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ABSTRACT 

Canada has the second largest territory in the world and its pavement network has over 

1,000,000 km of roads spread over regions with various existing soil types. One of the 

challenges for engineers is to determine the soil type for a particular road project and to develop 

a pavement design accordingly. It is very important to identify weak or frost-susceptible soils, 

as they are influenced greatly by weather conditions which may lead to settlement issues and 

may affect the overall pavement performance. One viable option to overcome the consequences 

of settlement problems is the usage of lightweight materials, such as Lightweight Cellular 

Concrete (LCC), which reduces the effective stress on the underlying soil. This material has a 

number of advantages including: it is lightweight; exhibits superior thermal properties; is 

freeze-thaw resistant; has good flowability; is cost-effective; and sustainable.  

This study aims to assess LCC in terms of performance in past projects, mechanical properties 

of LCC from the ongoing project as well as prediction of its field performance in the future. 

Already existing road sections with the installed LCC as a subbase were studied. The available 

information from those road sections was compiled and analyzed to establish similarities and 

differences in the cases as well as challenges and recommendations for LCC installation. All 

projects were aiming to solve the settlement problem. It is observed that settlement usually 

occurs on localized parts of the road and not on its whole length. After visual inspection, some 

of the studied sections, such as Winston Churchill Boulevard and Highway 9 were found to 

have no severe rutting or fatigue cracking, however, longitudinal and transverse cracking were 

observed at Dixie Road, particularly at the adjacent section to the Granular base pavement.  

The samples from the ongoing site were collected for laboratory testing. Results from the 

laboratory determined the density of the LCC in the hardened stage as approximately 40 kg/m3 

lower than its plastic density. The similar information was found in the literature. However, 

compressive strength of the in-situ cast material was determined to be higher than for the similar 

densities in the previous findings. Modulus of elasticity also differs from the typical values, 

whereas it was found to be lower. Poisson’s ratio values were found to be in the typical range. 

To predict the ability of the road sections to bear the designed traffic loads and to predict in-

service performance, the case studies with settlement issues were considered. Failure criteria 

analysis has been conducted.  The results of the failure criteria analysis indicated that the usage 

of LCC as a subbase material is more durable than the conventional granular material with 

similar thickness. This also shows that using LCC as a subbase layer material could be 

potentially effective.  
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CHAPTER 1 

1 INTRODUCTION 

Canada has the second largest territory in the world and its pavement network has over 

1,000,000 km of roads (TAC, 2013). The typical pavement structure in Canada consists of a 

surface layer, which can be made up of bituminous layers or rigid concrete layers, a granular 

base and a subbase overlying the subgrade (Figure 1-1). The main purpose of the layers is to 

support the wheel loads from traffic and distribute it to the underlying subgrade. When 

designing pavement, it is very important to take into consideration: thickness of each layer; 

volume and composition of traffic; climate; range of construction materials available; desired 

serviceable life; and subgrade type and strength (TAC, 2013).  

 

Figure 1-1: Typical Cross Section of a Rural Conventional Asphalt Concrete Pavement (TAC, 2013) 

The subgrade type is a very significant factor because Canada’s road network is spread over 

regions with various existing soil types. Some of these soil types, such as weak or frost-

susceptible soils are referred to as difficult geotechnical conditions. In addition to the type of 

soil, serious temperature fluctuations in winter months, as well as thawing during spring 

months, play a significant role in pavement performance with respect to the subgrade. Frost 

heave in winter months as well as thawing during spring months influences the settlement of 

pavements and reduces bearing capacity of the pavement layers. Materials that are commonly 

used in the subbase layer include unbound granular materials, which have low insulation 
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properties and may lead to penetration of frost through the pavement structure straight to the 

subgrade (Hoff et al., 2002).  

As a result of having unbound granular materials in a subbase, water can easily penetrate 

through the pavement structure into the subgrade and saturate the underlying soils. Thus, during 

the freeze-thaw cycles, those soils may become unstable, leading to settlement and causing 

distresses to the whole pavement structure (Hoff et al., 2002). To address this problem, it is 

recommended to remove weak organic soils from exposed subgrade areas prior to placement of 

embankment materials. In some cases, it is time-consuming and not economically beneficial, 

to replace these weak soils with stiff and stable materials or pavement structure. Another 

feasible solution may be using geosynthetics, including geotextiles, geofabrics, and geogrids, 

to provide “bridge” embankments over thick deposits of these organic-rich soils (TAC, 2013).  

In order to overcome settlement issues due to excessive weight of pavement, the following 

materials may be utilized: (TAC, 2013) 

 Expanded polystyrene 

 Expanded lightweight clay 

 Air cooled blast furnace slag 

 Recycled Concrete Aggregates (RCA) 

 Reclaimed Asphalt Pavement (RAP) 

 Waste glass and ceramic 

To address the problem of weak soils, and to mitigate settlement and fast deterioration of the 

pavements, Lightweight Cellular Concrete (LCC) is considered as another potential solution. 

For a better understanding of the benefits and drawbacks of using LCC, as well as performance 

evaluation of the pavement structure, analysis of construction experience of using LCC as a 

subbase material has been performed in this research. 

1.1  Background  

LCC, sometimes referred to as "foamed concrete" or "aerated concrete", is a useful construction 

material with many applications. It differs from conventional concrete in that it does not contain 

any coarse aggregate. Instead, it is made from a mixture of cement and water that is mixed with 

a foaming compound to generate a matrix of small air bubbles, which makes the concrete 

extremely lightweight. Apart from being lightweight, LCC is a cost-effective and sustainable 

material and has superior thermal properties, freeze-thaw resistance, and good flowability. LCC 

technology was originally developed in Sweden in the early 1900s, but was not put into 

commercial use until after World War 2. More recently, technological advances in LCC have 

led to its use for various applications. Today, LCC is used in areas that require strong, yet 

lightweight and inexpensive materials. Commonly, LCC is used as a lightweight fill material 
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in embankments and beneath roads, or as an energy-absorbing material. Though many of its 

properties are still not thoroughly studied, the usage of LCC is becoming more popular in 

construction projects in North America and abroad.  

For the most part, lightweight fill materials are progressively utilized in civil engineering 

purposes such as backfilling, slope stabilization, embankment fills, and pipe bedding 

(Horpibulsuk et al., 2014). The main intent of lightweight fill materials is to be used as an 

alternative construction material that significantly reduce the weight of fills, thereby mitigating 

excessive settlements and bearing failures. This can subsequently result in more economic 

designs for structures such as retaining walls and base layers of roadways.  

1.2 Research Hypotheses 

The primary hypotheses of this research are as follows: 

 Pavement structures with already installed LCC as a subbase can exhibit result in good 

pavement performance 

 Pavement performance of LCC pavement can be predicted using WESLEA analysis 

 Mechanical properties of LCC samples cast in-situ are different from the typical values 

in the literature 

1.3 Research Scope and Objectives 

The scope of this project is to review the condition and performance of existing road sections 

that were constructed using LCC as well as to evaluate the mechanical properties of this material 

during the construction. This methodology will enable the prediction of future performance. To 

achieve this goal, the specific objectives are as follows: 

1. Assess the condition of existing pavement sections with LCC as a subbase material  

2. Conduct an analysis of the LCC performance of the existing roads 

3. Determine structural properties of in-situ LCC 

1.4 Thesis Organization 

The components of the thesis include outline of scope and objectives, literature review, review 

of case studies, performance evaluation of LCC in past and current projects and prediction of 

the future performance (failure criteria analysis). At the end of the thesis, conclusions and 

recommendations will be provided. 
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This thesis is organized into six Chapters. 

Chapter 1 explains the scope and objectives of the research project and provides the thesis 

organization. 

Chapter 2 provides an extensive review of the literature related to Lightweight Cellular 

Concrete, its composition and properties. Fresh and hardened states of LCC are presented by 

various mechanical properties of the material. This Chapter covers methods of producing LCC 

and presents benefits and drawbacks of this material. In addition, potential sustainable benefits 

from using LCC are presented in this Chapter. Number of applications of LCC are presented in 

Chapter 1, as well as applications in pavement engineering. Research gaps are also described 

in this Chapter. 

Chapter 3 presents case studies of using LCC as a subbase material in pavement engineering 

across Canada. This Chapter describes each of the cases separately by discussing the location 

of the site, problem, possible solutions to the issue, construction process, results and tests that 

were done after construction. At the end of the Chapter, a table summarizing all of the case 

studies is presented. The most crucial issues that future contractors could potentially face, as 

well as recommendations, are discussed in Chapter 3. 

Chapter 4 describes performance prediction analysis by introducing failure criteria. Three case 

studies from the previous Chapter were taken as the examples of pavement structure and were 

analyzed on bearing capacity of the layer, ability of the pavement to resist fatigue cracking and 

rutting issues, and potential number of ESALs that the pavement could potentially preserve 

without any maintenance. 

Chapter 5 provides the results of the laboratory testing of the samples collected from the 

ongoing Toronto project. Site and project details are described in this Chapter. The tests were 

conducted at the Centre for Pavement and Transportation Technology (CPATT). The laboratory 

results were analyzed and correlation between the properties was made. Values, obtained from 

the laboratory work were compared to the typical values for LCC in the literature. 

Chapter 6 contains the conclusions and recommendations based on the research conducted for 

the thesis. 
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CHAPTER 2 

2 LITERATURE REVIEW 

This Chapter provides a summary of the relevant literature related to this thesis. It describes 

composition, methods of production, mechanical properties and applications of Lightweight 

Cellular Concrete (LCC). 

2.1 Lightweight Cellular Concrete (LCC) 

ASTM C796 (2012) defines LCC as:  

“A lightweight product consisting of Portland Cement, cement-silica, cement-pozzolan, lime-

pozzolan, or lime-silica pastes, or pastes containing blends of these ingredients and having a 

homogeneous void or cell structure, attained with gas-forming chemicals or foaming agents (for 

cellular concretes containing binder ingredients other than, or in addition to Portland Cement, 

autoclave curing is usually employed)”. 

Cellular concrete is relatively homogeneous compared to conventional concrete, as it does not 

contain coarse aggregate, so there is limited variation in its properties. The properties of 

Lightweight Cellular Concrete (LCC) depend on its microstructure and composition, methods 

of pore-formation and curing. LCC is lightweight, easy to construct, and economical in terms 

of transportation. LCC is comprised of cement or lime mortar matrix, in which air-voids are 

entrapped by a suitable aerating agent (Ramamurthy, Nambiar and Ranjiani, 2009). Traditional 

concrete mix components densities may vary between 1000 kg/m3 (water) and 3200 kg/m3 

(cement) (Darshan, 2016). By appropriate method of production, LCC densities are 

considerably lower, ranging from 250 kg/m3 to 1800 kg/m3
, but typically between 400 kg/m3 

and 600 kg/m3 (Dolton et al., 2016). This makes LCC desirable as a very low-density material. 

The cellular pore network of LCC also provides a high degree of thermal insulation, as well as 

considerable savings in material. Figure 2-1 shows the texture of wet LCC as it is being placed 

from a pipe.  
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Figure 2-1: Texture of Wet LCC (Maher and Hagan, 2016) 

LCC can be produced in two different ways: “dry” mix or “wet” mix. Figure 2-2 shows “wet” 

mix process, where cement, water, and admixtures are pre-batched into a slurry and sent to site 

in trucks. Once on site, the temperature, density, and viscosity of the slurry is measured to 

confirm compliance with the requirements to make LCC. After quality is verified, the slurry is 

delivered into the LCC equipment, which then injects foam into the slurry and pumps the LCC 

into place (CEMATRIX, 2018). The “dry” mix process is better for high-volume projects 

(Figure 2-3). All the components are blended on site to form the slurry, then foam is injected 

and the concrete is pumped into place (Dolton et al., 2016). With a skilled and experienced 

construction team, installation is usually quick and inexpensive. Those two factors usually come 

as a significant part of the overall project cost (Loewen, Baril, and Eric, 2012). 

 

Figure 2-2: "Wet" Mix Equipment (Dolton et al., 2016) 
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Figure 2-3: “Dry” Mix Equipment (Dolton et al., 2016) 

2.2 Composition of LCC 

LCC is typically composed of Portland Cement, water, pre-formed foaming agent, with no 

coarse aggregate. Sometimes pozzolan materials such as fly ash, silica fume, slag, or various 

chemical admixtures are also included (Ozlutas, 2015). 

Portland Cement 

The main cementitious component of LCC is Portland Cement. The content is approximately 

300-400 kg/m3 in the lightweight cellular concrete mix and it can vary depending on the desired 

density and strength of the final product (Jones, 2001). 

Pozzolan Materials 

Pozzolans are a broad class of siliceous or siliceous and aluminous materials, which, in 

themselves, possess little or no cementitious value. In order to improve compressive and 

flexural strength, reduce cost, heat of hydration, drying shrinkage, thermal conductivity and 

sustainability, fly ash, blast furnace slag or silica fume may be added to PC (Dolton et al., 2016; 

Kearsley and Wainwright  2001; 2002). Jones et al. (2017) stated that replacing Portland 

Cement with fly ash up to 40% could significantly reduce the embodied carbon dioxide by 65% 

compared to the 100% Portland Cement mix while has a similar 28-day compressive strength 

(0.25 MPa compared to 0.31 MPa). However, the drawbacks of using fly ash are the slow rate 

of strength gain, and it might cause foam instability as the water demand may increase (Ozlutas, 

2015).  
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Fine Aggregates 

Fine sand typically is composed of 2mm maximum size aggregates for use in LCC with dry 

densities equal to or greater than 600kg/m3.  In lower density LCC, fillers like fly ash can be 

used instead (BCA, 1994; Dransfield, 2000). Carbon nanotubes (CNTs) have also been 

incorporated to LCC mix as fillers for support. They are found to develop more homogenous 

cell structure with closed cell bubbles (Yakovlev et al., 2006). However, CNTs can form clumps 

and ultimately cause foam instability, this will require dispersion in water which might not 

prove effective (Ozlutas, 2015). 

Water 

The cement to water ratio used for LCC ranges from 0.4 to 1.25 (Kearsley, 1996). It must be 

noted that the quantity of water required is dependent on the composition and use of the material 

which relies on consistency and stability (Ramamurthy, Nambiar and Ranjani, 2009). Excess 

water in the mix leads to segregation while insufficient water content may collapse the mix 

(Nambiar and Ramamurthy, 2006). 

Foam 

A foaming agent is usually added to the base mix (cement slurry) to produce the bubble 

structure in the LCC material. Foaming agents can either be blended with the base mix after 

they have been produced separately or mixed along with the ingredients for the base mix (Byun, 

Song and Park, 1998). The former is being used more often. The main requirement is that the 

foaming agent be stable and firm in order to resist mortar pressure (Koudriashoff, 1949). Foam 

can either be wet or dry. Studies have reported stability issues with the wet foam producing 

bubble sizes of between 2 mm to 5 mm. However, dry foam is reported to have more reliability 

in terms of stability with bubble sizes of 1mm (Aldridge, 2005). Examples of foaming agents 

include detergents, resin soap, hydrolized protein, saponin, and neopar (Ramamurthy, Nambiar 

and Ranjani, 2009; Valore, 1954a). 

2.3 Properties of LCC 

 Fresh State 

Fresh state of cellular concrete is described as free-flowing, self-leveling and self-compacting. 

