j)
hi,1
6

1

dfi,1
(U f

i,1 − U
n

i )

+ li,2ϕi,2(ri,j)
hi,2

4
√

3

1

dfi,2
(U f

i,2 − U
n

i ). (5.30)

As for the inflow term, we introduce the following notation for the first term in the right
hand side of (5.30)

α+
i,1 =


hi,1

6

|ϕ1(ri,j)|
dfi,1

if ϕ1(ri,j) ≤ 0,

hi,1
6

ϕ1(ri,j)

ri,1dbi,1
otherwise,

and U+
i,j,1 =

{
U f
i,1 if ϕ1(ri,j) ≤ 0

U b
i,1 otherwise,

(5.31)

and for the second term in the right hand side of (5.30)

α+
i,2 =


hi,2
4
√

3

|ϕ2(ri,j)|
dfi,2

if ϕ2(ri,j) ≤ 0

hi,2
4
√

3

ϕ2(ri,j)

ri,2dbi,2
otherwise.

and U+
i,j,2 =

{
U f
i,2 if ϕ2(ri,j) ≤ 0

U b
i,2 otherwise.

(5.32)

Therefore, (5.30) becomes

Ũn
i (xi,j)− U

n

i = −
[
li,1α

+
i,j,1(U+

i,j,1 − U
n

i ) + li,2α
+
i,j,2(U+

i,j,2 − U
n

i )
]
. (5.33)

This is of the form (5.22) with gi,j,1 = li,1α
+
i,j,1 and gi,j,2 = li,2α

+
i,j,2. As in the inflow case,

li,1 or li,2 are zero when backward and forward differences are of opposite sign.

Sum and non-negativity

The multipliers gi,j,1 and gi,j,2 are non-negative by (5.31) and (5.32). The sum of the
coefficients is given by

gi,j,1 + gi,j,2 = li,1α
+
i,j,1 + li,2α

+
i,j,2. (5.34)
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5.3.3 Putting it all together

The inflow and outflow terms have been expanded into sums of the form (5.21) and (5.22)
in (5.27) and (5.33), respectively. Substituting these sums into (5.20) gives

U
n+1

i = U
n

i +
∑
j∈N−i

v−j,i
[
fj,i(U

n

j − U
n

i ) + fj,i,1(U−j,i,1 − U
n

i ) + fj,i,2(U−j,i,2 − U
n

i )
]

+
∑
j∈N+

i

v+
i,j

[
gi,j,1(U+

i,j,1 − U
n

i ) + gi,j,2(U+
i,j,2 − U

n

i )
]
.

This is of the form (5.13). We require that the sum of coefficients in front of the differences
above is less than or equal to one. Using (5.29) and (5.34), we write this requirement as∑

j∈N−i

v−j,i [fj,i + fj,i,1 + fj,i,2] +
∑
j∈N+

i

v+
i,j [gi,j,1 + gi,j,2] =

∑
j∈N−i

v−j,i +
∑
j∈N+

i

v+
i,j

(
li,1α

+
i,j,1 + li,2α

+
i,j,2

)
≤ 1. (5.35)

For (5.35) to be satisfied, we enforce on each outflow edge of Ωi

li,1α
+
i,j,1 + li,2α

+
i,j,2 ≤ 1, ∀j ∈ N+

i , (5.36)

and on all elements ∑
j∈N−i

v−j,i +
∑
j∈N+

i

v+
i,j ≤ 1, ∀Ωi. (5.37)

For non-negativity of the expansion coefficient fj,i we must enforce the constraint (5.28)
on the inflows edges of Ωi, i.e. on the outflow edges of elements sharing an edge with Ωi,

lj,1α
−
j,i,1 + lj,2α

−
j,i,2 ≤ 1, ∀j ∈ N−i . (5.38)
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5.3.4 Time step restriction

Using the definition of v−j,i and v+
i,j in (5.18), (5.37) becomes

∆t

∑
j∈N−i

|a · ni,j|
|∂Ωi,j|
|Ωi|

+
∑
j∈N+

i

|a · ni,j|
|∂Ωi,j|
|Ωi|

 ≤ 1, (5.39)

since a · ni,j < 0 for j ∈ N−i and a · ni,j > 0 for j ∈ N+
i . From (5.17), we obtain

−
∑
j∈N−i

|∂Ωi,j|a · ni,j =
∑
j∈N+

i

|∂Ωi,j|a · ni,j.

Because a · ni,j < 0 for j ∈ N−i and a · ni,j > 0 for j ∈ N+
i , this becomes∑

j∈N−i

|∂Ωi,j||a · ni,j| =
∑
j∈N+

i

|∂Ωi,j||a · ni,j|. (5.40)

If a is not parallel to one of the edges, Ωi has either a single inflow edge or a single
outflow edge, which we will refer to as ∂Ωi,j. Otherwise, either the inflow or outflow edge
can be chosen to be ∂Ωi,J . In terms of ∂Ωi,J , identity (5.40) now becomes

|∂Ωi,J ||a · ni,J | =
∑
j∈N−i

|∂Ωi,j||a · ni,j| =
∑
j∈N+

i

|∂Ωi,j||a · ni,j|.

Using the above in (5.39), we obtain

2∆t
|∂Ωi,J ||a · ni,J |

|Ωi|
≤ 1. (5.41)

The area of the cell Ωi is 1
2
|∂Ωi,j|Hi,J , where Hi,J is the height of the cell measured from the

edge ∂Ωi,j (Figure 5.3a). Further, a simple geometric consideration reveals that ||a||Hi,J =
hi|a ·nJ |, where hi is the width of the cell in the direction of a. Using this, (5.41) simplifies
to

2∆t
|∂Ωi,J ||a · ni,J |

|Ωi|
= 4∆t

||a||
hi
≤ 1. (5.42)
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∂Ωi,J

Hi,J

hi

a

ni,J

θ

θ

(a) Cell size in the direction of flow
hi.

Hi,3

Hi,2

Hi,1

∂Ωi,1

∂Ωi,2

∂Ωi,3

(b) Cell size for systems hi =
min(Hi,1, Hi,2, Hi,3).

Figure 5.3: Measures of cell size for time step restriction (5.43).

The time step restriction on the entire mesh is then given by

∆t ≤ 1

4
min
i

hi
||a||

. (5.43)

For systems of equations, in general, information can be propagated along multiple direc-
tions. Therefore, we take the smallest cell width, i.e.,

hi = min(Hi,1, Hi,2, Hi,3), (5.44)

where Hi,1, Hi,2, and Hi,3 are the cell widths perpendicular to the three edges of the
element, e1, e2, and e3 (Figure 5.3b).

5.3.5 Moment limiter

By the analysis in Sections 5.3.1-5.3.3, there are two constraints on the slope of Un
i (x) for

each outflow edge of Ωi and no constraints on the inflow edges. One constraint is given by
(5.36) and the other is imposed by Ωi’s neighbor via (5.38). Constraints (5.36) and (5.38)
involve geometric constants and the values of the basis functions at the outflow edges’
midpoints, which are listed in Table 5.1. Consequently, the constraints depend on how the
physical triangles are mapped to the canonical triangle. This depends on how the vertices
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Ωk

Ωj

Ωm

Ωi
a

xi,3

xi,1

xi,2

(0, 0) (1, 0)

(0, 1)

Ω0

r

s

edge 2
edge 3

(0, 0) (1, 0)

(0, 1)

Ω0

r

s

edge 2
edge 3

edge 1

Figure 5.4: Mapping of Ωi to the canonical triangle Ω0 by (1.3).

are labeled in the physical triangle. By (1.3), vertex xi,1 is always mapped to (0, 0) (Figure
5.4). However, which vertex of the triangle is listed as xi,1 depends on the mesh generator.
For the edge number s, if it is an outflow edge of Ωi, the constraints (5.36) and (5.38) are

li,1

6γfi,1
+

li,2
4γbi,2ri,2

≤ 1 and
li,1

6γbi,1ri,1
+

li,2

4γfi,2
≤ 1 if s = 1, (5.45)

li,1

6γfi,1
+

li,2

4γfi,2
≤ 1 and

li,1
6γbi,1ri,1

+
li,2

4γbi,1ri,2
≤ 1 if s = 2, (5.46)

li,1
3γbi,1ri,1

≤ 1 and
li,1

3γfi,1
≤ 1 if s = 3, (5.47)

where γfi,k =
dfi,k
hi,k

, γbi,k =
dbi,k
hi,k

, and ri,k are given by (5.11), for k = 1, 2.

To illustrate, let us consider an example in Figure 5.4, with the flow direction a. In
this case, Ωi has one outflow edge ∂Ωi,m. This edge is mapped to edge 3 on the canonical
triangle and, consequently, the only constraints on the slope of Un

i (x) are (5.47). Next,
consider the opposite flow direction −a. The outflow edges of Ωi are now ∂Ωi,k and ∂Ωi,j.
These edges are mapped to edges 1 and 2 on the canonical triangle, respectively. Therefore,
the constraints on the slope of Un

i (x) are (5.45) and (5.46).

Thus, we must check each edge for being an outflow edge and determine which edge of
the canonical triangle it maps to. This involves extra coding effort and slows computations.
Alternatively, we might choose enforcing (5.36) and (5.38) on all three edges of Ωi, i.e.
enforce (5.45) - (5.47). This will result in a more restrictive limiter, however this limiter
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will be easier to implement. Inequalities (5.45) - (5.47) are satisfied if
li,1

6 min(γfi,1,γ
b
i,1ri,1)

+
li,2

4 min(γfi,2,γ
b
i,2ri,2)

≤ 1,

li,1

3 min(γfi,1,γ
b
i,1ri,1)

≤ 1.

Introducing the modified limiting coefficients

l̃i,1 =
li,1

min(γfi,1, γ
b
i,1ri,1)

and l̃i,2 =
li,2

min(γfi,2, γ
b
i,2ri,2)

,

the constraints become {
1
6
l̃i,1 + 1

4
l̃i,2 ≤ 1,

1
3
l̃i,1 ≤ 1.

We give an illustration of the inequalities (5.45) - (5.47) in Figure 5.5a. For plotting, we
chose a particular relation between the geometric constants γ and ratios r, i.e., γfi,1 ≤ γbi,1ri,1

and γbi,2ri,2 ≤ γfi,2, though in general this is not always the case. The boundaries of the
inequalities are plotted as dashed lines. Values satisfying the inequalities will be to the
left and below those lines. The same is done for the simplified set of inequalities in Figure
5.5b. Recall that li,1 or li,2 are non-negative by construction. The case where li,1 or li,2 is
equal to zero corresponds to when the forward and backward differences are of opposite
sign. This gives the left and bottom boundaries of the stability region. Then, the region
from which suitable limiting coefficients can be taken is shown in gray. A simple sufficient
condition that satisfies all these constraints is

l̃i,1 ≤ 3δ and l̃i,2 ≤ 4− 2δ,

for any δ ∈ (0, 1]. That is, with ri,1 > 0 and ri,2 > 0,

li,1 ≤ 3δmin(γfi,1, γ
b
i,1ri,1) and li,2 ≤ (4− 2δ) min (γfi,2, γ

b
i,2ri,2). (5.48)

This is the region bounded by the rectangles in Figure 5.5b. Multiplying the first inequality
by

hi,1
6
|∆f

i,1| and the second by
hi,2
4
√

3
|∆f

i,2|, by (5.12) the limited coefficients c̃ni,1 and c̃ni,2 must

115



4γfi,2

li,2

li,1

4γbi,2ri,2

6γfi,1 6γbi,1ri,13γfi,13γ
b
i,1ri,1

2γbi,2ri,2

(a) The full set of inequalities.

l̃i,2

l̃i,1

4

63

2

δ = 1
2

δ = 1

(b) Simplified set of inequalities.

