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Abstract

In embedded systems, anomalies can be detected by monitoring the power consump-
tion of the device. Recent literature has shown the use of this technique for the purpose of
safety as well as security. However, on-the-fly power monitoring and classification becomes
more complex as we increase the sampling rate of the power signal. This thesis presents a
study where we experimentally evaluate the required sampling frequency, with respect to
classification accuracy, as a function of clock frequency. We analyze the systems classifica-
tion accuracy by running it at different clock speeds and varying the sampling frequency
for power trace capture. We also show the effect of the sampling frequency on parameters
such as training time and classification time.

iv



Acknowledgements

I would like to thank all the people who made this thesis possible. First and foremost I
would like to express my gratitude towards my supervisor Dr. Sebastian Fischmeister for
all the guidance and opportunities he has given during this period. I learned a lot being a
part of Real-time Embedded Software Group. Thank you for believing in me.

I would like to thank Dr. Carlos Moreno for his guidance and support throughout my
masters. Thank you for answering all my questions, including the silly ones.

I would also like to thank Karim Elrayes, Sean Kauffman and Jack Morgan for their
assistance and suggestions during this period.

v



Dedication

This thesis is dedicated to my parents for their endless love, support, and encourage-
ment.

vi



Table of Contents

List of Tables ix

List of Figures x

List of Symbols xii

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Statement and Assumptions . . . . . . . . . . . . . . . . . . . . . 3

1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Power Consumption of a Micro-Controller . . . . . . . . . . . . . . 7

2.1.2 Measuring the Power Consumption of a Micro-Controller . . . . . . 7

2.1.3 Power Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Basic Block (BB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Control Flow Graph (CFG) . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Time Series Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



3 System Model 13

3.1 Powertraces Capture Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Micro-controller Board . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Digitizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Port Bit Flip Markers . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Source Code Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Merging the Smallest Basic Blocks . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Digitizer Output Data Preprocessing . . . . . . . . . . . . . . . . . . . . . 19

3.5 Generating Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Variations in Samples in each Class . . . . . . . . . . . . . . . . . . 21

3.5.2 Total Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.3 Training Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Testing Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 The Anomaly Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Sampling Frequency 28

4.1 Analytical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Nyquist Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Sampling Frequency for the Purpose of Anomaly Detection . . . . . 30

4.1.3 Our Approach to the Sampling Frequency . . . . . . . . . . . . . . 31

4.2 Empirical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusion and Future Work 41

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References 43

viii



List of Tables

4.1 Accuracy and Standard deviation at different Fs, when Fc = 250KHz . . . 34

4.2 Accuracy and Standard deviation at different Fs, when Fc = 500KHz . . . 35

4.3 Accuracy and Standard deviation at different Fs, when Fc = 1MHz . . . . 36

4.4 Accuracy and Standard deviation at different Fs, when Fc = 4MHz . . . . 37

4.5 Accuracy and Standard deviation at different Fs, when Fc = 8MHz . . . . 38

4.6 Accuracy and Standard deviation at different Fs, when Fc = 12MHz . . . 39

ix



List of Figures

2.1 Setup to measure power consumption of a MCU . . . . . . . . . . . . . . . 8

2.2 Example of power traces for four blocks of code . . . . . . . . . . . . . . . 8

2.3 Sample CFG with basic blocks . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Categories of numeric time series distances . . . . . . . . . . . . . . . . . . 11

2.5 Two time series signals warped in time scale . . . . . . . . . . . . . . . . . 12

3.1 Segments Powertrace Samples . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Powertraces Capture Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Toggling Port pin added at the end of each basic block . . . . . . . . . . . 17

3.4 Digitizer processed 2-channel data . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Example of merging the CFG nodes . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Removing noise from Channel-B signal using Schmitt trigger . . . . . . . . 20

3.7 Sample CFG with basic blocks . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Average sample of each class . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Average sample of each class . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.9 On-the-fly Anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Signal sampling representation. . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Sampling analog signal at different frequencies . . . . . . . . . . . . . . . . 30

4.3 Classification accuracy at different sampling frequencies, when Fc = 250KHz 34

4.4 Classification accuracy at different sampling frequencies, when Fc = 500KHz 35

x



4.5 Classification accuracy at different sampling frequencies, when Fc = 1MHz 36

4.6 Classification accuracy at different sampling frequencies, when Fc = 4MHz 37

4.7 Classification accuracy at different sampling frequencies, when Fc = 8MHz 38

4.8 Classification accuracy at different sampling frequencies, when Fc = 12MHz 39

4.9 Classification Accuracy Vs Sampling Frequency at different Clock Frequencies 40

xi



List of Symbols

ADC Analog to Digital Conveter 15, 25, 40, 41

BB Basic Block 2, 7, 9, 16, 19, 31, 32, 40, 41

CFG Control Flow Graph 2, 4, 7, 9, 16, 19

CISC Complex Instruction Set Computer 42

CPU Central Processing Unit 33, 42

DTW Dynamic time warping 3, 11, 12, 42

ECG electrocardiogram (ECG) is a diagnostic tool to assess the electrical impulses from
human muscles. 11

EEG Electroencephalography (EEG) is an electrophysiological monitoring method to
record electrical activity of the brain. 11

IoT Internet of Things 1

MCU Micro-Controller Unit 1, 4, 7, 25, 26, 40–42

NCC Nearest Centroid classifier 21, 22

NNC Nearest Neighbor classifier 22

RISC Reduced Instruction Set Computer 42

xii



Chapter 1

Introduction

Embedded system has become the necessity of the present world. It is at the core of all the
modern high-tech gadgets ranging from the smart TV, smartphone, laptop, multimedia
system, autonomous car, IoT devices, etc. And the future will witness more state-of-the-
art development in the embedded systems. But with the increase in the usage of embedded
systems, there is a need for its security. Especially with all the devices now connecting with
the internet, the safety and the security of the device are more under threat [41]. Think
of the consequences when an autonomous car connected to the internet has been hacked.
The hacker could use the device at his will fulfilling his motive. He could also use this for
terrorist activities. This is just one example, think of what could happen if the devices
that we use on a day-to-day basis get control from unauthentic people. So, the safety and
security of the embedded systems should be the utmost concern for the developers.

Apart from safety and security, real-time monitoring of the system is also an essential
requirement. The embedded systems are deployed to work in a self-sufficient manner. So,
these devices act like a black box taking inputs and providing some outputs according
to the task. This opacity of the embedded system as a black box makes it difficult for
the real-time monitoring and system tracing. To assist run-time debugging, one could
write debugging information in the code during the development phase, but this practice
is not practical because of the memory constraints of the micro-controllers. So, we need a
technique which provides us with both, the real-time monitoring and the system security.

