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Abstract

Support vector machines are a popular method in machine learning. They learn from data

about a subject, for example, lung tumors in a set of patients, to classify new data, such

as, a new patient’s tumor. The new tumor is classified as either cancerous or benign,

depending on how similar it is to the tumors of other patients in those two classes—where

similarity is judged by a kernel.

The adoption and use of support vector machines in health care, however, is inhibited by a

perceived and actual lack of rationale, understanding and transparency for how they work

and how to interpret information and results from them. For example, a user must select

the kernel, or similarity function, to be used, and there are many kernels to choose from

but little to no useful guidance on choosing one.

The primary goal of this thesis is to create accurate, transparent and interpretable kernels

with rationale to select them for classification in health care using SVM—and to do so

within a theoretical framework that advances rationale, understanding and transparency

for kernel/model selection with atomic data types. The kernels and framework necessarily

co-exist.

The secondary goal of this thesis is to quantitatively measure model interpretability for ker-

nel/model selection and identify the types of interpretable information which are available

from different models for interpretation.

Testing my framework and transparent kernels with empirical data I achieve classification

accuracy that is better than or equivalent to the Gaussian RBF kernels. I also validate

some of the model interpretability measures I propose.
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Hst Initial inherent model interpretability from

simplicity of sensitivity with Sturges binning
UHfd Posterior inherent model interpretability from

simplicity of sensitivity with Freedman-Diaconis binning
UHsc Posterior inherent model interpretability from

simplicity of sensitivity with Scott binning
U⇤
Hfd Initial inherent model interpretability from

simplicity of sensitivity with Freedman-Diaconis binning
U⇤
Hsc Initial inherent model interpretability from

simplicity of sensitivity with Scott binning

xxi



Chapter 1

Introduction

In classification studies/problems the task is to estimate or decide a binary outcome, such
as, if a patient has heart disease or not based on a comparison of their data to those of
past patients with known outcomes.

In health care, logistic regression and decision trees are commonly used methods for this
purpose with a growing demand for more advanced methods such as machine learning
[250]. However, machine learning (ML) methods are perceived as black boxes [169] which
limits understanding and explanation as required in health care.

This work focuses on support vector machines (SVM), as a popular and important ML
method [293] and a mainstay among state-of-the-art methods [47, 198, 301]. To understand
SVM [292] one must also understand one of its key components: a kernel.

A kernel (depicted in Figure 1.1 on page 2) is a function or model that takes two instances
of data as inputs (defined in Figure 1.2 on page 3), e.g., two patient health records, or two
(genomic) microarrays, and outputs a real-valued number that represents their similar-
ity. There are different kernels according to different concepts of similarity—e.g., patients
observations that are close to each other (proximity) versus patients observations that
vary together in the same direction (covariance similar to correlation1). Proximity and
covariance correspond to two main types of kernels stationary kernels and dot product
kernels which are the subject of later discussion.

1Correlation describes the association between multiple observations of a single feature in one patient
to multiple observations of that same feature in another patient. In this case, I am interested in how a
single observation in each feature of a patient, varies together (covaries) with a single observation in each
feature of another patient. Formally it is a sum of one-sample covariances in each feature. In math and
geometry I call it the dot product or scalar projection, respectively.
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Figure 1.1: Kernel inputs, outputs and hyperparameters. Note: kernel is a popular term
with at least 10 other definitions (see Chapter 7.1 Glossary for disambiguation).

The choice of kernel can adversely affect classification accuracy [18, 24, 36] as well as model
interpretability. Hence model selection is an important step in the ML process (Figure 1.4
on page 5) (Section 2.1).

The word kernel refers to at least eleven different concepts, most of which are not related.
I refer to two related concepts of kernels. I, primarily, and by default, refer to kernels
as those used in SVM and other kernel methods (Section 2.7)—and these are a subset
of the second concept: kernels used in mathematics and statistics for kernel density
estimation (KDE) to estimate a probability density function or perform smoothing of
time-series data. The context is clear when I use the term per the second concept.
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Figure 1.2: The machine learning (ML) terms I use in bold underlined font differ from key
terms used in other domains (normal font) such as statistics (S) or health care (HC). Text
in light gray font are examples as visual context for the terms. We additionally note that
features may be further identified as confounders or influencers in the statistical or health
care domains.

1.1 The problem and elements of my thesis

In this section, I introduce the study/problem in relation to elements of my thesis—
deferring the complete study/problem definition to Chapter 3.

SVM is said to be an black box that is difficult to understand [15, 58]. Hence SVM does
not readily facilitate the need for clinicians to be able to trust, use, explain, justify or
advocate their results and methods to colleagues and patients [21, 106]. However, not all
kernels are opaque black boxes (Section 4.4) and my work focuses on defining and selecting
models (or kernels) which are transparent and inherently interpretable for doctors
(Figure 1.3 on page 4).
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Figure 1.3: Model selection and measures of transparency and inherent model inter-
pretability are foci for my thesis, rather than interpretations, which are addressed to a
lesser extent, and explanations which are not addressed.

Montavon et al. [192] also differentiate interpretations from explanations, where an
interpretation is information in a form that can be perceived and elementally understood
by a person (doctor in my case) versus an explanation, which according to Miller, involves
selecting information, reasoning and communicating with a recipient [188].

I define inherent model interpretability, as independent of a person’s abilities and
background, per my definition in [46] (Section 6.2). It is measured for several different
models—prior, initial and posterior models—at different points in the machine learning
process (Figure 1.4).

A lack of guidance in the literature about SVM is partially responsible for its perception
as a black box. This is confirmed by my review (Section 3.1) of 22 papers applying support
vector machines to classification in health care: the vast majority of papers provide little
to no rationale for the kernels (hence models) they use, because they lack guidance and
they fail to provide guidance themselves.

Guidance from automated and manual kernel selection methods [5, 194, 276, 277]
seek to apply a fixed/learned rule to new data sets, however I assert that such rules are
sensitive to how the study/problem is setup, i.e., the fixed set of kernels considered, the
data sets considered, the way the data are pre-processed, etc. Including or excluding a
single data set can change or bias the rule. For example, in several of those methods,
decision tree rules are learned to select kernels—however decision tree rules are unstable
[205]. Also, the rules only apply to the kernels included in those papers which are kept few
so that the rules are fairly simple and general.
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Figure 1.4: Model interpretability can be measured at several different points (dashed red
arrows) in the process of machine/statistical learning (partially derived from [138]). Note:
some steps may not apply to some methods and models.

Of greater importance is understanding how kernels relate to data and/or data types—
but the only understanding or lesson I find [276] pertains to the local versus global
effect of kernels (3.4.2) which I already know from other/earlier sources [161, 288, 227].
Without understanding, the rules like those in the kernel selection papers are black boxes
too—which does not help matters. This work provides a framework to understand and
trace kernels to data types, distributions and requirements for similarity, classification and
transparency, via kernel data modeling.

A framework, however, does not provide kernels themselves, hence I also derive and design
kernels (Section 4.5) from the class of explicit Mercer kernels (Section 4.4). As a kernel
without SVM, my proposed kernels are additive, while in the context of SVM, they are
generalized additive models (GAM) [172] — and they meet requirements for transparency
from literature [168, 172]2. My transparent kernels are competitive in accuracy [45, 295]
(Section A.9) with the Gaussian RBF kernel and can provide better views of results
for transparency (Section 5.7). They also differ from existing methods such as feature
shaping (4.4.4).

Returning to the point about SVM’s opacity—there are some concerns when SVM is used
in its most popular configuration, i.e., with a Gaussian RBF kernel, because one cannot
easily and accurately determine the contribution of one feature independent of others
or in interaction with others (Section 5.6). Also, given an instance classified as negative,
one cannot easily tell what changes to the instance would tip the classification

2I acknowledge the original authors of generalized additive models as well [116, 115] but note that I do
not adopt their full technique.
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Figure 1.5: A visual glossary of notation, i.e., symbols in black font. Text in light gray font
are examples as visual context for the terms. x2,1 refers to the value of the 2

nd instance’s
1

st feature.

to positive—i.e., what are the set of closest points on the class boundary? Or what changes
would lead to a stable change in classification that reduces uncertainty? Computing and
visualizing the answers to these questions is possible in the feature space—however for
a Gaussian RBF kernel the feature space is infinite and therefore not computable nor
interpretable, whereas it is computable with the kernels that I propose. The feature space
explains how SVM works and allows us to verify it is working as expected for a
specific kernel with specific data. It can potentially allow us to interpret and justify
the class boundary, but it is only available with the class of kernels I propose.

Alternatively authors [15, 209] in the literature provide views or measures of the input
space which provide some insight, but when these views are used with kernels like the
Gaussian RBF kernel they are limited relative to kernels I propose. My kernels allow
better interpretation of the input space (Section 5.7).

This opaque and infinite nature of the Gaussian RBF kernel is simultaneously its strength:
it implicitly and automatically uses an infinite number of transformed features in the
feature space—i.e., an infinite number of powers of each feature, e.g., x11, x

2
11, x

3
11, . . . (see

Figure 1.5 as a quick reference on notation) as well as an infinite number of interaction
terms in higher orders, e.g., x11x12, x

2
11x12, x

3
11x

2
12 [55]. This provides a lot of flexibility to

fit data.

If I use explicit Mercer kernels instead, to view the feature space in which SVM and
the kernel act, then opacity disappears and the only challenge is in interpreting and visu-
alizing a multidimensional space. This class of kernel includes the truncated version of the
Gaussian RBF kernel [55, 278].

There is also a question about the rationale for a Gaussian RBF kernel. That is, the
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kernel begins with a Euclidean distance kx� zk2 between the readings of two patients—
this is the concept of distance that I apply in real life, which makes sense. The kernel then
applies a simplified3 Gaussian or normal curve, f (x) = exp (�� · x2

) , � =

1
2�2 , to that

distance to arrive at the kernel, kRBF (x, z) = exp

�

�� · kx� zk22
�

. Why? Let us examine
the underlying assumptions.

I know that many phenomena of a single variable exhibit Gaussian or normal behaviour,
e.g., errors in a measurement, the mean of any statistic, etc. A multivariate Gaussian,
however, is an ideal assumed by researchers more often than it is encountered in real life.
In classification, if both classes are multivariate Gaussian, then the difference between two
instances, from the same class or different classes, is multivariate Gaussian—and since that
difference is the input to a Gaussian RBF kernel (as a stationary kernel), this seems to be
the reason for applying a Gaussian RBF kernel.

However, it is unlikely that either of the classes are multivariate Gaussian. By my mea-
surements most of the data sets I use are not Gaussian in each class for most features, in
the marginal, separately, much less multivariate Gaussian which is a tighter requirement
of the joint density. Even if both classes are multivariate Gaussian, or it is a reasonable
approximation, there is another problem. The Gaussian RBF kernel is a multivariate
Gaussian with a diagonal covariance matrix and a uniform width—which assumes that the
features are not correlated and have the same variance. It is standard practice to center
data (subtract the mean) and standardize the data (divide by the standard deviation), so
the same variance is a correct assumption, however uncorrelated features are not a valid
assumption, unless the features have been decorrelated as well, e.g., whitened by applying
the Mahalanobis distance, which is not standard practice—nor should it be.

Decorrelating (or whitening) features is a complicated matrix transformation similar to
principal components analysis (PCA), factor analysis (FA), etc (see Section A.3), which
may be useful for the purpose of visualization or similarity measurement, but the resultant
dimensions or features lack clear validated clinical meaning and description, although they
may sometimes be intuitive.

While this rationale for a Gaussian RBF kernel has notable concerns, it does not preclude
rationale from a different perspective—but that is the problem, there is a lack of rationale
and understanding in general for this and other kernels. An alternative rationale for the
Gaussian RBF kernel may exist in its local behaviour, which creates sparsity (few non-
zero values) in the kernel matrix, which allows big data to be computable, similar to what

3In ML, the Gaussian RBF kernel is defined without a few constants, which have no effect on
optimization—but do affect my interpretation of parameter values!
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Genton [94] identifies as a benefit of compact kernels. Such sparsity can also help with
interpretability—these are not the reasons why authors use the Gaussian RBF kernel.

Returning to the idea of a kernel that begins with a Euclidean distance kx� zk2 between
the observations for two patients. Rather than make the assumptions of the Gaussian
RBF kernel above, a much more intuitive idea of similarity is proximity, as the inverse of
distance, without any assumptions of distributions.

In this case, I am interested in the negative of distance (i.e., additive inverse [272]) known
as the power distance kernel (2.9.1) for � = 1: kPwr (x, z) = �kx� zk�2 [30, 226]. As
distance grows, proximity decreases in a linear/proportional manner. This is the most
intuitive kernel.

Notably, the power distance kernel often performs better than the Gaussian RBF kernel
in studies/results [30] (Section 5.3) in addition to its clear rationale. Hence, it begs the
question, why do I use the Gaussian RBF kernel? Why or when should one consider using
a kernel that is more more local rather than global [161, 227, 288] or effectively compact
[94]?

The Gaussian RBF kernel is more popular because Vapnik, the creator of SVM, introduced
it, because it is built into most platforms and because many SVM users are unaware that
positive definite (p.d.) kernels and conditionally positive definite (c.p.d.) kernels—are
both equally valid (and equally opaque) for SVM [30, 167, 226, 242] but the power
distance kernel has clearer rationale.

Is there guidance to match the effectiveness of a kernel’s geometry to data types and
other characteristics of data? I attempt to answer that question by deriving, designing
and matching new and existing kernels to data types with rationale for transparency,
interpretability and trust. The status quo of choosing less transparent and less accurate
kernels based on convenience with little to no rationale, no longer suffices in the face of
regulatory, business and political pressures.

1.2 The importance of this research

The importance of research on this study/problem pertains to the need for: (1) model
interpretability in medicine; (2) guidance on model/kernel selection and use; (3) trans-
parency to meet regulations; (4) basic scientific research on features and similarity; and
(5) better accuracy with ML. I covered the first two points in the previous section, so I
only discuss points the remaining three points in this section.
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Transparency to meet regulations

There is a demand for transparency and understanding of machine learning (ML) models,
data and results [126] to satisfy a citizen’s “right to explanation” in the European Union
[100] and the need for general assurance [274] for decisions informed by, or made by ML
and/or big data.

Basic scientific research on features and similarity

My research on kernels as similarity functions for SVM has implications beyond similarity
functions and beyond SVM. Scientific inquiry into the nature of features and similarity give
us the opportunity to better understand the nature of kernels and the SVM algorithm, with
lessons which may apply to other classifiers equivalent or similar to SVM.

Improving the accuracy, transparency and interpretability of kernels can potentially im-
prove kernels in ensembles, multiple kernel learning, composite kernel learning, Auto-ML
or metalearning, Gaussian processes, and deep learning with Gaussian processes.

Better accuracy with ML

Common ML classifiers4 offer better accuracy [21, 71, 198] with statistical significance5

[47, 301] on a substantive proportion of health care studies/problems and data, than com-
mon alternatives among statistical classifiers6 and instance or rule-based classifiers7. When
ML is not more accurate, it is usually as accurate.

Exactly how much better ML performs and how often, varies between studies based on
which methods a study includes, how expertly the authors use each method, how the
authors pre-process and impute data, what kinds of data are tested and which data sets
are selected.

A few contrary results exist in studies which omit methods [165], use a non-standard or
inexpert approach [292], or focus exclusively on text or categorical data which yield similar

4Common machine learning classifiers based on literature are: support vector machines [233], deep
learning and convolutional neural networks [157], artificial neural networks [71], random forests [38], gra-
dient boosting [85], Adaboost [83] and bagging [37].

5Note that none of these comparisons are statistically rigorous in that paired t-tests (and lesser methods)
are deemed insufficient [64, 67, 25]. The literature does not offer data from more appropriate tests, e.g.,
the Wilcoxon signed ranks test, etc.

6Common alternative statistical classifiers for health care, based on literature are: logistic regression
[71], naive Bayes [24], linear discriminant analysis or Fisher’s linear discriminant [24], quadratic discrimi-
nant [24] analysis and Bayesian (or belief) networks [24].

7Common instance and rule-based classifiers for health care, based on literature are: k nearest neigh-
bours, decision trees (including C4.5, J48, CART) and fuzzy logic.
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performance across many different methods. However, on the whole, health care (and other
fields), can benefit from the better accuracy8 of ML versus alternatives.

1.3 Thesis outline

My thesis is organized as follows. Lists of abbreviations, symbols, figures and tables precede
the introduction while back matter consists of an appendix, glossary and references.

In chapter 2, background is provided on machine learning, support vector machines and
kernels along with the following intersecting fields of study: model interpretation, model
selection, data types, and similarity and distance. Chapter 3 formulates the study/problem
as a lack of model interpretability coincident with accuracy, a lack of rationale for use of
kernels in SVM and a lack of transparency and interpretability in their use. Limits of
interpretation in views of the study/problem and data are demonstrated.

The next three chapters are the main body of the thesis, as they address key aspects of
the study/problem.

Chapter 4 lays out an approach to kernel selection, called kernel data modeling, as a hy-
brid between the algorithmic approach in machine learning and the data modeling
approach in traditional statistics. It defines a framework of requirements for kernels to
match data types, distributions, and requirements for similarity, classification and trans-
parency. The chapter also proposes the foundational kernel class, explicit Mercer kernels,
needed to create transparent kernels.

Chapter 5 performs tests of the proposed kernels and selected aspects of the framework
in the preceding chapter. It confirms that I am able to create kernels with accuracy and
transparency.

Chapter 6 defines new measures of model interpretability, validates these measures and
applies them to perform model selection for accuracy with model interpretability.

Each of the core chapters provides its own summary and then I conclude this work with
conclusions and future work (Chapter 7)..

8In health care other measures are sometimes more important than accuracy, sensitivity or specificity—
such as the positive predictive value and negative predictive value of a test [7], or decision curve analysis
[284].
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Chapter 2

Background

This work covers a broad set of topics, relevant to each of the chapters with core content.
I suggest reading it as follows.

The first two sections on machine learning and SVM provide a general background
and delineate aspects which are out of scope for my thesis—readers strong in these topics
may skip these, on a first reading.

Section 2.3 Model interpretability is groundwork for Chapter 6 Measuring model
interpretability, while Section 2.4 Model viewing and selection is groundwork for
Section 6.7 Model selection with accuracy and inherent model interpretability.

Section 2.5 Data types and Section 2.6 Similarity and distance are background for
Chapter 4 Kernel data modeling.

Section 2.7 Kernels is very mathematical in some spots—hence I note that the content
of greatest relevance is that section’s introduction and the terms used in the subsection
on kernel classes—as relevant to chapters 4 on kernel data modeling and transparent
kernels.

Section 2.8 on common kernels is recommended as general background as well as sub-
section 2.9.1 notable kernels for experiments in the section on uncommon kernels.
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2.1 Machine learning methods

Machine learning (ML) and pattern recognition1 refer to the task of computers, i.e., ma-
chines, learning patterns in data for prediction, modeling or analysis. ML and pattern
recognition arose from separate evolutionary paths in computer science and engineering
respectively [24], but they are two names for the same subject–so I will only refer to ML.

ML is used to solve complex problems, as an alternative to classical/traditional statistical
methods (Section A.1), when a direct solution or explicit model is not known for a set of
data, or when computation is infeasible or too expensive [57]—as with high-dimensional
data or data with a large sample size.

A study/problem consists of data matrix and a target to predict (Figure 1.2 on page
3). For example, I could have data on more than one table (instances) and I may wish
to classify if the table can be used for dinner with a party of four (the target). The
tables have features such as: table top shape, length of widest table top section, length of
shortest table top section, table height, and number of legs. My data may have a number
of tables to learn from: coffee tables, desks, dining room tables, ping pong tables, etc.

My thesis focuses on machine learning (ML) with support vector machines (SVM).
I refer to machine learning methods as differentiated from classical/traditional sta-
tistical methods (Section A.1) and classical/traditional instance and rule-based
methods (Section A.2). However if I omit the qualifier “classical/traditional” then there
is overlap between the four categories of methods.

Since SVM learns and predicts with instances, but came after classical/traditional instance-
based methods, it may be considered a modern instance-based method; and since the ker-
nels used in SVM originated in math and statistics, but SVM came after classical/tradi-
tional statistical methods, SVM may be considered a modern statistical method. However
it is most commonly referred to as a machine learning method and differentiated from
members of the other groups.

My thesis focuses on classification as described in the introduction, however ML and
kernels may be used for other tasks, such as, regression, clustering, reinforcement learning,
dimensionality reduction and feature extraction (2.1.1).

My thesis focuses on classifying atomic data types (4.2) not complex data types such
as text, images, video and audio signals.

1also called data mining, statistical pattern recognition or data analytics; and related to statistical
image processing, business intelligence and artificial intelligence

12



My thesis does not focus on nor attempt to include censored or time-series data.
That said, I have performed classification experiments with censored Canadian and Amer-
ican transplantation data with results similar to the results in this thesis—i.e., the relative
results between kernels.

My thesis does not focus on big data, but includes two data sets (e.g., colon and prostate
cancer data with n = 2000 and n = 12, 600 features respectively) which are considered high
dimensional by some [238] (features n > 100 or instances N > 10, 000) but not others2

(features n > 10, 000 or instances N > 10, 000). Numerous academic papers [51, 90, 286]
do not provide quantitative definitions of big data since they define it in terms of the
challenges it poses to computation and storage, an ever-changing target.

Notably, the transparent kernels that I propose, are explicit Mercer kernels or ad-
ditive separable kernels, which are related to simpler separable kernels that Genton
asserts offer benefits which are important for big data [94], because of reduced stor-
age and computational complexity in implementation3. That said, implicit kernels reduce
computational complexity in a different more well-known manner.

My thesis focuses on classification based on supervised learning [72, 233, 290] as one of
four types of learning (Figure 2.1). Supervised learning is learning from examples [57], i.e.,
from instances or patients in a data matrix and target (Figure 1.2).

My thesis focuses on SVM as one ML classification method among various ML methods
and as one kernel method among various kernel methods.

Common ML classifiers for health care based on literature are: support vector machines
[233], deep learning and convolutional neural networks [157], artificial neural networks [71],
random forests [38], gradient boosting [85], Adaboost [83] and bagging [37]. Alternative
ML methods include: Gaussian processes [213], (simple) boosting [225] and radial basis
function networks [24].

Methods in machine learning, statistics or instance and rule-based approaches, may be
categorized as non-parametric, semi-parametric or parametric.

Examples of a parametric or data-modeling approach are found in classical/traditional
statistics. The statistical approach examines the features in data and identifies one or

2A joint ICML and IJCAI 2018 workshop on computational biology
(https://sites.google.com/view/wcb2018) defines high-dimensional data as “tens of thousands of
features as well as thousands to millions of observations”.

3Custom code may be required to realize this benefit however, since libsvm precomputes custom kernels
and Matlab uses in-memory objects for SVM models.
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Figure 2.1: My thesis focused on supervised learning [72, 233, 290]—not semi-supervised
learning [233, 290], unsupervised learning [72, 233, 290] or reinforcement learning [72, 290].

more models to describe those features, from a set of well-known models4, e.g., Gaussian,
Poisson, Weibull or Beta, where each model has parameters. I fit the model to the data
to solve for the parameter values. This approach assumes or requires the data to have a
prior distribution or shape with a fixed number of parameters with fixed meanings.

Non-parametric or data-driven techniques, typified by machine learning methods, do
not have a fixed number of parameters with fixed meanings. For example, SVM with a
Gaussian RBF kernel has one fixed parameter for the kernel width, but the model also
learns model weights which are based on the number of instances in the data, and only
uses a variable subset of those instances as support vectors for prediction. I note that
a Gaussian RBF kernel that has a large kernel width generally creates a smoother and
less curved class boundary in classification—i.e., there is a prior assumption about the
distribution of the data, whereas for a small kernel width there is less or no assumption
and the class boundary is purely data-driven.

Machine learning is a process (Figure 1.4) with steps that include: data wrangling, data
analysis, feature and instance pre-processing, learning, testing and use (at the highest
level). I note that some steps can overlap with each other. In particular, feature extraction
or pre-processing can done prior to the learning step, or within it as part of the model.

There are other perspectives that may be applied to categorize and understand machine
learning methods and models, e.g., convex versus non-convex optimization [34], filter versus
wrapper versus embedded methods [109], ensembles [307] versus individual algorithms and
weak versus strong learners [225].

There are also other types of learning: metalearning or auto-ML [36], multi-view learning
[294], online learning [146], passive versus active learning [232], metric learning[151, 285],
transductive versus inductive learning [155, 308] and generative learning [208].

4whose properties have been analyzed in the literature
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2.1.1 Applications of classification in health care

Classification applies to a variety of tasks in health care, with respect to clinical practice,
epidemiology and public health surveillance. Since my thesis focuses on binary classification
and kernels as similarity functions, I review some examples of classification applied in these
contexts.

• Binary classification (the class/decision and its probability of error) and kernels as
similarity functions, may be used in:

– Clinical practice, for

⇤ Testing or forensics to detect a condition

⇤ Diagnosis of a single/specific disease or condition—not differential diagnosis

⇤ Case-based (similar case) retrieval for a single/specific disease or condition,
to assist diagnosis and treatment optimization

⇤ Prognosis at a fixed endpoint for a single/specific disease or condition, e.g.,
chance of survival at five years

– Epidemiology and public health surveillance, to

⇤ Model organ functions by classifying types of cellular behaviour/signaling
among known types

⇤ Investigate outbreaks by identifying/retrieving similar cases

Multi-class classification is a simple extension of binary classification but is beyond the
scope of my thesis. Anomaly or one-class classification has other unique applications which
can help identify outbreaks or fraud.

2.2 Support vector machines

There are a number of resources [24, 57, 233, 240, 281] that introduce support vector
machines (SVM), however few are adequate introductions for the layperson because they
almost immediately express things mathematically—which is fine for a reader comfortable
in that realm, but not otherwise. In the first subsection below I provide simpler guidance
to expand and encourage the use and acceptance of SVM. In then discuss SVM theory and
then I provide an overview of SVM from the perspective of an engineer, statistician or
mathematician.
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Before I explain what SVM is, I provide a little bit of context. My thesis focuses on SVM, as
a popular and important ML method [293] and a mainstay among state-of-the-art methods
[47, 198, 301] with competitive accuracy on the data and tasks in my scope5. SVM has
a strong theoretical foundation [187, 281] with applications to clinical research including
diagnosis and prognosis [58, 144, 262].

SVM is a classification technique, while support vector regression (SVR) [241] is
a regression technique. SVM is fairly intuitive once understood, but requires a few steps
to explain, each one building upon the last.

The first SVM concept is linear separability. Suppose I have data for two classes of
patients, e.g., with and without heart disease, and the data consist of three predictive
features, e.g., age, weight and diastolic blood pressure, which I may view as a three dimen-
sional space. To classify a new patient as either having or not having heart disease, I learn
from data on multiple existing patients which appear as points in that space.

If the data for the two classes can be separated by a plane, then I say that the data
are linearly separable and I call the plane a class boundary. In the general case of n-
dimensions the class boundary is called a hyperplane and it is a flat that is one dimension
less than the space.

There may be many different hyperplanes as class boundaries that can separate data with
different angles and distances to one class or the other. A good class boundary maximizes
the distance (or margin) between itself and the two classes, so that it will generalize
well to new data, where that new data may have points in one class closer to the other
class than in my training data. That is, new data may close the gap between the two
classes (Figure 2.2). This criterion is called the maximum margin and SVM is referred
to as a maximum margin classifier.

That was the simplest case—linearly separable data and a linear class boundary.
Many different algorithms will classify linearly separable data very well, i.e., perfectly on
training data, and very well on test/validation data.

A more complex scenario is when data from the two classes are overlapping so that
data are not linearly separable (without errors). The original conception of SVM (hard-
margin SVM) which simply maximizes the margin is extended to allow for errors (called
soft-margin SVM) and takes on two objectives: maximize the margin and minimize

5Deep learning has garnered recent attention for markedly higher accuracy than other methods with
tasks pertaining to image/video/object recognition and tracking. That said, my work on kernels may also
apply to deep kernel learning with Gaussian processes [288].
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Figure 2.2: SVM class boundary (solid line) and margin (dotted lines)

errors. Errors are points that fall on the wrong side of the class boundary and points
which fall within the margin. The margin is soft in that points can fall within the margin.

A parameter C called the cost of error (or box constraint, as a geometric interpreta-
tion) [240] specifies how much weight to place on one criterion versus the other. Higher
C places greater emphasis on minimizing error. Such a parameter is called a regular-
izer, and balancing the weight between two criteria is called regularization. In this
case, regularization is used to choose between paying greater attention to the data/errors
(i.e., data/error-driven) versus focusing on the preconceived model or concept of
a maximum margin (model-driven).

There is one more key concept in SVM. Thus far I have described linear class boundaries,
i.e., linear SVM, however a curved (or curvilinear or non-linear) class boundary may be
more appropriate in some cases. This is achieved with a trick in mathematics known as
the kernel trick.

In the introduction I explained that a key component of SVM is a kernel, which is a
similarity function used to compare two instances of data x and z, such as, two patients
each represented by a vector of numeric readings. Linear SVM uses a dot product, or
scalar projection, of the two vectors, as its similarity function—and that is called a linear
kernel: kLin (x, z) = hx, zi = xTz. This is essentially a sum of one-sample covariances (or
correlations when data are standardized as is common practice in machine learning). SVM
computes a matrix of similarities between every possible pair of instances in the training
data X as a set of points in the multidimensional space X . SVM learns from that matrix
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Figure 2.3: An example of how a feature map (or basis function) �new transforms the
original data in an input space X at left, which requires a non-linear class boundary, to a
feature space F , at right, where the class boundary becomes a hyperplane.

and the targets and during the learning process it constructs a kernel or Gram matrix
G = XXT

=

�

kLin
�

xi, xj

� 

8i, j.

The kernel trick [24, 233, 240] is a mathematically valid substitution, that replaces the
dot product of the original data kLin

�

xi, zj
�

=

⌦

xi, zj
↵

= xT
i zj, with a dot product

of transformed data knew
�

xi, zj
�

=

D

�new (xi) ,�new

�

xj

�

E

, where �new is a function that
maps or transforms data from the space X (Figure 2.3 at left) to new feature space
F (Figure 2.3 at right) where the class boundary is a hyperplane in the latter space, but
in the former space it is distinctly curvilinear or non-linear.

The transformation should assist the objective of separation with a hyperplane and/or
it should assist the objective of a wider margin and/or lesser error. Clearly with the
right shape for the class boundary in the input space, lesser error is achieved. I call �new

a feature map or basis function and express it in mathematical notation as follows:
�new : X ! F .

This example (Figure 2.3) is derived from Shawe-Taylor and Cristianini [233] and Burges
[40], and thereafter referenced by Wu et al. [292] and others. The kernel trick allows us to
use curvilinear or non-linear class boundaries, however there is a constraint on the equation
of the kernel—it must be a dot product in a feature space F with a basis function �new,
regardless of whether or not I actually know that feature space and function (assurance of
their existence is sufficient).

There are a few final points at a high level about SVM.
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First, as with any learning method, it works in two steps: (a) learn the model weights (in
this case, support vectors/coefficients) and (b) make a decision, estimation or prediction;
where the step (a) requires optimization and may be computationally intensive and step
(b) is very fast in comparison.

Second, SVM is an instance-based method. That is, to make a prediction, SVM essentially
computes the similarity between a new instance and a weighted sum of selected instances
from the training data—where the selected instances are called support vectors. The SVM
prediction function is linear in instances but not features (for all SVM kernels).

Finally, while I have explained how SVM works, there is additional theory (in the next
subsection) that provides rationale as to why it is useful. Such rationale helps justify the
method’s firm theoretical foundation, although a doctor (or other user of SVM) does not
need to know the finer mathematical details of that theory.

2.2.1 SVM theory

Support vector classification is a machine learning technique with a theoretical foundation
in computational learning theory, regularization and convex optimization, as discussed in
this section, and kernels (discussed separately in section 2.7).

Computational learning theory includes concepts such as empirical risk, capacity con-
trol, Vapnik Chervonenkis (VC) dimension and VC bound [281].

Empirical risk [281] refers to the probability of error for a learning machine with respect
to a probability distribution function (p.d.f.) on a sample with a finite amount of data
drawn from the population.

Regularization (explained in the previous section) is implemented in SVM with the
hyperparameter C, the cost of error (also explained in the previous section) which governs
the trade-off between two objectives: minimizing error and maximizing margin. In
SVM, this regularization is also called capacity control.

Capacity control [281] refers to precise control over how specific versus general (i.e., how
complex) the classification boundary is in SVM. A class boundary that is very specific
(has a lot of capacity to memorize the data) may not generalize well to classifying test
data because it has paid too much attention to specifics/detail in training data, i.e., it
may overfit the training data. Conversely, a class boundary that is very general (has
too little capacity to learn/remember data) may not be specific enough to classify test
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data because it has paid too little attention to specifics/detail in training data, i.e., it may
underfit the training data.

The Vapnik Chervonenkis (VC) dimension [281] for any binary classifier, relates to
the concept of capacity control (or ability to learn/remember). Consider a set of functions
with deterministic outputs, parameterized by ↵, which may in fact be the cost of error, C,
as in SVM. For a binary classification study/problem, given a set of N points, there are
2

N possible ways to classify those points. If the set of functions can achieve each one of
those output combinations then I say it shatters those N points.

The VC dimension, h, for a set of functions is defined as the maximum number of
training points that can be shattered by it (in at least one configuration, but not all
configurations). Not every set of h points can or must be shattered by the set of functions.
There is an example of a function with infinite VC dimension which cannot shatter 4 equally
spaced points in a certain labelling configuration. So to ascertain the VC dimension h, the
question becomes: is there any set of htry points, in any configuration (triangle, square,
straight line) that can be shattered by the set of functions? If so, then h � htry. I note
that h is a non-negative integer.

The VC bound (2.1) [281] holds with probability 1 � ⌘, where I choose small ⌘, for a
classifier with VC dimension h and a data set with N points. The bound is independent
of the distribution P (x, y) and the rightmost term of the bound, on the right-hand side of
the equation is called the VC confidence.

R (↵)  Remp (↵) +

r

h (log (2N/h) + 1)� log (

⌘/4)

N
(2.1)

It is said that in general with more features or more dimensions it is usually easier to achieve
linear separability [117]. With some kernels there are an infinite number of dimensions in
the feature space (as I discuss in the introduction) however, SVM uses these dimensions in
a finite way [117]—and the dimensionality of the model in terms of number of instances,
is reduced compared to original data, since support vectors are a subset of instances and
support vectors are ideally sparse.

In the two-step process of learning model weights (support vectors in this case) and then
making a prediction. SVM is usually solved using the following optimization formula in
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Figure 2.4: SVM occurs in two steps: first, learn model weights with optimization (left),
then use the weights in the SVM classifier (right).

its dual form (2.2) along with its associated constraints (2.4),

W (↵) = �
X̀

i=1

↵i +
1

2

X̀

i,j=1

↵i↵jyiyjk
�

xi, xj

�

(2.2)

argmax
↵

W (↵) (2.3)

subject to 0  ↵i  C, i = 1, ..., ` (2.4)
X̀

i=1

↵iyi = 0

where xi and xj are vectors of explanatory variables, yi and yj are the corresponding
outcomes, ↵i and ↵j are weight parameters in constrained optimization derived from La-
grange’s method (which identify the support vectors), k

�

xi, xj

�

is a kernel, and C is the
cost of error.

2.2.2 A mathematical view of SVM

As a learning method, SVM occurs in two steps: first, learn the model weights with
optimization, then use the weights in the SVM classifier (Figure 2.4).

In SVM, i.e., 1-norm soft margin SVM, as implemented in Matlab, the model weights, or
support vectors ↵i are learned by optimizing the following equation [24, 233]:

argmax
↵i

X̀

i=1

↵i �
1

2

X̀

i,j=1

↵i↵jzizjk
�

xi, xj

�

(2.5)

s.t.
X̀

i=1

↵izi = 0 and 0  ↵i  C (2.6)

The above equation, known as the dual form is used in implementation but in the equivalent
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primal form (2.7) [233] it is easier to recognize the effect of C as a trade off variable (or
regularization parameter):

argmin
�, ⇠i, b

1

2

�T� + C
X̀

i=1

⇠i (2.7)

s.t. zi ·
�

�Txi + b
�

� 1� ⇠i 8i, ⇠i � 0 (2.8)

In (2.7) C is called the cost of error because it specifies the weight of training errors
⇠i in the second term. C also regulates the trade off between the goals of minimizing
training error and maximizing the margin � =

1

k�k in the first term, where the latter offers
better generalization, i.e., lower validation/test error [233]. We can maximize margin � by
minimizing its inverse

�

��
�

� or the square of its inverse 1
2

�

��
�

�

2
=

1
2
�T� as in the first term

of (2.7).

From the above interpretation of C, one can retrospectively see its similar influence in the
dual form. In (2.5) and (2.6), changes in C affect the first and second terms by �C and
(�C)

2, respectively, increasing the effect of training instances (or errors) and decreasing
the effect of the margin. The second term in (2.5) can be re-written as �1

2
�T� which

pertains to the margin (as previously described) and where � is a vector along the class
boundary f (x) = �Tx + b in the feature space, �T is a vector perpendicular to the class
boundary and � =

P

i

↵izi� (xi) which explains how �1
2
�T� equals the second term.

In the second part of SVM, we use the learned model weights ↵i in the classifier h to
predict (or estimate) the binary target as ẑ for a test instance v (which is disjoint from
xi), as follows:

ẑ (v) = h (v) = sign (ŷ (v)) (2.9)

ŷ (v) =

l
X

i=1

↵izik (xi, v) + b (2.10)

b = �1/2

 

l
X

i=1

↵izik (xi, xa�)+

l
X

i=1

↵izik (xi, xa+)

!

