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Abstract

We examine various aspects of the poset retraction problem for series-parallel posets. In
particular we show that the poset retraction problem for series-parallel posets that are al-
ready solvable in polynomial time are actually also solvable in nondeterministic logarithmic
space (assuming P 6= NP). We do this by showing that these series-parallel posets when
expanded by constants have bounded path duality. We also give a recipe for constructing
members of this special class of series-parallel poset analogous to the construction of all
series-parallel posets. Piecing together results from [5],[15],[14] and [12] one can deduce
that if a relational structure expanded by constants has bounded path duality then it ad-
mits SD-∨ operations. We directly prove the existence of SD-∨ operations on members of
this class by providing an algorithm which constructs them. Moreover, we obtain a poly-
nomial upper bound to the length of the sequence of these operations. This also proves
that for this class of series-parallel posets, having bounded path duality when expanded by
constants is equivalent to admitting SD-∨ operations. This equivalence is not yet known
to be true for general relational structures; only the forward direction is proven. However
the reverse direction is known to be true for structures that admit NU operations. Zádori
has classified in [26] the class of series-parallel posets admitting an NU operation and has
shown that every such poset actually admits a 5-ary NU operation. We give a recipe
for constructing series-parallel posets of this class analogous to the one mentioned before.
Then we show an alternative proof for Zádori’s result.
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Chapter 1

Introduction

In this thesis we will explore various aspects of the poset retraction problem on series-
parallel posets. The poset retraction problem is a cousin of the constraint satisfaction
problem (CSP) whose goal is to assign values to a set of variables such that a given set
of constraints is satisfied. The computational complexity of such a problem refers to the
amount of resources that is required to solve it. The resources that we are interested in are
the amount of time and amount of memory space it requires to solve such a problem. A
series-parallel poset is an example of a relational structure. It has been shown by Dalmau
[5] that if a structure has bounded path duality then its CSP is in non-deterministic
logarithmic space. As we will see later this means that the retraction problem will be
in NL for any posets whose expansion by constants has bounded path duality. We will
use these tools to establish a classification of those series-parallel posets whose retraction
problem is in NL (assuming NL 6= NP).

The existence of special operations on a relational structure gives us insight into the
complexity of its CSP. We examine the existence of NU and SD-∨ polymorphisms on
series-parallel posets. A characterization of those series-parallel posets having an NU poly-
morphism has already been shown by Zádori [26]; what we present is merely an alternative
proof. In the case when a structure is such that its expansion by constants has bounded
path duality, it follows from known results that the poset has SD-∨ polymorphisms, but no
easy procedure for producing these polymorphisms is known. We provide an easy recipe
for those posets that are series-parallel.

Series-parallel posets in general have a recipe for their construction. We will give similar
recipes for all classes of series-parallel posets discussed in this paper.

The content of this thesis is as follows. In Chapter 2 we will introduce the background
knowledge in universal algebra required for this thesis. Chapter 3 discusses Constraint
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satisfaction problems in detail as well as notable results from the research community.
Starting from Chapter 4 we will focus on posets. We will describe what it means to be a
series-parallel poset and the various properties such a poset may have. In Chapter 5 we
will present our result that shows a certain class of series-parallel posets are such that their
expansion by constants have bounded path duality. Next in Chapter 6 we will give our
alternative proof to Zádori’s result for NU polymorphisms mentioned before. Finally in
Chapter 7 we will show our recipe for constructing SD-∨ polymorphisms on those series-
parallel posets mentioned in Chapter 5.
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Chapter 2

Preliminaries

2.1 Language and Structures

The structures we will be working with in their most basic form are sets with operations
and relations. In order to ensure we are not comparing apples to oranges we first have to
introduce the notion of a language.

Definition 2.1.1. A (first-order) language L consists of a set R of relation symbols and
a set F of function symbols, and to each element of R and F is assigned a natural number
called the arity of the symbol. Let Rn (Fn) denote the set of relation (function) symbols
in R (F) of arity n. If R = ∅ then L is an algebraic language, and if F = ∅ then L is a
relational language.

The symbols in our languages will be used to identify operations and relations on our
sets. When both R and F are finite we may express L as a set of its symbols. For
example the language of abelian groups consist of no relation symbols, a 2-ary function
symbol +, a 1-ary function symbol − and a 0-ary function symbol 0. We will write it
as {+,−, 0}. Similarly the language of rings will be {+,−,×, 0, 1}. Both of these are
examples of algebraic languages. As we will define later the language of partial orders will
be a relational language.

Definition 2.1.2. Let L be a language. An L-structure M = 〈UM, RM, FM〉 consists of

• a non-empty universe UM;

• a set RM of fundamental relations rM indexed by r ∈ R where the arity of rM is
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equal to the arity of r; and,

• a set FM of fundamental operations fM indexed by f ∈ F where the arity of fM is
equal to the arity of f .

When R = ∅ the L-structure is called an algebra, and when F = ∅ it is called a
relational structure. If RM = {rM1 , rM2 , . . . , rMn } and FM = {fM1 , fM2 , . . . , fMm } contain only
a small finite amount of elements, 〈UM, RM, FM〉 may be written as

〈UM, rM1 , rM2 , . . . , rMn , fM1 , fM2 , . . . , fMm 〉

instead. The superscript M may also be omitted when it is clear which L-structure the
object in question belongs to.

We will call the rM’s and fM’s the interpretations of the symbols of L in M.

An abelian group G can be thought of as a structure of the language {+,−, 0} with the
obvious interpretations. Similarly a ring R will be a structure of the language {+,−,×, 0, 1}.
Both of these are examples of algebras. We will have plenty of examples of relational struc-
tures when we define partial orders.

Just as it is meaningless to compare a group with a ring, it only makes sense to compare
structures when they are of the same language. Of course the group of integers can be
expanded to the ring of integers by adding new interpretations for symbols that are in the
language of rings but not in the language of groups. When we have a language that is
the superset of another we can also expand the structures of the smaller language into a
structure of the larger one by adding new interpretations for the additional symbols.

2.2 Substructures and Direct Products

There is a natural analogue of subgroups and subrings for L-structures.

Definition 2.2.1. Let L be a language. Given two L-structures M = {UM, RM, FM} and
N = {UN, RN, FN}, N is an L-substructure of M if:

• UN ⊆ UM;

• for each r ∈ R, rM ∩ (UN)n = rN (where n is the arity of r); and,

• for each f ∈ R, fM|(UN)n = fN (where n is the arity of f).
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N will be called a subalgebra (substructure) if M is an algebra (relational structure).

It should be clear from the definition that substructures correspond to subgroups when
we are working with abelian groups in their natural language. The same is true for rings.

Lemma 2.2.2. Let L be a language. Let M be an L-structure. Then a substructure O of
a substructure N of M is a substructure of M.

Proof. First we have UO ⊆ UN ⊆ UM.

For each r ∈ R of arity n we have rO = rN ∩ (UO)n = rM ∩ (UN)n ∩ (UO)n. Since
UO ⊆ UN this becomes rO = rM ∩ (UO)n.

For each f ∈ R of arity n we have fO = fN|(UO)n = (fM|(UN)n)|(UO)n . Again because of
UO ⊆ UN This becomes fO = fM|(UO)n .

By definition O is a substructure of M.

Definition 2.2.3. Let L be a language and M an L-structure. We’ll say S ⊆ UM is a
subuniverse of M if S is the universe of an L-substructure of M.

The intersection of subuniverses, if nonempty, is again a subuniverse. With this we can
introduce the notion of a generated subalgebra.

Definition 2.2.4. Let M be an L-structure and ∅ 6= S ⊆ UM. We will define

Sg(S) :=
⋂
{T : S ⊆ T and T is a subuniverse of M}.

We will call Sg(S) the subuniverse generated by S. We will call the L-substructure with
Sg(S) as its universe the substructure generated by S.

The substructure generated by S is said to be finitely generated if S is a finite set.

The notion of direct product also translates over to L-structures.

Definition 2.2.5. Let (Mi)i∈I be an indexed family of L-structures. The direct product
M =

∏
i∈IMi is an L-structure with universe

∏
i∈I U

Mi and such that for f ∈ Fn, r ∈ Rm

and a1, . . . , an, b1, . . . , bm ∈
∏

i∈I U
Mi ,

fM(a1, . . . , an)(i) = fMi(a1(i), . . . , an(i))
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for every i ∈ I and

(b1, . . . , bn) ∈ rM ⇐⇒ ∀i ∈ I, (b1(i), . . . , bn(i)) ∈ rMi .

When I = n is a natural number and Mi = M for all i ∈ n we will write
∏

i∈IMi as
Mn.

2.3 Homomorphisms

We will interact with the structures we have defined above by examining special operations
that they admit. These operations in their most basic form are simply homomorphisms.

Definition 2.3.1. Let M1 and M2 be L-structures. A map φ : M1 7→ M2 is called a
homomorphism fromM1 toM2 if for every f ∈ Fn, r ∈ Rm and a1, . . . , an, b1, . . . , bm ∈M1

we have
φ(fM1(a1, . . . , an)) = fM2(φ(a1), . . . , φ(an))

and
(b1, . . . , b2) ∈ rM1 =⇒ (φ(b1), . . . , φ(bm)) ∈ rM2 .

When M1 = M2 we will also call φ an endomorphism.

An endomorphism r : M1 7→ M1 is called a retraction if r2 = r ◦ r = r. In this case
we say that the retraction r is onto N if N is the substructure of M1 whose universe is
the range of r.

If φ has a homomorphic inverse we will call φ an isomorphism. In this case we say
that M1 and M2 are isomorphic.

An isomorphism from M1 to itself is an automorphism.

Consider the Klein four-group of the language {+,−, 0}. It is an abelian group con-
sisting of the tuples {(0, 0), (0, 1), (1, 0), (1, 1)}. Let r be a map on this group that does
the following:

(0, 0) 7→ (0, 0)

(0, 1) 7→ (0, 0)

(1, 0) 7→ (1, 1)

(1, 1) 7→ (1, 1).
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This map is a homomorphism. Since it maps the Klein four-group back into itself it is also
an endomorphism. Finally it fixes everything in its image, so it is a retraction as well.

Lemma 2.3.2. The composition of homomorphisms is still a homomorphism.

2.4 Algebras and Relational Structures

As I have mentioned before we will be studying partial orders which is a class of relational
structures. So it may seem strange to also talk about algebras, but as we will see below
they are actually two sides of the same coin.

Definition 2.4.1. Let R be a relational structure. For any natural number n, a homo-
morphism φ : Rn 7→ R is said to be a polymorphism of R. Let Pol(R) denote the set of
all polymorphisms of R.

We say that R admits an operation f if f is a polymorphism of R.

The special operations we are interested in for our posets will all be polymorphisms.

Definition 2.4.2. Let L be an algebraic language. A term of L is a composition of
function symbols of the language with variables representing projection maps of any
arity.

Let A be an algebra of language L. An operation on the set A is called a term
operation of A if it can be obtained by composing fundamental operations of A with
projection mappings (of any arity).

Each term of the algebraic language has a corresponding term operation in each
algebra of that language which we will call its interpretation.

Definition 2.4.3. Let A be an algebra. An n-ary relation r ⊆ An is said to be preserved
by an m-ary fundamental operation f of A if for all (a1,1, . . . , a1,n), . . . , (am,1, . . . , am,n) in
An:

(a1,1, . . . , a1,n), . . . , (am,1, . . . , am,n) ∈ r =⇒
(f(a1,1, . . . , am,1), . . . , f(a1,n, . . . , am,n)) ∈ r.
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Let Inv(A) denote the set of all relations on A that are preserved by all fundamental
operations of A.

Definition 2.4.4. Let R be a relational structure. The algebra generated by R is defined
to be the pair 〈R,Pol(R)〉. The language of this new algebra will simply have a func-
tion symbol corresponding to each member of Pol(R). Similarly the induced relational
structure by an algebra A will be 〈A, Inv(A)〉.

Definition 2.4.5. We will refer to the equivalence relations in Inv(A) as congruences.
Let Con(A) denote the set of all congruences on A.

For those familiar with lattice theory, Con(A) is an algebraic lattice under set contain-
ment.

2.5 Varieties

A variety is a standard way of collecting similar algebras. It is well known that each variety
has a set of axioms that determine its membership. For our purposes we will use a different
but equivalent definition.

Definition 2.5.1. Let V be a nonempty class of algebras of language L. We’ll call V a
variety if it is closed under subalgebras, homomorphic images, and direct products.

It should be clear from their definition that the intersection of varieties is again a variety.
The class of all algebras of a language L is a variety. Thus for every class K of algebras of
the same language there exists a smallest variety containing K that is the intersection of
all varieties containing K.

Definition 2.5.2. Let K be a class of algebras of some language L. We’ll denote the
smallest variety (under containment) containing K as V (K). If K has only a single
member A then we may write V (A) instead. We’ll say a variety V is finitely generated if
V = V (K) for some finite set K of finite algebras of the same language.
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Definition 2.5.3. We’ll say an algebra A is locally finite if every finitely generated
subalgebra has a finite universe. A class K of algebras is locally finite if its members are
locally finite.

2.6 Special Operations

Definition 2.6.1. Let f and g be n-ary operations on a set A. Let x1, . . . , xk be k
distinct variables and i1, . . . , in, j1, . . . , jn be indices from the set {1, . . . , k}.

The expression f(xi1 , . . . , xin) ≈ g(xj1 , . . . , xjn) denotes the claim that for all a1, . . . , ak
∈ A, f(ai1 , . . . , ain) = g(aji , . . . , ajn). This expression is called an identity.

We will be classifying the complexity of a given CSP through the existence of certain
operations. Here we list the ones we will come across in this paper.

Definition 2.6.2. Let φ be an n-ary operation on a set A.

φ is said to be idempotent if it satisfies the following identity:

φ (x, x, ..., x)︸ ︷︷ ︸
n times

≈ x

(i.e. φ(a, a, . . . , a) = a for every a ∈ A).

φ is said to be near-unanimous (NU) if it satisfies all of the following identities:

φ(y, x, ..., x) ≈ x

φ(x, y, ..., x) ≈ x

...

φ(x, x, ..., y) ≈ x.

A ternary NU operation is called a majority operation.

φ is said to be totally symmetric if it satisfies the following identity for all sets of
variables such that {x1, . . . , xn} = {y1, . . . , yn}:

φ(x1, . . . , xn) ≈ φ(y1, . . . , yn).
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When n > 1, φ is said to be Taylor if it is idempotent and for each i ∈ {1, . . . , n}
satisfies an identity of the form

φ(xi1, . . . , xin) ≈ φ(yi1, . . . , yin)

where xij, yij ∈ {x, y} and xii 6= yii.

Let us consider the set A = {0, 1} and a 3-ary operation φ on A defined as follows:

φ(1, 1, 1) = 1, φ(0, 0, 0) = 0,

φ(1, 1, 0) = 1, φ(1, 0, 1) = 1, φ(0, 1, 1) = 1,

φ(0, 0, 1) = 0, φ(0, 1, 0) = 0, φ(1, 0, 0) = 0.

By inspection we can see that φ is idempotent and NU. Since it is 3-ary it is also a majority
operation. However this is not a totally symmetric operation as we see that φ(1, 1, 0) 6=
φ(1, 0, 0). Finally it is a Taylor operation since it satisfies the following identities:

φ(x, x, y) ≈ φ(y, x, x),

φ(x, x, y) ≈ φ(x, y, x),

φ(y, x, x) ≈ φ(x, x, y).

Definition 2.6.3. The sequence of 3-ary operations d0, d1, . . . , dn is called a sequence of
Freese-McKenzie SD-∨ operations [12, Theorem 5.1] if they satisfy the following identities:

• d0(x, y, z) ≈ x and dn(x, y, z) ≈ z;

• For each 0 ≤ i < n, at least two of the following identities must be true:

1. di(x, x, y) ≈ di+1(x, x, y);

2. di(x, y, y) ≈ di+1(x, y, y);

3. di(x, y, x) ≈ di+1(x, y, x).

Continuing the example from before, let us define d0 and d2 to be the first and third
ternary projection maps on A. Let d1 = φ. Then d0, d1, d2 is a sequence of Freese-McKenzie
SD-∨ operations on A since they satisfy the following identities:

d0(x, x, y) ≈ d1(x, x, y),

d0(x, y, x) ≈ d1(x, y, x),

d1(x, y, x) ≈ d2(x, y, x),

d1(y, x, x) ≈ d2(y, x, x).
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For each type of special operations that we have defined in definitions 2.6.2 and 2.6.3,
a variety is said to have terms of these types if there exists terms of its language such that
their interpretation in each algebra of the variety satisfies the corresponding identities.

Definition 2.6.4. An algebra A is an idempotent algebra if all of its fundamental oper-
ations are idempotent.

Proposition 2.6.5. Let A be an algebra.

1. If A has an NU term operation, then A has Freese-McKenzie SD-∨ term operations.

2. If A has Freese-McKenzie SD-∨ term operations, then A has a Taylor term opera-
tion.

Proof. (1) Let t be an n-ary NU term operation of A. Define the 3-ary term operations
d0, d1, . . . , d2n−4 by

d2i(x, y, z) = t( x, . . . , x︸ ︷︷ ︸
n−i−1 times

, z, . . . , z︸ ︷︷ ︸
i+1 times

)

and
d2i−1(x, y, z) = t( x, . . . , x︸ ︷︷ ︸

n−i−1 times

, y, z, . . . , z︸ ︷︷ ︸
i times

).

Then d0, . . . , d2n−4 is a sequence of Freese-McKenzie SD-∨ term operations.

(2) Follows from [13, Lemma 9.4 and Theorem 9.6].

Corollary 2.6.6. Let R be a relational structure.

1. If R has an NU polymorphism, then R has Freese-McKenzie SD-∨ polymorphisms.

2. If R has Freese-McKenzie SD-∨ polymorphisms, then R has a Taylor polymorphism.

Proof. The term operations of the algebra generated by R are precisely the polymorphisms
of R.

11



Chapter 3

Constraint Satisfaction Problem

3.1 Complexity Classes

The computational problems we will be discussing in this paper are all examples of decision
problems. A decision problem will take in an input and output either ‘yes’ or ‘no’. These
problems are classified based on the complexity of the algorithms that exist to solve them,
hence the name complexity classes.

The three main complexity classes we encounter are the classes P, NP, and NL. These
are respectively the classes of decision problems which are solvable in polynomial time, in
nondeterministic polynomial time, and in nondeterministic logarithmic-space.

What is known about these three classes is that NL ⊆ P ⊆ NP. Neither of the inclusions
mentioned is known to be strict. It may just as well be that NL = NP. However it is the
belief of most computer scientists that both of the inclusions are strict [24].

We can compare individual problems in NP using polynomial-time reductions or log-
space reductions. These are algorithms that convert one problem into another. Log-space
reductions are a subset of polynomial-time reductions. Later on we will use the fact that
if a problem P is in NL and another problem Q has a log-space reduction to P , then Q is
also in NL.

3.2 Definition

There are many ways to formulate the definition for a constraint satisfaction problem. For
us we will view it as the homomorphism problem on relational structures.
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Definition 3.2.1. Let R be a relational structure of some finite language L. We will
denote CSP(R) to be the set of all finite relational structures R′ of the same language L
such that there exists a homomorphism from R′ to R. We will denote ¬CSP(R) to be
the class of all finite relational L-structures not in CSP(R).

The CSP of R refers to the decision problem that takes as input a finite relational
structure of the language L and decides whether it belongs to CSP(R). This is also called
the homomorphism problem of R for obvious reasons.

Our definition of the CSP is different from how it is defined in general. The inputs
to the CSP of R are more usually defined as triples (V,R, C) where V is a finite set of
variables, R is the domain of R, and C is a set of constaints; each constraint consists of
a basic relation from R and a tuple of variables from V of the same arity as the relation.
The decision problem, given such an input, is to decide whether there exists an assignment
of values from R to the variables in V such that all constraints in C are satisfied.

It is known that this version of CSP(R) is log-space equivalent to the homomorphism
version as formulated above [4, Section 2.4].

Here in this paper we study a subproblem of the homomorphism problem called the
retraction problem.

Definition 3.2.2. Let R be a finite relational structure of some finite language L. We
will denote Ret(R) to be the class of all finite relational structures R′ of the same language
L having R as an induced substructure such that there exists a retraction from R′ onto
R.

The retraction problem of R refers to the decision problem that takes as input a finite
relational structure of the language L having R as an induced substructure and decides
whether it belongs to Ret(R).

It should be clear that Ret(R) is a subclass of CSP(R). Many of the results we will be
using for our examination of the retraction problem are actually for the homomorphism
problem. To bridge this gap we introduce the notion of expanding a structure by constants.

Definition 3.2.3. Let M be a structure of language L with universe M . Let L′ be the
expansion of L by adding to it a unary relational symbol Ua for each a ∈M . Let exp(M)
be the structure in language L′ with universe M where every symbol in L is defined as it
was in M and U

exp(M)
a = {a} for each a ∈M .

13



It is known that for a finite relational structure R the retraction problem Ret(R) is
equivalent to CSP(exp(R)) under log-space reductions. So the pair Ret(R) and CSP(exp(R))
are both in NL (non-deterministic logspace) or neither. Thus for us this means we may
use the results that have been proven for CSP(exp(R)).

3.3 Core Structures

Each structure exp(R) falls into the category of a special kind of structures called core
structures.

Definition 3.3.1. We’ll say two relational structures R and R′ of some language L are
homomorphically equivalent if there exist homomorphisms from R to R′ and from R′ to
R.

Definition 3.3.2. A finite relational structure R is called a core if all endomorphisms
on R are automorphisms.

Cores can be thought of as minimal elements (size-wise) in its class of all homomor-
phically equivalent relational structures. For a finite relational structure there is always a
homomorphically equivalent core structure, which is unique up to isomorphism.

Definition 3.3.3. We’ll say R′ is a core of a finite relational structure R, if R′ is minimal
in size in the class of all relational structures homomorphically equivalent to R.

From this we see that CSP(R) = CSP(R′). So typically one would only study the
homomorphism problem for core structures.

Lemma 3.3.4. If R is a finite relational structure then exp(R) is a core.

We should note that although exp(R) is a core, it is not a core of R. They are in
different languages after all. However as we saw previously CSP(exp(R)) is in NL if and
only if Ret(R) is in NL. Furthermore if an operation is a polymorphism of exp(R) then it
is an idempotent polymorphism of R and vice versa.
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3.4 Obstructions and Pathwidth

One way to think about whether a structure belongs to CSP(R) is to look at all the
problematic structural properties it may have. This leads to the study of obstruction sets.

Definition 3.4.1. Let R be a finite relational structure of a finite language L. We call a
set O of finite L-structures an obstruction set for CSP(R) if for any finite L-structure R′

R′ ∈ CSP(R) ⇐⇒ ∀O ∈ O there does not exist a homomorphism from O to R′.

In general CSP(R) always has an obstruction set, namely the set ¬CSP(R). However
this set is too big to be useful. We want our obstruction sets to be such that all members
are relatively simple. The next definition explains what “simple” entails.