One of the recent and promising ways to provide both real-time monitoring and the
system security is Power Trace Monitoring of the MCU [34][28][39][36][31][25]. This tech-
nique exploits the fact that there is a direct connection between the power consumption of
the MCU and the instruction commands along with the data, it is executing. This connec-
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tion allows researchers to correlate the power-traces from the system to the program tasks.
Therefore, by analyzing the power consumption, researchers can do real-time monitoring
of the system. Security researchers have developed side-channel analyses that use power
consumption to determine the secret keys used in cryptographic routines. Existing power
analysis techniques have found some success, but still, some questions are unsolved in this
research domain.

In this thesis, we present a study where we evaluate the required sampling frequency,
with respect to classification accuracy, as a function of system architecture and clock fre-
quency. We analyze the systems classification accuracy by running the system at different
clock speeds and varying the sampling frequency for power trace capture. We also show
the effect of the sampling frequency on parameters such as classification time.

1.1 Related Work

Prior works have introduced the concept of power-trace analysis or more precisely, power-
based program tracing. They have shown it to be feasible and reliable for security and de-
bugging. Power-based program tracing is non-intrusive monitoring through reconstruction
of program execution traces from power consumption measurements. Moreno et al. [34][28]
showed a technique for non-intrusive program tracing and debugging through power-trace
analysis where they use the power consumption characteristics of a system to identify which
basic block BB of code is being executed. But they use system sound card to capture the
power-traces. This limited the sampling frequency of the power-traces to around 150KHz
and blocked the DC component of the signal. In [36], they improve performance by taking
little help from the compiler that maximizes distinguish-ability of power-traces for different
blocks of code. Liu et al. [32] took help from the CFG and source code information and
got a very high classification accuracy. The main reason for high accuracy was the use
of high-end oscilloscope with a sampling frequency of 1.25 Giga samples per seconds for
sampling the power-traces. It is shown that this method can be used in anomaly detection;
however, having the oscilloscope to capture the data and classifying the traces offline limits
the usefulness of this work in real-life systems. Some researchers used very low sampling
frequency and some used very high sampling frequency, which put a question on selection
of sampling frequency for a good classification accuracy.

Eisenbarth et al. used hidden Markov models to trace assembly-level instructions using
power consumption. At this fine granularity, the reported classification accuracy was too
low for a practical application [48]. Msgna et al. [33] presented the idea of side channel
control flow security in the embedded system where they collect several power-traces and
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calculate the mean of traces to minimize the inherent and ambient noise introduced by
the measurement setup. Clark et al. [10] tried to model permissible behavior by using a
behavior monitoring system of a medical device. They tried to detect the deviation in the
behavior which worked, however, was limited to the simple and highly repetitive operation
of the device. The usefulness of non-intrusive systems has been highlighted in [3] where
the authors presented a hardware-assisted paradigm to extract properties of an embedded
program through static program analysis and used them to secure the system.

Many researchers have worked in the field of time-series power data classification and
presented their work. Like Deng et al. [23], used Autoregressive-Moving-Average models
(ARMA models) and used Euclidean distance as a distance measure to find the closest
time-series and then performed a nearest neighbor classification for better results. An
early approach to time-series classification using qualitative and quantitative methods are
presented by Bakshi et al. in [5]. An overview of time-series knowledge extraction, data
classification, data clustering and relationship finding is presented in [30] . In this paper,
the author provides the analysis in different types of similarity measures in time-series
data. Authors also focus on the critical issue of measuring the similarity between two
sequences where the ability to deal with noise in the data, amplitude differences and gap
in time axis are the primary problems. In [1], Nanopoulos et al. use neural networks on
statistical features to perform time series classification.

Dynamic time warping DTW distance for classification has gained popularity in re-
cent years in time series classification because of its immunity against signal warping in
time-scale. DTW algorithm was first introduced by [6], and then gained popularity and
used in many researches [16, 24, 49, 21, 43]. [12] has shown the efficient online sequence
learning using unsupervised convolutional the neural network, but lately, DTW has gained
in popularity in time series classification with the introduction of 1-Nearest Neighbor and
faster computation with tighter lower bound [51, 40, 17]. [13, 52, 42, 4] have shown that
DTW combined with 1 Nearest Neighbor (NN) is exceptionally difficult to beat in time
series classification.

1.2 Problem Statement and Assumptions

The thesis addresses the following problem statement: Given a processor with a known
clock speed, what should be the sampling frequency for power traces to perform anomaly
detection based on power tracing to work at a given performance level?

In context of this work, we have made the following assumptions:
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• Input Identification: All possible combination of execution paths were generated
using the random input initialization and running the target program in multiple
loops. This ensures generation of all valid paths in the CFG using random input
initialization. The power-traces of same basic block may exhibits subtle variations
due to the context in which it is executed. This is further discussed in Section 3.5.

• Non-preemptive system: The current system works with the non-preemptive model,
i.e., no task can preempt any other task. For the particular research, we have used sin-
gle process system, but this research can work with multi-processing non-preemptive
systems as well.

• Control Flow Integrity: We assume that control flow integrity is maintained all the
times. That means that we do not consider cases such as random execution due to
memory leak or stack corruption, undefined behaviour due to segmentation errors,
system crashes, etc.

1.3 Our Contributions

In embedded systems, one way to detect anomalies in the system is by observing the power
consumption of the system. However if we increase the sampling rate for power traces, on-
the-fly power monitoring and classification becomes difficult. The main contribution of the
thesis is to address this question, of selecting the correct sampling frequency for capturing
the power traces from the system.

• We draw a relationship between the clock frequency (Fc) of the system and the
sampling frequency (Fs) of the power traces for that system, for the purpose of
anomaly detection at a given performance level.

• We show the effect of the sampling frequency on parameters such as classification
time (training and testing time).

• We show an intuitive analytical relationship between Fc, Fs and smallest segment
size.

• We show the possibility of selecting the low cost MCUs for developing the anomaly
detection system.
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1.4 Organization of the Thesis

The rest of the thesis advances as follows: We discuss the background required for all
the chapters in the Chapter 2. In Chapter 3, we present the details on the system model
and all hardware-software setup required for data collection and processing. Chapter 4
contains information on calculating sampling frequency value for power-traces sampling,
using analytical and empirical approach. Chapter 5 includes discussion and future work
followed by some concluding remarks.
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Chapter 2

Background

2.1 Power Consumption

In electrical engineering, the power consumption (P) of a system is defined as the total
electrical energy (E) consumed per unit time.

