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Abstract

Reliability analysis in structural engineering is utilized in the initial design phase and its ap-
plication continues throughout the service life of a structural system in form of maintenance
planning and optimization. Engineering structures are usually designed with extremely high re-
liability and with a long service life. However, deterioration with time and exposure to external
hazards like earthquakes, strong winds etc., increase the structure's vulnerability to failure.

In structural reliability analysis, stochastic processes have been utilized to model time-
dependent uncertain variations in environmental loads and structural resistance. The Homo-
geneous Poisson Process (HPP) is most commonly used as the driving process behind environ-
mental hazards and shocks causing structural deterioration. The HPP model is justi�ed on
account of an asymptotic argument that exceedances of a process to a high threshold over a
long lifetime converge to HPP model. This approach serves the purpose at the initial design
stages. The combination of stochastic loads is an important part of design load estimation.
Currently, solutions of the load combination problem are also based on HPP shock and pulse
processes. The deterioration is typically modelled as a random variable problem, instead of a
stochastic process. Among stochastic models of deterioration, the gamma process is popularly
used. The reliability evaluation by combining a stochastic load process with a stochastic process
of deterioration, such as gamma process, is a very challenging problem, and so its discussion is
quite limited in the existing literature.

In case of reliability assessment of existing structures, such as nuclear power plants nearing
the end of life, an indiscriminate use of HPP load models becomes questionable as asymptotic
arguments may not be valid over a short remaining life. Thus, this thesis aims to generalize
stochastic models used in the structural reliability analysis by considering more general models
of environmental hazards based on the theory of the renewal process. These models include
shock, pulse and alternating processes. The stochastic load combination problem is also solved
in a more general setting by considering a renewal pulse process in combination with a Poisson
shock process. The thesis presents a clear exposition of the stochastic load and strength combi-
nation problem. Several numerical algorithms have been developed to compute the stochastic
reliability solution, and results have been compared with existing approximations. Naturally,
existing approximations serve adequately in the routine design. However, in case of critical
structures with high consequences to safety and reliability, the use of proposed methods would
provide a more realistic assessment of structural reliability.

In summary, the results presented in this thesis contribute to the advancement in stochastic
modeling of structural reliability analysis problems.

iv



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Mahesh D. Pandey,
for giving me the opportunity to conduct this work, for the many insightful discussions and his
guidance throughout the years.

I am also extremely thankful to Professor Hans (J.A.M.) van der Weide who has been a
great mentor and teacher for many years and who has encouraged me to pursue a Ph.D. in
Canada. His patience to discuss and share his knowledge has helped me understand many
concepts in this work.

A special thanks go to my colleagues, George Balomenos, Joe Simonji, Eishiro Higo, Ben-
jamin Sanchez Andrade, Indranil Hazra, Sreehari Prabhu, Bin Liu, other graduate students
and friends in di�erent countries for their continuous support.

Last but not least, I would like to thank my parents, Inolda and Erick, and my brother,
Nolvienerick, for their love, support and encouragement throughout this journey far away from
home.

v



To

My Family

vi



Table of Contents

List of Tables xi

List of Figures xii

List of Acronyms xv

Nomenclature xvi

1 Introduction 1

1.1 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Stochastic Renewal Processes 5

2.1 Renewal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Renewal Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Renewal Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Modelling Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Concept of Renewal Decomposition . . . . . . . . . . . . . . . . . . . . . 9

2.3 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 First Crossing Time of Maximum Process . . . . . . . . . . . . . . . . . . . . . . 12

3 Distribution of Maximum Load: Single Process 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Basic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Limitations of Existing Literature . . . . . . . . . . . . . . . . . . . . . . 16

3.1.4 Contributions to Literature . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.5 Objectives and Organization . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Maximum of Single Load Process . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Maximum of a Shock Load Process . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Maximum of a Pulse Load Process . . . . . . . . . . . . . . . . . . . . . 20

vii



3.2.3 Maximum of Alternating Pulse Process . . . . . . . . . . . . . . . . . . . 22

3.3 Methods to Compute Renewal Integrals . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Numerical Integration: Trapezoidal Rule . . . . . . . . . . . . . . . . . . 23

3.3.2 Analytical Solution: Defective Renewal Equation . . . . . . . . . . . . . 24

3.4 An Analytical Example: Erlang(2) Inter-Occurrence Times . . . . . . . . . . . . 25

3.4.1 Solution to Renewal Equation . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Solution of Maximum Shock Load . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Computing the Renewal Integral . . . . . . . . . . . . . . . . . . . . . . 30

3.4.4 Numerical Example Shock Load . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.5 Error Analysis Example Maximum Shock Load . . . . . . . . . . . . . . 31

3.4.6 Solution and Numerical Example Maximum Pulse Load . . . . . . . . . . 32

3.4.7 Numerical Example Maximum Alternating Process . . . . . . . . . . . . 33

3.5 Practical Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Tornadoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.2 Trenton Air Force Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.3 Pearson Airport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.A Proof of equation (3.10) via Renewal Process and Defective Renewal Equation. . 60

3.B Proof of Lemma 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.C Generalized Extreme Value Distributions . . . . . . . . . . . . . . . . . . . . . . 63

3.C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.C.2 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.C.3 The Generalized Pareto Distribution . . . . . . . . . . . . . . . . . . . . 64

3.C.4 Distribution of HPP Pareto . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Distribution of Maximum Load: Combined Process 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.2 Existing Literature and Limitations . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Contributions to Literature . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.4 Objectives and Organization . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Combined Pulse and Shock Process . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



4.2.1 Pulse Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Shock Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Distribution of Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.5 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.A Load Coincidence Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Reliability of Degrading Structures 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Background and Existing Literature . . . . . . . . . . . . . . . . . . . . . 81

5.1.2 Contributions to Literature . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.3 Objectives and Organization . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Basic Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 No Deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.2 Deterministic Deterioration . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Stochastic Deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.4 Randomness in Occurrence Times and Number of Shocks . . . . . . . . . 89

5.3 Deterministic Strength and Stochastic Shocks . . . . . . . . . . . . . . . . . . . 91

5.3.1 Linear Deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Exponential Deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Gamma Process of Deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Gamma Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 Gamma sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Stochastic Strength and HPP Stress . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Kac Functional Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.1 Understanding the Expectation . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.2 Evaluating the Expectation . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6.4 Solving the Kac Functional Analytically . . . . . . . . . . . . . . . . . . 104

5.6.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Solution for a Poisson Process with Stochastic Rate Function . . . . . . . . . . . 107

ix



5.8 An Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.9 Stochastic Strength and NHPP Stress . . . . . . . . . . . . . . . . . . . . . . . . 112

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.A Poisson Processes and Order Statistics . . . . . . . . . . . . . . . . . . . . . . . 114

5.B Kac Functional as a Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.C An Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Summary and Future Research 118

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 120

x



List of Tables

3.1 Tornadoes Darlington: Fujita scale. . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Tornadoes Darlington: statistics inter-arrival times. . . . . . . . . . . . . . . 35

3.3 Tornadoes Darlington: statistics inter-arrival times F0. . . . . . . . . . . . . . 38

3.4 Tornadoes Darlington: statistics inter-arrival times F1. . . . . . . . . . . . . . 38

3.5 Tornadoes Darlington: statistics inter-arrival times F2. . . . . . . . . . . . . . 38

3.6 Tornadoes Darlington: statistics inter-arrival times F3. . . . . . . . . . . . . . 38

3.7 CFB Trenton: statistics wind gusts above 100 km/h. . . . . . . . . . . . . . . 41

3.8 CFB Trenton inter-arrival times: statistics �tted distributions. . . . . . . . 42

3.9 CFB Trenton wind speeds above 100km/h: statistics �tted distributions. . 43

3.10 CFB Trenton: statistics wind gusts above 110 km/h. . . . . . . . . . . . . . . 44

3.11 CFB Trenton inter-arrival times: statistics �tted distributions. . . . . . . . 46

3.12 CFB Trenton wind speeds above 110km/h: statistics �tted distributions. . 46

3.13 CFB Trenton: statistics wind gusts, yearly maximum . . . . . . . . . . . . . . 48

3.14 CFB Trenton wind speeds above 110km/h: statistics �tted distributions. . 49

3.15 Pearson airport: statistics wind gusts above 100km/h. . . . . . . . . . . . . . 53

3.16 Pearson airport inter-arrival times: statistics �tted distributions. . . . . . . 55

3.17 Pearson airport wind speeds above 100km/h: statistics �tted distributions. 55

3.18 Pearson airport: statistics wind gusts above 110km/h. . . . . . . . . . . . . . 56

3.19 Pearson airport inter-arrival times: statistics �tted distributions. . . . . . . 56

3.20 Pearson airport wind speeds above 110km/h: statistics �tted distributions. 58

5.1 Parameters used to compute reliability in Figure 5.13. . . . . . . . . . . . . . . . 100

xi



List of Figures

1.1 A basic reliability problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Renewal function and renewal density for Weibull distributions. . . . . . . . . . 8

2.2 A marked renewal process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 (a) A schematic of the renewal process, (b) an illustration of the renewal decom-
position argument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Counting processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 A schematic of a shock load process. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 A schematic of a pulse load process. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 A schematic of an alternating load process. . . . . . . . . . . . . . . . . . . . . . 23

3.4 Erlang(2) shock process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Error between renewal model and HPP approximation as function of threshold. . 32

3.6 Error between renewal model and HPP approximation as function of time. . . . 32

3.7 Erlang(2) pulse process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Erlang(2) alternating process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Tornadoes Darlington: PPP inter-arrival times F-scale 0. . . . . . . . . . . . 36

3.10 Tornadoes Darlington: PPP inter-arrival times F-scale 1. . . . . . . . . . . . 36

3.11 Tornadoes Darlington: PPP inter-arrival times F-scale 2. . . . . . . . . . . . 37

3.12 Tornadoes Darlington: PPP inter-arrival times F-scale 3. . . . . . . . . . . . 37

3.13 Tornadoes Darlington: Weibull distribution for wind speeds in category F2. . 39

3.14 Tornadoes Darlington: POE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.15 CFB Trenton inter-arrival times: wind speeds above 100km/h. Exponential,
Weibull and Lognormal PPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.16 CFB Trenton wind speeds above 100km/h: Exponential, Weibull and
Lognormal PPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.17 CFB Trenton wind speeds above 100km/h: POE. . . . . . . . . . . . . . . 44

3.18 CFB Trenton inter-arrival times: wind speeds above 110km/h. Exponential,
Weibull and Lognormal PPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.19 CFB Trenton wind speeds above 110km/h: Exponential, Weibull and
Lognormal PPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.20 CFB Trenton wind speeds above 110km/h: POE. . . . . . . . . . . . . . . 47

3.21 CFB Trenton wind speeds above 110km/h: POE. . . . . . . . . . . . . . . 47

xii



3.22 CFB Trenton wind speeds above 110km/h: Exponential, Weibull, Lognor-
mal and Gumbel PPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.23 CFB Trenton wind speeds above 100km/h. . . . . . . . . . . . . . . . . . 50

3.24 CFB Trenton wind speeds above 110km/h. . . . . . . . . . . . . . . . . . 50

3.25 CFB Trenton wind speeds above 110km/h. . . . . . . . . . . . . . . . . . 51

3.26 CFB Trenton POE above 100km/h: POE of maximum gust over 50, 100
and 200 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.27 CFB Trenton POE above 110km/h: POE of maximum gust over 50, 100
and 200 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.28 Pearson airport inter-arrival times PPP: wind speeds above 100km/h. . . 54

3.29 Pearson airport wind speeds above 100km/h PPP. . . . . . . . . . . . . 54

3.30 Pearson airport wind speeds above 100km/h: maximum distribution. . . . 55

3.31 Pearson airport inter-arrival times PPP: wind speeds above 110km/h. . . 57

3.32 Pearson airport wind speeds above 110km/h PPP. . . . . . . . . . . . . 57

3.33 Pearson airport wind speeds above 110km/h: maximum distribution. . . . 58

4.1 A schematic of a pulse load process. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 A schematic of a shock load process. . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 A schematic with regeneration epoch at T1 for both processes. . . . . . . . . . . 73

4.4 Combined loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Schematic of stochastic process of deterioration. . . . . . . . . . . . . . . . . . . 81

5.2 A deterministic model where all variables are known. . . . . . . . . . . . . . . . 84

5.3 No deterioration: component strength known. . . . . . . . . . . . . . . . . . . 85

5.4 No deterioration: component strength uncertain. . . . . . . . . . . . . . . . . 85

5.5 Deterministic deterioration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Deterministic deterioration: initial component strength known. . . . . . . . 86

5.7 Deterministic deterioration: initial component strength uncertain. . . . . . . 86

5.8 Reliability deterministic deterioration. . . . . . . . . . . . . . . . . . . . . . . . 88

5.9 Deterministic deterioration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.10 Reliability in case of linear deterioration. . . . . . . . . . . . . . . . . . . . . . . 93

5.11 Reliability in case of exponential deterioration. . . . . . . . . . . . . . . . . . . . 94

5.12 Schematic of stochastic process of deterioration. . . . . . . . . . . . . . . . . . . 97

5.13 Reliability and CDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiii



5.14 Graphical representations of X and r0 ´X. . . . . . . . . . . . . . . . . . . . . . 102

5.15 Graphical representations of FY pr0 ´Xq and 1´ FY pr0 ´Xq. . . . . . . . . . . 103

5.16 Riemann-Stieltjes sum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.17 Reliability and CDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.18 Distribution as function of t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.19 Distribution as function of t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.20 Sensitivity to λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.21 Graphical representations of change of partition. . . . . . . . . . . . . . . . . . . 109

xiv



List of Acronyms

iid independent and identically distributed. 8, 14, 18, 112

CDF Cumulative Distribution Function. 5, 20�24, 49, 60, 86, 87, 91, 98, 101, 104, 106, 110

CFB Canadian Forces Base. 40

GEV Generalized Extreme Value. 64, 65, 67

GPD Generalized Pareto Distribution. 65�67

HPP Homogeneous Poisson Process. iv, 3, 5, 11, 14�16, 19, 31, 33, 39, 40, 59, 66, 67, 70, 74,
78, 97, 106, 113, 115, 118, 119

MoM Method of Moments. 53, 54, 56, 57

NHPP Nonhomogeneous Poisson Process. 83, 107, 112

PDF Probability Density Function. 7, 49, 92, 112

POE Probability of Exceedance. 17, 30, 33, 34, 39, 49, 70, 78

PPP Probability Paper Plot. 35, 40

TTF Time to Failure. 1

xv



Nomenclature

ErXs Expectation of random variable X

PpXq Probability of event X

F
piq
T ptq i-fold convolution of FT ptq with itself

fSpsq Joint probability density function of occurrence times

FT ptq Distribution of inter-arrival times

FXpxq Cumulative distribution function of a random variable X

fXpxq Probability density function of a random variable X

Mptq Renewal function

mptq Renewal rate

Nptq Counting process of events in r0, ts

S1, S2, . . . Sequence of random increasing values denoting epochs of occurrence

T1, T2, . . . Sequence of random values denoting subsequent inter-arrival times

Xptq Value of stochastic process at time t

X˚ptq Maximum value of stochastic process up to time t

xvi



Chapter 1

Introduction

1.1 Reliability Analysis

Reliability analysis supports decision making on the safeguarding of system performance from
engineering design to the assessment of risk in existing engineering systems. Risk is the e�ect
of adverse behaviour of a system, which can be quanti�ed as the probability of failure and we
have the following relation:

Risk = (Probability of failure) ˚ Consequences.

Reliability, is related to the probability of failure as:

Reliability = 1 - (Probability of failure).

This document concerns the development and explanation of models to compute the reliability
of systems from a mechanistic point of view. This means setting up a mathematical formula-
tion of the problem which includes the mechanistic components that can lead to failure, i.e.
system strength and the loads impacting the system. It is easy to see that whenever there is
no uncertainty in the strength of the system or the loads which the system is subject to, there
is also no uncertainty in the behaviour of the system. The system will operate satisfactorily
if the strength is larger than the impacting loads. However, usually the strength and load are
uncertain and provided by a probability distribution as depicted in Figure 1.1.

Let the strength be denoted by the random variable X and the load by the random vari-
able Y . Then the probability of failure is

PpX ĺ Y q “ PpX ´ Y ĺ 0q,

which clearly occurs only in the interference region given in Figure 1.1. This is still a problem
which has no uncertainty in time, i.e. it is a time-invariant problem. In practice the strength
and load can be uncertain in time and we are interested in estimating the Time to Failure
(TTF) of the system. The TTF is the �rst time the magnitude of the load exceeds the strength
of the system. In particular we are interested in non-repairable systems, which means the
time to �rst failure is a critical event that should not occur before the system has completed its
mission. Let the random variable T denote the unknown TTF. We are interested in computing:

PpT ą tq, for t ą 0,

which is the system reliability and denotes the probability of the TTF exceeding a certain time
t.
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Figure 1.1: A basic reliability problem.

As mentioned, the strength and the loads can be uncertain in time and this has motivated
the use of stochastic processes. This then leads to the following cases:

1. Load only is a stochastic process.

2. Strength only is a stochastic process.

3. Both load and strength are stochastic processes.

Case 1 is the subject of chapters 3 and 4 which besides reliability, leads to a di�erent quantity
of interest in safety assessment: the distribution of maximum load. Case 3 is the subject of
chapter 5. Case 2 is a special and trivial variant of case 3.

1.2 Background and Motivation

Besides structural reliability analysis, also in equipment reliability probabilistic concepts and
methods were developed. This means all components related to equipment capacity, applied
loads and environmental factors are modeled with a random lifetime T . Therefore, reliability
analysis of the entire non-repairable system can be formulated as a single lifetime distribution
[10]. Non-repairable systems cannot be repaired after failure and usually have severe conse-
quences. Examples are: collapsed buildings, bridges, dams or nuclear structures. Repairable
systems however are assumed to be restored to an as good as new condition after failure. The
lifetime T of the system is now interpreted as the time between each failure of the system.
Because the system is renewed after each failure, stochastic renewal processes became a logical
choice to model these problems and compute quantities such as: expected number of renewals
in an interval, renewal rate and unavailability of the system.
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Cornell [8] modeled seismic risk using the HPP and since then this model has been widely
used in various studies on risk, reliability and life cycle cost analysis in civil engineering, [42].
As early as [62] and [61], Rosenblueth introduced the renewal process model for the estimation
of expected loss caused by recurring hazards such as, earthquakes, winds, tsunamis etc.. In the
most recent years, Rackwitz [57] has shown renewed interest in these models and they have been
extended to combine with the Life Quality Index framework, [51]. Rackwitz and others,[33],
[59], [17], have applied the renewal process model to analyze the e�ects of degradation and
maintenance in life cycle analysis.

The HPP still remains overwhelmingly present in the literature since it leads to considerable
analytical simpli�cations and avoids the complexities of stochastic theory, [57], [55]. In this
document it becomes clear that the HPP performs well as an asymptotic solution but can
become a crude approximation otherwise. Therefore, there is a need to develop more accurate
methods that are robust under any condition, e.g. any time horizon, component capacity or
inter-arrival times of hazards. This document intends to show that this can be achieved by
utilizing renewal process theory.

Another quantity that plays a pivotal role in reliability analysis is the distribution of the
maximum applied load. With a robust model this decision factor can also be calculated for non-
HPP phenomena, [46]. Problems that involve a combination of two stochastic load processes,
or a load and a degradation process pose many problems when analyzed in a general setting. In
this document it is shown that this can be solved to some extent of generalization. A reliability
problem involving a gamma degradation process and a marked HPP load process requires
computing a complex stochastic integral of a gamma process [47]. Therefore, when stochastic
processes are combined, special caution needs to be taken or some simplifying assumptions have
to be included in the model.

As will be apparent in this document, the key issues in solving these reliability problems
are the time component of the problems and possible correlations between loads. For case 3
mentioned above, information on the joint probability of occurrence of loads at di�erent points
in time is necessary. Solving a reliability problem with the joint probability of occurrence
combined with possible correlation between load magnitudes can prove to be a daunting task.
The assumption of independence between load magnitudes and their occurrence times following
a Poisson process lead to signi�cant reduction in the complexity of the problem. For case 1,
because the strength does not change over time, one can argue that the process probabilistically
starts all over again after the �rst occurrence of load. This naturally leads to the �eld of renewal
process theory. Some basic properties of renewal processes, including the very well-known and
widely used Poisson process are the subject of the following chapter.

3



1.3 Organization and Objectives

The main objectives of this document are to present accurate solutions to the following relia-
bility analysis quantities:

• distribution of maximum of a load process

• distribution of maximum of combined load and shock process

• reliability of the interaction between gamma degradation and marked (non)-HPP load
process

After getting familiarized with the general idea of reliability and safety analysis in Chapter
1, Chapter 2 introduces basic mathematical formulations and concepts. This chapter should
also get the reader familiarized with the notations that are used throughout this document. In
chapter 3, a reliability problem of a component with time-invariant strength subject to loads
from a single source is treated. In this setting, renewal theory can be used with great e�ec-
tiveness. From the formulations in this chapter the distribution of maximum of a load process
is also derived. Chapter 4 builds on these achieved results and extends to the computation of
the distribution of the maximum of two combined load processes. In Chapter 5 the component
strength is time-dependent and a new approach is invoked to compute the reliability of the
component. In this chapter it is shown that analytical results can be obtained even if both the
strength and load process are stochastic in nature. In chapter 6 a summary of the results in
this document are given, accompanied by suggestions for future research.

It is to be emphasized that when referring to load and strength, this means one load process
and one strength process with the exception of chapter 4 which presents results for the combi-
nation of two load processes. An exact and relatively simple solution is di�cult to analyze for
the combination of three or more processes and simulations may be the only alternative.
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Chapter 2

Stochastic Renewal Processes

In this chapter the terminology, concepts and notations of renewal theory used in this document
are presented. In section 2.1 basic concepts of renewal theory are introduced while in section
2.2 terminology of renewal processes and renewal decomposition are presented. Section 2.3
explains more on the HPP. In section 2.4 it is shown why observing the maximum of the load
process leads to both the quantities of maximum distribution and reliability of a component
from the same model.

2.1 Renewal Theory

2.1.1 Renewal Process

This section presents the ordinary renewal process, starting with the basic concepts and ending
with an example. Suppose we can model the lifetime of a component, which we denote as T ,
as a continuous random variable with Cumulative Distribution Function (CDF) given as

FT ptq “ PpT ĺ tq, x ľ 0 (2.1)

and where FT p0q “ 0. Thus FT ptq is the probability of the component failing before time t.

A new component is put into service at t “ 0 and survives a period of T1. At time of failure it
is replaced by e new component which survives a period of T2. It is assumed that replacement
time is negligible1 so that the second component fails at time pT1 ` T2q. When the second
component fails it is also immediately replaced by a new one.

We let Tn, n “ 1, 2, . . . be the length of the nth survival period and Sn be the time of the
nth replacement. Hence,

Sn “
n
ÿ

i“1

Ti, n “ 1, 2, . . . ,

where S0 “ 0. The point process T1, T2, T3, . . . on the set of positive real values R` represents
the sequence of inter-arrival times. These inter-arrival times can equivalently be written as
Tn “ Sn ´ Sn´1 and are called renewal intervals .

The process
Nptq “ maxtn;Sn ĺ tu

represents the number of replacements on the interval r0, ts. The counting process N “

tNptq; t ľ 0u associated with the partial sums Si, i ľ 1, is called the ordinary renewal process

1Since replacement time is negligible throughout this analysis, failure and replacement are interchangeable
and will be used as equals.
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(ORP) if T1, T2, T3, . . . forms a sequence of non-negative iid random variables with distribution
FT ptq (abstractly given in equation (2.1)).

The probability distribution FSiptq of the i-th renewal time Si is the i-fold convolution F
piq
T ptq

of FT ptq with itself. For the ordinary renewal process on p0, ts we thus have

FSiptq “ PpT1 ` . . .` Ti ĺ tq “ F
piq
T ptq,

which can recursively be calculated as

F
piq
T ptq “ FT pxq, for i “ 1 (2.2)

F
piq
T ptq “

ż t

0

F
pi´1q
T pt´ yqdFT pyq, for i ľ 2, (2.3)

where dFT pyq “ fT pyqdy if the PDF of T exists.

2.1.2 Renewal Function

The expectation of the number of renewals up to time t, Mptq “ ErNptqs, is called the renewal
function. We notice that we can write the counting process Nptq as a sum of indicator functions
on the renewal times, i.e. counting all the renewal times on the interval p0, ts as a unit occurrence
and every renewal outside p0, ts as a zero:

Nptq “
8
ÿ

i“1

1tSiĺtu.

Taking expectations gives the renewal function2

Mptq “ ErNptqs “ E

«

8
ÿ

i“1

1tSiĺtu

ff

“

8
ÿ

i“1

PpSi ĺ tq “
8
ÿ

i“1

F
piq
T ptq. (2.4)

Because of the in�nite sum in equation (2.4) it is impractical to compute. Instead we will
rewrite the renewal equation in an integral form.

We can use equations (2.2)-(2.3) to write equation (2.4) as

Mptq “

8
ÿ

i“1

F
piq
T ptq

“ FT ptq `

ż t

0

Mpt´ yqdFT pyq. (2.5)

2Here we use that
E
“

1tAu

‰

“ PpAq.
Intuitively, if Ω is the set of all renewals Si, i “ 1, 2, . . ., and A is the set consisting of renewals only in the
interval p0, ts, the indicator function assigns all Si on p0, ts as 1 and all others as 0. Thus, this gives exactly
the amount of elements in A, which is the proportion of Si, i “ 1, 2, . . ., that is in p0, ts. This is equal to the
probability of Si being in p0, ts.
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We call the relation in equation (2.5) the renewal integral equation. A direct numerical ap-
proximation of this equation by a trapezoidal rule is a more simple, practical and sufficiently
accurate method, [79] and [67, p. 311]. We notice that if FT ptq has Probability Density Function
(PDF) given by fT ptq, we can write equation (2.5) as

Mptq “ FT ptq `

ż t

0

Mpt´ yqfT pyqdy

“ FT ptq ` pM ˚ fT q ptq. (2.6)

We notice that Mptq is completely de�ned by FT ptq. An important generalization is given in
the following lemma.