Figure 5.5: The gray region is the admissibility region which satisfies all constraints. The
region bounded by the rectangle is the one used by the limiter for the chosen δ.

s ϕ1 ϕ2

1 1 −
√

3

2 1
√

3
3 -2 0

Table 5.1: Values of the basis functions at the midpoints of the canonical edges with edge
number s.
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satisfy

|c̃ni,1| ≤
hi,1
2
δ|∆f

i,1|min

(
dfi,1
hi,1

,
dbi,1
hi,1

ri,1

)
,

|c̃ni,2| ≤
hi,2

4
√

3
(4− 2δ)|∆f

i,2|min

(
dfi,2
hi,2

,
dbi,2
hi,2

ri,2

)
.

We choose between the current solution coefficient cni,k and the largest one allowed, i.e., the
upper bounds in the above inequalities. Simplifying, this becomes

c̃ni,1 = minmod

(
δ
U f
i,1 − U

n

i

2
, cni,1, δ

U
n

i − U b
i,1

2

)
, (5.49)

c̃ni,2 = minmod

(
(4− 2δ)

U f
i,2 − U

n

i

4
√

3
, cni,2, (4− 2δ)

U
n

i − U b
i,2

4
√

3

)
. (5.50)

5.3.6 Geometric requirements

By (5.11), a solution that is linear in x and y will have that ri,1 = ri,2 = 1. In this case, the
reconstructed slope must not be reduced for second order spatial accuracy to be preserved,
i.e. 1 ≤ li,1, li,2. Then, by (5.48) we have

1 ≤ 3δmin(γfi,1, γ
b
i,1), (5.51)

1 ≤ (4− 2δ) min (γfi,2, γ
b
i,2). (5.52)

By the definition of the coefficients γbi,1, γfi,1, γbi,2, γfi,2, the above becomes

min(dfi,1, d
b
i,1) ≥ hi,1

3δ
, (5.53)

min(dfi,2, d
b
i,2) ≥ hi,2

4− 2δ
. (5.54)

This means that the interpolation points must lie a certain minimum distance from the
cell centroid that depends on δ (Figure 5.6).
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xi,1

xi,2

xi,3

vi,2

vi,1

1
3hi,1

1
2hi,2

(a) δ = 1

xi,1

xi,2

xi,3

vi,1

vi,2

2
3hi,1

1
3hi,2

(b) δ = 1
2

Figure 5.6: The forward and backward interpolation points xfi,k, x
b
i,k must lie a distance

from the centroid of the cell in the direction of vi,k for k = 1, 2 greater than the one
indicated, i.e. outside the shaded diamond.
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xi,1

xi,2

xi,3

xi,1

xi,2

xi,3

xi,1

xi,2

xi,3

vi,1

vi,2 vi,1

vi,2

vi,1

vi,2

Figure 5.7: Limiting directions of the triangle Ωi for three vertex numberings.

5.3.7 Preprocessing

The vertices of the triangle Ωi, (xi,1,xi,2,xi,3), are mapped by (1.3) to the vertices (0, 0),
(1, 0), and (0, 1) of the canonical triangle, respectively. In order for the determinant of
the Jacobian of this mapping given in (1.4) to be positive, the vertices must be ordered
counterclockwise. There are three mappings and, consequently, three pairs of limiting
directions, that depend on which vertex of the triangle is listed as xi,1 (Figure 5.7).

The local maximum principle (5.6) restricts the cell average on Ωi at time tn+1 to a
locally defined interval that depends on how the reconstruction neighborhood Ni is chosen.
It would be computationally advantageous for Ni to consist of elements that share an edge
with the cell Ωi, as this is the stencil for the DG method. Unfortunately, this may be
incompatible with the geometrical requirements (5.51) and (5.52) given in Section 5.3.6.
This is illustrated in Figure 5.8a where we determine the interpolation points for the limiter
(5.49), (5.50) with δ = 1 using the procedure described in Section 5.2. The forward and
backwards interpolation points in the direction of vi,2 do not lie far enough away from the
centroid of Ωi because they lie inside the shaded diamond. However, if we enlarge Ni to
contain all elements that share a vertex with Ωi, we obtain interpolation points that satisfy
(5.51) and (5.52) (Figure 5.8b). Note that other approaches to find interpolation points
are possible, however the present one provides a systematic way to find such points and is
simple to code.

These interpolation points are computed during preprocessing of the mesh. We store
the pointers to the eight elements involved in limiting and four interpolation coefficients
βfi,1, βbi,1, βfi,2, βbi,2, (Figure 5.2). The coordinates of the interpolation points are not needed
so they are not stored.
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xi,1

xi,2

xi,3

vi,2

vi,1

(a) Edge neighborhood. The forward and back-
wards interpolation points in the direction of
vi,2 do not satisfy the geometric requirement
(5.52).

xi,1

xi,2

xi,3

vi,2

vi,1

(b) Vertex neighborhood. All interpolation
points satisfy the geometric requirements (5.51)
and (5.52).

Figure 5.8: Interpolation points for Ωi = (xi,1,xi,2,xi,3), denoted by hollow square ticks,
with the edge (a) and vertex (b) neighborhoods. Solid squares denote cell centroids. The
interpolation points must lie outside the shaded region to allow for second order accuracy.
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5.4 Numerical examples

In all examples, we choose δ = 1. The limiter (5.49), (5.50) becomes

c̃ni,1 = minmod

(
U f
i,1 − U

n

i

2
, cni,1,

U
n

i − U b
i,1

2

)
, (5.55)

c̃ni,2 = minmod

(
U f
i,2 − U

n

i

2
√

3
, cni,2,

U
n

i − U b
i,2

2
√

3

)
. (5.56)

Unless otherwise stated, we solve (1.1) on the square domain [−1, 1]2 with RK2 time
stepping, and limiter (5.55), (5.56). The moment limiter is implemented in CUDA C
and executed on NVIDIA GPUs with the DG implementation [3] using the optimizations
described in [7]. This limiting algorithm is very suitable for GPU acceleration due to the
stencil of constant size.

5.4.1 Verification of CFL number and global bounds on the so-
lution

In this example, we verify the time step restriction (5.43). We use the flux F(u) = [u, u],
along with the the initial condition of a square pulse

u0(x, y) =

{
1 if max(|x|, |y|) ≤ 1

4

0 elsewhere.

The problem is solved until the final time T = 0.1 on a structured mesh of 11,522 triangles.
The mesh is obtained by first tiling the domain with 76 by 76 squares. Then, we split the
squares along their diagonals, connecting the square’s upper left and lower right corners,
to create triangles. The time step restriction is obtained from the wave speed ||a|| =

√
2

and cell width in the direction of flow, which is 1
76

√
2 ≈ 1.860 · 10−2. The minimum and

maximum solution cell averages of the final solution are tabulated in Table 5.2 for forward
Euler and RK2 time steppers using different values of the CFL number. These results
verify that time step restriction (5.43) is tight for the forward Euler method. Additionally,
we find that the CFL number can be increased without the the solution averages at the
final time exceeding the global bounds of the initial condition. However, the quality of
the solution is adversely affected when we exceed the CFL number required for linear
stability [87]. We will demonstrate this in the following example.
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1/CFL Minimum Maximum
2 -3.97e-01 1.14
3 -4.83-02 1.00062

3.5 -4.31e-03 1
4 -3.39e-19 1

(a) Forward Euler.

1/CFL Minimum Maximum
2 -1.19e-19 1
3 -3.31-22 1

3.5 -1.91e-21 1
4 -4.10e-21 1

(b) RK2.

Table 5.2: Global bounds on the cell averages of the final solution in Example 5.4.1 using
time step restriction (5.43).

5.4.2 Verification of accuracy

The CFL number from a linear stability analysis of the scheme (1.9) is 3
13

= 1
4.333...

[87].
We note that this is smaller than the one required by the LMP in (5.43). With the flux
F(u) = [u, 0], we solve an advecting pulse problem with the initial condition

u0(x, y) =

{
cos2(2πr), if r ≤ 1

4
,

0, otherwise,
(5.57)

where r =
√

(x+ 1
4
)2 + y2. In Table 5.3, we present the global solution bounds and L1

errors at T = 0.5. With a CFL number equal to 1
4
, unlimited solutions are unstable (Table

5.3c). The limiter suppresses the growth of the global bounds of the solution but the rate
of convergence of the L1 error drops to less than 0.6 (compare the L1 errors in Tables
5.3a and 5.3b). The limiter does not introduce a substantial error on this structured grid
(compare the L1 errors in Tables 5.3b and 5.3d). Thus, in the following examples we use
the CFL number given by the linear stability analysis [87].

5.4.3 Limiter (5.55)

The limiter presented in Section 5.3 depends on the numbering of the element vertices,
i.e. is mapping dependent. Here we construct an example where all elements in the mesh
have only one outflow edge, and that edge is always mapped to the third edge (k = 3) of
Ω0 (Figure 5.4). In this case, instead of the general limiter (5.55)-(5.56), we can use only
limiter (5.55). Then, only the cni,1 coefficient is limited and cni,2 is left untouched.
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Number of elements Minimum Maximum L1 error
200 -1.004307e-37 2.932214e-01 5.1693e-02 (-)
800 -3.317668e-39 6.271256e-01 2.1214e-02 (1.28)

3,200 -1.500449e-62 8.490757e-01 5.5147e-03 (1.94)
12,800 -3.515808e-42 9.444271e-01 1.3530e-03 (2.02)
51,200 -3.410031e-45 9.803368e-01 4.5571e-04 (1.56)
204,800 -7.484794e-45 9.932226e-01 3.0248e-04 (0.59)

(a) Accuracy for 1/CFL = 4 with moment limiter.

Number of elements Minimum Maximum L1 error
200 -4.482126e-38 2.930021e-01 5.1733e-02 (-)
800 -1.974258e-36 6.264496e-01 2.1039e-02 (1.29)

3,200 -3.639373e-73 8.495680e-01 5.4395e-03 (1.95)
12,800 -1.525488e-60 9.446573e-01 1.3091e-03 (2.05)
51,200 -2.857630e-44 9.804285e-01 3.0646e-04 (2.09)
204,800 -4.616411e-42 9.932461e-01 7.2674e-05 (2.07)

(b) Accuracy for 1/CFL = 13
3 = 4.333 . . . with moment limiter.

Number of elements Minimum Maximum L1 error
200 -1.069623e-01 5.838654e-01 4.0877e-02 (-)
800 -4.193137e-02 8.903924e-01 1.5198e-02 (1.42)

3,200 -4.965123e-02 9.683763e-01 1.5860e-02 (-)
12,800 -3.270390e+00 3.202645e+00 7.7678e-01 (-)
51,200 -1.001783e+05 1.069657e+05 1.6659e+04 (-)
204,800 -5.694670e+14 5.489725e+14 6.2178e+13 (-)

(c) Accuracy for 1/CFL = 4, unlimited.

Number of elements Minimum Maximum L1 error
200 -7.867535e-02 5.795796e-01 3.1425e-02 (-)
800 -5.092045e-02 8.823980e-01 9.9184e-03 (1.66)

3,200 -2.248452e-02 9.678742e-01 2.7487e-03 (1.85)
12,800 -9.359466e-03 9.920149e-01 7.3307e-04 (1.90)
51,200 -3.713583e-03 9.980151e-01 1.9241e-04 (1.92)
204,800 -1.459199e-03 9.995055e-01 4.9797e-05 (1.95)

(d) Accuracy for 1/CFL = 13
3 = 4.333 . . ., unlimited.

Table 5.3: L1 errors, convergence rates (in parentheses), and global bounds on the final
solution for Example 5.4.2.
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With the flux F(u) = [u, 0], we solve an advecting square pulse problem with the initial
condition

u0(x, y) =

{
1, if max(

∣∣x+ 1
4

∣∣ , |y|) ≤ 1
4
,

0, elsewhere,
(5.58)

on the same mesh as in Section 5.4.1 until T = 0.5. We preprocess the mesh so that the
outflow edges of all elements are mapped to the third edge of Ω0. In both the initial and
final solutions (Figure 5.9), we observe oscillations in the y-direction. The amplitude of
these oscillations diminishes with time (Figures 5.9a and 5.9b). In the x direction, the
solutions are smoother, with discontinuities spread over two cell widths. Although large
overshoots are present in the solution, the means are still confined to the initial range [0, 1].
This example demonstrates that the local maximum principle (5.6) does not guarantee an
oscillation-free solution, even for scalar equations. For comparison, we plot the solution
with the full limiter (5.55)-(5.56) in Figures 5.9e, 5.9f, 5.10c, and 5.10d. We observe that
the oscillations in the y-direction are suppressed, although the discontinuities are more
diffused and there is a slight smearing effect at the corners of the pulse.

