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Abstract

Quantum simulation is the process of using a highly controllable quantum system to
simulate another less controllable system. Quantum simulation can provide insights into
the properties and dynamics of complex many-body systems. Trapped ion platform is
one of the leading candidates for a quantum simulator due to its properties such as ease of
isolation, preparation and manipulation. Simulating high dimensional spin systems enables
us to study the various physical phenomena in higher geometries. Previous proposals for
simulating higher dimensions require experimental resources that don’t scale favourably
with the system size[1]. In this thesis, we propose a hybrid (digital-analog) approach to
simulate an effective 2D lattice from a 1D chain of trapped ions. In the initial geometry,
the ions interact with each other through a flip-flop kind of interactions generated using
a global Mølmer-Sørensen scheme [2, 3]. A series of single qubit gates are used to rescale
and suppress the interactions in the initial chain to simulate the target geometry. These
gates are applied using a laser field gradient which generates a site-dependent AC stark
shift. I discuss the construction of this protocol in detail and the theoretical results for the
case of 6, 9 and 16 ions. I also show that the number of gates and also the Stark gradient
scale linearly with the system size.

Experimental implementation of an ion trap quantum simulator has various challenges,
one of the which is the laser frequency stabilization within a fraction of transition linewidth.
Traditionally, this is done by locking the lasers to an atomic transition. In this thesis, I
discuss two alternative schemes for locking the laser frequencies used to build a 171Yb+ ion
quantum simulator. One of these solutions uses a commercial wavemeter as a measuring
device for the frequency and feedbacks the lasers based on this measurement. I discuss
the layout of this scheme and some results. Other solution uses a Fabry Perot (FP) cavity
to transfer the stability of a stable laser to an unstable laser. In this thesis, I discuss the
construction, optical layout and transmission measurements of a home-built FP cavity.
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Chapter 1

Introduction

Understanding and predicting the properties as well as dynamics of complex physical sys-
tems have been one of the quests of generations of physicists. One of the heuristics to
solve this class of problems is the bottom-up approach. We first try to identify, understand
and postulate the fundamental building blocks that we guess would be the reasons for
the target phenomenon. Modern fundamental theories like quantum mechanics, general
relativity are the results of this approach. The next step in this bottom-up approach is
using these postulates to predict and understand the properties by simulating or emulating
complex physical systems. Traditionally mathematical and in the past century, computa-
tional (classical) tools have been used to perform this kind of simulations. However, this
approach might not work for problems that require exponentially scaling resources with
the system size.

In recent decades it has been realized that simulating many complex quantum mechan-
ical systems with the bottom-up approach using the traditional tools is not practically
feasible. Due to the properties like entanglement and quantum superposition, it requires
an exponential amount of classical resources such as processing power on a computer, to
simulate the dynamics of quantum mechanical systems. One solution to this problem as
proposed by Feynman [4], is to use a highly controllable quantum mechanical system as
our simulation tool. Various criteria needs to be satisfied by a system to be a candidate for
a quantum simulator [5]. These criteria for quantum simulation can be achieved in several
physical systems, such as trapped ions, NMR, superconducting qubits, ultracold atoms,
NV center diamonds etc.,

The trapped ion platform is one of the leading candidates for quantum simulation
because of the properties such as ease of preparation, isolation and control, with near
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perfect state initialization and detection. Long coherence times as high as few minutes
have been reported [6] for the case of 171Yb+ ions. One of the most attractive features of
trapped ions is the fully connected nature of their phonon mediated spin-spin interactions.
Here, two hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. Though
in a typical experimental realization, the geometry of the trapped ions is in the form of
a linear chain, the phononic bus mediating the 2-body long-range interactions make it a
fully connected system. Fig. 1.1 shows a chain of 5 ions (blue circles) trapped in a Paul
trap, the red lines between them represent the coupling strengths. This system of linear
chain of ions is equivalent to a fully connected graph of interactions, as shown at the right
of the figure.

2Yb+ Yb+ Yb+Yb+ Yb+ =

Figure 1.1: Equivalence of a chain of ions and a fully connected graph

A typical quantum simulation experiment using trapped ions starts by initializing the
quantum system to a known state, then evolving the state under the simulated Hamiltonian
which is followed by a set of measurements. The simulations can be broadly classified into
two categories, analog and digital, based on the procedure of emulating the Hamiltonian. In
an analog quantum simulation, the Hamiltonian of the simulator is modified to match the
target Hamiltonian, whereas in a digital simulation the target Hamiltonian is decomposed
into a series of single and two qubit gates that are sequentially applied on the initial state
to reach the final state. Though the digital simulation is more universal, errors due to this
digitization build up as the system size increases. On the other hand, analog simulations
are not prone to digitization errors, but can only simulate a restricted set of Hamiltonians.
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Series of gates

Initial state Final state

Analog

Digital

Figure 1.2: Types of quantum simulations

In this thesis, we investigate a hybrid analog-digital scheme to simulate a Hamiltonian
that is not easily obtained in the system of a chain of trapped ions. We would like to sim-
ulate a 2D spin model on a square lattice in a 1D chain of trapped ions. Simulating high
dimensional spin systems enables us to study the various physical phenomena in higher
geometries. Fig. 1.3 shows a graph where the nodes are Yb+ ions and the edges represent
non-zero interaction between the ions. This arrangement of interactions transforms a linear
chain of 16 ions to an effective 4x4 2D lattice geometry. To simulate this geometry from
a linear ion chain using an analog quantum simulation requires arbitrarily programmable
intensity and frequency controls at the level of individual ions [1]. This approach is not
favourably scalable with the system size. Whereas, for a case of digital simulation, errors
accumulate from single and two qubit gates for large systems. To overcome these prob-
lems, in this thesis, we propose a hybrid (analog-digital) simulation scheme (Chapter 3) to
generate an effective 2D lattice. This is done by modulating the spin-spin interactions [7]
using a global laser gradient field. This hybrid simulation scheme requires less experimental
controls than a fully analog or fully digital scheme to solve the same problem.

Yb+ Yb+ Yb+ Yb+

Yb+

Yb+

Yb+

Yb+ Yb+ Yb+

Yb+ Yb+ Yb+

Yb+ Yb+ Yb+

Figure 1.3: A 2D lattice of 16 ions
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Experimental implementation of this approach to simulate large quantum systems us-
ing trapped ions has various steps of trapping, preparing, manipulating and detecting
the spin states. This requires setting up highly sensitive ultra-high vacuum chambers,
frequency-stabilized lasers and other experimental tools involving digital, analog and RF
electronics. There are various challenges in setting up these tools. One such challenge is
to frequency stabilize the lasers to an atomic transition. The traditional ways of stabi-
lizing the lasers against ambient drifts use atoms as references. In this thesis, I discuss
the implementation of two alternative schemes to frequency stabilize the lasers.(chapter 4).

1.1 Outline

The following is the brief outline of this thesis

• Chapter 2 discusses some fundamentals aspects of trapped ions platform which one
would need to understand the implementation of our scheme for hybrid quantum
simulation.