(2.11)

where a� chosen s.t. ↵a�ya� < 0 (2.12)

a+ chosen s.t. ↵a+ya+ > 0 (2.13)

Note that we express the SVM equations with an underlying continuous output ŷ (2.10)
which provides more information toward a quantitative measure of model interpretability
than the binary output ẑ (2.9). Logistic regression [71], neural networks [24] and gaussian
mixture models [24] are examples of other classifiers which also have such an underlying
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output.

2.3 Model interpretability

As discussed in the introduction, I differentiate between interpretation and explanation
following Montavon et al [192]—where interpretation refers to providing information in
a form that can be perceived and understood by a person, whereas explanation requires
additional work, such as selecting information [188], where the latter is best done with
human judgement.

I assert (Chapter 6) that model interpretability is then a function of the individual (e.g.,
learning and forgetting curves [210]) and inherent model interpretability as my pro-
posed term and concept (independent of the individual and inherent to the model and
data).

Lipton [168] provides a good taxonomy for model interpretability with concepts falling
into two broad categories: transparency (the opposite of a black box) and post-hoc inter-
pretability.

Post-hoc interpretability involves an explanatory model separate from the predictive
model, or visuals that transform data where the transformation is also a separate explana-
tory model. Liang [164] cautions against explaining a black box predictive model with
another black box explanatory model.

Riberio et al [216] create an external local linear model to approximate the prediction
model in a post-hoc approach called LIME. They jointly optimize accuracy and model
complexity but they do not elucidate much about model complexity as in my work. LIME
perturbs features in a separate binary representation of features, which sometimes map to
non-local features in the original space of data. In their examples they use the binary
model output, only referring in passing to the possibility of using a continuous output for
classifiers, as I do.

Transparency, on the other hand, focuses on the predictive model itself, and has three
aspects: decomposability, simulatability and algorithmic transparency [168].

Decomposability refers to being able to see and understand the parts of the model
of the model, e.g., kernels and parameters and the parts of the data, i.e., features and
instances—and how they contribute to a result from the predictive model. Some authors
refer to the output from decomposition as an interpretation, e.g., initial understanding,
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separate from an explanation [126, 192] that may require analysis, selection or perhaps
synthesis. Miller adds that explanations are selected and social [189].

Since the social and synthesis tasks are more suitable to a person than a computer—it
is reasonable for my work to focus on inherent measures of interpretability, rather than
explanations.

[172] express that some types of models are more intelligible (i.e., decomposable) than
others. I include categories for generalized linear and generalized additive models in my
measures as a result of their work.

Simulatability, as another aspect of transparency, refers to a model that a person can
mentally simulate or manually compute in reasonable time [168] and is correlated, for
example, with the number of features in a linear model, or the depth of the tree in a
decision tree. Model complexity is implied Lipton’s examples but the term is not invoked
although other authors refer to it [183, 205, 39].

Occam’s razor, also called the principle of parsimony [244], is a well known principle
related to model complexity. Regarding models, it says that among sufficient explanations
(e.g., equally accurate6 models), the simplest7 should be preferred. A quick note on suffi-
ciency: for multiple equally accurate models, none are necessary, because any one of them
is sufficient. Model accuracy is sought first, then simplicity. Using my proposed measure
one can search for the model with highest interpretability among models which are equally
sufficient in accuracy.

Backhaus et al. [12] propose a quantitative measure of model interpretability—but that
is for a different meaning or definition—the ability for a model to interpret data, with
relevance in relevance vector machines as the context.

Related to my work, sensitivity analysis of model outputs (SAMO) [9, 113] describes
how sensitive a model output is to a change in feature values, one at a time—which is the
approach of my proposed general measure.

In variance-based sensitivity analysis, Sobol [245] finds the variance in the output explained
by an input feature. Liu et al [170] performs entropy-based sensitivity analysis, called
global response probabilistic sensitivity analysis (GRPSA), to find the influence of input
features—where entropy is used to compute the effect as information loss. Lemaire et al.
[160] apply sensitivity analysis but their perturbations are non-local and could easily create

6where accuracy cannot be distinguished with statistical significance
7[Sober] refers to [Akaike]’s definition of the simplest model as the model with the least degrees of

freedom, i.e., least number of (independent) coefficients.
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points outside of any known clusters of instances and true states of nature. Poulin et al.
[209] provides effective visualization and analysis tools but for SVM they only apply their
method to linear SVM and its binary output.

Automatic model selection methods have been proposed for accuracy [4, 194]—these
are based on rules computed from many data sets. The rule-based approach is brittle in
comparison to my measures, since it only works with a fixed set of candidate kernels.

2.4 Model viewing and selection

Barbella et al. [15] try to find the closest point on the class boundary in the feature space,
but since they can only do computations in the input space, they can only find a local not
global minimum in distance—and they use the wrong formula for distance8. Furthermore,
finding a single point doesn’t characterize the stability and uncertainty of changes in the
space.

Other authors provide methods which have various limitations and shortcomings: e.g.,
Poulin et al. [209] provide an interactive method for a linear kernel; Lemaire and Clérot
use a sensitivity-based approach with sampling that is flawed because it is non-local and
sampled from either class; Lemaire et al. [160] has the same shortcomings and uses a
ranking with unclear benefits and squares the sensitivity without rationale.

Montavon et al. [192] use a Taylor decomposition method which on the one hand is more
complete than sensitivity analysis, but is less interpretable and requires differentiation
of formulas. The advantage of sensitivity analysis is that it is readily understood, i.e.,
transparent and interpretable and easy to compute.

Guidance from kernel selection methods [5, 194, 276, 277] in the literature is insufficient.
For example, in several cases, decision tree rules are learned to select kernels—however
decision tree rules are notoriously unstable [205] because they are sensitive to how the
study/problem is setup, i.e., the kernels considered, the data sets considered, the way the
data are pre-processed, etc. If you want to use any kernel outside of those considered the
rules do not apply.

8The distance should always be computed using the kernel not the Euclidean distance inside the kernel
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2.5 Data types

One of my objectives is to examine learning methods and models for specific data types,
e.g., real numbers versus binary values. I therefore review data type definitions and stan-
dards (Table 2.1).

A data type is “a set of distinct values, characterized by properties of those values, and by
operations on those values” [132]. A less abstract view of data types are Stevens’ four scales
of measurement [249, 290] as the progenitor for data types: nominals, ordinals, intervals
(e.g., dates) and ratios (e.g., reals and integers). However, these are still abstract compared
to the data types that I use with machine learning platforms, so I review other sources
such as Weka and Matlab as machine learning platforms, and unified modeling language
(UML) [81], ISO 11404 [132] and ISO 21090 [134], as standards (Table 2.1).

My thesis is concerned with simple (or primitive) data types in my review (Table 2.1) versus
the types I categorize as complex data types or documents. I leave complex data types
out of scope, i.e., data involving text, images, video and audio—since learning with each
of those types have domain-specific needs, tasks, measures of performance and specialized
kernels. Some standards, like UML [81], distinguish between simple and complex data
types, while others may not—in any case, it is an accepted way to categorize data types
[123].

For my purposes in kernel data modeling, I find that the Weka data types are not rich
enough compared to others, while the Matlab, ISO 11404 [132] and ISO 21090 [134] data
types are overly rich. The UML [81] simple data types (primitives) are most appropriate
but do not include ordinals (except as a complex data type).
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Table 2.1: Data types from different sources versus Stevens’ scales of measurement [249].
Further details are found in the appendix (Section A.4 and Section A.5).

Source Simple data types Complex data types
Note: xx 2 {8, 16, 32, 64} or documents

Stevens Nominal Ordinal Interval Ratio
Weka nominal date numeric string relational
Matlab logical, ordinal datetime intxx*, uintxx*, string vector, matrix, etc.

nominal float, single,
double

UML boolean, date integer, real string set, bag, sequence,
enumeration orderedset, tuple

ISO boolean, enum- date-and-time integer, chr*, set, bag, sequence,
11404 state erated, rational, scaled, chrstr* class, octet

ordinal real, complex
ISO bl; cs, co ts real, int, st coll, dset, list,

21090** sc, cd, mo, pq, rto glist, slist, ed,
ii, pqr ed.image, ed.text,

ed.signature, bag,
rto en, ad, tel,
xp, adxp, enxp,

qset, strucdoc, etc.

2.6 Similarity and distance

In this section I explain concepts regarding similarity, distance, measures andmetrics,
which I use in chapters 6 on measuring model interpretability and chapter 4 on kernel data
modeling. I discuss kernels (as similarity functions) separately in sections that follow.

In this section, this introduction and the first subsection on similarity and distance
(simdist) functions are the most important, while the remaining subsections can be skipped
since they provide detail on simdist functions for specific data types. They provide
grounded examples as context, and specific parts will be referenced in later chapters where
relevant—e.g., the asymmetric weighting of positive versus negative matches in the azzoo
similarity function is analogous to the asymmetric class balancing feature in some of my
proposed transparent kernels.

In mathematics the terms measure and metric are distinct from each other and have
formal definitions. When a function does not fulfill either of those formal definitions, I
simply refer to it as a function. Kernels are usually functions.

A measure, operates on a set, e.g., a set of numbers, and is said to be a “systematic way
to assign a number to each suitable subset of that set, intuitively interpreted as its size”. A
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measure has three properties: non-negativity, countable additivity and an output of zero
for a null input.

A metric or distance function, d, is a function of two variables on a set, X, that outputs
a real-valued scalar and satisifies four properties for x, y, z 2 X:

1. d (x, y) � 0, i.e., is non-negative

2. d (x, y) = 0 iff x = y, i.e., is only zero for equal inputs

3. d (x, y) = d (y, x), i.e., is symmetric

4. d (x, z)  d (x, y) + d (y, z), i.e., satisfies the triangular inequality

In general, kernels and similarity functions are not metrics, because their outputs
are not necessarily positive, and they do not satisfy the triangular inequality (as I next
discuss).

The inverse of distance is proximity (a type of similarity). I can therefore convert a
distance function into a similarity function with the additive inverse s (x, z) = �d (x, z)

[272] or the multiplicative inverse s (x, z) = 1
1+d(x,z)

[166], or other means such as a Gaussian
RBF kernel applied to a distance function.

Similarity may be explained in terms of nine key concepts from well-cited authors on the
subject in the literature [19, 162, 166, 273, 299]. A similarity function:

1. Must be symmetric in its inputs [299]

2. Should increase with the commonality of inputs [166]

3. Should decrease with differences in inputs [166]

4. Should be maximal when two inputs are the same [166]

5. Should be minimal for no commonality in the inputs [166]

6. Should be a weighted sum of perspectives, where the weights are the amounts of
information in the descriptions [166]

7. May obey the triangular inequality, although this may lead to counter-intuitive sce-
narios [166]

8. May have a finite maximum [166]

28



9. May have a finite minimum [166]

Some authors also claim that similarity functions are “universal” if they are based on
information theory [166] or better yet, information distance per Kolmogorov complexity
[19, 162]. However, it is hard to see how these apply to my context of kernels which
compare one instance to another with only one observation per feature.

It is important to note that I do not include feature extraction, dimension reduc-
tion and visualization techniques (Section A.3)—such as principal component analysis
(PCA), maximum variance unfolding (MVU), non-negative matrix factorization (NMF),
probabilistic latent component analysis (PLCA), t-distributed stochastic neighbourhood
embedding (t-SNE), etc—in my discussion of similarity and distance. I also do not include
the Mahalanobis distance which includes implicit whitening per PCA (see Section 2.9
for further discussion).

Why? The simdist function literature [27, 49, 102, 103, 166] does not include these topics
and techniques; and these techniques result in transformed features which do not have
prima-facie or immediate clinical meaning or interpretation, in opposition to my
objectives and in contrast to the original features which are clinically meaningful (in
benchmark health care data sets).

2.6.1 Similarity and distance functions

Similarity and distance (simdist) functions are used to compare two vectors of data—where
the vectors may be samples with multiple observations as a common context, but in my case
the context is vectors that represent instances with multiple features. Simdist functions
broadly include kernels, however because kernels have additional requirements I discuss
them separately. Simdist functions are created for specific data types, so I review them
according to each type in the sections that follow.

Simdist functions may be used to provide information in their own right, as in correla-
tion, or they may be used in statistical, instance and rule-based methods for classification
and clustering, such as k-nearest neighbour classification, large margin nearest neighbour
classification and k-means clustering.

2.6.2 Binary simdist functions

For machine learning purposes I encode binary values symmetrically to the set {�1,+1},
whereas in the simdist function literature the common convention for binary values is
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{0, 1}. I denote similarity and distance functions by s and d respectively.

When two binary values are positive, i.e., both +1, then there is a positive match and I can
count the number of positive matches between two vectors x and z with the expression xTz.
Similarly negative matches, i.e., both 0, are counted by xTz. The number of mismatches
between both vectors is counted by the expression xTz + xTz.

Cha et al. [49] uses four groups to categorize binary simdist functions: Hamming based,
inner-product based, correlation based and weighted measures.

The first group pertains to distance in terms of mismatches or differences. It contains sim-
ilarity measures related to the Hamming distance (2.14) which is a L1 distance metric also
known as the edit distance, city block distance or Manhattan distance [49]. This group of
functions have been used in health care for breast cancer detection [26], similarity of events
in a health care event log [28] and quality and safety evaluation in health care institutions
[74]. Measures in the same group by Sokal and Michener or Rogers and Tanimoto involve
normalization by different amounts [49].

dHamming (x, z) = xTz + xTz x, z 2 Rn (2.14)

sHamming (x, z) = xTz + xTz = n� dHamming (2.15)

The second group of binary functions pertains to the inner-product similarity function
(2.16) [49] which only measures positive matches. The Jaccard similarity coefficient,
sJaccardNeedham is a function in this group which is used in health care applications [76].
Cha et al. [49] indicate that the inclusion or exclusion of negative matches is one of the
most contentious issues in binary simdist functions. In ecology, the presence of a species
may be observed as a certain value, whereas the absence of a species in an area is uncertain
in observation—hence such data are called presence-only data, where the inner product is
appropriate.

sinnerProduct (x, z) = xTz (2.16)

sJaccardNeedham (x, z) =
xTz

xTz + xTz + xTz
(2.17)

The third group of binary measures discussed by Cha et al. [49] are correlation based
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measures. These measure positive and negative matches equally.

scorrelation (x, z) =
xTz · xTz � xTz · xTz

q

(xTz + xTz)
�

xTz + xTz
� �

xTz + xTz
� �

xTz + xTz
�

(2.18)

sYule (x, z) =
xTz ⇥ xTz � xTz ⇥ xTz

xTz ⇥ xTz + xTz ⇥ xTz
(2.19)

Cha et al. [49] propose a measure sazzoo
9 with variable weight that performs optimally in

their experiments as a measure that is in between an inner product and a correlation (or
at either extreme).

sazzoo = xTz + �xTz � 2 [0, 1] (2.20)

Finally, Cha et al. [49] describe weighted measures, where different weights are applied to
each feature dimension.

sIightedHamming (x, z) =
n
X

i=1

wi (xizi + xizi) (2.21)

Gower and Legendre [102] identified which binary similarity and distance measures are
positive semi-definite in their symmetric similarity matrix.

2.6.3 Nominal simdist functions

Boriah et al. [27] put nominal similarity functions into three classes based on how they
populate a similarity matrix for training data:

1. matrices with diagonal entries, and a minimum value of 0 uniformly in the off-diagonal
entries (representing mismatches);

2. matrices with off-diagonal entries, and a maximum 1 uniformly in the diagonal entries
(representing matches);

3. matrices with on and off-diagonal entries that are not uniform.

Boriah et al. [27] suggest that nominal similarity functions may also be classified based on:
if they apply different weights based on the frequency of feature values, or the rationale
for proposing the measure: probabilistic, information-theoretic, etc.

9azzoo [sic] stands for: alter zero zero one one
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Cha et al. [49] defines eight families of distance measures for nominal type histograms,
but without rationale or validation. These families are: Minkowski, L1, intersection, in-
ner product, fidelity (or squared-chord), (L2)

2 or �2 (chi-squared), Shannon entropy and
combination measures. They also cluster functions do not relate the clusters to the eight
families.

It is confusing in Cha et al’s [49] taxonomy that the Intersection measure is a positive-
match measure in the Intersection family while the Jaccard distance, another positive-
match measure, is in the Inner Product family, and the Jaccard coefficient is in the Fidelty
or Squared-chord family.

2.6.4 Real simdist functions

Similarity functions between vectors of real-valued features are based on either proximity
(the inverse of distance) or covariance (such as a dot product, i.e., inner product or projec-
tion). For real valued data proximity is derived from distance as an additive inverse [272]
or a multiplicative inverse [166].

Kotsiantis et al. [148] review the following five distance measures for vectors of real valued
features: the Manhattan distance based on the L1-norm, the Euclidean distance based
on the L2-norm, the Minkowski distance based on the Lp-norm, the Chebyshev distance
based on the L1-norm, the Canberra distance based on the ratio of the difference to the
sum. Wilson and Martinez [289] review all of the same distance measures, as well as four
additional measures: the Quadratic, Mahalanobis, Correlation and Chi-square distance
measures. Whereas Euclidean distance assumes that features are equally important and/or
have been normalized, the Mahalanobis distance generalizes Euclidean distance with a
matrix of weights [268].

Cosine similarity is used in text information retrieval [223] while the cosine distance is
found in audio [77] and image [302] retrieval; and the tangent distance [234] is used in
image processing to achieve local invariance.

2.6.5 Ordinal simdist functions

There are six ordinal similarity measures in the literature: Spearman’s rank correlation
[300], Kendall’s coefficient of concordance W, Kendall’s rank correlation Tau, Goodman
Kruskal Gamma, Lin’s information theoretic ordinal similarity measure; and Podani’s co-
efficient of similarity for ordinals.
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There are also a variety of ordinal distance measures, where the first two distances corre-
spond to the first two similarities: Spearman distance, Kendall’s distance.

2.7 Kernels

This section on kernels is very mathematical in some spots—hence I note that the content
of greatest relevance is this introduction and the terms used in the subsection on kernel
classes. These two parts lay a foundation for Chapter 4 on kernel data modeling.

Kernels are similarity functions [233] used in SVM and other kernel methods (Glossary) in
general. In this section I define kernels in general and types or classes of kernels.

In general, unless otherwise qualified, kernels usually refer to Mercer, valid or positive
definite (p.d.) kernels (these terms are interchangeable)—where such kernels may be used in
any kernel method. There are a wider set of kernels which apply to SVM, called admissible
kernels which include p.d. and conditionally positive definite (c.p.d.) kernels. I define these
terms further in the sections that follow.

A kernel (in the context of my thesis) refers to a similarity function that takes two inputs of
any type (e.g., atomic data type or complex data type) and outputs a real-valued number
that represents the similarity between the inputs, where the function must meet other
specific requirements. A kernel must be symmetric (i.e., switching the inputs yields the
same output) and must be either admissible or valid for its purpose.

In the literature [233], a kernel k is defined as a function of two inputs x and z (which
may be non-numeric, i.e., not necessarily vectors) in an arbitrary domain, or input space,
X (i.e., the inputs can be of any type) with a real output resulting from an inner product
of a basis function � : X ! F applied to each input, as in:

kM (x, z) = h� (x) , � (z)i x, z 2 X, � 2 F , k 2 R (2.22)

The term F refers to the feature space, and I may optionally put a subscript after the
inner product to denote that the inner product occurs in the feature space, i.e., h·, ·iF .
Also, the function � may be denoted and considered vectorial, as in �, if the feature space
F is a vector space like Rn.
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2.7.1 Mercer kernels

As previously stated, in general, unless otherwise qualified, kernels usually refer to Mercer,
valid or positive definite (p.d.) kernels10—these terms are equivalent when applied to a
kernel. Mercer kernels may be used in any kernel method.

Before I define or describe a Mercer kernel, I first provide the motivation or purpose for
one.

In machine learning it is ideal when I can find the global optimum (maximum or mini-
mum) as the solution to a specific study/problem. If I use aMercer, positive definite
or valid kernel then the global optimum solution is guaranteed to exist, and I will find
that solution if I use convex optimization in kernel methods like SVM.

However, problem solving is a little bit more complicated than that. While the solution
is globally optimal for the specific study/problem and model posed, the model may not
be the optimal choice and the study/problem may not be optimally expressed. For ex-
ample, the optimum found may be for a specific method (e.g., a support vector machine)
and its hyperparameters (C) and a specific kernel (e.g., a Gaussian RBF kernel) and its
hyperparameters (�)—but it is not, in general, the best possible solution over all possible
methods, kernels and hyperparameters. So the solution is globally optimal in a specific or
local context.

In contrast, neural networks are non-convex optimization problems, so they find lo-
cally optimal solutions. There is no way to say that one approach is better than the other.
One difference is that convex optimization is repeatable and deterministic, whereas
non-convex optimization will arrive at a different results for different model weights, dif-
ferent optimization step sizes, different stopping conditions, etc. Also some consider it an
advantage that convex optimization is more well studied.

Having motivated the need for a Mercer kernel, I now define the properties of a Mercer
kernel that allow us to identify or create one. I identify a Mercer kernel as follows:

10Note: a positive definite (p.d.) kernel is distinguished from a positive semi-definite (p.s.d.) Gram
matrix (or kernel matrix).
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Mercer specified that a kernel is valid if and only if (iff) it is positive
definite (p.d.) and iff it meets the following condition (Mercer’s
condition) [187, 233]:

¨
X⇥X

k (x, z) f (x) f (z) dxdz > 0

x, z 2 X , f 2 L2 (X ) , k 2 R, k symmetric

This definition (or condition) is not very intuitive compared to others that follow.

A kernel is Mercer if and only if its Gram matrix G is positive semi-definite for all possible
finite data sets and all possible support vector coefficients ↵i and labels yi (where ci = ↵iyi)
[233]:

“A necessary and sufficient condition for a function k (x, x0
) to be a

valid kernel [233] is that the Gram matrix [or kernel matrix]...whose
elements are given by k (xn, xm) should be positive semi-definite for
all possible choices of the set {xn}.” [24]

Alternatively stated:
P̀

n=1

P̀

m=1

cncmk (xn,xm) � 0 for any set of ex-

amples {xn} and any reals {cn} [94]

The simplest route to create a Mercer kernel is as follows:

Any kernel defined with an explicit basis function � in

k (x, z) =
⌦

� (x) , � (z)
↵

x, z 2 X, � 2 F , k 2 R (2.23)

is by definition [233] Mercer, valid and p.d.

Some kernels are defined without an explicit basis function � however—and for those
kernels to be Mercer, the basis function must be known to exist but I do not have to know
the basis function itself. It may remain implicit rather than explicit.

A stationary kernel, i.e., one defined in terms of a difference in inputs, k (x� z) or
k (kx� zk) is valid and Mercer iff the values in the amplitude spectrum of the Fourier
transform are non-negative.
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A dot product kernel, i.e., one defined in terms of an inner product of the inputs, k
�

xTz
�

is valid and Mercer iff the values in its Taylor/MacLauren series at zero are non-negative
[243].

A recent addition to methods of proof for a Mercer kernel pertains to similarity matrices
but it is problematic because of its dependency on data [280]—this is an area for potential
future work.

A kernel is Mercer if it is constructed using certain rules (Tables 2.3, 2.2, 2.4) [24, 233].

Table 2.2: Rules to construct Mercer kernels from functions

Product of Functions [24, 94, 233]
k (x, z) = f (x) f (z) for f : X ! R

Function Arguments [24, 52, 233]
let k (x, z) = k3 (�1(x),�1(z))
where �1 : X ! Rp and k3 : Rp ⇥ Rp ! R

Covariance [94]
k (x, z) = 1

4
[f (x+ z) f (x� z)]

where f is a variance function
i.e., f : X ! R, f � 0, min (f) = 0

Kernel Substitution (based on[233])
given k1 (x, z) = f (hx,xi , hx, zi , hz, zi)
let k (x, z) = f (k1 (x,x) , k1 (x, z) , k1 (z, z))
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Table 2.3: Rules to construct Mercer kernels from Mercer kernels

Scaling [24, 233]
k (x, z) = c · k2 (x, z) for c✏R+, n✏N

Sum [24, 94, 233]
k (x, z) = k1 (x, z) + k2 (x, z)
or k (x, z) = k1 (xa, za) + k2 (xb, zb)
where xa,xb ✓ x not necessarily disjoint
and za, zb ✓ z not necessarily disjoint

Product [24, 94, 233]
k (x, z) = k1 (x, z) k2 (x, z)
or k (x, z) = k1 (xa, za) k2 (xb, zb)
where xa,xb ✓ x not necessarily disjoint
and za, zb ✓ z not necessarily disjoint

Polynomial [24, 94, 233]
k (x, z) =

P

n

cnk1 (x, z)
n for cn✏R+, n✏N

Exponential [24, 94, 233]
k (x, z) = exp (k1 (x, z))

Cosine (feature space) normalization [18]
k (x, z) = k1(x,z)p

k1(x,x)k1(z,z)

Table 2.4: Rules to construct Mercer kernels from matrices

Kernel Affine Transformation [24, 94, 233]
k (x, z) = xTBz, where B is symmetric
positive semi-definite.
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2.7.2 Gram matrices

To learn from data, kernel methods apply the kernel to every pair of instances in training
data with replacement, to obtain a Gram matrix G (also called a kernel matrix) which is
symmetric (conjugate symmetric to be specific).

A kernel is Mercer iff its Gram matrix G is positive semi-definite (p.s.d.) for all possible
finite data sets. The practical implication of the p.s.d property is that the quadratic
formulas used for optimization in machine learning methods have a minimum when the
Gram matrices are either p.d. or p.s.d. (Figure 2.5). Quadratics allow convex optimization
(semi-definite programming), whereas if I try to minimize a function that isn’t convex, my
result or solution may be a local minimum rather than the global minimum.

A Gram matrix is positive semi-definite if and only if the eigenvalues of the Gram matrix
are all non-negative.

A Gram matrix is positive semi-definite if K = XTX for X 2 R, i.e., I can find the matrix
square root.

Figure 2.5: Positive definite (left) and positive semi-definite (right) forms are convex with
global and local minima
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2.7.3 Conditionally positive definite kernels

A conditionally positive definite (c.p.d.) [30, 226] kernel is admissible [229, 241, 304], i.e.,
only valid for specific methods such as SVM which shares the c.p.d. condition or constraint
P

i

ci = 0 because SVM imposes Karush-Kuhn-Tucker (KKT) [233] conditions. It is that

condition which differentiates a c.p.d. kernel from a Mercer kernel. Boughorbel et al.
[30] prove a kernel is c.p.d. by imposing the condition on the kernel’s formula and then
algebraically showing that under that condition the formula meets the (second) definition
of a Mercer kernel.

As a finer point, I observe that a Mercer or p.d. kernel is still Mercer or p.d. even if that
constraint is imposed (it does not contradict the definition) hence all p.d. kernels are c.p.d.
as well, but the literature and henceforth my thesis, only refer to c.p.d. kernels as those
which are not p.d., for the sake of clarity. When creating kernels for SVM, it may be useful
to know that negating a negative definite (n.d.) kernel, results in a c.p.d. kernel.

2.7.4 Kernel classes

For kernel methods, the first question regarding a kernel is whether or not I can use it in
SVM—i.e., is it admissible [229, 241, 304] (Table 2.6)? Admissible kernels [229, 241,
304] include Mercer or positive definite (p.d.) kernels (2.7.1) as well as conditionally
positive definite (c.p.d.) kernels (the previous section). This provides a functional
overview of kernel classes for SVM.

A definitional or theoretical perspective on kernel classes for SVM, describes three disjoint
kernel classes at the top-level (Table 2.6).

I now return to a functional perspective on kernels—this time with more detail (Tables 2.7
and 2.8). Kernels are not only p.d. or c.p.d., from the previous definitional or theoretical

Table 2.5: A functional overview of kernel classes for SVM is provided by admissible kernels.
Terms in bold are used often in my thesis. Kernel classes at the same indentation level are
disjoint. *Note: the term “valid” in the literature is a misnomer given that c.p.d. kernels
are valid for use in SVM.

Admissible[242]
Mercer or positive definite (p.d.) [187], a.k.a valid*
Conditionally positive definite (c.p.d.) [242]

Not admissible
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Table 2.6: A definitional or theoretical overview of kernel classes is provided by the three
classes Mercer [187] defines. Terms in bold are used often in my thesis. Kernel classes at
the same indentation level are disjoint. *Note: in the context of SVM, the term “valid” is
a misnomer since c.p.d. kernels are also admissible [229, 241, 304] for SVM.

Positive definite (p.d.) [187] or Mercer, a.k.a. valid*
Negative definite [187] (n.d.)
Indefinite [187]

Conditionally positive definite (c.p.d.) [242]
Conditionally negative definite (c.n.d.) [191]
Others

perspective, they often also belong to other kernel classes such as dot product kernels,
stationary kernels, or separable kernels.

The linear, polynomial and sigmoid kernels are dot product kernels of the form k
�

xTz
�

(Section 3.4), while the Gaussian RBF and inverse multiquadric kernels are stationary (or
proximity) kernels of the form k (x� z)11 (Section 3.4).

I note that dot product kernels and stationary kernels are not necessarily Mercer kernels.
For example, the sigmoid kernel is a dot product kernel which is neither Mercer nor admis-
sible (except sometimes). The power distance and log kernels are stationary kernels which
are admissible but not Mercer, while the multiquadric kernel is a stationary kernel that is
neither Mercer nor admissible.

In this section, I describe classes of kernels which have a precise mathematical definition.
I do not include descriptions or descriptors such as transparent kernels (4.3). The list is
not exhaustive since new kernel classes and kernels emerge in the literature now and then.

Commonly used kernels operate on numeric data, where some of that data may have been
converted to numeric data types from other data types (Section 2.5 and Glossary A.8 on
page 187). I review common kernels and a selection of uncommon kernels in the sections
that follow.

11I am being precise while using the most popular term: stationary. Isotropic stationary kernels of
the form k (kx� zk) are sometimes inaccurately (or incompletely) called stationary, when they are in
fact isotropic stationary. Isotropic stationary kernels only care about the magnitude of difference (not its
direction or phase), while stationary kernels in the most general sense may also consider the direction or
phase.

40



Table 2.7: A hierarchy of kernel classes, where classes at the same indentation level are
disjoint. Classes in bold are referred to throughout my thesis.

Dot product [243]
Locally stationary [94]

Stationary [94]
Homogeneous or isotropic stationary [94]

Compactly supported [94]
Anistropic stationary [94]

Exponentially convex [94]
Locally stationary reducible [94]
Stationary reducible [94]
Separable or separable non-stationary [94]
Generalized [94]

Table 2.8: Other noteworthy kernel classes (not disjoint) including my proposed class:
Explicit Mercer . Classes in bold or bold italic are used throughout my thesis.

Separable [121, 279]
Separable non-stationary [94]

Additive [179]
Explicit Mercer (4.4)

Composite [44]
Convolution [118]
Probabilistic [248]
Gamma homogeneous [94]
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2.8 Common kernels

There are four kernels which are commonly used in the literature: the linear, polynomial,
Gaussian radial basis function (RBF) and sigmoid kernels. They are used with a variety of
data types converted to numeric data types. In this thesis my interests pertain to atomic
data types (4.2)—not complex data types.

I also describe minor variations of these kernels, some of which I use in selected experiments—
e.g., in specific cases it makes sense to include and analyze the effect of kernel width (or
horizontal scale), which requires small modifications to the linear and polynomial kernels.
Also the normalized sigmoid kernel is usually more accurate than the sigmoid kernel.

2.8.1 Linear kernel

The most general definition of a linear kernel [18, 24] is:

kLin,c0 (x, z) = xTz + c0 c0 � 0, c0 2 R

where the hyperparameter c is a vertical shift (or bias) in the kernel output. However,
implementations such as Matlab use:

kLin (x, z) = xTz

Furthermore, in some experiments it is important to vary the kernel width, so the following
variation is also a linear kernel:

kLinS (x, z) = kLin

⇣x

�
,
z

�

⌘

Hence not all linear kernels are the same.

2.8.2 Polynomial kernel

The most general definition of a polynomial kernel (e.g., libsvm) [18, 24, 148, 152] is:

kPolyc (x, z) =
�

xTz + c
�d0

c � 0, d0 � 2, c 2 R, d0 2 N
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However, the most popular implementation (e.g., Matlab, Weka using lower order terms)
[18] is:

kPoly (x, z) =
�

xTz + 1

�d0
d0 � 2, d0 2 N

While the homogeneous polynomial kernel is simply (e.g., Weka default):

khPoly (x, z) =
�

xTz
�d0

d0 � 2, d0 2 N

The hyperparameter c is a balance parameter that determines the relative weight of the
interaction terms, xpzq for p, q 2 N, p, q  d. A higher value of c emphasizes lower order
interaction terms, and vice-versa, while c = 0 omits interaction terms.

2.8.3 Gaussian RBF kernel

The definition of a Gaussian radial basis function (RBF) kernel [18, 24, 148, 152, 233], also
called the RBF kernel or squared exponential kernel [247] is:

kRBF (x, z) = exp

 

�kx� zk22
2�2

!

� > 0; � 2 R (2.24)

The hyperparameter � specifies the width of the Gaussian kernel. Sometimes it is equiva-
lently defined in terms of a parameter � instead:

kRBF (x, z) = exp

�

�� kx� zk22
�

� =

1

2�2
(2.25)

Note that related kernels—the exponential and Laplacian kernels—are defined without a
factor of two. For interpretability of the kernel width relative to the data I must pay
attention to the inclusion or exclusion of any factor. Some platforms (e.g., Matlab version
2017 and up) use the parameter, kernel scale s, which is related to the interpretable kernel
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width by s =
p
2�:

kRBF (x, z) = exp

✓

�
�

�

�

x

s
� z

s

�

�

�

2

2

◆

s =
p
2�; � > 0; � 2 R

= exp

 

�kx� zk22
s2

!

2.8.4 Sigmoid kernel

The sigmoid kernel [24, 40, 167], also called a multilayer perceptron (MLP) kernel or
hyperbolic tangent kernel, is sometimes conditionally positive definite, but not always (it
depends on the hyperparameter values relative to the data), and is defined by:

kSig (x, z) = tanh

�

a0 · xTz + r
�

a0 > 0, r < 0; a0, r 2 R (2.26)

= tanh

 

a0 ·
p
X

i=1

{xizi}+ r

!

(2.27)

The hyperparameter a0 is a horizontal scaling parameter, and the hyperparameter r deter-
mines a vertical shift in the centre of the kernel’s geometry. I define a normalized sigmoid
kernel [45] as:

kSigN (x, z) = kSig

✓

xp
n
,
zp
n

◆

, x 2 Rn

and subsequently found a source in the literature that stated a good value for a0 is 1
n

(which is equivalent), as corroboration, but I have not been able to find or identify the
source. The rationale for the normalization is simple: since a sigmoid saturates values
(similar to top coding, but smoothly), the saturation should not depend on the number
of dimensions in the data, but on the values in the data instead—otherwise with a large
number of dimensions the kernel will always saturate and fail to operate as intended.

2.9 Uncommon kernels

The selection of kernels which follow are not as commonly used in the literature but they
are either noteworthy for various reasons and/or the next most likely set of kernels which
a user will encounter. Since the scope and objective of my thesis pertains only to atomic
data types (4.2), I do not include kernels made for complex data types.
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2.9.1 Notable kernels for experiments

I use the following uncommon kernels in experiments: (1) the power distance kernel as
the most intuitive stationary kernel with high accuracy; (2) the logarithmic kernel as a
related stationary kernel with high accuracy; and (3) the inverse multiquadric kernel
which has a theoretical basis in three-dimensional interpolation.

Of the remaining ten kernels, eight are for real data types and two (the Delta and Hamming
kernels) are for other data types.

I exclude the Circular and Spherical kernels because they are only defined for two and
three dimensions respectively, hence not applicable to most studies/problems. I exclude
the Mahalanobis kernel, because it only applies to data which are not already centered and
normalized, in contradiction to the standard practice in machine learning to center and
normalize data.

Power distance kernel

The power distance kernel [30, 226] is conditionally positive definite and is defined by:

kPwr (x, z) = �kx� zk�2 0 < �  2, � 2 R

where � is an exponent. This kernel is notable, when � = 1, i.e., kPwr1 (x, z) = �kx� zk2
as the most intuitive distance kernel (as a pure Euclidean distance)—more intuitive than
the Gaussian RBF kernel. It performs as well or better than the Gaussian RBF kernel in
accuracy with most data sets. This kernel is also notable, when � = 2, i.e., kPwr2 (x, z) =

�
n
P

i=1

(xi � zi)
2, as perhaps the only stationary kernel in the literature that is additive in

the differences within each feature—i.e., the feature dimensions are not confounded.

Logarithmic kernel

The logarithmic kernel[30, 226] for object classification (in images) is conditonally positive
definite and is defined by:

kLog (x, z) = � log

⇣

1 + kx� zk�2
⌘

2 � � > 0, � 2 R

where � is an exponent within the logarithm. It performs as well or better than the
Gaussian RBF kernel in accuracy with most data sets.
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Inverse multiquadric kernel

The Inverse multiquadric kernel [142] is a positive definite kernel:

kIMQ (x, z) =
1

q

kx� zk2 + ✓
✓ > 0; ✓ = �2

; ✓ 2 R (2.28)

This kernel has a theoretical foundation in the interpolation of three-dimensional topolo-
gies, e.g., for map-making and it performs well in accuracy. How does this relate to classi-
fication? Classification is, in most cases a threshold applied to a regression study/problem,
which in turn is simply interpolation, extrapolation and/or smoothing of a function (if
these terms are familiar to the reader)—hence the relevance.