The higher the air volume in the LCC is, the easier it is to place it. In addition, it does not need 

further consolidation during placement (Ozlutas, 2015). However, in some mixes with the 

increased volume of the air, cohesion of the mix increases and self-weight of the mix reduces, 

thus, resulting in reducing of the self-leveling properties of the cellular concrete (Nambiar and 

Ramamurthy, 2006). There are two main properties that describe fresh state of the LCC: 

stability and consistency. 
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2.3.1.1 Stability 

Khayat and Assaad (2002) defined stability as a state that is required to ensure the presence of 

an adequate air void system and maintain it in a stable state until the time of hardening in Self-

Consolidating Concrete (SCC). 

Factors affecting mix stability are the following: (Brady, Jones, and Watts, 2001; Jones, Ozlutas 

and Zheng, 2016) 

 Environmental conditions (wind, evaporation, temperature, vibration) 

 Materials used (quality and volume of foam) 

 Quality of production (mixing and placing processes)  

It was stated by a number of researchers (McGovern, 2000; Aldridge, 2005; Jones and 

McCarthy, 2005b, 2006; Mohammad, 2011) that instability of LCC was a result of poor foam 

quality as well as the type of constituents used. However, in the case of instability at ultra-low 

densities (600 kg/m3 and less), the stability of the mix has been observed to occur even in the 

absence of the above-mentioned factors (Ozlutas, 2015). The nature of stability or instability 

depends on the size of the bubbles in the bubble structure. The draining properties of LCC allow 

water to penetrate inside the material and if stays there, causing the increase in the bubbles 

inside the structure; thus, collapsing the foam. Meanwhile, the strength of bubbles decreases 

and cannot support the pressures. Figure 2-4 demonstrates typical instability issue. 

  

 

 

Figure 2-4: Instability Issues with Ultra-Low Density LCC (Field Performance) 
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2.3.1.2 Consistency and Workability 

Consistency and workability of cellular concrete are usually characterized by its flowability. 

The presence of air-voids in the fresh mix due to the addition of stable foam agents allows LCC 

to be placed easily. The lightweight concrete can be pumped through flexible hoses over a 

distance of 200 m. Furthermore, its flowability allows it to easily spread into complex forms. It 

settles into place without the use of compaction equipment as it is self-consolidating material. 

This makes it an excellent candidate for pipe bedding, and for fill around utilities or not easily 

accessible areas. Since it flows so easily, forms usually have to be lined with plastic to prevent 

seepage. Also, the surface of LCC pours cannot be sloped greater than 1 degree due to its low 

viscosity (Taylor et al., 2016). Figure 2-5 shows a typical placement of LCC by flexible hose.  

 

Figure 2-5: Lightweight Cellular Concrete being Placed with a Flexible Hose (Taylor et al., 2016) 

2.3.1.3 Compatibility 

According to Amran, Farzadnia, and Ali (2015), the compatibility of LCC is referred to as a 

condition of strong interaction between the mix design and its constituent parts, in particular 

between chemical admixtures and the foam agent. Thus, at the areas where the mixture 

constituents fail to interact, the compatibility of foam mortar decreases. In addition, segregation 

challenges may occur when there is no interaction between the surfactant and plasticizers 

(Brady, Jones and Watts, 2001). 

 Hardened State 

Hardened state is characterized by mechanical, physical, durability and functional properties of 

the cellular concrete. These properties include compressive, flexural and tensile strength, 
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modulus of elasticity, porosity and permeability, drying shrinkage, freeze-thaw resistance, and 

Poisson’s ratio. 

2.3.2.1 Compressive Strength 

The compressive strength represents the capacity of a material to resist loads due to 

compression. LCC has considerably lower range of densities (from 250 kg/m3 to 1800 kg/m3) 

than conventional concrete, thus lower compressive strength (Table 2-1). In general, 

compressive strength depends not only on density, but also on number of parameters such as 

rate of foam agent, w/c ratio, sand particle type, the curing method, cement/sand ratio, and 

characteristics of additional ingredients and their distribution (Valore, 1954b; Deijk, 1919; 

Valore, 1954a). 

Table 2-1: Typical Properties of LCC Based on British Concrete Association (BCA, 1994) 

Dry Density 

(kg/m3) 

Compressive 

Strength 

(MPa) 

Modulus of 

Elasticity 

(MPa) 

Thermal 

Conductivity (3% 

moisture) (W/mK) 

Drying Shrinkage 

(%) 

400 0.5-1.0 800-1000 0.10 0.30-0.35 

600 1.0-1.5 1000-1500 0.11 0.22-0.25 

800 2.0-2.5 2000-2500 0.17-0.23 0.2-0.22 

1000 2.5-3.0 2500-3000 0.23-0.30 0.15-0.18 

1200 4.5-5.5 3500-4000 0.38-0.42 0.09-0.11 

1400 6.0-8.0 5000-6000 0.5-0.55 0.07-0.09 

1600 7.5-10 10 000-12 

000 

0.62-0.66 0.06-0.07 
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2.3.2.2  Split Tensile Strength 

Tensile strength is typically used as a concrete performance measure for pavements because it 

best simulates tensile stresses at the bottom of the concrete surface course as it is subjected to 

loading. These stresses are typically important in controlling structural design stresses 

(Pavement Interactive, 2018). A diametric compressive load is applied along the length of the 

cylinder until it fails. The test setup is shown in Figure 2-6. Because concrete is much weaker 

in tension than compression, the cylinder will typically fail due to horizontal tension and not 

vertical compression. The splitting tension test on regular concrete shows the value of 10% of 

its compressive strength (Raphael, 1984). For cellular concrete, it is still to be determined, but 

according to Amran, Farzadnia, and Ali (2015), the tensile strength is in the range between 20% 

and 40% of its compressive strength.  

Figure 2-6: Splitting Tensile Strength Test Setup 

2.3.2.3 Modulus of Elasticity 

The modulus of elasticity in pavement design represents how much the concrete will compress 

under load (TAC, 2013). The modulus of elasticity generally correlates with compressive 

strength of LCC. Conventional concrete has a modulus of elasticity of 14,000 to 41,000 MPa, 

depending on compressive strength and aggregate type. It is reported that E-value of LCC is 

four times lower than conventional concrete (Jones and McCarthy, 2005b). In cellular concrete, 

the modulus of elasticity is more related to its density. According to the studies, for range of 

dry density from 500 to 1600 kg/m3, the modulus of elasticity typically falls between 1.0 and 

https://beta.pavementinteractive.org/reference-desk/testing/cement-tests/portland-cement-tensile-strength/pcc-surface-course
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12 kN/m2 respectively (Brad, Jones and Watts, 2001). In addition, it was stated by Jones and 

McCarthy (2005b) that E-value is dependent on the composition of the mix, and may be altered 

by fly ash or sand addition. Table 2-2 presents the relationship between compressive strength, 

modulus of elasticity and density.  

Table 2-2: Empirical Model for Cellular Concrete Modulus of Elasticity Determination (Amran, 

Farzadnia and Ali, 2015) 

Equations Annotations 

𝑬 = 𝟑𝟑𝑾𝟏.𝟓(𝒇𝒄)𝟎.𝟓 Pauw’s equation 

𝑬 = 𝟎. 𝟗𝟗 (𝒇𝒄)𝟎.𝟔𝟕 Fly ash utilized as fine aggregate 

𝑬 = 𝟎. 𝟒𝟐 (𝒇𝒄)𝟏.𝟏𝟖
 Sand is utilized as fine aggregate 

𝑬 = 𝟓. 𝟑𝟏 𝐱 W-853 Density ranges from 200 to 800 kg/m3 

𝑬 = 𝟔𝟑𝟐𝟔(gcon)1.5 (𝒇𝒄)𝟎.𝟓 gcon = unit weight of concrete 

𝑓𝑐 =compressive strength of concrete where average 

Poisson’s ratio=0.2, and using polymer foam agent 

𝑬 = 𝟓𝟕, 𝟎𝟎𝟎 (𝒇𝒄)𝟎.𝟓 Density of conventional concrete limited between 2200 

and 2400 kg/m3 substituting with 80 kg/m3 for steel 

𝑬 = 𝟗. 𝟏𝟎 (𝒇𝒄)𝟎.𝟑𝟑 𝑓𝑐 = compressive strength of concrete 

𝑬 = 𝟏. 𝟕𝟎 𝐱 𝟏𝟎−𝟔𝐩𝟐(𝒇𝒄)𝟎.𝟑𝟑 p = plastic density (kg/m3) 

 

2.3.2.4 Drying Shrinkage 

Drying shrinkage is a damaging process to concrete that is caused by the loss of absorbed water 

from the material. Due to high total porosity (40-80%) drying shrinkage is of high significance 

in lightweight cellular concrete. The main reasons that intensify shrinkage include pore size 

decrease as well as a growing number of small-sized pores. Drying shrinkage of LCC where 

cement is the only binder is notably higher than the one manufactured with lime or lime and 

cement. Air-cured specimens have very high drying shrinkage potential. On the contrary, moist-

cured cement and sand mixes demonstrate drying shrinkage values ranging from 0.06% to over 

3.0% when dried at normal temperature, the lowest numbers are correlated with higher densities 

and higher percentage of sand. The time dependence of shrinkage is inclined by the properties 

of material, size of specimen and shrinkage climate. In addition to these factors, shrinkage value 

varies according to the initial moisture content. In the range of higher moisture content (>20% 

by volume), comparatively insignificant shrinkage takes place accompanied by loss of 
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moisture, which, in its turn, can be explained by the presence of a large amount of big pores 

which do not facilitate shrinkage (Darshan, 2016).  

2.3.2.5 Poisson’s Ratio 

Poisson’s ratio shows the lateral to axial strain relationship for a material under the load. Its 

value is obtained using the strains resulting from uniaxial stress only. Poisson’s ratio is one of 

the input parameters for MEPDG (TAC, 2013). The typical range of Poisson’s ratio for cellular 

concrete with densities of 1000 kg/m3 to 1400 kg/m3 is 0.13 to 0.16 and 0.18 to 0.19 respectively 

(Lee et al., 2009). Neville (2011) reported that the Poisson ratio for normal weight concrete is 

0.15 to 0.22. Study by Tiwari et al., (2017) found Poisson ratio for LCC to range between 0.2 

to 0.3 for LCC densities between 230 kg/m3 to 800 kg/m3. 

2.3.2.6 Porosity and Permeability 

Porosity is a measure of the voids in cellular concrete in comparison to the total volume. 

Porosity can affect the other material properties such as compressive strength, flexural strength, 

and durability (Amran, Farzadnia and Ali, 2015).  However, Amran, Farzadnia, and Ali (2015) 

are reporting that the permeability and the degree of fluid flow through the concrete matrix 

were not significantly related to the total porosity, but to larger capillary pores. The porosity of 

LCC concrete allows the aggressive fluids to penetrate inside the matrix of the concrete in the 

hardened stage. Porosity of the hardened concrete may be affected by mix design compositions, 

foam agents, w/c ratio and the curing type. The porosity depends on degree of infusion 

characteristics such as water absorption, sorption, and permeability.  

According to Sabir, Wild and O’Farrell (1997), permeability is defined as a measure of the 

water flow under pressure in a saturated porous medium. Permeability of the cellular concrete 

has a significant correlation with the water absorption of the material. Water absorption of the 

cellular concrete is twice conventional concrete at similar water to binder ratio. Moreover, 

permeability may be affected by the inclusion of aggregates or mineral admixtures and 

entrained air in the cement paste (Amran, Farzadnia and Ali, 2015). 

2.3.2.7 Freeze-Thaw Resistance 

Lower density LCC has been observed to have good freeze-thaw resistance due to the voids 

restraining the expansion forces from frozen water (Brady, Jones and Watts, 2001). Freeze-

thaw characteristic of LCC is dependent on its initial depth of penetration, absorption and 

absorption rate (Jones, 2001). 

2.3.2.8 Thermal Insulation and Conductivity 

Another benefit of LCC which stands out against the other materials is its thermal properties. 

The air entrapped within the concrete acts as an insulator, so heat does not easily transfer 
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through. This makes LCC desirable as an insulation in buildings, or in tank bases to prevent 

heat damage to liners (Taylor et al., 2016). Moisture content, density and components of the 

material account for its thermal conductivity. Density is the key factor in thermal conductivity, 

as the way of curing the product (moist-curing or autoclaving) is of no importance here. The 

number of pores and their arrangement are essential for thermal insulation as well. Smaller 

pores have been found to facilitate better insulation (Darshan, 2016). Concrete is inert and 

fireproof and does not easily conduct sound, which further suggests it would be a good material 

for insulation.   

A drawback for LCC of being a good insulator is frost heave. Because of that, there can be 

differential heating and cooling between the cellular concrete and the surrounding materials. If 

the LCC is used in pavement subgrade, water can seep through the highly porous matrix and 

pool in areas. Differential cooling in the wintertime can cause ice to form, which expands and 

causes upheaval that can damage overlying pavements and structures. To mitigate this risk, 

LCC forms should be sloped downward to the sides and extended out past the overlying road 

or structure so water cannot pool at the base of the concrete (Maher and Hagan, 2016). 

2.3.2.9 Buoyancy Forces 

Density of LCC can be less than half the density of water, so if the concrete is submerged there 

will be buoyancy forces. For an application such as a river embankment fill material, this could 

be a major problem: if river banks rise, buoyancy forces can push the concrete upwards causing 

upheaval and failure of the overlying pavements and structures (Friesen et al., 2012). 

2.4 Challenges 

Number of advantages and disadvantages were discussed in this Chapter. Challenges, 

associated with LCC are summarized as follows: 

 LCC has high potential of drying shrinkage because of the significant amount of cement 

in its composition (up to 80 % of cement). According to Ramamurthy (2009), LCC can 

be 10 times more susceptible to drying shrinkage than conventional concrete. 

 Instability issues could be a significant problem, especially at the ultra-low densities of 

LCC during construction process. 

 Initial cost might be higher than for similar lightweight materials or for Granular 

materials, if measuring them m3 to m3. However, in most projects less m3 of LCC is 

needed to obtain the same performance. 

 Since LCC has good flowability, it may be challenging to place it on the slope surfaces. 

The technique of “lifts” may be used, when LCC is being placed by levels in steps. 

Although, this method requires additional framework. 
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 Another issue with LCC material can be its seepage through the underlying layers when 

it is placed over the open graded layers. Additional protective layers such as 

polyethylene sheets may be used to prevent this problem. 

 Groundwater seepage control of the excavations, where LCC will be placed, is required. 

This needs to be done to prevent floating of the material, as LCC density for the case 

studies was 475 kg /m3, which is less than water density (1000 kg /m3). 

2.5 Sustainability 

Sustainable development according to the World Commission on Environment and 

Development (WCED, 1987) is defined as: “Development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs”. 

The potential sustainability benefits of using LCC are outlined below: 

 At low densities, it can contain 80 -90% voids which means less virgin material usage 

and waste produced (Ozlutas, 2015). 

 Reduction in the use of non – renewable natural resource by eliminating coarse 

aggregates, and fine aggregates at densities below 600 kg/m3 (BCA, 1994). 

 It makes use of industry by-product such as slag and fly ash thereby reducing the amount 

of waste disposed (Dolton et al., 2016; Jones et al., 2012; Awang et al., 2014). Fly ash 

can also be used to replace Portland Cement up to 75% in lower density LCC, this has 

the advantage of reducing embodied CO2 (eCO2). 

 No need for compaction as it flows freely, therefore noise pollution reduction during 

construction and less energy consumed as compaction is eliminated (Jones and 

McCarthy, 2005a). 

 Not only has it great constructability as the material can be installed very quickly, but 

also can be placed during winter time with some protective measures and during the 

light rain (Maher and Hagan, 2016). 

