
Supplementary Information for: 

A model for the oceanic mass balance of rhenium and for the extent of Proterozoic ocean 

anoxia 

1 Sedimentary Re concentrations in the Cariaco Basin and calculating the 

representative modern Re anoxic burial rate 

Our modern representative Re burial rate in the anoxic sink (ba) is derived from data from 

sediment core 1002B, ODP 165, in the Cariaco Basin (Table S6). The Re concentrations were 

measured for six 5-cm intervals ranging from a composite depth of 20 to 420 cmbsf (centimetres 

below seafloor), excluding measurements closer to the sediment-water interface where [Re]sed is 

markedly low (<10 ppb). The six measurements yield an average [Re]sed of 63.17 ppb. Based on 

an average gamma-ray attenuation porosity evaluator (GRAPE), wet bulk density of 1.35 g/cm3 is 

calculated for core 1002B between 21 and 419 cmbsf (Peterson et al., 2000b). The corresponding 

dry bulk density is calculated with the following formula (Peterson et al., 2000a): 

Dry bulk density =
GRAPE wet bulk density−1.0532

0.4932
  

=
1.35−1.0532

0.4932
  

= 0.606 g cm3⁄   

This is combined with an average, linear sedimentation rate of 350 m/Myr for all of site 1002 

(Peterson et al., 2000b): 

Re burial rate = [Re]sed × Dry bulk density × Linear sedimentation rate  

= 63.17 ng g⁄ × 0.606 g cm3⁄ × 0.0360 cm yr⁄   

= 𝟏. 𝟑𝟒 𝐧𝐠 𝐜𝐦𝟐 ∙ 𝐲𝐫𝟏⁄   

Our calculated value is similar to recently published Re burial rates in anoxic sediments of the 

Cariaco Basin, which have a range of 1.49–1.56 ng cm–2 yr–1 (Calvert et al., 2015) and are within 

the uncertainty range of our data. The slight discrepancy has negligible influence on our modeling 

results, as verified by replicating runs with values of Calvert et al. (2015).  



Table S6. Sedimentary Re Concentrations in the Cariaco Basin, ODP 165, Core 1002B. 

 
 

  

Sample Depth (cmbsf) [Re] (ppb)

B1 20-25 20 64

B1 35-40 35 67

B1 115-120 115 61

B2 50-55 200 63

B2 95-100 245 54

B3 120-125 420 70



2 Statistical analysis of trends in [Re]sed vs. time 

An inherent source of uncertainty in interpreting temporal trends from our compilation is the 

uneven data density through geologic time. We divided our compilation into four stages based on 

the temporal trends of [Re]sed and other redox-sensitive elements in ORM through time in 

combination with other paleoredox indicators (see section 5.1 in main text). To test whether the 

differences in [Re]sed of these four stages are statistically significant, we first determined from 

histograms that the time-binned mean [Re]sed in each stage do not follow a normal or log-normal 

distribution. Therefore, the data cannot be statistically analyzed by normal parametric methods 

such as a two-tailed t-test. Following the approach of Dubin and Peucker-Ehrenbrink (2015), we 

used bootstrap analysis to estimate the confidence interval of each of the four sets of binned time-

point mean [Re]sed. The bootstrap method is useful for estimating a data distribution when the 

realistic sample distribution is unknown. For every stage, random sampling of time-point mean 

[Re]sed was carried out to create 10,000 data subsets, with each subset containing a number of 

randomly selected values equivalent to the total number of time-point mean [Re]sed values in that 

specific stage. An important feature of bootstrap analysis is that it employs resampling with 

replacement, meaning that a time-point mean [Re]sed can be selected again even if it had been 

previously sampled for the same subset. For example, stage 1 contains nine time-point mean 

[Re]sed (Table S4 in the supplementary database). An example data subset sampled by the bootstrap 

method from this stage would be (8.4, 8.4, 11.0, 16.2, 13.3, 8.4, 19.9, 19.9, 7.4) (values in ppb). 

This is performed using the RANDBETWEEN function in Microsoft Excel. The mean and median 

of each of the 10,000 data subsets was then calculated and compiled into a histogram display. The 

bootstrap means follow a symmetrical normal distribution and were chosen instead of the bootstrap 



medians to best represent the datasets. Stage 2 was excluded from this analysis due to the low 

number of time-point mean [Re]sed values (n=3).  