• Chapter 3 describes the intuition, protocol construction and some results for engi-
neering 2D lattices from 1D chain of trapped ions.

• Chapter 4 describes the scheme, construction and some results for frequency locking
the lasers against the ambient drifts in the context of our lab.

• Chapter 5 concludes the thesis with a brief note on the future outlook.

4



Chapter 2

Introduction to trapped ion platform

In this chapter, I will briefly describe the trapped ion platform and some of the theo-
retical tools one needs to understand to implement the hybrid (analog-digital) quantum
simulations described in chapter. 3.

Figure 2.1: Chain of ions trapped in a Paul trap. CCD image taken from [8]

In the context of our experiments, two hyperfine levels of ground state of 171Yb+ ion
are used as |↑〉 and |↓〉 spin states. In order to perform quantum simulation experiments
using these ions, one must be able to create, isolate and manipulate a collection of ions,

5



induce interactions between spins. To trap a chain of ions, a beam of neutral Yb atoms is
ionized using a pair of lasers which are tuned to kick out the valence electron. The ionised
Yb atoms are then trapped using electric fields. As a charged particle cannot be held in
space using just electrostatic field because local extrema cannot exist in an electrostatic
potential (Earnshaw’s theorem). One of the solutions to circumvent this problem is to
use oscillating electric fields in addition to electrostatic fields. Thus creating an effective
extremum in the time average potential. A combination of electrodes is used to apply these
fields to trap the ions at the potential minimum. One such arrangement of electrodes we
are trying to implement in our lab is a blade trap Fig. 2.1. In this geometry, 4 segmented
blades are arranged to form a cross, trapping a chain of ions at the center.

This geometry creates a 3D confining potential with effective trap frequencies ωX , ωY , ωZ .
The dimensions of the geometry are chosen such that the resulting trap frequencies are
higher in X and Y directions when compared to that of the Z(ωX ≈ ωY >> ωZ). When
ions are trapped in this trap, the attracting force due to the confining potential and the
coulombic repulsive potential act against each other. This leads to an equilibrium position
of a linear chain of ions. This chain of ions oscillate around the equilibrium positions on
perturbation. These oscillations can be decomposed into eigen normal modes of motion
in X,Y,Z directions. The normal modes in X,Y direction (transverse modes) are typically
designed to have higher frequencies than that of the Z direction (axial modes). Fig. 2.2,
show the frequencies and eigen mode vectors of transverse oscillations for a chain of 9 ions.
Here we chose ωX = 2π × 5 MHz and ωZ = 2π × 1 MHz. The normal mode of highest
frequency is called the Center of Mass (COM) mode where the eigenvector amplitudes are
equal for all the ions. The next highest frequency is the tilt mode where ions at the end of
the chain have higher amplitudes of oscillation.

2000 1500 1000 500 0
Mode Frequency - COM frequency (kHz)

123456789

COM

1

TILT

2 3

4 5 6

7 8 9

Figure 2.2: Normal motional modes - 9 ions
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Figure 2.3: 171Yb+ energy level diagram

Once a chain of ions is trapped, they need to be initialized to motional and spin ground
states to perform the quantum simulation experiments. This is done by using a combination
of laser beams performing laser cooling, sideband cooling, optical pumping and repumping
of the ions to the ground state. Lasers with wavelengths 369nm, 760nm and 935nm are used
to perform these operations. Here cooling and optical pumping require the generation of
sidebands using an Electro-Optic modulator (EOM) at 14.7 GHz and 2.1 GHz respectively
[9]. The energy level scheme of 171Yb+ ions featuring various transition wavelengths is
shown in Fig. 2.3. As we can notice that the linewidths of these transitions are in the order
of few MHz, the lasers need to be tuned and stabilized to these wavelengths continuously
to deterministically perform the quantum simulations experiments. Locking schemes to
perform this task are discussed in more detail in chapter 4.
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2.1 Interactions mediated in a chain of ions

In this section, we briefly describe the mechanism for engineering an XY or flip-flop spin-
spin interactions. This Hamiltonian will be used for simulations discussed in Chapter
3. In a chain of ions, we use vibrational phonons of the chain to mediate interactions
between ions. This is done using Mølmer-Sørensen interaction scheme [2] which uses a
combination of lasers that induce off-resonant Raman transitions between the spin and
vibrational states of the ions. To briefly understand this scheme, consider a pair of counter
propagating Raman lasers with frequencies ν1 and ν2 incident on a chain of ions(Fig. 2.4).
These lasers are tuned such that the beatnote produced due to difference in frequencies,
can excite transitions between spin-phonon states. (Fig. 2.4). Two such off-resonant
beat notes with frequencies νqubit + µ and νqubit − µ (Fig. 2.5) induce and effective Ising
interactions between spins (coupling ↓↓ with ↑↑ and ↓↑ with ↑↓).

Raman 1

Raman 2

Figure 2.4: Raman lasers configuration

Raman 1

Raman 2

Figure 2.5: Raman lasers configuration for Mølmer-Sørensen scheme
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This Molmer-Sorensen scheme induces an effective Sxi S
x
j type interaction between every

pair of ions (i, j) with a coupling strength Jij.

Heff = HXX =
∑
i>j

Ji,jS
x
i S

x
j (2.1)

Ji,j = ΩiΩj

(
~∆k2

2m

)∑
k

bki b
k
j

µ2 − ω2
k

(2.2)

Here the sum (k) is over all the vibrational normal modes of the chain (Fig. 2.2), bkj
is the eigen vector component of ion j for the vibrational mode k, ωk is the frequency of
the normal mode. Ωi is the Rabi frequency of the lasers on ion i and µ is the detuning
from the carrier transition. From the eqn. 2.2 we can see that the value of µ decides the
profile of Jij. Fig. 2.6 summarizes the dependency of µ. If µ is chosen close the COM
mode, since the eigen vector amplitudes are same for all the ions, the scheme produces an
interaction profile with nearly equal interaction strength. Whereas if it is chosen close to
the tilt mode, the resulting interaction profile increases with ion distance. Thus various
interaction profiles can be generated by just changing the detuning, though the inverse
problem of finding the detuning and Rabi frequency, given an interaction profile is not
trivial. A hybrid approach to solve this inversion problem is discussed in chapter 3.

Mode freq- COM freq (kHz)

Zig-Zag Tilt COM

(arb. units)

Figure 2.6: Dependence of interaction profiles with the detuning µ, for the case of 9 ions
trapped in a harmonic trap with trap frequencies ωX=5 MHz, ωZ=1 MHz
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Using this protocol to produce Ising interactions of type Sxi S
x
j and by adding an addi-

tional bias field, the coupling created between |↓↓〉 and |↑↑〉 can be eliminated, retaining
only the couplings between |↓↑〉 and |↑↓〉. Thus simulating flip-flop S+

i S
−
j kind of interac-

tions (HXY ) [3] under the condition that |Bz| >> |J0|

HXX +Bz

∑
i S

z
i

|Bz | >> |Ji,j |−−−−−−−→ HXY

where
HXY =

∑
i<j

JijS
+
i S
−
j + h.c.