Lemma 2.1. Let fT ptq be a PDF with support R` and let bptq be a given, integrable function
that is bounded on �nite intervals. Let Zptq, t ľ 0, be de�ned by the integral equation

Zptq “ bptq `

ż t

0

Zpt´ yqfT pyqdy.

Then the solution of this equation is unique and bounded on �nite intervals and is given as

Zptq “
8
ÿ

n“0

´

F
pnq
T ˚ b

¯

ptq (2.7)

or equivalently as

Zptq “ bptq `

ż t

0

bpt´ yqmpyqdy, t ľ 0, (2.8)

where the renewal density mptq is the derivative of Mptq.

The proof of this lemma uses the fact that the process probabilistically starts over after
each renewal and is outlined in [68].

The renewal density , mptq, is de�ned as the expected amount of renewals per unit time:

mptq “
dMptq

dt
“ fT ptq ` pm ˚ fT q ptq. (2.9)

We can use the Erd:os-Feller-Pollard [15] theorem to approximate Mptq:

lim
tÑ8

Mptq

t
“ lim

tÑ8
mptq “

1

ErT s
, (2.10)

where ErT s “
ş8

0
t ¨ fT ptqdt is the mean of T .

To help visualize and explain equations (2.6) and (2.9) we present two examples. In these
examples the integrals in the equations are approximated by a trapezoidal rule with ∆t “ 1
(year) on a 50 year time horizon.

In Figure 2.1 the renewal function and the renewal density are depicted for a component life-
time given by a Weibull distribution with di�erent parameters: in Figure 2.1 (a), α “ 19.2256
and shape parameter β “ 3.05 while in Figure 2.1 (b), α “ 12 and shape parameter β “ 4.
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(a) α “ 19.2256 and β “ 3.05. (b) α “ 12 and β “ 4.

Figure 2.1: Renewal function and renewal density for Weibull distributions.

2.2 Modelling Hazards

2.2.1 Terminology

Hazards are assumed to arrive at times S1, S2, . . . with independent and identically distributed
(iid) inter-arrival times T1, T2, . . .. So the partial sums of the sequence T1, T2, . . . is denoted
as Sn and we have Sn “ Sn´1 ` Tn for n ľ 1 with the convention that S0 “ 0. At each
arrival time Sn there is a corresponding mark/load of random magnitude Xn. Since inter-
arrival times and load magnitudes are both non-negative, this model is based on iid random
vectors pT1, X1q, pT2, X2q, . . . with components from distributions T „ FT ptq and X „ FXpxq.
Furthermore we assume PpT ą 0q “ 1. The shock magnitude at time t can then be denoted as

Xptq “
8
ÿ

n“1

Xn1tt“Snu, t ľ 0. (2.11)

Figure 2.2 is a depiction of the marked renewal process which follows from the sequence
pT1, X1q, pT2, X2q, . . .. Let N “ tNptq; t ľ 0u be the counting process associated with the
increasing sequence 0 ă S1 ă S2 ă ¨ ¨ ¨ . We are interested in calculating the probability
distribution of the maximum load up to time t, where the maximum load is de�ned as

X˚
ptq “ maxtXpsq; s ĺ tu “ maxpX1, X2, . . . , XNptqq.
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2.2.2 Concept of Renewal Decomposition

Recall the shock load process given by equation (2.11) as

Xptq “
8
ÿ

n“1

Xn1tt“Snu, t ľ 0. (2.12)

Let rXn=Xn`1, rTn=Tn`1 and rSn=Sn`1 ´ T1 for n ľ 1 with the convention rS0=S1=T1. A
schematic is given in Figure 2.3. Furthermore let rN=t rNpt ´ T1q; t ľ T1u be the counting

process associated with the increasing sequence T1 ă rS1 ă rS2 ă ¨ ¨ ¨ , i.e.

rNptq “
8
ÿ

i“1

1
trSiptqu

.

The renewal decomposition property means that

• The counting process rNptq has the same distribution as Nptq. It implies the expected
value and other higher moments of the two processes are identical.

• The shifted process is independent of the time of shift, i.e. rNptq and T1 are independent.

As shown by [52], a decomposition of the original counting process can be written as

Nptq “ 1tT1ĺtu `
rNpt´ T1q. (2.13)

In Figure 2.4 (a) an example of a counting process Nptq is depicted while in Figure 2.4 (b) a

probabilistically equivalent process rNpt´ T1q is depicted. Let rX=t rXptq; t ľ 0u where

rXptq “
8
ÿ

n“1

rXn1
tt“rSnu

, t ľ 0.

The processes X and rX have the same distribution and the process rX is independent of the
vector of �rst occurrence pT1, X1q. For t ą T1 it follows:

rXpt´ T1q “

8
ÿ

n“1

Xn`11tt“Sn`1´T1u

“

8
ÿ

n“2

Xn1tt“Snu

“ Xptq ´X11tt“T1u.

0 t

X1

X2

Xn´1

Xn

S1 S2 Sn´1 Sn

T1 T2 Tn

Figure 2.2: A marked renewal process.
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S0 t

rS0
t

S1 S2 S3 Sn´1 Sn Sn`1

rS1
rS2

rSn´2
rSn´1

rSn

T1 T2 T3 Tn Tn`1

rT1 rT2 rTn´1
rTn

(a) Renewal process

(b) Shifted renewal process

Figure 2.3: (a) A schematic of the renewal process, (b) an illustration of the renewal decom-
position argument.

Taking rXptq “ 0 for t ă 0 gives:

Xptq “ X11tt“T1u `
rXpt´ T1q, t ľ 0.

Hence, since the processes X and rX have the same distribution, after the �rst occurrence
pT1, X1q the shock load process probabilistically starts all over again.

(a) N . (b) rN .

Figure 2.4: Counting processes.

10



2.3 Poisson Process

A special case of a renewal process is a Poisson process. The Poisson process is extensively
used in reliability analysis due to its asymptotic behaviour and the simple, analytical solutions
it provides. Let Nptq be the integer valued random variable denoting the number of events in
the interval p0, ts. Then, the HPP can be entirely derived from some intuitive postulates:

1. Homogeneity The statistical behaviour of the arrival time of an event in any time
interval ra` h, b` hs, where 0 ă a ă b and h ą 0, is independent of h. For our purposes
this means for example: the number of events does not depend on any time interval but
only on the length of the interval.

2. Orderliness For an interval of length h, the probability of having more than one event in
the interval is very small compared to its length. Practically this implies the assumption
of no simultaneous events.

3. Independence The number of events in disjoint intervals are statistically independent.

4. Activity The probability of at least one event occurring in a time period of length h
(and from homogeneity independent of the time interval) is

PpNphq ľ 1q “ λh`Ophq, hÑ 0, λ ą 0.

This is the same as saying

lim
hÑ0

PpNphq ľ 1q

h
“ λ, λ ą 0,

so that there is a probability of an event occurring at every single time point.

The counting process tNptq, t ľ 0u is then called a homogenous Poisson process with constant
intensity parameter λ. From the above postulates it also follows that

PpNptq “ kq “
pλtqk

k!
e´λt.

Thus Nptq follows a Poisson distribution with parameter λt on an interval of length t. The proof
of this formula is beyond the scope of this chapter and is omitted. The HPP with intensity λ
is a renewal process with T following the exponential law, i.e. FT ptq=1 ´ e´λt. The renewal
function of an HPP is a linear function of time, Mptq=ErNptqs=λt, and the renewal rate is a
constant, λ. It is worth noting that the Poisson process possesses the memoryless property in
the sense that the probability of an event occurring in an interval does not depend on the past
but only on the length of the interval. In certain formulations this is also the culprit of this
process.
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2.4 First Crossing Time of Maximum Process

In this section we show that the �rst passage time of a process tXptq, t ľ 0u and its maximum
process tX˚ptq, t ľ 0u are the same. Let X=tXptq; t ľ 0u be the load process which a compo-

nent is subject to. Let rT be the random variable denoting the lifetime distribution of the com-
ponent. We are interested in calculating the reliability of the component, i.e. PprTĺtq=F

rT ptq.
This is a non-repairable component and in particular the component fails the �rst time Xptq
exceeds the �xed component capacity x. Thus, we are interested in the time

rt “ mintt ľ 0;Xptq ľ xu.

To analyze rt, and thus to compute PprT ĺ tq, we instead use the maximum of the process Xptq,
de�ned as:

X˚
ptq “ maxtXpsq; s ĺ tu. (2.14)

This approach is easier since a characteristic of the maximum can easily be used3.

De�ne t˚ as the �rst time X˚ptq is larger than the threshold x;

t˚ “ mintt ľ 0;X˚
ptq ľ xu.

It is left to be shown that calculating t˚ is equivalent to calculating rt.

Lemma 2.2. rt is reached if and only if t˚ is reached.

Proof:
Assume rt is reached. We have Xptq ĺ X˚ptq @t. For all t P r0,rtq we have Xptq ă x and hence
also max

0ĺtărt
tXptqu “ X˚prt´q ă x, where rt´ “ rt´ ε @ε ą 0.

Moreover, since Xprtq ľ x and Xptq ă x for all t P r0,rtq we have

X˚
prtq “ max

0ĺtĺrt
tXptqu “ Xprtq ľ x.

But since X˚prt´q ă x and X˚prtq ľ x, t˚ is reached (at rt).

Assume t˚ is reached. This implies X˚pt˚q ľ x and X˚pt˚´q ă x where t˚´ “ t˚ ´ ε @ε ą 0.
Since X˚ptq is a (positive) non-decreasing continuous function

x ą X˚
pt˚´q “ max

0ĺtăt˚´

tXptqu ľ Xptq, @t P r0, t˚q,

3Let X1, . . . , XNptq be the sequence of all shocks in the time interval r0, tq. It can be seen that

PpmaxtX1, . . . , XNptqu ĺ xq “ PpX1 ĺ x, . . . ,XNptq ĺ xq.

Furthermore, if X1, . . . , XNptq are idd and X1 „ FXpxq:

PpmaxtX1, . . . , XNptqu ĺ xq “ FXpxq
Nptq.
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(implying that rt has not yet been reached).

But since X˚pt˚q “ max
0ĺtĺt˚

tXptqu P tXptq; t P r0, t˚su and X˚pt˚q ľ x, we have that

Xpt˚q “ max
0ĺtĺt˚

tXptqu “ X˚
pt˚q ľ x,

and hence rt is reached (at t˚).

From the above it can be seen that the following always hold:

1. rt “ t˚

2. Xprtq “ X˚pt˚q.

Hence, mintt ľ 0;Xptq ľ xu=mintt ľ 0;X˚ptq ľ xu and we can calculate the component reli-

ability PprTĺtq by observing the maximum process X˚ptq. We also notice that while computing
the reliability of the component via the maximum of the load process, the distribution of the
maximum load is also attained by the same formula PpX˚ptq ĺ xq, i.e. when x is �xed we can

calculate PpX˚ptq ĺ x;xq=PprTĺtq and for �xed t we can calculate PpX˚ptq ĺ x; tq=PpX˚ĺxq.
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Chapter 3

Distribution of Maximum Load: Single Pro-

cess

3.1 Introduction

3.1.1 Background

Structures are designed to sustain the e�ect of many di�erent types of loads generated by the
surrounding environment. For example, wind, �ood, snow and earthquakes generate load events
that a structure must survive over its entire service life. Design codes specify provisions such
that a structure can survive all extraordinary load events with a high degree of reliability, [43].
Recognizing the time-dependent and randomly �uctuating nature of such loads, the theory
of stochastic processes became a natural candidate to model and analyze a wide variety of
structural reliability problems.

The concept of extreme load distribution provided a convenient way to analyze structural
reliability over a speci�ed service life. The reason is that the extreme load distribution reduces
the stochastic reliability problem to a simple time-invariant reliability analysis in the following
manner. If Xmaxptq denotes the maximum of a stochastic load process over a time interval,
p0, ts, and W is the time-invariant (i.e., no degradation) strength of a component, then the
probability of the event, tXmaxptq ą W u, represents the probability of failure over the entire
service life of the component. This insight has made extreme value distribution an integral part
of reliability-based design codes.

The mathematical developments in asymptotic theory of extreme value distribution further
inspired this approach to reliability analysis. The asymptotic theory shows that there are well
de�ned domains of attraction of extreme values generated by an in�nite sequence of iid random
variables. So the idea emerged that observations of maximum load values in a representative
time period (like a year) are the only input data needed for modelling the distribution. The
Gumbel distribution became a popular choice to the modelling of extremes of wind speed, �ood
and other similar environmental loads since the seminal work of [24]. Thus, in this framework
the stochastic nature of the load process generating maximum values became irrelevant.

The interest in a more detailed modelling of load processes was renewed by the load combi-
nation problem. As a structure might be simultaneously subject to more than one load process,
the interest in evaluating the maximum value of such combined loads became important. The
short-term, impulsive loads are represented as a shock process and slowly-varying, sustained
loads as a pulse process.

There are two primary approaches to analyze the maximum load. The �rst approach is
based on the assumption that load occurrence process is an HPP, [76], for which an explicit
solution is available. The second approach relies on the Rice formula for the mean crossing
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rate of a stochastic process exiting a domain, [38, 74]. The mean crossing rate is used in two
ways: (1) the mean rate is directly used as an upper bound to the exceedance probability
[37], and (2) the mean rate is taken as a parameter of the Poisson process under an (arti�cial)
assumption that the nature of stochastic crossing is roughly like a Poisson process. With this
assumption, the analytical solution of maximum load is continued to be used. A combination
of such assumptions was used to analyze extremes generated by a renewal process, [3]. In
case of an alternating (on and o�) process, [11] used the Markov process model to analyze the
problem. For a comprehensive account of stochastic modelling of maximum load, the readers
are referred to a monograph by [77] and a more recent review by [16].

3.1.2 Basic Approaches

In the reliability literature, there are two basic approaches to derive the distribution of maxi-
mum value. The �rst approach is based on the asymptotic theory of extreme value distribution.
The distribution of maximum value,Mn, of an iid sequence of random variables, X1, X2, . . . , Xn,
with a common distribution FXpxq, can, in principle, be obtained as

PpMn ĺ xq “ PpX1 ĺ x,X2 ĺ x, . . . , Xn ĺ xq “ pFXpxqq
n. (3.1)

As nÑ 8, there exists sequences of constants, an ą 0 and bn such that

P
ˆ

Mn ´ bn
an

ĺ x

˙

Ñ Gpxq, as nÑ 8, (3.2)

where Gpxq is known as the asymptotic extreme value distribution that belongs to one of the
following three types of the distributions: Gumbel, Fréchet and Reversed Weibull. More on
extreme value distributions can be found in 3.C.4. The Gumbel distribution became a popular
choice for modelling extremes of wind speed, �ood and other similar environmental loads since
the seminal work of [24].

The asymptotic distribution theory is used as the method of annual maxima. In this method,
observations of the maximum value in a representative time period (e.g., one year) are collected
for the parameter estimation of an appropriate asymptotic distribution, such as the Gumbel
distribution. The method has been useful in modelling more frequent hazards (e.g., high wind
and �ood events) with long time series of data. This approach is conceptually simple, as it
avoids a detailed modelling of stochasticity in the occurrence, intensity and duration of the
hazard process.

The second approach to extreme value analysis relies on a more formal stochastic pro-
cess model with well de�ned components (e.g., occurrence, intensity and duration). Since the
seminal work of Cornell on seismic risk analysis [8], the HPP has become the most preferred
model of hazards in structural reliability. The HPP model of �ooding events, developed by
Todorovic and Zelenhasic [69], had a similar in�uence in hydrology. The interest in stochastic
process modelling was also driven by the load combination problem in which the maximum
value generated by simultaneous occurrences of two (or more) hazards was investigated [76].
For a detailed account of stochastic modelling of various load processes, readers are referred to
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a monograph by [77] and a more recent review by [16]. It is worth remarking that the HPP
model is almost exclusively used in the literature to model shock and pulse load processes. The
analytical simplicity of this approach is certainly a contributing factor.

In cases where a load process can be modelled as a Gaussian process, a solution approach
based on the Rice formula was developed [74]. In this approach, the mean crossing rate of a
barrier by the process is computed and then used in the determination of the maximum load
distribution in two approximate ways: (1) the mean crossing rate is directly used as an upper
bound to the exceedance probability [37], and (2) relying on an asymptotic result that rare
crossings converge to the Poisson process with its rate parameter equal to the mean crossing
rate calculated by the Rice formula.

3.1.3 Limitations of Existing Literature

Although there is a fairly substantial body of engineering literature on stochastic modelling of
maximum load, the following key limitations are worth noting:

• The literature is replete with approximate solutions based on the mean crossing rate and
the Poisson crossing assumption. Although these assumptions can be justi�ed in case of
extremes of a continuous Gaussian stochastic process, their use for shock and pulse types
load processes is unnecessary and conceptually incorrect.

• In the modelling of maximum wind speed distribution, [26] reported that a slow conver-
gence of data to the asymptotic extreme value distribution introduces error in the param-
eter estimation and in some cases data appear to have converged to a wrong asymptotic
form.

• The distribution of maximum load generated by the HPP process implies that the time
between load occurrences is an exponential random variable. The exponential distribution
may not be applicable all hazards faced by structures and system. In case of a non-
exponential distribution of inter-occurrence time, the theory of renewal process must be
used for which there is no explicit solution available. It is not expected that all hazards will
comply with such assumptions of HPP model. It is therefore desirable to �nd a solution
for the case of a renewal process with a non-exponential distribution of inter-arrival time.
An accurate solution of this problem is lacking in the literature. An approximate approach
to analyze this problem was presented by [3] who used the Rice formula and the Poisson
crossing assumption.

An asymptotic result about the Poisson nature of level crossings is applicable to a high
barrier and a long interval of time. This approach becomes questionable in risk and
reliability assessment over a short service life. For example, temporary structures are
designed for a short service life and modest loading requirements. Another example
comes from stress test of nuclear plant structures that are near the end of life.

• In addition to a shock and pulse type process, an alternating renewal process provides a
more general approach to model an intermittent load process. This problem has received
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very limited attention in the literature. An alternating process with exponential on and
o� times was analyzed as a two phase Markov process by [11]. For a renewal type
alternating process with non-exponential distributions of on and o� time, no solution has
been reported in the literature.

Therefore, there is a pressing need for developing an accurate, �nite-time solution for the
distribution of maximum value generated by a more general class of stochastic processes, i.e.
the renewal process.

3.1.4 Contributions to Literature

In structural safety analysis the reliability and maximum impact of hazards are of fundamental
importance for safe operation during the remaining life span of a structure. For the reliability
computations it is well known that models based on a Poisson process are asymptotically
justi�ed and a Poisson model is appealing for its simple closed-form solution. However, if inter-
occurrence times of hazards do not follow an exponential distribution or when solutions are
needed for short life spans, these asymptotic solutions cannot be readily justi�ed. This chapter
presents a systematic development of a more general stochastic process model of reliability in
which occurrences of a hazard and its impact are conceptually modelled as a marked renewal
process from which exact solutions are obtained. The proposed model covers shock, pulse and
alternating processes.

These same results can be used to compute the distribution of the maximum shock load on
a structure. Since the solutions are obtained using the mechanistic model of inter-occurrence
times and distribution of loads as inputs of the model, again relying on asymptotic behaviour of
the maximum of long sequences approaching a Gumbel, Fréchet or reversed Weibull distribution
is not needed as is often done in practice. Solutions can easily be approximated numerically
using a trapezoidal scheme and in this chapter it is also shown, using an example, that closed-
form solutions can be obtained via the theory of defective renewal equations. Other numerical
examples showing the Probability of Exceedance (POE) of loads, highlight the di�erences
between estimated solutions and their approximate limit solution as a Poisson model. From
the practical example it can be seen that the true POE of extreme loads can be signi�cantly
underestimated using an approximate Poisson model.

3.1.5 Objectives and Organization

In this chapter the strength (or capacity) of a component is assumed to be time-invariant, i.e.
the strength does not change over time. With this assumption the component reliability and
distribution of the maximum load can be obtained through the theory of renewal processes.
The loads are assumed to be from a single source and can be either: (1) a shock process having
negligible duration, (2) a pulse process, where a load is sustained till the arrival of a new load,
or (3) an alternating pulse process, which switches between an `on' and `o�' state.

In section 3.2 the maximum distribution of the shock, pulse and alternating processes are
derived as renewal integrals. In section 3.3 a numerical method and an analytical method to
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compute renewal integrals are discussed. In section 3.4 a numerical example is presented to
explicitly show how to derive analytical solutions from a renewal equation while section 3.5
presents some practical numerical examples. The chapter concludes with an appendix where
some mathematical proofs and further background material are provided.

3.2 Maximum of Single Load Process

3.2.1 Maximum of a Shock Load Process

A shock load process can be modelled as a marked renewal process, as shown in Figure 3.1.
In this model, a random variable (or mark), Y , is attached to each occurrence of a shock to
represent the load magnitude. A marked process is de�ned by a sequence of iid random vectors
(Ti, Yi), i “ 1, 2, . . .. The joint distribution of (Ti, Yi) is independent of (Tj, Yj) for i ‰ j, [66,
p. 321]. We want to calculate PpX˚ptqĺ xq. Notice that since PpT ą 0q “ 1 and there is no
shock at time t “ 0, there are Nptq shocks in the interval r0, ts and we de�ne the maximum of
the shock load process Xptq on r0, ts as

X˚
ptq “ max

0ĺsĺt
Xpsq “

"

0, Nptq “ 0,
maxtY1, . . . , YNptqu, Nptq ľ 1.

(3.3)

lo
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Y2 Y3
YNptq´1

YNptq
YNptq`1

S1 S2 S3 SNptq´1 SNptq SNptq`1

T1 T2 T3 TNptq TNptq`1

Figure 3.1: A schematic of a shock load process.

Unless mentioned explicitly, we assume loads and inter-arrival times are independent. We
want to calculate the distribution of X˚ptq. The following general result can be derived:

Lemma 3.1. Given the sequences tYn;n ľ 1u and tTn;n ľ 1u are independent and let tYn;n ľ
1u be iid with distribution FY pyq where FY p0q “ 0. Then,

PpX˚
ptq ĺ xq “ E

“

FY pxq
Nptq

‰

.

Proof:

PpX˚
ptq ĺ xq “ PpmaxtY1, . . . , YNptqu ĺ xq.
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Now partition over the events tNptq “ nu to get

PpmaxtY1, . . . , YNptqu ĺ xq “

8
ÿ

n“0

PpmaxtY1, . . . , YNptqu ĺ x,Nptq “ nq

“

8
ÿ

n“0

pFY pxqq
n PpNptq “ nq (3.4)

“ E
“

FY pxq
Nptq

‰

. (3.5)

3.2.1.1 Homogeneous Poisson Process

The distribution of maximum load for a general renewal shock process can be approximated by
assuming an asymptotic limit of the process. This leads to the approximation of the distribution
as an HPP with intensity λ. We notice that this is equivalent to approximating the inter-arrival
times by an exponential distribution with parameter λ, i.e. FT ptq “ 1 ´ e´λt. The following
well-known result can be derived from equation (3.4):

Lemma 3.2. For the HPP with intensity λ we have:

PpX˚
ptq ĺ xq “ e´λtp1´FY pxqq.

Proof: Recall for an HPP we have: PpNptq “ nq “ pλtqn

n!
e´λt. Then

PpX˚
ptq ĺ xq “

8
ÿ

n“0

pFY pxqq
n PpNptq “ nq

“

8
ÿ

n“0

pFY pxqq
n pλtq

n

n!
e´λt

“ e´λt
8
ÿ

n“0

pFY pxqλtq
n

n!

“ e´λteFY pxqλt

“ e´λtp1´FY pxqq. (3.6)

To use the HPP result as an approximate solution of a renewal shock process, the intensity
parameter λ needs to be approximated. This can be done from elementary renewal theorem by
observing that the asymptotic limit of the renewal rate is given by

λ8 “ lim
tÑ8

Nptq

t
“

1

ErT s
, with probability 1, (3.7)

where ErT s is the expectation of the inter-arrival times of the shock process. Hence, as tÑ 8

the distribution of the maximum of a renewal shock process can be approximated by an HPP
with parameter λ=λ8.
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3.2.1.2 General Renewal Process

When the inter-arrival times follow a general distribution FT ptq, the distribution of X˚ptq can
be calculated by a renewal type equation given in the following lemma:

Lemma 3.3. Let tTn;n ľ 1u be iid with distribution FT ptq. Then we have:

PpX˚
ptq ĺ xq “ sFT ptq ` FY pxq

ż t

0

PpX˚
pt´ sq ĺ xqdFT psq. (3.8)

Proof: For the sake of notation, let zptq=PpX˚ptq ĺ xq=E
”

FY pxq
Nptq

ı

from equation (3.5).

Now we condition on T1, so �x t ą 0 and use that the process probabilistically starts over again
as explained in 2.2.2:

zptq “ E
”

FY pxq
Nptq;T1 ą t

ı

` E
”

FY pxq
Nptq;T1 ĺ t

ı

“ E
“

FY pxq
0;T1 ą t

‰

` E
”

FY pxq
p1` rNpt´T1qq;T1 ĺ t

ı

“

ż 8

t

1 ¨ dFT psq `

ż t

0

E
”

FY pxq
p1` rNpt´sqq

ı

dFT psq

“

„

1´

ż t

0

dFT psq



` FY pxq

ż t

0

E
”

FY pxq
rNpt´sq

ı

dFT psq

Now since rNpt´ sq „ Npt´ sq we have E
”

FY pxq
rNpt´sq

ı

„ E
”

FY pxq
Npt´sq

ı

“ zpt´ sq.