P =
E

T
(2.1)

It is measured in Watts (W) or kilowatts (kW). There are other variations of the formula
for calculating the power consumption of the system. These are given below.

P = V ∗ I (2.2)

P = R ∗ I2 (2.3)

P =
V 2

R
(2.4)

where,
V - is the supply voltage of the system.
I - is the current consumed by the system.
R - is the total resistance of the system.
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2.1.1 Power Consumption of a Micro-Controller

The total power consumption PT by a micro-controller can be broken down into two powers:
static power consumption PS and dynamic power consumption PD [15].

PT = PS + PD (2.5)

The static power consumption is when the system is powered but doing nothing, and is
mainly due to the leakage current when all the inputs are at constant logic level and are not
switching the logic level due to inactivity. The power consumption amount of PS is very
minimal. The Dynamic power consumption is the power consumption due to logic level
switching and charging and discharging of capacitive loads [22]. It significantly contributes
to the total power. Therefore, the average power P consumed by a micro-controller while
executing a program is the product of the switching activity factor K, the load capacitance
CL, the clock frequency Fc, and the supply voltage squared V 2

cc [9].

P = K ∗ CL ∗ Fc ∗ V 2
cc (2.6)

Given an MCU connected to a constant voltage supply and running at a fixed clock fre-
quency Fc, the capacitive load will also be constant. Therefore, using equation 2.6, power
P will only be dependent on the switching activity factor K. The switching activity factor
is a function of the instructions executed and the data on which those instructions operate.
Therefore, the power consumption of a MCU is a function of the instruction it is executing
and the data on which the instruction operates. So, every instruction will have a different
power trace depending on the data, and each BB 2.2 of the CFG will have a different
power-trace signature, depending on the instructions and data in the BB.

2.1.2 Measuring the Power Consumption of a Micro-Controller

To measure the power consumption of a micro-controller unit MCU, we can put a shunt
resistor of resistance RL, in series with the MCU. The value of current is the same in a
series circuit. So, the same current I flows in both, the shunt resistor and the MCU. The
power consumption of the MCU is a multiplication of the total resistance of the MCU and
square of the current passing through the MCU 2.3. And the total resistance of the MCU is
constant. So, power is proportional to the current square. Therefore, current consumption
in the MCU is a reflection of the power consumption by the MCU. The voltage VL around
the shunt resistor is VL = I ∗ RL, where RL is constant. So, VL is proportional to the
current I. Therefore, if we measure the voltage VL around the shunt resistor, we’ll get a
power-trace, which is a reflection of the power consumption of the MCU.
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Figure 2.1: Setup to measure power consumption of a MCU

2.1.3 Power Traces

Figure 2.2: Example of power traces for four blocks of code
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The power-trace P = 〈V, t〉, is the time series representation of a power consumption of a
system as a function of time. Where V is the value of the power consumption at time t.
Power consumption in terms of power-traces look like shown in Figure 2.2. Here, power-
traces of 4 demo basic blocks BB are shown. As you can see, power-trace signals shape
and values are all different, because power consumption is a function of the instructions
and the data it’s processing. So, it is different for different BB.

2.2 Basic Block (BB)

A complete code can be broken down into its basic blocks. A basic block is a sequence of
instructions with single entry point at the beginning and single or multiple exit points at
the end. A BB cannot have a branch in between. Basic block forms the nodes or vertices
of a control flow graph 2.2.1. One BB is connected to another via an edge. Control from
one BB can go to next BB, if there is no loop and to the same BB if there is a loop. Figure
2.3 shows the basic blocks in a control flow graph.

2.2.1 Control Flow Graph (CFG)

A piece of code can be represented as a directed graph with nodes and edges [2, 7, 8]. The
Control Flow Graph G = 〈V,E〉 is a directed graph which represents the execution flow
of a program. V is called vertex, and E is called edge in a CFG. Each vertex or node in
a CFG can be considered as a basic block BB. Edges in a CFG are the paths from one
node to another. Consider an edge between BB-1 and BB-2, from former to later, where
(BB − 1, BB − 2 ε V ). This means the program has to go to basic block BB-2 after BB-1
is finished. Figure 2.3 shows a sample CFG with nodes as BB and edges as all possible
paths, a program can follow.
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Figure 2.3: Sample CFG with basic blocks
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2.3 Time Series Classification

As discussed above, a time series data D can be represented as D = 〈V, t〉, where V is the
value of the time series at time t. Examples of time series data are - stocks data, weather
data of a place, EEG, ECG, etc. We can compare two time-series signals by finding the
numeric distances between them. Figure 2.4 shows a general view of distance measures in
a time series data, that we can use. Broadly, there are four main categories: shape-based,
feature-based, model-based and compression-based [29] [27] [37] [45] [14] [26]. In shape-
based classification, we compare two time-series signals by their shapes. This can be done
by normalizing both the signals and then computing the Euclidean distance between them.
Suppose, we have two time series D1 = 〈V, t〉 and D2 = 〈v, t〉, then the Euclidean distance
d between them will be:

d =
√

(V1 − v1)2 + (V2 − v2)2 + ...+ (Vt − vt)2 (2.7)

Figure 2.4: Categories of numeric time series distances

Another shape-based classification is dynamic time warping DTW [44] [19]. This clas-
sification method warps or scales one of the signal in time axis to match the other signal
as close as possible. This can be of advantage when we have stretch and compression in a
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signal during sampling. The Figure 2.5 shows two signals which are warped in timescale.
The DTW classification method will find both of them to be equal.

Figure 2.5: Two time series signals warped in time scale

In feature-based classification, several features are collected from a time-series signal.
Features like - length of a signal, changes in trend, max-min values, standard deviation,
mean, etc. can be used. This reduces the dimensions in the training and testing data
because earlier we were saving the complete trace of millions of data points, and now we
are only saving few data points which are features from the complete trace. This also
improves the classification time.
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Chapter 3

System Model

(a) Sample Segment1 power-trace

(b) Sample Segment2 power-trace

Figure 3.1: Segments Powertrace Samples

As described in the section text, we use the concept of non-intrusive side channel power
analysis to determine which segment of the code is being executed currently by the CPU.
CPU doesn’t consume constant power all the times. The power consumption of the CPU
is dependent on the amount of work the CPU is doing at the instant. When CPU is busy
executing some heavy tasks, it consumes more power than the times when it executes light
tasks 2.1.1. So, if we divide our complete code into smaller chunks or segments and measure
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power consumption for each segment, then each segment has different power consumption
signatures, which would look like somewhat as shown in Figure 3.1. Here, each segment’s
power trace is a time series data. To get time series power traces of each segment from an
MCU, we need some hardware setup and pre-processing, which has been discussed further.