In Chapter 3, we present a protocol to engineer a target interaction profile Jij. We will
present solutions for effectively creating a 2D spin lattice in a 1D chain of ions, by suitably
manipulating the interaction graph.
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Chapter 3

Engineering 2D lattices in a 1D chain
of ions

In this chapter I will be describing the theoretical framework and some results of simulating
a two dimensional square lattice from a one dimensional chain of trapped ions. Before going
into further details, let me first briefly explain the idea behind this scheme. This scheme
of hybrid (analog-digital) quantum simulation relies on digitally modulating an analog
quantum simulation

1 2 3 4
1 2

34
Figure 3.1: Transforming a fully connected geometry of 4 ions to a (2x2) square lattice

1. Analog: For a given 1D chain of ions, we first create an interaction profile between
ions that is simulated using a global Mølmer-Sørensen scheme as described in [2]
Chapter 2. For example, in the case of 4 ions, to simulate a 2x2 lattice, we start by
simulating a fully connected geometry with equal interactions by choosing a global
Mølmer-Sørensen detuning close to the COM mode.
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2. Digital: We then suppress and rescale some of the unwanted spin interactions by
applying a series of single spin operations. In case of 4 ions, to simulate a square
lattice starting from a fully connected geometry, this protocol suppresses J13 and J24
(Fig.3.1) In our scheme these single spin operations are applied via laser induced site
dependent AC Stark shift.

In the following sections, I will describe in detail the digital part of our scheme.

3.1 Hamiltonian setup

Consider a linear chain of n ions, we assume that every pair of ions (i, j) interact with
each other via a flip-flop (S+

i S
−
j ) kind of interaction with a coupling strength of Jij. We

assume an initial long range interaction profile of form Jij = J0
|i−j|α where α ∈ (0, 3) and J0

is a scaling factor. Thus the initial Hamiltonian HXY can be written as

HXY =
∑
i<j

JijS
+
i S
−
j + h.c. (3.1)

Such a Hamiltonian can be generated starting from an XX Hamiltonian by applying
a large effective magnetic field along the Z-axis as described in Chapter 2. To achieve
the goal stated in step 2 i.e to suppress or rescale the spin interactions in an initial spin
graph, we require a way to distinguish these interactions. An ingredient to distinguish
the interactions between various spins is a site dependent effective magnetic field ωi. This
field can be generated in an experiment by applying a laser beam with an inhomogeneous
intensity profile, imparting a site dependent light (AC Stark) shift on the spins. This
introduces an additional Hamiltonian (Hz) given as

Hstark = Hz =
N∑
i=1

ωiS
z
i

Under the action of Hz for a time τ , a pair of ions (i, j) in a state |ψij〉 is transformed to
a state eiωijτ |ψij〉 where ωij = ωi − ωj. Thus for a given time τ every pair of ions (i, j)
acquires a phase of φ = ωij ∗ τ . This relative Stark shift ωij is used as a tag in our scheme
to target the interactions.
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3.2 Case of 2 ions

1 2

Figure 3.2: A chain of two ions.

L[A]

[B] L
[A]

[B]

Figure 3.3: Time evolution of the flip-flop Hamiltonian for 2 ions

To understand how the spatially inhomogeneous field can effectively modify an XY inter-
action, consider a simple case of two ions interacting with a flip-flop Hamiltonian with
a coupling strength J0. With an initial two qubit state |↑↓〉, the evolution of the state
|ψ12〉 under the flip-flop Hamiltonian oscillates between |↑↓〉 and |↓↑〉. This can be seen
as trace [A] in Fig. 3.3 which shows 〈↑↓|ψ12(t)〉2 as a function of time. However, if the
HXY is reversed (−HXY ) after a time t, the evolution is inverted which is equivalent to
time reversal evolution. If this inversion is done at regular intervals of time, the evolution
is altered and the two qubit state is frozen(trace [B] in Fig. 3.4), This is equivalent to
suppressing the interaction between the spins.

L

Figure 3.4: Time evolution for 2 ions with an engineered interaction profile
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Now consider a sequence where an additional laser beam imprinting a site dependent
Stark shift Hz is introduced in between the pulses of HXY and −HXY . Let ω1 and ω2 be
the Stark shifts for the ions 1,2 respectively. This Stark shift introduces a relative phase of
φ = ωij ∗τ where τ is the duration of the pulse. If we choose τ such that φ = (2n+1)π, this
changes the state |ψ〉 → − |ψ〉 thus cancelling the effect of the Hamiltonian inversion (Fig.
3.4). However, φ = 2nπ retains the effect of Hamiltonian inversion. Thus by choosing τ
such that

φ = ωij ∗ τ = 2nπ → Suppresses the interaction

= (2n+ 1)π → Retains the interaction

3.3 Average Hamiltonian of a pulse sequence

To utilize above mentioned scheme of suppressing the interactions for a case of an n ion
network, we need to consider a more general pulse sequence scheme with multiple Stark
pulses of different pulse widths interleaved with Hamiltonian inversion (Fig.3.5). The
pulse widths have to be optimized to get the desired interaction graph. This requires an
understanding of the effective Hamiltonian of this pulse sequence. In this section, I will be
describing the average Hamiltonian for such an arbitrary pulse sequence.

L

Figure 3.5: General pulse sequence

Consider a 1D chain of n ions interacting via HXY . An additional laser induces a site
dependent AC Stark shift ωi introducing additional Hamiltonian HZ . In presence of both
HXY and Hz, with ωi >> J0 we can consider the effective Hamiltonian in interaction
picture as

H̃eff = e−iHZτHXY e
iHZτ =

∑
i>j

Ji,jS
+
i S
−
j e

iωijτ + h.c

But for a pulse sequence with Stark pulses interleaved with Hamiltonian inversion, the
effective Hamiltonian can be approximated by an average Hamiltonian.
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L 

Figure 3.6: Pulse sequence with Stark pulses interleaved with Hamiltonian inversion.

