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Abstract  

Within the Great Lakes region, agricultural non-point source nitrogen (N) and phosphorus (P) 

contamination contribute to algal blooms and decreased water quality, particularly from tile-drained 

landscapes. These water quality challenges are accompanied by anthropogenically induced increases in 

greenhouse gases within the atmosphere, which are leading to changes in climate, which may in turn 

exacerbate water quality issues by changing hydrological and biogeochemical cycling. This may be 

particularly important during the non-growing season (NGS), during which most of the annual nutrient 

export and flow occurs in the Great Lakes region. However, hydrologic and biogeochemical processes 

during the NGS are less well understood compared to the growing season. The implementation of beneficial 

management practices (BMP) such as controlled tile drainage (CD) have the potential to mitigate both 

current and future water quality issues. However, there is little information on the potential water quality 

tradeoffs associated with this particular practice under both contemporary and future climates. Such 

information is necessary before CD may be widely recommended and adopted as a BMP. In this thesis, the 

Soil Water Assessment Tool (SWAT) model was used to demonstrate the potential for CD to reduce nutrient 

losses in midwestern Ontario, under both current and future climates, and to understand the processes 

affecting nutrient export responses through the analyses of the water balance, flow regimes, and weather 

patterns, and to examine seasonal differences in these variables. In this study, two Soil Water Assessment 

Tool (SWAT) models were applied at varying scales. One was generated for the Medway Creek watershed, 

near London, ON, to understand the impact of climate change on water quality and quantity by forcing the 

model with a bias corrected general circulation model (GCM) ensemble. The second SWAT model was run 

at the field scale, for a field site near Londesborough, ON to understand the potential water quality tradeoffs 

associated with CD for a field with low-sloped clay loam soil. Results indicate that future changes in climate 

will cause shifts in seasonal water budgets, resulting in much greater nutrient export during the NGS and 

an overall increase in annual nutrient losses by the 2080-2100 period. These changes will be driven by 

precipitation quantity, but also changing precipitation characteristics (timing, form, magnitude, and 

frequency) and temperature, which will influence runoff pathways. The use of CD will not mitigate water 

quality issues and will instead exacerbate TP losses in runoff by increasing soil moisture and consequently 

increasing surface runoff. Although reductions of tile flow were greater than the simulated increases in 

surface runoff, the approximately 10X greater TP concentrations in surface runoff resulted in an overall 

increase in simulated edge-of-field TP losses. This will be particularly problematic where CD is used both 

during the NGS and growing season. This thesis has provided an improved understanding of the impacts of 

climate change on water quality in the MCW, and has demonstrated that CD has little potential to mitigate 

water quality issues in the present or future. This thesis has also demonstrated that understanding nutrient 

export processes during the NGS will be increasingly important for increasing BMP efficacy, reducing NPS 

contamination, and the occurrence of harmful algal blooms. 
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Chapter 1 - Introduction and literature review 

1.1 Introduction, problem statement, and objectives 

Phosphorus (P) loading to surface water bodies is a major problem because algae and cyanobacteria in 

freshwater environments are growth limited by P. Consequently, elevated loads can lead to the 

eutrophication of lakes, which can lead to harmful algae blooms (HAB) (Heisler et al., 2008) that degrade 

ecosystem health, create hypoxic zones, (Diaz, 2001; Ludsin et al., 2013) and affect economies that rely on 

good water quality (Bingham et al.,  2015). In Lake Erie, numerous HABs, have been related to 

eutrophication caused by non-point source (NPS) contamination from agricultural systems (Scavia et al., 

2014). 

Within the Great Lakes watershed, the majority of nutrients are currently exported in the non-growing 

season (NGS; Macrae et al., 2007b; Royer et al., 2006; Van Esbroeck et al., 2016; Williams et al., 2018). 

Therefore, an improved understanding during this period is necessary to help reduce NPS contamination.  

However, with increased greenhouse gas (GHG) levels in the atmosphere, it is anticipated that there will 

be an intensification of the climate, which will include increased precipitation, higher intensity 

precipitation, increased temperatures, and more heat waves (Grillakis et al., 2011; McDermid et al., 2015; 

Rudra et al., 2015; Wang et al., 2014, 2015b). The resulting shift in the seasonality in southern Ontario  

may modify the efficacy of current BMPs and exacerbate water quality issues (Bosch et al. 2014). To 

mitigate the impact of agriculture on nutrient export while maintaining productive crops, BMP 

recommendations are adjusted as the understanding of these systems is improved. An improved 

understanding of the timing of runoff and nutrient transfer, and the pathways through which runoff occurs, 

will assist managers in recommending BMPs that will work both now and in future.   

Hydrologic and water quality modeling will be increasingly important for understanding how the 

seasonality and pathways of nutrient export will change under a warmer climate, enabling targeted 

watershed and field management plans. After a model is created, it can then be easily altered to predict 

environmental responses to emerging and current BMPs. To fully understand the impacts of climate change 
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and BMPs on water quantity and quality, it is imperative to run models at a range of scales. The need for 

this was demonstrated by Sloan et al. (2017), who demonstrated that both spatial scale and tile drainage 

distribution modified stream flow regimes. To assist watershed stewards and managers in recommending 

appropriate BMPs to reduce nutrient loads from watersheds, both now and in future, model simulations are 

required that will provide insight into potential changes in runoff patterns, nutrient loads and BMP efficacy. 

Therefore, the objectives of this thesis were to: 

1) Use a watershed scale SWAT model to determine the effects of changing precipitation patterns and 

temperatures on seasonal and annual water balances, flow regimes, total phosphorus, nitrate, and 

sediment export from an agricultural watershed in southwestern Ontario, Canada. 

2) Develop a field scale SWAT model to determine the effects that drainage water management will 

have on seasonal flow paths and phosphorus export from an agricultural field in southwestern 

Ontario. 

Objective 1 was addressed in “Impacts of climate change on seasonal hydrology and nutrient and 

sediment loads in the Medway Creek watershed in southern Ontario” (Chapter 2 of this thesis), while 

objective 2 is addressed in “Controlled tile drainage impacts on field scale runoff pathways and phosphorus 

losses in southern Ontario” (Chapter 3 of this thesis). 

1.2 Literature review 

1.2.1 Agriculture non-point source contamination and its role in eutrophication 

Eutrophication occurs when there is an overabundance of nutrients in an aquatic ecosystem. In 

agricultural systems, P and N application as inorganic fertilizers or manure is necessary for the growth of 

economically viable crops (Sharpley et al., 2001). Consequently, these sources are significant contributors 

of NPS contamination and eutrophication (Arbuckle and Downing, 2001; Michalak et al., 2013). Depending 

on the type of water body receiving nutrients, the limiting nutrient will be different. Within fresh water 

ecosystems, P is not abundant; therefore, algae growth is uninhibited as long as this nutrient is present. 
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Conversely, N is the limiting nutrient in more coastal ecosystems (Correll, 1998). Due to the issues in Lake 

Erie, recently an international agreement (Great Lakes Water Quality Agreement) has been made with the 

goal to reduce springtime P loads by 40 percent (from 2008 levels) by 2025 (IJC, 2012).  

1.2.2 Nutrient forms and dominant pathways in agricultural landscapes  

Within agricultural systems, nutrient export can vary between nearby watersheds and even fields 

due to complex interactions between many factors. Climate is one of the major factors influencing 

hydrological and nutrient export responses, and it drives the other processes occurring in environment. 

Furthermore, interactions among the landscape, soil characteristics, and management practices can 

influence hydrologic transport pathways and biogeochemical cycling of nutrients. For example, in 

agricultural landscapes where soils are slow to drain or receive frequent floods, tile drains are installed 

within the subsurface to facilitate soil water drainage. This management practice is common in agricultural 

fields throughout the Lake Erie watershed, particularly in the southwestern end. Tiles benefit crops through 

earlier planting in spring, excessive plant water stress prevention, improved soil structure, and trafficability 

(Fraser & Fleming, 2001). Conversely, in tile drained soils, nutrient loss can also be greater because of the 

enhanced connectivity to streams, increased by soil macropores (Simard et al., 2000; Molder et al., 2015), 

which are large soil pores created by biological activity, environmental stressors (desiccation and freezing 

process), plant roots. The following sections will describe the major factors influencing nutrient transport 

pathways, and the speciation differences between these pathways.  

1.2.2.1 Phosphorus dynamics in the environment 

In agricultural systems, P losses in runoff have traditionally been associated with surface runoff 

and the erosion of P-rich surface soils (Carpenter et al. 1998). However, tile drains have also been shown 

to increase P losses from fields (King et al., 2015). The potential for tile drains to enhance P loss in runoff 

has resulted in significant debate regarding the installation of tile drains in fields. This is particularly 

important in the Lake Erie watershed, where tile drainage has been identified as a major driver of P loss 
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(Jarvie et al., 2017). However, there is a need for balance between agronomic and environmental impacts 

as food security is also an important issue.  

There are two main fractions of total phosphorus (TP), one is dissolved reactive phosphorus (DRP), 

which consists of phosphorus forms in solution and is bio-available to algae. Conversely, the other fraction 

particulate phosphorus (PP) is typically reported as anything greater than 0.45 µm, and not as great a 

concern because it is not bioavailable (Simard et al., 2000); however, it can become available dependent on 

the environmental conditions affecting bacterial decomposition and desorption/dissolution processes 

(Spivakov et al., 1999). Within these two fractions, P can be either inorganic (i.e. orthophosphate or cation 

bound P) or organic phosphorus (contains carbon and bio-unavailable), each with their own chemical 

characteristics affecting transport dynamics.  A key difference is their interaction with the soil. Organic P 

tends to have less affinity for the soil solid phase (George et al., 2017) and adsorption to soil particles 

because orthophosphate can have greater sorption capacity and strength (Bolster & Sistani, 2009; Lilienfein 

et al., 2004). Furthermore, microbes within the soil increase the dissolved inorganic P pool through 

mineralization of the organic matter. Conversely, they can also temporally decrease the DRP pool through 

the assimilation (immobilized) into their cells (Spivakov et al., 1999). This DRP pool is strongly adsorbed 

to the oxides of clay mineral subsoils resulting in slow percolation through the soil matrix and accumulation 

(McDowell et al., 2001). 

Generally, phosphorus export tends to increase during high stream flow events (Gentry et al. 2007). 

High flow events are typically a result of rainstorms, or snowmelt events, or both during the NGS, which 

contribute significantly to the annual water yield (Macrae et al., 2007b); consequently, supplying a large 

proportion of the annual TP and DRP export to streams (Macrae et al., 2007a; Puustinen et al., 2007; Van 

Esbroeck et al., 2016). Between events in the NGS, there is variability in the magnitude of peak flows and 

overall loads that can be greatly influenced by the antecedent soil moisture conditions (Macrae et al., 2010; 

Vidon et al., 2009) and precipitation event characteristics (Vidon & Cuadra, 2010, 2011).  
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1.2.2.1.1 Phosphorus transport dynamics and forms in surface runoff 

As noted above, surface runoff has been identified as a primary pathway for P loss from fields. 

Within surface runoff, PP is the dominant P fraction (Gentry et al. 2007; Hart et al., 2004; Van Esbroeck et 

al., 2016), and is greatly influenced by soil erosion (Eghbal & Gilley, 2001). Therefore, the proportion of 

TP as PP and P associated with sediment (typically inorganic P) is affected by factors that control the 

adsorption capacity such as soil characteristics (texture, mineral content, and organic content) and changing 

environmental conditions (i.e. redox and pH; Boström et al., 1984; Li et al., 2017; Moazed et al., 2010; 

Spivakov et al., 1999; Xiao et al., 2017), and field slope/topography. However, this may not always be the 

case, as manure application can increase the amount of PP that is organic (Leytem et al., 2002). 

In tile drained systems, surface runoff is generally decreased due to the amount of flow redistributed 

to tile drains (Muma et al., 2016), and this helps to decrease the TP loads leaving in runoff (Ball Coelho et 

al., 2012; Bengtson et al., 1995). However, this pathway can still account for a large proportion of annual 

P loads to streams, since TP concentrations are typically higher in surface runoff (Haygarth et al., 1998; 

Sharpley et al., 2001). Although P losses are usually reduced in a tiled setting, P transport risk can be 

increased in surface runoff due to the connectivity of the field to streams, precipitation intensity, variable 

source areas, and lack of BMPs such as nutrient management (4Rs) and soil erosion control practices (Chapi 

et al., 2015; Reid, et al., 2012; Sharpley et al., 1999, 2008, 2011; Van Esbroeck et al., 2017; Uusi-Kämppä 

et al., 1998). For example, nutrient management influences the amount of P that accumulates in the near 

soil surface (0-5 cm). Fields with high nutrient inputs will have a greater risk of transporting increased P in 

surface runoff (Sharpley et al., 2001), especially as DRP with inorganic nutrient applications (i.e. fertilizer) 

before rainfall (Haygarth et al., 1998). Furthermore, no-tillage, which maximizes crop residue and reduces 

soil erosion can cause a subsequent increase of DRP in surface runoff (Ulén et al., 2010). 
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1.2.2.1.2 Phosphorus transport dynamics and forms in the subsurface: percolation and lateral 

movement 

In the subsurface, P can take two pathways to streams: groundwater flow and tile flow. 

Groundwater flow will occur in all systems, and the transport of water is slow due to the long residence 

time in soils, which enables the adsorption of P (Sharpley et al., 2014). Generally, in tile drained landscapes, 

the annual water yield will increase because tiles drain the water typically stored in the subsurface and 

increase the infiltration capacity (King et al., 2015). This causes increased P availability and a decrease in 

P residence times, making tiles the dominant lateral pathway for P in the subsurface. 

Within a tiled landscape, soil properties can control the impact on stream flow responses, P export 

magnitudes, and speciation. Through tile drain installation, typically in natural ecosystems they increase 

peak runoff rates, and in existing agricultural landscapes may cause a decrease in peak flows (Blann et al., 

2009). However, this is not always the case and it is believed that soil texture will play a key role. For 

example, in sandy soils peak flows will increase with tile installation due to greater seepage rates through 

the soil matrix, to tiles. While clay soils, the increased infiltration combined slower seepage rates to tiles 

will attenuate the higher magnitude surface runoff events and decrease peak flows (Robinson, 1990; 

Robinson & Rycroft, 1999; Skaggs et al., 1994; Sloan et al., 2017). 

In addition to matrix flow, macropores are another flow pathway and can form in all soils, but clay 

is of particular concern because large and deep desiccation and freeze thaw cracks can form (Peron et al., 

2009). Consequently, agricultural landscapes with clay soils and macropores can also have greater peak 

flows after tile installation (Robinson & Rycroft, 1999; Schwab et al., 1985). However, exact quantification 

of the connectivity is difficult (Luo et al., 2010) and peak flows are dependent on many other factors such 

as management practices, slopes, and climate (Skaggs et al., 1994; Sloan et al., 2017; Wiskow & Van Der 

Ploeg, 2003). In other soils (i.e. sandy), macropores do not have the same issue with surface connectivity, 

only earthworm passages and roots are likely, and these will not increase infiltration and percolation rates 

as substantially.  
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Generally, depending on the degree of connectivity, macropore flow can account for the majority 

of the contaminants initially transported through tile drains because of a precipitation event (Kung et al., 

2000). Typically, this results in clay soils having greater P loads exported via tiles due to greater macropore 

connectivity , (Beauchemin et al., 1998; King et al., 2015), and in most cases PP will be the dominant form 

of P in drains due to the macropores direct connection of the surface to tiles (Vidon, & Cuadra, 2011; 

Simard et al., 2000). This suggests that macropores are present since greater DRP proportion would be 

expected with matrix flow.  Sandy soils have been shown to have a larger proportion of TP as DRP in tile 

flow (Eastman et al., 2010). This can mostly be attributed to the soil texture and macropore characteristics, 

as more subsurface flow will be routed through the soil matrix, which also has a lower sorption capacity 

(Daly et al., 2001; Dils & Heathwaite, 1999; Fox & Kamprath, 1970).  

In addition to soil factors, some management practices interact with the soil macropores to further 

influence the P export and flow response in tiles. For example, tillage that disrupts the soil surface (i.e. 

conventional tillage) has been shown to decrease macropore flow (Andreini & Steenhuis, 1990). 

Consequently, tillage that cause minimal disruption to the soil surface (i.e. no-till or conservation tillage) 

has been associated with higher TP loads in tiles (Geohring et al., 2001) and increased DRP loads in runoff 

(Gaynor & Findlay, 1995).  Although this is the case, depending on climate and biological activity 

macropores can be quick to reform (weeks to months) after tillage resulting in not much difference in P 

loads annually (Djodjic et al., 2002). 

Nutrient management is another major factor influencing P loss in tiles. Poor management practices 

(i.e. over application of fertilizer) in the past have resulted in an accumulation of P in soils (Daloǧlu et al., 

2012), which can increase the risk of P export if soil P thresholds are exceeded (Sharpley et al., 2001, 2014). 

This is defined as a limit within the soil where nutrient application resulting in soil levels above the limit 

will result in increased P contamination in runoff due to a decrease in the number of sorption sites. 

Furthermore, organic nutrient sources, such as manure, are associated with increased P loss, which has been 

attributed to a decreased sorption capacity and strength promoting increased P leaching (McDowell et al., 



8 

 

2005). In addition, P loss in tiles generally increases with broadcast application, compared to incorporated 

application of P, depending on the source and degree of incorporation (King et al., 2015). However, 

irrespective of method or source, application rates have been shown to be the key driver of increased P loss 

in tiles (Kleinman et al., 2009; Elliott et al., 2001). Finally, the timing of application is increasingly 

important, as P export increases with precipitation after P application (Sharpley et al., 2001). Based on this, 

recently in Ontario, the province has embraced 4R Nutrient Stewardship, which stipulates right source, at 

the right rate, time, and place for proper management of nutrients to meet its environmental goals (Fertilizer 

Canada, 2016).  