3.1 Powertraces Capture Setup

We used custom-made Atmega328 microcontroller board 3.1.1 as our main target board
running the standard CruiseControl code. Now, to peek into the power consumption of
the MCU, we use a shunt resistor in series with the MCU board. If we now measure the
voltage around the shunt resistor, we get a reading of voltage that is proportional to the
current passing through the shunt resistor as V = I ∗ Rshunt and Rshunt is constant 2.1.
The same current is passing through the MCU board, as current is the same in a series
circuit. The power consumption of any circuit is P = V 2

R
. Therefore, we measure the power

consumption of the system in terms of the voltage change in the circuit.

The Figure 3.2 shows the block diagram of the complete hardware setup. As seen in
the figure, the MCU power consumption (in terms of voltage) is fetched to the differential
amplifier. The differential amplifier then amplifies the signal and fetches it to the channel-
A of the Digitizer 3.1.2. At the same time, the signal from the MCU port pin in terms
of a digital square wave is fetched to the channel-B of the Digitizer. Let’s call this signal
”Port bit flip marker”. The usage of this signal in the setup is discussed in Section 3.1.3.
The output of the Digitizer is saved on the PC in binary files.
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Figure 3.2: Powertraces Capture Setup

3.1.1 Micro-controller Board

We used Microchip’s Atmega328p as the target microcontroller. The custom board de-
signed for the target MCU has LEDs and push buttons connected to the peripherals, as
needed by the target code to run properly. The port pin needed for the markers (see Sec-
tion 3.1.3) was connected to the male pin connector, for easy connection with the Digitizer.
The board also has a female pin connector for the shunt resistor and the crystal. The board
has separate voltage source for the processing unit, I/O pins and the ADC.

3.1.2 Digitizer

The Digitizer is the proprietary of Alazar Technologies Inc. We use ATS9462 Digitizer,
which is 16-bit, 2-channel, high-quality Analog to Digital Converter. It can sample up to
180MS/s (Mega-Samples/second) across two simultaneous inputs. We can vary sampling
rate as well as other parameters. This ADC can sample from 1KS/s to 180MS/s.
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3.1.3 Port Bit Flip Markers

Consider the CFG in Figure 2.3. Now, let’s modify the BB to add one extra command at
the end of each BB. This command is to toggle the logic level of a particular Port pin. The
new CFG would look like as shown in Figure 3.3. This toggling method gives us another
channel of data - mainly digital square wave, which can be used as markers to figure out
power trace of start and end points in the complete power trace data in the channel-A.
As mentioned in Section 3.1.1, we have a seperate power sources for I/O, so toggling port
pin would not affect the actual power consumption of the system. Figure 3.4 shows the
processed output of the Digitizer as channel-A and channel-B. You can see from the figure,
how helpful are the markers in segmenting the power trace with respect to the BB. There
are some noise peaks in channel-A exactly at the toggling of the markers, which we have
removed by discarding the starting few sample points.
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Figure 3.3: Toggling Port pin added at the end of each basic block
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(a) Powertrace data in Channel-A

(b) Port bit flip markers on channel-B

Figure 3.4: Digitizer processed 2-channel data

3.2 Source Code Instrumentation

Section 3.1.3 showed how to get power trace segment for each basic blocks with the help
of markers. But the next issue now is that the power-traces are unlabeled. To address this
issue, we instrumented the code into two versions. The first version is the original code
that runs on the target MCU. Each Basic block in the 1st version has last line to toggle
the port pin as shown above in Figure 3.3. The second version of the code is exactly like
the first one except that it runs offline on the workstation, with the same data and random
seed as the online version running on the MCU, but instead of the toggle pin command, it
executes the ”printf” command which prints the name of the current BB. This is how we
get a sequence of labels which correspond to the sequence of segmented power-traces that
we got earlier. Therefore, source code instrumentation method helps us to get the labeled
data.
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3.3 Merging the Smallest Basic Blocks

By running the CruiseControl program on the Atmega328 board running at clock frequency
Fc = 1MHz, we got total 16 BB or classes, when the sampling rate Fs = 1MS/s. Out
of the 16, there were 3 BB with the power trace sample points less than 100. These were
the smallest segment lengths out of all 16 segments. Classifying them was resulting in
very less accuracy. Also, with either a decrease in sampling frequency or increase in the
clock frequency, these segments were getting even smaller. Some segments were even lost
at Fs = 100MS/s. So, to resolve the issue, these smallest segments were merged into the
parent segments, without disturbing the CFG of the code. Carlos et al. [35] showed the
use of merging BB to its parent. The Figure 3.5 shows how the merging of the nodes can
be done without disturbing the CFG. The left side of the image contains an example CFG
with some nodes and edges. Suppose the node B marked in dark color is a very small
segment. We need to merge it into its parent. The proper merging is shown on the right
side of Figure 3.5. Now, the parent node A has become node A’, which is now bigger than
the node-A.

Figure 3.5: Example of merging the CFG nodes

3.4 Digitizer Output Data Preprocessing

Analog signals are prone to noises. These noises pass to the ADC and even reflected
in the output digital data. The channel-B data from the Digitizer is shown in Figure
3.6a. Port bit flip marker signal is very crucial, as channel-B is responsible for correct
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(a) Channel-B signal affected with noise

(b) Channel-B noise removed using Schmitt trigger

Figure 3.6: Removing noise from Channel-B signal using Schmitt trigger
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segmentation of the power-traces. Even a slight error like an extra toggle or a missing of a
toggle signal can result in a garbage data. So, we need a very clean channel-B. We achieve
this using the technique called Schmitt-trigger [46]. We have programmed the Schmitt-
trigger filter with 3 thresholds - high-threshold, low-threshold and the normal threshold.
The normal threshold is selected as the mean of the signal in channel-B. High-threshold,low-
threshold are selected as normal threshold plus,minus one third of the difference between
maximum value of signal and the mean. The working of the Schmitt-trigger is pretty
simple. If there’s a falling edge, then the signal should first cross high-threshold and then
cross low-threshold in the order. If the order is not maintained then, we can consider it as
a noise peak. Similarly, for the rising edge the order is first low-threshold and then high-
threshold. Figure 3.6b shows the output of the channel-B data, after passing it through
the Schmitt-trigger. You can clearly see the noise around 0.1x107 (on x-axis), is filtered
out easily.