2.9.2 Uncommon kernels likely encountered

The following set of uncommon kernels are the next most likely one will encounter and
they are all positive definite: the exponential (2.29) [94], Laplacian (2.30) [87, 98, 212],
rational quadratic (2.31) [94] and Gaussian kernel with a generalized distance
(2.32) [24, 196]. Note that for interpretability purposes I have added the clarification that
✓ = �2.

kExp (x, z) = exp

✓

�kx� zk2
✓

◆

✓ > 0; ✓ = �2
; ✓ 2 R (2.29)

kLap (x, z) = exp

✓

�kx� zk1
✓

◆

✓ > 0; ✓ = �2
; ✓ 2 R (2.30)

kRQ (x, z) = 1� kx� zk2

kx� zk2 + ✓
✓ > 0; ✓ = �2

; ✓ 2 R (2.31)

The hyperparameter ✓ is a kernel width parameter and � is an inverse square of kernel
width parameter.

kRBFgen (x, z) = exp

 

�d (x, z)2

2�2

!

� > 0; � 2 R (2.32)

= exp (��) , d2 (x, z) = kx� zk2 � > 0; � 2 R (2.33)

� =

1

2�2
(2.34)

Following these uncommon kernels there are many more kernels for numeric data (not
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complex data types) which one may encounter, which may or may not be admissible: the
exponential dot-product [88, p.7], etc.

2.9.3 Transparent kernels

These uncommon kernels are not as likely to be encountered because to find them requires
a keen interest in searching diligently for kernels which are separable and/or interpretable.

Separable kernels are explicitly of the form k (x, z) = f (x) g (z) [279]. They have lower
space complexity, since only the vectors x and z need to be stored instead of the kernel
matrix [94]. Genton shows how to reduce some kernels to separable kernels and asserts
this benefit as crucial for big data [94]. However Genton is referring to kernels of rank 1,
which are likely to be insufficient for a number of classification studies/problems.

Separable kernels include: the linear, Hellinger [63, 120, 282], Hellinger exponential [266],
wavelet [304], generalized histogram intersection [180], chi-square [282], probability product
[68, 137] Bhattacharyya [68, 136], expected likelihood [68, 136], homogeneous polynomial
[229] and truncated Gaussian RBF kernels [278]. The last is defined as follows:

ktRBF (x, z) =
2

n (n� 1)

n
X

p=1

n
X

q>p

kRBF

 "

xp

xq

#

,

"

zp

zq

#!

2.9.4 Kernels with other notable features

The circular (2.35) and spherical (2.36) kernels [94] are notable for their compact sup-
port, but I exclude them from experiments because they are only defined for two and three
features in a data set respectively.

kCirc (x, z) =

8

>

<

>

:

2
⇡
arccos

⇣

kx�zk
✓

⌘

� 2
⇡

⇣

kx�zk
✓

⌘

r

1�
⇣

kx�zk
✓

⌘2

if kx� zk < ✓

0 otherwise
(2.35)

kSph (x, z) =

8

<

:

1� 3
2

⇣

kx�zk
✓

⌘

+

1
2

⇣

kx�zk
✓

⌘3

if kx� zk < ✓

0 otherwise
(2.36)

The non-diagonal Mahalanobis kernel kndM and diagonal Mahalanobis kernel kdM [1]
are notable because the Mahalanobis distance is notable—however, like metric learning, I
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exclude it from experiments due to lack of interpretability. For a two-class study/problem
only one class k is used to define each kernel using the following approximations [1]:

kndM (x, z)
.
= exp

✓

� �

m
(x� z)T Q�1

(x� z)

◆

kdM (x, z)
.
= exp

✓

� �

m
(x� z)T Q�1

diag (x� z)

◆

Qdiag = diag (Q)

Q =

1

M

M
X

i=1

(xi � c) (xi � c)T xi | yi = k

c =

1

M

M
X

i=1

xi xi | yi = k

The non-diagonal Mahalanobis kernel applies a metric that centers, normalizes and whitens
(decorrelates) the data. Centering and normalizing are redundant of the standard pre-
processing done in machine learning. The third aspect however, which whitens or decorre-
lates data, is problematic for transparency. Whitening involves a matrix transformation,
that, like principal components analysis (PCA), and many other matrix transforms (dis-
cussed in Appendix A.3) yields features which are not inherently interpretable nor clinically
meaningful.

Matrix transformed features inform us about combinations of features that matter, such
as: 0.7 * systolic blood pressure + weight - 0.2 * age, but they do not tell us what the
combination means or represents—and any interpretation that I apply is post-hoc unless
separately validated, e.g., by an interventional study.

Decisions made in a feature space of transformed features are semi-transparent. I can
either fully understand how the method and kernel behave in the feature space, but not
fully understand the transformed features there, or I can view things in the input space
where I fully understand the features, but cannot fully understand the behaviour of the
method and kernel.

Since this approach is semi-transparent, I observe that it is an alternative approach to my
work, however I do not pursue it further. Another alternative is to perform these matrix
transformations as pre-processing to the methods that I propose. The same reasoning
applies to metric learning. That is: the central goal of my work is to maximize transparency
and observe if I can achieve the same, similar, or ideally better accuracy as less transparent
methods and models. I seek metrics which are simple, sparse, derived, or justified/traced
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to requirements for transparency and interpretability, as my starting point, rather than
seeking maximum accuracy first.

With the diagonal Mahalanobis kernel, Abe [1] achieved the same accuracy as a Gaussian
RBF kernel, but consistently with a smaller cost of error C. Since C regulates the trade-off
between the two objectives—maximizing the margin and minimizing error—the diagonal
Mahalanobis kernel allows for a potentially larger margin, potentially resulting in greater
separability of data, greater probability of class membership and lower probability of error
for an individual prediction. The Gaussian RBF kernel is a special case of the diagonal
Mahalanobis kernel with Q�1

diag = � · I =

1
2�

· I.

2.9.5 Non-numeric or heterogeneous kernels

I describe three Mercer kernels for non-numeric data or heterogeneous (or mixed) data
with atomic data types (4.2)—however two of them are flawed in how they weight nominal
data and the last uses the linear kernel for real data types, which is suboptimal.

The delta kernel [94] is a Mercer kernel that applies to discrete data types such as binary,
nominals, ordinals or integers:

k (x, z) = � (x, z)

=

p
Y

i=1

� (xi, zi)

=

8

<

:

1 if x = z

0 otherwise

It only measures similarity as two levels: equal or not equal.

The Hamming kernel [8] is a Mercer kernel for n-dimensional vectors of binary B and/or
nominal (multinomial) M, features:

kHam (x, z) =

n
X

i=1

� (xi, zi)

� (xi, zi) =

8

<

:

1 if xi = zi

0 otherwise

For multiple nominal features with different levels, or a mixture of binary and nominal
features, it does not properly weight the features, because it gives the same weight to each
level within a nominal feature as it does a binary feature.
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Aradhye and Dorai [8] use the Hamming kernel in Kernel Principal Components Analysis
(KPCA) [228] and feed that output to SVM for two classification tasks. They achieve
comparable accuracy in one case and less accuracy in the other—identifying as a benefit
the ability to train with less data points.

Aradhye and Dorai [8] also create a Mercer kernel for binary B, or nominal (multinomial)
M and real R, features which they call a Hamming-Euclidean hybrid kernel:

kHE (x, z) = ↵ · kHam
�

x{B,M}, z{B,M}
�

+ � · kLin (xR, zR) x =

"

x{B,M}

xR

#

, z =

"

z{B,M}

zR

#

Since the Hamming kernel is a component of this kernel, and since the Hamming kernel
does not properly weight features, this kernel is similarly flawed. I note that Hamming
refers to the type of similarity (not the space) for binary and nominal data types, whereas
Euclidean refers to the space of the real data types.

There are other more seriously flawed kernels found in the literature for nominals in SVM
[59, 60] which lack proof of admissibility (p.d. or c.p.d.) and therefore importantly should
not be used, and in particular, cannot be trusted for use with clinical data. Admissibility is
an essential requirement for kernels. Perhaps in the future the obscure branch of research
on non-positive kernels for SVM [199] will be fruitful, however it is not trusted by the SVM
community at large, at this time.

2.10 Other kernel topics

For a general sense of completeness I briefly describe other topics with kernels: kernel
learning, multiple kernel learning and two-stage kernel learning.

Kernel learning is: selecting a kernel from a pre-defined set, by optimizing the error
(empirical risk) on the training set [256], where the pre-defined set may consist of one
kernel with different hyperparameters, or multiple kernels.

General types of kernel learning, i.e., approaches, include: cross-validation (most common),
filters [256], wrappers [256], embedded methods [256] and hyperkernels [200]. Specific
methods of kernel learning are as follows with the approach denoted in brackets:

• The cross-validation approach (the common/standard approach with SVM) [24]

• Multiple kernel learning [99, 155, 296] and two-stage learning [54] (wrapper)
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• Composite kernel learning (embedded) [256]

• Data dependent kernels (filter approach) [256]

• Non-parameteric kernel learning (embedded) [256]

• Hyperkernels [200]

Filters adjust a kernel to the data before SVM/optimization. Wrappers perform nested
optimization, with SVM optimization on the inside. Embedded methods optimize with
respect to the SVM and kernel hyperparameters at the same time.

I use the cross-validation approach [24] (Section 5.2) to kernel learning primarily since
it is widely-available on machine learning platforms. The wrapper approach is better than
cross-validation, but not used because my objective is to facilitate widespread adoption of
machine learning techniques.

In machine learning literature there are a good number of custom objective functions which
are not implemented or validated—this is what the embedded approach requires. Custom
objective functions involve programming and optimization logic with greater complexity
and risk of error than kernels.

Multiple kernel learning (MKL), like kernel learning in general, is usually applied to
numeric data types. Lanckriet et al. [155] introduced MKL, although the term MKL was
introduced by subsequent authors. With MKL, one specifies multiple kernels in matrix
form and the method finds an optimal linear combination of them. The title of the original
paper implies that the kernel matrix is learned — but it is only partially-learned based on
pre-specified kernels.

MKL formulates the study/problem and dataset into a quadratic problem (e.g., minimize
the squared loss function) with specific quadratic constraints and an optimal solution is
found in that context. Note that optimality is always context-specific — i.e., optimal for
a specific objective function with specific constraints. Lanckriet et al. identified learning
with data from multiple sources (heterogeneous data) as one of the key applications of this
technique, although that seemed to be more of an afterthought than an initial motivation.

Ye et al. [296] applied MKL to integrate data from multiple sources (heterogeneous data)
in the context of Alzheimer’s Disease and demonstrated a marked improvement in the
sensitivity and specificity of classification as compared with the use of one data type or
mode. They also were able to identify new features: regions of the brain that showed up as
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significant biomarkers in multimodal image data; and combine feature selection algorithms
with MKL.

Composite kernels are defined in [44] and are used to instantiate kernels which clas-
sify two different types of real-numbered data (in images). Composite kernel learning
(CKL) [256] generalizes that concept further including an approach to classify or regress
data with heterogeneous data types, structures or channels. Szafranski et al. [256] demon-
strate the concept with a multichannel (EKG) classification problem. Rakotomamonjy
also develops CKL. CKL also uses existing kernels and therefore also suffer from the same
shortcomings of common kernels, but also provides additional information like MKL. I use
and develop composite kernels in my work, where the components are meaningfully related
to data types.

Two-stage kernel learning includes work by Cortes et al. [54]. In standard SVM the
user selects the kernel and specifies the range of hyperparameters, whereas in this approach
a family of kernels is specified instead—as in, hyperkernels, Gaussian kernel families and
non-linear kernel families.

Until Cortes et al., two-stage learning did not achieve better accuracy than a uniform set
of multiple kernels (i.e., the simplest form of MKL) and/or MKL in general. Cortes et al.
performed better than MKL on all of the data sets they tested.

In the two-stage approach, the first stage learns a kernel that is a convex combination
of p kernels. The second stage then performs traditional kernel-based learning with that
kernel. Alternatively the steps can be swapped. Cortes determined a margin bound with
a logarithmic dependency on the number of kernels p. Kernels are learned (optimized)
according to a measure of kernel alignment between the kernel matrix and the target
matrix. They provide a modified version of kernel alignment called centered alignment
which behaves correctly in a particular case where traditional kernel alignment is faulty.

There are data-dependent kernels such as the Fisher and practical Fisher kernels [215,
233] which are based on Fisher information (statistics) calculated on the data set, however
these methods require advanced statistical work and understanding to setup and use with
confidence and validation—a challenge that is aggravated by the lack of reference imple-
mentation for the kernel. Another data-dependent kernel, the quotient-based kernel suffers
from the same challenge—the lack of a reference implementation despite requests to the
authors. We propose four data-dependent kernels—two based on kernel density estimates
and two based on the binormality assumption with reference implementations available
upon request.
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Chapter 3

Study/problem formulation

For classification in health care, epidemiologists and clinicians want methods and models
which provide:

1. the best discrimination or accuracy [106, 250], i.e., least error

2. good calibration (or fit) [250, 106], i.e., non-systematic error

3. the probability of error for individual predictions [250]

4. an understanding of how they work (i.e., transparency) [21, 106] for interpretation,
explanation and/or justification; and

5. an understanding of how the data (as features or instances) are used to make predic-
tions [21, 106] for interpretation and explanation.

6. parsimony [244], i.e., among sufficient models (e.g., equally accurate models) the
simplest is preferred.

My thesis seeks models or kernels with understanding and interpretation coincident
with high (or best achievable) accuracy. If that cannot be achieved then it seeks to under-
stand when and how any trade-off between interpretability and accuracy occurs.

Understanding and interpreting support vector classification (SVM) and kernels, is impor-
tant for clinicians to be able to trust, use, explain, justify or advocate their results and
methods to colleagues and patients [21, 106].
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3.1 Insufficient rationale for kernel selection

I review 22 academic papers (Appendix A.7) which conduct experiments using SVM in
health care to observe the rationale given for using common kernels with atomic data
types (4.2). The review includes eight papers on SVM for health care in general and 14
papers on SVM for melanoma detection.

Of the 22 papers reviewed, sixteen papers or 73% do not provide any rationale for the
kernels they use, nor a citation from which a rational could be inferred. Of the other six
papers, two do not state any rationale but provide citations as a weak proxy, while the last
four provide brief rationale. Hence, there is a lack of rationale for kernel selection.

Furthermore, fourteen of the 22 papers or 64% use a single kernel which is problematic
if the kernel is not suited to the data and study/problem—e.g., if other kernels achieve
higher accuracy, or achieve the same or similar accuracy with better interpretability. There
is a lack of rationale for kernel selection.

In some cases, kernel selection is based on popularity across domains, which is not a
sound strategy, since a kernel may perform well/best for domains/data, but have inferior
performance for others. The No Free Lunch theorem [72] is often cited as a justification
for this observation, although that theorem only applies when all possible data sets for a
set of data types are considered, which includes a great many nonsensical and implausible
data sets that do not look like the distribution of data in the population being studied.

3.2 The status quo

The kernels most commonly used—i.e., the linear, Gaussian RBF, polynomial and sigmoid
kernels—are those which are built-in to most SVM tools, with linear or RBF as the default.
They seem to be commonly used because they are readily available, and four of the papers
reviewed do not even indicate which kernel they use (hence probably the default).

Given that better performance can be achieved with other kernels aside from the Gaussian
RBF, such as my Mercer sigmoid kernel, on some data sets [45, 295] with statistical
significance [45], there is a lack of rationale for kernel selection. Also, as I indicated in
the introduction, the power distance kernel also often performs better than the Gaussian
RBF.
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According to my review of SVM in health care and my experience, the Gaussian RBF
kernel is the most widely used kernel. Is there rationale for using it, in general, even if
that rationale is not specified? There is some rationale aside from their availability.

Is the most popular kernel, the Gaussian RBF kernel, sufficient for maximum accuracy in
all studies/problems? Are kernels which are said to be universal approximators sufficient
for maximum accuracy? What if I also want maximum or high interpretability of the
kernel? Is it worth examining how kernels perform and/or relate to data given the No
Free Lunch theorem?

The polynomial, Gaussian RBF and sigmoid kernels, as 3 out of 4 common kernels, are
among the “first kernels investigated for the pattern recognition problem” [40]. Vapnik, the
creator of SVM, states, but does not show, that the polynomial, Gaussian RBF and sigmoid
kernels are all universal approximators [281]—i.e., they are able to approximate any
(continuous) function, in the limit, given infinite data.

This is a reasonable assertion for the sigmoid kernel (also called neural network kernel),
since universal approximation is proven for neural networks with one hidden layer and
infinite sigmoid neurons in that layer, and since a support vector classifier is special type
of neural network (where the output node is the classifier function). That said, the sigmoid
kernel is not an admissible kernel [45, 167] ( 2.8.4 on page 44).

Given that other kernels achieve higher accuracy on various data sets, clearly universal
approximation [281] is not the sole determinant of a good classifier in the finite
case. In fact, little can be said about finite cases that do not approach the limit. A support
vector classifier when viewed as a neural network has a neuron for each training data point
and is therefore finite for finite training data.

So how does one choose a kernel? There is little guidance in the literature for general
studies/problems and data—particularly in one place or as part of a coherent framework.

The main rationale put forth for using any kernel in general pertains to its ability to
separate (or shatter) points in the feature space—which corresponds to some ex-
tent, to the ability to achieve a complex class boundary in the original data space. The VC
dimension (introduced in section 2.2.1) is referenced in this case—however the VC dimen-
sion only applies to some configurations of data (which are ideal) not all configurations of
data and it does not guarantee accuracy.

Burges [40] explains that if I use a classifier ho based on oriented (linear) hyperplanes
in the feature space to separate data (like a perceptron), it has a Vapnik-Chervonenkis
dimension V C � q when there is at least one configuration of q non-overlapping points
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in the q � 1 dimensional feature space (e.g., a triangle of three points in two dimensions,
or a tetrahedron of four points in three dimensions, and so on, called simplexes) with any
permutation of class labels, which can always be separated by a line or hyperplane.

If all subsets of q points in the data form a simplex in q � 1 dimensions, then all of the
points can be shattered. However if any subset of q points in the data form a straight
line or linear hyperplane instead of a simplex, then that data cannot be shattered by a
q-dimensional hyperplane. Such a hyperplane is a specific case or subspace within the
space of possible data, whereas the simplex case covers the bulk of the space of possible
data.

For ho above, I can use a hard-margin support vector classifier or a soft-margin support
vector classifier with a sufficiently large cost of error C instead [40], to achieve the same
result. So it is argued that a support vector classifier hk with a kernel k where V C > n

can perfectly classify (shatter) any simplex training data with sufficiently large V C and
C1, and it is on this basis, as well as anecdotal examples, that one may select SVM with a
Gaussian RBF kernel, which has infinite VC dimension, or SVM with a polynomial kernel,
which has a large VC dimension for a moderate number of dimensions in the input data.

According to Burges [40] however, no theory “guarantees that a given family of SVMs
will have high accuracy on a given problem” — presumably in the context of C in general,
data in general and test accuracy instead of training accuracy. The hyperparameter C

controls the regularization in SVM, which causes SVM to choose training data points as
support vectors with some degree of sparsity, and the complexity of the class boundary
and margin is based on these support vectors of finite number and dimensionality. Since
regularization limits complexity (for proper generalization to test data), the ability of SVM
to discriminate is not just determined by the VC dimension of a kernel, it is also determined
by how the kernel separates data.

The Mercer sigmoid kernel [45] with a finite dimensional feature space achieves better
results than the Gaussian RBF kernel with an infinite dimensional feature space, for three
clinical studies/problems and data sets. Therefore it is not sufficient to select a kernel
based on its VC dimension alone.

Numerous authors state that the choice of SVM kernel significantly affects performance
[18, 24, 36, 40, 128] — yet there is insufficient guidance about how to select a kernel for a
given data set.

1Similarly, a sigmoid kernel can fully separate training data, if C is large enough[167], but with the
additional condition that the optimization problem has at least one stationary point.
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3.3 Need for new approach to kernel/model selection

Given the lack of rationale (Section 3.1) for kernel selection, a typical approach to SVM
model/kernel selection (Figure 3.1) is to pick one at the outset, or perform cross-validated
classification with several candidate kernels, and select one kernel which performs best in
validation/testing.

This approach minimizes validation/test error (empirical risk) however it is an empirical
approach which lacks theoretical justification and some of the common kernels used lack
full interpretation/interpretability.

Figure 3.1: The status quo and de facto standard approach to model/kernel selection in
SVM selects a single base kernel.

Alternative approaches to SVM model/kernel selection (Figure 3.2) in the literature do
not provide further justification or interpretation. That is, multiple kernel learning, com-
posite kernel learning and ensemble methods (Section 2.10) do not provide theoretical
justification—and kernel alignment, kernel evolution and data-dependent kernels (Section
2.10), while providing justification, may still lack interpretability if they do not use trans-
parent kernels.
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Figure 3.2: In contrast to the standard approach in the previous figure, alternative ap-
proaches to model/kernel selection in SVM use multiple kernels, eithjer in composite ker-
nel learning, multiple kernel learning or ensembles. Data-dependent kernels and/or kernel
alignment may also be used optionally.

Multiple kernel learning (Section 2.10) and composite kernel learning (Section 2.10)
use multiple kernels in a linear combination to achieve better accuracy and to automate
kernel selection, however there is no justification that the (base) kernels in the linear
combination are sufficient. The original problem of an individual kernel not being justified
persists, as well as the interpretability of individual kernels.

Kernel alignment (Section 2.10) quantitatively judges the match or alignment between a
kernel and data. While it provides rationale for a kernel, it does not yield interpretability or
transparency. Some data-dependent kernels (Section 2.10) may also lack interpretability
if they are not based on a model or method of dependency which is interpretable.

3.4 Kernel requirements and gaps

I examine requirements for kernels from four sources:

1. similarity concepts in the literature (Section 2.6)
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2. similarity and distance functions and kernels in the literature (2.6.1),

3. classification scenarios in literature, and

4. transparency literature.

3.4.1 Requirements from similarity concepts

The nine concepts of similarity in the background (Section 2.6) specify similarity require-
ments for kernels with three different priorities: must, should and may. I evaluate kernels
against these requirements (Table 3.1 on page 59) and others that follow.

Table 3.1: Dot product kernels (D) do not have the ideal meanings for the maximum and
minimum outputs, in comparison to stationary (S), equality (E) and Hamming (H) kernels.

Require- Priority Numeric kernels Non-numeric
ment RBF Lin Poly Sig Pow IMQ tRBF Del Ham HE

Exp Log
S D D D S S S E H H, D

Symmetric
must

� � � � � � � � � �
inputs

Increase w should � � � � � � � � � �
commonality
Decrease w should � � � � � � � � ⇥ ⇥H
difference

Max if same should � ⇥ ⇥ ⇥ � � � � � ⇥D
Min for no should � ⇥ ⇥ ⇥ � � � � � ⇥D
commonality

Info. should � � � � � � � � � �
weighted

sum of persp
Finite min may � � � � � �
Finite max may � � � � � �
Triangle ineq may

In Lin’s review of similarity requirements and functions [166], no function met all of the
requirements. In my case, with kernels, no kernels fulfill the optional triangular inequality
for similarity (Table 3.1)—but as Lin pointed out, that is not an intuitive requirement (and
it is optional).

More importantly, I observe (Table 3.1) that dot product kernels do not have the ideal
meanings for the maximum and minimum—whereby a maximum value should indicate
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two inputs are the same and a minimum value should indicate that two inputs have no
commonality. This is a concern if there is a need for dot product kernels—and there is
such a need. Transparent kernels are almost always dot product kernels—e.g., the linear
kernel, the homogeneous polynomial kernel, my proposed kernels, but not the truncated
RBF kernel. Can I fulfill the requirements for a meaningful maximum and minimum with
a dot product kernel? Are the maximum/minimum requirements compatible with other
features that I require or desire in a dot product kernel?

I also observe that various dot-product and stationary kernels do not have a finite minimum
and maximum—in other words, they are not bounded in their output. Unbounded kernels
allow outlier values within a feature to have greater effect than may be desired or optimal.
One suboptimal solution is to remove instances which have outlier values in any feature,
prior to learning—however this results in a loss of information, a biased data set and the
possible need to remove too many instances. Another problem with an unbounded kernel
is that measures like the relevant dimensionality estimate [35] which may be useful (Section
6.4) are not well defined and reliable for unbounded kernels. Hence, I design and propose
a number of bounded kernels as a better alternative (Chapter 4).

3.4.2 Requirements from similarity and distance functions and
kernels

I also evaluate kernels against requirements from the literature [8, 16, 49, 77, 148] on
similarity and distance functions and kernels. These requirements apply to some but not
all studies/problems and data (Table 3.2). Some are also mutually exclusive. So I treat
them all as requirements which one may optionally fulfill.
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Table 3.2: Numeric kernels do not fulfill information entropy, asymmetry requirements or
compactness requirements; non-numeric kernels do not support inner product or asymme-
try requirements. Note: �

✏

denotes � ! 0, ✏, while �1 denotes � ! 1.

Requirement Numeric kernels Non-numeric
RBF Exp Lin Poly Sig Pow IMQ tRBF Del Ham HE

Log

Equality (E) n/a n/a n/a n/a n/a n/a n/a n/a �
Proximity, i.e., � � � � � � �
stationary (S)
Covariance, i.e., � � � ~ �
dot product (D)
Info. entropy
Other similarity �
Probability � � �
Asymmetric �
match weight
Heterogeneous �
data design
Saturated � � � � n/a n/a n/a
Compact n/a n/a n/a
Local+ � � � � n/a n/a n/a
Global
Local �

✏

�

✏

� �

✏

n/a n/a n/a
only
Global �1 �1 �1 n/a n/a n/a
only

The first five requirements pertain to the different kinds of similarity which a kernel must
implement—i.e., either equality, proximity, covariance, information entropy or some
other similarity.

The simplest type of similarity function checks equality. This requirement comes from
the delta kernel used in kernel supervised dimension reduction [16] however it may be used
more broadly for similarity with discrete data types.

Two main types of similarity in kernels are proximity and covariance, corresponding to
stationary and dot product kernels, respectively.

Proximity refers to how close two vector inputs are to each other, as the inverse of
distance. For continuous data types, distance functions include the Euclidean, Manhattan
and Minkowsky distance functions [148] and there are corresponding similarity functions
for each one too. Proximity is found in the stationary class of kernels, such as the Power
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kernel (2.9.1) which is a power of the Euclidean distance. It is also found in the Gaussian
RBF kernel (2.8.3) which is a Gaussian function of the square of the Euclidean distance.

Proximity for binary and/or nominal data types, is computed with the Hamming kernel
[8]. It computes the number of matches as similarity (or mismatches as distance). The
kernel is similar to Hamming based simdist functions [49] for binary data types.

Covariance as a dot product or scalar projection also expresses similarity. For two con-
tinuous vector inputs covariance expresses how much they are going in the same direction
(how much they co-vary) and it is weighted by their magnitudes, such that two similar
vectors with large magnitudes have a greater inner product than two similar vectors with
small magnitudes. The inner product is cosine similarity [77] without normalization, and
is expressed by the the linear kernel k (x, z) = xTz.

Covariance and the dot product are also related to correlation [289]. Data are often
centered in machine learning by the practioner prior to learning, i.e., x = x0 � E [x0

] and
z = z0 � E [z0]. With centered data, I interpret the linear kernel as a sum of one-sample
covariances Cov (x0, z0) = E [(x0 � E [x0

]) (z0 � E [z0])] in each dimension. Covariance (or
correlation when standardized) is a key statistical measure that describes how two features
either vary together in the same direction from the mean (positive correlation), vary in
opposite directions from the mean (negative correlation), or don’t vary together at all (zero
or no correlation).

Covariance or dot product functions, for two binary vector inputs, can count the number
of positive matches. The overlap [27, 49] and the heterogeneous Euclidean overlap [289]
functions are examples which prompt this requirement.

Probability is sometimes included in the definition of a kernel when it represents a prob-
ability density function—as with the Gaussian RBF kernel, which represents a normal
distribution. Probabilities may also be found in composite product kernels [118] or the
Fisher kernel for graph models with hidden variables [61, 135] and in the similarity mea-
sure from Smirnov [27] and similarity coefficient from Burnaby [41].

Information entropy makes sense applied to multiple values of a single feature, but it is
either not meaningful, or its meaning is not clear, if applied to multiple values not of the
same feature, but z-scores across different features. Nevertheless I describe it as a possible,
although low priority consideration. It is found in Lin’s information theoretic similarity
function [166], Li et al’s similarity metric and its converse [162], Bennett et al’s information
distance function [19, 162]. It is also found in the maximum entropy kernel [269].
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Other similarity concepts may also be employed by a kernel such as Hamman similarity
[53] (Matching new and existing kernels to binary data).

Asymmetric match weighting is required for nominals converted to binary indi-
cators and presence-only binary data. Consider for example two 10-level nominals
converted to 10 binary indicators each—what matters in each is which level is indicated
positively. The fact that other negatively indicated levels match is irrelevant, and if they
are given weight in a kernel then the number of levels will have an impact as noise, drown-
ing out the signal of the two levels that match or mismatch. Clearly the requirement for
converted nominals is to only count positives—and I appear to be the first author to
have identified the requirement for this case.

Presence-only binary data occurs in medicine. For example, in my research with Ehrsam’s
skin lesion data [45] there are 86 different keywords which a doctor may observe and attach
to the image of a patient’s skin lesion. A dermatologist attaches between 3 to 10 keywords,
positively indicating notable features. Other keywords not attached/indicated are
not necessarily absent—and not all of the keywords are mutually exclusive. Hence it is the
presence of a keyword (a positive) that matters, not the absence (or negative).

Presence-only binary data also arise in ecology [203]: when a zoologist is observing an
environment and notes the presence or absence of a species during the time of observation.
The presence of a species has certainty while the absence has a good amount of un-
certainty—the species may be present but unobserved. It is possible in this scenario to
place a small amount of weight on absence (reflecting their uncertainty)—and the azzoo
similarity function [49] does just that for binary data. Other examples are Eskin’s distance
measure [27] for nominal data and Gower’s similarity coefficient [102] for binary, nominal
or continuous data.

For two vectors with heterogeneous atomic data types (4.2), a simdist function or kernel
can quantify similarity as a weighted sum [166] of similarities within each atomic data
type. This requirement is found in the heterogeneous Euclidean overlap measure [289], the
Hamming Euclidean hybrid kernel [8] for binary and real data and Szafranski’s composite
kernel for real data from different EKG channels [256]. Note that, I am not interested
in the heterogeneity between reals, integers and ordinals where I assume a numeric kernel
for reals performs sufficiently well. Instead, I am interested in the heterogeneity between
reals, binary, nominals, and presence-only binary data, where there is a gap, or room for
improved fit which may yield improved accuracy.

Saturation refers to a function that asymptotically and monotonically approaches a finite
value—i.e., an upper or lower bound (or in math terms, a global or local infimum or
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supremum). It is found in two specific applications of similarity and distance functions[221,
275], in the sigmoid transfer function for neural networks [201, 72], the sigmoid kernel and
the Gaussian RBF kernel (Section 2.8). Saturation can help to ensure that a function is
bounded. Also, it may, similar to compact support (discussed next), be used to keep the
effect of a function local to a region, rather than global.

Compact support refers to a function that has a finite (or compact) region of input
values which cause a non-zero output, while the remainder of that input region causes a
zero output. This causes or ensures a local rather than global effect. This characteristic
and/or requirement is found in wavelets [181] andWendland’s  -functions [80] as well as the
circular and spherical kernels [94]. In medicine, there could be a functional requirement
that is study/problem-specific to know with 100% surety that patient cases which
are a certain distance away have 0% effect, e.g., for known physical constraints, or for
patient similarity to apply only within a certain threshold in standard deviations. As a
logistical or computational requirement, Genton [94] indicates that compact kernels
could be advantageous, even crucial, for big data, since they can yield sparse matrices,
i.e., only instances within the region of compact support will have non-zero entries in the
matrix.

The local versus global effect of kernels is found in kernels for SVM and Gaussian pro-
cesses [161, 288, 227]. Kernels or functions have global effect if one instance affects all
of the predictions, whereas they have local effect if only instances nearby the instance
being tested/predicted matter or have influence. Li et al. [161] explain that a local kernel
provides good interpolation while a global kernel provides good extrapolation. While the-
oretically my classification studies/problems may only seem to involve interpolation, given
the sparsity of data in multidimensional problems extrapolation or global behaviour is also
useful.

The magnitude of local and global effects can be greater or lesser, or in the case of
compact support, none. For example, a Gaussian RBF kernel with a small kernel width
has a large local effect and a small effect globally, such that it is primarily considered as a
local kernel. A polynomial kernel on the other hand has global effect because for two
instances being compared which are distant from each other, it has a non-zero output.

3.4.3 Requirements from classification scenarios

Requirements for kernels also arise in five classification scenarios (Table 3.3 on page 65)
for atomic data types (Table 3.3 on page 65), as follows.
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Table 3.3: Numeric kernels in the literature do not support classification requirements for
class balancing.

Require- Numeric kernels Non-numeric kernels
ment RBF Lin Poly Sig Pow IMQ tRBF Del Ham HamE

Exp Log

Admissible � � � ⇥ � � � � � �
Mercer � � � ⇥ ⇥ � � � � �
Class

balancing
Translation � � � � n/a n/a n/a
invariance
Class �D �D �D n/a n/a n/a

denoising

Admissible kernels (2.7.4) are necessary for use with SVM in health care. Kernels which
are not admissible, e.g., the sigmoid kernel, should not be used since theory and guarantees
in SVM regarding optimization and stability do not apply unless a kernel is admissible
[45, 167]2—and the sigmoid kernel is sometimes admissible for a range of parameters that
is difficult to determine [45, 167].

Mercer kernels can be used with any kernel method (which is advantageous for applica-
tions outside of SVM and select kernel methods that share the KKT constraints).

Translation invariance provides assurance that an algorithm will perform the same even
if the data are biased3. This can be handy in case a population undergoes a change in bias
over time (e.g., due to changes in policy; or due to the effect of inflation on the ability to
pay for drugs or treatment in the United States).

Class balancing characteristics allow the SVM method and kernel to perform well with
imbalanced data and positive match data (i.e., where matches of positive values aligned
with the positive class, matter more than matches of negative values aligned with the
negative class).

Class denoising characteristics allow the SVM method and kernel to perform well in the
face of class overlap (Bayes error) and/or mislabelled instances (class noise).

Lastly I note that there are other requirements from classification scenarios (not shown in
Table 3.3 on page 65) which pertain to complex data types which are beyond my scope

2Alternative theory [199] indicates that some guarantees of stability are possible
3This is of particular importance for image processing (which is outside of my scope of atomic data

types), where a bias may refer to a shift in image position or intensity
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with atomic data types (4.2). These additional requirements include, for example, rota-
tion invariance and scale invariance for images or other spatial phenomena—where
for example, dot product kernels are rotation invariant and isometric scale invariant while
stationary kernels are not.

3.4.4 Requirements from model transparency

In this section I develop requirements for model transparency by extending statements and
requirements from the literature [30, 168, 172, 187] as follows.

in three steps:

1. I identify (model agnostic) criteria from the literature, which are sometimes subjec-
tive, sometime objective.

2. I propose (model agnostic) revised criteria which are objective, and

3. I propose SVM criteria which are objective for use in a (quantitative) measure
of model transparency.

I then identify which kernels meet the requirements (Table 3.4) and any gaps.

Table 3.4: Numeric kernels in the literature do not support transparency requirements

Require- Numeric kernels
ment RBF Exp Lin Poly Sig Pow IMQ tRBF

Log

(a) @
fin

⇥ ⇥ � ⇥ ⇥ 1
2 ⇥ �

(b) @
essep

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
(c) @

eM

⇥ ⇥ � � ⇥ ⇥ ⇥ ⇥
(d) @+ �? ⇥ � � ⇥ 1

2 ⇥ �
(e) @

glm

⇥ ⇥ � � � ⇥ ⇥ �
(f) @

lin

⇥ ⇥ � ⇥ ⇥ ⇥ ⇥ ⇥
(g) @⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
(h) @

uni

⇥ ⇥ � ⇥ ⇥ ⇥ ⇥ �
(i) @

adm

� � � � ⇥ � � �
score = sum

/9 1
/9 1

/9 8
/9 4

/9 1
/9 2

/9 1
/9 5

/9

The first criterion applies to the transparency of data as opposed to methods and models.

Criterion from literature:

66



• Features are neither anonymous nor highly-engineered [168]. Note: if the input fea-
tures are not transparent, then it does not matter if the methods and models are
transparent.

Revised criterion:

• Features must be transparent—see my definition in 4.3.

Assuming the data criterion is met, transparent models, are those which are inter-
pretable [172] or decomposable [168] in terms of the following four criteria:

Criteria from literature:

• Each calculation has an intuitive explanation [168]
• Additive models are interpretable [172]; or

� The contributions of individual features are understandable [172], e.g., generalized
linear models (GLM) are interpretable [172]

Revised criteria, respectively:

• The feature space has a finite number of dimensions; and

� The feature space is explicit/known.

• A generalized additive model (GAM) with known/explicit functions; or

� A generalized linear model [172]; or
⇤ A linear model (for even greater transparency); or
⇤ A multiplicative model with known/explicit functions; or
⇤ A model with uniform basis functions; or

SVM criteria, respectively:

• (a) The kernel has a finite number of feature space dimensions in the space Fk,
@fin : dim (Fk) < 1

� (b) The kernel is explicit, symmetric and separable,
@essep : k (x, z) = � (x)� (z) , � : Rn ! R, � known, or
(c) see next item below.