1.2.2.2 Nitrogen dynamics in the environment 

Although P contamination is of foremost concern in Ontario, N contamination is also an issue that 

can have an adverse effect on the environment and even human health.  N is a major nutrient applied to 

fields for proper plant growth. Consequently, within tile-drained settings, N has been shown to be a major 

factor contributing to an increase in both surface and groundwater contamination (Bengtson et al. 1984; 

Randall et al., 1997). This has potential to affect 30% of people in Ontario that rely on groundwater for 

drinking water  (Goss et al., 1998) and many others that rely on clean water since it can also increase algae 

growth, especially in marine environments. In southern Ontario, nitrate (NO3
-; plant available) leaching is 

the form of N of principal concern, especially for young infants because they are at increased risk of 

methemoglobinemia with augmented concentrations of NO3
- and nitrite (NO2

-). These forms can naturally 

occur through ammonification of organic nitrogen to ammonium (NH4
+) or ammonia (NH3), or nitrogen 

fixation (i.e. gaseous nitrogen to NH3 or NH4
+), and subsequent nitrification. Furthermore, high 

concentrations of NO3
- and NH4

+ in surface water has been linked with fish kills, and development 

anomalies in amphibians (Steenvoorden et al., 2002).  

1.2.2.2.1 Nitrogen transport in the subsurface 

Nitrate originates from manure, the mineralization and nitrification of organic matter, or inorganic 

fertilizers. Unlike orthophosphate and NH4
+, it is much more mobile in the subsurface because it is an anion 
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and thus not attracted to negatively charged soil particles.  This allows NO3
- to quickly travel through the 

soil matrix into tiles, which can contribute a large proportion of the annual runoff and N loads (Li et al., 

2010; Rozemeijer et al., 2010). Tiles also decrease water residence times; further decreasing the opportunity 

for denitrification benefits (Panno et al., 2008). However, like P, most of the N export also occurs with 

flows that are part of the high stream flow regime (Petry et al., 2002; Macrae et al., 2007b). 

In addition to tile flow, the texture of the soil also controls the intensity of leaching through the 

subsurface into tiles and groundwater. The transport of NO3
- is related to water volumes; therefore, clay 

soils will have reduced leaching through the soil matrix since they have a lower saturated hydraulic 

conductivity, greater water retention, and cation exchange capacity (Gaines & Gaines, 2008; Miner 1995). 

Conversely, the increase in macropores in fine-grained soils mentioned earlier also has potential to help to 

offset slower soil matrix leaching rates and can increase particulate associated N losses (Rasouli et al., 

2014). The amount of residual soil nitrogen left in soil will be important factor contributing to the magnitude 

of NO3
- export. This is influenced by many components, including atmospheric N deposition, N 

management practices (source, rate, time, and place), crop residue, and cropping system (Rasouli et al., 

2014). For example, corn is a large portion of the crop acreage in Ontario and requires high N inputs (up to 

316 kg N/ha) for growth (Ministry of Agriculture and Rural Affairs, 2017). Consequently, this crop in 

continuous rotation is known to cause increased N leaching due to a buildup of residual soil nitrogen each 

year (Bolton et al., 1970; Fleming et al., 1998). This build up can contribute to a reduction in the observed 

effectiveness of BMPs due to the effect of legacy N (Van Meter et al., 2018). Additionally, climate 

variability between years will play a role in controlling the annual N loads in tiles and can cause large 

fluctuations. In dryer years, more N is stored in the soil profile, which can be flushed during subsequent 

wetter years (97 cm above the historic 30-year average; Gentry et al., 2009). Finally, once NO3
- leaches 

past the tiles it contributes to the groundwater, which has been shown to store a large proportion of the N 

inputs (Wang et al., 2015a), especially in aquifers with long residence times. Furthermore, NO3
- 

concentrations can be lower in groundwater because of denitrification, which occurs when soil conditions 
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are anaerobic causing microbes to respire forms of nitrogen bound with oxygen to produce dinitrogen (Petry 

et al., 2002).  

1.2.2.2.2 Nitrogen dynamics in surface runoff 

While tile drains export more N than surface runoff, losses in this pathway are still of concern. Runoff 

N loads and concentrations can quickly increase over a short period given the correct conditions, such as 

connectivity, manure application on frozen soils, timing of nutrient application, and intense rain (Neilsen 

et al., 1978; Smith et al., 2001). As previously mentioned NO3
- is more mobile and soluble in water. 

Therefore, after the start of a rainfall event most of the NO3
- will infiltrate in to the soil; consequently, the 

dominant form of N remaining in the soil surface and in surface runoff is typically ammonium or organic 

N (Sharpley et al., 1987). Although, there are some cases where NO3
- can be a greater contributor in surface 

runoff (Jiao et al., 2012). In addition, NH4
+ in the environment is mainly a result of the decomposition and 

mineralization of organic matter originating from crop residue or manure applications. NH4
+ readily travels 

with sediment and is less prone to leaching due to its positive charge binding it with the fine-grained 

sediments or organic matter, and this results in NH4
+ typically being mobilized during storm events and 

associated with surface runoff (Pärn et al., 2012).  

1.3 Climate change and agriculture 

Through human activities such as farming, energy generation, and transportation there has been a steady 

increase in greenhouse gas (GHG) concentrations in the atmosphere, which consist of three main gases: 

methane, carbon dioxide, and nitrous oxide (Intergovernmental Panel on Climate Change, 2015). As these 

GHG accumulate in the atmosphere, they increase the amount of incoming long-wave solar radiation 

retained within the earth’s atmosphere, increasing global mean air temperature and changing precipitation 

patterns (Intergovernmental Panel on Climate Change, 2015). Furthermore, through various terrestrial and 

aquatic feedback mechanisms that can be either positive (increase in GHG) or negative, the rate of GHG 

concentration increase will be modified. Climate change has already had wide reaching impacts on human 
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and natural systems, and is projected to cause irreversible harm unless it is properly mitigated 

(Intergovernmental Panel on Climate Change, 2015).  

General Circulation Models (GCM) are numerical models capable of forecasting the effects that 

changes in GHG concentrations have on the global climate system. GCMs are a useful tool for 

understanding climate responses to GHGs and allow us to better mitigate and adapt; however, there are 

some key sources of uncertainty to consider. First, future changes in global anthropogenic GHG emissions 

are unpredictable. Second, knowledge and predictability of system feed backs (natural emissions) in GCMs 

is still not perfect. Third, the downscaling and bias correction approach used to create regional climate 

models for smaller scale impact studies results in further uncertainty due to the assumptions made and all 

contribute to a cascade of uncertainty in climate change projections (Giorgi, 2010). Despite these 

challenges, the array of GCM simulations provide a reasonable way to reduce uncertainty and simulate 

future changes in climate. 

1.3.1 Climate change in southern Ontario 

Recently, Representative Concentration Pathways (RCP) were developed to describe plausible 

trajectories for net radiative forcing by the year 2100 relative to preindustrial conditions (Taylor, 2012). 

Each of the four emission scenarios range from best case (RCP2.6) to high emissions (RCP8.5), with two 

intermediate scenarios (RCP4.5 and RCP6). Within southern Ontario, all pathways indicate an increase in 

annual precipitation from 2040 onward, with the average annual precipitation increase varying from 99 to 

123 mm by the 2080s in all RCPs. Furthermore, there will be clear increases in the average annual air 

temperature in all of the RCPs, and changes will range from 2.4 to 9 degrees Celsius by the 2080s 

(McDermid et al., 2015).  In addition, there will be an increase in the magnitude and frequency of extreme 

precipitation events (Rudra et al., 2015; Wang et al., 2014, 2015b). This is expected to be coupled with an 

increase in the percent of time there will be extremely wet and then dry conditions (Grillakis et al., 2011).  
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This will affect seasonal climate characteristics. Based on the study by King et al. (2012) in the Upper 

Thames River Basin (UTRB), winter and spring will have definitive increases in precipitation volumes, 

while in summer there will be a bit more variability associated in percent change in precipitation, with 

ranges of -14.5 to 28.8 percent by the 2041 to 2070 period. High variability in summer for precipitation is 

mostly likely due to the GCMs limitations associated with capturing convective summer storms (Maraun, 

2016). In winter, temperature changes will be the greatest and are projected to increase by 3.5 to 8.6 degrees 

Celsius on average by the 2080s (McDermid et al., 2015). Due to this increase in temperature in winter, 

more precipitation is expected as rain (Marianne et al., 2003; Golmohammadi et al., 2017); also reducing 

the snowpack melt and timing in spring (Demaria et al., 2016). In summer, in addition to increased 

temperatures, there is expected to be increased frequency and magnitude of heat waves (Li et al., 2017), 

which will mostly likely result in greater drought risk.  

1.3.2 Climate change effects on NPS contamination 

In southern Ontario, agriculture is a major driver of the economy and many jobs rely on its prosperity. 

In order to understand the long-term impacts that climate change will have on crop yield, water quality and 

quantity at a more local scale GCMs outputs are typically bias corrected and downscaled to be  used as 

input with models (Carter et al., 1994). Through a better understanding, mitigation strategies can be 

developed to help adapt to the changes. Currently, in the Great lakes drainage area, most studies indicate 

that increased precipitation will lead to increases in the annual flow (Grillakis et al., 2011; Rahman et al., 

2012), resulting in increased TP, SS, and NO3
- loads (Bosch et al., 2014; Verma et al., 2015; Wang et al., 

2018) by the late-century (2070-2100). With some mid-century (approximately 2020 to 2050) projections, 

indicating a decrease in precipitation will result in decreased annual flows (Golmohammadi et al., 2017; 

Verma et al., 2015). Contrary to this, one study has projected decreased flows and variable sediment load 

changes in the late century period with increased precipitation depending on the emission scenario and 

evapotranspiration rates (Cousino et al., 2015). 



13 

 

In southern Ontario, we know that the majority of nutrient loads are exported during peak flows and in 

the NGS (Macrae et al., 2007b; Royer et al., 2006; Van Esbroeck et al., 2016). Therefore, understanding 

the impact of climate change during the months in the NGS will be important in reducing NPS 

contamination. Due to the changes in climate characteristics noted earlier and expected in winter, we will 

start to see less snowpack in the Great Lake basin. This in turn will affect soil temperatures, which will get 

colder due to the insulating properties of snow (Isard et al., 1998). With the changes in snowpack, soil 

temperatures, soil moisture, and precipitation form and intensity there will potentially be a shift  or increase 

in dominant flow path that runoff takes to streams. With increased potential for frozen soils, it is 

hypothesized that there will be more surface runoff in winter due to the decreased capability of infiltration 

(Marianne et al., 2003; Isard et al., 1998).  

Some studies in the Great lake watershed, predict increased flows, TP, sediment, and NO3
- export during 

the NGS months due to climatic shifts (Crossman et al., 2013; Verma et al. 2015; Wang et al., 2018). 

Rahman et al. (2012) corroborate this hydrologic change for a watershed in southern Ontario and show that 

winter and spring flows increase along with surface runoff and base flow. Furthermore, in a study by 

Jyrkama et al., 2007 for southern Ontario they show infiltration and recharge to increase due to warming 

soil and air temperatures, reducing early spring runoff. This is indicative of the potential for spatial 

variability of NGS hydrology and the potential for unexpected flow path changes. Therefore, understanding 

of the soil freezing dynamics and climate behavior in different regions with different methods will be import 

in quantifying the impact that climate change has on flow path partitioning, flow regimes, and subsequent 

nutrient transport forms and magnitude, especially in tile-drained landscapes due to the connectivity they 

provide in the subsurface. Finally, with the climate intensification resulting in more erratic temperatures 

there will be an increase in the freeze-thaw cycles, which is factor controlling nutrient losses from crops, 

soil structure (increase in macropores), and microbial communities that should start to be considered in 

future studies (Henry, 2008).  
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1.4 Controlled tile drainage 

In the past few sections there have been indications of the detrimental effects and complexity 

involved with tile drained systems.  Due to the issues associated with hypoxia in the Gulf of Mexico, in the 

Midwest US controlled tile drainage (CD) has been recommended as a practice to reduce nitrate leaving in 

tile drains and entering the Mississippi river. CD involves the installation of a control structure at the tile 

outlets where inside a gate can be raised or lowered to control the water table height by forcing water to 

rise above the gate before leaving the tile outlet. Typically, CD installation is limited and more suitable to 

low sloped areas (<1%) that are slow to drain. 

Due to the significance of the NGS recent research has focused on CD during this time and found 

that it will reduce nutrient loads (N and P) in tile drains through flow reductions (Skaggs et al., 2012; 

Sunohara et al., 2010; Williams et al., 2015). Also, in some cases increases denitrification causing further 

N reductions (Skaggs et al., 2010; Wesström & Messing, 2007). Although this benefits tile reductions, 

there is very little understanding of the tradeoffs associated with CD, like increased surface runoff and 

nutrient (N and P) export in runoff (Drury et al., 2009; Ross et al., 2016; Tan & Zhang 2011; Zhang et al., 

2017). Also, increased potential for anoxic condition promoting soluble P forms through increased 

potential for desorption and organic P mineralization (Ardón et al., 2010; Van Dijk et al., 2011; Yaghi & 

Hartikainen, 2013). For it to be extensively accepted as a BMP by managers in southern Ontario there 

needs to be more research related to the tradeoffs and the potential to function outside the typical criteria 

for certain field conditions. 

Although the growing season (GS) is not as significant a season in terms of its contributions to 

nutrient transport, it contributes to plant growth, which may be impacted under a changing climate. For 

example, in spring, with less snowpack and snowmelt due to the shift in seasonality, farmers will be able to 

access fields earlier, resulting in a longer growing season and accelerated maturation due to increased CO2 

and temperatures. However, increased soil moisture stress may occur, which can have a detrimental effect 

on crop yields (Singh et al., 1998). To mitigate the effects that water stress has on crop yields recently 
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drainage water management has also been studied and shown to provide benefits during the GS (Sunohara 

et al., 2010). 

1.5 Hydrological and NPS contamination modeling 

1.5.1 Quantifying the effect of climate change and agriculture on water quality  

As previously mentioned, numerous anthropogenic environment changes have resulted in water 

quality problems and these now require improved management and planning to help reduce the impact of 

their sources. Typically, experimental and observational field to watershed scale studies have been used to 

provide this; however, they require significant time, effort, and resources to obtain results. This makes 

modeling a useful tool in understanding agricultural systems across a range of scales and realities due to 

the ability to alter the simulated environment. However, to be successful, modelling efforts require field 

studies for proper development, making both approaches highly integrated and dependent on each other to 

develop proper mitigation strategies (Vadas et al., 2013). 

Given the usefulness of models, numerous models have been created. These are typically described 

according to criteria found in the study by Tsakiris and Alexakis (2012). Model selection is determined by 

the purpose of the study, region characteristics (stressors and processes), data availability, time-step, and 

scale of analysis. Careful selection is necessary since there are many models that are able to simulate P in 

drains and NPS contamination, each with their own capabilities (Gao & Li, 2014; Qi & Qi, 2017; Tsakiris 

& Alexakis, 2012; Vadas et al., 2013). One frequently used model is the Soil Water Assessment Tool 

(SWAT), which has over 3350 peer-reviewed articles 

(https://www.card.iastate.edu/swat_articles/index.aspx). In agricultural landscapes, this model is frequently 

used in BMP and climate change impact assessments in the Great Lakes area (Ahmadi et al., 2014; Bosch 

et al., 2014; Liu et al., 2016; Robertson et al., 2016; Rahman et al., 2012; Wallace et al., 2017). This is a 

semi-distributed, process and empirically based watershed scale eco-hydrological model. The smallest 

spatial unit within SWAT is the HRU, which is not spatially referenced and is a unique combination of soil, 

slope and land use within a subbasin, each having a set of associated management practices. Precipitation 

https://www.card.iastate.edu/swat_articles/index.aspx
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and temperature inputs drive landscape processes at the HRU scale, these are aggregated to the subbasin, 

then watershed scale. Outputs from the landscape are used to drive channel process, which determine 

outputs at the watershed outlet (Neitsch et al., 2011). As a result, in SWAT there is a large number of 

parameters, which first require calibration to observed conditions (i.e. stream flow), and validation to 

confirm the calibrated parameter set for a different set of observed conditions (Arnold et al., 2012b; 

Daggupati et al., 2015).  

1.5.2 Model development and assessment 

There is a constant need to redevelop SWAT to reduce the uncertainty in model predictions and improve 

performance to make policy decisions more reliable since they are made at the watershed scale (Beven, 

2001). Experimental and observational studies are useful for identifying model limitations and improving 

the model through increased understanding of the small-scale processes. Since process are simulated in the 

HRU and scaled up, good performance starts here. However, during model building there are some inherent 

issues that complicate spatial consistency of HRUs, making it harder to analyze HRU outputs, confidently 

recommend model improvements, or inform decisions in the modeled area, especially if there is a lack of 

field scale data in the watershed to validate HRU processes. 