Hence, zptq “ PpX˚ptq ĺ xq satis�es the equation

zptq “ sFT ptq ` FY pxq

ż t

0

zpt´ sqdFT psq. (3.9)

3.2.2 Maximum of a Pulse Load Process

An illustration of a pulse load process is given in Figure 3.2. We notice that mathematically
speaking, the only di�erence between the pulse load process and the shock load process is the
extra load at time t=0. This is because the sustained part of the load does not play a role in the
failure of the process since the strength is time-invariant between load changes. The distribution
of the maximum pulse load is given as PpX˚ptq ĺ xq “ PpmaxtY1, . . . , YNptq`1u ĺ xq and we
have the following result:

Lemma 3.4. Given the sequences tYn;n ľ 1u and tTn;n ľ 1u are independent and let tYn;n ľ
1u be iid with distribution FY pyq where FY p0q “ 0. Then,

PpX˚
ptq ĺ xq “ FY pxqE

“

FY pxq
Nptq

‰

“ FY pxqPshockpX˚
ptq ĺ xq,

where PshockpX˚ptq ĺ xq is the CDF of the shock load process.

Proof: The result follows easily by following the same steps as in Lemma 3.1.
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Figure 3.2: A schematic of a pulse load process.

3.2.2.1 Homogeneous Poisson Process

For an HPP we have the following result.

Lemma 3.5. For the HPP with intensity λ we have:

PpX˚
ptq ĺ xq “ FY pxqe

´λtp1´FY pxqq, (3.10)

which follows easily from Lemmas 3.4 and 3.2.

We proceed by showing the results for a general renewal process. But since the HPP is a
special case of a renewal process, with exponentially distributed inter-arrival times, the result
in equation (3.10) can be derived using Lemma 3.6 for a general renewal process. This derivation
is in the Appendix.

3.2.2.2 General Renewal Process

For a general renewal process we have the following result:

Lemma 3.6. Let tTn;n ľ 1u be iid with distribution FT ptq. Then we have:

PpX˚
ptq ĺ xq “ sFT ptqFY pxq ` FY pxq

ż t

0

PpX˚
pt´ sq ĺ xqdFT psq. (3.11)

Proof: Let PshockpX˚ptq ĺ xq denote the result in equation (3.8) for the CDF of the maximum
shock load. From Lemma 3.4 we have the result

FY pxqPshockpX˚
ptq ĺ xq “ sFT ptqFY pxq ` pFY pxqq

2

ż t

0

PshockpX˚
pt´ sq ĺ xqdFT psq.

Now let yptq=PpX˚ptq ĺ xq=FY pxqPshockpX˚ptq ĺ xq, then yptq satis�es the renewal-type equa-
tion

yptq “ sFT ptqFY pxq ` FY pxq

ż t

0

ypt´ sqdFT psq. (3.12)
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Hence, to compute the CDF of the maximum pulse load process, equation (3.11) can be used
or the result from the computation of the CDF of the maximum pulse load process can be
directly multiplied by FY pxq.

Alternatively, the following result can also be used which is another renewal-type equation
to compute the CDF of the maximum pulse load process. The detailed derivation can be found
in the Appendix.

Lemma 3.7. The CDF of the maximum pulse load process is given by

PpX˚
ptq ĺ xq “ FY pxq ´ p1´ FY pxqq

8
ÿ

n“1

FY pxq
nF

pnq
T ptq, (3.13)

where

yptq “
8
ÿ

n“1

FY pxq
nF

pnq
T ptq

satis�es the renewal-type equation

yptq “ FT ptqFY pxq ` FY pxq

ż t

0

ypt´ sqdFT psq.

Hence, equations (3.11) and (3.13) are equivalent.

3.2.3 Maximum of Alternating Pulse Process

Certain events exhibit behaviour more resembling an intermittent pulse process. Such an
event could be a snow load process or a body of water temporarily occupying a space, e.g.
a �ood. In the model for an alternating process it is assumed that a load pulse of random
magnitude Y is sustained for a random period W followed by a random period of inactivity Z.
The alternating load process is therefore fully de�ned by an iid sequence of random vectors,
pY1,W1, Z1q, pY2,W2, Z2q, . . .. This is depicted in Figure 3.3.

The renewal cycle length is then Tn “ Wn ` Zn, while in the nth cycle the process is `on' in
the interval rSn´1, Sn´1`Wnq with magnitude Yn. The maximum of the alternating pulse load
process is de�ned as PpX˚ptq ĺ xq “ PpmaxtY1, . . . , YNptq`1u ĺ xq which is similar to the pulse
process since in the interval p0, ts with Nptq cycles there are Nptq+1 loads. The distribution of
maximum load is given as

PpX˚
ptq ĺ xq “ FY pxqE

“

FY pxq
Nptq

‰

“ FY pxqPshockpX˚
ptq ĺ xq,

which is the same as the pulse process with the exception that the distribution of inter-arrival
times is now given by the random variable T=W+Z which is the sum of the random variables
denoting `on' and `off' times, respectively.
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Figure 3.3: A schematic of an alternating load process.

3.3 Methods to Compute Renewal Integrals

3.3.1 Numerical Integration: Trapezoidal Rule

The method of numerical integration using the trapezoidal rule is demonstrated using a concrete
example, equation (3.8) for the CDF of the maximum of a shock load process. Other renewal-
type equations can be solved in a similar way. This solution is required to be computed
recursively. Recall that we have the following equation:

PpX˚
ptq ĺ xq “ sFT ptq ` FY pxq

ż t

0

PpX˚
pt´ sq ĺ xqdFT psq. (3.14)

Assume dFT psq=fT psqdt exists and divide time uniformly as 0=s0 ă s1 ă ¨ ¨ ¨ ă sN´1 ă sN=t.
Hence, the time domain is discretized into N equal parts of size t´0

N
. For ease of notation let

hpt;xq=PpX˚ptq ĺ xq. Hence, we have

hpt;xq “ sFT ptq ` FY pxq

ż t

0

hpt´ s;xqdFT psq. (3.15)

Then, according to the trapezoidal rule, for �xed x, equation (3.15) can be approximated
numerically as:

hpt;xq « sFT ptq ` FXpxq

«

t

2N
hpt;xqfT p0q `

t

2N
2
N´1
ÿ

i“1

hpt´ si;xqfT psiq `
t

2N
hp0;xqfT ptq

ff

so that the reliability can be computed as

hpt;xq «
1

1´ t
2N
FXpxqfT p0q

#

sFT ptq `
tFXpxq

N

«

1

2
hp0;xqfT ptq `

N´1
ÿ

i“1

hpt´ si;xqfT psiq

ff+

,

(3.16)
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where hp0;xq= sFT ptq=1. Hence, hpt;xq needs to be computed recursively as hp0;xq, hps1;xq,
hps2;xq, . . . , hpt;xq.

To compute the CDF of the maximum of the process for a �xed time horizon t, equation
(3.16) can be used and repeated for values of x in the domain of interest to compute hpx1; tq,
hpx2; tq, hpx3; tq, . . . .

When computing hpt, xq special caution has to be taken for approximation with the trape-
zoidal rule. For functions fT psq that have a vertical asymptote, e.g. Weibull distribution with
shape parameter less than one or very long-tailed distributions like the Lognormal distribution
with high peaks, the solution may not converge even for large N .

3.3.2 Analytical Solution: Defective Renewal Equation

Using the method of defective renewal equation we try to rewrite the renewal equation into
an analytical form. If this is possible, we get a much simpler solution, namely analytical form
instead of (recursive) numerical approximation or Laplace transformation. Consider again the
CDF of the maximum of the shock load process:

hptq “ sFT ptq ` FY pxq

ż t

0

hpt´ sqdFT psq. (3.17)

This equation can be written in the form

hptq “ bptq ` φ

ż t

0

hpt´ sqdFT psq, t ľ 0 (3.18)

where φ=FY pxq P p0, 1q and equation (3.18) is called a defective renewal equation1.

We can transform equation (3.18) into a proper renewal equation by �nding a parameter γ such
that

d rFT ptq “ eγtφdFT ptq (3.19)

is a probability distribution function, i.e

ż 8

0

d rFT ptq “ 1. (3.20)

Now we can substitute e´γtd rFT ptq=φdFT ptq into the defective renewal equation to obtain

hptq “ bptq `

ż t

0

hpt´ sqe´γsd rFT psq, t ľ 0

1We notice that for hptq “ bptq ` φ
şt

0
hpt ´ sqdFT psq “ bptq `

şt

0
hpt ´ sqdGT psq where GT psq “ φFT psq it

follows that GT p0q “ 0 and GT p8q ă 1 since φ P p0, 1q. Hence, the improper renewal equation (3.18) is called
defective. If GT p0q “ 0 and GT p8q ą 1 the improper renewal equation is called excessive.
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and multiplying both sides by eγt gives

eγthptq “ eγtbptq `

ż t

0

hpt´ sqeγpt´sqd rFT psq, t ľ 0.

Now let rhptq=eγthptq and rbptq=eγtbptq. Then we have transformed equation (3.18) into the
following proper renewal equation:

rhptq “ rbptq `

ż t

0

rhpt´ sqd rFT psq, t ľ 0. (3.21)

The solution of this equation is given in the following lemma.

Lemma 3.8. If rbptq is a given, integrable function that is bounded on �nite intervals, then the
solution of this equation is unique and bounded on �nite intervals and is given as

rhptq “
8
ÿ

n“0

´

rF
pnq
T ˚rb

¯

ptq (3.22)

or equivalently as

rhptq “ rbptq `

ż t

0

rbpt´ sqdMpsq, t ľ 0, (3.23)

where

Mptq “ FT ptq `

ż t

0

Mpt´ sqdFT psq, t ľ 0

is the renewal function associated with the distribution FT ptq of the inter-arrival times.

Now after �nding rhptq the solution of equation (3.18) can be obtained by the transformation

hptq “ e´γtrhptq.

3.4 An Analytical Example: Erlang(2) Inter-Occurrence

Times

3.4.1 Solution to Renewal Equation

We start with a general defective renewal equation

hptq “ bptq ` θ

ż t

0

hpt´ sqdFT psq, θ P p0, 1q. (3.24)

We can transform equation (3.24) into a proper renewal equation by �nding a parameter φ such
that

rFT pdtq “ eφtθFT pdtq (3.25)
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is a PDF, i.e.:
ş8

0
rFT pdtq “ 1. From this we can notice

1 “

ż 8

0

rFT pdtq “

ż 8

0

eφtθFT pdtq (3.26)

implies
ş8

0
eφtFT pdtq “

1
θ
. Now assume T „ Erlangp2q ” Gammap2, λq, λ ą 0, for the inter-

occurrence times. Hence, we have

fT ptq “ λ2te´λt, FT ptq “ 1´ p1` λtqe´λt, λ ą 0. (3.27)

From equation (3.26) we have:

θλ2

ż 8

0

tepφ´λqtdt “ 1

θλ2

«

t
1

φ´ λ
epφ´λqt

ˇ

ˇ

ˇ

ˇ

ˇ

8

0

´

ż 8

0

1

φ´ λ
epφ´λqtdt

ff

“ 1

´
θλ2

φ´ λ

„
ż 8

0

epφ´λqtdt



“ 1

θλ2

pφ´ λq2
“ 1,

where in the second step we used φ ă λ for convergence. Solving for θ gives

φ “ λp1´
?
θq. (3.28)

Here we notice that since θ P p0, 1q, equation (3.28) indeed gives the relation φ ă λ. From

equation (3.25) we can substitute θFT pdtq “ e´φt rFT pdtq into equation (3.24), which leads to

hptq “ bptq `

ż t

0

hpt´ sqe´φsd rFT psq.

Multiplying both sides by eφt gives the equivalent relation

eφthptq “ eφtbptq `

ż t

0

hpt´ sqeφpt´sqd rFT psq.

Now substituting rhptq “ eφthptq and rbptq “ eφtbptq we get a proper renewal equation

rhptq “ rbptq `

ż t

0

rhpt´ sqd rFT psq. (3.29)

From equation (3.25) we have

rFT pdtq “ eφtθFT pdtq

“ eλp1´
?
θqtθλ2te´λtdt

“ θλ2te´λ
?
θtdt plet a “ λ

?
θq

“ a2te´atdt,
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hence, the new inter-occurrence times are also Erlangp2q distributed with new parameter a “
λ
?
θ ą 0. The solution to equation (3.29) is

rhptq “
8
ÿ

n“0

´

rF
pnq
T ˚ b˚

¯

ptq (3.30)

We notice that if T „ Erlangp2q ” Gammap2, λq, λ ą 0, then

F
pnq
T pdtq “

λ2n

Γp2nq
t2n´1e´λtdt

“ λ
pλtq2n´1

p2n´ 1q!
eλtdt.

Now with2 F 0
T ptq “ δ0ptq we have

8
ÿ

n“0

F
pnq
T pdtq “ δ0pdtq ` λλte

´λtdt` λ
pλtq3

3!
e´λtdt` . . .

“ δ0pdtq ` λe
´λtdt

ˆ

λt`
pλtq3

3!
` . . .

˙

“ δ0pdtq ` λe
´λtdt

ˆ

eλt ´ e´λt

2

˙

“ δ0pdtq `
λ

2
p1´ e´2λt

qdt,

where in the third inequality we used
ř

ną0,odd
xn

n!
“ ex´e´x

2
. From equation (3.30) and noticing

that rFT pdtq ” Erlangp2q ” Gammap2, aq we have

rhptq “

8
ÿ

n“0

´

rF
pnq
T ˚ b˚

¯

ptq

“

ż t

0

δ0psqrbpt´ sqds`

ż t

0

rbpt´ sq
a

2
p1´ e´2as

qds

“ rbptq `
a

2

ż t

0

rbpt´ sqp1´ e´2as
qds

“ eλp1´
?
θqtbptq `

a

2

ż t

0

eλp1´
?
θqpt´sqbpt´ sqp1´ e´2as

qds, (3.31)

where we recall a “ λ
?
θ. Now bptq and θ are still unknown and are determined by equation

(3.24) and λ is a parameter of the inter-occurrence times.

Side Note We can also derive the solution using the formula given in equation (3.23), i.e.:

rhptq “ rbptq `

ż t

0

rbpt´ sqdMpsq, (3.32)

2δ0ptq equals 1 at t “ 0 and is zero everywhere else.
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where

Mptq “
1

2
at´

1

4
p1´ e´2at

q, (3.33)

which is the renewal function of the Erlangp2q renewal process and is equal to equation (16) of

the same manuscript with new parameter a. Substituting rbptq and Mptq into equation (3.32)
leads to the same result derived in equation (3.31).

3.4.2 Solution of Maximum Shock Load

The solution of the maximum shock load is given as

hptq “ sFT ptq ` FXpxq

ż t

0

hpt´ sqdFT psq, (3.34)

where hptq=PpX˚ptq ĺ xq. Now we have bptq “ sFT ptq “ p1 ` λtqe´λt and θ “ FXpxq. For the
sake of simplicity we will write the solution in equation (3.31) in terms of a. We have

rhptq “ eλp1´
?
θqtbptq `

a

2

ż t

0

eλp1´
?
θqpt´sqbpt´ sqp1´ e´2as

qds

“ eλp1´
?
θqt
p1` λtqe´λt `

a

2

ż t

0

eλp1´
?
θqpt´sq

p1` λpt´ sqqe´λpt´sqp1´ e´2as
qds

“ p1` λtqe´at `
a

2

ż t

0

e´apt´sqp1` λpt´ sqqp1´ e´2as
qds. (3.35)

Now we compute the integral on the right hand side:

ż t

0

e´apt´sqp1` λpt´ sqqp1´ e´2as
qds “

ż t

0

e´apt´sq ´ e´apt`sq ` e´apt´sqλpt´ sq ´ e´apt`sqλpt´ sqds.

Calculating the four integrals separately gives:

ż t

0

e´apt´sqds “
1

a
e´apt´sq

ˇ

ˇ

ˇ

ˇ

ˇ

t

s“0

“
1

a

`

1´ e´at
˘

. (3.36)

´

ż t

0

e´apt`sqds “
1

a
e´apt`sq

ˇ

ˇ

ˇ

ˇ

ˇ

t

s“0

“
1

a

`

e´2at
´ e´at

˘

. (3.37)
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λ

ż t

0

e´apt´sqpt´ sq “ λ

˜

pt´ sq

a
e´apt´sq

ˇ

ˇ

ˇ

ˇ

ˇ

t

s“0

`

ż t

0

1

a
e´apt´sqds

¸

“ λ

˜

´
t

a
e´at `

1

a2

«

e´apt´sq

fft

s“0

¸

“ λ

˜

´
t

a
e´at `

1

a2

«

1´ e´at

ff¸

“
λ

a

ˆ

1

a
´ te´at ´

1

a
e´at

˙

. (3.38)

´λ

ż t

0

e´apt`sqpt´ sq “ ´λ

˜

´
pt´ sq

a
e´apt`sq

ˇ

ˇ

ˇ

ˇ

ˇ

t

s“0

´

ż t

0

1

a
e´apt`sqds

¸

“ ´λ

˜

t

a
e´at `

1

a2

«

e´apt`sq

fft

s“0

¸

“ ´λ

˜

t

a
e´at `

1

a2

«

e´2at
´ e´at

fft

s“0

¸

“
λ

a

ˆ

1

a
e´at ´ te´at ´

1

a
e´2at

˙

. (3.39)

Now from equations (3.35), (3.36), (3.37), (3.38) and (3.39) we have

rhptq “ p1` λtqe´at `
a

2

„

1

a

`

1´ e´at
˘

`
1

a

`

e´2at
´ e´at

˘

`
λ

a

ˆ

1

a
´ te´at ´

1

a
e´at

˙

`
λ

a

ˆ

1

a
e´at ´ te´at ´

1

a
e´2at

˙

ff

“ p1` λtqe´at `
1

2

«

`

1´ e´at
˘

`
`

e´2at
´ e´at

˘

` λ

ˆ

1

a
´ te´at ´

1

a
e´at

˙

`λ

ˆ

1

a
e´at ´ te´at ´

1

a
e´2at

˙

ff

.

After simpli�cation this leads to

rhptq “
1

2
`

λ

2a
`

1

2
e´2at

´
λ

2a
e´2at (3.40)

and substituting a “ λ
?
θ gives

rhptq “
1

2

˜

1`
1

a

FXpxq
`

˜

1´
1

a

FXpxq

¸

e´2λ
?
FXpxqt

¸

. (3.41)
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Now the solution to (3.34) is hptq “ e´φtrhptq, hence we have:

hptq “
1

2
e
´λ

´

1´
?
FXpxq

¯

t

˜

1`
1

a

FXpxq
`

˜

1´
1

a

FXpxq

¸

e´2λ
?
FXpxqt

¸

, (3.42)

where hptq “ sFT ptq for FXpxq=0.

3.4.3 Computing the Renewal Integral

Equation (3.34) can also be solved recursively by writing the integral according to the trape-
zoidal rule.

hptq “ sFT ptq ` FXpxq

ż t

0

hpt´ sqdFT psq.

Assume dFT psq “ fT psq exists and divide time uniformly as 0 “ s1 ă s2 ă ¨ ¨ ¨ ă sN ă sN`1 “ t.
Then we have:

hptq “ sFT ptq ` FXpxq

«

t

2N
hptqfT p0q `

t

2N
2
N
ÿ

i“2

hpt´ siqfT psiq `
t

2N
hp0qfT ptq

ff

so that the reliability can be computed as

hptq “
1

1´ t
2N
FXpxqfT p0q

t

N

«

1

2
hp0qfT ptq `

N
ÿ

i“2

hpt´ siqfT psiq

ff

,

where hp0q “ sFT ptq “ 1.

3.4.4 Numerical Example Shock Load

For the shock load magnitudes X: X „Expp1q with mean equal to 1 unit. For the inter-
occurrence times T : T „ Erlangp2q ” Gammap2, λ “ 1q. This distribution has mean equal to
2 years and standard deviation equal to

?
2 years. This translates to 90% of the waiting times

for shocks between 0.36 and 4.74 years at an average of 2 years between shocks. Also, shocks
are on average 1 unit while 90% of the shocks are smaller than the threshold which is 2.3 units.
The POE is given in Figure 3.4 (a) for a time horizon of t=15 years while the reliability can
be seen in Figure 3.4 (b) for a threshold x “ 2.3 units, which is the 90-th percentile of X. The
reliability is compared to a Monte Carlo simulation of 10000 runs and a numerical integration
with ∆t=1/30 years and ∆x=1/100 units.
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(a) POE. (b) Reliability.

Figure 3.4: Erlang(2) shock process.

3.4.5 Error Analysis Example Maximum Shock Load

The Erlangp2q shock occurrences can be approximated by an HPP process where the inter-
occurrence times are Expp1{meanpErlangp2qq. We compare the relative error of the reliability
hpt;mq and its HPP approximation hHPP pt;mq at time t “ 14 years for di�erent values of the
threshold x where capacity x is given as a percentile of FXpxq:

error “
hp14;xq ´ hHPP p14;xq

hp14;xq
. (3.43)

In Figure 3.5 the errors are depicted for mean inter-occurrence time 2 and 10 years. It can
be seen that for highly reliable components (relatively high thresholds) the process of shock
occurrences is well approximated by an HPP process. Let δ be the di�erence in time between
the solution h and its HPP approximation:

δ “ hpt; 2.3q ´ hHPP pt; 2.3q. (3.44)

In Figure 3.6 we can see δ on a log-scale for mean inter-occurrence times 2 and 10 years.
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Figure 3.5: Comparison of error between a renewal load model and its HPP approximation as
a function of threshold x.

Figure 3.6: Comparison of error between a renewal load model and its HPP approximation as
a function of time.

3.4.6 Solution and Numerical Example Maximum Pulse Load

We notice that for the distribution of maximum spike load we need to compute

PspikepX˚
ptq ĺ xq “ P

`

max
 

X1, . . . , XNptq

(

ĺ x
˘

, (3.45)

which results in
PspikepX˚

ptq ĺ xq “ E
“

FXpxq
Nptq

‰

. (3.46)
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For the sustained load we have to compute

PsustainedpX˚
ptq ĺ xq “ P

`

max
 

X1, . . . , XNptq`1

(

ĺ x
˘

, (3.47)

which gives
PsustainedpX˚

ptq ĺ xq “ FXpxqE
“

FXpxq
Nptq

‰

, (3.48)

hence we have
Psustained “ FXpxqPspike. (3.49)

From equation (3.42) the reliability hptq of the maximum sustained load process is

hptq “
1

2
e
´λ

´

1´
?
FXpxq

¯

t
´

FXpxq `
a

FXpxq `
´

FXpxq ´
a

FXpxq
¯

e´2λ
?
FXpxqt

¯

. (3.50)

Using the same example as in 3.4.4, the POE is depicted in Figure 3.7 (a) and the reliability
in Figure 3.7 (b).

(a) POE. (b) Reliability.

Figure 3.7: Erlang(2) pulse process.

3.4.7 Numerical Example Maximum Alternating Process

In this section the pulse load process alternates between an `on' and `off' state. The on and off
times each occur following the same exponential distribution (HPP) with parameter µ “ 5{4,
i.e. we have a sequence of pairs pV1, X1q, pW1, 0q, pV2, X2q, pW2, 0q, . . . where Vi denotes the
duration of an `on' state and Wi denotes the duration of an `o�' state and Vi,Wi „ Expp5{4q
with mean 0.8 year. We notice that we always start in an `on' state. The load magnitudes Xi

are independent of Vi.
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For this example we have X „ Expp1{2q, hence mean is 2 units. This alternating process
has the same distribution as a (maximum) pulse load process where the inter-arrival times are
T „ Erlangp2q ” Gammap¨; 2, 4{5q with mean equal to 1.6 years and X „ Expp1{2q. The
POE is given in Figure 3.8 (a) for t=15 years and the reliability can be seen in Figure 3.8 (b)
for a threshold x=6 units which is the 95-th percentile of X. The reliability is compared to
10000 runs of a Monte Carlo simulation.

(a) Reliability. (b) POE.

Figure 3.8: Erlang(2) alternating process.

3.5 Practical Numerical Examples

The data used in the Darlington example can be found in [23]. For the Trenton and Pearson
examples the data can be found on the website of Environment and Climate Change Canada,
[1].

3.5.1 Tornadoes near Darlington NGS, 1918-2003

(within 100,000 km2)

3.5.1.1 Data analysis

The probabilistic safety assessment of a nuclear station requires the assessment of rare meteoro-
logical hazards, such as tornadoes, tropical (and extra-tropical) storms, exceptional wind gusts
and freezing rain storm. This analysis is based on data about tornado occurrences in southern
Ontario in a region of 100,000 km2, which represents a circle of radius of about 180 km centred
at the site of the Darlington (Nuclear Generating Station) NGS. This region includes a fair part
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of southern Ontario, parts of Western New York State, most of Lake Ontario, part of north-
eastern Lake Erie and the southeast tip of Georgian Bay. The con�rmed and probable numbers
of tornado events that occurred from 1918 to 2003 are compiled in the report [23]. This data set
includes the occurrence date and the intensity according to the Fujita scale as given in Table
3.1: F numbers 0 to 3. There were only two tornadoes of F category 4 measured ,which is
insu�cient for distribution �tting, and none in category 5. Any measurement within four days
in the same category was considered a persisting storm and was consequently removed since
we model the inter-arrival times of storms. Persisting storms which change category are kept
as one measurement in each particular category, within four days. In Table 3.2 some statistics
of the �ltered data are summarised.

In Figures 3.9, 3.10, 3.11 and 3.12 the Exponential, Weibull and Lognormal distributions are
�tted using Probability Paper Plot (PPP) to the inter-arrival times of tornadoes in each cate-
gory 0, 1, 2 and 3 respectively.

In Tables 3.3, 3.4, 3.5 and 3.6 some statistics of the �tted distributions to the inter-arrival
times are given for tornadoes in the category F0, F1, F2 and F3 respectively.

Table 3.1: Tornadoes Darlington: Fujita scale.

F Number Wind speed (km/h) Damage
0 64 - 116 Light
1 117 - 180 Moderate
2 181 - 252 Considerable
3 253 - 330 Severe
4 331 - 417 Devastating
5 418 - 509 Incredible

Table 3.2: Tornadoes Darlington: statistics inter-arrival times (in days) in each category.