  



3 The Re sedimentary enrichment model 

 

3.1 Construction of the Re sedimentary enrichment model 

Our modeling methods follow closely those outlined in Reinhard et al. (2013), with a few 

adjustments as discussed below. Essentially, we relate the Re anoxic burial rate in the modern 

ocean, ba, to that found in an ancient ocean with a different spatial configuration and extent of oxic, 

suboxic, and anoxic settings. Assuming steady-state conditions for each scenario, the two burial 

rates are in principle related by the size of the seawater Re reservoir, [Re]M, which is directly 

controlled by the spatial extent of the three redox settings: 

 𝑏𝑎
′ = 𝑏𝑎 (

[Re]′

[Re]M
) Eq. 1 

 [Re]′ = [Re]M (
𝐹𝑖𝑛

∑ 𝐴𝑖𝑏𝑖
) Eq. 2 

 

Where [Re]′ is the seawater Re concentration under the new steady state, Fin the input (riverine) 

flux, and ∑ 𝐴𝑖𝑏𝑖 the sum of output fluxes for the oxic (o), suboxic (s), and anoxic (a) sinks. Because 

[Re]M and Fin are assumed to be constant in our mass balance, [Re]′ varies as a function of 𝐴𝑖 and 

𝑏𝑖. 

 [Re]′ = [Re]M (
𝐹𝑖𝑛

𝐴𝑜𝑏𝑜 + 𝐴𝑠𝑏𝑠 + 𝐴𝑎𝑏𝑎
)  

By applying perturbations to this relationship in the form of increasing anoxic seafloor area, 𝐴𝑎, 

we are primarily interested in how much [Re]sed is to be expected in anoxic sediments as larger 

extents of the seafloor become covered by anoxic bottom waters. (As the following derivations 

involve the anoxic sink only, 𝐴𝑎 will be expressed as 𝐴 for simplification.) 

Offshore scaling of anoxic Re burial 

A single constant value is assumed for metal burial rate in numerous previous models of 

marine trace metal enrichment in ORM (e.g., Scott et al., 2008; Sahoo et al., 2012; Partin et al., 

2013). However, the close association of Re burial rates with the organic carbon flux to the seafloor 

means that, in high-productivity ocean margins, the anoxic Re burial rate is greater compared to 

the abyssal plain, where the organic carbon flux is lower. Applying a constant anoxic burial rate, 



which is mostly measured in ocean margins, to the global seafloor results in overestimation of 

anoxic fluxes and a model that is oversensitive to anoxic expansion. One attempt to resolve this 

problem is the approach of Reinhard et al. (2013), which incorporates a pseudo-spatial scaling 

factor that is applied to anoxic burial rates. 

To construct the offshore scaling factor, we first take an algorithm expressing labile organic 

carbon removal to the seafloor, 𝐵𝐶𝑜𝑟𝑔
, as a function of seawater depth, Z (Middleburg et al., 1996; 

1997): 

 𝐵𝐶𝑜𝑟𝑔
(𝑍) = 𝛽𝑒𝛼𝑍 Eq. 3 

This is then combined with global bathymetric data (Amante and Eakins, 2009) relating seawater 

depth to cumulative seafloor area, A: 

 𝐵𝐶𝑜𝑟𝑔
(𝐴) = 𝛽𝑒𝛼∙𝑍(𝐴) Eq. 4 

The relationship 𝑍(𝐴) is approximated in the Reinhard et al. (2013) model by a fourth-order 

polynomial function, which was necessary given the small number of sampled points (n < 10). In 

this study, we use bathymetric data from the eTOPO database (Amante and Eakins, 2009), which 

has a much higher data resolution (n > 10,000) and thereby enables subsequent calculations to be 

performed directly for each data point without the need for a polynomial fit. The resulting 

relationship 𝐵𝐶𝑜𝑟𝑔
(𝐴)  is treated as a differentiable pseudo-function for the remainder of the 

calculations. Essentially, 𝐵𝐶𝑜𝑟𝑔
(𝐴)  dictates a hypothetical scenario where an initially 

authigenically neutral global seafloor becomes active with respect to organic carbon burial, starting 

from the shallow continental shelf and expanding into the deep ocean. As larger regions of the 

seafloor become authigenically active, the total Corg burial flux increases, although the highest 

local Corg burial rates occur in shallow waters (i.e. the first few percent of the global seafloor in 

our expansion scheme). To express this total flux, we integrate 𝐵𝐶𝑜𝑟𝑔
(𝐴) over 𝐴: 

 𝐹𝐶𝑜𝑟𝑔
(𝐴) = ∫ 𝐵𝐶𝑜𝑟𝑔

(𝐴)𝑑𝐴
𝐴′

0

 Eq. 5 

where 𝐹𝐶𝑜𝑟𝑔
(𝐴), the total cumulative Corg flux to the seafloor, is in mol per unit time. Since 

calculation needs to be done for each point of 𝐵𝐶𝑜𝑟𝑔
(𝐴), the actual method of integration is as 

follows: 