 LCC can be easily excavated and removed as it has low strength. 

 It can be recycled and used for producing more cellular concrete (Jones et al., 2012). 

 LCC has been shown to have good freeze-thaw resistance (Ramamurthy, Nambiar and 

Ranjani, 2009), fire resistance, sound absorption, and superior thermal insulating 

properties which improve with lower plastic densities (Wei et al., 2013; Jones and 

McCarthy, 2005a).  

 Due to its high strength-to-weight ratio, there is typically less material required for fill 

operations, which means less machinery is required during manufacturing and 

construction, leading to less energy use, less greenhouse gas emissions, and less noise 

pollution (Dolton et al., 2016). 
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2.6 Applications 

Lightweight fill materials are increasingly being used in civil engineering applications such as 

roadway base layers, embankment fill material, grout for tunnels and pipes, soil stabilization, 

fill for abandoned mines or other types of void fill, landslip repair, arrestor material at the end 

of airport runways, sound-dampening walls, fireproof insulation, and retaining wall backfill 

(Maher and Hagan, 2016; Horpibulsuk et al., 2014). The air bubble structure of LCC is 

exceptional at absorbing energy, so there have been successful uses of this material in military 

ranges, as rockfall protection, and in airports as the safety barrier in order to safely slow down 

planes and jets if they were to overshoot their runways (Taylor et al., 2016). Amran, Farzadnai, 

and Ali (2015) report a significant interest in LCC in North America, and in Canada in 

particular, not only because this material has a wide range of applications but also because of 

the increased prices for the other lightweight building materials. The annual market size of 

cellular concrete is estimated to be about 250,000 – 300,000 m3 in United Kingdom including 

massive mine stabilization project. In Western Canada, the market size of LCC is about 50,000 

m3 and it is actively growing. North Koreans mostly use cellular concrete in floor heating 

systems with the total market for this country as 250,000 m3. In order to reduce the effect of 

earthquakes and to mitigate the effect from temperature changes, cellular concrete is being used 

in the Middle East. It can be used as a great thermal insulator for those cases (Amran, Farzadnia 

and Ali, 2015).  

LCC has been used in more than 50 countries. Oginni (2015) presented Figure 2-7, indicating 

use of cellular concrete technology globally. Asia and Europe alone accounted for 83% of the 

use of cellular concrete technology economy worldwide. 

 

Figure 2-7: Global Use of Cellular Concrete (Oginni, 2015) 
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The main intent of lightweight fill materials is an alternative construction material to 

significantly reduce the weight of fills, thereby mitigating excessive settlements and bearing 

failures. This can subsequently result in more economic designs for structures such as retaining 

walls and base layer of roadways. The summary of the typical usage of the cellular concrete 

based on its density is studied and presented in Table 2-3. Moreover, density is potentially easier 

to control than compressive strength while placing the LCC. 

Table 2-3: Summary of Cellular Concrete Applications Based on Density (Sari and Sani, 2017) 

Density 

(kg/m3) 

Application 

300-600 Replacement of existing soil, soil stabilization, raft foundation. 

500-600 Currently being used to stabilize a redundant, geotechnical rehabilitation and 

soil settlement. Road construction. 

600-800 Widely used in void filling, as an alternative to granular fill. Some such 

applications include filling of old sewer pipes, wells, basement, and subways. 

800-900 Primarily used in production of blocks and other non-load bearing building 

element such as balcony railing, partitions, parapets, etc. 

1100-1400 Used in prefabrication and cast-in-place wall, either load bearing or non-load 

bearing and floor screeds. 

1100-1500 Housing applications. 

1600-1800 Recommended for slabs and other load-bearing building element where higher 

strength required. 

2.7 Applications in Pavement Engineering 

Various lightweight fill materials including LCC have been developed in recent years for usage 

in various civil engineering applications (Arulrajah et al., 2015). It has potential success in 

being used as a material for structural purposes, stabilization of weak soils, base layer of 

sandwich solutions for foundation slabs, industrial floor and highway as well as subway 

engineering applications (Kadela, Kozlowski and Kukielka, 2017).  

Maher and Hagan (2016) state that the biggest issue in constructing the highways and roads 

over peat, organics or soft soil deposits is continual and long-term settlements that are hard to 

address. Full depth reconstruction requires long-term closures of the damaged pavement 

section. Moreover, it is usually expensive and not an efficient way of solving the problem. 

According to Kadela, Kozlowski, and Kukielka (2017), areas with difficult geotechnical 

conditions are characterized as weak soils, including grounds containing layers of organic 

layers. Factors, influencing decision-making processes of choosing the proper method for 
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dealing with those issues include geological substrate system, size of loads acting on subsoil, 

excessive moisture of soil, technological capabilities and costs of using the technology. Kadela, 

Kozlowski, and Kukielka (2017) introduced several methods of dealing with those weak soils 

and LCC as a potential solution to this issue was studied.  

Maher and Hagan (2016) stated that using cellular concrete in the areas with weak soils allows 

pavement to be “floated” over the subgrade as the density of this material is a quarter of that of 

conventional granular fill and it is a less expensive solution than traditional lightweight 

materials such as polystyrene. In terms of ability of the lightweight cellular concrete to bear the 

loads, Kadela, Kozlowski, and Kukielka have presented the results of numerical simulations 

that proves that using cellular concrete as a subbase layer is potentially possible in terms of 

bearing the loads. The same study has shown that the tensile stress in the lower zone of the 

subbase layer is lower than the flexural strength of LCC that was tested. 

2.8 Summary of Literature Review and Research Gaps 

Lightweight Cellular Concrete offers potential construction, performance, sustainable and cost 

benefits when used in a pavement structure. As an alternative roadbed support over weak soils, 

LCC has been installed as pavement subbase material to provide more stable and stronger 

foundations. It has been placed in a few pavement sections across Canada and preliminary 

information shows that it can improve pavement performance. However, there is a lack of 

integrated field and laboratory evaluation, adequate information, and practices of using LCC as 

pavement subbase layer. There is a need to investigate the in-situ performance as a material 

incorporated into the pavement structure. 

The overall purpose of this project is to summarize the information about the performance of 

the pavement sections with LCC in its structure. The laboratory tests are concentrated on 

mechanical properties and the possible correlation between parameters, characterizing cellular 

concrete in terms of density, UCS, and modulus of elasticity.  

Another aim of this research is to predict the LCC performance for a given sections and compare 

it to the typical pavement structures in terms of failure criteria.  
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CHAPTER 3 

3 FIELD PERFORMANCE REVIEW 

This Chapter describes five road sections with installed Lightweight Cellular Concrete (LCC) 

layer as a subbase. All the available information was compiled in a table and analyzed at the 

end of the Chapter. Similar features of the road sections, as well as challenges during 

construction and recommendations for the future construction of similar pavement, are 

discussed in this Chapter. In addition, methodology for the thesis is described in this Chapter 

(Figure 3-1). 

3.1 Methodology 

For analyzing the construction experience of using LCC as a subbase material, past projects 

(case studies) were studied. As a first step of collecting the data, published papers on the past 

projects where LCC was installed as a subbase layer were studied. After that, technical reports 

were analyzed and visual inspections on the road sections were completed. All of the available 

information from the road sections was compiled and analyzed concluding in similarities and/or 

differences in the performance.  

After analyzing the data from the past projects, the next step was to predict performance of the 

installed LCC sections in the future. Chapter 4 aimed to predict the performance of the road 

sections located in Ontario in terms of fatigue cracking and rutting resistance. In addition, 

bearing capacity of the road sections was determined. These parameters were discussed under 

the failure criteria analysis. Furthermore, the comparison between LCC and Granular B subbase 

materials that were installed on the same road sections was completed and discussed.  

Knowing the current condition of the LCC road sections that were reconstructed in the past as 

well as having an idea of the predicted performance of the sections in the future, it is crucial to 

understand the mechanical properties of LCC that are currently being used in construction. In 

Chapter 5, mechanical properties of the in-situ cast samples will be determined and compared 

to the typical values in literature. In addition, the relationship between the mechanical properties 

of LCC will be discussed. 
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Case Studies
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Figure 3-1: Overview of Research Methodology 

3.2 Case Studies 

LCC may be used in many applications in infrastructure projects. Currently, there are not many 

companies who produce and provide cellular concrete solutions. There are several cases when 

LCC was installed into roadway sections and infrastructure applications in Canada. The scope 

of this project is to study the LCC as a subbase layer. 

Five road sections that were constructed using LCC as a subbase layer were investigated, 

including Dixie Road, Winston Churchill Boulevard, Highway 9, Brentwood Light Rail Transit 

(LRT) Bus-Lane and View and Vancouver Streets. All five sections have similar pavement 

structures, including an asphalt concrete surface layer, an unbound granular base layer, a 

lightweight cellular concrete subbase layer, and subgrade soil. The pavement surface distresses 

were determined by following ASTM D6433, which classifies nineteen types of pavement 

distresses. These distresses such as alligator cracking, bleeding, corrugation, longitudinal and 

transverse cracking, and rutting were inspected. The inspections were conducted manually 

https://en.wikipedia.org/wiki/Winston_Churchill_Boulevard
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instead of using automated data collection vehicles. The results of the field inspections are 

described in the following sections. 

 Dixie Road. Region of Peel, Caledon, Ontario, Canada 

3.2.1.1 Background 

The Region of Peel reconstructed a 120-metre section of rural highway in 2009. The main issue, 

within the section, was ongoing settlement for a number of years. The proposed solution was 

required to be environmentally friendly and to minimize the impact on the adjoining wetlands. 

Instead of removing and replacing the existing embankment with granular material, the Region 

chose to use lightweight cellular concrete as an alternative. Traditional reconstruction would 

have required considerable dewatering, extensive peat removal, the erection of sheet piling and 

then replacing peat with granular materials. Figure 3-2 demonstrates the location of the road. 

 

Figure 3-2: Road Section Location (Google maps, 2018) 

A geotechnical investigation was completed before reconstruction of the road in 2009. This 

investigation included pavement cores and boreholes throughout the settlement area, resulting 

in the following conclusions: 

 Thickness of the asphalt layer ranged from 150 mm to 280 mm 

 Granular base/subbase was at the depth from 1.4 to 1.8 m 

 Peat/marl deposits were located from the depth of 2.1 m up to 5.4 m. with Mr = 17 MPa 
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After the geotechnical investigation was done by a contractor. Full excavation of the weak soils, 

followed by backfilling with granular material was suggested. The pavement structure to 

support 500,000 cumulative ESALs was recommended as follows: 

 Removal of existing material - 5.2 m 

 Hot Mix Asphalt - 140 mm 

 Granular A Base Course - 150 mm 

 Granular B Type I Subbase - 400 mm 

Instead of removing and replacing the embankment to a depth of 5.2 m, the Region chose the 

following pavement structure: 

 Hot Mix Asphalt - 140 mm 

 Granular A Base Course - 150 mm 

 LCC CEMATRIX CMEF-475 (CEMATRIX Manufactured Engineering Fill) - 650 mm 

The typical cross section for the cellular concrete section is presented in Figure 3-3. 

 

Figure 3-3: Typical Cellular Cross Section (Griffiths and Popik, 2013) 

Cellular concrete was produced and placed on site by CEMATRIX Company with the dry-mix 

production units. The construction process is shown in Figure 3-4.  
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Figure 3-4: Construction Process of Dixie Road, Region of Peel, Caledon, Ontario, Canada (CEMATRIX) 

3.2.1.2 Field Investigation 

Griffiths and Popik (2013) investigated the in-place performance in 2013. The evaluation of the 

section included the following: 

 Visual condition survey of the existing pavement surface 

 Ground Penetrating Radar (GPR) survey with various transverse scans to provide layer 

thicknesses and subsurface images of the pavement utilizing the CEMATRIX LCC 

 Falling Weight Deflectometer (FWD) testing to determine the structural capacity of the 

lightweight cellular concrete section in comparison with the adjacent pavement 

Visual Condition Survey 

The visual pavement condition survey of the site was completed on June 4, 2013, and concluded 

that pavement section was in good condition. In total, three slight longitudinal cracks and one 

moderate pavement distortion/heave were observed in the area. Figure 3-5 shows the cracks. 

The longitudinal cracks were located in the northbound lane, approximately at the midpoint of 

the site.  
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Longitudinal Cracking (centreline) Transverse Cracking 

  

Minor crack Transverse Cracking 

Figure 3-5: Condition of Dixie Road, Region of Peel, Caledon, Ontario, Canada 

All three cracks were found to be close to the centreline, with a slight meander into the outer 

wheel-path. The pavement distortion/heave at the north transition extended for approximately 

25 m and appeared to be worse in the southbound lane, than in the northbound direction. The 

distress appeared to be caused by a heave in the area marked at the end of the LCC material. 

The adjacent pavement sections were also investigated, and it appears to be in excellent 

condition without any distresses. In general, the condition of the section is performing 

adequately after three years of construction. 

It was also observed that LCC material was exposed at the SB shoulder rounding. It was 

observed that part of the gravel, which was intended to cover and protect the LCC from weather, 

was eroded into the ditch. Thus, the LCC layer was easily broken from the exposed edge. 
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A. Ground Penetrating Radar 

As part of this evaluation, a Ground Penetrating Radar (GPR) survey was completed. GPR is a 

non-destructive device that uses a radar pulse to produce subsurface images. Ground 

Penetrating Radar equipment is shown in Figure 3-6. 

The GPR survey was completed in order to identify the thicknesses of the pavement layers and 

the border with the adjacent road sections. More comprehensive GPR surveying was completed 

at the areas containing longitudinal cracking. The GPR data was collected by summarizing 

results obtained from 3 cycles of measurement for each line: 

1. Using SmartCart, equipped with a NOGGIN 250 MHz GPR sensor 

2. Using SmartCart, equipped with a NOGGIN 500 MHz GPR sensor 

3. Using SmartCart, equipped with a NOGGIN 1000 MHz GPR sensor 

 

Figure 3-6: Ground Penetrating Radar Equipment 

Griffiths and Popik (2013) reported that thicknesses of the pavement layers varied (some of 

which were within the normal range and some were not). For example, Table 3-1 shows a part 

of the report for lane №10 (L10): 
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Table 3-1: Comparison of Pavement Structures 

Layers Designed, mm GPR reading (range), mm 

Asphalt 140 126-178 

Granular Base 150 68-235 

LCC 650 Vary because of the not flat 

underlying subgrade 

 

Longitudinal and transverse images of the lanes were also obtained (Figures 3-7, 3-8). 

 

Figure 3-7: GPR Longitudinal Image of Southbound Lane, L10 (Griffiths and Popik, 2013) 
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Figure 3-8: GPR Transverse Images at Longitudinal Crack Locations, L4, and L5 (Griffiths and Popik, 

2013) 

B. Falling Weight Deflectometer 

Pavement load/deflection testing was completed on July 30, 2013, and included 54 tests. The 

Dynatest Falling Weight Deflectometer (FWD) was used for the structural evaluation of this 

pavement section. On the traditional road section, from the both sides of the LCC section, FWD 

testing was completed every 5 m in southbound and northbound directions. For the transition 

areas, between LCC and traditional section, FWD testing was completed on 2 m intervals for a 

length of 10 m. Each test included 4 drops, with the first drop being a seating load, and the 

following three loads at roughly 30, 40 and 75 kN. The testing equipment is shown in Figure 

3-9. Full FWD report is presented in Appendix I. 