A key issue affecting HRU consistency is equifinality, where a calibrated model can have multiple 

acceptable parameter sets, some causing the right results but for the wrong reasons (Beven & Binley 1992; 

Beven, 2006). Given that SWAT typically operates on a watershed scale, there is increased spatial 

heterogeneity in watershed properties and complex processes, which exacerbates this issue. Watershed 

scale models such as SWAT attempt to capture this increased complexity through the number of parameters; 

thereby enhancing the potential for equifinality (McDonnell et al., 2007). Calibration at the HRU scale 

using field scale hydrometric data is not frequently done, but permits the evaluation and testing of new 

model routines, which subsequently leads to model improvement, because testing the model at a small HRU 

scale removes the complications of large-scale heterogeneities.  
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This thesis uses SWAT models under present and future climate simulations, and at different scales 

to predict the impacts of climate change on nutrient transport from agricultural landscapes, and, to 

determine whether CD can mitigate some of these water quality issues. In addition to exploring changes in 

annual hydrologic and biogeochemical fluxes, this thesis investigates seasonality in these fluxes due to the 

importance of the NGS in nutrient export and our limited understanding of process during this time.  
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Chapter 2 - Impacts of climate change on seasonal hydrology, nutrient, and 

sediment loads in the Medway Creek watershed in southern Ontario 

2.1 Overview 

Within southern Ontario, climate change is expected to cause an increase in precipitation patterns and air 

temperature by the late century period (2080-2100). This is expected to cause changes to hydrological and 

biogeochemical cycling, further impacting losses from agricultural fields, which are currently a significant 

driver of non-point source contamination in Lake Erie. In this study a model was created using the Soil 

Water Assessment Tool (SWAT) for the Medway Creek watershed (200 Km2), a subwatershed within the 

Upper Thames River Watershed in Ontario, Canada, within the Lake Erie watershed. The objective of this 

chapter is to determine the effect that future climates will have on the seasonal characteristics of hydrology, 

suspended sediment, nitrate, and total phosphorus export. A climate ensemble was used to force the SWAT 

model, which consisted of six different quantile bias corrected general circulation models (GCM) obtained 

from the Coupled Model Intercomparison Project Phase 5 (CMIP5) using the 4.5, 8.5, or both representative 

concentration pathways (RCP). The climate ensemble indicates that temperate and precipitation quantity, 

magnitude and frequency will increase in all seasons, with the largest and least variable climatic changes 

projected to occur in winter. These shifts will cause a shift in the seasonal distributions of runoff and the 

relative contributions of flow paths. An increase in annual nutrient (N, P) loads is projected, driven not only 

by changing precipitation volumes but form, magnitude, and frequency, which will increase peak flows. In 

contrast, suspended sediment is mostly driven by changing average stream flows and surface runoff, which 

decrease in winter and spring due to changes in the seasonal water balance due to increased air temperatures. 

This work highlights the importance of understanding processes driving non-growing season (NGS) 

nutrient export with climate change in a tile-drained setting, and will assist land managers in the 

development of more effective watershed management plans. 
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2.2 Introduction 

The eutrophication of inland lakes is a significant issue throughout North America that has 

environmental and societal consequences (Michalak et al., 2013). The occurrence of frequent Harmful 

Algal Blooms (HABs) and nuisance algae have been attributed primarily to non-point source pollution from 

agricultural watersheds, with particular emphasis on total phosphorus (TP) loading (EPA, 2015; Jarvie et 

al., 2013; Michalak et al., 2013). Consequently, considerable effort has been put into the development of 

Beneficial Management Practices (BMPs) and aggressive targets have been set for reductions in TP loads 

from agricultural systems.  In addition, within the Great Lakes region of North America, climate change is 

expected to lead to higher temperatures and changes in the form, intensity, quantity, and timing of 

precipitation (McDermid et al., 2015; Rudra et al., 2015; Wang et al., 2014). This is anticipated to have 

consequences for hydrology through the modification of runoff pathways, quantity, and timing, and 

consequently, biogeochemical export from agricultural watersheds. To better understand BMP efficacy and 

the potential for current nutrient reduction targets to be met, an improved understanding of the impacts of 

climate change on runoff quantity and quality are needed.  

Tile drainage is a BMP that is prevalent throughout much of southwestern Ontario. This flow 

pathway increases subsurface connection between fields and streams, reducing surface runoff and 

increasing the proportion of precipitation leaving as subsurface flow (Muma et al., 2016). Consequently, 

tile drainage reduces the contribution of surface runoff to annual TP, organic nitrogen, ammonium (NH4
+), 

and suspended sediment (SS) loads (King et al., 2015, and Skaggs et al., 1994). Although surface runoff 

can be reduced following the installation of tile drains (Muma et al., 2016), this pathway can still provide 

an efficient transport mechanism for nitrate (NO3) and P depending on  soil characteristics such as slope 

and macroporosity (e.g. Kleinman et al., 2015), soil biogeochemistry (Plach et al., in press), land 

management practices such as nutrient management, tillage and P application strategies (e.g. Lam et al., 

2016; Jarvie et al., 2017; Plach et al., 2018), and precipitation event duration, and intensity (Sharpley et al., 

2008; Van Esbroeck et al., 2017; Chapi et al., 2015; Reid, et al., 2012; Vidon & Cuadra, 2010).  
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In southwestern Ontario, Canada, most nutrient export currently occurs during the NGS where 

contributions to annual loads from agricultural systems are often dominated by a few peak flow events 

(Ministry of the Environment and Climate Change, 2012; Macrae et al., 2007b, Van Esbroeck et al., 2016, 

2017).  Additionally, the timing and form of precipitation events influence antecedent hydrologic conditions 

(AHC), which play a key role in determining the nutrient form (Beauchemin et al., 1998), event response, 

and overall loads (Macrae et al., 2010; Vidon et al., 2009), in part due to their control over hydrologic flow 

paths (Van Esbroeck et al., 2017; Macrae et al., 2007a). Given the current behavior and projections for an 

intensification of the hydrologic cycle under a warmer climate (Wang  et al., 2014), it is likely that the 

temporal distribution of runoff and the relative contributions of different hydrologic flow paths may change, 

which may impact nutrient loading from agricultural watersheds. Therefore, studies at the watershed scale 

that include the seasonal fluctuations in hydrology are needed to produce more accurate estimates of the 

impacts of agricultural land management on water quantity and quality (Labeau et al., 2015).  

Field scale process studies are often costly and labor-intensive, and there is a paucity of long-term 

data sets, particularly those that include the NGS. To shed insight into longer time periods and the future, 

scientists employ hydrological and water quality models forced with general circulation models (GCM); 

however, careful parameterization, calibration and validation of the models using high-quality field data is 

crucial. The Soil Water Assessment Tool (SWAT) is frequently used around the world in agricultural 

watersheds to predict the impact of climate change on water quality (Marcinkowski et al., 2017; Mehdi et 

al., 2016; Woznicki & Nejadhashemi, 2012; Ye & Grimm, 2013; Zabaleta et al., 2014). Although this model 

was developed in a warm, dry region (Neitsch et al., 2011), it has been calibrated successfully in more 

northern regions  with complex agricultural practices  and hydro-climatic conditions to assess water quality 

issues associated with climate change (Gombault et al., 2015; El-khoury et al., 2015; Mehdi et al., 2015; 

Shrestha & Wang, 2018). However, to date, there have been few detailed modeling studies focusing on 

providing a better understanding of how future precipitation characteristics and temperature changes will 

influence flows, water balance, and water quality responses within the Great lakes region, particularly over 
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the different seasons (Ahmadi et al., 2014; Bosch et al., 2014; Robertson et al., 2016; Rahman et al., 2012; 

Wallace et al., 2017). Therefore, in this study, the objectives were to predict how climate change will affect 

the water balance, flow regimes, sediment, and nutrient loads in the Medway Creek Watershed (MCW) 

using the SWAT model at the (a) annual scale and (b) seasonal scale (Cousino et al., 2015; Crossman et al., 

2013; Verma et al., 2015; Wang et al., 2018).  Results from this study will assist other modelling efforts, 

watershed stewards, and managers in identifying suitable nutrient loss mitigation strategies, and will shed 

insight into the current potential to achieve nutrient reduction targets that have been set for the MCW 

through model simulations using future climates. 

2.3 Methodology   

2.3.1 Study area 

The MCW is a small (205 Km2) watershed located in southwestern Ontario (43°00'52.9"N 

81°16'36.6"W; Figure 1) and is one of 28 sub-watersheds that contribute to the Upper Thames River Basin 

(UTRB), which subsequently drains into Lake St. Claire, and eventually into Lake Erie. Managers and 

landowners within the Thames River watershed have been tasked with achieving a springtime P load 

reduction of 40% by 2025 (Environmental Protection Agency, 2015). 
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Figure 2.1.  Location of the MCW in Canada. With the distribution of the climate station grid (green) and 

area inside London city limits (yellow). 

Land use within the watershed is primarily agricultural (83%), with some natural (11%) and urban 

(6%) areas. Since most of the land use is agricultural, a significant portion of the MCW has tile drainage (~ 

65%) to facilitate field access in spring and improve crop yields. Major agricultural land uses within the 

watershed consist of corn, pasture, soybean, and winter wheat. There are many livestock operations within 

the watershed with an average density of 24 animals per hectare. Poultry represent the majority of livestock 

operations (97%) and manure P production in the watershed (31%), and swine operations represent 1% of 

livestock operations.  Populations of dairy and beef cattle are relatively small in the watershed. 

Approximately 85% of the total soil area within the watershed consists of clay loam (33%), silty loam 

(32%), or silty clay loams (20%) (Upper Thames River Conservation Authority, 2012). The watershed has 

a mean slope of 2 degrees, with the northwestern part of the watershed increasingly sloped because the 
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watercourse is located between two moraines causing rolling topography. The southern portion of the 

watershed is also steep and mostly consists of urban land use, whereas the central portion is much flatter.  

The climate in this region is classified as humid continental with an average 30-year historic normal 

monthly precipitation of 84 mm (1012 mm annually, 19% as snowfall; Environment and Climate Change 

Canada, 2018b). As is typical for the region of southern Ontario, there is a distinct seasonal pattern in annual 

runoff with maxima in spring associated with snowmelt and convective spring storms, and minima in 

summer due to high evapotranspiration (ET) rates. Although flow occurs throughout the year, the summer 

high average temperatures (19.6 ˚C) can occasionally result in the occurrence of drought conditions 

(Prodanovi & Simonovi, 2006).  

2.3.2 Watershed modelling 

2.3.2.1 The Soil Water Assessment Tool  

SWAT is a semi-distributed physically based watershed model capable of continuous simulation 

over long periods (Neitsch et al., 2011). It uses a combination of empirical relationships and process-based 

equations. The user divides the watershed up into sub-basins, which can be further subdivided into 

hydrological response units (HRUs) which are unique combinations of land use, soils, and slope (Neitsch 

et al., 2011 ). Within the model structure, precipitation plays a key role and is a major driver of all other 

processes that occur. Hydrologic processes simulated by SWAT include surface runoff, infiltration, canopy 

storage, percolation, evapotranspiration (Hardgreves method; IPET=2), lateral subsurface flow, and base 

flow (Arnold et al., 2012a).  Soil erosion is determined using the Modified Universal Soil Loss Equation 

(Williams 1975) which is influenced by rainfall and surface runoff, and estimated using the Soil 

Conservation Service (SCS) curve number method (Soil Conservation Service, 1972; ICN=1). Within the 

soil profile, the SWAT model is able to simulate nutrient transformations and movement using the P and 

nitrogen cycles. Once the nutrients reach the main hydrological channel, an adapted version of QUAL2E is 

used for nutrient routing (Neitsch et al., 2011). 
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Given that the SWAT model was developed in Texas, percolation through the soil profile is not as 

representative of what occurs in Canada, where soil textures, moisture conditions and precipitation patterns 

differ from those in Texas. Therefore, SWAT-MAC was used (modified version of SWAT 2012), as it is 

adapted to better simulate flow to tile drains by altering the hydrological algorithms influencing percolation 

through the subsurface (Michaud et al., 2008; Poon, 2013). 

2.3.2.2 Data used in model parameterization  

A DEM (10 m resolution) supplied by the Upper Thames River Conservation Authority (UTRCA) 

and derived using aerial imagery from the Southwestern Ontario Orthophotography Project (SWOOP) in 

2010 was used (Ministry of Natural Resources and Forestry, 2015). Land use data was obtained from 

Agriculture and Agri-Food Canada’s (AAFC) annual crop inventory in 2014 (AAFC, 2016). These data are 

derived using satellite imagery taken during important plant growth stages and combined with ground 

truthing to identify crops present each year. Soil physical parameters, at a scale of 1:50000 were obtained 

from the soil map distributed through Land Information Ontario (LIO; Ministry of Agriculture, Food and 

Rural Affairs & Canadian Soil Information Service, 2015). This included soil texture, bulk density, soil 

depths, but did not include data for soil available water capacity or soil albedo. Soil available water capacity 

was estimated using the pedotransfer function developed by Saxton and Rawls (2006). Soil albedo was 

estimated using the ranges mentioned by Dobos (2003). Climate data, including gridded (10 km resolution) 

daily precipitation and daily maximum and minimum temperatures for 63 years (1950-2013) was generated 

by  Natural Resources Canada (NRCAN) using thin-plate smoothing splines (McKenney et al., 2011; 

McKenney et al., 2013) and was provided by Ouranos, a consortium on regional climatology and adaptation 

to climate change. 

Streamflow quantity (daily interval) and quality (monthly sampling interval) data for the MCW, 

collected between 1978-2014 at the watershed outlet, were provided by the UTRCA (Figure 1).  Monthly 

load estimates of sediment and nutrients (TP, NO3
-) were determined using Flux32 and a regression applied 

to individual daily flows (Method 6) based on the procedure developed by Walker (1996). The mean 
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coefficient of variation was subsequently calculated as a measure of error to asses if SS, TP, and NO3
- would 

be suitable for modelling. 

2.3.3 SWAT set-up and calibration 

To delineate subbasins, the automatic watershed delineation option in ArcSWAT with the 

recommended threshold drainage area and a stream network created by the UTRCA. Land use, soil, and 

slope were subsequently overlain to create hydrologic response units (HRUs) and a minimum area threshold 

of 10/15/15 percent respectively was applied to reduce the number of HRUs to 318 with 19 subbasins. For 

the creation of the HRU management files, crop rotations were assumed to have minimal effect on the 

overall hydrology. Given that HRUs were not spatially explicit within the subbasin and eventually cycled 

back to the original crop, it was assumed that there would be minimal effect on nutrients over a longer term. 

Using the AAFC crop inventory data from 2011-2014, a crop rotation map was created through ArcMap 

overlay and it was determined that the dominant crop rotation was corn-soybean-winter wheat. 

Representative tillage systems and fertilizer application rates for each crop were developed based on the 

dominant rotation (UTRCA and Wanhong Yang, personal comm.). Yearly estimates of manure production 

in the watershed were calculated based on livestock statistics for the MCW, and all manure was divided up 

amongst the corn HRUs to fulfill N needs. A tile drainage map obtained from LIO (Ministry of Agriculture, 

Food and Rural Affairs, 2015) was used to determine the distribution in the watershed. Given that the full 

extent of tile drainage within Ontario is not known and the abundance of tile drains in the watershed is not 

known, all cash cropped HRUs within the MCW were assumed to be tile drained. Tile drainage parameters 

including depth to subsurface tile drain (DDRAIN= 900 mm), time to drain soil to field capacity (TDRAIN= 

24 hours), and tile drain lag time (GDRAIN = 12 hours) were set based on what is typically observed in 

Ontario. 

For sensitivity analysis, calibration, and validation of the model, the SWAT- Calibration and 

Uncertainty Programs (SWAT-CUP) software package was used with the SUFI-2 algorithm for parameter 

calibration (Abbaspour, 2015). This program is a stochastic auto-calibration software, which is widely used 
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in studies around the world (Ekstrand et al., 2010; Rouholahnejad et al.  2014). The SWAT model has a 

large number of parameters that can be calibrated (Arnold et al., 2012a). To reduce the number of 

parameters used in calibration to only the most sensitive and avoid over-parametrization, global sensitivity 

analysis (GSA) and one-at-a-time sensitivity analyses (OATSA) were performed on 72 parameters. For 

GSA, SWAT-CUP uses multiple regression analyses and employs a p-value and t-stat statistic (Student's t‐

distribution) to indicate the sensitivity (Abbaspour, 2015). For OATSA, each parameter is tested 

individually; all other parameters remain fixed to the default values and the model is run three times. 

Parameter sensitivity is calculated with: 

                                                                   𝑃𝑎𝑟𝑆𝑒𝑛𝑖 =
50×|𝑌𝑖−𝑌𝑖−1|

(𝑌𝑖+𝑌𝑖−1)
                                                            [1] 

where Yi is the value of the objective function for simulation run i (Veith & Ghebremichael, 2009). GSA 

parameters were selected for calibration if the p-value was less than 0.05 and the t-stat was larger than 1.5. 

Results from OATSA were also considered if the sensitivity was larger than 0.05 and it caused an increase 

in the objective function. Additional consideration was given to parameters that met at least half the above 

criteria from each of the sensitivity analysis types.  

The data used for calibration were from 2006 to 2010, and the data used for validation were from 

2011 to 2013, to capture both wet and dry years, both on a monthly time step with a 3-year warm up period 

to mitigate the effect of initial conditions. At the watershed outlet, observed flow, SS, NO3
-, and TP 

variables were calibrated sequentially  with multiple iterations (3-5) using SWAT-CUP until there was only 

a marginal increase in the objective function, which was the Nash-Sutcliffe coefficient of model efficiency 

(NS). To measure the performance of the fitted parameters set and model during the calibration period, NS 

and the percent bias (PBIAS) was used and evaluated based on criteria developed by Moriasi et al. (2007b). 

PBIAS proved a useful statistic in conjunction with the NS because it provides a percentage describing how 

much the model over or under estimated a variable. 
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2.3.4 Future climate scenarios 

To assess the impact that climate change will have on water quality and quantity, a bias corrected 

GCM ensemble was developed and coupled with the parameterized SWAT model simulated from 1980-

2100, while keeping land use and management constant. A climate ensemble consists of multiple GCMs 

and (sometimes emission scenarios) that are combined and used in analysis to reduce the uncertainty 

associated with future climate projections (Fowler et al., 2007; Honti et al., 2014). The bias corrected GCM 

ensemble consisted of a 10km x 10km gridded daily temperature (max and min) and precipitation dataset 

provided by Ouranos, a consortium experienced in climate sciences, modelling, and developing regional 

climate projections for researchers (Ouranos, 2018).  