For a single cycle of a pulse sequence shown in Fig. 3.6,

Havg =
∑
i>j

Ji,jS
+
i S
−
j (eiωijτ − e2iωijτ ) + h.c

for L cycles

Havg =
∑
i>j

J ′i,jS
+
i S
−
j + h.c

where

J ′i,j =
Jij
L
∗ (eiωijτtot − e2iωijτtot + ...eLiωijτtot) (3.2)

Thus we obtain a flip-flop Hamiltonian whose interaction strength is transformed to J ′ij.
We can see that if we choose ωij ∗ τtot = 2nπ, J ′i,j = 0 thus suppressing the interaction
between ion i and ion j. But for a more general pulse sequence of form Fig. 3.5, the
average Hamiltonian for one cycle would be

Havg =
∑
i>j

J ′′i,jS
+
i S
−
j + h.c (3.3)

with

J ′′i,j =
J ′i,j
Tcycle

∗ (t1e
iωijτ1 − t2eiωij(τ1+τ2)...) (3.4)

Here Tcycle is the total time of one cycle of the pulse sequence. Now for a chain of n ions,
and Stark shift pattern ωi, we need to choose {tk, τk} such that Havg given in eqn.3.3 would
simulate the target Hamiltonian at the end of each cycle.
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3.4 Stark shift pattern to simulate 2D lattices

The problem of simulating a graph of interactions inherently divide the pairs of ions into
two categories. The pairs which have non zero coupling strength in the desired graph are
classified into Bond class and other pairs to Nobond class. For example to simulate the
2x2 lattice shown in Fig. 3.7,

Bond class = {(1, 2), (2, 3), (3, 4), (1, 4)}
NoBond class = {(1, 3), (2, 4)}

1 2

34
Figure 3.7: (2x2) geometry of 4 ions
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Figure 3.8: Stark gradient scheme to simulate m×m′ 2D lattice

As we can see from eqn. 3.3, for a given pulse sequence {tk, τk} which is global to all
ions in a chain, J ′′ij depends on ωij. This implies that ωij should be chosen such that the
pulse sequence makes J ′′ij to zero for Nobond class and appropriately scales the Bond
class. First criteria to be able to do this is to have ωij 6= ωpr for all pairs (i, j) ∈ Bond and
(p, r) ∈ Nobond. We can recall from Chapter 2. that these Stark shifts on each ion ωi are
proportional to the laser intensity Ii for a given detuning, thus we need to come up with
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a laser intensity pattern Ii to achieve our classification goal. Though there can be many
solutions for Ii to satisfy our requirement, the best solution would have properties like

1. Scalable i.e., Imax − Imin should scale favorably, such as linearly, with the number of
ions.

2. Experimentally feasible to implement

3. Requires less reconfiguration of the stark shift pattern (ωi) for different target ge-
ometries

One such intensity pattern to simulate a m′×m lattice is shown in Fig. 3.8. Let the linear
chain of ions be indexed from 1 to n, where n = m′ ∗ m for a case of 2D lattice. The
numbering scheme for the target 2D lattice is shown in (A) of 3.8, where the index of an
ion is counted left to right along a row followed by the next row. For this indexing scheme,
the Stark shift laser intensity pattern Ii is shown in (B) of 3.8. This pattern is a linear
gradient in intensity with slope I0 superimposed with additional jumps in intensity after
every m ions. This jump in intensity is required to break the bonds of (l ∗m, l ∗m+ 1) for
all l ∈ (1,m′). The jump in intensity depends on the parity of m,

Jump = +I0 for m:even

= +2I0 for m:odd

If the A.C Stark shift corresponding to I0 is ω0, then the set of ωij tags for Bond class are
{ω0, (m + r + 1)ω0} where r = mod(m, 2) which depends on the parity of m. We will be
using this property of this intensity pattern to determine the pulse sequence in the next
section.

3.5 Construction of pulse sequence

As the average Hamiltonian from eqn. 3.3 depends on {tk, τk, ωi} we need to determine
these parameters to match the effective Hamiltonian to the desired one. These set of
parameters form the pulse sequence that needs to be implemented during the experiment.
We start with the Hamiltonian in eqn. 3.1, where Jij = J0

|i−j|α and choose of α > 0 (for

example 0.2). For this choice α and labelling scheme described in the previous section, the
coupling strength Ji,i+1 = Ji,m+i ∗ mα. Thus, our pulse scheme should also rescale Ji,i+1

to be of able to simulate a 2D lattice with equal interaction strengths between all pairs in
Bond class.
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To simulate an m′ × m lattice, we start with the Stark shift pattern ωi described in
the previous section. The approach to finding the pulse sequence is to find set values for
{tk, τk} such that J ′′ij({tk, τk}) = F (ωij ∗ τtot) for all ions i, j, where τtot =

∑
k τk. The

function F (ωij ∗ τtot) is defined as

J ′′ij({tk, τk}) = F (ωij ∗ τtot) = 0 for (i, j) ∈ Nobond class

= β/mα for (i, j) ∈ Bond class and ωij = ω0

= β for (i, j) ∈ Bond class and ωij 6= ω0

Here β is the global interaction scaling factor which scales all the interactions of the target
Hamiltonian.

The following steps describe the procedure for finding such a pulse sequence

1. Set the value of τtot such that ω0 ∗ τtot = π. With this choice, we can see from eqn.
3.4, J ′ = 0 for all (i, j) where ωij is an even multiple of ω0. The tagging scheme in
sec. 3.4 is chosen such that all these (i, j) ∈ Nobond class. Now we only need to
worry about odd multiples of ω0.

2. With the choosen value of τtot we construct the function F (ωij ∗ τtot) for all ion pairs
(i, j) such that ωij is odd multiples of ω0.

3. Now, we fit this constructed F (φ = ωij ∗ τtot) to a Fourier series function G(φ) =∑l′

l=0 al∗cos(iWφ) by optimizing the real valued parameters {l′, al,W}. We use these
optimized values to find the pulse sequence. Here we have an additional constraint
of
∑l′

l=0 |al| = 1. To facilitate this constraint while optimizing for the parameters
{l′, al,W}, we need to set the global interaction scaling factor β < 1. We have
numerically found that β = 0.7 provides an efficient solutions upto N = 100 ions.

Segment Segment

Figure 3.9: A single cycle of the pulse sequence
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4. Figure 3.9 shows the structure of a single cycle of the target pulse sequence. It
is divided into two segments. The first segment has a sequence of k′ = 2l′ + 1
alternating {Hz, sk ∗HXY } pulses with times {τk, tk} respectively and sk = ±1. The
second segment is exactly the same as the first with the signs of HXY inverted, i.e.,
sequence of alternating {Hz,−sk ∗ HXY } pulses. We use Tcycle to denote the total
time of each cycle, where as T = Tcycle/2 denotes the total time of each segment.

For the average Hamiltonian approximation to work as described in sec.3.3, the pulse
sequence should satisfy the condition J0 ∗Tcycle << 1. Thus for a given initial J0, we
choose the total time of the pulse sequence as Tcycle = 2π × 0.1/J0.