 

Figure 3-9: FWD Truck and Trailer (Griffiths and Popik, 2013) 
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The collected FWD data was analyzed based on the pavement thickness measured by the GPR 

survey. For the purposes of the FWD analysis within the Lightweight Cellular Concrete section, 

the LCC layer was assumed to be part of the pavement structure. Two parameters were 

determined: the composite elastic pavement modulus and the structural coefficient. The 

composite elastic pavement modulus of LCC section ranged from 714 to 737 MPa, which is 

higher than the adjacent section (514 to 670 MPa). This resulted in increasing of the composite 

pavement structural number of LCC section, which ranges from 175 to 224 mm while the 

adjacent section range from 128 to 154 mm. 

The structural coefficient of the LCC material was determined by the analysis of FWD data. 

The structural coefficients of the asphalt and Granular base layers used in the analysis were 

0.38 and 0.12 respectively (Griffiths and Popik, 2013). In comparing the overall strength of the 

LCC section, the composite elastic pavement modulus of the pavement structure incorporating 

the LCC material was found to be stronger, than the adjacent conventional pavement structures 

(Figure 3-10). 

The calculated structural number (SN) for each layer was added together and subtracted from 

the SNEff at each FWD test location. The resulting SN for the LCC layer was divided by the 

layer thickness of 650 mm to obtain the equivalent AASHTO structural coefficient for the LCC 

material. The averaged back-calculated structural coefficient for the LCC material used on this 

site is approximately 0.2, after removing outliers that were more than one standard deviation of 

the average. In conclusion, following the AASHTO flexible pavement design methodology for 

designing a flexible pavement utilizing the CEMATRIX LCC-475 (with a density of 475 

kg/m3), a structural coefficient of 0.2 should be used. Structural coefficient was obtained after 

the road had been in use for four years, thus, some adjustments may be applied to the structural 

coefficient. Similar tests may be conducted in the future on the newly constructed pavements 

in order to determine structural coefficient soon after construction. 

 

Figure 3-10: Structural Number Comparison Plot (Griffiths and Popik, 2013) 
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3.2.1.3 Findings and Discussion 

1. In general, the pavement structure on Dixie Road appeared to be in good condition, with 

few distresses. With the LCC section in service for roughly three years, it is encouraging 

to see that the condition of the roadway in this section continued to perform similarly to 

the pavements adjacent on either side of the LCC section. 

2. The overall average asphalt thickness along the whole road section is close to the 

designed number – 148 mm vs 140 mm. The thickness of the Granular base is not 

consistent and in some places, it is thinner than the design requirement of 150 mm. The 

lowest thickness of the Granular base is 68 mm which was found in the place where 

longitudinal cracks were observed by visual survey. 

3. It was also observed that the top of the LCC layer was not flat at the border with the 

adjacent road section. It was observed on the longitudinal image of the GPR survey. 

Because of that, the granular layer was detected as thick as 235 mm instead of designed 

150 mm. Griffiths and Popik (2013) linked this information with the fact that some 

distortions on the pavement surface in this area were observed as consequences of some 

ground movement continued after construction.  

4. In order to access those distresses and its cause, a detailed forensic investigation was 

recommended. 

5. It can be noticed that on the GPR transverse images that pavement layers were shown 

as a bowl shape, with the sides of the layers going up. Griffiths and Popik (2013) 

reported that this is a result of the top surface, which was constructed with a crossfall 

but was shown on the image as a flat line. If these images were adjusted to include the 

surface crossfall of the pavement and shoulders, then the top of LCC layer would have 

shown a relative flat surface.  

6. The construction of the LCC embankment should be completed in lifts, with suitable 

layer thicknesses to optimize strength of the material, with the practical construction of 

the embankment. It is recommended that the individual lift thickness do not exceed 300 

mm. Furthermore, the design of each lift should be such that the edges of the upper lift 

are offset by a minimum of 500 mm inward from the edge of the lower lift. The LCC 

layer should be constructed with a pyramid shape, with the top lift constructed 0.5 m 

beyond the edge of the travel lane. The staggering of the various lifts of the LCC 

embankment will allow for easier grading of the embankment slopes while maintaining 

adequate coverage of the LCC material at all times.  

7. The top lift should also be constructed with a minimum 1 percent cross-fall, so that 

subsurface drainage is maintained at the top of the LCC material toward the outside 

ditches. Any imperfections in the transverse profile of this layer could create a ‘bath-

tub’ situation, which would trap water at this layer interface. This could affect the 

performance in the Granular base material placed on top of the LCC layer. The 

embankment slopes should be covered using Granular base type material, with the 
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embankment slope designed to minimize erosion of the material that could potentially 

expose the LCC. Transitions at each end of the LCC embankment should also be 

carefully designed to provide a smooth transition and minimize any abrupt heaves with 

the adjacent earth embankments. It is critical that frost susceptible material is not used 

to construct the transition areas. Furthermore, the design of these transitions will need 

to ensure that they are constructible while meeting the foundation requirements for 

embankment stability. 

 Brentwood Light Rail Transit (LRT) Bus-Lane. Calgary, Alberta, Canada 

The Brentwood bus-lane in Calgary was experiencing heavy loading due to the single rear axles 

of city buses. The bus lane had traffic volumes of up to 100 buses per hour and had frost-heaved 

substantially and became virtually impossible to drive on. The subbase of the road was 

composed of saturated silty deposits, over 30 m in depth. The subgrade soil had a California 

Bearing Ratio (CBR) of 0.8%. In 2000, the road was completely reconstructed with the 

following structure: 

 125 mm of asphalt 

 150 mm of Granular base course 

 200 mm of CEMATRIX CMRI-475 Insulating Road Base 

 50 mm of drainage rock (with subdrains beneath the curb & gutter) 

 Geotextile fabric 

The location of the road section is presented in Figure 3-11. 

 

Figure 3-11: Site Location (Google Maps, 2018) 
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Figure 3-12 presents the reconstruction process of the bus-lane before and after pouring the 

LCC material. 

  

(a)                                                                                                                  (b) 

Figure 3-12: Bus Lane. (a) Reconstruction Process. Placing the LCC (CEMATRIX) (b) After Installing 

the LCC Layer (CEMATRIX) 

Since construction, the road has experienced no frost heaving and required no additional 

remediation between 2000 and April 2018. A Benkelman Beam Deflection Test resulted in 

0.012 inches (0.30 mm) of deflection, much less than the 0.035 inches (0.89 mm) allowed for 

such a road.  

The performance of the LCC section in comparison to the adjacent conventional pavement 

structure is shown in Figures 3-13 and 3-14. The transition area between the LCC and non-LCC 

section is obvious and distresses at the conventional section were observed after the visual 

inspection in April 2018. The Lightweight Cellular Concrete section performed for a significant 

period of time (18 years) without any potholes and severe cracks. No maintenance was 

conducted to this section of the road during its service life. 
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Figure 3-13: Pavement Distresses on the non-LCC section - 1(CEMATRIX, 2018) 

 

Figure 3-14: Pavement Distresses on the non-LCC section – 2 (CEMATRIX, 2018) 

Transition 

Transition 

Typical section 

Cellular concrete 
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 Winston Churchill Boulevard. Brampton, Ontario, Canada 

The reconstruction of Winston Churchill Boulevard is similar to the Dixie Road project. It is a 

two-lane rural road. The project was completed in 2016. The location of the road section is 

presented in Figure 3-15. 

 

Figure 3-15: Location of the Road Section (Google Maps, 2018) 

The pavement structure consists of the following layers: 

 Asphalt concrete layer - 120 mm 

 Granular A base layer - 240 mm 

 Lightweight Cellular Concrete at the density of 475 kg/m3 – 550 mm 

 Existing subgrade – peat 

https://en.wikipedia.org/wiki/Winston_Churchill_Boulevard
https://en.wikipedia.org/wiki/Winston_Churchill_Boulevard
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The pavement structure that was installed on Winston Churchill Boulevard is shown in Figure 

3-16. 

 

Figure 3-16: Pavement Structure. Winston Churchill Boulevard (CEMATRIX) 

The field inspection found that the pavement remains in good condition after one year of 

construction. No severe cracks or rutting were found during the inspection (Figures 3-17 a, 3-

17 b). 

 

  

(a) (b) 

Figure 3-17: Condition of Winston Churchill Boulevard, August 2017 (one year after construction).        

(a), (b) – Overall Condition of the Road 
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 Highway 9. Holland Marsh, Ontario, Canada 

The Highway 9 site is located north of Toronto. It is 1.5 km meters west from Highway 400. 

The location of the problematic area on Highway 9 is presented in Figure 3-18. 

 

Figure 3-18: Highway 9 Site Location (Google Maps, 2018) 

The construction project on Highway 9 aimed to overcome a weak soil problem. The soil in 

this area included thick organic deposits, which are challenging for pavement design. According 

to the geotechnical investigation, completed by Stantec in 2014, pavement structure was 

underlain by organic material ranging from 3.7 to 7.0 m. The site is located directly adjacent to 

the Pottageville Swamp Conservation Area wherein organic soil materials such as peat can be 

found at the surface (Figure 3-19). Inorganic soil was also observed, consisting of soft to firm 

clayey silt to silty clay and compact silt and sand. The groundwater level ranged from 1.5 m to 

2.3 m below the surface of the existing pavement.  

 

Figure 3-19: Highway 9 Site Location with the Local Landscape (Google Maps, 2018) 
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Settlement was observed on a portion of Highway 9 in 2014. Asphalt padding and other 

temporary repairs were considered as possible solutions to this issue, but it would only add 

additional weight to the current pavement structure, thus leading to potential further settlement. 

The potential for future repairs was a deterrent. LCC was chosen as an economical and 

sustainable remediation treatment to address the continued settlement, reduce safety concerns 

and minimize future maintenance costs. The use of LCC reduced the need of deep excavation, 

thus, reducing a considerable amount of excess material requiring disposal, construction time, 

amount of backfill material, and reducing the impact on the environment (Maher and Hagan, 

2016).  

The section was reconstructed in 2014. The settlement problem was observed only at the 

eastbound lanes, so traffic was temporarily moved to the westbound lanes. The settlement 

remediation treatment included excavation of a length of 100 m to a depth of 1.5 m to provide 

the pavement structure of: 

 Asphalt concrete layer – 200 mm 

 Granular “O” base layer – 200 mm 

 Lightweight Cellular Concrete at the density of 475 kg/m3 – 1100 mm 

 Existing subbase 

The permeability of the subgrade fill material was relatively low, so no polyethylene sheet was 

used to mitigate the loss of LCC material. A biaxial geogrid with a minimum tensile strength 

of 0.8 kN/m was installed in a LCC layer at a depth of 0.3 m below the top of the LCC. 

The placement of the LCC was completed in three days. In total, 905 m3 of LCC material was 

placed. Figure 3-20 demonstrates the construction process of installing the LCC layer. During 

the placement of cellular concrete, Quality Control (QC) testing including casting unconfined 

compressive strength cylinders, wet cast density, and air temperature. A list of the QC 

specifications is presented in Table 3-2. 
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Figure 3-20: Highway 9 Construction Process (CEMATRIX) 

In order to mitigate the presence of water below the LCC layer, a drainage system was 

developed, including 1% slope of the bottom of LCC layer to the existing subgrade, a 

transversely installed subdrain at the end of LCC, and a longitudinally installed subdrain on the 

highway centerline. All these measures were done to capture water that could pond below the 

LCC. In addition, transition sections were arranged from both ends of the LCC section. Those 

transitions were critical in mitigating differential performance of LCC and adjacent sections. 

Table 3-2: Project Specifications and QC Results (Maher and Hagan, 2016) 

Item Project Specification 

Requirements 

QC Results Average of QC 

Results 

Minimum Unconfined 

Compressive Strength 

1.0 MPa @ 28 days 0.9 to 1.7 MPa 1.3 MPa 

Wet Cast Density 523 to 578 kg/m3 525 to 580 kg/m3 550 kg/m3 

Air Temperature Protection required for 

sub-zero temperatures 

10 to 170 C 140 C 

Cellular Concrete 

Temperature 

- 22 to 260 C 240 C 

Max. Lift Thickness 500 to 600 mm 300 to 500 mm N/A 

Field visual inspection was completed in 2015, one year after construction. It was observed that 

the pavement was performing well. Figures 3-21 and 3-22 show that no severe distresses were 

found on the pavement surface. One negligible imperfection was noted in the transition area. 



39 

 

Another field visual inspection was completed in 2017, three years after construction. The field 

inspection stated that the pavement remained in good condition after three years of service. No 

severe cracks or rutting were observed during the inspection. 

 

Figure 3-21: Condition of Highway 9, Three Years after Construction 

 

Figure 3-22: Condition of Highway 9, Three Years after Construction  
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 View and Vancouver Streets, City of Victoria, British Columbia, Canada 

The City of Victoria was experiencing several settlements in the area around the intersection of 

Vancouver Street and View Street (Figure 3-23). The intersection had been reconstructed 

several times previously, but the major settlement issue continued to occur. Settlement was a 

major issue in this area because of the excessive decay and consolidation of the underlying peat. 

The option of removing and replacing the weak soils was proposed, but because it was an 

expensive and impractical procedure, finding a different solution was a priority. Moreover, 

since this intersection is located in the downtown area, the time of the closures played a big role 

in selecting a construction approach.  

 

Figure 3-23: Site location. (Google maps, 2018) 

Dolton et al. (2016) reported that due to excessive total differential settlement in the area, the 

roadways and sidewalk experienced surface distresses and damage had occurred to underlying 

utilities. These roadways were originally built over a peat layer that extends up to 5.3 m below 

the existing ground surface. Below the peat is a thick layer of soft silty clay overlying bedrock 

at a depth of 30 – 40 m. Use of Lightweight Cellular Concrete was chosen for this project with 

the following pavement structure design: 

 Asphalt concrete – 75 mm 

 Crush Granular base course - 150 mm of 20 mm 
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 LCC with wet density of 475kg/m3 – 500 mm 

 Existing subgrade 

The construction at View Street and Vancouver Street in the City of Victoria, British Columbia 

was completed from September 2007 to April 2008 in several stages. The LCC was produced 

on site, and as it is shown in Figure 3-24, using the “wet” process of production (Dolton et al., 

2016). LCC with wet density of 475 kg/m3 was used as subbase in this project. Quality 

Assurance/Quality Control (QA/QC) testing was carried out during construction and found that 

cast density ranged between 435 kg/m3 to 486 kg/m3 with an average of 462 kg/m3. Cylinders 

were also cast according to ASTM C495 for Compressive strength of LCC and results revealed 

an average of 1.0 MPa (range 0.8 to 1.1 MPa) at 28 days.  

  

Figure 3-24: View Street and Vancouver Street Construction Process. Wet Mix Equipment (CEMATRIX) 

Total length of the sections that were reconstructed was 430 m on View Street and 137 m on 

Vancouver Street with a total of 2,246 m3 of LCC. It was placed over fourteen pour days of 

construction. Gravel backfill compacted with no vibration was placed on the cellular concrete 

before traffic was allowed on the roadway.  

Golder Associates Ltd. carried out Benkelman Beam and Falling Weight Deflectometer (FWD) 

testing at about 20 m intervals in February 2008. The intention of the test was to carry out the 

test within the outer wheel paths, however, due to different obstacles, some inner wheel paths 

were tested as well. The weather conditions during the testing were cloudy, with an air 

temperature of 130 C and pavement temperature of 100 C. 