• (c) The kernel is explicit Mercer, i.e., explicit, additive and separable in each feature
@eM : k (x, z) =

⌦

� (x) ,� (z)
↵

= � (x)T � (z) =
P

q

�q (xq)�q (zq) , � : R ! R, � known

(d) The kernel is additive @+ : k (x, z) =
P

p

fp (x, z), or
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� (e) The kernel is a generalized linear model, i.e., a dot product kernel
@glm : k (x, z) = g

�

xTz
�

, where g�1 is a link function, or

⇤ (f) The kernel is linear @lin : k (x, z) = xTz =

n
P

i=1

xizi, or

⇤ (g) The kernel is multiplicative, explicit, symmetric and separable

@⇥ : k (x, z) =
n
Q

q=1

�q (xq)�q (zq), or

⇤ (h) The kernel is uniform @uni : k (x, z) =
P

q

� (xq)� (zq)

Assuming the data criterion is met, transparent methods (or algorithms) [168] meet the
following criterion:

Criterion from literature: Converges to a unique solution in training.

Revised criterion: Uses convex optimization. Note: for optimization to be convex in
SVM, kernels must be admissible [242].

SVM criterion: (i) @adm : k is admissible, i.e., positive definite (p.d.) [187] or condition-
ally p.d. (c.p.d.) [30].

There does not seem to be any criterion in the literature that aptly describes the inter-
pretability of a stationary kernel in the input space, despite the fact that it does have some
level of intuitive interpretability based on distance, even if the features are confounded,
albeit less.

3.5 Summary and thesis

From the requirements articulated in the preceding sections, seven gaps were identified of
high or medium priority:

1. High: No admissible dot product kernels have a meaningful and finite minimum and
maximum.

2. High: Only two kernels are transparent with a finite feature space: the linear and
polynomial kernels and these two kernels are not as accurate as the Gaussian RBF
kernel on atomic data types.

3. High: Only two kernels are interpretable as explicit Mercer kernels: the linear and
polynomial kernels.
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4. High: Only one kernel is designed for heterogeneous data and it is flawed (biased).
The Hamming Euclidean hybrid kernel counts matching values (positive matches or
negative matches) for every level of a nominal feature, such that a nominal with ten
levels has twice the weight of a nominal with five levels and ten times the weight
of a binary feature. It also uses a linear kernel used for real data types which is
suboptimal.

5. Medium: The sigmoid kernel is not admissible (sometimes) and yet often performs
better than the Gaussian RBF kernel. An admissible replacement is desired to fill
this gap and gap #1, since the sigmoid kernel which only falls short as a solution to
gap #1 in admissibility.

6. Medium: Only the linear kernel has uniform functions for interpretability.

7. Medium: Only the Hamming kernel has asymmetric match weighting for converted
nominals and presence-only binary data. More options are desired and there are no
kernels for continuously-imputed binary data with asymmetric match weighting.

Other findings were not deemed a priority, e.g., no compact kernels identified and no
similarity with the triangular inequality.

To address the requirements above, the remaining body of my thesis provides the following
three chapters:

• In Chapter 4, I propose a new approach to model/kernel selection, in which I se-
lect the family of models/kernels based on requirements and rationale from a new
method I call kernel data modeling, which derives, designs or matches kernels to
specific data types, distributions and requirements for interpretability and theoretical
justification. To support the derivation and design of new kernels in this method, I
propose a new kernel class which provides greater transparency and interpretability
than common kernels (Section 2.8) and uncommon kernels (Section 2.9).

• In Chapter 5, I describe the experimental data, method and results which confirm
that the kernels I propose are at least as accurate as the aforementioned common
and uncommon kernels. I also show how transparency affects the innate and non-
innate views of results in support vector machine classification, and I contribute
improvements to such views in the process.

• In Chapter 6, I develop new quantitative measures (and concepts) of model trans-
parency and inherent model interpretability and show how these can be used for
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prior, initial and posterior model selection (Chapter 6). I demonstrate that high
accuracy can be achieved with high inherent model interpretability.

These three chapters are followed by conclusions, future work and other back matter.
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Chapter 4

Kernel data modeling

In this chapter I define a new kernel class which is underpins all of the new kernels which
I propose within a new framework or approach to model/kernel selection (Figure 4.1). I
also define ways to describe features, data types and kernels which are helpful for the
purpose of transparency and other goals in the framework. I derive kernels for some data
types, design kernels for some data types and match kernels to data types following my
framework, which is described next.

4.1 Kernel data modeling framework

I propose a new approach to model/kernel selection (Figure 4.1), wherein I select the family
of prior models based on kernel data modeling as well as a priori measures of inherent model
interpretability, prior to optimization and cross-validation (or bootstrapping). Then after
optimization, I can select the best kernel according to test/validation accuracy as well as
posterior measures of model interpretability.

Kernel data modeling refers to deriving kernels, matching kernels and designing kernels
for specific data types and distributions. I also satisfy other requirements not specific to a
data modeling process.

Kernel data modeling is an approach that provides theoretical justification for a kernel
and understanding about how the kernel works as a similarity measure—which in turn
provides assurance about how the kernel behaves and generalizes to new data, independent
of empirical evidence. The sections that follow explain the approach, beginning with new
descriptions and definitions needed as a foundation.

71



Figure 4.1: I propose a new approach (blue and pink) to model/kernel selection in SVM—
however it poses the research question, how do I design kernels for this approach? Subse-
quent sections answer that question.
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4.2 New data descriptions: atomic data types and trans-

parent features

I propose two new descriptions or descriptors: atomic data types and transparent atomic
features. In the context of the first I also briefly discuss related descriptors from the
literature which are relevant to my thesis.

Definition 4.2.1. Atomic data types (Table 4.1) are: binary, nominals (or categoricals),
ordinals, dates (and datetimes), integers (including counts) and reals. Binary values may
be considered nominals, however there are methods and implications specific to binary data
separate from nominals in general. Additional types, such as counts (natural numbers) may
be considered integers with a bound.

Table 4.1: Examples of atomic data type
Atomic data types Illustrative examples
and subtypes
Real (R) sodium level, pulse, weight, voxel intensity, temperature
Integer (Z) no. of children compared to median, no. of children
Date, datetime date, date and time
Ordinal cancer stage; survey agreement scales; Charlson comorbidity index
Nominal blood type, first language, dialysis modality, amino acid
Binary male/female, presence/absence

Compared to other sets of data types reviewed in the background chapter (Section 2.5),
atomic data types more closely matches the terms used in machine learning, the types
found in practice and my purpose to derive, design and match kernels to data types via
atomic kernels (Section 4.3).

Complex data types or documents, such as strings of text, images or audio, are not within
the scope of this thesis—however one may extract features from such documents, e.g.,
Zernicke moments from images, as atomic data types.

Other characteristics of data and targets, if applicable, are conveyed in meta data (section
A.6). Examples of meta data for each feature, include the following binary indicators:
outliers-trimmed1, top-coded, bottom-coded, non-negative (e.g., R+ or counts N), normal-
ized, centered (including binary), presence-only, positive-match, complete (vs. missing),
and imputed. Examples of meta data for a data set include: complete-case-analysis, im-
puted, complete (vs. missing), normalized, and centered.

1prior to normalization
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Definition 4.2.2. Transparent features FT are meaningful for the clinical or business
purpose.

They are the original features qi and/or simple transformations thereof, without introduc-
ing much collinearity. The original features are scaled (by b), shifted (by d) and/or reflected
(by r) as vi (4.1) and then simply transformed by a log, hyperbolic tangent, multiplicative
inverse, square, top-coding or bottom coding (with a minimum or maximum function re-
spectively) as wj (4.2). First order interactions of wi are also considered transparent (4.3).
Some of the transformations in the set of transparent features are similar to fractional
polynomials [219].

vi = (�1)

r (qi � d)

b
, b, d 2 R; r 2 {0, 1} (4.1)

wj 2
⇢

vi,
1

vi
, log (vi) , v

2
i , tanh (vi) , abs (vi)

min (ctop, vi) , max (cbottom, vi)
o

8i (4.2)

FT ✓ {wj, wjwk 6=j} 8j, k (4.3)

To avoid collinearity only choose qi or its reflection �qi but not both, or a top-coded feature
or bottom-coded feature, but not both.

That is, features from XT do not include complex functions, e.g., PCA, whitening, etc
(Section A.3), random projections or unidentifiable features.

4.3 New kernel descriptions: uniform, atomic, transpar-

ent and implicit

We describe kernels as uniform, atomic, transparent and/or implicit and define those de-
scriptors or descriptions as follows.

Definition 4.3.1. A uniform kernel has the same functions and coefficients in each of
its parts. An explicit Mercer kernel (defined in subsequent 4.4) is uniform if it has the
same basis function � in each feature dimension, e.g.,

kuni (x, z) =
X

j

� (xj)� (zj) (4.4)

An additive kernel is uniform if it has the same kernel function k in each part. The linear
kernel k (x, z) = xTz and homogeneous polynomial kernel k (x, z) =

�

xTz
�d are examples
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of uniform kernels. A uniform kernel is easier to interpret than a non-uniform kernel, with
all else being equal.

Definition 4.3.2. An atomic kernel is (described as) a kernel derived for, matched to, or
designed for one (or two) specific atomic data type(s) without being specific to particular
feature distributions.

The Bayesian density (BD) kernel which I propose in (Section 4.5.4) is an atomic kernel
since it is specific to real data types with any feature distribution. Other atomic kernels I
propose in subsequent sections include: the Mercer sigmoid kernel (MSig), the orthant sig-
moid (OSig) kernel, the orthant linear (OLin) kernel, the insensitive sigmoid variant kernel
with Gaussian constraint (ISVgc), the insensitive sigmoid variant kernel with hyperbolic
tangent constraint (ISVhc), the orthant insensitive sigmoid variant kernel with gaussian
constraint (OISVgc), the orthant insensitive sigmoid variant kernel with hyperbolic tangent
constraint (OISVhc) and the Gaussian derivative (GD) kernel.

Atomic kernels support the kernel data modeling approach which I propose.

Definition 4.3.3. A transparent kernel scores at least 50% on the U@ transparency
measure (as in Table 6.6 on page 154) where the measure is defined in Section 6.3. In
the context of data, the features must also be transparent (see the next definition). Ex-
plicit Mercer kernels are transparent and uniform explicit Mercer kernels are even more
transparent.

Definition 4.3.4. An implicit kernel is a kernel for which the basis functions � or �j

are implicit, i.e., not known, or they are known but implicitly (rather than explicitly)
computed. The sigmoid, multiquadric, power distance and log kernels are examples of the
former, while the Gaussian RBF kernel and polynomial kernels are examples of the latter.

4.4 A new kernel class: explicit Mercer kernels

Unlike Mercer kernels [187] I define a specific kernel class called explicit Mercer kernels.
Mercer kernels include all separable kernels [94, 279] which are uniform, some dot product
kernels [243], some stationary kernels [94] and all positive definite kernels [187]—whereas
explicit Mercer kernels include some separable kernels which are uniform, no dot product
kernels, no stationary kernels and some positive definite kernels. I explain this in detail
below.

From an overview, Mercer kernels and explicit Mercer kernels are clearly different, yet the
latter is a natural way to define a Mercer kernel based on the third definition of a Mercer
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kernel repeated here (from Section 2.7.1 equation 2.23),

k (x, z) =
⌦

� (x) , � (z)
↵

x, z 2 X, � 2 F , k 2 R (4.5)

The name, explicit Mercer, may seem to imply the subset of explicit kernels which are
Mercer, but that is not the reason for the name—explicit Mercer kernels are thus named
because they are the most natural way to define an explicit kernel which is Mercer and
because they have specific characteristics as a class of kernels unique from any presently
defined kernel class in the literature (e.g., [24, 94, 178, 233, 240]). The next two subsections
(4.4.1 and 4.4.2) explain why this class of kernels has been overlooked.

I define explicit Mercer kernels as a new kernel class in four steps. First, the mathematical
literature [279] defines the class of separable kernels by a mathematical kernel of the
form ks (x, z) = f (x) g (z) where f and g have scalar outputs, and the kernel has a Gram
matrix of rank one. These are not symmetric however and for kernel methods I must have
symmetric and admissible kernels. Also, a rank one matrix lacks the complexity or degrees
of freedom required to perform well in classification with data that has more than one
relevant dimension (e.g., more than one dimension in compression) required for optimal
accuracy in classification. Instead I define the following.

1. A separable (sep) kernel is defined in mathematics [279] by the following expression
where f and g exist but are not necessarily known,

k (x, z) = f (x) g (z) , f, g : Rn ! R

This is a kernel class [94] as opposed to a specific kernel—and Genton alternatively
refers to this class as: separable nonstationary kernels [94]. This class is not sym-
metric however, as required for kernel methods, so we therefore consider (and define)
the next class.

2. I define a symmetric separable (ssep) kernel, with a common (or symmetric)
basis function � that exists but is not necessarily known, as follows

kssep (x, z) = � (x)� (z) , � : Rn ! R

Notably, this kernel class, a subset of the previous class, when applied to any data,
has a Gram matrix of rank one. If the Gram matrix has a lesser rank (or complexity
or degrees of freedom) than the relevant dimensions in the data, then it probably will
not be accurate in classification. Genton indicates that the computational reduction
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of this class may be of crucial importance with very large training sets (i.e., big data)
however, without accuracy, that is of little use.

3. I define an explicit symmetric separable (essep) kernel, as a subset of the previ-
ous class, where the basis function � is explicit and known, for transparency regarding
how the kernel works, as in

kessep (x, z) = � (x)� (z) , � : Rn ! R, � known

4. Finally, I define an explicit Mercer (eM) kernel by applying the above kernel class
to each feature, one at a time, and then taking the sum of those kernels, as follows,
where the basis functions �q are explicit and known, i.e.,

keM (x, z) = � (x)T � (z) =
X

q

�q (xq)�q (zq) , � : R ! R, � known

The complexity of an SVM model is bounded by the number of support vectors
[240, 117]. In other words, for a data set with N instances, SVM has no more
than Ntrain support vectors, i.e., sv  Ntrain regardless of the kernel k. SVM is an
instance-based method, whose kernel matrix has a rank R (k) no greater than the
support vectors: R (k)  sv  Ntrain.

Now, assume for the remaining discussion in this section that we choose the input
features (or input space) to be the n original features in the data set—then for an
explicit Mercer kernel the rank of the kernel matrix R (keM) is the lesser of n or Ntrain,
where typically n  Ntrain except for multi-omic data (e.g., genomic, proteomic). The
kernel class is additive, explicit, symmetric and “separable in each feature” .
For brevity I refer to them as explicit Mercer kernels since, as I previously men-
tioned, they are the most natural and intuitive way to define kernels explicitly which
are guaranteed to be Mercer.

Notably, kernels which are explicit and Mercer, are not necessarily explicit Mer-
cer—they must be additive and “separable in each feature”. Additive kernels [178]
are not necessarily “separable in each feature” nor are they necessarily explicit—the
explicit and exact expression for a Gaussian RBF kernel is additive [55].

An explicit Mercer kernel is additive by itself, but when it is used inside an SVM it

becomes a generalized additive model (GAM), k (x, z) = g

✓

P

q

�q (xq)�q (zq)

◆

, with

g�1 as a link function, and where g is the SVM prediction formula:

Proof of Mercer compliance: This kernel class is Mercer because it is explicitly
defined as an inner product of a feature map at x and z respectively per (2.23) in
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Section 2.7.1.

It is not a stationary kernel class and is therefore not translation-invariant—hence
such kernels may benefit from a shift hyperparameter.

Whereas a symmetric separable kernel (ssep or essep) has reduced storage complexity
[94] and computational complexity [206], as a tensor (outer) product of vector a =

h

f (x1) · · · f (xn)

iT
with itself, with storage complexity O (N).

An explicit Mercer kernel also has reduced storage complexity, as a tensor (outer)

product of the rectangular matrix �

N⇥n
=

h

� (x1) · · · �
�

xq

�

iT
and its transpose

�

�

T
�n⇥N with storage complexity O (nN), when n  sv, compared to common

kernels such as the Gaussian RBF kernel, sigmoid kernel and power distance kernel
which have storage complexityO (N2

).

This class of kernel has an explicit basis function or explicit feature map [282, 147],
which provides the opportunity to define and analyze kernels with precision toward
my goal of understanding kernels that I apply in SVM.

4.4.1 More on the complexity of explicit Mercer kernels

It can be argued that any kernel, such as an explicit Mercer kernel, with an explicit basis
function and a finite number of terms (or parts) is equivalent to a linear kernel with non-
linear pre-processing in each feature. Clearly an explicit Mercer kernel is more complex
than a linear kernel because it has non-linearity instead of linearity, however, from the
perspective of the rank of the kernel matrix, it has the same rank or complexity. Hence,
complexity depends on the perspective or measure.

Another important perspective on model complexity comes from Lou et al. [172] who
describe models as belonging to one of five categories with increasing complexity: linear
models, generalized linear models (GLM), additive models, generalized additive models
(GAM) and full complexity models. An explicit Mercer kernel is, on its own, an additive
model, and within SVM it becomes a generalized additive model—the second most complex
model that Lou et al. argues has more interpretability than the most complex models.
Hastie and Tibshirani [115, 116, 84] write extensively about GAMs and techniques for
using them—with particular applicability to medical research.
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4.4.2 Explicit versus implicit kernels and the kernel trick

The complexity of kernels discussed in the previous section, also arises in the context of
the feature space and the kernel trick [24, 240, 233] (both introduced in Section 2.2). Are
kernels only intended to be implicit? Does the class of explicit Mercer kernels make sense
in the context of the kernel trick? I answer these questions while revisiting the concept of
the kernel trick below.

The kernel trick [24, 240, 233] is responsible for the emergence of kernel methods, however,
recent literature [156] and lectures or seminars in less formal settings, focus on the lesser of
two parts or purposes of the kernel trick, such that the term has diverged from its original
meaning.

The first, most important and remarkable part of the kernel trick is that a linear algorithm
becomes non-linear, when the dot product in the input space or original data is replaced
with a different dot product [240], which is now non-linear in the input space but linear in
a different new feature space—i.e., kernelization. This essential part of the kernel trick is
responsible for the birth of kernel methods used in SVM and other kernel methods such as
kernel principal components analysis, kernel logistic regression, kernel k nearest neighbor
and kernel ridge regression2.

The second remarkable part of the kernel trick is that, when replacing the linear kernel
with another, I may (i.e., optionally) use a kernel which has an implicit basis function
(or feature map), with an infinite or high number of features/dimensions (similar to a
Taylor series expansion) in the feature space where the class boundary is drawn, but with
calculations done in the input space, which saves computational cost. Some sources
[156] refer to this elegant computational aspect as the “kernel trick” while other sources
[24, 240, 233] refer to kernelizing an algorithm as the kernel trick .

A recent mistake with the kernel trick is to take the first and most important part, the
emergence of kernel methods, for granted and describe the kernel trick as the latter—
implicit kernels with an infinite or high dimensional feature space— thinking that the
latter is part of SVM’s essential nature and purpose, accounting for its accuracy. The
following facts and evidence argue against this perspective:

1. SVM practitioners commonly use the linear kernel, an explicit kernel—particularly for
text data, in which its use is dominant because it performs better than the Gaussian
RBF kernel.

2Other kernel methods include, for example: kernel fisher discriminant, kernel supervised principal
components analysis and many variations of SVM including relevance vector machines, import vector
machines, calibrated SVM, sparse grid SVM, proximal SVM and minimal SVM.
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2. The results with my proposed kernels show otherwise on data sets with atomic data
(corroborated by others in Section A.9 and corroborated by my results with a third
party’s code base).

3. SVM has finite limitations (discussed in Section 4.4) which dispel the notion that the
Gaussian RBF kernel’s infinite dimensionality is critical—and this is corroborated by
results with the truncated Gaussian RBF kernel [209].

4. If not infinite dimensionality then, high dimensionality—e.g., as achieved with a poly-
nomial kernel—is also cited as an objective of kernels. Consider text classification,
where the linear kernel is said to perform well because of high dimensionality (many
features). However, if that is the case, then the linear kernel should also perform bet-
ter/well in other high dimensional problems, such as in genomic data with thousands
of features, and conversely it should not perform better/well in other (low dimen-
sional) problems—but that is not observed in results (Section 5.3). With benchmark
genomic data (Colon and Prostate cancer) it does not perform better or well and
with other data sets its accuracy is not any worse (its accuracy may in fact be better,
relatively speaking).

Returning to the two questions I posed at the beginning of this section: no, kernels are
not only intended to be implicit—they are intended to add the flexibility of non-linearity
into a linear algorithm; yes, the class of explicit Mercer kernels, which is not necessarily
high or infinite dimensional, makes sense in the context of the kernel trick. There is much
to be learned about the utility of each dimension in SVM—and work on transparency and
interpretability will assist that endeavour.

In conclusion, the literature confounds several different purposes of the kernel trick without
being clear on the necessity and priority of each. I have discussed two of these purposes
above—non-linearity, and infinite or high feature space dimensionality—while reserving
the next section to discuss a third purpose: computational efficiency. One might con-
sider computational efficiency to be a subordinate requirement in the service of infinite or
high dimensionality, but it is presented as a primary requirement by some authors [233],
hence I discuss it separately in the next section, although it overlaps with the topic of
dimensionality.

4.4.3 Explicit Mercer kernels and computational efficiency

Shawe-Taylor et al. [233] assume that applications require computationally efficient ker-
nels which are implicit not explicit, without regard for other requirements which are
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more important in medicine: accuracy, transparency and interpretability (which are singly
and/or jointly improved by explicit Mercer kernels in Chapter 4 on page 71 and Chap-
ter 6 on page 139). Explicit Mercer kernels can have computational challenges in one
uncommon, possibly rare, case in health care: when there are over 2500 features without
feature selection or dimension reduction for parsimony and potentially improved accuracy
(explained next).

Health care requires parsimony which is measured by rules of thumb such as events per
variable (EPV) and samples per feature (SPF)—and as a result, feature selection or di-
mension reduction are often necessary, especially in genomics. Health care also requires
accuracy which is improved by feature selection in the two genomic data sets that I use.
SVM classification of colon cancer data with 2000 genes has a benchmark accuracy of
90.32% [89] without feature selection and an accuracy of 100% with 2 genes [3], 6 genes
[86] or 16 genes [110]. SVM classification of prostate cancer data with 1000 out of 12,600
genes has a benchmark accuracy of 84.8% (my result) which improves to 92.2% [263] or
93.09% [153] with 50 genes, 94.12% with 10 genes [202], 98.65% with 3 genes [3] and 98.66%
with 2 genes [3]. The trend is not always monotonically decreasing, as evidenced by some
results within a single paper [202]—nevertheless the general point stands as the potential
for improved accuracy, but not as a rule or guarantee.

Explicit Mercer kernels can be designed to explicitly and traceably meet functional simi-
larity requirements, which is the standard approach to design in general [217] and in the
software industry [133], whereas implicit kernels may be more efficient and elegant even
though efficiency is not a primary concern or requirement in health care.

Clear examples of kernels with implicit basis functions are the sigmoid kernel, power
distance kernel, logarithmic kernel and inverse multiquadric kernel. The Gaussian RBF
kernel has an exact explicit basis function [55, 209] but it is implicitly computed. The
polynomial kernel also has an explicit basis function which is implicitly computed.

4.4.4 Feature shaping differs from my use of explicit Mercer ker-
nels

It can be argued that any kernel, such as an explicit Mercer kernel, with an explicit basis
function and a finite number of terms (or parts) is equivalent to a linear kernel with non-
linear pre-processing in each feature. The latter approach is called feature shaping and is
an alternative approach that can produce the same (kernel) output. The following question
therefore arises: how does my use of explicit Mercer kernels differ from feature shaping?
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My framework for designing kernels based on the class of explicit Mercer kernels differs
from feature shaping in several important ways, so the two should not be confused. It
often arises in mathematics that we can perform a computation in multiple ways (e.g.,
addition and multiplication are commutative, or unordered). In some cases, equivalent
computations have substantively different implications for processing and interpretation,
such as the equivalence between the primal and dual optimization formulas for SVM. In
the case of my use of explicit Mercer kernels versus feature shaping, there are differences
in the process, design, intent, interpretability or understanding, usability and risk of error.

Feature shaping refers to applying a basis function [57] or feature map [240] as a pre-
processing step and then using a linear kernel for classification [78]. The pre-processing
approach in feature shaping is problematic for explicit kernels which are parameterized (or
explicit basis functions which are parameterized), because the user has to pre-process the
data differently for each set of parameters and for each kernel. That is a lot of extra work
and complexity in the storage, management and comparison of data that is error-prone
and limits interpretability since the input data from one kernel to the next is different,
making it difficult to validate, compare and notice errors.

In contrast, using a kernel directly as the standard approach, and as it is designed and
intended, allows the original data to be used with multiple kernels and multiple sets of
parameters which is standard machine learning practice.

Pre-processing also misses the point that thinking about kernels is more than just thinking
about its parts, i.e., the basis functions as shaping features. For example, my Bayesian
binormal kernel is designed based on three covariance requirements for the kernel as a
whole, not just the basis functions and this leads to a different Bayesian design from other
kernels in the literature. As another example, my orthant sigmoid kernel which provides
asymmetric match weighting, requires thinking about the kernel output—not the basis
functions independently.

Hence my proposed kernels are different from feature shaping [78] in the way that my
kernels are derived, designed, matched and used.

4.5 Deriving new kernels for reals and integers

I derive two kernels for reals and integer data types with binormal distributions:

1. A Bayesian binormal (BBN) kernel
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2. A joint probability binormal (JPBN) kernel

Then I posit two kernels for reals and integers with any distribution based on kernel density
estimation (KDE) [163, 211]:

• A Bayesian density (BD) kernel

• A joint probability density (JPD) kernel

4.5.1 Bayesian binormal kernel (proposed)

Green and Swets [105] introduce the concept that an observation or test result X can be
mapped to a line or axis whereby a decision maker applies a cutpoint c on that axis to
classify the subject of the observation as either having or not having a condition for X > c

and X < c respectively; and where it is assumed that the observation X is drawn from two
separate (but usually overlapping) Gaussian distributions for subjects with and without
the condition [306] (Figure 4.2). This is known as the binormality assumption [10, 306] and
it is used in the literature to produce a parametric fit to Receiver-Operator Characteristic
(ROC) data in diagnostic medicine and other fields [10, 112, 306].

The binormal model (Figure 4.2) is popular for parametric model fitting in ROC analysis
[309] and several programs used today are based on it [306]. It is typically discussed in the
context of ratings data [111], i.e., ordinals, since that is when a parametric fit to an ROC
curve is most helpful.

Figure 4.2: A binormal distribution with a vertical line as a cutpoint or decision threshold.
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Hanley [111] reviews six justifications in the literature for the assumption. One justification
is that random variables which describe natural phenomena are considered the sum of a
large and constant number of other random variables such that the Central Limit Theorem
justifies a normal distribution [105] for each class or health condition. Hanley expresses
concern that the justifications are “either pragmatic or else too technical to evaluate” but
observes that its continued use is likely. Austin and Steyerberg [10] state that an overall
normal distribution is a potentially more plausible for an explanatory variable but even
then the underlying distributions are still approximately normal in many instances—i.e.,
the explanatory variable is approximately binormal.

Hence there are some authors who question the binormal assumption or disagree with it as
Zweig and Campbell [309] noted. In any case, I can test for normality and apply a kernel
to features for which it is appropriate.

So if I assume that a continuous feature xi has one normal distribution for patients with a
condition (or outcome) y+ = +1,

P (xi | y+) ⇠ N (µxi+, �xi+) (4.6)

and a second normal distribution for patients without the condition (or outcome), labelled
by y� = �1,

P (xi | y�) ⇠ N (µxi�, �xi�) (4.7)

then I can design a kernel to match this assumption. I begin with an explicit Mercer kernel
where in each dimension i, I have ki as a product of basis functions fi (·):

kds (x, z) =
d
X

i=1

ki =
d
X

i=1

fi (xi) fi (zi) xi, zi 2 X, x, z 2 Xd, ki,fi 2 R (4.8)

This form aligns with the similarity requirement for covariance as a dot product (3.4.2), al-
ternatively viewed as a sum of one-sample covariances, ki in each dimension. For covariance
in each dimension, three prima facie requirements arise:

Requirement 4.5.1. If xi and zi are probably from the same class, the covariance ki (4.8)
should be positive.

Requirement 4.5.2. If xi and zi are probably from different classes then the covariance
ki (4.8) should be negative.

Requirement 4.5.3. As the relative probability of xi belonging to one class increases (or
decreases) over its probability of belonging to the other class, so too should the magnitude
of the covariance ki (4.8) increase (or decrease). The same applies to zi.
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If I denote the most probable class for xi and zi, in dimension i as ŷxi and ŷzi respectively,
then we may define the latter with positive and negative class labels {�1,+1} as follows,

ŷxi = argmax
y

P (y | xi) ŷxi 2 {�1,+1}

ŷzi = argmax
y

P (y | zi) ŷzi 2 {�1,+1}

where the product,

ki (xi, zi) = ŷxi · ŷzi (4.9)

from inspection, is positive for the same class and negative for different classes, thereby
fulfilling the first two requirements (4.5.1 and 4.5.2). However, the product does not meet
the third requirement because it only considers the probability of the maximum or most
likely class for xi, instead of the probability relative to the less likely class. The same gap
exists with zi.

However I can express the third requirement (4.5.3) as: the covariance ki should be pro-
portional to the difference of probabilities regarding xi,

ki / P (y+ | xi)� P (y� | xi) (4.10)

and the covariance ki should be proportional to the difference of probabilities regarding zi

ki / P (y+ | zi)� P (y� | zi) (4.11)

Let

fi (·) = P (y+ | ·)� P (y� | ·) (4.12)

then if I specify the covariance ki as the product of fi at xi and zi,

ki (xi, zi) = fi (xi) fi (zi) (4.13)

= [P (y+ | xi)� P (y� | xi)] · [P (y+ | zi)� P (y� | zi)] (4.14)

it clearly meets the third covariance requirement (4.5.3). It also meets the first and second
covariance requirements: if fi (xi) and fi (zi) are both positive or both negative that yields
a positive covariance indicating the same class, whereas if fi (xi) and fi (zi) are different
signs that yields a negative covariance indicating different classes.
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Using Bayes theorem I can re-write (4.12) as

fi (xi) =
P (xi | y+)P (y+)

P (xi)
� P (xi | y�)P (y�)

P (xi)
(4.15)

=

P (xi | y+)P (y+)� P (xi | y�)P (y�)

P (xi)
(4.16)

And from conditional probability I re-write the denominator as,

fi (xi) =
P (xi | y+)P (y+)� P (xi | y�)P (y�)

P (xi | y+)P (y+) + P (xi | y�)P (y�)
(4.17)

Now I substitute the binormal distribution from (4.6) and (4.7) into (4.15),

fi (xi) =
N (xi ; µxi+, �xi+)P (y+)�N (xi ; µxi�, �xi�)P (y�)

N (xi ; µxi+, �xi+)P (y+) +N (xi ; µxi�, �xi�)P (y�)

and I redefine my function fi in terms of sample statistics, such as mxi+ and sxi+;
⇣

N+

N

⌘

as the sample estimate of P (y+) where N+ is the number of points in the positive class
and N is the number of points overall; and

⇣

1� N+

N

⌘

as the sample estimate of P (y�):

fi (xi) =

N (xi ; mxi+, sxi+) ·
⇣

N+

N

⌘

�N (xi ; mxi�, sxi�) ·
⇣

1� N+

N

⌘

N (xi ; mxi+, sxi+) ·
⇣

N+

N

⌘

+N (xi ; mxi�, sxi�) ·
⇣

1� N+

N

⌘ (4.18)

I then use that function fi (xi) in each dimension of an explicit Mercer kernel as the
definition of a Bayesian binormal kernel (Figure ):

kbbn (x, z) =
d
X

i=1

fi (xi) fi (zi) (4.19)

Finally, I note that in (4.12) and (4.15) I use a difference of probability instead of an odds
ratio or log odds ratio because a difference meets the second requirement for negativity
whereas a ratio, being non-negative, does not. Furthermore, a ratio (or log ratio) can
become infinite as the less probable class in the denominator approaches zero, which is
undesirable in a kernel.

This kernel is Mercer according to the same proof for all explicit Mercer kernels (Section
4.4).
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Figure 4.3: The Bayesian binormal kernel in R1 ⇥ R1 saturates to either zero or one as
input feature values approach infinity.

4.5.2 Related work on Bayesian kernels

There are three kernels with major differences but minor similarities to my proposed bi-
normal kernel: the likelihood ratio (LR) based discriminant kernel for speaker verification
[50], the Fisher kernel for classification of protein homologies [135] and the TOP kernel.
They operate on complex structured data while my kernel is independently derived for
real-valued data. I discuss these kernels first and then discuss kernels which I identified in
a subsequent review of the literature.

The LR based discriminant kernel is based on log likelihood ratios, whereas mine is based
on a product (or covariance) of differences of an approximation to the posterior probability
(where the likelihood and prior are used as a common approximation). Their kernel is de-
rived from speech characteristics modelled as a Gaussian mixture model of any number
of unimodal multivariate Gaussian densities parameterized by a mean vector and co-
variance matrix. My kernel is based on a univariate binormal model in each dimension
independently.

Jaakola and Haussler’s classification method [135] uses the logarithm of the posterior
odds ratio as the discriminant along with a Fisher kernel based on a hidden Markov
model and partial derivatives of the log likelihood (also known as the Fisher score).
In contrast, my prototype binormal kernel uses the difference in posterior probabilities
for the kernel as a probabilistic measure of similarity to one class versus the other. Also a
Markov model is not applicable for general data without known or suspected structure or
relationships, as with pixels in images, for example.
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The TOP kernel is similar to Jaakola and Haussler’s Fisher kernel method, since the TOP
kernel is also based on the posterior odds ratio [270] and differs from the difference used
in my kernel.

The binormal kernel I propose is a generative model and a data-dependent kernel, where
the latter means that it uses statistics computed on the data (often separately or apriori) as
kernel hyperparameters, like the Fisher kernel. Other data-dependent kernels include the
quotient basis kernel [215] which is used in classification with two ontology-based health
indices, and the context-dependent kernel [222] which uses scale-invariant feature transform
(SIFT) information.

In a subsequent review of the literature I identify two kernels [297, 79] which are more
closely related to my Bayesian binormal kernel, since they include the concept of binormal-
ity. My kernel has advantages over these two kernels because of its independent derivation
which takes a unique approach—focusing on kernels instead of feature shaping (4.4.4).

4.5.3 Joint probability binormal kernel (proposed)

I derive a joint probability binormal kernel from the same three covariance requirements
as the Bayesian binormal kernel, resulting in the following equations,

ki (xi, zi) = fi (xi) fi (zi) (4.20)

= [P (y+ | xi)� P (y� | xi)] · [P (y+ | zi)� P (y� | zi)] (4.21)

as a repetition of equations (4.13) and (4.14).

However, whereas the Bayesian binormal kernel then applies Bayes theorem, this kernel
applies a common approximation to Bayes theorem—the joint probability,

P (y | x) ⇡ P (x | y)P (y)

which omits the denominator P (x) as a common approximation. We therefore re-write
fi (xi) in (4.20) as

fi (xi) = P (xi | y+)P (y+)� P (xi | y�)P (y�) (4.22)

This revised equation (4.22) also meets all three covariance requirements, if I describe the
third requirement in a more general form instead of a simplistic (linear) proportion. That
is, when I remove the common denominator P (xi), which is not a constant, it no longer
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obeys a (linear) proportion, but the magnitude of the covariance (or each of the factors
in the covariance) increases or decreases together with the difference in probabilities, as a
more general requirement, i.e., they share the same sign in the first derivative:

sign
✓

d

dxi

fi (xi)

◆

= sign
⇢

d

dxi

(P (y+ | xi)� P (y� | xi))

�

(4.23)

Now I substitute the binormal distribution from (4.6) and (4.7) into (4.22),

fi (xi) = N (µxi+, �xi+)P (y+)�N (µxi�, �xi�)P (y�)

and I redefine the function fi in terms of sample statistics x̄+ and sx+ ;
⇣

N+

N

⌘

as the sample

estimate of P (y+); and
⇣

1� N+

N

⌘

as the sample estimate of P (y�):

fi (xi) = N
�

x̄i+, sxi+

�

·
✓

N+

N

◆

�N
�

x̄i�, sxi�

�

·
✓

1� N+

N

◆

(4.24)

where N+ is the number of points in the positive class and N is the number of points
overall. I therefore end up with the following joint probability binormal kernel (Figure 4.4)
derived from covariance requirements for real numbers:

kpbn (x, z) =
d
X

i=1

fi (xi) fi (zi) (4.25)

=

d
X

i=1



N
�

x̄i+, sxi+

�

·
✓

N+

N

◆

�N
�

x̄i�, sxi�

�

·
✓

1� N+

N

◆�

· (4.26)


N
�

z̄i+ , szi+
�

·
✓

N+

N

◆

�N
�

z̄i� , szi�
�

·
✓

1� N+

N

◆�

(4.27)
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Figure 4.4: The joint probability binormal kernel in R1 ⇥ R1 saturates to zero as any one
or more input feature values approach infinity.

4.5.4 Bayesian density kernel (proposed)

Whereas the Bayesian binormal kernel assumes a Gaussian distribution for the positive
and negative class in (4.18), the Bayesian density kernel uses kernel density estimates
pkde (xi | y+) and pkde (xi | y�) respectively:

fi (xi) =

pkde (xi | y+)
⇣

N+

N

⌘

� pkde (xi | y�)
⇣

1� N+

N

⌘

pkde (xi | y+)
⇣

N+

N

⌘

+ pkde (xi | y�)
⇣

1� N+

N

⌘ (4.28)

kbd (x, z) =
n
X

i=1

fi (xi) fi (zi) (4.29)

4.5.5 Joint probability density kernel (proposed)

Whereas the joint probability binormal kernel assumes a Gaussian distribution for the
positive and negative class in (4.18), the join probability density kernel uses kernel density
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estimates pkde (xi | y+) and pkde (xi | y�) respectively:

fi (xi) = pkde (xi | y+)
✓

N+

N

◆

� pkde (xi | y�)
✓

1� N+

N

◆

(4.30)

kjpd (x, z) =
n
X

i=1

fi (xi) fi (zi) (4.31)

4.6 Designing new kernels for nominals and presence-

only binary data

In this section I design four kernels for nominals (as-is, or converted to binary) and
presence-only binary data (which occur in medical data sets, e.g., the skin cancer data
set we use, and which reflect nominals when converted to binary). These kernels fill
gaps (Section 3.5) in kernel requirements in various combinations (Table 4.3 on page 108)
corresponding to the requirements, characteristics and/or priorities for learning with a
particular data set.