We note however that this is an artificial example as we have a discontinuity that is
perpendicular to the edges of the elements, on a mesh of elements with a special mapping to
the canonical element. Rotating the initial square pulse by 45 degrees results in a solution
with suppressed overshoots, even with limiter (5.55) (Figures 5.10a, 5.10b).

Finally, we solve the problem with a smooth initial condition given by (5.57). The L1

error at T = 0.5 is 1.4982e-03 for the limiter (5.55)-(5.56), and 1.1346e-03 for the limiter
(5.55). This demonstrates that the limiter (5.55)-(5.56) does not catastrophically degrade
solution quality.

5.4.4 Advecting hill

With the flux F(u) = [u, u], we solve an advecting hill problem with the initial condition

(5.57), where r =
√

(x+ 1
4
)2 + (y + 1

4
)2, on a sequence of unstructured meshes A-D. Re-

fined meshes were obtained by remeshing the domain with an increased target number of
elements. The final solutions at T = 0.5 on meshes A and D with the moment limiter
are plotted in Figure 5.11. The L1 errors on meshes A-D are reported in Table 5.4. As
expected, the limiter reduces solution accuracy. Nevertheless, we observe the second order
rate of convergence in the L1 norm and linear convergence in the L∞ norm in approxima-
tion of the local maximum (Figure 5.11c). For the resolved solutions, the moment limiter

124



(a) The initial condition using limiter (5.55). (b) Isolines of the initial condition us-
ing limiter (5.55).

(c) The final solution at T = 0.5 using (5.55). (d) Isolines of the final solution at
T = 0.5 using limiter (5.55).

(e) The final solution at T = 0.5 using limiter
(5.55)-(5.56).

(f) Isolines of the final solution at T =
0.5 using limiter (5.55)-(5.56).

Figure 5.9: Advecting square pulse (5.58) in Example 5.4.3.
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(a) The final solution at T = 0.5 using limiter
(5.55).

(b) The final solution at T = 0.5 us-
ing limiter (5.55).

(c) The final solution at T = 0.5 using limiter
(5.55)-(5.56).

(d) Isolines of the final solution at
T = 0.5 using limiter (5.55)-(5.56).

Figure 5.10: Advecting rotated square pulse in Example 5.4.3.

126



Mesh Elements Moment Unlimited
A 1,250 1.9615e-02 (-) 8.3553e-03 (-)
B 5,190 3.7825e-03 (2.37) 1.6512e-03 (2.33)
C 20,552 7.4542e-04 (2.34) 3.7238e-04 (2.14)
D 81,878 1.4196e-04 (2.39) 8.5916e-05 (2.11)

Table 5.4: L1 errors and convergence rates (in parentheses) for the advecting pulse problem
(5.57) in Example 5.4.4.

Mesh Minimized γ Mesh generator γ Maximized γ
A 1.9042e-02 1.9615e-02 1.9175e-02
B 3.7692e-03 3.7825e-03 3.9160e-03
C 7.3582e-04 7.4542e-04 7.6800e-04
D 1.3915e-04 1.4196e-04 1.4369e-04

Table 5.5: L1 errors for different choices of parameters γ in Example 5.4.4.

increases the error by a factor of approximately two (the solution on mesh A is badly
resolved due to an insufficient number of elements).

Next, we study how the limiting directions vi,1 and vi,2 (Figure 5.7) influence the
performance of the limiter (5.55)-(5.56). Three pairs of vi,1, vi,2 are possible on each Ωi.
This results in three possible limiting stencils and sets of parameter γ. For each pair of
limiting directions in Figure 5.7, we computed the minimum and maximum γ out of the four
involved in the limiting process, named γmin and γmax, respectively. By maximizing γ, we
mean that the configuration with the largest γmin was chosen. Conversely, by minimizing
γ, we mean that the configuration with the smallest γmax was chosen. The errors in
solutions obtained with different limiting directions are given in Table 5.5. It appears that
choosing reconstruction points closest to the cell centroid is beneficial, but not substantially
so. Thus, the vertex ordering given by the mesh generator can be used directly, without
additional preprocessing of the mesh.

5.4.5 Rotating shapes

With the flux F(u) = [−2πyu, 2πxu], we solve a rotating shapes problem. The exact
solution is a rotation of the initial data about the origin. The initial condition comprises
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(a) Raised solution A. (b) Raised solution D.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

U

 

 
A
B
C
D
Exact

(c) Profile of solution along the line y = x.

Figure 5.11: Advecting hill (5.57) in Example 5.4.4 at T = 0.5 with the moment limiter.
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Figure 5.12: Initial condition in Example 5.4.5.

a hill and a square pulse (Figure 5.12) defined by

u0(x, y) =


cos2(2πr) if r ≤ 0.25,

1 if max(|x− 0.35|, |y|) ≤ 0.25,

0 elsewhere,

where r =
√

(x+ 0.5)2 + y2. This problem is solved on an unstructured mesh of 12,792
triangles using the minimum cell width (5.44) as the measure of cell size. The isolines and
profile along y = 0 of the final solution are displayed in Figure 5.13. This solution is of
comparable quality to the moment limiter described in [11], solved on a structured mesh
of 80× 80 = 6,400 quadrilaterals.

5.4.6 Double Mach reflection problem

We solve the double Mach reflection problem on an unstructured mesh of 271,458 triangles.
The set-up is described in Chapter 5. We extend the limiter to systems of equations by
limiting each component separately, i.e., we limit the conserved variables.

We observe that the shocks are well resolved, and the slipline emanating from the
primary triple point is tight. These are results are again comparable to those obtained
with a moment limiter on Cartesian grids [11].

We compare the GPU runtime performance of the moment limiter to the so-called
Barth-Jespersen limiter. The Barth-Jespersen limiter uses either the edge neighborhood or

129



(a) Isolines with moment limiter.
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(b) Profile of solution on the line y = 0.

Figure 5.13: Rotating shapes at T = 1.

vertex neighborhood to determine a local interval by which to bound the numerical solution
at the edge midpoints. It was shown in [2] that the limiter using the edge neighborhood
is first order accurate but fast and the limiter using the vertex neighborhood is second
order accurate but slow. The total time spent executing the three limiting algorithms on
an NVIDIA Titan X Pascal is provided in Table 5.7. We observe that the moment limiter
is the fastest of the three limiters and takes approximately 8.6 percent of the total DG-
GPU solver run time. The Barth-Jespersen limiter using the edge neighborhood is slightly
slower than the moment limiter, but it is only first order accurate. The Barth-Jespersen
limiter using the vertex neighborhood is second order accurate, but it executes three times
slower per time step than the moment limiter and takes 22 percent of the total solver
run time, which is non-negligible. We also note that both Barth-Jespersen limiters have a
more restrictive CFL number of 1

6
in comparison to the moment limiter’s CFL number of

3
13

, which explains the increased number of time steps for the Barth-Jespersen limiters in
Table 5.7.

130



ρ s p
Ul 8 8.25 116.5
Ur 1.4 0 1

Table 5.6: Density, normal speed, and pressure to the left and right of the shock in Example
5.4.6.

Limiter Total solver run time (s) Limiter run time (s) Time steps Time (ms)/ step
Moment 159 13.8 (8.6 %) 6,941 1.9 (-)

Barth-Jespersen (Edge) 191 18.2 (9.5 %) 8,305 2.1 (1.1x)
Barth-Jespersen (Vertex) 231 51.4 (22 %) 8,624 5.9 (3.1x)

Table 5.7: Run time comparisons for moment and Barth-Jespersen limiters. The number in
brackets in the ‘Limiter run time (s)’ column is the percentage of the total solver run time
that the limiting algorithm takes to execute. The number in brackets in the ‘Time (ms)/
step’ column is the speed up factor of the moment limiter compared to the Barth-Jespersen
limiters per time step.

(a) Isovalues of the density. (b) Zoom of the isovalues in neighborhood
of the slipline.

Figure 5.14: Double Mach reflection problem.
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5.5 Summary

We have proposed a new second order limiter that operates directly on solution coeffi-
cients by finding suitable directions in which the one-dimensional minmod operation can
be employed. This is in contrast to existing limiters that sample solution values on the
edges of triangles and require that they remain in some locally defined range. We derive a
family of possible limiters and pick one that is easy to implement. We show on a number
of numerical examples that the limiter produces second order accurate, stable numerical
solutions, and performs comparably to a moment limiter on Cartesian grids.

This limiter is appealing because it has a stencil of constant size, it is easy to implement,
much of its overhead is moved to the preprocessing stage, e.g., determination of the limiter
stencil and interpolation coefficients, and it does not require computing the solution values
at quadrature points.

Analysis for nonlinear fluxes is provided in the Appendix, though the resulting stability
constraints are more involved. Traditionally, limiters developed for linear problems are
applied to nonlinear systems. Thus, we do the same here.

Extending this limiter to nonconforming meshes for use in adaptive simulations appears
to be possible. An element’s limiting directions will stay the same when its neighbors are
refined or coarsened, though the elements used in the reconstruction of forward and back-
ward differences may have to be updated. This will not require projecting the neighboring
solutions onto coarser or finer elements as is sometimes done. Another possibility for fu-
ture work is the extension of this limiter to higher order bases, though the analysis is
more involved as there are a higher number of solution coefficients that must be limited.
An extension to three-dimensional computations would also be of practical interest. The
advantages of a stencil of constant size become all the more important as the number of
neighbors will grow in three dimensions. Finally, we plan on investigating the applicability
of this limiter to computations involved in cut cell element geometries [36, 88].
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Chapter 6

Moment limiters in three dimensions

The limiter that we present in this chapter is an extension of the limiter described in
Chapter 5. The extension from triangles to tetrahedra is not straightforward as defining
the forward and backward differences is more involved, as is the derivation of the time
step restriction. An additional difficulty common to all limiters is how to appropriately
modify the slope on elements adjacent reflecting boundaries of the domain. One possible
approach that simplifies the implementation of the limiter is to not modify the slopes
on those elements at all [36]. We propose an alternative, straightforward approach to
limiting across reflecting boundaries that does not significantly modify the implementation
of the limiter in the code, with the majority of modifications to the code occurring in
the preprocessor. Reflecting boundaries model the influence of solid walls in the flow, i.e.
the flow normal the wall is zero. For planar boundaries, the effect of the solid wall can
be modeled by reflecting the entire computational domain about the wall and solving the
enlarged symmetrical problem. Instead of doubling the amount of computational work, we
propose to locally reflect elements in the neighborhood of the boundary about the plane
of symmetry, which is a simple and effective solution to the problem.

Similar to the analysis for two-dimensional conservation laws in Chapter 5, we assume
a scalar conservation law with linear flux F(u) = ua, where a is the flow direction. Using
the upwind numerical flux, the scheme for the solution averages can be written as

U
n+1

i = U
n

i +
∑
j∈N−i

v−j,i(U
n
j (xi,j)− U

n

i )−
∑
j∈N+

i

v+
i,j(U

n
i (xi,j)− U

n

i ), (6.1)

where a is the flow direction, N−i and N+
i are the sets of inflow and outflow neighbors that

share an edge with Ωi, respectively, i.e. N±i = {j : j ∈ N e
i , j 6= i such that ± a · ni,j > 0},
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and

v−j,i = −∆ta · ni,j
|∂Ωi,j|
|Ωi|

and v+
i,j = ∆ta · ni,j

|∂Ωi,j|
|Ωi|

. (6.2)

Limiting the numerical solution at the time tn gives

U
n+1

i = U
n

i +
∑
j∈N−i

v−j,i(Ũ
n
j (xi,j)− U

n

i )−
∑
j∈N+

i

v+
i,j(Ũ

n
i (xi,j)− U

n

i ), (6.3)

where Ũn
i and Ũn

j are the limited numerical solutions on Ωi and Ωj, respectively.