F0 F1 F2 F3

Amount data 110 67 36 6
Min 5 6 5 335
Max 3525 2172 5146 8832
Median 61.5 335 396 5107.5
Mean 275 430.42 858.17 4433
Variance 2.396¨105 1.907¨105 1.205¨106 1.276¨107

COV 0.562 0.986 0.782 1.241
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Figure 3.9: Tornadoes Darlington: Exponential, Weibull and Lognormal PPP for inter-
arrival times in category F0.

Figure 3.10: Tornadoes Darlington: Exponential, Weibull and Lognormal PPP for inter-
arrival times in category F1.
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Figure 3.11: Tornadoes Darlington: Exponential, Weibull and Lognormal PPP for inter-
arrival times in category F2.

Figure 3.12: Tornadoes Darlington: Exponential, Weibull and Lognormal PPP for inter-
arrival times in category F3.
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Table 3.3: Tornadoes Darlington: statistics �tted distributions for inter-arrival times in
category F0.

Exponential Weibull Lognormal
Parameters λ “ 1{370.4161 α “ 1{1.2633, β “ expp5.1438q λ “ 4.4348, ζ “ 1.6546
Mean (days) 370.4161 195.6516 331.5075
Variance 0.14¨106 6.22¨104 1.59¨106

COV 1 1.275 3.802

Table 3.4: Tornadoes Darlington: statistics �tted distributions for inter-arrival times in
category F1.

Exponential Weibull Lognormal
Parameters λ “ 1{457.9374 α “ 1{1.1594, β “ expp6.0099q λ “ 5.3676, ζ “ 1.4282
Mean (days) 457.9374 439.32 594.36
Variance 0.21¨106 2.61¨105 2.36¨106

COV 1 1.164 2.59

Table 3.5: Tornadoes Darlington: statistics �tted distributions for inter-arrival times in
category F2.

Exponential Weibull Lognormal
Parameters λ “ 1{1040.8995 α “ 1{1.4794, β “ expp6.641q λ “ 5.8405, ζ “ 1.7765
Mean (days) 1040.8995 1003.6 1666.5
Variance 1.1¨106 2.3354¨106 62.42¨106

COV 1 1.523 4.741

Table 3.6: Tornadoes Darlington: statistics �tted distributions for inter-arrival times in
category F3.

Exponential Weibull Lognormal
Parameters λ “ 1{5142.4253 α “ 1{1.5085, β “ expp8.4839q λ “ 7.7764, ζ “ 1.7545
Mean (days) 5142.4253 6467.7 1858.8
Variance 26.4¨106 1.015¨108 25.8¨106

COV 1 1.558 2.73
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3.5.1.2 Maximum Distribution

In this section the maximum distribution is calculated for tornadoes of category F2 for two
di�erent time horizons: 15 years and 50 years. The reason to focus on F2 category is that
tornadoes in lower categories (F0 and F1) do not have major impact on safety. Tornadoes
exceeding F2 category are not considered due to a small number of observations in the data
set. The database does not contain any measurements of wind speeds generated by tornadoes.
Therefore, the wind speed distribution is estimated in an approximate manner. The distribution
of wind is chosen to be Weibull where the lower and upper bound of F2 category tornadoes are
�tted to the 2.5% and 97.5% percentiles respectively. The resulting distribution for the wind
speeds is:

FXpxq “ 1´ e´p
x

231.0686q
15.0532

, x ľ 0,

with mean 223.1595km/h. A depiction of this distribution is given in Figure 3.13.

Figure 3.13: Tornadoes Darlington: Weibull distribution for wind speeds in category F2.

The inter-arrival times are chosen to be the Lognormal �t for F2 in Figure 3.11 and Table 3.5.
The distribution of the maximum for a time horizon of 15 years is given in Figure 3.14 (a)
while the distribution of the maximum for a time horizon of 50 years is given in Figure 3.14
(b). The HPP approximation of both distributions is also given. While the HPP approximation
performs well as a limiting solution, in this case a longer time horizon, it can be seen that for
both examples the HPP approximation is underestimating the POE around wind speeds of 240
km/h, making it a nonconservative estimate. This results in higher exposure to risks.

3.5.1.3 Explanation of Results

It is obvious from Figure 3.14 that the POE (at a given wind speed) is higher for longer time
horizons since more occurrences are expected. It can also be seen that for longer time horizons
there is less discrepancy between the proposed renewal solution and its HPP approximation.
This is due to (3.7). From both Figures 3.14 (a) and (b) it can be seen that for high wind
speeds, large x values, the discrepancy between the proposed model and its HPP approximation
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(a) 15 years. (b) 50 years.

Figure 3.14: Tornadoes Darlington: POE.

vanishes. This can be explained from the fact that as xÑ8 the probability of wind speeds
exceeding x, approaches 0. This should hold for any time horizon and for any model. These
results are consistent with the asymptotic behaviour of the HPP solution. The results in the
following examples are qualitatively similar.

3.5.2 Wind Gusts at Trenton, Canadian Forces Base

(Latitude 44˝07'00.000� N, Longitude 77˝32'00.000� W)

3.5.2.1 Data Analysis

The following analyses are of maximum wind gust measurements at Canadian Forces Base
(CFB) Trenton, taken from Jan 1, 1955 up until the last occurrence prior to Dec 4, 2017. Per-
sisting high measurements, within 4 days, were counted as one measurement. The analyses are
based on wind gust measurements above 100km/h and above 110km/h. In both cases the inter-
arrival times and wind gust speeds are taken into account. PPP of the Exponential, Weibull
and Lognormal distributions are given and plots of the maximum distribution are given after
choosing the best �ts. For wind gusts above 120km/h only 12 measurements were observed,
which is too few data points for analysis. In 3.5.2.4 the yearly maxima are analyzed where also
the Gumbel distribution is �tted to the yearly maxima since this is a common methodology
applied in practice.

Wind gusts above 100 km/h

The inter-arrival times were taken between Jan 1, 1955 and the last recorded wind gust above
100km/h, which was on November 20, 1993. In this period of 14202 days there were a total of
48 occurrences. In Table 3.7 some data statistics are given for the wind gust measurements.
In Figures 3.15 and 3.16, respectively, the PPP of the Exponential, Weibull and Lognormal
distributions are given for the inter-arrival times and wind gusts. In tables 3.8 and 3.9 some
statistics of the �tted distributions are given for the inter-arrival times and wind gusts above
100km/h, respectively. In Figure 3.17 the distribution of the maximum wind gust speed is
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given on a time horizon of 15 years where the inter-arrival times and wind gusts are respec-
tively Lognormal and Exponential with parameters given in tables 3.8 and 3.9.

Table 3.7: CFB Trenton: statistics wind gusts above 100 km/h.

Inter-arrival times Wind gusts
(days) (km/h)

Amount data 47 48
Min 5 101
Max 2597 154
Median 134.5 111
Mean 295.875 115.0208
Variance 2.7645¨105 194.7442
COV 1.777 0.1213

Figure 3.15: CFB Trenton inter-arrival times: wind speeds above 100km/h. Exponential,
Weibull and Lognormal PPP.
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Table 3.8: CFB Trenton inter-arrival times: statistics �tted distributions for inter-arrival
times of wind speeds above 100km/h.

Exponential Weibull Lognormal
Parameters λ=1/407.4619 α=1/1.3167, λ=4.6302,

β=expp5.3513q ζ=1.6594
Mean (days) 407.4619 248.5449 406.2786
Variance 1.6603¨105 1.0996¨105 2.4264¨106

COV 1 1.3342 3.8341
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Figure 3.16: CFB Trenton wind speeds above 100km/h: Exponential, Weibull and Log-
normal PPP.

Table 3.9: CFB Trenton wind speeds above 100km/h: statistics �tted distributions.

Exponential Weibull Lognormal
Parameters λ=1/15.6235 α=1/0.89078, λ=2.2416,

β=expp2.7295q ζ=1.1112
Mean (km/h) 115.6235 114.6911 117.4436
Variance 244.0947 171.8754 741.6635
COV 0.1351 0.1143 0.2319
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Figure 3.17: CFB Trenton wind speeds above 100km/h: POE wind speeds above
100km/h. Lognormal inter-arrival times and Exponential wind speeds as �tted in Tables 3.8
and 3.9.

Wind gusts above 110km/h

The same analysis is performed for wind gusts above 110km/h. The inter-arrival times were
taken between Jan 1, 1955 and the last recorded wind gust above 110km/h, which was on
November 12, 1992. In this period of 13829 days there were a total of 25 occurrences. In Table
3.10 some data statistics are given for the wind gust measurements. In Figures 3.18 and 3.19,
respectively, the PPP of the Exponential, Weibull and Lognormal distributions are given for
the inter-arrival times and wind gusts. In tables 3.11 and 3.12 some statistics of the �tted
distributions are given for the inter-arrival times and wind gusts above 110km/h, respectively.

Table 3.10: CFB Trenton: statistics wind gusts above 110 km/h.

Inter-arrival times Wind gusts
(days) (km/h)

Amount data 24 25
Min 5 111
Max 3169 154
Median 179.5 119
Mean 562.83 124.56
Variance 8.4504¨105 180.34
COV 1.6333 0.1078

44



Figure 3.18: CFB Trenton inter-arrival times: wind speeds above 110km/h. Exponential,
Weibull and Lognormal PPP.

Figure 3.19: CFB Trenton wind speeds above 110km/h: Exponential, Weibull and Log-
normal PPP.
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Table 3.11: CFB Trenton inter-arrival times: statistics �tted distributions for inter-arrival
times of wind speeds above 110km/h.

Exponential Weibull Lognormal
Parameters λ=1/771.4642 α=1/1.679, λ=4.9092,

β=expp5.8005q ζ=2.0968
Mean (days) 771.4642 502.0369 1221.2
Variance 5.9516¨105 7.9344¨105 1.1959¨108

COV 1 1.7743 8.9548

Table 3.12: CFB Trenton wind speeds above 110km/h: statistics �tted distributions.

Exponential Weibull Lognormal
Parameters λ=1/15.5996 α=1/0.95421, λ=2.2382,

β=expp2.7448q ζ=1.1655
Mean (km/h) 125.5996 125.273 128.4933
Variance 243.3477 212.5231 988.38
COV 0.1242 0.1164 0.2447

3.5.2.2 Exponential Wind Speed

In Figure 3.20 the distribution of the maximum wind gust speed is given on a time horizon of 15
years where the inter-arrival times and wind gusts are respectively Lognormal and Exponential
with parameters given in tables 3.11 and 3.12.

3.5.2.3 Weibull Wind Speed

In Figure 3.21 the distribution of the maximum wind gust speed is given on a time horizon of
15 years where the inter-arrival times and wind gusts are respectively Lognormal and Weibull
with parameters given in tables 3.11 and 3.12.
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Figure 3.20: CFB Trenton wind speeds above 110km/h: POE wind speeds above
110km/h. Lognormal inter-arrival times and Exponential wind speeds as �tted in Tables 3.11
and 3.12.

Figure 3.21: CFB Trenton wind speeds above 110km/h: POE wind speeds above
100km/h. Lognormal inter-arrival times and Weibull wind speeds as �tted in Tables 3.11
and 3.12.
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3.5.2.4 Yearly Maximum: Data Analysis

In this analysis the maximum wind gust speed in each year is taken as the data set. In Table
3.13 statistics of the data are presented. In Figure 3.22 PPP's are given for the Exponential,
Weibull, Lognormal and Gumbel distributions. Some statistics of the �tted distributions are
given in Table 3.14.

Table 3.13: CFB Trenton: statistics wind gusts, yearly maximum .

Wind gusts
(km/h)

Amount data 63
Min 69
Max 154
Median 97
Mean 99.7619
Variance 362.8618
COV 0.1909

Figure 3.22: CFB Trenton wind speeds above 110km/h: Exponential, Weibull, Lognormal
and Gumbel PPP.
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Table 3.14: CFB Trenton wind speeds above 110km/h: statistics �tted distributions,
yearly maximum.

Exponential Weibull Lognormal Gumbel
Parameters λ=1/65.0160 α=1/0.1429, λ=4.5862, µ=90.9917,

β=expp4.6652q ζ=0.18673 β=15.8605
Mean (km/h) 65.0160 99.3304 99.8454 100.1466
Variance 4.2271¨103 278.6991 353.7198 413.7903
COV 1 0.1681 0.1884 0.2031

3.5.2.5 Yearly Maximum: Distribution

In practice, often the maximum distribution is assumed to be a Gumbel distribution which has
PDF and CDF given respectively as:

fXpxq “
1

β
e
´

ˆ

x´µ
β
`e
´
x´µ
β

˙

, FXpxq “ e´e
´
x´µ
β
, µ, x P R, β ą 0.

Hence, if the distribution of the yearly maximum, FXyear maxpxq, is assumed to be a Gumbel
distribution, we have:

FXyear maxpxq “ e´e
´
x´µ
β
, µ, x P R, β ą 0. (3.51)

The distribution of the yearly maximum over a period of 15 years is then given as

G15
X pxq “

`

FXyear maxpxq
˘15

“

ˆ

e´e
´
x´µ
β

˙15

“ e´e
´
x´pµ`β lnp15qq

β
. (3.52)

The POE of this maximum over 15 years, G15
X pxq, is given in Figure 3.23, where the distribution

parameters are given in Table 3.14. The plots in Figure 3.17 are also given for comparison to
the results of the analysis of maximum wind speeds above 100km/h in a time horizon of 15
years. Similar plots are given in Figure 3.24 where G15

X pxq is compared to the results of the
analysis of maximum wind speeds above 110km/h in a time horizon of 15 years.
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Figure 3.23: CFB Trenton wind speeds above 100km/h: POE of maximum Exponential
gust over 15 years. Comparison between results in Figure 3.17 and Gumbel distribution as in
Table 3.14.

Figure 3.24: CFB Trenton wind speeds above 110km/h: POE of maximum Exponential
gust over 15 years. Comparison between results in Figure 3.20 and Gumbel distribution as in
Table 3.14.
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Figure 3.25: CFB Trenton wind speeds above 110km/h: POE of maximum Weibull gust
over 15 years. Comparison between results in Figure 3.21 and Gumbel distribution as in Table
3.14.
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For longer time horizons, 50, 100 and 200 years, G50
X pxq, G

100
X pxq and G200

X pxq are respectively
given in Figure 3.26. These results are then compared to the renewal equation solution and
its HPP approximation over the same time horizons for the parameters of wind gusts above
100km/h. In Figure 3.27 this is repeated for wind gusts above 110km/h.

(a) 50 years. (b) 100 years. (c) 200 years.

Figure 3.26: CFB Trenton POE above 100km/h: POE of maximum gust over 50, 100 and
200 years. Comparison between Lognormal inter-arrival times with Exponential wind gusts, its
HPP approximation and Gumbel distribution.

(a) 50 years. (b) 100 years. (c) 200 years.

Figure 3.27: CFB Trenton POE above 110km/h: POE of maximum gust over 50, 100 and
200 years. Comparison between Lognormal inter-arrival times with Exponential wind gusts, its
HPP approximation and Gumbel distribution.

3.5.2.6 Explanation of Results

Similar conclusions as in the previous example can be drawn from the results in Figures 3.26
and 3.27. In this particular example it can be seen that the Gumbel approximation is a better
approximation for wind speeds above 110 km/h. This is a consequence of using di�erent
parameters because of the changed data subset.
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3.5.3 Wind Gusts at Pearson International Airport

3.5.3.1 Data Analysis

The following analyses are of maximum wind gust measurements at Pearson Airport taken from
Feb 1, 1955 to June 13, 2013. Persisting high measurements, within 4 days, were counted as
one measurement. The analyses are based on the measurements of wind gusts above 100km/h
and above 110km/h. In both cases the inter-arrival times and wind gust speeds are taken into
account. Probability paper plots for the Exponential, Weibull and Lognormal distributions
are given and a plot of the maximum distribution is given after choosing the best �ts. For
wind gusts above 120km/h only 4 measurements were observed and these are consequently not
analyzed.

Wind gusts above 100km/h

The inter-arrival times were taken between Feb 1, 1955 and the last recorded wind gust above
100km/h, which was on September 22, 2010. In this period there were a total of 28 occurrences.
In Table 3.15 some data statistics are given for the wind gust measurements. In Figures 3.28
and 3.29, respectively, the PPP of the Exponential, Weibull and Lognormal distributions are
given for the inter-arrival times and wind gusts. In tables 3.16 and 3.17 some statistics of the
�tted distributions are given for the inter-arrival times and wind gusts above 100km/h, respec-
tively. Additionally, the Method of Moments (MoM) was used to �t a Lognormal distribution
and its statistics are also given. In Figure 3.30 the distribution of the maximum wind gust
speed is given on a time horizon of 15 years where the inter-arrival times and wind gusts are
respectively Lognormal and Exponential with parameters given in tables 3.16 and 3.17.

Table 3.15: Pearson airport: statistics wind gusts above 100km/h.

Inter-arrival times Wind gusts
(days) (km/h)

Amount data 27 28
Min 15 101
Max 4062 135
Median 343 107
Mean 741.9630 109.9643
Variance 9.2116¨105 71.4431
COV 1.2936 0.0769
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Figure 3.28: Pearson airport inter-arrival times: wind speeds above 100km/h. Exponen-
tial, Weibull and Lognormal PPP. Dashed line represents the MoM �t.

Figure 3.29: Pearson airport wind speeds above 100km/h: Exponential, Weibull and
Lognormal PPP.
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Table 3.16: Pearson airport inter-arrival times: statistics �tted distributions for inter-
arrival times of wind speeds above 100km/h.

Exponential Weibull Lognormal Lognormal, (MoM)
R2=0.8404

Parameters λ=1/924.7835 α=1/1.1585, λ=5.8519, λ=6.1176
β=expp6.4696q ζ=1.4423 ζ=0.9916

Mean (days) 924.7835 695.3994 984.4190 741.9630
Variance 8.5522¨105 6.5358¨105 6.7905¨106 9.2116¨105

COV 1 1.1626 2.6471 1.2936

Table 3.17: Pearson airport wind speeds above 100km/h: statistics �tted distributions.

Exponential Weibull Lognormal
Parameters λ=1/10.2912 α=1/0.84699, λ=1.9103,

β=expp2.3629q ζ=1.0444
Mean (km/h) 110.2912 110.0339 111.6550
Variance 105.9097 72.7465 268.4954
COV 0.0933 0.0775 0.1468

Figure 3.30: Pearson airport wind speeds above 100km/h: Lognormal inter-arrival times
and Exponential wind speeds as �tted in Tables 3.16 and 3.17.
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Wind gusts above 110km/h

The same analysis is performed for wind gusts above 110km/h. The inter-arrival times were
taken between Feb 1, 1955 and the last recorded wind gust above 110km/h, which was on
August 11, 2009. In this period there were a total of 10 occurrences. In Table 3.18 some data
statistics are given for the wind gust measurements. In Figures 3.31 and 3.32, respectively, the
PPP of the Exponential, Weibull and Lognormal distributions are given for the inter-arrival
times and wind gusts. In tables 3.19 and 3.20 some statistics of the �tted distributions are
given for the inter-arrival times and wind gusts above 110km/h, respectively. Additionally,
the MoM was used to �t a Lognormal distribution and its statistics are also given. In Figure
3.33 the distribution of the maximum wind gust speed is given on a time horizon of 15 years
where the inter-arrival times and wind gusts are respectively Lognormal and Exponential with
parameters given in tables 3.19 and 3.20.

Table 3.18: Pearson airport: statistics wind gusts above 110km/h.

Inter-arrival times Wind gusts
(days) (km/h)

Amount data 9 10
Min 108 111
Max 10977 135
Median 435 117.5
Mean 2.1807¨103 119.4
Variance 1.3464¨107 46.4889
COV 1.6827 0.0571

Table 3.19: Pearson airport inter-arrival times: statistics �tted distributions for inter-
arrival times of wind speeds above 110km/h.

Exponential Weibull Lognormal Lognormal, (MoM)
R2=0.5802

Parameters λ=1/3317.1494 α=1/1.626, λ=6.3625, λ=7.0158
β=expp7.1595q ζ=2.0501 ζ=1.1590

Mean (days) 3317.1494 1875.5 4741.2 2.1807¨103

Variance 1.1003¨107 1.0228¨107 1.4812¨109 1.3464¨107

COV 1 1.7052 8.1175 1.6827
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Figure 3.31: Pearson airport inter-arrival times: wind speeds above 110km/h. Exponen-
tial, Weibull and Lognormal PPP. Dashed line represents MoM �t.

Figure 3.32: Pearson airport wind speeds above 110km/h: Exponential, Weibull and
Lognormal PPP.
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Table 3.20: Pearson airport wind speeds above 110km/h: statistics �tted distributions
for wind speeds above 110km/h.

Exponential Weibull Lognormal
Parameters λ=1/10.0088 α=1/0.83242, λ=1.9645,

β=expp2.3767q ζ=0.98354
Mean (km/h) 120.0088 120.1276 121.5673
Variance 100.1757 71.6878 218.2265
COV 0.0834 0.0705 0.1215

Figure 3.33: Pearson airport wind speeds above 110km/h: Lognormal inter-arrival times
and Exponential wind speeds as �tted in Tables 3.19 and 3.20.
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3.5.3.2 Explanation of Results

It is obvious from Figure 3.33 that the HPP approximation of the proposed model is not
a good approximation in this example. The POE of wind speeds of 125 km/h is for example
underestimated to less than half the value given by the model. This means, given the estimated
parameters are correct and the inter-arrival times are indeed Lognormal distributed with given
parameters, the HPP is not a good approximation of this problem. This shows the versatility
of the proposed model since it is able to allow for inter-arrival times of any distribution.

3.6 Conclusions

In this chapter an accurate method to compute the maximum distribution of a stochastic hazard
modeled as a shock, pulse and alternating process is presented. From practical numerical
examples it is clearly shown that a simple solution given by the HPP approximation cannot
be expected to perform well on short time horizons. The distribution of maximum given by a
Gumbel distribution also exhibits similar behaviour. This chapter clearly shows the need for
accurate models that do not use an HPP as underlying assumption or assume hazards follow
the limiting behaviour of in�nite sequences.
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Appendix

3.A Proof of equation (3.10) via Renewal Process and De-

fective Renewal Equation.

The CDF of the maximum of a pulse load process with inter-arrival times given by a general
distribution FT ptq is given by

PpX˚
ptq ĺ xq “ FY pxq sFT ptq ` FY pxq

ż t

0

PpX˚
pt´ sq ĺ xqdFT psq. (3.53)

This equation can be written in the form

aptq “ bptq ` φ

ż t

0

apt´ sqdFT psq, t ľ 0 (3.54)

where φ=FY pxq P p0, 1q and equation (3.54) is called a defective renewal equation.

We can transform equation (3.54) into a proper renewal equation by �nding a parameter γ such
that

rFT pdtq “ eγtφFT pdtq (3.55)

is a probability distribution function, i.e

ż 8

0

rFT pdtq “ 1. (3.56)

Assume N=tNptq “ nu is HPP with rate λ, hence, dFT ptq=FT pdtq=λe
´λtdt. From equations

(3.55) and (3.56) we see that

ż 8

0

eγtFY pxqλe
´λtdt “ 1

ó

λFY pxq
1

γ ´ λ
e´pλ´γqt

ˇ

ˇ

ˇ

ˇ

8

t“0

“ 1

ó

γ “ λp1´ FY pxqq,

where in the second equation we assume γ ă λ which holds in the last equation. So now we
have transformed the improper renewal equation in (3.54) into a proper renewal equation

raptq “ rbptq `

ż t

0

rapt´ sqd rFT psq, t ľ 0, (3.57)

where raptq “ eγtaptq, rbptq “ eγtbptq and rFT pdtq “ eγtφFT pdtq. The solution of

ra “ rb` rFT ˚ ra
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is given as

raptq “
8
ÿ

n“0

´

rF
pnq
T ˚rb

¯

ptq. (3.58)

Now we have

rFT pdtq “ eγtφFT pdtq

“ FY pxqe
λp1´FY pxqqtλe´λtdt

“ λFY pxqe
´λFY pxqtdt,

hence rFT pdtq is an exponential distribution with parameter λFY pxq. We �rst notice that if F
is the distribution of an exponential random variable with rate λ ą 0, then

F
pnq
T pdtq “

pλqn

Γpnq
tn´1e´λtdt “ λ

pλtqn´1

pn´ 1q!
e´λtdt.

Now with
F
p0q
T ptq “ δ0ptq

we have
8
ÿ

n“0

F
pnq
T pdtq “ δ0pdtq ` λe

´λtdt` λλte´λtdt` λ
pλtq2

2!
e´λtdt` . . .

“ δ0pdtq ` λe
´λtdtp1` λt`

pλtq2

2!
` . . .q

“ δ0pdtq ` λdt,

where δ0ptq is the Dirac delta function which is equal to 1 at t and zero otherwise. Now from
equation (3.58) it follows that

raptq “
8
ÿ

n“0

´

rF
pnq
T ˚rb

¯

ptq “ rbptq ` λFY pxq

ż t

0

rbpsqds. (3.59)

From equation (3.53) we see that bptq “ FY pxq sFT ptq and hence rbptq “ FY pxq sFT ptqe
λp1´FY pxqqt.

Now substituting rbptq into equation (3.59) gives

raptq “ FY pxq

ˆ

sFT ptqe
λp1´FY pxqqt ` λFY pxq

ż t

0

sFT psqe
λp1´FY pxqqsds

˙

“ FY pxq

ˆ

e´λteλp1´FY pxqqt ` λFY pxq

ż t

0

e´λseλp1´FY pxqqsds

˙

“ FY pxq

ˆ

e´λtFY pxq ` λFY pxq

ż t

0

e´λsFY pxqds

˙

“ FY pxq
`

e´λtFY pxq ´ e´λtFY pxq ` 1
˘

“ FY pxq.

Since eλp1´FY pxqqtaptq “ raptq “ FY pxq it follows that

aptq “ FY pxqe
´λtp1´FY pxqq

which is the solution of equation (3.53) for an HPP. We can check this is the same solution we
got in equation (3.10).
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3.B Proof of Lemma 3.6.