In machine learning it is standard practice to convert nominals with d categories or levels
into d binary indicators [29, 128]3. Recall from asymmetric match weighting (3.4.2)
that there is a key characteristic of nominals converted to binary indicators and presence-
only binary indicators in similarity testing—I should only count matching positive values,
not negative values or mismatches.

4.6.1 Delta composite kernel (proposed)

A straightforward approach is to apply a delta kernel [16] to the set of binary indicators
for each nominal, separately, and not to other data types. If I define a function based on
the prior knowledge of which features represent which nominals,

nom (xi) =

8

<

:

q xi is a binary indicator for the qth nominal

0 otherwise

3sometimes called the one-attribute-per-value approach
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then for the qth nominal I can use the delta kernel,

kq (x, z) =
Y

{i|nom(xi)=q}

� (xi, zi)

which is a product of ones if all indicators match, or zero overall if any indicator mismatches.
I then take the sum across multiple nominals, i.e., a composite kernel,

k (x, z) =
X

q

Y

{i|nom(xi)=q}

� (xi, zi)

This kernel is for converted nominals and presence-only binary data, where the
binary indicators are encoded either as {0, 1} or {�1,+1}.

4.6.2 Positive match kernel (proposed)

It would be preferable to have a kernel for nominals without meta data or with less meta
data, so I define one for binary indicators coded as either {0, 1} or {�1,+1}. Let us refer
to xi = zi = +1 as a positive match, xi 6= zi as a mismatch and xi = zi = 0 or xi = zi = �1

as a negative match. Rather than checking if every level matches as in the previous kernel,
if I count only the positive matches,

p (x
i

, z

i

) =

8

<

:

1 if x
i

= z

i

= +1

0 otherwise

I can get the same result without tracking as much information:

k (x, z) =
X

{i|is_nom(xi)}

p (x
i

, z

i

)

This kernel is for converted nominals and presence-only binary data, and handles
binary indicators coded either as {0, 1} or {�1,+1}.

4.6.3 Orthant sigmoid kernel (proposed)

For converted nominals and presence-only binary data I design the orthant sigmoid
kernel to meet a requirement for asymmetric match weighting (Section 3.4.2)—i.e., to
focus only on positive matches when c = 1, or only on negative matches when c = �1, or
any weighted mixture of both. It meets the requirement with approximate values (Figure
4.5).
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Figure 4.5: The orthant sigmoid kernel in R1 ⇥ R1 when c = 1 counts positive matches pi
(red circle) with an output value ⇡ 1 in the all positive orthant and an output value ⇡ 0

in other orthants (light blue circles) for {�1,+1} encoding.

The orthant sigmoid kernel kOSig (x, z) is derived from my proposed Mercer sigmoid kernel
(Section 4.7.1) [45], omitting 1

p
, and adding the hyperparameter c to the basis function:

k (x, z) =
n
X

i=1

✓

tanh

✓

xi � d

b

◆

+ c

�

·


tanh

✓

zi � d

b

◆

+ c

�◆

The hyperparameter c 2 [�1,+1] controls how the kernel is balanced between sensing
positive matches in the all positive orthant (xi, zi > 0) versus negative matches in the all
negative orthant (xi, zi < 0). For c = �1 it is a negative match kernel and for c = 0 it
degenerates to the Mercer sigmoid kernel (without normalization). For values in between
the kernel places more weight on one type of match versus the other.

Normalization is applied within each dimension (see the Appendix for the derivation), to
arrive at the following definition for the kernel:

kOSig (x, z) ,
1

2 (|c|+ 1)

(

n
X

i=1

✓

tanh

✓

xi � d

b

◆

+ c

�

·


tanh

✓

zi � d

b

◆

+ c

�◆

+ n
�

1� c2
�

)

(4.32)
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In the design of this kernel I did not add or include normalization of the output to the
range (0, 1) across all n feature space dimensions, on purpose, since it may be used more
effectively in a composite kernel (e.g., 4.8.4) that way. To normalize it for other purposes,
divide the kernel by the dimensionality n.

The kernel hyperparameters are as follows:

• b scales the kernel horizontally in each dimension, such that smaller values of b result
in a steeper slope and larger values of b result in a slope which is less steep, i.e., a
lower grade.

• d shifts the kernel in the horizontal plane along the xi = zi axis in each dimension,
toward the positive orthant for d > 0. If the features are properly centered then
d = 0 should be optimally aligned with the kernel’s geometry and behaviour, i.e.,
this hyperparameter should be unnecessary.

• c specifies the asymmetric weighting of the kernel in the domain [�1,+1]. For c = 1 as
a maximum value, the kernel is weighted for matches or covariance only in the positive
orthant only (i.e., xi, z > 0); while for c = �1 as a minimum value, the kernel is
weighted for matches or covariance only in the negative orthant only (i.e., xi, z < 0).
c = 0 achieves symmetry and reduces to the Mercer sigmoid kernel. At other values,
both positive matches and negative matches are weighted with imbalance.
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Figure 4.6: Orthant sigmoid kernel in R1 ⇥ R1 with horizontal (xz plane) scale b = 0.25
and c = 0.3 for positive matches weighted more than negative matches.

Figure 4.7: Orthant sigmoid kernel in R1⇥R1 with horizontal (xz plane) scale b = 0.5 caus-
ing smoother curves. c = �1 for negative-match weighting and c = �0.3 for asymmetric
negative and positive match weighting, respectively.

4.6.4 Orthant linear kernel (proposed)

An exact result is achieved when I add asymmetric match weighting (3.4.2) to the
linear kernel, creating the orthant linear kernel (Figure 4.8).
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Figure 4.8: Orthant linear kernel in R1 ⇥R1 with b = 1 also counts positive matches with
an output value = 1 in the all positive orthant and an output value = 0 in other orthants
for {�1,+1} encoding.

The orthant linear kernel kOLin (x, z) is defined by:

k (x, z) = klin,c ((x+ c) , (z+ c)) + c0 where c =

h

c c . . . c
iT

= h(x+ c) , (z+ c)i+ c0

=

n
X

i=1

([xi + c] · [zi + c]) + c0

however, within each feature dimension it is normalized and defined as follows:

kOLin (x, z) ,
1

2 (|c|+ 1)

·
�

h(x+ c) , (z+ c)i+ n
�

1� c2
� 

+ c0 where c =

h

c c . . . c
iT

=

1

2 (|c|+ 1)

·
(

n
X

i=1

([xi + c] · [zi + c]) + n
�

1� c2
�

)

+ c0

In the design of this kernel I did not add or include normalization of the output to the
range (0, 1) across all n feature space dimensions, on purpose, since it may be used more
effectively that way, in a composite kernel (like the orthant sigmoid kernel is used in 4.8.4).
To normalize it for other purposes, divide the kernel by the dimensionality n.
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The kernel hyperparameters are as follows:

• c specifies the asymmetric weighting of the kernel in the domain [�1,+1]. For c = 1

as a maximum value, the kernel is weighted toward matches or covariance in the
positive orthant; while for c = �1 as a minimum value, the kernel is weighted toward
matches or covariance in the negative orthant. c = 0 achieves symmetry and reduces
to the linear kernel.

• c0 specifies a vertical bias

Figure 4.9: Orthant linear kernel in R1 ⇥ R1 with horizontal scale b = 0.5.

4.7 Matching new and existing kernels to binary data

Aside from deriving and designing kernels I can also see whether existing numeric kernels
(e.g., for reals) match the requirements of data types. I match or analyze the match
between kernels and binary data.

If I select a machine learning method and model that handles continuous values, then I can
treat features of any atomic data type as continuous, by following three steps described in
Section A.8.

97



For binary data, Hamann similarity [53] as a simdist function adds the number of positive
matches and negative matches, then subtracts the number of mismatches, and normalizes
the result by the number of features.

My new proposed Mercer sigmoid kernel (the next subsection below) approximately meets
the same requirements fulfilled by Hamann similarity, including normalization, with hyper-
parameters b < 1

3
, d = 0. The linear kernel, kLin (x, z), exactly matches the requirement

with similar values output in the same highlighted corners/orthants as the Mercer sigmoid.

4.7.1 Mercer sigmoid kernel (proposed)

The purpose of the Mercer sigmoid kernel is to provide an admissible kernel as a substitute
for the sigmoid kernel (Section 2.8.4) which is not admissible for a range of hyperparameters—
a range which is difficult to determine [167, 45].

A normalized version of the sigmoid kernel which is still inadmissible, often achieves better
accuracy than the sigmoid kernel and the Gaussian RBF kernel, hence its use is desired,
but it is also not necessarily trustworthy for health care applications [45].

Figure 4.10: The Mercer sigmoid kernel in R1 ⇥R1 with b = 0.5, d = 0, adds positive and
negative matches for inputs (�1,�1) and (+1,+1) and subtracts mismatches (+1,�1) and
(�1,+1) in the other two corners/orthants.
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To understand the Mercer sigmoid kernel, one must first understand the sigmoid kernel,
and preceding that a sigmoid function, which is also called an S-curve. An S-curve or
sigmoid function s (x) is also called a squashing function because for an input which is
high or infinite on either the positive or negative side the sigmoid function squashes the
value down to +1 or -1 respectively, i.e., s (1) = +1 and s (�1) = �1.

A sigmoid kernel has two inputs k (x, z) but always uses them together as a product
k (x, z) = s (xz). I consider only scalar inputs not vector inputs, initially, for ease of
illustration. The intuition behind the Mercer sigmoid is that squashing the product xz can
be approximated by the product of squashing x and z separately. That is, s (xz) can be
approximated by s (x) s (z). For a vector, the squashing is done in each dimension.

The Mercer sigmoid kernel kMSig (x, z) is positive definite and is defined by:

kMSig (x, z) ,
1

n

n
X

i=1

tanh

✓

xi � d

b

◆

· tanh
✓

zi � d

b

◆

, x 2 Rp (4.33)

where the parameter b specifies the kernel width, d specifies a horizontal shift and n is the
number of features in x or z. The normalization by p has (virtually4) no effect on SVM
classification but is included for better interpretability in plots and proper weighting in
composite and multiple kernel learning.

I can also define a non-uniform Mercer sigmoid kernel with di in place of d, and bi in place
of b:

kMSigNU (x, z) , 1

n

n
X

i=1

tanh

✓

xi � di
bi

◆

· tanh
✓

zi � di
bi

◆

, x 2 Rp (4.34)

4.8 Matching new and existing kernels to nominals and

presence-only binary data

Two kernels approximately match nominals converted to binary indicators and presence-
only binary data.

My proposed new Mercer sigmoid kernel, when scaled and shifted, i.e., 1
2
(kMSig (x, z) + 1),

approximately matches the requirement separately from other data with hyperparameters
b < 1

3
, d = 0. It must be applied to other data separately or else data are weighted

unevenly—i.e., it may be applied within a disjoint composite kernel as in 4.8.4.
4intuitively it should have no effect but empirically results are not exactly the same
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Also, the existing power distance kernel when scaled, 1
8
·kPwr (x, z), approximately matches

the requirement separately from other data with hyperparameter � = 2. It must be applied
to other data separately or else data are weighted unevenly—i.e., it may be applied within
a disjoint composite kernel.

4.8.1 Insensitive sigmoid variant kernels (proposed)

This kernel is a precursor to the next kernel which applies to positive match requirements.
The intuition behind the insensitive sigmoid variant (ISV) kernel is to create a more flexible
version of a sigmoid kernel—a more general form with the possibility to fit data better as
a consequence. Whereas a sigmoid kernel is based on an S-curve or sigmoid function, I
define an ISV function which generalizes that to a family of curves between an S-curve and
a double S-curve. A double S-curve looks like an S-curve but with a flat plateau in the
center (Figure 4.11).

The Mercer sigmoid kernel was born out of this more complex kernel. In classification with
binary targets, the ISV kernel matches the requirement to reduce the effect of points in
the region of class overlap, whose labels are less certain, and therefore may represent label
error or class noise. The ISV kernel, like the Mercer sigmoid kernel, matches binary data
or binary data imputed as continuous values.

In binary classification, if data are balanced and centered then the region of overlap is at
the origin of the kernel. If data are imbalanced then allowing the kernel to shift its origin
with the d hyperparameter is prudent. I mitigate the class noise by treating points in the
region of interest with no weight — that is, I design a kernel which outputs values of zero
with a flat plateau (at the centre of the region). Instead of assigning no weight with a flat
plateau, I can assign less weight, i.e., a kernel with low height from a gradual slope in the
centre of the region.

I design the required kernel geometry by first creating a flat region in a one dimensional
sigmoid function. In the literature, there is a function that is a sigmoid with a plateau—a
double S-curve, however it does not have a flexible width parameter separate from the
overall scale and slope, and it is piece-wise defined with a sign (·) function that is not
differentiable at all points (i.e., at the origin).

To achieve the shape desired I take a sigmoid basis function (with parameters b and d for
horizontal shifting and scaling respectively),

�bd (x) , tanh

✓

x� d

b

◆
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and add to it, a continuous bimodal odd-symmetric function which cancels out the sigmoid
in the center to create a flat (or zero slope) region when a = 1,

N 0
a,b,d (x) = �(x� d)

ab
exp

 

�
✓

x� d

b

◆2
!

In this case the function is a Gaussian derivative (with the same horizontal shift and scale
parameters b and d). It is also has a vertical scaling parameter 1

a
, which causes a positive

slope in the center for a > 1, or zero slope for a = 1 and degenerates to a sigmoid with no
plateau (the most positive slope achievable) when a � exp (1).

The resulting model is used as a basis function within each dimension (denoted with a “g”
for its Gaussian derivation),

�g (x) = tanh

✓

x� d

b
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�
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This function is continuously defined and parameterized in a very flexible manner. I use
this function to define a p-dimensional vector,

~�g (x) =
h

�g (x1) �g (x2) ... �g (xp)

iT

for the kernel kISVg,

kISVg (x, z) ,
1

p

·
D

~

�

g

(x) , ~

�

g

(z)
E

=
1

p

p

X

i=1

�

g

(x
i

) · �
g

(z
i

)

=
1

p

p

X

i=1

(

tanh

✓

x

i

� d

b

◆

� (x
i

� d)

ab

exp

 

�
✓

x

i

� d

b

◆2
!)

·
⇢

tanh

✓

z

i

� d

b

◆

� (z
i

� d)

ab

exp

 

�
✓

z

i

� d

b

◆2
!)

I may similarly define a kernel, kISVh instead of kISVg, by using a function fh (x) instead of
N 0

a,b,d (x) — that is, fh (x), which is the second derivative of a hyperbolic tangent, also has
the required shape as a continuous bimodal odd-symmetric function:

fh (x) = � tanh

✓

x� d

b

◆

1

a
sech

2

✓

x� d

b

◆

I add this function fh (x), to flatten or cancel out slope in tanh, and arrive at the following
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basis function (denoted with an “h” for its hyperbolic tangent derivation),

�h (x) = tanh
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This function is also continuously defined and parameterized in a very flexible manner. I
use this function to define a p-dimensional vector,

~�h (x) =
h

�h (x1) �h (x2) ... �h (xp)

iT

for the kernel kISVh,
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The kernel hyperparameters are as follows:

• b scales the kernel horizontally in each dimension, where the sigmoid is twice as wide
for b = 2

• d shifts the kernel in the horizontal plane along the xi = zi axis in each dimension,
toward the positive orthant for d > 0. If the features are properly centered then
d = 0 should be optimally aligned with the kernel’s geometry and behaviour, i.e.,
this hyperparameter should be unnecessary.

• a controls the slope of the central region by increasing or decreasing the effect that
flattens the sigmoid into a plateau. For a = 1 there is plateau with zero slope, while
a > 1 causes a positive slope, and a � exp (1) minimizes the effect so that the kernel
degenerates to a Mercer sigmoid with no plateau.
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Figure 4.11: Insensitive sigmoid variant g kernel in R1⇥R1 with a = 1 for zero slope at the
center of marginals, and a = 1.7 for positive slope at the center of marginals, respectively.

4.8.2 Orthant insensitive sigmoid variant kernels (proposed)

The orthant insensitive sigmoid variant (OISV) kernels kOISVg (x, z) and kOISVh (x, z) are
kernels which meet requirements for asymmetric match weighting (as discussed in 3.4.2)
with class noise mitigation, when c = 1, versus the insensitive sigmoid variant (ISV) kernels
which are match kernels with class noise mitigation. They are derived from the ISV kernels
by adding the hyperparameter c to the basis function,

�g,c (x) = tanh

✓

x� d

b

◆

� (x� d)

ab
exp

 

�
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x� d

b
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!

+ c

The hyperparameter c 2 [�1,+1] controls how the kernel is balanced between sensing
positive matches in the all positive orthant (xi, zi > 0) versus negative matches in the all
negative orthant (xi, zi < 0). For c = �1 it is a negative match kernel with class noise
mitigation, and for c = 0 it degenerates to an ISV kernel. For values in between the kernel
places more weight on one type of match versus the other.

In p dimensions the vector

~�g,c (x) =
h

�g,c (x1) �g,c (x2) ... �g,c (xp)

iT

is used to create the kernel kOISVg (x, z),
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�
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The kernel kOISVh (x, z) is similarly derived:

�h,c (x) = tanh

✓
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Figure 4.12: Orthant insensitive sigmoid variant g kernel in R1 ⇥ R1 with a = 1 for zero
slope at the center of marginals, and a = 1.7 for positive slope at the center of marginals,
respectively. Also, c = 1 for positive-match weighting and c = 0.31 for asymmetric positive
and negative match weighting, respectively.

Figure 4.13: Orthant insensitive sigmoid variant g kernel in R1 ⇥ R1 with c = �1 for
negative-match weighting and c = �0.4 for asymmetric negative and positive match weight-
ing, respectively.
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4.8.3 Gaussian derivative kernel (proposed)

Based on a Gaussian RBF kernel, I create a kernel kGD with basis functions ~�GD (x) that
are bimodal in each of p dimensions (4.35). One mode pertains to data belonging to the
negative class, with a negative height, and the other mode pertains to the positive class
with a positive height. This geometry is simply achieved by the taking the derivative of
a Gaussian (omitting a factor of 2 on the outside which has negligible effect on a basis
function or kernel):

�GD (x) = N 0
b,d (x) = �
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b
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b > 0; b, d 2 R (4.35)
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p
X
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�GD (xi) · �GD (zi) (4.38)

Figure 4.14: The Gaussian derivative kernel in R1 ⇥ R1 with b = 0.5 and b = 0.25 .

4.8.4 Orthant Mercer sigmoid binormal composite sum kernel (pro-
posed)

I also propose the following disjoint composite kernel [256] (versus globally composite
kernels [44]): the orthant/Mercer sigmoid binormal composite sum (OMBcs) kernel.
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Table 4.2: Kernel components matched to data types in the OMBcs kernel

Kernel Data type Data type description
component abbreviation

O bin+ converted nominals or presence-only binary data
M bin binary data
B real reals, integers, ordinals, dates

The OMBcs kernel is a composite sum (cs) of an Orthant sigmoid kernel (OSig), a Mercer
sigmoid kernel (MSig), and a Bayesian binormal kernel (BBN), denoted by “O”, “M” and
“B” respectively. It is the sum of three component kernels, where each is applied to a
disjoint subset of features (Table 4.2).

The OMBcs kernel is defined as a weighted sum,

kOMBcs (x, z) , kOSig
�

{x, z}bin+
�

+ nbin · kMSig ({x, z}bin) + nreal · kBBN ({x, z}real)

where nbin is the number of binary dimensions and nreal is the number of real/numeric
dimensions. The Orthant sigmoid kernel kOSig is normalized within each feature or dimen-
sion, but not across features or dimensions. So it has a weight proportional to the number
of binary+ features or dimensions. The Mercer sigmoid kernel and Bayesian binormal
kernels are normalized overall, so I must apply weights to them based on the number of
dimensions: nbin and nreal (assuming that all of the nbin and nreal dimensions should be
treated equally). If one wishes to apply weights based on the correlation of features with
the target, that may be done instead.

4.9 Summary

In this chapter I defined a kernel data modeling framework to address seven gaps in kernel
requirements (Section 3.5). To support this framework I defined the new class of explicit
Mercer kernels, needed to create transparent and atomic kernels and discussed the impli-
cations of that class. I then derived, designed and matched a variety of newly proposed
kernels (and in some cases existing kernels) to various data types and distributions. The
seven requirement gaps are addressed in detail (Table 4.3 on page 108) and their fulfillment
are summarized as follows:

1. High: Twelve out of fifteen of my proposed (Mercer) kernels meet the need for
admissible dot product kernels with a meaningful and finite minimum and maximum.
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2. High: Fourteen of my proposed (Mercer) kernels meet the need for kernels with
a finite feature space for transparency, like the linear and polynomial kernels, and
six of these consistently perform better (Section 5.3) than the linear and polynomial
kernels.

3. High: Twelve of my proposed (Mercer) kernels meet the need for explicit Mercer
kernels for transparency and interpretability, in addition to the previously identified
linear and polynomial kernels.

4. High: All fifteen of my proposed (Mercer) kernels, and two existing kernels meet/-
match the need for kernels for heterogeneous data, whereas the Gaussian RBF kernel
does not match the need for nominals.

(a) In this context, I am interested in the heterogeneity between reals, binary (bin),
nominals (nom), and presence-only binary (+bin) data, where there is room for
improved fit and accuracy. I am not interested in the heterogeneity between
reals, integers and ordinals where I assume a kernel for reals performs sufficiently
well.

(b) The existing kernels which meet the need are: the linear kernel that matches
real and binary data, and the power distance kernel with � = 2 that matches
reals, nominals and presence-only binary data.

5. Medium: Three of my proposed kernels—the Mercer sigmoid kernel and two in-
sensitive sigmoid variant kernels—can be used as a safe (Mercer) alternative to the
sigmoid kernel which is not admissible.

(a) My proposed kernels have good accuracy on clinical data—sometimes better
than the Gaussian RBF kernel with statistical significance and they are trans-
parent/interpretable.

6. Medium: Nine of my proposed kernels have uniform functions for interpretability.

7. Medium: Six of my proposed kernels have asymmetric match weighting for converted
nominals and presence-only binary data.
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Table 4.3: My proposed kernels resolve the gaps in kernel requirements, in various combi-
nations. I assess 15 kernels in 11 columns.

Gaps Numeric Non-numeric
resolved BBN, BD, MSig OSig OISVgc, ISVgc, OLin OMB DC Pos

JPBN JPD OISVhc ISVhc
D D D D D D D D E H

1.Admissible � � � � � � �
dot product

with min/max
meaning/finite
2.Finite F for � � � � � � � � � �
transparency
3.Interpretable � � � � � � � � n/a n/a

explicit
Mercer

4.Matches real real real real real real real real
heterogeneous bin bin bin bin bin bin bin

data nom nom nom nom nom
+bin +bin +bin +bin +bin

5. Sigmoid � �
alternative
6. Uniform � � � � � � �

7. Asymmetric � � � � �
match

weighting

In contrast to the standard kernel selection method (Figure 3.1 on page 57) and alternative
kernel selection methods (Figure 3.2 on page 58), I proposed a new kernel selection method
(Figure 4.1 on page 72) at the beginning of this chapter, which is I can now update (Figure
4.15) below.

My proposed kernels which have a transparent form/formula, have transparent geometry
in the feature space and can be matched geometrically to requirements in that feature
space. Common and uncommon kernels on the other hand, can only be matched by their
formulas or their geometry in the input space—where in my experience, matching is more
challenging.
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Figure 4.15: I propose the approach illustrated above (in blue and pink) for model/kernel
selection in SVM.
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Chapter 5

Effect of kernel data modeling

5.1 Overview of experimental data

My hypothesis applies to classification of atomic data types (4.2) in health care data. I
examine the literature for benchmark health care data with mixed (heterogeneous) data.

Applicable work with mixed data, not limited to health care include the following. Aradhye
and Dorai [8] use two data sets from the well-known University of California at Irvine (UCI)
repository: the Mushrooms and Splice data sets; as well a data set of their own. Wong et
al. [291] use two industry data sets (that are not health related) and three data sets from
the UCI repository: the Iris Plants, Adult (Income) and Mushrooms data sets. Berrado
and Runger [22] use a number of UCI data sets: Iris Plants, Ionosphere, Statlog Heart,
Pima Indians, Statlog Satellite Image, Thyroid and others.

For my experiments I use publicly-available data sets (Table 5.1) commonly used in the
literature as a baseline for comparison, e.g., from the University of California at Irvine
(UCI) machine learning repository [11] and other sources associated with papers. These
data sets, with characteristics summarized in Table 5.1, are: Skin cancer [73], Heart (Stat-
log, not Cleveland) [145], Pima Indians diabetes [11], Bupa liver [11], Hepatitis [11], Colon
tumor [6], Prostate cancer [235].

I select commonly used (i.e., reputable) and interpretable/meaningful health care data
sets, discarding data sets with conflicting information (e.g., the Thyroid data set), lack of
interpretation (e.g., the Cancer data set), unclear target variables (e.g., the Diabetes data
set, not to be confused with Pima Indians diabetes data set) and features which have been
transformed or processed too much (e.g., the ecoli data set). I also did not use data sets
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with more than two class labels (multiclass problems) although these can be transformed
into permutations of two class problems.

After conducting a number of experiments, I realize two further aspects of two data sets I
selected. First, the Pima Indians diabetes database has disguised missing data [204] and
this is tolerable for experiments on accuracy and interpretability, but not end-use/actual
explanation (since the disguised missing data will throw off interpretation). Knowing
the phenomenon it can be accounted for during interpretation, and I do not expect the
interpretability of models with data to be grossly affected in this case. Predicting on the
data set as-is allows me to benchmark my performance against other results in the literature
(which in part, provides a measure of validation for the correctness of my implementation).

Second, the Bupa liver data set is classically misused [186] to predict a meaningless tar-
get with just 4 of 59 papers using it correctly. A variable that is meant to indicate a
training/test data set split is classically thought to be the target of prediction indicating
a diseased/non-diseased state. Since the explanation in the machine learning repository’s
description was a little ambiguous, I corroborated my understanding or assumption with
other authors (some of whom I had previously read). Unfortunately their interpretations
were wrong.

Used incorrectly the study/problem is not clinical nor very meaningful—although by
achieving 70% cross-validated prediction accuracy there is clearly a pattern to be learned
in the incorrect target, which is a hand-selected indicator to assign patients to a group for
training prediction methods, or a group for testing them.

McDermott et al. [186] recommend using a threshold on the variable that is commonly
misused, like Turney [271] and Tang et al [257] who both use q6 � 3 to predict persons with
drinking problems from blood tests of their liver function. McDermott et al prefer q6 > 3,
but I choose the former for benchmark purposes. Interestingly, it is worthwhile to report
on the difference in results between the correct clinical study/problem and the classically
incorrect study/problem, because that difference is consistent with other observations.

Another lesson learned after conducting a number of experiments, courtesy of a clinician,
is that a number of the data sets I use have a high prevalence (or incidence) of events,
which is not representative of data clinicians may experience in practice. In one case, the
skin cancer data from Dr. Ehrsam, consists of skin lesion data from patients referred to a
dermatologist—hence it is the referred population (with the greatest prevalance), not the
population visiting a general practitioner, nor the general population at large (with the
least prevalence). As a result, the absolute values in results may not have specific meaning
for clinical purposes, but two aspects offset that: (1) my purpose is not to arrive at clinical
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Table 5.1: My experiments use up to eight data sets below, described by name, number
of instances N and class ratio N

+ : N�, number of features before n and after conversion
nc, missing data, public availability of data, percentage of binormal (%n BN) features,
the presence of image pixel or coordinate data (img), and the number of features in each
data type—reals, dates, integers (int), ordinals (ord), binary (bin), nominals (nom) and
presence only binary data (+bin). No integer features in my data are coarse/sparse: i.e.,
10 or less possible values.

Dataset Number of features per data type
name N n miss pub %n img real date int ord bin nom,

N

+ : N� (n
c

) -ing -lic BN +bin

Skin 60 10 y y/n n 1 0 1 0 6 16,
cancer (B5) 20:40 (100) 186

Heart 270 13 n y 60% n 1 0 4 2 3 14 + 23,
(statlog) 120:150 (20) 0
Hepatitis 155 18 y y 12% n 2 0 3 0 13 0,

32:123 0
Bupa liver 345 6 n y 10% n 1 0 5 0 0 0,
(classic) 200:145 0

Bupa liver 345 5 n y n 1 0 4 0 0 0,
(corrected) 176:169 0
Pima Indian 768 8 y y 0% n 8 0 0 0 0 0,
diabetes 268:500 0
Colon 62 2000 n y 83% n 2000 0 0 0 0 0,
tumor 40:22 0

Prostate 102 12600 n y 35% n 12600 0 0 0 0 0,
cancer 52:50 0

findings but instead to test the relative (not absolute) performance of kernels and (2) I
test with multiple data sets with a range of class imbalance from nearly balanced to highly
imbalanced (a 1:4 ratio of events to negatives) and my results are consistent across that
range, with the exception of the one “non-clinical” problem per the classically misused
Bupa liver data set.

5.1.1 Skin cancer data set

The skin cancer data set [73] is extracted from the website of Dr. Eric Ehrsam, a derma-
tologist in France who publishes de-identified skin lesion data. The extract has 60 patients
from March 26, 2009 to October 16, 2013 and I use the following target of prediction:
“malignant melanoma or melanoma in situ” versus other diagnoses or conditions.

The extract contains 30 features, however I use only the following 10 relevant features:
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Breslow index in mm (real), age (integer), gender (binary), change in lesion size in the last
1 year (binary), lesion present since birth or for the last 10 years (binary), excised or biopsy
(binary), differential pressure applied with dermascope (binary), physician (binary), body
location (nominal with 6 levels), observed lesion characteristics (86 presence-only binary
values). Since these patients have been referred to the dermatologist the prevelance of the
condition is much higher than for patients seen by a general practitioner or the prevalence
in the general population. The Breslow index in mm has missing data for 49 out of 60
observations, coded as 0. No other features have missing data.

5.1.2 Statlog Heart data set

The Statlog heart data set [66] has 270 patients with the target of prediction being the
presence vs. absence of heart disease. It has the following 13 features: age, sex, chest pain
type (4 levels), resting blood pressure, serum cholestoral in mg/dl, fasting blood sugar >
120 mg/dl, resting electrocardiographic results (3 levels), maximum heart rate achieved,
exercise induced angina, oldpeak = ST depression induced by exercise relative to rest
, the slope of the peak exercise ST segment, number of major vessels (0-3), colored by
flouroscopy, thal (3 levels: 3 = normal; 6 = fixed defect; 7 = reversable defect). There is
no missing data in this data set.

5.1.3 UCI Hepatitis data set

The UCI hepatitis data set [66] has 155 patients with the target of prediction being survival.
This data set has 18 features after discarding one feature called protime (43% missing).
Five of the features are: bilirubin (real), albumin (real), age (integer), alk phosphate
(integer with 19% missing), serum glutamic oxaloacetic transaminase (SGOT) (integer).
The remaining 13 features are binary: sex, steroid, antivirals, fatigue, malaise, anorexia,
liver big, liver firm, spleen palpable, spiders, ascites, varices and histology. Aside from the
missing data already highlighted, nine other features have up to 10% missing data. The
missing data were imputed using 1 round of multiple imputation with the monte carlo
Markov chain.

5.1.4 UCI Bupa liver data set

The Bupa liver data set [66] has 345 patients with the target of prediction being the number
of half-pint equivalents of alcoholic beverages consumed per day, i.e., can we reliably predict
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the behaviour from the symptoms? It has one real feature—mean corpuscular volume—
and four integer features: alkaline phosphotase (alkphos), alamine aminotransferase (sgpt),
aspartate aminotransferase (sgot), gamma-glutamyl transpeptidase (gammagt). See also
the prior discussion about this data set in the overview (Section 5.1).

5.1.5 UCI Pima Indians diabetes data set

The UCI Pima Indians diabetes data set [66] has 768 patients with the target of prediction
being the presence of diabetes. It has eight real features: number of times pregnant, plasma
glucose concentration at 2 hours in an oral glucose tolerance test, diastolic blood pressure
(mm Hg), triceps skin fold thickness (mm), 2-hour serum insulin (mu U/ml), body mass
index (weight in kg/(height in m)^2), diabetes pedigree function, age (years).

5.1.6 Colon tumor data set

The colon tumor data set [6] has 62 patients with the target of prediction being the presence
or absence of cancerous colon tissue. The features are the real valued intensities of 2,000
genes.

5.1.7 Prostate cancer data set

The prostate cancer data set [235] has 102 patients with the target of prediction being
the presence or absence of prostate cancer. The features are the real valued intensities of
12,600 genes.

5.2 Experimental method for accuracy

I validate the accuracy of my proposed kernels relative to common and uncommon kernels,
with clinical studies/problems and data (and in one case with a non-clinical study/problem)
to test my overall hypothesis.

I perform 10 experiments for each classification problem and data set. Each experiment
uses 3 stratified cross-validation folds, i.e., sampling with replacement, like bootstrapping,
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but also stratified, i.e., selected to have a distribution similar to the entire dataset. Two-
thirds of the data are used for training and one-third for testing. This enables comparison
with the vast majority of benchmark results, viewed either as a number (Nh) of 3-fold
cross-validation experiments or as 3 ·Nh train/test sets or bootstraps

Hence, I obtained results for 30 different folds or bootstraps, which meets the rule of thumb
to have at least 25-30 results [125] for a normal distribution of those results. This ensures
that the mean, standard deviation, prediction intervals or other statistics calculated on
those results are meaningful to detect statistically significant differences, e.g., between the
mean accuracy of SVM with one kernel versus another kernel.

I note that an ideal test method, if there are enough instances in data, is to use a combi-
nation of cross-validation (or bootstrapping) with a separate hold-out test set—however, I
did not use this approach, as it does not permit benchmarking since it was only used by 2
out of 61 authors/papers with benchmark results.

Table 5.2: Some of the hyperparameter ranges used in hyperparameter search, as an il-
lustration rather than exhaustive listing. The lower and upper limits delimit the uniform
distribution used for random sampling. The limits, initially derived from literature [18, 167]
are extended based on experience. I denote " = 10�15 as a small value approaching zero
from the positive side.

Kernel (note: " = 10

�15) SVM
Poly RBF Sig MSig

Limit d log10 � a r b d log10 C

Lower 2 -4 " -5 -3 -2 -3
Upper 5 +6 20 -" +6 +2 +6

The data sets are centered and normalized such that ±3�, i.e., the third standard devi-
ation, becomes ±1, following guidance in the literature [18]. Hyperparameter values are
searched or generated as random variables [20] with a uniform distribution (e.g., Table 5.2),
called random search, which is better [20] than grid search as a common method. Newer
hyperparameter search methods now include Bayesian search optimization and particle
swarm optimization (PSO), however I deem random search to be sufficient1.

For each fold I test with 60 sets of hyperparameters, i.e., 60 points in the multidimensional
hyperparameter space. Any number of points will never seem like enough given the curse
of dimensionality, unless the number is increased by orders of magnitude.

1With PSO, Yamada et al. [295] (Section A.9) shows that my proposed Mercer sigmoid kernel, classifies
well relative to the Gaussian RBF kernel on data sets with atomic data types, similar to my results without
PSO.
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I perform tests with SVM using four common kernels, four uncommon kernels and eight
kernels which I proposed.

I test the following common kernels: the linear (Lin), polynomial (Poly), Gaussian RBF
(RBF) and sigmoid (Sig) kernels. I test the following uncommon kernels: the normalized
sigmoid (SigN), power distance (Pwr), logarithmic (Log) and inverse multiquadric (IMQ)
kernels. I test the following proposed kernels: the Mercer sigmoid (MSig), Gaussian deriva-
tive (GD), orthant linear (OLin), Bayesian binormal (BBN) and joint probability binormal
(JPBN) kernel—and three versions of an insensitive sigmoid variant (ISV) kernel, denoted
ISVgc, OISVgc and OISVhc2.

I use Matlab’s standard implementations of SVM to calculate class-specific soft-margin
parameters C+ and C� from C to achieve a balanced success rate with imbalanced data
[18] and I use built-in implementations of three common kernels: the linear, polynomial
and Gaussian RBF kernels. In earlier versions of Matlab the sigmoid kernel was also
built-in, but is no longer (presumably because it is not an admissible kernel and therefore
could create liability). I use sequential minimal optimization (SMO) for SVM in Matlab
as it is faster and just as reliable and with the same guarantees as the classical quadratic
programming (QP). I use the default optimization solver for SMO.

I obtain results of accuracy and interpretability (Table 5.3) and report on key measures (see
next section), while using other measures for analysis and discussion where informative.