Definition 3.4.2. Let O be a finite relational structure of a finite language L. A path-
decomposition of O is a collection S1, . . . , Sn of subsets of O such that:

1. for every r ∈ R and every (a1, . . . , am) ∈ rO, there exists 1 ≤ i ≤ n such that
{a1, . . . , am} ⊆ Si;

2. if a ∈ Si ∩ Sj, then a ∈ Sl for all i ≤ l ≤ j.

The width of a path-decomposition is the pair of natural numbers

(max{|Si ∩ Si+1| : 1 ≤ i ≤ n− 1},max{|Si| : 1 ≤ i ≤ n}).

O is said to have pathwidth (j, k) if it has a path decomposition of width (j, k).

For example, let L = {r, s}, where r and s are relation symbols of arity 2, 3 respectively.
Let O be a relational L-structure of universe O = {a, b, c, e, d, f, g} and relations

rO = {(a, b), (a, d), (a, e), (a, f), (a, g), (b, c), (e, g), (f, g)}

and sO = {(a, d, g)}. The figure below illustrates the relation rO as a digraph.

Define the follow subsets:

S1 := {a, b, c},
S2 := {a, e, g},
S3 := {a, f, g},
S4 := {a, d, g}.
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Figure 3.1

Then S1, S2, S3, S4 is a path-decomposition of O of width (2, 3). It should be easy to
see that O has pathwidth of at least (2, 3).

3.5 Bounded Path Duality

Definition 3.5.1. A finite relational structure R in a finite language is said to have
bounded path duality if for some 0 ≤ j ≤ k, CSP(R) has an obstruction set whose every
member has pathwidth at most (j, k) .

In his 2005 paper Dalmau showed that having bounded path duality is sufficient for a
CSP to be in the complexity class NL.

Proposition 3.5.2. [5, Proposition 3] Let R be a finite relational structure. If R has
bounded path duality then CSP(R) is in NL (nondeterministic log-space).

This will allow us to show that Ret(R) is in NL by proving exp(R) has bounded path
duality.

Another implication of having bounded path duality is the existence of Freese-McKenzie
SD-∨ operations. For the remainder of this section, we will fix a finite relational structure
R such that exp(R) has bounded path duality. In each of the following theorems you may if
you wish assume that S is exp(R). We will now state a series of results that when combined
lead to the conclusion that R has Freese-McKenzie SD-∨ operations. The first result in
this series is another theorem in the aforementioned paper by Dalmau.
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Theorem 3.5.3. [5, Theorem 5] Let S be a finite relational structure. S has bounded
path duality if and only if the class ¬CSP(S) is definable in linear Datalog.

A class is definable in linear Datalog if and only if its members are distinguishable by
a Datalog Program. We won’t go into any detail on what exactly that means. The reader
can simply think of it as a property on a class of relational structures. Larose and Tesson
provide us with our next step.

Theorem 3.5.4. [15, Theorem 4.2] Let S be a core relational structure and let A be the
algebra it generates. If ¬CSP(S) is definable in linear Datalog then V (A) omits types 1,
2, and 5.

Omitting types is a powerful characteristic for finite algebras first described by Hobby
and McKenzie in their book [13, Theorem 9.11]. They have shown that for a locally finite
variety, omitting types 1, 2, and 5 is equivalent to its finite members being congruence join
semi-distributive. For our purposes the reader does not need to know the exact definition
of congruence join semi-distributivity. It is sufficient to know that it is some property of
the set of congruences of an algebra. In 2001 Kearnes improved on this by extending it to
all members of the variety (not just finite ones).

Theorem 3.5.5. [14, Theorem 2.6] A locally finite variety V omits types 1, 2 and 5 if
and only if every algebra in the variety is congruence join semi-distributive

The variety generated by the algebra generated by exp(R) is finitely generated and
hence is known to be locally finite. Thus by this theorem it is also congruence join semi-
distributive, assuming exp(R) has bounded path duality. In a 2017 paper, Freese and
McKenzie translate this to the existence of Freese-McKenzie SD-∨ operations.

Theorem 3.5.6. [12, Theorem 5.1] Let V be an idempotent variety. V is congruence
join semi-distributive if and only if V has a sequence of Freese-McKenzie SD-∨ term
operations.

Corollary 3.5.7. Let V be an idempotent variety. If V is congruence join semi-distribu-
tive, then every member of V has a sequence of Freese-McKenzie SD-∨ term operations.

It is quite easy to see that the algebra generated by exp(R) is idempotent.
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Lemma 3.5.8. If R is a finite relational structure with universe R then every polymor-
phism in Pol(exp(R)) is idempotent.

Proof. Let φ ∈ Pol(exp(R)) be an n-ary polymorphism. For each a ∈ R there exists the

unary relation U
exp(R)
a = {a}. φ must preserve this relation, so φ(a, . . . , a︸ ︷︷ ︸

n times

) ∈ {a}.

An idempotent algebra will generate an idempotent variety. Recall that R is a fixed
finite relational structure. It follows from the above comment and Lemma 3.5.8 that the
variety generated by the algebra generated by exp(R) is idempotent. It is easily shown
that the term operations of this algebra are exactly its fundamental operations, which are
the polymorphisms of exp(R). Hence if exp(R) has bounded path duality, then exp(R)
admits a set of Freese-McKenzie SD-∨ operations by Theorems 3.5.3 - 3.5.6 and Corollary
3.5.7. As R admits every operation admitted by exp(R), we have proved the following
proposition.

Proposition 3.5.9. Let R be a finite relational structure in a finite language L. If exp(R)
has bounded path duality then R admits a set of Freese-McKenzie SD-∨ operations.

The converse of this proposition is a long standing conjecture by Larose and Tesson
stated in [15]. In this direction we know the statement is at least true under the stronger
hypothesis that R admits a majority or an NU operation.

Theorem 3.5.10. [6, Theorem 1] Let R be a finite relational structure in a finite language
L. If R admits a majority polymorphism then R has bounded path duality.

Theorem 3.5.11. [3, Theorem 7] Let R be a finite relational structure in a finite language
L. If R admits an NU polymorphism then R has bounded path duality.

In the remainder of this paper we will examine the notions of bounded path duality,
NU polymorphisms, and Freese-McKenzie operations for series-parallel posets.
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Chapter 4

Posets

4.1 Partial Orders

Definition 4.1.1. A partially ordered set (poset) P = 〈P,≤P〉 is a relational structure of
a language containing a single binary relation that satisfies the following three conditions
for all a, b, and c in P :

• a ≤P a (reflexivity);

• if a ≤P b and b ≤P a, then a = b (antisymmetry); and,

• if a ≤P b and b ≤P c, then a ≤P c (transitivity).

A subposet of P is a poset that is a substructure of P.

A pair of elements a and b in P is said to be comparable if either a ≤ b or a ≥ b.

A partial order is a binary relation that is reflexive, transitive and antisymmetric.

A quasi order is a binary relation that is reflexive and transitive.

We say a is above b to mean that a ≥ b. Likewise we will say a is below b to mean
a ≤ b. In normal relation notation we would write (a, b) ∈≤P to mean a ≤P b.

The integers equipped with their canonical ordering is a poset. A rooted tree is a poset
if we declare x to be below y if and only if the unique path from x to the root passes
through y. A powerset of any set is a poset with the containment relation as its order
relation.
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Definition 4.1.2. Let P be a poset. An element a ∈ P is said to be maximal in P if for
all b ∈ P , b ≥ a implies a = b. Likewise, an element is said to be minimal if for all b ∈ P ,
b ≤ a implies a = b.

An element a is said to be a pinch point of P if a is comparable to every element of P.

A pair of elements a < b ∈ P forms a cover pair if for all c ∈ P , a ≤ c ≤ b implies
c = a or c = b. We write a ≺ b to signify this. The element a may be referred to as a
lower cover of b and b an upper cover of a.

We will draw Hasse diagrams when we need to visualize certain posets. The elements
of the poset will be represented by points, the order relation will be represented by lines
connecting cover pairs such that the greater element is positioned higher than the lesser.

a b c

d e

f

Figure 4.1: P

Here we have the Hasse diagram for the poset P with universe P = {a, b, c, d, e, f} and
order relation

≤P= {(a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e), (c, f),

(d, f), (e, f), (a, a), (b, b), (c, c), (d, d), (e, e), (f, f)}.

Definition 4.1.3. Let P be a poset. An element c ∈ P is said to be a common upper
bound of a, b ∈ P if c ≥ a and c ≥ b. We call c a common lower bound of a and b if c ≤ a
and c ≤ b.
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Definition 4.1.4. Let P be a poset. For a pair of elements a, b ∈ P we define sup(a, b) to
be the element in P (if it exists) such that sup(a, b) ≥ a, sup(a, b) ≥ b and for all c ∈ P
such that c ≥ a and c ≥ b we have c ≥ sup(a, b). We will say sup(a, b) is the supremum
of a and b.

We define inf(a, b) to be the element in P (if it exists) such that inf(a, b) ≤ a,
inf(a, b) ≤ b and for all c ∈ P such that c ≤ a and c ≤ b we have c ≤ inf(a, b). We
will say inf(a, b) is the infimum of a and b.

Let S be a subset of P . We define u ∈ P to be an upper bound of S if x ≤ u for all
x ∈ S. Similarly we define l ∈ P to be a lower bound of S if x ≥ l for all x ∈ S.

We define sup(S) to be the unique upper bound of S (if it exists) such that sup(S) ≤ u
for all upper bounds u of S.

We define inf(S) to be the unique lower bound of S (if it exists) such that inf(S) ≥ l
for all lower bounds l of S.

In figure 4.1 we see that the supremum does not exist for any pair from {a, b, c}.
However it does exist for the pair d, e, and any subset of P containing the two, as the
element f .

Definition 4.1.5. Let P be a poset and Q ⊆ P . Then the poset Q = 〈Q,Q2∩ ≤P〉 is the
subposet of P induced by the set Q.

Since every subset of P induces a subposet of P, for convenience we may refer to one
as the other.

Lemma 4.1.6. A subposet of a subposet of a poset is a subposet of that poset.

Proof. This follow directly from the definition of subposets and Lemma 2.2.2.
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Figure 4.2

Here Q1 and Q2 are both subposets of P from figure 4.1 where Q3 is not. Q1 is also a
subposet of both Q2 and Q3.

Definition 4.1.7. Let P be a finite poset. We will denote PoRet(P) to be the to be
the class of all finite posets P′ having P as an induced subposet such that there exists a
retraction from P′ onto P.

The poset retraction problem of P refers to the decision problem that take as input
a finite poset containing P as an induced subposet and decides whether it belongs to
PoRet(P).

The poset retraction problem is a more refined version of the retraction problem as
we only take inputs that are already posets. Therefore Ret(P) belonging to NL implies
PoRet(P) belongs to NL. PoRet(P) and Ret(P) are equivalent under many-one polynomial-
time reductions, but not under log-space reductions. For example, if P′ is the two-element
poset {0, 1} with 0 < 1, then PoRet(P′) is in L (solvable in logarithmic space) because the
answer is always yes. On the other hand, Ret(P′) is log-space equivalent to a well-known
problem called ST-CON, which is known to be NL-complete under log-space reductions
[21].

Definition 4.1.8. Let R be a binary relation on some set S. A finite sequence of elements
[a1, a2, . . . , an] in S is called a path under R if for each consecutive pair ai and ai+1 either
(ai, ai+1) or (ai+1, ai) is in R. n will be the length of this path.

A directed path under R is a finite sequence of elements [a1, a2, . . . , an] in S such that
for each consecutive pair ai and ai+1 we have (ai, ai+1) ∈ R.

Let b, c ∈ S. We say that b and c are connected under R if there exists a path
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a1, a2, . . . , an in R such that a1 = b and an = c.

A subset S ′ ⊆ S is said to be connected under R if every pair of elements in S ′ is
connected under R.

A connected component of S under R is a maximal connected subset of S under R.

When discussing connectivity in a poset we will drop the use of “under R” as it is
clear that the binary relation we are referring to is the order relation.

Let us return to the example poset P from figure 4.1. Both [a, d, f ] and [a, d, b, e, f ] are
paths from a to f where the former is a directed path and the latter is not. It should be
clear that every pair of elements in P is connected and the only connected component of
P is all of P .

Definition 4.1.9. An antichain is a poset such that any two distinct elements in the
poset are incomparable. We may also refer to subsets of a poset whose induced subposet
is an antichain as antichains.

We will denote the one element antichain 1 , two element antichain 2 and the n
element antichain n.

The subsets {a, b, c} and {d, e} of the poset P from figure 4.1 are both antichains.

Definition 4.1.10. A 2n-crown is any poset isomorphic to the poset with universe
{a1, . . . , an, b1, . . . , bn} such that bi < ai and bi+1 < ai for each 1 ≤ i ≤ n where the
indices are considered modulo n and all other pairs of elements are incomparable.

A 2n-fence is the poset isomorphic to the 2n-crown with exactly one of its compara-
bilities removed.

b1 b2 bn−1 bn

a1 a2 an−1 an

2n-crown
b1 b2 bn−1 bn

a1 a2 an−1 an

2n-fence

Figure 4.3

We will be mainly using the 4-crown and the 4-fence for the purpose of this paper.
From now on we will call the 4-fence as the N -poset (since its Hasse diagram looks like
the letter “N”). We will say a poset is N -free when it does not have the N -poset as a
subposet.
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4.2 Series-parallel Posets

Definition 4.2.1. Let P1 and P2 be posets with universes P1 and P2. We will define
their linear sum to be the poset P1 +P2 := 〈P1∪P2,≤P1 ∪ ≤P2 ∪P1×P2〉. Likewise their
disjoint union will be the poset P1 ∪· P2 := 〈P1 ∪ P2,≤P1 ∪ ≤P2〉

P2

P1

P1 + P2 P1 ∪· P2

Figure 4.4

Each antichain n is equal to the disjoint union of n one element antichains
n⋃·
i=1

1. A

4-crown can be thought of as 2 + 2.

Definition 4.2.2. A poset will be called series-parallel if it can be constructed from 1
(the one element antichain) using only linear sum and disjoint union finitely many times.

Series-parallel posets are the poset version of series-parallel graphs or digraphs. Early
works viewed them as analogues for electrical networks [9], whereas today they are used in
many different computational problems such as job shop scheduling [18], machine learning
of time series data [19], and transmission sequencing of multimedia data [1].
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2 + 2 (4-crown) 2 + 2 + 1

Figure 4.5

Theorem 4.2.3. [23] [25, Theorem 1] A finite poset is series-parallel if and only if it is
N-free.

Being N -free is a powerful characteristic that we will be utilizing whenever we prove
something specific about series-parallel posets. Here it is in action as we prove several
basic facts regarding series-parallel posets.

Lemma 4.2.4. All subposets of a series-parallel poset are series-parallel.

Proof. Let P be a series-parallel poset and Q a subposet of P. Suppose Q admits the
N -poset as an induced subposet. By lemma 4.1.6 this N -poset is also a subposet of P, a
contradiction to Theorem 4.2.3. Thus Q must be N -free. So by Theorem 4.2.3 again Q is
series-parallel.

Lemma 4.2.5. Let P be a series-parallel poset. Every pair of connected elements in P
has a common upper or lower bound.

Proof. Let a, b be a pair of connected elements in P. By definition we know there exists a
path in ≤P from a to b. Pick a path x1, . . . , xn of this kind that is minimal in length. If
we have consecutive elements xi, xi+1, xi+2 on this path such that x ≤P xi+1 ≤P xi+2 then
a shorter path exists by removing xi+1. Thus this minimal path must alternate between
≤P and ≥P. Furthermore every non-consecutive pair of elements on the path must be
incomparable or a shorter path will exist. If the length of this path is greater than or
equal to 4 then we would have an induced N -subposet in P, a contradiction since P is
series-parallel. Thus the path is at most length 3. When the length is 1 we have a = b.
When the length is 2 we have a comparable to b. When the length is 3 we get some c such
that a ≥ c and c ≤ b or a ≤ c and c ≥ b. In all three cases the lemma holds.
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Lemma 4.2.6. Let P be a series-parallel poset. Suppose that for some incomparable
a, b ∈ P , sup(a, b) exists. Then for all c ≥ a, either c ≥ b or c ≤ sup(a, b). Hence in
either case, c is comparable to sup(a, b).

Likewise, suppose that for some a, b ∈ P inf(a, b) exists. Then for all c ≤ a, either
c ≤ b or c ≥ inf(a, b). Hence in either case, c is comparable to inf(a, b).

Proof. Let a, b and c be stated as in the theorem. Then we must have one of the pairs
{c, sup(a, b)} or {c, b} be comparable or there would be an N -subposet for P. Either one
of outcomes satisfies the theorem. The second part of the theorem is proven similarly.

a b

sup(a, b)c

Figure 4.6

4.3 4-crown Condition

Definition 4.3.1. Let P be a series-parallel poset. We will say that P satisfies the 4-
crown condition if for every 4-crown {a1, a2, b1, b2} in P, where the ai’s are the lesser
elements and bi’s the greater, at least one of the following conditions is true:

• there exists a midpoint e ∈ P such that ai < e < bj for all 1 ≤ i, j ≤ 2;

• inf(a1, a2) exists;

• sup(b1, b2) exists.

For example 2 + 2 + 1 satisfies the 4-crown condition where 2 + 2 (the 4-crown) does
not.

This condition was first introduced in a paper by Dalmau, Krokhin and Larose where
they proved that it characterized all those series-parallel posets whose retraction problem
is solvable in polynomial time (assuming P 6= NP).
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Theorem 4.3.2. [7, Theorem 2] Let P be a connected series parallel poset. Then the
following conditions are equivalent:

1. P satisfies the 4-crown condition;

2. P does not retract onto any of 1 + 2 + 2 + 2, 2 + 2 + 2 + 1, 2 + 2 + 2 + 1, 2 + 2,
and 2 + 2 + 2;

3. P admits a Taylor polymorphism;

4. P admits a TSI (totally symmetric idempotent) polymorphism of every arity k ≥ 2;

Furthermore, if Q is a series-parallel poset whose every connected component satisfies
any of the conditions mentioned above then PoRet(Q) is solvable in polynomial time.
Otherwise it is NP-complete.

As we have mentioned before in Chapter 3 we can expand on this result to show that
if every connected component of Q satisfies any of 1-4 mentioned in the theorem, then
PoRet(Q) is actually in NL by proving exp(Q) has bounded path duality. We will do so in
the next chapter. For now we finish listing important properties of series-parallel posets.

Lemma 4.3.3. Let P be a series-parallel poset satisfying the 4-crown condition. If there
exists a retraction r of P then the subposet Q of P induced by the image of r will also be
a series-parallel poset satisfying the 4-crown condition.

Proof. By Lemma 4.2.4 we know that Q is also series-parallel. Let {a1, a2, b1, b2} be a 4-
crown in Q where the ai’s are the lesser elements and bi’s the greater. Since Q is a subposet
of P this is also a 4-crown in P. Because P satisfies the 4-crown condition we have three
cases to consider.

The first case is when there exists a midpoint e ∈ P such that ai <
P e <P bj for all

1 ≤ i, j ≤ 2. Since Q is the image of the retraction r the ai’s and bj’s are fixed by r.
So we have r(ai) <

Q r(e) <Q r(bj) =⇒ ai ≤Q r(e) ≤Q bj for all 1 ≤ i, j ≤ 2 (since
retractions are homomorphisms which are order preserving). Since the ai’s and bj’s are
both incomparable pairs we actually get strict inequalities in the implied inequality. Thus
r(e) is a midpoint of this 4-crown in Q.

The second case is when l = inf(a1, a2) exists in P. Just as above we have r(l) <Q a1, a2.
Suppose we have some c ∈ Q such that c <Q a1, a2 also. Then as elements of P we have
c ≤P inf(a1, a2) = l. So c = r(c) ≤Q r(l). Thus r(l) is the infimum of a1 and a2 in Q.
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The third case is when sup(b1, b2) exists in P. Using similar arguments as in the second
case we can show that there also exists a supremum of b1 and b2 in Q.

With all three cases considered we see that the 4-crown condition is satisfied for this
particular 4-crown. As it was picked arbitrarily this shows that Q satisfies the 4-crown
condition in general.

Just as general series-parallel posets can be constructed using linear sum and disjoint
union, those that satisfy the 4-crown condition have their own recipe.

Definition 4.3.4. Let P1 and P2 be finite posets with universes P1 and P2. We call
P1 +P2 the restricted sum and denote it as P1 +R P2 when one of the following conditions
is met:

• For every pair of maximal elements a, b ∈ P1, inf(a, b) exists;

• For every pair of minimal elements a, b ∈ P2, sup(a, b) exists.

Definition 4.3.5. Let P1 and P2 be posets with universes P1 and P2. We call P1 + P2

the connected sum and denote it as P1 +C P2 when both P1 and P2 are connected.

The restricted and connected sum are simply the linear sum with added conditions on
the input that they take in.

Definition 4.3.6. Let P1 and P2 be finite posets with universes P1 and P2. Assume that
P1 has a unique maximal element and P2 a unique minimal element. We define P1 ./P2 to
be P1 + P′2, where P′2 is the subposet of P2 induced by all but its minimal element.

Although this is the proper definition of the ./ operation, it helps notation wise to think
of the unique minimum of P2 and the unique maximum of P1 as the same element. This
way we have that P1 and P2 are induced subposets of P1 ./P2 that share a common element.

Definition 4.3.7. Let P1 and P2 be posets with universes P1 and P2. Assume that both
P1 and P2 have a unique maximal element. We define P14P2 to be (P′1∪· P′2)+1, where P′1
and P′2 is the subposet of P1 and P2 induced by all but its maximal element respectively.
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(2 + 2 + 1) ./ (1 + 3 + 1)

1 + 3 + 1

2 + 2 + 1

Figure 4.7

Definition 4.3.8. Let P1 and P2 be posets with universes P1 and P2. Assume that both
P1 and P2 have a unique minimal element. We define P1

4P2 to be 1+(P′1∪· P′2), where P′1
and P′2 is the subposet of P1 and P2 induced by all but its minimal element respectively.

As before it helps to think of P1 and P2 as induced subposets of P14P2 and P1

4P2

that share a common maximal/minimal element.

Definition 4.3.9. Let P1 and P2 be posets with universes P1 and P2. Assume that both
P1 and P2 have a unique minimal element distinct from a unique maximal element. We
define P1 ♦P2 to be 1 + (P′1 ∪· P′2) + 1, where P′1 and P′2 is the subposet of P1 and P2

induced by all but its minimal and maximal elements respectively.

We’ll think of P1 and P2 as induced subposets of P1 ♦P2 that shares the maximal and
minimal elements.

(2 + 2 + 1)4 (1 + 3 + 1)

1 + 3 + 12 + 2 + 1

(1 + 2 + 2 + 1)♦ (1 + 3 + 1)

1 + 3 + 11 + 2 + 2 + 1

Figure 4.8
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Definition 4.3.10. In the case of 4 ,

4

, ♦ and ./ operations the two input posets P1

and P2 when viewed as subposets of the output poset P will have some common elements
(e.g. the maximal element in P = P14P2). We will refer to them as the shared elements.