To develop the climate change scenarios used in this study all available CMIP5 global climate 

models with precipitation, minimum temperature, and maximum temperature were obtained (Taylor et al., 

2013). For each model, two emission scenarios known as Representative Concentration Pathways (RCP; 

Meinshausen et al., 2011) were used to drive each of the GCMs. Each RCP is named after the amount of 

net radiative forcing (W/m2) expected by 2100 due to projected GHG emissions. In this study, the two 

RCPS selected were RCP4.5 and RCP8.5, where RCP8.5 is the worst-case scenario (i.e. no implementation 

of policies to mitigate climate change) in terms of GHG emissions and concentration trajectories. The 

RCP4.5 emission scenario represents a stabilizing radiative forcing by 2100 due to implementation of GHG 

emission prices and represents a more optimistic representation of future GHG concentrations. 

To reduce the number of scenarios and retain maximum uncertainty coverage in changes of 

temperature and precipitation in the future, k-means cluster analysis was used on all the CMIP5 GCMs with 

the RCP4.5 and 8.5 emission scenarios (Casajus et al., 2016). The 22 retained simulations were ordered in 

such a way that each subsequent scenario in the selection sought to maximize uncertainty coverage. To 

reduce SWAT model input/output processing time and still capture the uncertainty associated with climate 

model outputs, the first 10 scenarios from the final selection were chosen for the final ensemble and the 

remaining 12 in the 22 simulations were not used. The selected simulations are listed in Table 2.1. To create 
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the ensemble of catchment-scale future climate scenarios, data was empirically downscaled using the 

gridded NRCAN (10 km) interpolated station data and the quantile mapping method (Mpelasoka and 

Chiew, 2009).  

Table 2.1. General Circulation models used in this study after using K-means clustering to reduce the final 

number of future climate scenarios. Models were obtained from the World Climate Research Programme’s 

Coupled Intercomparison Project phase 5 (CMIP5). 

GCM 

abbreviation 
Institute ID RCP Description 

INM-CM4 INM 4.5 and 8.5 Institute for Numerical Mathematics 

GFDL-

ESM2M 
NOAA GFDL 4.5 NOAA Geophysical Fluid Dynamics Laboratory 

MPI-ESM-LR MPI-M 4.5 and 8.5 
Max-Planck-Institut für Meteorologie (Max 

Planck Institute for Meteorology) 

CanESM2 

 CCCMA 4.5 and 8.5 
Canadian Centre for Climate Modelling and 

Analysis 

ACCESS1.3 CSIRO-BOM 4.5 and 8.5 

Commonwealth Scientific and Industrial 

Research Organization (CSIRO) and Bureau of 

Meteorology (BOM), Australia 

BNU-ESM GCESS 8.5 
College of Global Change and Earth System 

Science, Beijing Normal University 

2.4 Results and discussion 

2.4.1 Model calibration and validation 

After sensitivity analysis, the 73 parameters were reduced to those considered the most sensitive to 

flow at the watershed outlet (23) and sediment and nutrient loads (18; Table A.1). By adjusting these 

parameters within their realistic maximum and minimum ranges in SWAT-CUP, an acceptable model was 

achieved.  For the calibration and validation periods, the timing of observed peak flows matched the 

simulated values. Based on the criteria devolved by Moriasi et al. (2007b) all calibrated and validated 

variables (Table 2.2) had a satisfactory performance rating or above, with flow having a very good 

performance rating with respect to the NS and a good rating based on the PBIAS. During calibration and 

validation, the overall performance rating for SS was good, while TP and NO3
-  were satisfactory with 

respect to the NS.  The model’s PBIAS for sediment and nutrient variables had a very good performance 

rating in both the calibration and validation period. 
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Table 2.2. Performance statistics for each of the calibrated variables in the SWAT model 

Variable 
Calibration Validation 

NS PBIAS NS PBIAS 

Stream Flow 0.87 -10.2 0.81 -10.9 

Suspended Sediment 0.75 2.2 0.62 -14.8 

Nitrate 0.61 -0.2 0.57 3.9 

Total Phosphorus 0.62 17.9 0.52 14.8 
 

2.4.2 Future and baseline climate simulations 

In the analysis of the forecasted climate ensemble (2080-2100) relative to the baseline (1990-2010), 

the projected climate data provided by Ouranos was grouped by seasons, as the data displayed similar trends 

within a season. Although the climate simulations are not an output of the current study, they are briefly 

summarized here to provide context and explain simulated changes in water balance, flow, nutrient, and 

sediment export. The future climate scenarios used in the current study project mean annual temperatures 

to increase by 0.9 to 3 degrees Celsius by 2050, and 1.3 to 7.1 by 2100.  Additionally, the downscaled GCM 

ensemble in the current study (Figure 2.2) shows greater temperature increases in winter than in summer 

(Table B.4). These estimates are comparable to previous research that projected mean annual air 

temperatures in the Lake Erie basin to increase by 2.4 to 7.2 ˚C by 2080 (McDermid et al., 2015). Climate 

change projections from the Canadian Coupled Global Circulation Model’s (CGCM2) A2 scenario also 

predict seasonal differences in air temperature changes, where the average change in temperature by 2080 

will be 4-5 ˚C in winter and 2-3 ˚C in the summer seasons (Columbo et al., 2007).   
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Figure 2.2. Probability density function of the exponentially fitted distribution of daily precipitation (top 

panels) and kernel fitted distribution of daily temperature (bottom panels) for the ensemble of two future 

climate scenarios (red, green) from 2080-2100 compared to the average baseline observed from 1990-2010 

(black). 

As a result of temperature changes in southern Ontario, shorter winters, longer growing seasons, 

and more extreme heat waves in summer are expected (Reid et al., 2007). This is corroborated by the results 

of the current model projections (Figure 2.2), where there is a shift in the distribution to the right of the 

baseline for both groups, indicating an increase in the probability of extreme temperatures and a decrease 

in lower temperatures in all seasons.  

Local GCM precipitation outputs have an inherent uncertainty and are difficult to compare because 

they vary depending on the climate model structure, scaling technique, geographical differences (i.e. 

landform, elevation, proximity to water, etc.), natural variability, and GHG emission scenario used (Giorgi, 

2010). In addition, precipitation predictions (unlike temperature) from downscaled climate models tend to 

be controversial because they do not account for non-stationarity of climate model bias corrections (Chen 

et al., 2015). The above factors must be taken into consideration when interpreting the projected impacts of 

climate change and comparing studies in geographically dissimilar regions. Annual projections for the 
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Great Lakes Basin indicate an average annual increase of 106 mm for the RCP4.5 and RCP8.5 scenarios 

by 2080 (McDermid et al., 2015), which is comparable to the average of the ensemble projections in the 

current study (Figure 2.3a) that indicate a 90 mm annual precipitation increase (Table B.4). Although a 

mean annual increase of 90 mm is projected, there is considerable variability across the simulations (due to 

the biases described above).  

Currently, climatic conditions in the NGS are an important factor contributing to total annual water 

yields and nutrient export in southern Ontario (Macrae et al., 2007; Van Esbroeck et al., 2017). The future 

climate ensemble in winter and spring unanimously predict increases in the frequency and magnitude of 

extreme precipitation events (Figure 2.2) and a significant increase in precipitation volumes (Figure 2.3b 

and c). Furthermore, due to temperature changes, there will be a greater proportion of precipitation as rain, 

with more snowmelt events (Marianne et al., 2003). There is more variability in precipitation projections 

for the summer period, where the ensemble average indicates an increase in precipitation volumes (Figure 

2.3a), contrary to other studies (McDermid et al., 2015; Verma et al, 2015).  However, this increase is not 

unanimous among all scenarios in the ensemble due to the variability associated with the change in 

frequency and magnitude of precipitation events relative to the baseline period (Figure 2.2), and the 

uncertainty associated with climate models during these seasons (Giorgi, 2010). This is corroborated by 

King et al. (2012) who projected that summer precipitation could either increase or decrease in the UTRB. 

Overall, the projected shifts in precipitation and temperature distributions in Figure 2.2 indicate a shift 

towards longer dry periods between events, further increasing drought risk, with drought periods interrupted 

by more extreme rainfall.  

2.4.3 Water balance and stream flow changes 

2.4.3.1 Annual and seasonal changes in flow paths 

As noted above, the future climate ensemble projects that by the 2080-2100 period, the average 

annual precipitation will increase by 90 mm (range: 4 to 205 mm), and changes will be most pronounced 
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during winter. The SWAT model predicts ET to increase on average by only 50 mm (range: 6 to 88 mm), 

resulting in an increase in surplus water. Consequently, the model predicted that water yield would increase 

by an average of 38 mm (range: -4 to 114 mm) annually by the 2080-2100 period (Figure 2.3a, f, k, and 

Table C.5). Seasonally, the future climate ensemble predicted that water yield would increase in winter and 

summer, but decrease in the spring and fall (Figure 2.3) (with the exception of the RCP4.5 group that 

predicted an increase in spring, Figure 2.3m). In winter, the model predicted a large increase in subsurface 

flow through tiles and a simultaneous decrease in surface runoff for both RCP groups (Figure 2.4b, g, and 

l), whereas in spring projected changes are much smaller (Figure 2.4c, h, and m), although water surpluses 

are large (Precipitation change>ET).   In contrast, projected water balance changes in summer and fall 

months are small relative to winter and spring, have greater variability, and are generally not significant , 

with the exception of fall ET and water yield, and summer tile flow (RCP8.5 group; Figure 2.3 and 2.4).  
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Figure 2.3. Annual and seasonal precipitation, ET, and water yield for the historic (0 forcing; 1990-2010) 

and future climate periods (RCP4.5 and 8.5 forcing; 2080-2100). Color indicates the climate model, when 

outside of the interquartile range. * indicates significant difference (p<0.05) from historic model based on 

two-tailed Student t-test and ^ indicates significant difference (p<0.05) between forcings from unpaired 

two-sample Student t-tests. 

In winter, the model predicts increased tile flow because air temperatures in the future climate are 

warmer, which leads to modification of the soil frost extent and the dominant flow pathways in winter. As 

the surface air temperature becomes increasingly higher, there will be an increase in the number of days 

that soil temperatures are above freezing, which was corroborated for other areas in the region (Sinha & 

Cherkauer, 2010). Within the model, this will result in increased infiltration and subsurface activity causing 

surface runoff decreases and soil water storage depletion. This is also supported by Jyrkama & Sykes 
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(2007), who predicted increased infiltration and groundwater recharge in a southern Ontario watershed due 

to decreased ground frost, making soil freezing dynamics an important factor controlling projected pathway 

losses (Xiuqing & Flerchinger, 2001).  

 

Figure 2.4. Annual and seasonal surface runoff, tile flow, and groundwater for the historic (0 forcing; 

1990-2010) and future climate periods (RCP4.5 and 8.5 forcing; 2080-2100). Color indicates the climate 

model, when outside of the interquartile range. * indicates significant difference (p<0.05) from historic 

model based on two-tailed Student t-test and ^ indicates significant difference (p<0.05) between forcings 

from unpaired two-sample Student t-tests. 

Although there were large water surpluses in spring (precipitation > ET = 16 mm), a significant 

change in surface runoff was not observed during this period. This is likely a result of increased hydrologic 

activity in winter that lessens the potential for saturation overland flow in spring. Indeed, as temperatures 
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increase in winter, the amount of precipitation as snow and snowpack will decrease, spring melt will occur 

earlier (Demaria et al., 2016), and the large tile flow increases in winter will decrease the water availability 

in spring. This is somewhat corroborated by surface runoff increase in spring for the RCP4.5 GFDL-

ESM2M scenario (Figure 2.4c), which had the smallest tile flow increase in winter (Figure 2.4l). 

2.4.3.2 Annual and seasonal changes in flow  

Overall, results indicate that there will be a definitive but varying flow magnitude increase for the 

high stream flow regime and decrease for the low flow regime in all seasons (Figure 2.6). This corresponds 

to an average annual flow decrease (12%), which has been similarly predicted in another study (Cousino et 

al., 2015). For all scenarios in winter and spring, flows occurring at 50% exceedance probability will 

decrease relative to the baseline period, indicating a reduction in the median flow (8% and 12% decreases 

respectively) and average flow (Figure 2.5).  In summer, for all scenarios there will be much higher flows 

occurring up to 15 percent exceedance when compared to the baseline period, with all scenarios less than 

the baseline not until 40 percent exceedance. The extent of high stream flow regime increases are reflected 

by variability in the average flow projections (Figure 2.5). Fall behaves similarly to summer except there 

is a bit more variability for the flow magnitudes occurring from 30 to 80 percent exceedance (Figure 2.6). 

In this range, most of the flows become higher at around 50 percent exceedance indicating an overall median 

flow increase, which is contrary to the average flow (Figure 2.5), and therefore also indicative of variability.  
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Figure 2.5. Average stream flow changes by season for all scenarios (black line) with each individual 

scenario grouped by RCP. All were during the period 2080-2100 and values are the difference between 

the projected and the observed from 1990-2010. 

In winter, considering the overall decrease in surface runoff and increase in subsurface flow, this 

will result in attenuation of the stream response time to a precipitation event, reducing stream flows. In 

spring, stream flow decreases the most due to the previously mentioned causes of the change in the winter 

and spring water balance combined with the changing precipitation patterns. In winter and spring, increased 

frequency and magnitude of more extreme daily precipitation events, will increase runoff intensity and the 

magnitude of the infrequent peak flows, which is opposing for the low flow regime that responds to smaller 

precipitation events decreasing in magnitude and frequency, but generally have a greater probability of 

occurring.  

In summer, the precipitation magnitude and frequency changes seen in Figure 2.2 are not the only 

factors influencing the high flow regime given that all scenarios show increases over a large range of 

exceedance probabilities.  Due to changes in the timing of precipitation, there could be potential for a greater 

segregation of extremely wet (increased precipitation) and dry periods resulting in surface runoff pattern 

changes. This corroborated by the large discrepancy between the baseline and future scenarios at low flow 

conditions, which indicates a potential increase in the risk of drought conditions and decrease in soil storage 

(Figure 2.6). SWAT uses the SCS curve number updated daily based off daily plant evapotranspiration 
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(PET) to estimate direct surface runoff. Therefore, in fall, the projected increase in ET greater than 

precipitation will result in water deficiency, reduced surface runoff volumes, and average flow. As a result, 

in comparison to summer, surface runoff will have less influence on the high stream flow regime, and the 

precipitation pattern changes will reduce the percent of time during which all of the scenarios have high 

flows that are greater than the baseline period from 15 to 3.5 percent of the time. 

 

Figure 2.6. Flow duration curves for the watershed outlet with daily flow in 1990-2010  and for 2080-2100 

in each season and future climate  scenario 

2.4.4 Nutrient and sediment loads in the future climate 

2.4.4.1 Nitrate Export 

The model predicted a significant increase in annual nitrate loads and flow-weighted mean 

concentrations (FWMC; Figure 2.7a and f).  In winter, median nitrate loads increased from 8 Kg ha-1 to 

14.1 Kg ha-1 (77% increase), and FWMCs from 4.5 mg/L to 8.6 mg/L (91% increase) in the 2080-2100 

period. The median spring loads decreased from 9.2 Kg ha-1 to 8.8 Kg ha-1 (4.2% decrease), and increased 

FWMCs from 5.3 mg/L to 6.8 mg/L (28.3% increase), with changes in load varying from -3.6 to 2.6 Kg ha-
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1 between scenarios (Figure 2.7c). In summer and fall, we see increases in the NO3
- loads, (1.1 and 1.5 Kg 

ha-1 increases respectively), but these are much smaller changes than are predicted in winter.  

The increase in the annual and seasonal loads and FWMCs can be attributed to the changes 

occurring in the NGS. Since NO3
- is highly mobile in the subsurface, tile drains are known to contribute a 

large proportion of the total NO3
-  loads to streams (Arenas Amado et al., 2017). This results in increased  

NO3
- losses (Figure 2.7b) due to the large tile flow increase in winter (Figure 2.4l) and a shift in the timing 

of residual soil nitrogen (RSN) remobilization towards the winter months. In spring, results suggest that 

extent of tile flow increases and soil water depletion in winter will cause the variability in spring loads. For 

example, the RCP 4.5 GFDL-ESM2M scenario had the smallest winter tile flow increase (Figure 2.4l), 

which corresponds with the largest spring tile flow (Figure 2.4m) and NO3
- load increase (Figure 2.7c).   

In summer, NO3
-  loads increase slightly due to tile flow, small median flow increases at the outlet, 

and large increases in the FWMC because of potentially longer periods between precipitation events 

initiating subsurface flow and high flow conditions. This could cause greater accumulation of NO3
-  in the 

soil before it is flushed during the next storm event and exported via tiles (Van Meter et al, 2016; Vidon et 

al., 2009). In fall, load and FWMC increases are similar to summer, yet most flow pathways are decreasing, 

which indicates that the interactive effects of mineralization and decomposition of organic matter, a 

dominant NO3
- process in SWAT (Mehdi et al., 2016), and timing of high flow conditions are important. 

However, more analysis is needed to understand changes in export patterns and the exact contribution each 

pathway or process is contributing to the majority of these changes throughout the season. 
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Figure 2.7. Boxplots for NO3
- loads and FWMC at the watershed outlet in 2080-2100 grouped seasonally, 

annually, and by GCM forcing (RCP4.5 and 8.5). With forcing “0” representing the historic period (1990-

2100). Color indicates the climate model, when outside of the interquartile range. * indicates significant 

difference (p<0.05) from historic model based on two-tailed Student t-test and ^ indicates significant 

difference (p<0.05) between forcings from unpaired two-sample Student t-tests. 

2.4.4.2 Suspended Sediment Export 

In contrast to NO3
-  loads, which the model predicted would increase in winter and decrease in 

spring by the 2080-2100 period, SS loads were predicted to decrease in both winter (8.1 Kg ha-1; 10%) and 

spring (16.1 Kg ha-1; 24%; Figure 2.8) along with FWMC (Figure 2.8). This reduction is mostly driven by 

reduced surface runoff and stream flow, which decreases hillslope sediment supply and sediment transport 

capacity in the stream. Within the model, surface runoff increases SS export from the HRUs. It is interesting 

to note that the model predicted that spring would have a substantial decrease in SS loads compared to 

winter, despite the smaller decrease in surface runoff.  This may be partially driven by earlier crop growth 

in spring, which would lessen SS losses from fields. However, winter SS loads vary from -32 to 18 Kg ha-
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1 despite the fact that a substantial decrease in surface runoff is projected, which suggests that streamflow 

may be a more important controlling factor.  