6.1 The limiting algorithm

Our goal is to limit the moments of the DG solution corresponding to the three linear
orthonormal basis functions such that we guarantee that the solution average at time tn+1

satisfies the local maximum principle (LMP)

min
j∈Ni

U
n

j ≤ U
n+1

i ≤ max
j∈Ni

U
n

j , (6.4)

without affecting the second order convergence rate of the numerical method. Ni is a set
of indices of elements in some neighborhood of Ωi along with the index i itself. A scheme
for the solution averages of the form

U
n+1

i = U
n

i +
∑
j

dj(Uj − U
n

i ), (6.5)

will satisfy the LMP (6.4) if the following two conditions on the dj are satisfied

1. sum property: ∑
j

dj ≤ 1, (6.6)

2. non-negativity property:
dj ≥ 0, (6.7)

where the Uj are understood to be reconstructed solution values or neighboring solution
means in a locally defined interval and dj are scalar multipliers. Therefore, we attempt to
write the DG scheme for the solution averages (6.3) in the form (6.5) and derive using the
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sum and non-negativity properties (6.6) and (6.7) the conditions under which the LMP
(6.4) is satisfied.

The first step is to relate each solution moment to a directional derivative. Differenti-
ating the solution on element i in a direction w gives

DwU
n
i (r) = cni,1

(
4
√

10 , 0, 0
)
·w+cni,2

(
2
√

5 , 6
√

5 , 0
)
·w+cni,3

(
2
√

15 , 2
√

15 , 4
√

15
)
·w.

(6.8)
In the directions w1 = 3√

11

(
1,−1

3
,−1

3

)
, w2 = 2√

5

(
0, 1,−1

2

)
, and w3 = (0, 0, 1), the direc-

tional derivatives are

Dw1U
n
i =

12

11

√
10
√

11cni,1 , Dw2U
n
i = 12cni,2, and Dw3U

n
i = 4

√
15cni,3.

We map w into the physical space and normalize to obtain on Ωi

vi =
Jiw

||Jiw||
.

For w1, w2, and w3 in canonical coordinates and the corresponding vectors in the physical
space vi,1, vi,2, and vi,3, the directional derivatives are

Dvi,1U
n
i = cni,1

4
√

10
√

11
3
||Jiw1||

, Dvi,2U
n
i = cni,2

6
√

5
√

5
2
||Jiw2||

, and Dvi,3U
n
i = cni,3

4
√

15

||Jiw3||
.

Let hi,1 =
√

11
3
||Jiw1||, hi,2 =

√
5

2
||Jiw2||, and hi,3 = ||Jiw3||. The constants hi,1, hi,2,

and hi,3 have the geometrical interpretation illustrated in Figure 6.1, which follows from
the Jacobian Ji (1.4) and geometrical considerations of the tetrahedron. The solution
coefficients cni,1, cni,2, and cni,3 written in terms of the derivatives Dvi,1U

n
i , Dvi,2U

n
i , and

Dvi,3U
n
i are

cni,1 =
hi,1

4
√

10
Dvi,1U

n
i , cni,2 =

hi,2

6
√

5
Dvi,2U

n
i , and cni,3 =

hi,3

4
√

15
Dvi,3U

n
i . (6.9)

Next, we will reconstruct the directional derivatives of the numerical solution from the
solution averages in these directions.
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hi,1

hi,2

hi,3

xi,1

xi,2

xi,3

xi,4

Figure 6.1: hi,1 is the length of the segment connecting xi,2 and the centroid of the face
defined by xi,1, xi,3, and xi,4. hi,2 is the length of the segment connecting xi,3 and the
midpoint of the edge defined by xi,1 and xi,4. hi,3 is the length of the edge defined by xi,1
and xi,4.

6.1.1 Forward and backward differences

We aim to reconstruct the directional derivatives in these three directions using solution
averages on neighboring elements. U f

i,k and U b
i,k are the forward and backward interpolated

solution values at the interpolation points xfi,k and xbi,k in the directions vi,k and −vi,k,

respectively. The interpolation points lie at distances dfi,k and dbi,k from the the centroid

xi, i.e. xfi,k − xi = dfi,kvi,k and xi − xbi,k = dbi,kvi,k (Figure 6.2). The reconstruction of the
directional derivatives is done using the forward differences

∆f
i,1 =

1

dfi,1
(U f

i,1 − U i), ∆f
i,2 =

1

dfi,2
(U f

i,2 − U i), and ∆f
i,3 =

1

dfi,3
(U f

i,3 − U i), (6.10)

and the backward differences

∆b
i,1 =

1

dbi,1
(U i − U b

i,1), ∆b
i,2 =

1

dbi,2
(U i − U b

i,2), and ∆b
i,3 =

1

dbi,3
(U i − U b

i,3). (6.11)

The reconstructed solution values U f
i,k and U b

i,k are determined from linear interpolation of
neighboring solution averages. The determination of which elements to include in the linear

136



x1

x2x3

x4

X

Y

Z

(a) Triangulation of the convex hull of neighbor-
ing centroids.
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(d) Interpolation planes for vi,3.

Figure 6.2: Determining the forward and backward interpolation planes in the three lim-
iting directions.
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interpolation is completed once for a particular mesh as a preprocessing stage composed
of the following three steps for each element Ωi:

1. Compile the list of vertex neighbors of Ωi. Two elements are considered vertex
neighbors if they share a geometrical vertex.

2. Find the triangular faces of the convex hull defined by the centroids of the vertex
neighbors (Figure 6.2a).

3. Determine the forward and backward interpolation elements for each limiting direc-
tion vi,k, k = 1, 2, 3.

After completion of Step 1 for all elements, the quickhull algorithm provided in the Qhull
package [89] is used for Step 2. The algorithm returns the surface triangulation as a list of
triangular faces. We iterate through the list until the forward and backwards interpolation
points for the reconstruction direction vi,k are found, k = 1, 2, 3. The interpolation points
are the points of intersection between the hull and the line defined by vi,k and passing
through the centroid xi. An interpolation point (forward or backward) p in the direction
vi,k belongs to a face of the hull, where it satisfies

n · (p− f) = 0, (6.12)

where n is the normal of the face and f is a vertex of the face. This point can be written
in vector form

p = xi + svi,k, (6.13)

where s is the Euclidean distance between the centroid of Ωi and the interpolation point.
Subtracting f from (6.13) and dotting the difference with n, we can solve for s

s =
(f − xi) · n

vi,k · n
. (6.14)

If s > 0, then xi + svi,k is the forward interpolation point xfi,k and dfi,k = s. Alternatively,

if s < 0 then it corresponds to a backward interpolation point xbi,k and dbi,k = −s. p can
be written as a convex combination of the three vertices of the face to which it belongs
using the barycentric coordinates. For example, consider the three forward interpolation
elements for vi,1, the centroids of which we refer to as xj, xq, and xm. The area of the
triangle formed by these centroids is A, and Aj, Aq, and Am are the areas of the smaller
triangles in Figure 6.3. The forward reconstructed solution value is

U f
i,1 = wfi,jU j + wfi,qU q + wfi,mUm,
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where the interpolation weights are given by

wfi,j =
Aj
A
, wfi,q =

Aq
A
, and wfi,m =

Am
A
.

6.1.2 The limited numerical solution

We aim to limit the solution moments by comparing them to the appropriate forward and
backward differences. From (6.9), the limited solution moments can be written in terms of
the forward differences

c̃ni,1 = li,1
hi,1

4
√

10
∆f
i,1, c̃ni,2 = li,2

hi,2

6
√

5
∆f
i,2, and c̃ni,3 = li,3

hi,3

4
√

15
∆f
i,3. (6.15)

where li,1, li,2, and li,3 are the non-negative limiting coefficients that will be specified later.

We aim to express the DG scheme with the limited numerical solution (6.3) in the form
(6.5) by writing the inflow terms of (6.3) as

Ũn
j (xi,j)−U

n

i = fj,i(U
n

j−U
n

i )+fj,i,1(U−j,i,1−U
n

i )+fj,i,2(U−j,i,2−U
n

i )+fj,i,3(U−j,i,3−U
n

i ) for j ∈ N−i ,
(6.16)

where fj,i, fj,i,1, fj,i,2, and fj,i,3 are non-negative constants and U−j,i,1, U−j,i,2, and U−j,i,3 are
reconstructed solution values in the forward or backward directions ±vi,1, ±vi,2, and ±vi,3,
respectively. Similarly, we will write the outflow terms of (6.3) as

Ũn
i (xi,j)− U

n

i = −
[
gi,j,1(U+

i,j,1 − U
n

i ) + gi,j,2(U+
i,j,2 − U

n

i ) + gi,j,3(U+
i,j,3 − U

n

i )
]

for j ∈ N+
i ,

(6.17)
where gi,j,1, gi,j,2, and gi,j,3 are non-negative constants and U+

i,j,1, U+
i,j,2, and U+

i,j,3 are re-
constructed solution values in the forward or backward directions ±vi,1, ±vi,2, and ±vi,3,
respectively.
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Figure 6.3: Areas Aj, Aq, and Am used for determining the forward interpolation weights

for limiting direction vi,1. The vertices xj, xq, xm, and xfi,1 lie on the same plane.

6.1.3 Inflow term

We start with the inflow term of (6.3). The limited numerical solution on an inflow neighbor
Ωj at x(rj,i) can be written using (6.10), (6.11), and (6.15) as

Ũn
j (x(rj,i)) =

3∑
k=0

c̃j,kϕk(x(rj,i)) = U
n

j + lj,1ϕ1(rj,i)
hj,1

4
√

10

1

dfj,1
(U f

j,1 − U
n

j )

+ lj,2ϕ2(rj,i)
hj,2

6
√

5

1

dfj,2
(U f

j,2 − U
n

j ) + lj,3ϕ3(rj,i)
hj,3

4
√

15

1

dfj,3
(U f

j,3 − U
n

j ). (6.18)

We relate the forward and backward differences with

ri,k =
∆b
i,k

∆f
i,k

for k = 1, 2, 3, (6.19)

and introduce the following notation for convenience

α−j,i,1 =


hj,1

4
√

10

ϕ1(rj,i)

dfj,1
if ϕ1(rj,i) ≥ 0,

hj,1
4
√

10

|ϕ1(rj,i)|
rj,1dbj,1

otherwise,
and U−j,i,1 =

{
U f
j,1 if ϕ1(rj,i) ≥ 0,

U b
j,1 otherwise.

(6.20)
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α−j,i,2 =


hj,2
6
√

5

ϕ2(rj,i)

dfj,2
if ϕ2(rj,i) ≥ 0,

hj,2
6
√

5

|ϕ2(rj,i)|
rj,2dbj,2

otherwise,
and U−j,i,2 =

{
U f
j,2 if ϕ2(rj,i) ≥ 0,

U b
j,2 otherwise.

(6.21)

α−j,i,3 =


hj,3

4
√

15

ϕ3(rj,i)

dfj,3
if ϕ3(rj,i) ≥ 0,

hj,3
4
√

15

|ϕ3(rj,i)|
rj,3dbj,3

otherwise,
and U−j,i,3 =

{
U f
j,3 if ϕ3(rj,i) ≥ 0,

U b
j,3 otherwise.