The values of {τk, tk, sk} depend on our fit parameters {l′, al,W} as follows

tk = T |ak/2| for k = (1, 2, ...., l′)

= tk−l′ for k = (l′ + 1, ...., 2l′)

= T |a0| for k = 2l′ + 1

τk = τtot ∗W for k 6= (l′ + 1)

= τtot − (l′ − 1)τ1 for k = l′ + 1

sk = sign(ak) for k = (1, 2, ..., l′)

= −sk−l′ for k = (l′ + 1, ...., 2l′)

= −sign(a0) for k = 2l′ + 1

3.6 Analysis and Results for 6 ions

In this section, I will be illustrating the protocol I have described in the above sections for
the case of 6 ions to simulate a (3x2) 2D lattice. We start with a chain of 6 ions interacting
with a fully connected flip-flop type interaction described in eqn. 3.1. Here we choose
α = 0.2 and J0 = 2π × 1kHz. The Fig. 3.10 illustrates the goal of this simulation. As
described before the nodes of this graph are ions and the red, green edges between nodes
represent interactions in bond and nobond classes respectively. The protocol suppresses
the green edges and rescales red edges to achieve our desired graph.
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Figure 3.10: Transformation of 6 ion fully connected system to a 3x2 square lattice

The first step in simulating the 2D lattice is
to find the Stark intensity pattern described
in sec. 3.4. The desired intensity pattern is
shown in fig. 3.11, which is a linear gradi-
ent of intensity with slope=I0, superimposed
with a jump(2I0) in intensity after 3 ions.
The corresponding Stark shift produced from
intensity I0 is ω0. For this simulation, we
choose ω0 = 2π ∗ 500 kHz. 1 2 3 4 5 6
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Figure 3.11: Stark gradient for 6 ions

Once the desired Stark shift pattern is determined, the next step is to find the values
of {τk, tk} which form the pulse sequence to simulate the lattice. Following the steps 1
and 2 in Sec. 3.5, a function F (φ) is constructed and fitted with a Fourier series G(φ) =∑l′

l=0 al ∗ cos(iWφ). We choose the global interaction scaling factor β = 0.7 to facilitate
this fit. This fit is shown in fig. 3.12 and the fit parameters are tabulated.

20



1 2 3 4 5 6

3 4

Figure 3.12: 6 ions - Fourier series fit

W 0.142
a0 0.385
a1 0.0436
a2 0.114
a3 0.457

Table 3.1: Fourier series fit
parameters for 6 ions

Using the Fourier fit parameters, the pulse sequence {τk, tk, sk} is determined and tab-
ulated below

Table 3.2: Pulse sequence parameters for 6 ions

1 2 3 4 5 6 7
τ(µs) 0.142 0.142 0.142 0.148 0.142 0.142 0.142
t(µs) 1.069 2.793 11.19 11.19 2.793 1.069 18.896
sign +1 +1 +1 -1 -1 -1 -1
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Figure 3.13: Pulse sequence for 6 ions

With an initial state of |↑↓↓↓↓↓〉 this system of 6 ions is evolved for 100 cycles of above
mentioned pulse sequence. This evolution is done using time dependent master equation
solver based on QUTIP python module [10] [11]. The probability of the wavefunction |ψ(t)〉
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in states |↑↓↓↓↓↓〉 and |↓↑↓↓↓↓〉 is plotted (red trace: Engineered evolution) as a function
of time (scaled with J0) in the figure below(fig. 3.14). Along with this, the evolution of
flip-flop Hamiltonian with Jij of target (3x2) square lattice is also plotted (green trace:
Target evolution) for comparison. As it can be seen that these evolution plots match with
a good agreement for a long time.

0 1 2 3

Time, t(2π/J0)

0.0

0.5

1.0

〈↑
↓↓
↓↓
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Engineered Evolution
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↑↓
↓↓
↓
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Target Evolution

Engineered Evolution

Figure 3.14: Time evolution plots for the case of 6 ions

Even though the evolution plots have a good match, we need to estimate how well
we are able to simulate the target interaction graph. To estimate the simulated Jij, the
time evolution is done separately for every pair of ions (i, j) by setting Jpr = 0 for all
(p, r) 6= (i, j). The probability P (|↑↓〉) for every such evolution is plotted in fig. 3.15

These probabilities are then fit with a cosine function to find the interaction strength
Jij which is the angular frequency of the fit. The Jij matrices from such fit are plotted
in the fig. 3.16. For comparison, Jij matrices for target (3x2) square lattice and 1D fully
connected lattice with α = 0.2 are also shown. There are is a good match between Jij
matrices of the square lattice and engineered lattice with RMS error < 0.1%. Here RMS
error is defined as √∑

ij(J
E
ij − JT

ij )
2∑

ij |JT
ij |

Where JE
ij , J

T
ij denote the couplings in the engineered lattice and ideal target lattice re-

spectively.
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Figure 3.15: 6 ions pairwise time evolution plots
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Figure 3.16: Hamiltonian estimation for the case of 6 ions
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3.6.1 Simulation with experimental parameters

The above results of simulation start with an assumption that we can simulate a perfect
flip-flop Hamiltonian with Jij = ±J0/|i − j|α. Deviations from these assumptions during
an experiment might lead to errors in the final result. To get a better estimate for how
well we can implement this protocol in an actual experimental setup, we perform the
simulation with the following experimental parameters. Consider a chain of 6 171Y b+ ions
trapped in a Paul trap with axial and radial trap frequencies as ωX = 2π × 5 MHz and
ωZ = 2π × 1.7 MHz. The flip-flop Hamiltonian can be simulated from Mølmer-Sørensen
scheme by adding an additional transverse magnetic field as described in Chapter 2. For
HXX with positive Jij and α = 0.2, we use Raman lasers with global Mølmer-Sørensen
configuration with detuning µ = 2π×5.055 MHz with sideband rabi frequency ηΩ = 2π×18
kHz. Whereas for the case of negative Jij we use 2 global Mølmer-Sørensen beams with
detunings µ1 = 2π × 4.955 MHz, µ2 = 2π × 4.689 MHz with sideband rabi frequencies
ηΩ1 = 2π × 15 kHz and ηΩ2 = 2π × 4.1 kHz respectively. Along with these an additional
laser which creates a global Stark shift of ω = 2π × 10 kHz is added to transform the
HXX to HXY . These parameters create Jij with α ≈ 0.2 and J0 ≈ 2π × 520 Hz. To
create Hz we use a laser with site dependent intensity pattern similar to Fig. 3.11 with
ω0 = 2π×500 kHz. Using these parameters and the pulse sequence determined previously,
Jij is estimated for the engineered lattice shown in Fig. 3.17. This result matches with the
Jij of the target square lattice with an RMS error< 2%.
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Figure 3.17: Hamiltonian estimation with experimental parameters for 6 ions
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3.7 Results for 9,16 ions

In the previous section, we saw that there is a good match of engineered lattice to that of
the target lattice for a case of (3x2) 2D lattice from 6 ions. This protocol is scalable to a
large number of ions. In this section, some of the results to simulate (3x3) lattice with 9
ions and (4x4) lattice with 16 ions are summarized.

Fig. 3.18 and Fig. 3.20 show the laser intensity pattern to create the site dependent
Stark shift for the case of (3x3) lattice and (4x4) lattice respectively. These are patterns
with a linear gradient in intensities superimposed with jumps 2I0 for 9 ions and I0 in case
of 16 ions. For these simulations similar to above cases we consider α = 0.2, J0 = 2π × 1
kHz, ω = 2π×1 MHz. These simulations are done with an assumption of a perfect flip-flop
interaction. Following the steps in sec. 3.5, Fourier fit parameters are found for both the
cases and tabulated in Tab. 3.3,Tab. 3.4. Using these pulse sequences desired (4x4) and
(3x3) lattice are engineered from fully connected interactions as shown in Fig. 3.19 and
Fig. 3.21. These match with target square lattices with RMS error < 0.1%.