In contrast to the projected reductions in SS loads in winter and spring, the model predicted that 

summer and fall SS loads will increase, offsetting the winter/spring increases and resulting in no significant 

annual change (Figure 2.8a). In summer, there will be significant increase in the median SS loads (20 Kg 

ha-1; 340%) and FWMC by the 2080-2100 period (Figure 2.8d and i). This should be expected given the 

combination of increased surface runoff and average stream flow. In fall, loads have a significant median 

increase of 17.5 Kg ha-1 (195%) and this corresponds to a 25 mg/L (95%) FWMC median increase for all 

scenarios by the 2080-2100, despite the fact that flow and water balance changes are small and variable, 

which makes the reason for the fall changes less clear. These changes may be driven by higher intensity 

rainfall and shifts between wet and dry periods, which would not lead to an increase in overall flow but 

could lead to elevated losses of SS during peak flow events. 
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Figure 2.8 Boxplots for SS loads and FWMC at the watershed outlet in 2080-2100 grouped seasonally, 

annually, and by GCM forcing (RCP4.5 and 8.5). With forcing “0” representing the historic period (1990-

2100). Color indicates the climate model, when outside of the interquartile range. * indicates significant 

difference (p<0.05) from historic model based on two-tailed Student t-test and ^ indicates significant 

difference (p<0.05) between forcings from unpaired two-sample Student t-tests. 

2.4.4.3 Total phosphorus 

In winter and spring, the model predicted a median increase in TP loads for all scenarios by 0.07 

(31%) and 0.025 (19%) Kg ha-1 respectively (Figure 2.9b and c). Changes in TP would be expected to 

behave similarly to SS and surface runoff given that the SWAT model lacks a subsurface P transport 

component (Neitsch et al., 2011). Although TP loads and FWMC did not decrease, some similarities are 

found between SS and TP export. For example, the model scenario with the smallest decrease (or an 

increase) in SS and surface runoff were associated with increased TP export. Overall, results suggest an 

increased potential for changing climate to alter TP:SS export ratios in winter and spring, causing median 

FWMC in winter to increase by 0.05 (39%) and 0.033 (37%) mg/L in spring (Figure 2.9g and h). A plausible 

reason for these changes would be the increase in high flows, which are known to increase P transport 



42 

 

(Royer et al., 2006). Large surface runoff and precipitation events associated with these increased peak 

flows could flush P accumulated in the soil between smaller events.  It is possible that more fine-grained 

material, which is enriched in P, or, dissolved P species are being mobilized, which would not lead to an 

observed increase in SS. This is supported by the fact that there is a sensitivity of solution P export in 

SWAT to increased precipitation intensity (Michalak et al., 2013), and, there may be an increase in solution 

P resulting from increased decomposition and mineralization of organic residue due to temperatures and 

soil moisture increases.  

In summer and fall, load changes are significantly greater relative what is typically observed in 

these seasons with increases of 0.023 (200%) and 0.02 (121%) Kg ha-1, respectively (Figure 2.9d and e). 

Although these increases are large, they are considerably smaller than what is observed in the winter (200% 

greater).  Results suggest that TP will primarily be exported with SS due to their coordinated increase. 

Within the MCW, water quality conditions are ranked using a standardized grading system developed by 

Conservation Ontario. The current overall surface water quality condition has a score of D with not much 

change occurring since 2005; however, P levels have improved but are still at levels 4 times the provincial 

aquatic life guidelines (0.03 mg/L). In the final period (2080-2100) concentrations are expected to increase 

by 0.042 mg/L in winter and spring, which is almost 1.4 times water quality guidelines. 
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Figure 2.9. Boxplots for TP loads and FWMC at the watershed outlet in 2080-2100 grouped seasonally, 

annually, and by GCM forcing (RCP4.5 and 8.5). With forcing “0” representing the historic period (1990-

2100). Color indicates the climate model, when outside of the interquartile range. * indicates significant 

difference (p<0.05) from historic model based on two-tailed Student t-test and ^ indicates significant 

difference (p<0.05) between forcings from unpaired two-sample Student t-tests. 

2.5 Conclusions 

In this study, the SWAT model forced with an ensemble of future climate change scenarios were 

used to evaluate the implications of seasonal changes in climate on water quality in the MCW, in 

southwestern Ontario. Land use and management practice inputs were static through time, which is a 

limitation since population increases are, expected (Ministry of Finance, 2017), followed by increased 

urbanization, which would increase the impervious surface area, further exacerbating surface runoff and 

the projected P loading problems we see (Labeau et al., 2014). Furthermore, as global needs change, 

prevailing crop types will shift and as a result changes in management practices and fertilizer application 

rates will change.  
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Given increased temperatures and precipitation, seasonal shifts in temperature, and increased 

frequency of extreme rainfall, SWAT predicted annual increase in water yield, NO3
-  (9; Range: 4 to 11 Kg 

ha-1), TP (0.14; Range: 0.01 to 0.47 Kg ha-1), SS (5; Range: -17 to 52 Kg ha-1), and decrease in average 

flow (12; Range: 5 to -23%) by the 2080-2100 period. Generally, these changes were controlled by changing 

precipitation characteristics and flow paths in the NGS that also affected stream flow regimes, increasing 

peak flows. In winter, there was a large increase in subsurface flow (mostly tile flow), potentially due a 

decrease in the soil frost extent and more precipitation as rain due to warmer temperatures, decreasing 

surface runoff and the average streamflow.  While in spring, the shift in seasonality decreased surface runoff 

and streamflow, potentially due to less snowpack and water availability. These changes result in a shift in 

nutrient export timing towards winter, which had the greatest increase in nutrient export. 

Due to the variability between some of the GCM outputs, this study highlights the importance of 

including multiple climate change scenarios to capture uncertainties in climate model projections. In 

addition, the resulting increase in loads during the NGS cannot be ignored. It is clear that we need to 

prioritize an increased understanding of the shift in seasonality and its effect on the NGS nutrient export 

behavior to reduce non-point source loads. Agricultural management practice development and reduction 

targets cannot be static, decision makers need to consider the effect a changing climate will have, especially 

in the NGS. 
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Chapter 3 - Controlled tile drainage impacts on field scale runoff pathways 

and phosphorus losses in southern Ontario  

3.1 Overview 

Agricultural fields are major contributors to non-point source nutrient contamination and eutrophication, 

resulting in more frequent occurrences of harmful algal blooms and degraded water quality. To address this 

issue, numerous best management practices (BMPs) have been implemented to mitigate nutrient export 

while maintaining agricultural productivity; however, the efficacy of individual BMPs is uncertain. 

Controlled tile drainage (CD) is one BMP that has the potential to reduce nitrate and phosphorus export via 

tile drains. However, with CD, little is known about water quality trade-offs, such as the increased potential 

for surface runoff and the associated nutrient export, and if different types of CD management may 

influence the potential for these trade-offs to occur. In this study, the Soil Water Assessment Tool (SWAT) 

was used to create a model for a clay loam field site in southern Ontario to examine the impact of CD on 

runoff pathways and edge-of-field total phosphorus (TP) export. CD management depths of 500 mm were 

compared to freely drained (840 mm) conditions, and the use of CD both continuously and seasonally was 

assessed. Results indicate that CD practices of keeping drain invert raised longer throughout the year will 

have a tendency to increase TP export in runoff (4 to 13% increase) due to increased overland flow. 

However, most of these losses occur during the non-growing season due to wetter soil conditions, increasing 

the potential for saturation excess overland flow. Due to drier soils, the use of CD only during the growing 

season can reduce this risk, but will do little to reduce edge-of-field losses given that tiles are not the primary 

TP pathway at the site. This work highlights the need for improved understanding of all water quality 

tradeoffs associated with BMPs, particularly during the non-growing season. 

3.1 Introduction 

The eutrophication of fresh water sources has become a major issue affecting ecosystem health and 

economic prosperity in southern Ontario (Bingham et al., 2015; Diaz, 2001; Ludsin et al., 2013). In 

freshwater systems, this issue is largely caused by non-point source (NPS) phosphorus (P) contamination, 

originating from agricultural landscapes (Scavia et al., 2014).  In a large majority of agricultural fields 
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where soils are poorly drained, tile drains have become a necessary best management practice (BMP) used 

to drain the excess soil water to increase crop productivity and trafficability (Irwin, 1977; Skaggs et al., 

1994). The introduction of this pathway modifies hydrology by increasing the proportion of annual 

precipitation transported through the subsurface to streams (King et al., 2015), reducing the amount of 

surface runoff (Muma et al., 2016), and therefore, often decreasing total edge of field TP losses (Ball Coelho 

et al., 2012; Haygarth et al., 1998). Indeed, higher concentrations of TP are typically found in surface runoff 

(McDowell et al, 2001; Van Esbroeck et al., 2017). However, subsurface flow can be enhanced by 

macropores that increase the connectivity between surface soils and tile drains (Simard et al., 2000), 

increasing concentrations of particulate phosphorus (PP) (Uusitalo et al., 2001) and soluble reactive 

phosphorus (SRP; Pease et al., 2018), and thus P loads through tiles (Kung et al, 2000). Tile drains can also 

have greater nitrate (NO3) loads (Royer et al., 2006) relative to surface runoff, which is problematic in the 

Mississippi River watershed as the hypoxia in the Gulf of Mexico is driven by nitrate (Rabotyagov et al., 

2014). Thus, it has been argued that tile drains may exacerbate water quality issues, rather than improve 

them. Consequently, some managers and land stewards have recommended the use of controlled tile 

drainage (CD) to mitigate P losses.  

Controlled drainage permits control of water table position and soil water storage using a series of gates 

installed near the tile network outlet that can be raised or lowered. This results in decreased tile flow, which 

leads to a reduction in P and NO3 loads from tiles (Ale et al., 2012; Lalonde et al., 1996; Lavaire et al., 

2017; Skaggs et al., 2012; Sunohara et al., 2016; Tan & Zhang 2011; Wesström et al., 2014; Williams et 

al., 2015; Youssef et al., 2018) and fecal pollution (Wilkes et al., 2014). Additionally, when using CD 

during the growing season, this can decrease plant water stress, which increases crop yields (Poole et al., 

2013; Sunohara et al., 2016), thereby providing economic benefits (Crabbé et al., 2012). Finally, CDs can 

provide N reduction benefits through increased denitrification due to the creation of anaerobic conditions 

(Skaggs et al., 2010; Wesström & Messing, 2007). Although CD has the potential to improve water quality 

in subsurface drainage, few studies have considered potential water quality tradeoffs such as increased 
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surface runoff, which may increase total phosphorus (TP) loads and impact SRP:TP ratios (Riley et al., 

2009; Ross et al., 2016; Tan & Zhang 2011; Zhang et al., 2017). Moreover, in cool temperate climates such 

as the Great Lakes region, many landowners do not employ controlled drainage during the non-growing 

season (NGS) due to the potential for ground frost to damage tile drains. Given that the majority of annual 

runoff and P loss in the Great Lakes region of North America occur during the NGS (Macrae et al., 2007b; 

Van Esbroeck et al., 2017; Williams et al., 2016), it is unclear if and how CD may affect year-round runoff 

and nutrient losses from fields.   

The potential for CD to mitigate year-round nutrient losses can be investigated using modelling 

techniques such as the Soil Water Assessment Tool (SWAT; Arnold et al., 2012a), DRAINMOD (Skaggs, 

1978), or the Agricultural Drainage and Pesticide Transport model (ADAPT; Alexander, 1988), as they 

permit simulation of the natural environment under variable conditions.  Indeed, models are frequently used 

in conjunction with field observations to inform decision makers on the practicality of different BMPs.  

However, most models lack the combination of tile flow, macropore flow, controlled tile drainage, and 

subsurface TP and soluble reactive phosphorus (SRP) export routines (Qi & Qi, 2017), confounding our 

ability to determine how drainage management may impact water quality. A new tile drainage modeling 

routine (H-K-DC), recently added to SWAT (in Revision 495) was added improve our consistency in 

simulating tile drainage (and controlled drainage) in the SWAT model. The H-K-DC routine is based on 

equations developed by Kirkham (1957) and Hooghoudt (1940), which are used in DRAINMOD (Moriasi 

et al., 2007a). The new H-K-DC routine has not yet been employed extensively across different regions and 

scales (Bauwe et al., 2016; Boles et al., 2015; Guo et al., 2018; Ikenberry et al., 2017; Malagó et al., 2017; 

Moriasi et al., 2012, 2013). However, given that tile drains dominate the agricultural landscape in southern 

Ontario, confidence through testing of these routines will be important to future studies.  

Therefore, the objectives for this study are to: (1) Calibrate a single HRU SWAT model of a field site 

in southern Ontario, Canada to demonstrate the capability of the SWAT and the H-K-DC routines to 

accurately simulate tile flow and surface runoff; and (2) Simulate the impact of CD on flow path partitioning 
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using the SWAT HRU model and estimate the impacts of these changes on edge-of-field TP and SRP losses 

using field data. 

3.2 Methods 

3.2.1 Field site description 

The Londesborough site (LON) is a small ~8.1 ha field located in southwestern Ontario, Canada 

(43°38'33.0"N 81°24'42.6"W; Figure 3.1), within the Maitland Valley watershed that drains in to Lake 

Huron. Londesborough has a humid continental climate with an elevation above sea level of ~350 m. Long-

term (1981-2010) climate normal for the region are mean temperatures of -5.3 ˚C in winter (December to 

February), and 19.2 ˚C in summer (June-August), with mean annual precipitation amounts of 1245 mm 

(374 mm as snowfall from October to April) (Environment and Climate Change Canada, 2018a). The 

current study uses a dataset collected over the 2012-2015 water years (Oct 1 – Sept 30). Weather over this 

period was variable, with 3 of the 4 years receiving an average of 187 mm less than the 30-year average 

and one year receiving 241 mm more. Temperatures occurring throughout the study period were also 

variable, but consistent with long-term normals for the region.  

 

Figure 3.1. Location of LON in Ontario (grey), Canada (left) and other field site details (right; 

topography, observation station locations, and boundary). Also shows the location of the climate station 

used to supplement missing data at the field site (Jamestown). 
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Soil in the field is classified as a Perth clay loam (Plach et al., 2018), which is imperfectly drained. 

The average slope of the field site ranges from is 0.2 to 3.5%. Tile drains are installed within the field at ~ 

75-90 cm depth with a spacing of 14 m. The tile drainage system is restricted to the field site and does not 

receive inputs from adjacent fields. Within the field, 10 cm lateral tiles drain into a larger header tile at the 

field edge. The crop rotation is a corn (Zea mays L.), soybean (Glycine max L.), and winter wheat (Triticum 

aestivum L.), a rotation that is common in southern Ontario. The field is managed with a rotational shallow 

conservation till (vertical tillage to 5 cm depth). Soil test P concentrations are 16 ppm (Olsen P) in the top 

15 cm of soil. P is applied as monoammonium phosphate (MAP) via subsurface placement prior to corn 

(15 Kg P ha-1), and via surface broadcast following winter wheat harvest (92 Kg P ha-1), concurrent with 

the rotational till. Cover crops (red clover; Trifolium pretense L.) are planted in the spring (air seeded in 

April) in years during which winter wheat is cropped, and killed in October using an herbicide.   

1.2.2. Field Data Collection 

Hydrometric data are collected continuously (15-min intervals) at the field edge, year-round. 

Meteorological data (rainfall, air temperature, windspeed and direction, relative humidity, soil temperature 

and moisture) are recorded on-site using a standard meteorological tower (Onset Ltd.). Because the on-site 

weather station does not measure snowfall, precipitation data was obtained from a nearby weather station 

(Environment and Climate Change Canada, 2018b). Water table position is monitored continuously at the 

field edge using a pressure transducer in a 2 m deep well (ID 5 cm) (U20, Onset Ltd.). Surface runoff drains 

from the field via a single culvert (ID 45 cm) and tiles drain via a single header tile. Flow in both surface 

drainage and tile drainage are measured using depth-velocity sensors (Flo-tote, Hach Ltd.) and recorded on 

FL900 data loggers (Hach Ltd.). Water samples of surface and subsurface runoff are collected at high 

frequencies (2-8 hr intervals) during storm and thaw events, and periodically during baseflow (when tiles 

are flowing) using automated field samplers (ISCO) that are triggered by a flow response. Unfiltered 

samples are acidified to 0.2% H2SO4 (final concentration) and digested using acid persulphate digestions 
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and colorimetric analyses in the Biogeochemistry Lab at the University of Waterloo. For more detailed 

information on the field site and data collection, refer to Van Esbroeck et al. (2017). 

3.2.2 SWAT model description 

For the study, the SWAT2012, rev. 664 was used. SWAT is a semi-distributed, process/empirical, 

continuous time-step-based model capable of simulating hydrology, water quality, and plant growth 

(Arnold et al., 2012a). It requires detailed information related to climate, land use, soil, topology, and, 

depending on the watershed and project goals, detailed information about management practices.  

Management practices are added to the smallest spatial unit within the model, which is the HRU, a unique 

combination of soil, land use, and slope within each sub-basin.  