(6.22)

Using (6.20)-(6.22) in (6.18), we obtain

Ũn
j (xi,j) = U

n

j + lj,1α
−
j,i,1(U−j,i,1 − U

n

j ) + lj,2α
−
j,i,2(U−j,i,2 − U

n

j ) + lj,3α
−
j,i,3(U−j,i,3 − U

n

j ). (6.23)

Subtracting U
n

i from both sides of (6.23), then adding and subtracting U
n

i in the last three
terms on the right, we have

Ũn
j (xi,j)− U

n

i = U
n

j − U
n

i + lj,1α
−
j,i,1(U−j,i,1 − U

n

i + U
n

i − U
n

j ) + lj,2α
−
j,i,2(U−j,i,2 − U

n

i + U
n

i − U
n

j )

+lj,3α
−
j,i,3(U−j,i,3 − U

n

i + U
n

i − U
n

j ),

which gives

Ũn
j (xi,j)− U

n

i = (1− lj,1α−j,i,1 − lj,2α−j,i,2 − lj,3α−j,i,3)(U
n

j − U
n

i )

+ lj,1α
−
j,i,1(U−j,i,1 − U

n

i ) + lj,2α
−
j,i,2(U−j,i,2 − U

n

i ) + lj,3α
−
j,i,3(U−j,i,3 − U

n

i ). (6.24)

With the introduction of coefficients

fj,i = 1− lj,1α−j,i,1 − lj,2α−j,i,2 − lj,3α−j,i,3,
fj,i,1 = lj,1α

−
j,i,1,

fj,i,2 = lj,2α
−
j,i,2,

fj,i,3 = lj,2α
−
j,i,3,

(6.25)

(6.24) is now in the form (6.16).
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6.1.4 Outflow term

Now consider the outflow term of (6.3). The limited numerical solution on Ωi at x(ri,j)
can be written using (6.10), (6.11), and (6.15) as

Ũn
i (x(ri,j))− U

n

i = li,1ϕ1(ri,j)
hi,1

4
√

10

1

dfi,1
(U f

i,1 − U
n

i ) + li,2ϕ2(ri,j)
hi,2

6
√

5

1

dfi,2
(U f

i,2 − U
n

i )

+li,3ϕ3(ri,j)
hi,3

4
√

15

1

dfi,3
(U f

i,3 − U
n

i ).

(6.26)
As for the inflow term, we introduce the following notation for convenience

α+
i,1 =


hi,1

4
√

10

|ϕ1(ri,j)|
dfi,1

if ϕ1(ri,j) ≤ 0,

hi,1
4
√

10

ϕ1(ri,j)

ri,1dbi,1
otherwise,

and U+
i,j,1 =

{
U f
i,1 if ϕ1(ri,j) ≤ 0

U b
i,1 otherwise,

(6.27)

α+
i,2 =


hi,2
6
√

5

|ϕ2(ri,j)|
dfi,2

if ϕ2(ri,j) ≤ 0

hi,2
6
√

5

ϕ2(ri,j)

ri,2dbi,2
otherwise.

and U+
i,j,2 =

{
U f
i,2 if ϕ2(ri,j) ≤ 0

U b
i,2 otherwise.

(6.28)

α+
i,3 =


hi,3

4
√

15

|ϕ3(ri,j)|
dfi,3

if ϕ3(ri,j) ≤ 0

hi,3
4
√

15

ϕ3(ri,j)

ri,3dbi,3
otherwise.

and U+
i,j,3 =

{
U f
i,3 if ϕ3(ri,j) ≤ 0

U b
i,3 otherwise.

(6.29)

Therefore, (6.26) becomes

Ũn
i (xi,j)− U

n

i = −
[
li,1α

+
i,j,1(U+

i,j,1 − U
n

i ) + li,2α
+
i,j,2(U+

i,j,2 − U
n

i ) + li,3α
+
i,j,3(U+

i,j,3 − U
n

i )
]
,

(6.30)

with
gi,j,1 = li,1α

+
i,j,1

gi,j,2 = li,2α
+
i,j,2

gi,j,3 = li,2α
+
i,j,3.

(6.31)

(6.26) is now in the form (6.17).
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6.1.5 Putting it all together

Combining (6.24) and (6.30), we obtain

U
n+1

i = U
n

i +
∑
j∈N−i

v−j,i

[
fj,i(U

n

j − U
n

i ) + fj,i,1(U−j,i,1 − U
n

i ) + fj,i,2(U−j,i,2 − U
n

i ) + fj,i,3(U−j,i,3 − U
n

i )

]
(6.32)

+
∑
j∈N+

i

v+
i,j

[
gi,j,1(U+

i,j,1 − U
n

i ) + gi,j,2(U+
i,j,2 − U

n

i ) + gi,j,3(U+
i,j,3 − U

n

i )
]
.

This is now in the form (6.5). In order for U
n+1

i to satisfy the LMP (6.4), the sum condition
(6.6) must be satisfied, i.e.,∑

j∈N−i

v−j,i [fj,i + fj,i,1 + fj,i,2 + fj,i,3] +
∑
j∈N+

i

v+
i,j [gi,j,1 + gi,j,2 + gi,j,3] ≤ 1. (6.33)

Using (6.25) and (6.31) in the above yields∑
j∈N−i

v−j,i +
∑
j∈N+

i

v+
i,j

(
li,1α

+
i,j,1 + li,2α

+
i,j,2 + li,3α

+
i,j,3

)
≤ 1. (6.34)

For (6.34) to be satisfied, we enforce on each outflow face of Ωi

li,1α
+
i,j,1 + li,2α

+
i,j,2 + li,3α

+
i,j,3 ≤ 1, ∀j ∈ N+

i , (6.35)

and on all elements ∑
j∈N−i

v−j,i +
∑
j∈N+

i

v+
i,j ≤ 1. (6.36)

The non-negativity condition (6.7) is satisfied if fj,i ≥ 0 by (6.25), i.e.

lj,1α
−
j,i,1 + lj,2α

−
j,i,2 + lj,3α

−
j,i,3 ≤ 1, ∀j ∈ N−i . (6.37)

The other coefficients fj,i,1, fj,i,2, fj,i,3 and gi,j,1, gi,j,2, gi,j,3 are non-negative by construction.
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6.1.6 Time step restriction

Using the definitions of v−j,i and v+
i,j in (6.2), we have from (6.36)

∆t

∑
j∈N−i

|a · ni,j|
|∂Ωi,j|
|Ωi|

+
∑
j∈N+

i

|a · ni,j|
|∂Ωi,j|
|Ωi|

 ≤ 1. (6.38)

since a · ni,j < 0 for j ∈ N−i and a · ni,j > 0 for j ∈ N+
i . From (3.14), we obtain

−
∑
j∈N−i

|∂Ωi,j|a · ni,j =
∑
j∈N+

i

|∂Ωi,j|a · ni,j.

Because a · ni,j < 0 for j ∈ N−i and a · ni,j > 0 for j ∈ N+
i , this becomes∑

j∈N−i

|∂Ωi,j||a · ni,j| =
∑
j∈N+

i

|∂Ωi,j||a · ni,j|. (6.39)

Using the above, we can determine a restriction on the time step. First, consider the case
of one outflow face and three inflow faces, as illustrated in Figure 6.4a. From (6.39), we
have ∑

j∈N−i

|∂Ωi,j||a · ni,j| = |∂Ωi,J ||a · ni,J |, (6.40)

where ∂Ωi,J is the single outflow face (the face opposite vertex xi,1 in Figure 6.4a). Using
(6.40) in (6.38), we obtain

2∆t
|∂Ωi,J ||a · ni,J |

|Ωi|
≤ 1. (6.41)

From Figure 6.4a, we have
|a · ni,J |
||a||

= cos θ =
Hi

hi
, (6.42)

where ni,J is the unit outward normal to the outflow face, θ is the angle between a and
ni,J , hi is the cell width in the direction of a shown in Figure 6.4a, and Hi is the cell width
in the direction of ni,J . Finally, the volume of the tetrahedron is

|Ωi| =
1

3
|∂Ωi,J |Hi. (6.43)
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Using (6.42) and (6.43) in (6.41) and solving for ∆t, the time step restriction becomes

∆t ≤ 1

6

hi
||a||

. (6.44)

This result is also valid in the case of three inflow faces and one outflow face.

Consider now the case of two inflow and two outflow faces. We subdivide Ωi into two
smaller tetrahedra as illustrated in Figure 6.4b. Summing the volume of these two smaller
tetrahedra gives the volume of the larger tetrahedron

|Ωi| =
1

3
|∂Ωi,K |HK +

1

3
|∂Ωi,L|HL, (6.45)

where HK and HL are the heights of the two smaller tetrahedra measured from the two
inflow faces given by vertices (xi,1, xi,2, xi,4) and (xi,2, xi,3, xi,4), respectively. Multiplying
and dividing (6.45) by hi, which is now the cell width illustrated in Figure 6.4b, and using
(6.42), we have

|Ωi| =
1

3

hi
||a||

(|∂Ωi,K ||a · ni,K |+ |∂Ωi,L||a · ni,L|) . (6.46)

In this case, hi is the line segment with direction a that connects the edge shared by the
two inflow faces (xi,2 and xi,4) with the edge shared by the two outflow faces (xi,1 and
xi,3). Expressing the time step restriction for this case in terms of the two inflow faces
using (6.39) in (6.38), we obtain

2∆t
|∂Ωi,K ||a · ni,K |+ |∂Ωi,L||a · ni,L|

|Ωi|
≤ 1. (6.47)

Substituting (6.46) into (6.47), we then obtain the same restriction on the time step as in
(6.44) although with the hi defined in Figure 6.4b.

In the case where a is parallel to one or two of the faces, the analysis is similar to the
case of one inflow and three outflow faces and hi is the one depicted in Figure 6.4a.

For systems of equations, generally, there is not a single direction of wave propagation.
A simple measure of cell size independent of the direction of propagation is

hi = 3
|Ωi|

|∂Ωi,j1|+ |∂Ωi,j2|
. (6.48)

where ∂Ωi,j1 and ∂Ωi,j2 are the faces of Ωi with the largest areas.
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(a) Three inflow faces and one outflow face. (b) Two inflow faces and two outflow faces.

Figure 6.4: Measure of cell width hi in the direction of flow.

6.2 Moment limiter

Analysis in Sections 6.1.3 - 6.1.6 shows that each outflow face of an element produces two
constraints on that element’s limiting coefficients. The first constraint on Ωi’s limiting
coefficients results from (6.35) and the second results from (6.37) via Ωi’s neighbor. By
(6.20)-(6.22) and (6.27)-(6.29), the constraints depend on the value of the basis function
evaluated at the centroid of the outflow face (Table 6.1). We will have four sets of possible
conditions since a tetrahedron has four faces. The constraints on the limiting coefficients
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based on the face number s = 1 . . . 4 are

li,1
4γbi,1ri,1

≤ 1 and
li,1

4γfi,1
≤ 1 if s = 1,

(6.49)

li,1

12γfi,1
+

li,2
9
2
γbi,2ri,2

≤ 1 and
li,1

12γbi,1ri,1
+

li,2
9
2
γfi,2
≤ 1 if s = 2,

(6.50)

li,1

12γfi,1
+

li,2

9γfi,2
+

li,3
6γbi,3ri,3

≤ 1 and
li,1

12γbi,1ri,1
+

li,2
9γbi,2ri,2

+
li,3

6γfi,3
≤ 1 if s = 3

(6.51)

li,1

12γfi,1
+

li,2

9γfi,2
+

li,3

6γfi,3
≤ 1 and

li,1
12γbi,1ri,1

+
li,2

9γbi,2ri,2
+

li,3
6γbi,3ri,3

≤ 1 if s = 4,

(6.52)

where γfi,k =
dfi,k
hi,k

, γbi,k =
dbi,k
hi,k

. The above inequalities are satisfied if

li,1 ≤ 4 min(γfi,1, γ
b
i,1ri,1) and li,2 ≤ 3 min(γfi,2, γ

b
i,2ri,2) and li,3 ≤ 2 min(γfi,3, γ

b
i,3ri,3). (6.53)

We now write the inequalities in terms of the solution moments assuming a non-negative
forward difference. Note that a similar analysis can be used for negative forward differences.
Multiplying the inequalities in (6.53) by ∆f

i,1
hi,1

4
√

10
, ∆f

i,2
hi,2
6
√

5
, and ∆f

i,3
hi,3

4
√

15
, respectively, gives

li,1∆f
i,1

hi,1

4
√

10
≤ hi,1√

10
∆f
i,1 min(γfi,1, γ

b
i,1ri,1), (6.54)

li,2∆f
i,2

hi,2

6
√

5
≤ hi,2

2
√

5
∆f
i,2 min(γfi,2, γ

b
i,2ri,2), (6.55)

li,3∆f
i,3

hi,3

4
√

15
≤ hi,3

2
√

15
∆f
i,3 min(γfi,3, γ

b
i,3ri,3). (6.56)