We will show in the next two lemmas that all series-parallel posets satisfying the 4-
crown condition can be constructed using some of the poset operations we have just defined.
This result is inspired by discoveries of Larose and Willard that we will mention in chapter
6.

Lemma 4.3.11. Let P1 and P2 be series-parallel posets. Then P1∪· P2, P1+RP2, P1+CP2,
P1 ./P2, P14P2, P1

4P2 and P1 ♦P2 (when the requirements of the operations are met)
are still series-parallel posets. Moreover, if both P1 and P2 satisfy the 4-crown condition
then so do their products under ∪· , +R, ./ , 4 ,

4

and ♦ .

Proof. The fact that P1 ∪· P2, P1 +R P2 and P1 +C P2 are series-parallel posets should be
clear from their definition.

To show that P1 ./P2 is series-parallel we will prove it is N -free. We know that P1 and
P2 are both N -free. So if we assume for the sake of contradiction there exists an induced
N -subposet in P1 ./P2 then the elements of this subposet must come from both P1 and P2.
Since the upper two elements of the N -subposet are incomparable they must be elements
of P2. Likewise the lower two elements must come from P1. By the definition of the ./

operation these four elements would form a 4-crown, a clear contradiction (see figure 4.9).

P2

P1

Figure 4.9: P1 ./P2
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Suppose for a contradiction that P14P2 contains an induced N -subposet. This imme-
diately creates a contradiction unless the N -subposet isn’t contained entirely inside either
P′1 or P′2 (as described in the definition of 4 ). This would mean that one of the maximal
elements in the subposet must be the unique element in 1. This is a contradiction since
both maximal elements have to be incomparable with each other in P14P2.

The case for

4

is similar and therefore omitted.

Suppose for a contradiction that P1 ♦P2 contains an induced N -subposet. This again
would immediately create a contradiction unless the N -subposet isn’t contained entirely
inside either P′1 or P′2 (as described in the definition of ♦ ). This would require at least
one of the elements in the subposet to be one of the 1’s. Then this element would be
comparable to all other three, a contradiction to the definition of an N -subposet.

Now assume both P1 and P2 satisfy the 4-crown condition. Let {a1, a2, b1, b2} be a
4-crown in P1 +R P2 where the ai’s are the lesser elements and bi’s the greater. As argued
above if this 4-crown isn’t fully contained in either P1 or P2 then we would have a1, a2 ∈ P1

and b1, b2 ∈ P2 (if it is then we are done). By the definition of +R let’s assume without
loss of generality that the inf of every pair of maximal elements in P1 exists. Pick a′1 and
a′2 to be maximal elements of P1 greater than or equal to a1 and a2 respectively. Denote
m = inf(a′1, a

′
2) (see figure 4.10). If a1 = a′1 and a2 = a′2 then this 4-crown satisfies the

m

b1b2

a1a2

a′1a′2

P2

P1

Figure 4.10: P1 +R P2

4-crown condition. Suppose again without loss of generality that a1 6= a′1. By Lemma 4.2.6
we have either a1 ≤ a′2 or a1 ≥ m. In the first case a′2 would be the midpoint required
by the 4-crown condition. In the second case we shift our focus onto a2. If a2 = a′2 then
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m = inf(a1, a2). If a2 6= a′2 then by Lemma 4.2.6 again we have a2 ≥ m or a2 ≤ a1. In the
first case we get m = inf(a1, a2) and in the second a1 would be the midpoint required by
the 4-crown condition. So we see that ultimately {a1, a2, b1, b2} satisfies the condition one
way or another.

Let {a1, a2, b1, b2} be a 4-crown in P1 ./P2 that is not fully contained in either P1 or P2

(setup as in the previous case). In this case the unique maximum element of P1 does not
equal any of a1, a2, b1 or b2. It would also serve to satisfy the existence of a midpoint for
the 4-crown.

The only way to have a 4-crown in P1 ∪· P2, P14P2, P1

4P2 or P1 ♦P2 is to have all
four elements belonging to the same Pi. Thus our assumptions provides the result.

Lemma 4.3.12. A poset P is series-parallel and satisfies the 4-crown condition if and
only if it can be constructed from 1 using +R (restricted linear sum), ./ , 4 ,

4

, ♦ and
∪· (disjoint union) finitely many times.

Proof. ( ⇐= ) The 1 poset satisfies the 4-crown condition vacuously. It should be clear
from the definition of disjoint union that it preserves the 4-crown condition. From Lemma
4.3.11 the result follows.

( =⇒ ) Suppose now we have a series-parallel poset P satisfying the 4-crown condition.
We will prove the desired result inductively on its size. When |P | = 1 we have P = 1.
Assume that |P | > 1 and all series-parallel posets satisfying the 4-crown condition with
size strictly less than P are constructed from 1 using +R, ./ , 4 ,

4

, ♦ and ∪· only finitely
many times.

If P is not connected then let P1, . . . , Pn (n > 1) be the connected components of P. Let
Pi be the induced subposet of Pi. Fix an arbitrary i and let {a1, a2, b1, b2} be a 4-crown in
Pi where the ai’s are the lesser elements and bi’s the greater. Since P satisfies the 4-crown
condition there must be an element c in P witnessing that for {a1, a2, b1, b2}. By definition
of the 4-crown condition c is connected to all of {a1, a2, b1, b2} . Thus c ∈ Pi and we get
that Pi satisfies the 4-crown condition also. Being a subposet of P also makes Pi N -free.
Thus by our assumption it is constructed from 1 using +R, ./ , 4 ,

4

, ♦ and ∪· finitely
many times. Since P = P1 ∪· . . . ∪· Pn we have our desired result.

Now assume that P is connected. From the definition of series-parallel there exists
series-parallel posets P1 and P2 such that P = P1 + P2. First, assume that both of these
subposets satisfies the 4-crown condition. Then by our assumption they are constructed
from 1 using the above mentioned operations finitely many times. All that remains is to
show that P = P1 +R P2 which amounts to show that one of the following conditions is
satisfied:
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• For every pair of maximal elements a, b ∈ P1 inf(a, b) exists;

• For every pair of minimal elements a, b ∈ P2 sup(a, b) exists.

Suppose that for some pair of maximal elements a, b ∈ P1 inf(a, b) does not exist in P1,
then the pair cannot have an inf in P also. Since there does not exists an element between
any maximal element of P1 and any minimal element of P2, every pair of minimal element
of P2 will have a supremum in P by the 4-crown condition. But this is equivalent to having
a sup in P2. Thus P = P1 +R P2 and we are done in the case when both P1 and P2 satisfies
the 4-crown condition.

Next, suppose to the contrary that there exists {a1, a2, b1, b2} a 4-crown in one of the
Pi’s where the ai’s are the lesser elements and bi’s the greater such that the 4-condition
is not satisfied. We will only consider when this 4-crown belongs to P1 as the proof is
similar in both cases. This set of four elements is also a 4-crown in P which satisfies the
condition so there must be a c in P witnessing that. We cannot have c be the midpoint
or the infimum of a1 and a2 since then c would be an element of P1 (which contradicts
our assumption that this is a 4-crown in P1 such that the condition is not satisfied). Thus
c = sup(b1, b2) and c ∈ P2. Now P = P1 + P2 so every element in P2 is greater than b1, b2

and sup(b1, b2) = c in P. This shows that c is the unique minimal element of P2 (see figure
4.11). If there are any other 4-crowns in P1 that also does not satisfy the condition in P1

c

a1a2

b1b2

P2

P1

Figure 4.11
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then c must also be supremum of its two greater elements in P. Furthermore since the two
greater elements of a 4-crown must be incomparable any 4-crown that belongs to P1 + 1
must also be in P1. Thus P1 + 1 is a series-parallel poset satisfying the 4-crown condition.
As for P2 we know that c is its unique minimal element. This ensures that any element of
P witnessing the 4-crown condition for any 4-crown in P2 must be in P2 already. Therefore
P2 also satisfies the 4-crown condition.

If |P2| > 1 then |P1 + 1| < |P | and P = (P1 + 1) ./P2. By our inductive assumption the
result follows. If P2 = 1 then we need to examine P1 further. If P1 is not connected then
let Q1, . . . , Qn denote the subposets induced by the connected components of P. In this
case each Qi + 1 is a series-parallel poset satisfying the 4-crown condition with size less
than P. Then P = (Q1 + 1)4 (Q2 + 1)4 . . .4 (Qn + 1) and the result follows from our
assumption.

P2

P1

Q1Q2 Qn

Figure 4.12

Now we arrive at the case where P1 is connected and P2 = 1. If P1 = 1 also then we
are done. If not then since it is series-parallel P1 = P3 + P4 for some P3 and P4 also series
parallel. Then P = P3 + (P4 + P2). If |P3| > 1 then since |P4 + P2| > 1 we may restart
the argument from the beginning by replacing P1 with P3 and P2 with P4 + P2. This time
the size of both posets are strictly greater than 1 and our proof will terminate on a prior
case. If |P3| = 1 then we turn our attention to P4. If |P4| = 1 then P = 1 +R 1 +R 1. If not
then we have two cases depending on whether P4 is connected. If P4 is not connected then
let Q1, . . . ,Qn be the subposets induced by its connected components. These subposets
are clearly series-parallel. Suppose there exists some 4-crown in some Qi that does not
satisfy the 4-crown condition. Since it is also a 4-crown of P there must be an element
in P witnessing the condition. This element must either be the supremum of the two
maximal elements or the infimum of the two minimal ones. The only elements in P that are
comparable to anything in Qi are the unique maximum and minimum of P. Thus 1+Qi+1
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satisfies the 4-crown condition. Then P = (1 +Q1 + 1)♦ (1 +Q2 + 1)♦ . . . ♦ (1 +Qn + 1).

P2

P4

P3

Q1 Q2 Qn

Figure 4.13

Now if P4 is connected, since it has size strictly bigger than one we can break it up
further into P4 = P5 + P6. Then P = (1 + P5) + (P6 + 1). With this we can return to
the argument above for P = P1 + P2 while guaranteeing both P1 and P2 have size strictly
greater than one.

Definition 4.3.13. Let P be a poset and let L and U be antichains in P. Denote the
subset P[L,U ] of P as

P[L,U ] := {p ∈ P : l ≤ p ≤ u for all l ∈ L and u ∈ U}.

Dalmau, Larose and Krokhin have shown in their paper the condition needed for any
given poset to retract onto a series-parallel poset satisfying the 4-crown condition.

Theorem 4.3.14. [7, Theorem 1] Let P be a connected series-parallel poset satisfying the
4-crown condition. Then a poset Q containing P as a subposet has a retraction onto P if
and only if Q satisfies the following conditions:

1. For every pair (L,U) of antichains in P, Q[L,U ] is empty whenever P[L,U ] is empty;

2. For every non-empty and non-connected subset of P of the form P[L′,U ′], and every
pair of elements p1, p2 in different connected components of P[L′,U ′], there is no path
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in Q that connects p1 and p2 such that every element in this path belongs to some
Q[L,U ] with P[L,U ] ⊆ P[L′,U ′].

4.4 Pyramids

The restricted sum requires a special property from at least one of its inputs. We will
study the consequences of having this property for a series-parallel poset.

Lemma 4.4.1. Let P be a series parallel poset such that for every pair of minimal ele-
ments a, b ∈ P there exists sup(a, b). Let L be the set of minimal elements of P. Then
sup(S) exists for any S ⊆ L and sup(L) is the minimal pinch point of P.

Proof. Fix a ∈ S. Let U := {sup(a, b) : b ∈ S}. Suppose there exists x, y so that
sup(a, x) and sup(a, y) are incomparable. This means that x is incomparable to sup(a, y).
Then {x, sup(a, x), a, sup(a, y)} would form an N -subposet in P, a contradiction (see figure
4.14). Thus all pairs of elements from U are comparable. So there exist a maximum element

x

sup(a, x)

a

sup(a, y)

Figure 4.14

sup(a, b′) for some b′ ∈ S. By maximality sup(a, b′) is above every element in S. Suppose
there exists some u ∈ P such that u is also above every element of S. By the definition of
sup we must have u ≥ sup(a, b′). Therefore sup(a, b′) is the sup(S) that we are looking for.

From the previous paragraph we know that sup(L) = sup(a, b) for some a, b ∈ L. Let
c ∈ P and pick c′ ∈ L such that c′ ≤ c. Then by Lemma 4.2.6 c is comparable to sup(c′, a).
If c ≤ sup(c′, a) then c ≤ sup(L). If c ≥ sup(c′, a) then c ≥ a, so by Lemma 4.2.6 again c is
comparable to sup(a, b) = sup(L). This shows that sup(L) is a pinch point of P. Any other
pinch point in P would be above sup(L) due to its minimality (of being a supremum).

Corollary 4.4.2. Let P be a series-parallel poset such that for every pair of maximal
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elements a, b ∈ P there exists inf(a, b). Let U be the set of maximal elements of P. Then
inf(S) exists for any S ⊆ L and inf(L) is the maximal pinch point of P.

Proof. The proof of this corollary is similar to the proof of the previous lemma and therefore
is omitted.

It will be helpful for us to find pinch points whenever possible as we can use them to
partition a poset to subposets that connect together via ./ .

Lemma 4.4.3. [7, Lemma 1] If P is a connected series-parallel poset satisfying the 4-
crown condition then there exists a pinch point in P.

Proof. Since P is connected by Lemma 4.3.12 it is either the singleton poset 1 or constructed
from P1 and P2 by using one of +R, ./ ,4 ,

4

or ♦ . When P is the singleton poset the only
point in the poset will be the pinch point. When P is constructed using +R by Lemma
4.4.1 and Corollary 4.4.2 one of P1 or P2 will have a pinch point of their own, which also
becomes a pinch point for P. For the rest of the operations any shared element between
P1 and P2 will be a pinch point in P.

Definition 4.4.4. Let P be a finite poset and L its set of minimal elements. We will call
P a pyramid if sup(S) exists for every S ⊆ L and sup(L) is the unique maximal element
of P.

Let Q be a finite poset and U its set of minimal elements. We will call Q a reverse-
pyramid if inf(S) exists for every S ⊆ U and sup(U) is the unique minimal element of
Q.

Suppose we are given a restricted sum of two series-parallel posets P1 +RP2. If it is such
that the first condition of the restricted sum is met (there exists a supremum for every pair
of maximal elements of P1), then by corollary 4.4.2 the infimum of all maximal elements of
P1 is a maximal pinch point. So the subposet P3 of all elements greater than or equal to this
pinch point will form a reverse pyramid. Therefore we can write P1 +RP2 = P4 ./ (P3 +RP2)
for some P4 ⊆ P1.

Likewise if the second condition of the restricted sum is met then P1 +R P2 = (P1 +R

P3) ./P2) for some P3,P4 ⊆ P2 where P3 is a pyramid.
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Definition 4.4.5. Let P be a pyramid. Let L be the set of all minimal elements of P.
For every a ∈ P define La ⊆ L to be the set of minimal elements of P comparable to a.
For each S ⊆ P with S 6= ∅, we will define

lS := sup

(⋃
a∈S

La

)
.

Lemma 4.4.6. Let P be a series-parallel pyramid. The following are true:

1. For all a ∈ P we have l{a} ≤ a;

2. For all a ≤ b in P we have l{a} ≤ l{b};

3. For all S1, S2 ⊆ P we have lS1 ≤ lS2 if for all a ∈ S1 there exists b ∈ S2 such that
a ≤ b;

4. For all a ∈ P and S ⊆ P , lS ≤ a implies lS ≤ l{a};

5. For all a, b ∈ P , l{a} ≤ b ≤ a implies l{a} = l{b};

6. For all a, b ∈ P , if a is comparable to b then a is comparable to l{b};

7. For all S ⊆ P and a ∈ P , a is comparable to lS if a ≤ b for some b ∈ S;

8. For all S ⊆ P and a ∈ S, If lS ≤ a then l{a} = lS;

9. For all S ⊆ P we have lS = l{lS}.

Proof. Most of these facts are fairly simple to prove. We will only show the arguments for
(6) and (7).

ν

l{b}

µ

a

b

Figure 4.15
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(6): If a ≥ b then by (2) a ≥ l{b} follows. Assume a < b and a is not comparable
to l{b}. This means that there exists a minimal element ν that is below l{b} but not a.
Pick another minimal element µ below a. By definition we know l{b} is above µ. Then
{a, l{b}, µ, ν} forms an N -subposet in P, a contradiction (see figure 4.15).

(7): Let a and S be as described and assume a ≤ b for some b ∈ S. If a is not
comparable to lS then there must exists a minimal element ν that is below lS but not a.
Pick another minimal element µ below a. Since a ≤ b ∈ S, lS is also above µ. Then
{a, lS, µ, ν} forms an N -subposet, a contradiction.

ν

lS

µ

a

b

Figure 4.16
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Chapter 5

Bounded Path Duality

In this chapter we will use bounded path duality to improve on Theorem 4.3.2 by showing
the poset retraction problem for a series-parallel poset satisfying the 4-crown condition has
complexity NL.

Theorem 5.0.1. If P is a series-parallel poset satisfying the 4-crown condition, then
exp(P) has bounded path duality; hence both Ret(P) and PoRet(P) are in NL.

We will prove this theorem by showing that exp(P) has an obstruction set with bounded
pathwidth. This means we will be working in the extended language containing the order
relation symbol, which in this chapter we denote by R as well as a unary relation Ua for
each element a ∈ P. We will denote this extended language as L.

5.1 The Obstruction Structures

The relational structures that will act as our obstructions are divided into three types.
The first type is designed to weed out all structures that will violate the order relation of
P should there exist a homomorphism into exp(P).

Definition 5.1.1. Let a, b ∈ P and 1 ≤ n ∈ N. Define O(n,a,b) to be the L-structure with
universe

{a1, . . . , an}

and relations:
RO(n,a,b) := {(a1, a2), . . . , (an−1, an)},
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U
O(n,a,b)
a := {a1},

U
O(n,a,b)

b := {an},

and
U
O(n,a,b)
c := ∅

for all c 6= a, b in P .

As we can see from the definition the homomorphic image of a1 in a partially order set
will be below that of an. So if a, b ∈ P are such that a 6≤ b then we certainly cannot have
a homomorphism from O(n,a,b) to exp(P).

a1[a]

a2

a3

an−1

an[b]

Figure 5.1: O(n,a,b)

Although we have drawn O(n,a,b) here similar to a Hasse diagram, RO(n,a,b) is far from
an actual order relation. However this illustration is helpful in visualizing the image of
O(n,a,b) under a homomorphism into a poset.

The remaining two types of obstructions corresponds to the two conditions in Theorem
4.3.14. They are designed to ensure both conditions are satisfied so that we can apply the
theorem to get a homomorphism whenever none of the obstructions maps into exp(P).

Definition 5.1.2. Let A,B ⊆ P and let fA, fB be mappings from A,B to N respectively.
We define X(A,B,fA,fB) to be the L-structure with universe

{x, xai , xbj : a ∈ A, b ∈ B, 1 ≤ i ≤ fA(a), 1 ≤ j ≤ fB(b)},
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and relations:

RX(A,B,fA,fB) := {(xa1, x), (x, xb1) : a ∈ A, b ∈ B}∪
{(xai+1, x

a
i ), (x

b
j, x

b
j+1) : 1 ≤ i < fA(a), 1 ≤ j < fB(b)},

U
X(A,B,fA,fB)
a := {xafA(a)}

for all a ∈ A,

U
X(A,B,fA,fB)

b := {xbfB(b)}

for all b ∈ B, and

U
X(A,B,fA,fB)
c := ∅

for all c 6∈ A ∪B in P .

We’ll call x the midpoint of X(A,B,fA,fB) for reference.

Definition 5.1.3. Let n ∈ N, a, b ∈ P , ~p ∈ ({+,−} ∪ P )n−1 and ~l ∈ {0, 1}n. Let X be
a collection of n L-structures of the form X(A,B,fA,fB) for some A,B ⊆ P . Let pi and lj
denote the i-th and j-th coordinate of ~p and ~l respectively. Label the members of X as
X1, . . . ,Xn. We define Y(n,a,b,~p,~l,X) to be the L-structure with universe

n⋃·
i=1

Xi,

where each Xi is the universe of Xi. Let xi denote the midpoint of Xi for 1 ≤ i ≤ n and
relations:

RY(n,a,b,~p,~l,X) :=
n⋃
i=1

RXi ∪ {(xi, xi+1) : for every pi = +}

∪ {(xi+1, xi) : for every pi = −},

U
Y
(n,a,b,~p,~l,X)

a :=
n⋃
i=1

UXi
a ∪ {x1} ∪ {xi, xi+1 : for every pi = a},

U
Y
(n,a,b,~p,~l,X)

b :=
n⋃
i=1

UXi
b ∪ {xn} ∪ {xi, xi+1 : for every pi = b},
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and

U
Y
(n,a,b,~p,~l,X)

c :=
n⋃
i=1

UXi
c ∪ {xi, xi+1 : for every pi = c}

for all other c in P .

x

xb1

xb2

xbfB(b)−1

xbfB(b)[b]

xa1
xa2

xbfA(a)−1

xafA(a)[a]

Figure 5.2: X(A,B,fA,fB)

x1 x2

xn

Figure 5.3: Y(n,a,b,~p,~l,X)

As stated before for O(n,a,b), the relation R in X(A,B,fA,fB) and Y(n,a,b,~p,~l,X) are not order
relations. The figures above merely illustrate what the homomorphic images of these
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structure would look like inside a poset. The structure of Y(n,a,b,~p,~l,X) depends heavily on
~p so it might not look exactly as what is drawn.

5.2 The Connected Case

First we will prove that exp(P) has bounded path duality when P is connected.

Lemma 5.2.1. Let P be a connected series-parallel poset satisfying the 4-crown condition.
Then exp(P) has bounded path duality.

Proof. Let O1 := {O(n,a,b) : 1 ≤ n ∈ N, a 6≤ b}.

Let O2 := {X(L,U,fL,fU ) : L,U antichains in P such that P[L,U ] = ∅; fL ∈ NL, fU ∈ NU}.
Note that in the definition of X(A,B,fA,fB) A and B can be empty subsets, in which case the
corresponding xai ’s and xbj’s don’t exist. If A and B are both empty then it is simply the
one element structure with all relations empty. Similarly L and U in the definition of O2

can also be empty.

Let A1, . . . , An and B1, . . . , Bn denote the subsets used to denote X1, . . . ,Xn respec-
tively. We’ll say (n, a, b, ~p,~l,X) is primed when the following conditions are satisfied:

• There exists a PX[A0,B0] that is nonempty and disconnected;

• for every 1 ≤ j ≤ n we have P[Aj ,Bj ] ⊆ PX[A0,B0] when lj = 1 or Aj = Bj = ∅ when
lj = 0;

• for every 1 ≤ j < k ≤ n such that lj and lk are consecutive non-zero coordinates of ~l
the set of {pj, pj+1 . . . , pk−1} contains only one of + or −;

• a, b belongs to different connected components of PX[A0,B0]

Let O3 := {Y(n,a,b,~p,~l,X) : (n, a, b, ~p,~l,X) is primed}.