First we notice that
Nptq ľ n i� Sn ĺ t

so PpNptq ľ nq=F
pnq
T ptq where we use the notation PpSn ĺ tq=PpT1 ` . . . ` Tn ĺ tq=F

pnq
T ptq

which is the convolution of n inter-arrival times. Next we use

PpNptq “ nq “ PpNptq ĺ nq ´ PpNptq ĺ n´ 1q

“ 1´ PpNptq ą nq ´ p1´ PpNptq ą n´ 1qq

“ 1´ PpNptq ľ n` 1q ´ p1´ PpNptq ľ nqq

“ PpNptq ľ nq ´ PpNptq ľ n` 1q

“ F
pnq
T ptq ´ F

pn`1q
T ptq.

Now partition over the events tNptq “ nu:

PpX˚
ptq ĺ xq “ PpmaxtY1u ĺ x,Nptq “ 0q

`PpmaxtY1, Y2u ĺ x,Nptq “ 1q

`PpmaxtY1, Y2, Y3u ĺ x,Nptq “ 2q

`
...

“ FY pxq
´

F
p0q
T ptq ´ F

p1q
T ptq

¯

`FY pxq
2
´

F
p1q
T ptq ´ F

p2q
T ptq

¯

`FY pxq
3
´

F
p2q
T ptq ´ F

p3q
T ptq

¯

`
...

“

8
ÿ

n“1

FY pxq
n
´

F
pn´1q
T ptq ´ F

pnq
T ptq

¯

“

8
ÿ

n“1

FY pxq
nF

pn´1q
T ptq ´

8
ÿ

n“1

FY pxq
nF

pnq
T ptq

“ FY pxq
8
ÿ

n“1

FY pxq
n´1F

pn´1q
T ptq ´

8
ÿ

n“1

FY pxq
nF

pnq
T ptq

“ FY pxq

˜

FY pxq
0F

p0q
T ptq `

8
ÿ

n“2

FY pxq
n´1F

pn´1q
T ptq

¸

´

8
ÿ

n“1

FY pxq
nF

pnq
T ptq

“ FY pxq

˜

1`
8
ÿ

n“1

FY pxq
nF

pnq
T ptq

¸

´

8
ÿ

n“1

FY pxq
nF

pnq
T ptq

(3.60)
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“ FY pxq ` pFY pxq ´ 1q
8
ÿ

n“1

FY pxq
nF

pnq
T ptq

“ FY pxq ´ p1´ FY pxqq
8
ÿ

n“1

FY pxq
nF

pnq
T ptq. (3.61)

Now let

yptq “
8
ÿ

n“1

FY pxq
nF

pnq
T ptq

be the summation given in equation (3.61). For ną1 we have

FY pxq
nF

pnq
T ptq “ FY pxq

n

ż t

0

F
pn´1q
T pt´ sqdFT psq “ FY pxq

ż t

0

FY pxq
n´1F

pn´1q
T pt´ sqdFT psq.

Now take the summation over ną1:
8
ÿ

n“2

FY pxq
nF

pnq
T ptq “

8
ÿ

n“2

FY pxq

ż t

0

FY pxq
n´1F

pn´1q
T pt´ sqdFT psq

“ FY pxq

ż t

0

8
ÿ

n“2

FY pxq
n´1F

pn´1q
T pt´ sqdFT psq

“ FY pxq

ż t

0

8
ÿ

n“1

FY pxq
nF

pnq
T pt´ sqdFT psq.

Now add n=1 to both sides to obtain:

yptq “ FY pxqFT ptq `
8
ÿ

n“2

FY pxq
nF

pnq
T ptq

“ FY pxqFT ptq ` FY pxq

ż t

0

8
ÿ

n“1

FY pxq
nF

pnq
T pt´ sqdFT psq

“ FY pxqFT ptq ` FY pxq

ż t

0

ypt´ sqdFT psq. l

3.C Generalized Extreme Value Distributions

3.C.1 Introduction

In modelling the distribution of the (annual) maximum one approach is to notice the following.
Let Y1, Y2, . . . , Yn be iid random variables with distribution FY pyq and let
Mn=maxtY1, Y2, . . . , Ynu. Then

PpMn ĺ yq “ pFY pyqq
n . (3.62)

Hence, the distribution of the maximum can be readily derived. However, since the distribution
F is unknown and small errors in the estimation of F can lead to large errors in the estimation
of pFY pyqq

n we can accept the fact that F is unknown and instead estimate pFY pyqq
n.
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3.C.2 Theoretical Results

From equation (3.62) �rst we notice that if we take any y ă y` where y` is the smallest value
such that F py`q=1, then pFY pyqq

n
Ñ 0 for n Ñ 8. This implies that the distribution of Mn

degenerates to a point mass at y`. This is resolved by applying the normalization pMn´bnq{an.
So we must �rst �nd sequences of constants tan ą 0u and tbnu such that

P
ˆ

Mn ´ bn
an

ĺ y

˙

“ F panx` bnq
n
Ñ Gpyq, as nÑ 8.

If sequences of constants tan ą 0u and tbnu exist and G is a non-degenerate distribution, it is
known that G is one of the following three types of distributions:

Gumbel : Gpyq “ exp

ˆ

´ exp

„

´

ˆ

y ´ b

a

˙˙

, @y;

Fréchet : Gpyq “

#

0, y ĺ 0,

exp
”

´
`

y´b
a

˘´α
ı

, y ą 0;

(reversed) Weibull : Gpyq “

#

exp
´

´

”

´
`

y´b
a

˘´α
ı¯

, y ă 0,

1, y ľ 0,

where a ą 0, b and α ą 0 for the Fréchet and Weibull distributions. It can be seen that these
three distributions can be combined into one distribution called the Generalized Extreme Value
(GEV) distribution:

Gpyq “ exp

ˆ

´

”

1` ξ
´y ´ µ

σ

¯ı´1{ξ
˙

, (3.63)

with ty : 1 ` ξpy ´ µq{σ ą 0u, ´8 ă µ ă 8, σ ą 0 and ´8 ă ξ ă 8 where µ is called the
location parameter, σ the scale parameter and ξ the shape parameter. The three distributions
then belong to the three di�erent cases: ξ Ñ 0 belongs to the Gumbel, ξ ą 0 belongs to the
Fréchet with α “ 1{ξ and ξ ă 0 belongs to the Weibull family of distributions with α “ ´1{ξ.

The three distributions are distinguished by the tail behaviour of the original distribution
F of the Xi:

• Gumbel, ξ « 0: exponential tail,

• Fréchet, ξ ą 0: long/heavy tailed,

• Weibull, ξ ă 0: short tailed. With �nite end-point at µ´ ξ{σ.

3.C.3 The Generalized Pareto Distribution

In modelling extreme events one might be mostly interested in values above a certain threshold
l0. Hence, one might be interested in the conditional probability

PpY ą l0 ` y|Y ą l0q, y ą 0. (3.64)
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This leads to the family of distributions called the Generalized Pareto Distribution (GPD)
which is explained in the following lemma:

Lemma 3.9. Let Y1, Y2, . . . , Yn be iid random variables with distribution FY pyq and
Mn=maxtY1, Y2, . . . , Ynu. Let Y be a random element of the Yi's and assume FY pyq satis�es

P
ˆ

Mn ´ bn
an

ĺ y

˙

Ñ Gpyq,

as nÑ 8 where

Gpyq “ exp

ˆ

´

”

1` ξ
´y ´ µ

σ

¯ı´1{ξ
˙

,

for ξ and µ, σ ą 0 as explained in section 3.C.2. Then, if a threshold l0 is large enough the
distribution of Y ´l0 under the condition Y ą l0, i.e. PpY ĺ l0`y|Y ą l0q, can be approximated
by the GPD

Hpyq “ 1´

ˆ

1`
ξy

rσ

˙´1{ξ

, y ą 0, 1` ξy{rσ ą 0, (3.65)

and rσ “ σ ` ξpl0 ´ µq.

Proof. An outline of this proof can also be found in [7] and [39].
Let Y follow the distribution FY pyq and assume the maximum of the sequence Y1, . . . , Yn follows
a GEV distribution. This means for large enough n we have

pFY pyqq
n
« exp

ˆ

´

”

1` ξ
´y ´ µ

σ

¯ı´1{ξ
˙

,

for ξ and µ, σ ą 0. Taking the logarithm leads to

n ln pFY pyqq « ´
”

1` ξ
´y ´ µ

σ

¯ı´1{ξ

. (3.66)

But we are interested in maximum values and for large values y, a Taylor series expansion gives
the approximation

ln pFY pyqq « ´ p1´ FY pyqq .

So for large values l0, substituting this approximation into equation (3.66) gives the approximate
relation

1´ FY pl0q «
1

n

„

1` ξ

ˆ

l0 ´ µ

σ

˙´1{ξ

and similarly for l0 ` y, given y ą 0,

1´ FY pl0 ` yq «
1

n

„

1` ξ

ˆ

l0 ` y ´ µ

σ

˙´1{ξ

.
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Hence, the conditional probability in equation (3.64) gives

PpY ą l0 ` y|Y ą l0q «
1´ FY pl0 ` yq

1´ FY pl0q

“
n´1 r1` ξpl0 ` y ´ µq{σs

´1{ξ

n´1 r1` ξpl0 ´ µq{σs
´1{ξ

“

„

σ ` ξpl0 ` y ´ µq

σ ` ξpl0 ´ µq

´1{ξ

“

„

1`
ξy

rσ

´1{ξ

,

where rσ “ σ ` ξpl0 ´ µq.

The Pareto distribution can also have varying tail behaviours:

• ξ « 0: exponential tail. When ξ Ñ 0 we get the limit Hpyq “ 1´ expp´y{σq which is an
exponential distribution with intensity 1{σ,

• ξ ą 0: long/heavy tailed,

• ξ ă 0: short tailed. With �nite end-point at ´σ{ξ.

3.C.4 Distribution of HPP Pareto

In this section we analyze the distribution of the annual maximum if loads arrive according to
an HPP and the load magnitudes are given as a GPD.

Let the amount, N , of loads above a threshold l0 in a year be an HPP with intensity λ.
We notice that we can also take the load arrival process to be HPP with intensity λ̂ and let
the probability of exceeding the threshold l0 be p P r0, 1s. Then λ=pλ̂. Let the load magni-
tudes Y1, Y2, . . . , YN exceeding the threshold l0 be iid following a GPD and are furthermore
independent of the HPP. Denote the maximum load in the year by, Y ˚, i.e.:

Y ˚ “ maxtY1, Y2, . . . , YNu, N ľ 1,

and Y ˚=0 if N=0. Assume x ą l0 ą 0. Then, by �rst conditioning on the number of loads,
the distribution of the annual maximum is given as

PpY ˚ ĺ xq “ PpN “ 0q `
8
ÿ

n“1

PpY ˚ ĺ x,N “ nq

“ e´λ `
8
ÿ

n“1

«

1´

ˆ

1` ξ
x´ l0
rσ

˙´1{ξ
ffn

λne´λ

n!
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“

8
ÿ

n“0

«

1´

ˆ

1` ξ
x´ l0
rσ

˙´1{ξ
ffn

λne´λ

n!

“ e´λ exp

˜

λ

«

1´

ˆ

1` ξ
x´ l0
rσ

˙´1{ξ
ff¸

“ exp

˜

´λ

ˆ

1` ξ
x´ l0
rσ

˙´1{ξ
¸

.

This leads to the following lemma:

Lemma 3.10. The distribution of the annual maximum of an HPP with GPD load magnitudes
is GEV, i.e.:

PpY ˚ ĺ xq “ exp

˜

´λ

ˆ

1` ξ
x´ l0
rσ

˙´1{ξ
¸

is GEV with rσ=σ ` ξpl0 ´ µq and λ=
`

1` ξ l0´µ
σ

˘´1{ξ
where the GPD parameter rσ and HPP

parameter λ are clearly functions of the threshold l0.

Proof. We have

PpY ˚ ĺ xq “ exp

˜

´λ

ˆ

1` ξ
x´ l0
rσ

˙´1{ξ
¸

,

and let rσ=σ ` ξpl0 ´ µq and λ=
`

1` ξ l0´µ
σ

˘´1{ξ
. Then,

PpY ˚ ĺ xq “ exp

˜

´

ˆ

1` ξ
l0 ´ µ

σ

˙´1{ξ ˆ

1` ξ
x´ l0

σ ` ξpl0 ´ µq

˙´1{ξ
¸

“ exp

˜

´

„ˆ

1` ξ
l0 ´ µ

σ

˙ˆ

1` ξ
x´ l0

σ ` ξpl0 ´ µq

˙´1{ξ
¸

“ exp

˜

´

„

1` ξ
x´ l0

σ ` ξpl0 ´ µq
` ξ

l0 ´ µ

σ
` ξ2 pl0 ´ µqpx´ l0q

σpσ ` ξpl0 ´ µqq

´1{ξ
¸

“ exp

˜

´

„

1` ξ
σpx´ l0q ` pl0 ´ µqpσ ` ξpl0 ´ µqq ` ξpl0 ´ µqpx´ l0q

σpσ ` ξpl0 ´ µqq

´1{ξ
¸

“ exp

˜

´

„

1` ξ
σpx´ l0q ` σpl0 ´ µq ` ξpl0 ´ µq rpl0 ´ µq ` px´ l0qs

σpσ ` ξpl0 ´ µqq

´1{ξ
¸

“ exp

˜

´

„

1`
ξ

σ
¨
σpx´ µq ` ξpl0 ´ µqpx´ µq

σ ` ξpl0 ´ µq

´1{ξ
¸

“ exp

˜

´

„

1`
ξpx´ µq

σ
¨
σ ` ξpl0 ´ µq

σ ` ξpl0 ´ µq

´1{ξ
¸

“ exp

˜

´

„

1`
ξpx´ µq

σ

´1{ξ
¸

.
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We notice that in this formulation for the annual maximum we assumed t=1 year. For
the reliability of this load process we can set t as a variable with �xed threshold x. For the
distribution of the maximum load in a time horizon r0, ts years we can let x be a variable while
�xing t. Both then lead to the formula

PpY ˚ptq ĺ xq “ exp

˜

´λt

ˆ

1` ξ
x´ l0
rσ

˙´1{ξ
¸

. (3.67)
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Chapter 4

Distribution of Maximum Load: Combined

Processes

4.1 Introduction

4.1.1 Background

Structures are subject to loads from di�erent sources and are built to withstand these during
their intended lifespan. Examples of loads include: high winds, earthquakes, snow etc. The
loads can generally be characterized as random occurrences in time that have e�ects (or impact)
of a certain magnitude on a structure. However, more importantly, since the times of occurrence
of these loads �uctuate randomly the total magnitude on a structure can be the combined load
e�ect from di�erent sources. This prompts the need to carefully model the superposition
of loads in an understandable framework capturing their total e�ect during the (remaining)
service life of a structure. In particular, we wish to capture the magnitude of the maximum
combined impact of di�erent loads by characterizing these loads as being random in their time
of occurrence, magnitude and duration.

Generally, random loads can be characterized as being of short duration, such as earth-
quakes, which are modelled as stochastic shock processes or long-term slowly varying loads,
such as dead loads or a body of water, which are modelled as stochastic pulse processes. The
proposed model is con�ned to the superposition (sum) of a shock process and a pulse process
but the random time and amount of load occurrences, random duration of occurrences and load
magnitudes makes this a complex problem. Modelling the maximum of the combined process
seemingly reduces the complexity of the time-variant problem to a time-invariant problem as
follows. Suppose in the remaining life span p0, ts of a structure, Z˚ptq is the maximum of the sum
process up to time t and z is the time-invariant capacity of the structure. Then PpZ˚ptq ą zq
indicates the probability of failure over the entire life span of the structure. However, in most
available literature, still the load occurrences are often assumed to be generated by HPP's to
further reduce the complexity of the problem.

4.1.2 Existing Literature and Limitations

Superposition of two Poisson pulse processes is the most dominant model used for load combi-
nation. The following types of work have been reported in the literature:

• Regarding the renewal pulse processes, there is not much work. [3] discussed this model
assuming that the renewal process is stationary. Later, Rackwitz [56] analyzes the crossing
rate of non-stationary renewal pulse processes. The solution approach is an approximation
obtained by some modi�cation of the solution for stationary renewal processes.
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• Schrupp and Rackwitz [64] analyzed superposition of the Poisson cluster process. How-
ever, the derivation was based on assuming that resulting process is in equilibrium state.

Winterstein [78] also analyzes the extreme value distribution of combined renewal pulse
processes. This work also follows the crossing rate approach of [37] and the Rice formula.

• The combination of a Poisson pulse and Poisson shock process is given in [20] and [27].
This is how the literature reports this work.

• Combination of a �renewal� pulse process with a Poisson shock process is studied by
Jacobs, [32]. This is the only formal study of the problem. This paper largely provides
limiting approximation of the �rst passage distribution via the Laplace transform method.
There is �nite time solution of the problem.

Our present work provides an explicit solution of this problem. A clear proof is presented
to show that the combined process is a regenerative process. Jacobs assumed this property
and derived his results.

• A model for alternating processes is studied by [11] as a Markov �on� and �o�� process.
The on and o� times follow exponential distributions. The paper does not derive the
extreme value distribution. Rather it goes on to derive the mean crossing rate of a sum
process using the language of Rice and Leadbetter [39]. All these solutions are referred
to as �bounds� on the POE.

• Rackwitz [31] studied this problem for Erlang distributed arrival times by keeping the
Markov structure of the problem and deriving a matrix di�erential equation for the com-
bination process to obtain the crossing rate. This solution is inspired by the Queueing
theory.

• In [77] and [75], Wen provides a model for the superposition of two processes where
parameters in the model can determine whether a process behaves as a pulse or a shock.
The solution is a conservative approximation based on the rate of coincidence of the two
processes. It is also used to compare the performance of the proposed model in this
chapter.

• Other models have been considered in [58], [18], [13], [70], [2], [48], [53], [44], [45], [65],
[30] and [29].

4.1.3 Contributions to Literature

As mentioned, in the literature there are solutions available for the load combination problem
where the pulse and shock process are both HPP. This chapter relaxes the condition on the
pulse process to have inter-arrival times following any distribution. At present, the work in
this chapter provides the most precise formulation of the load superposition problem where the
pulse process is a renewal process and the shock process is a Poisson process.
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4.1.4 Objectives and Organization

In section 4.2 the load combination problem is explained and the solution is derived for the
distribution of the maximum sum of loads. This section includes the details that justify the
mathematical steps in the derivation which are often omitted in the literature. Moreover, a
numerical example shows the accuracy of the model and its performance compared to a well-
known existing method in the literature.

4.2 Combined Pulse and Shock Process

4.2.1 Pulse Process

4.2.1.1 Model

In this model the sustained load starts at time t=0 at load magnitude L1 and lasts for time
T1. After T1 the process repeats, creating a sequence pL1, T1q, pL2, T2q, pL3, T3q, . . . of iid non-
negative random vectors. The process of the sustained load can then be written as

Xptq “
8
ÿ

n“1

Ln1tSn´1ĺtăSnu, t ľ 0, (4.1)

where

Sn “
n
ÿ

i“1

Ti

and N=tNptq; t ľ 0u is the counting process for the sequence 0 ă S1 ă S2 ă . . . .

An illustration of the sustained load process, inter-arrival times and partial sums of the inter-
arrival times is given in Figure 4.1.

lo
ad

S0 t time

L1 L2

L3

LNptq

LNptq`1

S1 S2 S3 SNptq´1 SNptq SNptq`1

T1 T2 T3 TNptq

Figure 4.1: A schematic of a pulse load process.
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4.2.1.2 Renewal Decomposition for Pulse Process

From the previous subsection, the sustained load process is given by equation (4.1). Now we
look at the process starting after the �rst change in the sustained load size and argue that these
two processes are equivalent in distribution.

Let rLn=Ln`1, rTn=Tn`1 and rSn=Sn`1´T1 be shifted sequences determining the shifted process

rXptq “
8
ÿ

n“1

rLn1trSn´1ĺtărSnu
, t ľ 0.

Hence, t rXptq; t ľ 0u is the shifted sustained load process starting after T1. To show that

tXptq; t ľ 0u is a regenerative process it is to be shown that the processes X and rX have

the same distribution and the process rX and the random vector pL1, T1q are independent. For
t ą T1 we have

rXpt´ T1q “

8
ÿ

n“1

Ln`11tSn´T1ĺt´T1ăSn`1´T1u

“

8
ÿ

n“2

Ln1tSn´1ĺtăSnu

“ Xptq ´ L11ttăT1u.

Setting rXptq “ 0 for t ă 0 leads to

Xptq “ L11ttăT1u `
rXpt´ T1q, t ľ 0. (4.2)

4.2.2 Shock Process

4.2.2.1 Model

All shocks in this model are assumed to be of negligible duration. Hence, the shock process
can be modelled as a point process. After a time period V1 there is a shock of magnitude Y1,
subsequently after a time period V2 there is a shock of magnitude Y2 resulting in a sequence of
iid non-negative random vectors pY1, V1q, pY2, V2q, pY3, V3q, . . . , pYMptq, VMptqq where the counting
process M “ tMptq; t ľ 0u is associated with the increasing sequence 0 ă U1 ă U2 ă . . . given
by

Um “
m
ÿ

i“1

Vi.

A depiction is given in Figure 4.2.

The process for the shock load can then be given as

Y ptq “
8
ÿ

m“1

Ym1tUm“tu, t ľ 0. (4.3)
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lo
ad

0 timet

Y1

Y2 Y3
YMptq´1

YMptq
YMptq`1

U1 U2 U3 UMptq´1 UMptq UMptq`1

V1 V2 V3 VMptq VMptq`1

Figure 4.2: A schematic of a shock load process.

4.2.2.2 Renewal Decomposition for Combination Process

We want to write the reliability function of the component as a renewal function and the
sustained load in the previous section has been written as a regenerative process after a time
period T1 at which the �rst sustained load, L1 changes to L2. This means that the shock load
process needs to be analyzed as a regenerative process based on T1 so that the sum of the
processes can be a regenerative process with regeneration epoch T1. At time T1 there have
been MpT1q occurrences of shock loads. This is depicted in Figure 4.3. The time between T1

lo
ad

0

L1

S1

lo
ad

0

Y1

Y2

YMpT1q

YMpT1q`1

U1 U2 UMpT1q UMpT1q`1

T1

Figure 4.3: A schematic with regeneration epoch at T1 for both processes.

and the next shock load equals UMpT1q`1 ´ T1. De�ne

rV1 “ UMpT1q`1 ´ T1, rVj “ VMpT1q`j, j ľ 2

rYm “ YMpT1q`m, m ľ 1.

First we notice that pV1, Y1q and prVm, rYmq are independent. To show that the shock load
process tY ptq; t ľ 0u is a regenerative process with regeneration epoch T1 it is left to be
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shown that the sequence prVm, rYmq is iid and prVm, rYmq
d
“ pVm, Ymq. A necessary assumption

for prV1, rY1q
d
“ pV1, Y1q to hold, is that the counting process M is generated by an HPP. This

assumption also renders pV1, Y1q and prVm, rYmq independent. Now let µ be the intensity of the

Poisson process M and we will show that prVm, rYmq
d
“ pVm, Ymq.

For the distribution of prVm, rYmq we have

PprV1 ą v1, rY1 ĺ y1, . . . , rVj ą vj, rYj ĺ yjq

“

ż 8

0

PpUMpt1q`1 ´ t1 ą v1, YMpt1q`1 ĺ y1, . . . , VMpt1q`j ą vj, YMpt1q`j ĺ yjqdFT1pt1q.

Partitioning over the values of Mpt1q, the integrand becomes

PpUMpt1q`1 ´ t1 ą v1, YMpt1q`1 ĺ y1, . . . , VMpt1q`j ą vj, YMpt1q`j ĺ yjq

“

8
ÿ

m“0

PpUm`1 ´ t1 ą v1, Ym`1 ĺ y1, . . . , Vm`j ą vj, Ym`j ĺ yj,Mpt1q “ mq

“ FY py1q ¨ ¨ ¨FY pyjq
”

PpV1 ´ t1 ą v1, V2 ą v2, . . . , Vj ą vjq

`

8
ÿ

m“1

PpUm ` Vm`1 ´ t1 ą v1, Vm`2 ą v2, . . . , Vm`j ą vj, Um ĺ t1 ă Um ` Vm`1q

ı

“ FY py1q ¨ ¨ ¨FY pyjq
”

e´µpt1`v1`...`vjq

`

8
ÿ

m“1

PpUm ` Vm`1 ´ t1 ą v1, Vm`2 ą v2, . . . , Vm`j ą vj, Um ĺ t1 ă Um ` Vm`1q

ı

. (4.4)

By independence, the summation term in equation (4.4) becomes

PpUm ` Vm`1 ´ t1 ą v1, V2 ą v2, . . . , Vm`j ą vj, Um ĺ t1 ă Um ` Vm`1q

“

ż t1

0

PpVm`1 ą t1 ` v1 ´ u, Vm`2 ą v2, . . . , Vm`j ą vjqdFUmpuq

“

ż t1

0

e´µpt1`v1`¨¨¨`vj´uqdFUmpuq.
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This leads1 to

8
ÿ

m“1

PpUm ` Vm`1 ´ t1 ą v1, Vm`2 ą v2, . . . , Vm`j ą vjq

“

8
ÿ

m“1

ż t1

0

e´µpt1`v1`¨¨¨`vj´uqdFUmpuq

“

ż t1

0

e´µpt1`v1`¨¨¨`vj´uqµdu

“ e´µpt1`v1`¨¨¨`vjqreµt1 ´ 1s.

Hence,

PpUMpt1q`1 ´ t1 ą v1, YMpt1q`1 ĺ y1, . . . , VMpt1q`j ą vj, YMpt1q`j ĺ yjq

“ FY py1q ¨ ¨ ¨FY pyjqe
´µpv1`¨¨¨`vjq

and it follows that

PprV1 ą v1, rY1 ĺ y1, . . . , rVj ą vj, rYj ĺ yjq “

ż 8

0

FY py1q ¨ ¨ ¨FY pyjqe
´µpv1`¨¨¨`vjqdFT1pt1q

“ PpV1 ą v1, Y1 ĺ y1, . . . , Vj ą vj, Yj ĺ yjq.