Substituting the expressions of the forward differences, γi,k, and ri,k for k = 1, 2, 3 and
replacing the left hand side of the above inequalities with the limited solution moments,
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we have

c̃ni,1 ≤ min

(
U f
i,1 − U

n

i√
10

,
U
n

i − U b
i,1√

10

)
, (6.57)

c̃ni,2 ≤ min

(
U f
i,2 − U

n

i

2
√

5
,
U
n

i − U b
i,2

2
√

5

)
, (6.58)

c̃ni,3 ≤ min

(
U f
i,3 − U

n

i

2
√

15
,
U
n

i − U b
i,3

2
√

15

)
. (6.59)

The limiter must restrict the solution coefficients to the interval defined by these upper
bounds defined in (6.57)-(6.59), i.e. the limiter becomes

c̃ni,1 = minmod

(
U f
i,1 − U

n

i√
10

, cni,1,
U
n

i − U b
i,1√

10

)
, (6.60)

c̃ni,2 = minmod

(
U f
i,2 − U

n

i

2
√

5
, cni,2,

U
n

i − U b
i,2

2
√

5

)
, (6.61)

c̃ni,3 = minmod

(
U f
i,3 − U

n

i

2
√

15
, cni,3,

U
n

i − U b
i,3

2
√

15

)
. (6.62)

6.2.1 Geometrical requirements

Second order accuracy requires that linear data is not limited. In this case, we have that
the ratio of forward and backward differences is 1, i.e., ri,k = 1 for k = 1, 2, 3, ∀i. In order
for the slope to not be limited, we must have li,k = 1 for k = 1, 2, 3, ∀i by (6.15). Using
(6.53), this results in the following geometrical requirements on the limiting coefficients

1 ≤ 4 min(γfi,1, γ
b
i,1ri,1) and 1 ≤ 3 min(γfi,2, γ

b
i,2ri,2) and 1 ≤ 2 min(γfi,3, γ

b
i,3ri,3).

In terms of the forward and backward interpolation distances, we have

hi,1 ≤ 4 min(dfi,1, d
b
i,1) and hi,2 ≤ 3 min(dfi,2, d

b
i,2) and hi,3 ≤ 2 min(dfi,3, d

b
i,3).

We check that the above requirements are satisfied after determining the forward and
backward interpolation points.
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s ϕ1 ϕ2 ϕ3

1 −
√

10 0 0

2 1
3

√
10 −4

3

√
5 0

3 1
3

√
10 2

3

√
5 −2

3

√
15

4 1
3

√
10 2

3

√
5 2

3

√
15

Table 6.1: Values of the basis functions at the centroids of the canonical faces with face
number s.

6.3 Limiting on reflecting boundaries

Limiting elements on the domain’s boundary in unstructured meshes is nontrivial and
rarely mentioned in the literature. We present our approach to limiting across planar re-
flecting boundaries, though we expect that our methodology extends to curved geometries.
A reflecting boundary condition (BC) can model the influence of a solid wall in a flow and
is implemented using ghost elements. The ghost elements take on a reflected state where
the ghost density, energy, and speeds in the two directions tangential to the plane are taken
to be the same as the interior value ρg = ρi, Eg = Ei, ug · t1 = ui · t1, and ug · t2 = ui · t2.
The ghost speed in the direction normal to the plane of symmetry is negative that of the
interior value, ug · n = −ui · n.

The difficulty in limiting in the neighborhood of these boundaries arises in Step 3 of
the reconstruction procedure in Section 6.1.1. If an element has a vertex on a reflecting
boundary, then it may not be possible to satisfy the second order geometrical requirements
in Section 6.2.1. Our solution to this problem is expanding the vertex neighborhood by
including neighbors reflected about the plane of symmetry located on the boundary (Figure
6.5). For neighbors located on the corner of two reflecting planes, the neighbors are reflected
about both planes of symmetry (Figures 6.5d and 6.5e).
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(a) A boundary element’s con-
vex hull.
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(b) The convex hull after reflec-
tion of elements about the plane
of symmetry.
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(c) The forward and backward
interpolation planes after reflec-
tion.

X
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Z

(d) Boundary element located
in the corner of two reflecting
planes.
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(e) The convex hull after reflec-
tion of the elements about the
two planes of symmetry.
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(f) The forward and backward
interpolation planes after reflec-
tion.

Figure 6.5: Reflecting neighboring centroids about the planes of symmetry (shaded red).
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6.4 Computed examples

6.4.1 Verification of the CFL

In this example, we demonstrate numerically that the time step restriction (6.44) is tight.
We construct two meshes by first subdividing a unit cube into a mesh of six tetrahedra using
two decompositions (Figures 6.6, 6.7). Next, the dimensions of the tetrahedra are scaled
by a factor of 1

30
. Finally, the cube of scaled tetrahedra is tiled on the domain [−1, 1]3,

resulting in a regular mesh. In the direction [1, 1, 0], the minimum cell width on every
tetrahedron in the unit cube is

√
2 for the first decomposition. After scaling, it becomes

hi = 1
30

√
2. In the direction [−1, 1, 1], the minimum cell width on every tetrahedron in

the unit cube is
√

3 for the second decomposition. After scaling, it becomes hi = 1
30

√
3.

The resulting tetrahedral meshes are composed of 1,296,000 elements. We solve (1.1) until
the final time T = 0.25 with the linear flux F(u) = [u, u, 0], corresponding to the flow
direction [1, 1, 0] for the first mesh. On the second mesh, we use the flux F(u) = [−u, u, u]
corresponding to the flow direction [−1, 1, 1]. The initial condition is given by

u0(x, y, z) =

{
1 if

√
x2 + y2 + z2 ≤ 1

4
,

0 otherwise.

In Tables 6.2 and 6.3, we report the maximum and minimum cell averages at the end of
the simulation on the two meshes for various CFL numbers in (6.44). As predicted by the
analysis in Section 6.1.6 with forward Euler time stepping, the scheme is local maximum
principle satisfying for a CFL of 1

6
. For RK2 time stepping, we observe that it is possible

to take a larger CFL and still satisfy the local maximum principle (Chapter 4, [90]).

x
y

z

(a) (b) (c) (d) (e) (f) (g)

Figure 6.6: First decomposition of the unit cube into six tetrahedra indicated by dashed
red lines.
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x
y

z

(a) (b) (c) (d) (e) (f) (g)

Figure 6.7: Second decomposition of the unit cube into six tetrahedra indicated by dashed
red lines.

1/CFL Minimum Maximum
3 -0.8727 2.0377
4 -0.3134 1.3169

5.5 -0.001642 1.0004169
6 0 1

(a) Forward Euler.

1/CFL Minimum Maximum
3 -0.01077 1.0122
4 -8.271e-7 1

5.5 0 0.9999
6 0 0.9999

(b) RK2.

Table 6.2: Minimum and maximum cell averages for various CFL numbers for the first
decomposition (Figure 6.6).

1/CFL Minimum Maximum
3 -0.9426 1.7499
4 -0.3151 1.3559

5.5 -0.02076 1.02133
6 0 1

(a) Forward Euler.

1/CFL Minimum Maximum
3 -0.25936 1.06160
4 -1.3463e-4 0.9999

5.5 0 0.9999
6 0 0.9999

(b) RK2.

Table 6.3: Minimum and maximum cell averages for various CFL numbers for the second
decomposition (Figure 6.7).
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Figure 6.8: Convergence study in Example 6.4.2. The slope of the blue triangle’s hy-
potenuse indicates second order accuracy.

6.4.2 Second order accuracy

In this example, we demonstrate the accuracy of our limiting procedure. We solve (1.1)
with the linear flux F(u) = [u, u, u], corresponding to the advection direction [1, 1, 1], with
a bump as the initial condition given by

u0(x, y, z) =

{
cos2

(
π
2
r
)

if r ≤ 1,

0 elsewhere,

where r = 2
√
x2 + y2 + z2 until the final time T = 0.25. The errors of the limited and

unlimited solutions on a sequence of structured meshes using the first decomposition in
Figure 6.6 (Section 6.4.1) is given in Figure 6.8. Both the limited and unlimited solutions
converge with second order accuracy.
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UQ UB UI

ρ 1.4 0.5 8
u 0 0 -8.25
v 0 0 0
w 0 0 0
p 1 1 116.5

Table 6.4: Initial states for the quiescent, bubble, and incident shock states.

6.4.3 Shock-bubble interaction

In this example, we model the interaction between a Mach 10 shock and a bubble with a
spherical geometry. The domain is given by [−1, 1]3, where the spherical bubble of radius
R = 0.55 is centered at the point (−0.4, 0, 0) and incident shock is located on the plane
x = −0.95. Due to the symmetry of the problem, we only need to model a quarter of the
original domain, i.e. [−1, 1] × [0, 1]2. The mesh is composed of 12,000,000 tetrahedra by
subdividing the quarter domain into a 100× 100 × 200 grid of cubes. Then, each cube is
subdivided into six tetrahedra as shown in Figure 6.6. The initial condition is given by
the incident, quiescent, and bubble states tabulated in Table 6.4 and are shown in Figure
6.9. The states inside and outside the bubble are given by UB and UQ, respectively. The
state of the gas to the right of the leftward moving Mach 10 incident shock is given by
UI . On the boundaries defined by the planes y = 0 and z = 0, we use reflecting boundary
conditions. Since the bubble does not interact with the other boundaries, we apply the
exact solution of the propagating Mach 10 shock. The solution at different times between
t = 0 and the final time T = 0.125 are shown in Figure 6.10, revealing a complex interaction
that compresses the initial bubble.
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R = 0.55

z

(−0.4, 0, 0)

UQ

UB

UI

x
(0, 0, 0)

Figure 6.9: Initial set-up of the shock-bubble interaction problem. The incident shock is
planar and moves towards the spherical bubble.
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(a) T = 0.0241. (b) T = 0.0475.

(c) T = 0.0707. (d) T = 0.0938.

(e) T = 0.125.

Figure 6.10: Shock-bubble interaction for high Mach number (M = 10).
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6.5 Summary

We have presented an extension of the moment limiter on unstructured triangles [34] to
unstructured tetrahedra. Our analysis has revealed three directions in which the moments
of the numerical solution can be reconstructed. We have determined constraints on the
moments and on the time step such that a local maximum principle is satisfied. This
limiting procedure is also extended to limiting across planar reflecting boundaries.

Similar to the moment limiter [34], this limiter has a stencil of constant size and does
not require evaluating the numerical solution at the quadrature points. Additionally, it’s
implementation is lightweight since much of the overhead is moved to the mesh prepro-
cessing stage.

Future work includes extending the moment limiter to support higher order basis func-
tions, while keeping the same limiting stencil.
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Chapter 7

Conclusion

In this thesis, we have presented efficient GPU-accelerated algorithms for adaptive mesh re-
finement and new limiters for the discontinuous Galerkin method on unstructured meshes.
In Chapter 2, we presented an adaptive mesh refinement algorithm that was entirely im-
plemented on the GPU. We described the novelties of the implementation, along with the
computationally difficult problems in gas dynamics that we tackled. First, a coloring algo-
rithm was used for work scheduling to avoid race conditions in the evaluation of an integral
on the edges of the computational mesh. It also allowed for the parallelization of smoothing
subroutines, which are not easily implemented on the GPU. Second, efficient compaction
operations were also proposed that reduced the amount of required memory transfers to
ensure that data was contiguous in memory. Third, we solved a number of benchmarks
in gas dynamics to demonstrate the efficacy of the implementation. We also solved two
less common problems concerning shock reflection that are intractable without some form
of mesh adaptivity. The first problem concerned the von Neumann triple point paradox,
which presents a reflection pattern that is on the order of 10−4 in the neighborhood of
a triple point. In order to resolve the relevant flow features, we required elements with
cell width on the order of 10−6. Finally, we solved a problem regarding shock diffraction
around a thin film and the location of shock disappearance. To our knowledge, our results
are the first obtained on the Euler equations.