2“O” refers to orthant, “g” refers to a Gaussian derivative, “h” refers to a hyperbolic tangent and “c”
refers to contraints.
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Table 5.3: Accuracy (a) and interpretability (U) types of measures

Scope Measure type (a or U), names and abbreviations

For a specific a Accuracy (a), sensitivity/recall (sens), specificity (spec),
model and positive predictive value/precision (ppv), F1 measure,

specific TP/FP negative predictive value (npv), balanced accuracy (ba),
trade-off, e.g., balanced predictive value (bpv)

SVMC=1,RBF�=1 U Number of support vectors (sv), SVM cost of error (C),
kernel width (e.g., �), percent folds converged (cnv),
elapsed time (et), relevant dimension estimate (rde),
rde noise estimate (noise), model interpretability ( ˇU@, Usv),
Gram matrix rank, Gram matrix condition and sparsity,
model interpretability for limited use (U⇤

rdeT , U⇤
rdeL),

simplicity of sensitivity with limited use (UHst)
For a family of a Area under the curve (auc), average precision (ap, ppv)

models at all trade- area under the precision recall curve (auprc)
offs for a set U Number of training instances (N), number of

{C}, {�} or {C, �}, features (n), model transparency (U@)
re SVM{C},RBF{�}

5.3 Experimental results for accuracy

In this section I report my classification results using key accuracy-related measures. In
the next section, I include a measure of model interpretability and discuss model selection
based on accuracy and interpretability using that measure.

An overview of results is provided by averaging the measures for each kernel and ranking
those results for each dataset (Table 5.4). While standardizing each measure within each
data set for ranking is the most robust approach, my approach is simple and effective—with
only average precision (ap) having greater variance than other measures.

From the ranks (Table 5.4) I observe that:

1. Three of my proposed kernels, based on an insensitive sigmoid (OISVgc, OISVhc,
ISVgc) and a fourth kernel I propose, called the Gaussian derivative (GD) kernel,
rank better on accuracy-related measures than the common kernels, and rank better
than the median for all clinical data sets, i.e., a rank less than 8.5.

(a) These four proposed kernels achieve better accuracy than all of the common
kernels. They are also more transparent.

2. The normalized sigmoid kernel [45], an uncommon kernel, has the most top 5 kernel
rankings, but it is not an admissible kernel [45, 167] and therefore not suitable
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Table 5.4: Kernels (split across two tables) ranked by an average of accuracy-related mea-
sures in classification for five clinical and one non-clinical (nc) data sets. The top 5 ranks
are highlighted with a green cell colour.

Data set Common kernels Uncommon kernels
Lin Poly RBF Sig SigN IMQ Log Pwr

Hepatitis 8 17 14 15 7 18 16 11
Heart 16 13 11 18 17 10 12 9
Liver 9 11 14 13 8 15 12 10
Skin 9 13 12 11 5 14 10 8
Diabetes 12 10 14 17 6 8 1 3
Colon 10 17 7 15 2 18 16 5
Liver(nc) 15 5 3 13 4 6 2 1

Data set Proposed kernels
MSig OSig OISVgc ISVgc BBN OMBcs OLin GD

(OISVhc) (JPBN)
Hepatitis 9 13 4 1 5 12 6 10

2 3
Heart 7 6 4 2 8 14 15 5

3 1
Liver 5 4 1 1 16 16 7 6

1 18
Skin 6 5 1 1 18 4 10 7

3 17
Diabetes 11 9 5 2 16 15 13 7

4 18
Colon 9 4 3 6 13 12 8 11

1 14
Liver(nc) 11 10 8 9 17 17 14 12

7 16
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for health care or other high reliability applications [45]. The sigmoid kernel is also
not admissible [45, 167].

(a) The Mercer sigmoid kernel, proposed as a substitute for both of them, ranks
worse than the (uncommon) normalized sigmoid but better than the sigmoid,
and ranks better than the median rank on most clinical data sets—hence it is a
reasonable substitute.

3. The power distance kernel and log kernels, both uncommon kernels, rank better than
the Gaussian RBF kernel on most clinical data sets.

(a) The predominant use of the Gaussian RBF kernel, or considering only common
kernels, falls short of achieving the best accuracy with clinical data.

4. The Gaussian RBF and polynomial kernels rank noticeably well/better on the classic
misused (Bupa) liver study/problem and data. I consider it a non-clinical (nc)
study/problem because the prediction target is not clinical—it is the researchers’
attempt to randomly pick two classes by hand which involves more randomness,
subtlety and complexity in patterns than a clinical study/problem.

(a) For this non-clinical study/problem, the Gaussian RBF and polynomial kernels
with feature interactions of second order or more, are more accurate than the
proposed transparent kernels which are limited in feature space complexity/di-
mensionality when the number of features nc < N are smaller than the number
of instances.

5. Based on the match between kernels and requirements of specific data types, I find
that performance with kernels that match the data types, is better than or equal
to kernels that do not match them. I include proviso “or equal to” since there are
many factors at play such as the significance of a feature and the number of kernel
hyperparameters to search.

6. For converted nominals and presence-only binary data found in the heart and
skin cancer data sets (the only data sets with those data types):

• The orthant sigmoid (OSig) kernel and related variants (OISVgc and OISVhc)
designed for nominals are better than or equal to the Mercer sigmoid (MSig)
kernel in accuracy, as expected—where the MSig kernel is a good baseline since
it is a specific case of the other three kernels.

– Note: From the formula and shape of the MSig kernel, I know that it may
act like an “orthant” kernel, if it is shifted and scaled so that the data only
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use of half of it—the positive matching “hill” with similar shape—while the
other half, the negative matching “hill” is outside of the data’s range.

• The orthant sigmoid (OSig) kernel and related variants (OISVgc and OISVhc)
designed for nominals are better than or equal to the Gaussian RBF kernel in
accuracy, as expected. The RBF kernel is a reasonable baseline as the most
common kernel—and it is not unfair (more accurate) than the Mercer sigmoid
(MSig) kernel as a baseline.

– Note: The Gaussian RBF kernel matches a single nominal, but with more
features (nominals or otherwise) its match is not known.

• The orthant linear (OLin) kernel designed for nominals is better than or equal
to the linear (Lin) kernel in accuracy, as expected.

I conclude the following:

• My kernels which are designed to match data types for justification, accuracy and
interpretability, with a transparent form, achieve the same or better accuracy as
sought in my hypothesis.

– However, kernels which are not intentionally designed to match certain data
types, may fully or partially match them out of coincidence. For example, the
Mercer sigmoid kernel may act like an orthant sigmoid kernel, if it is shifted
and scaled so that the data only use of half of it—the positive matching “hill”
with similar shape—while the other half, the negative matching “hill” is outside
the data’s range. Another example is the power density kernel with � = 2

whose formula fully matches converted nominals and presence-only binary data
without specific intent in its design.
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Table 5.5: Accuracy-related measures of prediction performance (split across two tables)
for hepatitis data in thirty stratified folds in ten SVM experiments using 60 random
hyperparameters. The top 2 results are highlighted in bold and the top five kernels (per
the average over all measures) are highlighted in green.

Common kernels Uncommon kernels
Lin Poly RBF Sig SigN IMQ Log Pwr

a 85.0±0.01 81.8±0.01 83.8±0.01 83.0±0.01 85.3±0.01 81.7±0.01 83.2±0.01 84.7±0.01
bal a 75.3±0.02 64.0±0.03 72.3±0.02 71.0±0.02 74.8±0.02 56.3±0.02 66.4±0.02 72.7±0.02
AUC 77.3±0.01 68.2±0.02 74.5±0.02 73.4±0.02 77.1±0.02 64.0±0.01 70.3±0.01 75.1±0.01
AP 42.7±0.06 39.3±0.05 45.7±0.03 39.1±0.04 44.9±0.04 43.6±0.03 46.8±0.03 48.6±0.03
F1 62.6±0.02 50.0±0.03 59.2±0.03 56.9±0.02 62.2±0.02 43.1±0.03 53.8±0.02 60.2±0.02

avg 68.6±0.01 60.7±0.02 67.1±0.02 64.7±0.02 68.9±0.02 57.7±0.02 64.1±0.02 68.3±0.02
rank 8 17 14 15 7 18 16 11

Proposed kernels
MSig OSig OISVgc ISVgc BBN OMBcs OLin GD

OISVhc JPBN
a 85.0±0.01 85.2±0.01 85.5±0.01 86.0±0.01 85.0±0.01 84.8±0.01 85.2±0.01 84.8±0.01

85.5±0.01 84.1±0.01
bal a 74.8±0.01 75.4±0.01 75.7±0.02 76.4±0.02 74.3±0.02 74.1±0.01 75.6±0.01 73.5±0.02

75.7±0.02 75.1±0.01
AUC 76.9±0.01 77.3±0.01 77.7±0.01 78.2±0.02 76.5±0.02 76.4±0.01 75.6±0.01 75.6±0.01

77.8±0.01 76.8±0.01
AP 42.7±0.06 39.7±0.05 43.5±0.06 45.4±0.05 47.8±0.05 43.9±0.02 43.8±0.05 46.8±0.03

44.4±0.06 48.3±0.05
F1 62.1±0.01 62.9±0.02 63.2±0.02 64.9±0.02 61.8±0.03 61.6±0.01 62.7±0.02 61.1±0.02

63.1±0.02 61.9±0.02

avg 68.6±0.01 68.1±0.02 69.1±0.02 70.2±0.02 66.3±0.01 68.2±0.01 69.0±0.02 68.4±0.01
69.3±0.02 69.2±0.02

rank 9 13 4 1 5 12 6 10
2 3
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Table 5.6: Accuracy-related measures of prediction performance (split across two tables)
for heart data in thirty stratified folds in ten SVM experiments using 60 random hyper-
parameters. The top 2 results are highlighted in bold and the top five kernels (per the
average over all measures) are highlighted in green.

Common kernels Uncommon kernels
Lin Poly RBF Sig SigN IMQ Log Pwr

a 84.8±0.01 82.7±0.01 83.9±0.01 79.3±0.02 84.3±0.01 82.1±0.00 82.9±0.00 84.1±0.01
bal a 84.0±0.01 81.4±0.01 83.0±0.01 78.9±0.01 83.7±0.01 80.9±0.00 82.0±0.01 83.2±0.01
AUC 85.7±0.01 82.9±0.00 84.5±0.01 80.8±0.02 85.9±0.01 83.4±0.01 84.2±0.00 85.2±0.01
AP 53.0±0.09 66.3±0.01 64.4±0.08 56.6±0.07 53.3±0.14 72.4±0.13 67.0±0.13 67.3±0.10
F1 82.2±0.01 79.2±0.01 81.0±0.01 77.0±0.01 81.8±0.01 78.5±0.01 79.9±0.01 81.2±0.01

avg 78.0±0.02 78.5±0.01 79.4±0.0 74.5±0.0 77.8±0.0 79.5±0.0 79.2±0.03 80.2±0.02
rank 16 13 11 18 17 10 12 9

Proposed kernels
MSig OSig OISVgc ISVgc BBN OMBcs OLin GD

OISVhc JPBN
a 85.1±0.01 85.1±0.01 86.4±0.01 85.6±0.01 84.8±0.01 84.1±0.01 84.7±0.01 84.9±0.01

86.1±0.00 85.7±0.01
bal a 84.2±0.01 84.2±0.01 85.4±0.01 84.8±0.01 83.9±0.01 83.2±0.01 83.9±0.01 84.2±0.01

85.1±0.00 84.9±0.01
AUC 85.6±0.01 85.4±0.01 86.5±0.00 86.4±0.00 85.3±0.01 84.6±0.01 85.8±0.01 85.4±0.01

86.4±0.00 86.0±0.01
AP 70.4±0.06 71.4±0.03 72.6±0.04 77.9±0.02 68.8±0.15 58.3±0.07 54.3±0.14 74.1±0.02

73.9±0.02 79.6±0.02
F1 82.4±0.01 82.3±0.01 83.8±0.01 83.0±0.01 82.0±0.01 81.2±0.01 82.1±0.01 82.3±0.01

83.4±0.01 83.2±0.01

avg 81.5±0.02 81.7±0.01 82.9±0.01 83.5±0.01 80.9±0.03 78.3±0.02 78.2±0.03 82.2±0.01
83.0±0.01 83.9±0.01

rank 7 6 4 2 8 14 15 5
3 1
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Table 5.7: Accuracy-related measures of prediction performance (split across two tables)
for correct liver data in thirty stratified folds in ten SVM experiments using 60 random
hyperparameters. The top 2 results are highlighted in bold and the top five kernels (per
the average over all measures) are highlighted in green.

Common kernels Uncommon kernels
Lin Poly RBF Sig SigN IMQ Log Pwr

a 64.1±0.01 63.5±0.01 63.8±0.00 62.6±0.01 63.9±0.01 63.6±0.01 63.7±0.01 64.0±0.01
bal a 62.3±0.01 61.4±0.01 62.0±0.01 61.2±0.01 62.5±0.01 62.5±0.01 62.5±0.01 62.5±0.01
AUC 65.5±0.01 64.9±0.01 64.9±0.01 64.6±0.01 65.7±0.01 64.5±0.01 64.7±0.01 65.3±0.01
AP 59.7±0.01 60.8±0.02 56.2±0.01 59.6±0.01 60.1±0.01 56.1±0.01 57.5±0.01 58.5±0.01
F1 67.4±0.00 66.5±0.02 67.4±0.00 67.3±0.00 67.4±0.00 67.4±0.00 67.3±0.00 67.3±0.00

avg 63.8±0.0 63.4±0.0 62.9±0.0 63.0±0.0 63.9±0.0 62.8±0.0 62.8±0.0 63.1±0.0
rank 9 11 14 13 8 15 12 10

Proposed kernels
MSig OSig OISVgc ISVgc BBN OMBcs OLin GD

OISVhc JPBN
a 63.8±0.01 63.9±0.0 64.7±0.00 64.6±0.00 61.5±0.01 61.5±0.01 64.2±0.01 63.9±0.01

64.8±0.01 60.8±0.01
bal a 62.6±0.01 62.9±0.0 64.0±0.01 64.0±0.00 58.5±0.01 58.5±0.01 62.1±0.01 62.8±0.01

63.9±0.00 59.8±0.01
AUC 66.8±0.01 66.9±0.01 67.5±0.01 67.5±0.00 62.6±0.01 62.6±0.01 65.7±0.01 66.1±0.01

67.6±0.01 61.9±0.01
AP 62.6±0.01 63.0±0.01 64.3±0.01 64.3±0.01 59.9±0.01 59.9±0.01 60.3±0.01 60.4±0.02

64.3±0.01 57.0±0.01
F1 67.4±0.00 67.4±0.00 67.4±0.00 67.4±0.00 67.3±0.00 67.3±0.00 67.5±0.00 67.5±0.00

67.4±0.00 67.4±0.00

avg 64.6±0.01 64.8±0.01 65.6±0.00 65.6±0.04 62.0±0.01 62.0±0.01 64.0±0.00 64.2±0.00
65.6±0.00 61.4±0.01

rank 5 4 1 1 16 16 7 6
1 18
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Table 5.8: Accuracy-related measures of prediction performance (split across two tables)
for skin cancer data in thirty stratified folds in ten SVM experiments using 60 random
hyperparameters. The top 2 results are highlighted in bold and the top five kernels (per
the average over all measures) are highlighted in green.

Common kernels Uncommon kernels
Lin Poly RBF Sig SigN IMQ Log Pwr

a 84.5±0.01 81.0±0.01 84.5±0.01 80.2±0.02 84.3±0.01 78.8±0.01 82.2±0.01 84.2±0.02
bal a 79.0±0.02 72.1±0.02 78.6±0.02 76.8±0.03 78.2±0.02 66.4±0.02 73.9±0.01 78.4±0.02
AUC 80.5±0.02 74.7±0.02 80.0±0.02 79.2±0.03 79.8±0.02 70.8±0.01 76.3±0.01 80.1±0.02
AP 60.8±0.04 60.7±0.03 55.9±0.07 54.5±0.04 59.6±0.06 61.5±0.02 64.4±0.03 65.8±0.03
F1 74.1±0.03 66.0±0.03 73.9±0.02 69.6±0.03 69.6±0.03 59.4±0.02 68.4±0.02 73.4±0.03

Avg 75.8±0.02 70.9±0.02 74.6±0.02 72.0±0.02 75.1±0.02 67.4±0.01 73.0±0.02 76.4±0.02
Rank 9 13 12 11 5 14 10 8

Proposed kernels
MSig OSig OISVgc ISVgc BBN OMBcs OLin GD

OISVhc JPBN
a 88.7±0.02 89.0±0.02 91.5±0.01 91.0±0.01 73.7±0.01 92.0±0.01 84.7±0.01 88.0±0.01

91.2±0.02 79.5±0.03
bal a 79.0±0.02 84.8±0.02 86.9±0.02 86.2±0.02 49.0±0.04 87.4±0.01 78.9±0.02 82.1±0.02

86.8±0.02 69.0±0.04
AUC 80.5±0.02 86.1±0.02 88.0±0.02 87.2±0.02 61.6±0.02 88.4±0.01 80.3±0.02 84.0±0.02

88.2±0.02 76.8±0.03
AP 54.1±0.09 56.1±0.09 53.4±0.06 56.5±0.09 57.1±0.06 47.1±0.01 60.4±0.05 57.4±0.08

53.3±0.07 44.8±0.04
F1 81.2±0.03 82.0±0.03 85.5±0.03 84.7±0.02 38.2±0.05 86.4±0.01 74.2±0.02 79.3±0.03

85.2±0.03 63.3±0.04

avg 64.6±0.01 64.8±0.01 81.1±0.02 81.1±0.03 55.9±0.03 80.2±0.02 75.7±0.02 78.2±0.02
80.9±0.02 66.7±0.03

rank 6 5 1 1 18 4 10 7
3 17
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Table 5.9: Accuracy-related measures of prediction performance (split across two tables)
for diabetes data in thirty stratified folds in ten SVM experiments using 60 random
hyperparameters. The top 2 results are highlighted in bold and the top five kernels (per
the average over all measures) are highlighted in green.

Common kernels Uncommon kernels
Lin Poly RBF Sig SigN IMQ Log Pwr

a 77.9±0.01 77.2±0.00 78.1±0.00 76.6±0.01 77.9±0.00 77.5±0.00 78.1±0.01 78.1±0.01
bal a 71.3±0.00 69.7±0.00 71.1±0.00 68.1±0.01 71.2±0.01 71.9±0.01 71.9±0.01 72.0±0.01
AUC 73.8±0.00 72.8±0.00 73.3±0.00 71.2±0.00 74.0±0.01 74.6±0.01 74.4±0.01 74.6±0.01
AP 57.5±0.00 60.8±0.03 52.3±0.08 44.5±0.08 65.2±0.01 50.5±0.16 69.5±0.01 60.2±0.06
F1 64.2±0.00 62.3±0.00 64.1±0.00 60.2±0.00 63.8±0.00 64.3±0.02 64.7±0.01 65.0±0.01

avg 68.3±0.01 69.3±0.01 67.4±0.01 65.6±0.02 69.7±0.00 69.4±0.01 71.0±0.01 70.6±0.01
rank 12 10 14 17 6 8 1 3

Proposed kernels
MSig OSig OISVgc ISVgc BBN OMBcs OLin GD

OISVhc JPBN
a 85.1±0.0 85.1±0.0 86.4±0.0 85.6±0.0 84.8±0.0 84.1±0.0 84.7±0.0 84.9±0.0

86.1±0.0 85.7±0.0
bal a 84.2±0.0 84.2±0.0 85.4±0.0 84.8±0.0 83.9±0.0 83.2±0.0 83.9±0.0 84.2±0.0

85.1±0.0 84.9±0.0
AUC 85.6±0.0 85.3±0.0 86.5±0.0 86.4±0.0 85.3±0.0 84.6±0.0 85.8±0.0 85.4±0.0

86.4±0.0 86.0±0.0
AP 70.4±0.0 71.4±0.0 72.6±0.0 77.9±0.0 68.8±0.0 58.3±0.0 54.3±0.0 74.1±0.0

73.9±0.0 79.6±0.0
F1 82.4±0.0 82.3±0.0 83.8±0.0 83.0±0.0 82.0±0.0 81.2±0.0 82.1±0.0 82.3±0.0

83.4±0.0 83.2±0.0

avg 68.9±0.00 69.4±0.00 70.3±0.00 70.7±0.00 66.0±0.01 66.0±0.01 68.2±0.01 69.5±0.01
70.3±0.00 65.0±0.02

rank 11 9 5 2 16 15 13 7
4 18
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Table 5.10: Accuracy-related measures of prediction performance (split across two tables)
for colon cancer data in thirty stratified folds in ten SVM experiments using 60 random
hyperparameters. The top 2 results are highlighted in bold and the top five kernels (per
the average over all measures) are highlighted in green. Something anomalous occurs with
the inverse multiquadric (IMQ) kernel on this data set.

Common kernels Uncommon kernels
Lin Poly RBF Sig SigN IMQ Logx Pwr

a 85.7±0.02 63.8±0.02 85.5±0.01 75.6±0.03 85.7±0.01 64.5±0.00 76.2±0.02 85.5±0.01
bal a 83.6±0.02 58.7±0.04 84.0±0.02 69.5±0.04 83.9±0.02 00.0±0.0 61.9±0.05 83.8±0.02
AUC 84.4±0.02 61.3±0.03 84.8±0.02 72.5±0.03 84.9±0.01 50.0±0.00 68.5±0.03 85.0±0.02
AP 75.7±0.01 65.8±0.01 77.0±0.02 72.2±0.02 77.8±0.02 64.5±0.00 69.4±0.01 77.1±0.02
F1 89.0±0.01 75.1±0.02 88.7±0.01 82.7±0.02 89.2±0.01 78.4±0.00 83.9±0.01 89.0±0.01

avg 83.7±0.01 65.0±0.02 84.0±0.01 74.5±0.02 84.3±0.01 51.5±0.00 72.0±0.03 84.1±0.01
rank 9 17 6 15 3 18 16 5

Proposed kernels
MSig OSig OISVgc ISVgc BBN OMBcs OLin GD

OISVhc JPBN
a 84.9±0.01 85.7±0.01 86.2±0.01 86.0±0.01 82.1±0.03 82.1±0.03 86.0±0.01 84.9±0.01

86.7±0.02 80.6±0.03
bal a 83.0±0.02 83.7±0.01 84.8±0.02 84.1±0.02 79.6±0.03 79.6±0.03 84.3±0.02 82.9±0.02

85.4±0.02 77.7±0.03
AUC 84.2±0.02 85.0±0.02 85.7±0.02 84.8±0.02 80.6±0.03 80.6±0.03 84.8±0.02 83.5±0.01

86.2±0.02 78.3±0.03
AP 76.6±0.02 76.4±0.01 76.3±0.01 75.2±0.01 74.7±0.02 74.7±0.02 76.0±0.01 71.4±0.02

76.8±0.01 75.7±0.03
F1 88.5±0.01 89.1±0.01 89.4±0.01 89.3±0.01 86.5±0.02 86.5±0.02 89.2±0.01 88.4±0.01

89.8±0.01 85.3±0.02

avg 83.5±0.01 84.0±0.01 84.5±0.01 83.9±0.01 80.7±0.02 80.7±0.02 84.1±0.01 82.2±0.01
85.0±0.01 79.5±0.03

rank 10 6 2 8 13 12 4 11
1 14
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Table 5.11: Accuracy-related measures of prediction performance (split across two tables)
for classic misused liver data in fifteen stratified folds for five SVM experiments using
60 random hyperparameters (or six folds in two experiments for some kernels*). The top 2
results are highlighted in bold and the top five kernels (per the average over all measures)
are highlighted in green.

Common kernels Uncommon kernels
Lin Poly RBF Sig SigN IMQ Log Pwr

a 69.4±0.01 72.8±0.01 72.6±0.01 68.1±0.01 73.1±0.00 72.1±0.01 72.8±0.01 73.4±0.01
bal a 65.8±0.01 71.0±0.01 70.2±0.01 66.1±0.01 70.6±0.01 70.0±0.01 70.6±0.01 71.1±0.01
AUC 67.7±0.01 72.6±0.01 71.8±0.01 68.2±0.01 72.2±0.01 72.0±0.01 72.4±0.01 72.8±0.01
AP 55.6±0.02 57.9±0.01 62.2±0.02 56.9±0.02 59.4±0.03 60.9±0.04 61.9±0.04 63.5±0.02
F1 59.6±0.01 66.4±0.01 65.1±0.01 60.8±0.02 65.5±0.01 64.9±0.01 65.6±0.01 66.2±0.01

avg 63.6±0.01 68.1±0.01 68.4±0.01 64.0±0.01 68.2±0.01 68.0±0.01 68.7±0.01 69.4±0.01
rank 15 5 3 13 4 6 2 1

Proposed kernels
MSig OSig OISVgc ISVgc BBN OMBcs OLin GD

OISVhc JPBN
a 72.0±0.01 71.9±0.01 73.2±0.01 73.1±0.01 59.3±0.01 59.3±0.01 69.4±0.01 70.3±0.01

73.2±0.01 63.9±0.01
bal a 68.4±0.01 68.3±0.01 69.5±0.01 69.4±0.01 37.4±0.04 37.4±0.04 65.4±0.01 66.5±0.01

69.6±0.01 58.6±0.02
AUC 70.1±0.01 70.2±0.01 71.7±0.01 71.5±0.01 52.9±0.01 52.9±0.01 67.6±0.01 68.3±0.01

71.8±0.00 61.3±0.02
AP 58.2±0.02 58.9±0.02 60.9±0.01 60.0±0.01 46.5±0.02 46.5±0.02 57.8±0.03 57.1±0.02

60.6±0.01 49.8±0.02
F1 62.6±0.01 62.5±0.01 64.1±0.01 63.9±0.01 24.4±0.04 24.4±0.04 59.0±0.01 60.3±0.02

64.2±0.01 50.6±0.02

avg 66.3±0.01 66.3±0.01 67.9±0.01 67.6±0.01 44.1±0.02 44.1±0.02 63.8±0.01 64.5±0.01
67.6±0.01 56.8±0.02

rank 11 10 8 9 17 17 14 12
7 16
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5.4 Experimental method to validate theory

I validate my theoretic derivations, designs and matching regarding asymmetric match
weighting for converted nominals and presence-only binary data, by testing a series
of two data sets with exclusion to increasing inclusion of those data types. These same
experiments also serve to validate my claims regarding kernels suited to heterogeneous
data.

I also validate my theoretic derivations, designs and matching regarding kernels for binary
data, by testing two data sets with binary data types included and excluded. These same
experiments also serve to validate my claims regarding kernels suited to heterogeneous
data.

5.5 Experimental results to validate theory

For converted nominals and presence-only binary data found in the heart and skin
cancer data sets (the only data sets with those data types), I tested the effect of the
orthant kernels on classification accuracy when I omit these data types and then include
them incrementally.

1. The idea is to isolate the effect to only the difference in the orthant hyperparam-
eter/design of a kernel versus an otherwise same or similar kernel. Confounding
factors in this experiment are varying significance of features (e.g., introducing a
relatively insignificant feature may have no effect), random differences in data sets
and other hyperparameters of kernels if not fixed. I fixed most, but not all other
hyperparameters.

2. The result is that in five out of six tests there were no statistically significant differ-
ences to prove nor disprove my hypothesis that the orthant hyperparameter/design
causes better performance for OSig versus MSig, for OISVgc versus ISVgc and for
OLin versus Lin.

3. In one test however, ISVgc versus OISVgc on Heart data, the former is better in that
the means do not fall within each other’s confidence intervals, however a paired t-test
is not performed.
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5.6 Innate views and data from SVM

SVM is semi-transparent because it innately offers interpretable views of the input
feature space (Figure 2.3 on page 18 at left) relevant to the input and output, but not of
the feature space (Figure 2.3 on page 18 at right) except in the case of transparent
kernels which are not innate.

SVM also innately offers interpretable data about the influence of support vectors
(training instances) in the model—i.e., the global influence (or significance) of a support
vector per its model weight ↵i and the local influence (or significance) of a support vector
↵i on instance vj per the similarity-weighted model weight, ↵i · k

�

xi, vj
�

. This is expected
since SVM is an instance-based method.

For kernels which are not transparent, features are confounded by the model and the
feature space is not visible. Features are also often correlated or confounded in real-life,
apart from the model’s behaviour.

In the input space, I can visualize instances and the class boundary and I can ob-
serve/test how specific decisions change with changes in input, by interrogating the
model as a black box or oracle, and I can visualize partial derivatives and/or Taylor se-
ries derivatives. However partial derivatives are of limited local use when inputs are
correlated/confounded in real-life and by the model.

In the big picture, from the input space, I cannot fully understand or summarize how
the model makes or changes decisions in general with different inputs or changes
in input (Section 5.6.1). Static plots are prone to misinterpretation and instead
multiple plots are needed for understanding.

To reiterate Feynman: if I understand a concept I must be able to describe it at a freshman
level, which often requires simplification or reduction (i.e., summarization), otherwise I
don’t really understand it [101]. I want understanding so that I can fully predict outputs
and fully characterize the model—to analyze, change and improve, the model itself,
or its use/applicability for subgroups seen or not yet seen. I want transparent views
(Section 5.7) of the feature space, arising from transparent kernels, so that I can fully
view/visualize, understand, predict and characterize distance, closest points, the class
boundary as a hyperplane and classification decisions (Section 5.6.1). To understand a
point of interest I want understanding from one or a few plots, not many plots nor a plot
for each conjecture about the point of interest.
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Figure 5.1: This figure from Barbella et al. [15] shows an innate view of SVM classification
results with a Gaussian RBF kernel with the Pima Indians diabetes data set. In this view,
the effect of each column is confounded with others, since the output of the Gaussian RBF
kernel confounds the input features.

5.6.1 Innate views of SVM from Barbella et al.

Barbella et al. [15] provide good contributions to innate views of SVM, albeit with some
shortcomings. They focus on an example using the Gaussian RBF kernel as the most
common SVM kernel. Their method is an interactive exploratory tool not for automation.
Two of their key contributions are as follows, with shortcomings also described (and in the
following section my improvements).

1. They compute and visualize the top 5 most influential instances (Figure 5.1
on page 130), i.e., support vectors, on the decision for an instance or point of interest.
They visualize the multi-dimensional input space as a set of columns for each feature
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in an exploratory interactive tool. They colour code the visualized support vectors
according to the class they belong to, or as ambiguous if it is in the margin. The
visualization is effective but has some shortcomings:

• The plot and interactive tool are only accurate around the point of
interest, as I explain in subsequent items, except for explicit Mercer kernels, i.e.,
transparent kernels. To answer questions about what occurs at a different point
the user must interactively change the point of interest. Hence, understanding
cannot be derived from a single plot—it requires a plot for each point of
interest.

• In the plot, it looks like the distances within each feature (column)
are independent of each other, but they are not, in general—their effects
on the kernel and classifier output are confounded for any kernel that is not
explicit Mercer. For example, with the Gaussian RBF kernel, it only takes one
feature to be sufficiently distant, relative to the kernel width, for the overall
result to be near zero, while all features must be sufficiently proximal for the
overall result to be near one.

• The plot does not describe the class boundary 3, i.e., the tipping points,
of the model—e.g., it is possible that some (or all) features are not influential
enough to change the classification for the point of interest.

• The plot also does not include the SVM bias, which, along with class
imbalance, may be the reason why no features are influential enough to change
the classification for some points of interest.

• The plot does not indicate how much or how quickly a feature influ-
ences changes in classification, nor which features are most influential.
The plot does not show the class boundary nor the decision surface, where the
latter is needed because a linear distance in the plot does not correspond to a
linear change in kernel output nor classification score.

• In the plot, a reader might infer that changing a feature’s value to that
of another plotted point achieves that classification, but it does not,
in general. The classification depends on all of the feature values, in general.
Also, the example plot does not show support vectors from both classes.

2. They find one of the closest points on the class boundary to the point of
interest. Shortcomings are as follows:

3Note: the bias or y-intercept for an SVM classifier may increase with increasing class imbalance
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• The objective of finding a point on the class boundary, in the input
space, is not sufficiently realistic and stable. Barbella et al. [15] articulate
a goal of doing better than inverse classification. Whereas inverse classification
finds the closest point in the opposite class, they seek to find a point on the
class boundary itself which is closer, on the unstated assumption that a closer
point is better. The assumption is not true in two out of three cases, and it
depends on the data and model.

– If a point is on the class boundary or too close to the boundary, it has un-
certainty and the classification is unstable with respect to future changes,
model error and measurement noise. Even a point found in inverse classi-
fication may be too close, or it may be just right, or it may not be close
enough—it depends on the data and model.

• Immutable features and feature cost factors were not considered. If
the purpose is to improve a patient’s health in order to change their outcome
or prognosis or ability to qualify for certain procedures, then it is notable that
the patient’s demographics are immutable and that some features are harder to
change than other features, hence a better distance measure in the input space
is a weighted Euclidean distance.

• As they recognize, the closest point on the class boundary, in the
input space, is not unique, in general. For example, classification with a
Gaussian RBF kernel with a sufficiently small width, creates a class boundary
that is spherical in n-dimensions, or partially spherical (e.g., Figure 5.2 on page
133) with an infinite number of class boundary points which are closest in the
input space.

As another example, in classification with any kernel that produces a closed
boundary, e.g., stationary kernels, there are a set of points within that boundary
which are equidistant to at least two points on the class boundary (e.g., points
on the black line in Figure 5.3 on page 133). Open curves, e.g., from a Mercer
sigmoid kernel, also have a set of points with at least two closest points on the
class boundary.

5.6.2 My improvements to innate views of SVM

I make several additions and improvements (Figure 5.4 on page 134) to the innate view
proposed by Barbella et al. [15] (Figure 5.1 on page 130) as follows:
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Figure 5.2: This Gaussian RBF kernel has a sufficiently small kernel width such that its
spherical behaviour about the point circled in black is evident.

Figure 5.3: This sigmoid kernel has at least two points on the class boundary which are
closest to each point on the black line.
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Figure 5.4: My proposed improvement to the innate view from Barbella et al [15]. The
chosen point of interest (POI) is plotted as a dashed black line, while the support vectors
(instances) which contribute most to the POI’s classification are plotted as blue and red
lines representing the positive and negative class. The class boundary is shown as thin
dotted horizontal lines in each feature, while the maximum and minimum values for each
feature in the data are shown as thin horizontal lines.
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1. I add a colour gradient which shows, the classification decisions around
the point of interest, and how the quickly and significantly the decision
changes, if the input feature changes, one at a time. Note: When features are
correlated, changing one feature at a time is not realistic (resolved by item #5 for
interactive views, but not static views). The gradient also tells us which features are
more influential than others—i.e., which have darker blues and reds. I also show the
minimum and maximum values in the data for each feature and the class boundary,
and I mark instances with an x, if it was predicted incorrectly.

2. I add/ensure that support vectors of both classes are plotted to inform
the reader with counterfactual information as a more complete view on how
the model makes classification decisions. Counterfactual information helps the reader
evaluate the truthfulness/faithfulness of the model [164].

3. I recommend finding points in the input space which are sufficiently stable
and close to the point of interest, rather than finding the closest point on
the class boundary, for points whose classification I wish to change. Points are
stable if they have a sufficiently high (or low) classification score toward the desired
class and a sufficiently high velocity and acceleration toward the desired class.

4. I recommend using a weighted Euclidean distance in the input space to
account for features which are immutable (zero weight) and features which have
different costs—i.e., are harder or easier to change.

5. I recommend automatically synchronizing changes in feature values which
are confounded/dependent in real-life. When two features are correlated, and
I change one of them, I make a corresponding change in the other according to the
correlation—and I call this a first order interaction. Any second order changes/in-
teractions resulting from first order interactions are also applied to the extent of
correlation between features. This ensures that my analyses are based on realistic
points of interest.

5.6.3 Innate data from SVM: the local and global influence of
instances

The SVM classifier’s formula (eqn) is the sum of influences on a single test instance, from
multiple training instances, with the sign of the target label, and with a weight based on
proximity k (·, ·) multiplied by a weight ↵i learned for each instance.
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Table 5.12: Local (L) and global (G) measures of the influence of instances in SVM are
innately provided by the support vectors ↵i and kernel output k (·, ·).
Measure Normalized measure
LV (ẑm | xi) = abs (k (xi, vm) · ↵i/C) LV n(ẑm | xi) = LV (ẑm | xi)/GX(xi)

GX(xi) =
1
N

N
P

j=1

abs
�

k
�

xi, xj

�

· ↵i/C
�

GXn(xi) =
1
N

N
P

j=1

abs
�

k
�

xi, xj

�

· ↵i/C
�

/GX(xi)

Hence, we can look at the local influence of one training instance on one test instance,
by ignoring the sum and the sign aspects of the equation.

From that, we can also determine the global average influence of a single training
instance on a representative sample of the population—for which we choose training data
rather than test data since it is usually a larger sample.

We propose formulas (Table 5.12) to measure these influences or effects, with and without
normalization.

• LV is the local influence of training instance xi on test/validation prediction ẑm

for vm.

• GX is the global average (over X) influence of training instance xi on a represen-
tative sample of predictions z

• LV n is the normalized local influence of training instance xi on test/validation
prediction ẑm for vm

• GXn is the normalized global average (over X)

5.7 Non-innate views and data for SVM

Views or data are not innate to SVM, if they are only available for explicit Mercer kernels
(or transparent kernels more generally) or if they require significant computation that is
not innate to the SVM process. Three non-innate views or data for SVM are as follows:

1. The global and local influence of features are non-innate data, derived from the
sensitivity-based computations performed in my proposed measure of simplicity of
sensitivity.
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Figure 5.5: A Mercer sigmoid kernel, as an explicit Mercer kernel is shown in my proposed
improvement to Barbella et al.’s innate view of SVM results. The chosen point of interest
(POI) is plotted as a dashed red line, while the support vectors (instances) which contribute
most to the POI’s classification are plotted as blue and red lines representing the positive
and negative class. The class boundary is shown as thin dotted horizontal lines in each
feature, while the maximum and minimum values for each feature in the data are shown
as thin horizontal lines.

2. In the innate static view of SVM from Barbella et al. [15] and my improvements,
explicit Mercer kernels allow the view (Figure 5.5 below) describe how decisions
change when any one or more features change at the same time—because features
act independently in the kernel/model. Whereas for other kernels, the view only
informs how decisions change one feature at a time.