Define O :=
3⋃
i=1

Oi and we will now show that it is the obstruction set for exp(P). First

we will prove that there does not exist a homomorphism from any L-structure in O to
exp(P). This in turn shows that Q ∈ CSP(exp(P)) implies ∀O ∈ O there does not exist a
homomorphism from O to Q.

44



Let O(n,a,b) be as defined above for some a 6≤ b in P. Suppose there exists a homomor-
phism φ from O(n,a,b) to exp(P). Then we would have a = φ(a1) ≤ φ(a2) ≤ · · · ≤ φ(an) = b.
A clear contradiction.

Let X(L,U,fL,fU ) be as defined above for some L,U antichains in P such that P[L,U ] = ∅,
fL ∈ NL, and fU ∈ NU . If there exists a homomorphism φ from X(L,U,fL,fU ) to exp(P) then
φ(x) (the midpoint) must be an element from P[L,U ], establishing a contradiction.

Let Y(n,a,b,~p,~l,X) be as defined above where (n, a, b, ~p,~l,X) is primed. Suppose there exists

a homomorphism φ from Y(n,a,b,~p,~l,X) to exp(P). For each xi ∈ Y(n,a,b,~p,~l,X) (the midpoints)

where li = 1, φ(xi) must be an element of P[Ai,Bi] ⊆ PX[A0,B0]. Since (n, a, b, ~p,~l,X) is primed

every 1 ≤ j < k ≤ n such that lj and lk are consecutive non-zero coordinates of ~l contains
only one of + or −. First assume it only contains +. This means that for every j ≤ i < k
either xi < xi+1 or they share the same color. Then the images of these xi’s under φ will
form a directed path between φ(xj) and φ(xk). Thus φ(xj) and φ(xk) must be comparable.
Pick out all the xi’s such that li = 1. Their images under φ will then form a path from a
to b in PX[A0,B0], a contradiction.

Now for the other direction we assume there exists an L-structure Q such that there
does not exists a homomorphism from any element of O to Q. We will construct a series
of homomorphisms starting from Q that eventually ends with a substructure of exp(P) as
the final image.

For the first L-structure we will add a new element χa to Q for each a ∈ P . Let
Q1 := Q ∪· {χa : a ∈ P}. Then define Q1 with universe Q1 and relations

UQ1
a := UQa ∪ {χa}

for each a ∈ P and
RQ1 := RQ.

Clearly Q is an L-substructure of Q1 so φ1 defined to be the inclusion map of Q in Q1

will be a homomorphism. The important thing to note here is that UQ1
a for every a ∈ P is

nonempty.

The second L-structure we will look at is such that its interpretation of R is a quasi-
order. Define the color of an element α in an L-structure to be a when α belongs to the
unary relation labeled by Ua for some a ∈ P . If α does not belong to any such relation
then we say that α is uncolored. Suppose there exists an element α of Q colored with both
a and b for some a 6= b ∈ P . Since we cannot have both a ≤ b and b ≤ a in P there must
be a homomorphism from one of O(1,a,b) or O(1,b,a) into Q. This shows every element of
Q1 have at most one color. Partition Q1 according to the color of the elements, with each
uncolored element in its own partition. Let Q2 = {[χ] : χ ∈ Q} be the set of partitions
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constructed this way. Q2 will be the universe of the quasi-order Q2 we are constructing.
Define UQ2

a := {[χ] : χ is colored by a}. It should be clear that each UQ2
a will contain

exactly one element. Define RQ2 to be the reflexive and transitive closure of set

{([α], [β]) : there exists α′ ∈ [α], β′ ∈ [β] such that (α′, β′) ∈ RQ1 = RQ}.

Then Q2 will be a quasi-order and φ2 : Q1 7→ Q2 defined by φ2(χ) = [χ] for χ ∈ Q2 will be
a homomorphism.

Before we move on it is helpful to note that if a 6≤ b in P then ([α], [β]) 6∈ RQ2 for a
colored [α] and b colored [β]. Suppose for contradiction that this is not the case. Let a, b, [α]
and [β] be as mentioned above except that ([α], [β]) ∈ RQ2 . By definition of RQ2 there
exists [χ1], [χ2], . . . , [χn] such that [χ1] = [α], [χn] = [β], and χ′i ∈ [χi] and χ′i+1 ∈ [χi+1]
such that (χ′i, χ

′
i+1) ∈ RQ for 1 ≤ i < n. Let a1, a2, . . . , am be the colors that appear in

the coloring of the [χi]’s in order, where a1 = a and am = b. Because of a 6≤ b we cannot
have a1 ≤ a2 ≤ · · · ≤ am in P. Pick j0 to be small index such that aj0 6≤ aj0+1. Let i0 and
i1 denote the index of the corresponding [χi]’s such that aj0 is the color of [χi0 ] and aj0+1

is the color of [χi1 ]. This implies for all i0 < i < i1 [χi] is uncolored. By the definition
of the partition on Q1 each of these [χi]’s contains only one element. So there exists a
homomorphism from O((i1−i0),aj0 ,aj0+1) to Q, a contradiction.

Next we construct a partial order. Let Θ be the equivalence relation on Q2 defined as
follows:

Θ := {([α], [β]) : ([α], [β]), ([β], [α]) ∈ RQ2}.
We see that Θ is reflexive and transitive because RQ2 is reflexive and transitive. Θ is also
symmetric by definition. Let Q3 be the set of Θ-equivalence classes on Q2. We’ll define an
L-structure Q3 with Q3 as its universe.

UQ3
a := {[[χ]] : [χ] is colored by a}.

We will check that there does not exist two elements of Q2 with different colors belonging
to the same Θ-equivalence class (excluding uncolored elements). Suppose there exists
[α], [β] ∈ Q2 colored by a, b ∈ P respectively. Assuming a 6= b it must be true that either
a 6≤ b or b 6≤ a in P. Without loss of generality we will assume that a 6≤ b. From what
we have proven above this implies that ([α], [β]) 6∈ RQ2 , so ([α], [β]) 6∈ Θ. This shows that
each element of Q3 belongs to at most one of the UQ3

a ’s. Since each UQ2
a contains exactly

one element each UQ3
a contains exactly one element as well. Let

RQ3 := {([[α]], [[β]]) : ([α], [β]) ∈ RQ2}.

RQ3 inherits reflexivity and transitivity from RQ2 . If ([[α]], [[β]]) and ([[β]], [[α]]) are both
in RQ3 then ([α], [β]) and ([β], [α]) are both in RQ2 . By definition [α] and [β] belongs to
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the same Θ-equivalence class. It is clear now that Q3 is a partial order and φ3 : Q2 7→ Q3

defined by φ3([χ]) := [[χ]] is a homomorphism.

Before the next step we want to prove for RQ3 the same thing we have proven for
RQ2 . Let a 6≤ b in P and suppose we have a colored [[α]] and b colored [[β]] such that
([[α]], [[β]]) ∈ RQ3 . By definition there exists [α′] and [β′] such that [[α′]] = [[α]], [[β′]] =
[[β]], and ([α′], [β′]) ∈ RQ2 . There must also exists [α′′] and [β′′] in Q2 colored a and
b respectively such that [[α′′]] = [[α]] and [[β′′]] = [[β]]. Since [α′] and [α′′] belongs to
the same Θ-equivalence class we have ([α′′], [α′]) ∈ RQ2 , likewise ([β′], [β′′]) ∈ RQ2 . By
transitivity we have ([α′′], [β′′]) ∈ RQ2 , which would imply the contradiction of a ≤ b in P.
Therefore if a 6≤ b in P then ([[α]], [[β]]) 6∈ RQ3 for a colored [[α]] and b colored [[β]].

We see that the colored elements of Q3 form a one-to-one correspondence with the
elements from P. Let us refer to them according to their colors by denoting xa to be the
element of Q3 colored by a ∈ P . Next we add to Q3 the order relation that exists on P.
Define Q4 with the same universe and Ua relations as Q3 and let

RQ4 := RQ3 ∪ {(xa, xb) : (a, b) ∈≤P}.

Also letQ∗ denote the poset (Q4, R
Q4). From what we have shown for RQ3 we get (a, b) ∈≤P

if and only if (xa, xb) ∈ RQ4 . So P is isomorphic to the subposet of Q∗ induced by the
colored elements of Q4. If there exists a retraction of Q∗ onto this subposet then there
would exists a homomorphism from Q4 to exp(P).

For this final step we will invoke Theorem 4.3.14. For the sake of convenience we will
view P as a subposet of Q∗. All that remains is to check that condition (1) and (2) are
satisfied.

Let (L,U) be a pair of antichains in P such that P[L,U ]is empty. Suppose there exists
x ∈ Q∗[L,U ]. Let L′ be the set of maximal elements of P that is below x in Q∗. Likewise
let U ′ be the set of minimal elements in P above x. Note that for every element of L there
exists one in L′ that is above it. Similarly there is an element of U ′ below any element of
U . Thus P[L′,U ′] ⊆ P[L,U ] = ∅ and x ∈ Q∗[L′,U ′]. So without loss of generality let us assume
L = L′ and U = U ′.

Note that x must be an uncolored element of Q4. Since x is uncolored it is a Θ-
equivalence class of uncolored elements from Q2. The elements of Q2 as we recall are
partitions of Q1 by colors. Being uncolored implies they each contain a single uncolored
element of Q1. The uncolored elements of Q1 are all contained in Q. So we can fix an
uncolored χ0 ∈ Q such that [[χ0]] = x. Furthermore because these uncolored elements form
partitions of Q1 that are in the same Θ-class, any two χ1 and χ2 such that [[χ1]] = [[χ2]] = x
will be connected by a directed path in RQ. Enumerate the elements of L and U as
{a1, . . . , an} and {b1, . . . , bm} respectively. For every 1 ≤ i ≤ n since (ai, x) ∈ RQ4 and
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x is uncolored (ai, x) ∈ RQ3 as well. So there exists αi ∈ Q1 such that [[αi]] = ai and
([αi], [χi]) ∈ RQ2 for some [[χi]] = x. So there exists a directed path in

{([α], [β]) : there exists α′ ∈ [α], β′ ∈ [β] such that (α′, β′) ∈ RQ1 = RQ}.

from [αi] to [χi]. Every element on this path except for [αi] must be uncolored, otherwise it
would contradict the maximality of the elements in L. Since these elements are uncolored
they must be partitions of one element each. So there exists a directed path in RQ1 = RQ

from an element in [αi] to χi. Without loss of generality let’s assume that element is αi.
Then there exists a directed path in RQ from αi to χ0. Let fL be the function in NL that
maps each ai to the length of such a directed path. Define fU in NU similarly for bi’s in U .
Then there exists a homomorphism from X(L,U,fL,fU ) into Q, a contradiction. This shows
that condition (1) is satisfied.

Now for condition (2) assume for some non-empty and non-connected subset of P of
the form P[L′,U ′], there exists a pair of elements p1, p2 in different connected components
of P[L′,U ′], such that there exists a path in Q∗ that connects p1 and p2 such that every
element in this path belongs to some Q∗[L,U ] with P[L,U ] ⊆ P[L′,U ′]. Let’s assume p1 and p2

are picked so that such a path has the minimal length (compared to other paths satisfying
the same properties).

Since p1 and p2 are elements of P they are colored (by themselves). Suppose there exists
another colored element in this path p3. By assumption p3 belongs to some Q∗[L,U ] with
P[L,U ] ⊆ P[L′,U ′]. But since p3 is colored it is an element of P as well. So p3 ∈ P[L,U ] ⊆ P[L′,U ′].
If p3 belongs to the same connected component as p1 then we can remove all the elements of
the aforementioned path between p1 and p2 up to but not including p3 to get a shorter path
satisfying the same properties. Similarly if p3 belongs to the same connected component as
p2 we get a shorter path as well. Both of these cases are contradictions to the minimality
of the path. The only option left is if p3 belongs to a connected component of its own. In
that case we can still chop off either the front or the back of the p1 to p2 path to get a
shorter one. This shows p1 and p2 are the only colored elements of this path. Also note
that this path is of length at least three since Otherwise they would be comparable in Q∗.
Comparability of elements of P in Q∗ implies comparability in P (since P is a subposet of
Q∗).

So we see that in every consecutive pair of this path there is a uncolored element. Let
x and y be a pair of consecutive elements on this path. Pick χ and ψ so that x = [[χ]] and
y = [[ψ]]. We know one of (x, y) or (y, x) is in RQ4 . Since one of them is uncolored we have,
as argued previously, a directed path between χ and ψ in Q such that the connections of
this path comes from either RQ or (UQa )2 for some a ∈ P (each consecutive pair α, β on
this path are either RQ related or shares the same color).
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Now back to the path between p1 and p2. For each element on this path pick a χ such
that it equals [[χ]]. From what we just discovered we know there exists a directed path
between each such χ. Connected all of these χ’s with these directed paths and number
them accordingly by χi for 1 ≤ i ≤ n where n is the final length of this amalgamated path.
Define ~l ∈ {0, 1}n so that li equals 1 when χi corresponds to an element on the original
path and 0 otherwise. Define ~p ∈ ({+,−} ∪ P )n−1 so that pi = + when we have (χi, χi+1)
on the path, pi = − when it’s (χi+1, χi) and pi = a ∈ P when χi and χi+1 are both of color
a (when χi and χi+1 are comparable as well as sharing the same color either designation
for pi works).

When li = 1 [[χi]] belongs to some Q∗[L,U ] with P[L,U ] ⊆ P[L′,U ′]. Thus as shown in
the previous case we can replace such an L and U with a set of maximal elements below
and minimal elements above. Then with these new L and U there exists a homomorphism
from X(L,U,fL,fU ) into Q where the midpoint will be mapped to χi. Let Ai’s and Bi’s
denote the newly replaced L and U sets in order of the path. Ai and Bi will be the empty
set when li = 0. Let X be the collection of X(Ai,Bi,fAi

,fBi
). It should be clear that if

we let PX[A0,B0] = P[L′,U ′] then (n, p1, p2, ~p,~l,X) is primed. We just mentioned there is a
homomorphism from each X(Ai,Bi,fAi

,fBi
) into Q. By its construction we then also have a

homomorphism from Y(n,a,b,~p,~l,X) into Q by mapping each xi of Y(n,a,b,~p,~l,X) onto χi. This

is a contradiction, so condition (2) is also satisfied.

So O is an obstruction set for exp(P). We will now check that every element in O1, O2

and O3 all have pathwidth at most (2, 3).

Let O(n,a,b) be as defined above for some n ∈ N and a, b ∈ P . Then the sequence of
subsets

{a1, a2}, {a2, a3}, . . . {an−1, an}

is an (1, 2) path-decomposition of O(n,a,b).

Let X(A,B,fA,fB) be as defined above for some A,B ∈ P , fA ∈ NA, and fB ∈ NB. Then
the sequence of subsets

{x, xa1, xa2}, {x, xa2, xa3}, . . . , {x, xafA(a)−1, x
a
fA(a)}

for each a ∈ A and

{x, xb1, xb2}, {x, xb2, xb3}, . . . , {x, xbfB(b)−1, x
b
fB(b)}

for each b ∈ B is a (2, 3) path-decomposition of X(A,B,fA,fB).

Let Y(n,a,b,~p,~l,X) be as defined above for some n ∈ N, a, b ∈ P , ~p ∈ {+,−}n−1, ~l ∈ Nn−1

and X = {X1, . . . ,Xn} some collection of L-structures of the form X(A,B,fA,fB). From
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above we know that for each Xi ∈ X there exists a (2, 3) path-decomposition. Denote this
decomposition as DXi

. Then the sequence of subsets

DX1 , {x1, x2}, DX2 , {x2, x3}, . . . , {xn−1, xn}, DXn

is a (2, 3) path-decomposition of Y(n,a,b,X).

5.3 The Disconnected Case

For the disconnected case we can generalize the result to all posets. But first we need to
define one more type of obstruction structure.

Definition 5.3.1. Let a, b ∈ P , 1 ≤ n ∈ N and ~p ∈ {+,−}n. Denote the i-th coordinate
of ~p as pi. Define C(a,b,n,~p) to be the L-structure with universe

{x0, . . . , xn}

and relations:

RC(a,b,n,~p) := {(xi−1, xi) : pi = +} ∪ {(xi, xi−1) : pi = −},

U
C(a,b,n,~p)
a := {x0},

U
C(a,b,n,~p)

b := {x1},

and
U
C(a,b,n,~p)
c := ∅

for every other c ∈ P .

Lemma 5.3.2. Let P be a finite poset such that for each of its connected components Q,
exp(Q) has bounded path duality. Then exp(P) has bounded path duality.

Proof. There is a bit of logistics we have to work out before starting the proof of the the-
orem. Let P1, . . . ,Pn be the distinct subposets of P induced by its connected components.
It is assumed that each exp(Pi) has bounded path duality, which means that it has an ob-
struction set of finite pathwidth. However this is all working under the language of exp(Pi)
which does not contain as many constant relations (the Ua’s) as L but is a subset of it.
What we can do is to expand the language of the obstruction sets to L by adding in the
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missing relations so that each structure of each obstruction set becomes an L-structure.
All of the newly added relations will be empty.

Let O1 be the union of obstruction sets of all of the exp(Pi)’s. This is not yet enough
to get a obstruction set for the whole of exp(P).

Let O2 be the set of all C(a,b,n,~p) such that a and b are disconnected in P. We claim that
O := O1 ∪O2 will be an obstruction set for exp(P).

First we will confirm that none of the L-structures in O has a homomorphism to exp(P).

Let O ∈ O1. Suppose there exists a homomorphism h from O into exp(P). We know
that O is the expansion of an obstruction set for some exp(Pi). Thus the colored elements
of O are all colored by elements of Pi. So the image of each colored element of O under
h must be in Pi (as a subset of P). For every non-colored element of O if it is connected
via RO to some colored element then their image under h must still be connected via RP.
Since Pi is a full connected component these non-colored elements are also mapped into Pi
by h. Pick an arbitrary element a of Pi. We can modify h so that all elements of O that
are not connected (via RO) to a colored element is mapped to a. It is easy to see that this
newly modified h is still a homomorphism. Furthermore this new h maps O in its entirety
into Pi. This translates to a homomorphism from O to exp(Pi) in the original language of
O. A clear contradiction since O was assumed to be in the obstruction set of exp(Pi).

Now pick a C(a,b,n,~p) ∈ O2 such that a and b are disconnected in P. Suppose there exists
a homomorphism h from C(a,b,n,~p) to exp(P). From construction we know that x0 and xn
are RC(a,b,n,~p) connected so their images under h must also be RP connected. However since

x0 belongs to U
C(a,b,n,~p)
a and xn to U

C(a,b,n,~p)

b this becomes a contradiction.

Now for the reverse direction we will show that for all L-structure Q if there does not
exists any homomorphism from elements of O to Q then there exists one for Q into exp(P).

We start by assuming there does not exists any homomorphism from elements of O into
Q. Let Q1, . . . , Qm be the RQ connected components of Q. Let a and b be a pair of RP

disconnected elements in P . Suppose we have some a and b colored element belonging to the
same Qj. By definition these exists a sequence of elements x0, . . . , xn connected by RQ in Q
where x0 is a colored and xn is b colored. Pick ~p ∈ {+,−}n such that pi = + if (xi−1, xi) ∈
RQ and pi = − if (xi, xi−1) ∈ RQ. Then there exists a homomorphism from C(a,b,n,~p) ∈ O2

to Q, a contradiction. Thus we see that each Qj contains only colored elements from one
corresponding Pi. We will construct a map from each Qj to its corresponding Pi.

I say ‘construct’ but a suitable map already exists. Each Qj can be thought of as a
substructure of Q (there are no functions to consider, only relations). Since there does
not exist a homomorphism from any of the structures of O into Q there certainly does not
exist one from the obstruction set of exp(Pi) into Qj. Thus by definition of obstruction
sets there exists a homomorphism from Qj as a structure into exp(Pi).
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Collect these maps and define one more from Q to P by applying each homomorphism
onto its corresponding connected component Qj. This final map will be our desired homo-
morphism.

This shows that O is indeed an obstruction set for exp(P). The structures in O2 are
all “paths” of (1, 2) pathwidth. O1 is a finite collection of structures each with a bounded
pathwidth. Therefore O also has finite pathwidth.

If a series-parallel poset P does not satisfy the 4-crown condition, then by Theorem
4.3.2 it will not have a Taylor polymorphism. Hence P does not admit Freese-McKenzie
SD-∨ polymorphisms by Corollary 2.6.6. Thus by Proposition 3.5.9, exp(P) does not have
bounded path duality.

This observation combined with what we have just proven gives the following result.

Theorem 5.3.3. Let P be a finite series-parallel poset. P satisfies the 4-crown condition
if and only if exp(P) has bounded path duality.

Proposition 3.5.9 shows that for a finite series-parallel poset P if exp(P) has bounded
path duality then it will admit Freese-McKenzie SD-∨ operations. Now we can show the
converse as well.

Theorem 5.3.4. Let P be a finite series-parallel poset. The following are equivalent:

1. exp(P) has bounded path duality;

2. P admits Freese-McKenzie SD-∨ operations;

3. P admits a Taylor polymorphism.

Proof. This follows directly from Proposition 3.5.9, Corollary 2.6.6, Theorem 4.3.2 and
Theorem 5.3.3.
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Chapter 6

Majority and NU

6.1 Zádori’s Result

Series-parallel posets admitting an NU polymorphism were first classified by Zádori in his
1993 paper.

Theorem 6.1.1. [26, Theorem 2.3] [2, Corollary 5.1] If a series-parallel poset P retracts
onto one of 1 + 2 + 2,2 + 2 + 1 and 1 + 2 + 2 + 2 + 1, then P does not admit an NU
polymorphism.

Theorem 6.1.2. [26, Corollary 3.3] Every series parallel poset P that does not retract
onto 2 + 2,1 + 2 + 2,2 + 2 + 1 and 1 + 2 + 2 + 2 + 1 admits a 5-ary NU polymorphism.

If a poset retracts onto 2+2 then it must not admit an NU polymorphism. If it did then
certainly 2 + 2 would have one as well. But 2 + 2 does not satisfy the 4-crown condition,
so by Theorem 4.3.2 it would not even have a Taylor polymorphism. Thus by Corollary
2.6.6, 2 + 2 does not admit an NU polymorphism. With this we can deduce the following
result by Zádori.

Theorem 6.1.3. Let P be a series-parallel poset. The following are equivalent:

1. P admits an NU polymorphism.
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2. P admits a 5-ary NU operation.

3. P does not retract onto 2 + 2,1 + 2 + 2,2 + 2 + 1 or 1 + 2 + 2 + 2 + 1.

Zádori used this result to show that if the clone of a finite bounded series-parallel poset
is finitely generated then it contains an NU operation. This was a question asked of general
posets mentioned in [8], [20] and [22].

Recently an alternative classification was discovered by Larose and Willard which is the
inspiration behind our classification of the 4-crown condition back in chapter 4. They’ve
shown that similar to the fact that all series-parallel posets can be constructed from linear
sum and disjoint union, {+C ,4 ,

4

, ♦ , ./ ,∪· } produces all series-parallel posets with an
NU polymorphism. We will show both of these classifications are equivalent to a third
regarding the supremum and infimum of pairs of elements. We will then present an alter-
native proof of the existence of 5-ary NU polymorphisms on these posets.