Simulating (3x3) lattice using 9 ions
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Figure 3.18: Stark gradient pattern for 9 ions

Table 3.3: Fourier series fit parameters for 9 ions

W a0 a1 a2 a3 a4
0.1 0.241 0.204 -0.094 0.126 0.334
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Figure 3.19: Hamiltonian estimation for the case of 9 ions

Simulating (4x4) lattice using 16 ions
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Figure 3.20: Stark gradient for 16 ions

Table 3.4: Fourier series fit parameters for 16 ions

W a0 a1 a2 a3 a4 a5
0.083 0.204 0.231 -0.048 -0.039 0.204 0.270
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Figure 3.21: Hamiltonian estimation for the case of 16 ions

3.8 Scaling with the number of ions
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Figure 3.22: Scaling of number of pulses

Previous sections illustrate that the protocol
works until the case of 16 ions to simulate
(4x4) lattice. One of the important features
to look for any simulation is the scaling of
resources with the system size. To estimate
scaling efficiency for this hybrid simulation,
we calculate the number of pulses that are
needed to simulate an (mxm) square lattice
as a function of the number of ions (shown in
Fig. 3.22). We can see that the number of
pulses/cycle increases linearly with the num-
ber of ions.

3.9 Extension to 3D lattices

More interesting phenomenon can be studied in a system of ions connected in geometries
of higher dimensions. This hybrid quantum simulation protocol can also be extended to
higher dimensions (3D). Fig. 3.23 illustrates that the transformation of a chain of 8 ions
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that are fully connected with a flip-flop interaction with α ≈ 0 to (2x2x2) 3D lattice. Fig.
3.24 shows the Jij estimation for this engineered lattice which shows a good match with
the target lattice.

=

Figure 3.23: Transformation of a fully connected 8 ion chain to a (2x2x2) 3D lattice
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Figure 3.24: Hamiltonian estimation for the case of 8 ions

3.10 Discussion

In Sec. 3.6,3.7, we saw the results of hybrid quantum simulation protocol for the case of
6, 9, 16 ions. These results have a good agreement with the target geometry with RMS
error of < 0.1% (considering only digital part of simulation). In the case of 6 ions, we
saw that the RMS error of < 2% is obtained if we consider the errors from the analog
part of this implementation. This protocol scales linearly with the number of pulses (Sec.
3.8) and the Stark intensity gradient increases almost linearly which makes it feasible for
experimental implementations with large number of ions, not requiring high gradients in
intensities. Thus can be used to study rich physics phenomenon in 2D lattices with a
large number of ions, given that J0 ∗ Tcycle << 1. This approach of average Hamiltonian
theory can also be extended to higher geometries like 3D lattices (Sec. 3.9) but scaling of
resources for such cases is yet to be studied.
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Chapter 4

Laser frequency stabilization

In this chapter, I will be discussing the setup and some results about the frequency locking
schemes that stabilize lasers in the context of our lab. As discussed in Chapter 1, a
scheme to frequency stabilize lasers against drifts due to various ambient fluctuations like
temperature and pressure is required to address various atomic transitions that manipulate
the trapped ions.

Any locking scheme that stabilizes an instrument from drifts can be divided into 3
functional blocks

1. Measurement: A system which can extract the relevant information from the in-
strument which will then be used to quantify the drift. For example, this can be a
system to measure the frequency of a laser.

2. Reference: A reference system/signal which is relatively stable than the target
instrument. This will be used to compare the information from the measurement to
find the amount of drift.

3. Feedback: Once the amount of drift is quantified, this is a system which sends a
feedback signal to the target instrument to correct the drift.

The task of stabilizing the laser frequency at the desired value becomes readily feasible
if there exists an easily accessible atomic transition near the target frequency. The laser
light can then be sent to an atomic source and the attenuation of its intensity at the atomic
resonance can be used to lock the frequency. However, a convenient atomic resonance does
not exist for all frequencies of relevance. Here we present two alternative schemes for
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locking the lasers that will be used in quantum simulation experiments using 171Y b+ ions.
These schemes do not rely on an atom source for measurement thus can be used to stabilize
lasers from broad wavelength range. For these locking schemes, we try to stabilize DL Pro
diode lasers from Toptica with wavelengths 369nm, 399nm, 935nm, Vescent DBR laser of
wavelength 760 nm for Yb and 493, 650nm lasers for Ba. These lasers have a reported
linewidth of ≈100 kHz. These implementations of frequency locks are targeted only to
compensate for the drifts and not to decrease the inherent linewidths of the lasers.

4.1 Wavemeter based frequency lock

In this implementation of the frequency lock, the measurement of laser frequency is done
using a commercial wavemeter WS-7 from High Finnesse [12]. This wavemeter is based on
a Fizeau interferometer. The wavelength/frequency is measured by comparing the interfer-
ogram of the input laser beam to a stored calibrated interferogram. This measurement is
robust and stable compared to other wavemeters based on Michelson interferometer since
it doesn’t have any moving parts.

Figure 4.1: Working of a wavemeter [12]

This particular wavemeter can make measurements in a broad range of 330nm - 1100nm,
with a reported accuracy of 60 MHz and a precision of 10 MHz. These measurements are
made at a sampling rate of 500 Hz. It has an additional attachment of an optical switch,
which can be used to measure the wavelengths of 8 different laser beams simultaneously.
Though this would result in dividing the sampling rate among the various measurements.
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This wavemeter also contains an inbuilt pressure and temperature sensors which can be
used to understand the correlations of change in ambient pressure and temperatures with
the change in laser frequency. Fig. 4.2 shows the drift in laser frequency(unlocked 935nm
laser), pressure, temperature measured using this wavemeter as a function of time. We can
clearly see the correlation between the laser frequency and ambient pressure in this graph.
The drift in measurement can be the result of both the drift in laser frequency and the
wavemeter interferometers.
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Figure 4.2: Drift of frequency due to ambient fluctuations

Using the above mentioned wavemeter and optical switch, we implement a frequency
lock, the scheme of which is shown in Fig. 4.3. Laser beams from multiple lasers are
sent to the optical switch using multiple single mode FC/APC to FC/PC optical fibers.
Another multimode fiber is connected from the common port of the optical switch to
the wavemeter. This wavemeter is also pre-calibrated to a 780nm laser that is locked
to a Rubidium reference. The acquisition of interferogram and control of the optical
switch is done by a software (supports only Microsoft Windows operating system) provided
by the manufacturer. After the acquisition, the software calculates wavelength from the
interferograms and display it on screen. This control software is a single threaded program
which is not efficiently written, so other programs running in the same CPU affect the
sampling rate of the measurement. The sampling rate even decreases when the GUI of the
software if maximized compared to that of the minimized. To avoid these issues of sampling
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Figure 4.3: Wavemeter lock scheme

rates, a dedicated computer based on Intel NUC [13] is used to perform the measurements.
This computer has a small form factor of 4”x4”x2” and is equipped with an i3 processor,
8GB RAM, 256GB SSD. It also runs a python server which grabs the information about
the wavelength (using an API provided by the manufacturer) and transmits it over the
Ethernet. A client python program running in a computer based on a Raspberry PI 3B+,
receives the wavelength information from the server and then calculates the error from the
set-point wavelength. This client then feedbacks the lasers by sending a voltage to the
piezo-actuator of lasers which is a function of error calculated.