3. A feature space plot.

5.8 Summary

My proposed kernels perform better than common kernels on the clinical studies/problems
and data in my scope and conversely do not perform as well as the common kernels on the
one non-clinical study/problem.
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This is consistent with my previous findings [45] and it is also consistent with other ex-
periments in the literature [295] (summarized in Section A.9) with the MSig kernel versus
common kernels, on atomic data types like my clinical studies/problems versus complex
data types with image pixel or coordinate data.
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Chapter 6

Measuring model interpretability

For machine learning (ML) models, data and results, there is a demand for transparency,
ease of understanding and explanations [126] to satisfy a citizen’s “right to explanation”
in the European Union [100] and to meet health care requirements for justification and
explanation [21, 106].

Without quantitative measures of transparency and understandability, doctors (or users)
will select models which maximize accuracy but may unnecessarily or unintentionally ne-
glect or sacrifice transparency and understandability, or they will choose models in an ad
hoc manner to try and meet all criteria. I refer to the transparency and understandability
of models as inherent model interpretability—defined further in Section 6.2.

I propose criteria and measures of inherent model interpretability to help a doctor select
ML models (Table 6.1 on page 140 steps 1 and 2) which are more transparent and un-
derstandable, in a quantitative and objective manner. More transparent models can offer
additional views of results (Table 6.1 on page 140 step 3) for interpretation. My measures
facilitate the inclusion of better models as candidates and the selection of better models
for use.

139



Table 6.1: Measures of inherent model interpretability facilitate model selection (bold text)
in steps 1 and 2.

Step Task Basis for task
1 The doctor selects candidate models Data types and distributions,

for learning and testing based on... Inherent model interpretability
(transparency of model)

2 The machine learns model weights for Accuracy,
optimal accuracy with various parameters. Inherent model interpretability
The doctor selects the model to use (transparency of model and
based on... understandability of results)

3 The doctor uses the model to classify new Theory,
data. The doctor understands and interprets Views of results,
the result and model based on... Additional views of results

4 The doctor explains the result and model Selected interpretations,
to a patient or peer based on... Theory

Some of my proposed measures are specific to support vector machines (SVM), as one
popular ML method. I perform experiments to validate the SVM measures against a set
of propositions and evaluate their utility by concordance or matched pair agreement.

Notably, the proposed measures do not provide an interpretation or explanation. They
also do not indicate how useful or meaningful a model is in the context of data. For
example, a model that always classifies patient data as belonging to the positive class is
very understandable (interpretable). I can easily construct the explanation of the model
and result—all patients are classified as positive—but that does not mean that the model
is useful, meaningful, appropriate, or unbiased. Accuracy and common sense address the
latter issues. The proposed measures only indicate how understandable a model is, i.e.,
how likely I am able to provide an interpretation, as the necessary basis for subsequent
explanation.

Making ML more interpretable facilitates its use in health care because there is a perception
that ML is a black box [169] lacking interpretability which inhibits its use. Greater use is
important because for a good number of health care problems and data, ML methods offer
better accuracy in classification [47, 58, 198] than common alternatives among statistical
methods, decision trees and rule-based methods and instance-based methods. Interpretable
ML also facilitates research on models and model fit.
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Figure 6.1: A model consists of a learning method, SVM in this case, and all of its associated
parts as depicted above. Most machine learning and statistical models (or classifiers) have
an underlying continuous output that most accurately describes the model’s behaviour.

6.1 Models

I refer to a posterior model (e.g., Figure 6.1), or simply model, as a learning method
(e.g., SVM, neural networks) with all of its associated learning/estimation functions (e.g.,
kernels and transfer functions), hyperparameters, structure (e.g., layers, connections, com-
ponents in a composite kernel), constraints and learned model weights, in the context of
specific data. A model only learns from, and has meaning in, the context of specific data.

I refer to an initial model as a model in the context of specific data with initial model
weights prior to learning/iteration.

I refer to a family of models, or a prior model, as the set of models possible when
hyperparameters are variables (not specified)—e.g., SVM with a Gaussian RBF kernel
with unspecified box constraint and kernel width.

The prior, initial and posterior models are available at different points in the process of
machine learning and/or statistical learning process (Figure 1.4).

Other notation is introduced in the context of discussion.

6.2 Inherent model interpretability

I propose the concept of inherent model interpretability as distinguished from an
individual’s understanding and I propose two measures for any learning method or model
with numeric inputs.
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Feynman said [101] that if I understand a concept I must be able to describe it at a
freshman level, which often requires simplification or reduction, otherwise I don’t really
understand it. Badii et al. [13] express that complexity is closely related to understanding
and that understanding comes from accurate models which use condensed information or
reduction schemes.

Hence, I posit that the simpler a model is, the easier it is to describe, understand and
interpret, with all other aspects of the model being equal. This leads to the following
general measure.

6.2.1 Red herrings in transparency and interpretability

A red herring is said to be a logical fallacy that leads a reader toward a false conclusion.
In the field of model interpretability there are several devices used by papers which are red
herrings, such as:

• explaining a model with a separate externally-constructed model [4, 5, 216]
• using a measure of distance that differs from the kernel [15, 216]
• using perturbations which are non-local for a local model [160, 216]
• recovering a sample in the input data space from the interpretable data space [216]
• claiming that a model has fidelity for explanation based on agreement of binary classi-
fication decisions [216]. This allows construction of a post-facto explanation, however it
is based on empirical results without methodology or theory to understand the model’s
behaviour.

Authors of papers with red herrings may have the best of intentions however substitu-
tions and models based on empirical results fail to provide any understanding and insight,
distracting users from better and more proper objectives. These red herrings also cause
doctors to distrust ML methods and tools.

6.2.2 General measure of inherent model interpretability

As stated above, the simpler a model is, the more interpretable it is, inherently. Formally,
I propose the following definition.

Definition 6.2.1. Inherent model interpretability (or understandability) U , is a measure
with range [0, 1] based on either: a measure of model transparency T in the same range,
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the inverse of semi-infinite model complexity H1, or the inverse of finite model complexity
Hb, respectively as follows:

U =

8

>

>

>

<

>

>

>

:

T (i) T 2 [0, 1]

1
1+(H1�a)

(ii) H1 2 [a, 1) a 2 R+
; a < 1

1�
�

Hb�a
b�a

�

(iii) Hb 2 [a, b] a, b 2 R+
; a, b < 1

(6.1)

where:

• H1 and Hb are measures of model complexity based on parts [13] in the categories
of information, entropy, code length or dimension [171],

• inherent indicates that the measure is independent of an individual, e.g., their specific
learning and forgetting curves [210], and

• the multiplicative inverse [166] in (6.1).ii or additive inverse [272] in (6.1).iii are
applied as needed for absolute or relative measure respectively according to the
comparison required. The relative measure is preferred where applicable since it is
more intuitive and interpretable (not shown).

– e.g., to compare a set of models where the range [a, b] is known to encompass
them all, a relative measure (iii) is fine, however, to compare them to any future
model where the maximum b is not known, use an absolute measure (ii), i.e.,
let b = 1.

The separation of model interpretability into at least two parts, one part that is inherent
to the model (and data) and another part that depends on the individual, aligns with the
functionally-grounded approach [70].

In order to use this general measure, one must further define T , H1 or Hb, as I do in
subsequent sections. I note also that measurement may be performed prior to, initially at,
or posterior to, optimizing the model weight (Figure 6.2).

6.2.3 Simplicity of output sensitivity measure

I consider the continuous underlying output of a classifier (e.g., Figure 6.1 on page 141)
to be the most accurate representation of a classifier’s behaviour. It is available most
learning classifiers, in machine learning or statistical learning, such as, neural networks,
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Figure 6.2: I measure the inherent model interpretability of prior, initial and posterior
models available at several different points (dashed red arrows) in the process of ma-
chine/statistical learning (partially derived from [138]). Note: some steps may not apply
to some methods and models.

SVM, logistic regression and naive bayes. It is also facilitated by most implementations,
e.g., for SVM it is available in Matlab, R, Python, SPSS, Weka, libsvm and Orange, where
the output may be the probability of the positive class or a non-probabilistic value, e.g.,
“classification score”.

Some measure or analyze a classifier’s behaviour based on its binary output instead [216]—
this approach lacks fine-grained behavioural information. Others measure classifier be-
haviour by modeling its responses with a separate explanation model that provides a con-
tinuous output [216, 14]—this post hoc approach may not meet untested legal, assurance
or business requirements.

I use the underlying continuous output, and the logic similar to the previous measure to
posit that:

If a model is uniformly sensitive in its output to changing values in input features and
instances, then its sensitivity is simple to describe, understand and interpret (as one
value). Conversely, a model that is differently sensitive to each feature and instance is
more difficult to describe, understand and interpret, in those terms or from that perspective.
Formally, I propose the following definition:

Definition 6.2.2. The simplicity of output sensitivity UHs is a measure of inherent model
interpretability. It describes the simplicity of the sensitivity of the model’s continuous
output (e.g., Figures 6.1) to changes in input. It is specified as the inverse of Shannon
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entropy Hs with a finite range ((6.1) part iii), repeated below:

UHs = 1�
✓

Hs

Hmax

◆

Hs 2 [0, Hmax] (6.2)

Hs = �
X

i

fi (s) log fi (s) , i = 1 . . . Ns (6.3)

Hmax = �
|s|
X

i=1

1

|s| log
1

|s| (6.4)

where s is the set of sensitivities Sj,q of the model’s continuous output ŷc (the value which
is underlying for a classifier) to small changes " = (0.1) · 3� in each input instance j, one
feature q at a time,

s = {Sj,q} (6.5)

Sj,q =
ŷc
�

xj + "q
�

� ŷc
�

xj � "q
�

2"
(6.6)

"q =
h

. . . 0 " 0 . . .
iT

"in qth cell

and where Ns is the number of bins according to standard binning methods for histograms
[82, 230, 251].

I use entropy to measure the global complexity of sensitivities across the space for input
data. In the literature, entropy has been applied quite differently to measure the infor-
mation loss of perturbed features, to indicate their influence — I use entropy instead to
measure the complexity of influence with perturbed features.

My measure uses a first-order central difference (first derivative approximation) as a stan-
dard and easy to understand approach to sensitivity that does not require knowing or
differentiating the model’s formulas. I can generalize this idea to second and third-order
differences/derivatives, and so on, like the derivatives in deep Taylor decomposition [192]
— but the latter requires a model’s formulas and derivatives. Whereas [192] examines the
local behaviours of a model, I do that and compute the complexity of the values.

I treat the entries Sj,q as a set or random variable s (6.5) because I am measuring model
interpretability overall, across features and instances, not within a feature nor within an
instance.
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Table 6.2: I identify criteria for model interpretability in the literature and translate these
into proposed criteria which are objective rather than subjective.

Term Criteria in the literature ID Proposed criteria
Interpretable [172] Each calculation has an (a) The feature space is known/
Decomposable [168] intuitive explanation [168]. explicit.

(b) The feature space has a finite
number of dimensions.

Inputs are interpretable, not (c) The model is generalized
anonymous or highly- additive with known/
engineered [168]. Generalized explicit basis/shape
additive models are functions.
interpretable [172]
Generalized linear models (d) The model is generalized
are interpretable [172]. The linear [172]
contributions of individual (e) The model is multiplicative,
features in the model, are e.g., probabilistic, with
understandable [172]. known/explicit basis/

shape functions.
n/a (f) Model parts are uniform

in function.
Transparent The training algorithm (g) Model weights are learned
algorithm [168] converges to a unique by convex optimization

solution [168]. or direct computation.

I note that instead of Shannon entropy, it may be possible to apply other types of entropy,
such as Renyi entropy, Tsallis entropy, effective entropy or total information [214, 267, 93]
and/or Kullback-Leibler (K-L) divergence [56], however such a change would require val-
idation. Prior to this dissertation I experimented with discrete Kullback-Leibler (K-L)
divergence as implemented by four measures in the ITK toolkit [255, 254], as an alterna-
tive to Shannon entropy, however, my experimental results with K-L divergence did not
sufficiently match my expectations, so I focused on Shannon entropy as a more popular
and credible measure.

I also implemented differential entropy [56], which is the continuous version of entropy and
is defined as the K-L divergence from a uniform probability density function (pdf) to the
pdf of interest, but put that aside based on the previously mentioned K-L divergence results
and also because it was more compute intensive as it required a kernel density estimate.

Finally I note that the sensitivity portion of my measure (i.e., entropy aspect aside) differs
from how other authors compute sensitivity globally across both instances and features
[160].
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6.3 Criteria for model transparency and a measure for

SVM

I identify criteria for model transparency from the literature (Table 6.2) for any model, and
propose new criteria in most cases, which are objective, not subjective, and thus suitable
for a (quantitative) measure of model transparency.

I apply the proposed criteria (Table 6.2) for any model, to create a measure specific to
kernel methods or support vector machines (SVM).

Table 6.3: For kernel methods, e.g., SVM, I propose the following Dirac (binary) measures
@ of model transparency T . Let XT be the space of transparent features derived from
simple transforms of the original features X which are not highly engineered: i.e., given
data X = {x}, let XT =

�

x, �x, 1
x
, log (x) , tanh (x) , min (ctop, x) , max (cbottom, x)

 

.

Name of measure Symbol for Conditions for measure to be true
and criterion met measure

Explicit symmetric @essep k (x, z) = � (x)� (z) , � known
separable (a)

xi, zi 2 X0, X0 ✓ XT, � 2 F , � : Rn ! R

Finite (b) @fin dim (F) < 1

Explicit Mercer (c) @eM k (x, z) = � (x)T � (z)

. =

P

q

�q (xq)�q (zq) , �q known

xi, zi 2 X0, X0 ✓ XT, �q 2 F , �q : R ! R
Explicit @⇥ k (x, z) =

Q

q

�q (xq)�q (zq) , �q known

multiplicative (e)
xi, zi 2 X0, X0 ✓ XT, �q 2 F , �q : R ! R

Uniform (f) @uni �q known and uniform
e.g., (c) or (e) with �q = � 8q

Admissible (g) @adm k is positive definite (p.d.) [187]
or k is conditionally p.d. (c.p.d.) [30]

I use the seven proposed criteria for inherent prior model interpretability (Section 6.3) to

147



define six Dirac (binary) measures for SVM (Table 6.3) meeting each criterion without
overlap, except for criterion d (since all SVM kernels are generalized linear models).

I define an overall measure as follows:

ˇU@ =

1/6 (@essep + @fin + @eM + @⇥ + @uni + @adm)

A benefit of this measure is that while independent of the data, it requires little computa-
tion and it informs model selection prior to optimization.

6.4 Other SVM model interpretability measures

In this section I propose measures specific to SVM.

Support vectors: In SVM, a subset of the patients in the data set are key to defining
the model. They are known as support vectors since they support the definition of the
model’s class boundary and decision surface. For example, the decision regarding whether
a patient has a disease or not, is determined by a subset of patients, e.g., 5 out of 200
patients, the model learned/picked as positive and negative examples of disease.

The more support vectors there are, the more complex the model is, with all other things
being equal: Hsv = sv. SVM models have at least three support vectors in general — at
least two to define the line, curve, hyperplane or surface that is the class boundary, and at
least one to define the margin, so sv � 3, sv 2 N.

To select a model for one data set, or to compare results between two data sets, I know the
maximum number of patients N , so sv  N , and I apply (equation 6.1 part iii) to obtain
a relative measure, Usv,r. Or to obtain an absolute measure Usv,a, to compare against any
current or future data set, I assume N = 1 and apply (equation 6.1 part ii).

Degrees of freedom: Akaike includes all method and kernel hyperparameters and weights
as among the degrees of freedom [244]. I calculate the prior complexity measure ˇHdof with
three terms comprised of: the number of SVM hyperparameters, e.g., 1 for C, the number
of kernel hyperparameters, e.g., 1 for the kernel width for a Gaussian RBF kernel, the
number of independent inputs, e.g., 1 for a Gaussian RBF kernel or stationary kernel, 2
otherwise. I calculate the posterior complexity measure Hdof with an additional term for
the support vectors and apply the general measure for model interpretability.

ˇHdof =

ˇdof = dSVM_hyp + dkernel_hyp + dinput

Hdof = dof = dSVM_hyp + dkernel_hyp + dinput + sv

148



Relevant dimensionality estimate: The relevant dimensionality estimate (rde) [35]
provides a way to measure the complexity of the SVM feature space induced by a kernel.
There are two complexity measures HrdeT and HrdeL corresponding to two rde methods:
the two-component model and the leave-one-out method, respectively.

6.5 Experiments to validate measures

I validate my proposed measures with sanity checks on formulas (not shown) and by agree-
ment with propositions that describe my expectations and knowledge about model com-
plexity and interpretability.

I create propositions based on expected relationships between measures, and check/test
the propositions with a statement P and its inverse P�1 such as the following,

P :

ˇ

dof 1  ˇ

dof 2

usually! U⇤
rde1 � U⇤

rde2 (6.7)

P�1
:

ˇ

dof 1 >
ˇ

dof 2

usually! U⇤
rde1 < U⇤

rde2 (6.8)

where usually! is a notation for: implies the majority of the time. I measure how much
my results agree (Tables 6.4 and 6.5) with these propositions using either Kendall’s W
coefficient of rank correlation [143] or matched pair agreement [231], where the latter is
applied to control for confounding factors.

If a proposition is robust, then the percentage of the concordance coefficient or matched
pair agreement indicates how correct and useful the measure is, from that perspective. A
measure has some utility, if it is correct the majority of the time, for different models/ker-
nels and data sets.

I validate my propositions using two types of experiments (#1 and #2 as below). I run
each experiment five times on each of three data sets from the University of California at
Irvine repository: the Statlog Heart, Hepatitis and Bupa Liver data sets. Missing data in
the Hepatitis data set are imputed with Stata, taking one of three multiple imputations
with Monte Carlo Markov Chains. Bupa Liver data is used for these experiments with the
common (misused) target [186] rather than the clinically meaningful target.

• Experiment Type #1: For each of 90 points chosen randomly in the hyperparameter
space, I choose a pair of models, matched pairs [231], that differ by one hyperpa-
rameter/dof that is fixed in one and free in the other, and check propositions as
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the percentage truth of the propositions. I use 3 pairs of kernels that differ by a
single dof, e.g., a polynomial kernel of varying degree versus a linear kernel, a Gaus-
sian RBF kernel with/without a fixed kernel width and a Mercer sigmoid kernel [45]
with/without a fixed horizontal shift.

• Experiment Type #2: From the experiment type #1 I identify three points in the
hyperparameter space which perform well for each kernel. For each of 3 fixed points,
I choose 30 values of C equally spaced (as logarithms) throughout the range from
10

�3 to 10

6 and check propositions as the concordance of the left-hand side with the
right-hand side in the propositions, using Kendall’s W coefficient of rank correlation
[143]. If the right-hand side should have opposite rank to the left-hand side then I
apply a negative to the measure on the right-hand side for concordance to measure
agreement of rank. I use the following kernels: linear, polynomial, Gaussian RBF
and Mercer sigmoid kernel [45].

6.5.1 Propositions

Proposition 6.5.1.

The majority of the time I expect that a model with less degrees of freedom ˇ

dof 1, with all
other things being equal when compared to another model with ˇ

dof 2, will be simpler and
have a relevant dimensionality estimate (rde) [35] that is less than or equal to the other
model and therefore be more interpretable/understandable (U⇤

rde):

1a :

ˇ

dof 1  ˇ

dof 2

usually! rde1  rde2 (6.9)

1b :

ˇ

dof 1  ˇ

dof 2

usually! U⇤
rde1 � U⇤

rde2 (6.10)

This applies to rde with the two-component model (rdeT) and the leave-one-out method
(rdeL).

Proposition 6.5.2.

In SVM, the hyperparameter C is called the box constraint or cost of error. Authors have
remarked [233, remark 7.31] that C is not an intuitive parameter, although it has a lower
bound for use C � 1

N
and its behaviour suggests C .

=

1
⌫N

, where ⌫ is a proportion of support
vectors. I therefore expect that a model with a higher value C1 versus a second model with C2
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will have less support vectors (sv) and consequently be more interpretable/understandable
(UHs):

2a : C1 � C2
usually! sv1  sv2 (6.11)

2b : sv1  sv2
usually! UHs1 � UHs2 (6.12)

2c : C1 > C2
usually! Usv,a1 � Usv,a2 (6.13)

2d : C1 > C2
usually! UHs1 � UHs2 (6.14)

This applies to simplicity of sensitivity UHs with any binning method.

My experiment uses three binning methods: Scott [230] UHsc, Freedman-Diaconis [82] UHfd

and Sturges [251] UHst.

Proposition 6.5.3.

The majority of the time I expect that, if a prior measure is useful, then it reflects the same
rankings as the posterior measure,

3 : U⇤
Hs1  U⇤

Hs2

usually! UHs1  UHs2 (6.15)

Proposition 6.5.4.

I expect that the linear kernel is the simplest of all kernels with greater transparency than
other kernels such as the polynomial, Gaussian RBF kernel, sigmoid and Mercer sigmoid
kernels, whereby,

4 :isLinear (k1) > isLinear(k2) ! ˇU@1 > ˇU@2 (6.16)
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Table 6.4: The results from propositions using experiment #2 validate the support vector
measure Usv and simplicity of sensitivity measure with Sturges binning UHst.

Proposition Measure Agreement % Comment
& Result

2a sv 82± 2.3 C validates sv, supports B3
2b UHsc 53± 3.3 UHsc not distinguished by sv

UHfd 48± 3.7 UHfd not distinguished by sv
UHst 62± 3.5 sv validates UHst

2c Usv 81± 2.3 C validates Usv
2d UHsc 54± 3.3 C validates UHsc

UHfd 49± 3.7 UHfd not distinguished by sv
UHst 64± 3.2 C validates UHst

Legend: Green = affirmative result. Yellow = inconclusive result. Red = contrary result.

Table 6.5: The results from propositions using experiment #1 validate the relevant dimen-
sionality measures rdeT and rdeL, the initial model interpretability measures based on
relevant dimensionality U⇤

rdeT and U⇤
rdeL, the use of prior measures of simplicity of sensitiv-

ity as proxies for posterior measures, and the measure of kernel transparency ˇU@. ˇU@.

Proposition Measure Agreement % Comment
& Result

1a rdeT 63± 5.0 ˇdof validates rdeT, supports A2
rdeL 59± 5.2 ˇdof validates rdeL, supports A2

1b U⇤
rdeT 62± 5.0 ˇdof validates U⇤

rdeT
U⇤
rdeL 59± 5.2 ˇdof validates U⇤

rdeL
3 U⇤

Hsc as a proxy 72± 3.1 UHsc validates U⇤
Hsc as a proxy

U⇤
Hfd as a proxy 76± 3.5 UHfd validates U⇤

Hfd as a proxy
U⇤
Hst as a proxy 80± 3.2 UHst validates U⇤

Hst as a proxy
4 ˇU@ 100± 0 kLin vs. others, validates ˇU@

Legend: Green = affirmative result. Yellow = inconclusive result. Red = contrary result.

6.6 Experimental results

I summarize the results of my validation tests (Table 6.4 and 6.5) as follows: I recommend
ˇU@ and Usv as good measures. I find that U⇤

rdeT , U⇤
rdeL and UHst are measures which are

of limited use, because they may be wrong one third of the time when providing guidance
on decisions. UHsc and UHfd are not distinguished from chance by my propositions and
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thus not recommended. Finally, if UHst is validated to a greater degree in the future, then
the initial measure U⇤

Hst has been shown to be a good proxy for it, incurring some loss of
information.

My proposed measure of kernel transparency ˇU@, a prior measure, scored 100% agreement.
This is a good measure that may be used a priori, but it is high-level and not specific to
the match between a model and data. No surprises or complexities arose regarding the
attributes of kernels.

The general measure based on the number of support vectors, Usv, scored 81 ± 2.3%

agreement—this is a good measure.

My proposed simplicity of sensitivity measure with Sturges binning [251] UHst scored 64±
3.2% and 62± 3.5%, which is of limited use.

The same measure with Scott binning [230] (UHsc), however, is barely distinguishable
from chance in one test, and not distinguishable in another, and with Freedman-Diaconis
binning [82] (UHfd) it is not distinguishable from chance in both tests. I recommend further
validation to examine the role of confounding factors such as kernel width/scale along with
C per [65, 18].

If the simplicity of sensitivity measure UHst can be validated to a greater degree in the
future, then the initial measure U⇤

Hst which scores 80 ± 3.2% agreement with it, may be
used in its place to avoid optimization, or to gain an initial estimate prior to optimization.
For now, the prior measure is not advisable since 80%⇥ 64% = 51%.

The general measure based on the relevant dimensionality [35] of the feature space, U⇤
rdeT

and U⇤
rdeL scored 62 ± 5.0% and 59 ± 5.2% agreement, respectively. These are of some

use. I did not include Braun’s noise estimate [35], which in hindsight should improve the
measure.
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Table 6.6: Result for ˇU@ confirm that the linear kernel is more transparent than other
kernels.

Dirac Gaussian Mercer
measure Description Linear Polynomial RBF Sigmoid Sigmoid
@essep Explicit Sym. Sep. � ⇥ ⇥ ⇥ ⇥
@fin Finite � � ⇥ ⇥ �
@eM Explicit Mercer � ⇥ �[55] ⇥ �
@⇥ Multiplicative ⇥ ⇥ ⇥ ⇥ ⇥
@uni Uniform � ⇥ ⇥ ⇥ �
@adm Admissible � � � ⇥ �
ˇU@ (%) 83 33 33 0 67

Legend: Green = top result. Light green = second best result.

6.7 Model selection with accuracy and inherent model

interpretability

I apply model interpretability to results in a toy problem (Figure 6.7). When I select
results for maximum accuracy with the Gaussian RBF kernel, I find that the top result in
my sorted list of results achieves 100% accuracy (rounded to no decimal places) with 51
support vectors, while the second best result also achieves 100% accuracy with 40 support
vectors and the fifth best result according to the list also achieves 100% accuracy with 25
support vectors.

Selecting results for maximum interpretability Usv,r, I find the top result uses 9 support
vectors for 99% accuracy and the fourth best result uses 10 support vectors for the same
accuracy.

I plot the results (Figure 6.3 on page 155) of accuracy versus interpretability Usv,r (above
80% in each) and find that there are many results which are highly accurate and highly
interpretable, i.e., above 96% in both. These results indicate that there is not a trade-off
between accuracy and model interpretability based on support vectors in this data set.

I also plot the results of accuracy versus interpretability Usv,r for other data sets (Figure 6.4
on page 155 and Figure 6.5 on page 156 ) and it is clear that there is no trend in all points
showing a trade-off between accuracy and model interpretability, although this trend may
be present at the pareto front. A trade-off trend would show as an inverse correlation, a
trend line running from the top left to the bottom right—instead, high interpretability is
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consistently achievable with high accuracy, i.e., there are points toward the top right of a
bounding box for all points.
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Figure 6.3: In classification for the toy problem, there are many results with high accuracy
and high inherent model interpretability, with almost no sacrifice in the latter for maximum
accuracy.
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Figure 6.4: In classification with the Hepatitis data set there is a less than 5% sacrifice in
inherent model interpretability for the highest accuracy.
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Figure 6.5: In classification with Statlog Heart data there are points with high accuracy
and high inherent model interpretability, with minimal sacrifice, 1% and 2%, respectively.

Figure 6.6: In classification with the Bupa liver data set there is a 20% and 0% sacrifice,
respectively, in inherent model interpretability for the highest accuracy.

6.7.1 Study

I support the validity of model interpretability measures by performing tests related to two
general hypotheses I expect to be true, as applied to two toy problems in classification.
My two general hypotheses are:

Hypothesis 6.7.1. SVM will not fit/separate data well if the kernel’s class boundary
does not match the instances of data, and conversely
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Figure 6.7: Toy problem #1: Classification data for two classes, blue and red, which are
not linearly separable — before normalization.

Hypothesis 6.7.2. SVM will fit/separate data well if the kernel’s class boundary matches

the instances of data.

When I apply these hypotheses to toy problem #1 they become (Figure 6.7):

Hypothesis 6.7.3. The linear kernel’s class boundary matches data which can be separated
by a hyperplane, so it is not a good fit to toy problem #1 (Figure 6.8).

Hypothesis 6.7.4. The Gaussian RBF kernel creates a circular class boundary around
each support vector (dot surrounded by a circle) (Figure 6.9), so it matches or fits any
distribution of data including toy problem #1.

Before I can test these hypotheses, I provide background on the problem, discuss related
work and propose measures, further hypotheses and tests. I then perform the tests, discuss
the results and then examine a second toy problem. I then provide conclusions and areas
for future work.

6.7.2 Revised hypotheses

I revisit the hypotheses from the introduction as applied to toy problem #1 as follows, and
add new comments on accuracy:
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Figure 6.8: SVM with a linear kernel does not fit/separate toy problem #1 data well, per
the class boundary (red line). The boxes at the center and corners of the plot show the
predicted class as blue (positive) or red (negative) versus the actual class labels, blue or
red for each point. Circled points are support vectors — every point in this plot. I show
the fit for the most accurate result in two dimensions for clarity.
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Figure 6.9: SVM with a Gaussian RBF kernel fits/separates toy problem #1 data well,
per the class boundary (curve red line). Circled points are support vectors.

Hypothesis 6.7.5. I expect that the linear kernel does not quantitatively fit/separate toy
problem #1 well — i.e., low accuracy a, on average.

Hypothesis 6.7.6. I expect that the Gaussian RBF kernel does quantitatively fit/separate
toy problem #1 well — i.e., high accuracy a, on average.

I would like to compare the linear and Gaussian RBF kernels at a point of similarly high
accuracy, but the linear kernel never achieves high accuracy. One may consider measuring
accuracy per unit complexity to achieve a fair comparison, but there is no way to know
what the proper scaling or relationship should be in that trade-off.

So instead, I can compare the accuracy of the two kernels at a point of similarly high model
interpretability — i.e., high simplicity or low complexity:

Hypothesis 6.7.7. If SVM with a linear kernel creates a class boundary (geometry) that
does not sufficiently match the distribution of instances in the data, while SVM with a
Gaussian RBF kernel does, then for similarly high model interpretability Ur:sv, the latter
will achieve better goodness of fit, i.e., higher accuracy a.

Since SVM with a linear kernel does not fit well I expect it to use many support vectors
to try to achieve a good fit (Figure 6.8).
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Figure 6.10: For toy problem #1: the Gaussian RBF kernel has a substantive range of hy-
perparameters which yield few support vectors corresponding to high model interpretability
in the next figure.

In contrast, a Gaussian RBF kernel should not need more support vectors (complexity)
to achieve its best fit/accuracy over a moderately suboptimal fit. It should not need to
sacrifice model interpretability Ur:sv (simplicity) for accuracy a. This is the notion of a
naturally good fit:

Hypothesis 6.7.8. If SVM with a Gaussian RBF kernel creates a class boundary (ge-
ometry) that matches the distribution of instances in the data, then for a wide range of
parameter values � and C, the Gaussian RBF kernel will achieve high model interpretability
Ur:sv and high accuracy a.

I expect hypotheses C and D above to be true, and I use them to validate or test if my
proposed measure Ur:sv meets my expectations about model interpretability and accuracy.
Hypothesis C is relative while hypothesis D is absolute.

6.7.3 Method

I perform an SVM classification experiment using C-SVM (not ⌫-SVM) since C-SVM is
the most common implementation used (e.g., by Matlab, Weka). I generated data using
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Gaussian functions for each of three clusters (Figure 6.7). Seven values of the kernel width
� were chosen, to match the data:

� 2
n

0.06 0.085 0.12 0.17 0.42 0.71 1.0
o

Despite the geometric scale of the handpicked kernel widths, when I pick � randomly I do
so using a base ten logarithmic scale from 10

�4 to 10

6. This scale is almost the same scale
I use for randomly picking values for the SVM cost of error C: 10

�3 to 10

6, however for
this experiment I handpick the following:

C = 10

x | x 2
n

�2 �1 0 1 2 3 4 5 6

o

This results in a total of seven by nine, or 63 models, applied to three folds of data.

6.7.4 Toy problem #1 discussion and results

For the Gaussian RBF kernel classifying toy problem #1 data, there is smooth blue floor of
few support vectors (Figure 6.11, left) that corresponds to a smooth red ceiling of inherent
high model interpretability (Figure 6.11, middle) and a smooth red ceiling of high accuracy
(Figure 6.11, right) which is wider for reasons explained below. I refer to the plateaus that
overlap in all three as the “good fit” region.

At the back boundary of the “good fit” region where the cost of error C is smaller, as C

decreases, e.g., log10 C  �1, errors are not given much weight, so the model under-fits
the data resulting in lower accuracy (Figure 6.11, right) and more support vectors (Figure
6.11, left).

At the right boundary of the “good fit” region where the kernel width � is smaller, as
� decreases, e.g., log10 �  �1, more support vectors are needed (Figure 6.11, left) to
maintain a contiguous, smooth and accurate class boundary from one support vector to
the next. Accuracy begins to drop at log10 � = �1.37 (Figure 6.11, right) as the number
of support vectors saturates to the maximum and it continues dropping in the region of
saturation.

At the left boundary of the “good fit” region where the kernel width � is larger, there
is a diagonal ridge (Figure 6.11, left) showing a trade-off relationship between � and C

described by [18] where similar curvature in the class boundary and similar accuracy is
achieved for tuples of (�, C) whereby an increase in � can decrease curvature that can be
offset by increasing C to increase curvature.
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My results confirm hypothesis C for toy problem #1 because for comparably high model in-
terpretability Usv ⇡ 77.6% and 78.4% the Gaussian RBF kernel achieves a ⇡ 87% and 91%

(Figure 6.11) versus the linear kernel’s a ⇡ 53% and 43% (Figure 6.13). This lends support
for the measure Usv.

My results confirm hypothesis D for the Gaussian RBF kernel in toy problem #1 because
there is a wide portion of the parameter space (�, C) that yields high model interpretability
Usv ⇡ 75% to 84% (Figure 6.11) and high accuracy a = 85% to 92% (ibid). This also lends
support for the measure Ur:sv.

For the Gaussian RBF kernel which fits the data in toy problem #1 well, there is no
trade-off between model interpretability (re support vectors) and accuracy within the
kernel (with different hyperparameters). For the linear kernel which does not fit the data
well, there is a small trade-off between model interpretability (re support vectors) and
accuracy.

6.7.5 Toy problem #2 definition, discussion and results

For toy problem #2 (Figure 6.15), I generate classification data in two classes with two
real-valued features, which are not linearly separable and therefore not suited to a linear
kernel.

The data in toy problem #2 are geometrically and intuitively suited to a Gaussian RBF
kernel which creates a class boundary suitable for any shape of training data (Figure 6.15,
middle) and a Mercer sigmoid kernel (Figure 6.15, right) which forms an L-shaped class
boundary for a quadrant (or orthant) at any point of origin.

My results confirm hypothesis #1 for toy problem #2 because for comparably high model
interpretability Usv ⇡ 96.2% and 79% the Gaussian RBF kernel achieves a = 99.6% and 97.1%

(Figure 6.17) and the Mercer sigmoid kernel achieves a = 99.7% and 91.8% (Figure 6.19)
versus the linear kernel’s a = 87.2% and 89.1% (Figure 6.21). This lends support for the
measure Usv.

My results confirm hypothesis #2 for the Gaussian RBF kernel in toy problem #2 because
there is a wide portion of the parameter space (�, C) that yields high model interpretability
Usv ⇡ 79% to 98.5% (Figure 6.17) and high accuracy a = 97% to 99.6% (ibid). This also
lends support for the measure Usv.

My results confirm hypothesis #2 for the Mercer sigmoid kernel in toy problem #2 because
there is a wide portion of the parameter space (�, C) that yields high model interpretability
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Usv ⇡ 77% to 97.3% (Figure 6.19) and high accuracy a = 91% to 99.7% (ibid). This also
lends support for the measure Usv.

For the Gaussian RBF and Mercer sigmoid kernels which fit the data in toy problem #2
well, there is no trade-off between model interpretability (re support vectors) and accuracy,
either within the kernel (with different hyperparameters) or between the two kernels, where
the Mercer sigmoid kernel is more transparent (Section Section 6.6). For the linear kernel
which does not fit the data well, there is a small trade-off between model interpretability
(re support vectors) and accuracy.

6.7.6 Study conclusion

I proposed a measure of model interpretability Usv and based on two hypotheses I expect
to be true, I confirmed that the measure Usv meets my expectations regarding two toy
problems. I observed that within and between kernels which fit the data well, there is no
loss of accuracy, i.e., no trade-off, to achieve model interpretability (re support vectors),
whereas with the linear kernel which does not fit the data well, there is a small trade-off.
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Figure 6.11: For toy problem #1: the Gaussian RBF kernel has a substantive range of
hyperparameters which yield high model interpretability Usv (top) and high accuracy a or
acc (bottom), which confirms hypothesis C. For this kernel which fits the data well, there
is no trade-off between model interpretability (re support vectors) and accuracy.
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Figure 6.12: For toy problem #1: the linear kernel has a substantive range of hyperpa-
rameters which yield few support vectors (corresponding to high model interpretability in
the next figure).
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Figure 6.13: For toy problem #1: the linear kernel has a wide range of hyperparameters
which yield high model interpretability Usv (top) but low accuracy a or acc for all hy-
perparameters. For approximately the same Usv as the Gaussian RBF kernel, the linear
kernel’s Usv ⇡ 77.8% and 78.9% (top) corresponds to a ⇡ 53% and 43% (bottom), which
in comparison to the Gaussian RBF confirms hypothesis #1. For this kernel which does
not fit the data well, there is a small trade-off between model interpretability (re support
vectors) and accuracy.
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Figure 6.14: Toy problem #2: classification data in two classes with two real-valued fea-
tures. The data are not linearly separable and therefore not suited to classification by an
SVM with a linear kernel. Circled points are support vectors.