Within the most recent versions of SWAT, a new tile drainage routine (H-K-DC routine) was added 

by the developers that uses a combination of either the Hooghoudt or Kirkham equations depending on the 

water table depth (Moriasi et al., 2013). Tile flow only occurs once the perched water table rises above the 

drains (Neitsch et al., 2011). When the water table is below the soil surface and above the drains, the 

Hooghoudt equation (Hooghoudt, 1940) is used to calculate tile drainage flux: 

𝑞 =
8𝐾𝑚+4𝐾𝑚2

𝐿2
                                                [1]                                                                                 

Where q is the drainage flux (mm h-1), K is the lateral saturated hydraulic conductivity (mm h-1), d is the 

depth from the drains to the impermeable layer (mm), m is the midpoint water table height above the tile 

drains (mm), and L is the distance between drains (mm). When the water table eventually rises above the 

soil surface SWAT will use the Kirkham equation (Kirkham, 1957): 

𝑞 =
4𝜋𝐾(𝑡+𝑏−𝑟𝑒)

 𝑔𝐿
                                             [2] 

Where t is the perched water height above the soil surface (mm), b is the depth from soil surface to the tile 

drains (mm), re is the effective radius of the tile drain (mm), and g is dimensionless factor, see Kirkham 
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(1957). Finally, when the drainage flux is greater that the drainage coefficient, tile flux is set equal to the 

drainage coefficient (DRAIN_CO; mm d-1 ). 

3.2.3 SWAT HRU model setup 

3.2.3.1 Input data  

To create the SWAT model for LON consisting of only one HRU and subbasin all input files needed 

for a single HRU model were created and altered to ensure the model was representative of the field site. 

Some initial modifications were made to parameters usually initialized in the ArcSWAT model builder 

based on the available field data. For example, in the .sub input file the subbasin area (SUB_KM) was set 

to be equivalent to the field site surface runoff area (8.1 ha) and the input files linked with the subbasin file 

(.sub) were set to one of each input type. In the HRU input file (.hru), the fraction of subbasin area contained 

in HRU (HRU_FR) was set to one and the slope (HRU_SLP) was changed to 1.6%. This value is the mean 

slope of the field site calculated using the SWOOP digital elevation model (2 m resolution; Ministry of 

Natural Resources and Forestry, 2015).  

The soil input file (.sol) parameters were set and representative of the fields soil type (Perth clay loam), 

which was determined using the Ontario Soil Survey Complex data (1:50000 scale) obtained from the Land 

Information Ontario (LIO) database (Ministry of Agriculture, Food and Rural Affairs, & Canadian Soil 

Information Service, 2015). Soil layer data was available to a depth of 1100 mm, and had a bulk soil texture 

consisting of 27% clay and 25% sand. The pedotransfer function developed by Saxton and Rawls (2006) 

was used to estimate available water capacity, saturated hydraulic conductivity, and bulk density for each 

soil layer using the available texture data.  

Climate input data sets were made using the field site (Figure 3.1) rain and temperature data. During 

the months with snow and the part of the year in 2015 when there was no precipitation data, more was 

obtained from a nearby climate station to supplement the field site data and make a continuous precipitation 

data set (Jamestown, ON, 25 Km away; Figure 3.1; 43°48'09.1"N 81°11'01.0"W, Environment and Climate 
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Change Canada, 2018b). Agricultural management practices were input using reported field activities at 

the site (noted above), with the remainder of the parameters used in SWAT set to default before calibration. 

3.2.3.2 Calibration software description  

In this study, the Optimization Software Toolkit for Research Involving Computational Heuristics 

(OSTRICH) was used to auto-calibrate the SWAT model. This toolkit is able to function with any model 

that operates using text files and has many options to choose from with respect to the calibration and 

optimization algorithms available (Matott, 2017). During calibration, the Dynamically Dimensioned Search 

(DDS) algorithm was selected due to its computational efficiency and ability to determine a globally 

optimum solution within a selected number of iterations (Tolson and Shoemaker, 2007).  

To auto-calibrate the model both the percent bias (PBIAS) and the Nash–Sutcliffe model efficiency 

coefficient (NS) within OSTRICH, the general-purpose Constrained Optimization Platform (GCOP) were 

used. Within the GCOP module, the multiplicative penalty method (MPM) was selected to calculate the 

overall objective function, which is a combination of the system cost and the penalty function (Chan-Hilton 

and Culver, 2000). To determine the system and penalty cost associated with the applied constraints a 

MATLAB script was developed to extract model outputs and calculate response variables to use within 

OSTRICH after each iteration. 

3.2.3.3 Calibration and validation approach 

Monthly tile (2012-2015) and surface runoff (2013 and 2015) depths were determined from the 15-

minute field site data. Surface runoff (2013 and 2015) and tile flow (2012-2014) were calibrated together 

at a monthly time step using the field site data with a three-year warm up period. During calibration, the 

average NS for tile flow and surface runoff was used as the system cost, and the penalty cost was calculated 

by constraining the surface runoff and tile flow PBIAS to ± 25 and 20 percent respectively.  The 

perturbation factor and maximum number of iterations were set to 0.2 and 1500 respectively, and after 

calibration, tile flow was validated using the data in 2015. 
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Some parameters that control calculation methods within the model were changed from default. 

These were the daily potential evapotranspiration calculation (PET), which now uses the Hargreeves 

method (IPET=2) and the Soil Conservation Service (SCS) curve number (CN), which now varies with 

accumulated plant ET (ICN=1; Arnold et al., 2012a). To use the new tile flow routine mentioned above, 

ITDRN was set to one. Additionally, the default value for the Manning’s overland flow roughness (OV_N) 

was too low so it was increased to 0.15 to be representative of the site, which used either no-till or vertical 

tillage, and leaves crop residue. 

Parameters known to affect HRU runoff were included in the calibration (Abbaspour et al., 2007, 

2015; Arnold et al., 2012b, Guo et al., 2018; Wang & Melesse, 2005; Table A.2 and A.3), as well as 

additional parameters required by the new H-K-DC routine.  Site-specific information and collected 

agricultural management data were used to fix some of the parameters to improve the model. For example, 

the distance between drains (SDRAIN) was set to 14 m, pump capacity (PC; mm h-1) was set to 0, and based 

on the results of Golmohammadi et al. (2016a) in Ontario, the effective radius (RE) was set to be 15 mm. 

The depth to drains (DDRAIN) was known to be between 750 to 900 mm and allowed to vary during 

calibration. Other tile specific parameters used in calibration include the drainage coefficient (DRAIN_CO; 

mm d-1) and multiplication factor to determine lateral saturated hydraulic conductivity (LATKSATF; mm 

h-1).  

Due to the lack of soil data past 1100 mm, an unknown depth to the impervious layer, high 

sensitivity of the impervious layer depth, and its control over shallow aquifer seepage (Bauwe et al., 2016; 

Neitsch et al., 2011), an iterative approach was used to define reduced ranges for calibration. To ensure a 

realistic impervious layer depth after calibration, tiles were removed (DDRAIN = 0) and the layer depth 

was increased until the shallow aquifer recharge was between 15 to 20 percent of the average annual 

precipitation, which is typical in Ontario clay and silt soils (David Rudolph, personal comm.).  This value 

was used as the maximum limit during calibration of the impervious layer depth (DEPIMP; range of 1500-

3000 mm) and was similar to the ranges used by Guo et al. (2018). Additionally, some soil parameters were 
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added due to the uncertainty in actual conditions with depth and their importance in percolation and water 

table depth calculations (Neitsch et al., 2011). Using the available data, saturated hydraulic conductivity 

(SOL_K), bulk density (SOL_BD), and the available water capacity (SOL_AWC) were allowed to vary ± 

25 percent of the initial value for the layers. 

3.2.4 Tile drainage scenarios and TP load estimation 

To determine the effect that tile drains have on the flow paths contribution to runoff two tile drain 

scenarios were created. The calibrated HRU model was used as the free tile drainage (FTD) scenario 

(DDRAIN= 840 mm). Tile height was subsequently raised (DDRAIN = 500 mm) to be representative of 

depths typically used for CD in southern Ontario (Upper Thames River Conservation Authority, personal 

comm.) for the continuously raised tile drainage (RTDcont) scenario over the study period. Each height was 

run during the calibration period (2012-2015) with no other modification of the parameters. Since SWAT 

is unable to change tile heights during a simulation, pseudo CD data sets were created for two typical 

management scenarios found in southern Ontario (Figure 3.2).  Where HRU model outputs from the RTDcont 

and FTD scenarios were joined together based on the planting and harvest dates for the crops reported at 

the field. Monthly TP and SRP FWMCs were calculated for each flow path during the study period using 

field site data obtained using the methods mentioned in Van Esbrock et al. (2017). To calculate the monthly 

TP and SRP FWMC for surface runoff and tile flow the following equation was used:  

                                                                𝐹𝑊𝑀𝐶 =
∑ (𝐶𝑖𝑡𝑖𝑞𝑖)1

𝑛

∑ (𝑡𝑖𝑞𝑖)1
𝑛

                                              [3] 

Where Ci is the concentration, ti is the time window, and qi is the flow, all for the ith sample, which is 

the total load divided by the total flow over the period (i.e. month). TP and SRP loads were then determined 

by multiplying the monthly FWMC by the corresponding surface runoff and tile flow volumes output in 

each scenario because nutrient reductions have been shown to be primarily driven by flow (Sunohara et al., 

2010) and SWAT lacks the capability to model P subsurface loses through tile drains (Qi & Qi, 2017). 



55 

 

 

Figure 3.2. Shows two typical CD management approaches used in southern Ontario (#1 = RTDGS; #2 = 

RTDNC). Blue arrows represent the raising or lowering of the drain gate 3 weeks before planting and 

harvest, while blue lines represents a simplified representation of the water table depth changes. Major 

difference is the management during the NGS, which typically occurs from late fall to early spring for 

most crops. 

3.2.5 HRU performance evaluation  

To evaluate the performance of the HRU flow pathways, the NS (Nash & Sutcliffe, 1970), PBIAS 

(Gupta et al., 1999), and coefficient of determination (R2) statistics were used in conjunction with graphical 

methods. The model evaluation criteria developed by Moriasi et al. (2007b) and based on the streamflow 

outputs, were used to provide performance ratings for NS and PBIAS statistic. For the R2, performance was 

considered good if it was higher than 0.6 (Santhi et al., 2001). 

3.3 Results  

3.3.1 SWAT HRU performance: Surface runoff and tile drainage 

Following calibration, the model performance was good (Table 3.1). The model simulated surface 

runoff more precisely than tile flow, despite the fact that there were fewer surface runoff events. The model 

evaluation criteria developed by Moriasi et al. (2007b) that uses NS and PBIAS to rate model performance, 

the ratings for surface runoff were very good and good respectively, while tile flow was satisfactory for 

both, with R2 performance also well within the acceptable range (>0.6; Santhi et al., 2001; Table 3.1). Tile 

flow during the validation period slightly underperformed with respect to the NS and R2, but had a 

satisfactory PBIAS.  
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Table 3.1. Performance statistic values (NS, PBIAS, and R2) after calibration for surface runoff and tile 

flow 

 

Through visual assessment, the model reasonably captured the timing and magnitude of monthly 

surface runoff peaks, with slightly decreased performance for tile flow (Figure 3.3). Although the model 

generally simulated NGS surface runoff well, there were some irregularities in October of 2013 and 2015.  

The model simulation of tile drainage was erratic in summer and winter but was generally good in the spring 

and fall. There were several tile drain responses that the model had difficulty simulating (February 2013, 

January 2014, March 2014, and June 2012 and 2013). The winter events were associated with cold 

conditions/snowmelt. Despite these events that were missed by the model, runoff coefficients in 2013 and 

2015 simulated by the model were 0.29, which is close to the observed runoff coefficients of 0.33. 

Other water balance components were representative of southern Ontario conditions, where 

evapotranspiration (ET) was ~54% (42 to 66% ) of the average annual precipitation over the 2012-2015 

period (Table 3.2), which was within the range reported by Parkin et al., 1999. With tiles shallow aquifer 

recharge is 7% and when removed ~11.3% (range: 10 to 15%) of the annual precipitation over the 4 years, 

which is close to the ~15% expected for silt and clay soils in Ontario (Table 2; David Rudolph, personal 

comm.). 
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Figure 3.3. Graphical performance of surface runoff (top; SURQ) and tile flow (bottom; TILEQ) after 

calibration of the LON HRU model. In addition to performance, it shows monthly precipitation (top) and 

average air temperatures (bottom) over the 2012 to 2015 period. Arrow with ND indicates no data due to 

sensor failure. 

3.3.2 Effects of modified tile depths on runoff and flow paths  

The depth of tile drains was modified in the model to simulate the effects of (a) no tile drainage and (b) 

continuously controlled drainage (RTDcont) on both runoff magnitude and the reallocation of precipitation 
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among the pathways (e.g. surface runoff, tile drainage, groundwater recharge). Altering the tile drain depths 

modified both the total water yield (RTDcont, 4% decrease) as well as the flow paths through which the 

runoff moved.  Raising the tile drain depths from 84 cm to 50 cm resulted in reduced tile drainage by 41 

mm (22%), of which 55% was redistributed to surface runoff and 24% to aquifer recharge, with minor 

changes in ET and lateral flow. A similar reallocation was observed when tile drains were removed from 

the model altogether, with the 224 mm change in tile flow largely redistributed to surface runoff (57%) and 

lateral flow (5%). However, there was a 4% decrease in the shallow aquifer redistribution, and 3% increase 

in tile flow redistributed as ET compared with the raised tile scenario. 

Table 3.2. Average annual water balance with permanent changes in the tile height for the 2012 to 2015 

period 

Water Balance 

Free Tile Drainage  
(FTD; 840 mm) 

Raised Tile Drainage 

(RTDcont.; 500 mm) 
No Tiles (0 mm) 

mm % mm % mm % 

Precipitation 1097 100 1097 100 1097 100 

Surface runoff 86 8 109 10 214 20 

Lateral soil Q 14 1 16 1 25 2 

Tile Q 224 20 183 17 0 0 

Total aquifer recharge 77 7 87 8 124 11 

Total water yield 342 31 328 30 268 24 

ET 594 54 594 54 604 55 

 

There were seasonal trends in how the reduced tile drainage was reallocated. For example, in general, 

most tile flow was redistributed to surface runoff during the winter, early spring, and late fall months (i.e. 

the NGS), whereas during the GS, the reduced tile flow was typically redistributed to aquifer recharge 

(Figure 3.4) and rarely resulted in increased surface runoff. Although this general pattern existed, there was 

variability among years within the NGS, demonstrating the complexity associated with simulating winter 

runoff generation. For example, more surface runoff was observed in the winter (JFM) months of 2012 (a 

dry year with 871 mm annual precipitation) than during a wetter year (2015, 1003 mm annual precipitation) 

due to the fact that temperatures were warm in 2012 (9 oC) and 71 mm more precipitation was received 
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during the winter months of 2012 than 2015, despite the fact that both years received less winter 

precipitation than normal (Figure 3; Environment and Climate Change Canada, 2018a). 

 

Figure 3.4. Monthly changes in the water balance over the 2012 to 2015 period with continuously raised 

tiles (RTDcont). Bars show the difference between RTDcont and the free tile drainage (FTD) scenario (840 

mm. A positive value denotes an increase in flow and a negative denotes a reduction in flow. Black bars 

indicate the growing season over the study period and boxes showing the NGS. 

Examples of seasonal differences in flow path responses to raised tile drains are illustrated in Figure 

3.5, which contrasts a rain on snowmelt event, where temperatures were below freezing but rose in 

combination with a large precipitation event (Figure 3.5a), with a summer thunderstorm that was preceded 

by multiple smaller events (Figure 3.5b). With RTD, this increased surface runoff by 6.2 mm, and soil 

moisture by 5.9 mm. For the large precipitation event in summer (Figure 3.5b), tile drainage and soil 

moisture with RTD have opposing responses.  However, contrary to Figure 3.5a, there was no difference 

in the surface runoff between FTD and RTD. Key dissimilarities between the two events include the 

temperature, which affects the PET. Average PET in the 2012 and 2014 event was 1 and 3.4 mm 

respectively. Additionally, the average soil moisture, which was on average 10 mm greater during the dates 

shown in March 2013. 
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Figure 3.5. Shows two different months, one event during the NGS (spring) and the other during the 

summer on a daily time step. (a) March 2013 was the month with the highest observed surface runoff 

(SURQ; red) in the NGS, while (b) July 2014 was an example of a typical event in summer. The free tile 

drainage (FTD; DDRAIN = 840 mm; dotted line) and raised tile drainage (RTD; DDRAIN =500 mm; 

solid line) scenarios were compared. Soil moisture content (SM; black) and tile flow (TILEQ; blue) 

responses are also plotted. 

3.3.3 Effects of controlled tile drain management on runoff and phosphorus export 

The patterns discussed previously in this study had the same treatment year-round (i.e. free-

drainage, raised tiles or no tile). However, as noted earlier, controlled drainage can be managed differently 

across seasons. In the model, the RTDGS scenario (free drainage within the NGS but raised to 500mm in 

the GS) and RTDNC scenario (drainage controlled year-round near continuously, with tile depths raised to 
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500mm; Figure 3.2) both resulted in very small decreases in annual runoff (RTDGS = 2%, RTDNC = 5%) 

relative to the FTD scenario. The subtle difference in flow reduction between the RTDNC and RTDGS 

scenarios was because the increase in surface runoff (44 mm cumulative total over study period, largely 

during the NGS) offset the decrease in tile flow (cumulative decrease 84 mm over study period).  

 

Figure 3.6.  Cumulative tile flow (TILEQ; blue), surface runoff (SURQ; red), and total runoff (black)  for 

RTDGS (solid line)  and RTDNC  (dotted line) over the 2012 to 2015 period 

Because the SWAT model cannot yet simulate P in tile drainage, hypothetical changes in edge-of-

field TP loss under different controlled drainage scenarios were estimated using observed field data 

(seasonal average flow-weighted mean concentrations, FWMC, Table 3.3) applied to the different flow 

paths (Figure 3.7). At the study site, FWMC of TP in surface runoff were typically ~10x greater than in tile 

flow (e.g. Van Esbroeck et al., 2017; Plach et al., 2018). Consequently, given that RTDGS and RTDNC have 

surface increases they have a 0.2 Kg TP ha-1 (8%) and 0.32 Kg TP ha-1 (13%) load increase respectively in 

runoff relative to the FTD scenario. Given that tile drainage P export was a smaller component of the edge 

of field loss to begin with and FWMC were smaller, tile flow reductions did little to reduce TP losses, 

whereas small increases in surface runoff increased TP losses considerably. Of the two CD scenarios, 

RTDNC increased surface runoff and TP export by more compared to RTDGS because this mostly occurred 

in the NGS. The increase in surface runoff under the RTDNC scenario (Figure 3.6) compared to the RTDGS 

scenario resulted in a cumulative increase in TP in surface runoff of 0.18 Kg TP ha-1 than was simulated 
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under scenario RTDGS, Figure 3.7). In contrast, the tile flow reduction associated with scenario RTDNC 

(Figure 3.6) only led to a cumulative reduction in tile flow TP export of 0.06 Kg TP ha-1 relative to RTDGS.  