3.5 Generating Training Data

In the following section, we will talk about the methods used to collect the training dataset,
the variations in two instances of the same class and how the training dataset looks. We
also talk about averaging the samples and NCC.

3.5.1 Variations in Samples in each Class

The complete target code was run 1000 times in a loop with different random numbers
input initialization. This different random numbers data processing will produce different
power-traces for the same basic block in different loops because each power-trace of the
same BB depends on the data the BB is processing at that time. These (from the same
BB) will follow a same the pattern and shape with slight differences because of different
data inputs. Example of these is shown in Figure 3.7.

These four samples are from the same class - ”RandomizeInputs”. As you can see
clearly, all the four samples are similar, but if you look carefully, you’ll find subtle differ-
ences. The purpose of running the program in a long loop is to get all types of variations
that we can get in a power-trace for the same class (same basic block). This variation is
helpful in getting a good training data. Now for each class, we have at most 1000 samples.
Each sample is a time series data. This is one dataset. We similarly captured 5 datasets.
There are several machine learning algorithms that can be used with this training data.
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Figure 3.7: Sample CFG with basic blocks

3.5.2 Total Classes

As discussed in Section 3.3, we have a total of 13 classes. Each class has at most 1000
samples with slight variations. For fast processing during classification, we reduced the
number of training samples by taking the averages of all the samples in a class. This
gives us total of 13 samples for 13 classes (one sample for each class). These average
samples for each class along with the Frequency components is shown in Figure 3.8. The
mean of a set of samples is a better representation of the data or information, rather than
the individual samples. Francis Galton showed this in his paper [18]. He noted that the
crowd at a country fair accurately guess the average weight of an ox. The average of the
weights given by people at the fair was far closer to the actual weight of the ox than the
individual weights. This information is widely exploited in machine learning. For example,
the Nearest Centroid classifier NCC [50] generalizes the Nearest neighbor classifier NNC
[11] by replacing the set of neighbors with their centroid. There are two important reasons
for selecting the former over the later. Firstly, it is faster, being only O(1) instead of O(n),
assuming that the number of classes is bounded by a constant. Secondly, for some datasets,
NCC is more accurate than NNC [20].

22



Figure 3.8: Average sample of each class
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Figure 3.8: Average sample of each class
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3.5.3 Training Dataset

For the purpose of the study, to find the optimal sampling frequency of power-traces of a
system running at a clock frequency Fc, for classification, one needs a big dataset of power-
traces. So, the micro-controller board mentioned in Section 3.1.1, is run on several clock
frequencies - 250KHz, 500KHz, 1MHz, 4MHz, 8MHz and 12MHz. Then for each clock fre-
quency, the dataset is collected in the same manner as mentioned in the steps in the above
sections, at several sampling frequencies Fs (Digitizer sampling frequency 3.1.2). The
several sampling frequencies selected were 100MS/s, 50MS/s, 25MS/s, 10MS/s, 5MS/s,
2.5MS/s, 1MS/s, 500KS/s, 250KS/s, 200KS/s, 100KS/s, 50KS/s, 40KS/s and 25KS/s 1.
Therefore, for each Fc we have a dataset at all the Fs mentioned above. Total datasets =
number of Fc multiplied by the number of Fs multiplied by 5 (as we have five datasets in
each combination 3.5.1).

Total datasets = 6 ∗ 14 ∗ 5 = 420.

Each dataset has 13 classes and each class has at most 1000 samples, which are averaged
and combined into one sample. This is the all the dataset at several sampling and clock
frequencies, that would be used to train the classifier for anomaly detection.

3.6 Testing Setup

The final testing setup for the purpose of anomaly detection would look like the one
shown in Figure 3.9. Here the MCU-1 is being monitored for anomaly detection. This
is done by observing the power consumption of the MCU-1. The MCU-1 is running the
CruiseControl program, the same program used for collecting the training datasets. The
monitoring system is used here for monitoring the MCU-1, running the anomaly detection
program. The power consumption of the MCU-1 is fetched to the ADC of the monitoring
system. The digital output data stream from the ADC is used as test data. The Train data
is saved into the memory of the monitoring system. The CPU of the monitoring system is
running the anomaly detection code. The similar setup has been used by Carlos et al [35].

1MS/s - Mega Samples per second, KS/s - Kilo Samples per second. One Sample is 16-bit long.
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Figure 3.9: On-the-fly Anomaly detection

The benefits of having a separate monitoring system are as follows:

1. Even if the MCU-1 is hacked, the security of the Monitoring system is not compro-
mised, as it’s a separate system.

2. The cost of the monitoring system can be brought down if the training database is
small enough to be fit in the default memory of the MCU.

3. The size of the monitoring system can be very small, depending on the database and
the sampling frequency required for the anomaly detection.
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3.7 The Anomaly Detector

The heart of the monitoring system is the anomaly detector that alerts the administrator
if finds some anomaly in the system. The anomaly here can be anything, other than
the usual CruiseControl code running in the system. The Power consumption by the
default program is different than the power consumption by any other piece of code. The
monitoring system is constantly monitoring the power consumption of the MCU-1. If it
encounters any other power consumption signatures, it can raise a red flag for it. The
power-traces of every possible segment of code are saved as the training dataset. The
training data is coming from the ADC of the monitoring system. The anomaly detector
compares the test-data with all the power-traces in the training dataset. If it matches
with any of the training data samples, it labels it safe, otherwise raises a red flag. If it
raises a red flag, a message is sent to the administrator about the detection of an anomaly.
Then suitable measures can be taken by the administrator. These suitable measures can
also be automated and coded in the monitoring system for removing the administrator
level and making everything automatic. For the purpose of comparison between testing
and training data samples, several metrices can be used as mentioned in Section 2.3. The
classification method we use in out anomaly detector is a shape-based Euclidean Distance
measure between the two samples. We also used FastDTW [44] for the purpose of testing,
results of which are not included in the thesis.
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Chapter 4

Sampling Frequency

In signal processing, sampling is the method of getting a discrete time signal from the con-
tinuous time signal. It is used mainly for storing and processing of real life data (continuous
signal) into computers. For example, the conversion of sound wave (a continuous signal) to
a sequence of samples (discrete signal) via microphone and sound card of a computer. An
example is shown in Figure 4.1. Here the continuous signal is shown with the green colored
curved line, while the discrete-signal is represented by blue vertical lines. Any continuous
signal can be converted to its samples by the process of sampling.

Figure 4.1: Signal sampling representation.

28



A sampling frequency Fs, is the frequency at which we sample a continuous signal. The
choice of sampling frequency depends on several factors. Mainly, Fs should be such that
it correctly samples the continuous signal, without loosing any of its information.