167



Figure 6.15: Toy problem #2: The data are suited to classification by an SVM with a
Gaussian RBF kernel which uses 19 support vectors (top) as well as a Mercer sigmoid
kernel which uses 3 support vectors (bottom). Circled points are support vectors.
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Figure 6.16: For toy problem #2: the Gaussian RBF kernel has a substantive range of
hyperparameters which yield few support vectors.
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Figure 6.17: For toy problem #2: the Gaussian RBF kernel has a substantive region
of hyperparameters which yield high model interpretability Usv (top) and high accuracy
a or acc (top), which confirms hypothesis #2. At Usv ⇡ 96.2% and 79% (top), a =

99.6% and 97.1% (bottom), which when compared with the linear kernel which confirms
hypothesis #1. For this kernel which fits the data well, there is no trade-off between model
interpretability (re support vectors) and accuracy.
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Figure 6.18: For toy problem #2: the Gaussian RBF kernel has a substantive range of
hyperparameters which yield few support vectors.

171



Figure 6.19: For toy problem #2: The Mercer sigmoid (MSig) kernel has a substantive
range of hyperparameters which yield high model interpretability Usv (top) and high ac-
curacy a or acc (bottom), which confirms hypothesis #2. For approximately the same Usv

as the Gaussian RBF kernel, the Mercer sigmoid kernel’s Usv ⇡ 96.9% and 79.4% (top)
corresponds to a = 99.7% and 91.8% (bottom), which when compared with the linear ker-
nel confirms hypothesis #1. For this kernel which fits the data well, there is no trade-off
between model interpretability (re support vectors) and accuracy.
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Figure 6.20: For toy problem #2: the linear kernel has three ranges of hyperparameters or
plateaus.
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Figure 6.21: For toy problem #2: For approximately the same Usv as the Gaussian RBF
kernel, the linear kernel’s model interpretability Usv ⇡ 96.3% and 79.2% (top) corresponds
to accuracy a = 87.2% and 89.1% (bottom). For this kernel which does not fit the data
well, there is a small trade-off between model interpretability (re support vectors) and
accuracy.
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6.8 Summary

I developed and validated measures for inherent model interpretability to enable automatic
model selection and ongoing research. Two measures are recommended: my proposed
kernel transparency measure ˇU@ which is an inexpensive prior measure, and a posterior
measure based on support vectors Usv. Three other measures, U⇤

rdeT , U⇤
rdeL and UHst were

found to be of limited use but may be further validated by future work.

I also contributed ideas as a foundation for these measures: the concept of inherent model
interpretability, a general measure, a simplicity of sensitivity measure, and measurement
of interpretability at different points in the learning process, i.e., via prior, initial and
posterior models.

I applied my measure to model selection and demonstrated that choosing a model based
on a sorted list of accuracy alone can result in models with substantively less inherent
model interpretability despite the consistent availability of models with high accuracy and
high interpretability in multiple data sets. The notion of a trade-off between accuracy and
interpretability does not hold for these data sets, since in 9 of 10 instances there is minimal
to no sacrifice in either measure.
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Chapter 7

Conclusions and future work

Einstein said, “everything should be made as simple as possible, but no simpler” [172],
which (ironically) is a simplified and incomplete version of Occam’s razor or parsimony
[244]. Parsimony requires a sufficient or best explanation first, i.e., most accurate model(s),
then among such equivalent models, the simplest as the most likely, i.e., the most inter-
pretable and transparent. This thesis fulfills that philosophical and practical goal, achiev-
ing equivalent (or better) accuracy with greater transparency, and equivalent or greater
interpretability.

This is achieved for data with atomic data types—reals, nominals, binary, ordinals, integers
and presence-only binary data—as differentiated from complex data types (images, text,
spectra or time series / waveforms).

The contributions of this thesis, are as follows, for binary classification of health care data
with atomic data types using support vector machines:

1. There is no accuracy versus transparency trade-off between kernels (among all kernels
tested)

(a) Explicit Mercer kernels are more transparent, because

• Feature significance is meaningful, innate views are transparent and sum-
marial, and non-innate views of the input space and feature space are made
available. Future work (discussed in the next section) with human experi-
ments is required to measure the impact.

(b) Explicit Mercer kernels are at least as accurate, because

176



• Explicit Mercer kernels of rank n are sufficient, and implicit kernels of rank
N are not necessary. In fact, some of the explicit Mercer kernels, e.g., the
orthant insensitive sigmoid variant Gaussian constrained (OISVgc) kernel,
are more accurate than common kernels with statistical significance. While
a small percentage gain in accuracy for binary classification may only affect
a small percentage of patients, my goal was to be at least as accurate while
achieving greater transparency—which was achieved.

• Although outside the scope of my thesis, classification of complex data in
the form of image pixel/coordinate data, performed by others and myself,
show that explicit Mercer kernels are slightly inferior in accuracy on some
data sets, which may be an appropriate tradeoff for the sake of greater
transparency and inherent model interpretability as I define it. Future work
can explore this.

2. There is no accuracy versus inherent model interpretability trade-off within or be-
tween kernels (for the Gaussian RBF and Mercer sigmoid kernels), using the support-
vector based measure

(a) There is no trade-off within kernels because there is no overall negative linear
trend or negative exponential trend in each kernel’s plot

(b) There is no trade-off between kernels, from visual inspection of plots, because
the Gaussian RBF and Mercer sigmoid kernels achieve similar accuracy and
similar but slightly different interpretability.

(c) Future work (discussed in the next section) is required to confirm what may
appear to be a negative linear trend in one small region of the accuracy versus
interpretability plots.

3. I proposed new kernels based on a new kernel class (explicit Mercer kernels) which
were derived for, designed for and matched to specific atomic data types and distri-
butions. Kernel requirements and gaps (some new) were identified regarding data,
similarity, classification and transparency—and these requirements and gaps were ad-
dressed by my new kernels. My approach and framework provides improved rationale
and measurably improved transparency. Philosophically my approach hybridizes the
two cultures Breiman [39] referred to: the data modelling culture in statistics and
the algorithmic modelling culture in machine learning.

(a) I also clarified the advantages of my framework, approach and kernels over
feature shaping, and I clarified the appropriateness of explicit kernels in the
context of the kernel trick and generalized additive models (as well as kernel
rank and complexity).
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4. I provided improvements to an innate view (plot) of SVM results and demonstrated
the improved interpretability of my proposed new kernels in the improved innate
view. I also provided new measures of feature significance in SVM.

5. I developed new concepts and quantitative measures of transparency for justification
of model selection prior to testing, i.e., with prior models, in SVM. I also devel-
oped new concepts and measures of inherent model interpretability for initial and
posterior model selection, with some measures validated in general and some mea-
sures only suggested for limited use at this time. With these measures kernels can
be selected quantitatively, i.e., automatically based on accuracy, transparency and
inherent model interpretability.

In summary, my thesis takes a different yet fruitful approach to kernels for binary clas-
sification with atomic data types in SVM. My thesis highlights the characteristics and
shortcomings of existing kernels while proposing new kernels that enable greater trans-
parency and interpretability to meet requirements in health care.

That said, one limitation of my thesis pertains to the focus on accuracy, transparency
and interpretability as key requirements to optimize, without observations of calibration
(e.g., goodness of fit in each subgroup). Calibration requires a clinician’s specification of
clinically meaningful groups/subgroups and their granularity. Future work (discussed in
the next section) may consider calibration.

On a similar note, external validation (or transferability) is also a desired requirement,
but was not possible with the benchmark data sets used. Future work (discussed in the
next section) can select multi-population data sets for that criterion, e.g., Canadian versus
American kidney transplant data, or multi-centre data within each.

7.1 Future work

Arising from this thesis are various items for future work, as follows.

Future work is required to confirm what may appear to be a negative linear trend in one
region of accuracy versus interpretability plots—the top-right portion of the bounding box,
at the optimal (pareto) front of accuracy versus interpretability where the two objectives
are somewhat balanced.

My thesis focuses on data sets with atomic data types. Work outside the scope of my
thesis, by myself [45] and others (Appendix Section A.9), indicates that complex data
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types—image pixel or coordinate data in particular—are not as accurately predicted by
the explicit Mercer kernels I propose, as compared to the Gaussian RBF kernel. It would
be of benefit to confirm the difference, its extent and its cause.

Future work with human experiments would be required to measure the impact of this
work on (1) human (non-inherent) model interpretability and understanding, (2) decision-
making from accuracy, transparency, interpretability (and calibration), (3) explanations
and (4) changes in trust for, and adoption of machine learning methods, such as SVM. For
these experiments, the participants would need to learn and become proficient with two
aspects: (a) the interpretation of SVM results from its innate transparency and (b) the
interpretation of SVM results from the additional transparency and interpretability of my
proposed kernels (or any kernel in the class of explicit Mercer kernels).

Two logical next steps from my work, which pertain to the practice of machine learning
with SVMs are: to produce a user guide and to publish reference implementations of my
proposed kernels. Improving the practice and accuracy of SVM with either or both of these
measures, improves research with SVMs. The user guide in particular is also necessary for
the participants in the aforementioned human experiments to learn the required skills.

Future work may consider calibration [250] (e.g., goodness of fit in each subgroup) based on
subgroups specified by a clinician which are validated as clinically meaningful. Such find-
ings may then also be more fully integrated with considerations for model selection along
with accuracy, transparency and interpretability. On a similar note, external validation
[250] (or transferability) may also be addressed by selecting data sets which contain multi-
population data, such as Canadian (CoRETRIS) [75] versus American (SRTR) [184, 114]
kidney transplant data, or multi-centre data within each.

Future work is required to investigate and confirm that the effect of each element of kernel
design achieves its intended objective, in full isolation to avoid confounding from other
possible effects.

Future work may examine the following question. For optimal accuracy is it sufficient
to use a uniform Gaussian kernel or a uniform Mercer sigmoid, i.e., with a single width,
or with a single width and shift, respectively, for all dimensions? Or should one use the
non-uniform (generalized) versions of those kernels, i.e., with different hyperparameters
for each input feature? Testing was not conducted with the non-uniform Mercer sigmoid
kernel that was defined herein.

Future work may explore and validate my observation that asymmetric match weighting
also applies to zero-coded missing values. That is, in binary classification, assuming the
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class boundary is at the origin, values near the origin are less certain and therefore giving
them less weight in accordance with their uncertainty is appropriate. Similarly, a zero-
coded missing value is completely uncertain and assuming a kernel is aligned or shifted
such that the origin has zero or very low weight then the missing value is accordingly given
little to no weight.

Future work may test the truncated Gaussian RBF kernel [278] (an explicit Mercer kernel
which is finite) to observe its accuracy and interpretability with atomic data types and
complex (e.g., image) data types. In the literature the kernel was tested on a single
pregnancy data set with simple data types and the results seem to support my conclusions
about the sufficiency of explicit Mercer kernels for atomic data types. I found this particular
kernel too late in my experimental process to include it.

Related to the truncated Gaussian RBF kernel [278], I developed and sought the concept of
a truncated Gaussian early in my work, and based on Cotter et al. [55], I implemented and
tested a kernel, but the results were not as accurate as I expected them to be. I requested
but did not obtain a reference implementation from Cotter et al. to rule out errata and/or
misinpretations. I subsequently created and tested, a Gaussian derivative kernel (Section
4.8.3) as a non-stationary variation of a Gaussian based on explicit Mercer kernels, using
the most relevant of its infinite features for covariance—the first derivative.

Future work could examine the effectiveness of composite kernels as a next step. I proposed
the OMB composite kernel (Section 4.8.4), however this is just an exemplar, the beginning
for such kernels designed to deal with multiple data types, and partitioning the input data
space.

Given that kernels are used beyond classification, for regression and dimensionality reduc-
tion, what is the effect of my kernels in these areas? Are they useful? My testing with
kernel supervised principal components analysis (KSPCA) ([16]) for dimension reduction
prior to binary classification (results not shown) reveal that better accuracy is achieved
by using my proposed kernels in KSPCA (e.g., the OISVgc kernel in Section 4.8.2) versus
other kernels (e.g., the Gaussian RBF kernel) with atomic data types in kidney transplant
data.

Future work may compare SVM with my proposed kernels to other state-of-the-art classi-
fication methods. It does not bear upon this thesis, because the present work must show
the effect of kernels isolated from the effect of methods. My proposed kernels may be used
in other state-of-the-art methods such as kernel ridge regression and kernel supervised
principal components analysis.
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Appendix A

Supplemental details

The sections in this appendix are for the most part not related to each other. Rather than
burden the background further, the following text and concepts which may supplement the
readers understanding are too long for a glossary and if included in the body of the thesis
would impair its readability. Hence they are included here, as standalone definitional text
in most cases, or supplementary analyses in other cases.

A.1 Statistical methods

Classical/traditional statistical methods expect two major tasks to be performed: data
analysis and formal inference [62]. Data analysis identifies plausible parametric and semi-
parametric models of data by examining the data, the processes that generated the data,
summary statistics (e.g., mean, standard deviation), outliers and plots (e.g., of the data,
distribution and diagnostics) [62]; and it may also test the goodness-of-fit for candidate
models in order to narrow down the list. Formal inference then seeks to determine which
of the candidate models best reflects the true state of nature [62].

Based on literature, the following classifiers are common classical/traditional statistical
methods used in health care: logistic regression, naive Bayes, linear discriminant analysis
or Fisher’s linear discriminant, quadratic discriminant analysis and Bayesian (or belief)
networks.

Alternative or less common statistical methods, excluding machine learning methods,
are: regularized logistic regression, kernel density based classifiers [2], Bayes classifier or
maximum a posteriori (MAP) classifier [24], generalized additive model (GAM) technique
[115], hybrid (machine learning/statistics) classifiers, kernel ridge regression classifier.
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A.2 Instance and rule-based learning methods

Based on literature, the following classifiers are common classical/traditional instance
and rule-based methods used in health care: k-nearest neighbours [293], decision trees
(including C4.5, J48, CART) [293] and fuzzy logic.

Alternative or less common instance and rule-based methods, excluding machine learning
techniques, are: evolutionary algorithms (EA), genetic algorithms (GA), artificial immune
systems, partial decision trees, one-level decision trees.

A.3 Feature extraction, dimension reduction and visu-

alization

Feature extraction, dimension reduction and/or visualization may be achieved with prin-
cipal components analysis (PCA) or a variety of other similar techniques. I summarize a
few methods below and then provide a comprehensive list of such techniques. This section
(unlike most other sections in the thesis) is intended for readers familiar with this subject.

PCA [127] is the most well known method. It decomposes a matrix of data into orthogo-
nal components, finding the first component as the direction within data with maximum
variance, and then an orthogonal direction that is the next maximum in variance, and so
on. Differently from PCA, independent component analysis (ICA) [119, 182] decomposes
a matrix into independent components [140], solving what is known as the cocktail party
problem. Independent subspace analysis (ISA) [48] is similar to ICA but solves a prob-
lem known as conversation clustering, by clustering components together into independent
groups, one for each conversation.

Maximum variance unfolding (MVU) [287] is another decomposition technique. The idea
of MVU is that data may be organized in less dimensions than they first appear. If I
consider data like “beads on a necklace” where the necklace is in a heap, bunched up
together in three dimensions, then I only need to pull the necklace taut to see the one-
dimensional arrangement of the beads [287]. That is, three dimensional data may lie on
a one dimensional manifold or subspace. Similarly I can consider data like “beads on a
lattice” to find a two dimensional manifold or subspace.

A comprehensive list of methods for feature extraction, dimension reduction and visual-
ization is provided in several parts below, omitting domain and task specific methods.
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These include the following methods for dimension reduction and visualization: t-distributed
stochastic neighbourhood embedding (t-SNE) [175]; locally linear embedding (LLE) [218];
Isomap [259, 260] as a non-linear generalization of multi-dimensional scaling [96, 149, 150];
semi-definite embedding (SDE) [287]; Laplacian eigenmaps (LEM) [17]; action respecting
embedding (ARE) [31]; stochastic neighbourhood embedding (SNE) [122]; and Sammon
mapping [224].

These also include a change of basis, or transformation, to a linear space or manifold, such
as: factor analysis (FA) [261]; principal components analysis (PCA) [127] as a special case
of FA according to Gharamani [95] and also called Partial least squares (PLS) [92, 195];
independent component analysis (ICA) [32, 129] as a generalization of FA according to
Gharamani [95]; and multidimensional scaling (MDS) [150, 264].

They also include a change of basis to non-linear manifolds, such as: Fourier trans-
forms; wavelet transforms; Gabor transforms; Fourier descriptors; kernel principal com-
ponents analysis (KPCA) [228] which according to Ghodsi [96] generalizes PCA, FA, ICA,
MDS, Isomap, LLE, LEM and SDE; and kernel supervised principal components analysis
(KSPCA) [16] as a supervised version of KPCA.

Finally, these also include other changes of basis: non-negative matrix factorization (NMF)
[158, 159]; non-negative tensor factorization (NTF) [43]; probabilistic latent component
analysis (PLCA) [237, 236]; probabilistic latent semantic analysis (PLSA) [124]; indepen-
dent subspace analysis (ISA) [48]; zero-phase component analysis (ZCA) as the opposite of
PCA; vector quantization (VQ) [104]; whitening transforms [130] and random projection
[23].

In addition to the above, there are methods specific to particular domains and types of
data—i.e., domains/types such as: images (e.g., SIFT [173], Zernicke moments [258]),
time-series data and waveforms (e.g., filters [239]), text (e.g., tagging [246]), spectra (e.g.,
trace quantitative analysis [33]), etc.

A.4 Simple data types in ISO 21090

ISO 21090 [134] is an implementation of abstract data types based on prior standards from
ISO, OMG’s UML, Health Level 7’s Version 3, CEN 13606 and openEHR. According to the
National Cancer Institute it is “a culmination of a large-scale joint effort among standards
bodies such as HL7 and ISO, and has been reviewed by experts in the field.” [131]. I
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provide a diagram of the simple data types within ISO 21090 for reference’s sake (Figure
A.1).

Figure A.1: Overview of ISO 21090 data types for health care

A.5 Complex data types or documents

In contrast to simple data types, complex data types (Figure A.2) , also called documents,
are collections of simple data types in a structure, matrix, grammar or ontology—e.g., text,
images, video and audio. This category is supported by the literature on data types [123].
These types have domain-specific needs, tasks, measures of performance and specialized
kernels/models associated with them.

I depict complex data types or documents in the ISO 21090 standard (Figure A.3) and I
provide other examples of images and matrices as complex data types (Table A.1).

Figure A.2: Complex data types have single or multiple values with an underlying structure,
grammar or ontology.
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Figure A.3: Overview of ISO 21090 document types for health care

Table A.1: More examples of complex data types in health care

Complex data Illustrative examples Independent Dependent
type or document (structure) (value)

dimension dimension
Table Incidence of cancer by region and gender n-D n-D

Sequence DNA: GATTACA; Peptides: DLGEEHFK 1D: count 1D: nominal

Waveform or ECG, EKG, EMG, reference signals 1D 1D
Spectrum Mass spectrum (MS, MS-MS) 1D 1D
Map Brain atlas; Flu activity map; POS location 2D 1D
Image Medical photograph (incl. epiluminescence) 2D: pixel 3D: RGB

Digital microscopy/pathology 2D 3D: RGB

Grayscale radiograph: X-ray, CT, MRI 2D,3D:voxel 1D: intensity
Colour radiograph: PET, SPECT, fMRI 2D,3D:voxel 3D: RGB

Video Video (activity recognition, fall detection) 3D: pixel, t 1D,3D
Graph XML, HTML, OID Tree n/a

Semantic HL7v3 CDA or messaging, ICD-09 ontology
standard SNOMED-CT ontology n/a

Delimited Document HL7v2 messaging n/a
Structured Document Text document with standard sections n/a
Freeform Document Text document or field n/a
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A.6 Meta data

Binary meta data include (*per feature): outliers-trimmed*1, top-coded*, bottom-coded*,
non-negative* (e.g., R+ or counts N), normalized, centered (including binary), positive-
match*, complete, complete-case-analysis, imputed*, imputation-constrained* (i.e., to valid
range), binary-imputed-as-continuous*, missing-coded*, binned*, discretized*, rounded*,
de-identified, feature-dominant (i.e., n � N), instance-dominant (i.e., N � n), censored,
imbalanced (e.g., N+

N� > 2 or N�

N+ > 2 ), small events (n.b., this term is not well defined,
but perhaps I can refer to events per variable N+ < 10 · n, or N+ ⌧ N).

Four nominal meta data are (*per feature): de-identification, missingness*, normaliza-
tion and censoring. De-identification has values: case-deletion, binned, k-anonymized, l-
diversified, t-closeness. Missingness has values: MAR, MCAR, MNAR (Appendix Section
A.8). Normalization has values: standardization, standardization of the third standard
deviation, min/max normalization. Censoring has values: left, right or interval.

Two numeric meta data (*per feature) are: missing code*, class noise* (i.e., Bayes error of
the marginal density estimated with kernel density estimation).

A.7 A review of literature applying SVM to health care

I review 22 academic papers which conduct experiments using SVM in health care to
observe the rationale given for using common kernels with atomic data types (4.2). My
review includes 8 papers on SVM for health care in general and 14 papers on SVM for
melanoma detection. The review is summarized below.

• 16 papers do not provide any rationale (or a reference which could infer a rationale)
for the kernels they use (and 11 of these papers use a single kernel):

– 4 do not indicate what kernel is used [108, 185, 303, 305]

– 5 use a Gaussian RBF kernel only, without rationale [91, 177, 190, 283, 292]

– 1 uses a linear kernel only, without rationale [144]

– 1 uses a polynomial kernel only, without rationale [298]

– 1 uses polynomial and Gaussian RBF kernels, without rationale [141]
1prior to normalization
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– 1 uses a polynomial kernel, a Gaussian RBF kernel, and two other kernels (Gen-
eralized Gaussian and Chi-Squared), without rationale[265]

– 3 use a linear, polynomial and Gaussian kernel, without rationale[139, 176, 207]

• 2 papers do not state any rationale, but their citations could be construed as providing
rationale, based on precedent and abstract theory respectively.

– 1 uses a linear kernel only [78], and cites several papers on text classification in
which the linear kernel is a precedent.

– 1 uses polynomial kernels only [253], and cites Burges [40] who discusses the
Gaussian RBF, polynomial and sigmoid kernels. The only rationale Burges pro-
vides for choosing a kernel, is that higher VC dimension indicates the potential
for greater complexity in the class boundary.

• 4 papers provide some rationale—based on precedent, popularity, and in two cases
theory with anecdotes.

– 1 refers to the precedent of linear, polynomial and Gaussian RBF kernels [252]
as “reasonable kernels” citing Hsu et al [128], although Hsu et al does not discuss
the polynomial kernel.

– 1 refers to popularity and precedents [154] for the polynomial, Gaussian RBF,
Generalized Gaussian RBF and Chi-Squared kernels as rationale. It reasons
that the Gaussian RBF and polynomial kernels are popular; and that the two
other kernels are newly proposed for visual recognition by Chappelle.

– 1 uses a 5th order polynomial kernel [42] and mentions that various kernels may
be applied with reference to Burges [40] who discusses the polynomial, Gaussian
RBF, and sigmoid kernels. Neither the authors nor the cited resource provide
rationale for choosing the polynomial kernel over others, or choosing the 5th
order specifically.

– 1 uses a polynomial, sigmoid, Gaussian RBF and k-MOD-decreasing kernel, with
rationale [97] by reference to supplemental material which references Ben-Hur
et al [18] in turn.

A.8 Converting atomic data types to reals

If I select a machine learning method and model that handles continuous values, then I
can treat features of any atomic data type as continuous. This treatment requires three
steps:
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1. Treat missing data.

(a) Impute missing data for reals, integers, datetimes, dates and ordinals, using
whichever method meets requirements—e.g., multiple imputation with Monte
Carlo Markov chain (MCMC) or expectation maximization (EM) are common;
see Appendix A.10 for further information.

(b) Impute missing data for nominals using the mode, i.e., the most frequent level.

(c) Impute missing binary data with a method that will produce continuous values
and which is appropriate for binary distributions. I refer to the output as
continuously-imputed binary data.

2. Convert nominals to binary indicators, one for each level.

3. Center and normalize data

(a) For continuously-imputed binary data, bottom-code and top-code the data to
the limits, then min-max normalize the data to the range [-1,+1] for SVM or
[0,1] for neural networks and logistic regression.

(b) For binary data, min-max normalize the data to the set {-1,+1} for SVM or
{0,1} for neural networks and logistic regression. This data will be treated
as reals by the methods/models, but {-1,+1} makes more sensible use of the
symmetric kernel geometry in SVM than {0,1}.

(c) For all other data types, center and normalize each feature using z-score nor-
malization (or scalar variations based on 2 or 3 sigma instead of 1 sigma).

Now all of the data are ready to be treated as reals by the methods/models.

A.9 Accuracy of Gaussian RBF versus Mercer sigmoid

in literature

I extract the results (Table A.2) for mean accuracy of the Gaussian RBF kernel compared
with the Mercer sigmoid kernel from Yamada et al. [295], whose paper focuses on particle
swarm optimization (PSO) for hyperparameter optimization (Figure 1.4). They present
results for SVM with standard PSO (S-PSO), their proposed method (CFA-PSO) and a
Bezier method (SEB).
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n classification with twelve data sets (Table A.2) the Mercer sigmoid kernel (MSig) is better
than the Gaussian RBF kernel with statistical significance in three, the same (statistically)
in five, and worse (statistically) in four image data sets (with pixel or coordinate image
data).

For data sets with atomic data types (Section 4.2) as the focus of my thesis, e.g., not image
data, the Mercer sigmoid kernel is better. In general, in this Yamada et al’s selection of
data sets, the Mercer sigmoid kernel is useful for accuracy, and particularly useful for
accuracy with transparency.
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A.10 Missing values and other characteristics of health

care data

Data in health care have a few characteristics that must be accounted for in machine learn-
ing: data may have values that are missing, censored, correlated, top-coded or binned (for
de-idenfication or anonymization). Handling correlated data can be achieved by perform-
ing attribute selection to select only uncorrelated (or less correlated) input variables [290],
prior to learning with any algorithm.

Missing data (or values) are typically handled by a sequential method [107], where the
missing values are resolved prior to the main learning step. Missing data may also be
handled within the main learning step, which is known as a parallel method [107].

One approach to handling missing data is to delete the rows, instances or subjects that
have missing values, and this is known as listwise deletion or complete case analysis [107].
This approach, while common, usually causes biased results and is only suitable when data
is missing completely at random (MCAR) [69], e.g., a test tube is randomly broken —
there is no reason behind why the data are missing.

In epidemiological studies however, it is far more common to have data that is missing at
random (MAR) than it is to have MCAR data [69]. MAR data refers to a value in one
explanatory variable that is missing whenever another explanatory variable has a certain
value (or range of values) [69]. Consider, for example, MAR data from patients with
chronic kidney disesase: some patients are on dialysis, because their kidneys have failed
and thus I do not need to measure their kidney function; whereas for other patients, who
are not on dialysis, I do measure their kidney function via creatinine level.

To handle missing data, I typically have to fill them in, i.e., impute them [69], using values
present in existing data or estimated therefrom. Imputation methods range from simple to
advanced: direct replacement, mean imputation, hot deck imputation [193], maximum like-
lihood estimation [174], expectation maximization, single imputation (i.e., multiple linear
regression) and multiple imputation. For data which is MAR, simple methods (e.g., mean
imputation) yield biased results whereas advanced methods (e.g., multiple imputation)
produce unbiased results [69, 220]. The more sophisticated methods are computationally
intensive [193]. While this matter is typically handled prior to the (main) learning step, I
may also employ learning methods which can handle missing values (typically with effort).

For other characteristics such as censoring the reader is referred to the literature [250, 197].
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A.11 Derivation details for the orthant sigmoid kernel

I start with the basic formula which vertically shifts the terms within a Mercer sigmoid by
c 2 [�1,+1]:

k1 (x, z) =

p
X

i=1

✓

tanh

✓

xi � d

b

◆

+ c

�

·


tanh

✓

zi � d

b

◆

+ c

�◆

(A.1)

Within each of p dimensions:

For c � 0, the maximum height is in the positive match orthant x, z = +1 and the minimum
height is in either one of the mismatch orthants, e.g., x = 1, z = �1. To normalize I find
an expression for the range (maximum - minimum) in height and divide by that. Since
tanh in (A.1) has a minimum and maximum of {�1,+1} for {�1,+1} respectively, i.e.,
tanh (x) = x at these values, the range in height is:

�

�

�

(x+ c) (z + c)|x,z=+1 � (x+ c) (z + c)|x=1,z=�1

�

�

�

=

�

�

(c+ 1)

2 � (c+ 1) (c� 1)

�

�

=

�

�c2 + 2c+ 1� (c2 � 1)

�

�

= |2c+ 2|

= 2 |c+ 1|

= 2 ||c|+ 1| since c � 0

= 2 (|c|+ 1)

Similarly, for c  0, the output range is as follows:
�

�

�

(x+ c) (z + c)|x,z=�1 � (x+ c) (z + c)|x=1,z=�1

�

�

�

=

�

�

(c� 1)

2 � (c+ 1) (c� 1)

�

�

=

�

�c2 � 2c+ 1� (c2 � 1)

�

�

= |�2c+ 2|

= 2 |�c+ 1|

= 2 ||�c|+ 1| since � c � 0

= 2 ||c|+ 1|

= 2 (|c|+ 1)

The maximum output range in each dimension is the same in both cases. Therefore, for
any c 2 [�1,+1], I normalize by the common factor, 2 (|c|+ 1), to achieve a range of unit
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size:

k2 (x, z) =
1

2 (|c|+ 1)

p
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xi � d

b
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+ c

�

·


tanh

✓

zi � d

b

◆

+ c

�◆

I can also vertically shift the output range so that the minimum, which occurs in a mismatch
orthant, is at 0:

|(x+ c) (z + c)| = |(c+ 1) (c� 1)|

=

�

�c2 � 1

�

�

= �
�

c2 � 1

�

since
�

c2 � 1

�

 0 for c 2 [�1,+1]

= 1� c2

Resulting in the definition of an orthant sigmoid kernel with an output range of [0, 1] in
each dimension:

kOSig (x, z) =
1

2 (|c|+ 1)
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Glossary

Accuracy: The proportion of correct or true results in the system. Accuracy = (TP +
TN) / (TP + TN + FP + FN) = 1 - Misclassification Rate.

Alpha ↵: See type I error.

Attribute: See feature.

Balanced Accuracy: The geometric mean (or Gmean) of sensitivity and specificity.
Balanced Accuracy =

p
Sensitivity⇥ Specificity

Basis function: See feature map.

Beta �: See type II error.

Bilinear: A function of two variables is bilinear if it is linear in both variables, e.g., the
linear kernel. Please refer to Wikipedia or any standard text on the definition of a bilinear
function, for functions of two variables.

Calibration: The agreement between the frequency of observed classes (or outcomes) and
the frequency of predicted classes (or outcomes), within subgroups or time intervals, or for
different samples[250].

Covariate: See feature.

Data matrix: An N ⇥ n matrix of data with N instances, each with n features.

Dependent variable: See target.

Discrimination: How well a classifier or prediction model discriminates between data
of different classes — i.e., how well it classifies them[250]. There are various measures
of discrimination such as accuracy, sensitivity, specificity, etc. Discrimination is often
accompanied by calibration[250].
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Event: A positive target value (outcome). The outcome of interest.

Explanatory variable: See feature.

Feature matrix: See data matrix.

F-Score: PPV ⇥ Sensitivity (or Precision ⇥ Recall)

False discovery rate: Also called q-Value. The chance of not having the condition among
those that test positive. The chance of satisfying the null hypothesis among those that
reject the null hypothesis. q = FP / (FP + TP) = 1 - PPV.

False negative (FN): The individual has the condition but tests negative for the con-
dition. The individual does not satisfy the null hypothesis but the test accepts the null
hypothesis.

False omission rate: The chance of having the condition among those that test nega-
tive. The chance of not satisfying the null hypothesis among those that accept the null
hypothesis. x = FN / (FN + TN) = 1 - NPV.

False positive (FP): The individual does not have the condition but tests positive for
the condition. The individual satisfies the null hypothesis but the test rejects the null
hypothesis.

Feature: Also called an explanatory variable, attribute, covariate or independent variable.
Features are random variables which I hope are correlated with a target of prediction, so
that I can use them to predict the target.

Feature map: Also called a basis function or kernel map. Tbd.

iff : if and only if

Independent variable: See feature.

Input: See data matrix.

Instance: An instance is each occurrence of an object, where a set of instances constitutes
a sample, drawn as a subset from a population. Each draw is an instance, e.g., a patient
(or their indicators and observations).

Kernel (in kernel methods): A kernel, in the context of kernel methods, refers to a
similarity function that takes two inputs of any type (e.g., atomic data type or complex data
type) and outputs a real-valued number that represents the similarity between the inputs,
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where the function must meet other specific requirements. A kernel must be symmetric
(i.e., switching the inputs yields the same output) and must be admissible for its purpose
(e.g., p.d. or c.p.d. for SVM).

This definition is distinguished from 10 others: kernels in kernel density estimation (see
below), kernels in image processing, kernels for “machine learning in the cloud” as in
Kaggle, convolution kernels in convolution neural networks, kernelization in algorithms
and complexity theory, kernels in operating systems and graphical processing unit (GPU)
computation, kernels in geometry, kernels in set theory, kernel category theory and kernels
in linear algebra.

Kernel (in kernel density estimation): If I want to estimate the probability density
function (p.d.f) for a feature from a set of data then I use kernel density estimation (KDE)
to do so, where the basic idea of KDE is that the p.d.f. is a landscape made up as a sum
of hills at each point in the data set, such that overlapping hills can lead to mountains and
plateaus.

Kernel map: See feature map.

Kernel methods: Kernel methods are methods in statistics, machine learning or oth-
erwise which use kernels, such as: support vector machines, support vector regression,
kernel logistic regression, kernel k nearest neighbour, kernel fisher discriminant, gaussian
processes, kernel principal components analysis, kernel supervised principal components
analysis and import vector machines,.

Linear: Please refer to Wikipedia or any standard text on definitions of a linear function,
for functions of one-variable, or the definition of a bilinear function, for functions of two
variables.

Misclassification rate: The proportion of incorrect or false results in the system. MR
= (FP + FN) / (TP + TN + FP + FN) = 1 - Accuracy.

Negatives: A negative target value (or outcome) representing the (negative) class, in
binary classification.

Negative predictive value (NPV): The chance of not having the condition among those
that test negative. The chance of satisfying the null hypothesis among those that accept
the null hypothesis. NPV = TN / (TN + FN) = 1 - False Omission Rate.

Observations: See instances.

Outcome: See target.
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Output: See target.

p-Value: See Type I error.

Patient: A person that is under the care of a health care provider, for (or about) whom
I wish to make predictions, estimations or decisions. An instance of data represents a
patient’s observations.

Positives: A positive target value (or outcome) representing the (positive) class of interest,
in binary classification.

Positive predictive value (PPV): Also called precision. PPV = TP / (TP + FP)
= 1 - False Discovery Rate. The chance of having the condition among those that test
positive. The chance of not satisfying the null hypothesis among those that reject the null
hypothesis.

Power: For statistical power, see sensitivity.

Precision: See positive predictive value.

Random variable: A random variable refers to a variable that I may measure, which
takes on (or appears to take on) values randomly from its probability density/distribution
function (for continuous/discrete values respectively). In this context it refers to a feature.
See feature.

Response variable: See target.

Recall: See sensitivity.

Sample: A subset of a population. Instances (or observations) drawn from a population
or distribution. See also, data matrix.

Sensitivity: Also called statistical power, recall or true positive rate. The chance of
testing positive among those with the condition. The chance of rejecting the null hypothesis
when/given the null hypothesis is false. Sensitivity =

TP/(TP+FN) = 1� ErrorTypeII .

Specificity: Also called selectivity or true negative rate. The chance of testing negative
among those without the condition. The chance of accepting the null hypothesis among
those that satisfy the null hypothesis. Specificity =

TN/(TN+FP ) = 1� ErrorTypeI .

Statistical power: See sensitivity.
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Support vector machine (SVM): A classification method which is variously referred
to as a machine learning method, an instance-based method, a maximum-margin tech-
nique and a kernel method. By default, I refer to soft-margin SVM, which can handle
errors resulting from data which are not linearly separable; and in that case SVM has two
optimization criteria: maximum margin and minimum error. By default, I also refer to
SVM with kernels (as a kernel method)—not just linear SVM. See section 2.2 for more
information.

Support vector regression (SVR): A regression method which is variously referred to
as a machine learning method and an instance-based method. SVR is insensitive to errors
within a tube surrounding the estimate.

Target: Also called outcome or dependent variable (because its value depends on the
prediction model and its input). The value being predicted, estimated or decided. A
target may be continuous as in regression, or binary as in binary classification, or nominal
(categorical) as in multi-class classification, or less commonly ordinal.

True negative (TN): The individual does not have the condition and tests negative for
the condition. The individual satisfies the null hypothesis and the test accepts the null
hypothesis.

True positive (TP): The individual has the condition and tests positive for the condition.
The individual does not satisfy the null hypothesis and the test rejects the null hypothesis.

Type I error: Also called ↵ (alpha), p-Value or false positive rate. The chance of testing
positive among those without the condition. The chance of rejecting the null hypothesis
among those that satisfy the null hypothesis. ↵ = FP / (FP + TN) = 1 - Specificity.

Type II error: Also called � (beta) or false negative rate. The chance of testing negative
among those with the condition. The chance of accepting the null hypothesis among those
that do not satisfy the null hypothesis. � = FN / (FN + TP) = 1 - Sensitivity.
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