𝐹𝐶𝑜𝑟𝑔
(𝐴1) =

1

2
(𝐵𝐶𝑜𝑟𝑔

(𝐴0) + 𝐵𝐶𝑜𝑟𝑔
(𝐴1)) (𝐴1 − 𝐴0)  

𝐹𝐶𝑜𝑟𝑔
(𝐴2) =

1

2
(𝐵𝐶𝑜𝑟𝑔

(𝐴1) + 𝐵𝐶𝑜𝑟𝑔
(𝐴2)) (𝐴2 − 𝐴1) + 𝐹𝐶𝑜𝑟𝑔

(𝐴1)  

…  

𝐹𝐶𝑜𝑟𝑔
(𝐴𝑛) =

1

2
(𝐵𝐶𝑜𝑟𝑔

(𝐴𝑛−1) + 𝐵𝐶𝑜𝑟𝑔
(𝐴𝑛)) (𝐴𝑛−1 − 𝐴𝑛) + 𝐹𝐶𝑜𝑟𝑔

(𝐴𝑛)  

The offshore-scaled, overall average local Corg burial rate, 𝑏𝐶𝑜𝑟𝑔
, is derived by dividing 𝐹𝐶𝑜𝑟𝑔

 by 

A: 

 𝑏𝐶𝑜𝑟𝑔
(𝐴) =

𝐹𝐶𝑜𝑟𝑔
(𝐴) 

𝐴
 Eq. 6 

𝑏𝐶𝑜𝑟𝑔
 is related to the scaled Re anoxic burial rate, 𝑏𝑅𝑒, by a tunable ratio, r, which is set at a value 

to reproduce the modern characteristic Re anoxic burial rate (ba; 1.34 ng cm–2 yr–1) when 𝐴 = 𝐴𝑎 

(~0.11% global seafloor area): 

 𝑏𝑅𝑒(𝐴) = 𝑟 ∙ 𝑏𝐶𝑜𝑟𝑔
(𝐴) Eq. 7 

The use of a tunable ratio removes the dependence of Re burial rate on the absolute value of 𝑏𝐶𝑜𝑟𝑔
, 

which can be extremely variable across the seafloor due to local factors such as redox fluctuations 

and changes in primary productivity (Reinhard et al., 2013). The resultant 𝑏𝑅𝑒(𝐴) curve is similar 

to that derived from a polynomial-approximated bathymetric profile (Fig. S1). Significantly higher 

Re burial rates occur during the first 10% of anoxic expansion, which is more realistic considering 

the predominance of high-productivity, shallow seafloor at this point in the expansion scheme. The 

polynomial approximation of Reinhard et al. (2013) does not account for the characteristic 

shoreward "hump" and underestimates Re drawdown. In sharp contrast to both curves, a metal 

burial rate decoupled from variable Corg flux results in significant overestimation of the total Re 

burial rate (Fig. S1). 

The authigenic burial rate expected in anoxic sediments under the new steady state, 𝐵𝑎
′, is 

obtained by applying the ratio between the modern anoxic burial rate and the scaled anoxic burial 

rate, to the unscaled authigenic burial rate: 

 𝐵𝑎
′(𝐴) = 𝑏𝑎

′(𝐴) [
𝑏𝑎

𝑏𝑅𝑒(𝐴)
] Eq. 8 



where 𝑏𝑎
′(𝐴) = 𝑏𝑎 [

[Re]′(𝐴)

[Re]M
] by equation 1. Note that both 𝑏𝑎

′
and 𝑏𝑅𝑒 are dependent on 𝐴, while 

𝑏𝑎 is constant. Additionally, because [Re]′ = [Re]M (
𝐹𝑖𝑛

∑ 𝐴𝑖𝑏𝑖
) by equation 2, the two [Re]M terms 

cancel out, making 𝑏𝑎
′(𝐴)  independent of the size of the modern seawater Re reservoir. 