The Benkelman Beam test is a method for measuring pavement deflections under static wheel 

loads. As presented in Figure 3-25, a 3.65 m beam is placed between the dual tires of a truck 

(80 kN axle load) and height measurement gauge on the end of the beam measure the vertical 
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rebound of the pavement after the truck is driven away (TAC, 2016). The testing was following 

the ASTM D 4695 “Standard Guide for General Pavement Deflection Measurements” 

procedure. The Benkelman Beam deflection data analysis was carried out in accordance with 

the Asphalt Institute MS-17 method: “Asphalt Overlays for Highway and Street Rehabilitation, 

Manual Series № 17”. No seasonal correction factor was applied for Maximum Pavement 

Spring Rebound (MPSR) due to winter conditions. The average rebound was 0.63 mm on View 

Street and 0.65 mm on Vancouver Street (Table 3-3). 

Table 3-3: Benkelman Beam Results (Golder Associates Ltd. Report, 2008) 

 

Section 

Average 

Rebound 

Reading (mm) 

Temperature 

Corrected 

Rebound (mm) 

Standard 

Deviation 

Mean plus 

2 STDV 

MRSR 

(mm) 

View St. New 

Pavement 

0.63 0.73 0.15 1.03 1.03 

Vancouver St. 

New Pavement 

0.65 0.75 0.23 1.21 1.21 

View St. Old 

Pavement 

0.53 0.57 0.41 1.40 1.40 

 

 

Figure 3-25: Benkelman Beam Deflection Testing 
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Falling Weight Deflectometer (FWD) testing was also conducted. This involves evaluating the 

dynamic response to the fall of the weight from a recorded height. Seven sensors were installed 

and spaced out at known distances from the load plate to measure deflection. FWD testing was 

following ASTM D 4694 “Standard Test Method for Deflections with a Falling-Weight-Type 

Impulse Load Device”. Three load levels were used to determine the deflection response (40, 

50, and 75 kN approximately) at each test point. 

The measured FWD dynamic deflections were normalized to represent the equivalent deflection 

for a standard wheel load of 40 kN at an asphalt pavement temperature of 210 C. The pavement 

surface modulus, which indicates the overall strength of the pavement, was also determined. A 

summary of the FWD testing data is shown in Table 3-4. Spring correction factor was not 

applied. Results reflected consistent static deflection for the LCC sections, and that the 

deflection of the non-LCC section was 111% times higher than that of the LCC section. The 

elastic moduli of the LCC was also reported to be 445 MPa (Standard deviation 146 MPa) and 

341 MPa (Standard deviation 99 MPa) which are higher than the typical values for gravel 

(University of Waterloo, 2011). The elastic moduli of various layers were estimated using 

ELMOD software (Dynatest 2006). The mean elastic modulus derived from LCC layer was 

inferred to be 341 MPa on View Street and 445 MPa on Vancouver Street. 

Table 3-4: FWD Test Data 

 

Street Name 

Normalized Deflection (mm) Pavement Surface 

Modulus (MPa) 

Mean Standard 

Deviation 

Mean+ 2 

STDV 

Static 

Deflection 

Mean Standard 

Deviation 

View St. New 

Pavement 

0.49 0.08 0.64 1.0 361 60 

Vancouver St. 

New 

Pavement 

0.43 0.05 0.55 0.85 402 53 

View St. Old 

Pavement 

0.51 0.41 1.36 2.11 488 238 
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3.3 Summary of Case Studies 

Table 3-5: Summary of the Available Cases of Using LCC as a Subbase Material in Pavement 

Construction in Canada 

 Dixie Road. 

Region of Peel, 

Ontario 

Highway 9, 

Holland Marsh, 

Ontario 

View and 

Vancouver 

Streets, City of 

Victoria, British 

Columbia 

 

Brentwood Light 

Rail Transit 

(LRT) Bus-Lane. 

Calgary, Alberta 

Winston 

Churchill 

Boulevard, 

Brampton. 

Ontario 

 

L
o

ca
ti

o
n

 

Ontario 

43°80'49.24"

N 

79°84'98.97"

W 

Ontario 

44°02'52.65"N 

79°61'25.19"W 

British Columbia 

48°42'45.48"N 

123°35'67.65"

W 

Alberta 

51°08'51.72"N 

114°12'95.76"

W 

Ontario 

43°69'87.

0"N 

79°92'11.

0"W 

C
a

u
se

 o
f 

R
ec

o
n

st
ru

ct
io

n
 Settlement. 

Length-120m 

Peat/marl 

deposits were 

located from the 

depth of 2.1 m to 

5.4 m below the 

existing 

pavement 

surface 

Settlement. 

Length-100m 

Underlain with 

organic materials 

(peat) and 

inorganic (soft to 

firm clayey silt to 

silty clay or 

compact silt and 

sand) 

Settlement. Length-

430m on View 

Street and 137m on 

Vancouver Street. 

Excessive decay 

and consolidation 

of the underlying 

peat 

Length-60m. 

Severe frost heave 

and subsequent 

spring thaw 

weakening of the 

frost susceptible 

soils.  

Settlement. 

Length-

300m. 

Underlain 

with peat.  

D
a

te
 o

f 

C
o

n
st

ru
ct

io

n
 

August-

November 2009 

October 2014 November-

February 2007 

Summer (July-

August) 2000 

Summer 

2016 

R
o

a
d

 

T
y

p
e
 Rural highway Highway Urban Urban Rural 

S
tr

u
ct

u
re

 

AC-140mm; 

Granular ‘A’-

150mm;     

LCC–650mm 

AC-200mm; 

Granular “O” base 

layer-200mm; 

LCC-1100mm; 

Biaxial geogrid 

(300m from the 

top of LCC layer) 

AC-75mm; 

Crushed Granular 

base course-

150mm;          

LCC-500mm; 

(Tensar BX1100 

geogrid was placed 

between the LCC 

layers) 

AC-125mm; 

Granular base 

course-150mm; 

LCC-200mm; 

drainage rock-

50mm; Geotextile 

fabric (at the 

bottom of LCC 

layer) 

AC-120mm; 

Granular 

base course-

240mm; 

LCC-

550mm; 

geogrid 

reinforce 

fiber glass 

https://en.wikipedia.org/wiki/Winston_Churchill_Boulevard
https://en.wikipedia.org/wiki/Winston_Churchill_Boulevard
https://en.wikipedia.org/wiki/Winston_Churchill_Boulevard
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M
a

te
r
ia

l 

C
o

m
p

o
si

ti
o

n
 

CEMATRIX 

CMEF-475. 

“Dry” mix 

CEMATRIX-475. 

“Wet” mix 

CEMATRIX-475. 

“Wet” mix 

CEMATRIX 

CMRI-475. 

 

CEMATRI

X-475. 

“Dry” mix 
P

er
fo

rm
a

n
ce

 

E
v

a
lu

a
ti

o
n

 Visual 

inspection, 

FWD, 

Benkelman 

Beam test 

Visual inspection FWD, Benkelman 

Beam test 

Visual inspection, 

Benkelman Beam 

test 

Visual 

inspection 

C
o

n
st

ru
ct

io
n

 

C
h

a
ll

en
g

es
 Water, stability 

issues, transition 

areas 

Transition areas,  

drainage, stability 

issues 

Underlying 

utilities, Stability 

issues 

Heavy traffic, 

stability issues 

Crossfall, 

wet soils, 

stability 

issues 

 

3.4 Discussions and Recommendations 

Summarizing the available case studies of using LCC as a subbase in pavement construction, it 

is worth saying that LCC can be successfully used in rural and in urban conditions. The ages of 

the sections reviewed varied from two years up to 18 years, which gives an approximate 

understanding of pavement performances up-to-date. The oldest of the presented section is 

Brentwood Light Rail Transit (LRT) Bus-Lane in Calgary (18 years) and is performing well, 

especially in comparison to the adjacent road sections without LCC installation. The younger 

cases such as Winston Churchill Boulevard (Ontario), Highway 9 (Ontario) and Dixie Road 

(Ontario) are also performing well, with no severe cracks. The minor cracks that were observed 

on Dixie Road by visual survey seven years after construction are, most likely, the result of 

construction defects of the upper layers (GPR and FWD results confirm this theory). The road 

sections in the City of Victoria, British Columbia performed well up to 2010 when the last 

inspection was made. Unfortunately, no further performance data for this section was found.  

Three out of five considered road sections are located in Ontario, approximately in one area, 

with similar weather conditions, one section is in Calgary, and one section is located in British 

Columbia.  

All projects were aiming to solve a settlement problem. It is observed that settlement usually 

occurs on localized parts of the road and not on the whole length of the road. In four projects, 

the length of the reconstructions was less than 150 meters and only in one project was a longer 

section (the City of Victoria) needed. Moreover, this section consisted of two intersecting roads, 

which formed a bigger area of settlement. 
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The common time for construction was summer-fall time as the soil is more stable and no 

freeze-thaw cycles are occurring and the subgrade is thawed. Most of the projects were done in 

July-November and none in the spring. 

In terms of the structure of the sections, they all follow the same pattern: LCC layer at the 

bottom (usually with the geogrid or geotextile reinforcement), followed by Granular base 

material and asphalt concrete layer at the top. The thicknesses of the layers are different, 

depending on the purpose of the road and underlying soil.  

FWD and Benkelman Beam tests are the most commonly used methods for evaluating the 

performance of the LCC sections to date. 

Some projects were using “dry” mix process and some “wet”. It is common to use “dry” mix 

process of producing the material for the projects, where relatively high volumes of LCC were 

needed. However, in the City of Victoria, the installation process happened in three stages and 

in different months because of the specific road closures and downtown location of the road. In 

that project, “wet” mix process was used. 

In order to use LCC in a pavement structure as a subbase, certain activities have to be taken 

into consideration and implemented into the construction process. A number of general 

observations that are applicable to most LCC projects have been made from studying the road 

sections across Canada. These observations are presented in the following paragraphs. 

Soils 

Generally, the main issue that using LCC is intended to addresses is a process of settlement of 

road sections. In most of the case studies, settlement is happening because of weak subgrade 

soils. It can be either organic material (peat) or inorganic soils (soft to firm clayey silt to silty 

clay or compacted silt and sand).  Placing a thick layer of unbound granular material on top of 

those subgrade types, to solve the settlement issue, may lead to more settlements in the future 

due to the excessive weight of the whole structure. In addition to that, a lot of excavation is 

often needed to remove the weak soil before placing the unbound Granular material.  

Water 

Placement of the LCC during light rain is possible but should be avoided in heavy rain. Water 

is a significant factor, influencing the construction of pavements using LCC. Groundwater 

seepage control of the excavations, where LCC will be placed, is required. This needs to be 

done to prevent floating of the material, as the target density of LCC in the case studies was 

475 kg/m3, which is less than water density (1000 kg/m3). Ignoring water presence in the 

excavations may lead to buoyancy forces affecting the pouring and restarting the production 

and placement from the very beginning may be required. 



47 

 

Drainage 

It is very important to prevent moisture from weakening the pavement structure once it is in-

service. Usually, pavements require a slope of 2% in order to let the stormwater from the surface 

of the pavement, and subsurface water to drain by the gravity force. For achieving the 2% slope, 

LCC must be placed in steps, using formwork. 

Transitions 

Constructing the quality and proper transition areas between pavement sections with LCC and 

conventional granular pavement is crucial. Those two different pavement structures have 

different thermal properties and different densities. Because of that, different performance of 

the pavement structures can occur in those areas during the freeze-thaw conditions. As frost is 

unlikely to penetrate through the LCC pavement due to its high porosity, reverse heaving of the 

transition occurs (Maher and Hagan, 2016). In order to mitigate this effect, granular transition 

tapers can be made in the transition areas. The commonly used is a 10/1 ratio of horizontal to 

vertical respectively.  

Equipment 

All the material brought to site must be transported in pre-cleaned equipment and machinery. 

The transporting equipment must be cleaned, rinsed and completely emptied of the concrete, 

aggregates, and any other materials that were previously transported (Maher and Hagan, 2016). 

This was a general consideration in the case studies that were using “dry” mix process; however, 

for the View Street and Victoria Street intersection, that used “wet” mix process, it was a 

significant consideration.  

This study provides an overview of the current pavement condition of the five sections that 

were constructed using lightweight cellular concrete as subbase layer material. Results have 

shown that all five sections were in good pavement condition. However, in-depth pavement 

data collection has to be done in order to provide a comprehensive review of the performance 

of the sections with lightweight cellular concrete as subbase layer. Therefore, further 

investigation is recommended. This could be achieved by using pavement instrumentation such 

as asphalt gauges, earth pressure cells, and environmental equipment in the new pavement 

structures. 
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CHAPTER 4 

4 PAVEMENT DESIGN AND ANALYSIS 

This Chapter explains the procedure on how pavement design for LCC can be conducted. The 

predicted performance of the LCC road sections will be determined by failure criteria analysis. 

Comparison of LCC section to typical Granular material will also be conducted. 

4.1 Introduction into Pavement Design 

Structural design of pavements is a complex process. Several factors have to be considered 

when designing a road. These factors are traffic (axle or gear loads, repetitions), environment, 

available materials, desirable performance of the pavement, project cost, sustainability, and 

construction resources (TAC, 2013).  

Traffic volume is usually described by Annual Average Daily Traffic (AADT), which shows 

the range of vehicles of various sizes, weights, and axle configurations. The 80 kN standard 

single axle is used for quantifying the traffic in pavement design. It allows transition of the 

cumulative damage from the range of vehicles into a number of Equivalent Single Axle Loads 

(ESALs) (ARA, 2015). 

Climate is another factor that should be considered in pavement design. According to Applied 

Research Associates (2015), information about pavement surface temperatures expected for the 

south and east region of Ontario are summarized in Appendix II. 

The above-stated factors and some others, that have significant influence on pavement 

performance, are implemented in several mechanistic pavement models. One of the commonly 

used ones is Mechanistic-Empirical Pavement Design Guide (MEPDG), which was developed 

to predict the deterioration of pavements and their associated expected service lives. The focus 

of this chapter is studying the pavement structure, although some approximate service life of 

the pavement without any maintenance was also estimated. The WESLEA software was used 

in this research - a linear elastic multi-layer program that enables analysis of a pavement 

structure, including the effects of complex load systems.  

4.2 Pavement Design with Lightweight Cellular Concrete (LCC) 

The structure of the typical pavement, with respect to the usage of LCC as a subbase, usually 

consists of LCC layer placed on the subgrade, followed by unbound Granular base material and 

the asphalt concrete layer as a top surface. Typical pavement structure with LCC is presented 

in Figure 4-1. Even though the LCC is different from traditional granular material and should 

be treated as a cement stabilized material, there are no calibration factors and performance 

models designed for the lightweight cellular concrete. In the MEPDG manual, it is noted that if 
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the cement stabilized base layer is beneath an unbound Granular base and hot-mix asphalt layer, 

the pavement design should treat it as an unbound layer with a constant layer modulus. 

HMA 

Granular base 

 

LCC subbase 

 

 

Subgrade 

Figure 4-1: Pavement Structure with LCC 

4.3 Analysis Method 

Three roads in Ontario with installed LCC were chosen to be studied: Dixie Road, Highway 9 

and Winston Churchill Boulevard. This Chapter aims to predict performance of the installed 

LCC sections in terms of fatigue cracking and rutting issues as well as to determine the bearing 

capacity of the road sections. These parameters were discussed as the failure criteria. 

Furthermore, the comparison between LCC and Granular B subbase materials that were 

installed on the same road sections was completed and discussed. The predicted service life of 

the pavements without any maintenance was determined.  

The method for the failure criteria analysis consisted of the following approaches: 

 Measuring the response of the pavement to different loadings. At this approach, the 

ability of the pavement to withstand various loads was studied by controlling stress 

values at the bottom and top of the subbase layer. 