6.2 Partial Lattices

Definition 6.2.1. Let P be a poset. We will say P is a partial lattice if for every pair of
connected elements a, b ∈ P at least one of sup(a, b) and inf(a, b) exists.

It’s clear from the definition that series-parallel partial lattices satisfy the 4-crown
condition.

Lemma 6.2.2. Let P be a series-parallel partial lattice. If r is a retraction of P then the
subposet Q of P induced by the image of r will also be a series-parallel partial lattice.

Proof. This can be proved by repeating the same arguments from the second and third
case of Lemma 4.3.3.

We will show partial lattices are equivalent to Larose and Willard’s classification in the
next two lemmas.

Lemma 6.2.3. Let P1 and P2 be series-parallel partial lattices. Then P1 ∪· P2, P1 +C P2,
P14P2, P1

4P2, P1 ♦P2 and P1 ./P2(when the requirements of the operations are met)
are still series-parallel partial lattices.

54



Proof. By Lemma 4.3.11 we know that the output of these operations will still be series-
parallel.

Let a, b ∈ P1 +C P2. If a, b both belong to the same Pi then either sup(a, b) or inf(a, b)
would exist. If they belong to different Pi’s then they are comparable so sup(a, b) and
inf(a, b) exists anyways.

The case for ./ is proven in a similar manner.

Let a, b ∈ P14P2. If a, b both belong to the same P′i then sup(a, b) and inf(a, b) exists as
in the previous case. Otherwise the unique element of 1 satisfy the conditions of sup(a, b).

The case for

4

and ♦ is omitted due to similarity to the previous case.

The case for ∪· is trivial.

Lemma 6.2.4. A poset P is a series-parallel partial lattice if and only if it can be con-
structed from 1 using only +C ,∪· ,4 ,

4

, ♦ and ./ finitely many times.

Proof. Since 1 satisfies the conditions of being a partial lattice, by the previous lemma any
poset that can be constructed from 1 using only +C ,4 ,

4

, ♦ and ./ finitely many times
will be a series-parallel poset partial lattice.

Assume for contradiction that P is the minimal (size-wise) series-parallel partial lattice
that cannot be constructed as described in the statement of the lemma. If P is disconnected
then one of its connected components would contradict the minimality of P. So P must be
connected. Since |P| > 1, we can pick P1 and P2 series parallel posets such that P = P1+P2.
If P1 and P2 are both connected partial lattices then P = P1 +C P2. Since P1 and P2 have
size strictly less than P by the minimality of P we have a contradiction. For the remainder
of this argument, we assume that at least one of P1 and P2 is not a connected partial
lattice.

Assume first that P1 is not a connected partial lattice. So either P1 is not a partial
lattice, or P1 is disconnected. Pick a and b from different connected components of P1 if
it is disconnected. Pick a and b that violate the definition of partial lattices if it is not
a partial lattice. We know that inf(a, b) cannot exist in P since it would be contained in
P1. So in both cases there exist a and b in P1 such that sup(a, b) exists in P but not in P1

(since P is connected).

The element sup(a, b) must be an element of P2. Since every element of P2 is above
both a and b in P they must be above sup(a, b) as well. This shows that P2 is connected
and possesses a unique minimal element. Let P′1 := P1 + 1; then P = P′1 ./P2. For every
a, b ∈ P ′1 their supremum in P (if it exists) has to be below the maximal element of P′1.
Thus P′1 is a partial lattice. If P′1 has size strictly less than P, i.e. |P2| > 1, there would
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be a contradiction. A similar proof shows that if P2 is not a connected partial lattice and
|P1| > 1 then we get a contradiction. This shows that if P = P1 + P2 with |P1| > 1 and
|P2| > 1 then we get a contradiction.

Next, assume that P = P1 + 1 and P1 is not a connected partial lattice. Suppose P1

is connected. Since |P1| > 1, there exist P3 and P4 such that P1 = P3 + P4. If P3 6= 1
then define P′1 := P3 and P′2 := P4 + 1. We would then have P = P′1 + P′2 where both
P′1 and P′2 have size greater than one. We can then use our previous argument and reach
a contradiction. So it must be that P3 = 1, so P = 1 + P4 + 1. Now we have two sub-
cases based on the connectivity of P4. If P4 is connected then |P4| > 1 (since otherwise
P = 1 + 1 + 1), so we can split it as we did P1 into P4 = P5 + P6. Define P′1 := 1 + P5 and
P′2 := P6 + 1 and we would reach a contradiction as before.

If P4 is disconnected then denote the connected components of P4 by Q1, . . . ,Qn. We
get (1 +Q1 + 1)♦ . . . ♦ (1 +Qn + 1) = P.

We will show that each 1+Qi+1 for i ∈ {1, . . . , n} is a partial lattice. Fix an arbitrary
i0 ∈ {1, . . . , n}. Let a, b ∈ Qi0 . We know that either inf(a, b) or sup(a, b) exists in P (since
P is connected). If inf(a, b) exists then it must be the minimal element of P or contained
in P1. It must also be connected to a and b so if it is not the minimal element then it
is contained in Qi0 . If it is equal to the unique minimum then it exists in 1 + Qi0 + 1
as its minimal element. If sup(a, b) exists then as we just argued it must be contained in
1 + Qi0 + 1 as well. For any pair of elements in 1 + Qi0 + 1 where one of the pair is the
unique maximum or minimum then clearly their supremum or infimum exists. Therefore
we see that 1 +Qi0 + 1 is a partial lattice.

This would result in a contradiction as (1 + Q1 + 1)♦ . . . ♦ (1 + Qn + 1) = P where
each (1 + Q1 + 1) has size strictly smaller than P. Thus we see that no matter what, P1

being connected leads to a contradiction.

So P1 must be disconnected. Let Q1, . . . ,Qn be the subposets of P1 induced by its
connected components. Then (Q1 + 1)4 . . .4 (Qn + 1) = P.

Each Qi + 1 for i ∈ {1, . . . , n} is a partial lattice by arguments similar to what we have
just done. For each 1 ≤ i ≤ n, Qi + 1 has size strictly less than P. The minimality of P
would once again cause a contradiction.

The proof of when P2 is not being a connected partial lattice is similar to what we have
just done.
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6.3 Larose and Willard’s Result

Since their result was never published we will show here the proof that Larose and Willard’s
classification is equivalent to Zádori’s.

Lemma 6.3.1. [16, Lemma 0.1] Let P, Q, R and S be posets.

1. Let n ≥ 1. If P has at least n connected components then it retracts onto n (the n
element antichain).

2. If P retracts onto R and Q retracts onto S then P+Q retracts onto R+ S.

3. If P is connected and series-parallel with at least two minimal (maximal) elements
then it retracts onto 2 + 1 (1 + 2).

4. If P is connected and series-parallel with no pinch points then it retracts onto
2 + 2 + . . . + 2 where there are at least two summands in the sum.

Proof. (1): Pick n connected components of P and map each one onto a different element
of n. Map the rest onto a single element.

(2): Let r1 be the retraction from P to R and r2 the one from Q to S. Define the
retraction from P+Q to R+ S as

r(x) :=

{
r1(x) if x ∈ P
r2(x) if x ∈ Q.

(3): Let a and b be two distinct minimal (maximal) elements of P. By Lemma 4.2.5
they have a common upper (lower bound) c. Define the retraction from P to 2 + 1 (1 + 2)
as

r(x) :=

{
x if x = a or b

c else.

(4): We will prove this by induction on the size of P. The smallest connected series-
parallel poset with no pinch point is the 4-crown. In that case the proof is trivial. Suppose
all posets smaller than P satisfy (4).

Since P is connected and series-parallel it is a linear sum of smaller series-parallel posets
P1 and P2. Let i ∈ {1, 2} be arbitrary. Suppose Pi is connected. There does not exists a
pinch point in Pi since P doesn’t have one. By induction hypothesis Pi must retract onto
2 + 2 + · · ·+ 2 where there are at least 2 summands in the sum. If Pi is disconnected then
we can apply (1) to get a retraction onto 2. Now apply (2) to finish the proof.
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Definition 6.3.2. [16] Let G denote the set of series-parallel posets that do not retract
onto a subposet of the form 2 + 2,1 + 2 + 2,2 + 2 + 1 and 1 + 2 + 2 + 2 + 1.

Lemma 6.3.3. [16, Lemma 0.2] Let P ∈ G be connected and of size at least 4. There
exist connected series-parallel posets P1 and P2 each with at least 2 elements such that
one of the following holds:

1. P = P1 +C P2, or

2. P = P14P2, or

3. P = P1

4P2, or

4. P = P1 ♦P2, or

5. P = P1 ./P2.

Proof. If P contains no pinch points at all then by part (4) of Lemma 6.3.1 it retracts onto
some 2 + 2 + · · · + 2 where there are at least 2 summands in the sum. Thus by part (1)
and (2) of the same lemma P retracts onto one of 2 + 2,1 + 2 + 2 or 2 + 2 + 1. This would
cause a contradiction so P must have a pinch point.

If P contains a pinch point that is not a maximal or minimal element then (5) holds.

If P contains only pinch points that are maximal or minimal elements then P = Q+ 1
or 1 +Q for some series-parallel Q with at least three elements (it is a subposet of P so it
is N -free). If Q is disconnected then (2) or (3) holds. If not then Q = Q1 +Q2 where Q1

and Q2 are also series-parallel. Without loss of generality let’s assume P = Q1 + Q2 + 1.
By the first line of this paragraph Q2 must have at least two minimal elements and does
not contain a pinch point. By part (3) of Lemma 6.3.1 Q2 + 1 has a retraction onto 2 + 1.
This means Q1 has to be connected or P will have a retraction onto 2 + 2 + 1. Thus either
(1) holds or Q1 = 1. In the latter case P = 1 +Q2 + 1. We know that Q2 has size at least
two. If it is disconnected then (4) holds. If it is not then we can break it up into sums
again. In which case P = (1 +Q3) +C (Q4 + 1) and so (1) holds.

Lemma 6.3.4. [16, Lemma 0.3] Let P1 and P2 be two connected series-parallel posets.
Let ? be an operation from the set {4 ,

4

, ♦ , ./ ∪· }. P1 and P2 are both in G if and only
if P1 ? P2 is in G (when the requirements of the operations are satisfied).
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Proof. Note that from definition the ♦ operation requires the two posets to have size
strictly larger than 1. In the case of the rest of the operations when one of the Pi’s is the
singleton 1 their output will be the other Pi. Thus we only need to prove the lemma for
when P1 and P2 are of size strictly larger than one.

( =⇒ ) First we look at the case where ? = 4 . Suppose P14P2 retracts onto a
subposet R that is isomorphic to one of 2+2,1+2+2,2+2+1 and 1+2+2+2+1. The
image of the unique maximum of P14P2 should be a unique maximum as well. Thus R is
isomorphic to either 2+2+1 or 1+2+2+2+1. Let m and m′ denote the two elements of
R belonging to its minimal antichain. Without loss of generality we can assume m belongs
to P1. Then every element of R comparable to m also belongs to P1. Since m and m′ share
a common upper bound that is not the unique maximum of P14P2 m

′ must also be an
element of P1. Therefore R is contained in P1 in its entirety. The retraction of P14P2 into
R when restricted to P1 will be a retraction of P1 into R. This is a contradiction since we
assumed P1 ∈ G. Thus P14P2 ∈ G. Using similar arguments we can also show this for
when ? =

4

and ♦ .

Now assume ? = ./ . Let m be the element of P1 ./P2 that belongs to both Pi’s. Suppose
there exists a retraction of P1 ./P2 onto a subposet R defined as above. Due to the choices
of what R can be, the image of m under this retraction will be either the unique maximum
or minimum of R. This means R is contained in one of the Pi’s in its entirety. So we can
finish by using similar arguments as before.

Finally assume ? = ∪· . Suppose P1 ∪· P2 can be retracted onto a subposet R as before.
Then since R is a connected subposet it must be contained entirely in one of the Pi’s. The
rest of the proof follows as usual.

(⇐= ) When ? = ∪· we can construct a retraction from P1∪· P2 into each Pi by mapping
all of the other one onto a single point. For all other cases there exists a retraction from
P1?P2 onto each Pi’s if we map every element not belonging to said Pi onto the same shared
element. Then if either of the Pi’s admits a retraction onto one of 2+2,1+2+2,2+2+1
and 1 + 2 + 2 + 2 + 1 by composing the two retractions we get a contradiction.

Theorem 6.3.5. A finite poset P is in G if and only if it is a series-parallel partial lattice.

Proof. (⇐= ) It should be clear that 2 + 2,1 + 2 + 2,2 + 2 + 1 and 1 + 2 + 2 + 2 + 1 are
not partial lattices. By Lemma 6.2.2 there cannot be a retraction of P onto any of them.

( =⇒ ) Let P be the smallest (size-wise) P in G that is not a partial lattice. Since all
series-parallel posets of size 3 or less are partial lattices we can assume P has size greater
than or equal to 4.
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If P is not connected then the subposets induced by its connected components will
also be in G by Lemma 6.3.4. Due to the minimality of P these subposets will be partial
lattices. Thus by Lemma 6.2.4 P is also a partial lattice. A contradiction. Thus P must
be connected.

Applying Lemma 6.3.3 we find ourselves in one of five cases. In all but case (1) we
can apply Lemma 6.3.4 to show the two smaller posets are in G. Then by induction and
Lemma 6.2.4 we are done.

Recall that in Lemma 6.3.3 case (1) occurs when all pinch points of P, should they
exist, are maximal or minimal elements. In this scenario we have P = P1 + P2 such that
P1 and P2 have at least 2 elements. Furthermore by the observation on the pinch points of
P P1 must have at least two maximal elements. Likewise P2 possess at least two minimal
elements. So by Lemma 6.3.1 part (3) P1 and P2 has a retraction onto 1 + 2 and 2 + 1
respectively.

If P1 does not have any pinch points at all then by Lemma 6.3.1 it has a retraction
onto one of 2 + 2,1 + 2 + 2 or 2 + 2 + 1. In the first and third case P has a retraction onto
2 + 2 + 1. In the second case since P2 has a retraction onto 2 + 1 it gives a retraction of
P onto 1 + 2 + 2 + 2 + 1. So all three cases leads to contradictions.

If P1 has a pinch point then it has to be the unique minimal element. So if it retracts
onto one of 2+2,1+2+2,2+2+1 and 1+2+2+2+1 only 1+2+2 and 1+2+2+2+1
makes sense. The first case is a contradiction as mentioned above. In the second case P
has a retraction onto 1 + 2 + 2 + 2 + 1 which is a contradiction.

Thus P1 must be in G. The same thing can be proved for P2 as well.

Since P1 and P2 are have size strictly less than P by minimality they are partial lattices.
So by Lemma 6.2.4 P is also a partial lattice.

6.4 5-ary NU polymorphism

Finally we will present our alternative method of finding 5-ary NU polymorphisms on these
posets.

Definition 6.4.1. Let S be a set. For a given n-tuple (x1, x2, . . . , xn) ∈ Sn we will say
that it is diagonal if x1 = x2 = · · · = xn. Denote the set of all diagonal n-tuples in Sn by
∆(Sn).

We will say that (x1, x2, . . . , xn) is NU (near unanimous) if all but at most one of
x1, x2, . . . , xn are equal to each other. We’ll call the ((n − 1) times) repeating element
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of an NU n-tuple the majority element and the element that is singled out will be the
renegade element (should it exist).

Theorem 6.4.2. Let P be a connected series-parallel partial lattice. Then P admits a
5-ary NU operation.

Proof. Recall from the definition of polymorphisms we will need to show there exists a
homomorphism from P5 to P satisfying the conditions of being an NU operation. We will
do this by constructing an intermediate poset Q and homomorphisms from P5 to Q then
from Q to P.

For each a ∈ P let Ua be the subset of P 5 that contains all NU 5-tuples that have a
as their majority element. Let Va be the convex closure of Ua (it contains all 5-tuples that
are bounded above and below by elements of Ua). We will show that the Va’s are pairwise
disjoint. Let a, b be distinct elements in P . Suppose we have some (x1, x2, x3, x4, x5)
contained in both Va and Vb. Then there exists some NU 5-tuple with a as their majority
element above and below (x1, x2, x3, x4, x5). Each of these NU 5-tuples will have at least
four coordinates equal to a. So at least three of the xi’s will be bounded above and below
by a. Thus three coordinates of (x1, x2, x3, x4, x5) equal to a. But the same can be said
for b. Since there aren’t enough coordinates to fit in three a’s and three b’s this leads to a
contradiction. So the Va’s are indeed mutually exclusive.

Now let’s figure out what exactly is in each Va. From above we know that every 5-tuple
in it will be bounded above and below by some NU 5-tuple with majority a. This of course
leads to three coordinates of every element in Va to be a. Looking closer at the NU tuples
that bound a particular element we consider their renegade elements. Suppose the upper
and lower bound NU tuples have renegade elements in different coordinates. Then the
renegade of the upper bound NU tuple must be above a. Similarly the renegade of the
lower bound will be below a. So in this case the 5-tuples that are bounded by these NU
tuples have all coordinates comparable to a with at most one coordinate above a and at
most one coordinate below a. This is also true when one of the bounds is the a majority
diagonal element. Now consider the case when both bounds have renegades in the same
coordinate. In this case the bounded 5-tuple will also be an NU tuple. Thus we can
conclude that within Va we either have NU 5-tuples with majority a or 5-tuples with one
coordinate above a, one below with the rest equaling a. This also means that the only way
for a 5-tuple in Va to have two coordinates the same is to have at least one more coordinate
matching them.

Let Θ be the equivalence relation on P5 with the Va’s as classes; those tuples that do
not belong to any Va will be in a class of their own. When a Θ-equivalence class equals to
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some Va we will say it is an NU equivalence class. Let Q := P 5/Θ and define ≤Q to be the
transitive closure of

{([(a1, . . . , a5)]Θ, [(b1, . . . , b5)]Θ) : ((a1, . . . , a5), (b1, . . . , b5)) ∈≤P5}.

The map φ1 which sends every element of P to its corresponding Θ-equivalence class in Q
is easily a relational structure homomorphism by inspection. What we need to make sure
is that Q is still a poset with an induced subposet isomorphic to P.

For convenience’s sake we’ll denote 5-tuples (a1, . . . , a5) by ~a. ≤Q is reflexive and

transitive by definition. Suppose we have [~a] ≤Q [~b] and [~b] ≤Q [~a] in Q for some ~a 6= ~b.

Then there exist ~x1, ~y1, . . . , ~xn, ~yn in P5 such that [~a] = [ ~x1], [~b] = [ ~xi0 ] for some 1 < i0 ≤ n,
[~xi] = [~yi], and ~yi ≤P

5
~xi+1 modulo n for each 1 ≤ i ≤ n. Suppose there exists some

1 < i 6= i0 such that [~xi] is not an NU equivalence class. Then [~xi] = {~xi} so ~yi−1 ≤P
5
~xi =

~yi ≤P
5

~xi+1 modulo n. This allows us to construct a shorter sequence by removing these
equivalence classes. So without loss of generality let’s assume the [~xi]’s with i 6= 1, i0 are
NU equivalence classes.

Suppose [~a] and [~b] are also NU classes. Without loss of generality we can assume every
~xi and ~yi are also NU tuples since every element of an NU class is bounded above and
below by some NU tuple. Let zi ∈ P be the majority element of each ~xi and ~yi (since
they belong to the same Θ class they must have the same majority). ~yi ≤P

5
~xi+1 implies

zi ≤P zi+1 modulo n for each 1 ≤ i ≤ n. So we get z1 = z2 = · · · = zn. This means that
[~a] = [~b].

Suppose [~a] is an NU class but [~b] is not. Then [~b] is bounded above and below by

NU classes in this sequence. As argued above we can remove [~b] from this sequence to get
a new one satisfying all of the conditions and such that every class in it is an NU class.
We can still apply the argument from the previous paragraph to show that all of the NU
classes in this sequence are actually the same. Recall that we constructed these NU classes
to be convex. Since ~b is bounded above and below by elements of the same NU class [~b]
has to equal said class, which is a contradiction.

Now suppose both [~a] and [~b] are not NU classes. If n > 2 then we can repeat the above

argument once again to remove both [~a] and [~b] from the sequence to get a new sequence.

This will imply ~a and ~b are bounded above and below by the elements of the same NU
class, contradiction. If n = 2 then we have ~a ≤P5 ~b ≤P5 ~a, another contradiction.

The antisymmetry of ≤Q is verified.

Claim: Let a, x1, . . . , x5 ∈ P.

1. [(a, a, a, a, a)] ≤Q [(x1, . . . , x5)] if and only if at least four of the xi’s are above a.
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2. [(a, a, a, a, a)] ≥Q [(x1, . . . , x5)] if and only if at least four of the xi’s are below a.

Proof: We will only show the proof for (1) as the proof for (2) is similar.

Suppose we have [(a, a, a, a, a)] ≤Q [(x1, . . . , x5)]. Then we know there exists some
(a1, . . . , a5) ∈ [(a, a, a, a, a)] such that (a1, . . . , a5) ≤P5 (x1, . . . , x5). As we have noted
before, at least four coordinates in (a1, . . . , a5) are greater than or equal to a. Thus at
least four of the xi’s are above a.

Conversely suppose that at least four of the xi’s are above a. With out loss of generality
let’s assume they are x1, . . . , x4. Then (a, a, a, a, x5) ≤P5 (x1, . . . , x5). By definition of ≤Q
we have that [(a, a, a, a, a)] ≤Q [(x1, . . . , x5)]. �

Let P′ denote the subposet of Q induced by the NU classes of diagonal elements. By
the claim we get that [(a, a, a, a, a)] ≤P′ [(b, b, b, b, b)] if and only if a ≤P b. Thus P′ is
isomorphic P and we will view them as the same poset.

The map φ that sends each 5-tuple of P5 to its respective Θ-equivalence class is clearly
a homomorphism.

Since we have P as a subposet of Q we may apply Theorem 4.3.14 to get a retraction,
which is a homomorphism, if condition (1) and (2) (of the theorem) are satisfied.

Let L and U be anti-chains in P′ such that Q[L,U ] is nonempty. We’ll need to show that
P′[L,U ] is nonempty as well . If there exists some [~x] ∈ Q[L,U ] ∩ P′ then P′[L,U ] is nonempty.