We conclude that prVm, rYmq
d
“ pVm, Ymq. l

Let the shifted process rY “ tY ptq; t ľ 0u be the shock process determined by the sequence of

random vectors prVm, rYmq, i.e.

rY ptq “
8
ÿ

n“1

rYm1trUm“tu, t ľ 0,

where rUm “ rUm´1 ` rVm,m ľ 1 are the partial sums of the inter-occurrence times with the
convention rU0 “ 0. The shock process Y and the shifted shock process rY have the same
probability distribution. We note that

rUm “
m
ÿ

j“1

rVj “ UMpT1q`1 ´ T1 `

m
ÿ

j“2

VMpT1q`m ´ T1,

1

Mpuq “
8
ÿ

m“1

1tUmĺuu ñ ErMpuqs “
8
ÿ

m“1

Er1tUmĺuus ñ ErMpuqs “
8
ÿ

m“1

FUm
puq

ñ µu “
8
ÿ

m“1

FUm
puq ñ µdu “

8
ÿ

m“1

dFUm
puq.
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so for t ą T1 and using equation (4.3) we get

rY pt´ T1q “

8
ÿ

m“MpT1q`1

Ym1tUm“tu

“

8
ÿ

m“1

Ym1tUm“tu ´

MpT1q
ÿ

m“1

Ym1tUm“tu

“ Y ptq ´

MpT1q
ÿ

m“1

Ym1tUm“tu.

If we set rY ptq “ 0 for t ă 0, we get

Y ptq “

MpT1q
ÿ

m“1

Ym1tUm“tu ` rY pt´ T1q, t ľ 0. (4.5)

4.2.3 Distribution of Maximum

Let
Zptq “ Xptq ` Y ptq, t ľ 0, (4.6)

be the process de�ned by the sum of the two processes. We are interested in the reliability
of the component, PpZptq ĺ xq. From equations (4.2) and (4.5) we see that the pulse pro-
cess and the shock process can both be represented as regenerative processes with regeneration
epoch T1 denoting the �rst change in the pulse process. The decomposition of both processes for
t ă T1 and t ľ T1 will now be used to calculate the reliability function for the sum of process Z.

Recall that the combined load Z represents the sum of the pulse load and the shock load
as in equation (4.6) and let Z˚ represent the maximum of Z given as

Z˚ptq “ maxtZpsq; s ĺ tu. (4.7)

From section 2.4 we can compute the reliability of Z by computing the reliability of Z˚.

It is �rst worth noting that Z˚ptq is not equal to X˚ptq ` Y ˚ptq.

From equations (4.2) and (4.5) it follows that

Zptq “ Xptq ` Y ptq, t ľ 0

“ L11ttăT1u `
rXpt´ T1q `

MpT1q
ÿ

m“1

Ym1tUm“tu ` rY pt´ T1q

“ L11ttăT1u `

MpT1q
ÿ

n“1

Yn1tUn“tu ` rZpt´ T1q, (4.8)
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where rZptq “ rXptq ` rY ptq, t ľ 0.

Now we use the results in equations (3.6) and (4.8) to calculate the reliability:

PpZ˚ptq ĺ xq “ PpZ˚ptq ĺ x;T1 ą tq ` PpZ˚ptq ĺ x;T1 ĺ tq, (4.9)

where

PpZ˚ptq ĺ x;T1 ą tq “

ż 8

t

PpL1 `maxtY1, . . . , YMptqu ĺ xqdFT1psq

“ PpL1 `maxtY1, . . . , YMptqu ĺ xq

ż 8

t

dFT1psq

“ sFT1ptqPpL1 `maxtY1, . . . , YMptqu ĺ xq

“ sFT1ptq

ż x

0

e´µt
sFY px´uqdFL1puq

and

PpZ˚ptq ĺ x;T1 ĺ tq “ PpL1 `maxtY1, . . . , YMpT1qu ĺ x, sZ˚pt´ T1q ĺ xq

“

ż t

0

PpL1 `maxtY1, . . . , YMpsqu ĺ x, sZ˚pt´ sq ĺ xqdFT1psq

“

ż t

0

PpL1 `maxtY1, . . . , YMpsqu ĺ xqPpZ˚pt´ sq ĺ xqdFT1psq

“

ż t

0

„
ż x

0

e´µs
sFY px´uqdFL1puq



PpZ˚pt´ sq ĺ xqdFT1psq,

where for the sake of notation we write sF p¨q “ 1´ F p¨q.

Hence,

PpZ˚ptq ĺ xq “

sFT1ptq

ż x

0

e´µt
sFY px´uqdFL1puq `

ż t

0

„
ż x

0

e´µs
sFY px´uqdFL1puq



PpZ˚pt´ sq ĺ xqdFT1psq. (4.10)

4.2.4 Numerical Integration

Using the trapezoidal rule, PpZ˚ptq ĺ xq can recursively be computed as follows:

PpZ˚ptq ĺ xq “ sFT1ptq

ż x

0

e´µ
sFY px´uqtdFL1puq

`
t

2N
fT1p0qPpZ˚ptq ĺ xq

ż x

0

dFL1puq

`

N
ÿ

i“2

2
t

2N
fT1psiqPpZ˚pt´ siq ĺ xq

ż x

0

e´µ
sFY px´uqsidFL1puq

`
t

2N
fT1ptqFL1pxq

ż x

0

e´µ
sFY px´uqtdFL1puq.
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PpZ˚ptq ĺ xq “
1

1´ t
2N
FL1pxq

"„

sFT1ptq `
t

2N
fT1ptqFLpxq


ż x

0

e´µ
sFY px´uqtdFL1puq

`

N
ÿ

i“2

t

N
fT1psiqPpZ˚pt´ siq ĺ xq

ż x

0

e´µ
sFY px´uqsidFL1puq

+

. (4.11)

4.2.5 Numerical Example

As an example equation (4.11) is implemented with ∆t=1/30 (years) and ∆x=1/100 using the
following parameters:

• the pulse load changes and shock occurrences are Poisson processes with an average of
one occurrence/year, i.e. FT ptq „ Expp1q and µ=1

• L „ Expp1q

• Y „ Expp1q

• for the POE, t=15 years

• for the reliability, failure threshold x “ 4.61 units

The POE is given in Figure 4.4 (a) and compared to the solution obtained by Wen's method,
[77]. Some more details about Wen's method and the formula used are given in the Appendix.
It can be con�rmed that Wen's method is a conservative approach and its errors can be quite
large. In particular this would lead to excess and unnecessary costs in design and safety
measures. The reliability is given in Figure 4.4 (b) and compared to 100000 runs of a Monte
Carlo simulation.

4.3 Conclusions

In this chapter an accurate model to compute the distribution of maximum of a combined
process is carefully derived. The combined process consists of a pulse load and an HPP shock
load process. By comparing the results to an existing model it is shown that the proposed
approach leads to better decision quantities. The proposed model is also more versatile than
many models in the literature since it allows for the use of a non-HPP approach for the pulse
load process.
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(a) POE. (b) Reliability.

Figure 4.4: Combined loads.
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Appendix

4.A Load Coincidence Method

In this method proposed by Wen [77], the pulse process tXptq, t ľ 0u and shock process
tY ptq, t ľ 0u are assumed to be mutually independent homogeneous Poisson processes with
rate λ and µ, respectively. De�ne X˚ptq=maxtXpsq, 0ĺsĺtu, Y ˚ptq=maxtY psq, 0ĺsĺtu and
C˚ptq=maxtCXY psq, 0ĺsĺtu where CXY ptq is the coincidence process, i.e. when the two pro-
cesses overlap. It can be noticed that if the pulse process is always in an `on' state, the shock
process never occurs alone. Therefore, the distribution of the maximum combined process
Z˚ptq “ maxtXpsq ` Y psq, 0 ĺ s ĺ tu is approximated as

PpZ˚ptq ă zq “ PppX˚
ptq ă zq X pC˚ptq ă zqq

« PpX˚
ptq ă zqPpC˚ptq ă zq. (4.12)

Notice that X˚ptq and C˚ptq are positively correlated since Xptq and CXY ptq are dependent.
Therefore, equation (4.12) is an underestimation. This means the probability of exceedance,
i.e. PpZ˚ptq ą zq, gives an approximation on the conservative side. First recall from equation
(3.10) the following:

PpX˚
ptq ĺ zq “ FXpzqe

´λtp1´FXpzqq, (4.13)

where FXpxq is the distribution of the load magnitudes. Since the coincidence process exists if
and only if the shock process is `on', the coincidence process is also a shock process with rate
equal to µ. However, the distribution of the coincidence load magnitudes is now given by the
distribution of the sum PpX ` Y ĺ xq “ FXY pxq. Hence, from equation (3.6) it follows that

PpC˚ptq ă zq “ e´µtp1´FXY pzqq. (4.14)

It now follows that
PpZ˚ptq ă zq « FXpzqe

´trλp1´FXpzqq`µp1´FXY pzqqs. (4.15)
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Chapter 5

Reliability of Degrading Structures

5.1 Introduction

5.1.1 Background and Existing Literature

In a highly reliable environment such as a nuclear power plant, reliability assessment based
on measurements/data analysis is challenging due to the lack of data from equivalent sources.
Moreover, an approximation of the reliability function for a component, equal to for example
the �exible Weibull distribution, is only justi�able for a large population of identical compo-
nents. Therefore, in this paper e�ects on a structure/component are mechanistically modeled
leading to a mathematical formulation to compute the reliability of an individual (and unique)
component.
The deterioration in structures or engineering components can be modeled as the interaction
between two di�erent stochastic processes: a process of continuous deterioration (aging) and
the process describing the external loads (stress) on the component. A depiction of this in-
teraction can be seen in Figure 5.1. A component loses strength (or capacity) over time due

Figure 5.1: Schematic of stochastic process of deterioration Rptq and stochastic loads Yi. At
time s5 a failure occurs since Y5 ą Rps5q.

to progressive deterioration. This type of deterioration stands for (continuous) time-dependent
degradation of the system caused by for example environmental stressors, corrosion, creep,
extreme pressure or temperature, components exposed to chemicals etc. It can immediately
be remarked that as long as there is no sporadic regeneration or intervention, the component
strength is a non-increasing process. Hence, the continuous deterioration in the component is
a non-decreasing process. The gamma process is such a process and has been widely used to
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model deterioration in civil engineering, e.g. coastal safety [73], [72] and structural reliability
[71], [54], [22], [6], [4], [5] and [36]. The second type of e�ect on a component is commonly
modeled is sudden and short-lived high levels of stress, loads or shocks caused by for example
earthquakes and other rare events. These e�ects are usually assumed to be point processes and
thus having a negligible time duration and also with a non-lasting e�ect. These external loads
occur randomly in time and are usually described by a Poisson process with stochastic load
magnitudes, although di�usion stresses with continuous intensity have been discussed in [19].
Iervolino et al. [28] discuss a reliability model with a gamma process of stochastic degradation
and cumulative stress. In the computations however, the amount of stresses is taken as the
expectation of the amount of stresses to simplify calculations and since this is a rough assump-
tion it may not always be favourable. Sánchez-Silva et al. [63] present a model to compute the
instantaneous rate of intervention (heuristically the hazard rate) of a component. The total
deterioration in the component is a sum of the aging process and the Poisson process where
aging occurs at �xed time points. In Riascos-Ochoa et al. [60] the reliability of a component
can be computed when the total deterioration is again a sum of aging and external loads where
now this sum is a Lévy process. Mori and Ellingwood [49], [14] present a model where the
stress process is an HPP resembling external incidental loads a�ecting an aging component.
However, in this model the aging process is deterministic. The model described in this chapter
is an extension of the Mori and Ellingwood [49], [14], models in the sense that the determin-
istic aging is extended to stochastic aging. Since the stress process in this model is treated as
external loads separate from the aging process, a model treating the stress process as part of
the aging process can be viewed as a special case of the model in this chapter. This model has
been presented in [72].

5.1.2 Contributions to Literature

As mentioned, the model in this chapter has been presented in [72]. However, without the
proper explanation of the mathematical intricacies that justify the results. These details are
included in this chapter. In addition, this chapter includes a special case that greatly simpli�es
the results in [72]. As an extension to the model, in this chapter the rate of occurrence of the
shock process is assumed to be time-dependent to establish a more general model.

5.1.3 Objectives and Organization

In section 5.2 a basic two shock challenge is presented to illustrate all the di�erent components
that play a role in this problem. This section highlights the challenges that should be overcome
in order to solve this reliability problem. Section 5.3 brie�y summarizes the model in [49],
[14] which assumes deterioration occurs as a deterministic function of time. In section 5.4 the
gamma process is presented. In section 5.5 the gamma process is introduced in the model
as the deterioration process as is done in [72] and the section serves as a practical numerical
example to illustrate computations. In section 5.6 the reliability function that needs to be
computed is further analyzed to give insight into its computation method. Section 5.7 shows
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the method used to arrive at analytical solutions instead of resorting to numerical integration.
In section 5.8 it is shown how analytical solutions are derived for Uniformly distributed shocks.
In section 5.9 the model is further generalized to accommodate for shocks that arrive according
to a Nonhomogeneous Poisson Process (NHPP). The chapter concludes with an appendix with
further results and some mathematical proofs.

5.2 Basic Challenge

This section discusses a basic challenge in reliability modelling where computation of the reli-
ability is presented for a component that is put into service at time t=0 and is subject to two
shocks.

In Figure 5.2 a deterministic model is depicted. In this model there is no uncertainty re-
garding the deterioration process, the occurrence times of stresses and the stress magnitudes.
Assume the following:

• Rptq “ r0 ´ at is the strength process where r0 ą 0, a ą 0 and t ą 0

• Stress sizes y ą 0 are stresses exceeding a threshold1 l0 ľ 0

• δ ą 0 is the time interval between stress occurrences.

This situation is depicted in Figure 5.2.

We notice that in a completely deterministic model there is no uncertainty and hence there is
no reliability computation, so from now on we will add uncertainty to the model. This means
uncertainty in the degradation process and/or uncertainty in the stress process. We want to
compute the reliability of a component surviving two shocks of magnitudes Y1 and Y2 occurring
at �xed times s1 and s2. The shock magnitudes are moreover assumed to be dependent and
given by the joint distribution FY1,Y2py1, y2q. In the remainder of this chapter we will illustrate
the e�ect of uncertainty in reliability computation with a few examples given three di�erent
types of deterioration processes: no deterioration, deterministic deterioration and stochastic
deterioration.

5.2.1 No Deterioration

First we assume there is no deterioration. Hence, the component strength Rptq is a constant
r0ą0. This strength can either be identi�ed with certainty or is uncertain. Hence, if the com-
ponent strength is constant over time it can be a known value r0 or a random variable R0 with

1The threshold l0 is justi�ed for a system that cannot fail in the absence of stresses larger than l0. In the
case any stress size has an impact on the probability of failure of the system, the threshold l0 equals 0.
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Figure 5.2: A deterministic model where all variables are known.

distribution FR0pr0q.

Component strength known

Let the component strength be known and equal to r0. This situation is given in Figure
5.3. The probability that the component survives both shocks is given by

PpT ą s2q “ PpY1 ă r0, Y2 ă r0q “ FY1,Y2pr0, r0q.

Component strength uncertain

Let the component strength R0 be a random variable. This situation is given in Figure 5.4. As
the previous case, given R0 “ r0 the probability of surviving both shocks is given by

PpT ą s2|R0 “ r0q “ PpY1 ă r0, Y2 ă r0q

“ FY1,Y2pr0, r0q.

Hence, unconditioning on the value r0 leads to:

PpT ą s2q “

ż 8

0

PpT ą s2|R0 “ r0qdFR0pr0q

“

ż 8

0

FY1,Y2pr0, r0qdFR0pr0q.

84



0

*

s1

Y1

*

s2

Y2

r0

Ñ Time t

Ñ
S
tr
en
gt
h
R
pt
q

Figure 5.3: No deterioration: compo-
nent strength known.
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Figure 5.4: No deterioration: compo-
nent strength uncertain.

5.2.2 Deterministic Deterioration

In this section we assume the component deteriorates over time according to a speci�ed function.
We write the component strength as

Rptq “ R0 ¨ gptq, t ľ 0,

where R0ą0 is a constant and gptqľ0 is a non-increasing function. In Figure 5.5 this situation
is depicted. For the sake of simplicity, in the following we assume gp0q=1 so that Rp0q=R0 and
gptq can be interpreted as the loss of initial capacity over time.
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Figure 5.5: Deterministic deterioration: schematic of component with non-increasing
strength Rptq a�ected by two loads.

Initial component strength known

If the component strength is known to be R0=r0, the deterioration function contains no un-
certainty and is given by Rptq=r0 ¨ gptq. This is shown in Figure 5.6. The reliability of the
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component is given as

PpT ą s2q “ PpY1 ă r0 ¨ gps1q, Y2 ă r0 ¨ gps2qq “ FY1,Y2pr0 ¨ gps1q, r0 ¨ gps2qq.

Initial component strength uncertain

In the case the initial component strength R0 is a random variable following a distribution
FR0pr0q, Figure 5.7, the reliability becomes

PpT ą s2q “

ż 8

0

FY1,Y2pr0 ¨ gps1q, r0 ¨ gps2qqdFR0pr0q.
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Figure 5.6: Deterministic deteriora-
tion: initial component strength known.
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Figure 5.7: Deterministic deteriora-
tion: initial component strength uncer-
tain.

A Numerical Example

The computation of the reliability with the assumption of deterministic deterioration is il-
lustrated for an exponential deterioration function gptq. The joint distribution for the shock
magnitudes is a bivariate Exponential distribution, i.e. the margins are Exponential, proposed
by Gumbel [25].

The joint CDF of the load magnitudes pY1, Y2q is given by

F py1, y2; δq “ 1´ e´y1 ´ e´y2 ` e´y1´y2´δy1y2 , y1 ľ 0, y2 ľ 0, 0 ĺ δ ĺ 1. (5.1)

The correlation ρ between Y1 and Y2 is determined by the parameter δ. Y1 and Y2 are indepen-
dent when δ=0. Furthermore, the correlation is non-positive and we have ρ P r´0.40365, 0s. It
is to be noticed that natural hazards can have a positive or negative e�ect on other hazards,
or even trigger other hazards [21]:
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• positive: surface subsidence can increase the risk and impact of �ooding

• negative: heavy rainfall can decrease the risk and impact of wild�res

• trigger: an earthquake can directly cause a tsunami or a landslide.

The joint density function of (5.1) is given by

fpy1, y2; δq “ e´y1´y2´δy1y2 rp1` δy1qp1` δy2q ´ δs .

For this distribution it follows that:

F py1,8; ¨q “ F1py1q “ 1´ e´y1 and F p8, y2; ¨q “ F2py2q “ 1´ e´y2 .

Moreover,
ż 8

´8

fpy1, y2; ¨qdy2 “ f1py1q “
d

dy1

F1py1q “ e´y1

and
ż 8

´8

fpy1, y2; ¨qdy1 “ f2py2q “
d

dy2

F2py2q “ e´y2 ,

hence the marginal density functions are the exponential distribution with parameter equal to
1.

The probability of survival, PpT ą s2q, for this component is given as

PpT ą s2q “ PpY1 ă Rps1q, Y2 ă Rps2qq

“ F pRps1q, Rps2q; ¨q, (5.2)

where F denotes the bivariate CDF of the load magnitudes with corresponding parameter value.

If 0 ă S1 ă S2 ĺ t are now random times of occurrence and the strength process Rptq is
considered deterministic, equation (5.2) becomes:

PpT ą tq “

ż t

s1

ż t

0

F pr0 ¨ gps1q, r0 ¨ gps2qqfSps1, s2qds1ds2, (5.3)

where fSps1, s2q is the joint PDF of random occurrence times S=tS1, S2u. Assume the PDF of
the occurrence times is given by

fSps1, s2q “
1

t2
, t ą 0.

In the following chapter we will see that this is assumption equivalent to the case of the two
shocks being occurrences of a Poisson process on p0, ts. Equation (5.3) then becomes

PpT ą tq “
1

t2

ˆ
ż t

0

ż t

0

F pr0 ¨ gps1q, r0 ¨ gps2qqds1ds2

˙

. (5.4)
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If gptq “ e´t, the degradation function is given as

rptq “ r0e
´t.

The survival probability is then

PpT ą tq “
1

t2

ˆ
ż t

0

ż t

0

F pr0 ¨ gps1q, r0 ¨ gps2qqds1ds2

˙

“
1

t2

ż t

0

ż t

0

F
`

r0e
´t, r0e

´t
˘

ds1ds2.

This probability is given in Figure 5.8 for di�erent parameter values.

Figure 5.8: PpT ą t|Nptq “ 2q where r0 “ 2 and FY „ Expp1q.

5.2.3 Stochastic Deterioration

In this section the deterioration is stochastic and given as

Rptq “ R0 ´Xptq, t ľ 0,

where R0ą0 is a constant and Xptq is a non-decreasing stochastic process with Xp0q=0.

Initial component strength known

If the initial component strength is known to be R0=r0, the deterioration process is given
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by Rptq “ r0 ´Xptq and the reliability of the component is

PpT ą s2q “ PpY1 ă Rps1q, Y2 ă Rps2qq “ PpY1 ă r0 ´Xps1q, Y2 ă r0 ´Xps2qq

“

ż 8

0

ż 8

0

PpY1 ă r0 ´ x1, Y2 ă r0 ´ x2qfX1ps1q,X2ps2qpx1, x2qdx1dx2

“

ż 8

0

ż 8

0

FY1,Y2pr0 ´ x1, r0 ´ x2qfX1ps1q,X2ps2qpx1, x2qdx1dx2.

Initial component strength uncertain

If the component strength is given by Rptq “ R0 ´ Xptq, where R0 is unknown, the relia-
bility is

PpT ą s2q “ PpY1 ă Rps1q, Y2 ă Rps2qq “ PpY1 ă R0 ´Xps1q, Y2 ă R0 ´Xps2qq

“

ż 8

0

ż 8

0

PpY1 ă R0 ´ x1, Y2 ă R0 ´ x2qfX1ps1q,X2ps2qpx1, x2qdx1dx2

“

ż 8

0

ˆ
ż 8

0

ż 8

0

FY1,Y2pr0 ´ x1, r0 ´ x2qfX1ps1q,X2ps2qpx1, x2qdx1dx2

˙

dFR0pr0q.

5.2.4 Randomness in Occurrence Times and Number of Shocks

Now we keep the last assumption of stochastic deterioration and notice that besides the reason-
able assumption of uncertainty in the deterioration process, generally the times of occurrence of
the two shocks are also uncertain. The times of occurrence are now given by the (joint) density
fS1,S2ps1, s2q. The reliability given two shocks of uncertain magnitudes occurring at random
times a�ecting a component with randomly decreasing strength can now be written as

PpT ą s2q “

ż 8

0

ˆ
ż 8

0

ż 8

0

ˆ
ż s2

0

ż s2

s1

FY1,Y2 pr0 ´Xps1q, r0 ´Xps2qq fS1,S2ps1, s2qds2ds1

˙

ˆfX1ps1q,X2ps2qpx1, x2qdx1dx2

˙

dFR0pr0q.

It is also obvious that the number of shocks is not known a priori so the randomness in the
number of shocks needs to be taken into account. Assuming there are three shocks instead of
two occurring at times 0 ă s1 ă s2 ă s3, the reliability function becomes

PpT ą s3q “

ż 8

0

ˆ
ż 8

0

ż 8

0

ż 8

0

ˆ
ż s3

0

ż s3

s1

ż s3

s2

FY1,Y2,Y3 pr0 ´Xps1q, r0 ´Xps2q, r0 ´Xps3qq

ˆfS1,S2,S3ps1, s2, s3qds3ds2ds1

˙

fX1ps1q,X2ps2q,Xps3qpx1, x2, x3qdx1dx2dx3

˙

dFR0pr0q.
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In general, for a total of n shocks occurring at times 0 ă s1 ă s2 ă . . . ă sn, the reliability
becomes

PpT ą snq “

ż 8

0

¨

˚

˚

˚

˝

ż 8

0

¨ ¨ ¨

ż 8

0
loooomoooon

n´fold

¨

˚

˚

˚

˝

ż sn

0

¨ ¨ ¨

ż sn

sn´1
loooooomoooooon

n´fold

FY1,...,Yn pr0 ´Xps1q, . . . , r0 ´Xpsnqq

ˆfS1,...,Snps1, . . . , snqdsn ¨ ¨ ¨ ds1

˙

fXps1qpx1q ¨ ¨ ¨ fXpsnqpxnqdx1 ¨ ¨ ¨ dxn

˙

dFR0pr0q.

Let 0 ă s1 ă s2 ă s3 ă . . . ĺ t denote the time occurrences of shocks on the interval p0, ts.
Unconditioning on the amount of shocks the reliability function becomes

PpT ą tq“
8
ÿ

i“0

PpT ą t|i shocksq ¨ Ppi shocksq

“1 ¨ Pp0 shocksq `
8
ÿ

i“1

PpT ą t|i shocksq ¨ Ppi shocksq

“Pp0 shocksq `
8
ÿ

i“1

ż 8

0

¨

˚

˚

˚

˝

ż 8

0

¨ ¨ ¨

ż 8

0
loooomoooon

i´fold

¨

˚

˚

˚

˝

ż t

0

¨ ¨ ¨

ż t

si´1
loooomoooon

i´fold

FY ps1q,...,Y psiq pr0 ´Xps1q, . . . , r0 ´Xpsiqq

ˆfS1,...,Sips1, . . . , siqdsi ¨ ¨ ¨ ds1

˙

fXps1q,...,Xpsiqpx1, . . . , xiqdx1 ¨ ¨ ¨ dxi

˙

dFR0pr0q ¨ Ppi shocksq.