 Determining the allowable number of load repetitions on the pavement. The approach 

obtains the number of maximum load repetitions that can be withstand by the pavement. 

 Identifying the maximum ESALs that road section can bear. Damages due to cumulative 

Equivalent Single Axle Loads were determined and presented in the graphs as potential 

fatigue cracking and rutting issues. 



50 

 

4.4 Failure Criteria Analysis 

In order to understand the expected vertical stress and tensile stress that will occur in the 

pavement structure the failure criteria analysis was conducted using the WESLEA software. 

The pavement structure and material properties were taken from the existing projects in Canada. 

Some unknown values were assumed in this analysis based on engineering experience and 

recommended values (TAC, 2014). Modulus of elasticity for LCC was taken as 850 MPa as a 

result of the tests that were conducted by the author’s colleagues in CPATT laboratory (for the 

LCC density of 475 kg/m3). 

Two types of pavement structure using a different material for subbase layer were analyzed and 

compared, which are the Lightweight Cellular Concrete and the unbound Granular B subbase 

material. The pavement structure and material properties are provided in Table 4-1. 

ESALs for Dixie Road were taken from the report completed by Griffiths and Popik (2013). 

The AADT information for Highway 9 was obtained from MTO (provincial highways traffic 

volumes 2016 report). The ESALs for Dixie Road and for Winston Churchill Boulevard were 

predicted to be 500,000 and 160,000 respectively (Table 4-2).  

Table 4-1: WESLEA Settings for Dixie Road, Highway 9 and Winston Churchill Boulevard (Material 

Properties of the Pavement) 

  Surfac

e 

Base Subbase Subgrad

e 
HMA Granular 

A 

Granular B LC

C 

Soil 

 

Dixie Road 

E (MPa) 3445 250 200 850 30 

Poisson's Ratio 0.35 0.4 0.35 0.2 0.45 

Thickness (mm) 140 150 650 650 - 

 

Highway 9 

E (MPa) 3445 250 200 850 30 

Poisson's Ratio 0.35 0.4 0.35 0.2 0.45 

Thickness (mm) 200 200 1100 1100 - 

Winston 

Churchill 

Blvd 

E (MPa) 3445 250 200 850 30 

Poisson's Ratio 0.35 0.4 0.35 0.2 0.45 

Thickness (mm) 120 240 550 550 - 
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Table 4-2: ESALs for Three Road Sections in Ontario 
 

Dixie Road Highway 9 Winston Churchill Blvd 

ESALs 500,000 1,500,000 160,000 

 

LCC is a potential substitution of the granular material for the subbase in some projects. This 

chapter aimed to compare the predicted performance of the pavements with LCC with the same 

road but with granular material; thus the same steps for determining the stress values were taken 

for both pavements – LCC and granular subbase pavements. 

 First Approach 

With the use of WESLEA software, the vertical stress and tensile stress happened on the top of 

the subbase layer and bottom of the subbase layer respectively at different loads is shown in 

Figure 4-2. To develop the graphs, the load range was varied from 20 kN to 120 kN of 

magnitude. The standard axle load number is usually considered to be 80 kN. Figure 4-2 

presents the expected vertical stress that will be applied to the subbase layer.  

The vertical stress applied to the LCC layer is higher than the one to the Granular B layer for 

every loading set for all three roads. However, the typical compressive strength of the LCC at 

low density ranges between 0.5 MPa to 1.0 MPa. Thus, the LCC layer is considered strong 

enough to support the pavement in the range of 20 kN to 120 kN of axle loads. The output of 

the WESLEA software is shown in Tables 4-3; 4-4; 4-5. 

Table 4-3: Vertical and Tensile Stresses. Dixie Road 

Dixie Road 

Load, 

kg 

Vertical Stress at the 

Top of Granular B 

Tensile Stress at the 

Bottom of Granular B 

Vertical Stress at 

the Top of LCC 

layer 

Tensile 

Stress at 

the Bottom 

of LCC 

Layer 
2000 55.53 -25.07 83.21 -45.68 

4000 105.18 -49.63 156.01 -90.35 

6000 150.34 -73.68 220.81 -134.04 

8000 191.9 -97.24 279.2 -176.79 

10,000 230.47 -120.32 332.28 -218.62 

12,000 266.47 -142.93 380.84 -259.57 
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Table 4-4: Vertical and Tensile Stresses. Highway 9 

Highway 9 

Load, 

kg 

Vertical Stress at 

the Top of 

Granular layer 

Tensile Stress at the 

Bottom of Granular 

Layer 

Vertical Stress at 

the Top of LCC 

layer 

Tensile 

Stress at the 

Bottom of 

LCC Layer 

2000 34.27 -10.14 52.84 -18.68 

4000 66.56 -20.19 102.11 -37.19 

6000 97.12 -30.14 148.27 -55.51 

8000 126.14 -40.01 191.67 -73.66 

10,000 153.79 -49.78 232.57 -91.63 

12,000 180.19 -59.47 272.2 -109.43 

 

Table 4-5: Vertical and Tensile Stresses. Winston Churchill Blvd 

Winston Churchill Boulevard 

Load, 

kg 

Vertical Stress at 

the Top of 

Granular layer 

Tensile Stress at the 

Bottom of Granular 

Layer 

Vertical Stress at 

the Top of LCC 

layer 

Tensile 

Stress at the 

Bottom of 

LCC Layer 

2000 52.64 -0.92 74.72 -1.85 

4000 101.26 -1.76 142.88 -3.56 

6000 146.46 -2.51 205.46 -5.11 

8000 188.7 -3.17 263.21 -6.53 

10,000 228.31 -3.76 316.72 -7.82 

12,000 265.58 -4.27 366.43 -8.97 

 

The results of the tensile stress occurring at the bottom of the subbase layer are demonstrated 

in Figure 4-2. It is clear that the tensile stress happening at the LCC layer is higher than the 

tensile stress occurring at the Granular B layer. However, according to Narayanan and 

Ramamurthy (2000), the flexural strength of lightweight cellular concrete ranges from 15% to 

35% of its compressive strength, which is between 0.075 to 0.35 MPa for the typical low-

density lightweight cellular concrete. Predicted maximum value obtained from the WESLEA 
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software for tensile stress at the bottom of the LCC subbase layer (at 120 kN load magnitude) 

throughout all road sections was 0.26 MPa. The right part of Figure 4-2 displays that both of 

the subbase layers for all three roads are capable of resisting the tensile stress and protect the 

layer from damage.  

Maximum vertical stresses that potentially could happen under 120 kN load magnitude at the 

top of LCC layer were 0.38 MPa, 0.27 MPa and 0.36 MPa for Dixie Road, Highway 9 and 

Winston Churchill Boulevard respectively. Those values are lower than typical compressive 

strength values for the Lightweight Cellular Concrete (0.5 to 1.5 MPa). Thus, LCC layer can 

potentially hold the vertical stress without being damaged (Figure 4-2).  
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Figure 4-2: Vertical and Tensile Stresses. Comparison for Dixie Road, Highway 9 and Winston Churchill 

Blvd (WESLEA software, 2018) 
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 Second Approach 

The vertical stress value at the bottom of AC layer and tensile strength at the bottom of LCC 

layer were taken as the representatives of the fatigue and rutting measures respectively. By 

using the WESLEA software, damage analysis for fatigue cracking and permanent deformation 

was obtained. The equations that were used in the calculation of fatigue cracking and rutting in 

WESLEA software are presented below: 

𝑁𝑓𝑐 = 2.83 × 10−6 (
106

𝜀𝑡
)

3.148

        (1) 

Where: 

Nfc = Allowable number of load repetition before fatigue cracking 

εt = Tensile strain at the bottom of surface layer 

𝑁𝑓𝑟 = 1.0 × 1016 (
1

𝜀𝑣
)

3.87

                   (2) 

Where: 

Nfr= Allowable number of load repetition before rutting 

εν = Compressive strain at the top of subgrade layer 

The output of the WESLEA software of the predicted damage to the pavements is presented in 

Tables 4-6; 4-7; 4-8. 

Table 4-6: Allowable Number of Load Repetition. Fatigue Cracking and Rutting for Dixie Road 

Dixie Road 

Load,  

kg 

Fatigue. Pavement 

with Granular B  

Rutting. Pavement 

with Granular B 

Fatigue.Pavement 

with LCC  

Rutting.Pavement 

with LCC 

2000 2,417,552 12,264,561 4,602,352 154,158,424 

4000 451,514 870,860 1,005,395 10,962,335 

6000 183,018 188,197 443,908 2,372,274 

8000 107,632 64,135 287,635 809,479 

10,000 76,547 28,049 227,081 354,437 

12,000 60,720 14,631 200,912 181,681 
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It should be noted that the LCC layer could potentially carry more traffic loading than Granular 

B layer before fatigue cracking happens. This conclusion can be made due to the fact that the 

Total Allowable Number of Load Repetition (in terms of fatigue cracking) of LCC layer is 1.4 

to 3.3 times higher than the Granular B layer depending on the project. Giving the example of 

the typical axle load of 80 kN for Dixie Road, the Total Allowable Number of Load Repetition 

with LCC is 287,635 whereas it is 107,632 with Granular B. The ratio comes to 2.67, meaning 

that pavement with LCC is superior in terms of resistance to fatigue cracking. 

Table 4-7: Allowable Number of Load Repetition. Fatigue Cracking and Rutting for Highway 9 

Highway 9 

Load, 

kg 

Fatigue. Pavement 

with Granular B  

Rutting. Pavement 

with Granular B 

Fatigue.Pavement 

with LCC  

Rutting.Pavement 

with LCC 

2000 8,801,919 348,501,635 15,268,311 5,148,891,932 

4000 1,335,740 24,233,438 2,433,609 358,295,756 

6000 500,772 5,129,902 962,659 75,899,446 

8000 269,727 1,712,909 548,875 25,360,318 

10,000 175,802 734,178 379,512 10,876,822 

12,000 128,467 368,512 294,602 5,462,865 

 

Table 4-8: Allowable Number of Load Repetition. Fatigue Cracking and Rutting for Winston Churchill 

Boulevard 

Winston Churchill Boulevard 

Load, 

kg 

Fatigue. Pavement with 

Granular B  

Rutting. 

Pavement with 

Granular B 

Fatigue. 

Pavement with 

LCC  

Rutting. 

Pavement with 

LCC 

2000 1,605,741 8,847,648 2,279,127 90,925,930 

4000 343,393 630,873 538,184 6,482,740 

6000 145,964 136,897 241,716 1,406,532 

8000 90,887 46,842 160,580 481,185 

10,000 68,516 20,567 130,016 211,232 

12,000 57,474 10,572 117,682 108,552 
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The results for predicted rutting performance show even stronger differentiation between 

values. The performance of the LCC based pavements in terms of rutting is from 10.2 to 14.8 

times better than with Granular B. For Highway 9, under the typical axle load of 80 kN, the 

Total Allowable Number of Load Repetition with LCC and Granular B (in terms of rutting) is 

25,360,318 and 1,712,909 respectively. Thus giving the ratio of 14.8. This is due to the fact that 

LCC material is stiffer itself and because rutting is a result of tensile stress at the bottom of the 

subbase layer, LCC-based pavements show lower rutting issues.  

The results of the Allowable Number of Load Repetition under the various loadings are shown 

in Figure 4-3. It is clear that the pavement with LCC subbase is more durable than the pavement 

with Granular B layer at the same thickness since the allowable numbers of load repetitions for 

fatigue cracking and permanent deformation are higher.   
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Figure 4-3: Allowable Number of Load Repetition. Fatigue Cracking and Rutting for Dixie Road, 

Highway 9 and Winston Churchill Blvd (WESLEA software, 2018) 
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 Third Approach 

In order to understand the approximate service life of the pavement without any maintenance, 

Allowable Number of Load Repetitions vs ESALs graphs were plotted on Figure 4-4. The 

maximum Allowable Number of Load Repetitions was calculated by WESLEA software and it 

was 107,632 for fatigue cracking and 64,135 for rutting (Dixie Road; Granular-based section). 

In comparison, for LCC-based section for the same road, those values were 287,635 and 

809,479 for fatigue cracking and rutting respectively. Values for other sections are presented in 

Tables 4-11; 4-12; 4-13; 4-14. 

The ratio between the range of ESALs and Allowable Number of Load Repetitions was 

calculated in order to predict the capacity of the particular section. If the damage ratio exceeds 

one, it indicates that a failure could happen on the pavement as traffic loading surpass the 

pavement’s bearing capacity. Damage ratio under various ESALs for each road section were 

calculated to determine bearing capacity of the pavements under different traffic loading. 

Satisfactory result was considered when both rutting and fatigue cracking damage ratio were 

below one. For Dixie Road, Granular-based pavement, this number was 50,000 ESALs, 

whereas for the LCC-based it was 250,000 ESALs (Table 4-9; 4-10). The same trend was 

observed on two other roads – Highway 9 and Winston Churchill Boulevard. For Highway 9 

(Tables 4-11; 4-12), both fatigue and rutting damage ratio were lower than one under the 

100,000 ESALs (Granular layer) and 500,000 ESALs (LCC layer). For Winston Churchill 

Boulevard – 40,000 and 160,000 ESALs respectively (Tables 4-13; 4-14).  

All three road sections installed with LCC as a subbase could potentially withstand higher 

ESALs than pavements with Granular material. This can lead to the conclusion that LCC-based 

pavements could be more durable in terms of fatigue cracking and rutting resistance. 

The output from the WESLEA software of the predicted damage of the pavements is presented 

in Tables 4-9; 4-10; 4-11; 4-12; 4-13; 4-14.  
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Table 4-9: Predicted Damage (Fatigue Cracking and Rutting) of Pavement with Granular B Subbase. 

Dixie Road (WESLEA, 2018) 

Granular B   

Fatigue cracking. With Granular B  Rutting. With Granular B  

Load,kg ESALs Allowable Damage Allowable Damage 

80 500,000 107,632 4.65 64,135 7.80 

80 450,000 107,632 4.18 64,135 7.02 

80 400,000 107,632 3.72 64,135 6.24 

80 350,000 107,632 3.25 64,135 5.46 

80 300,000 107,632 2.79 64,135 4.68 

80 250,000 107,632 2.32 64,135 3.90 

80 200,000 107,632 1.86 64,135 3.12 

80 150,000 107,632 1.39 64,135 2.34 

80 100,000 107,632 0.93 64,135 1.56 

 80 50,000 107,632 0.46 64,135 0.78 

Table 4-10: Predicted Damage (Fatigue Cracking and Rutting) of Pavement with LCC Subbase. Dixie 

Road (WESLEA, 2018) 

LCC   

Fatigue cracking. With LCC  Rutting. With LCC  

Load, kg ESALs Allowable Damage Allowable Damage 

80 500,000 287,635 1.74 809,479 0.62 

80 450,000 287,635 1.56 809,479 0.56 

80 400,000 287,635 1.39 809,479 0.49 

80 350,000 287,635 1.22 809,479 0.43 

80 300,000 287,635 1.04 809,479 0.37 

80 250,000 287,635 0.87 809,479 0.31 

80 200,000 287,635 0.70 809,479 0.25 

80 150,000 287,635 0.52 809,479 0.19 

80 100,000 287,635 0.35 809,479 0.12 

80 50,000 287,635 0.17 809,479 0.06 
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Table 4-11: Predicted Damage (Fatigue Cracking and Rutting) of Pavement with Granular Subbase. 