The feedback voltage is generated using home built Digital to Analog Converter (DAC)
boards based on DAC7744[14] that are controlled using an FPGA based on a Xilinx Spartan
6 [15]. This home built FPGA DAC system has a master FPGA board and daughter DAC
boards, each of which has a 4 channel DAC7744 DAC. Each daughter board has 4 analog
outputs with range ±10V, sampling rates of 100ksps. Additionally, each board has a 6bit
DIP switch which sets the address of the board. This address is used to target daughter
board from the master board.

To check the response of the feedback system on the change of laser frequency, the piezo
of the laser is scanned at a frequency of 10 Hz which in turn changes the frequency of the
laser. The scanning voltage can be seen as the yellow trace in Fig. 4.4. The wavelength
is measured by the wavemeter and a voltage signal proportional to the error is generated
which can be seen as the blue trace in Fig. 4.4. We can see that our feedback system can
follow the changes with a lag which is inherent from delay in wavemeter measurement.
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Figure 4.4: Response of the feedback circuit with the scanning of laser piezo

Locking results

Using this locking scheme mentioned above PID parameters are found using ZieglerNichols
method [16] for DL Pro toptica laser with wavelength 935nm. These PID parameters are
then used to calculate the feedback voltage as a function error signal. Using the PID
parameters obtained for 935nm laser, the wavemeter lock has been implemented to lock
935nm laser form the drifts. The comparison of drift of frequency in situations of locked
vs unlocked is shown in Fig. 4.5. As we can see that the locked laser doesn’t drift for
long periods of time. This locking scheme is limited by the precision and accuracy of the
wavemeter.
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Figure 4.5: Locked laser vs unlocked laser
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4.2 Cavity based frequency lock

Another solution for frequency locking lasers is using a Fabry Perot (FP) cavity to measure
the drifts in laser frequencies. The goal of this thesis is to build a cavity that is used to
monitor the laser frequency and can be further used to lock the lasers. In this chapter, I
will discuss the construction and optical setup for the cavity followed by a proposal for a
layout of the cavity based frequency lock.

A Fabry Perot (FP) cavity is an optical resonator that transmits a laser beam coupled
into it only when the length of the cavity is an integral multiple of the wavelength. Thus for
a given cavity length, the transmitted signal is a function of frequency. The cavity can thus
be used for measuring absolute frequencies if the cavity length is accurately known. But
now the stability of the measurement would depend on how stable the length of the cavity
is against drifts in ambient temperature and pressure fluctuations. Thus the cavity cannot
be practically used to make an absolute measurement of frequency. A workaround for this
problem is to use a the cavity to make a relative measurement of frequencies between two
laser beams. Given that one of the lasers is stabilized (for example to an atomic reference)
the drift of the relative measurement quantifies the drift of the second laser. This relative
measurement is not very sensitive to the length of the cavity, thus can be more stable.

Highly reflective surfacesR1 R2

d

ΔT369

ΔT780

Scanning cavity length
Scanning mirror

Photodetector

Oscilloscope

369nm
+

780nm

Figure 4.6: Cavity lock working. Light from 369nm and 780nm lasers are coupled into a
cavity with a scanning mirror. R1, R2 are the radii of curvature for the cavity mirrors. The
transmitted light detected by a photodetector and the signal is displayed on an oscilloscope.

In this particular implementation, a DL Pro laser from toptica at 780nm is used as a
stable reference for the relative measurement. This laser is locked to an atomic transition
of Rubidium. To lock a frequency of a laser, say a 369nm laser, both 369nm and 780nm
laser beams are coupled into the cavity which is continuously scanning one of its mirrors to
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change the cavity length. A photodiode after the cavity measures the transmission peaks
of both 369nm and 780nm beams as shown in Fig. 4.6 as a function of time. Let ∆T780 be
the time interval between 2 transmission peaks of 780nm and ∆T369 is the interval between
one of the transmission peaks of 780nm and a 369nm peak. The feedback scheme tries to
keep the ratio of ∆T369/∆T780 constant. This scheme is scalable, we can use a single FP
cavity to lock multiple lasers of wavelengths 369nm, 399nm, 760nm, 935nm simultaneously.
In the following sections, I will discuss the design and construction of a cavity which is
designed to perform the above mentioned locking scheme.

4.2.1 Cavity design

The cavity in our implementation is made of two custom concave mirrors of the radius of
curvature (R1 and R2) 150mm (procured from Photop technologies inc.). These mirrors
have a highly reflective (HR) surface with R>99.5% for all the wavelengths of interest. The
reflectivity of these mirrors is important since the finesse (Free Spectral Range/Full Width
at Half Maximum) of transmission peaks depend on the reflectivity as ≈ 2π/ρ where ρ is
the round trip loss of the light inside the cavity. This leads to a cavity finesse of ≈1000
for all the wavelengths. The transmission curve for the HR coating of one of this mirrors
is shown in Fig. 4.7.

Figure 4.7: Predicted trasmission profile of the HR mirrors

Other than the reflectivity of the cavity mirrors, the parameter that affects the resolu-
tion of the measurement is the length of the cavity. The length of the cavity (d) should be
such that it meets the cavity stability criteria given by

0 ≤ g1 ∗ g2 ≤ 1
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where

gi =

(
1− d

Ri

)
For our implementation we chose d = 100mm which results in g1 ∗ g2 = 0.11, satisfying
the stability criteria of an FP cavity. The resulting cavity would have FSR ≈ 1.5 GHz and
FWHM ≈ 1.5 MHz for finesse = 1000. This means that the cavity can resolve 2 frequencies
that are separated by 1.5 MHz.

4.2.2 Cavity construction

Even though this measurement scheme of frequency doesn’t get much affected by cavity
length, minimizing the cavity drift is essential to be able always stay in a stable cavity
scanning regime. The construction of this cavity is inspired from the design of Fabry Perot
cavity presented in John Barry’s PhD thesis (Yale University)[17]. The cavity support is
made of two materials, Brass and Quartz. The support consists of two end caps made of
brass. One of the end caps has a movable part while the other is a fixed part. This con-
figuration facilitates a coarse adjustment in the cavity length. The fixed end also consists
of a piezoelectric actuator for fine adjustment. These end caps are attached together with
a quartz tube.
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Figure 4.8: Construction of cavity supports
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Fig. 4.8 shows the cross section of such a cavity assembled with the HR mirrors.
The dimension Lcavity is decided to be 100mm as discussed in the previous section. The
dimensions of the quartz tube and brass end caps are decided such that they compensate
the thermal expansion of each other to minimize the thermal drift to the first order. Thus

Lcavity = Lbrass + Lquartz + Lpiezo

and
∆Lcavity = αbrassLbrass + αquartzLquartz + αpiezoLpiezo

Given Lpiezo and Lcavity the value of Lquartz is determined from the above equations for
∆Lcavity = 0 and machined to an accuracy of 1/1000th of an inch. This setup should
ideally cancel the thermal drift of the cavity to the first order, given the temperature is
homogenous across the system.