Authigenic sedimentary enrichment is then solved using the bulk mass accumulation rate (BMAR): 

 [Re]pred(𝐴) =
𝐵𝑎

′(𝐴)

BMAR
 Eq. 9 

 

  



 

Figure S1. Tuned Re burial rate in open ocean anoxic sediments with increasing seafloor anoxia, with offshore-scaling 

applied (in green). Thin black curve represents the same calculations applied to a bathymetric profile derived from a 

fitted fourth-order polynomial function (the approach in Reinhard et al., 2013). A polynomial-fitted bathymetry results 

in underestimation of Re burial rate in the shallow seafloor, and slightly overestimates Re burial in the margin-

proximal portion of the abyssal seafloor. In contrast, a constant anoxic burial rate applied to the entire seafloor (in red) 

results in significant overestimation of Re burial with expanding anoxia. 
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3.2 Prescribed model perturbations and treatment of the burial sinks 

Anoxic expansion scheme 

Our modeling analysis consists of applying perturbations to the Re mass-balance in the form 

of increasing anoxic seafloor and comparing the resulting [Re]pred in open ocean anoxic sediments 

with the mid-Proterozoic record. As the offshore scaling of Re burial rate introduces spatial 

dependence into our model, it is necessary to discuss the various assumptions we make with 

regards to the prescribed spatial behaviour of each redox sink. Envisioning the global ocean as a 

simplified bathymetric slope with the shallow continental shelf on one end and the deep ocean 

floor on the other, we start with a 100% oxygenated ocean and expand anoxia from the shallow 

shelf into the deep ocean at the expense of oxic sediments. From a mechanistic point of view, this 

is a reasonable approximation as modern anoxic seafloor is found in marginal settings. We set the 

shallowest 5% of the seafloor to be authigenically neutral. This is consistent with the assumption 

that atmospheric O2 levels during the mid-Proterozoic were sufficient to maintain an oxygenated 

surface layer in the ocean. 

Given the evidence for gas-exchange constraints as the cause for deep-ocean anoxia during 

the mid-Proterozoic (Canfield, 1998), one might also entertain the possibility of anoxia starting in 

the deep ocean and expanding shorewards. However, as we focus on constraining the lowest 

possible [Re]pred for comparison with the mid-Proterozoic [Re]sed record, we are primarily 

interested in the model trend at high extents of seafloor anoxia, upon which point the direction of 

expansion becomes inconsequential. 

Treatment of the suboxic sink 

The suboxic sink is set at a constant value independent of the prescribed perturbations, a key 

assumption in our modeling exercises. It is reasonable to expect that, with increasingly reducing 

conditions in the oceans, there will be a first-order expansion of suboxic seafloor along with anoxic 

seafloor. This would result in overestimating the extent of seafloor anoxia required to achieve mid-

Proterozoic [Re]sed levels. However, from a modeling and mechanistic point of view, we believe 

that this is unlikely to change our basic conclusions. By fixing the magnitude of the suboxic sink 

at its modern average, we have already enhanced its impact in the model. More specifically, we 

have taken a suboxic burial rate representative of high-productivity margins and assigned it to a 



portion of the seafloor with maximum authigenic capacity. This slice of shallow, suboxic seafloor 

is set as an addition to the 100% global seafloor reserved for oxia-anoxia interaction, thereby 

further increasing the weight of the suboxic sink in the model via double-counting the shallow 

shore for both suboxia and anoxia. Furthermore, suboxia is unlikely to be a stable redox 

configuration at large temporal scales. Being poorly redox-buffered, fluctuations in circulation or 

Corg flux would result in the development of either true oxic or anoxic environments. 

2.3 Model scenarios 

Input flux variation 

Low-temperature hydrothermal fluids are postulated to contribute dissolved Re to seawater, 

but the low-temperature hydrothermal Re input flux has not been successfully constrained. 

Reinhard et al. (2013) estimated that the low-temperature hydrothermal Mo flux is unlikely to 

exceed 10% of the Mo riverine flux. A similar approximation can be made for Re based on the 

generally similar geochemical characteristics of Re and Mo. To test the influence of low-

temperature hydrothermal Re input to seawater, we run the model with a 110% Re input flux. Only 

a minor change is observed (Fig. S2). 

Bathymetric variations 

To simulate the expansion of epeiric seas during global sea-level high-stand, we apply 

inundation to 100 m and 200 m above present-day sea level in the eTOPO database. This creates 

a new bathymetric profile where the newly inundated land area contributes to a larger proportion 

of gently-sloped, shallow seafloors in the global ocean. The magnitude of prescribed sea-level 

rises is based on values estimated for the formation of the Ordovician and Cretaceous interior 

seaways (Algeo and Seslavinsky, 1995; Miller et al., 2005; Haq and Schutter, 2008). We assume 

that the dissolved concentration of Re remains constant during initial sea-level rise and is followed 

by authigenic activation of seafloor in the epeiric seas. 

  



 
Figure S2. Modeled Re concentrations with a 10% increase in the Re input flux (in blue) compared with modeled Re 

concentrations with an unmodified input flux (in red). A 10% increase in the Re input flux causes a very slight increase 

in modeled Re concentrations. 
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