So let [~x] ∈ Q[L,U ]\P′. Then [~x] = {~x} and let us write ~x = (x1, x2, x3, x4, x5). Define L′ to
be the set of all maximal elements below [~x] in P′ and U ′ the set of all minimal elements
above. Then [~x] ∈ Q[L′,U ′] ⊆ Q[L,U ] and P′[L′,U ′] ⊆ P′[L,U ]. Instead of equivalence classes of
NU 5-tuples let us refer to the elements of L′ and U ′ by their respective majority elements.
For all a ∈ L′, if a ≤Q [(x1, x2, x3, x4, x5)] then by the claim above we get that a is below
at least four out of five xi’s as elements of P. We’ll show there are at least three xi’s
which sits above all (majority) elements of L′. Pick a1, a2 ∈ L′ should they exist that are
incomparable to two different xi’s (if all a ∈ L′ are incomparable to the same xi then they
are all below the other four). Without loss of generality let’s assume a1 is incomparable to
x2 and a2 is incomparable to x1. This means that x3 is above both a1 and a2. This would
form two potential N -subposets in P

a1

x3

a2

x2 x1

a1

x3

a2

Figure 6.1
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unless x1 and x2 are both below x3. However, x4 and x5 are above a1 and a2 by the same
argument. Following the same steps we get x1 and x2 below x4 and x5 as well.

a1

x4

a2

x1 x2

x3 x5

Figure 6.2

This shows that every a ∈ L′ can only be incomparable to one of x1 or x2 and is below all
of x3, x4 and x5. Similarly the same thing can be shown for U ′. There are at least three
xi’s which sit below every b ∈ U ′. Putting these two statements together we get at least
one xi who is below all of U ′ and above all of L′. This means that [(xi, xi, xi, xi, xi)] ∈
P′[L′,U ′] ⊆ P′[L,U ]. Therefore P′[L,U ] is nonempty if Q[L,U ] is nonempty.

Next suppose we are given L,U antichains in P = P′ such that P[L,U ] is nonempty.
Since P is a connected partial lattice, given a pair of elements p1 and p2 in P[L,U ] they will
either have a supremum or an infimum. Without loss of generality let’s assume the former
exists. Then by definition sup(p1, p2) is above all of L and below all of U . Thus sup(p1, p2)

{ } U

sup(p1, p2)

p1 p2

{ } L

Figure 6.3

connects p1 and p2 with a path in P[L,U ]. Similarly inf(p1, p2) connects p1 and p2 with a
path in P[L,U ] if it exists. This shows that P[L,U ] is connected. Therefore condition (2) of
theorem 4.3.14 is vacuously satisfied.

Now that we have a homomorphism from P5 to Q and from Q to P, we can compose
them to get a homomorphism from P5 to P. The initial map φ from P5 to Q ensures that
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every NU 5-tuple will be mapped to its majority element in P. The retraction from Q to
P does not move any element of P. Therefore the composition is a 5-ary NU operation, as
advertised.

Theorem 6.4.3. Let P be a poset that is the disjoint union of P1 and P2, where both Pi’s
admit an n-ary NU operation. Then P admits an n-ary NU operation as well.

Proof. For i ∈ {1, 2} denote µi to be the n-ary NU operation on Pi. Fix an element a ∈ P
and define a function µ : Pn 7→ P as follows:

µ(x1, . . . , xn) =


µi(x1, . . . , xn) if all of the xj’s are in the same Pi,

xj0 if exactly n− 1 many xj’s are in the
same Pi and xj0 is the left-most
entry in Pi,

a otherwise.

It should be clear from its definition that µ is an n-ary NU operation. We just have to
check that it is order preserving. Since elements from P1 and P2 are mutually disconnected,
any pair of n-tuples (x1, . . . , xn) ≤ (y1, . . . , yn) must have the same coordinates belonging
to the same Pi. Then it follows from the definition that µ is order preserving.

Combining the previous two theorems we get the following result by Zádori.

Theorem 6.4.4. [26, Corollary 3.3] Let P be a series-parallel partial lattice. Then P
admits a 5-ary NU operation.
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Chapter 7

SD-join(∨) operations

In chapter 5 we saw that all series-parallel posets satisfying the 4-crown condition, when
expanded with constants, have bounded path duality. From results in chapter 3 we know
this means that each of these posets admits a series of Freese-McKenzie operations. We
will use the classification of the 4-crown condition in chapter 4 to produce a recipe for
constructing these Freese-McKenzie operations.

7.1 One-step Chain

When studying Freese-McKenzie operations on structures we discovered they closely re-
semble a sequence of retractions on the third power of that structure.

Definition 7.1.1. Let R be a relational structure and R′ a substructure of R. We will
call a finite sequence of retractions r0, r1, . . . , rn on R to be a one-step chain from R to
R′ if it satisfies the following conditions for all 0 ≤ i < n:

1. ri+1(R) ⊆ ri(R);

2. |{x ∈ ri(R) : ri+1(x) 6= x}| ≤ 1;

3. r0 = idR and rn(R) = R′.

Definition 7.1.2. Let S be a set. We will say that an operation f : S3 7→ S3 is NU-
preserving if for all f(x, y, z) = (x′, y′, z′), we have:
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• x = y =⇒ x′ = y′,

• x = z =⇒ x′ = z′ and

• y = z =⇒ y′ = z′.

Lemma 7.1.3. Let S be a set. If f and g are NU-preserving maps on S3 then f ◦ g is
also NU-preserving.

As we will soon see having an NU-preserving one-step chain from the third power of a
relational structure to the set of constant triples implies the existence of a set of Freese-
McKenzie operations. The converse implication is not yet known, so it would seem this is
a stronger condition.

7.2 One-step Chain on Substructure

The following lemmas help in the construction of one-step chains by allowing us to do so
in segments.

Lemma 7.2.1. Let R be a relational structure and R′ ⊇ R′′ two of its substructures.
Suppose there exists a one-step chain from R to R′ and another from R′ to R′′. Then
there exists a one-step chain from R to R′′.

Proof. Let r0, . . . , rn be the one-step chain from R to R′ and s0, . . . , sm be the one-step
chain from R′ to R′′. Define rn+j := sj ◦ rn for 0 ≤ j ≤ m. Note that we are not redefining
rn here since s0 is the identity map on R′, which happens to be the image of rn. These
are clearly retractions on R so we’ll check that they form a one-step chain from R to R′′.
Condition (3) is satisfied by construction. For i < n condition (1) is satisfied from our
assumption. Let i = n+ j for some 0 ≤ j < m then

ri(R) = sj(rn(R))

= sj(R′)
⊇ sj+1(R′)
= sj+1(rn(R))

= ri+1(R).
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For condition (2) we only need to check it for i = n + j for some 0 ≤ j < m as well. Let
a ∈ {x ∈ ri(R) : ri+1(x) 6= x}. Then

ri(a) = a 6= ri+1(a)

=⇒ sj(rn(a)) = a 6= sj+1(rn(a)).

However a ∈ ri(R) ⊆ rn(R) since n ≤ i. So we get rn(a) = a and

sj(a) = a 6= sj+1(a)

=⇒ a ∈ {x ∈ sj(R) : sj+1(x) 6= x}.

Thus |{x ∈ ri(R) : ri+1(x) 6= x}| ≤ |{x ∈ sj(R) : sj+1(x) 6= x}| ≤ 1 as required.

Lemma 7.2.2. Let R be a relational structure and R′ ⊇ R′′ two of its substructures.
Suppose there exists a one-step chain from R to R′′. Let r be a retraction on R whose
image is R′ such that for all x ∈ R either r(x) = x or r(x) ∈ R′′. Then there exists a
one-step chain from R′ to R′′.

Proof. Let r0, . . . , rn be the one-step chain from R to R′′. We claim that s0, . . . , sn where
si := (r ◦ ri)|R′ for 0 ≤ i ≤ n is a one-step chain from R′ to R′′.

It should be clear from construction that the si’s are homomorphisms from R′ to R′.
Let x ∈ R′. Then

s2
i (x) = si(si(x)) = r(ri(r(ri(x)))).

We know that either r(ri(x)) = ri(x) or r(ri(x)) ∈ R′′. Both of these outcomes implies
r(ri(x)) ∈ ri(R). So s2

i (x) = r(ri(r(ri(x)))) = r(r(ri(x)) = r(ri(x)) = si(x). Therefore the
si’s are retractions.

Condition (3) is satisfied by construction.

Fix an i ∈ {0, . . . , n − 1}. Let y ∈ si+1(R′) and choose x ∈ R′ where si+1(x) = y.
From our assumption r either fixes ri+1(x) or sends it into R′′. Once again this means
that y = si+1(x) = r(ri+1(x)) ∈ ri+1(R) ⊆ ri(R). Since y ∈ ri(R) we have ri(y) = y and
si(y) = r(ri(y)) = r(y) = y. This combined with y ∈ R′ gives us y ∈ si(R′). Therefore
si+1(R′) ⊆ si(R′) which satisfies condition (1).

Fix i as in the previous paragraph. Let a ∈ {x ∈ si(R′) : si+1(x) 6= x}. Then

si(a) = a 6= si+1(a)

=⇒ r(ri(a)) 6= r(ri+1(a))

=⇒ ri(a) 6= ri+1(a).
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Since r either fixes the output of ri or sends it into R′′ ⊆ ri(R) we have

si(R′) = r(ri(R′)) ⊆ ri(R′) ⊆ ri(R).

Thus a ∈ {x ∈ ri(R) : ri+1(x) 6= x} and

|{x ∈ si(R′) : si+1(x) 6= x}| ≤ |{x ∈ ri(R) : ri+1(x) 6= x}| ≤ 1.

Condition (2) is also satisfied.

7.3 SD-join Operations

As promised we will show here that having an NU-preserving one-step chain implies the
existence of Freese-McKenzie operations for general relational structures.

Lemma 7.3.1. Let R be a relational structure. If there exists an NU-preserving one-step
chain from R3 to (the substructure induced by) ∆(R3) (the set of diagonal elements in
R3), then R admits a sequence of Freese-McKenzie SD-∨ operations.

Proof. Denote the first and third projection mapping on R3 as φ1 and φ3. Let r0, . . . , rn
be the one-step chain described in the statement of the lemma. Define retractions si :=
ri ◦ ri−1 ◦ · · · ◦ r0 for 0 ≤ i ≤ n. We’ll check that s0, . . . , sn is also an NU-preserving
one-step chain from R3 to ∆(R3). This amounts to proving si(R3) = ri(R3) (composition
of NU-preserving maps are NU-preserving), which we will do by induction. Starting with
s0 = r0 as the base case we assume it to be true for some i ∈ {0, . . . , n − 1}. si+1(R3) ⊆
ri+1(R3) is clear by definition. Let ~x ∈ ri+1(R3) (we’ll use~ to denote 3-tuples). Then
~x ∈ ri(R3) = si(R3) so there exists ~y ∈ R3 such that si(~y) = ~x. Therefore ~x = ri+1(~x) =
ri+1(si(~y)) = si+1(~y) ∈ si+1(R3) and we get ri+1(R3) ⊆ si+1(R3).

The Freese-McKenzie SD-∨ operations t1, . . . , t2n will be defined as ti := φ1 ◦ si and
tn+i := φ3 ◦sn−i for 0 ≤ i ≤ n. Note that we are not defining tn twice since sn(R3) contains
only diagonal elements. Being the composition of two homomorphisms each tj will be a
homomorphism from R3 to R. We just have to confirm that the sequence satisfies the
Freese-McKenzie conditions.

Since s0 is the identity mapping on R3, t0 = φ1 and t2n = φ3. This proves the first
requirement of Freese-McKenzie SD-∨ operations.

Fix an i ∈ {0, . . . , n− 1}. We’ll first show that si and si+1 satisfy two of the following
conditions:
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1. si(x, x, y) = si+1(x, x, y) for all x, y ∈ R;

2. si(x, y, y) = si+1(x, y, y) for all x, y ∈ R;

3. si(x, y, x) = si+1(x, y, x) for all x, y ∈ R.

From construction we have si+1 = ri+1 ◦ si. Recall that ri+1 fixes all but at most one
3-tuple from ri(R3) = si(R3). Let (a, b, c) be the unique 3-tuple not fixed by ri+1 in si(R3)
should it exist. If it doesn’t then si+1 = si and we are done. Then for all (x, y, z) ∈ R3

that is not an si preimage of (a, b, c)

si(x, y, z) = ri+1(si(x, y, z)) = si+1(x, y, z).

If a 3-tuple of the form (u, u, v) is in the si preimage of (a, b, c) then since si is NU-
preserving we must have a = b. If another 3-tuple of the form (s, t, t) or (t, s, t) is also in
the si preimage of (a, b, c) then we would have a = b = c. This would mean that (a, b, c)
is a diagonal element, which is a contradiction since it would be in the image of ri+1 and
therefore fixed by it. Therefore conditions (2) and (3) from above are satisfied. Similarly
if we began with a 3-tuple of the form (v, u, u) or (u, v, u) belonging to the si preimage of
(a, b, c) then conditions (1) and (3) or (1) and (2) would be satisfied.

Since each pair of consecutive si’s satisfies two out of the three conditions, composing
them both with either φ1 or φ3 shows that each pair of consecutive tj’s for 0 ≤ j < 2n
satisfies two out of three conditions also. This proves the second requirement of Freese-
McKenzie SD-∨ operations.

7.4 Constructing One-step Chains

Finally we begin the lengthy process of constructing NU-preserving one-step chains on the
third power of series-parallel posets satisfying the 4-crown condition. The entire procedure
is divided up into pieces to allow for easier digestion.

Recall that all series-parallel posets satisfying the 4-crown condition can be constructed
from 1 using the operations +R,4 ,

4

, ♦ , ./ and ∪· (Proposition 4.3.12). Our proof will be
inductive along such a construction of the poset. For every induction step we will assume
our poset P is constructed from P1 and P2 using one of the aforementioned operations where
P1 and P2 each possess the desired one-step chain. Using the existing two NU-preserving
one-step chains we will then create one for P.

To start we will first construct one-step chains for P3
1 ? P3

2 where ? ∈ {+,∪· ,4 ,

4

, ./ }.
Note that P3

1 ? P3
2 is almost never the entirety of (P1 ? P2)3 but a subposet of it. It is
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still important as we will be using Lemma 7.2.1 to connect one-step chains from different
subposets of P3. The ♦ operation is left out here as its case is not as straightforward and
requires a different approach.

Lemma 7.4.1. If P1 and P2 are series-parallel posets satisfying the 4-crown condition
such that there exists an NU-preserving one-step chain from P3

k to ∆(P 3
k ) for each k ∈

{1, 2}, then there exists an NU-preserving one-step chain from P3
14P3

2 to ∆((P1∪P2)3) =
∆(P 3

1 ) ∪∆(P 3
2 ) (when requirements of 4 are satisfied).

Proof. Denote each one-step chain from P3
k to ∆(P 3

k ) as rk1 , . . . , r
k
nk

. We have noted after the
definition of 4 that we’ll view the universe of P3

14P3
2 as P 3

1 ∪ P 3
2 . Since the requirements

of 4 are assumed to be satisfied each P3
k has a unique maximum. This implies each Pk

has a unique maximum as well and its corresponding diagonal 3-tuple is the maximal of
P3
k. Thus the unique maximum of P3

14P3
2 is the diagonal 3-tuple that is the only 3-tuple

in both P3
k’s.

For i ∈ {0, . . . , n1} define ri : P3
14P3

2 → P3
14P3

2 as follows:

ri(x, y, z) =

{
r1
i (x, y, z) if (x, y, z) ∈ P 3

1

(x, y, z) else.

For j ∈ {0, . . . , n2} define rn+j : P3
14P3

2 → P3
14P3

2 as follows:

rn1+j(x, y, z) =

{
r2
j (x, y, z) if (x, y, z) ∈ P 3

2

rn1(x, y, z) else.

Note that rn1 is not being defined twice since r2
0 is the identity map on P3

2.

We will first check that these maps are order preserving. Let (a, b, c) < (u, v, w) be two
3-tuples in P 3

1 ∪ P 3
2 . Since they are comparable they must both belong to some P 3

k . If it
is P 3

1 then
ri(a, b, c) = r1

i (a, b, c) ≤ r1
i (u, v, w) = ri(u, v, w).

Similarly if (a, b, c) and (u, v, w) both belong to P 3
2 then

ri(a, b, c) = (a, b, c) < (u, v, w) = ri(u, v, w).

For the very last equality of the above equation it is possible for (u, v, w) to belong to P 3
2

as well but this would only imply (u, v, w) is the unique maximal diagonal element which
is fixed by every r1

i . Thus each ri is order preserving. Likewise so are the rn1+j’s.
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Now we have to show that these maps are retractions. Let (a, b, c) ∈ P 3
1 . Then since

each r1
i is a retraction on P3

i we have

ri ◦ ri(a, b, c) = ri ◦ r1
i (a, b, c) = r1

i ◦ r1
i (a, b, c) = r1

i (a, b, c) = ri(a, b, c).

If (a, b, c) ∈ P 3
2 \P 3

1 then

ri ◦ ri(a, b, c) = ri ◦ (a, b, c) = (a, b, c).

Thus each ri is a retraction. Likewise so are the rn1+j’s.

These maps are NU-preserving since every r1
i and r2

j is NU-preserving. It should be clear
from construction that for each i ∈ {0, . . . , n} and j ∈ {0, . . . ,m} we have ri(P3

14P3
2) =

r1
i (P3

1) ∪ P3
2 and rn1+j(P3

14P3
2) = rn1(P3

1) ∪ r2
j (P3

2). This makes it easy to see that all
together r1, . . . , rn1 , . . . , rn1+n2 form a one-step chain from P3

14P3
2 to ∆(P 3

1 ) ∪ ∆(P 3
2 ) as

required.

Lemma 7.4.2. If P1 and P2 are series-parallel posets satisfying the 4-crown condition
such that there exists an NU-preserving one-step chain from P3

k to ∆(P 3
k ) for each k ∈

{1, 2}, then there exists an NU-preserving one-step chain from P3
1

4P3
2 to ∆((P1∪P2)3) =

∆(P 3
1 ) ∪∆(P 3

2 ) (when requirements of

4

are satisfied).

Proof. The proof of this lemma is similar to that of Lemma 7.4.1.

Lemma 7.4.3. If P1 and P2 are series-parallel posets satisfying the 4-crown condition
such that there exists an NU-preserving one-step chain from P3

k to ∆(P 3
k ) for each k ∈

{1, 2}, then there exists an NU-preserving one-step chain from P3
1 ./P3

2 to ∆((P1∪P2)3) =
∆(P 3

1 ) ∪∆(P 3
2 ) (when requirements of ./ are satisfied).

Proof. Denote each one-step chain from P3
k to ∆(P 3

k ) as rk1 , . . . , r
k
nk

. We will view the
universe of P3

1 ./P3
2 as P 3

1 ∪ P 3
2 as usual. Denote the unique diagonal 3-tuple that belongs

to both P3
1 and P3

2 as (µ, µ, µ) (Revisit the first paragraph of the proof of Lemma 7.4.1 to
see the existence and uniqueness of such a 3-tuple).

For i ∈ {0, . . . , n1} define ri : P3
1 ./P3

2 → P3
1 ./P3

2 as follows:

ri(x, y, z) =

{
r1
i (x, y, z) if (x, y, z) ∈ P 3

1

(x, y, z) else.
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For j ∈ {0, . . . , n2} define rn+j : P3
1 ./P3

2 → P3
1 ./P3

2 as follows:

rn1+j(x, y, z) =

{
r2
j (x, y, z) if (x, y, z) ∈ P 3

2

rn1(x, y, z) else.

Note that rn1 is not being defined twice since r2
0 is the identity map on P3

2. This construction
is similar to what we have done in Lemma 7.4.1. As such, the proof that this is an
NU-preserving one step chain from P3

1 ./P3
2 to ∆(P 3

1 ) ∪ ∆(P 3
2 ) is also similar. The only

noteworthy part unique to this case is to show order preservation when we have (a, b, c) <
(u, v, w) where (a, b, c) and (u, v, w) belong to different P 3

k ’s. In this case (a, b, c) ∈ P 3
1 and

(u, v, w) ∈ P 3
2 \P 3

1 . Since every r1
i is a retraction on P3

1 and every 3-tuple in P3
1 is below

every 3-tuple from P3
2 we get

ri(a, b, c) = r1
i (a, b, c) ≤ (u, v, w) = ri(u, v, w).

Thus each ri is a order preserving. Then using similar arguments we can show each rn1+j

is also order preserving.

Lemma 7.4.4. If P1 and P2 are series-parallel posets satisfying the 4-crown condition
such that there exists an NU-preserving one-step chain from P3

k to ∆(P 3
k ) for each k ∈

{1, 2}, then there exists an NU-preserving one-step chain from P3
1 +P3

2 to ∆((P1∪P2)3) =
∆(P 3

1 ) ∪∆(P 3
2 ).

Proof. The proof of this lemma is similar to that of Lemma 7.4.3.

Lemma 7.4.5. If P1, . . . , Pn are series-parallel posets satisfying the 4-crown condition
such that there exists an NU-preserving one-step chain from P3

k to ∆(P 3
k ) for each k ∈

{1, . . . , n}, then there exists an NU-preserving one-step chain from P3
1∪· · · ·∪· P3

n to ∆((P1∪
· · · ∪ Pn)3) = ∆(P 3

1 ) ∪ · · · ∪∆(P 3
n).

Proof. Denote each one-step chain from P3
k to ∆(P 3

k ) as rk1 , . . . , r
k
nk

. Let n0 = 0.

For each k ∈ {0, . . . , n} and each ik ∈ {0, . . . , nk} define:

r(k−1∑
l=0

nl+ik

)(x, y, z) =


rkik(x, y, z) if (x, y, z) ∈ P 3

k

r(k−1∑
l=0

nl

)(x, y, z) else.

It is fairly easy to check that this is the desired one-step chain.
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Now we turn to the task of constructing retractions from (P1 ? P2)3 to P3
1 ? P3

2. Due to
the lemmas we have proven above, for all cases except where ? = ♦ we only need to build
an NU-preserving one-step chain to a proper subset of P3

1 ? P3
2 then apply Lemma 7.2.2.

We want to construct our retractions so that each consecutive one differs from the
prior at exactly one input. The map in the following definition allows us to do just that.
Furthermore if we are careful in selecting the new output we can easily ensure the new
map is also a retraction.

Definition 7.4.6. Let S be a set and a, b ∈ S. Define the map Ia→b : S 7→ S as follows:

Ia→b(x) =

{
b if x = a

x otherwise.

Lemma 7.4.7. [10, Lemma 6.5] Let P be a poset and r : P 7→ P a retraction on P.
Suppose there exist a, b ∈ r(P) such that b is either the unique upper cover or the unique
lower cover of a in r(P). Then r′ := Ia→b ◦ r is a retraction on P. Moreover we have
r′(P) ⊆ r(P) and |{x ∈ r(R) : r′(x) 6= x}| ≤ 1.

Proof. We’ll assume b is the unique upper cover of a since the proof for the other case is
analogous.

First we’ll check that r′ is a homomorphism (order preserving map). Let x < y be
elements of P. If neither r(x) nor r(y) equals a then r′(x) = r(x) ≤ r(y) = r′(x) since
r is a homomorphism. If r(x) = a then since r(x) ≤ r(y) we have b ≤ r(y) as well. So
r′(x) = b ≤ r(y) = r′(y). If r(y) = a then

r′(x) = r(x) ≤ r(y) = a ≤ b = r′(y).

Thus r′ is a homomorphism.

r′(P) ⊆ r(P) and |{x ∈ r(R) : r′(x) 6= x}| ≤ 1 should be clear since a, b ∈ r(P).