Another source of error in measurement is fluctuations in the refractive index due to
the variation of air pressure inside the cavity and also due to differences in the dispersion
of various wavelengths in air. To minimize this error the cavity is enclosed in a vacuum
assembly as shown in Fig. 4.9. This chamber is made of a KF50-KF40 Tee adapter. Two
KF50 ports are used to transmit the light, while the KF40 port is used to send the voltage
to the piezo and also to evacuate the chamber.

Figure 4.9: Cavity vacuum enclosure
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4.2.3 Optical setup and cavity mode matching

To efficiently use this scheme of locking, only the fundamental mode of the cavity should be
excited. To do this the input mode of light into the cavity should match the fundamental
mode of the optical resonator. The cavity mode parameters can be calculated from the
dimensions of the cavity mirrors and the length of the cavity. Due to the symmetry of the
cavity setup, the beam waist of the fundamental mode occurs at the center of the cavity.
The beam waist inside the cavity is given by

w0 =

√
zRλ

π

where

zR =

√
d

2
∗ (R1 −

d

2
)

zR is the Rayleigh length of the fundamental mode inside the cavity. As we can see from
the expression of beam waist w0, it is a function of the wavelength. Thus one has to beam
shape all the incident beams separately to match the mode. Other than beam waist the
radius of curvature of the wavefront should also be matched at the center of the cavity.
Both these parameters are usually grouped together as the complex beam parameter q.
The q parameter for the cavity at its center is given by q = izR. The gaussian beam
propagation inside the cavity for the 369nm laser is shown in Fig. 4.10.
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Figure 4.10: Fundamental mode of the cavity at 369nm.The X-axis is the distance along
the propagation of light and Y-axis is the distance perpendicular to the direction of light.

To match the mode of laser beam collimated from the fiber coupler a series of lens L1,
L2, L3 are used to shape the beam (Fig. 4.13). L1, L2 form a Galilean telescope which
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shrinks the beam waists and then a common lens L3 focuses all the beams to the center of
the cavity. The values of FC, L1, L2, L3 are optimized based on input beam size and the
commercial availability. The match for 369nm laser is shown in Fig. 4.11. As we can see
that the pair of lens L1, L2, L3 matches the gaussian beam waist and the curvature of the
input laser beam to that of the cavity.
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Figure 4.11: Mode matching for the 369nm laser beam. The X-axis is the distance along
the propagation of light and Y-axis is the distance perpendicular to the direction of light.

Using an interactive python code I optimized the values FC, L1, L2, L3 and tabulated
in the table below

Table 4.1: Cavity mode matching parameters

wavelength(nm) fFC(mm) f1 (mm) f2(mm) Ld(mm) f3

369.0 4.02 150.0 -75.0 75.0 150.0
399.0 4.02 150.0 -75.0 75.0 150.0
760.0 8.00 125.0 -50.0 74.0 150.0
780.0 8.00 125.0 -50.0 74.0 150.0
935.0 8.00 150.0 -50.0 99.0 150.0

4.3 Cavity transmission measurements

Using the construction scheme mentioned in Sec. 4.2.2, I have built the cavity and the
finesse of the cavity is measured at 780nm. Fig. 4.12a and 4.12b show the transmission
peaks at 780nm. A Lorentzian finesse of ≈ 400 was achieved.
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(a) (b)

Figure 4.12: Cavity transmission

4.4 Optical layout for cavity based frequency lock

In this section, I propose an optical layout for the cavity based frequency lock using the
cavity I have described in previous sections. The optical layout of the scheme is shown in
Fig. 4.13. Light from various optical fibers is collimated using a fiber collimator followed by
beam shaping optics to mode match the cavity. All the lasers beams are then merged using
multiple dichroic mirrors and coupled into the cavity. The transmission of multiple such
lasers is separated using a system of dichroic mirrors and then detected using photodiodes.
An FPGA based PID receives the signal from the photo detectors and feedbacks the lasers
to compensate for the drift.
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Figure 4.13: Cavity lock optical layout

4.5 Discussion

In the previous sections, I have discussed two schemes of locking the lasers as alternatives
to using an atomic source as a reference. These schemes are scalable and don’t depend
much on the wavelength of operation. Though the first scheme using the wavemeter has
advantages of ease and scalability, it is limited by the resolution and sampling time of the
instrument. The cavity based lock has more resolution of measurement, but is limited
that we cannot make an absolute measurement of the frequency. So we plan to use the
combination of both the schemes where the first scheme will be used to make an absolute
measurement of the frequency so that we can park the lasers at the known frequency from
the literature and then use the cavity based frequency locking scheme to implement a more
robust lock.
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Chapter 5

Summary and Outlook

In this thesis, I have discussed some theoretical and experimental tools I have developed
in the context of our lab for implementing a hybrid (analog-digital) quantum simulator.

5.1 Engineering 2D lattices from 1D chain of ions

Chapter 3 describes the protocol and some theoretical results for simulating 2D lattices
from a 1D chain of ions. It can be seen that theoretically, the engineered lattice interaction
profile matches to that of the target 2D lattice with error < 0.1 % (only digital part).
But, if we consider the analog part of the simulation the error is < 2% for the case of 6
ions. This error is mainly due to the imperfections in the simulation of Jij = ±1/rα type
interaction profiles. The error decreases if the detuning µ is closer to the COM mode but
this implies we need to decrease the energy scale of the system since we don’t want to
excite the phonons. This makes the simulations slower, limiting the number of cycles one
can evolve the system for a given coherence time. More work needs to be done to estimate
these errors for the case of larger system sizes. The stark pattern as discussed in Sec. 3.4
has a profile of a linear gradient superimposed with jumps. Such patterns can be generated
using devices like spatial light modulators, acousto-optic deflectors. More work needs to
be done on exploring such solutions to generalize this protocol for simulations of arbitrary
higher geometries.
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5.2 Laser frequency stabilization

Chapter 4 describes two schemes for locking the frequency of lasers. We can see that
the implementation of the locking scheme using the commercial wavemeter is limited by
its inherent accuracy of 60 MHz. One of the reasons for this limitation is the drift of
measurement apparatus due to ambient pressure and temperature fluctuations. As an im-
provement, the instrument could be enclosed in a chamber with pressure and temperature
control thus decreasing the drift. For the case of the cavity based lock, I have shown the
construction and some results of the cavity transmission spectrum. At the time of writing
this thesis the locking scheme based on FPGA based electronics is still under construction.
This includes a circuit with a series of photodetectors to detect the light from various
wavelengths, an oct channel Analog to Digital converter (ADC) board to acquire signals
from the photo detectors and send to the FPGA board. This FPGA then feedbacks the
lasers using the DAC board discussed in chapter 4. Additionally the coupling into the
cavity has to be improved using the mode matching lens discussed in Sec. 4.2.3.
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