4.1 Analytical Approach

Several researcher and mathematicians have worked on finding the best sampling frequency
for signal reconstruction. Here, we have discussed those analytical methods and the reason
why they are not suited for the power-trace anomaly detection. Then, we have shown
our intuitive relationship between the sampling frequency, the clock frequency, and the
smallest segment signal length, for power-trace anomaly detection.

4.1.1 Nyquist Criterion

Many mathematicians have worked on the formula for finding the optimum sampling fre-
quency of a continuous signal. The main work in the field is done by Harry Nyquist and
Claude Shannon [38] [47]. They together gave the famous Nyquist-Shannon Sampling the-
orem. The theorem was also discovered independently by E. T. Whittaker, by Vladimir
Kotelnikov, and by others. It is thus also known by the names NyquistShannonKotel-
nikov, WhittakerShannonKotelnikov, WhittakerNyquistKotelnikovShannon, and cardinal
theorem of interpolation. Shannon’s version of the theorem states [47]

If a function x(t) contains no frequencies higher than B hertz, it is completely
determined by giving its ordinates at a series of points spaced 1/(2B) seconds
apart.

Therefore for a proper reconstruction of the analog signal (continuous signal) having the
highest frequency component Fmax, we need to samples it at sampling frequency higher
than or equal to twice the Fmax. This gives us the famous equation:

Fs ≥ 2 ∗ Fmax (4.1)

If you use the sampling frequency using the Nyquist criterion, then we are surely certain
that the waveform reconstructed will contains all the features from the original signal
and nothing has been lost in the process of analog-to-digital conversion. If we do sample
at lower frequency than the given by th formula 4.1, then we will get a signal that is
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low resolution and might have lost some of the important features. Consider Figure 4.2,
showing an analog sinusoidal signal at a frequency f . When the signal is sampled at f , at
same frequency, the reconstructed signal is a straight line. Thus, we completely lost the
actual signal. Similarly, if we sample the signal exactly at 2f , the sinusoidal signal now
becomes a triangular wave. Therefore, we need to follow Nyquist criterion, if we want to
properly reconstruct the actual signal.

Figure 4.2: Sampling analog signal at different frequencies

4.1.2 Sampling Frequency for the Purpose of Anomaly Detection

For the purpose of anomaly detection, we don’t need to reconstruct the power-trace exactly
to the original, as our motive is not to get all the detailed features, but to get a good
classification rate while detecting anomalies in the system. We can even accept a low
quality of the power-trace, if it is showing some reasonable amount of features, which
will not affect our classification rate. Following the Nyquist criterion, for the purpose of
anomaly detection, will have the following issues:

1. Large size of training dataset.

2. Large size of testing signal.

3. High processing power required for classification.

4. More time required for processing.
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Getting a complete comprehensive picture of the power-trace is no doubt is a best thing, but
with it, it brings some drawbacks as discussed above. Bigger value of sampling frequency
results in more memory and processing power of the anomaly detection system. More data,
more memory, more processing power. Getting a little low sampled power-trace will not
make a huge difference in anomaly detection, as it will make for example saving low sampled
music files in a MP3 player. The application and the purpose make a huge difference in
selecting the best sampling frequency for a signal. But then the question arises, ”How low
shall we go?”. We cannot go too low otherwise we will loose all the features of the segment.
Also, if we go for a very low sampling frequency, there are chances that we completely loose
some of the very small segments in the power-trace dataset. Therefore, we need to find
the optimum sampling frequency range, which is not too high (for avoiding the drawbacks
given above) and not too low (for a good classification accuracy).

4.1.3 Our Approach to the Sampling Frequency

The equation 4.1 can be written as equation 4.2 in terms of time period.

Fs ≥ 2 ∗ 1

Tc
(4.2)

Where, Tc is the time period of the system running at clock frequency Fc. We know that
the time period, Tc = 1/Fc. Lets suppose the MCU in Figure 3.2, is running at a clock
frequency Fc = 1MHz. And we collect a power-trace signal from the MCU for 1 second.
And the source code instrumentation 3.2 gives us 10 segments or BB within this 1 second
time frame. So, we have 10 power-trace segments. The number of sample points in the
complete power-trace for 1 seconds will be 1 million. The 10 power-traces are sub-signals
or sub-segments from the whole complete power-trace of 1 million points. For Fc = 1MHz,
the time period Tc = 1/Fc = 1us. Therefore, the smallest segment or BB cannot be smaller
than 1us. Suppose the smallest segment is 1us long i.e., 1 sample point long. Therefore,
to prevent the smallest sample from getting lost we need to sample it at greater than or
equal to Nyquist frequency 4.1. Now suppose, the smallest segment is not 1 sample point
long, it has Lmin sample points (out of 1 million sample points). To prevent it from getting
lost while sampling, we need atleast 1 sample point out of Lmin. And then, if we follow
Nyquist criterion, we can prevent that sample from getting lost. That means, the sampling
frequency in the equation 4.1 is divided by a factor of Lmin. So, if we put our scaling in
the equation 4.1, we get the following equation:

Fs ≥ 2 ∗ Fc

Lmin

(4.3)
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But scaling the Lmin sample points to 1 sample point, of course leads to loss of information.
Also classifying a segment of only 1 sample point doesn’t make any sense. We need atleast
”m” sample points out of Lmin sample points for correctly classifying the power-trace
segment. Adding the factor ”m” in the equation 4.3, and re-arranging the variables gives
the equation 4.4.

Fs

Fc

≥ 2 ∗m
Lmin

(4.4)

As we go low in clock frequency or high in sampling frequency, we get more features in
power-traces which are hidden at higher clock or lower sampling frequencies. Let’s define
N as the ratio of sampling over clock frequency.

N =
Fs

Fc

(4.5)

Therefore, for a good amount of features in a power-trace signals, we need high value of
N in the equation 4.5. Combining the equation 4.5 and the equation 4.4, we get equation
4.6.

N ≥ 2 ∗m
Lmin

(4.6)

where,
N - is the ratio of Fs and Fc.
Fs - is the sampling frequency of the anomaly detector.
Fc - is the clock frequency of the system.
Lmin - is the length of the smallest segment of code (in sample points).
m - is a scaling factor constant, required for correct classification.

This final formula is based on our intuition and is open for future research. Therefore,
analytically, the ratio of sampling frequency over clock frequency should be greater or
equal to ratio of two times the scaling factor m and length of smallest BB.