Let x = r′(y) ∈ r′(P) ⊆ r(P). By definition of r′, x 6= a. Thus

r′(x) = Ia→b(r(x)) = r(x) = x.

Thus r′ is a retraction.

Each of the following lemmas will be the proof of one of the inductive steps, ♦ included.
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Lemma 7.4.8. Let P be a series-parallel poset satisfying the 4-crown condition. Suppose
P = P14P2 (or P1

4P2) for some series-parallel posets P1 and P2 satisfying the 4-crown
condition and there exist NU-preserving one-step chains from P3

1 to ∆(P 3
1 ) and P3

2 to
∆(P 3

2 ). Then there exists an NU-preserving one-step chain from P3 to ∆(P 3).

Proof. We will only show the proof for when P = P14P2 as the case for

4

is similar.

Let µ ∈ P denote the unique maximal element that is also the maximum of P1 and P2

as induced subposets. We will construct NU-preserving one-step chains from subposets to
subposets then link them together using Lemma 7.2.1.

Let T1 be the set of 3-tuples in P 3 where exactly two of their coordinates are equal to
µ (e.g. (µ, µ, x) for some x ∈ P , x 6= µ). Let S1 := P 3\T1 and denote S1 as its induced
subposet. Our first one-step chain will be from P3 to S1.

Let r0 be the identity map on P3. Assume there exists r0, . . . , ri an NU-preserving
one-step chain from P3 to ri(P3) ⊇ S1. If ri(P3) = S1 then we have the chain we wanted,
so let’s assume not. Pick (a, b, c) to be maximal in ri(P3)\S1. By definition of S1, (a, b, c)
must have exactly two coordinates equal to µ. Without loss of generality let’s assume
(a, b, c) = (µ, µ, c). We will show that (µ, µ, µ) is the unique upper cover of (µ, µ, c) in ri(P3).
(µ, µ, µ) has µ in all three coordinates so it does not belong to T1. Thus it is in S1 ⊂ ri(P3).
Let (u, v, w) ∈ ri(P3) be such that (u, v, w) > (µ, µ, µ). Since µ is the maximum element of
P we must have u = µ = v. Then by the maximality of (a, b, c) = (µ, µ, c) we have w = µ
also. Then by Lemma 7.4.7

ri+1 := I(µ,µ,c)→(µ,µ,µ) ◦ ri
is a retraction on P3 such that ri+1(P3) ⊆ ri(P3) and |{x ∈ ri(P3) : ri+1(x) 6= x}| ≤
1. I(µ,µ,c)→(µ,µ,µ) is clearly NU-preserving which makes ri+1 NU-preserving also. Thus
r0, . . . , ri+1 is an NU-preserving one-step chain.

Since the image of each newly constructed retraction is strictly decreasing in size, this
process will provide us with the one-step chain we want after finitely many steps.

Now let T2 be the set of 3-tuples in P 3 where exactly one of their coordinates equals
to µ. Let S2 := S1\T2 and denote its induced subposet as S2. We will construct an
NU-preserving one-step chain from S1 to S2.

Let r0 be the identity map on S1. Assume there exists r0, . . . , ri an NU-preserving
one-step chain from S1 to ri(S1) ⊇ S2. If ri(S1) = S2 then the construction is finished so
let’s assume not. Pick a maximal (a, b, c) in ri(S1)\S2. By definition exactly one of a, b or
c equals to µ. Without loss of generality let’s assume it is a. We will show that (µ, µ, µ)
is the unique upper cover of (a, b, c) in ri(S1). From above we know that it belongs to S1.
Since it clearly does not belong to T2 it must be in S2 ⊆ ri(S1). Suppose there exists in
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ri(S1) some (u, v, w) > (a, b, c). Since a = µ we must have u = µ also. By the maximality
of (a, b, c), (u, v, w) must have more than one coordinate equal to µ. The only 3-tuple in
S1 with such description is the diagonal (µ, µ, µ). Thus we see that (µ, µ, µ) is not only
the unique upper cover of (a, b, c) it is also the only element greater than it in ri(S1). By
Lemma 7.4.7

ri+1 := I(µ,b,c)→(µ,µ,µ) ◦ ri
is a retraction on S1 such that ri+1(S1) ⊆ ri(S1) and |{x ∈ ri(S1) : ri+1(x) 6= x}| ≤ 1. Just
as before this retraction is clearly NU-preserving so we have an NU-preserving one-step
chain r0, . . . , ri+1.

Repeating this process as needed, we will get a chain from S1 to S2 within a finite
amount of steps.

The next subposet will be S3 which is induced by S3 := (P 3
1 ∪ P 3

2 ) ∩ S2.

Let r0 be the identity map on S2. Assume there exists r0, . . . , ri an NU-preserving
one-step chain from S2 to ri(S2) ⊇ S3. If ri(S2) = S3 then we are done let’s assume not.
Pick (a, b, c) to be maximal in ri(S2)\S3. This means (a, b, c) 6∈ P 3

1 ∪ P 3
2 so it must have

one coordinate in each of P1\{µ} and P2\{µ}. Without loss of generality let’s assume
a ∈ P1\{µ} and c ∈ P2\{µ}. We will show that (µ, µ, µ) is the unique upper cover of
(a, b, c) in ri(S2). From above we have (µ, µ, µ) ∈ S2, and since it is also in P 3

1 ∪ P 3
2 it

belongs to S3 ⊆ ri(S2) as well. Now suppose there exists in ri(S2) some (u, v, w) > (a, b, c).
By the maximality of (a, b, c) one of the Pi’s must contain all of u, v and w. But a ∈ P1

and c ∈ P2 implies u ∈ P1 and w ∈ P2. So one of u or w must equal µ. However the only
3-tuple in S2 that has µ as any of its coordinates is the diagonal (µ, µ, µ). Thus (µ, µ, µ)
is the unique upper cover of (a, b, c) in ri(S2). By Lemma 7.4.7

ri+1 := I(a,b,c)→(µ,µ,µ) ◦ ri

is a retraction on S2 such that ri+1(S2) ⊆ ri(S2) and |{x ∈ ri(S2) : ri+1(x) 6= x}| ≤ 1. This
is clearly NU-preserving so we get an NU-preserving one-step chain r0, . . . , ri+1.

After finitely many steps we get an NU-preserving one-step chain from S2 to S3.

Lemma 7.4.9. Let P be a series-parallel poset satisfying the 4-crown condition. Suppose
P = P1 ./P2 for some series-parallel posets P1 and P2 satisfying the 4-crown condition
and there exist NU-preserving one-step chains from P3

1 to ∆(P 3
1 ) and P3

2 to ∆(P 3
2 ). Then

there exists an NU-preserving one-step chain from P3 to ∆(P 3).
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Proof. Let µ ∈ P denote the element that is both the unique maximum of P1 as well as
the unique minimum of P2. As always we will construct the one-step chain by going from
subposets to subposets.

Recall that P = P1 ∪ P ′2 where P ′2 = P2 \ {µ}. Let T1 be the set of 3-tuples in P 3

such that exactly one of its coordinates is in P1\{µ} and let S1 := P 3\T1. Denote S1 to be
the subposet of P3 induced by S1. We will first construct an NU-preserving one-step chain
from P3 to S1.

Denote r0 to be the identity map on P3. Recursively let us assume there exists r0, . . . , ri
an NU-preserving one-step chain from P3 to ri(P3) such that S1 ⊆ ri(P3). If S1 = ri(P3)
then we have what we wanted. If not then let (a, b, c) be a maximal 3-tuple of ri(P3)\S1.
By definition it must be true that exactly one of a, b or c is in P1\{µ}. Without loss of
generality let us assume c ∈ P1\{µ}. Suppose there exists (u, v, w) ∈ ri(P3) such that
(a, b, c) < (u, v, w). Since a, b ∈ P ′2 ∪ {µ} then u, v ∈ P ′2 ∪ {µ} as well. By maximality
of (a, b, c), w must be in P ′2 ∪ {µ} or more importantly w ≥ µ. Thus (u, v, w) ≥ (a, b, µ).
Clearly (a, b, µ) is not an element of T1 so it must be in S1 in the image of ri. Combining
with the fact that c 6= µ shows (a, b, µ) is the unique upper cover of (a, b, c) in ri(P3). By
Lemma 7.4.7

ri+1 := I(a,b,c)→(a,b,µ) ◦ ri
is a retraction on P3 such that ri+1(P3) ⊆ ri(P3) and |{x ∈ ri(P3) : ri+1(x) 6= x}| ≤ 1.
Due to assumption on c the only way (a, b, c) can be an NU 3-tuple is if a = b. In this
case ri+1(a, a, c) = (a, a, µ). Since ri+1 behaves the same way on every other input as ri
and ri is NU-preserving, ri+1 must also be NU-preserving. Thus we get an NU-preserving
one-step chain from P3 to ri+1(P3) in r0, . . . , ri+1.

Since series-parallel posets are finite and the image of each new retraction is strictly
decreasing this process will yield a one-step chain from P to S1 in finitely many steps.

For the next step define T2 to be the set of all 3-tuples in S1 such that exactly one of its
coordinates belongs to P2\{µ}. Let S2 := S1\T2 and denote S2 as the induced subposet.
We now construct an NU-preserving one-step chain from S1 to S2.

As before denote r0 to be the identity map on S1 and assume there exists r0, . . . , ri an
NU-preserving one-step chain from S1 to ri(S1) such that S2 ⊆ ri(S1). If ri(S1) = S2 then
we have the one-step chain that we wanted. Assume that is not the case and let (a, b, c) be
a minimal element in ri(S1)\S2. By arguments similar to the previous step we have that
(a, b, µ) is the unique lower cover of (a, b, c) in ri(S1). Thus by Lemma 7.4.7 we get

ri+1 := I(a,b,c)→(a,b,µ) ◦ ri

as a retraction on S1 such that ri+1(S1) ⊆ ri(S1) and |{x ∈ ri(S1) : ri+1(x) 6= x}| ≤ 1.
The fact that ri+1 is NU-preserving can be checked just as before. Thus we get an NU-
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preserving one-step chain from S1 to ri+1(S1). Once again the image of the final retraction
will be S2 after finitely many steps.

Combining the two one-step chains together we get a single chain from P3 to S2 ⊆
P3

1 ./P3
2. Let r denote the final retraction on this chain whose image is exactly S2.

Note that S2 ⊆ P 3
1 ∪ P 3

2 and S2 is an induced subposet of P3
1 ./P3

2. Let (a, b, c) be an
element in P3

1 ./P3
2 but not of S2. Then either (a, b, c) ∈ P3

1 or (a, b, c) ∈ P3
2. In the first

case since (a, b, c) 6∈ S2 it must be in T1 (no element of P1 can be in P2\{µ}). Thus exactly
one of a, b or c is in P1\{µ}. This means the other two must be equal to µ. It doesn’t
matter which is which since it would all imply r(a, b, c) = (µ, µ, µ) ∈ ∆(P 3). The same is
true for the second case. Since r fixes all of S2 we have shown that r either fixes a 3-tuple
in P 3

1 ∪ P 3
2 or maps it into ∆(P 3). Now we can using Lemma 7.4.3 and 7.2.2 to get an

NU-preserving one-step chain from S2 to ∆(P 3).

Lemma 7.4.10. Let P be a series-parallel poset satisfying the 4-crown condition. Suppose
P = P1 ♦P2 for some series-parallel posets P1 and P2 satisfying the 4-crown condition and
there exist NU-preserving one-step chains from P3

1 to ∆(P 3
1 ) and P3

2 to ∆(P 3
2 ). Then there

exists an NU-preserving one-step chain from P3 to ∆(P 3).

Proof. Denote the NU-preserving one-step chains from P3
1 to ∆(P 3

1 ) and P3
2 to ∆(P 3

2 ) as
r1

1, . . . , r
1
n and r2

1, . . . , r
2
m respectively. Denote the unique maximal and minimal elements

of P as µ1 and µ0 respectively. We will be constructing the one-step chain from subsets to
subsets in P3 then connecting them using Lemma 7.2.1.

Let T1 be the set of 3-tuples in P3 that have µ1 as at least one and at most two of its
coordinates. Define S1 := P 3\T1 and let S1 be its induced subposet. We will construct an
NU-preserving one-step chain from P3 to S1.

Let r0 be the identity map on P3. Let’s assume recursively there already exists r0, . . . , ri
an NU-preserving one-step chain from P3 to ri(P3) such that S1 ⊆ ri(P3). If S1 = ri(P3)
then we have the chain we needed. If not then pick (a, b, c) to be maximal in ri(P3)\S1.
We will now show that (µ1, µ1, µ1) is the unique upper cover of (a, b, c) in ri(P3). Since
(µ1, µ1, µ1) is diagonal it is clearly in ri(P3). Suppose there exists some other (u, v, w) >
(a, b, c) in ri(P3). By definition of S1 we see that (a, b, c) must be in T1. So at least one
of a, b or c equals to µ1. This means that at least one of u, v or w must also be µ1. By
maximality of (a, b, c) we must have (u, v, w) = (µ1, µ1, µ1). Thus (µ1, µ1, µ1) is not only
the unique upper cover of (a, b, c) but also the only element above it in ri(P3). So by
Lemma 7.4.7

ri+1 := I(a,b,c)→(µ1,µ1,µ1) ◦ ri
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is a retraction on P3 such that ri+1(P3) ⊆ ri(P3) and |{x ∈ ri(P3) : ri+1(x) 6= x}| ≤ 1. Since
(µ1, µ1, µ1) is diagonal, ri+1 is clearly NU-preserving. Thus r0, . . . , ri+1 is an NU-preserving
one-step chain.

Continue this process until the image of the final retraction is exactly S1. We see that
the final retraction maps any 3-tuples in P3 that has µ1 in one of its coordinates onto
(µ1, µ1, µ1).

Now let T2 be the set of 3-tuples in P3 that have µ0 as at least one and at most two of
its coordinates. Define S2 := S1\T2 and let S2 be its induced subposet. We will construct
an NU-preserving one-step chain from S1 to S2.

Let r0 be the identity map on S1. Let’s assume recursively there already exists r0, . . . , ri
an NU-preserving one-step chain from S1 to ri(S1) such that S2 ⊆ ri(S1). If S2 = ri(S1)
then we have the chain and we are done. If not then pick (a, b, c) to be minimal in ri(S1)\S2.
Using similar arguments to the previous construction we get that (µ0, µ0, µ0) is the unique
lower cover of (a, b, c) in ri(S1). So by Lemma 7.4.7

ri+1 := I(a,b,c)→(µ0,µ0,µ0) ◦ ri

will be the next retraction on the list.

Repeat this step as needed until we get an NU-preserving one-step chain from S1 to
S2. Note that the final retraction will map all 3-tuples in S1 that have µ0 as one of its
coordinates onto (µ0, µ0, µ0).

Next let T3 be the set of 3-tuples in S2 that do not belong to P 3
1 ∪P 3

2 . Let S3 := S2\T3

and denote S3 to be its induced subposet.

Let r0 be the identity map on S2. Suppose there exists r0, . . . , ri an NU-preserving
one-step chain from S2 to ri(S2) ⊇ S3. If ri(S2) = S3 then we are done. If not then pick
(a, b, c) to be maximal in ri(S2)\S3. We will show that (µ1, µ1, µ1) is its unique upper cover
in ri(S2). Suppose there exists some (u, v, w) > (a, b, c) in ri(S2). Then by the maximality
of (a, b, c), (u, v, w) must belong to P 3

1 ∪ P 3
2 . However since (a, b, c) is in T3 it must have a

coordinate exclusively in each of the Pi’s. Since (u, v, w) has all three coordinates in the
same Pi at least one of them must be µ1. But the only 3-tuple in S2 with µ1 as one of
its coordinates is the diagonal (µ1, µ1, µ1). Thus (µ1, µ1, µ1) is not only the unique upper
cover of (a, b, c) but the only one above it in ri(S2). By Lemma 7.4.7

ri+1 := I(a,b,c)→(µ1,µ1,µ1) ◦ ri

is a retraction on S2 such that ri+1(S2) ⊆ ri(S2) and |{x ∈ ri(S2) : ri+1(x) 6= x}| ≤ 1. Since
(µ1, µ1, µ1) is diagonal ri+1 is clearly NU-preserving. Thus r0, . . . , ri+1 is an NU-preserving
one-step chain.
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After finitely many iterations we will get an NU-preserving one step chain from S2 to S3.
Note that S3 is fully contained in P3

1 ♦P3
2. Combine the three chains we have constructed

so far using Lemma 7.2.1. Let r be the final retraction of the new chain that goes from P3

to S3.

The case for ♦ differs from the other operations in that we cannot use Lemma 7.2.2
to finish proof as we did in Lemma 7.4.8 and 7.4.9. This is due to the fact that we do not
have the analogue of Lemma 7.4.1 and 7.4.3 for ♦ . However the idea from Lemma 7.2.2
still works.

Finally we want to construct an NU-preserving one-step chain from S3 to ∆(P 3). Recall
that we had assumed the existence of one-step chains r1

1, . . . , r
1
n from P3

1 to ∆(P 3
1 ) and

r2
1, . . . , r

2
m from P3

2 to ∆(P 3
2 ). For i ∈ {0, . . . , n} define ri : S3 → S3 as follows:

ri(x, y, z) =

{
r ◦ r1

i (x, y, z) if (x, y, z) ∈ P 3
1

(x, y, z) else.

For j ∈ {0, . . . ,m} define rn+j : S3 → S3 as follows:

rn+j(x, y, z) =

{
r ◦ r2

j (x, y, z) if (x, y, z) ∈ P 3
2

rn(x, y, z) else.

Note that rn is not being defined twice since r2
0 is the identity map on P3

2. It should be
clear that each of these maps are NU-preserving. We will check that r0, . . . , rn+m is a one-
step chain. First we need to confirm they are all order preserving. For i ∈ {0, . . . , n} let’s
consider a pair of 3-tuples in S3 (u, v, w) ≥ (a, b, c). Suppose both of these are in P 3

1 . By its
construction r either fixes an element of P3 or maps it onto a diagonal (either (µ0, µ0, µ0)
or (µ1, µ1, µ1)). Thus r maps P 3

i back into itself for each i ∈ {1, 2}. Since r1
i and r are both

order preserving we must have ri(u, v, w) ≥ ri(a, b, c). Suppose one of the 3-tuples is in P 3
1

while the other one is not. Then the only way they are comparable is if the one that is in
P 3

1 contains only µ0 and µ1 as it’s coordinates. The only 3-tuples in S3 fitting this criteria
are the diagonal tuples (µ0, µ0, µ0) and (µ1, µ1, µ1). Both of these are fixed by r and r1

i .
So either way we get ri(u, v, w) ≥ ri(a, b, c) again. The final consideration is where both
3-tuples are not in P 3

1 . Then ri(u, v, w) ≥ ri(a, b, c) should be clear from the construction
of ri. The rn+j’s for j ∈ {0, . . . ,m} are order preserving by similar arguments.

To see that these are retractions we will also only show the arguments for the ri’s. Let
(a, b, c) be in S3. If (a, b, c) 6∈ P 3

1 then we have trivially ri ◦ ri(a, b, c) = (a, b, c) = ri(a, b, c).
Suppose (a, b, c) ∈ P 3

1 . Then ri(a, b, c) = r(r1
i (a, b, c)). We know that r either fixes r1

i (a, b, c)
or maps it onto a diagonal tuple (x, x, x). If it is the latter then

ri(ri(a, b, c)) = r(r1
i (r(r

1
i (a, b, c)))) = r(r1

i (x, x, x)) = (x, x, x) = ri(a, b, c).
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If r fixes r1
i (a, b, c) then

ri(ri(a, b, c)) = r(r1
i (r(r

1
i (a, b, c)))) = r(r1

i (r
1
i (a, b, c))) = r(r1

i (a, b, c)) = ri(a, b, c).

Therefore each ri is a retraction.

The image of each ri equals to r ◦ r1
i (S3 ∩ P 3

1 ) ∪ (S3\P 3
1 ) while the image of each rn+j

is r ◦ r2
j (S3 ∩ P 3

2 ) ∪ rn(S3\P 3
2 ). From this it is easy to see that r0, . . . , rn, . . . , rn+m is a

one-step chain from S3 to ∆(P 3).

Connect all of the one-step chains we have constructed using Lemma 7.2.1 and we will
have an NU-preserving one-step chain from P3 to ∆(P 3).

The case for the restricted sum will be the most complicated out of all. Take a deep
breath before you begin and remember to have fun!

Lemma 7.4.11. Let P be a series-parallel poset satisfying the 4-crown condition. Suppose
P = P1 +R P2 for some series-parallel posets P1 and P2 satisfying the 4-crown condition
and there exist NU-preserving one-step chains from P3

1 to ∆(P 3
1 ) and P3

2 to ∆(P 3
2 ). Then

there exists an NU-preserving one-step chain from P3 to ∆(P 3).

Proof. By the definition of +R it must be true that either all pairs of maximal elements
of P1 have an infimum or all pairs of minimal elements of P2 have a supremum. The
proof will be similar in both cases so let us assume without loss of generality the latter.
Then by Lemma 4.4.1 there exists a minimum pinch point of P2 that is the supremum of
all minimal elements. Let P3 be the subposet of P2 induced by all elements below this
minimum pinch point and P4 be induced by all those above it. Then we can break up P2

such that P2 = P3 ./P4. Clearly P3 and P4 are series-parallel posets satisfying the 4-crown
condition. By restricting the NU-preserving one-step chain of P2 we get NU-preserving one-
step chains on both of these subposets. Thus if we can construct an NU-preserving one-step
chain for P1 +R P3 then by Lemma 7.4.9 above we get one for (P1 +R P3) ./P4 = P1 +R P2.
So let us assume P2 = P3 so that the minimum pinch point of P2, the supremum of all
minimal elements, is its unique maximum. By this assumption P2 will be a pyramid so we
can denote L as its set of minimal elements and use the facts from Lemma 4.4.6.

The 3-tuples in P3 fall into four categories. The first two are the 3-tuples that belong
to P 3

1 and P 3
2 respectively. What is left are the 3-tuples that have coordinates in both P1

and P2. We will denote

P1,1,2 := (P1 × P1 × P2) ∪ (P1 × P2 × P1) ∪ (P2 × P1 × P1)

and
P1,2,2 := (P1 × P2 × P2) ∪ (P2 × P1 × P2) ∪ (P2 × P2 × P1).
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Then P 3 = P 3
1 ∪· P 3

2 ∪· P1,1,2 ∪· P1,2,2. We will be using this fact to divide our construction
into stages.

Let Q := {a ∈ P2 : a = l{a}} and

P1,1,Q := (P1 × P1 ×Q) ∪ (P1 ×Q× P1) ∪ (Q× P1 × P1).

Clearly Q is a subset of P2 so P1,1,Q is a subset of P1,1,2. Define S1 := P 3
1 ∪· P 3

2 ∪· P1,1,Q∪· P1,2,2

and let S1 denote the subposet induced by S1. Our first step is to construct an NU-
preserving one-step chain from P3 to S1.