Highway 9 (WESLEA, 2018) 

Granular B   

Fatigue cracking. With Granular B  Rutting. With Granular B  

Load, kg ESALs Allowable Damage Allowable Damage 

80 1,500,000 269,727 5.56 1,712,909 0.88 

80 1,300,000 269,727 4.82 1,712,909 0.76 

80 1,100,000 269,727 4.08 1,712,909 0.64 

80 900,000 269,727 3.34 1,712,909 0.53 

80 700,000 269,727 2.60 1,712,909 0.41 

80 500,000 269,727 1.85 1,712,909 0.29 

80 300,000 269,727 1.11 1,712,909 0.18 

80 100,000 269,727 0.37 1,712,909 0.06 

Table 4-12: Predicted Damage (Fatigue Cracking and Rutting) of Pavement with LCC Subbase. Highway 

9 (WESLEA, 2018) 

LCC   

Fatigue cracking. With LCC  Rutting. With LCC  

Load, kg ESALs Allowable Damage Allowable Damage 

80 1,500,000 548,875 2.73 25,360,318 0.06 

80 1,400,000 548,875 2.55 25,360,318 0.06 

80 1,300,000 548,875 2.37 25,360,318 0.05 

80 1,200,000 548,875 2.19 25,360,318 0.05 

80 1,100,000 548,875 2.00 25,360,318 0.04 

80 1,000,000 548,875 1.82 25,360,318 0.04 

80 900,000 548,875 1.64 25,360,318 0.04 

80 800,000 548,875 1.46 25,360,318 0.03 

80 700,000 548,875 1.28 25,360,318 0.03 

80 600,000 548,875 1.09 25,360,318 0.02 

80 500,000 548,875 0.91 25,360,318 0.02 
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Table 4-13: Predicted Damage (Fatigue Cracking and Rutting) of Pavement with Granular Subbase. 

Winston Churchill Boulevard (WESLEA, 2018) 

Granular B 

Input Parameters Fatigue cracking. With Granular B  Rutting. With Granular B  

Load, kg ESALs Allowable Damage Allowable Damage 

80 160,000 90,887 1.76 46,842 3.42 

80 145,000 90,887 1.60 46,842 3.10 

80 130,000 90,887 1.43 46,842 2.78 

80 115,000 90,887 1.27 46,842 2.46 

80 100,000 90,887 1.10 46,842 2.13 

80 85,000 90,887 0.94 46,842 1.81 

80 70,000 90,887 0.77 46,842 1.49 

80 55,000 90,887 0.61 46,842 1.17 

80 40,000 90,887 0.44 46,842 0.85 

Table 4-14: Predicted Damage (Fatigue Cracking and Rutting) of Pavement with LCC Subbase. Winston 

Churchill Boulevard (WESLEA, 2018) 

LCC 

Input Parameters Fatigue cracking. With LCC  Rutting. With LCC  

Load, kg ESAL Allowable Damage Allowable Damage 

80 220,000 160,580 1.37 481,185 0.6 

80 200,000 160,580 1.25 481,185 0.42 

80 180,000 160,580 1.12 481,185 0.37 

80 160,000 160,580 1.00 481,185 0.33 

80 140,000 160,580 0.87 481,185 0.29 

80 120,000 160,580 0.75 481,185 0.25 

80 100,000 160,580 0.62 481,185 0.21 

80 80,000 160,580 0.50 481,185 0.17 

80 60,000 160,580 0.37 481,185 0.12 

80 40,000 160,580 0.25 481,185 0.08 

80 20,000 160,580 0.12 481,185 0.04 



63 

 

Figure 4-4 shows the comparison between LCC and Granular materials in terms of 

performance. In all three roads, LCC-based pavements showed good performance in terms of 

fatigue cracking and rutting. In all cases, except for the fatigue cracking resistance on Dixie 

Road, pavements with LCC layer showed potential ability to resist the load. For Dixie Road, 

the ESALs of 500,000 was higher than one obtained from the WESLEA software of 250,000 

ESALs, meaning that pavement cannot withstand this large number of ESALs without any 

maintenance. In terms of rutting, there was a significant margin in LCC-based pavements before 

they reached the allowable limit of load repetitions. By modeling different pavement structures 

(LCC and Granular B based) there is an opportunity to visually estimate the difference between 

the two performances. According to WESLEA output, LCC has performed better in all three 

projects in both fatigue cracking and rutting resistance. It should be noted that the difference in 

the performance of the sections was more significant in terms of rutting. 
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Figure 4-4:  Predicted Damage. Fatigue Cracking and Rutting for Dixie Road, Highway 9 and Winston 

Churchill Blvd (WESLEA Software, 2018) 
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4.5 Summary 

Three roads in Ontario were taken as examples of roads with settlement issues. All three 

sections were installed with the LCC layer as a subbase and prediction performance of those 

sections was determined by the criteria analysis.  

The result of the failure criteria analysis indicated that the LCC layer is more durable compared 

to the conventional Granular B materials; thus, pavement thickness using LCC as a subbase 

material could be thinner than the conventional pavement structure, which may reduce the 

excavation depth during construction and save time and money. This also shows that using LCC 

as a subbase layer material could be effective. However, the software does not consider the 

environmental impact such as temperature and moisture. An in-situ field inspection is needed 

to evaluate the environmental effect on the pavement using LCC as a subbase layer. The results 

of the failure criteria analysis indicated that the usage of LCC as a subbase material is more 

durable than the conventional granular material with similar thickness. The findings 

demonstrate that LCC could be considered as a potential pavement subbase material in respect 

to mechanical properties. However, other durability and functional properties have to be 

assessed. 
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CHAPTER 5 

5 TORONTO PROJECT  

Mechanical properties of LCC samples, cast during constructing project will be studied in this 

Chapter. Results, obtained from the laboratory testing will be compared to the typical values 

for LCC in the literature.  

All of the road sections described and studied in Chapters 3 and 4 were constructed prior to this 

research being carried out. In order to study the current state and condition of the sections 

installed with Lightweight Cellular Concrete (LCC) and, to predict the future performance of 

the pavement, laboratory tests on defining mechanical properties of LCC needed to be done. 

Some companies, such as CEMATRIX, have been running laboratory tests by using their own 

laboratories as well as using third-party companies. Typically, preparation of samples in 

laboratory conditions might not necessarily reflect actual site construction conditions. This 

could be due to a number of unforeseen circumstances that might occur during the construction 

process, including but not limited to weather conditions, challenges with equipment and human 

factor. As a result of this, it is important to assess the characteristics of the actual field-cast 

material. Therefore, this study obtained LCC samples from the actual site and tested them in 

the CPATT laboratory. Some of the most important mechanical properties such as Modulus of 

Elasticity, Poisson’s ratio, and UCS were determined and compared to the typical values for 

the corresponding LCC densities. 

5.1 Site Description 

One of the ongoing projects Southern Ontario is a road section of Eglinton Avenue West, East 

of Black Creek Drive, Toronto, Ontario (Figure 5-1). The purpose of this project is to widen 

the road. This construction project consists of several measures including but not limited to 

constructing a retaining wall out of concrete and raising the surface of the road by 

approximately five meters. The latter was designed to be installed with lightweight material 

since the reduction in weight of this thick pavement layer was required. 
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Figure 5-1: Site Location (Google Maps, 2018) 

5.2 Approach 

The aim of this Chapter is to determine mechanical properties of the in-situ cast samples and to 

compare the obtained values to the typical values in literature. In addition, the relationship 

between the mechanical properties of LCC will be discussed. 

Access to the construction site for collecting the fresh samples was provided by the company, 

which was conducting the Lightweight Cellular Concrete work (CEMATRIX). A total of 2521 

m3 of LCC material was poured over a couple of weeks. As part of this project, cylindrical 

molds were prepared for casting the LCC samples by University of Waterloo team. Modulus of 

elasticity, unconfined compressive strength, and Poisson’s ratio were determined by testing 

those samples.  

5.3 Production and Placement 

Lightweight Cellular Concrete with the 475 kg/m3 plastic density was used in this project. The 

“dry” mix process was utilized. The composition of the mix was cement (80%), slag (20%), 

w/c ratio of 0.5 and a foaming agent. The cement and slag were mixed together by a contractor 

before deliver to the site and after that, this dry mix was sucked into CEMATRIX “dry” mix 

equipment where it was blended with water. Figure 5-2 represents the construction process. 
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Figure 5-2: Construction Process. Toronto, May 2018 

The target plastic density and the slurry temperature were controlled at this stage. Quality 

Control (QC) is one of the steps for checking the desirable features of the mix. Marsh cone test 

was conducted to ensure the mix met the desired requirement. According to industrial 

experience, it is found that 45 to 90 seconds in Marsh cone test could provide a stable and 

quality cement slurry.  

After mixing the slurry, the mix is pumped to the site through a hose. At the same moment, the 

foaming agent is added to the mix and it is blended while moving inside the hose. In order to 

blend the LCC mix properly, a special device is installed in the beginning of the hose, which 

twists the torrent.  

Plastic density was checked once per every 100 m3 during the pouring to ensure the target 

plastic density was reached and maintained. No consolidating and vibrating during the 

placement process was carried out as it may harm the bubble structure of the material. 

During the placement of the LCC mix, several buckets were filled with material. Shortly after 

that, all the prepared molds were cast from the above-mentioned buckets prefilled with LCC 

(Figure 5-3). The target density for LCC material was 475 kg/m3. According to Maher and 

Hagan, (2016) plastic density may vary in the range of ±10% of designed density. Thus, the 

range for the 475 kg/m3 LCC mix is 427.5 to 522.5 kg/m3. During the mixing on site, Quality 

Control showed that the average plastic density of the mix was 454 kg/m3. 
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Figure 5-3: Samples, Collected on Site. 75*150 mm Molds for UCS test. 150*300 mm Molds for Modulus 

of Elasticity and Poisson's Ratio Tests 

The following sections discuss the laboratory tests that were performed such as Unconfined 

Compressive Strength, Modulus of Elasticity and the Poisson’s ratio. Samples for UCS test 

were collected in the amount of four samples per each test date. UCS testing was performed on 

7, 14, 21 and 28th days. In addition, several samples were collected as spare samples for setting 

up the testing equipment. Modulus of elasticity and Poisson’s Ratio test was conducted on 28th 

day only. Seven samples, including dummy ones, of 150 mm*300 mm were collected for testing 

modulus of elasticity and Poisson’s ratio. The procedures followed for each test are described 

below. 

5.4 Laboratory Tests 

Laboratory tests were conducted at the University of Waterloo, at the Centre for Pavement 

Transportation and Technology (CPATT) laboratory from June 1, 2018 to June 22, 2018. 
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 Unconfined Compressive Strength  

This test was carried out in accordance with ASTM C495 and ASTM C796. Four cylinder 

specimens with dimensions 75 mm by 150 mm were tested. The samples were cast in-situ and 

in order to prevent them from being broken and to avoid compaction from vibration, samples 

were kept on site for three days. The ambient temperature on May 25th to May 27th, during the 

field work, is presented in Figure 5-4.  

 

Figure 5-4: Weather Forecast during Construction and Casting the Samples 

(https://www.timeanddate.com/weather/canada/toronto/historic?month=5&year=2018) 

Later, samples were cured at room temperature 21±60C from day four to the testing day. Before 

testing the samples, they were demolded, grinded at the top and the bottom in order to have 

horizontal flat surfaces. Measurements of the samples were taken such as height, diameter, and 

weight. The average measured hardened state densities for the different batches of samples were 

reported as 416, 408, 410, 401 kg/m3. The actual density, which is known as a hardened state 

density, was observed to be lower than plastic density of material that was poured on site. The 

hardened state density of LCC is typically about 80 kg/m3 less than its plastic density (Legatski, 

1994). Thus, measured densities are within the expected range.  

In addition, visual inspection was completed to reveal some possible structural cracks, apart 

from drying shrinkage, which can affect the test results. During the testing process, the load 

was applied at a constant rate and the maximum load was reached within considerable time. To 

calculate the compressive strength for each specimen, the following equation was used: 

𝑈𝐶𝑆 =
𝑃

𝐴
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where: 

UCS – Unconfined Compressive Strength, MPa 

P – maximum load recorded, kN 

A – the cross-section area of the specimen, mm2 

Figure 5-5 demonstrates test setup and frame of the UCS test in the CPATT lab. 

 

(a) 

 

(b) 

 

 

(c) 

 

Figure 5-5: Unconfined Compressive Strength. (a) - samples, ready to be tested; (b) and (c) - testing 

equipment 
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The UCS test was performed at 7, 14, 21, and 28 days at the CPATT laboratory. Figures 5-6 

and 5-7 show the results from UCS test varies as low as 1.27 MPa to as high as 1.69 MPa. For 

7 days and 28 days, the compressive strength was relatively consistent and stayed in the ranges 

of 1.37 to 1.61 MPa and 1.51 to 1.55 MPa respectively. One of the issues with the testing 

process was an insufficient number of samples for the 28 days UCS test – only two of them 

were correctly tested and results were obtained. Following the ASTM C495 procedure, four 

samples have to be tested in order to obtain reliable results. In addition, a few samples were 

needed for each testing day in order to calibrate the test frame. Also, a few samples were 

damaged during the curing period, while on site. Samples were left on site at the ambient 

temperature during the first three days and were discovered lying on the ground when it was 

time to pick the samples up from the site. Visually, cracks were observed later on the surface 

of some samples, but it was hard to say if those cracks were drying shrinkage cracks or some 

structural cracks. Those damaged samples were not tested to avoid confusion. Some of them 

were used as “dummy” samples, but overall number was already insufficient to have four good 

quality samples for 28 days UCS testing. UCS test results for 7, 14, 21 and 28 days are presented 

in Figure 5-6. The data for the testing are presented in Appendix III. 

 

Figure 5-6: UCS Test Results 

After calculating the average values for each sample age, 7, 14, 21 and 28 days, the compressive 

strength was determined to be within a small range throughout all the ages of the samples 

(Figure 5-7). The fluctuation of the results was from 1.44 MPa to 1.53 MPa, meaning no 

significant difference was observed between 7, 14, 21 and 28 days samples.  
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Figure 5-7: Average UCS Test Results 

Table 5-1 presents typical values for Cellular Concrete. For the densities between 400 and 600 

kg/m3, compressive strength ranges from 0.5 to 1.5 MPa. Those are the approximate values and 

the range for compressive strength is relatively large because it may include the cellular 

concrete with different mix compositions. The target density of the samples, taken from the site 

in Toronto, was 475 kg/m3. This means that the results were more than satisfied and material 

cast in-situ has gained relatively high compressive strength for its density. 

Table 5-1: Typical Properties of Cellular Concrete Based on British Concrete Association (BCA 1994) 

Dry Density (kg/m3) Compressive 

Strength 

(MPa) 

Drying 

Shrinkage 

(%) 

Modulus of 

Elasticity 

(MPa) 

Thermal 

Conductivity 

(W/mK) 

400 0.5-1.0 0.30-0.35 800-1,000 0.10 

600 1.0-1.5 0.22-0.25 1,000-1,500 0.11 

800 1.5-2.0 0.20-0.22 2,000-2,500 0.17-0.23 

1000 2.5-3.0 0.15-0.18 2,500-3,000 0.23-0.30 

1200 4.5-5.5 0.09-0.11 3,500-4,000 0.38-0.42 

1400 6.0-8.0 0.07-0.09 5,000-6,000 0.50-0.55 

1600 7.5-10.0 0.06-0.07 10,000-12,000 0.62-0.66 
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 Modulus of Elasticity and Poisson’s Ratio 

The testing method was completed in accordance with ASTM C469. The dimension of the 

specimen was 150 mm by 300 mm for the samples with targeted 475 kg/m3 density. Before 

testing the samples, they were grinded at the top and the bottom in order to have horizontal flat 

surfaces. Measurements of the samples were taken such as height, diameter, and weight.  In 

addition, visual inspection was completed to reveal some possible structural cracks, apart from 

drying shrinkage, which can affect the test results. The same as for the compressive strength, 

actual density of the samples was calculated by dividing the weight of the sample to its volume. 