While cumulative SRP losses were on average 29 and 45 percent of TP in tile flow and surface runoff for 

all scenarios, with runoff losses increasing almost correspondingly to TP (RTDGS 12% and RTDNC 15% 

increase relative to FTD). 

Table 3.3. Summarized TP and SRP FWMCs from the field site used to create estimates of TP export 

from the surface runoff and tile flow paths 
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Figure 3.7. Shows the monthly cumulative loads (lines) and change in loads between RTDGS and RTDNC 

from 2012 to 2015 for TP and SRP in surface runoff (SURQ; a) and tile flow (TILEQ; b) 

3.4 Discussion  

3.4.1 SWAT HRU performance 

The model performed adequately with respect to tile flow and surface runoff to perform the subsequent 

analysis. These results are comparable to a study by Guo et al. (2018) where tile flow performance with 

respect to the NS ranged from 0.53 to 0.61 and 0.50 to 0.81 for surface runoff. Some of the performance 

issues may be explained by model inputs. The uncertainty associated with soil conditions at depth and the 

location of the impervious layer impacted the calculations of percolation, water table depth, and tile flow 

(Neitsch et al., 2011). In winter, precipitation data was supplemented by the nearby Jamestown station data 

(43 km away from site, Figure 3.1) because snowfall was not measured continuously at the field site, and 

consequently, may have varied slightly from what occurred at the site.  
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Tile performance issues could also be explained through model structure. For example, in February 

2013 there is no surface runoff probably because of precipitation being added to the snowpack. This should 

increase the soil temperatures and allow for the tile flow response that was observed because winter soils 

are typically at field capacity or saturated (Lam et al., 2016). However, within the model, when soil layer 

is frozen, water movement does not occur (Neitsch et al., 2011). This indicates that there might be issues 

with the soil temperature calculations in SWAT. The model is unable to capture this response due to the 

known simplicity of the empirically based soil temperature algorithm, and its inability to simulate soil 

temperatures in cold regions with regular of freeze-thaw conditions (Qi et al., 2016). As well, SWAT had 

performance issues in summer due to underperforming soil water estimation (Rajib & Merwade, 2016) and 

erratic water table estimation related to dryer soils (Moriasi et al., 2009). 

In summer, it is uncertain if macropore flow is a large contributor to tile flow at the field site, which 

is a clay loam. Furthermore, there was no surface runoff data from the summer of 2014 to confirm if 

infiltration was overestimated. In October 2015, it is uncertain what caused the overestimation of surface 

runoff since precipitation data was from the nearby Jamestown station (Figure 3.1), which cannot be 

validated using field site data. However, similar precipitation events in October 2013 were validated with 

field data, and the small 4% difference indicates another reason. The poor validation performance is most 

likely due to the limited time span of the dataset that did not capture a range of wet, dry, and average years 

for validation. 

3.4.2 Impact of CD on flow paths and TP export 

The results of this study suggest that the use of CD throughout the NGS may increase annual TP losses 

in runoff (8 to 13%) and could exacerbate eutrophication; however, the use of CD during the GS has 

relatively little effect on TP losses.  These results are in contrast to Tan and Zhang (2011) who predicted a 

12% decrease in annual TP losses over their study period. The primary difference between the current study 

and the work of Tan and Zhang (2011) is that the current study was conducted in coarser textured soils on 

sloping ground, whereas the study by Tan and Zhang (2011) was conducted in lacustrine clays. Indeed, the 
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current study reported a very different water balance distribution than Tan and Zhang (2011) who reported 

that 97% of runoff (tile flow and surface runoff) occurred as tile flow with FTD. Other differences between 

the two studies include narrower tile spacing (3X narrower) and the use of sub-irrigation at the clay site. 

The current study has shown that any decrease in tile depth (either no tiles, RTDNC, or RTDGS) will 

reduce the drainable soil water volume and lead to decreased tile flow, which increases the amount of soil 

water and precipitation redistributed as surface runoff. This finding is consistent with what has been shown 

in other studies (Ross et al., 2016; Skaggs et al. 2012; Tan & Zhang, 2011). Although, the extent of which 

this occurs will differ due to a number of field and climate related factors. With CD, the amount of 

precipitation redistributed as surface runoff will increase with slower aquifer recharge rates since less soil 

water will be lost through this pathway and soil moisture levels can remain higher. Furthermore, drain 

spacing, drain depth, and NGS management can significantly influence tile flow reductions; consequently, 

the surface runoff response (Ross et al., 2016). This is reflected by Golmohammadi et al. (2016b) where 

tile flow reductions were similar  to RTDNC (2% difference); conversely, their surface runoff increase was 

much greater, which indicates other influencing factors like climate and soil storage capacity. Youseff et 

al. (2018) have also predicted larger increases in surface runoff (average 120%); however, FTD yearly 

average surface runoff was also only 39 mm yr-1, and the initial tile distribution was almost double the 

spacing and depth.  Additionally, even though the surface runoff increase was not as large as other studies 

or greater than the tile flow reduction, the larger FWMC in surface runoff offset the TP reductions from tile 

flow.  With CD, typically it is installed and recommended on low sloping fields; nevertheless, there are 

many other factors to consider and these will also be key in making comparisons or deciding whether CD 

is feasible considering the large surface runoff increases reported in other studies 

In our study, RTDGS exported less TP in runoff than RTDNC relative to FTD because of reduced 

surface runoff in the NGS. Surface runoff increases in the RTDNC scenario during the NGS resulted from 

the higher soil water levels, decreasing the water table depth from the surface and making saturation excess 

surface runoff a greater risk. This response was typically spread out over the entire winter or did not occur 
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in every year, because the southern Ontario climate facilitates multiple snowmelt events with a wide range 

of pre-event soil conditions and precipitation form variability in the NGS (Van Esbroeck et al., 2017). In 

the summer, surface runoff does not increase much, because the model calculates the surface runoff using 

the SCS-CN method (Soil Conservation Service, 1972) where the curve number (CN) and retention 

parameter is updated using PET and the previous day’s parameter (Neitsch et al, 2011). Therefore, high 

PET values result in a reduction of the CN compared to winter, increasing the infiltration for the day. As a 

consequence of increased PET, soil water levels are initially very low and even though precipitation 

intensity might be greater, it requires substantially more rain and reduced PET to trigger surface runoff. 

The positive increase of water in soil storage because of decreased tile flow with RTD (Figure 3.5a) 

confirms this, since surface runoff increases almost proportionally. 

How tiles are managed during the winter NGS will be increasingly important since they can increase 

surface runoff and TP loads, contrary to the GS where there are benefits of using CDs (Sunohara et al., 

2015, 2016). Furthermore, in humid climates, most N leaching occurs during the winter (Bohne, 

Storchenegger, & Widmoser, 2012) and P losses as well (Macrae et al., 2007b; Van Esbroeck et al., 2017; 

Williams et al., 2016). This will provide some management challenges due to the variability in responses 

to CD, and the clear benefits in NO3 export (Drury et al., 2009; Ross et al., 2016). In our study, CD results 

indicate that cumulative TP runoff losses could be reduced by 4% (or more) if tiles were free draining 

during a portion (Oct. to late May) of the time winter wheat is planted, which suggests that CD with winter 

wheat might not be beneficial for TP losses in LON. Furthermore, due to a large increase in FWMC because 

of the primary P application occurring at the end of wheat harvest CD during November 2014, RTDGS loads 

could have been reduced further. Finally, due to the winter weather there will be variability in the 2012 

(warm and dry) NGS versus 2015 (cold and dry) affecting surface runoff responses to CD and TP export, 

which suggests that prediction of precipitation form and quantity during the NGS will be useful in 

determining the management of controlled tile drains and impact on surface runoff.   
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Phosphorus load estimation was based on observed FWMCs that generally had low SRP:TP FWMC 

ratios (<0.5). Overall, this caused SRP export to be a smaller fraction of TP loads in both tile and surface 

runoff (Table 3.3; Figure 3.7).  Both SRP and TP are projected to increase; however, there was very little 

effect on SRP:TP export ratios in runoff (0.5 to 1.5 % increase), which is important as more significant 

increases in SRP:TP ratios could further increase the risk of algae growth. Although P is mostly driven by 

flows (Sunohara et al., 2010), in the RTD scenarios, there is potential for increased SRP:TP ratios as 

prolonged waterlogged conditions create anoxic conditions, which could increase the desorption of Fe and 

Ca bound P and mineralization of organic P (Ardón et al., 2010; Van Dijk et al., 2011; Yaghi & Hartikainen, 

2013). 

3.4.3 Conclusion 

In this study, SWATs new tile flow routines were assessed at the HRU scale. Then the impact of 

CDs on flow pathways, SRP, and TP export was analyzed for a clay loam soil in southern Ontario. The H-

K-DC routine performed well, but the SWAT model still needs improvement simulating soil temperatures 

in the NGS. Overall, year round tile management (RTDNC) causes an increase in average annual surface 

runoff (26%) and edge of field TP losses (13%) over the study period, specifically due to the increase in 

NGS (January to April) surface runoff. Tile management practices that keep the water table lower most of 

the year (RTDGS) may not have as great an impact on TP losses in runoff (4 to 8% increase) or surface 

runoff volumes (8 to 13% increase). However, any TP increase still corresponds to increased potential for 

SRP losses, which is the P form with the greatest risks. Furthermore, controlled drainage management 

should not be planned strictly based on the rotation’s planting and harvest dates, but nutrient contaminant 

risks. Tile drain management during the NGS does have potential to reduce both N and P loads depending 

on the resulting water balance redistribution and FWMC in runoff pathways, which have been shown to be 

variable depending on many factors. In future CD and P assessments for this region, spatial variations in 

large-scale adoption over a varied landscape with predominantly low slopes (<1 %) and a longer period 

should be assessed. Controlled drainage may provide many benefits with respect to tile drainage water 
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quality; however, care should be taken when deciding on how to best manage the tile drains in the NGS 

considering the effects it can have on surface runoff P export. 
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Chapter 4 - Major conclusions of thesis 

Within the Great Lakes drainage area non-point source (NPS) nutrient contamination from agricultural 

activities has been attributed to increased eutrophication sometimes causing harmful algae blooms 

impairing water quality (EPA, 2015; Jarvie et al., 2013; Michalak et al., 2013). Currently, most of the annual 

nutrient export occurs during the non-growing season (NGS), specifically early spring (Macrae et al., 

2007b; Van Esbroeck et al., 2017; Williams et al., 2016). Furthermore, due to climate change the 

hydrological and biogeochemical cycles are expected to be impacted, further affecting water quantity and 

quality. Therefore, the objectives in Chapter 2 were to use the Soil Water Assessment Tool (SWAT) to 

quantify the seasonal export of nutrients and sediment with climate change and to understand the processes 

driving the projected changes to make watershed management more effective over the long-term. 

Results from Chapter 2 suggest that there will be a decrease in average annual streamflow. However, 

despite this decrease, changing precipitation characteristics and temperature will still cause increases in 

annual nutrient export and runoff. This is in contrast to other studies that report increases in nutrient export 

due to climate change causing increased streamflow and precipitation volumes (Bosch et al., 2014; 

Crossman et al., 2013; Verma et al., 2015). The apparent increase in nutrient fluxes under decreased annual 

flows can partially be attributed to the increase in the magnitude and frequency of extreme precipitation 

events that can also increase the size of the peak flows. Chapter 2 also showed that air temperatures will 

increase in all seasons, particularly in winter. This will decrease the number of soil frost days (Sinha & 

Cherkauer, 2010) and increase the amount of snow expected as rain (Marianne et al., 2003). In the Medway 

Creek watershed (MCW) this will modify the flow paths and streamflow, where less soil frost will allow 

more water to pass through the vadose and saturated soil zones, reducing surface runoff volumes, stream 

flow response times for most events, and the average stream flow in winter. Furthermore, the potential for 

less snow and more drainage in winter will reduce water availability and surface runoff in spring. Due to 

this shift in seasonality, the timing of residual nutrient export will also shift towards the winter months 

causing the largest nutrient export increases (nitrate and TP). Suspended sediment (SS) export at the 
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watershed outlet will be limited by surface runoff, the transport capacity of the stream, and average 

streamflow, resulting in decreased SS export in winter and spring. 

Within agricultural settings, best management practices (BMP) are implemented to help reduce 

contamination while still maintaining productive crops (i.e. tile drainage). Recently, controlled tile drainage 

(CD) has been used in some areas to help reduce tile flow phosphorus and nitrogen export (Lavaire et al., 

2017; Skaggs et al., 2012; Sunohara et al., 2016). However, little is known about the export response when 

all runoff pathways are considered. Recent work, including this thesis, suggests that understanding the water 

balance and nutrient export responses during the NGS will be important. Therefore, the objective of Chapter 

3 was to simulate the effects of CD management on runoff quantity and flow paths using SWAT, and to 

quantify potential water quality tradeoffs such as increased surface runoff P export associated with CD 

management. 

Results from Chapter 3 shows that total phosphorus (TP) and soluble reactive phosphorus export will 

increase if tiles are managed, in contrast to other studies that have explored TP export in tile drainage and 

surface runoff (Tan & Zhang, 2011; Zhang et al., 2017). The difference between the current study and the 

work of Tan and Zhang, 2011 and Zhang et al., 2017, is that their work was conducted in flat, lacustrine 

clays whereas the current study was conducted in a sloping clay loam. This suggests that the effects of CD 

as a BMP may vary regionally. This thesis showed that although the decreases in tile flow exceeded the 

increases in surface runoff volume when CD management was employed, the significantly greater FWMC 

in surface runoff resulted in an overall increase in runoff TP. Thus, the use of CD exacerbated water quality 

issues in the model simulations. In the model, most of the TP export occurred over the NGS, as this was 

when most of the surface runoff increases occurred in response to CD, wetter soils, and decreased water 

demand. Consequently, the use of CD during the GS only offset the water quality issues associated with 

elevated surface runoff during the NGS, but did little to improve water quality as so little flow occurs during 

the GS.  
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Overall, both chapters indicated that weather characteristics in the NGS will have a major impact on 

the behavior of the flow paths and nutrient export. However, the assimilation of both CD and climate change 

on nutrient export is yet to be determined. Therefore, the field scale SWAT model was forced with the 

MCW historical and future climate to speculate on what may occur to nutrients and sediment at the edge of 

field if CD were used in a future climate. 

 

Figure 4.1. (a) Shows the changes in the tile flow, surface runoff, and runoff (tile flow + surface runoff)  

annually in the LON field site transplanted into the MCW during the 1990-2010 period (blue), 2080-2100 

period (red), and 2080-2100 period with continuous CD (green). Also, shows tile flow seasonally (b) and 

surface runoff seasonally (c). 

On an annual basis, water balance changes due to CD and climate change are very similar to what 

was observed in Chapters 2 and 3. Since runoff remains greater with CD in the future climate due to water 

surpluses, this suggests that CD will most likely exacerbate annual TP export trends. Indeed, the increase 

in surface runoff caused by CD (Figure 4.1a) and will only increase the potential for greater and more 

occurrences of saturation excess overland flow events, which is a major factor in TP export from fields. In 

the case of NO3
-, average NO3

-concentrations were almost equivalent between tile flow and surface runoff 

pathways at Londesborough. Therefore, because the decrease in tile flow is greater than the increase in 

surface runoff, there could be a net reduction in NO3
- export under a future climate. Although, CD promotes 
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anaerobic conditions that increase the potential for denitrification (Skaggs et al., 2010; Wesström & 

Messing, 2007) the exact effect of climate change on denitrification is unknown (Barnard et al., 2005). 

When combined, we could expect further decreased nitrate losses due to increased denitrification rate from 

increased soil moisture and temperature; however, there are many other complex feedbacks to consider 

(Karmakar et al., 2016; Singh et al., 2010; Veraart et al., 2011). Consequently, either CD management 

scenario will provide nitrate reductions and near continuous management (RTDNC) will have the greatest 

reduction due to larger tile flow reductions throughout the year. 

Similar to Chapter 2 and 3 we will see the majority of the hydrologic changes occurring in the 

winter, with surface runoff increases due to CD in a future climate (Figure 4.1c). Considering the large-

scale adoption of CD in the MCW, based on the above and the watershed characteristics, RTDNC might not 

be feasible for the reduction of P in the MCW. Furthermore, considering CD installed selectively on 

agricultural land that was low sloped (<1%) and nutrient losses at the watershed scale. If surface runoff 

losses were minimal during the NGS and the tile flow reductions managed to reduce TP losses, it might not 

make a significant difference relative to the projected future increases in TP when also considering that 

only 23% of the tiled-drained land has low slopes. Finally, during the summer hydrological changes are 

much smaller in comparison to winter and spring. Therefore, if losses can be reduced when it matters most 

(i.e. winter) the risk of using RTDGS might be increasingly necessary to prevent economic and excessive 

crop yield losses due to drought. With increased potential for heat waves (Li et al., 2017), CD can provide 

crop yield benefits through water storage (Poole et al., 2013; Sunohara et al., 2016). 