Let r0 be the identity map on P3. Recursively let us assume there exists r0, . . . , ri an
NU-preserving one-step chain from P3 to ri(P3) such that S1 ⊆ ri(P3). If S1 = ri(P3) then
we have the one-step chain we wanted. Assume not, and let (a, b, c) be a minimal 3-tuple
in ri(P3)\S1. Then (a, b, c) ∈ P1,1,2\P1,1,Q and by definition exactly one of a, b or c belongs
to P2\Q while the rest are in P1. Without loss of generality let us assume c ∈ P2\Q. By
Lemma 4.4.6(1) we have lx ≤ x for all x ∈ P2. So it must be that c > l{c}.

We will show that (a, b, l{c}) is the unique lower cover of (a, b, c) in ri(P3). By Lemma
4.4.6(9) (a, b, l{c}) is in S1 which is in the image of ri. Suppose there exists (u, v, w) ∈ ri(P3)
such that (u, v, w) < (a, b, c). By minimality of (a, b, c), (u, v, w) must be in S1. Since u < a
and v < b, u and v are elements of P1. If w comes from P1 also then (u, v, w) < (a, b, l{c}).
If w ∈ P2 then it must be true that w = l{w}. So Lemma 4.4.6(2) tells us that w ≤ l{c}
and (u, v, w) ≤ (a, b, l{c}).

Using Lemma 7.4.7 we can define the retraction

ri+1 := I(a,b,c)→(a,b,l{c}) ◦ ri

where ri+1(P3) ⊆ ri(P3) and |{x ∈ ri(P3) : ri+1(x) 6= x}| ≤ 1. If (a, b, c) is an NU 3-tuple
then it must be that a = b. Thus I(a,b,c)→(a,b,l{c}) is NU-preserving which implies ri+1 is also
NU-preserving. Therefore r0, . . . , ri+1 is an NU-preserving one-step chain.

The image of each retraction is constructed to be strictly less than the previous one.
After finitely many iterations we will have an NU-preserving one-step chain from P3 to S1.

For the second step we will let R := {(a, b) ∈ P 2
2 : a, b ≤ l{a,b}} and

P1,R := (P1 ×R) ∪ {(a, b, c) : b ∈ P1 and (a, c) ∈ R} ∪ (R× P1).

Let S2 := P 3
1 ∪· P 3

2 ∪· P1,1,Q∪· P1,R and denote its induced subposet as S2. We’ll now construct
an NU-preserving one-step chain from S1 to S2.

As before we start with r0 being the identity map on S1 and assume the existence of
r0, . . . , ri an NU-preserving one-step chain from S1 to ri(S1) ⊇ S2. If ri(S1) = S2 then we
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have what we wanted so assume otherwise. Let (a, b, c) be minimal in ri(S1)\S2. Then
(a, b, c) ∈ P1,2,2\P1,R and by definition exactly one of a, b or c is in P1, we’ll assume it is
a since the construction will be similar in every case. Then at least one of b, c is strictly
greater than l{b,c}. Our construction of ri+1 will depend on how many that is.

Suppose only one of b or c is strictly greater than l{b,c}. Without loss of generality let
it be c. Then b ≤ l{b,c} = l{c} < c by Lemma 4.4.6(3,4). We’ll show that (a, b, l{c}) is
the unique lower cover of (a, b, c) in ri(S1). Again we can use Lemma 4.4.6(9) to show
that (a, b, l{c}) indeed belongs to ri(S1). Suppose there exists (u, v, w) ∈ ri(S1) such that
(u, v, w) < (a, b, c). We would only need to show w ≤ l{c}. If w ∈ P1 then it is obviously
true. If w ∈ P2 then we will have to take a look at u and v. Now u must be in P1 since
a is. If v is also in P1 then according to the observation at the end of the previous step
we have w = l{w} ≤ l{c} < c by Lemma 4.4.6(2). If v is in P2 then by the minimality of
(a, b, c) it must be that v, w ≤ l{u,v,w}∩P2 ≤ l{a,b,c}∩P2 = l{c} (using Lemma 4.4.6(2) again).
So (a, b, l{c}) is indeed the unique lower cover of (a, b, c) in ri(S1). Applying Lemma 7.4.7
we get the retraction

ri+1 := I(a,b,c)→(a,b,l{c}) ◦ ri
where ri+1(S1) ⊆ ri(S1) and |{x ∈ ri(S1) : ri+1(x) 6= x}| ≤ 1. This time it is not possible
for (a, b, c) to be an NU 3-tuple so it’s easy to see that I(a,b,c)→(a,b,l{c}) and therefore ri+1 is
NU-preserving.

Now suppose both b and c are strictly greater than l{b,c}. Then by Lemma 4.4.6(3,4)
we have l{b,c} = l{b} = l{c}. We will show that (a, l{b,c}, l{b,c}) is the unique lower cover of
(a, b, c) in ri(S1). By Lemma 4.4.6(9) (a, l{b,c}, l{b,c}) belongs to ri(S1). Let (u, v, w) ∈ ri(S1)
such that (u, v, w) < (a, b, c). Once again we have u ∈ P1 because of a. If both v and w are
also in P1 then we get (u, v, w) ≤ (a, l{b,c}, l{b,c}) as needed. Assume at least W is in P2. If
v ∈ P1 then by observation at the end of step one again we get w = l{w} ≤ l{c} = l{b,c} (by
Lemma 4.4.6(2)) so (u, v, w) ≤ (a, l{b,c}, l{b,c}). If v ∈ P2 then by the minimality of (a, b, c)
v, w ≤ l{u,v,w}∩P2 ≤ l{a,b,c}∩P2 = l{b,c}. This shows that (a, l{b,c}, l{b,c}) is the unique lower
cover of (a, b, c) in ri(S1). Using Lemma 7.4.7 we can define the retraction

ri+1 := I(a,b,c)→(a,l{b,c},l{b,c}) ◦ ri
where ri+1(S1) ⊆ ri(S1) and |{x ∈ ri(S1) : ri+1(x) 6= x}| ≤ 1. The only way for (a, b, c) to
be an NU 3-tuple is if b = c. Thus I(a,b,c)→(a,l{b,c},l{b,c}) and ri+1 are both NU-preserving.

We see that either way we get r0, . . . , ri+1 as an NU-preserving one-step chain. Since
the image of each retraction is strictly decreasing this process will yield the desired chain
from S1 to S2 after finitely many steps.

For the third step define T := {(a, b, c) ∈ P 3
2 : l{a,b,c} ≤ a, b, c}. Denote S3 := P 3

1 ∪· T
and let S3 be the induced subposet. We will construct an NU-preserving one-step chain
from S2 to S3.

83



As usual we start with r0 being the identity map on S2 and assume there exists an
NU-preserving one-step chain r0, . . . , ri from S2 to ri(S2) ⊇ S3. If S3 = ri(S2) then we have
the desired chain so let’s assume not. Let (a, b, c) be maximal in ri(S2)\S3. For the sake
of convenience denote l′ := l{a,b,c}. By Lemma 4.4.6(7) a, b and c are all comparable to
l′. We will show that (max(a, l′),max(b, l′),max(c, l′)) is the unique upper cover of (a, b, c)
in ri(S2). Using Lemma 4.4.6(3,4) (if a ≥ l′ then l{a} = l′ so La = Ll′) and then Lemma
4.4.6(9) we get

l{max(a,l′),max(b,l′),max(c,l′)} = sup(Lmax(a,l′) ∪ Lmax(b,l′) ∪ Lmax(c,l′))

= sup(Ll′ ∪ Ll′ ∪ Ll′)
= sup(Ll′)

= ll′

= l′

so (max(a, l′),max(b, l′),max(c, l′)) is an element of S3 ⊆ ri(S2). Suppose there exists
(u, v, w) ∈ ri(S2) such that (u, v, w) > (a, b, c). Let l′′ := l{u,v,w}. By maximality of
(a, b, c) we have (u, v, w) ≥ (l′′, l′′, l′′) ≥ (l′, l′, l′) by Lemma 4.4.6(3). Thus (u, v, w) ≥
(max(a, l′),max(b, l′),max(c, l′)) as needed.

Using Lemma 7.4.7 we can define the retraction

ri+1 := I(a,b,c)→(max(a,l′),max(b,l′),max(c,l′)) ◦ ri

where ri+1(S2) ⊆ ri(S2) and |{x ∈ ri(S2) : ri+1(x) 6= x}| ≤ 1. If any pair of the three ele-
ments a, b and c are equal to each other then the corresponding pair from max(a, l′),max(b, l′)
and max(c, l′) are also equal. Thus I(a,b,c)→(max(a,l′),max(b,l′),max(c,l′)) and ri+1 are NU-preserving
maps. So r0, . . . , ri+1 is an NU-preserving one-step chain from S2 to ri+1(S2).

After repeating finitely many times we get an NU-preserving one-step chain from S2

to S3. Combining the chains we have constructed from the first three steps using Lemma
7.2.1 we get one from P3 to S3. Denote the final retraction of this new chain as r.

Before we define our final one-step chain we need to turn our attention to a particular
subposet of P3

1 + P3
2. Define

Λ := {l{a,b,c} : (a, b, c) ∈ P 3
2 }.

Now Λ is a subposet of P2 and the unique maximum of P2 is also the unique maximum of
Λ. We will show that for each l ∈ Λ either l is the unique maximal element of Λ or there
exists a unique l′ ∈ Λ such that l ≺ l′ in (Λ,≤Λ). Clearly if l is not the unique maximal
element then there exists an upper cover of it. Suppose l′ and l′′ are both upper covers of l.
Now l′ and l′′ are both suprema of sets of minimal elements of P2. If they are incomparable
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then there exists some a minimal in P2 such that a < l′ but a ≮ l′′. This implies a ≮ l also
which means {a, l′′, l, l′} form an induced N -subposet of P2. This is a contradiction since
P2 is series-parallel. So l′ and l′′ must be comparable so they are equal.

Let U := {(a, b, c) ∈ P 3
2 : ∃l ≺ l′ in Λ with l ≤ a, b, c ≤ l′} and S4 = P 3

1 ∪· U . Recall
that T contains all (a, b, c) ∈ P 3

2 such that l{a,b,c} ≤ a, b, c. Lemma 4.4.6(4,8) tells us that
if l′ � l{a,b,c} then (a, a, a) < (l′, l′, l′). Thus T ⊆ U and S3 ⊆ S4. Let S4 be the subposet
induced by S4.

Notice that U is the union of intervals in P 3
2 with diagonal elements as end points.

Any endomorphism of P3 that fixes the diagonal elements must map S4 back into itself.
In particular r is such an endomorphism. Thus r|S4 is well defined. Since S3 ⊆ S4 r|S4 is
actually a retraction of S4 with S3 as its image. Let (a, b, c) ∈ S4\S3 = U\T . We want to
find its image under r|S4 .

By the proof of Lemma 7.2.1 and the construction in the first three steps, it follows
that

r = I ′′k ◦ · · · ◦ I ′′2 ◦ I ′′1︸ ︷︷ ︸
3rd step

◦ I ′m ◦ · · · ◦ I ′2 ◦ I ′1︸ ︷︷ ︸
2nd step

◦ In ◦ · · · ◦ I2 ◦ I1︸ ︷︷ ︸
1st step

where each Ir, I
′
s, I
′′
t is a function of the form I(x,y,z)→(x′,y′,z′). Within each of the three steps

these functions are considered with a different subset of P3 as their domain. Note that each
Ir and I ′s from the first two steps fixes all 3-tuples from P 3

2 . Every 3-tuple in T is fixed by
every I ′′t in the third step. As for those in in P 3

2 \T each I ′′t either fixes it or maps it into
T . Hence for (a, b, c) ∈ S4\S3 ⊆ P 3

2 \T there is a corresponding

I ′′t0 = I(a,b,c)→(max(a,l{a,b,c}),max(b,l{a,b,c}),max(c,l{a,b,c}))

such that r(a, b, c) = (max(a, l{a,b,c}),max(b, l{a,b,c}),max(c, l{a,b,c})).

Since it is in S4 (a, b, c) must be between some (l, l, l) and (l′, l′, l′) where l ≺ l′ in Λ.
Being in P 3

2 \T means that (a, b, c) � (l{a,b,c}, l{a,b,c}, l{a,b,c}) so at least one of a, b or c is less
than l{a,b,c} by Lemma 4.4.6(7). Assume a < l{a,b,c}. Since l ≤ a < l{a,b,c} and l ≺ l′ then
l′ ≤ l{a,b,c}. By Lemma 4.4.6(3,9) we have l′ = l{a,b,c}. Thus

r(a, b, c) = (max(a, l{a,b,c}),max(b, l{a,b,c}),max(c, l{a,b,c})) = (l{a,b,c}, l{a,b,c}, l{a,b,c}).

So we see that r|S4 maps S4\S3 into ∆(P 3) and fixes S3.

By Lemma 7.2.2 all we need is an NU-preserving one-step chain from S4 to ∆(P 3) to
get one from S3 to ∆(P 3). As mentioned three paragraphs back if we have a retraction on
any subposet of P3 containing S4 as an induced subposet, and if the retraction fixes all of
the diagonal elements of P3, then restricting it onto S4 produces a retraction on S4. It is
clear that S4 ⊆ P 3

1 ∪ P 3
2 so S4 is an induced subposet of P3

1 + P3
2. Thus instead of from S4
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to ∆(P 3) all we need is an NU-preserving one-step chain starting from P3
1 + P3

2. Such a
chain exists by Lemma 7.4.4.

Lemma 7.4.12. Let P be a series-parallel poset satisfying the 4-crown condition. Suppose
P = P1 ∪· P2 for some series-parallel posets P1 and P2 satisfying the 4-crown condition
and there exist NU-preserving one-step chains from P3

1 to ∆(P 3
1 ) and P3

2 to ∆(P 3
2 ). Then

there exists an NU-preserving one-step chain from P3 to ∆(P 3).

Proof. If P1 and P2 are not connected posets then we can split them up by their connected
components where each component is an induced subposet satisfying the conditions we
just mentioned. So without loss of generality let’s assume P = P1 ∪· P2 ∪· . . . ∪· Pn where
each Pi for i ∈ {1, . . . , n} is connected and possessing the required properties.

Note that P3 will also be separated into connected components. There will be a copy
of P3

i for each i ∈ {1, . . . , n}. Label the other connected components as C1, C2, . . . , Ck.
We will call these mixed components, as the 3-tuples they contain cannot have all three
elements belonging to the same Pi. We will first build an NU-preserving one-step chain
from P3 to P3

1 ∪· . . . ∪· P3
n. To do so we will first need to construct such a chain for each

connected component Ci to a single point.

The process for each Ci will be the same. Fix an arbitrary Ci. Note that Ci = Pj×Pk×Pl
for some j, k, l ∈ {1, . . . , n}. Since each Pi is a connected series parallel poset satisfying
the 4-crown condition by Lemma 4.4.3 they must all have a pinch point. Let mj,mk and
ml denote a pinch point from Pj,Pk and Pl respectively.

For all (x, y, z) ∈ Ci, each coordinate of the 3-tuple will be comparable to their re-
spective pinch points. Let T1 be the set of all 3-tuples in Ci such that exactly one of its
coordinates is strictly less than its respective pinch point. Define S1 := Ci\T1 and let S1

denote the induced subposet. We will build a chain of one-step NU-preserving retraction
from Pj × Pk × Pl to S1.

Define r0 to be the identity map on Pj×Pk×Pl. Assume r0, . . . , ri is an NU-preserving
one-step chain from Pj ×Pk ×Pl to ri(Pj ×Pk ×Pl) ⊇ S1. If ri(Pj ×Pk ×Pl) = S1 then we
are done. Otherwise pick (a, b, c) ∈ ri(Pj × Pk × Pl) maximal with respect to (a, b, c) /∈ S1.
By definition one of a, b or c is strictly less than its respective pinch point. Without loss
of generality assume it is c. We will show that (a, b,ml) is the unique upper cover of
(a, b, c) in ri(Pj × Pk × Pl). Clearly (a, b,ml) is an element of ri(Pj × Pk × Pl). Suppose
there exists some (u, v, w) > (a, b, c) in ri(Pj × Pk × Pl). By maximality of (a, b, c) w must
be greater than or equal to its comparable pinch point, which in this case is ml. Thus
(u, v, w) ≥ (a, b,ml) as desired. By Lemma 7.4.7 we may define

ri+1 := I(a,b,c)→(a,b,ml) ◦ ri
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where ri+1(Pj × Pk × Pl) ⊆ ri(Pj × Pk × Pl) and |{x ∈ ri(Pj × Pk × Pl) : ri+1(x) 6= x}| ≤ 1.
This map is clearly NU-preserving. After finitely many steps this process will yield a
one-step chain from Pj × Pk × Pl to S1.

Let T1 be the set of all 3-tuples in S1 such that exactly one of its coordinates is strictly
greater than its respective pinch point. Denote S2 := S1\T2 and let S2 be its induced
subposet.

Let r0 be the identity map on S1 and assume r0, . . . , ri is an NU-preserving one-step
chain from S1 to ri(S1) ⊇ S2. If ri(S1) = S2 then we are done so suppose not. Then pick
(a, b, c) minimal in ri(S1)\S2. By definition of T2 one of a, b or c will be strictly greater
than its respective pinch point. We will assume it is c. Then (a, b,ml) will be the unique
lower cover of (a, b, c) in ri(S1) and the next retraction will be

ri+1 := I(a,b,c)→(a,b,ml) ◦ ri.

Repeat this process until we get a one-step chain from S1 to S2.

Now S2 will be a subposet of Ci where every 3-tuple is comparable to (mj,mk,ml). So we
can define a one-step chain from S2 to the singleton subposet containing only (mj,mk,ml)
by picking a maximal below or a minimal above for each retraction and map it onto
(mj,mk,ml).

Fix some a ∈ P. We can construct an NU-preserving one-step chain from P3 to P3
1 ∪·

. . .∪· P3
n by reducing the Ci’s one at a time onto a point then mapping each of these points

one at a time onto (a, a, a).

Finally to go from P3
1 ∪· . . . ∪· P3

n to ∆(P 3) we simply apply Lemma 7.4.5.

Theorem 7.4.13. Let P be a series-parallel poset satisfying the 4-crown condition. Then
there exists an NU-preserving one-step chain from P3 to ∆(P 3).

Proof. By Lemma 4.3.12 we know that such a P can be constructed from 1 using ∪· , 4 ,4

, ♦ , ./ and +R finitely many times. We will prove the stated result by induction on
the construction of P. The bases case of when P = 1 is trivial. The inductive step is split
up into lemmas 7.4.10, 7.4.8, 7.4.9, 7.4.11 and 7.4.12.

Corollary 7.4.14. If P is a series-parallel poset and P admits a sequence of Freese-
McKenzie SD-∨ operations, then P admits a sequence of Freese-McKenzie SD-∨ opera-
tions of length 2(n3 − n)− 1 where n is the size of P.
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7.5 Example

Here we will show an example of a poset that does not have SD-∨ operations. It was
mentioned in a paper by Larose and Zádori also as an example for having TSI operations
but no semilattice operation [17].

a b c

h i j k

x y z

Figure 7.1: A

Let A denote the 10-element poset pictured in Figure 7.1.

Lemma 7.5.1. The poset A does not admit Freese-McKenzie SD-∨ polymorphisms.

Proof. Suppose for the sake of contradiction that there does exists a sequence {r0, . . . , rn}
of Freese-McKenzie SD-∨ polymorphisms. Choose one of minimum length.

By definition we know that r0 must be the first projection on A3. By minimality of the
chain r1 has to differ from r0 at some (α, β, γ) ∈ A3; we will examine such a triple to find
our contradiction.

First let us focus on a special case where all three coordinates in the triple (α, β, γ) are
maximal in A.

Since r1 disagrees with r0 on (α, β, γ), we have r1(α, β, γ) = θ for some θ 6= α. Since
α, β and γ are all maximal, we have (α, β, γ) greater than all of (x, x, x), (y, y, y) and
(z, z, z). The output of the diagonal elements are the same for every ri. So r1(x, x, x) = x,
r1(y, y, y) = y and r1(z, z, z) = z. Therefore it must be that θ ≥ x, y, z. This limits the
possible candidates for θ to a maximal element of A aside from α.

Next we see that (α, β, γ) ≥ (α, y, y). Since each ri preserves the order relation and
α, θ are incomparable, (α, y, y) is another triple that r0 and r1 disagree on (in other words
r1(α, y, y) 6= α). So condition (2) in the definition of Freese-McKenzie SD-∨ operations is
violated for r0 and r1. Another violation would cause the desired contradiction.
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(α, y, γ) is a triple that is less than both (α, β, γ) and (α, α, γ). Since condition (1) in
the definition of a Freese-McKenzie SD-∨ operations must be satisfied between r0 and r1,
we have r1(α, α, γ) = α. Thus in order to preserve the order relation r1 has to map (α, y, γ)
to some ψ where ψ is less than both α and θ. This means that ψ cannot be a maximal
element in A, and so due to the unique structure of A there exists some δ minimal in A
that is incomparable with ψ. Now (δ, y, δ) is less than (α, y, γ), so their images under ri
must follow suit. Due to the incomparability of δ and ψ, (δ, y, δ) cannot be sent to δ by
r1. This means that r0 and r1 violates condition (3) in the definition of a Freese-McKenzie
SD-∨ operations. Combined with what we have already shown, a contradiction appears.

Similar proof will also show a contradiction for when α, β and γ are all minimal elements.

Going back to our original assumption, we will now find contradictions by showing that
if r1 does not agree with r0 on some arbitrary (α, β, γ) then there exists a triple of the
special cases above that r1 does not agree with r0 on.

Let (α, β, γ) be an arbitrary triple in A3 such that r1(α, β, γ) 6= α. Then r1(α, β, γ) = θ
for some θ 6= α in A. We will split the rest of the proof into cases.

First assume that α, θ are both maximal in A. Since they are not equal they have to
be incomparable. Let β′ and γ′ be maximal elements greater than β and γ respectively.
Then r0 and r1 does not agree on (α, β′, γ′).

Next assume that α is maximal but θ is not. Then there exists δ minimal such that δ
is incomparable to θ. Let β′ and γ′ be minimal elements less than β and γ respectively.
Then r0 and r1 does not agree on (δ, β′, γ′).

Now assume that α is not maximal or minimal in A. If θ is maximal then there exists
δ also maximal such that δ ≥ α. Let β′ and γ′ be maximal elements greater than β and γ
respectively. Then r0 and r1 does not agree on (δ, β′, γ′). Similar proof applies when θ is
minimal.

Finally assume that both α and θ are not maximal or minimal. There must exists δ
minimal or maximal that is comparable to α but not δ. Our usual method applies either
way.

The cases where α is minimal is similar to when it is maximal. This concludes our
proof.
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Chapter 8

Concluding Remarks

As stated before we do not know if having NU-preserving one-step chains is equivalent
to admitting SD-∨ operations for relational structures. In this paper only the forward
direction is proved. Additional work is needed to prove converse direction or find a counter
example.

We have also shown that for a series-parallel poset P, exp(P) has bounded path duality
if and only if it admits Freese-McKenzie SD-∨ operations. In general the reverse direction
remains an open question. A sensible next step would be to check if this statement holds
for posets of dimension 2, or any other class of posets containing series-parallel posets.
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