In Chapter 3, we studied slope limiters on unstructured meshes of triangles. The
purpose of this work was to understand the proper usage of the popular Barth-Jespersen
type limiters on triangles for the discontinuous Galerkin method. These limiters constrain
the numerical solution at predefined points to lie in a locally defined range. We have
studied the influence of the choice of limiting points and limiting neighborhoods on the
stability and accuracy of the numerical solution. Our analysis also revealed a new measure
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of cell size that yields stable solutions and is approximately twice as large as the radius of
the inscribed circle.

In Chapter 4, we showed numerically and analytically on a one-dimensional finite vol-
ume method with SSP-RK2 time stepping that the time step restriction for stability in the
maximum norm can be increased from the SSP theory’s prediction. We also have given
numerical evidence that this result extends to two dimensions with the DG method.

In Chapters 5 and 6, we proposed and analyzed second order moment limiters for the DG
method on unstructured triangles and tetrahedra, respectively. The limiting algorithms are
simple to implement and computationally efficient, composed of one-dimensional minmod
operations. These limiters have a number of attractive qualities. First, we have shown
that the limited numerical solution satisfies a local maximum principle under a suitable
time step restriction. Second, as opposed to other limiters on unstructured meshes, the
limiters have a stencil of constant size. Third, they are easy to implement as the majority
of the computational work is moved to the mesh preprocessing stage. Finally, they do not
require the evaluation of the numerical solution at the quadrature points. We also describe
a simple procedure to limit across reflecting boundary conditions. This is especially useful
for three dimensional simulations, where reflecting boundary conditions can be used to take
advantage of symmetries in the solution to reduce the amount of required computational
work.

There are a number of future projects that can result from this thesis. First, extend-
ing the AMR algorithms to support multi-node, multi-GPU parallel platforms would be
useful. This would allow us to better resolve Guderley Mach reflection and the location
of shock disappearance in the problem of shock diffraction around thin films. Second, ex-
tending the AMR code to support unstructured tetrahedra would be of practical interest,
where the multi-node, multi-GPU implementation would be all the more important. This
would require extending the run-time coloring algorithm to tetrahedra, which appears to
be difficult.

Extending the moment limiters to nonconforming meshes for use in adaptive simula-
tions appears to be possible. An element’s limiting directions will stay the same when
its neighbors are refined or coarsened, though the elements used in the reconstruction of
forward and backward differences may have to be updated. This will not require projecting
the neighboring solutions onto coarser or finer elements as is sometimes done. Another pos-
sibility for future work is the extension of these limiters to higher order bases, though the
analysis is more involved as there are a higher number of solution coefficients that must be
limited. Finally, we plan on investigating the applicability of this limiter to computations
involved in cut cell element geometries [36,88].
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[69] V. Aizinger, A. Kośık, D. Kuzmin, and B. Reuter, “Anisotropic slope limiting for
discontinuous Galerkin methods,” International Journal for Numerical Methods in
Fluids, 2017.

[70] S. Gottlieb, “On high order strong stability preserving Runge-Kutta and multi step
time discretizations,” Journal of Scientific Computing, vol. 25, no. 1, pp. 105–128,
2005.

[71] L. Krivodonova and R. Qin, “An analysis of the spectrum of the discontinuous
Galerkin method,” Applied Numerical Mathematics, vol. 64, no. Supplement C, pp. 1
– 18, 2013.

[72] L. Krivodonova and R. Qin, “An analysis of the spectrum of the discontinuous
Galerkin method II: Nonuniform grids,” Applied Numerical Mathematics, vol. 71,
pp. 41–62, 2013.

[73] S. Gottlieb, D. Ketcheson, and C.-W. Shu, Strong Stability Preserving Runge-Kutta
and Multistep Time Discretizations. River Edge, NJ, USA: World Scientific Publishing
Co., Inc., 2011.

[74] S. Gottlieb, C.-W. Shu, and E. Tadmor, “Strong stability-preserving high-order time
discretization methods,” SIAM review, vol. 43, no. 1, pp. 89–112, 2001.

[75] C.-W. Shu, “Total-variation-diminishing time discretizations,” SIAM J. Sci. Stat.
Comput., vol. 9, pp. 1073–1084, Nov. 1988.

[76] C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-
capturing schemes,” Journal of Computational Physics, vol. 77, no. 2, pp. 439 – 471,
1988.

166



[77] S. Gottlieb and C.-W. Shu, “Total variation diminishing Runge-Kutta schemes,”
Mathematics of computation of the American Mathematical Society, vol. 67, no. 221,
pp. 73–85, 1998.
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Appendix A

Proof of proposition 1

For simplicity of discussion, we translate the element Ωi such that its centroid is located
at the origin. The vectors pointing from the origin to the three vertices of the triangle
are vi,1, vi,2, and vi,3. The vectors ξ1, ξ2, and ξ3, pointing from the origin to the one- or
two-point Gauss-Legendre quadrature points can be written as

ξ1 = εvi,2 + (1− ε)vi,3,
ξ2 = εvi,3 + (1− ε)vi,1,
ξ3 = εvi,1 + (1− ε)vi,2,

where ε = 1
2

for the one-point rule, and ε = 1
2
±
√

3
6

for the two-point rule. Let ξ̂23,⊥ be the
unit vector that is perpendicular to the vector ξ2− ξ3, and that is pointing toward ξ1, i.e.,
ξ1 · ξ̂23,⊥ > 0. Let ξ̂1,⊥ be the unit vector that is perpendicular to ξ1, and that is pointing

towards ξ2, i.e. ξ̂1,⊥ · ξ2 > 0 (Figure A.1).

Because the centroid of Ωi has been translated to the origin, we have

ξ1 + ξ2 + ξ3 = 0, (A.1)

which gives
ξ2 − ξ3 = −ξ1 − 2ξ3 = ξ1 + 2ξ2. (A.2)

Multiplying (A.2) by ξ23,⊥, we have

0 = −ξ1 · ξ̂23,⊥ − 2ξ3 · ξ̂23,⊥ = ξ1 · ξ̂23,⊥ + 2ξ2 · ξ̂23,⊥. (A.3)
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Rearranging terms gives the following relations

ξ1 · ξ̂23,⊥ = −2ξ2 · ξ̂23,⊥ = −2ξ3 · ξ̂23,⊥. (A.4)

We now use this to prove proposition 1, which we restate here.

Proposition 1. For a quadrature point x, there exists a multiplier 0 ≤ r ≤ 2 and another
quadrature point x′ on a different edge, such that

Ui(x)− U i = r(U i − Ui(x′)).

Proof. Without loss of generality, let us assume that x in the Proposition is ξ1 in Figure
A.1. We will show that for a given gradient of numerical solution Ui, g, there is a different
quadrature point x′ with 0 ≤ r ≤ 2.

From the definition of ξ̂23,⊥, ξ1 · ξ̂23,⊥ > 0 (Figure A.1) and from (A.4) we have that

ξ2 · ξ̂23,⊥ < 0 and ξ3 · ξ̂23,⊥ < 0. Additionally, taking the dot product of (A.1) and ξ̂1,⊥,

we have ξ2 · ξ̂1,⊥ = −ξ3 · ξ̂1,⊥. Therefore ξ2 · ξ̂1,⊥ and ξ3 · ξ̂1,⊥ are of opposite sign. By

definition of ξ̂1,⊥, we have ξ2 · ξ̂1,⊥ > 0, which implies that ξ3 · ξ̂1,⊥ < 0.

Now, if the vector g lies between ξ̂23,⊥ and ξ̂1,⊥, i.e. in the region that we denote by
(I) in Figure A.1, then we can write g as

g = c1ξ̂23,⊥ + c2ξ̂1,⊥ with c1, c2 > 0. (A.5)

Recalling (A.4) and the definition of ξ̂1,⊥, we have{
ξ1 · ξ̂23,⊥ = −2ξ3 · ξ̂23,⊥,

ξ1 · ξ̂1,⊥ = 0.
(A.6)

Multiplying the first line in (A.6) by c1 and the second by c2, then summing, we have by
(A.5)

ξ1 · (c1ξ̂23,⊥ + c2ξ̂1,⊥) = ξ1 · g = −2ξ3 · (c1ξ̂23,⊥). (A.7)

Since ξ3 · ξ̂23,⊥ < 0, we have ξ1 · g > 0 by (A.7). Further, because ξ3 · ξ̂1,⊥ < 0, the last
term of (A.7) can be bounded below and above by

0 < ξ1 · g = −2ξ3 · (c1ξ̂23,⊥) < −2ξ3 · (c1ξ̂23,⊥ + c2ξ̂1,⊥)
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ξ1

ξ3

ξ2

vi,1

vi,2

vi,3

ξ̂23,⊥

ξ1 · ξ̂23,⊥ = −2ξ2 · ξ̂23,⊥ = −2ξ3 · ξ̂23,⊥

ξ1 · ξ1,⊥ = 0

ξ1 · ξ̂23,⊥ = −2ξ2 · ξ̂23,⊥ = −2ξ3 · ξ̂23,⊥

0 < −ξ1·g
ξ3·g < 2

0 < −ξ1·g
ξ2·g < 2

ξ̂1,⊥

−ξ̂1,⊥

0 < −ξ1·g
ξ3·g < 2

0 < −ξ1·g
ξ2·g < 2

Region (I)

Region (II)

Region (III)

Region (IV)

ξ1 · (−ξ1,⊥) = 0

Figure A.1: Geometric set-up for proposition 1.

i.e.
0 < ξ1 · g < −2ξ3 · g.

Therefore, for g in region (I)

0 < −ξ1 · g
ξ3 · g

< 2.

From this we can conclude

0 <
Ui(x1)− U i

U i − Ui(x3)
< 2.

Recognizing that r = −ξ1·g
ξ3·g , we have the bounds 0 ≤ r ≤ 2 and that x′ = ξ3.

This also holds for vectors in Region (III), in particular, −g. This can be shown by
multiplying the numerator and denominator by −1:

0 < −ξ1 · (−g)

ξ3 · (−g)
< 2.

If g lies in region (II) or (IV), the same arguments can be made for the ratio r = −ξ1·g
ξ2·g ,

i.e. x′ = x2 and 0 ≤ r ≤ 2.
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Appendix B

Nonlinear Fluxes

For nonlinear fluxes, the RK-DG method requires third order accuracy to evaluate surface
integrals in (5.2). With Gauss-Legendre numerical integration, we will need two quadrature
points. We will modify our analysis to account for this. Most of the derivation follows the
linear case.

Using the divergence theorem with (3.6), we obtain

U
n+1

i = U
n

i −∆t
∑

j∈Ne
i ,j 6=i

1

2

|∂Ωi,j|
|Ωi|

∑
q=1,2

[
F∗(Un

i (xi,j,q), U
n
j (xi,j,q))− F∗(U

n

i , U
n

i )
]
· ni,j.