4.2 Empirical Approach

To find the optimum sampling frequency of the power-traces for the purpose of anomaly
detection for a system running at a particular clock frequency, we need a large comprehen-
sive dataset. The training dataset 3.5.3 comprising of different combinations of sampling
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and clock frequencies was used to train the system and was used in the classification 3.7
with the test-data 3.6. The classification module also measured the training-time, testing-
time and standard deviation, along with the accuracy. All these results with the different
sampling and clock frequencies are shown and discussed further.

The graph 4.3 shows the plot between classification accuracy and sampling frequency.
The shaded boundary around the accuracy is the standard deviation i.e., the max region,
accuracy can deviate from its mean value. The Table 4.1 shows accuracy percentage,
standard deviation (STD), smallest segment length (Lmin), ratio N = (Fs

Fc
), calculated

value of the constant m and CPU total time taken for classification (in seconds) at dif-
ferent sampling frequencies. Similar convention is followed by other graphs and tables for
classification accuracy and sampling frequency.

The Table 4.1 shows a reasonable amount of accuracy even down to Fs = 25KS/s, and
the smallest segment has twelve sample points at that sampling frequency. The reason for
such a good accuracy even down to Fs = 25KS/s is because at lower clock frequencies,
the size or length of the segments are bigger. The reason being the system is running
slower than the normal, so we capture more data at the same sampling frequency. The
Table 4.2 shows a reasonable amount of accuracy down to Fs = 40KS/s, and below that
sampling frequency accuracy drops significantly. One can easily see that the length of
smallest segment is very small below Fs = 40KS/s, which is one of the factor of less
accuracy. The Table 4.3 shows a reasonable amount of accuracy down to Fs = 50KS/s.
The Table 4.4 shows a reasonable amount of accuracy down to Fs = 250KS/s, and below
that sampling frequency accuracy drops significantly. Again, the length of the smallest
segment is very small below Fs = 250KS/s. The Table 4.5 shows the accuracy starts to
decrease at Fs = 250KS/s. The Table 4.6 shows a reasonable amount of accuracy down
to Fs = 500KS/s, and below this sampling frequency the value of Lmin comes to three
sample points. Again, very less features to do a good classification. Therefore, for a good
accuracy, the selection of the sampling frequency should be such that, even the smallest
segment length should be big enough to have sufficient features.
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Figure 4.3: Classification accuracy at different sampling frequencies, when Fc = 250KHz

Fs (Samples/s) Accuracy(%) STD Lmin Fs

Fc
m CPU time(s)

100M 94.26 0.633 44802 400 8.9604e+06 5377.26
50M 94.75 0.466 22401 200 2.2401e+06 2648.92
25M 95.89 0.272 11201 100 560050 1369.98
10M 97.06 0.217 4481 40 89620 587.66
5M 97.5 0.203 2241 20 22410 342.09

2.5M 97.29 0.269 1121 10 5605 190.03
1M 94.51 0.238 449 4 898 101.59

500K 83.51 0.251 225 2 225 41.78
250K 76.62 0.532 113 1 56.5 31.02
200K 77.82 0.76 90 0.8 36 26.79
100K 82.97 1.117 45 0.4 9 16.81
50K 86.78 0.17 23 0.2 2.3 14.71
40K 85.96 0.192 18 0.16 1.44 12.97
25K 79.18 1.019 12 0.1 0.6 12.68

Table 4.1: Accuracy and Standard deviation at different Fs, when Fc = 250KHz
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Figure 4.4: Classification accuracy at different sampling frequencies, when Fc = 500KHz

Fs (Samples/s) Accuracy(%) STD Lmin Fs

Fc
m CPU time(s)

100M 96.09 0.185 22404 200 2.2404e+06 2633.95
50M 96.28 0.114 11202 100 560100 1368.96
25M 96.47 0.173 5601 50 140025 764.55
10M 97.32 0.197 2241 20 22410 349.73
5M 97.88 0.156 1121 10 5605 171.83

2.5M 97.76 0.206 561 5 1402.5 110.79
1M 92.51 0.48 225 2 225 46.85

500K 83.41 0.453 113 1 56.5 33.16
250K 83.11 0.402 57 0.5 14.25 17.45
200K 84.29 1.108 45 0.4 9 15.34
100K 84.59 2.115 23 0.2 2.3 12.27
50K 86.36 0.969 12 0.1 0.6 11.28
40K 80.49 0.876 9 0.08 0.36 11.1
25K 58.74 3.513 6 0.05 0.15 10.82

Table 4.2: Accuracy and Standard deviation at different Fs, when Fc = 500KHz
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Figure 4.5: Classification accuracy at different sampling frequencies, when Fc = 1MHz

Fs (Samples/s) Accuracy(%) STD Lmin Fs

Fc
m CPU time(s)

100M 95.34 0.307 11203 100 560150 1400.79
50M 96.06 0.252 5602 50 140050 742.05
25M 96.61 0.243 2801 25 35012.5 393.9
10M 97.45 0.234 1121 10 5605 180.39
5M 97.79 0.244 561 5 1402.5 98.48

2.5M 95.96 0.327 281 2.5 351.25 62.1
1M 92.67 0.691 113 1 56.5 28.24

500K 88.42 0.656 57 0.5 14.25 18.05
250K 89.95 0.69 29 0.25 3.625 15.21
200K 88.7 0.934 23 0.2 2.3 12.99
100K 85.29 0.821 12 0.1 0.6 12.91
50K 79.67 2.303 6 0.05 0.15 12.01
40K 66.07 5.098 5 0.04 0.1 11.88
25K 51.95 2.242 3 0.025 0.0375 11.17

Table 4.3: Accuracy and Standard deviation at different Fs, when Fc = 1MHz
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Figure 4.6: Classification accuracy at different sampling frequencies, when Fc = 4MHz

Fs (Samples/s) Accuracy(%) STD Lmin Fs

Fc
m CPU time(s)

100M 93.13 0.337 2803 25 35037.5 415.75
50M 93.19 0.335 1402 12.5 8762.5 253.26
25M 94.28 0.326 701 6.25 2190.62 111.27
10M 94.49 0.297 281 2.5 351.25 50.09
5M 95.19 0.394 141 1.25 88.125 31.66

2.5M 94.62 0.304 71 0.625 22.1875 22.44
1M 92.66 1.095 29 0.25 3.625 16.31

500K 89.64 0.752 15 0.125 0.9375 13.33
250K 80.76 1.638 8 0.0625 0.25 12.78
200K 77.68 2.242 6 0.05 0.15 11.5
100K 44.92 3.313 3 0.025 0.0375 12.19
50K 37.98 1.236 2 0.0125 0.0125 11.7
40K 38.12 0.768 2 0.01 0.01 11.37
25K NaN NaN NaN NaN NaN NaN