Up to this point we have seen illustrations of the complexities involved in the calculation of the
reliability of a component subject to shocks. It should now be clear that the intricacies in the
model arise from the uncertainties in the time component of the model. Three key elements
need to be identi�ed in order to compute the reliability in this model formulation:

1. the (stochastic) process of deterioration: tXptq, t ľ 0u

2. joint distribution of occurrence times of shocks: fS1,...,Sips1, . . . , siq

3. joint distribution of shock magnitudes: FY1 , . . . , FYipy1, . . . , yiq.

In addition, if the initial component strength R0 is also uncertain, the distribution FR0pr0q needs
to be provided. From these elements, it is not straightforward to identify a joint distribution
for the occurrence times of shocks while this quantity also gives rise to an in�nite amount
of integrals in the computation of the reliability. To circumvent this di�culty the Poisson
process is used. If moreover the shock magnitudes are iid, the computational di�culties can be
signi�cantly reduced. All of this is illustrated in the proceeding sections.
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5.3 Deterministic Strength and Stochastic Shocks

So far we have presented reliability problems where the occurrence times of shocks have been
�xed or given by a probability density fSpsq. Now we explain why the Poisson process is a
convenient assumption for the shock process.

We model the (deterministic) component strength according to

Rptq “ r0 ¨ gptq,

where r0 is a constant, gptq is a non-increasing degradation function and Rptq is the strength
at time t. This is depicted in Figure 5.9.

We assume gptq does not account for shocks, hence we model the strength deterioration as
a consequence of environmental factors. This also implies that gptq does not include fatigue,
since the time-dependent strength degradation due to shocks would need to be included [50].
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Figure 5.9: A component with deterministic deterioration a�ected by independent random
shocks. The Time To Failure (TTF) is s4.

In case of k stresses of sizes Y1, . . . , Yk occurring at deterministic times si, i “ 1, . . . , k, the
probability of the component surviving after t is

PpT ą t|Nptq “ kq “ PpY1 ă r0 ¨ gps1q, Y2 ă r0 ¨ gps2q, . . . , Yk ă r0 ¨ gpskq ą 0|Nptq “ kq

“

˜

k
ź

i“1

FY pr0 ¨ gpsiqq

¸

,

where FY is the CDF of the independent and identically distributed load sizes.
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When the k loads occur at random times S “ tS1, S2, . . . , Sku according to their joint proba-
bility density function fSpsq, the probability of the component surviving after t becomes

PpT ą t|Nptq “ kq “

ż t

tk´1

¨ ¨ ¨

ż t

0
looooomooooon

k´fold

˜

k
ź

i“1

FY pr0 ¨ gpsiqq

¸

fSpsqds. (5.5)

In 5.A is it explained why given k load occurrences of a Poisson process on p0, ts, the occurrence
times S “ tS1, S2, . . . , Sku are the k order statistics of a random variable U “ tU1, U2, . . . , Uku
with a uniform distribution on p0, ts and where U1, U2, . . . , Uk are statistically independent.
This means we can assume the occurrence times are uniformly distributed on p0, ts. Hence, the
joint PDF of S can then be written as

fSpsq ” fUpuq “

ˆ

1

t

˙k

.

Moreover, since the load magnitudes are statistically independent and identically distributed
(identical to a uniform distribution), we can write

k
ź

i“1

FY pr0 ¨ gpSiqq “
k
ź

j“1

FY pr0 ¨ gpUjqq .

Now we can write equation (5.5) expressed in U as

PpT ą t|Nptq “ kq “

ż t

0

¨ ¨ ¨

ż t

0
looomooon

k´fold

˜

k
ź

i“1

FY pr0 ¨ gujq

¸

fUpuqdu

“

ˆ
ż t

0

FY pr0 ¨ gpujqq
1

t
du

˙k

“

ˆ
ż t

0

FY pr0 ¨ gptqq
1

t
dt

˙k

. (5.6)

We now relax the conditional probability on the number of loads on the interval p0, ts to get
PpT ą tq by using the fact that the occurrence times are modeled as a Poisson process with
intensity λ:

PpT ą tq “

8
ÿ

k“0

PpT ą t|Nptq “ kqPpNptq “ kq

“

8
ÿ

k“0

ˆ
ż t

0

FY pr0 ¨ gptqq
1

t
dt

˙k

¨
pλtqk

k!
e´λt

“ e´λtp1´
1
t

şt
0 FY pr0¨gptqqdtq. (5.7)

This model has been presented in [49] and [14]. We proceed by examining PpT ą tq for a few
choices of the degradation function gptq.
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5.3.1 Linear Deterioration

Let the degradation function gptq be given as

gptq “ 1´
1

atH
t,

where a ą 0 is a constant and tH is the time horizon (usually chosen as 15 years). The
time-dependent component strength is then given by the function

Rptq “ r0

ˆ

1´
1

atH
t

˙

.

Hence, a regulates where Rptq crosses the x-axis, e.g. at t “ atH . This means that the com-
ponent survives at most a period r0, atHq when it fails (naturally) due to environmental factors.

Equation (5.7) then becomes:

PpT ą tq “ e
´λt

´

1´ 1
t

şt
0 FY

´

r0¨
´

1´ 1
atH

u
¯¯

du
¯

. (5.8)

The survival probability PpT ą tq given in equation (5.8) is computed numerically using the
trapezoidal rule. The results are given in Figure 5.10 for di�erent values of a where t=15
(years), λ “ 2, r0 “ 20 and FY „ Gap¨, 15, 1q.

Figure 5.10: Reliability in case of linear deterioration.

5.3.2 Exponential Deterioration

We now let the degradation function gptq be given as

gptq “ e´at
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where the constant a ą 0. The time-dependent component strength is then given as

Rptq “ r0 ¨ e
´at,

so that a regulates the exponential decay of the component strength.

We notice that in this case the component implicitly can never directly fail as a consequence
of loss of strength but failure occurs only due to loads incurred.

The survival probability in equation (5.7) then becomes:

PpT ą tq “ e´λtp1´
1
t

şt
0 FY pr0¨e

´atqdtq. (5.9)

Equation (5.9) is computed numerically using the trapezoidal rule. The results are given in
Figure 5.11 for di�erent values of a and parameter values λ “ 2, r0 “ 20 and FY „ Gap¨, 15, 1q.

Figure 5.11: Reliability in case of exponential deterioration.

In the next section the process of deterioration is assumed to be, more realistically, a stochastic
process.

5.4 Gamma Process of Deterioration

5.4.1 Gamma Process

The gamma process is widely used in the modelling of deterioration since it is a monotonically
non-increasing process starting at zero. This means it allows for the use of the reasonable
assumption that a system starts in its original (perfect) condition and is able to deteriorate
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continuously over time without sporadic regeneration. We �rst start with stating the gamma
distribution and continue with the de�nition of the gamma process.

A random variable X has a gamma distribution with shape parameter α ą 0 and scale param-
eter β ą 0 if its PDF is given as

Gapx;α, βq “
βα

Γpαq
xα´1e´βx1txľ0u,

where the indicator function 1xľ0 is 1 if x ľ 0 and zero otherwise. This means that the gamma
distribution only exists for non-negative values x.

Furthermore, the expectation and variance of X are given by

ErXs “
α

β
, V arpXq “

α

β2
.

Now let αptq : r0,8q Ñ R be a right-continuous, non-decreasing function with αp0q “ 0. The
gamma process with shape function αptq and scale parameter β is a continuous-time process
tXptqutľ0 with the characteristics:

1. Xp0q “ 0 with probability one,

2. Xptq ´Xpsq „ Gapx;αptq ´ αpsq, βq @ t ą s ľ 0,

3. Xptq has independent increments.

Following this de�nition, the process Xptq has PDF given by

fXptqpxq “ Gapx;αptq, βq, @t,

with expectation and variance given by

ErXptqs “
αptq

β
, V arpXptqq “

αptq

β2
.

In the case this shape function is linear in time, i.e. αptq “ αt, t ľ 0, the gamma process is
called a stationary gamma process . This implies that the independent increments now have
a gamma distribution Xt ´ Xs „ Gapx;αpt ´ sq, βq, for t ą s ľ 0. The distribution of the
increments are thus now solely dependent on the length of the interval, t´ s.

5.4.2 Gamma sampling

The gamma process is a jump process with in�nitely many jumps in each �nite interval. It can
be simulated in a straightforward manner by simulating increments according to the gamma
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process characteristics given in the previous subsection. This means, partition the time in-
terval and simulate increments from a gamma distribution with shape parameter conforming
the length of the interval and non-changing scale parameter. Since this approach entails the
simulation of increments, the value of the process in each time point t is the cumulative sum
of the previous increments up to and including t.

However, we can also use the gamma-bridge sampling method [12]. Gamma-bridge sampling
uses the following relation between a gamma process and the beta distribution [9]: Let tXptqutľ0

be a stationary gamma process with parameters αt and β. For time τ ą 0, the conditional
probability distribution frXpτ{2q{Xpτqs|Xpτq of Xpτ{2q{Xpτq given Xpτq, is a symmetric beta dis-
tribution with parameter ατ{2, i.e.

frXpτ{2q{Xpτqs|Xpτq “ Bepx;ατ{2, ατ{2q.

To simulate a sample path for the process Xptq on the interval r0, τ s we can use the following:

1. Simulate a value for Xpτq from a Gapx;ατ, βq distribution. Now Xpτq is known.

2. Simulate the ratio
Xp τ

2
q

Xpτq
from Bepx, τ

2
, τ

2
q. Now Xp τ

2
q is known.

3. Simulate the ratios
Xp τ

4
q

Xp τ
2
q
and

Xp 3τ
4
q´Xp τ

2
q

Xpτq´Xp τ
2
q
both from Bepx, τ

4
, τ

4
q. Now Xp τ

4
q and Xp3τ

4
q are

known.

4. Simulate the ratios
Xp τ

8
q

Xp τ
4
q
,
Xp 3τ

8
q´Xp τ

4
q

Xp τ
2
q´Xp τ

4
q
,
Xp 5τ

8
q´Xp τ

2
q

Xp 3τ
4
q´Xp τ

2
q
and

Xp 7τ
8
q´Xp 3τ

4
q

Xpτq´Xp 3τ
4
q
, all from Bepx, τ

8
, τ

8
q.

Now Xp τ
8
q, Xp3τ

8
q, Xp5τ

8
q and Xp7τ

8
q are known.

5. etc.

5.5 Stochastic Strength and HPP Stress

At this point we have presented a stochastic process for deterioration, the gamma process, and
a stochastic process for shocks. In this section an example is used to derive the reliability of a
component using these stochastic processes. The illustrated example is based on water waves
exceeding a dike with declining height. Hence, the system strength is dike height and the shocks
are waves. This example has been presented in [72].

Strength
Let the initial dike height be r0. The degradation process X “ tXptq, t ľ 0u on the interval
r0, ts is modelled as a stationary gamma process described in section 5.4. The strength (or
height) of the dike can be written as

Rptq “ r0 ´Xptq, t ľ 0.
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Stress
Denote the stress magnitude (wave height) at time t as Y ptq. We assume the number of stress
events (waves) are described by an HPP with intensity λ on the time interval p0, ts and we
consider events that are larger than a certain threshold l0 (minimum wave height).

In Figure 5.12 an example of the dike height decline process is given with wave occurrences ex-
ceeding l0. In the depiction an example of a failure is indicated at time s6 where Y6 ą Rps6q´l0.

Figure 5.12: Schematic of stochastic process of deterioration and HPP stress. A failure indicates
the time point where Y6 ą Rps6q ´ l0.

Reliability
A failure is the event of a wave magnitude being larger than the remaining dike height. Hence,
the dike cannot fail due to the degradation process itself.

Let Yi, i “ 1, 2, . . . be wave occurrences exceeding l0 at time points si. Denote the dike height
at time point sj, j “ 1, 2, . . . as Rpsjq and similarly the degradation process at time point
sj, j “ 1, 2, . . . is Xpsjq. In this notation the reliability (or survival probability) on r0, ts, Pptq,
given the occurrence of n stress events on the interval r0, ts is

PpT ą tq “ pY1 ă Rps1q ´ l0, Y2 ă Rps2q ´ l0, . . . , Yn ă Rpsnq ´ l0q.
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If the sequence Yi, i “ 1, 2, . . . , n, consists of iid random variables with CDF FY pyq the reliability
can be written as

PpT ą t|Nptq “ nq “ PpY1 ă Rps1q ´ l0, Y2 ă Rps2q ´ l0, . . . , Yn ă Rpsnq ´ l0q

“ PpY1 ă r0 ´ l0 ´Xps1q, . . . , Yn ă r0 ´ l0 ´Xpsnqq

“ PpY1 ă r0 ´ l0 ´Xps1qq ¨ ¨ ¨PpYn ă r0 ´ l0 ´Xpsnqq (5.10)

“

n
ź

i“1

FY pr0 ´ l0 ´Xpsiqq (5.11)

and s1 ă s2 ă ¨ ¨ ¨ ă sn.

The wave occurrences follow a Poisson process and hence are random in time. Let us write
the joint PDF of the n random occurrence times S “ tS1, S2, . . . , Snu as fSpsq. Writing the
reliability function (5.11) as a time-dependent reliability function then gives

PpT ą t|Nptq “ nq “

ż t

0

ż t

s1

¨ ¨ ¨

ż t

sn´1

˜

n
ź

j“1

FY pr0 ´ l0 ´Xpsjqq

¸

fS1,...,Snps1, . . . , snqdsn ¨ ¨ ¨ ds1

“

ż t

0

¨ ¨ ¨

ż t

sn´1
looooomooooon

n´fold

˜

n
ź

j“1

FY pr0 ´ l0 ´Xpsjqq

¸

fSpsqds. (5.12)

But according to [34] and in section 5.A we have seen that given n occurrences of a Poisson
process on r0, ts their random occurrence times S are the n order statistics of uniformly dis-
tributed and independent random variables U “ tU1, U2, . . . , Unu on the same interval r0, ts.
Thus we can write

fSpsq ” fUpuq “

ˆ

1

t

˙n

.

Moreover from equation (5.11) we can write

n
ź

j“1

FY pr0 ´ l0 ´XpSjqq “
n
ź

k“1

FY pr0 ´ l0 ´XpUkqq.

Hence, we can write the time-dependent reliability in (5.12) as

PpT ą t|Nptq “ nq “

ż t

0

¨ ¨ ¨

ż t

0
looomooon

n´fold

˜

n
ź

k“1

FY pr0 ´ l0 ´Xpukqq

¸

fUpuqdu (5.13)

“

ż t

0

¨ ¨ ¨

ż t

0
looomooon

n´fold

˜

n
ź

k“1

FY pr0 ´ l0 ´Xpukqq

¸

ˆ

1

t

˙n

du

“

ˆ
ż t

0

FY pr0 ´Xpu1qq

t
du1

˙

¨ ¨ ¨

ˆ
ż t

0

FY pr0 ´ l0 ´Xpunqq

t
dun

˙

“

ˆ
ż t

0

FY pr0 ´ l0 ´Xpuqq

t
du

˙n

. (5.14)
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We notice that equation (5.14) resembles n time points where the probability FY p¨q needs to be
computed, see e.g. equation (5.10). We can write the PDF of the n occurrences of the random
variables X “ tXps1q, Xps2q, . . . , Xpsnqu
as fXps1q,Xps2q,...,Xpsnqpxps1q, xps2q, . . . , xpsnqq. Incorporating the randomness of the process X
into equation (5.14) gives

PpT ą t|Nptq “ nq “

ż 8

0

¨ ¨ ¨

ż 8

0

ˆ
ż t

0

FY pr0 ´ l0 ´Xpuqq

t
du

˙n

fXps1q,...,Xpsnqpxps1q, . . . , xpsnqq

ˆdxps1q ¨ ¨ ¨ dxpsnq

“ EX
„ˆ

ż t

0

FY pr0 ´ l0 ´Xpuqq

t
du

˙n

,

where EX indicates the expectation taken w.r.t. the random variables
X “ tXps1q, Xps2q, . . . , Xpsnqu. Using the law of total probability we can remove the condition
on the amount of occurrences by noticing that the stress occurrences are modelled as a Poisson
process:

PpT ą tq “

8
ÿ

n“0

PpT ą t|Nptq “ nqPpNptq “ nq (5.15)

“

8
ÿ

n“0

EX
„ˆ

ż t

0

FY pr0 ´ l0 ´Xpuqq

t
du

˙n

e´λt
pλtqn

n!

“

8
ÿ

n“0

EX
„ˆ

ż t

0

FY pr0 ´ l0 ´Xpuqq

t
du

˙n

e´λt
pλtqn

n!



“ e´λt
8
ÿ

n“1

EX
„ˆ

λ

ż t

0

FY pr0 ´ l0 ´Xpuqqdu

˙n
1

n!



“ e´λtEX

«

8
ÿ

n“1

ˆ

λ

ż t

0

FY pr0 ´ l0 ´Xpuqqdu

˙n
1

n!

ff

“ e´λtEX
”

eλ
şt
0 FY pr0´l0´Xpuqqdu

ı

“ EX
”

e´λpt´
şt
0 FY pr0´l0´Xpuqqduq

ı

“ EX
”

e´λp
şt
0 1´FY pr0´l0´Xpuqqduq

ı

. (5.16)

In the appendix it is shown that the expectation in equation (5.16) is indeed a probability.
We can calculate the formula in equation (5.16) in two steps: �rst write the integral in the
expectation as a Riemann sum (˚) and second, perform a Monte Carlo simulation to determine
the integrand paths (˚˚) and �nally compute the Riemann sum.
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Explicitly this can be written as

PpT ą tq “ EX
„

exp

ˆ

´λ

ż t

0

p1´ FY pr0 ´ l0 ´Xpuqqdu

˙

˚
“ EX

«

exp

˜

´λ
k
ÿ

i“1

p1´ FY pr0 ´ l0 ´Xpsiqqpsi ´ si´1q

¸ff

˚˚
“ lim

kÑ8

ż 8

0

¨ ¨ ¨

ż 8

0
loooomoooon

k´fold

exp

˜

´λ
k
ÿ

i“1

p1´ FY pr0 ´ l0 ´ xpsiqqpsi ´ si´1q

¸

ˆfXps1q,...,Xpskqpxps1q, . . . , xpskqqdxps1q ¨ ¨ ¨ dxpskq,

where the time horizon is uniformly partitioned in k steps, i.e. si “ pi{kqt, i “ 0, . . . , k.

As done in [72] we use the parameters in Table 5.1 to evaluate the reliability PpT ą tq. The
survival probability PpT ą tq is depicted in Figure 5.13.

Parameter value
(Monte Carlo runs) (10000)
T (time horizon) 400 (years)
si ´ si´1 (time grid steps for all i) 2 (years)
r0 (initial dike hight) 4.61 (m)
l0 (load/wave threshold) 2.19 (m)
λ (wave frequency) 0.5 (waves/year)
σ (Pareto waves/loads parameter) 0.3245
c (Pareto waves/loads parameter) 0.05465
v (Gamma strength deterioration process shape parameter) 0.1111
u (Gamma strength deterioration process scale parameter) 15.8730

Table 5.1: Parameters used to compute reliability in Figure 5.13.

5.6 Kac Functional Equation

5.6.1 Understanding the Expectation

We want to compute the expectation:

Gptq “ EX
”

e´λp
şt
0 1´FY pr0´Xpuqqduqq

ı

. (5.17)

We �rst notice that the expectation needs to be computed w.r.t. the process
X=tXpuq, 0 ĺu ĺtu, i.e. the gamma process on the time horizon r0, ts. So Xpuq is not a
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Figure 5.13: Reliability and CDF.

random variable but a random path. This random path is in the integration

ż t

0

1´ FY pr0 ´Xpuqqdu. (5.18)

We also notice that the random process is a gamma process starting at Xp0q=0 and is de�ned
for an in�nite number of points on the interval r0, ts. However for the sake of explanation,
and as will also be apparent later for computation, we will look at the process every δ, so we
consider the sequence X=Xp0q, Xpδq, Xp2δq, . . . , Xpt ´ δq, Xptq. This stochastic process X is
a non-decreasing function of time. Consequently the stochastic process r0 ´ X, which is the
argument of the CDF of Y , is a non-increasing function of time. Graphical representations of
these two processes are given in Figures 5.14(a) and 5.14(b) respectively.

Since r0 ´ X is non-increasing FY pr0 ´ Xq is also a non-increasing function of time and the
integrand 1´ FY pr0 ´Xq is a non-decreasing function of time. The integral in equation (5.18)
is then the area under the function 1´ FY pr0 ´Xq. These can be seen in Figures 5.15(a) and
5.15(b).

The steps that rest to do are multiplying this area by ´λ and taking the exponential. Then we
have one value of

e´λp
şt
0 1´FY pr0´Xpuqqduqq. (5.19)

From equation (5.17) we see that we need to compute the expected value of the quantity
in equation (5.19), w.r.t. the paths generated by X. To get this expected value we generate
multiple paths to compute equation (5.19) and take the mean of these values as the expectation
in equation (5.17).
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(a) Process X. (b) Process r0 ´X.

Figure 5.14: Graphical representations of X and r0 ´X.

5.6.2 Evaluating the Expectation

From the previous section we have established that we need to do the following:

1. Generate a path of the process X=tXpuq, 0 ĺu ĺtu.

2. Compute the �nite value e´λp
şt
0 1´FY pr0´Xpuqqduqq in equation (5.19).

3. Repeat steps 1 and 2 n times, and take the mean of these n values.

Step 1

Generate a path 0, xpδq, xp2δq, . . . , xpt´ δq, xptq where the time horizon r0, ts is uniformly par-
titioned in N steps of length δ, i.e. 0, δ, 2δ, . . . , t´ δ, t “ Nδ.

Step 2

Approximate the integral
şt

0
1´ FY pr0 ´Xpuqqdu as a Riemann-Stieltjes sum:

ż t

0

1´ FY pr0 ´Xpuqqdu «

N
ÿ

i“1

p1´ FY pr0 ´ xpiδqqq piδ ´ pi´ 1qδq

“ δ
N
ÿ

i“1

p1´ FY pr0 ´ xpiδqqq .

This can be seen in Figure 5.16. This sum is then multiplied by ´λ and subsequently the
exponential is taken.
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(a) Process FY pr0 ´Xq. (b) Process 1´ FY pr0 ´Xq.

Figure 5.15: Graphical representations of FY pr0 ´Xq and 1´ FY pr0 ´Xq.

Step 3

Repeat step 1 and 2 n times. Sum these n obtained values of
”

e´λδ
řN
i“1p1´FY pr0´xpiδqqq

ı

and

divide by n.

Remark 5.6.1. Notice that we have just evaluated the expectation EX
”

e´λ
şt
0 1´FY pr0´Xpuqqduq

ı

for t. Hence we have evaluated Gptq “ PpTľtq which is the probability of surviving at least t.
To compute the distribution Gptq on the entire time horizon we can simply take step 2 in the
computation cumulatively, i.e. take the cumulative sum of δ

řN
i“1 p1´ FY pr0 ´ xpiδqqq, multiply

by ´λ and take the exponential of this cumulative sum. Now perform step 3 and take the mean
of the cumulative sum to get Gpδq, Gp2δq, . . . , Gpt´ δq, Gptq. Notice that Gp0q “ 1.

5.6.3 Numerical Example

In this numerical example we take:

• λ=1

• δ=1 year and t=100 years. So N=100

• r0=30

• Y follows a Weibull distribution with mean 11.6 and COV 0.36

• X is a stationary gamma process with parameters α=2 and β=1/10
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Figure 5.16: Riemann-Stieltjes sum.

The reliability curve, Gptq “ Ppt ą T q, can be seen in Figure 5.17 together with the CDF
1´Gptq.

5.6.4 Solving the Kac Functional Analytically

5.6.4.1 General Idea

We notice that the reliability Gptq can be written as

Gptq “ E
“

eHX,Y pt;λ,r0q
‰

,

where HX,Y pt;λ, r0q “ Hptq “ ´λ
şt

0
1 ´ FY pr0 ´ Xpuqqdu is a stochastic integral. So for

each �xed t, Hptq is a random variable following a distribution Λph1ptq, . . . , hnptqq where
h1ptq, . . . , hnptq are its distribution parameters. To understand this visually, Figures 5.18
and 5.19 give histograms at di�erent values of t for the previous examples Y „ Weibull and
Y „ Uniform respectively.

We can calculate the moment-generating function of a random variable H as

MHpzq “ E
“

ezH
‰

, z P R.

We also notice that
Gptq “ E

“

eHptq
‰

, t P R`.

Hence, we want to calculate the moment-generating function at

Gptq “MHp1, tq “ E
“

eHptq
‰

, t P R`.
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Figure 5.17: Reliability and CDF.

Figure 5.18: Distribution of e´λ
şt
0 1´FY pr0´Xpuqqduq for di�erent values of t, Y „ Weibull.

In order to calculate this the distribution of Hptq must be known for each t. Hence, we need
to derive the distributions Λph1ptq, . . . , hnptqq.

Generally this is not an easy task. Since integration involves summation, and in this case
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Figure 5.19: Distribution of e´λ
şt
0 1´FY pr0´Xpuqqduq for di�erent values of t, Y „ Uniform.

summation needs to be done after the CDF transformation of gamma increments, it can be
particularly di�cult or impossible to separate these increments. It is however crucial to separate
the increments to use their iid property in the expectation.

5.6.5 Sensitivity Analysis

In Figure 5.20 the numerical examples in Figures 5.13 and 5.17 are presented again with di�erent
values for the parameter λ. In Figure 5.20 (a) the estimated intensity of the HPP load process
is λ=0.5 occurrences/year. Assuming this is the actual load intensity value we can analyze the
e�ect of epistemic uncertainty on λ. If λ is estimated within 10% error of the actual value,
i.e. λ P [0.45,0.55], the solution is still relatively close to the actual reliability. In the case λ P
[0.25,0.75], i.e. maximum 50% o� the actual value, errors due to parameter uncertainty in the
load intensity estimation become more apparent. It can also be seen that an underestimation
of λ leads to bigger errors in the model when compared to overestimation. Similar conclusions
can be drawn from Figure 5.20 (b).