More work is needed on this topic as the precise responses of fields and watersheds to CD and 

climate change will be spatially variable given that runoff and nutrient loss are dependent on many field 

specific characteristics such as tile spacing and depth, NGS management depth, FWMC runoff ratios, slope, 

soil characteristics and specific land management practices. Therefore, future work should confirm the 

effect of large-scale adoption of CD and climate change on TP export in watersheds that have fields with 

different characteristics (i.e. tile layouts and NGS management) and in combination with other BMPs. 
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However, in order to do this, SWAT needs some improvement, mainly to the soil temperature and TP tile 

routing algorithm given the winter season responses found in this study. 

Overall, this study has demonstrated the importance of understanding the effects of future climates 

and BMPs on NPS contamination so that management strategies can be implemented more effectively now 

and in future. Moreover, this thesis has further enforced the importance of understanding the processes and 

factors controlling the NGS nutrient export responses. Finally, it is clear that BMPs limiting NGS nutrient 

export will be increasingly important in reducing eutrophication. Specifically reducing their availability for 

transport (i.e. cover crops) and balancing crop nutrient needs (4Rs) within the soil due to the decreased 

mitigation efficacy caused by future climatic drivers. Controlled drainage as a mitigation strategy should 

be used with caution given its potential to exacerbate water quality issues under larger flow events due to 

greater surface runoff. 
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APPENDIX A 

Calibrated Parameters and Final Values  

Table A.1. Sensitive SWAT parameters used during calibration of the MCW model with the final fitted 

value 

Calibrated Parameters 

Name Description 
Fitted 
Value 

River Flow 

v__GW_REVAP.gw Groundwater revap coefficient 0.29 

v__ALPHA_BF.gw Baseflow alpha factor 0.89 

v__GW_DELAY.gw Groundwater delay time (days) 6.45 

v__GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) 490 

v__RCHRG_DP.gw Deep aquifer percolation fraction 0.38 

v__TIMP.bsn Snow pack temperature lag factor 0.71 

v__SMTMP.bsn Snow melt base temperature (˚C) -0.56 

v__SFTMP.bsn Snowfall temperature (˚C) 0.72 

v__SMFMX.bsn Melt factor for snow on June 21 (mm H2O/˚C-day) 4.2 

v__SMFMN.bsn Melt factor for snow on December 21 (mm H2O/˚C-day) 8.9 

v__SNOCOVMX.bsn Minimum snow water content for 100% snow cover (mm H2O) 23.3 

v__SNO50COV.bsn Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow cover 0.13 

v__CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm/hr) 268 

v__CH_N2.rte Manning's "n" value for the main channel 0.15 

v__CH_K1.sub Effective hydraulic conductivity in main channel alluvium (mm/hr) 106 

v__ESCO.hru Soil evaporation compensation factor 0.37 

v__EPCO.hru Plant uptake compensation factor 0.3 

r__OV_N.hru Manning's "n" value for overland flow 0.18 

v__CANMX.hru Maximum canopy storage (mm H2O) 49 

r__CN2.mgt Initial SCS runoff curve number for moisture condition II 0.05 

r__SOL_BD().sol Soil bulk density -0.37 

r__SOL_AWC().sol Available water capacity of the soil layer (mm H2O/mm soil) -0.21 

v__SOL_EC().sol Macropore connectivity factor 0.22 

Suspended Sediment 

v__ADJ_PKR.bsn Peak rate adjustment factor for sediment routing in the subbasin 1.9 

v__SPEXP.bsn Channel re-entrained exponent parameter 1.4 

v__SPCON.bsn Channel re-entrained linear parameter 0.0015 

v__PRF_BSN.bsn Peak rate adjustment factor for sediment in the main channel 0.42 

r__USLE_K().sol USLE equation soil erodibility (K) factor -0.49 

va__USLE_P.mgt USLE support practice factor 0.42 

v__CH_COV2.rte Channel cover factor 0.43 

Nitrate 

v__CDN.bsn Denitrification exponential rate coefficient 1.03 

v__SDNCO.bsn Denitrification threshold water content 0.85 

v__NPERCO.bsn Nitrate percolation coefficient 0.6 

v__N_UPDIS.bsn Nitrogen uptake distribution parameter 12.9 

v__BC1_BSN.bsn 
Rate constant for biological oxidation of NH4 to NO2 in the reach at 20˚ C in well-aerated conditions 

(day-1) 
0.69 

v__ANION_EXCL.sol Fraction of porosity (void space) from which anions are excluded 0.37 

v__CH_ONCO.rte Organic nitrogen concentration in the channel (ppm) 57.8 

Total P 

v__BC4.swq Rate constant for mineralization of organic P to dissolved P in the reach at 20˚ C (day-1) 0.37 

v__ERORGP.hru Phosphorus enrichment ratio for loading with sediment 2.12 

v__P_UPDIS.bsn Phosphorus uptake distribution parameter 96.6 

v__PHOSKD.bsn Phosphorus soil partitioning coefficient (m3/Mg) 144.9 

   
a Only calibrated agricultural land use for this parameter 

*letters before parameter name represents the replacement method used during calibration 
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Table A.2. SWAT parameter ranges used during calibration of the LON model with the final fitted value 

Calibrated Parameters 

Name Description 

Calibration 

Range 
Fitted Value 

GW_REVAP.gw Groundwater “revap” coefficient 0.02 to 0.6 0.56 

ALPHA_BF.gw Baseflow alpha factor 0 to 1 0.96 

GW_DELAY.gw Groundwater delay time (days) 0 to 70 47 

GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return flow to occur (mm 

H2O) 

0 to 1900 
447 

RCHRG_DP.gw Deep aquifer percolation fraction 0 to 0.6 0.23 

REVAPMN.gw Threshold depth of water in the shallow aquifer for "revap" to occur 0 to 400 245 

TIMP.bsn Snow pack temperature lag factor 0 to 1 0.315 

SMTMP.bsn Snow melt base temperature (˚C) -3 to 3 1.3 

SFTMP.bsn Snowfall temperature (˚C) -3 to 3 -1.6 

SMFMX.bsn Melt factor for snow on June 21 (mm H2O/˚C-day) -1 to 10 2.4 

SMFMN.bsn Melt factor for snow on December 21 (mm H2O/˚C-day) -1 to 10 6.5 

SNOCOVMX.bsn Minimum snow water content for 100% snow cover (mm H2O) 0 to 100 8.8 

SNO50COV.bsn 
Fraction of snow volume represented by SNOCOVMX that corresponds to 50% snow 

cover 

0 to 0.9 
0.17 

DEPIMP.bsn Depth to the impervious layer (mm) 1500 to 3000 2967 

DDRAIN.bsn Depth to the sub-surface drain (mm) 750 to 900 841 

DRAIN_CO.bsn Drainage coefficient (mm/day) 10 to 51 16.5 

LATKSATF.bsn Multiplication factor to determine lateral hydraulic conductivity (mm/h) 0.01 to 4 1.87 

SSTMAXD.bsn Static Maximum depressional storage (mm) 0 to 25 24 

ESCO.hru Soil evaporation compensation factor 0 to 1 0.835 

EPCO.hru Plant uptake compensation factor 0 to 1 0.005 

CANMX.hru Maximum canopy storage (mm H2O) 5 to 20 9.6 

SURLAG.hru Surface runoff lag time in the HRU (days) 0.01 to 6 5.9 

CN2.mgt Initial SCS runoff curve number for moisture condition II 30 to 85 51.2 

SOL_BD.sol Soil bulk density (g/cm3) ± 25% a 1.57-1.72 

SOL_AWC.sol Available water capacity of the soil layer (mm H2O/mm soil) ± 25% a 0.15-0.20 

SOL_KSAT.sol Saturated Hydraulic Conductivity (mm/hr) ± 25% a 2.75-10 
a For each soil parameter and layer the parameter was allowed to vary between ±25 percent of its original 

value 

Table A.3.  Soil profile details and calibration results. Brackets indicate the value before calibration 

Soil 

Layer 
Cumulative 

Depth (mm) 
Organic 

Matter (%) Clay (%) Sand (%) Bulk Density 

(g/cm3) 
Available Water 

Capacity 

(mm/mm) 

Saturated 

Hydraulic 

Conductivity 

(mm/hr) 

1 300 2.1 21 35 1.72 (1.45) 0.16 (0.15) 10 (13.1) 

2 360 0.6 27 33 1.59 (1.41) 0.17 (0.15) 8 (8.38) 

3 480 0.5 38 25 1.57 (1.36) 0.15 (0.14) 4.4 (3.56) 

4 1100 0.1 28 20 1.61 (1.51) 0.2 (0.16) 2.75 (2.79) 
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APPENDIX B 

Climate Characteristics in the Historic and Future Period 

Table B.4. Average seasonal temperature and precipitation relative to the baseline period for each forcing 

scenario, two different periods showing the mean plus standard deviation. 

Variable Season 

Baseline RCP 4.5 RCP 8.5 

1990-2010 2040-2060 2080-2100 2040-2060 2080-2100 

�̅� std �̅� std �̅� std �̅� std �̅� std 

 Winter -4.0 5.6 -2.4 2.8 -1.7 2.8 -1.7 2.7 1.5 2.3 

 Spring 6.9 7.5 8.0a 6.3 8.9 6.1 8.9 6.3 11.5 6.3 

Temperature Summer 19.8 3.4 21.3 2.0 22.0 2.0 22.5 2.0 25.5 2.1 

 Fall 9.8 6.6 11.4 5.6 11.9 6.0 12.4 6.1 15.2 6.2 

  Year 8.1 5.8 9.6 4.2 10.3 4.2 10.5 4.3 13.4 4.2 

 Winter 234 44 245 17 256b 19 248 25 288b 20 

Precipitation Spring 234 45 247 33 260b 28 256 31 278b 33 

 Summer 230 67 236 21 243 34 234 33 242 36 

 Fall 264 84 283 31 270 33 264 33 269 44 

 ∑ Year 962 153 1010 45 1028 45 1002 69 1076 85 

a Not significantly different relative to the baseline α>0.05 
b Significantly different relative to the baseline α<0.05 
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APPENDIX C 

Historic and Future Water Balance 

Table C.5. Watershed annual average water balance changes relative to the historic period (1990-2010) for 

each climate projection in the ensembles future period (2080-2100). 
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APPENDIX D 

Parameter Values from Literature 

Table D.6. Parameter values reported in the literature. 

Parameter Values Reported in Literature 

Name Description Fitted Values Source 

GW_REVAP.gw Groundwater revap coefficient 
0.06, 0.19, 
0.066 

Zhang et al. (2015), Zabaleta et al. (2014), Merriman 
et al. (2018) 

ALPHA_BF.gw Baseflow alpha factor 0.64, 0.021 Zhang et al. (2015), Zabaleta et al. (2014) 

GW_DELAY.gw Groundwater delay time (days) 40, 14, 30 
Zabaleta et al. (2014), Merriman et al. (2018), El-

khoury et al. (2015) 

GWQMN.gw 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm H2O) 

700, 618, 987 
Zabaleta et al. (2014), Malagó et al. (2017), Ikenberry 

et al. (2017) 

RCHRG_DP.gw Deep aquifer percolation fraction 0, 0.09 Zabaleta et al. (2014), Malagó et al. (2017) 

REVAPMN.gw 
Threshold depth of water in the shallow 

aquifer for “revap” to occur (mm) 
500, 196, 750 

Merriman et al. (2018), Malagó et al. (2017), 

Ikenberry et al. (2017) 

TIMP.bsn Snow pack temperature lag factor 0.24, 0.6, 0.77 
Poon (2013), Moriasi et al. (2013), Ikenberry et al. 

(2017) 

SMTMP.bsn Snow melt base temperature (˚C) 4.9, 0.31 Merriman et al. (2018), Poon (2013) 

SFTMP.bsn Snowfall temperature (˚C) 1.7, -4.46 Merriman et al. (2018), Poon (2013) 

SMFMX.bsn 
Melt factor for snow on June 21 (mm 
H2O/˚C-day) 

3.2, 3.72 Merriman et al. (2018), Poon (2013) 

SMFMN.bsn 
Melt factor for snow on December 21 

(mm H2O/˚C-day) 
2.6, 2.72 Merriman et al. (2018), Poon (2013) 

SNOCOVMX.bsn 
Minimum snow water content for 100% 

snow cover (mm H2O) 
48, 102 Merriman et al. (2018), Poon (2013) 

SNO50COV.bsn 
Fraction of snow volume represented 
by SNOCOVMX that corresponds to 

50% snow cover 

0.05, 0.528 Poon (2013), Moriasi et al. (2013) 

DEPIMP.bsn Depth to the impervious layer (mm) 
1300, 2900, 

3100 

El-khoury et al. (2015), Guo et al. (2018), Malagó et 

al. (2017) 

DRAIN_CO.bsn Drainage coefficient (mm/day) 51, 24, 10 
Moriasi et al. (2013), Malagó et al. (2017), Ikenberry 

et al. (2017) 

LATKSATF.bsn 
Multiplication factor to determine 

lateral hydraulic conductivity (mm/h) 

1-1.4, 3.8, 

1.22 

Guo et al. (2018), Moriasi et al. (2013), Malagó et al. 

(2017) 

SSTMAXD.bsn 
Static Maximum depressional storage 
(mm) 

12 Guo et al. (2018) 

ESCO.hru Soil evaporation compensation factor 0.81, 0.9, 0.95 
Zhang et al. (2015), Zabaleta et al. (2014), Merriman 

et al. (2018) 

EPCO.hru Plant uptake compensation factor 0.01-1, 0.001 Stark and Moriasi (2009), Moriasi et al. (2013) 

CANMX.hru Maximum canopy storage (mm H2O) 8, 216.25 Zabaleta et al. (2014), El-khoury et al. (2015) 

SURLAG.hru 
Surface runoff lag time in the HRU 

(days) 
1-6, 1, 0.3 

Stark and Moriasi (2009), Zabaleta et al. (2014), Guo 

et al. (2018) 

OV_N.hru Manning’s “n” value for overland flow 0.6 Zabaleta et al. (2014) 

CN2.mgt 
Initial SCS runoff curve number for 

moisture condition II 

47-76, 65, -

19% 

Stark and Moriasi (2009),  Zhang et al. (2015), 

Merriman et al. (2018) 

SOL_BD.sol Soil bulk density (g/cm3) 0.97 Zhang et al. (2015) 

SOL_AWC.sol 
Available water capacity of the soil 

layer (mm H2O/mm soil) 
0.25 Zhang et al. (2015) 

CH_K2.rte 
Effective hydraulic conductivity in 
main channel alluvium (mm/hr) 

53.43, 100 Zhang et al. (2015), Zabaleta et al. (2014) 

CH_N2.rte 
Manning’s “n” value for the main 

channel 
0.03, 0.075 Zhang et al. (2015), Merriman et al. (2018) 

CH_K1.sub 
Effective hydraulic conductivity in 

main channel alluvium (mm/hr) 
0.5, 12.8 Stark and Moriasi (2009), Poon (2013) 

ADJ_PKR.bsn 
Peak rate adjustment factor for 
sediment routing in the subbasin 

0.5, 1.2 Merriman et al. (2018), Guo et al. (2018) 

SPEXP.bsn 
Channel re-entrained exponent 

parameter 
1.5, 1.4 Zabaleta et al. (2014), Merriman et al. (2018) 

SPCON.bsn Channel re-entrained linear parameter 
0.0001, 

0.0008 
Zabaleta et al. (2014), Merriman et al. (2018) 
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PRF_BSN.bsn 
Peak rate adjustment factor for 

sediment in the main channel 
1.8, 1.9 Merriman et al. (2018), Me et al. (2015) 

USLE_K().sol 
USLE equation soil erodibility (K) 

factor 
0.35, 0.1 Zabaleta et al. (2014), El-khoury et al. (2015) 

USLE_P.mgt USLE support practice factor 1, 0.5 El-khoury et al. (2015), Me et al. (2015) 

CH_COV2.rte Channel cover factor 0.6 Me et al. (2015) 

CDN.bsn 
Denitrification exponential rate 

coefficient 

0.317, 0.3, 

0.06, 1.24 

Merriman et al. (2018), Me et al. (2015), Moriasi et 

al. (2013), Ikenberry et al. (2017) 

SDNCO.bsn Denitrification threshold water content 0.991, 0.02 Merriman et al. (2018), Me et al. (2015) 

NPERCO.bsn Nitrate percolation coefficient 
0.161, 0.0003, 

0.15, 0.2 

Merriman et al. (2018), Me et al. (2015), Guo et al. 

(2018), Ikenberry et al. (2017) 

N_UPDIS.bsn Nitrogen uptake distribution parameter 32.4, 0.5 Merriman et al. (2018), Me et al. (2015) 

BC1_BSN.bsn 
Rate constant for biological oxidation 
of NH4 to NO2 in the reach at 20˚ C in 

well-aerated conditions (day-1) 

1, 4.15 Me et al. (2015), El-khoury et al. (2015) 

ANION_EXCL.sol 
Fraction of porosity (void space) from 
which anions are excluded 

0.2, 0.50 Merriman et al. (2018), Ikenberry et al. (2017) 

CH_ONCO.rte 
Organic nitrogen concentration in the 

channel (ppm) 
0.01 Me et al. (2015) 

BC4.swq 

Rate constant for mineralization of 

organic P to dissolved P in the reach at 

20˚ C (day-1) 

0.34, 0.3 El-khoury et al. (2015), Me et al. (2015) 

ERORGP.hru 
Phosphorus enrichment ratio for 

loading with sediment 
0, 0.1, 2.5 

El-khoury et al. (2015), Malagó et al. (2017), Me et 

al. (2015) 

P_UPDIS.bsn 
Phosphorus uptake distribution 
parameter 

98.3, 0.5 Merriman et al. (2018), Me et al. (2015) 

PHOSKD.bsn 
Phosphorus soil partitioning coefficient 

(m3/Mg) 
188, 5, 174 

Merriman et al. (2018), El-khoury et al. (2015), Me et 

al. (2015) 
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APPENDIX E 

Water Balance for Two Different HRUs 

Table E.7. Average annual water balance changes for two HRUs with different soil types in the historic 

and future period 

 