Table 4.4: Accuracy and Standard deviation at different Fs, when Fc = 4MHz
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Figure 4.7: Classification accuracy at different sampling frequencies, when Fc = 8MHz

Fs (Samples/s) Accuracy(%) STD Lmin Fs

Fc
m CPU time(s)

100M 92.56 0.925 1403 12.5 8768.75 234.59
50M 92.44 0.974 702 6.25 2193.75 125.97
25M 92.59 1.002 351 3.125 548.438 57.28
10M 92.47 1.016 141 1.25 88.125 35.08
5M 92.78 1.023 71 0.625 22.1875 23.09

2.5M 92.58 0.916 36 0.3125 5.625 17.12
1M 92.47 0.773 15 0.125 0.9375 12.51

500K 86.91 0.651 8 0.0625 0.25 12.22
250K 79.97 1.713 4 0.03125 0.0625 12.47
200K 67.33 2.017 3 0.025 0.0375 11.43
100K 37 1.418 2 0.0125 0.0125 12.27
50K 12.29 0.264 1 0.00625 0.003125 11.36
40K 12.33 0.237 1 0.005 0.0025 11.43
25K NaN NaN NaN NaN NaN NaN

Table 4.5: Accuracy and Standard deviation at different Fs, when Fc = 8MHz
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Figure 4.8: Classification accuracy at different sampling frequencies, when Fc = 12MHz

Fs (Samples/s) Accuracy(%) STD Lmin Fs

Fc
m CPU time(s)

100M 93.24 0.609 937 8.33333 3904.17 156
50M 93.21 0.686 469 4.16667 977.083 77.82
25M 93.39 0.664 235 2.08333 244.792 41.7
10M 93.46 0.736 94 0.833333 39.1667 23.52
5M 93.68 0.651 47 0.416667 9.79167 17.04

2.5M 93.67 0.662 24 0.208333 2.5 14.78
1M 93.21 0.768 10 0.083333 0.416667 12.26

500K 87.24 0.724 5 0.041667 0.104167 11.65
250K 69.96 0.984 3 0.020833 0.03125 11.08
200K 51.47 2.495 2 0.016667 0.016667 11.41
100K 5.99 0.118 1 0.008333 0.004167 11.99
50K 11.75 0.183 1 0.004167 0.002083 10.98
40K NaN NaN NaN NaN NaN NaN
25K NaN NaN NaN NaN NaN NaN

Table 4.6: Accuracy and Standard deviation at different Fs, when Fc = 12MHz

39



Figure 4.9: Classification Accuracy Vs Sampling Frequency at different Clock Frequencies

The plot 4.9 shows all the experimental results in one plot. The plot shows classification
accuracy Vs sampling frequency at different clock frequencies. The shaded region around
the curves is the standard deviation. The Fc = 12MHz curve shows a corner or sudden
downfall after Fs = 500KS/s. As, at this high clock frequency, the size of smallest segment
is already very low, and if we sample it at again at a lower sampling rate, than we’ll loose
features and even loose the complete segment if we go ever lower. The Fc = 8MHz
curve shows a downfall after Fs = 250KS/s. The Fc = 4MHz curve shows a downfall
after Fs = 200KS/s. The Fc = 1MHz curve shows a downfall after Fs = 50KS/s. It
means that at this clock frequency, we have sufficient features in the segments or BB, that
we can even go down to Fs = 50KS/s. This is an exciting result, as it clears the path
of selecting MCUs having inbuilt ADC with lower sampling frequency, for designing the
anomaly detector. The Fc = 500KHz curve shows a downfall after Fs = 40KS/s. The
Fc = 250KHz curve shows a downfall after Fs = 25KS/s. This means that for systems
running at a lower clock frequency and having smallest segment size sufficient enough for
good amount of features, we can design the anomaly detector at a very low cost, as well
as the size of the anomaly detector can be very small.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented a study in power-trace analysis, to find the required sampling
frequency, with respect to the classification accuracy, as a function of system architecture
and clock frequency. We analyze the systems classification accuracy by running it at
different clock speeds and varying the sampling frequency for power trace capture. We
also show the effect of the sampling frequency on parameters such as classification time.
For finding the sampling frequency we showed two approaches - analytical and empirical.
Analytically, we found an intuitive formula which relates sampling frequency for power-
trace analysis, system’s clock frequency, smallest length of basic block BB and a scaling
constant ”m”. We then presented a comprehensive empirical study of the same. We showed
empirically, how the accuracy changed with sampling and clock frequency. We also showed
other parameters like classification time as a function of Fs and Fc. We showed that for
a good classification accuracy, the sampling frequency should be such that the smallest
segment length should be large enough to have sufficient features. We also showed the
possibility of selecting very low price MCU with low sampling frequency ADC for designing
the anomaly detector. We strongly believe that our work provides a good starting point
for more future research on non-intrusive run-time tracing of an operating system.
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5.2 Future Work

The study presented in this thesis opens new areas for future research. The analytical
formula given in the thesis, for finding the sampling frequency of power-traces, can be
worked upon for including more variables and tuning. As mentioned in the thesis, this
formula was based on the intuition which was fitting well with our dataset and results
from an empirical approach. One can take advantage of the power of DTW averaging for
generating the final training dataset. We used the normal averaging method for averaging
all the segments from same class. DTW averaging can be an edge ahead in giving a better
average of each class, because it is immune to warping in time-scale. Similarly DTW can
be used for classification as it is a shape-based classification and has better results than
Euclidean-distance shape-based classification. But, as DTW is computationally demand-
ing, one can take advantage of FastDTW [44] instead of the normal DTW. The CPU and
memory consumption of an anomaly-detector can also be looked upon as a function of
sampling frequency and clock frequency. Any findings in this domain will help researchers
and developers to develop a better and cheap anomaly-detector. If CPU and memory
requirements are low, then one can use low cost MCU for developing anomaly-detector.
This will be of huge impact in commercial domain. The same research can be conducted
with different make and models of MCUs to find whether there is a dependence of this on
sampling frequency. Experiments can be conducted for both RISC and CISC architectures.
One can also add noise to the training and testing data signals and see the effect of noise
on the accuracy with respect to sampling and clock frequency parameters. Feature-based
classification methods can be used for classification as those can significantly decrease the
classification processing time and makes the real-time processing more economical. As
feature-based classification methods save only the important features from the power-trace
instead of the complete trace, they can reduce CPU and memory consumption significantly.
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