106



(a) Dike example. (b) Example 5.6.3.

Figure 5.20: Sensitivity to λ.

5.7 Solution for a Poisson Process with Stochastic Rate

Function

Let T be the time to system failure and we assume for some parameter γ that
PpT ĺ δ ` u|T ą u,Xpuq “ xq “ δγx ` opδq, @u, where tXpuq;u ľ 0u is a stochastic process
with Xp0q “ 0. So γx is interpreted as the rate of occurrence of failure when the system level
is x as in [41], [40]. Since we are interested in time to system failure, T is the epoch of the
�rst occurrence. Assume the rate function tγXpuq;u ľ 0u is of a NHPP tNptq; t ľ 0u. The
reliability of the system is then

PpT ą tq “ PpNptq “ 0q “ E

»

—

–

´

şt

0
γXpuqdu

¯0

0!
e´

şt
0 γXpuqdu

fi

ffi

fl

“ E
”

e´
şt
0 γXpuqdu

ı

, t ľ 0. (5.20)

Hence, the deterioration problem with stochastic loads can be equivalently interpreted as a
problem of �rst occurrence of a Poisson process with stochastic rate. Since we are interested
in the gamma process, let us assume the rate function tγXpuq;u ľ 0u is a stationary gamma
process as de�ned in 5.4.1. To compute equation (5.20) we discretize the integral

şt

0
Xpuqdu.

Lemma 5.1. Let
şt

0
Xpuqdu, t ľ 0, where tXpuq;u ľ 0u is a stationary gamma process, be

approximated as a Riemann-Stieltjes sum. We have the �Lebesgue sum�:

ż t

0

Xpuqdu “ lim
∆tÑ0

N
ÿ

k“1

Zkpt´ pk ´ 1q∆tq, (5.21)

where Xu “ Xpuq, Zk`1 “ pXpk`1q∆t ´Xk∆tq „ Gapz; ∆t ¨ α, βq for all k “ 0, 1, . . . , N´1 and
N “ t

∆t
is the number of partitions in r0, ts.
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Proof: First we partition the integration interval uniformly as 0 “ t0 ă t1 ă . . . ă tN “ t,
where tk`1´tk “ pk ` 1q∆t´k∆t “ ∆t for k “ 0, 1, . . . , N´1. Notice that for the sake of
simplicity we have N “

X

t
∆t

\

“ t
∆t
. Next we approximate the integral as the Riemann-Stieltjes

sum:

ż t

0

Xpuqdu «

N
ÿ

k“1

Xk∆tptk∆t ´ tpk´1q∆tq (5.22)

“

N
ÿ

k“1

Xk∆ttk∆t ´

N
ÿ

k“1

Xk∆ttpk´1q∆t

“

N
ÿ

k“1

Xk∆ttk∆t ´

N´1
ÿ

k“0

Xk∆ttpk´1q∆t

“

N
ÿ

k“0

Xk∆ttk∆t ´

N´1
ÿ

k“0

Xk∆ttpk´1q∆t

“ tXt ´

N´1
ÿ

k“0

pXpk`1q∆t ´Xk∆tqtk∆t

“ t
N´1
ÿ

k“0

pXpk`1q∆t ´Xk∆tq ´

N´1
ÿ

k“0

pXpk`1q∆t ´Xk∆tqtk∆t

“

N´1
ÿ

k“0

pXpk`1q∆t ´Xk∆tqpt´ tk∆tq.

Now taking the limit as ∆tÑ 0 of the right-hand side of equation (5.22) gives the result.

108



(a) Process X. (b) Process X.

Figure 5.21: Graphical representations of equation (5.21), changing the integral from a partition
on the time scale to a partition on the increments.

Next we notice that Z1, Z2, . . . , ZM are iid and we compute the system reliability

PpT ą tq “ E
”

e´
şt
0 γXpuqdu

ı

“ lim
∆tÑ0

E
„

e´γ
ř

t
∆t
k“1 Zkpt´pk´1q∆tq



“ lim
∆tÑ0

t
∆t
ź

k“1

E
“

e´γZkpt´pk´1q∆tq
‰

“ lim
∆tÑ0

t
∆t
ź

k“1

MZ1p´γpt´ pk ´ 1q∆tqq

“ lim
∆tÑ0

t
∆t
ź

k“1

ˆ

1

1` γβpt´ pk ´ 1q∆tq

˙α∆t

“ lim
∆tÑ0

t
∆t
ź

k“0

ˆ

1

1` γβk∆tq

˙α∆t

“ lim
∆tÑ0

˜

1

pγβ∆tq
t

∆tPochhammerpγβ∆t`1
γβ∆t

, t
∆t
q

¸α∆t

“ lim
∆tÑ0

¨

˝

Γ
´

γβ∆t`1
γβ∆t

¯

pγβ∆tq
t

∆tΓ
´

γβ∆t`1
γβ∆t

` t
∆t

¯

˛

‚

α∆t

, (5.23)

where MZ1psq is the moment-generating function of Z1 evaluated at s P R. Hence, the system
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reliability can be computed analytically with equation (5.23) by choosing a small value for
∆t “ t

N
. Since the gamma function can cause over�ow when implementing in for example

Matlab, for computational reasons it is better to take the logarithm of equation (5.23) and use
readily available functions to compute the logarithm of the gamma function (\gammaln):

lnpPpT ą tqq “ α∆t

"

ln

„

Γ

ˆ

γβ∆t` 1

γβ∆t

˙

´
t

∆t
lnpγβ∆tq ´ ln

„

Γ

ˆ

γβ∆t` 1

γβ∆t
`

t

∆t

˙*

.

(5.24)
Then the system reliability can be computed as

PpT ą tq “ elnpPpTątqq. (5.25)

5.8 An Analytical Solution

We now want to solve the system reliability given in equation (5.17), we recall:

PpT ą tq “ EX
”

e´λ
şt
0 1´FY pr0´Xpuqqduq

ı

. (5.26)

First we notice that this system reliability can be seen in the same light as the problem in
section 5.7. Let T be the time to system failure for a system with non-decreasing stochastic
degradation given as t1 ´ FY pr0 ´ Xpuqq;u ľ 0u where tXpuq;u ľ 0u is the gamma process
and FY is the CDF of the random iid loads Y1, Y2, . . .. Assume for some parameter λPR`
that PpT ĺ δ ` u|T ą u, 1 ´ FY pr0 ´ Xpuqq “ xq “ δλx ` opδq, @u. So λx is interpreted
as the rate of occurrence of failure when the system level of degradation is x. As the system
degradation increases the probability of failure increases. Since we are interested in time to
system failure, T is the epoch of the �rst occurrence. Assume the stochastic rate function
tλp1 ´ FY pr0 ´ Xpuqqq;u ľ 0u is of an NHPP tNptq; t ľ 0u. The reliability of the system is
then given in equation (5.26). Notice that since Xp0q “ 0, at t “ 0 the system already has
amount of degradation 1´ FY pr0q.

We assume the loads follow a Uniform distribution Upa, bq, 0 ĺ a ă b, with CDF given as:

FY pyq “

$

’

&

’

%

0, for y ă a,
y´a
b´a

, for y P ra, bs,

1, for y ą b.

To compute the integral in equation (5.26) we partition the integration interval uniformly as
0 “ t0 ă t1 ă . . . ă tN “ t, where tk`1´tk “ pk ` 1q∆t´k∆t “ ∆t for k “ 0, 1, . . . , N´1.
With the notation Xu “ Xpuq we notice that Zk`1 “ pXpk`1q∆t ´Xk∆tq „ Gapz; ∆t ¨ α, βq for
all k “ 0, 1, . . . , N´1 and N “ t

∆t
is the number of partitions in r0, ts. Now we compute the
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system reliability:

PpT ą tq “ E
”

e´λ
şt
0 1´FY pr0´Xpuqqdu

ı

“ e´λt lim
∆tÑ0

E
„

eλ
ř

t
∆t
k“1

r0´Xk∆t´a

b´a
∆t



“ e´λteλt
r0´a
b´a lim

∆tÑ0
E
„

e´
λ
b´a

ř

t
∆t
k“1pt´pk´1q∆tqZk



“ e´λt
b´r0
b´a lim

∆tÑ0

t
∆t
ź

k“1

MZ

ˆ

´
λ∆t

b´ a

„

t

∆t
´ pk ´ 1q

˙

“ e´λt
b´r0
b´a lim

∆tÑ0

t
∆t
ź

k“1

˜

1

1` λβ∆t
b´a

“

t
∆t
´ pk ´ 1q

‰

¸α∆t

(5.27)

“ e´λt
b´r0
b´a lim

∆tÑ0

t
∆t
ź

k“1

˜

1

1` λβ∆t
b´a

k

¸α∆t

“ e´λt
b´r0
b´a lim

∆tÑ0

¨

˚

˝

1
`

λβ∆t
b´a

˘

t
∆t Pochhammer

´

1`
`

λβ∆t
b´a

˘´1
, t

∆t

¯

˛

‹

‚

α∆t

“ e´λt
b´r0
b´a lim

∆tÑ0

¨

˚

˝

Γ
´

1`
`

λβ∆t
b´a

˘´1
¯

`

λβ∆t
b´a

˘

t
∆t Γ

´

1`
`

λβ∆t
b´a

˘´1
` t

∆t

¯

˛

‹

‚

α∆t

, (5.28)

where in the third equality Lemma 5.1 is used and equation (5.28) is subject to the condition
tr0 ´Xpuq;u ľ 0u P ra, bs.

Remark 5.8.1. Notice that

r0 ´Xk∆t ´ a

b´ a
“

$

’

&

’

%

0, for r0 ´Xk∆t ă a,
r0´Xk∆t´a

b´a
, for r0 ´Xk∆t P ra, bs,

1, for r0 ´Xk∆t ą b,

for all k “ 1, . . . , t
∆t
. Hence, since tXpuq;u ľ 0u is a non-decreasing function, for any k˚ ĺ t

∆t

where r0 ´ Xpk˚´1q∆t ą a and r0 ´ Xk˚∆t ă a we have r0´Xk∆t´a
b´a

“ 0 for all k “ k˚, . . . , t
∆t
.

Then we have

PpT ą tq “ e´λt lim
∆tÑ0

E
”

eλ
řk˚´1
k“1

r0´Xk∆t´a

b´a
∆t
ı

.

While equation (5.28) is easy to compute by simply choosing a small value for ∆t, a completely
analytical formula does exist for Uniformly distributed loads and is given in the following lemma
which has derivation given in the Appendix.

Lemma 5.2. Let the loads be HPP with intensity λ where the load magnitudes are uniformly
distributed random variables Y„Upa, bq. Furthermore, let the stationary gamma degradation
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process X=tr0´Xptq, t ľ 0u with parameters α and β as in 5.4.1 be of slow decrease such that
r0 ´X is always above the threshold l0. Then the system reliability is given as

PpT ą tq “ exp

ˆ

´λt
b´ r0

b´ a

˙

exp
´

´
α

θ
rp1` θtq plnp1` θtqq ´ θts

¯

, (5.29)

where θ “ λβ{pb´ aq.

Hence, equations (5.28) and (5.29) are equivalent. A proof of 5.2 is given in 5.C.

5.9 Stochastic Strength and NHPP Stress

The formulation in section 5.5 can be extended to the case when the occurrence of stress has
intensity which is time-dependent. This generalization of the intensity incorporates the possibil-
ity to model problems where climate change leads to changing behaviour in stress occurrences.
Let λptq : RÑ R represent the rate of stress occurrence of an NHPP and

Λptq “

ż t

0

λpuqdu.

Then, from [35], the joint PDF of the occurrence times S1, S2, . . . , Sn given Nptq=n is

fS1,...,Sn|Nptq“nps1, . . . , sn|nq “
n!
śn

i“1 λpsiq

pΛptqqn
,

where 0 ă s1 ă ¨ ¨ ¨ ă sn ĺ t. So conditioned on Nptq=n, the occurrence times S1, S2, . . . , Sn
have the same distribution as the order statistics of n iid random variables U1, U2, . . . , Un with
density fUpuq where

fUpuq “
λpuq

Λptq
, u P p0, ts.

Hence, from equations (5.13) and (5.15) the reliability is

PpT ą tq “

8
ÿ

n“0

Ppt|Nptq “ nqPpNptq “ nq (5.30)

“

8
ÿ

n“0

EX
„ˆ

ż t

0

FY pr0 ´ l0 ´Xpuqq
λpuq

Λptq
du

˙n

e´Λptq pΛptqq
n

n!

“ e´Λptq
¨ EX

«

8
ÿ

n“0

ˆ
ż t

0

FY pr0 ´ l0 ´Xpuqqλpuqdu

˙n
1

n!

ff

“ e´Λptq
¨ EX

”

e
şt
0 FY pr0´l0´Xpuqqλpuqdu

ı

“ EX
”

e´
şt
0 λpuqp1´FY pr0´l0´Xpuqqqdu

ı

. (5.31)
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Thus equation (5.16) is the special case, when λptq=λą0 is a constant, of the more general
result in equation (5.31). The result in equation (5.31) is to the best of knowledge not known
to have appeared in the literature.

By setting the intensity equal to a constant λ and the process Xptq=0 so there is no de-
terioration, we notice that from (5.31) the same result is obtained as the HPP solution in
equation (3.6) where the threshold is r0 ´ l0 “ x.

5.10 Conclusions

This chapter presents an accurate reliability model for components deteriorating according to
a gamma process where shocks are (N)HPP. The model requires simulation of deterioration
paths in order to arrive at a solution. However, since this method does not require simulation
of the load process, it is more e�cient than a full scale Monte Carlo implementation. Moreover,
by exploiting the solution formula, it is shown that completely analytical solutions are possible
in certain cases.
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Appendix

5.A Poisson Processes and Order Statistics

Homogeneous Poisson Process

In this section it is explained why conditioned on a number of occurrences from an HPP in a
time horizon p0, ts, the epochs of these occurrences are uniformly distributed in a sense. This
leads to the substitution of the joint PDF fSpsq in equation (5.12) by the joint PDF

fSpsq ” fUpuq “

ˆ

1

t

˙n

.

We begin with a proof of the assertion and continue with an explanation of why the assertion
is true by introducing the equivalent result for the uniform distribution.

Theorem 5.1. On a time horizon p0, ts, let there be n occurrences of a Poisson process with
rate λą0 and let S1, S2, . . . , Sn be the occurrence epochs. The random variables S1, S2, . . . , Sn
have joint PDF

fS1,...,Sn|Nptq“nps1, . . . , snq “
n!

tn
, for 0 ă s1 ă . . . ă sn ĺ t. (5.32)

Proof. Each occurrence time Si is in an interval si ă Si ĺ si ` ∆si for i “ 1, . . . , n and
Nptq “ n. So we need to compute the probability of having exactly one occurrence in each of
the disjoint intervals si ă Si ĺ si `∆si, for i “ 1, . . . , n:

P pNpps1, s1 `∆s1sq “ 1, . . . , Nppsn, sn `∆snsq “ 1q

“
λp∆s1qe

´λp∆s1q

1!
¨ ¨ ¨

λp∆snqe
´λp∆snq

1!
“ λp∆s1q ¨ ¨ ¨λp∆snqe

´λp∆s1`...`∆snq

“ λp∆s1q ¨ ¨ ¨λp∆snq p1` opmaxt∆siuqq .

At the same time there are no occurrences in the disjoint intervals p0, s1s, ps1 `∆s1, s2s, . . . ,
psn´1 `∆sn´1, sns, psn `∆sn, ts. The probability of this is given by

P pNpp0, s1sq “ 0, . . . , Nppsn `∆sn, tsq “ 0q

“ e´λ∆s1e´λps2´s1´∆s1q ¨ ¨ ¨ e´λpsn´sn´1´∆sn´1qe´λpt´sn´∆snq

“ e´λteλp∆s1`...`∆snq

“ e´λt p1` opmaxt∆siuqq .
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Hence, the probability of having exactly one occurrence at each occurrence time is

fS1,...,Sn|Nptq“n∆s1 ¨ ¨ ¨∆sn

“ Pps1 ă S1 ĺ s1 `∆s1, . . . , sn ă Sn ĺ sn `∆sn|Nptq “ nq ` op∆s1, . . . ,∆snq

“
Ppsi ă Si ĺ si `∆si, i “ 1, . . . , n,Nptq “ nq

PpNptq “ nq
` op∆s1, . . . ,∆snq

“
e´λtλp∆s1q ¨ ¨ ¨λp∆snq

e´λtpλtqn{n!
p1` opmaxt∆siuqq

“
n!

tn
p∆s1q ¨ ¨ ¨ p∆snq p1` opmaxt∆siuqq , (5.33)

where in the �rst equality the probability

Ppsi ă Si ĺ si `∆siq “ fSipsiq∆si ` op∆siq, for ∆si Ó 0,

is a more accurate mathematical formulation of

Ppx ă X ĺ x` dxq “ F px` dxq ´ F pxq “ dF pxq “ fpxqdx.

Dividing both sides of equation (5.35) by ∆s1 ¨ ¨ ¨∆sn and letting ∆s1 Ñ 0, . . . ,∆sn Ñ 0 results
in (5.32).

Before we continue with the results for a uniformly distributed random variable we notice
that the Poisson process naturally orders the occurrences on the time interval such that we
always have occurrence times ordered as S1 ă S2 ă . . . ă Sn.

Uniform Distribution and Order Statistics

For the uniformly distributed random variables we set up the following scenario. Suppose there
are n time epochs U1, U2, . . . , Un on the time horizon p0, ts. Each of these n epochs have been
occupied by randomly selecting the values U1, U2, . . . and lastly Un from a uniform distribution
on p0, ts independent from previously chosen epochs. Now let S1 ĺ S2 ĺ . . . ĺ Sn denote
these epochs arranged in increasing order instead of the order of selection. The joint PDF of
S1, S2, . . . , Sn is given by

fS1,...,Sn|Nptq“nps1, . . . , snq “
n!

tn
, for 0 ă s1 ă . . . ă sn ĺ t, (5.34)

which is the same result obtained in the HPP case. To understand this result we �rst notice that
when rearranging the random variables U1, U2, . . . , Un into increasing order S1 ĺ S2 ĺ . . . ĺ Sn
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there are n! possibilities of rearrangement. Thus,

fS1,...,Snps1, . . . , snq∆s1 ¨ ¨ ¨∆sn “ Pps1 ă S1 ĺ s1 `∆s1, . . . , sn ă Sn ĺ sn `∆snq

“ Pps1 ă U1 ĺ s1 `∆s1, . . . , sn ă Un ĺ sn `∆snq
...

`Pps1 ă Un ĺ s1 `∆s1, . . . , sn ă U1 ĺ sn `∆snq

“ n!
∆s1

t
¨ ¨ ¨

∆sn
t

“
n!

tn
∆s1 ¨ ¨ ¨∆sn, (5.35)

where in the second equality each term represents one permutation of the rearrangements. Now
dividing both sides of equation (5.35) by ∆s1 ¨ ¨ ¨∆sn and letting ∆s1 Ñ 0, . . . ,∆sn Ñ 0 results
in equation (5.34).

Hence, conditioned on the number of occurrences from an HPP in an interval p0, ts, the epochs
in this interval can instead be assumed to be occurrences from a uniform distribution.

5.B Kac Functional as a Distribution

In this section we show that the expectation in equation (5.16) is a reliability. We recall

PpT ą tq “ EX
”

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu

ı

.

It su�ces to show the following:

1. PpT ą 0q “ 1.

2. lim
tÑ8

PpT ą tq “ 0.

3. PpT ą tq is a non-increasing function, i.e. PpT ą t`∆tq ĺ PpT ą tq for ∆tą0.

4. PpT ą tq is right-continuous, i.e. lim
∆tÓ0

PpT ą t`∆tq “ PpT ą tq for ∆tą0.

Proof. 1. PpT ą 0q “ EX
“

e´λ¨0
‰

“ 1.

2. We �rst notice that eaą0, @a. Hence, PpT ą tq ľ 0, @t. Now since Xp0q=0 and
tXptq, t ľ 0u is non-decreasing, max

0ĺuĺt
tFY pr0 ´ l0 ´Xpuqqu “ FY pr0 ´ l0q. Hence,

min
0ĺuĺt

t1´ FY pr0 ´ l0 ´Xpuqqu=1´ FY pr0 ´ l0q. So we have

0 ĺ lim
tÑ8

PpT ą tq “ lim
tÑ8

EX
”

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu

ı

ĺ lim
tÑ8

EX
”

e´λ
şt
0 1´FY pr0´l0qdu

ı

“ lim
tÑ8

e´λtp1´FY pr0´l0qq

“ 0,
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since FY pr0 ´ l0q P p0, 1q.

3.

PpT ą t`∆tq “ EX
”

e´λ
şt`∆t
0 1´FY pr0´l0´Xpuqqdu

ı

“ EX
”

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu ¨ e´λ

şt`∆t
t 1´FY pr0´l0´Xpuqqdu

ı

ĺ EX
”

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu ¨ e´λ

şt`∆t
t 1´FY pr0´l0qdu

ı

“ EX
”

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu ¨ e´λ∆tp1´FY pr0´l0qq

ı

“ e´λ∆tp1´FY pr0´l0qq ¨ EX
”

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu

ı

ĺ EX
”

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu

ı

“ PpT ą tq,

where the last inequality holds since e´λ∆tp1´FY pr0´l0qq P p0, 1q.

4.

lim
∆tÓ0

PpT ą t`∆tq “ lim
∆tÓ0

EX
”

e´λ
şt`∆t
0 1´FY pr0´l0´Xpuqqdu

ı

“ EX
„

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu ¨ lim

∆tÓ0
e´λ

şt`∆t
t 1´FY pr0´l0´Xpuqqdu



“ EX
”

e´λ
şt
0 1´FY pr0´l0´Xpuqqdu ¨ 1

ı

“ PpT ą tq.

5.C An Analytical Solution

Proof of Lemma 5.2 We begin we equation (5.27) and notice the following:

PpT ą tq “ e´λt
b´r0
b´a lim

∆tÑ0

t
∆t
ź

k“1

˜

1

1` λβ
b´a
rt´∆tpk ´ 1qs

¸α∆t

“ e´λt
b´r0
b´a elim∆tÑ0

ř

t
∆t
k“1 lnp 1

1`θpt´∆tpk´1qqq
α∆t

“ e´λt
b´r0
b´a elim∆tÑ0´α∆t lnp1`θtq´α∆t lnp1`θpt´∆tqq´...´α∆t lnp1`θ∆tq

“ e´λt
b´r0
b´a e´α

şt
0 lnp1`θpt´uqqdu

“ e´λt
b´r0
b´a e´

α
θ
rp1`θtqplnp1`θtqq´θts,

where θ “ λβ{pb´ aq.
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Chapter 6

Summary and Future Research

6.1 Summary

The distribution of maximum load generated by stochastic and recurring hazards is of primary
importance in structural reliability analysis. In the current literature, this distribution is esti-
mated by either relying on the asymptotic extreme value theory or assuming that occurrences
of a hazard follow the homogeneous Poisson process. However, assumptions underlying these
approaches become questionable when maximum load distribution is required for a short service
life, such as in reliability assessment of temporary structures and ageing infrastructure systems
nearing the end of life (e.g., old nuclear power plants). This paper aims to �ll this gap in the
literature by presenting more general and accurate solutions for the probability distribution of
the maximum load generated by stochastic hazards which can be modelled as a shock, pulse
and alternating renewal process. This work is a considerable advancement of the state of the
art in probabilistic analysis of maximum value distribution.

In the case a component is subject to di�erent types of loads at the same time, a model is
presented to compute the component reliability and the distribution of the maximum sum of
these loads. The model includes two load processes: a pulse process and an HPP shock process.
The model is a more general form of solutions in the literature that assume both the pulse and
shock process are HPP. In this model the pulse process is allowed to have inter-arrival times
following any distribution.

For a component exhibiting gamma deterioration, the reliability can be computed if it is
subject to shocks arriving according to an (N)HPP. The solution requires simulation of the
deterioration process but avoids simulation of the shock process which would be necessary
in a full scale Monte Carlo. In the current setting of computation of reliability for degrading
systems, it has been shown that if the shock process is a marked HPP with Uniformly distributed
magnitudes, the problem can be solved completely analytically.

6.2 Future Research

In order to compute the component reliability using the single load process model, the com-
ponent necessarily has no deterioration in time. This can be a rather crude assumption in
reliability modelling, especially if longer time horizons are to be considered. It would be an
addition to current knowledge to derive solutions in the case of deteriorating components and
non Poisson loads. It is however believed that this cannot be done in the current setting of
renewal processes since a moving threshold, (component strength), renders the process inca-
pable of having a regeneration point. A workaround is needed to use the same method or a
new approach must be invoked to solve this problem.
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In the load combination model, as a limitation again of the renewal process approach, the
shock process cannot be non HPP. This, to guarantee a regeneration point. A model allowing for
both the pulse and shock process to have inter-arrival times following an arbitrary distribution
would be a contribution to the literature. Another contribution is to derive solutions, reliability
and distribution of maximum sum of loads, for two sources of pulse loads. This proves to be
a challenge to solve even if both processes are assumed to be HPP. So far only approximate
solutions and solutions in the sense of crossing rates exist. It is advised that future work on
these models consider the combination of two or more pulse processes. For more than two
load processes, solutions may be di�cult to analyze due to analytical complexities. For these
load combination problems, it would especially be a challenge to �nd an accurate model which
includes non-exponential inter-arrival times for all the load processes.

For the model with gamma deterioration, it is not clear how the model should be extended
to the case when inter-arrival times follow an arbitrary distribution and should be challenging
work for the future. It is also not clear how to arrive at a solution if the shock process is
replaced by a pulse process, alternating process or sum of processes. To the best of knowledge,
these extensions are not known to exist and should pose considerable challenge as future work to
arrive at practical, accurate and comprehensive solutions. It has also been shown that analytical
solutions exist by exploiting the proposed solution for speci�cally uniform distributed shock
magnitudes. In the future it can be researched if similar analytical results can be obtained for
shock magnitudes following di�erent distributions.
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