The average hardened state density appeared to be slightly higher than one in the smaller 

samples (for UCS test) and it was reported as 417 kg/m3 for this batch of samples. 

The configuration of the test apparatus is shown in Figure 5-8. The calculation of the two 

parameters are described as follows: 

 For Modulus of Elasticity: 

𝐸 =
(𝑆2 − 𝑆1)

(𝜀2 − 0.000050)
 

                                    

where: 

E – modulus of elasticity, MPa 

S2 – stress corresponding to 40% of ultimate load, MPa 

S1 – stress corresponding to a longitudinal strain, 𝜀2 , of 50 million, MPa 

𝜀2 – longitudinal strain produced by stress S2       

 

 For Poisson’s ratio: 

𝜇 =
(𝜀𝑡2 − 𝜀𝑡1)

(𝜀2 − 0.000050)
 

where: 

µ - Poisson’s ratio 

ɛt2 – transverse strain at midheight of the specimen produced by stress S2 

ɛt1 – transverse strain at midheight of the specimen produced by stress S1 
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Figure 5-8: Modulus of Elasticity and Poisson's Ratio Test Setup 

Prior to the actual test, two specimens were tested to determine the compressive strength. The 

40% of the maximum load was determined in this trial test, which then was used as the 

maximum load for the modulus of elasticity test. The compressometer and extensometer were 

used to measure the modulus of elasticity and Poisson’s ratio as they provide readings for 

longitudinal strain and transverse strain. In accordance to ASTM C469, the sample should be 

loaded no less than three times and the first reading is not recorded as valid. During the test at 

the CPATT lab, each of the three samples was loaded six times, but the first reading was not 

taken into account since it is considered as a trial loading (according to the ASTM C469). 

Results are presented in Figure 5-9. Samples were tested at 28 days. 
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Figure 5-9: Modulus of Elasticity Test Results for 28 Days Samples 

The average modulus of elasticity was determined as 657, 661 and 687 MPa for the 3rd, 4th, and 

5th samples respectively. The result for modulus of elasticity for the 5th sample was obtained to 

be the highest, corresponding to the 420.68 kg/m3 density, whereas for the 3rd sample modulus 

of elasticity was determined as the lowest with the sample density at 421.33 kg/m3 (Figure 5-

9). During the testing of the 5th sample, it was found that the reading increased from 680 to 693 

MPa after the second cycle. This may be explained due to the fact that the test frame had some 

noise during testing and several adjustments were made to the longitudinal extensometer. 

According to Table 5-1, the lower limit for modulus of elasticity of the 400 kg/m3 density is 

approximately 800 MPa, whereas laboratory results observed it to be in the range of 657 to 687 

MPa.  

The Poisson’s ratio was observed in the range of 0.24 to 0.30 (Appendix III), which is consistent 

to the past literature (BCA, 1994). 

 Relationship between Properties 

Correlation between compressive strength and density is shown in Figure 5-10. The trend for 7 

days samples was not typical because the lower density was observed, the higher compressive 

strength was, though 7 days samples had a good R2 value of 0.96. For the 14 and 21 days 

samples with hardened state density of 404 to 414 kg/m3 the range of the compressive strength 

was relatively different, laying in the range of 1.2 to 1.69 MPa. For the 28 days samples, despite 

the expectations, compressive strength was observed to be at approximately same level as for 

other days samples (1.52 to 1.55MPa).  
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Figure 5-10: Correlation of Compressive Strength and Density 

5.5 Summary 

It is worth mentioning that one of the hypothesis of the thesis was that the mechanical properties 

of the site cast samples would be different from the typical values. As a result of the laboratory 

testing, some mechanical properties were different from the ones in the literature.  

 The field cast samples usually have completely different curing procedure. Because of 

the high temperatures during the curing period, it is assumed that samples gained high 

strength in the first few days. 

 Obtained results may be the reason of possibly damaged bubbled structure as none of 

the vibration should be done to the material although in order to test the samples they 

were transported to the laboratory on the 4th day. There is no specific requirement on 

after what day samples can be transported. 

 For field cast samples correlation between compressive strength and modulus of 

elasticity was not found as strong. This could be studied more thoroughly by collecting 

more samples, thus having a greater data set. 

 High compressive strength values, especially on early stages (before 28 days) may be 

the result of using good quality material in the field by CEMATRIX. 
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CHAPTER 6 

6 CONCLUSIONS AND FUTURE RECOMMENDATIONS 

6.1 Conclusions 

Lightweight Cellular Concrete (LCC) is a lightweight product, consisting of Portland Cement, 

water, and foaming agent which contain air bubbles. LCC is relatively homogeneous compared 

to conventional concrete, as it does not contain coarse aggregate. It has constructive advantages 

such as low density with higher pound for pound strength compared with natural concrete and 

other fill materials. The properties of LCC depend on its microstructure and composition, 

methods of pore-formation and curing. Apart from being lightweight, LCC is a cost-effective 

and sustainable material and has superior thermal properties, freeze-thaw resistance, and good 

flowability. It can be used in a number of applications including but not limited to backfill, soil 

stabilization, embankment fills and pipe bedding, but this research was focused on studying of 

this material as an alternative construction material for reducing the weight of the subbase in 

pavement engineering, thereby mitigating excessive settlements and bearing failures.  

In terms of insulation value, LCC also has energy absorbing, thermal insulating, and 

soundproofing properties. The air voids are homogeneously distributed within LCC and by 

utilizing the LCC within the roadway structure, pavement damage from frost heave and spring 

thaw softening are reduced.  

This material is potentially cost-effective both in the short and long term. LCC typically 

replaces granular subbases two-to-three-times greater in thickness; therefore, less underlying 

soil needs to be excavated. 

LCC also has environmental benefits, as it is inert and non-contaminating compared to other 

potential lightweight materials, and uses relatively easily available materials. It can also include 

industrial byproducts and waste materials such as fly ash. It is relatively inexpensive, easy to 

make, and easy to use. It is versatile in that it can be pumped into place and poured into complex 

forms.  

With a greater emphasis on sustainability, materials such as LCC can minimize the generation 

of waste and deliver better performing pavements that require less maintenance.  

The major conclusions drawn from this research are outlined in the following section: 

 According to the report and visual inspection that were done at the Dixie Road, no 

significant transverse and longitudinal cracks were observed.  Both, Winston Churchill 

Boulevard and Highway 9 sections are in good condition with no visual distresses. The 
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bus-lane in Calgary (the oldest section) is performing well. No recent data from the road 

section in British Columbia was collected.  

 The inspections were done after the construction on the studied sections at different 

times. The results of the visual inspection, Falling Weight Deflectometer (FWD) as well 

as Benkelman Beam Test (for some cases) showed that the road sections are performing 

well and have some minor distresses on the surface (Dixie Road). FWD and Benkelman 

Beam Test are the most common tests for evaluating performance. 

 However, in-depth pavement data collection must be complete to provide a 

comprehensive review of the performance of the sections with LCC as a subbase layer. 

Therefore, further investigation is recommended. This could be achieved by using 

pavement instrumentation such as asphalt gauges, earth pressure cells, and 

environmental equipment. 

 In order to use LCC in a pavement structure as a subbase, certain activities have to be 

taken into consideration and implemented into the construction process. A number of 

general observations that are applicable to most LCC projects have been made from 

studying the road sections across Canada. These recommended construction activities 

include controlling the water table, constructing the proper drainage, transition areas 

between the sections and using quality equipment and professional personnel. 

 It is clear from the failure criteria analysis that the pavement with LCC subbase is more 

durable than the pavement with Granular B layer at the same thicknesses. 

 The result of the failure criteria analysis indicated that the pavement thickness using 

LCC as a subbase material could be thinner than the conventional pavement, which 

reduces the excavation depth during the construction and saves time and cost.  

 The WESLEA software does not consider the environmental impact of temperature and 

moisture. In-situ field inspection is needed to evaluate the environmental effect on the 

pavement using LCC as a subbase layer. 

 The mechanical properties of the site cast samples were found to be different from the 

typical values in the literature. 

 For field cast samples correlation between the compressive strength and modulus of 

elasticity were not highly correlated. This could be studied more thoroughly by 

collecting more samples to obtain more data. 

 The use of LCC as a pavement subbase layer could be practical and feasible in particular 

scenarios. 

6.2 Future Recommendations 

In terms of disadvantages of LCC, its high flowability means LCC must typically be placed 

into forms and cannot have a surface slope of more than 1 degree.  Due to its low density, 

upward buoyancy forces must be taken into account if the concrete is expected to be submerged 
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in water. Its initial cost may be higher, depending on the density and composition. This area 

may also need clarification and analysis in the future 

Based on this research, the following are recommended areas for future work: 

 New road sections must be built to provide data collection opportunities for researchers 

regarding LCC performance. 

 Those new pavements may be equipped with instrumentation such as earth pressure cell, 

horizontal strain gauge, and vertical strain gauge. This will help to quantitatively 

estimate pavement performance and will serve as a solid base for its evaluation. 

 More in-depth study of the LCC properties is required. 

 Correlation between laboratory and field cast samples could be determined in order to 

understand the effect of curing conditions and the quality of the material in general. 

 LCC has many potential benefits in terms of sustainability in construction such as low 

ease of application, reduction in use of virgin materials, using by-products as a substitute 

to cement, for example. In order to evaluate and calculate those benefits, Life Cycle 

Cost Assessment and Life Cycle Cost Analysis must be performed, which was not 

accomplished in the past studies. 
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APPENDIX I 

FWD Dixie Road Data 
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APPENDIX II 

TYPICAL PAVEMENT SURFACE 

TEMPERATURE IN SOUTHERN AND 

EASTERN ONTARIO 
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APPENDIX III 
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7 days            

Date   
cast 

Date 
Tested 

Code 
Casted 
Density      
(kg/m3) 

Average 
Diameter 

(mm) 

Average 
Height 
(mm) 

volume 
(mm3) 

Weight of 
Specimen       

(g) 

Applied 
Load          
(KN) 

Surface 
Area         

(mm2) 

Comp. 
Strength        

(MPa) 

Actual 
density 
(kg/m3) 

25-May-18 1-Jun-18 

3 

475 

75,910 146,590 663425,574 276 7,072427 4525,722 1,563 416,023 

4 76,250 146,300 668057,592 283 6,286667 4566,354 1,377 423,616 

5 76,305 142,420 651278,672 268 7,375137 4572,944 1,613 411,498 

6 76,190 143,680 655061,609 273 7,052352 4559,170 1,547 416,755 
            

14 days            

25-May-18 8-Jun-18 

1 

475 

76,325 144,595 661571,492 272,8 7,326274 4575,341 1,601 412,352 

2 76,435 150,085 688670,866 282,3 7,492442 4588,539 1,633 409,920 

3 76,520 146,995 675993,261 275,4 5,576168 4598,750 1,213 407,401 

4 76,320 145,860 667271,866 269,8 5,829073 4574,742 1,274 404,333 

5 76,425 144,245 661700,624 269,2   4587,338 0,000 406,831 

6 76,465 147,985 679568,068 276 6,810149 4592,142 1,483 406,140 
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21 days              

25-May-18 15-Jun-18 

1 

475 

77,14 
76,840 

151,020 
151,280 701529,777 285,2 6,721827 4637,294 1,450 406,540 

76,54 151,540 

2 
77,05 

76,645 
150,490 

150,575 694720,973 285,4 5,870159 4613,787 1,272 410,812 
76,24 150,660 

3 
76,96 

76,615 
149,610 

149,615 689751,463 285,6 5,994846 4610,176 1,300 414,062 
76,27 149,620 

4 
77,44 

76,825 
147,850 

147,605 684220,510 285,3 6,750173 4635,483 1,456 416,971 
76,21 147,360 

5 
76,25 

76,170 
151,290 

151,280 689349,252 281 7,730247 4556,777 1,696 407,631 
76,09 151,270 

6 
76,72 

76,220 
151,340 

151,000 688976,989 283,9 6,824816 4562,762 1,496 412,060 
75,720 150,660 

              
28 days              

25-May-18 22-Jun-18 

1 

475 

76,12 
76,140 

146,950 
146,920 668954,448 271,2 7,073447 4553,188 1,554 405,409 

76,16 146,890 

2 
76,16 

76,220 
149,760 

149,820 683592,931 271,9 6,932021 4562,762 1,519 397,751 
76,28 149,880 
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Height average Diameter average Weight
ultimate 

load
Cycle E P S1 S2 ε2 εt2 εt1 E

average of 

3 

samples

P

average of 

3 

samples

Density

300,36 300,24 150,97 151,51 2,280,7   1 642,519396 -0,2729921 0,049773 0,477093 0,00071507 -0,000179 2,614E-06 657,9486 -0,28118 0,005413 2,281     421,33    

300,12 152,05 2 662,972431 -0,2711261 0,055746 0,47716 0,00068564 -0,000181 -8,325E-06 421,33    

3 656,295094 -0,2962172 0,057138 0,478145 0,00069149 -0,000193 -3,44E-06 421,33    

4 655,710551 -0,275486 0,056313 0,478632 0,00069406 -0,000191 -1,342E-05 421,33    

5 654,634951 -0,2767729 0,055863 0,478132 0,00069505 -0,000169 9,632E-06 421,33    

6 660,130068 -0,2862974 0,052951 0,479353 0,00069594 -0,0002 -1,493E-05 421,33    

301,08 301,43 153,28 153,37 2,288,4   1 615,43521 -0,241753 0,054 0,462443 0,00071367 -0,000159 0,000001 661,5838 -0,24469 0,005569 2,288     410,94    

301,78 153,46 2 664,758994 -0,2373706 0,072788 0,466588 0,00064239 -0,000142 -1,359E-06 410,9365

3 659,488162 -0,2365564 0,061116 0,465074 0,00066253 -0,000151 -6,049E-06 410,9365

4 662,701418 -0,2536113 0,066985 0,455737 0,00063662 -0,000139 9,379E-06 410,9365

5 661,320369 -0,2409747 0,063958 0,455644 0,00064228 -0,000141 1,903E-06 410,9365

6 659,650138 -0,2578742 0,066265 0,45761 0,00064326 -0,000156 -2,719E-06 410,9365

301,02 300,73 151,88 151,94 2,293,8   1 667,210312 -0,3033913 0,043022 0,459577 0,00067432 -0,000191 -1,989E-06 687,9059 -0,28306 0,005453 2,294     420,68    

300,43 152,00 2 679,073003 -0,2991068 0,064895 0,475148 0,00065414 -0,000185 -4,322E-06 420,68

3 680,879413 -0,2735181 0,057177 0,472678 0,00066024 -0,000177 -9,604E-06 420,68

4 693,436836 -0,2587153 0,051636 0,476211 0,0006623 -0,0002 -3,77E-06 420,68

5 692,415536 -0,2766003 0,050982 0,474138 0,00066113 -0,000165 4,116E-06 420,68    

6 693,724756 -0,2870394 0,058131 0,475953 0,00065229 -0,000177 -4,116E-06 420,68

3 9,00

669,1461 -0,269644 9,00

5 9,00