Then, adding and subtracting F∗(Un
i (xi,j,q), U i) · ni,j in the inner sum, we have

U
n+1

i = U
n

i −∆t
∑

j∈Ne
i ,j 6=i

∑
q=1,2

1

2

|∂Ωi,j|
|Ωi|

[
Fi,j(U

n
i (xi,j,q), U

n

i )− Fi,j(U
n

i , U
n

i )

+ Fi,j(U
n
i (xi,j,q), U

n
j (xi,j,q))− Fi,j(Un

i (xi,j,q), U
n

i )

]
,

where Fi,j(U1, U2) = F(U1, U2) · ni,j. For c∗i,j,q belonging to the interval defined by U
n

i and

Un
i (xi,j,q), and c∗∗i,j,q belonging to the interval defined by U

n

i and Un
j (xi,j,q), we have by the
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mean value theorem

U
n+1

i = U
n

i −∆t
∑

j∈Ne
i ,j 6=i

∑
q=1,2

1

2

|∂Ωi,j|
|Ωi|

[
∂Fi,j
∂U1

(c∗i,j,q, U
n

i )(Un
i (xi,j,q)− U

n

i )

+
∂Fi,j
∂U2

(Un
i (xi,j,q), c

∗∗
i,j,q)(U

n
j (xi,j,q)− U

n

i )

]
,

where
∂Fi,j
∂U1

and
∂Fi,j
∂U2

are the partial derivatives with respect to the first and second variables.
We introduce the following coefficients

v+
i,j,q = ∆t

|∂Ωi,j|
|Ωi|

∂Fi,j
∂U1

(c∗i,j,q, U
n

i ) and v−j,i,q = −∆t
|∂Ωi,j|
|Ωi|

∂Fi,j
∂U2

(Un
i (xi,j,q), c

∗∗
i,j,q), (B.1)

that are non-negative by the assumed monotonicity of the flux. We now have

U
n+1

i = U
n

i +
∑

j∈Ne
i ,j 6=i

∑
q=1,2

1

2

[
v−j,i,q(U

n
j (xi,j,q)− U

n

i )− v+
i,j,q(U

n
i (xi,j,q)− U

n

i )
]
. (B.2)

After limiting, the solution average at time tn+1 is written

U
n+1

i = U
n

i +
∑

j∈Ne
i ,j 6=i

∑
q=1,2

1

2

[
v−j,i,q(Ũ

n
j (xi,j,q)− U

n

i )− v+
i,j,q(Ũ

n
i (xi,j,q)− U

n

i )
]
, (B.3)

where the values v−j,i,q and v+
j,i,q have been updated using (B.1), with Ũn

i (xi,j,q) and Ũn
j (xi,j,q).

Finally, Ũn
i (xi,j,q), and Ũn

j (xi,j,q) are the limited numerical solutions on Ωi and Ωj, respec-
tively. Following the linear case, we aim to rewrite the sums in (B.3) in the form∑
q=1,2

1

2
v−j,i,q(Ũ

n
j (xi,j,q)− U

n

i ) = v−j,i
[
fj,i(U

n

j − U
n

i ) + fj,i,1(U−j,i,1 − U
n

i ) + fj,i,2(U−j,i,2 − U
n

i )
]

(B.4)
for the inflow term and∑

q=1,2

1

2
v+
i,j,q(Ũ

n
i (xi,j,q)− U

n

i ) = −v+
i,j

[
gi,j,1(U+

i,j,1 − U
n

i ) + gi,j,2(U+
i,j,2 − U

n

i )
]

(B.5)

for the outflow term, with non-negative multipliers v−j,i, v
+
i,j, fj,i, fj,i,1, fj,i,2, gi,j,1, and gi,j,2.
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B.1 Inflow term

First we consider (B.4). Analogous to (5.23), we replace the limited solution values with
the limited forward differences to obtain∑

q=1,2

1

2
v−j,i,q(Ũ

n
j (xi,j,q)− U

n

i ) =
v−j,i,1 + v−j,i,2

2
(U

n

j − U
n

i )

+
v−j,i,1ϕ1(rj,i,1) + v−j,i,2ϕ1(rj,i,2)

2
lj,1
hj,1
6

U f
j,1 − U

n

j

dfj,1

+
v−j,i,1ϕ2(rj,i,1) + v−j,i,2ϕ2(rj,i,2)

2
lj,2

hj,2

4
√

3

U f
j,2 − U

n

j

dfj,2
.

Let v−j,i =
v−j,i,1+v−j,i,2

2
, v−,1j,i =

v−j,i,1ϕ1(rj,i,1)+v−j,i,2ϕ1(rj,i,2)

2
, and v−,2j,i =

v−j,i,1ϕ2(rj,i,1)+v−j,i,2ϕ2(rj,i,2)

2
. If

v−j,i is nonzero, the above becomes

∑
q=1,2

1

2
v−j,i,q(Ũ

n
j (xi,j,q)−U

n

i ) = v−j,i

[
(U

n

j − U
n

i ) + lj,1
v−,1j,i

v−j,i

hj,1
6

U f
j,1 − U

n

j

dfj,1
+ lj,2

v−,2j,i

v−j,i

hj,2

4
√

3

U f
j,2 − U

n

j

dfj,2

]
.

(B.6)
We replace the forward difference with the backward difference if the sign of v−,1j,i or v−,2j,i

is negative. We use the following shorthand notation

α−j,i,1 =


1
6

hj,1

dfj,1

v−,1j,i

v−j,i
if v−,1j,i ≥ 0

1
6

hj,1
dbj,1rj,1

|v−,1j,i |
v−j,i

otherwise.
and U−j,i,1 =

{
U f
j,1 if v−,1j,i ≥ 0

U b
j,1 otherwise.

(B.7)

α−j,i,2 =


1

4
√

3

hj,2

dfj,2

v−,2j,i

v−j,i
if v−,2j,i ≥ 0

1
4
√

3

hj,2
dbj,2rj,2

|v−,2j,i |
v−j,i

otherwise,
and U−j,i,2 =

{
U f
j,2 if v−,2j,i ≥ 0

U b
j,2 otherwise.

(B.8)

Then (B.6) becomes∑
q=1,2

1

2
v−j,i,q(Ũ

n
j (xi,j,q)− U

n

i ) = v−j,i
[
(U

n

j − U
n

i ) + lj,1α
−
j,i,1(U−j,i,1 − U

n

j ) + lj,2α
−
j,i,2(U−j,i,2 − U

n

j )
]
.
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Putting the above in the form (B.4), we have∑
q=1,2

1

2
v−j,i,q(Ũ

n
j (xi,j,q)− U

n

i ) = v−j,i
[
(1− lj,1α−j,i,1 − lj,2α−j,i,2)(U

n

j − U
n

i )

+lj,1α
−
j,i,1(U−j,i,1 − U

n

i ) + lj,2α
−
j,i,2(U−j,i,2 − U

n

i )
]
,

(B.9)

with fj,i = 1− lj,1α−j,i,1 − lj,2α−j,i,2, fj,i,1 = lj,1α
−
j,i,1, and fj,i,2 = lj,2α

−
j,i,2.

Sum and non-negativity

The multipliers fj,i,1 and fj,i,2 are non-negative by (B.7) and (B.8). Requiring the coefficient
fj,i to be non-negative gives the following condition

fj,i = 1− lj,1α−j,i,1 − lj,2α−j,i,2 ≥ 0 ∀j ∈ N e
i . (B.10)

By definition, the sum of the coefficients is

fj,i + fj,i,1 + fj,i,2 = 1. (B.11)

B.2 Outflow term

We now consider (B.5). Let v+
i,j =

v+i,j,1+v+i,j,2
2

, v+,1
i,j =

v+i,j,1ϕ1(ri,j,1)+v+i,j,2ϕ1(ri,j,2)

2
, and v+,2

i,j =
v+i,j,1ϕ2(ri,j,1)+v+i,j,2ϕ2(ri,j,2)

2
. We replace the limited solution coefficients with the limited for-

ward differences and if v+
i,j is nonzero, we obtain

∑
q=1,2

1

2
v+
i,j,q(Ũ

n
i (xi,j,q)− U

n

i ) = v+
i,j

(
v+,1
i,j

v+
i,j

li,1
hi,1
6

U f
i,1 − U

n

i

dfi,1
+
v+,2
i,j

v+
i,j

li,2
hi,2

4
√

3

U f
i,2 − U

n

i

dfi,2

)
.

We introduce the following variables for convenience

α+
i,j,1 =


1
6

hi,1

dfi,1

|v+,1i,j |
v+i,j

if v+,1
i,j ≤ 0

1
6

hi,1
dbi,1ri,1

v+,1i,j

v+i,j
otherwise.

and U+
i,j,1 =

{
U f
i,1 if v+,1

i,j ≤ 0

U b
i,1 otherwise,

(B.12)

175



α+
i,j,2 =


1

4
√

3

hi,2

dfi,2

|v+,2i,j |
v+i,j

if v+,2
i,j ≤ 0

1
4
√

3

hi,2
dbi,2ri,2

v+,2i,j

v+i,j
otherwise.

and U−i,j,2 =

{
U f
i,2 if v+,2

i,j ≤ 0

U b
i,2 otherwise.

(B.13)

In the form (B.5), the above expansion is∑
q=1,2

1

2
v+
i,j,q(Ũ

n
i (xi,j,q)− U

n

i ) = −v+
i,j

[
li,1α

+
i,j,1(U+

i,j,1 − U
n

i ) + li,2α
+
i,j,2(U+

i,j,2 − U
n

i )
]
. (B.14)

with gi,j,1 = li,1α
+
i,j,1 and gi,j,2 = li,2α

+
i,j,2.

Sum and non-negativity

The multipliers gi,j,1 and gi,j,2 are non-negative by (B.12) and (B.13). The sum of the
coefficients is given by

gi,j,1 + gi,j,2 = li,1α
+
i,j,1 + li,2α

+
i,j,2. (B.15)

B.3 Putting it all together

The inflow terms and outflow terms have been expanded into sums of the form (B.4) and
(B.5) in (B.9) and (B.14), respectively. Substituting these sums into the scheme (B.3)
gives

U
n+1

i = U
n

i +
∑

j∈Ne
i ,j 6=i

v−j,i
[
fj,i(U

n

j − U
n

i ) + fj,i,1(U−j,i,1 − U
n

i ) + fj,i,2(U−j,i,2 − U
n

i )
]

+v+
i,j

[
gi,j,1(U+

i,j,1 − U
n

i ) + gi,j,2(U+
i,j,2 − U

n

i )
]
.

This is of the form (3.10). We require that the sum of the coefficients in front of the
differences above is less than or equal to one. Using (B.11) and (B.15), we write this
requirement as∑
j∈Ne

i ,j 6=i

v−j,i [fj,i + fj,i,1 + fj,i,2]+v+
i,j [gi,j,1 + gi,j,2] =

∑
j∈Ne

i ,j 6=i

v−j,i+v
+
i,j

(
li,1α

+
i,j,1 + li,2α

+
i,j,2

)
≤ 1.

(B.16)
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For (B.16) to be satisfied, we must satisfy on each edge of Ωi

li,1α
+
i,j,1 + li,2α

+
i,j,2 ≤ 1 ∀j ∈ N e

i , (B.17)

and the time step constraint ∑
j∈Ne

i ,j 6=i

(
v−j,i + v+

i,j

)
≤ 1, ∀Ωi. (B.18)

For positivity of the expansion coefficient fj,i we must satisfy the constraint (B.10) on all
the edges of Ωi

lj,1α
−
j,i,1 + lj,2α

−
j,i,2 ≤ 1, ∀j ∈ N e

i . (B.19)

B.4 Time step restriction

Using the definition of v−j,i and v+
i,j in (B.1), (B.18) becomes

∆t
∑

j∈Ne
i ,j 6=i

∑
q=1,2

1

2

|∂Ωi,j|
|Ωi|

(
∂Fi,j
∂U1

(c∗i,j,q, U
n

i )− ∂Fi,j
∂U2

(Ũn
i (xi,j,q), c

∗∗
i,j,q)

)
≤ 1. (B.20)

Due to the differentiability of the numerical flux, there exists a λi such that
∂Fi,j
∂U1

(c∗i,j,q, U
n

i ) ≤
λi and −∂Fi,j

∂U2
(Ũn

i (xi,j,q), c
∗∗
i,j,q) ≤ λi hold. The time step restriction in (B.20) now becomes

2∆tλi
∑

j∈Ne
i ,j 6=i

|∂Ωi,j|
|Ωi|

≤ 1. (B.21)

Note that the radius of the circle inscribed in Ωi is

hi = 2
|Ωi|
|∂Ωi|

, (B.22)

where |∂Ωi| and |Ωi| are the perimeter and area of Ωi, respectively. The nonlinear time
step restriction in terms of the inscribed circle is

∆t ≤ 1

4

hi
λi
. (B.23)
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